Biomechanical analysis of wrapping of the moderately dilated ascending aorta.
Plonek, Tomasz; Rylski, Bartosz; Dumanski, Andrzej; Siedlaczek, Przemyslaw; Kustrzycki, Wojciech
2015-08-01
External wrapping is a surgical method performed to prevent the dilatation of the aorta and to decrease the risk of its dissection and rupture. However, it is also believed to cause degeneration of the aortic wall. A biomechanical analysis was thus performed to assess the stress of the aortic wall subjected to external wrapping. A stress analysis using the finite elements method was carried out on three models: a non-dilated aorta, a moderately dilated aorta and a wrapped aorta. The models were subjected to a pulsatile flow (120/80 mmHg) and a systolic aortic annulus motion of 11 mm. The finite elements analysis showed that the stress exerted on the outer surface of the ascending aorta in the wrapping model (0.05-0.8 MPa) was similar to that observed in the normal aorta (0.03-0.7 MPa) and was lower than in the model of a moderately dilated aorta (0.06-1.4 MPa). The stress on the inner surface of the ascending aorta ranged from 0.2 MPa to 0.4 MPa in the model of the normal aorta, from 0.3 to 1.3 MPa in the model of the dilated aorta and from 0.05 MPa to 0.4 MPa in the wrapping model. The results of this study suggest that the aortic wall is subjected to similar stress following a wrapping procedure to the one present in the normal aorta.
Novel Monitoring Techniques for Characterizing Frictional Interfaces in the Laboratory
Selvadurai, Paul A.; Glaser, Steven D.
2015-01-01
A pressure-sensitive film was used to characterize the asperity contacts along a polymethyl methacrylate (PMMA) interface in the laboratory. The film has structural health monitoring (SHM) applications for flanges and other precision fittings and train rail condition monitoring. To calibrate the film, simple spherical indentation tests were performed and validated against a finite element model (FEM) to compare normal stress profiles. Experimental measurements of the normal stress profiles were within −7.7% to 6.6% of the numerical calculations between 12 and 50 MPa asperity normal stress. The film also possessed the capability of quantifying surface roughness, an important parameter when examining wear and attrition in SHM applications. A high definition video camera supplied data for photometric analysis (i.e., the measure of visible light) of asperities along the PMMA-PMMA interface in a direct shear configuration, taking advantage of the transparent nature of the sample material. Normal stress over individual asperities, calculated with the pressure-sensitive film, was compared to the light intensity transmitted through the interface. We found that the luminous intensity transmitted through individual asperities linearly increased 0.05643 ± 0.0012 candelas for an increase of 1 MPa in normal stress between normal stresses ranging from 23 to 33 MPa. PMID:25923930
Derrick, Timothy R; Edwards, W Brent; Fellin, Rebecca E; Seay, Joseph F
2016-02-08
The purpose of this research was to utilize a series of models to estimate the stress in a cross section of the tibia, located 62% from the proximal end, during walking. Twenty-eight male, active duty soldiers walked on an instrumented treadmill while external force data and kinematics were recorded. A rigid body model was used to estimate joint moments and reaction forces. A musculoskeletal model was used to gather muscle length, muscle velocity, moment arm and orientation information. Optimization procedures were used to estimate muscle forces and finally internal bone forces and moments were applied to an inhomogeneous, subject specific bone model obtained from CT scans to estimate stress in the bone cross section. Validity was assessed by comparison to stresses calculated from strain gage data in the literature and sensitivity was investigated using two simplified versions of the bone model-a homogeneous model and an ellipse approximation. Peak compressive stress occurred on the posterior aspect of the cross section (-47.5 ± 14.9 MPa). Peak tensile stress occurred on the anterior aspect (27.0 ± 11.7 MPa) while the location of peak shear was variable between subjects (7.2 ± 2.4 MPa). Peak compressive, tensile and shear stresses were within 0.52 MPa, 0.36 MPa and 3.02 MPa respectively of those calculated from the converted strain gage data. Peak values from a inhomogeneous model of the bone correlated well with homogeneous model (normal: 0.99; shear: 0.94) as did the normal ellipse model (r=0.89-0.96). However, the relationship between shear stress in the inhomogeneous model and ellipse model was less accurate (r=0.64). The procedures detailed in this paper provide a non-invasive and relatively quick method of estimating cross sectional stress that holds promise for assessing injury and osteogenic stimulus in bone during normal physical activity. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Howell, W. E.
1974-01-01
The mechanical properties of a symmetrical, eight-step, titanium-boron-epoxy joint are discussed. A study of the effect of adhesive and matrix stiffnesses on the axial, normal, and shear stress distributions was made using the finite element method. The NASA Structural Analysis Program (NASTRAN) was used for the analysis. The elastic modulus of the adhesive was varied from 345 MPa to 3100 MPa with the nominal value of 1030 MPa as a standard. The nominal values were used to analyze the stability of the joint. The elastic moduli were varied to determine their effect on the stresses in the joint.
Strength of Wet and Dry Montmorillonite
NASA Astrophysics Data System (ADS)
Morrow, C. A.; Lockner, D. A.; Moore, D. E.
2015-12-01
Montmorillonite, an expandable smectite clay, is a common mineral in fault zones to a depth of around 3 km. Its low strength relative to other common fault gouge minerals is important in many models of fault rheology. However, the coefficient of friction is not well constrained in the literature due to the difficulty of establishing fully drained or fully dried states in the laboratory. For instance, in some reported studies, samples were either partially saturated or possibly over pressured, leading to wide variability in reported shear strength. In this study, the coefficient of friction, μ, of both saturated and oven-dried (at 150°C) Na-montmorillonite was measured at normal stresses up to 680 MPa at room temperature and shortening rates from 1.0 to 0.01 μm/s. Care was taken to shear saturated samples slowly enough to avoid pore fluid overpressure in the clay layers. Coefficients of friction are reported after 8 mm of axial displacement in a triaxial apparatus on saw-cut samples containing a layer of montmorillonite gouge, with either granite or sandstone driving blocks. For saturated samples, μ increased from around 0.1 at low pressure to 0.25 at the highest test pressures. In contrast, values for oven-dried samples decreased asymptotically from approximately 0.78 at 10 MPa normal stress to around 0.45 at 400-680 MPa. While wet and dry strengths approached each other with increasing effective normal stress, wet strength remained only about half of the dry strength at 600 MPa effective normal stress. The increased coefficient of friction can be correlated with a reduction in the number of loosely bound lubricating surface water layers on the clay platelets due to applied normal stress under saturated conditions. The steady-state rate dependence of friction, a-b, was positive and dependent on normal stress. For saturated samples, a-b increased linearly with applied normal stress from ~0 to 0.004, while for dry samples a-b decreased with increasing normal stress from 0.008 to 0.002. All values were either neutral or rate strengthening, indicating a tendency for stable sliding.
NASA Astrophysics Data System (ADS)
Styron, R. H.; Hetland, E. A.; Zhang, G.
2013-12-01
The weight of large mountains produces stresses in the crust that locally may be on the order of tectonic stresses (10-100 MPa). These stresses have a significant and spatially-variable deviatoric component that may be resolved as strong normal and shear stresses on range-bounding faults. In areas of high relief, the shear stress on faults can be comparable to inferred stress drops in earthquakes, and fault-normal stresses may be greater than 50 MPa, and thus may potentially influence fault rupture. Additionally, these stresses may be used to make inferences about the orientation and magnitude of tectonic stresses, for example by indicating a minimum stress needed to be overcome by tectonic stress. We are studying these effects in several tectonic environments, such as the Longmen Shan (China), the Denali fault (Alaska, USA) and the Wasatch Fault Zone (Utah, USA). We calculate the full topographic stress tensor field in the crust in a study region by convolution of topography with Green's functions approximating stresses from a point load on the surface of an elastic halfspace, using the solution proposed by Liu and Zoback [1992]. The Green's functions are constructed from Boussinesq's solutions for a vertical point load on an elastic halfspace, as well as Cerruti's solutions for a horizontal surface point load, accounting for irregular surface boundary and topographic spreading forces. The stress tensor field is then projected onto points embedded in the halfspace representing the faults, and the fault normal and shear stresses at each point are calculated. Our primary focus has been on the 2008 Wenchuan earthquake, as this event occurred at the base of one of Earth's highest and steepest topographic fronts and had a complex and well-studied coseismic slip distribution, making it an ideal case study to evaluate topographic influence on faulting. We calculate the topographic stresses on the Beichuan and Pengguan faults, and compare the results to the coseismic slip distribution, considering several published fault models. These models differ primarily in slip magnitude and planar vs. listric fault geometry at depth. Preliminary results indicate that topographic stresses are generally resistive to tectonic deformation, especially above ~10 km depth, where the faults are steep in all models. Down-dip topographic shear stresses on the fault are normal sense where the faults dip steeply, and reach 20 MPa on the fault beneath the Pengguan massif. Reverse-sense shear up to ~15 MPa is present on gently-dipping thrust flats at depth on listric fault models. Strike-slip shear stresses are sinistral on the steep, upper portions of faults but may be dextral on thrust flats. Topographic normal stress on the faults reaches ~80 MPa on thrust ramps and may be higher on flats. Coseismic slip magnitude is negatively correlated with topographic normal and down-dip shear stresses. The spatial patterns of topographic stresses and slip suggest that topographic stresses have significantly suppressed slip in certain areas: slip maxima occur in areas of locally lower topographic stresses, while areas of higher down-dip shear and normal stress show less slip than adjacent regions.
Wang, Cheng-Wei; Muheremu, Aikeremujiang; Bai, Jing-Ping
2017-01-01
Objective To compare three surgical techniques for lateral ankle ligament reconstruction using finite element (FE) models. Methods A three-dimensional FE model of the left foot of a healthy volunteer and lateral collateral ligament injury models were developed. Three tendons [one-half of the autologous peroneus longus tendon (PLT), one-half of the peroneus brevis tendon (PBT), and an allogeneic tendon] were used for lateral collateral ligament reconstruction. The ankle varus stress and anterior drawer tests were performed to compare the three surgical techniques. Results The ankle varus stress test showed that the equivalent stresses of the anterior talofibular ligament (ATFL) (84.00 MPa) and calcaneofibular ligament (CFL) (27.01 MPa) were lower in allogeneic tendon reconstruction than in the other two techniques but similar to those of normal individuals (138.48 and 25.90 MPa, respectively). The anterior drawer test showed that the equivalent stresses of the ATFL and CFL in autologous PLT reconstruction (31.31 and 28.60 MPa, respectively) and PBT reconstruction (31.47 and 29.07 MPa, respectively) were lower than those in allogeneic tendon reconstruction (57.32 and 52.20 MPa, respectively). Conclusions The allogeneic tendon reconstruction outcome was similar to normal individuals. Allogeneic tendon reconstruction may be superior for lateral ankle ligament reconstruction without considering its complications. PMID:29239256
NASA Astrophysics Data System (ADS)
Di Toro, G.; Nielsen, S. B.; Spagnuolo, E.; Smith, S.; Violay, M. E.; Niemeijer, A. R.; Di Felice, F.; Di Stefano, G.; Romeo, G.; Scarlato, P.
2011-12-01
A challenging goal in experimental rock deformation is to reproduce the extreme deformation conditions typical of coseismic slip in crustal earthquakes: large slip (up to 50 m), slip rates (0.1-10 m/s), accelerations (> 10 m/s2) and normal stress (> 50 MPa). Moreover, fault zones usually contain non-cohesive rocks (gouges) and fluids. The integration of all these deformation conditions is such a technical challenge that there is currently no apparatus in the world that can reproduce seismic slip. Yet, the determination of rock friction at seismic slip rates remains one of the main unknowns in earthquake physics, as it cannot be determined (or very approximately) by seismic wave inversion analysis. In the last thirty years, rotary shear apparatus were designed that combine large normal stresses and slip but low slip rates (high-pressure rotary shears first designed by Tullis) or low normal stresses but large slip rates and slip (rotary shears first designed by Shimamoto). Here we present the results of experiments using a newly-constructed Slow to HIgh Velocity Apparatus (SHIVA), installed at INGV in Rome, which extends the combination of normal stress, slip and slip rate achieved by previous apparatus and reproduces the conditions likely to occur during an earthquake in the shallow crust. SHIVA uses two brushless engines (max power 300 kW, max torque 930 Nm) and an air actuator (thrust 5 tons) in a rotary shear configuration (nominally infinite displacement) to slide hollow rock cylinders (30/50 mm int./ext. diameter) at slip rates ranging from 10 micron/s up to 6.5 m/s, accelerations up to 80 m/s2 and normal stresses up to 50 MPa. SHIVA can also perform experiments in which the torque on the sample (rather than the slip rate) is progressively increased until spontaneous failure occurs: this experimental capability should better reproduce natural conditions. The apparatus is equipped with a sample chamber to carry out experiments in the presence of fluids (up to 15 MPa fluid pressure), devices to determine the fluid composition during sliding, a gouge sample holder (tested up to 34 MPa in normal stress), and an environmental/vacuum chamber connected to a mass spectrometer to measure gas release during frictional sliding. In particular, we will show: 1) the extremely low friction coefficients (often approaching zero) and short (few cm is some cases) slip weakening distances measured in experiments performed at large normal stress (<40MPa) and accelerations on cohesive rocks (carbonatic marbles and gabbros); 2) the spontaneous creep episodes, lasting a few mm to a few cm in slip, that precede the large stress drops typical of earthquake instabilities, observed in torque-controlled experiments on gabbro and marbles; 3) how the presence of free fluids (H2O) delays the onset of dynamic weakening in carbonatic rocks; 4) the experimental microstructures, produced at normal stresses up to 34 MPa and slip rates of 1-3 m/s, in calcite gouges that closely resemble those found in exhumed seismic fault zones.
Finite-Element Modeling of 3C-SiC Membranes
NASA Technical Reports Server (NTRS)
DeAnna, R. G.; Mitchell, J.; Zorman, C. A.; Mehregany, M.
2000-01-01
Finite-element modeling (FEM) of 3C-SiC thin-film membranes on Si substrates was used to determine the residual stress and center deflection with applied pressure. The anisotropic, three-dimensional model includes the entire 3C-SiC membrane and Si substrate with appropriate material properties and boundary conditions. Residual stress due to the thermal-expansion-coefficient mismatch between the3C-SiC film and Si substrate was included in the model. Both before-and after-etching, residual stresses were calculated. In-plane membrane stress and normal deflection with applied pressure were also calculated. FEM results predict a tensile residual stress fo 259 MPa in the 3C-SiC membrane before etching. This decreases to 247 MPa after etching the substrate below the membrane. The residual stress experimentally measured on sample made at Case Western Reserve University was 280 MPa on post-etched membranes. This is excellent agreement when an additional 30-40 MPa of residual stress to account for lattice mismatch is added to the FEM results.
The Effect of Pressure and Deviatoric Stress on Rock Magnetism
1988-10-31
34 I 0 z 0.6 I 0.5 0 50 100 150 200 PRESSURE, MPaI 1.0 UNIAXIAL STRESS H0.9 z U 0.8 Lw 0.7 I 0 .6 I Z 0.5 .. m 0.4 ’ ’ ’ 0 50 100 150 200 m STRESS...DIFFERENCE, MPaI Figure 2-1. Normalized TRM is shown as a function of pressure or stress difference for the first loading cycle on diabase specimens. The
NASA Astrophysics Data System (ADS)
Proctor, B.; Mitchell, T. M.; Hirth, G.; Goldsby, D. L.; Di Toro, G.; Zorzi, F.
2013-12-01
High-velocity friction (HVF) experiments on bare rock surfaces have revealed various dynamic weakening processes (e.g., flash weakening, gel weakening, melt lubrication) that likely play a fundamental role in coseismic fault weakening. However, faults generally contain a thin layer of gouge separating the solid wallrocks, thus it is important to understand how the presence of gouge modifies the efficiency of these weakening processes at seismic slip rates. We explored the frictional behavior of bare surfaces and powdered samples of an antigorite-rich serpentinite (ARS) and a lizardite-rich serpentinite (LRS) at earthquake slip rates. HVF experiments were conducted with slip displacements ranging from ~0.5 to 2m, at velocities ranging from 0.002m/s to 6.5 m/s, and with normal stresses ranging from 2-22 MPa for gouge and 5-100MPa for bare surfaces. Our results demonstrate that the friction coefficient (μ) of powdered serpentine is significantly larger than that of bare surfaces under otherwise identical conditions. Bare surface friction decreases over a weakening distance of a few centimeters to a nominally steady-state value of ~0.1 at velocities greater than 0.1m/s. The nominal steady-state friction decreases non-linearly with increasing normal stress from 0.14 to 0.045 at 5 and ~100MPa respectfully at a slip velocity of 1m/s. Additionally, the recovery of frictional strength during deceleration depends on total displacement; samples slipped for ~50mm recover faster than samples slipped for ~0.5m. Microstructural analysis of bare surfaces deformed at the highest normal stresses revealed translucent glass-like material on the slip surfaces and XRD analysis of wear material revealed an increasing presence of olivine and enstatite with increasing normal stress. In contrast, gouge requires an order of magnitude higher velocity than bare surfaces to induce frictional weakening, has a larger weakening distance and higher steady state friction values for equivalent deformation conditions. Furthermore, we observe a strong normal stress dependence of the nominal steady state friction and the weakening distance of ARS and LRS gouge from 0.51 to 0.39 and from 25-10cm at 4MPa and 22MPa, respectfully, for at a slip velocity of 1m/s. Strain was localized onto a shear surface in the range of 100-300 microns wide in all gouge samples deformed at >10cm/s and XRD analyses revealed the presence of olivine and enstatite in samples with the most weakening and none in samples with no weakening. Our results indicate that dynamic weakening occurs in gouge at low normal stress in response to strain localization and shear heating of the slip surface. However, because more initial displacement is required to localize strain, weakening initiates at higher velocities and after larger weakening distances than bare surfaces. At higher normal stress, localization occurs after less displacement and the differences between gouge and bare-surface friction diminish; extrapolation of our data suggests that the behavior of serpentine gouge will approach that of bare surfaces at normal stresses ≥60 MPa.
Beeler, Nicholas M.; Roeloffs, Evelyn A.; McCausland, Wendy
2013-01-01
Mazzotti and Adams (2004) estimated that rapid deep slip during typically two week long episodes beneath northern Washington and southern British Columbia increases the probability of a great Cascadia earthquake by 30–100 times relative to the probability during the ∼58 weeks between slip events. Because the corresponding absolute probability remains very low at ∼0.03% per week, their conclusion is that though it is more likely that a great earthquake will occur during a rapid slip event than during other times, a great earthquake is unlikely to occur during any particular rapid slip event. This previous estimate used a failure model in which great earthquakes initiate instantaneously at a stress threshold. We refine the estimate, assuming a delayed failure model that is based on laboratory‐observed earthquake initiation. Laboratory tests show that failure of intact rock in shear and the onset of rapid slip on pre‐existing faults do not occur at a threshold stress. Instead, slip onset is gradual and shows a damped response to stress and loading rate changes. The characteristic time of failure depends on loading rate and effective normal stress. Using this model, the probability enhancement during the period of rapid slip in Cascadia is negligible (<10%) for effective normal stresses of 10 MPa or more and only increases by 1.5 times for an effective normal stress of 1 MPa. We present arguments that the hypocentral effective normal stress exceeds 1 MPa. In addition, the probability enhancement due to rapid slip extends into the interevent period. With this delayed failure model for effective normal stresses greater than or equal to 50 kPa, it is more likely that a great earthquake will occur between the periods of rapid deep slip than during them. Our conclusion is that great earthquake occurrence is not significantly enhanced by episodic deep slip events.
NASA Astrophysics Data System (ADS)
Cen, Duofeng; Huang, Da
2017-06-01
Tension-shear failure is a typical failure mode in the rock masses in unloading zones induced by excavation or river incision, etc., such as in excavation-disturbed zone of deep underground caverns and superficial rocks of high steep slopes. However, almost all the current shear failure criteria for rock are usually derived on the basis of compression-shear failure. This paper proposes a simple device for use with a servo-controlled compression-shear testing machine to conduct the tension-shear tests of cuboid rock specimens, to test the direct shear behavior of sandstone under different constant normal tensile stress conditions ( σ = -1, -1.5, -2, -2.5 and -3 MPa) as well as the uniaxial tension behavior. Generally, the fracture surface roughness decreases and the proportion of comminution areas in fracture surface increases as the change of stress state from tension to tension-shear and to compression-shear. Stepped fracture is a primary fracture pattern in the tension-shear tests. The shear stiffness, shear deformation and normal deformation (except the normal deformation for σ = -1 MPa) decrease during shearing, while the total normal deformation containing the pre-shearing portion increases as the normal tensile stress level (| σ|) goes up. Shear strength is more sensitive to the normal tensile stress than to the normal compressive stress, and the power function failure criterion (or Mohr envelope form of Hoek-Brown criterion) is examined to be the optimal criterion for the tested sandstone in the full region of tested normal stress in this study.
Mitigating Stress Waves Using Nanofoams and Nanohoneycombs
2014-04-16
In the following sections, we present our work in chronological order. 3 1. TWO-PARAMETER STUDY ON SILICA NANOFOAMS 1.1 Preparation...and Characterization of Silica Nanofoams Following the work in the last period of performance, we performed a systematic study on silica nanofoam...12.98MPa Peak value of transmission pulse: 5.32MPa Normalized peak value: 0.410 Pressure reduction: 0.02 MPa 19 2. SINGLE-PARAMETER STUDY ON
Frictional properties of the Nankai frontal thrust explain recurring shallow slow slip events
NASA Astrophysics Data System (ADS)
Saffer, D. M.; Ikari, M.; Kopf, A.; Roesner, A.
2017-12-01
Recent observations provide evidence for shallow slip reaching to the trench on subduction megathrusts, both in earthquakes and slow slip events (SSE). This is at odds with existing friction studies, which report primarily velocity-strengthening behavior (friction increases with slip velocity) for subduction fault material and synthetic analogs, which leads only to stable sliding. We report on direct shearing experiments on fault rocks from IODP Site C0007, which sampled the frontal thrust of the Nankai accretionary prism. This fault has been implicated in both coseimic slip and recurring SSE. We focus on material from 437.2 meters below seafloor, immediately above a localized shear zone near the base of the fault. In our experiments, a 25 mm diameter cylindrical specimen is loaded in an assembly of two steel plates. After application of normal stress (3, 10, or 17 MPa) and subsequent equilibration, the lower plate is driven at a constant velocity while the upper plate remains stationary; this configuration forces shear to localize between the two plates. After reaching a steady state residual friction coefficient (µss), we conducted velocity-stepping tests to measure the friction rate parameter (a-b), defined as the change in friction for a change in velocity: (a-b) = Δuss/ln(V/Vo), over a range of velocities from 0.1-100 µm s-1. We find that µss ranges from 0.26 to 0.32 and exhibits a slight decrease with normal stress. We observe velocity-weakening behavior at low normal stresses (3-10 MPa) and for low sliding velocities (< 3-10 µm s-1). Values of (a-b)_increase systematically from -0.007 to -0.005 at velocities of 0.3-1 µm s-1, to 0.001-0.045 at velocities >30 µm s-1. At higher normal stress (17 MPa), we observe dominantly velocity-strengthening, consistent with previously reported measurements for 25 MPa normal stress. Our observation of rate weakening at slip rates matching those of SSE in the outer Nankai forearc provide a potential explanation for periodic strain accumulation and subsequent release during SSE near the trench. The observation of rate weakening behavior only at low normal stresses also suggests that nucleation of these SSE should be restricted to shallow depths (< 2-5 km) or zones of elevated pore fluid pressure.
Frictional properties of the Nankai frontal thrust explain recurring shallow slow slip events
NASA Astrophysics Data System (ADS)
Scholz, J. R.; Davy, C.; Barruol, G.; Fontaine, F. R.; Cordier, E.
2016-12-01
Recent observations provide evidence for shallow slip reaching to the trench on subduction megathrusts, both in earthquakes and slow slip events (SSE). This is at odds with existing friction studies, which report primarily velocity-strengthening behavior (friction increases with slip velocity) for subduction fault material and synthetic analogs, which leads only to stable sliding. We report on direct shearing experiments on fault rocks from IODP Site C0007, which sampled the frontal thrust of the Nankai accretionary prism. This fault has been implicated in both coseimic slip and recurring SSE. We focus on material from 437.2 meters below seafloor, immediately above a localized shear zone near the base of the fault. In our experiments, a 25 mm diameter cylindrical specimen is loaded in an assembly of two steel plates. After application of normal stress (3, 10, or 17 MPa) and subsequent equilibration, the lower plate is driven at a constant velocity while the upper plate remains stationary; this configuration forces shear to localize between the two plates. After reaching a steady state residual friction coefficient (µss), we conducted velocity-stepping tests to measure the friction rate parameter (a-b), defined as the change in friction for a change in velocity: (a-b) = Δuss/ln(V/Vo), over a range of velocities from 0.1-100 µm s-1. We find that µss ranges from 0.26 to 0.32 and exhibits a slight decrease with normal stress. We observe velocity-weakening behavior at low normal stresses (3-10 MPa) and for low sliding velocities (< 3-10 µm s-1). Values of (a-b)_increase systematically from -0.007 to -0.005 at velocities of 0.3-1 µm s-1, to 0.001-0.045 at velocities >30 µm s-1. At higher normal stress (17 MPa), we observe dominantly velocity-strengthening, consistent with previously reported measurements for 25 MPa normal stress. Our observation of rate weakening at slip rates matching those of SSE in the outer Nankai forearc provide a potential explanation for periodic strain accumulation and subsequent release during SSE near the trench. The observation of rate weakening behavior only at low normal stresses also suggests that nucleation of these SSE should be restricted to shallow depths (< 2-5 km) or zones of elevated pore fluid pressure.
New Insights on the Creeping Phase of the Vajont Landslide form Rotary-Shear Experiments
NASA Astrophysics Data System (ADS)
Ferri, F.; Spagnuolo, E.; Di Felice, F.; Di Toro, G.
2014-12-01
It is well known that 1963 catastrophic Vajont landslide (NE Italy) was preceded by a creeping phase monitored over three years before the collapse and that water played a significant role in the instability of the rock sequence. However, the transition from the creeping phase to instability still remains elusive. Here we report experiments carried out in a rotary-shear friction apparatus (SHIVA at INGV, Rome, Italy) on smectite-rich gouges collected from the landslide surface (60-70% smectite, 20-30% calcite and minor quartz). Experiments were performed under shear stress controlled conditions at normal stress σnof 3-5 MPa in the presence of water (20% weight), and at room humidity. During the experiments, the shear stress τ was increased by a constant value Δτ and maintained for a fixed time Δt before applying the following shear stress step. When frictional instability was achieved, the machine started to rotate at an imposed velocity. In the first set of experiments, the initial τ (0.05 MPa) was increased by steps of Δτ = 0.25 MPa with Δt of 150 seconds. In the room humidity material, a series of spontaneous slip bursts occurred at τ = 2.5 MPa (at σn = 5MPa) until the shear stress reached 3.0 MPa. At this point, a large stress drop occurred with concomitant dilation. In the wet material, instability took place at τ= 0.3 MPa (at σn= 3 MPa). After forcing τ down, the material re-strengthened. A second main instability occurred when τ was restored to 0.3 MPa, with expulsion of water drops accompanied by an episode of dilation. At this point, the material spontaneously re-strengthened with a stick-slip behavior similar to that observed at room humidity conditions. In the second set of experiments, Δτ was reduced to 0.05 MPa and Δt increased up to 360 seconds producing a general enhancement of the shear stress required to generate unstable sliding. Instability took place at very high τ (3.12 MPa at σn= 3 MPa) at room-humidity conditions, and at τ = 0.8-0.9 MPa at wet conditions. The experiments evidence that the frictional instability of the Vajont clays is strongly dependent on the presence of water and on the shear stress enhancement Δτ. The results are important to model the frictional variation on the sliding surface concomitant with the fluctuations of the dam reservoir level.
Wang, Bo; Sun, Peidong; Xie, Xianbiao; Wu, Weidong; Tu, Jian; Ouyang, Jun; Shen, Jingnan
2015-11-01
Our aim was to introduce a novel combined hemipelvic endoprosthesis for pelvic reconstruction after Enneking type I/II/IV resection and to evaluate the biomechanical properties of the endoprosthesis using finite element analysis. A three-dimensional finite element model of the postoperative pelvis was developed based on computed tomography (CT) images of the patient with the best post-operative limb function. A force of 400 N was applied along the longitudinal axis of the normal and post-operative pelvis for two positions: standing on two feet and sitting. Stress-distribution analysis was performed in both positions, and results were compared. Prosthesis improvements were simulated by intervertebral fusion and extra screw fixation. In the normal pelvis, stress distributions were mostly concentrated on the superior area of the acetabulum, arcuate line, sacroiliac joint and sacral midline in both static conditions, and peak stresses of 1.52 MPa and 4.53 MPa were observed at the superior area of the greater sciatic notch and ischial tuberosity, respectively. For the reconstructed hemipelvis, stress distributions were concentrated on the connecting rods of the acetabular component and the proximal segment of the pedicle rods, and peak stresses of 252 MPa and 213 MPa were observed on the proximal pedicle rods of the fourth lumbar vertebra for standing and sitting, respectively. Interbody fusion of the fourth and fifth lumbar vertebrae and extra screw fixation to the sacrum decreased the peak stresses by 33.0 % and 18.3 % while standing and by 10.8 % and 6.6 % while sitting. Reconstruction with combined hemipelvic endoprosthesis after types I/II/IV resection of the pelvis fulfilled physiological and biomechanical demands of the hemipelvis and yielded good biomechanical characteristics.
Aradya, Anupama; Kumar, U Krishna; Chowdhary, Ramesh
2016-01-01
The study was designed to evaluate and compare stress distribution in transcortical section of bone with normal abutment and platform switched abutment under vertical and oblique forces in posterior mandible region. A three-dimensional finite element model was designed using ANSYS 13.0 software. The type of bone selection for the model was made of type II mandibular bone, having cortical bone thickness ranging from 0.595 mm to 1.515 mm with the crestal region measuring 1.5 mm surrounding dense trabecular bone. The implant will be modulated at 5 mm restorative platform and tapering down to 4.5 mm wide at the threads, 13 mm long with an abutment 3 mm in height. The models will be designed for two situations: (1) An implant with a 5 mm diameter abutment representing a standard platform in the posterior mandible region. (2) An implant with a 4.5 mm diameter abutment representing platform switching in the posterior mandible region. Force application was performed in both oblique and vertical conditions using 100 N as a representative masticatory force. For oblique loading, a force of 100 N was applied at 15° from the vertical axis. von Mises stress analysis was evaluated. The results of the study showed cortical stress in the conventional and platform switching model under oblique forces were 59.329 MPa and 39.952 MPa, respectively. Cortical stress in the conventional and platform switching model under vertical forces was 13.914 MPa and 12.793 MPa, respectively. Results from this study showed the platform switched abutment led to relative decrease in von Mises stress in transcortical section of bone compared to normal abutment under vertical and oblique forces in posterior mandible region.
Impact of Stress on Anomalous Transport in Fractured Rock
NASA Astrophysics Data System (ADS)
Kang, P. K.; Lei, Q.; Lee, S.; Dentz, M.; Juanes, R.
2016-12-01
Fluid flow and transport in fractured rock controls many natural and engineered processes in the subsurface. However, characterizing flow and transport through fractured media is challenging due to the large heterogeneity of fractured rock properties. In addition to these "static" challenges, geologic fractures are always under significant overburden stress, and changes in the stress state can lead to changes in the fracture's ability to conduct fluids. While confining stress has been shown to impact fluid flow through fractures in a fundamental way, the impact of confining stress on transport through fractured rock remains largely unexplored. The link between anomalous (non-Fickian) transport and confining stress has been shown only recently, at the level of a single rough fracture [1]. Here, we investigate the impact of confining stress on flow and transport through discrete fracture networks. We model geomechanical effects in 2D fractured rock by means of a finite-discrete element method (FEMDEM), which can capture the deformation of matrix blocks, reactivation and propagation of cracks. We implement a joint constitutive model within the FEMDEM framework to simulate the effect of fracture roughness. We apply the model to a fracture network extracted from the geological map of an actual outcrop to obtain the aperture field at different stress conditions (Figure 1). We then simulate fluid flow and particle transport through the stressed fracture networks. We observe that anomalous transport emerges in response to confining stress on the fracture networks, and show that this anomalous behavior can be linked to the stress state of the rock. Finally, we develop an effective transport model that captures the anomalous transport through stressed fractures. Our results point to a heretofore unrecognized link between geomechanics and anomalous transport in discrete fractured networks. [1] P. K. Kang, S. Brown, and R. Juanes, Emergence of anomalous transport in stressed rough fractures. Earth and Planetary Science Letters, to appear (2016). Figure (a) Map of maximum principal stress with a vertical normal compressive stress of 3 MPa at top and bottom boundaries, and 1MPa at left and right boundaries. (b) Normal compressive stress of 15 MPa at top and bottom boundaries, and 5MPa at left and right boundaries.
Smoothing and roughening of slip surfaces in direct shear experiments
NASA Astrophysics Data System (ADS)
Sagy, Amir; Badt, Nir; Hatzor, Yossef H.
2015-04-01
Faults in the upper crust contain discrete slip surfaces which have absorbed a significant part of the shear displacement along them. Field measurements demonstrate that these surfaces are rough at all measurable scales and indicate that surfaces of relatively large-slip faults are statistically smoother than those of small-slip faults. However, post faulting and surface erosion process that might affect the geometry of outcrops cannot be discounted in such measurements. Here we present experimental results for the evolution of shear surface topography as function of slip distance and normal stress in direct shear experiments. A single prismatic fine grain limestone block is first fractured in tension mode using the four-point bending test methodology and then the fracture surface topography is scanned using a laser profilometer. We then shear the obtained tensile fracture surfaces in direct shear, ensuring the original fracture surfaces are in a perfectly matching configuration at the beginning of the shear test. First, shearing is conducted to distances varying from 5 to 15 mm under constant normal stress of 2MPa and a constant displacement rate of 0.05 mm/s using two closed-loop servo controlled hydraulic pistons, supplying normal and shear forces (Davidesko et al., 2014). In the tested configuration peak shear stress is typically attained after a shear displacement of about 2-3 mm, beyond which lower shear stress is required to continue shearing at the preset displacement rate of 0.05 mm/s as is typical for initially rough joints. Following some initial compression the interface begins to dilate and continues to do so until the end of the test. The sheared tensile fracture surface is then scanned again and the geometrical evolution, in term of RMS roughness and power spectral density (PSD) is analyzed. We show that shearing smooth the surface along all our measurements scales. The roughness ratio, measured by initial PSD / final PSD for each wavelength, increases as a function of slip amount. The roughness measured after slip can be fitted by a power-law similar to that of the initial tensile surface. In the next series of experiments a similar procedure is applied when the roughness evolution is measured as a function of increasing normal stress for a fixed displacement amount of 10 mm. While samples sheared under a constant normal stress of 5 MPa generated surface smoothing, shearing under normal stress of 7.5 MPa to 15 MPa exhibited surface roughening at the measured range of scales. We find that roughening is correlated with the attained peak shear stress values, stress drop (peak shear stress minus residual shear stress) and with wear accumulation, a novel measurement procedure of which is developed here. Analysis of the sheared samples shows that roughening is generated by sets of dense fractures that significantly damaged the sample in the immediate proximity to large asperities. This roughening is related to penetrative damage during transient wear in rough surfaces.
NASA Astrophysics Data System (ADS)
Saffer, D. M.; McNeill, L. C.; Byrne, T. B.; Araki, E.; Flemings, P. B.; Conin, M.; Eguchi, N. O.; Takahashi, K.; Toczko, S.; Boutt, D. F.; Doan, M.; Kano, Y.; Ito, T.; Lin, W.
2009-12-01
In summer 2009, Integrated Ocean Drilling Program (IODP) Expedition 319 drilled a 1600 m deep riser borehole (Site C0009) in the Kumano Basin offshore SW Japan, to investigate the properties, structure and state of stress in the hanging wall above the subduction plate boundary. The first riser-based scientific drilling in IODP history allowed us to make several new scientific measurements including in situ stress magnitude, pore pressure and permeability using the Modular Formation Dynamics Tester (MDT) wireline tool, and measurement of minimum stress magnitude from Leak-off Tests (LOT). In addition, continuous monitoring of mud weight, mud gas, annular pressure, and mud losses provided data to constrain formation pore fluid pressure and stress. At Site C0009, we conducted 2 LOTs below a casing shoe at 708.6 m depth and 11 successful MDT measurements, including 9 single probe tests to measure pore pressure and fluid mobility and 2 dual packer tests: 1 to measure permeability by a drawdown test, and 1 to measure in situ stress. Measured pore pressures are approximately hydrostatic to 1463.7 m depth. We observed only minor gas shows when drilling ahead (as in-place methane was liberated from the rock at the bit) but little or no gas during pipe connections. This indicates that the borehole mud pressure exceeded the formation pore pressure, and is consistent with the MDT measurements. Permeabilities range from ~10-16 m2 - 10-14 m2, and the observed variation is consistent with lithologic changes defined in gamma ray logs. The MDT measurement at 874.3 mbsf and the LOT at 708.6 m yield values for the least principal stress of 34.8 MPa and 30.2 MPa, respectively. Both are less than the vertical stress (Sv) computed from density logs. Partial mud circulation losses occurred when the borehole mud pressure exceeded the leak-off stress measured at the base of the casing shoe; this provides an additional indirect constraint on Shmin magnitude. Mud pressure slightly in excess of the leak-off stress may have also generated poorly-developed drilling-induced tensile fractures (DITF) observed in resistivity image logs between ~750 - 1000 m. From the presence of DITF, Shmin measurements, and assuming a rock tensile strength of 1 MPa, we determine that SHmax is 35.1 MPa for the MDT stress measurement, and 30.2 MPa for the LOT. Using the MDT measurement of Shmin, the resulting principal stress magnitudes define a strike-slip faulting regime with effective stresses of Shmax’ = 14 MPa, Sv' = 7.3 MPa, and Shmin’ = 6.4 MPa. In contrast, using the LOT measurement of Shmin, the stress magnitudes indicate a normal faulting regime in which Sv’ = 6.2 MPa, Shmax’ = 2.8 MPa, and Shmin’ = 2.6 MPa.
High Compressive Stresses Near the Surface of the Sierra Nevada, California
NASA Astrophysics Data System (ADS)
Martel, S. J.; Logan, J. M.; Stock, G. M.
2012-12-01
Observations and stress measurements in granitic rocks of the Sierra Nevada, California reveal strong compressive stresses parallel to the surface of the range at shallow depths. New overcoring measurements show high compressive stresses at three locations along an east-west transect through Yosemite National Park. At the westernmost site (west end of Tenaya Lake), the mean compressive stress is 1.9. At the middle site (north shore of Tenaya Lake) the mean compressive stress is 6.8 MPa. At the easternmost site (south side of Lembert Dome) the mean compressive stress is 3.0 MPa. The trend of the most compressive stress at these sites is within ~30° of the strike of the local topographic surface. Previously published hydraulic fracturing measurements by others elsewhere in the Sierra Nevada indicate surface-parallel compressive stresses of several MPa within several tens of meters of the surface, with the stress magnitudes generally diminishing to the west. Both the new and the previously published compressive stress magnitudes are consistent with the presence of sheeting joints (i.e., "exfoliation joints") in the Sierra Nevada, which require lateral compressive stresses of several MPa to form. These fractures are widespread: they are distributed in granitic rocks from the north end of the range to its southern tip and across the width of the range. Uplift along the normal faults of the eastern escarpment, recently measured by others at ~1-2 mm/yr, probably contributes to these stresses substantially. Geodetic surveys reveal that normal faulting flexes a range concave upwards in response to fault slip, and this flexure is predicted by elastic dislocation models. The topographic relief of the eastern escarpment of the Sierra Nevada is 2-4 km, and since alluvial fill generally buries the bedrock east of the faults, the offset of granitic rocks is at least that much. Compressive stresses of several MPa are predicted by elastic dislocation models of the range front faults of the eastern Sierra Nevada for as little as 100m of slip. The compression is consistent with a concave up flexure of the surface of the range. Conversely, elastic models also predict that markedly lower compressive stresses or even a tension would exist on exposed bedrock on the down-dropped hanging wall east of the range front faults. To test this prediction, we measured stresses at a fourth site, in the granitic rock of the Aeolian Buttes, which is east of the range front faults. The mean compressive stress there is 0.26 MPa, more than an order of magnitude less than the average at the three Yosemite sites. The measured stress magnitudes near the topographic surface of the Sierra, the distribution of sheeting joints west of the range front faults, and elastic model predictions are broadly consistent and indicate that the high compressive stresses at the surface of the Sierra Nevada are largely associated with uplift of the range, although other contributions cannot be excluded.
Dynamic weakening of serpentinite gouges and bare surfaces at seismic slip rates
Proctor, B P; Mitchell, T M; Hirth, G; Goldsby, D; Zorzi, F; Platt, J D; Di Toro, G
2014-01-01
To investigate differences in the frictional behavior between initially bare rock surfaces of serpentinite and powdered serpentinite (“gouge”) at subseismic to seismic slip rates, we conducted single-velocity step and multiple-velocity step friction experiments on an antigorite-rich and lizardite-rich serpentinite at slip rates (V) from 0.003 m/s to 6.5 m/s, sliding displacements up to 1.6 m, and normal stresses (σn) up to 22 MPa for gouge and 97 MPa for bare surfaces. Nominal steady state friction values (μnss) in gouge at V = 1 m/s are larger than in bare surfaces for all σn tested and demonstrate a strong σn dependence; μnss decreased from 0.51 at 4.0 MPa to 0.39 at 22.4 MPa. Conversely, μnss values for bare surfaces remained ∼0.1 with increasing σn and V. Additionally, the velocity at the onset of frictional weakening and the amount of slip prior to weakening were orders of magnitude larger in gouge than in bare surfaces. Extrapolation of the normal stress dependence for μnss suggests that the behavior of antigorite gouge approaches that of bare surfaces at σn ≥ 60 MPa. X-ray diffraction revealed dehydration reaction products in samples that frictionally weakened. Microstructural analysis revealed highly localized slip zones with melt-like textures in some cases gouge experiments and in all bare surfaces experiments for V ≥ 1 m/s. One-dimensional thermal modeling indicates that flash heating causes frictional weakening in both bare surfaces and gouge. Friction values for gouge decrease at higher velocities and after longer displacements than bare surfaces because strain is more distributed. Key Points Gouge friction approaches that of bare surfaces at high normal stress Dehydration reactions and bulk melting in serpentinite in < 1 m of slip Flash heating causes dynamic frictional weakening in gouge and bare surfaces PMID:26167425
Weltert, Luca; de Tullio, Marco D.; Afferrante, Luciano; Salica, Andrea; Scaffa, Raffaele; Maselli, Daniele; Verzicco, Roberto; De Paulis, Ruggero
2013-01-01
OBJECTIVES In the belief that stress is the main determinant of leaflet quality deterioration, we sought to evaluate the effect of annular and/or sino-tubular junction dilatation on leaflet stress. A finite element computer-assisted stress analysis was used to model four different anatomic conditions and analyse the consequent stress pattern on the aortic valve. METHODS Theoretical models of four aortic root configurations (normal, with dilated annulus, with loss of sino-tubular junction and with both dilatation simultaneously) were created with computer-aided design technique. The pattern of stress and strain was then analysed by means of finite elements analysis, when a uniform pressure of 100 mmHg was applied to the model. Analysis produced von Mises charts (colour-coded, computational, three-dimensional stress-pattern graphics) and bidimensional plots of compared stress on arc-linear line, which allowed direct comparison of stress in the four different conditions. RESULTS Stresses both on the free margin and on the ‘belly’ of the leaflet rose from 0.28 MPa (normal conditions) to 0.32 MPa (+14%) in case of isolated dilatation of the sino-tubular junction, while increased to 0.42 MPa (+67%) in case of isolated annular dilatation, with no substantial difference whether sino-tubular junction dilatation was present or not. CONCLUSIONS Annular dilatation is the key element determining an increased stress on aortic leaflets independently from an associated sino-tubular junction dilatation. The presence of annular dilatation associated with root aneurysm greatly decreases the chance of performing a valve sparing procedure without the need for additional manoeuvres on leaflet tissue. This information may lead to a refinement in the optimal surgical strategy. PMID:23536020
Brand, Richard A
2005-01-01
A joint's normal mechanical history contributes to the maintenance of articular cartilage and underlying bone. Loading facilitates the flow of nutrients into cartilage and waste products away, and additionally provides the mechanical signals essential for normal cell and tissue maintenance. Deleteriously low or high contact stresses have been presumed to result in joint deterioration, and particular aspects of the mechanical environment may facilitate repair of damaged cartilage. For decades, investigators have explored static joint contact stresses (under some more or less arbitrary condition) as a surrogate of the relevant mechanical history. Contact stresses have been estimated in vitro in many joints and in a number of species, although only rarely in vivo. Despite a number of widely varying techniques (and spatial resolutions) to measure these contact stresses, reported ranges of static peak normal stresses are relatively similar from joint to joint across species, and in the range of 0.5 to 5.0 MPa. This suggests vertebrate diarthrodial joints have evolved to achieve similar mechanical design criteria. Available evidence also suggests some disorders of cartilage deterioration are associated with somewhat higher peak pressures ranging from 1-20 MPa, but overlapping the range of normal pressures. Some evidence and considerable logic suggests static contact stresses per se do not predict cartilage responses, but rather temporal aspects of the contact stress history. Static contact stresses may therefore not be a reasonable surrogate for biomechanical studies. Rather, temporal and spatial aspects of the loading history undoubtedly induce beneficial and deleterious biological responses. Finally, since all articular cartilage experiences similar stresses, the concept of a "weight-bearing" versus a "non-weight-bearing" joint seems flawed, and should be abandoned. PMID:16089079
Effect of restoration volume on stresses in a mandibular molar: a finite element study.
Wayne, Jennifer S; Chande, Ruchi; Porter, H Christian; Janus, Charles
2014-10-01
There can be significant disagreement among dentists when planning treatment for a tooth with a failing medium-to-large--sized restoration. The clinician must determine whether the restoration should be replaced or treated with a crown, which covers and protects the remaining weakened tooth structure during function. The purpose of this study was to evaluate the stresses generated in different sized amalgam restorations via a computational modeling approach and reveal whether a predictable pattern emerges. A computer tomography scan was performed of an extracted mandibular first molar, and the resulting images were imported into a medical imaging software package for tissue segmentation. The software was used to separate the enamel, dentin, and pulp cavity through density thresholding and surface rendering. These tissue structures then were imported into 3-dimensional computer-aided design software in which material properties appropriate to the tissues in the model were assigned. A static finite element analysis was conducted to investigate the stresses that result from normal occlusal forces. Five models were analyzed, 1 with no restoration and 4 with increasingly larger restoration volume proportions: a normal-sized tooth, a small-sized restoration, 2 medium-sized restorations, and 1 large restoration as determined from bitewing radiographs and occlusal surface digital photographs. The resulting von Mises stresses for dentin-enamel of the loaded portion of the tooth grew progressively greater as the size of the restoration increased. The average stress in the normal, unrestored tooth was 4.13 MPa, whereas the smallest restoration size increased this stress to 5.52 MPa. The largest restoration had a dentin-enamel stress of 6.47 MPa. A linear correlation existed between restoration size and dentin-enamel stress, with an R(2) of 0.97. A larger restoration volume proportion resulted in higher dentin-enamel stresses under static loading. A comparison of the von Mises stresses to the yield strengths of the materials revealed a relationship between a tooth's restoration volume proportion and the potential for failure, although factors other than restoration volume proportion may also impact the stresses generated in moderate-sized restorations. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Mechanical Effects of Normal Faulting Along the Eastern Escarpment of the Sierra Nevada, California
NASA Astrophysics Data System (ADS)
Martel, S. J.; Logan, J. M.; Stock, G. M.
2013-12-01
Here we test whether the regional near-surface stress field in the Sierra Nevada, California, and the near-surface fracturing that heavily influences the Sierran landscape are a mechanical response to normal faulting along its eastern escarpment. A compilation of existing near-surface stress measurements for the central Sierra Nevada, together with three new measurements, shows the most compressive horizontal stresses are 3-21 MPa, consistent with the widespread distribution of sheeting joints (near-surface fractures subparallel to the ground surface). In contrast, a new stress measurement at Aeolian Buttes in the Mono Basin, east of the range front fault system, reveals a horizontal principal tension of 0.014 MPa, consistent with the abundant vertical joints there. To evaluate mechanical effects of normal faulting, we modeled both normal faults and grabens in three ways: (1) dislocations of specified slip in an elastic half-space, (2) frictionless sliding surfaces in an elastic half-space; and (3) faults in thin elastic beams resting on an inviscid fluid. The different mechanical models predict concave upward flexure and widespread near-surface compressive stresses in the Sierra Nevada that surpass the measurements even for as little as 1 km of normal slip along the eastern escarpment, which exhibits 1-3 km of structural and topographic relief. The models also predict concave downward flexure of the bedrock floors and horizontal near-surface tensile stresses east of the escarpment. The thin-beam models account best for the topographic relief of the eastern escarpment and the measured stresses given current best estimates for the rheology of the Sierran lithosphere. Our findings collectively indicate that the regional near-surface stress field and the widespread near-surface fracturing directly reflect the mechanical response to normal faulting along the eastern escarpment. These results have broad scientific and engineering implications for slope stability, hydrology, and geomorphology in and near fault-bounded mountain ranges in general.
High-velocity frictional experiments on dolerite and quartzite under controlled pore pressure
NASA Astrophysics Data System (ADS)
Togo, T.; Shimamoto, T.; Ma, S.
2013-12-01
High-velocity friction experiments on rocks with or without gouge have been conducted mostly under dry conditions and demonstrated dramatic weakening of faults at high velocities (e.g., Di Toro et al., 2011, Nature). Recent experiments under wet conditions (e.g., Ujiie and Tsutsumi, 2010, GRL; Faulkner et al., 2011, GRL) revealed very different behaviors from those of dry faults, but those experiments were done under drained conditions. Experiments with controlled pore pressure Pp are definitely needed to determine mechanical properties of faults under fluid-rich environments such as those in subduction zones. Thus we have developed a pressure vessel that can be attached to our rotary-shear low to high-velocity friction apparatus (Marui Co Ltd., MIS-233-1-76). With a current specimen holder, friction experiments can be done on hollow-cylindrical specimens of 15 and 40 mm in inner and outer diameters, respectively, at controlled Pp to 35 MPa, at effective normal stresses of 3~9 MPa, and at slip rates of 60 mm/year to 2 m/s. An effective normal stress can be applied with a 100 kN hydraulic actuator. We report an outline of the experimental system and preliminary high-velocity experiments on Shanxi dolerite and a quartzite from China that are composed of pyroxene and plagioclase and of almost pure quartz, respectively. High-velocity friction experiments were performed on hollow-cylindrical specimens of Shanxi dolerite at effective normal stresses of 0.13~1.07 MPa and at slip rates of 1, 10, 100 and 1000 mm/sec. All experiments were conducted first with the nitrogen gas filling the pressure vessel (dry tests) and then with a controlled pore-water pressure (wet tests). In the dry tests an axial force was kept at 1 kN and the nitrogen gas pressure was increased in steps to 5 MPa to change an effective normal stress. In the wet tests the specimens were soaked in distilled water in the vessel and Pp was applied by nitrogen gas in a similar manner as in the dry tests. Nitrogen gas acted as buffer to prevent an abrupt changes in the pore-water pressure during experiments. The steady-state friction coefficient (μss) of dry dolerite increased from 0.3~0.35 at 10 mm/s to 0.55~0.8 at 100 mm/s and then decreased down to 0.2~0.6 at 1000 mm/s. The results are quite similar to those of dry granite tested under similar conditions (Reches and Lockner, 2010, Nature). However, the μss of dolerite under a pore-water pressure decreased monotonically from 0.4~0.8 at 1 mm/s to 0.3~0.5 at 1000 mm/s, and the strengthening from 10 to 100 mm/s disappeared with a pore-water pressure. Two experiments were conducted on solid-cylindrical specimens of quartzite at effective normal stresses of 1.39 MPa (a dry test with CO2 gas pressure of 6.22 MPa) and of 0.99 MPa (a wet test with pore-water pressure of 6.1 MPa, also applied with pressurized CO2 gas). In dry and wet tests, the friction coefficient decreases nearly exponentially from about 0.35 at the peak friction to around 0.05 (dry) and 0.03 (wet) at the steady state. A notable difference was that wet quartzite exhibit much more rapid slip weakening with the slip weakening distance Dc of several meters than the dry specimen with Dc of about 15 m. We plan to conduct more experiments with controlled pore-water pressure and to do textural and material analysis of specimens to gain insight on the weakening mechanisms.
NASA Astrophysics Data System (ADS)
Pan, Yucong; Liu, Quansheng; Liu, Jianping; Peng, Xingxin; Kong, Xiaoxuan
2018-06-01
In order to study the influence of confining stress on rock cutting forces by tunnel boring machine (TBM) disc cutter, full-scale linear cutting tests are conducted in Chongqing Sandstone (uniaxial compressive strength 60.76 MPa) using five equal biaxial confining stressed conditions, i.e. 0-0, 5-5, 10-10, 15-15 and 20-20 MPa; disc cutter normal force, rolling force, cutting coefficient and normalized resultant force are analysed. It is found that confining stress can greatly affect disc cutter resultant force, its proportion in normal and rolling directions and its acting point for the hard Chongqing Sandstone and the confining stress range used in this study. For every confining stressed condition, as cutter penetration depth increases, disc cutter normal force increases with decreasing speed, rolling force and cutting coefficient both increase linearly, and acting point of the disc cutter resultant force moves downward at some extent firstly and then upward back to its initial position. For same cutter penetration depth, as confining stress increases, disc cutter normal force, rolling force, cutting coefficient and normalized resultant force all increase at some extent firstly and then decrease rapidly to very small values (quite smaller than those obtained under the non-stressed condition) after some certain confining stress thresholds. The influence of confining stress on rock cutting by TBM disc cutter can be generally divided into three stages as confining stress increases, i.e. strengthening effect stage, damaging effect stage and rupturing effect stage. In the former two stages (under low confining stress), rock remains intact and rock cutting forces are higher than those obtained under the non-stressed condition, and thus rock cutting by TBM disc cutter is restrained; in the last stage (under high confining stress), rock becomes non-intact and rock slabbing failure is induced by confining stress before disc cutting, and thus rock cutting by TBM disc cutter is facilitated. Meanwhile, some critical values of confining stress and cutter penetration depth are identified to represent the changes of rock cutting state. This study provides better understanding of the influence of confining stress on disc cutter performance and can guide to optimize the TBM operation under stressed condition.
Ultrasonic investigation of granular materials subjected to compression and crushing.
Gheibi, Amin; Hedayat, Ahmadreza
2018-07-01
Ultrasonic wave propagation measurement has been used as a suitable technique for studying the granular materials and investigating the soil fabric structure, the grain contact stiffness, frictional strength, and inter-particle contact area. Previous studies have focused on the variations of shear and compressional wave velocities with effective stress and void ratio, and lesser effort has been made in understanding the variation of amplitude and dominant frequency of transmitted compressional waves with deformation of soil packing. In this study, continuous compressional wave transmission measurements during compaction of unconsolidated quartz sand are used to investigate the impact of soil layer deformation on ultrasonic wave properties. The test setup consisted of a loading machine to apply constant loading rate to a sand layer (granular quartz) of 6 mm thickness compressed between two forcing blocks, and an ultrasonic wave measurement system to continuously monitor the soil layer during compression up to 48 MPa normal stress. The variations in compressional wave attributes such as wave velocity, transmitted amplitude, and dominant frequency were studied as a function of the applied normal stress and the measured normal strain as well as void ratio and particle size. An increasing trend was observed for P-wave velocity, transmitted amplitude and dominant frequency with normal stress. In specimen with the largest particle size (D 50 = 0.32 mm), the wave velocity, amplitude and dominant frequency were found to increase about 230%, 4700% and 320% as the normal stress reached the value of 48 MPa. The absolute values of transmitted wave amplitude and dominant frequency were greater for specimens with smaller particle sizes while the normalized values indicate an opposite trend. The changes in the transmitted amplitude were linked to the changes in the true contact area between the particles with a transitional point in the slope of normalized amplitude, coinciding with the yield stress of the granular soil layer. The amount of grain crushing as a result of increase in the normal stress was experimentally measured and a linear correlation was found between the degree of grain crushing and the changes in the normalized dominant frequency of compressional waves. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mercuri, Marco; Scuderi, Marco Maria; Tesei, Telemaco; Carminati, Eugenio; Collettini, Cristiano
2018-04-01
A great number of earthquakes occur within thick carbonate sequences in the shallow crust. At the same time, carbonate fault rocks exhumed from a depth < 6 km (i.e., from seismogenic depths) exhibit the coexistence of structures related to brittle (i.e., cataclasis) and ductile deformation processes (i.e., pressure-solution and granular plasticity). We performed friction experiments on water-saturated simulated carbonate-bearing faults for a wide range of normal stresses (from 5 to 120 MPa) and slip velocities (from 0.3 to 100 μm/s). At high normal stresses (σn > 20 MPa) fault gouges undergo strain-weakening, that is more pronounced at slow slip velocities, and causes a significant reduction of frictional strength, from μ = 0.7 to μ = 0.47. Microstructural analysis show that fault gouge weakening is driven by deformation accommodated by cataclasis and pressure-insensitive deformation processes (pressure solution and granular plasticity) that become more efficient at slow slip velocity. The reduction in frictional strength caused by strain weakening behaviour promoted by the activation of pressure-insensitive deformation might play a significant role in carbonate-bearing faults mechanics.
The influence of total suction on the brittle failure characteristics of clay shales
NASA Astrophysics Data System (ADS)
Amann, F.; Linda, W.; Zimmer, S.; Thoeny, R.
2013-12-01
Clay shale testing is challenging and the results obtained from standard laboratory tests may not always reflect the strength of the clay shale in-situ. This is to a certain extend associated with the sensitivity of these rock types to desaturation processes during drilling, sample storage, and sample preparation. In this study the relationship between total suction, uniaxial compressive strength and Brazilian tensile (BTS) strength of cylindrical samples of Opalinus Clay was established in a systematic manner. Unconfined uniaxial compression and BTS tests were performed utilizing a servo-controlled testing procedure. Total suctions in the specimens was generated in air tight desiccators using supersaturated saline solutions which establish a relative humidity ranging from 20% to 99%. For unconfined compressive strength tests loading of the specimens occurred parallel to bedding. For BTS tests loading was either oriented normal or perpendicular to bedding. Both, the crack initiation and volumetric strain reversal threshold values were determined using volumetric and radial stress-strain methods. The results of BTS tests show that the tensile strength normal and perpendicular to bedding increases by a factor of approximately 3 when total suction is increased from 0 to 90 MPa (i.e. saturation decreases from 1.0 to 0.7) . Beyond 90 MPa total suction no further increase in tensile strength was observed, most probably due to shrinkage cracks which alter the tensile strength of the clay shale. Results obtained from UCS tests suggest that higher total suctions result in higher UCS values. Between total suctions of 0 to 90 MPa, the strength increase is almost linear (i.e. the UCS increases by a factor of 1.5 MPa). Beyond 90 MPa total suction no further strength increase was observed. A similar trend can be observed for crack initiation and crack damage values. In the same range of total suction the crack initiation stress increases by a factor of 5 (from 2 MPa to 10 MPa), and the crack damage stress increases by a factor of 2 (from 6 to 12 MPa). In addition to UCS tests, the water retention curve of intact and disturbed specimens was established. Here, results indicate that the drying path remains nearly unaffected by mechanical damage. However, the wetting path is considerably affected by mechanical damage.
Study and Test of a New Bundle-Structure Riser Stress Monitoring Sensor Based on FBG.
Xu, Jian; Yang, Dexing; Qin, Chuan; Jiang, Yajun; Sheng, Leixiang; Jia, Xiangyun; Bai, Yang; Shen, Xiaohong; Wang, Haiyan; Deng, Xin; Xu, Liangbin; Jiang, Shiquan
2015-11-24
To meet the requirements of riser safety monitoring in offshore oil fields, a new Fiber Bragg Grating (FBG)-based bundle-structure riser stress monitoring sensor has been developed. In cooperation with many departments, a 49-day marine test in water depths of 1365 m and 1252 m was completed on the "HYSY-981" ocean oil drilling platform. No welding and pasting were used when the sensor was installed on risers. Therefore, the installation is convenient, reliable and harmless to risers. The continuous, reasonable, time-consistent data obtained indicates that the sensor worked normally under water. In all detailed working conditions, the test results show that the sensor can do well in reflecting stresses and bending moments both in and in magnitude. The measured maximum stress is 132.7 MPa, which is below the allowable stress. In drilling and testing conditions, the average riser stress was 86.6 MPa, which is within the range of the China National Offshore Oil Corporation (CNOOC) mechanical simulation results.
Study and Test of a New Bundle-Structure Riser Stress Monitoring Sensor Based on FBG
Xu, Jian; Yang, Dexing; Qin, Chuan; Jiang, Yajun; Sheng, Leixiang; Jia, Xiangyun; Bai, Yang; Shen, Xiaohong; Wang, Haiyan; Deng, Xin; Xu, Liangbin; Jiang, Shiquan
2015-01-01
To meet the requirements of riser safety monitoring in offshore oil fields, a new Fiber Bragg Grating (FBG)-based bundle-structure riser stress monitoring sensor has been developed. In cooperation with many departments, a 49-day marine test in water depths of 1365 m and 1252 m was completed on the “HYSY-981” ocean oil drilling platform. No welding and pasting were used when the sensor was installed on risers. Therefore, the installation is convenient, reliable and harmless to risers. The continuous, reasonable, time-consistent data obtained indicates that the sensor worked normally under water. In all detailed working conditions, the test results show that the sensor can do well in reflecting stresses and bending moments both in and in magnitude. The measured maximum stress is 132.7 MPa, which is below the allowable stress. In drilling and testing conditions, the average riser stress was 86.6 MPa, which is within the range of the China National Offshore Oil Corporation (CNOOC) mechanical simulation results. PMID:26610517
Hickman, Stephen; Barton, Colleen; Zoback, Mark; Morin, Roger; Sass, John; Benoit, Richard; ,
1997-01-01
As part of a study relating fractured rock hydrology to in-situ stress and recent deformation within the Dixie Valley Geothermal Field, borehole televiewer logging and hydraulic fracturing stress measurements were conducted in a 2.7-km-deep geothermal production well (73B-7) drilled into the Stillwater fault zone. Borehole televiewer logs from well 73B-7 show numerous drilling-induced tensile fractures, indicating that the direction of the minimum horizontal principal stress, Shmin, is S57 ??E. As the Stillwater fault at this location dips S50 ??E at approximately 3??, it is nearly at the optimal orientation for normal faulting in the current stress field. Analysis of the hydraulic fracturing data shows that the magnitude of Shmin is 24.1 and 25.9 MPa at 1.7 and 2.5 km, respectively. In addition, analysis of a hydraulic fracturing test from a shallow well 1.5 km northeast of 73B-7 indicates that the magnitude of Shmin is 5.6 MPa at 0.4 km depth. Coulomb failure analysis shows that the magnitude of Shmin in these wells is close to that predicted for incipient normal faulting on the Stillwater and subparallel faults, using coefficients of friction of 0.6-1.0 and estimates of the in-situ fluid pressure and overburden stress. Spinner flowmeter and temperature logs were also acquired in well 73B-7 and were used to identify hydraulically conductive fractures. Comparison of these stress and hydrologic data with fracture orientations from the televiewer log indicates that hydraulically conductive fractures within and adjacent to the Stillwater fault zone are critically stressed, potentially active normal faults in the current west-northwest extensional stress regime at Dixie Valley.
Elsheikh, Ahmed; Kassem, Wael; Kamma-Lorger, Christina S.; Hocking, Paul M.; White, Nick; Inglehearn, Chris F.; Ali, Manir; Meek, Keith M.
2011-01-01
Purpose. Retinopathy, globe enlarged (RGE) is an inherited genetic disease of chickens with a corneal phenotype characterized by loss of tissue curvature and changes in peripheral collagen fibril alignment. This study aimed to characterize the material behavior of normal and RGE chicken corneas under inflation and compare this with new spatial- and depth-resolved microstructural information to investigate how stromal fibril architecture determines corneal behavior under intraocular pressure (IOP). Methods. Six RGE chicken corneas and six age-matched normal controls were tested using trephinate inflation and their stress-strain behavior determined as a function of posterior pressure. Second harmonic generation mulitphoton microscopy was used to compare the in-plane appearance and degree of through-plane interlacing of collagen lamellae between normal and mutant corneas. Results. RGE corneas displayed a 30–130% increase in material stiffness [Etangent(RGE) = 0.94 ± 0.18 MPa to 3.09 ± 0.66 MPa; Etangent(normals) = 0.72 ± 0.13 MPa to 1.34 ± 0.35 MPa] (P ≤ 0.05). The normal in-plane disposition of anterior collagen in the peripheral cornea was altered in RGE but through-plane lamellar interlacing was unaffected. Conclusions. This article demonstrates changes in corneal material behavior in RGE that are qualitatively consistent with microstructural collagen alterations identified both herein and previously. This study indicates that, in general, changes in stromal fibril orientation may significantly affect corneal material behavior and thereby its response to IOP. PMID:21051696
NASA Astrophysics Data System (ADS)
Spagnuolo, E.; Violay, M.; Nielsen, S. B.; Di Toro, G.
2013-12-01
Fluid pressure Pf has been indicated as a major factor controlling natural (e.g., L'Aquila, Italy, 2009 Mw 6.3) and induced seismicity (e.g., Wilzetta, Oklahoma, 2011 Mw 5.7). The Terzaghi's principle states that the effective normal stress σeff= σn (1- α Pf ), with α the Biot coefficient and σn the normal stress, is reduced in proportion to Pf. A value of α=1 is often used by default; however, within a complex fault core of inhomogeneous permeability, α may vary in a yet poorly understood way. To shed light on this problem, we conducted experiments on carbonate-bearing rock samples (Carrara marble) in room humidity conditions and in the presence of pore fluids (drained conditions), where a pre-cut fault is loaded by shear stress τ in a rotary apparatus (SHIVA) under constant σn=15 MPa. Two types of tests were performed with fluids: (1) the fluid pressure was kept constant at Pf=5 MPa (close to hydrostatic conditions at a depth of 0.5 km) and the fault was driven to failure instability by gradually increasing τ; (2) the fluid pressure was kept at Pf=5 MPa and τ was increased until close to instability (τ = 7 MPa): at this point Pf was raised of 0.5 MPa every 10 s up to Pf =10 MPa to induce a main (failure) instability. Assuming α=1 and an effective peak strength (τp)eff=μp σeff at failure, the experiments reveal that: 1) (τp)eff is sensitive to the shear loading rate: fast loading rates (0.5 MPa every 20 s) induce higher peak shear-stress values than slow loading rates (0.5 MPa every 40 s). Such effect is not observed (minor or inexistent) in the absence of pore fluids. 2) Under fast loading rates the (τp)eff may surpass that measured in the absence of pore fluids under identical effective normal stress σeff. 3) An increase of Pf does not necessarily induce the main instability (within the time intervals studied here, i.e. up to ~10 s) even if the effective strength threshold is largely surpassed (e.g., (τp)eff=1.3 μp σeff). We interpret these results in terms of limited permeability of the fault slip zone which reduces α. Indeed result (3) may indicate that a Pf increase did not rapidly penetrate the slip zone because a seal (thin layer of wet ultrafine calcite gouge) formed during the slip preceding the main instability. On the other hand, shearing of the slip zone probably induces dilation (not measured because below resolution) in the slip zone and results in a decrease in pore pressure. Again, due to limited permeability, the drop in pore pressure within the slip zone does not have time to re-equilibrate with the imposed Pf, provided that the hold time is short (20 s) with respect to the diffusion time, but it may re-equilibrate under longer hold times (40 s). As a consequence the Biot coefficient depends on the time interval of observation, with α~0 at short time periods and α~1 at long time periods. This yields an approximate hydraulic diffusivity κ~10-8 m2 s-1 using κ=l2/td with the half length of the contact surface l=5 mm and td=30 s. Such diffusivity is compatible, for example, with a low porosity shale.
NASA Astrophysics Data System (ADS)
Tobin, H. J.; Saffer, D. M.; Castillo, D. A.; Hirose, T.
2016-12-01
During IODP Expedition 348, borehole C0002F/N/P was advanced to a depth of 3058 m below the seafloor (mbsf) into the inner forearc accretionary wedge of the Nankai subduction zone (SW Japan), now the deepest scientific drilling ever into the ocean floor. The goals were to investigate the physical properties, structure, and state of stress deep within the hanging wall of a seismogenic subduction plate boundary. Mud pressure and gas monitoring, injection tests, leak-off tests (LOT), logging-while-drilling (LWD) measurements, and observations of mud losses and hole conditions provide both direct and indirect information about in situ pore pressure and stress state. The LOTs show that the minimum principal stress is consistently less than the vertical stress defined by the overburden, ruling out a thrust faulting stress state throughout the drilled section, and define a nearly linear gradient in Shmin from the seafloor to the base of the hole. Observations of mud loss and the lack of observed gas shows indicate that formation pore fluid pressure is not significantly (< 10 MPa) greater than hydrostatic. The maximum horizontal stress, estimated from borehole breakout width and pressure spikes during pack-off events, is close in magnitude to the vertical stress. Therefore the accretionary prism lies in either a normal or strike-slip faulting regime, or is transitional between the two, from 1 to 3 km depth. At 3002 mbsf we estimate that the effective stresses are: Sv' = 33 MPa; SHmax' = 25-36 MPa; and Shmin' = 18.5-21 MPa. Differential stresses are therefore low, on the order of 10-12 MPa, in the hanging wall of the subduction thrust. We conclude that (1) the inner wedge is not critically stressed in horizontal compression; (2) basal traction along the megathrust must be low in order to permit concurrent locking of the fault and low differential stresses deep within the upper plate; and (3) although low differential stresses may persist down to the plate boundary at 5000 mbsf, the maximum horizontal stress SHmax must transition to become greater than the vertical stress, either spatially below the base of the borehole, or temporally leading up to megathrust fault rupture, in order to drive slip on the megathrust.
NASA Astrophysics Data System (ADS)
Dong, Sheng; Dapino, Marcelo J.
2015-04-01
Ultrasonic lubrication has been proven effective in reducing dynamic friction. This paper investigates the relationship between friction reduction, power consumption, linear velocity, and normal stress. A modified pin-on-disc tribometer was adopted as the experimental set-up, and a Labview system was utilized for signal generation and data acquisition. Friction reduction was quantified for 0.21 to 5.31 W of electric power, 50 to 200 mm/s of linear velocity, and 23 to 70 MPa of normal stress. Friction reduction near 100% can be achieved under certain conditions. Lower linear velocity and higher electric power result in greater friction reduction, while normal stress has little effect on friction reduction. Contour plots of friction reduction, power consumption, linear velocity, and normal stress were created. An efficiency coefficient was proposed to calculate power requirements for a certain friction reduction or reduced friction for a given electric power.
Effect of tempering treatment upon the residual stress of bimetallic roll
NASA Astrophysics Data System (ADS)
Sano, Y.; Noda, N.-A.; Takase, Y.; Torigoe, R.; Tsuboi, K.; Aridi, M. R.; Sanada, Y.; Lan, L. Y.
2018-06-01
Bimetallic rolls are widely used in steel rolling industries because of the excellent hardness, wear resistance, and high temperature properties. However, thermal stress is produced by heating-cooling thermal cycles, which is a great challenge for their practical application. Indeed, if severe thermal tensile stress is introduced into these rolls, it can assist the thermal cracks to propagate, even lead to the overall failure of rolls. In this paper, we investigated the effect of tempering treatment on the residual stress after the bimetallic rolls were subjected to quenching. Compared with the non-uniform heating-quenching process, the tempering process makes the maximum stress at the core decreased by 15% (from 275 MPa to 234 MPa) with considering martensite transformation but decreased by 26% (from 275 MPa to 201 MPa) without considering martensite transformation. For tempering process after uniform heating quenching, the maximum stress at the core decreases by 24% from 357 MPa to 273 MPa with considering martensite transformation but decreases by 30% from 357 MPa to 246 MPa without considering martensite transformation. And compared with the non-uniform heating-quenching process, the double tempering process makes the maximum stress at the core decreased by 8% (from 275 MPa to 253 MPa) with considering martensite transformation but decreased by 27% (from 275 MPa to 200 MPa) without considering martensite transformation.
Rock friction under variable normal stress
Kilgore, Brian D.; Beeler, Nicholas M.; Lozos, Julian C.; Oglesby, David
2017-01-01
This study is to determine the detailed response of shear strength and other fault properties to changes in normal stress at room temperature using dry initially bare rock surfaces of granite at normal stresses between 5 and 7 MPa. Rapid normal stress changes result in gradual, approximately exponential changes in shear resistance with fault slip. The characteristic length of the exponential change is similar for both increases and decreases in normal stress. In contrast, changes in fault normal displacement and the amplitude of small high-frequency elastic waves transmitted across the surface follow a two stage response consisting of a large immediate and a smaller gradual response with slip. The characteristic slip distance of the small gradual response is significantly smaller than that of shear resistance. The stability of sliding in response to large step decreases in normal stress is well predicted using the shear resistance slip length observed in step increases. Analysis of the shear resistance and slip-time histories suggest nearly immediate changes in strength occur in response to rapid changes in normal stress; these are manifested as an immediate change in slip speed. These changes in slip speed can be qualitatively accounted for using a rate-independent strength model. Collectively, the observations and model show that acceleration or deceleration in response to normal stress change depends on the size of the change, the frictional characteristics of the fault surface, and the elastic properties of the loading system.
Dynamic weakening of serpentinite gouges and bare surfaces at seismic slip rates
NASA Astrophysics Data System (ADS)
Proctor, B. P.; Mitchell, T. M.; Hirth, G.; Goldsby, D.; Zorzi, F.; Platt, J. D.; Di Toro, G.
2014-11-01
To investigate differences in the frictional behavior between initially bare rock surfaces of serpentinite and powdered serpentinite ("gouge") at subseismic to seismic slip rates, we conducted single-velocity step and multiple-velocity step friction experiments on an antigorite-rich and lizardite-rich serpentinite at slip rates (V) from 0.003 m/s to 6.5 m/s, sliding displacements up to 1.6 m, and normal stresses (σn) up to 22 MPa for gouge and 97 MPa for bare surfaces. Nominal steady state friction values (μnss) in gouge at V = 1 m/s are larger than in bare surfaces for all σn tested and demonstrate a strong σn dependence; μnss decreased from 0.51 at 4.0 MPa to 0.39 at 22.4 MPa. Conversely, μnss values for bare surfaces remained ~0.1 with increasing σn and V. Additionally, the velocity at the onset of frictional weakening and the amount of slip prior to weakening were orders of magnitude larger in gouge than in bare surfaces. Extrapolation of the normal stress dependence for μnss suggests that the behavior of antigorite gouge approaches that of bare surfaces at σn ≥ 60 MPa. X-ray diffraction revealed dehydration reaction products in samples that frictionally weakened. Microstructural analysis revealed highly localized slip zones with melt-like textures in some cases gouge experiments and in all bare surfaces experiments for V ≥ 1 m/s. One-dimensional thermal modeling indicates that flash heating causes frictional weakening in both bare surfaces and gouge. Friction values for gouge decrease at higher velocities and after longer displacements than bare surfaces because strain is more distributed.
Estimating Stresses, Fault Friction and Fluid Pressure from Topography and Coseismic Slip Models
NASA Astrophysics Data System (ADS)
Styron, R. H.; Hetland, E. A.
2014-12-01
Stress is a first-order control on the deformation state of the earth. However, stress is notoriously hard to measure, and researchers typically only estimate the directions and relative magnitudes of principal stresses, with little quantification of the uncertainties or absolute magnitude. To improve upon this, we have developed methods to constrain the full stress tensor field in a region surrounding a fault, including tectonic, topographic, and lithostatic components, as well as static friction and pore fluid pressure on the fault. Our methods are based on elastic halfspace techniques for estimating topographic stresses from a DEM, and we use a Bayesian approach to estimate accumulated tectonic stress, fluid pressure, and friction from fault geometry and slip rake, assuming Mohr-Coulomb fault mechanics. The nature of the tectonic stress inversion is such that either the stress maximum or minimum is better constrained, depending on the topography and fault deformation style. Our results from the 2008 Wenchuan event yield shear stresses from topography up to 20 MPa (normal-sinistral shear sense) and topographic normal stresses up to 80 MPa on the faults; tectonic stress had to be large enough to overcome topography to produce the observed reverse-dextral slip. Maximum tectonic stress is constrained to be >0.3 * lithostatic stress (depth-increasing), with a most likely value around 0.8, trending 90-110°E. Minimum tectonic stress is about half of maximum. Static fault friction is constrained at 0.1-0.4, and fluid pressure at 0-0.6 * total pressure on the fault. Additionally, the patterns of topographic stress and slip suggest that topographic normal stress may limit fault slip once failure has occurred. Preliminary results from the 2013 Balochistan earthquake are similar, but yield stronger constraints on the upper limits of maximum tectonic stress, as well as tight constraints on the magnitude of minimum tectonic stress and stress orientation. Work in progress on the Wasatch fault suggests that maximum tectonic stress may also be able to be constrained, and that some of the shallow rupture segmentation may be due in part to localized topographic loading. Future directions of this work include regions where high relief influences fault kinematics (such as Tibet).
Stress state and its anomaly observations in the vicinity of a fault in NanTroSEIZE Expedition 322
NASA Astrophysics Data System (ADS)
Wu, Hung-Yu; Saito, Saneatsu; Kinoshita, Masataka
2015-12-01
To better understand the stress state and geological properties within the shallow Shikoku Basin, southwest of Japan, two sites, C0011A and C0011B, were drilled in open-ocean sediments using Logging While Drilling (LWD) and coring, respectively. Resistivity image logging was performed at C0011A from sea floor to 950 m below sea floor (mbsf). At C0011B, the serial coring was obtained in order to determine physical properties from 340 to 880 mbsf. For the LWD images, a notable breakout anomaly was observed at a depth of 615 m. Using resistivity images and a stress polygon, the potential horizontal principal stress azimuth and its magnitude within the 500-750 mbsf section of the C0011A borehole were constrained. Borehole breakout azimuths were observed for the variation by the existence of a fault zone at a depth of 615 mbsf. Out of this fracture zone, the breakout azimuth was located at approximately 109° ± 12°, subparallel to the Nankai Trough convergence vector (300-315°). Our calculations describe a stress drop was determined based on the fracture geometry. A close 90° (73° ± 12°) rotation implied a 100% stress drop, defined as a maximum shear stress drop equal to 1 MPa. The magnitude of the horizontal principal stresses near the fracture stress anomaly ranged between 49 and 52 MPa, and the bearing to the vertical stress (Sv = 52 MPa) was found to be within the normal-faulting stress regime. Low rock strength and a low stress level are necessary to satisfy the observations.
NASA Astrophysics Data System (ADS)
Hodgkinson, Kathleen M.; Stein, Ross S.; King, Geoffrey C. P.
1996-11-01
In 1954, four earthquakes of M > 6.0 occurred within a 30 km radius in a period of six months. The Rainbow Mountain-Fairview Peak-Dixie Valley earthquakes are among the largest to have been recorded geodetically in the Basin and Range province. The Fairview Peak earthquake (M = 7.2, December 12, 1954) followed two events in the Rainbow Mountains (M = 6.2, July 6, and M = 6.5, August 24, 1954) by 6 months. Four minutes later the Dixie Valley fault ruptured (M = 6.7, December 12, 1954). The changes in static stresses caused by the events are calculated using the Coulomb-Navier failure criterion and assuming uniform slip on rectangular dislocations embedded in an elastic half-space. Coulomb stress changes are resolved on optimally oriented faults and on each of the faults that ruptured in the chain of events. These calculations show that each earthquake in the Rainbow Mountain-Fairview Peak-Dixie Valley sequence was preceded by a static stress change that encouraged failure. The magnitude of the stress increases transferred from one earthquake to another ranged from 0.01 MPa (0.1 bar) to over 0.1 MPa (1 bar). Stresses were reduced by up to 0.1 MPa over most of the Rainbow Mountain-Fairview Peak area as a result of the earthquake sequence.
Hodgkinson, K.M.; Stein, R.S.; King, G.C.P.
1996-01-01
In 1954, four earthquakes of M > 6.0 occurred within a 30 km radius in a period of six months. The Rainbow Mountain-Fairview Peak-Dixie Valley earthquakes are among the largest to have been recorded geodetically in the Basin and Range province. The Fairview Peak earthquake (M=7.2, December 12, 1954) followed two events in the Rainbow Mountains (M=6.2, July 6, and M=6.5, August 24, 1954) by 6 months. Four minutes later the Dixie Valley fault ruptured (M=6.7, December 12, 1954). The changes in static stresses caused by the events are calculated using the Coulomb-Navier failure criterion and assuming uniform slip on rectangular dislocations embedded in an elastic half-space. Coulomb stress changes are resolved on optimally oriented faults and on each of the faults that ruptured in the chain of events. These calculations show that each earthquake in the Rainbow Mountain-Fairview Peak-Dixie Valley sequence was preceded by a static stress change that encouraged failure. The magnitude of the stress increases transferred from one earthquake to another ranged from 0.01 MPa (0.1 bar) to over 0.1 MPa (1 bar). Stresses were reduced by up to 0.1 MPa over most of the Rainbow Mountain-Fairview Peak area as a result of the earthquake sequence. Copyright 1996 by the American Geophysical Union.
Stress perturbation associated with the Amazonas and other ancient continental rifts
Zoback, M.L.; Richardson, R.M.
1996-01-01
The state of stress in the vicinity of old continental rifts is examined to investigate the possibility that crustal structure associated with ancient rifts (specifically a dense rift pillow in the lower crust) may modify substantially the regional stress field. Both shallow (2.0-2.6 km depth) breakout data and deep (20-45 km depth) crustal earthquake focal mechanisms indicate a N to NNE maximum horizontal compression in the vicinity of the Paleozoic Amazonas rift in central Brazil. This compressive stress direction is nearly perpendicular to the rift structure and represents a ???75?? rotation relative to a regional E-W compressive stress direction in the South American plate. Elastic two-dimensional finite element models of the density structure associated with the Amazonas rift (as inferred from independent gravity modeling) indicate that elastic support of this dense feature would generate horizontal rift-normal compressional stresses between 60 and 120 MPa, with values of 80-100 MPa probably most representative of the overall structure. The observed ???75?? stress rotation constrains the ratio of the regional horizontal stress difference to the rift-normal compressive stress to be between 0.25 and 1.0, suggesting that this rift-normal stress may be from 1 to 4 times larger than the regional horizontal stress difference. A general expression for the modification of the normalized local horizontal shear stress (relative to the regional horizontal shear stress) shows that the same ratio of the rift-normal compression relative to the regional horizontal stress difference, which controls the amount of stress rotation, also determines whether the superposed stress increases or decreases the local maximum horizontal shear stress. The potential for fault reactivation of ancient continental rifts in general is analyzed considering both the local stress rotation and modification of horizontal shear stress for both thrust and strike-slip stress regimes. In the Amazonas rift case, because the observed stress rotation only weakly constrains the ratio of the regional horizontal stress difference to the rift-normal compression to be between 0.25 and 1.0, our analysis is inconclusive because the resultant normalized horizontal shear stress may be reduced (for ratios >0.5) or enhanced (for ratios <0.5). Additional information is needed on all three stress magnitudes to predict how a change in horizontal shear stress directly influences the likelihood of faulting in the thrust-faulting stress regime in the vicinity of the Amazonas rift. A rift-normal stress associated with the seismically active New Madrid ancient rift may be sufficient to rotate the horizontal stress field consistent with strike-slip faults parallel to the axis of the rift, although this results in a 20-40% reduction in the local horizontal shear stress within the seismic zone. Sparse stress data in the vicinity of the seismically quiescent Midcontinent rift of the central United States suggest a stress state similar to that of New Madrid, with the local horizontal shear stress potentially reduced by as much as 60%. Thus the markedly different levels of seismic activity associated with these two subparallel ancient rifts is probably due to other factors than stress perturbations due to dense rift pillows. The modeling and analysis here demonstrate that rift-normal compressive stresses are a significant source of stress acting on the lithosphere and that in some cases may be a contributing factor to the association of intraplate seismicity with old zones of continental extension.
Analysis on annealing-induced stress of blind-via TSV using FEM
NASA Astrophysics Data System (ADS)
Shao, Jie; Shi, Tielin; Du, Li; Su, Lei; Lu, Xiangning; Liao, Guanglan
2017-07-01
Copper-filled through silicon via (TSV) is a promising material owing to its application in high-density three-dimensional (3D) packaging. However, in TSV manufacturing, thermo-mechanical stress is induced during the annealing process, often causing reliability issues. In this paper, the finite element method is employed to investigate the impacts of via shape and SiO2 liner uniformity on the thermo-mechanical properties of copper- filled blind-via TSV after annealing. Top interface stress analysis on the TSV structure shows that the curvature of via openings releases stress concentration that leads to 60 MPa decrease of normal stresses, σ xx and σ yy , in copper and 70 MPa decrease of σ xx in silicon. Meanwhile, the vertical interface analysis shows that annealing-induced stress at the SiO2/Si interface depends heavily on SiO2 uniformity. By increasing the thickness of SiO2 linear, the stress at the vertical interface can be significantly reduced. Thus, process optimization to reduce the annealing-induced stress becomes feasible. The results of this study help us gain a better understanding of the thermo-mechanical behavior of the annealed TSV in 3D packaging.
NASA Astrophysics Data System (ADS)
Carpenter, B. M.; Scuderi, M. M.; Collettini, C.; Marone, C.
2014-12-01
Observations of heterogeneous and complex fault slip are often attributed to the complexity of fault structure and/or spatial heterogeneity of fault frictional behavior. Such complex slip patterns have been observed for earthquakes on normal faults throughout central Italy, where many of the Mw 6 to 7 earthquakes in the Apennines nucleate at depths where the lithology is dominated by carbonate rocks. To explore the relationship between fault structure and heterogeneous frictional properties, we studied the exhumed Monte Maggio Fault, located in the northern Apennines. We collected intact specimens of the fault zone, including the principal slip surface and hanging wall cataclasite, and performed experiments at a normal stress of 10 MPa under saturated conditions. Experiments designed to reactivate slip between the cemented principal slip surface and cataclasite show a 3 MPa stress drop as the fault surface fails, then velocity-neutral frictional behavior and significant frictional healing. Overall, our results suggest that (1) earthquakes may readily nucleate in areas of the fault where the slip surface separates massive limestone and are likely to propagate in areas where fault gouge is in contact with the slip surface; (2) postseismic slip is more likely to occur in areas of the fault where gouge is present; and (3) high rates of frictional healing and low creep relaxation observed between solid fault surfaces could lead to significant aftershocks in areas of low stress drop.
Forecasting giant, catastrophic slope collapse: lessons from Vajont, Northern Italy
NASA Astrophysics Data System (ADS)
Kilburn, Christopher R. J.; Petley, David N.
2003-08-01
Rapid, giant landslides, or sturzstroms, are among the most powerful natural hazards on Earth. They have minimum volumes of ˜10 6-10 7 m 3 and, normally preceded by prolonged intervals of accelerating creep, are produced by catastrophic and deep-seated slope collapse (loads ˜1-10 MPa). Conventional analyses attribute rapid collapse to unusual mechanisms, such as the vaporization of ground water during sliding. Here, catastrophic collapse is related to self-accelerating rock fracture, common in crustal rocks at loads ˜1-10 MPa and readily catalysed by circulating fluids. Fracturing produces an abrupt drop in resisting stress. Measured stress drops in crustal rock account for minimum sturzstrom volumes and rapid collapse accelerations. Fracturing also provides a physical basis for quantitatively forecasting catastrophic slope failure.
Polymerization contraction stress in light-cured compomer restorative materials.
Chen, H Y; Manhart, J; Kunzelmann, K-H; Hickel, R
2003-11-01
The magnitude and kinetics of polymerization contraction stress build-up may be potential predictors of bond failure of adhesive restorations. The present study determined these properties of seven commercial compomers (Dyract, Dyract AP, F2000 Rasant, Hytac, Compoglass F, Luxat, Glasiosite). Polymerization shrinkage was generated by 40 s light curing the test materials (800 mW/cm2). The contraction force induced was recorded for 300 s at room temperature (23-24 degrees C) by means of a Stress-Strain-Analyzer (C factor=0.33). Maximum contraction stress (MPa), coefficient of near linear fit of contraction force/time (gradient) and relative force rate (%/s) of each material were compared with that of two hybrid composites (Tetric Ceram, Prodigy). The statistical analysis was conducted by ANOVA (alpha=0.05) and post hoc Tukey's test. No statistically significant differences in the maximum stress between Glasiosite (2.27+/-0.06 MPa), Hytac (2.31+/-0.07 MPa) and Tetric Ceram (2.21+/-0.11 MPa), and between Compoglass F (2.60+/-0.18 MPa) and Prodigy (2.70+/-0.06 MPa) were found. The contraction stress of F2000 Rasant (3.41+/-0.09 MPa) and Luxat (3.33+/-0.08 MPa) were significantly highest, whilst Dyract exhibited the significantly lowest shrinkage stress (1.27+/-0.08 MPa) among the tested materials. High contraction stress, early start of stress build-up and rapid contraction force development may lead to failure of bond to tooth structure. This study suggested that the contraction stress and kinetic behavior of compomers are generally similar to those of hybrid composites in a dry condition. Dyract might be superior in maintaining the bond with cavity walls compared to conventional hybrid composites in view of its low shrinkage stress.
NASA Astrophysics Data System (ADS)
Meserve, Justin
Cold drawn AISI 4140 beams were LASER surface hardened with a 2 kW CO2 LASER. Specimens were treated in the free state and while restrained in a bending fixture inducing surface tensile stresses of 94 and 230 MPa. Knoop hardness indentation was used to evaluate the through thickness hardness distribution, and a layer removal methodology was used to evaluate the residual stress distribution. Results showed the maximum surface hardness attained was not affected by pre-stress during hardening, and ranged from 513 to 676 kg/mm2. The depth of effective hardening varied at different magnitudes of pre-stress, but did not vary proportionately to the pre-stress. The surface residual stress, coinciding with the maximum compressive residual stress, increased as pre-stress was increased, from 1040 MPa for the nominally treated specimens to 1270 MPa for specimens pre-stressed to 230 MPa. The maximum tensile residual stress observed in the specimens decreased from 1060 MPa in the nominally treated specimens to 760 MPa for specimens pre-stressed to 230 MPa. Similarly, thickness of the compressive residual stress region increased and the depth at which maximum tensile residual stress occurred increased as the pre-stress during treatment was increased Overall, application of tensile elastic pre-stress during LASER hardening is beneficial to the development of compressive residual stress in AISI 4140, with minimal impact to the hardness attained from the treatment. The newly developed approach for LASER hardening may support efforts to increase both the wear and fatigue resistance of parts made from hardenable steels.
Finite element investigation of the effect of a bifid arch on loading of the vertebral isthmus.
Quah, Conal; Yeoman, Mark S; Cizinauskas, Andrius; Cooper, Kevin C; Peirce, Nick S; McNally, Donal S; Boszczyk, Bronek M
2014-04-01
The biomechanical effect of a bifid arch as seen in spina bifida occulta and following a midline laminectomy is poorly understood. To test the hypothesis that fatigue failure limits will be exceeded in the case of a bifid arch, but not in the intact case, when the segment is subjected to complex loading corresponding to normal sporting activities. Finite element analysis. Finite element model of an intact L4-S1 human lumbar motion segment including ligaments was used. A section of the L5 vertebral arch and spinous process was removed to create the model with a midline defect. The models were loaded axially to 1 kN and then combined with axial rotation of 3°. Bilateral stresses, alternating stresses, and shear fatigue failure on both models were assessed and compared. Under 1 kN axial load, the von Mises stresses observed in midline defect case and in the intact case were very similar (differences <5 MPa) having a maximum at the ventral end of the isthmus that decreases monotonically to the dorsal end. However, under 1 kN axial load and rotation, the maximum von Mises stresses observed in the ipsilateral L5 isthmus in the midline defect case (31 MPa) was much higher than the intact case (24.2 MPa), indicating a lack of load sharing across the vertebral arch in the midline defect case. When assessing the equivalent alternating shear stress amplitude, this was found to be 22.6 MPa for the midline defect case and 13.6 MPa for the intact case. From this, it is estimated that shear fatigue failure will occur in less than 70,000 cycles, under repetitive axial load and rotation conditions in the midline defect case, whereas for the intact case, fatigue failure will occur only after more than 10 million cycles. A bifid arch predisposes the isthmus to early fatigue fracture by generating increased stresses across the inferior isthmus of the inferior articular process, specifically in combined axial rotation and anteroposterior shear. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kilb, Debi
2003-01-01
The 1992 M7.3 Landers earthquake may have played a role in triggering the 1999 M7.1 Hector Mine earthquake as suggested by their close spatial (˜20 km) proximity. Current investigations of triggering by static stress changes produce differing conclusions when small variations in parameter values are employed. Here I test the hypothesis that large-amplitude dynamic stress changes, induced by the Landers rupture, acted to promote the Hector Mine earthquake. I use a flat layer reflectivity method to model the Landers earthquake displacement seismograms. By requiring agreement between the model seismograms and data, I can constrain the Landers main shock parameters and velocity model. A similar reflectivity method is used to compute the evolution of stress changes. I find a strong positive correlation between the Hector Mine hypocenter and regions of large (>4 MPa) dynamic Coulomb stress changes (peak Δσf(t)) induced by the Landers main shock. A positive correlation is also found with large dynamic normal and shear stress changes. Uncertainties in peak Δσf(t) (1.3 MPa) are only 28% of the median value (4.6 MPa) determined from an extensive set (160) of model parameters. Therefore the correlation with dynamic stresses is robust to a range of Hector Mine main shock parameters, as well as to variations in the friction and Skempton's coefficients used in the calculations. These results imply dynamic stress changes may be an important part of earthquake trigging, such that large-amplitude stress changes alter the properties of an existing fault in a way that promotes fault failure.
NASA Astrophysics Data System (ADS)
Adewole, E. O.; Healy, D.
2017-03-01
Accurate information on fault networks, the full stress tensor, and pore fluid pressures are required for quantifying the stability of structure-bound hydrocarbon prospects, carbon dioxide sequestration, and drilling prolific and safe wells, particularly fluid injections wells. Such information also provides essential data for a proper understanding of superinduced seismicities associated with areas of intensive hydrocarbon exploration and solid minerals mining activities. Pressure and stress data constrained from wells and seismic data in the Northern Niger Delta Basin (NNDB), Nigeria, have been analysed in the framework of fault stability indices by varying the maximum horizontal stress direction from 0° to 90°, evaluated at depths of 2 km, 3.5 km and 4 km. We have used fault dips and azimuths interpreted from high resolution 3D seismic data to calculate the predisposition of faults to failures in three faulting regimes (normal, pseudo-strike-slip and pseudo-thrust). The weighty decrease in the fault stability at 3.5 km depth from 1.2 MPa to 0.55 MPa demonstrates a reduction of the fault strength by high magnitude overpressures. Pore fluid pressures > 50 MPa have tendencies to increase the risk of faults to failure in the study area. Statistical analysis of stability indices (SI) indicates faults dipping 50°-60°, 80°-90°, and azimuths ranging 100°-110° are most favourably oriented for failure to take place, and thus likely to favour migrations of fluids given appropriate pressure and stress conditions in the dominant normal faulting regime of the NNDB. A few of the locally assessed stability of faults show varying results across faulting regimes. However, the near similarities of some model-based results in the faulting regimes explain the stability of subsurface structures are greatly influenced by the maximum horizontal stress (SHmax) direction and magnitude of pore fluid pressures.
NASA Astrophysics Data System (ADS)
Stegemann, Robert; Cabeza, Sandra; Lyamkin, Viktor; Bruno, Giovanni; Pittner, Andreas; Wimpory, Robert; Boin, Mirko; Kreutzbruck, Marc
2017-03-01
The residual stress distribution of tungsten inert gas welded S235JRC+C plates was determined by means of neutron diffraction (ND). Large longitudinal residual stresses with maxima around 600 MPa were found. With these results as reference, the evaluation of residual stress with high spatial resolution GMR (giant magneto resistance) sensors was discussed. The experiments performed indicate a correlation between changes in residual stresses (ND) and the normal component of local residual magnetic stray fields (GMR). Spatial variations in the magnetic field strength perpendicular to the welds are in the order of the magnetic field of the earth.
Measured Biaxial Residual Stress Maps in a Stainless Steel Weld
Olson, Mitchell D.; Hill, Michael R.; Patel, Vipul I.; ...
2015-09-16
Here, this paper describes a sequence of residual stress measurements made to determine a two-dimensional map of biaxial residual stress in a stainless steel weld. A long stainless steel (316L) plate with an eight-pass groove weld (308L filler) was used. The biaxial stress measurements follow a recently developed approach, comprising a combination of contour method and slitting measurements, with a computation to determine the effects of out-of-plane stress on a thin slice. The measured longitudinal stress is highly tensile in the weld- and heat-affected zone, with a maximum around 450 MPa, and compressive stress toward the transverse edges around ₋250more » MPa. The total transverse stress has a banded profile in the weld with highly tensile stress at the bottom of the plate (y = 0) of 400 MPa, rapidly changing to compressive stress (at y = 5 mm) of ₋200 MPa, then tensile stress at the weld root (y = 17 mm) and in the weld around 200 MPa, followed by compressive stress at the top of the weld at around ₋150 MPa. Finally, the results of the biaxial map compare well with the results of neutron diffraction measurements and output from a computational weld simulation.« less
NASA Astrophysics Data System (ADS)
Violay, Marie; Alejandro Acosta, Mateo; Passelegue, François; Schubnel, Alexandre
2017-04-01
Fluids play an important role in fault zone and in earthquakes generation. Experimental studies of fault frictional properties in presence of fluid can provide unique insights into this phenomenon. Here we compare rotary shear experiments and tri-axial stick slip tests performed on cohesive silicate-bearing rocks (gabbro and granite) in the presence of fluids. Surprisingly, for both type of tests, the weakening mechanism (melting of the asperities) is hindered in the presence of water. Indeed, in rotary shear experiments, at a given effective normal stress (σn-pf), the decay in friction is more gradual and longer in the presence of pore water (32% of friction drop after 20 mm of slip) than under room humidity (41% after 20 mm of slip) and vacuum conditions (60% after 20 mm of slip). During stick slip tests, at a given effective confining pressure (Pc-pf), the dynamic shear stress drops are lower ( 30%) and slip distances were shorter ( 30 to 40%) in the presence of high pressure pore water (Pc=95 MPa; Pf=25 MPa) than under room humidity conditions (Pc=70 MPa; Pf=0 MPa). Thermal modeling of the asperity contacts under load shows that the presence of fluids cools the asperities and delays the formation of melt patches, increasing weakening duration.
Elastic-Plastic Thermal Stress Analysis of a High-Pressure Cryogenic Storage Tank
NASA Technical Reports Server (NTRS)
Barker, J. Mark; Field, Robert E. (Technical Monitor)
2003-01-01
The thermal stresses on a cryogenic storage tank contribute strongly to the state of stress of the tank material and its ability to withstand operational stresses. These thermal stresses also affect the growth of any surface damage that might occur in the tank walls. These stresses are particularly of concern during the initial cooldown period for a new tank placed into service, and during any subsequent thermal cycles. A previous preliminary elastic analysis showed that the thermal stress on the inner wall would reach approximately 1,000MPa (145,000 psi). This stress far exceeds the ASTM specified room temperature values for both yield (170MPa) and ultimate (485 MPa) strength for 304L stainless steel. The present analysis determines the thermal stresses using an elastic-plastic model. The commercial software application ANSYS was used to determine the transient spatial temperature profile and the associated spatial thermal stress profiles in a segment of a thick-walled vessel during a typical cooldown process. A strictly elastic analysis using standard material properties for 304L stainless steel showed that the maximum thermal stress on the inner and outer walls was approximately 960 MPa (tensile) and - 270 MPa (compressive) respectively. These values occurred early in the cooldown process, but at different times, An elastic-plastic analysis showed significantly reducing stress, as expected due to the plastic deformation of the material. The maximum stress for the inner wall was approximately 225 MPa (tensile), while the maximum stress for the outer wall was approximately - 130 MPa (compressive).
McGarr, Arthur F.; Johnston, Malcolm J.; Boettcher, M.; Heesakkers, V.; Reches, Z.
2013-01-01
On December 12, 2004, an earthquake of magnitude 2.2, located in the TauTona Gold Mine at a depth of about 3.65 km in the ancient Pretorius fault zone, was recorded by the in-mine borehole seismic network, yielding an excellent set of ground motion data recorded at hypocentral distances of several km. From these data, the seismic moment tensor, indicating mostly normal faulting with a small implosive component, and the radiated energy were measured; the deviatoric component of the moment tensor was estimated to be M0 = 2.3×1012 N·m and the radiated energy ER = 5.4×108 J. This event caused extensive damage along tunnels within the Pretorius fault zone. What rendered this earthquake of particular interest was the underground investigation of the complex pattern of exposed rupture surfaces combined with laboratory testing of rock samples retrieved from the ancient fault zone (Heesakkers et al.2011a, 2011b). Event 12/12 2004 was the result of fault slip across at least four nonparallel fault surfaces; 25 mm of slip was measured at one location on the rupture segment that is most parallel with a fault plane inferred from the seismic moment tensor, suggesting that this segment accounted for much of the total seismic deformation. By applying a recently developed technique based on biaxial stick-slip friction experiments (McGarr2012, 2013) to the seismic results, together with the 25 mm slip observed underground, we estimated a maximum slip rate of at least 6.6 m/s, which is consistent with the observed damage to tunnels in the rupture zone. Similarly, the stress drop and apparent stress were found to be correspondingly high at 21.9 MPa and 6.6 MPa, respectively. The ambient state of stress, measured at the approximate depth of the earthquake but away from the influence of mining, in conjunction with laboratory measurements of the strength of the fault zone cataclasites, indicates that during rupture of the M 2.2 event, the normal stress acting on the large-slip fault segment was about 260 MPa, the yield stress was 172 MPa and the seismic efficiency was 0.05. Thus, for event 12/12 2004, 5% of the energy released by the earthquake was radiated and the remaining 95% was consumed in overcoming fault friction and expanding the zone of rupture.
Preliminary Thermal Stress Analysis of a High-Pressure Cryogenic Storage Tank
NASA Technical Reports Server (NTRS)
Baker, J. Mark
2003-01-01
The thermal stresses on a cryogenic storage tank strongly affect the condition of the tank and its ability to withstand operational stresses. These thermal stresses also affect the growth of any surface damage that might occur in the tank walls. These stresses are particularly of concern during the initial cooldown period for a new tank placed into service, and during any subsequent thermal cycles. A preliminary thermal stress analysis of a high-pressure cryogenic storage tank was performed. Stresses during normal operation were determined, as well as the transient temperature distribution. An elastic analysis was used to determine the thermal stresses in the inner wall based on the temperature data. The results of this elastic analysis indicate that the inner wall of the storage tank will experience thermal stresses of approximately 145,000 psi (1000 MPa). This stress level is well above the room-temperature yield strength of 304L stainless steel, which is about 25,000 psi (170 MPa). For this preliminary analysis, several important factors have not yet been considered. These factors include increased strength of 304L stainless steel at cryogenic temperatures, plastic material behavior, and increased strength due to strain hardening. In order to more accurately determine the thermal stresses and their affect on the tank material, further investigation is required, particularly in the area of material properties and their relationship to stress.
Physical properties and Consolidation behavior of sediments from the N. Japan subduction zone
NASA Astrophysics Data System (ADS)
Valdez, R. D., II; Lauer, R. M.; Ikari, M.; Kitajima, H.; Saffer, D. M.
2013-12-01
Sediment hydraulic properties, consolidation state, and ambient pore pressure development are key parameters that affect fluid migration, deformation, and the slip behavior and mechanical strength of subduction zone megathrusts. In order to better understand the dynamics and mechanisms of large subduction earthquakes, Integrated Oceanic Drilling Program (IODP) Expedition 343, drilled into the toe of the Japan Trench subduction zone in a region of large shallow slip in the M 9.0 Tohoku earthquake, as part of the Japan Trench Fast Drilling Project (J-FAST). Here, we report on two constant rate of strain (CRS) uniaxial consolidation experiments and two triaxial deformation experiments on bedded claystone and clayey mudstone core samples collected from the frontal prism and subducted sediment section cored at Site C0019, 2.5 km landward of the Japan Trench, from depths of 697.18 and 831.45 mbsf. The goals of our experiments were: (1) to define the hydraulic and acoustic properties of sediments that host the subduction megathrust fault that slipped in the M 9.0 Tohoku earthquake; and (2) to constrain in-situ consolidation state and its implications for in-situ stress. The permeability-porosity trends are similar for the two samples, and both exhibit permeability that decreases systematically with increasing effective stress and decreasing porosity, and which varies log-linearly with porosity. Permeabilities of material from the frontal prism decrease from 5×10-18 m2 at 5 MPa effective stress, to 3.0×10-19 m2 at 70 MPa, and porosities decrease from 51% to 29%, while permeabilities of the subducted sediment sample decrease from 5×10-18 m2 at 5 MPa to 3.6×10-19 m2 at 90 MPa, and porosities decrease from 49% to 36%. In-situ permeabilities for the prism and underthrust sediment samples, estimated using laboratory defined permeability-porosity relationships, are 4.9×10-18 m2 and 3.7×10-18 m2, respectively. Elastic wavespeeds increase systematically with increasing effective stress. P-wave velocities (Vp) in the frontal prism sample increase from 2.1 km/s at 8 MPa to 2.7 km/s at 55 MPa effective stress, and velocities in the underthrust sediment sample increase from 2.3 km/s at 6 MPa to 3.0 km/s at 76.5 MPa. Estimated in-situ Vp for the frontal prism and underthrust sediment sample are 2.1 km/s and 2.4 km/s, respectively. This is slightly higher than both the logging while drilling (LWD) measurements and shipboard velocity measurements on discrete samples. We also estimated pre-consolidation pressures (Pc) for each sample using the work-stress method. Comparing Pc with the present day in-situ vertical stress calculated from shipboard bulk density data, we find that both samples are severely overconsolidated. We report this in terms of overconsolidation ratio (OCR), defined as the ratio of Pc to the in-situ stress expected for the case of normal consolidation. Values of OCR for the prism and underthrust samples are 3.95 and 4.28, respectively. This overconsolidation is broadly consistent with fully drained (non-overpressured) conditions, and may reflect uplift and unroofing of the sediments following peak burial greater than their current depth, a significant contribution from lateral tectonic stresses leading to an effective stress far greater than expected for the case of uniaxial burial, or cementation that leads to apparent overconsolidation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Jiang-Long, E-mail: jlwei@ipp.ac.cn; Li, Jun; Hu, Chun-Dong
A key issue on the development of EAST ion source was the junction design of insulator structure, which consists of three insulators and four supporting flanges of electrode grid. Because the ion source is installed on the vertical plane, the insulator structure has to withstand large bending and shear stress due to the gravity of whole ion source. Through a mechanical analysis, it was calculated that the maximum bending normal stress was 0.34 MPa and shear stress was 0.23 MPa on the insulator structure. Due to the advantages of simplicity and high strength, the adhesive bonding technology was applied tomore » the junction of insulator structure. A tensile testing campaign of different junction designs between insulator and supporting flange was performed, and a junction design of stainless steel and fiber enhanced epoxy resin with epoxy adhesive was determined. The insulator structure based on the determined design can satisfy both the requirements of high-voltage holding and mechanical strength.« less
Beeler, Nicholas M.; Kilgore, Brian D.; McGarr, Arthur F.; Fletcher, Jon Peter B.; Evans, John R.; Steven R. Baker,
2012-01-01
We have conducted dynamic rupture propagation experiments to establish the relations between in-source stress drop, fracture energy and the resulting particle velocity during slip of an unconfined 2 m long laboratory fault at normal stresses between 4 and 8 MPa. To produce high fracture energy in the source we use a rough fault that has a large slip weakening distance. An artifact of the high fracture energy is that the nucleation zone is large such that precursory slip reduces fault strength over a large fraction of the total fault length prior to dynamic rupture, making the initial stress non-uniform. Shear stress, particle velocity, fault slip and acceleration were recorded coseismically at multiple locations along strike and at small fault-normal distances. Stress drop increases weakly with normal stress. Average slip rate depends linearly on the fault strength loss and on static stress drop, both with a nonzero intercept. A minimum fracture energy of 1.8 J/m2 and a linear slip weakening distance of 33 μm are inferred from the intercept. The large slip weakening distance also affects the average slip rate which is reduced by in-source energy dissipation from on-fault fracture energy.Because of the low normal stress and small per event slip (∼86 μm), no thermal weakening such as melting or pore fluid pressurization occurs in these experiments. Despite the relatively high fracture energy, and the very low heat production, energy partitioning during these laboratory earthquakes is very similar to typical earthquake source properties. The product of fracture energy and fault area is larger than the radiated energy. Seismic efficiency is low at ∼2%. The ratio of apparent stress to static stress drop is ∼27%, consistent with measured overshoot. The fracture efficiency is ∼33%. The static and dynamic stress drops when extrapolated to crustal stresses are 2–7.3 MPa and in the range of typical earthquake stress drops. As the relatively high fracture energy reduces the slip velocities in these experiments, the extrapolated average particle velocities for crustal stresses are 0.18–0.6 m/s. That these experiments are consistent with typical earthquake source properties suggests, albeit indirectly, that thermal weakening mechanisms such as thermal pressurization and melting which lead to near complete stress drops, dominate earthquake source properties only for exceptional events unless crustal stresses are low.
Influence of lithostatic stress on earthquake stress drops in North America
Boyd, Oliver; McNamara, Daniel E.; Hartzell, Stephen; Choy, George
2017-01-01
We estimate stress drops for earthquakes in and near the continental United States using the method of spectral ratios. The ratio of acceleration spectra between collocated earthquakes recorded at a given station removes the effects of path and recording site and yields source parameters including corner frequency for, and the ratio of seismic moment between, the two earthquakes. We determine stress drop from these parameters for 1121 earthquakes greater than M∼3 in 60 earthquake clusters. We find that the average Brune stress drop for the few eastern United States (EUS) tectonic mainshocks studied (2.6–36 MPa) is about three times greater than that of tectonic mainshocks in the western United States (WUS, 1.0–7.9 MPa) and five times greater than mainshocks potentially induced by wastewater injection in the central United States (CUS, 0.6–5.6 MPa). EUS events tend to be deeper thrusting events, whereas WUS events tend to be shallower but have a wide range of focal mechanisms. CUS events tend to be shallow with strike‐slip to normal‐faulting mechanisms. With the possible exception of CUS aftershocks, we find that differences in stress drop among all events can be taken into account, within one standard deviation of significance, by differences in the shear failure stress as outlined by Mohr–Coulomb theory. The shear failure stress is a function of vertical stress (or depth), the fault style (normal, strike slip, or reverse), and coefficient of friction (estimated here to be, on average, 0.64). After accounting for faulting style and depth dependence, we find that the average Brune stress drop is about 3% of the failure stress. These results suggest that high‐frequency shaking hazard (>∼1 Hz) from shallow induced events and aftershocks is reduced to some extent by lower stress drop. However, the shallow hypocenters will increase hazard within several kilometers of the source.
NASA Astrophysics Data System (ADS)
Colella, H.; Ellis, S. M.; Williams, C. A.
2015-12-01
The Hikurangi subduction zone (New Zealand) is one of many subudction zones that exhibit slow slip behavior. Geodetic observations along the Hikurangi subduction zone are unusual in that not only does the subduction zone exhibit periodic slow slip events at "typical" subduction-zone depths of 25-50 km along the southern part of the margin, but also much shallower depths of 8-15 km along the northern part of the margin. Furthermore, there is evidence for interplay between slow slip events at these different depth ranges (between the deep and shallow events) along the central part of the margin, and some of the slow slip behavior is observed along regions of the interface that were previously considered locked, which raises questions about the slip behavior of this region. This study employs the earthquake simulator, RSQSim, to explore variations in the effective normal stress (i.e., stress after the addition of pore fluid pressures) and the frictional instability necessary to generate the complex slow slip events observed along the Hikurangi margin. Preliminary results suggest that to generate slow slip events with similar recurrence intervals to those observed the effective normal stress (MPa) is 3x higher in the south than the north, 6-9MPa versus 2-3MPa, respectively. Results also suggest that, at a minimum, that some overlap along the central margin must exist between the slow slip sections in the north and south to reproduce the types of slip events observed along the Hikurangi subduction zone. To further validate the results from the simulations, Okada solutions for surface displacements will be compared to geodetic solution to more accurately constrain the areas in which slip behavior varies and the cause(s) for the variation(s).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okoro, Chukwudi, E-mail: chukwudi.okoro@nist.gov; Obeng, Yaw; Levine, Lyle E.
2014-06-28
One of the main causes of failure during the lifetime of microelectronics devices is their exposure to fluctuating temperatures. In this work, synchrotron-based X-ray micro-diffraction is used to study the evolution of stresses in copper through-silicon via (TSV) interconnects, “as-received” and after 1000 thermal cycles. For both test conditions, significant fluctuations in the measured normal and shear stresses with depth are attributed to variations in the Cu grain orientation. Nevertheless, the mean hydrostatic stresses in the “as-received” Cu TSV were very low, at (16 ± 44) MPa, most likely due to room temperature stress relaxation. In contrast, the mean hydrostatic stresses alongmore » the entire length of the Cu TSV that had undergone 1000 thermal cycles (123 ± 37) MPa were found to be eight times greater, which was attributed to increased strain-hardening. The evolution in stresses with thermal cycling is a clear indication that the impact of Cu TSVs on front-end-of-line (FEOL) device performance will change through the lifetime of the 3D stacked dies, and ought to be accounted for during FEOL keep-out-zone design rules development.« less
Numeric simulation of occlusal interferences in molars restored with ultrathin occlusal veneers.
Magne, Pascal; Cheung, Raymond
2017-01-01
Selecting material for a minimally invasive occlusal veneer reconstruction concept requires an understanding of how stresses are distributed during functional and parafunctional forces. The purpose of this in vitro study was to investigate stress distribution in a maxillary molar restored with ultrathin occlusal veneers and subjected by an antagonistic mandibular molar to clenching and working and nonworking movements. A maxillary first molar was modeled from microcomputed tomography (micro-CT) data, using medical image processing software, stereolithography editing/optimizing software, and finite element software. Simulated ultrathin occlusal veneer materials were used. The mandibular molar antagonist was a solid nondeformable geometric entity. Loads simulated clenching, working, and nonworking movements with loading of 500 N. The values of the maximum principal stress were recorded. In the clenching load situation, maximum tensile stresses were located at the occlusal veneer (52 MPa for composite resin versus 47 MPa for ceramic). In the working movement, significant additional tensile stresses were found on the palatal root (87 MPa for composite resin and 85 MPa for ceramic). In the nonworking movement, tensile stress on the ultrathin occlusal veneer increased to 118 MPa for composite resin and 143 MPa for ceramic veneers. Tensile stress peaks shifted to the mesiobuccal root (75 MPa for composite resin and 74 MPa for ceramic). The topography of stresses generated by the various occlusal interferences were clearly identified. Significant tensile stress concentrations were found within the restoration's occlusal topography and root, with the nonworking interference being the most harmful and also the most revealing of the difference between the composite resin and ceramic ultrathin occlusal veneers. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Senkov, O. N.; Pilchak, A. L.; Semiatin, S. L.
2018-07-01
The microstructure and tensile properties of HfNbTaTiZr after cold working and annealing were investigated. Cold work was introduced by axial compression followed by rolling resulting in a total thickness reduction of 89 pct without any evidence of cracking. The cold-worked material retained a single-phase microstructure and had a room temperature tensile yield stress σ 0.2 = 1438 MPa, peak true stress σ p = 1495 MPa, and true fracture strain ɛ f = 5 pct. Annealing at 800 °C for up to 256 hours resulted in the precipitation of Nb and Ta rich particles with a BCC crystal structure inside a Hf-and-Zr-enriched BCC matrix. The second phase particles nucleated heterogeneously inside deformation bands and slip lines and coarsened during annealing. Analysis of the coarsening behavior suggested that kinetics were controlled by the diffusion of Nb and Ta. In the two-phase material, σ 0.2 and σ p decreased from 1159 to 1071 MPa and from 1174 to 1074 MPa, respectively, with an increase in particle diameter from 0.18 to 0.72 μm, while ɛ f remained between 5 and 8 pct. Full recrystallization and normal grain growth, with the activation energy of 238 kJ/mol and activation volume of 5.3 to 9.6 m3/mol, occurred during annealing above 1000 °C. After heat treatment at this temperature, the alloy was characterized by a single-phase BCC structure with σ 0.2 = 1110 to 1115 MPa, σ p = 1160 to 1195 MPa, and ɛ f = 12 to 19 pct with the maximum values attained after annealing for 1 hour.
NASA Astrophysics Data System (ADS)
Senkov, O. N.; Pilchak, A. L.; Semiatin, S. L.
2018-05-01
The microstructure and tensile properties of HfNbTaTiZr after cold working and annealing were investigated. Cold work was introduced by axial compression followed by rolling resulting in a total thickness reduction of 89 pct without any evidence of cracking. The cold-worked material retained a single-phase microstructure and had a room temperature tensile yield stress σ 0.2 = 1438 MPa, peak true stress σ p = 1495 MPa, and true fracture strain ɛ f = 5 pct. Annealing at 800 °C for up to 256 hours resulted in the precipitation of Nb and Ta rich particles with a BCC crystal structure inside a Hf-and-Zr-enriched BCC matrix. The second phase particles nucleated heterogeneously inside deformation bands and slip lines and coarsened during annealing. Analysis of the coarsening behavior suggested that kinetics were controlled by the diffusion of Nb and Ta. In the two-phase material, σ 0.2 and σ p decreased from 1159 to 1071 MPa and from 1174 to 1074 MPa, respectively, with an increase in particle diameter from 0.18 to 0.72 μm, while ɛ f remained between 5 and 8 pct. Full recrystallization and normal grain growth, with the activation energy of 238 kJ/mol and activation volume of 5.3 to 9.6 m3/mol, occurred during annealing above 1000 °C. After heat treatment at this temperature, the alloy was characterized by a single-phase BCC structure with σ 0.2 = 1110 to 1115 MPa, σ p = 1160 to 1195 MPa, and ɛ f = 12 to 19 pct with the maximum values attained after annealing for 1 hour.
NASA Astrophysics Data System (ADS)
Shen, Tengming; Ye, Liyang; Higley, Hugh
2018-01-01
In article I of this series, we described a spiral coil quench technique for probing the influence of the superconductor stress and strain state during normal operation on its margin to degradation during a quench and applied to a Bi-2212 round wire. Here we extend this technique to study the failure mechanisms and limits of high-strength Bi-2223 tapes experiencing a quench while carrying a large current in a high magnetic field. In contrast to Bi-2212 magnets made via a wind-and-react technique for which bending strains can be ignored, Bi-2223 magnets are made with a react-and-wind technique for which bending strain is significant. The critical tensile stress of Bi-2223 tapes (type HT-NX) decreases from >440 MPa for straight samples to 185 MPa after being bent to a diameter D of 50 mm. For HT-NX tapes with D = 50 mm, the quench degradation limit, measured using maximum allowable temperature during a quench T allowable, is greater than 300 K for axial tensile stress {σ }a < 94 MPa; it decreases with increasing tensile axial stress {σ }a nonlinearly, dropping to 230 K for {σ }a = 125 MPa. T allow able ({σ }a) experimental data at D = 50 mm is consistently predicted by a general strain model that assumes that quench degradation in NX/Bi-2223 is driven by axial tensile strain in Bi-2223 filaments exceeding the irreversible strain limit. The T allowable ({σ }a) is then predicted for various D including D = 80 mm important for NMR magnets. The given T allowable (D,{σ }a) is easy to use and important for finding the balance between operation stress, and therefore magnetic field generation efficiency, and operation margin when designing a superconducting magnet using Bi-2223 tapes.
Effect of Shock Loading on Rock Properties and in situ States.
1980-06-01
site to contain a nuclear event, con- siderable effort was spent in obtaining the stresses, via the overcore technique and hydraulic fracturing . The...Dining Car region indicated, via hydraulic fracturing , a minimum in situ stress of about 3.8 MPa and via the overcore technique, approximately 2.8 MPa...decreased to about 1.2 MPa, as compared to a pre-Dining Car stress of 3-3.5 MPa. These measurements were obtained via a combina- tion of hydraulic
Wang, Xiaofei; Perera, Shamira A.; Girard, Michaël J. A.
2018-01-01
Purpose (1) To use finite element (FE) modelling to estimate local iris stresses (i.e. internal forces) as a result of mechanical pupil expansion; and to (2) compare such stresses as generated from several commercially available expanders (Iris hooks, APX dilator and Malyugin ring) to determine which design and deployment method are most likely to cause iris damage. Methods We used a biofidelic 3-part iris FE model that consisted of the stroma, sphincter and dilator muscles. Our FE model simulated expansion of the pupil from 3 mm to a maximum of 6 mm using the aforementioned pupil expanders, with uniform circular expansion used for baseline comparison. FE-derived stresses, resultant forces and area of final pupil opening were compared across devices for analysis. Results Our FE models demonstrated that the APX dilator generated the highest stresses on the sphincter muscles, (max: 6.446 MPa; average: 5.112 MPa), followed by the iris hooks (max: 5.680 MPa; average: 5.219 MPa), and the Malyugin ring (max: 2.144 MPa; average: 1.575 MPa). Uniform expansion generated the lowest stresses (max: 0.435MPa; average: 0.377 MPa). For pupil expansion, the APX dilator required the highest force (41.22 mN), followed by iris hooks (40.82 mN) and the Malyugin ring (18.56 mN). Conclusion Our study predicted that current pupil expanders exert significantly higher amount of stresses and forces than required during pupil expansion. Our work may serve as a guide for the development and design of next-generation pupil expanders. PMID:29538452
The structure and mechanical design of rhinoceros dermal armour.
Shadwick, R E; Russell, A P; Lauff, R F
1992-09-29
The collagenous dermis of the white rhinoceros forms a thick, protective armour that is highly specialized in its structure and material properties compared with other mammalian skin. Rhinoceros skin is three times thicker than predicted allometrically, and it contains a dense and highly ordered three-dimensional array of relatively straight and highly crosslinked collagen fibres. The skin of the back and flanks exhibits a steep stress-strain curve with very little 'toe' region, a high elastic modulus (240 MPa), a high tensile strength (30 MPa), a low breaking strain (0.24) and high breaking energy (3 MJm-3) and work of fracture (78 kJm-2). By comparison, the belly skin is somewhat less stiff, weaker, and more extensible. In compression, rhinoceros skin withstands average stresses and strains of 170 MPa and 0.7, respectively, before yielding. As a biological material, rhinoceros dorsolateral skin has properties that are intermediate between those of 'normal' mammalian skin and tendons. This study shows that the dermal armour of the rhinoceros is very well adapted to resist blows from the horns of conspecifics, as might occur during aggressive behaviour, due to specialized material properties as well as its great thickness.
Mapping the Influence of Prior Tectonism on Seismicity in the Central and Eastern US
NASA Astrophysics Data System (ADS)
Boyd, O. S.; Levandowski, W.; Ramirez-Guzman, L.; Zellman, M.; Briggs, R.
2015-12-01
From the Atlantic margin to the Rockies, most earthquakes in the central and eastern U.S. occur in ancient tectonic zones, yet many such features have been historically quiescent. If all intraplate stress were transferred from plate boundaries or bases, the stress field would be broadly uniform, with all well-oriented faults equally likely to slip. But faults are not the only product of tectonism; intrusions, metamorphism, or any number of other alterations may modify crustal and/or upper mantle density, leaving behind lithostatic pressure gradients that can locally elevate or reduce stress on faults. With data provided by Earthscope, we are working to map lithospheric density across the U.S. and to quantify gravitational body-forces using analytical and finite-element methods. Regional-scale 3D models show that gravitational forces focus seismicity and reorient principal stress both in the New Madrid seismic zone and the western Great Plains. Sedimentary fill and low elevation encourage Reelfoot Rift-normal contraction, yet along-strike variations in lower crustal density rotate body-forces beneath New Madrid to interfere constructively with far-field compression, augmenting differential stress by 5-10 MPa. On the plains of SE Colorado and SE Wyoming, the Cheraw and Wheatland/Whalen faults collocate with multiply reactivated Proterozoic sutures, enigmatic Quaternary extension, and focused seismicity with regionally anomalous NW-SE moment tensor T-axes. Earthscope data help reveal anomalously buoyant lower crust beneath each suture -- which we hypothesize reflects hydration by Farallon slab-derived fluids that have preferentially migrated along ancient fracture networks -- that generates 10 MPa of localized suture-normal tension, consistent with geomorphic strain- and seismic stress-indicators. As continent-wide seismic models emerge from Earthscope data, we will continue to map regions where inherited structures encourage intraplate seismicity.
NASA Astrophysics Data System (ADS)
Remitti, Francesca; Smith, Steven; Gualtieri, Alessandro; Di Toro, Giulio; Nielsen, Stefan
2014-05-01
The Japan Trench Fast Drilling Project (JFAST), Integrated Ocean Drilling Program (IODP) Expedition 343, successfully located and sampled the shallow slip zone of the Mw =9.0 Tohoku-Oki earthquake where the largest coseismic slip occurred (c. 50 m). Logging-while-drilling, core-sample observations and the analysis of temperature data recovered from a third borehole show that a thin (<5 m), smectite rich plate-boundary fault accommodated the large slip of the Tohoku-Oki Earthquake rupture, as well as most of the interplate motion at the drill site. Effective normal stress along the shallow plate-boundary fault is estimated to be c. 7 MPa. Single-velocity and velocity-stepping rotary-shear friction experiments on fault material were performed with the Slow to HIgh Velocity Apparatus (SHIVA) installed at INGV in Rome. Quantitative phase analysis using the combined Rietveld and R.I.R. method indicates that the starting material is mainly composed of smectite (56 wt%) and illite/mica (21 wt%) and minor quartz, kaolinite, plagioclase and K-feldspar. The amount of amorphous fraction has also been calculated and it is close to the detection limit. Each experiment used 3.5 g of loosely disaggregated gouge, following sieving to a particle size fraction <1 mm. Experiments were performed either 1) "room-dry" (40-60% humidity) at 8.5 MPa normal stress (one test at 12.5 MPa), or 2) "water-dampened" (0.5 ml distilled water added to the gouge layers) at 3.5 MPa normal stress. Slip velocities ranged over nearly seven orders of magnitude (10-5 - 3 m s-1). Total displacement is always less than 1 m. The peak and steady-state frictional strengths of the gouges are significantly lower under water-dampened conditions, with mean steady-state friction coefficients (μ, shear stress/normal stress) at all investigated velocities of 0.04<μ<0.1. This is consistent with the small measured frictional heat anomaly along the plate boundary fault ~1.5 years after the Tohoku-Oki earthquake. Under room-dry conditions the gouge material is velocity-strengthening at intermediate velocities (0.001 - 0.1 m s-1), but strongly velocity-weakening at > 0.1 m s-1. Instead, under water-dampened conditions, the gouge is velocity-neutral to velocity-weakening at all investigated velocities. In other words, the intermediate-velocity strengthening, which would probably act as a "barrier" to rupture propagation in the dry gouges, disappears in water-dampened gouges. This result is compatible with propagation of the Tohoku rupture to the trench, and also with large coseismic slip at shallow depths. Quantitative phase analysis using the combined Rietveld and R.I.R. method has been performed also on six post-experiment gouges for the determination of both the crystalline and amorphous fractions. Preliminary results show that the mineralogical assemblage is basically the same after the experiments, with both smectite and illite phases preserved, this suggests that the weakening mechanism operating in this material is active at low temperature.
Process for fabricating high reflectance-low stress Mo--Si multilayer reflective coatings
Montcalm, Claude; Mirkarimi, Paul B.
2001-01-01
A high reflectance-low stress Mo--Si multilayer reflective coating particularly useful for the extreme ultraviolet (EUV) wavelength region. While the multilayer reflective coating has particular application for EUV lithography, it has numerous other applications where high reflectance and low stress multilayer coatings are utilized. Multilayer coatings having high near-normal incidence reflectance (R.gtoreq.65%) and low residual stress (.ltoreq.100 MPa) have been produced using thermal and non-thermal approaches. The thermal approach involves heating the multilayer coating to a given temperature for a given time after deposition in order to induce structural changes in the multilayer coating that will have an overall "relaxation" effect without reducing the reflectance significantly.
High reflectance-low stress Mo-Si multilayer reflective coatings
Montcalm, Claude; Mirkarimi, Paul B.
2000-01-01
A high reflectance-low stress Mo-Si multilayer reflective coating particularly useful for the extreme ultraviolet (EUV) wavelength region. While the multilayer reflective coating has particular application for EUV lithography, it has numerous other applications where high reflectance and low stress multilayer coatings are utilized. Multilayer coatings having high near-normal incidence reflectance (R.gtoreq.65%) and low residual stress (.ltoreq.100 MPa) have been produced using thermal and non-thermal approaches. The thermal approach involves heating the multilayer coating to a given temperature for a given time after deposition in order to induce structural changes in the multilayer coating that will have an overall "relaxation" effect without reducing the reflectance significantly.
NASA Astrophysics Data System (ADS)
Trautwein-Bruns, Ute; Schulze, Katja C.; Becker, Stephan; Kukla, Peter A.; Urai, Janos L.
2010-10-01
In 2004 the 2544 m deep RWTH-1 well was drilled in the city centre of Aachen to supply geothermal heat for the heating and cooling of the new student service centre "SuperC" of RWTH Aachen University. Aachen is located in a complex geologic and tectonic position at the northern margin of the Variscan deformation front at the borders between the Brabant Massif, the Hohes Venn/Eifel areas and the presently active rift zone of the Lower Rhine Embayment, where existing data on in situ stress show complex changes over short distances. The borehole offers a unique opportunity to study varying stress regimes in this area of complex geodynamic evolution. This study of the in situ stresses is based on the observation of compressive borehole breakouts and drilling-induced tensile fractures in electrical and acoustic image logs. The borehole failure analysis shows that the maximum horizontal stress trends SE-NW which is in accordance with the general West European stress trend. Stress magnitudes modelled in accordance to the Mohr-Coulomb Theory of Sliding Friction indicate minimum and maximum horizontal stress gradients of 0.019 MPa/m and 0.038 MPa/m, respectively. The occurrence of drilling-induced tensile failure and the calculated in situ stress magnitudes are consistent with a model of strike-slip deformation. The observed strike-slip faulting regime supports the extension of the Brabant Shear Zone proposed by Ahorner (1975) into the Aachen city area, where it joins the major normal faulting set of the Roer Valley Graben zone. This intersection of the inherited Variscan deformation grain and the Cenozoic deformation resulting in recent strike-slip and normal faulting activity proves the tectonically different deformation responses over a short distance between the long-lived Brabant Massif and the Cenozoic Rhine Rift System.
NASA Astrophysics Data System (ADS)
Rimpler, R.; Both, W.
1988-11-01
Heating of the active region of stripe GaAlAs/GaAs double-heterostructure laser diodes by an injection current has a strong influence on the stresses in this region. An increase in the temperature of the region by 10 K can alter a shear stress by 5-10 MPa. In the case of lasers with a large thermal resistance the strong heating of the active region can induce mechanical stresses exceeding technological stresses (10 MPa) or even critical shear stresses for dislocation motion (20 MPa).
NASA Astrophysics Data System (ADS)
Ambarita, H.; Siahaan, A. S.; Kawai, H.; Daimaruya, M.
2018-02-01
In the last decade, the demand for delayed coking capacity has been steadily increasing. The trend in the past 15 to 20 years has been for operators to try to maximize the output of their units by reducing cycle times. This mode of operation can result in very large temperature gradients within the drums during preheating stage and even more so during the quench cycle. This research provide the optimization estimation of fatigue life due to each for the absence of preheating stage and cutting stage. In the absence of preheating stage the decreasing of fatigue life is around 19% and the increasing of maximum stress in point 5 of shell-to-skirt junction is around 97 MPa. However for the absence of cutting stage it was found that is more severe compare to normal cycle. In this adjustment fatigue life reduce around 39% and maximum stress is increased around 154 MPa. It can concluded that for cycle optimization, eliminating preheating stage possibly can become an option due to the increasing demand of delayed coking process.
Ackland, David C; Robinson, Dale; Redhead, Michael; Lee, Peter Vee Sin; Moskaljuk, Adrian; Dimitroulis, George
2017-05-01
Personalized prosthetic joint replacements have important applications in cases of complex bone and joint conditions where the shape and size of off-the-shelf components may not be adequate. The objective of this study was to design, test and fabricate a personalized 3D-printed prosthesis for a patient requiring total joint replacement surgery of the temporomandibular joint (TMJ). The new 'Melbourne' prosthetic TMJ design featured a condylar component sized specifically to the patient and fixation screw positions that avoid potential intra-operative damage to the mandibular nerve. The Melbourne prosthetic TMJ was developed for a 58-year-old female recipient with end-stage osteoarthritis of the TMJ. The load response of the prosthesis during chewing and a maximum-force bite was quantified using a personalized musculoskeletal model of the patient's masticatory system developed using medical images. The simulations were then repeated after implantation of the Biomet Microfixation prosthetic TMJ, an established stock device. The maximum condylar stresses, screw stress and mandibular stress at the screw-bone interface were lower in the Melbourne prosthetic TMJ (259.6MPa, 312.9MPa and 198.4MPa, respectively) than those in the Biomet Microfixation device (284.0MPa, 416.0MPa and 262.2MPa, respectively) during the maximum-force bite, with similar trends also observed during the chewing bite. After trialing surgical placement and evaluating prosthetic TMJ stability using cadaveric specimens, the prosthesis was fabricated using 3D printing, sterilized, and implanted into the female recipient. Six months post-operatively, the prosthesis recipient had a normal jaw opening distance (40.0 mm), with no complications identified. The new design features and immediate load response of the Melbourne prosthetic TMJ suggests that it may provide improved clinical and biomechanical joint function compared to a commonly used stock device, and reduce risk of intra-operative nerve damage during placement. The framework presented may be useful for designing and testing customized devices for the treatment of debilitating bone and joint conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yoneda, J.; Oshima, M.; Kida, M.; Kato, A.; Konno, Y.; Jin, Y.; Waite, W. F.; Jang, J.; Kumar, P.; Tenma, N.
2017-12-01
Pressure coring and analysis technology allows for gas hydrate to be recovered from the deep seabed, transferred to the laboratory and characterized while continuously maintaining gas hydrate stability. For this study, dozens of hydrate-bearing pressure core sediment subsections recovered from the Krishna-Godavari Basin during India's National Gas Hydrate Program Expedition NGHP-02 were tested with Pressure Core Non-destructive Analysis Tools (PNATs) through a collaboration between Japan and India. PNATs, originally developed by AIST as a part of the Japanese National hydrate research program (MH21, funded by METI) conducted permeability, compression and consolidation tests under various effective stress conditions, including the in situ stress state estimated from downhole bulk density measurements. At the in situ effective stress, gas hydrate-bearing sediments had an effective permeability range of 0.01-10mD even at pore-space hydrate saturations above 60%. Permeability increased by 10 to 100 times after hydrate dissociation at the same effective stress, but these post-dissociation gains were erased when effective stress was increased from in situ values ( 1 MPa) to 10MPa in a simulation of the depressurization method for methane extraction from hydrate. Vertical-to-horizontal permeability anisotropy was also investigated. First-ever multi-stage loading tests and strain-rate alternation compression tests were successfully conducted for evaluating sediment strengthening dependence on the rate and magnitude of effective confining stress changes. In addition, oedometer tests were performed up to 40MPa of consolidation stress to simulate the depressurization method in ultra-deep sea environments. Consolidation curves measured with and without gas hydrate were investigated over a wide range of effective confining stresses. Compression curves for gas hydrate-bearing sediments were convex downward due to high hydrate saturations. Consolidation tests show that, regardless of the consolidation history with hydrate in place, the consolidation behavior after dissociation will first return to, then follow, the original normal consolidation curve for the hydrate-free host sediment.
Martini, Ana Paula; Barros, Rosália Moreira; Júnior, Amilcar Chagas Freitas; Rocha, Eduardo Passos; de Almeida, Erika Oliveira; Ferraz, Cacilda Cunha; Pellegrin, Maria Cristina Jimenez; Anchieta, Rodolfo Bruniera
2013-12-01
The aim of this study was to evaluate stress distribution on the peri-implant bone, simulating the influence of Nobel Select implants with straight or angulated abutments on regular and switching platform in the anterior maxilla, by means of 3-dimensional finite element analysis. Four mathematical models of a central incisor supported by external hexagon implant (13 mm × 5 mm) were created varying the platform (R, regular or S, switching) and the abutments (S, straight or A, angulated 15°). The models were created by using Mimics 13 and Solid Works 2010 software programs. The numerical analysis was performed using ANSYS Workbench 10.0. Oblique forces (100 N) were applied to the palatine surface of the central incisor. The bone/implant interface was considered perfectly integrated. Maximum (σmax) and minimum (σmin) principal stress values were obtained. For the cortical bone the highest stress values (σmax) were observed in the RA (regular platform and angulated abutment, 51 MPa), followed by SA (platform switching and angulated abutment, 44.8 MPa), RS (regular platform and straight abutment, 38.6 MPa) and SS (platform switching and straight abutment, 36.5 MPa). For the trabecular bone, the highest stress values (σmax) were observed in the RA (6.55 MPa), followed by RS (5.88 MPa), SA (5.60 MPa), and SS (4.82 MPa). The regular platform generated higher stress in the cervical periimplant region on the cortical and trabecular bone than the platform switching, irrespective of the abutment used (straight or angulated).
NASA Technical Reports Server (NTRS)
Kim, Y. G.; Merrick, H. F.
1979-01-01
Alloy MA 6000E was developed by the mechanical alloying process for turbine blade applications. The nominal composition of the experimental alloy is Ni-15CR-2Mo-4W-4.5Al- 2.5Ti-2Ta- .15Zr-.05C-.01B-1.1Y2O3. The 1000 hour rupture strength in the longitudinal direction is about 145 MPa at 1093 C and about 483 MPa at 760 C. The alloy displays normal three-stage creep behavior. Typically the creep elongation is 3.5% at 760 C and 2% at 1093 C. The alloy is notch ductile (K sub 1 = 3.5). The rupture properties of the alloy are not significantly degraded by thermal cycling or prior stress isothermal exposure. The alloy also has excellent longitudinal high and low cycle fatigue resistance. Limited testing indicates that MA 6000E posesses good off-axis mechanical properties. The transverse tensile elongation at 760 C is about 3%. The 100 hour transverse rupture strength is 331 MPa at 760 C and about 55 MPa at 1093 C.
Ellis, W.L.; Magner, J.E.
1982-01-01
Determination of the in situ state of stress at the site of the Spent Fuel Test--Climax, using the U.S. Bureau of Mines overcore method, indicates principal stress magnitudes of 11.6 MPa, 7.1 MPa, and 2.8 MPa. The bearing and plunge of the maximum and minimum principal stress components are, respectively: N. 56? E., 29? NE; and N. 42? W., 14? NW. The vertical stress magnitude of 7.9 MPa calculated from the overcore data is significantly less than expected from overburden pressure, suggesting the stress field is influenced by local or areal geologic factors. Results from this investigation indicate (1) the stress state at the Spent Fuel Test--Climax site deviates significantly from a gravitational stress field, both in relative stress magnitudes and in orientation; (2) numerical modeling will not realistically simulate the near-field response of the Spent Fuel Test--Climax site if gravitational and (or) horizontal and vertical applied stress boundary conditions are assumed; and (3) substantial stress variations may occur spatially within the stock.
Neutron-irradiation creep of silicon carbide materials beyond the initial transient
Katoh, Yutai; Ozawa, Kazumi; Shimoda, Kazuya; ...
2016-06-04
Irradiation creep beyond the transient regime was investigated for various silicon carbide (SiC) materials. Here, the materials examined included polycrystalline or monocrystalline high-purity SiC, nanopowder sintered SiC, highly crystalline and near-stoichiometric SiC fibers (including Hi-Nicalon Type S, Tyranno SA3, isotopically-controlled Sylramic and Sylramic-iBN fibers), and a Tyranno SA3 fiber–reinforced SiC matrix composite fabricated through a nano-infiltration transient eutectic phase process. Neutron irradiation experiments for bend stress relaxation tests were conducted at irradiation temperatures ranging from 430 to 1180 °C up to 30 dpa with initial bend stresses of up to ~1 GPa for the fibers and ~300 MPa for themore » other materials. Initial bend stress in the specimens continued to decrease from 1 to 30 dpa. Analysis revealed that (1) the stress exponent of irradiation creep above 1 dpa is approximately unity, (2) the stress normalized creep rate is ~1 × 10 –7 [dpa –1 MPa –1] at 430–750 °C for the range of 1–30 dpa for most polycrystalline SiC materials, and (3) the effects on irradiation creep of initial microstructures—such as grain boundary, crystal orientation, and secondary phases—increase with increasing irradiation temperature.« less
NASA Technical Reports Server (NTRS)
Dorward, R. C.; Hasse, K. R.
1978-01-01
Marine atmospheric exposure of smooth and precracked specimens from 7075, 7475, 7050 and 7049 plates support the conclusion that for a given strength level, the short transverse stress corrosion resistance of 7050-T7X and 7049-T7X is superior to that of 7075-T7X. The threshold stress intensity (K sub Iscc) for these alloys is about 25 MPa square root m at a yield strength of about 460 MPa; the corresponding yield strength level for 7075-T7X at this SCR level is about 425 MPa. Additional tests on two lots of high-toughness 7475 plate indicate that this alloy is capable of achieving K sub Iscc values of about 35 MPa square root m at yield strengths of 400-450 MPa. Precracked specimens from all these 7XXX-series alloys are subject to self loading from corrosion product wedging. This effect causes stress corrosion cracks to continue growing at very low apparent stress intensities, and should therefore be considered a potential driving force for stress corrosion in design and materials selection.
Luttrell, K.M.; Tong, X.; Sandwell, D.T.; Brooks, B.A.; Bevis, M.G.
2011-01-01
The great 27 February 2010 Mw 8.8 earthquake off the coast of southern Chile ruptured a ???600 km length of subduction zone. In this paper, we make two independent estimates of shear stress in the crust in the region of the Chile earthquake. First, we use a coseismic slip model constrained by geodetic observations from interferometric synthetic aperture radar (InSAR) and GPS to derive a spatially variable estimate of the change in static shear stress along the ruptured fault. Second, we use a static force balance model to constrain the crustal shear stress required to simultaneously support observed fore-arc topography and the stress orientation indicated by the earthquake focal mechanism. This includes the derivation of a semianalytic solution for the stress field exerted by surface and Moho topography loading the crust. We find that the deviatoric stress exerted by topography is minimized in the limit when the crust is considered an incompressible elastic solid, with a Poisson ratio of 0.5, and is independent of Young's modulus. This places a strict lower bound on the critical stress state maintained by the crust supporting plastically deformed accretionary wedge topography. We estimate the coseismic shear stress change from the Maule event ranged from-6 MPa (stress increase) to 17 MPa (stress drop), with a maximum depth-averaged crustal shear-stress drop of 4 MPa. We separately estimate that the plate-driving forces acting in the region, regardless of their exact mechanism, must contribute at least 27 MPa trench-perpendicular compression and 15 MPa trench-parallel compression. This corresponds to a depth-averaged shear stress of at least 7 MPa. The comparable magnitude of these two independent shear stress estimates is consistent with the interpretation that the section of the megathrust fault ruptured in the Maule earthquake is weak, with the seismic cycle relieving much of the total sustained shear stress in the crust. Copyright 2011 by the American Geophysical Union.
The effect of stress on limestone permeability and its effective stress behavior
NASA Astrophysics Data System (ADS)
Meng, F.; Baud, P.; Ge, H.; Wong, T. F.
2017-12-01
The evolution of permeability and its effective stress behavior is related to inelastic deformation and failure mode. This was investigated in Indiana and Purbeck limestones with porosities of 18% and 13%, respectively. Hydrostatic and triaxial compression tests were conducted at room temperature on water-saturated samples at pore pressure of 5 MPa and confining pressures up to 90 MPa. Permeability was measured using steady flow at different stages of deformation. For Indiana limestone, under hydrostatic loading pore collapse initiated at critical pressure P* 55 MPa with an accelerated reduction of permeability by 1/2. At a confinement of 35 MPa and above, shear-enhanced compaction initiated at critical stress C*, beyond which permeability reduction up to a factor of 3 was observed. At a confinement of 15 MPa and below, dilatancy initiated at critical stress C', beyond which permeability continued to decrease, with a negative correlation between porosity and permeability changes. Purbeck limestone showed similar evolution of permeability. Microstructural and mercury porosimetry data showed that pore size distribution in both Indiana and Purbeck limestones is bimodal, with significant proportions of macropores and micropores. The effective stress behaviour of a limestone with dual porosity is different from the prediction for a microscopically homogeneous assemblage, in that its effective stress coefficients for permeability and porosity change may attain values significantly >1. Indeed this was confirmed by our measurements (at confining pressures of 7-15 MPa and pore pressures of 1-3 MPa) in samples that had not been deformed inelastically. We also investigated the behavior in samples hydrostatically and triaxially compacted to beyond the critical stresses P* and C*, respectively. Experimental data for these samples consistently showed effective stress coefficients for both permeability and porosity change with values <1. Thus the effective stress behavior in an inelastically compacted sample is fundamentally different, with attributes akin to that of a microscopically homogeneous assemblage. This is likely related to compaction from pervasive collapse of macropores, which would effectively homogenize the initially bimodal pore size distribution.
Mechanical behavior in the Nankai inner accretionary prism, IODP Site C0002
NASA Astrophysics Data System (ADS)
Valdez, R. D., II; Saffer, D. M.
2017-12-01
Understanding the processes that control seismogenesis and stress state at subduction zones requires knowledge of fault zone and sediment physical and mechanical properties. As part of the International Ocean Discovery Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE), Expedition 348 drilled into the Kumano forearc basin and underlying inner accretionary prism at Site C0002, located 35 km landward of the trench. One primary objective was to sample and characterize the mechanical behavior of the inner accretionary prism. Here we report on the frictional and unconfined compressive strength (UCS) of mudstone samples and a clay-rich shear zone recovered from 2182-2209 meters below sea floor (mbsf), determined from triaxial deformation tests at confining pressures from 1 to 7 MPa (UCS measurements on mudstones) and 36 MPa (strength of fault zone). Our results show that at a confining pressure of 1 MPa, the wall rock sediments fail at a peak differential stress of 9.1 MPa with a residual stress of 2.8 MPa. A clear peak and evolution to residual strength remains present at 7 MPa, and both the peak and residual strengths of the mudstones increases systematically with confining pressure. At a confining pressure of 36 MPa, the shear zone sediment yields at a differential stress of 25.2 MPa followed by strain-hardening to a maximum stress of 33.1 MPa. The shear zone is frictionally weaker than the surrounding mudstones, with a friction coefficient (μ) of 0.26-0.31, versus µ = 0.45 for the wall rock. The suite of tests defines a UCS for the mudstone of 7.9 MPa. Our friction data suggest that the inner wedge may be weaker than commonly assumed in applications of critical wedge theory to estimate the properties and conditions in accretionary prisms. One key implication is that for a given basal detachment friction coefficient, higher basal pore pressures (or lower wedge pore pressures) would be required to sustain observed taper angles. Additionally, the UCS we define is significantly lower than predicted by widely-adopted empirical relations between P wave velocity and UCS for shales (UCS of 15.5 MPa), suggesting that existing analyses of stress magnitudes from borehole breakout widths may overestimate horizontal stress magnitudes.
1987-06-01
1983,1256. (6) McMahon, C. J., Editor, " Microplasticity ", Wiley Interscience, New York, New York, 1968. (7) Talia, J. E., Fernandez, L., and Gibala, R...during fatigue. The alloy has a 360 MPa bulk cyclic yield strength, but its surface is microplastic at cyclic stresses greater than 70 MPa. With...sensitivity measurements of Wo made early in fatigue show the surface is microplastic at stresses greater than 70 MPa (Fig. 2). In fact, the stress
NASA Astrophysics Data System (ADS)
Otsubo, M.; Hardebeck, J.; Miyakawa, A.; Yamaguchi, A.; Kimura, G.
2017-12-01
Fluid-rock interactions along seismogenic faults are of great importance to understand fault mechanics. The fluid loss by the formation of mode I cracks (tension cracks) increases the fault strength and creates drainage asperities along the plate interface (Sibson, 2013, Tectonophysics). The Nobeoka Thrust, in southwestern Japan, is an on-land example of an ancient megasplay fault and provides an excellent record of deformation and fluid flow at seismogenic depths of a subduction zone (Kondo et al., 2005, Tectonics). We focus on (1) Pore fluid pressure loss, (2) Amount of fault strength recovery, and (3) Fluid circulation by the formation of mode I cracks in the post-seismic period around the fault zone of the Nobeoka Thrust. Many quartz veins that filled mode I crack at the coastal outcrops suggest a normal faulting stress regime after faulting of the Nobeoka Thrust (Otsubo et al., 2016, Island Arc). We estimated the decrease of the pore fluid pressure by the formation of the mode I cracks around the Nobeoka Thrust in the post-seismic period. When the pore fluid pressure exceeds σ3, veins filling mode I cracks are constructed (Jolly and Sanderson, 1997, Jour. Struct. Geol.). We call the pore fluid pressure that exceeds σ3 "pore fluid over pressure". The differential stress in the post-seismic period and the driving pore fluid pressure ratio P* (P* = (Pf - σ3) / (σ1 - σ3), Pf: pore fluid pressure) are parameters to estimate the pore fluid over pressure. In the case of the Nobeoka Thrust (P* = 0.4, Otsubo et al., 2016, Island Arc), the pore fluid over pressure is up to 20 MPa (assuming tensile strength = 10 MPa). 20 MPa is equivalent to <10% of the total pore fluid pressure around the Nobeoka Thrust (depth = 10 km, density = 2.7 kg/m3). When the pore fluid pressure decreases by 4%, the normalized pore pressure ratio λ* (λ* = (Pf - Ph) / (Pl - Ph), Pl: lithostatic pressure; Ph: hydrostatic pressure) changes from 0.95 to 0.86. In the case of the Nobeoka Thrust, the fault strength can increase by up to 10 MPa (assuming frictional coefficient = 0.6). 10 MPa is almost equivalent to the stress drop values in large trench type earthquakes. Hence, we suggest that the fluid loss caused by the formation of mode I cracks in the post-seismic period may play an important role by increasing frictional strength along the megasplay fault.
Frictional behaviour and evolution of rough faults in limestone
NASA Astrophysics Data System (ADS)
Harbord, C. W. A.; Nielsen, S. B.; De Paola, N.; Holdsworth, R.
2017-12-01
Fault roughness is an important parameter which influences the frictional behaviour of seismically active faults, in particular the nucleation stage of earthquakes. Here we investigate frictional sliding and stability of roughened micritic limestone surfaces from the seismogenic layer in Northern-Central Apennines of Italy. Samples are roughened using #60, #220 and #400 grit and deformed in a direct shear configuration at conditions typical of the shallow upper crust (15-60 MPa normal stress). We perform velocity steps between 0.01-1 μm s-1 to obtain rate-and-state friction parameters a, b and L. At low normal stress conditions (30 MPa) and at displacements of <3-4mm there is a clear 2 state evolution of friction with two state parameters, b1 and b2, and accompanying critical slip distances L1 and L2 for all roughnesses. In some cases, on smooth faults (#400 grit), the short term evolution leads to silent slow instability which is modulated by the second state evolution. With increasing slip displacement (>2-4 mm) friction can be modelled with a single state parameter, b, as the short frictional evolution disappears. The longer term state evolution, b2, gives negative values of b, reminiscent of plastic creep experiments at high temperature, reaching a steady state at 3-4 mm displacement. Microstructural observations reveal shiny surfaces decorated by nanometric gouge particles with variable porosity. When normal stress is increased, rough faults (#60 grit) revert to a single state evolution with positive values of b, whilst smoother faults (#220 & #400 grit) retain a two state evolution with negative b2 values. These observations suggest that on carbonate hosted faults sliding may be controlled by plastic processes which can lead to slow stick-slip instability, which may be supressed by frictional wear and accompanying gouge build-up.
NASA Astrophysics Data System (ADS)
Brown, K. M.; Sample, J. C.; Even, E.; Poeppe, D.; Henry, P.; Tobin, H. J.; Saffer, D. M.; Hirose, T.; Toczko, S.; Maeda, L.
2014-12-01
We address the fundamental questions surrounding the nature of water and chemical transport processes deep within sedimentary basin and accretionary-wedge environments. Consolidation and permeability studies conducted to 165 MPa (~10km depth) indicate that ultra-tight clay formations (10-18 m2 to10-21 m2) can substantially modify the fluids migrating through then. Pore-water extractions conducted on smectite/illite rich core samples obtained from 1-3 km depths at IODP (NanTroSEIZE, Chikyu) deep-riser drilling Site C0002, at the elevated loads required to squeeze waters from such deeply buried sediment (stresses up to 100 MPa),resulted in anomalous patterns of sequential freshening with progressive loading. More accurate laboratory investigations (both incremental loading and Constant Rate of Strain test) revealed that such freshening initiates above 20 MPa and progresses with consolidation to become greater than 20% by effective normal load of 165 MPa. Log-log plots of stress vs. hydraulic conductivity reveal that trends remain linear to elevated stresses and total porosities as low at 14%. The implications are that stress induced smectite dehydration and/or membrane filtration effects cause remarkable changes in pore water chemistry with fluid migration through deep, tight, clay-rich formations. These changes should occur in addition to any thermally induced diagenetic and clay-dehydration effects on pore water chemistry. Work is progressing to evaluate the impact of clay composition and temperature to ascertain if purely illitic compositions show similar trends and if the mass fractionation of water and other isotopes also occurs. Such studies will ascertain if the presence of smectite is a prerequisite for freshening or if membrane filtration is a major process in earth systems containing common clay minerals. The results have major implications for interpretations of mass chemical balances, pore water profiles, and the hydrologic, geochemical, and stress state controls on deep system behavior in all deep accretionary wedge and basin environments where clays are abundant. This research used samples provided by the International Ocean Discovery Program (IODP).
Geramy, Allahyar; Shahroudi, Atefe Saffar
2014-01-01
Objective: Several appliances have been used for palatal expansion for treatment of posterior cross bite. The purpose of this study was to evaluate the stress induced in the apical and crestal alveolar bone and the pattern of tooth displacement following expansion via removable expansion plates or fixed-banded palatal expander using the finite element method (FEM) analysis. Materials and Methods: Two 3D FEM models were designed from a mesio-distal slice of the maxilla containing the upper first molars, their periodontium and alveolar bone. Two palatal expanders (removable and fixed) were modeled. The models were designed in SolidWorks 2006 and then transferred to ANSYS Workbench. The appliance halves were displaced 0.1 mm laterally. The von Mises stress in the apical, crestal, and PDL areas and also the vertical displacement of the cusps (palatal and buccal) was were evaluated. Results: The total PDL stress was 0.40003 MPa in the removable appliance (RA) model and 4.88e-2 MPa in the fixed appliance (FA) model and the apical stress was 9.9e-2 and 1.17e-2 MPa, respectively. The crestal stress was 2.99e-1 MPa in RA and 7.62e-2 MPa in the FA. The stress in the cortical bone crest was 0.30327 and 7.9244e-2 MPa for RA and FA, respectively and 3.7271 and 7.4373e-2 MPa in crestal area of spongy bone, respectively. The vertical displacement of the buccal cusp and palatal cusp was 1.64e-2 and 5.90e-2 mm in RA and 1.05e-4 and 1.7e-4 mm in FA, respectively. Conclusion: The overall stress as well as apical and crestal stress in periodontium of anchor teeth was higher in RA than FA; RA elicited higher stress in both cortical and spongy bone. The vertical displacement of molar cusps was more in removable than fixed palatal expander model. PMID:24910679
Experimental Study of Hybrid Fractures and the Transition From Joints to Faults
NASA Astrophysics Data System (ADS)
Ramsey, J. M.; Chester, F. M.
2003-12-01
Joints and faults are end members of a continuous spectrum of brittle fractures including the hybrid fractures, hypothesized to form under mixed compressive and tensile stress. However, unequivocal evidence for the existence of hybrid fractures has not been presented. To investigate this transition, we have conducted triaxial extension experiments on dog-bone shaped cylindrical samples of Carrara marble at room temperature, an axial extension rate of 2x10-2 mm s-1, and confining pressures between 7.5 and 170 MPa. Two parallel suites of experiments were completed, one using very weak, latex jacketing to obtain accurate failure strength, and another using copper foil jacketing to preserve fracture surfaces. The combined data set provides strong evidence for the existence of hybrid fractures on the basis of the progressive change in failure strength, fracture orientation, and fracture surface morphology from joints to faults. At the lowest confining pressures (7.5 to 60 MPa), fractures are oriented approximately parallel to the maximum principal compressive stress, form at a tensile axial stress of approximately -7.75 MPa (i.e. the uniaxial tensile strength), and display fracture surfaces characterized by many reflective grain-scale cleavage faces, consistent with jointing. At the highest confining pressures (130 to 170 MPa), fractures are oriented from 13.4 to 21.6 degrees to the maximum principal compressive stress, form under completely compressive stress states where the axial stress is between 0 and 4.3 MPa, and are characterized by short slip lineations and powdery, finely comminuted grains consistent with faulting. At intermediate confining pressures (70 to 120 MPa), fractures are oriented from 3.7 to 12.4 degrees to the maximum principal compressive stress, form under mixed stress conditions with the axial stress ranging from -10.6 to -3.0 MPa, and display both reflective cleavage faces and short slip lineations with comminuted grains, consistent with hybrid fracturing.
Perfettini, H.; Stein, R.S.; Simpson, R.; Cocco, M.
1999-01-01
We study the stress transferred by the June 27, 1988, M=5.3 and August 8, 1989, M=5.4 Lake Elsman earthquakes, the largest events to strike within 15 km of the future Loma Prieta rupture zone during 74 years before the 1989 M=6.9 Loma Prieta earthquake. We find that the first Lake Elsman event brought the rupture plane of the second event 0.3-1.6 bars (0.03-0.16 MPa) closer to Coulomb failure but that the Lake Elsman events did not bring the future Loma Prieta hypocentral zone closer to failure. Instead, the Lake Elsman earthquakes are calculated to have reduced the normal stress on (or "undamped") the Loma Prieta rupture surface by 0.5-1.0 bar (0.05-0.10 MPa) at the site where the greatest slip subsequently occurred in the Loma Prieta earthquake. This association between the sites of peak unclamping and slip suggests that the Lake Elsman events did indeed influence the Loma Prieta rupture process. Unclamping the fault would have locally lowered the resistance to sliding. Such an effect could have been enhanced if the lowered normal stress permitted fluid infusion into the undamped part of the fault. Although less well recorded, the ML=5.0 1964 and ML=5.3 1967 Corralitos events struck within 10 km of the southwest end of the future Loma Prieta rupture. No similar relationship between the normal stress change and subsequent Loma Prieta slip is observed, although the high-slip patch southwest of the Loma Prieta epicenter corresponds roughly to the site of calculated Coulomb stress increase for a low coefficient of friction. The Lake Elsman-Loma Prieta result is similar to that for the 1987 M=6.2 Elmore Ranch and M=6.7 Superstition Hills earthquakes, suggesting that foreshocks might influence the distribution of mainshock slip rather than the site of mainshock nucleation. Copyright 1999 by the American Geophysical Union.
Apparent stress, fault maturity and seismic hazard for normal-fault earthquakes at subduction zones
Choy, G.L.; Kirby, S.H.
2004-01-01
The behavior of apparent stress for normal-fault earthquakes at subduction zones is derived by examining the apparent stress (?? a = ??Es/Mo, where E s is radiated energy and Mo is seismic moment) of all globally distributed shallow (depth, ?? 1 MPa) are also generally intraslab, but occur where the lithosphere has just begun subduction beneath the overriding plate. They usually occur in cold slabs near trenches where the direction of plate motion across the trench is oblique to the trench axis, or where there are local contortions or geometrical complexities of the plate boundary. Lower ??a (< 1 MPa) is associated with events occurring at the outer rise (OR) complex (between the OR and the trench axis), as well as with intracrustal events occurring just landward of the trench. The average apparent stress of intraslab-normal-fault earthquakes is considerably higher than the average apparent stress of interplate-thrust-fault earthquakes. In turn, the average ?? a of strike-slip earthquakes in intraoceanic environments is considerably higher than that of intraslab-normal-fault earthquakes. The variation of average ??a with focal mechanism and tectonic regime suggests that the level of ?? a is related to fault maturity. Lower stress drops are needed to rupture mature faults such as those found at plate interfaces that have been smoothed by large cumulative displacements (from hundreds to thousands of kilometres). In contrast, immature faults, such as those on which intraslab-normal-fault earthquakes generally occur, are found in cold and intact lithosphere in which total fault displacement has been much less (from hundreds of metres to a few kilometres). Also, faults on which high ??a oceanic strike-slip earthquakes occur are predominantly intraplate or at evolving ends of transforms. At subduction zones, earthquakes occurring on immature faults are likely to be more hazardous as they tend to generate higher amounts of radiated energy per unit of moment than earthquakes occurring on mature faults. We have identified earthquake pairs in which an interplate-thrust and an intraslab-normal earthquake occurred remarkably close in space and time. The intraslab-normal member of each pair radiated anomalously high amounts of energy compared to its thrust-fault counterpart. These intraslab earthquakes probably ruptured intact slab mantle and are dramatic examples in which Mc (an energy magnitude) is shown to be a far better estimate of the potential for earthquake damage than Mw. This discovery may help explain why loss of life as a result of intraslab earthquakes was greater in the 20th century in Latin America than the fatalities associated with interplate-thrust events that represented much higher total moment release. ?? 2004 RAS.
Residual Stresses in SAVY 4000 and Hagan Container Bodies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stroud, Mary Ann; Hill, Mary Ann; Tokash, Justin Charles
Chloride-induced stress corrosion cracking (SCC) has been investigated as a potential failure mechanism for the SAVY 4000 and the Hagan containers used to store plutonium-bearing materials at Los Alamos National Laboratory. This report discusses the regions of the container bodies most susceptible to SCC and the magnitude of the residual stresses in those regions. Boiling MgCl2 testing indicated that for both containers the region near the top weld was most susceptible to SCC. The Hagan showed through wall cracking after 22-24 hours of exposure both parallel (axial stresses) and perpendicular (hoop stresses) to the weld. The SAVY 4000 container showedmore » significant cracking above and below the weld after 47 hours of exposure but there was no visual evidence of a through wall crack and the cracks did not leak water. Two through wall holes formed in the bottom of the SAVY 4000 container after 44-46 hours of exposure. For both containers, average “through wall” residual stresses were determined from hole drilling data 4 mm below the weld. In the Hagan body, average tensile hoop stresses were 194 MPa and average compressive axial stresses were -120 MPa. In the SAVY 4000 body, average compressive hoop stresses were 11 MPa and average tensile axial stresses were 25 MPa. Results suggest that because the Hagan container exhibited through wall cracking in a shorter time in boiling MgCl2 and had the higher average tensile stress, 194 MPa hoop stress, it is more susceptible to SCC than the SAVY 4000 container.« less
NASA Astrophysics Data System (ADS)
Stünitz, Holger; Keulen, Nynke; Hirose, Takehiro; Heilbronner, Renée
2010-01-01
Microstructures and grain size distribution from high velocity friction experiments are compared with those of slow deformation experiments of Keulen et al. (2007, 2008) for the same material (Verzasca granitoid). The mechanical behavior of granitoid gouge in fast velocity friction experiments at slip rates of 0.65 and 1.28 m/s and normal stresses of 0.4-0.9 MPa is characterized by slip weakening in a typical exponential friction coefficient vs displacement relationship. The grain size distributions yield similar D-values (slope of frequency versus grain size curve = 2.2-2.3) as those of slow deformation experiments (D = 2.0-2.3) for grain sizes larger than 1 μm. These values are independent of the total displacement above a shear strain of about γ = 20. The D-values are also independent of the displacement rates in the range of ˜1 μm/s to ˜1.3 m/s and do not vary in the normal stress range between 0.5 MPa and 500 MPa. With increasing displacement, grain shapes evolve towards more rounded and less serrated grains. While the grain size distribution remains constant, the progressive grain shape evolution suggests that grain comminution takes place by attrition at clast boundaries. Attrition produces a range of very small grain sizes by crushing with a D <-value = 1. The results of the study demonstrate that most cataclastic and gouge fault zones may have resulted from seismic deformation but the distinction of seismic and aseismic deformation cannot be made on the basis of grain size distribution.
NASA Astrophysics Data System (ADS)
Lu, Yaqing; Hui, Hu; Gong, Jianguo
2018-05-01
Austenitic stainless steel is widely used in pressure vessels for the storage and transportation of liquid gases such as liquid nitrogen, liquid oxygen, and liquid hydrogen. Cryogenic pressure vessel manufacturing uses cold stretching technology, which relies heavily on welding joint performance, to construct lightweight and thin-walled vessels. Residual stress from welding is a primary factor in cases of austenitic stainless steel pressure vessel failure. In this paper, on the basis of Visual Environment 10.0 finite element simulation technology, the residual stress resulting from different welding strength matching coefficients (0.8, 1, 1.2, 1.4) for two S30408 plates welded with three-pass butt welds is calculated according to thermal elastoplastic theory. In addition, the stress field was calculated under a loading as high as 410 MPa and after the load was released. Path 1 was set to analyze stress along the welding line, and path 2 was set to analyze stress normal to the welding line. The welding strength matching coefficient strongly affected both the longitudinal residual stress (center of path 1) and the transverse residual stress (both ends of path 1) after the welding was completed. However, the coefficient had little effect on the longitudinal and transverse residual stress of path 2. Under the loading of 410 MPa, the longitudinal and transverse stress decreased and the stress distribution, with different welding strength matching coefficients, was less diverse. After the load was released, longitudinal and transverse stress distribution for both path 1 and path 2 decreased to a low level. Cold stretching could reduce the effect of residual stress to various degrees. Transverse strain along the stretching direction was also taken into consideration. The experimental results validated the reliability of the partial simulation.
Effects of slip, slip rate, and shear heating on the friction of granite
Blanpied, M.L.; Tullis, T.E.; Weeks, J.D.
1998-01-01
The stability of fault slip is sensitive to the way in which frictional strength responds to changes in slip rate and in particular to the effective velocity dependence of steady state friction ????ss/?? ln V. This quantity can vary substantially with displacement, temperature and slip rate. To investigate the physical basis for this behavior and the possible influence of shear heating, we slid initially bare granite surfaces in unconfined rotary shear to displacements of hundreds of millimeters at normal stresses, ??n, of 10 and 25 MPa and at room temperature. We imposed step changes in slip rate within the range 10-2 to 103.5 ??m/s and also monitored frictional heating with thermistors embedded in the granite. The transient response of ?? to slip rate steps was fit to a rate- and state-dependent friction law using two state variables to estimate the values of several parameters in the constitutive law. The first 20 mm of slip shows rising friction and falling ????ss/?? ln V; further slip shows roughly constant friction, ????ss/?? ln V and parameter values, suggesting that a steady state condition is reached on the fault surface. At V ??? 10 ??m/s, ????ss/?? ln V = -0.004 ?? 0.001. At higher rates the response is sensitive to normal stress: At ??n = 25 MPa granite shows a transition to effective velocity strengthening (????ss/?? ln V = 0.008 ?? 0.004) at the highest slip rates tested. At 10 MPa granite shows a less dramatic change to ????ss/?? ln V ??? 0 at the highest rates. The maximum temperature measured in the granite is ???60??C at 25 MPa and 103.5 ??m/s. Temperatures are in general agreement with a numerical model of heat conduction which assumes spatially homogeneous frictional heating over the sliding surface. The simplest interpretation of our measurements of ????ss/?? ln V is that the granite is inherently veocity weakening (?????ss/??? In V 0 mimics velocity strengthening. These results have implications for the frictional behavior of faults during earthquakes. High slip rates may cause a switch to effective velocity strengthening which could limit peak coseismic slip rate and stress drop. For fluid-saturated faults, strengthening by this mechanism may be partly or fully offset by weakening due to thermal pressurization of a poorly drained pore fluid.
Ye, Liyang; Li, Pei; Jaroszynski, Jan; ...
2016-12-01
The critical current of many practical superconductors is sensitive to strain, and this sensitivity is exacerbated during a quench that induces a peak local strain which can be fatal to superconducting magnets. Here, a new method is introduced to quantify the influence of the conductor stress and strain state during normal operation on the margin to degradation during a quench, as measured by the maximum allowable hot spot temperature T allowable, for composite wires within superconducting magnets. The first conductor examined is Ag-sheathed Bi 2Sr 2CaCu 2O x round wire carrying high engineering critical current density, J E, of 550more » A mm -2 at 4.2 K and 15 T. The critical axial tensile stress of this conductor is determined to be 150 MPa and, in the absence of Lorentz forces, T allowable is greater than 450 K. With increasing axial tensile stress, σ a, however, T allowable decreases nonlinearly, dropping to 280 K for σ a = 120 MPa and to 160 K for σ a = 145 MPa. T allowable(σ a) is shown to be nonlinear and independent of magnetic field from 15 to 30 T. T allowable(σ a) dictates the balance between magnetic field generation, which increases with the magnet operating current and stress, and the safety margin, which decreases with decreasing T allowable, and therefore has important engineering value. Lastly, it is also shown that T allowable(σ a) can be predicted accurately by a general strain model, showing that strain control is the key to preventing degradation of superconductors during a quench.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Liyang; Li, Pei; Jaroszynski, Jan
The critical current of many practical superconductors is sensitive to strain, and this sensitivity is exacerbated during a quench that induces a peak local strain which can be fatal to superconducting magnets. Here, a new method is introduced to quantify the influence of the conductor stress and strain state during normal operation on the margin to degradation during a quench, as measured by the maximum allowable hot spot temperature T allowable, for composite wires within superconducting magnets. The first conductor examined is Ag-sheathed Bi 2Sr 2CaCu 2O x round wire carrying high engineering critical current density, J E, of 550more » A mm -2 at 4.2 K and 15 T. The critical axial tensile stress of this conductor is determined to be 150 MPa and, in the absence of Lorentz forces, T allowable is greater than 450 K. With increasing axial tensile stress, σ a, however, T allowable decreases nonlinearly, dropping to 280 K for σ a = 120 MPa and to 160 K for σ a = 145 MPa. T allowable(σ a) is shown to be nonlinear and independent of magnetic field from 15 to 30 T. T allowable(σ a) dictates the balance between magnetic field generation, which increases with the magnet operating current and stress, and the safety margin, which decreases with decreasing T allowable, and therefore has important engineering value. Lastly, it is also shown that T allowable(σ a) can be predicted accurately by a general strain model, showing that strain control is the key to preventing degradation of superconductors during a quench.« less
Ratcheting fatigue behavior of Zircaloy-2 at room temperature
NASA Astrophysics Data System (ADS)
Rajpurohit, R. S.; Sudhakar Rao, G.; Chattopadhyay, K.; Santhi Srinivas, N. C.; Singh, Vakil
2016-08-01
Nuclear core components of zirconium alloys experience asymmetric stress or strain cycling during service which leads to plastic strain accumulation and drastic reduction in fatigue life as well as dimensional instability of the component. Variables like loading rate, mean stress, and stress amplitude affect the influence of asymmetric loading. In the present investigation asymmetric stress controlled fatigue tests were conducted with mean stress from 80 to 150 MPa, stress amplitude from 270 to 340 MPa and stress rate from 30 to 750 MPa/s to study the process of plastic strain accumulation and its effect on fatigue life of Zircaloy-2 at room temperature. It was observed that with increase in mean stress and stress amplitude accumulation of ratcheting strain was increased and fatigue life was reduced. However, increase in stress rate led to improvement in fatigue life due to less accumulation of ratcheting strain.
Fracturing of porous rock induced by fluid injection
NASA Astrophysics Data System (ADS)
Stanchits, Sergei; Mayr, Sibylle; Shapiro, Serge; Dresen, Georg
2011-04-01
We monitored acoustic emission (AE) activity and brittle failure initiated by water injection into initially dry critically stressed cylindrical specimens of Flechtingen sandstone of 50 mm diameter and 105-125 mm length. Samples were first loaded in axial direction at 40-50 MPa confining pressure at dry conditions close to peak stress. Subsequently distilled water was injected either at the bottom of specimen or via a central borehole at pore pressures of 5-30 MPa. Water injection into stressed porous sandstone induced a cloud of AE events located close to the migrating water front. Water injection was monitored by periodic ultrasonic velocity measurements across the sample. Propagation of the induced cloud of AE was faster in the direction parallel to bedding than normal to it, indicating permeability anisotropy. Water injection was associated with significant AE activity demonstrating increased contribution of tensile source type. Brittle failure was accompanied by increased contribution of shear and pore collapse source types. At a critical pore pressure, a brittle fault nucleated from a cloud of induced AE events in all samples. Microstructural analysis of fractured samples shows excellent agreement between location of AE hypocenters and macroscopic faults.
Zahari, Siti Nurfaezah; Rahim, Nor Raihanah Abdull; Kamarul, Tunku
2017-01-01
The present study was conducted to examine the effects of body weight on intradiscal pressure (IDP) and annulus stress of intervertebral discs at lumbar spine. Three-dimensional finite element model of osseoligamentous lumbar spine was developed subjected to follower load of 500 N, 800 N, and 1200 N which represent the loads for individuals who are normal and overweight with the pure moments at 7.5 Nm in flexion and extension motions. It was observed that the maximum IDP was 1.26 MPa at L1-L2 vertebral segment. However, the highest increment of IDP was found at L4-L5 segment where the IDP was increased to 30% in flexion and it was more severe at extension motion reaching to 80%. Furthermore, the maximum annulus stress also occurred at the L1-L2 segment with 3.9 MPa in extension motion. However, the highest increment was also found at L4-L5 where the annulus stress increased to 17% in extension motion. Based on these results, the increase of physiological loading could be an important factor to the increment of intradiscal pressure and annulus fibrosis stress at all intervertebral discs at the lumbar spine which may lead to early intervertebral disc damage. PMID:29065672
Zahari, Siti Nurfaezah; Latif, Mohd Juzaila Abd; Rahim, Nor Raihanah Abdull; Kadir, Mohammed Rafiq Abdul; Kamarul, Tunku
2017-01-01
The present study was conducted to examine the effects of body weight on intradiscal pressure (IDP) and annulus stress of intervertebral discs at lumbar spine. Three-dimensional finite element model of osseoligamentous lumbar spine was developed subjected to follower load of 500 N, 800 N, and 1200 N which represent the loads for individuals who are normal and overweight with the pure moments at 7.5 Nm in flexion and extension motions. It was observed that the maximum IDP was 1.26 MPa at L1-L2 vertebral segment. However, the highest increment of IDP was found at L4-L5 segment where the IDP was increased to 30% in flexion and it was more severe at extension motion reaching to 80%. Furthermore, the maximum annulus stress also occurred at the L1-L2 segment with 3.9 MPa in extension motion. However, the highest increment was also found at L4-L5 where the annulus stress increased to 17% in extension motion. Based on these results, the increase of physiological loading could be an important factor to the increment of intradiscal pressure and annulus fibrosis stress at all intervertebral discs at the lumbar spine which may lead to early intervertebral disc damage.
Bagheri, Zahra S; Tavakkoli Avval, Pouria; Bougherara, Habiba; Aziz, Mina S R; Schemitsch, Emil H; Zdero, Radovan
2014-09-01
Femur fracture at the tip of a total hip replacement (THR), commonly known as Vancouver B1 fracture, is mainly treated using rigid metallic bone plates which may result in "stress shielding" leading to bone resorption and implant loosening. To minimize stress shielding, a new carbon fiber (CF)/Flax/Epoxy composite plate has been developed and biomechanically compared to a standard clinical metal plate. For fatigue tests, experiments were done using six artificial femurs cyclically loaded through the femoral head in axial compression for four stages: Stage 1 (intact), stage 2 (after THR insertion), stage 3 (after plate fixation of a simulated Vancouver B1 femoral midshaft fracture gap), and stage 4 (after fracture gap healing). For fracture fixation, one group was fitted with the new CF/Flax/Epoxy plate (n = 3), whereas another group was repaired with a standard clinical metal plate (Zimmer, Warsaw, IN) (n = 3). In addition to axial stiffness measurements, infrared thermography technique was used to capture the femur and plate surface stresses during the testing. Moreover, finite element analysis (FEA) was performed to evaluate the composite plate's axial stiffness and surface stress field. Experimental results showed that the CF/Flax/Epoxy plated femur had comparable axial stiffness (fractured = 645 ± 67 N/mm; healed = 1731 ± 109 N/mm) to the metal-plated femur (fractured = 658 ± 69 N/mm; healed = 1751 ± 39 N/mm) (p = 1.00). However, the bone beneath the CF/Flax/Epoxy plate was the only area that had a significantly higher average surface stress (fractured = 2.10 ± 0.66 MPa; healed = 1.89 ± 0.39 MPa) compared to bone beneath the metal plate (fractured = 1.18 ± 0.93 MPa; healed = 0.71 ± 0.24 MPa) (p < 0.05). FEA bone surface stresses yielded peak of 13 MPa at distal epiphysis (stage 1), 16 MPa at distal epiphysis (stage 2), 85 MPa for composite and 129 MPa for metal-plated femurs at the vicinity of nearest screw just proximal to fracture (stage 3), 21 MPa for composite and 24 MPa for metal-plated femurs at the vicinity of screw farthest away distally from fracture (stage 4). These results confirm that the new CF/Flax/Epoxy material could be a potential candidate for bone fracture plate applications as it can simultaneously provide similar mechanical stiffness and lower stress shielding (i.e., higher bone stress) compared to a standard clinical metal bone plate.
Stress before and after the 2002 Denali fault earthquake
Wesson, R.L.; Boyd, O.S.
2007-01-01
Spatially averaged, absolute deviatoric stress tensors along the faults ruptured during the 2002 Denali fault earthquake, both before and after the event, are derived, using a new method, from estimates of the orientations of the principal stresses and the stress change associated with the earthquake. Stresses are estimated in three regions along the Denali fault, one of which also includes the Susitna Glacier fault, and one region along the Totschunda fault. Estimates of the spatially averaged shear stress before the earthquake resolved onto the faults that ruptured during the event range from near 1 MPa to near 4 MPa. Shear stresses estimated along the faults in all these regions after the event are near zero (0 ?? 1 MPa). These results suggest that deviatoric stresses averaged over a few tens of km along strike are low, and that the stress drop during the earthquake was complete or nearly so.
Zhou, En-Chang; Tang, Ping; Zhu, Chuan-Ying; Liu, Shi-Ming
2017-01-25
To establish a three-dimensional finite element model of the lower limb bones, and investigate the changes of the contact characteristics of the subtalar joint after using laterally wedge insole intervention. Using the reverse modeling technology, the lower limb bones of normal adult volunteers was scanned by CT. Mimics 10.0 and Geomagic Studio 6.0 software were used to reconstruct the 3D morphology of bones and external soft tissue of the feet. The laterally wedge insole was designed in ProE 5.0. And then all the models were imported into Hyperwork 10.0 and meshed, and given the material properties. The finite element analysis was carried out in ABAQUS 6.9. A three-dimensional finite element model of the lower extremity was established, which was consisted of 95 365 nodes and 246 238 elements. The contact area of the standing state of the lower joint was larger than that of the anterior middle joint surface. The peak stress was concentrated in the anterior lateral part of the posterior articular surface, and the average stress value was(3.85±1.03) MPa. Compared with the model of 0°, the contact area of the subtalar joint was reduced accordingly. There was a significant correlation between anterior middle joint | r |=0.964, P =0.008, and posterior articular | r |=0.978, P =0.002. The equivalent stress of 0° model distributed from(3.07±1.14) MPa to(3.85± 1.03) MPa, which had no statistically difference. Compared with the 0° model, the equivalent stress of the anterior and middle joint surfaces of the 8° model was significantly reduced( P <0.05), but the peak stress of the posterior articular surface was significantly increased( P <0.05). In the 12° model, the peak stress was sharply increased to(10.51±3.53) MPa. Compared with 8° model, there was no statistically difference( P <0.05). Although the peak stress was slightly increased in 16° model, but compared with 12° model, there was no statistically differences( P >0.05). Although a certain valgus can be obtained in subtalar by wearing LWI, the result comes at the cost of the stress concentration on posterior surface. Through this study, we can find that LWI with 8° tilt angle could provide appropriate valgus moment without causing excessive concentration. Therefore, in order to avoid secondary ankle complications, we should not increase the tilt angle blindly.
Hardebeck, J.L.; Aron, A.
2009-01-01
We study variations in earthquake stress drop with respect to depth, faulting regime, creeping versus locked fault behavior, and wall-rock geology. We use the P-wave displacement spectra from borehole seismic recordings of M 1.0-4.2 earthquakes in the east San Francisco Bay to estimate stress drop using a stack-and-invert empirical Green's function method. The median stress drop is 8.7 MPa, and most stress drops are in the range between 0.4 and 130 MPa. An apparent correlation between stress drop and magnitude is entirely an artifact of the limited frequency band of 4-55 Hz. There is a trend of increasing stress drop with depth, with a median stress drop of ~5 MPa for 1-7 km depth, ~10 MPa for 7-13 km depth, and ~50 MPa deeper than 13 km. We use S=P amplitude ratios measured from the borehole records to better constrain the first-motion focal mechanisms. High stress drops are observed for a deep cluster of thrust-faulting earthquakes. The correlation of stress drops with depth and faulting regime implies that stress drop is related to the applied shear stress. We compare the spatial distribution of stress drops on the Hayward fault to a model of creeping versus locked behavior of the fault and find that high stress drops are concentrated around the major locked patch near Oakland. This also suggests a connection between stress drop and applied shear stress, as the locked patch may experience higher applied shear stress as a result of the difference in cumulative slip or the presence of higher-strength material. The stress drops do not directly correlate with the strength of the proposed wall-rock geology at depth, suggesting that the relationship between fault strength and the strength of the wall rock is complex.
Friction of marble under seismic deformation conditions in the presence of fluids
NASA Astrophysics Data System (ADS)
Violay, M. E.; Nielsen, S. B.; Cinti, D.; Spagnuolo, E.; Di Toro, G.; Smith, S.
2011-12-01
Physical and chemical fluid/rock interactions control seismic rupture nucleation, propagation, arrest and recurrence. Several experimental studies explored the effects of pore fluid pressure (Pp) on the sliding behavior of faults. Most of them were performed with bi and tri-axial apparatus at high temperature and high confining pressure. However, due to the experimental configuration, laboratory measurements were limited in terms of slip rate (< 1 mm/s) and displacement (< 1 cm) compared to natural earthquakes (e.g., average slip rate about 1 m/s). Insight on the physical and chemical role of fluids during earthquakes can be gained using a rotary shear configuration which allows large displacements (nominally infinite) and seismic slip rates. Here we present results from the tests performed with SHIVA (Slow to HIgh Velocity Apparatus) equipped with a pore fluid vessel designed to reach 15 MPa of pore pressure on Carrara (98% calcite) marble. This rock was selected because most seismic ruptures in Italy propagate in fluid-rich (usually H2O and CO2), calcite-bearing fault zones (e.g. L'Aquila Mw 6.3, 2009 earthquake). Tests were conducted on hollow cylinders (50/30 mm ext/int diameter) at velocities of 1- 6.5 m/s, normal stresses up to 40 MPa and fluid (H2O in chemical equilibrium with the marble) pressure comprised between 0 (room-humidity conditions) and 15 MPa (fluid-saturated conditions). Fluid chemistry (Mg2+, Ca2+, HCO3-, pH, etc.) was determined before and after the experiments. Under these deformation conditions, the friction coefficient decays exponentially from a peak (= static) μp~ 0.8 at the initiation of sliding towards a steady-state μss~ 0.1. Once sliding stops, the friction coefficient recovers almost instantaneously a coefficient of friction μf = 0.2-0.6 (fault healing). The experimental data suggest that: 1) μp and μss are independent of the presence of fluids for a given imposed effective stress (σneff = σn- Pp = 10 MPa); 2) though μp and μss are similar for experiments performed under the same effective normal stress under room-humidity (σneff = σn= 10 MPa) and fluid-saturated conditions (σneff = σn- Pp =10 MPa), a comparison of the friction coefficient vs. slip curves shows that the decay is more abrupt in the case of room-humidity experiments: the presence of H2O slightly buffers dynamic weakening during seismic slip; 3) sample shortens in the presence of fluids and under room-humidity conditions; 4) fault healing is smaller in the case of experiments performed in the presence of fluids; 5) the fluid (H2O) after the experiment is enriched in Mg2+ and HCO3-: this chemical evolution suggest breakdown reactions (decarbonation of calcite) in the presence of H2O as observed in springs after some large earthquakes in carbonate rocks.
Gear tooth stress measurements on the UH-60A helicopter transmission
NASA Technical Reports Server (NTRS)
Oswald, Fred B.
1987-01-01
The U.S. Army UH-60A (Black Hawk) 2200-kW (3000-hp) class twin-engine helicopter transmission was tested at the NASA Lewis Research Center. Results from these experimental (strain-gage) stress tests will enhance the data base for gear stress levels in transmissions of a similar power level. Strain-gage measurements were performed on the transmission's spiral-bevel combining pinions, the planetary Sun gear, and ring gear. Tests were performed at rated speed and at torque levels 25 to 100 percent that of rated. One measurement series was also taken at a 90 percent speed level. The largest stress found was 760 MPa (110 ksi) on the combining pinion fillet. This is 230 percent greater than the AGMA index stress. Corresponding mean and alternating stresses were 300 and 430 MPa (48 and 62 ksi). These values are within the range of successful test experience reported for other transmissions. On the fillet of the ring gear, the largest stress found was 410 MPa (59 ksi). The ring-gear peak stress was found to be 11 percent less than an analytical (computer simulation) value and it is 24 percent greater than the AGMA index stress. A peak compressive stress of 650 MPa (94 ksi) was found at the center of the Sun gear tooth root.
Durand, Letícia Brandão; Guimarães, Jackeline Coutinho; Monteiro Junior, Sylvio; Baratieri, Luiz Narciso
2015-01-01
The purpose of this study was to determine the effect of cavity depth, ceramic thickness, and resin bases with different elastic modulus on von Mises stress patterns of ceramic inlays. Tridimensional geometric models were developed with SolidWorks image software. The differences between the models were: depth of pulpal wall, ceramic thickness, and presence of composite bases with different thickness and elastic modulus. The geometric models were constrained at the proximal surfaces and base of maxillary bone. A load of 100 N was applied. The stress distribution pattern was analyzed with von Mises stress diagrams. The maximum von Mises stress values ranged from 176 MPa to 263 MPa and varied among the 3D-models. The highest von Mises stress value was found on models with 1-mm-thick composite resin base and 1-mm-thick ceramic inlay. Intermediate values (249-250 MPa) occurred on models with 2-mm-thick composite resin base and 1-mm-thick ceramic inlay and 1-mm-thick composite resin base and 2-mm-thick ceramic inlay. The lowest values were observed on models restored exclusively with ceramic inlay (176 MPa to 182 MPa). It was found that thicker inlays distribute stress more favorably and bases with low elastic modulus increase stress concentrations on the internal surface of the ceramic inlay. The increase of ceramic thickness tends to present more favorable stress distribution, especially when bonded directly onto the cavity without the use of supporting materials. When the use of a composite base is required, composite resin with high elastic modulus and reduced thickness should be preferred.
Creep Behavior of Near-Stoichiometric Polycrystalline Binary NiAl
NASA Technical Reports Server (NTRS)
Raj, S. V.
2002-01-01
New and published constant load creep and constant engineering strain rate data on near-stoichiometric binary NiAl in the intermediate temperature range 700 to 1300 K are reviewed. Both normal and inverse primary creep curves are observed depending on stress and temperature. Other characteristics relating to creep of NiAl involving grain size, stress and temperature dependence are critically examined and discussed. At stresses below 25 MPa and temperatures above 1000 K, a new grain boundary sliding mechanism was observed with n approx. 2, Qc approx. 100 kJ/ mol and a grain size exponent of about 2. It is demonstrated that Coble creep and accommodated grain boundary sliding models fail to predict the experimental creep rates by several orders of magnitude.
Triggering of destructive earthquakes in El Salvador
NASA Astrophysics Data System (ADS)
Martínez-Díaz, José J.; Álvarez-Gómez, José A.; Benito, Belén; Hernández, Douglas
2004-01-01
We investigate the existence of a mechanism of static stress triggering driven by the interaction of normal faults in the Middle American subduction zone and strike-slip faults in the El Salvador volcanic arc. The local geology points to a large strike-slip fault zone, the El Salvador fault zone, as the source of several destructive earthquakes in El Salvador along the volcanic arc. We modeled the Coulomb failure stress (CFS) change produced by the June 1982 and January 2001 subduction events on planes parallel to the El Salvador fault zone. The results have broad implications for future risk management in the region, as they suggest a causative relationship between the position of the normal-slip events in the subduction zone and the strike-slip events in the volcanic arc. After the February 2001 event, an important area of the El Salvador fault zone was loaded with a positive change in Coulomb failure stress (>0.15 MPa). This scenario must be considered in the seismic hazard assessment studies that will be carried out in this area.
NASA Astrophysics Data System (ADS)
Dalguer, L. A.; Miyake, H.; Irikura, K.; Wu, H., Sr.
2016-12-01
Empirical scaling models of seismic moment and rupture area provide constraints to parameterize source parameters, such as stress drop, for numerical simulations of ground motion. There are several scaling models published in the literature. The effect of the finite width seismogenic zone and the free-surface have been attributed to cause the breaking of the well know self-similar scaling (e.g. Dalguer et al, 2008) given origin to the so called L and W models for large faults. These models imply the existence of three-stage scaling relationship between seismic moment and rupture area (e.g. Irikura and Miyake, 2011). In this paper we extend the work done by Dalguer et al 2008, in which these authors calibrated fault models that match the observations showing that the average stress drop is independent of earthquake size for buried earthquakes, but scale dependent for surface-rupturing earthquakes. Here we have developed additional sets of dynamic rupture models for vertical strike slip faults to evaluate the effect of the weak shallow layer (WSL) zone for the calibration of stress drop. Rupture in the WSL zone is expected to operate with enhanced energy absorption mechanism. The set of dynamic models consists of fault models with width 20km and fault length L=20km, 40km, 60km, 80km, 100km, 120km, 200km, 300km and 400km and average stress drop values of 2.0MPa, 2.5MPa, 3.0MPa, 3.5MPa, 5.0MPa and 7.5MPa. For models that break the free-surface, the WSL zone is modeled assuming a 2km width with stress drop 0.0MPa or -2.0 MPa. Our results show that depending on the characterization of the WSL zone, the average stress drop at the seismogenic zone that fit the empirical models changes. If WSL zone is not considered, that is, stress drop at SL zone is the same as the seismogenic zone, average stress drop is about 20% smaller than models with WSL zone. By introducing more energy absorption at the SL zone, that could be the case of large mature faults, the average stress drop in the seismogenic zone increases. Suggesting that large earthquakes need higher stress drop to break the fault than buried and moderate earthquakes. Therefore, the value of the average stress drop for large events that break the free-source depend on the definition of the WSL. Suggesting that the WSL plays an important role on the prediction of final slip and fault displacement.
NASA Astrophysics Data System (ADS)
Bonali, F. L.; Tibaldi, A.; Corazzato, C.
2015-06-01
In this work, we analyse in detail how a large earthquake could cause stress changes on volcano plumbing systems and produce possible positive feedbacks in promoting new eruptions. We develop a sensitivity analysis that considers several possible parameters, providing also new constraints on the methodological approach. The work is focus on the Mw 8.8 2010 earthquake that occurred along the Chile subduction zone near 24 historic/Holocene volcanoes, located in the Southern Volcanic Zone. We use six different finite fault-slip models to calculate the static stress change, induced by the coseismic slip, in a direction normal to several theoretical feeder dykes with various orientations. Results indicate different magnitudes of stress change due to the heterogeneity of magma pathway geometry and orientation. In particular, the N-S and NE-SW-striking magma pathways suffer a decrease in stress normal to the feeder dyke (unclamping, up to 0.85 MPa) in comparison to those striking NW-SE and E-W, and in some cases there is even a clamping effect depending on the magma path strike. The diverse fault-slip models have also an effect (up to 0.4 MPa) on the results. As a consequence, we reconstruct the geometry and orientation of the most reliable magma pathways below the 24 volcanoes by studying structural and morphometric data, and we resolve the stress changes on each of them. Results indicate that: (i) volcanoes where post-earthquake eruptions took place experienced earthquake-induced unclamping or very small clamping effects, (ii) several volcanoes that did not erupt yet are more prone to experience future unrest, from the point of view of the host rock stress state, because of earthquake-induced unclamping. Our findings also suggest that pathway orientation plays a more relevant role in inducing stress changes, whereas the depth of calculation (e.g. 2, 5 or 10 km) used in the analysis, is not key a parameter. Earthquake-induced magma-pathway unclamping might contribute to promote new eruptions at volcanoes as far as 450 km from the epicentre.
Stick-slip behavior of Indian gabbro as studied using a NIED large-scale biaxial friction apparatus
NASA Astrophysics Data System (ADS)
Togo, Tetsuhiro; Shimamoto, Toshihiko; Yamashita, Futoshi; Fukuyama, Eiichi; Mizoguchi, Kazuo; Urata, Yumi
2015-04-01
This paper reports stick-slip behaviors of Indian gabbro as studied using a new large-scale biaxial friction apparatus, built in the National Research Institute for Earth Science and Disaster Prevention (NIED), Tsukuba, Japan. The apparatus consists of the existing shaking table as the shear-loading device up to 3,600 kN, the main frame for holding two large rectangular prismatic specimens with a sliding area of 0.75 m2 and for applying normal stresses σ n up to 1.33 MPa, and a reaction force unit holding the stationary specimen to the ground. The shaking table can produce loading rates v up to 1.0 m/s, accelerations up to 9.4 m/s2, and displacements d up to 0.44 m, using four servocontrolled actuators. We report results from eight preliminary experiments conducted with room humidity on the same gabbro specimens at v = 0.1-100 mm/s and σ n = 0.66-1.33 MPa, and with d of about 0.39 m. The peak and steady-state friction coefficients were about 0.8 and 0.6, respectively, consistent with the Byerlee friction. The axial force drop or shear stress drop during an abrupt slip is linearly proportional to the amount of displacement, and the slope of this relationship determines the stiffness of the apparatus as 1.15 × 108 N/m or 153 MPa/m for the specimens we used. This low stiffness makes fault motion very unstable and the overshooting of shear stress to a negative value was recognized in some violent stick-slip events. An abrupt slip occurred in a constant rise time of 16-18 ms despite wide variation of the stress drop, and an average velocity during an abrupt slip is linearly proportional to the stress drop. The use of a large-scale shaking table has a great potential in increasing the slip rate and total displacement in biaxial friction experiments with large specimens.
Sadrimanesh, Roozbeh; Siadat, Hakimeh; Sadr-Eshkevari, Pooyan; Monzavi, Abbas; Maurer, Peter; Rashad, Ashkan
2012-06-01
To comparatively assess the masticatory stress distribution in bone around implants placed in the anterior maxilla with three different labial inclinations. Three-dimensional finite element models were fabricated for three situations in anterior maxilla: (1) a fixture in contact with buccal cortical plate restored by straight abutment, (2) a fixture inclined at 15 degrees, and (3) 20 degrees labially restored with corresponding angled abutment. A palatal bite force of 146 N was applied to a point 3 mm below the incisal edge. Stress distribution around the bone-fixture interface was determined using ANSYS software. The maximum compressive stress, concentrated in the labial crestal cortical bone, was measured to be 62, 108, and 122 MPa for 0-, 15-, and 20-degree labially inclined fixtures, respectively. The maximum tensile stress, concentrated in the palatal crestal cortical bone, was measured to be 60, 108, and 120 MPa for 0-, 15-, and 20-degree labially inclined fixtures, respectively. While all compressive stress values were under the cortical yield strength of 169 MPa, tensile stress values partially surpassed the yield strength (104 MPa) especially when a 20-degree inclination was followed for fixture placement.
Direct measurement of asperity contact growth in quartz at hydrothermal conditions
Beeler, Nicholas M.; Hickman, Stephen H.
2015-01-01
Earthquake recurrence requires interseismic fault restrengthening which results from solid state deformation in room-temperature friction and indentation experiments. In contrast exhumed fault zones show solution-transport processes such as pressure solution and contact overgrowths influence fault zone properties . In the absence of fluid flow, overgrowths are driven by gradients in surface curvature where material is dissolved, diffuses, and precipitates at the contact without convergence normal to the contact. To determine the rate of overgrowth for quartz, we conducted single contact experiments in an externally heated pressure vessel. Convergence was continuously monitored using reflected-light interferometry through a long-working-distance microscope. Contact normal force was constant with an initial effective normal stress of 1.7 MPa, temperature was between 350 and 530{degree sign}C, and water pressure was constant at 150 MPa. Two control experiments were conducted: one dry at 425{degree sign}C and one bi-material (sapphire) at 425{degree sign}C and 150 MPa water pressure. No contact growth or convergence was observed in the controls. For wet single-phase contacts, growth was initially rapid and then decreased with time. No convergence was observed. Fluid inclusions indicate that the contact is not uniformly wetted. The contact is bounded by small regions of high aperture, reflecting local free-face dissolution as the source for the overgrowth. The apparent activation energy is ~125 kJ/mol. Extrapolation predicts rates of contact area increase orders of magnitude faster than in dry, room-temperature and hydrothermal friction experiments, suggesting that natural strength recovery near the base of the seismogenic zone could be dominated by contact overgrowth.
NASA Astrophysics Data System (ADS)
Nurul Misbah, Mohammad; Setyawan, Dony; Murti Dananjaya, Wisnu
2018-03-01
This research aims to determine the longitudinal strength of passenger ship which was converted from Landing Craft Tank with 54 m of length as stated by BKI (Biro Klasifikasi Indonesia / Indonesian Classification Bureau). Verification of strength value is done to 4 (four) loading conditions which are (1) empty load condition during sagging wave, (2) empty load condition during hogging wave, (3) full load condition during sagging wave and (4) full load condition during hogging wave. Analysis is done using Finite Element Analysis (FEA) software by modeling the entire part of passenger ship and its loading condition. The back and upfront part of ship centerline were used as the boundary condition. From that analysis it can be concluded that the maximum stress for load condition (1) is 72,393 MPa, 74,792 MPa for load condition (2), 129,92 MPa for load condition (3), and 132,4 MPa for load condition (4). Longitudinal strength of passenger ship fulfilled the criteria of empty load condition having smaller stress value than allowable stress which is 90 MPa, and during full load condition with smaller stress value than allowable stress which is 150 MPa. Analysis on longitudinal strength comparison with entire ship plate thickness variation of ± 2 mm from initial plate was also done during this research. From this research it can be concluded that plate thickness reduction causes the value of longitudinal strength to decrease, while plate thickness addition causes the value of longitudinal strength to increase.
Ridwan-Pramana, Angela; Marcián, Petr; Borák, Libor; Narra, Nathaniel; Forouzanfar, Tim; Wolff, Jan
2016-01-01
This computational study investigates the effect of shape (defect contour curvature) and bone-implant interface (osteotomy angle) on the stress distribution within PMMA skull implants. Using finite element methodology, 15 configurations--combinations of simplified synthetic geometric shapes (circular, square, triangular, irregular) and interface angulations--were simulated under 50N static loads. Furthermore, the implant fixation devices were modelled and analysed in detail. Negative osteotomy configurations demonstrated the largest stresses in the implant (275 MPa), fixation devices (1258 MPa) and bone strains (0.04). The circular implant with zero and positive osteotomy performed well with maximum observed magnitudes of--implant stress (1.2 MPa and 1.2 MPa), fixation device stress (11.2 MPa and 2.2 MPa), bone strain (0.218e-3 and 0.750e-4). The results suggest that the preparation of defect sites is a critical procedure. Of the greatest importance is the angle at which the edges of the defect are sawed. If under an external load, the implant has no support from the interface and the stresses are transferred to the fixation devices. This can endanger their material integrity and lead to unphysiological strains in the adjacent bone, potentially compromising the bone morphology required for anchoring. These factors can ultimately weaken the stability of the entire implant assembly. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Frictional strength and heat flow of southern San Andreas Fault
NASA Astrophysics Data System (ADS)
Zhu, P. P.
2016-01-01
Frictional strength and heat flow of faults are two related subjects in geophysics and seismology. To date, the investigation on regional frictional strength and heat flow still stays at the stage of qualitative estimation. This paper is concentrated on the regional frictional strength and heat flow of the southern San Andreas Fault (SAF). Based on the in situ borehole measured stress data, using the method of 3D dynamic faulting analysis, we quantitatively determine the regional normal stress, shear stress, and friction coefficient at various seismogenic depths. These new data indicate that the southern SAF is a weak fault within the depth of 15 km. As depth increases, all the regional normal and shear stresses and friction coefficient increase. The former two increase faster than the latter. Regional shear stress increment per kilometer equals 5.75 ± 0.05 MPa/km for depth ≤15 km; regional normal stress increment per kilometer is equal to 25.3 ± 0.1 MPa/km for depth ≤15 km. As depth increases, regional friction coefficient increment per kilometer decreases rapidly from 0.08 to 0.01/km at depths less than ~3 km. As depth increases from ~3 to ~5 km, it is 0.01/km and then from ~5 to 15 km, and it is 0.002/km. Previously, frictional strength could be qualitatively determined by heat flow measurements. It is difficult to obtain the quantitative heat flow data for the SAF because the measured heat flow data exhibit large scatter. However, our quantitative results of frictional strength can be employed to investigate the heat flow in the southern SAF. We use a physical quantity P f to describe heat flow. It represents the dissipative friction heat power per unit area generated by the relative motion of two tectonic plates accommodated by off-fault deformation. P f is called "fault friction heat." On the basis of our determined frictional strength data, utilizing the method of 3D dynamic faulting analysis, we quantitatively determine the regional long-term fault friction heat at various seismogenic depths in the southern SAF. The new data show that as depth increases, regional friction stress increases within the depth of 15 km; its increment per kilometer equals 5.75 ± 0.05 MPa/km. As depth increases, regional long-term fault friction heat increases; its increment per kilometer is equal to 3.68 ± 0.03 mW/m2/km. The values of regional long-term fault friction heat provided by this study are always lower than those from heat flow measurements. The difference between them and the scatter existing in the measured heat flow data are mainly caused by the following processes: (i) heat convection, (ii) heat advection, (iii) stress accumulation, (iv) seismic bursts between short-term lull periods in a long-term period, and (v) influence of seismicity in short-term periods upon long-term slip rate and heat flow. Fault friction heat is a fundamental parameter in research on heat flow.
Building geomechanical characteristic model in Ilan geothermal area, NE Taiwan
NASA Astrophysics Data System (ADS)
Chiang, Yu-Hsuan; Hung, Jih-Hao
2015-04-01
National Energy Program-Phase II (NEPPII) was initiated to understand the geomechanical characteristic in Ilan geothermal area. In this study, we integrate well cores and logs (e.g. Nature Gamma-ray, Normal resistivity, Formation Micro Imager) which were acquired in HongChaiLin (HCL), Duck-Field (DF) and IC21 to determine the depth of fracture zone, in-situ stress state, the depth of basement and lithological characters. In addition, the subsurface in-situ stress state will be helpful to analyze the fault reactivation potential and slip tendency. By retrieved core from HCL well and the results of geophysical logging, indicated that the lithological character is slate (520m ~ 1500m) and the basement depth is around 520m. To get the minimum and maximum horizontal stress, several hydraulic fracturing tests were conducted in the interval of 750~765m on HCL well. The horizontal maximum and minimum stresses including the hydrostatic pressure are calculated as 15.39MPa and 13.57MPa, respectively. The vertical stress is decided by measuring the core density from 738m to 902m depth. The average core density is 2.71 g/cm3, and the vertical stress is 19.95 MPa (at 750m). From DF well, the basement depth is 468.9m. Besides, by analyzing the IC21 well logging data, we know the in-situ orientation of maximum horizontal stress is NE-SW. Using these parameters, the fault reactivation potential and slip tendency can be analyzed with 3DStress, Traptester software and demonstrated on model. On the other hand, we interpreted the horizons and faults from the nine seismic profiles including six N-S profiles, two W-E profiles and one NE-SW profile to construct the 3D subsurface structure model with GOCAD software. The result shows that Zhuosui fault and Kankou Formation are dip to north, but Hanxi fault and Xiaonanao fault are dip to south. In addition, there is a syncline-like structure on Nansuao Formation and the Chingshuihu member of the Lushan Formation. However, there is a conflict on Szeleng sandstone. We need to more drilling data to confirm the dip of Szeleng sandstone.
NASA Astrophysics Data System (ADS)
Matsumura, T.; Masuda, T.
2017-12-01
The microboudinage structure of columnar mineral grain is an useful marker for the stress imposed on the metamorphic rock. In this presentation, we report a detailed application of the microboudin palaeopiezometer to an individual metachert specimen that includes microboudinaged tourmaline grains. The microboudin palaeostress analysis is conducted to the number of 3621 tourmaline grains divided into every 10° of their long axes on the foliation surface. The analysis revealed that the group of mean orientation ± 15° and perpendicular to the mean orientation ± 15° showed the value of σ1 - σ3 and σ1 - σ2 as 10.2 MPa and 5.3 MPa, respectively. Using both values of σ1 - σ3 and σ1 - σ2, magnitude of principal deviatoric stresses (σ'1, σ'2 and σ'3) are obtained as σ'1 = 5.3 MPa, σ'2 = -0.1 MPa and σ'3 = -5.1 MPa. In this stress state, the stress ratio (σ2 - σ3)/(σ1 - σ3) is 0.48 that indicates typical triaxial compression. As the microboudinage structure is considered to develop immediately before the matrix mineral encountered the cessation of the plastic flow, these values correspond to conditions at ≧ 300 °C on the later stage of the metamorphism.
Numerical simulation of CO2 scroll compressor in transcritical compression cycle
NASA Astrophysics Data System (ADS)
Wang, Hongli; Tian, JingRui; Du, Yuanhang; Hou, Xiujuan
2018-05-01
Based on the theory of thermodynamics and kinetics, the mathematical model of an orbiting scroll was established and the stress deformations were employed by ANSYS software. Under the action of pressure load, the results show that the serious displacement part is located in the center of the gear head and the maximum deformation is about 7.33 μm. The maximum radial displacement is about 4.42 μm. The maximum radial stress point occurs in the center of the gear head and the maximum stress is about 40.9 MPa. The maximum axial displacement is about 2.31 μm. The maximum axial stress point occurs in the gear head and the maximum stress is about 44.7 MPa. Under the action of temperature load, the results show that the serious deformation part is located in the center of the gear head and the maximum deformation is about 6.3 μm. The maximum thermal stress occurs in the center of the gear head and the maximum thermal stress is about 86.36 MPa. Under the combined action of temperature load and pressure load, the results show that the serious deformation part and the maximum stress are located in the center of the gear head, and the value are about 7.79 μm and 74.19 MPa, respectively.
Studies on laws of stress-magnetization based on magnetic memory testing technique
NASA Astrophysics Data System (ADS)
Ren, Shangkun; Ren, Xianzhi
2018-03-01
Metal magnetic memory (MMM) testing technique is a novel testing method which can early test stress concentration status of ferromagnetic components. Under the different maximum tensile stress, the relationship between the leakage magnetic field of at certain point of cold rolled steel specimen and the tensile stress was measured during the process of loading and unloading by repeated. It shows that when the maximum tensile stress is less than 610 MPa, the relationship between the magnetic induction intensity and the stress is linear; When the maximum tensile stress increase from 610 MPa to 653 MPa of yield point, the relationship between the magnetic induction intensity and the tensile becomes bending line. The location of the extreme point of the bending line will move rapidly from the position of smaller stress to the larger stress position, and the variation of magnetic induction intensity increases rapidly. When the maximum tensile stress is greater than the 653 MPa of yield point, the variation of the magnetic induction intensity remains large, and the position of the extreme point moves very little. In theoretical aspects, tensile stress is to be divided into ordered stress and disordered stress. In the stage of elastic stress, a microscopic model of the order stress magnetization is established, and the conclusions are in good agreement with the experimental data. In the plastic deformation stage, a microscopic model of disordered stress magnetization is established, and the conclusions are in good agreement with the experimental data, too. The research results can provide reference for the accurate quantitative detection and evaluation of metal magnetic memory testing technology.
Khurana, Pardeep; Sharma, Arun; Sodhi, Kiranmeet Kaur
2013-12-01
The aims of this study were to investigate the effect of implant fine threads on crestal bone stress compared to a standard smooth implant collar and to analyze how different abutment diameters influenced the crestal bone stress level. Three-dimensional finite element imaging was used to create a cross-sectional model in SolidWorks 2007 software of an implant (5-mm platform and 10 mm in length) placed in the premolar region of the mandible. The implant model was created to resemble a commercially available fine thread implant. Abutments of different diameters (5.0 mm: standard, 4.5 mm, 4.0 mm, and 3.5 mm) were loaded with a force of 100 N at 90° vertical and 40° oblique angles. Finite element analysis was done in COSMOSWorks software, which was used to analyze the stress patterns in bone, especially in the crestal region. Upon loading, the fine thread implant model had greater stress at the crestal bone adjacent to the implant than the smooth neck implant in both vertical and oblique loading. When the abutment diameter decreased progressively from 5.0 mm to 4.5 mm to 4 mm and to 3.5 mm the thread model showed a reduction of stress at the crestal bone level from 23.2 MPa to 15.02 MPa for fine thread and from 22.7 to 13.5 MPa for smooth collar implant group after vertical loading and from 43.7 MPa to 33.1 MPa in fine thread model and from 36.9 to 20.5 MPa in smooth collar implant model after oblique loading. Fine threads increase crestal stress upon loading. Reduced abutment diameter that is platform switching resulted in less stress translated to the crestal bone in the fine thread and smooth neck.
NASA Astrophysics Data System (ADS)
Selvadurai, Paul A.; Glaser, Steven D.; Parker, Jessica M.
2017-03-01
Spatial variations in frictional properties on natural faults are believed to be a factor influencing the presence of slow slip events (SSEs). This effect was tested on a laboratory frictional interface between two polymethyl methacrylate (PMMA) bodies. We studied the evolution of slip and slip rates that varied systematically based on the application of both high and low normal stress (σ0=0.8 or 0.4 MPa) and the far-field loading rate (VLP). A spontaneous, frictional rupture expanded from the central, weaker, and more compliant section of the fault that had fewer asperities. Slow rupture propagated at speeds Vslow˜0.8 to 26 mm s-1 with slip rates from 0.01 to 0.2 μm s-1, resulting in stress drops around 100 kPa. During certain nucleation sequences, the fault experienced a partial stress drop, referred to as precursor detachment fronts in tribology. Only at the higher level of normal stress did these fronts exist, and the slip and slip rates mimicked the moment and moment release rates during the 2013-2014 Boso SSE in Japan. The laboratory detachment fronts showed rupture propagation speeds Vslow/VR∈ (5 to 172) × 10-7 and stress drops ˜ 100 kPa, which both scaled to the aforementioned SSE. Distributions of asperities, measured using a pressure sensitive film, increased in complexity with additional normal stress—an increase in normal stress caused added complexity by increasing both the mean size and standard deviation of asperity distributions, and this appeared to control the presence of the detachment front.
Constant-torque thermal cycling and two-way shape memory effect in Ni50.3Ti29.7Hf20 torque tubes
NASA Astrophysics Data System (ADS)
Benafan, O.; Gaydosh, D. J.
2018-07-01
Ni-rich Ni50.3Ti29.7Hf20 (at%) high-temperature shape memory alloy tubes were thermomechanically cycled under constant torques. Four loading configurations were examined that consisted of a series of ascending stresses (low-to-high stress from 0 to 500 MPa outer fiber shear stress), a series of descending stresses (high-to-low stress from 500 to 0 MPa), and a series of thermal cycles at a constant stress of 500 MPa, all using an upper cycle temperature (UCT) of 300 °C. The last configuration consisted of another series of ascending stress levels using a lesser UCT of 250 °C. It was found that the descending series trial stabilized the material response in fewer cycles than the other loading paths. Similarly, cycling at a constant stress of 500 MPa for approximately 100 cycles reached near stabilization (<0.05% residual strain accumulation). Transformation shear strains were the highest and most stable when cycled from lower-to-higher stresses (ascending series), reaching 5.78% at 400 MPa. Cycling to lesser UCTs of 250 °C (versus 300 °C) resulted in the highest two-way shape memory effect (TWSME), measuring over 3.25%. This was attributed to the effect of retained martensite and any transformation dislocations that served to stabilize the TWSME at the lower UCT. Results of this study suggest that different training paths might be used, depending on actuator performance requirements, whether the principal need is to maximize transformation strain, maximize the two-way shear strain, or stabilize the response in fewer cycles.
Strain Rate Sensitivity of Graphite/Polymer Laminate Composites
NASA Astrophysics Data System (ADS)
Syed, Izhar H.; Brar, N. S.
2002-07-01
Strain rate sensitivities of Graphite/Epoxy and Graphite/Peek laminate composites are investigated by measuring their stress-strain response at strain rates of 0.001/s, 0.1/s, and 400/s. Tension specimens of the composite laminates are fabricated in a dog-bone shape. Stress-strain data at quasi-static rates of 0.001/s and 0.1/s are obtained using a servohydraulic test system. High strain rate data are produced with a Direct Tension Split Hopkinson Bar (DTSHB). A tensile stress pulse is generated in the DTSHB by impacting a stopper flange at the end of the incident bar with an aluminum/polymeric tube launched around the incident bar. The failure (flow) tensile stress of Graphite/Epoxy increases from 240 MPa to 280±10 MPa (ɛ = 0.06) when the strain rate is raised from 0.001/s to 400/s. For Graphite/Peek, failure (flow) tension stress increases from 175 MPa at a strain rate of 0.001/s to 270±20 MPa at a strain rate of 400/s.
Numerical fatigue analysis of premolars restored by CAD/CAM ceramic crowns.
Homaei, Ehsan; Jin, Xiao-Zhuang; Pow, Edmond Ho Nang; Matinlinna, Jukka Pekka; Tsoi, James Kit-Hon; Farhangdoost, Khalil
2018-04-10
The purpose of this study was to estimate the fatigue life of premolars restored with two dental ceramics, lithium disilicate (LD) and polymer infiltrated ceramic (PIC) using the numerical method and compare it with the published in vitro data. A premolar restored with full-coverage crown was digitized. The volumetric shape of tooth tissues and crowns were created in Mimics ® . They were transferred to IA-FEMesh for mesh generation and the model was analyzed with Abaqus. By combining the stress distribution results with fatigue stress-life (S-N) approach, the lifetime of restored premolars was predicted. The predicted lifetime was 1,231,318 cycles for LD with fatigue load of 1400N, while the one for PIC was 475,063 cycles with the load of 870N. The peak value of maximum principal stress occurred at the contact area (LD: 172MPa and PIC: 96MPa) and central fossa (LD: 100MPa and PIC: 64MPa) for both ceramics which were the most seen failure areas in the experiment. In the adhesive layer, the maximum shear stress was observed at the shoulder area (LD: 53.6MPa and PIC: 29MPa). The fatigue life and failure modes of all-ceramic crown determined by the numerical method seem to correlate well with the previous experimental study. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
Hydromechanical effects of continental glaciation on groundwater systems
Neuzil, C.E.
2012-01-01
Hydromechanical effects of continental ice sheets may involve considerably more than the widely recognized direct compression of overridden terrains by ice load. Lithospheric flexure, which lags ice advance and retreat, appears capable of causing comparable or greater stress changes. Together, direct and flexural loading may increase fluid pressures by tens of MPa in geologic units unable to drain. If so, fluid pressures in low-permeability formations subject to glaciation may have increased and decreased repeatedly during cycles of Pleistocene glaciation and can again in the future. Being asynchronous and normally oriented, direct and flexural loading presumably cause normal and shear stresses to evolve in a complex fashion through much or all of a glacial cycle. Simulations of fractured rock predict permeability might vary by two to three orders of magnitude under similar stress changes as fractures at different orientations are subjected to changing normal and shear stresses and some become critically stressed. Uncertainties surrounding these processes and their interactions, and the confounding influences of surface hydrologic changes, make it challenging to delineate their effects on groundwater flow and pressure regimes with any specificity. To date, evidence for hydromechanical changes caused by the last glaciation is sparse and inconclusive, comprising a few pressure anomalies attributed to the removal of direct ice load. This may change as more data are gathered, and understanding of relevant processes is refined.
Dieterich, J.H.; Kilgore, B.D.
1996-01-01
A procedure has been developed to obtain microscope images of regions of contact between roughened surfaces of transparent materials, while the surfaces are subjected to static loads or undergoing frictional slip. Static loading experiments with quartz, calcite, soda-lime glass and acrylic plastic at normal stresses to 30 MPa yield power law distributions of contact areas from the smallest contacts that can be resolved (3.5 ??m2) up to a limiting size that correlates with the grain size of the abrasive grit used to roughen the surfaces. In each material, increasing normal stress results in a roughly linear increase of the real area of contact. Mechanisms of contact area increase are by growth of existing contacts, coalescence of contacts and appearance of new contacts. Mean contacts stresses are consistent with the indentation strength of each material. Contact size distributions are insensitive to normal stress indicating that the increase of contact area is approximately self-similar. The contact images and contact distributions are modeled using simulations of surfaces with random fractal topographies. The contact process for model fractal surfaces is represented by the simple expedient of removing material at regions where surface irregularities overlap. Synthetic contact images created by this approach reproduce observed characteristics of the contacts and demonstrate that the exponent in the power law distributions depends on the scaling exponent used to generate the surface topography.
D'souza, Kathleen Manuela; Aras, Meena Ajay
2017-01-01
Badly broken or structurally compromised posterior teeth are frequently associated with crown/root fracture. Numerous restorative materials have been used to fabricate indirect full-coverage restorations for such teeth. This study aims to evaluate and compare the effect of restorative materials on the stress distribution pattern in a mandibular first molar tooth, under varying loading conditions and to compare the stress distribution pattern in five commonly used indirect restorative materials. Five three-dimensional finite element models representing a mandibular first molar tooth restored with crowns of gold, porcelain fused to metal, composite (Artglass), alumina-based zirconia (In-Ceram Zirconia [ICZ]), and double-layered zirconia-based materials (zirconia core veneered with porcelain, Lava) were constructed, using a Finite Element Analysis Software (ANSYS version 10; ANSYS Inc., Canonsburg, PA, USA). Two loading conditions were applied, simulating maximum bite force of 600 N axially and normal masticatory bite force of 225 N axially and nonaxially. Both all-ceramic crowns allowed the least amount of stress distribution to the surrounding tooth structure. In maximum bite force-simulation test, alumina-based all-ceramic crown displayed the highest von Mises stresses (123.745 MPa). In the masticatory bite force-simulation test, both all-ceramic crowns (122.503-133.13 MPa) displayed the highest von Mises stresses. ICZ crown displayed the highest peak von Mises stress values under maximum and masticatory bite forces. ICZ and Lava crowns also allowed the least amount of stress distribution to the surrounding tooth structure, which is indicative of a favorable response of the underlying tooth structure to the overlying full-coverage indirect restorative material. These results suggest that ICZ and Lava crowns can be recommended for clinical use in cases of badly damaged teeth.
ZERODUR®: new stress corrosion data improve strength fatigue prediction
NASA Astrophysics Data System (ADS)
Hartmann, Peter; Kleer, Günter; Rist, Tobias
2015-09-01
The extremely low thermal expansion glass ceramic ZERODUR® finds more and more applications as sophisticated light weight structures with thin ribs or as thin shells. Quite often they will be subject to higher mechanical loads such as rocket launches or modulating wobbling vibrations. Designing such structures requires calculation methods and data taking into account their long term fatigue. With brittle materials fatigue is not only given by the material itself but to a high extent also by its surface condition and the environmental media especially humidity. This work extends the latest data and information gathered on the bending strength of ZERODUR® with new results concerning its long term behavior under tensile stress. The parameter needed for prediction calculations which combines the influences of time and environmental media is the stress corrosion constant n. Results of the past differ significantly from each other. In order to obtain consistent data the stress corrosion constant has been measured with the method comparing the breakage statistical distributions at different stress increase rates. For better significance the stress increase rate was varied over four orders of magnitude from 0.004 MPa/s to 40 MPa/s. Experiments were performed under normal humidity for long term earth bound applications and under nitrogen atmosphere as equivalent to dry environment occurring for example with telescopes in deserts and also equivalent to vacuum for space applications. As shown earlier the bending strength of diamond ground surfaces of ZERODUR® can be represented with a three parameter Weibull distribution. Predictions on the long term strength change of ZERODUR® structures under tensile stress are possible with reduced uncertainty if Weibull threshold strength values are considered and more reliable stress corrosion constant data are applied.
NASA Astrophysics Data System (ADS)
Jiang, Quan; Zhong, Shan; Cui, Jie; Feng, Xia-Ting; Song, Leibo
2016-12-01
We investigated the statistical characteristics and probability distribution of the mechanical parameters of natural rock using triaxial compression tests. Twenty cores of Jinping marble were tested under each different levels of confining stress (i.e., 5, 10, 20, 30, and 40 MPa). From these full stress-strain data, we summarized the numerical characteristics and determined the probability distribution form of several important mechanical parameters, including deformational parameters, characteristic strength, characteristic strains, and failure angle. The statistical proofs relating to the mechanical parameters of rock presented new information about the marble's probabilistic distribution characteristics. The normal and log-normal distributions were appropriate for describing random strengths of rock; the coefficients of variation of the peak strengths had no relationship to the confining stress; the only acceptable random distribution for both Young's elastic modulus and Poisson's ratio was the log-normal function; and the cohesive strength had a different probability distribution pattern than the frictional angle. The triaxial tests and statistical analysis also provided experimental evidence for deciding the minimum reliable number of experimental sample and for picking appropriate parameter distributions to use in reliability calculations for rock engineering.
Effects of Prosthesis Stem Tapers on Stress Distribution of Cemented Hip Arthroplasty
NASA Astrophysics Data System (ADS)
Abdullah, Abdul Halim; Nor, Mohd Asri Mohd; Saman, Alias Mohd; Tamin, Mohd Nasir; Kadir, Mohammed Rafiq Abdul
2010-10-01
Aseptic loosening effects are critical issues in encouraging long term stability of cemented hip arthroplasty. Stress shielding is believed to be an important factor that contributes to the aseptic loosening problems. The numerous changes in the prosthesis stem design are intended to minimize the stress shielding and aseptic loosening problems and to improve the long term performance of the implants. In this study, the stress distribution in cemented hip arthroplasty is established using finite element method. The taper of the prosthesis is designed to be 3° at anterior/posterior, 3° at medial/lateral and 10° from wide lateral to narrow medial. Major muscle loads and contact forces are simulated for walking (toe-off phase) and stair climbing load cases. Effects of prosthesis stem tapers on the resulting stress distribution are investigated. Results show that compressive stress dominates in the medial plane while tensile stress in the lateral plane of the femur. The corresponding stress levels of intact femur for walking and stair-climbing load cases are 22 and 29 MPa, respectively. The magnitude of Tresca stress for the THA femur in stair-climbing load case remains higher in the region of 85 MPa while the walking load case induces around 40 MPa. The stress range in the straight and single taper stem prosthesis is lower than 260 MPa, while localized Tresca stress is in the order of the yield strength of Ti-6Al-4V alloy for double and triple taper stem design.
NASA Astrophysics Data System (ADS)
Renard, F.; Zheng, X.; Cordonnier, B.; Zhu, W.; Jamtveit, B.
2017-12-01
Several geological processes involve mineral transformations where nominally dry rocks transform into hydrated ones when left in contact with water (i.e. eclogitization, serpentinization). In these systems, the transformation induces stress if the rock is confined, and the new minerals create a so-called force of crystallization. Here, we study a model retrograde metamorphic reaction, the hydration of periclase, MgO, into brucite, Mg(OH)2, to quantify the coupling between reaction, stress generation, porosity evolution and fracturing. This hydration reaction generates a volume increase of 110%, and a density decrease of 33.8% of the solid. Samples of a microporous MgO ceramics were reacted at 170-211°C, 5-80 MPa confining pressure, 6-95 MPa differential stress and 5 MPa pore fluid pressure. They were installed into an X-ray transparent triaxial deformation rig, called Hades, and mounted on a synchrotron microtomography stage. Each experiment lasted between 2 and 5 hours, during which between 35 and 130 three-dimensional images were acquired, allowing to follow the chemical transformation and the deformation of the sample. Below 30 MPa mean pressure, the hydration reaction was coupled to fracturing of the MgO ceramics, and the transformation rate followed a sigmoidal kinetics curve with a slow initiation, a fast reaction coupled to fracturing and the generation of a transient porosity pulse, and a slow-down until an almost complete transformation of periclase into brucite.. Conversely, above 30 MPa, the reaction kinetics was very slow, without fracturing over the time scale of the experiment. When considering the driving force of the hydration reaction, stress generation should be several hundreds MPa, whereas the present experiments show that fracturing occurred only below 30 MPa. This indicates that the potential energy due to phase transformation generates much lower stress than what is estimated from non-equilibrium thermodynamics. A possible interpretation of this observation is that the stress created by the reaction may overcome the disjoining pressure at the grain-grain interface, expelling the water film trapped there and reducing the kinetics of reaction. As a consequence, only a fraction of the available potential driving force was used to accelerate the reaction by microfracturing.
Physicochemical Processes and the Evolution of Strength in Calcite Fault Gouge at Room Temperature
NASA Astrophysics Data System (ADS)
Carpenter, B. M.; Viti, C.; Collettini, C.
2015-12-01
The presence of calcite in and near faults, as the dominant material, cement, or vein fill, indicates that the mechanical behavior of carbonate-dominated material likely plays an important role in shallow- and mid-crustal faulting. Furthermore, a variety of physical and chemical processes control the evolution of strength and style of slip along seismogenic faults and thus play a critical role in the seismic cycle. Determining the role and contributions of these types of mechanisms is essential to furthering our understanding of the processes and timescales that lead to the strengthening of faults during interseismic periods and their behavior during the earthquake nucleation process. To further our understanding of these processes, we performed laboratory-shearing experiments on calcite gouge at normal stresses from 1 to 100 MPa, under conditions of saturation and at room temperature. We performed velocity stepping (0.1-1000μm/s) and slide-hold-slide (1-3000s) tests, to measure the velocity dependence of friction and the amount of frictional strengthening respectively, under saturated conditions with pore fluid that was in equilibrium with CaCO3. At 5 MPa normal stress, we also varied the environmental conditions by performing experiments under conditions of 5% RH and 50 % RH, and saturation with: silicone oil, demineralized water, and the equilibrated solution combined with 0.5M NaCl. Finally, we collected post experimental samples for microscopic analysis. Our combined analyses of rate-dependence, strengthening behavior, and microstructures show that calcite fault gouge transitions from brittle to semi-brittle behavior at high normal stress and low sliding velocities. Furthermore, our results also highlight how changes in pore water chemistry can have significant influence on the mechanical behavior of calcite gouge in both the laboratory and in natural faults. Our observations have important implications for earthquake nucleation and propagation on faults in carbonate-dominated lithologies.
Method to adjust multilayer film stress induced deformation of optics
Mirkarimi, Paul B.; Montcalm, Claude
2000-01-01
A buffer-layer located between a substrate and a multilayer for counteracting stress in the multilayer. Depositing a buffer-layer having a stress of sufficient magnitude and opposite in sign reduces or cancels out deformation in the substrate due to the stress in the multilayer. By providing a buffer-layer between the substrate and the multilayer, a tunable, near-zero net stress results, and hence results in little or no deformation of the substrate, such as an optic for an extreme ultraviolet (EUV) lithography tool. Buffer-layers have been deposited, for example, between Mo/Si and Mo/Be multilayer films and their associated substrate reducing significantly the stress, wherein the magnitude of the stress is less than 100 MPa and respectively near-normal incidence (5.degree.) reflectance of over 60% is obtained at 13.4 nm and 11.4 nm. The present invention is applicable to crystalline and non-crystalline materials, and can be used at ambient temperatures.
Michaels, Chris A.; Cook, Robert F.
2016-01-01
Maps of residual stress distributions arising from anisotropic thermal expansion effects in a polycrystalline alumina are generated using fluorescence microscopy. The shifts of both the R1 and R2 ruby fluorescence lines of Cr in alumina are used to create maps with sub-µm resolution of either the local mean and shear stresses or local crystallographic a- and c-stresses in the material, with approximately ± 1 MPa stress resolution. The use of single crystal control materials and explicit correction for temperature and composition effects on line shifts enabled determination of the absolute values and distributions of values of stresses. Temperature correction is shown to be critical in absolute stress determination. Experimental determinations of average stress parameters in the mapped structure are consistent with assumed equilibrium conditions and with integrated large-area measurements. Average crystallographic stresses of order hundreds of MPa are determined with characteristic distribution widths of tens of MPa. The stress distributions reflect contributions from individual clusters of stress in the structure; the cluster size is somewhat larger than the grain size. An example application of the use of stress maps is shown in the calculation of stress-intensity factors for fracture in the residual stress field. PMID:27563163
Poromechanics of stick-slip frictional sliding and strength recovery on tectonic faults
Scuderi, Marco M.; Carpenter, Brett M.; Johnson, Paul A.; ...
2015-10-22
Pore fluids influence many aspects of tectonic faulting including frictional strength aseismic creep and effective stress during the seismic cycle. But, the role of pore fluid pressure during earthquake nucleation and dynamic rupture remains poorly understood. Here we report on the evolution of pore fluid pressure and porosity during laboratory stick-slip events as an analog for the seismic cycle. We sheared layers of simulated fault gouge consisting of glass beads in a double-direct shear configuration under true triaxial stresses using drained and undrained fluid conditions and effective normal stress of 5–10 MPa. Shear stress was applied via a constant displacementmore » rate, which we varied in velocity step tests from 0.1 to 30 µm/s. Here, we observe net pore pressure increases, or compaction, during dynamic failure and pore pressure decreases, or dilation, during the interseismic period, depending on fluid boundary conditions. In some cases, a brief period of dilation is attendant with the onset of dynamic stick slip. Our data show that time-dependent strengthening and dynamic stress drop increase with effective normal stress and vary with fluid conditions. For undrained conditions, dilation and preseismic slip are directly related to pore fluid depressurization; they increase with effective normal stress and recurrence time. Microstructural observations confirm the role of water-activated contact growth and shear-driven elastoplastic processes at grain junctions. These results indicate that physicochemical processes acting at grain junctions together with fluid pressure changes dictate stick-slip stress drop and interseismic creep rates and thus play a key role in earthquake nucleation and rupture propagation.« less
Mechanical behavior and localized failure modes in a porous basalt from the Azores
NASA Astrophysics Data System (ADS)
Loaiza, S.; Fortin, J.; Schubnel, A.; Guéguen, Y.; Moreira, M.; Vinciguerra, S.
2012-04-01
Basaltic rocks are the main component of the oceanic upper crust. This is of potential interest for water and geothermal resources, or for storage of CO2. The aim of our work is to investigate experimentally the mechanical behavior and the failure modes of porous basalt as well as the permeability evolution during deformation. Cylindrical basalt samples, from the Azores, of 30 mm in diameter and 60 mm in length were deformed the triaxial cell of the Laboratoire de Geologie at the Ecole Normale Supérieure (Paris) at room temperature and at a constant axial strain rate of 10-5 s-1. The initial porosity of the sample was 18%. The Geodesign triaxial cell can reach 300MPa confining pressure; axial load is performed through a piston and can reach 900 MPa (for a 30mm diameter sample); maximum pore pressure is 100MPa (applied using two precision volumetric pumps). In our study, a set of experiments were performed at confining pressure in the range of 25-290 MPa. The samples were deformed under saturated conditions at a constant pore pressure of 5MPa. Two volumetric pumps kept the pore pressure constant, and the pore volume variations were recorded. The evolution of the porosity was calculated from the total volume variation inside the volumetric pumps. Permeability measurements were performed using the steady-state technique. Our result shows that two modes of deformation can be highlighted in this basalt. At low confining pressure (Pc < 50 MPa), the differential stress attains a peak before the sample undergoes strain softening; the failure of sample occurs by shear localization. Yet, the brittle regime is commonly observed in this low Pc range, the experiments performed at confining pressure higher than 50 MPa, show a totally different mode of deformation. In this second mode of deformation, an appreciable inelastic porosity reduction is observed. Comparing to the hydrostatic loading, the rock sample started to compact beyond a critical stress state; and from then, strain hardening, with stress drops are observed. Such a behavior is characteristic of the formation of compaction localization, due to grain crushing and pore collapse. In addition, this inelastic compaction is accompanied by a decrease of permeability, indicating that these compaction bands or zones act as barrier for fluid flow, in agreement with observations done in sandstone (Fortin et al., 2005). Further studies, including microstructural observations carried out by mapping the compaction bands or zones throughout a mosaic of SEM images at high resolution and acoustic emission recording will be carried in order to confirm the formation of compaction localization, and the micromechanisms (pore collapse and grain crushing) taking place in this second mode of deformation.
Transitional grain-size-sensitive flow of milky quartz aggregates
NASA Astrophysics Data System (ADS)
Fukuda, J. I.; Holyoke, C. W., III; Kronenberg, A. K.
2014-12-01
Fine-grained (~15 μm) milky quartz aggregates exhibit reversible flow strengths in triaxial compression experiments conducted at T = 800-900oC, Pc = 1.5 GPa when strain rates are sequentially decreased (typically from 10-3.5 to 10-4.5 and 10-5.5 s-1), and then returned to the original rate (10-3.5 s-1), while samples that experience grain growth at 1000oC (to 35 μm) over the same sequence of strain rates exhibit an irreversible increase in strength. Polycrystalline quartz aggregates have been synthesized from natural milky quartz powders (ground to 5 μm) by HIP methods at T = 1000oC, Pc = 1.5 GPa and t = 24 hours, resulting in dense, fine-grained aggregates of uniform water content of ~4000 ppm (H/106Si), as indicated by a broad OH absorption band at 3400 cm-1. In experiments performed at 800o and 900oC, grain sizes of the samples are essentially constant over the duration of each experiment, though grain shapes change significantly, and undulatory extinction and deformation lamellae indicate that much of the sample shortening (to 50%) is accomplished, over the four strain-rate steps, by dislocation creep. Differential stresses measured at T = 800oC decrease from 160 to 30 MPa as strain rate is reduced from 10-4.6 to 10-5.5 s-1, and a stress of 140 MPa is measured when strain rate is returned to 10-4.5 s-1. Samples deformed at 1000o and 1100oC experience normal grain growth, with grain boundary energy-driven grain-coarsening textures superposed by undulatory extinction and deformation lamellae. Differential stresses measured at 1000oC and strain rates of 10-3.6, 10-4.6, and 10-5.5 s-1 are 185, 80, and 80 MPa, respectively, while an increased flow stress of 260 MPa is measured (following ~28 hours of prior high temperature deformation and grain growth) when strain rate is returned to 10-3.6 s-1. While all samples exhibit lattice preferred orientations, the stress exponent n inferred for the fine-grained 800oC sample is 1.5 and the stress exponent of the coarse-grained 1000oC sample is between ~3 and 4. Our value for n of fine-grained quartz samples (and previously reported values of n < 3 for quartz aggregates with added water) may attest to a component of diffusion creep and grain boundary sliding that accompanies dislocation creep.
A Procedure for Assessing the Structure of the CPF Considering the Loss of Strength Due to Corrosion
1999-04-01
Model . . . . . . . A Typical Model Crossection Showing Strakes, Girders and Endpoints The Tranverse Bulkheads in the MAESTRO Model . . . . . . . 14...results show a tranverse redistribution of the the stress concentration found in the MAESTRO model, with the maximum of 261 MPa 5 occurring in the grid...of 350 MPa. The tranverse plate at the junction 7 with the superstructure reached a stress of -271 MPa in a material with a yield strength of 700
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullah, Abdul Halim; Nor, Mohd Asri Mohd; Saman, Alias Mohd
Aseptic loosening effects are critical issues in encouraging long term stability of cemented hip arthroplasty. Stress shielding is believed to be an important factor that contributes to the aseptic loosening problems. The numerous changes in the prosthesis stem design are intended to minimize the stress shielding and aseptic loosening problems and to improve the long term performance of the implants. In this study, the stress distribution in cemented hip arthroplasty is established using finite element method. The taper of the prosthesis is designed to be 3 deg. at anterior/posterior, 3 deg. at medial/lateral and 10 deg. from wide lateral tomore » narrow medial. Major muscle loads and contact forces are simulated for walking (toe-off phase) and stair climbing load cases. Effects of prosthesis stem tapers on the resulting stress distribution are investigated. Results show that compressive stress dominates in the medial plane while tensile stress in the lateral plane of the femur. The corresponding stress levels of intact femur for walking and stair-climbing load cases are 22 and 29 MPa, respectively. The magnitude of Tresca stress for the THA femur in stair-climbing load case remains higher in the region of 85 MPa while the walking load case induces around 40 MPa. The stress range in the straight and single taper stem prosthesis is lower than 260 MPa, while localized Tresca stress is in the order of the yield strength of Ti-6Al-4V alloy for double and triple taper stem design.« less
Mechanical deterioration underlies malignant behavior of aneurysmal human ascending aorta.
Koullias, George; Modak, Raj; Tranquilli, Maryann; Korkolis, Dimitris P; Barash, Paul; Elefteriades, John A
2005-09-01
The human ascending aorta becomes markedly prone to rupture and dissection at a diameter of 6 cm. The mechanical substrate for this malignant behavior is unknown. This investigation applied engineering analysis to human ascending aortic aneurysms and compared their structural characteristics with those of normal aortas. We measured the mechanical characteristics of the aorta by direct epiaortic echocardiography at the time of surgery in 33 patients with ascending aortic aneurysm undergoing aortic replacement and in 20 control patients with normal aortas undergoing coronary artery bypass grafting. Six parameters were measured in all patients: aortic diameter in systole and diastole, aortic wall thickness in systole and diastole, and blood pressure in systole and diastole. These were used to calculate mechanical characteristics of the aorta from standard equations. Aortic distensibility reflects the elastic qualities of the aorta. Aortic wall stress reflects the disrupting force experienced within the aortic wall. Incremental elastic modulus indicates loss of elasticity reserve. Aortic distensibility falls to extremely low levels as aortic dimension rises toward 6 cm (3.02 mm Hg(-1) for small aortas versus 1.45 mm Hg(-1) for aortas larger than 5 cm, P < .05). Aortic wall stress rises to 157.8 kPa for the aneurysmal aorta, compared with 92.5 kPa for normal aortas. For 6-cm aortas at pressures of 200 mm Hg or more, wall stress rises to 857 kPa, nearly exceeding the known maximal tensile strength of human aneurysmal aortic wall. Incremental elastic modulus deteriorates (1.93 +/- 0.88 MPa vs 1.18 +/- 0.21 MPa, P < .05) in aneurysmal aortas relative to that in normal aortas. The mechanical properties of the aneurysmal aorta deteriorate dramatically as the aorta enlarges, reaching critical levels associated with rupture by a diameter of 6 cm. This mechanical deterioration provides an explanation in engineering terms for the malignant clinical behavior (rupture and dissection) of the aorta at these dimensions. This work adds to our fundamental understanding of the biology of aortic aneurysms and promises to permit future application of engineering measurements to supplement aneurysm size in clinical decision making in aneurysmal disease.
Effect of Compressive Stresses on Leakage Currents in Microchip Tantalum Capacitors
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander
2012-01-01
Microchip tantalum capacitors are manufactured using new technologies that allow for production of small size capacitors (down to EIA case size 0402) with volumetric efficiency much greater than for regular chip capacitors. Due to a small size of the parts and leadless design they might be more sensitive to mechanical stresses that develop after soldering onto printed wiring boards (PWB) compared to standard chip capacitors. In this work, the effect of compressive stresses on leakage currents in capacitors has been investigated in the range of stresses up to 200 MPa. Significant, up to three orders of magnitude, variations of currents were observed after the stress exceeds a certain critical level that varied from 10 MPa to 180 MPa for capacitors used in this study. A stress-induced generation of electron traps in tantalum pentoxide dielectric is suggested to explain reversible variations of leakage currents in tantalum capacitors. Thermo-mechanical characteristics of microchip capacitors have been studied to estimate the level of stresses caused by assembly onto PWB and assess the risk of stress-related degradation and failures. Keywords: tantalum capacitors, leakage current, soldering, reliability, mechanical stress.
Indentation Creep Behavior of Nugget Zone of Friction Stir Welded 2014 Aluminum Alloy
NASA Astrophysics Data System (ADS)
Das, Jayashree; Robi, P. S.; Sankar, M. Ravi
2018-04-01
The present study is aimed at evaluating the creep behavior of the nugget zone of friction welded 2014 Aluminum alloy by indentation creep tests. Impression creep testing was carried out at different temperatures of 300°C, 350°C and 400 °C with stress 124.77MPa, 187.16MPa, 249.55 MPa using a 1.0 mm diameter WC indenter. Experiments were conducted till the curve enters the steady state creep region. Constitutive modeling of creep behavior was carried out considering the temperature, stress and steady state creep rate. Microstructural investigation of the crept specimen at 400°C temperature and 187.16 MPa load was carried out and found that the small precipitates accumulate along the grain boundaries at the favorable conditions of the creep temperature and stress, new precipitates evolve due to the ageing. The grains are broken and deformed due to the creep phenomena.
Effects of Ankle Arthrodesis on Biomechanical Performance of the Entire Foot
Wang, Yan; Li, Zengyong; Wong, Duo Wai-Chi; Zhang, Ming
2015-01-01
Background/Methodology Ankle arthrodesis is one popular surgical treatment for ankle arthritis, chronic instability, and degenerative deformity. However, complications such as foot pain, joint arthritis, and bone fracture may cause patients to suffer other problems. Understanding the internal biomechanics of the foot is critical for assessing the effectiveness of ankle arthrodesis and provides a baseline for the surgical plan. This study aimed to understand the biomechanical effects of ankle arthrodesis on the entire foot and ankle using finite element analyses. A three-dimensional finite element model of the foot and ankle, involving 28 bones, 103 ligaments, the plantar fascia, major muscle groups, and encapsulated soft tissue, was developed and validated. The biomechanical performances of a normal foot and a foot with ankle arthrodesis were compared at three gait instants, first-peak, mid-stance, and second-peak. Principal Findings/Conclusions Changes in plantar pressure distribution, joint contact pressure and forces, von Mises stress on bone and foot deformation were predicted. Compared with those in the normal foot, the peak plantar pressure was increased and the center of pressure moved anteriorly in the foot with ankle arthrodesis. The talonavicular joint and joints of the first to third rays in the hind- and mid-foot bore the majority of the loading and sustained substantially increased loading after ankle arthrodesis. An average contact pressure of 2.14 MPa was predicted at the talonavicular joint after surgery and the maximum variation was shown to be 80% in joints of the first ray. The contact force and pressure of the subtalar joint decreased after surgery, indicating that arthritis at this joint was not necessarily a consequence of ankle arthrodesis but rather a progression of pre-existing degenerative changes. Von Mises stress in the second and third metatarsal bones at the second-peak instant increased to 52 MPa and 34 MPa, respectively, after surgery. These variations can provide indications for outcome assessment of ankle arthrodesis surgery. PMID:26222188
Effects of Ankle Arthrodesis on Biomechanical Performance of the Entire Foot.
Wang, Yan; Li, Zengyong; Wong, Duo Wai-Chi; Zhang, Ming
2015-01-01
Ankle arthrodesis is one popular surgical treatment for ankle arthritis, chronic instability, and degenerative deformity. However, complications such as foot pain, joint arthritis, and bone fracture may cause patients to suffer other problems. Understanding the internal biomechanics of the foot is critical for assessing the effectiveness of ankle arthrodesis and provides a baseline for the surgical plan. This study aimed to understand the biomechanical effects of ankle arthrodesis on the entire foot and ankle using finite element analyses. A three-dimensional finite element model of the foot and ankle, involving 28 bones, 103 ligaments, the plantar fascia, major muscle groups, and encapsulated soft tissue, was developed and validated. The biomechanical performances of a normal foot and a foot with ankle arthrodesis were compared at three gait instants, first-peak, mid-stance, and second-peak. Changes in plantar pressure distribution, joint contact pressure and forces, von Mises stress on bone and foot deformation were predicted. Compared with those in the normal foot, the peak plantar pressure was increased and the center of pressure moved anteriorly in the foot with ankle arthrodesis. The talonavicular joint and joints of the first to third rays in the hind- and mid-foot bore the majority of the loading and sustained substantially increased loading after ankle arthrodesis. An average contact pressure of 2.14 MPa was predicted at the talonavicular joint after surgery and the maximum variation was shown to be 80% in joints of the first ray. The contact force and pressure of the subtalar joint decreased after surgery, indicating that arthritis at this joint was not necessarily a consequence of ankle arthrodesis but rather a progression of pre-existing degenerative changes. Von Mises stress in the second and third metatarsal bones at the second-peak instant increased to 52 MPa and 34 MPa, respectively, after surgery. These variations can provide indications for outcome assessment of ankle arthrodesis surgery.
2010-03-01
eight-harness-satin (8HS) weave plies. Tensile stress -strain behavior and tensile properties were evaluated at 1200˚C. Tension-tension fatigue tests...ratio of minimum stress to maximum stress of R = 0.05, with maximum stresses ranging from 100 to 140 MPa in air and in steam. Fatigue run-out was...Hz, the presence of steam appeared to have little influence on the fatigue resistance for the fatigue stress levels < 140 MPa. The presence of steam
Liao, Tzu-Chieh; Keyak, Joyce H; Powers, Christopher M
2018-02-27
The purpose of this study is to determine whether recreational runners with patellofemoral pain (PFP) exhibit greater peak patella cartilage stress compared to pain-free runners. A secondary purpose was to determine the kinematic and/or kinetic predictors of peak patella cartilage stress during running. Twenty-two female recreational runners participated (12 with PFP and 10 pain-free controls). Patella cartilage stress profiles were quantified using subject-specific finite element models simulating the maximum knee flexion angle during stance phase of running. Input parameters to the finite element model included subject-specific patellofemoral joint geometry, quadriceps muscle forces, and lower extremity kinematics in the frontal and transverse planes. Tibiofemoral joint kinematics and kinetics were quantified to determine the best predictor of stress using stepwise regression analysis. Compared to the pain-free runners, those with PFP exhibited greater peak hydrostatic pressure (PFP vs. control, 21.2 ± 5.6 MPa vs. 16.5 ± 4.6 MPa) and maximum shear stress (11.3 ± 4.6 MPa vs. 8.7 ± 2.3 MPa). Knee external rotation was the best predictor of peak hydrostatic pressure and peak maximum shear stress (38% and 25% of variances, respectively) followed by the knee extensor moment (21% and 25% of variances, respectively). Runners with PFP exhibit greater peak patella cartilage stress during running compared to pain-free individuals. The combination of knee external rotation and a high knee extensor moment best predicted elevated peak stress during running.
Ellis, William L.
1983-01-01
Hydraulic-fracturing measurements are used to infer the magnitude of the least principal stress in the vicinity of the Spent Fuel Test-Climax, located in the Climax stock at the Nevada Test Site. The measurements, made at various depths in two exploratory boreholes, suggest that the local stress field is not uniform. Estimates of the least principal stress magnitude vary over distances of a few tens of meters, with the smaller values averaging 2.9 MPa and the larger values averaging 5.5 MPa. The smaller values are in agreement with the minimum-stress magnitude of 2.8 MPa determined in a nearby drift in 1979, using an overcoring technique. Jointing in the granitic rock mass and (or) the influence of nearby faults may account for the apparent variation in minimum-stress magnitude indicated by the hydrofracture data.
Stressed Oxidation of C/SiC Composites
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Brewer, David N.; Eckel, Andrew J.; Cawley, James D.
1997-01-01
Constant load, stressed oxidation testing was performed on T-300 C/SiC composites with a SiC seal coat. Test conditions included temperatures ranging from 350 C to 1500 C at stresses of 69 MPa and 172 MPa (10 and 25 ksi). The coupon subjected to stressed oxidation at 550 C/69 MPa for 25 hours had a room temperature residual strength one-half that of the as-received coupons. The coupon tested at the higher stress and all coupons tested at higher temperatures failed in less than 25 hr. Microstructural analysis of the fracture surfaces, using SEM (scanning electron microscopy), revealed the formation of reduced cross-sectional fibers with pointed tips. Analysis of composite cross-sections show pathways for oxygen ingress. The discussion will focus on fiber/matrix interphase oxidation and debonding as well as the formation and implications of the fiber tip morphology.
Cyclic loading of simulated fault gouge to large strains
NASA Astrophysics Data System (ADS)
Jones, Lucile M.
1980-04-01
As part of a study of the mechanics of simulated fault gouge, deformation of Kayenta Sandstone (24% initial porosity) was observed in triaxial stress tests through several stress cycles. Between 50- and 300-MPa effective pressure the specimens deformed stably without stress drops and with deformation occurring throughout the sample. At 400-MPa effective pressure the specimens underwent strain softening with the deformation occurring along one plane. However, the difference in behavior seems to be due to the density variation at different pressures rather than to the difference in pressure. After peak stress was reached in each cycle, the samples dilated such that the volumetric strain and the linear strain maintained a constant ratio (approximately 0.1) at all pressures. The behavior was independent of the number of stress cycles to linear strains up to 90% and was in general agreement with laws of soil behavior derived from experiments conducted at low pressure (below 5 MPa).
Liu, Da
2017-01-01
In this study, we developed and validated a refined three-dimensional finite element model of middle femoral comminuted fracture to compare the biomechanical stability after two kinds of plate fixation: a newly designed assembly locking compression plate (NALCP) and a locking compression plate (LCP). CT data of a male volunteer was converted to middle femoral comminuted fracture finite element analysis model. The fracture was fixated by NALCP and LCP. Stress distributions were observed. Under slow walking load and torsion load, the stress distribution tendency of the two plates was roughly uniform. The anterolateral femur was the tension stress area, and the bone block shifted toward the anterolateral femur. Maximum stress was found on the lateral border of the number 5 countersink of the plate. Under a slow walking load, the NALCP maximum stress was 2.160e+03 MPa and the LCP was 8.561e+02 MPa. Under torsion load, the NALCP maximum stress was 2.260e+03 MPa and the LCP was 6.813e+02 MPa. Based on those results of finite element analysis, the NALCP can provide adequate mechanical stability for comminuted fractures, which would help fixate the bone block and promote bone healing. PMID:29065654
Choy, George; McGarr, A.
2002-01-01
The radiated energies, ES, and seismic moments, M0, for 942 globally distributed earthquakes that occurred between 1987 to 1998 are examined to find the earthquakes with the highest apparent stresses (τa=μES/M0, where μ is the modulus of rigidity). The globally averaged τa for shallow earthquakes in all tectonic environments and seismic regions is 0.3 MPa. However, the subset of 49 earthquakes with the highest apparent stresses (τa greater than about 5.0 MPa) is dominated almost exclusively by strike-slip earthquakes that occur in oceanic environments. These earthquakes are all located in the depth range 7–29 km in the upper mantle of the young oceanic lithosphere. Many of these events occur near plate-boundary triple junctions where there appear to be high rates of intraplate deformation. Indeed, the small rapidly deforming Gorda Plate accounts for 10 of the 49 high-τa events. The depth distribution of τa, which shows peak values somewhat greater than 25 MPa in the depth range 20–25 km, suggests that upper bounds on this parameter are a result of the strength of the oceanic lithosphere. A recently proposed envelope for apparent stress, derived by taking 6 per cent of the strength inferred from laboratory experiments for young (less than 30 Ma) deforming oceanic lithosphere, agrees well with the upper-bound envelope of apparent stresses over the depth range 5–30 km. The corresponding depth-dependent shear strength for young oceanic lithosphere attains a peak value of about 575 MPa at a depth of 21 km and then diminishes rapidly as the depth increases. In addition to their high apparent stresses, which suggest that the strength of the young oceanic lithosphere is highest in the depth range 10–30 km, our set of high-τa earthquakes show other features that constrain the nature of the forces that cause interplate motion. First, our set of events is divided roughly equally between intraplate and transform faulting with similar depth distributions of τa for the two types. Secondly, many of the intraplate events have focal mechanisms with the T-axes that are normal to the nearest ridge crest or subduction zone and P-axes that are normal to the proximate transform fault. These observations suggest that forces associated with the reorganization of plate boundaries play an important role in causing high-τa earthquakes inside oceanic plates. Extant transform boundaries may be misaligned with current plate motion. To accommodate current plate motion, the pre-existing plate boundaries would have to be subjected to large horizontal transform push forces. A notable example of this is the triple junction near which the second large aftershock of the 1992 April Cape Mendocino, California, sequence occurred. Alternatively, subduction zone resistance may be enhanced by the collision of a buoyant lithosphere, a process that also markedly increases the horizontal stress. A notable example of this is the Aleutian Trench near which large events occurred in the Gulf of Alaska in late 1987 and the 1998 March Balleny Sea M= 8.2 earthquake within the Antarctic Plate.
Low stress drops observed for aftershocks of the 2011 Mw 5.7 Prague, Oklahoma, earthquake
NASA Astrophysics Data System (ADS)
Sumy, Danielle F.; Neighbors, Corrie J.; Cochran, Elizabeth S.; Keranen, Katie M.
2017-05-01
In November 2011, three Mw ≥ 4.8 earthquakes and thousands of aftershocks occurred along the structurally complex Wilzetta fault system near Prague, Oklahoma. Previous studies suggest that wastewater injection induced a Mw 4.8 foreshock, which subsequently triggered a Mw 5.7 mainshock. We examine source properties of aftershocks with a standard Brune-type spectral model and jointly solve for seismic moment (M0), corner frequency (f0), and kappa (κ) with an iterative Gauss-Newton global downhill optimization method. We examine 934 earthquakes with initial moment magnitudes (Mw) between 0.33 and 4.99 based on the pseudospectral acceleration and recover reasonable M0, f0, and κ for 87 earthquakes with Mw 1.83-3.51 determined by spectral fit. We use M0 and f0 to estimate the Brune-type stress drop, assuming a circular fault and shear-wave velocity at the hypocentral depth of the event. Our observations suggest that stress drops range between 0.005 and 4.8 MPa with a median of 0.2 MPa (0.03-26.4 MPa with a median of 1.1 MPa for Madariaga-type), which is significantly lower than typical eastern United States intraplate events (>10 MPa). We find that stress drops correlate weakly with hypocentral depth and magnitude. Additionally, we find the stress drops increase with time after the mainshock, although temporal variation in stress drop is difficult to separate from spatial heterogeneity and changing event locations. The overall low median stress drop suggests that the fault segments may have been primed to fail as a result of high pore fluid pressures, likely related to nearby wastewater injection.
Ochnik, Aleksandra M; Moore, Nicole L; Jankovic-Karasoulos, Tanja; Bianco-Miotto, Tina; Ryan, Natalie K; Thomas, Mervyn R; Birrell, Stephen N; Butler, Lisa M; Tilley, Wayne D; Hickey, Theresa E
2014-01-01
Medroxyprogesterone acetate (MPA), a component of combined estrogen-progestin therapy (EPT), has been associated with increased breast cancer risk in EPT users. MPA can bind to the androgen receptor (AR), and AR signaling inhibits cell growth in breast tissues. Therefore, the aim of this study was to investigate the potential of MPA to disrupt AR signaling in an ex vivo culture model of normal human breast tissue. Histologically normal breast tissues from women undergoing breast surgical operation were cultured in the presence or in the absence of the native AR ligand 5α-dihydrotestosterone (DHT), MPA, or the AR antagonist bicalutamide. Ki67, bromodeoxyuridine, B-cell CLL/lymphoma 2 (BCL2), AR, estrogen receptor α, and progesterone receptor were detected by immunohistochemistry. DHT inhibited the proliferation of breast epithelial cells in an AR-dependent manner within tissues from postmenopausal women, and MPA significantly antagonized this androgenic effect. These hormonal responses were not commonly observed in cultured tissues from premenopausal women. In tissues from postmenopausal women, DHT either induced or repressed BCL2 expression, and the antiandrogenic effect of MPA on BCL2 was variable. MPA significantly opposed the positive effect of DHT on AR stabilization, but these hormones had no significant effect on estrogen receptor α or progesterone receptor levels. In a subset of postmenopausal women, MPA exerts an antiandrogenic effect on breast epithelial cells that is associated with increased proliferation and destabilization of AR protein. This activity may contribute mechanistically to the increased risk of breast cancer in women taking MPA-containing EPT.
Mechanical Twinning and Microstructures in Experimentally Stressed Quartzite
NASA Astrophysics Data System (ADS)
Minor, A.; Sintubin, M.; Wenk, H. R.; Rybacki, E.
2015-12-01
Since Dauphiné twins in quartz have been identified as a stress-related intracrystalline microstructure, several electron backscatter diffraction (EBSD) studies revealed that Dauphiné twins are present in naturally deformed quartz-bearing rocks in a wide range of tectono-metamorphic conditions. EBSD studies on experimentally stressed quartzite showed that crystals with particular crystallographic orientations contain many Dauphiné twin boundaries, while neighboring crystals with different orientations are largely free of twin boundaries. To understand the relationship between stress direction and orientation of Dauphiné twinned quartz crystals, a detailed EBSD study was performed on experimentally stressed quartzite samples and compared with an undeformed reference sample. We stressed 4 cylindrical samples in triaxial compression in a Paterson type gas deformation apparatus at GFZ Potsdam. Experimental conditions were 300MPa confining pressure, 500°C temperature and axial stresses of 145MPa, 250MPa and 460MPa for about 30 hours, resulting in a minor strain <0.04%. EBSD scans were obtained with a Zeiss Evo scanning electron microscope and TSL software at UC Berkeley. The EBSD maps show that Dauphiné twinning is present in the starting material as well as in experimentally stressed samples. Pole figures of the bulk orientation of the reference sample compared with stressed samples show a significant difference regarding the distribution for the r and z directions. The reference sample shows an indistinct maximum for r and z, whereas the stressed samples show a maximum for r poles and a minimum for z poles in the axial stress direction. EBSD scans of the reference and stressed samples were further analyzed manually to identify the orientations of single grains, which are free of twin boundaries and those, which contain twin boundaries. This analysis aims to quantify the relationship of crystal orientation and stress magnitude to initiate mechanical twinning.
NASA Astrophysics Data System (ADS)
Song, Chang; Du, Liqun; Zhao, Wenjun; Zhu, Heqing; Zhao, Wen; Wang, Weitai
2018-04-01
Micro electroforming, as a mature micromachining technology, is widely used to fabricate metal microdevices in micro electro mechanical systems (MEMS). However, large residual stress in the local positions of the micro electroforming layer often leads to non-uniform residual stress distributions, dimension accuracy defects and reliability issues during fabrication of the metal microdevice. To solve this problem, a novel design method of presetting stress release geometries in the topological structure of the metal microstructure is proposed in this paper. First, the effect of stress release geometries (circular shape, annular groove shape and rivet shape) on the residual stress in the metal microstructure was investigated by finite element modeling (FEM) analysis. Two evaluation parameters, stress concentration factor K T and stress non-uniformity factor δ were calculated. The simulation results show that presetting stress release geometries can effectively reduce and homogenize the residual stress in the metal microstructures were measured metal microstructure. By combined use with stress release geometries of annular groove shape and rivet shape, the stress concentration factor K T and the stress non-uniformity factor δ both decreased at a maximum of 49% and 53%, respectively. Meanwhile, the average residual stress σ avg decreased at a maximum of 20% from -292.4 MPa to -232.6 MPa. Then, micro electroforming experiments were carried out corresponding to the simulation models. The residual stresses in the metal microstructures were measured by micro Raman spectroscopy (MRS) method. The results of the experiment proved that the stress non-uniformity factor δ and the average residual stress σ avg also decreased at a maximum with the combination use of annular groove shape and rivet shape stress release geometries, which is in agreement with the results of FEM analysis. The stress non-uniformity factor δ has a maximum decrease of 49% and the average residual stress σ avg has a maximum decrease of 37% from -257.0 MPa to -162.0 MPa.
NASA Astrophysics Data System (ADS)
Minor, Alexander; Rybacki, Erik; Sintubin, Manuel; Vogel, Sven; Wenk, Hans-Rudolf
2018-07-01
The stress-dependent evolution of mechanical Dauphiné twinning has been investigated in axial compression experiments on a low-grade metamorphic quartzite, applying both time-of-flight neutron diffraction and electron backscatter diffraction. The data of the experimentally stressed quartzite samples were compared with those of the naturally deformed starting material to monitor Dauphiné twinning in relation to different experimental stress states. This comparison shows that in the experimental conditions of 500 °C temperature and 300 MPa confining pressure, Dauphiné twinning initiates below 145 MPa differential stress and saturates between 250 MPa and 460 MPa differential stress. A single grain orientation analysis (SGOA) has been developed based on the distinction of quartz grains free of Dauphiné twin boundaries (DTBs) and containing Dauphiné twin boundaries. Comparing pole figures and inverse pole figures of DTB-free grains of the starting material with those of the experimentally stressed samples shows a significantly different orientation distribution of the positive {10 1 bar 1} (r) and the negative {01 1 bar 1} (z) rhombs. In DTB-containing grains, the SGOA allows to distinguish between host and twin domains. Using DTB-free grains, the SGOA furthermore reveals a particular pattern, with one of the r rhomb maxima parallel to the axial compressive stress direction and a girdle with two r rhomb submaxima perpendicular to it. We believe that this relationship between the axial compressive stress direction and the rhomb orientation distribution shows the potential of the SGOA in the reconstruction of the paleostress state in naturally stressed quartz-bearing rocks.
[Stress distribution in press-fit orthodontic microimplant bone interface].
Wu, Jian-chao; Huang, Ji-na; Zhao, Shi-fang; Xu, Xue-jun
2006-12-01
The goal of this study is to analyse the stress distribution in the press-fit microimplant-bone interface and its indications for immediate loading of orthodontic microimplant. Three-dimensional finite element models were created of a 20 mm section of posterior mandible simplified in isosceles trapezoid shape, 30 mm in height, 10mm in upper side width, 14 mm in lower side width,with a single microimplant, 1.2 mm in diameter, 6 mm in length embedded in the bone. The cortical bone thickness was assumed as 1.6 mm. Cortical and cancellous bone were modeled as transversely isotropic and linearly elastic materials. Titanium was modeled as isotropic and linearly elastic material. Perfect bonding was assumed at microimplant- bone interfaces. ANSYS 9.0 finite element analysis software was used to generate the simplified finite element models of the local mandible-implant complex. 0 mm, 0.05 mm and 0.1 mm press-fit were arbitrarily set to the implant-bone interface to mimic the situation of immediate placement of microimplant. Stresses in the microimplant-bone interface were calculated under these "press-fit". Stresses distributed mainly in the cortical bone interface. At Omm press-fit, the stress was 0 MPa. For 0.05mm press-fit, the stress was 1648 MPa in mesio-distal direction, 1782MPa in occluso-gingival direction;and for 0.1 mm, it reached 2012MPa in mesio-distal direction, 2110MPa in occluso-gingival direction. As the "press-fit" increased, the stresses increased accordingly. Values of initial stress in the microimplant-bone interface due to press-fit generated by immediately placed microimplant were very high in these limited and simplified three dimensional finite element models. It reminded us that the initial stress be taken into consideration when immediate loading of the microimplant is planned. Supported by Research Fund of Health Bureau of Zhejiang Province (2005B104).
Vishwakarma, R K; Shivhare, U S; Nanda, S K
2012-09-01
Hertz's theory of contact stresses was applied to predict the splitting of guar seeds during uni-axial compressive loading between 2 rigid parallel plates. The apparent modulus of elasticity of guar seeds varied between 296.18 and 116.19 MPa when force was applied normal to hilum joint (horizontal position), whereas it varied between 171.86 and 54.18 MPa when force was applied in the direction of hilum joint (vertical position) with in moisture content range of 5.16% to 15.28% (d.b.). At higher moisture contents, the seeds yielded after considerable deformation, thus showing ductile nature. Distribution of stresses below the point of contact were plotted to predict the location of critical point, which was found at 0.44 to 0.64 mm and 0.37 to 0.53 mm below the contact point in vertical and horizontal loading, respectively, depending upon moisture content. The separation of cotyledons from each other initiated before yielding of cotyledons and thus splitting of seed took place. The relationships between apparent modulus of elasticity, principal stresses with moisture content were described using second-order polynomial equations and validated experimentally. Manufacture of guar gum powder requires dehulling and splitting of guar seeds. This article describes splitting behavior of guar seeds under compressive loading. Results of this study may be used for design of dehulling and splitting systems of guar seeds. © 2012 Institute of Food Technologists®
FEM analysis of escape capsule suffered to gas explosion
NASA Astrophysics Data System (ADS)
Li, Chang-lu; Mei, Rui-bin; Li, Chang-sheng; Cai, Ban; Liu, Xiang-hua
2013-05-01
Escape capsules are new devices for underground coal mines that provide air, water, food and supplies in the event of an emergency in where miners are unable to escape. It is difficult to carry out the experiments of explosion and safety because the danger and nonrepeatability of explosion. The structure deformation and distribution of equivalent stress has been investigated under different impact pressure conditions including unimodal and bimodal loads based on the FEM and software LS-DYNA. The results show that the distribution of deformation and equivalent stress has the same trend on the same surface with the increment of explosion pressure. The deformation and stress are larger with side impact pressure compared with that of the same front impact pressure. Furthermore, the maximum equivalent stress is 246MPa and 260MPa on the front and sides of capsule with five times for national standard impact pressure 1.5MPa. Under these conditions, the deformation is less than about 9.97mm and 10.47mm, respectively. When the front impact pressure is 2.0MPa, the deformation of capsule still belongs to elasticity but the less plastic deformation occurs on the Ushape stiffening channels with the same side impact pressure. However, it is safe for capsule structure because the equivalent stress 283MPa is much less than the tensile strength. It is noted that bimodal load accelerates the capsule deformation so that it is more dangerous compared with unimodal load.
Hickman, Stephen H.; Healy, John H.; Zoback, Mark D.
1985-01-01
Hydraulic fracturing stress measurements and a borehole televiewer survey were conducted in a 1.6‐km‐deep well at Auburn, New York. This well, which was drilled at the outer margin of the Appalachian Fold and Thrust Belt in the Appalachian Plateau, penetrates approximately 1540 m of lower Paleozoic sedimentary rocks and terminates 60 m into the Precambrian marble basement. Analysis of the hydraulic fracturing tests indicates that the minimum horizontal principal stress increases in a nearly linear fashion from 9.9±0.2 MPa at 593 m to 30.6±0.4 MPa at 1482 m. The magnitude of the maximum horizontal principal stress increases in a less regular fashion from 13.8±1.2 MPa to 49.0±2.0 MPa over the same depth range. The magnitudes of the horizontal principal stresses relative to the calculated overburden stress are somewhat lower than is the norm for this region and are indicative of a strike‐slip faulting regime that, at some depths, is transitional to normal faulting. As expected from the relative aseismicity of central New York State, however, analysis of the magnitudes of the horizontal principal stresses indicates, at least to a depth of 1.5 km, that frictional failure on favorably oriented preexisting fault planes is unlikely. Orientations of the hydraulic fractures at 593 and 919 m indicate that the azimuth of the maximum horizontal principal stress at Auburn is N83°E±15°, in agreement with other stress field indicators for this region. The borehole televiewer log revealed a considerable number of planar features in the Auburn well, the great majority of which are subhorizontal (dips < 5°) and are thought to be bedding plane washouts or drill bit scour marks. In addition, a smaller number of distinct natural fractures were observed on the borehole televiewer log. Of these, the distinct steeply dipping natural fractures in the lower half of the sedimentary section at Auburn tend to strike approximately east‐west, while those in the upper part of the well and in the Precambrian basement exhibit no strong preferred orientation. The origin of this east‐west striking fracture set is uncertain, as it is parallel both to the contemporary direction of maximum horizontal compression and to a late Paleozoic fracture set that has been mapped to the south of Auburn. In addition to these planar features the borehole televiewer log indicates paired dark bands on diametrically opposite sides of the borehole throughout the Auburn well. Processing of the borehole televiewer data in the time domain revealed these features to be irregular depressions in the borehole wall. As these depressions were consistently oriented in a direction at right angles to the direction of maximum horizontal compression, we interpret them to be the result of stress‐induced spalling of the borehole wall (breakouts).
Using neutron diffraction to examine the onset of mechanical twinning in calcite rocks
NASA Astrophysics Data System (ADS)
Covey-Crump, S. J.; Schofield, P. F.; Oliver, E. C.
2017-07-01
Experimental calibration of the calcite twin piezometer is complicated by the difficulty of establishing the stresses at which the twins observed in the final deformation microstructures actually formed. In principle, this difficulty may be circumvented if the deformation experiments are performed in a polychromatic neutron beam-line because this allows the elastic strain (and hence stress) in differently oriented grains to be simultaneously monitored from diffraction patterns collected as the experiment is proceeding. To test this idea small strain (<0.3%), uniaxial compression experiments have been performed on Carrara marble (grain size 150 μm) and Solnhofen limestone (5 μm) at temperatures of 20°-600 °C using the ENGIN-X instrument at the ISIS neutron facility, UK. At the lowest temperatures (25 °C Carrara; 200 °C Solnhofen) the deformation response was purely elastic up to the greatest stresses applied (60 MPa Carrara; 175 MPa Solnhofen). The sign of the calcite elastic stiffness component c14 is confirmed to be positive when the obverse setting of the calcite rhombohedral lattice in hexagonal axes is used. In the Carrara marble samples deformed at higher temperatures, elastic twinning was initiated at small stresses (<15 MPa) in grains oriented such that the Schmid factor for twinning was positive on more than one e-twin system. At greater stresses (65 MPa at 200 °C decreasing to 41 MPa at 500 °C) there was an abrupt onset of permanent twinning in grains with large Schmid factors for twinning on any one e-twin system. No twinning was observed in the Solnhofen limestone samples deformed at 200° or 400 °C at applied stresses of <180 MPa. These results highlight the potential of this approach for detecting the onset of twinning and provide, through experiments on samples with different microstructures, a strategy for systematically investigating the effects of microstructural variables on crystallographically-controlled inelastic processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmes, J.W.; Wu, X.; Sorensen, B.F.
The influence of loading frequency on the fatigue life and internal (frictional) heating of unidirectional SiC-fiber/calcium aluminosilicate-matrix composites was investigated at room temperature. Specimens were subjected to tension-tension fatigue at sinusoidal loading frequencies from 25 to 350 Hz and maximum fatigue stresses of 180 to 240 MPa. The key findings of the study were that (1) fatigue life decreased sharply as the loading frequency was increased, (2) for all loading frequencies, fatigue failures occurred at stress levels that were significantly below the monotonic proportional limit stress if [approximately]285 MPa, and (3) pronounced internal heating occurred during fatigue, with the surfacemore » temperature of the fatigue specimens increasing by 160 K during 350-Hz fatigue at a peak stress of 240 MPa.« less
NASA Astrophysics Data System (ADS)
Mikumo, Takeshi; Yagi, Yuji; Singh, Shri Krishna; Santoyo, Miguel A.
2002-01-01
A large intraplate, normal-faulting earthquake (Mw = 7.5) occurred in 1999 in the subducting Cocos plate below the downdip edge of the ruptured thrust fault of the 1978 Oaxaca, Mexico, earthquake (Mw = 7.8). This situation is similar to the previous case of the 1997 normal-faulting event (Mw = 7.1) that occurred beneath the rupture area of the 1985 Michoacan, Mexico, earthquake (Mw = 8.1). We investigate the possibility of any stress interactions between the preceding 1978 thrust and the following 1999 normal-faulting earthquakes. For this purpose, we estimate the temporal change of the stress state in the subducting Cocos plate by calculating the slip distribution during the 1978 earthquake through teleseismic waveform inversion, the dynamic rupture process, and the resultant coseismic stress change, together with the postseismic stress variations due to plate convergence and the viscoelastic relaxation process. To do this, we calculate the coseismic and postseismic changes of all stress components in a three-dimensional space, incorporating the subducting slab, the overlying crust and uppermost mantle, and the asthenosphere. For the coseismic stress change we solve elastodynamic equations, incorporating the kinematic fault slip as an observational constraint under appropriate boundary conditions. To estimate postseismic stress accumulations due to plate convergence, a virtual backward slip is imposed to lock the main thrust zone. The effects of viscoelastic stress relaxations of the coseismic change and the back slip are also included. The maximum coseismic increase in the shear stress and the Coulomb failure stress below the downdip edge of the 1978 thrust fault is estimated to be in the range between 0.5 and 1.5 MPa, and the 1999 normal-faulting earthquake was found to take place in this zone of stress increase. The postseismic variations during the 21 years after the 1978 event modify the magnitude and patterns of the coseismic stress change to some extent but are not large enough to overcome the coseismic change. These results suggest that the coseismic stress increase due to the 1978 thrust earthquake may have enhanced the chance of occurrence of the 1999 normal-faulting event in the subducting plate. If this is the case, one of the possible mechanisms could be static fatigue of rock materials around preexisting weak planes involved in the subducting plate, and it is speculated that that one of these planes might have been reactivated and fractured because of stress corrosion cracking under the applied stress there for 21 years.
Nagata, Kohei; Kilgore, Brian D.; Beeler, Nicholas M.; Nakatani, Masao
2014-01-01
During localized slip of a laboratory fault we simultaneously measure the contact area and the dynamic fault normal elastic stiffness. One objective is to determine conditions where stiffness may be used to infer changes in area of contact during sliding on nontransparent fault surfaces. Slip speeds between 0.01 and 10 µm/s and normal stresses between 1 and 2.5 MPa were imposed during velocity step, normal stress step, and slide-hold-slide tests. Stiffness and contact area have a linear interdependence during rate stepping tests and during the hold portion of slide-hold-slide tests. So long as linearity holds, measured fault stiffness can be used on nontransparent materials to infer changes in contact area. However, there are conditions where relations between contact area and stiffness are nonlinear and nonunique. A second objective is to make comparisons between the laboratory- and field-measured changes in fault properties. Time-dependent changes in fault zone normal stiffness made in stress relaxation tests imply postseismic wave speed changes on the order of 0.3% to 0.8% per year in the two or more years following an earthquake; these are smaller than postseismic increases seen within natural damage zones. Based on scaling of the experimental observations, natural postseismic fault normal contraction could be accommodated within a few decimeter wide fault core. Changes in the stiffness of laboratory shear zones exceed 10% per decade and might be detectable in the field postseismically.
Townsend, Kevin C; Thomas-Aitken, Holly D; Rudert, M James; Kern, Andrew M; Willey, Michael C; Anderson, Donald D; Goetz, Jessica E
2018-01-23
Evaluation of abnormalities in joint contact stress that develop after inaccurate reduction of an acetabular fracture may provide a potential means for predicting the risk of developing post-traumatic osteoarthritis. Discrete element analysis (DEA) is a computational technique for calculating intra-articular contact stress distributions in a fraction of the time required to obtain the same information using the more commonly employed finite element analysis technique. The goal of this work was to validate the accuracy of DEA-computed contact stress against physical measurements of contact stress made in cadaveric hips using Tekscan sensors. Four static loading tests in a variety of poses from heel-strike to toe-off were performed in two different cadaveric hip specimens with the acetabulum intact and again with an intentionally malreduced posterior wall acetabular fracture. DEA-computed contact stress was compared on a point-by-point basis to stress measured from the physical experiments. There was good agreement between computed and measured contact stress over the entire contact area (correlation coefficients ranged from 0.88 to 0.99). DEA-computed peak contact stress was within an average of 0.5 MPa (range 0.2-0.8 MPa) of the Tekscan peak stress for intact hips, and within an average of 0.6 MPa (range 0-1.6 MPa) for fractured cases. DEA-computed contact areas were within an average of 33% of the Tekscan-measured areas (range: 1.4-60%). These results indicate that the DEA methodology is a valid method for accurately estimating contact stress in both intact and fractured hips. Copyright © 2017 Elsevier Ltd. All rights reserved.
Numerical investigation on the prefabricated crack propagation of FV520B stainless steel
NASA Astrophysics Data System (ADS)
Pan, Juyi; Qin, Ming; Chen, Songying
FV520B is a common stainless steel for manufacturing centrifugal compressor impeller and shaft. The internal metal flaw destroys the continuity of the material matrix, resulting in the crack propagation fracture of the component, which seriously reduces the service life of the equipment. In this paper, Abaqus software was used to simulate the prefabricated crack propagation of FV520B specimen with unilateral gap. The results of static crack propagation simulation results show that the maximum value of stress-strain located at the tip of the crack and symmetrical distributed like a butterfly along the prefabricated crack direction, the maximum stress is 1990 MPa and the maximum strain is 9.489 × 10-3. The Mises stress and stress intensity factor KI increases with the increase of the expansion step, the critical value of crack initiation is reached at the 6th extension step. The dynamic crack propagation simulation shows that the crack propagation path is perpendicular to the load loading direction. Similarly, the maximum Mises stress located at the crack tip and is symmetrically distributed along the crack propagation direction. The critical stress range of the crack propagation is 23.3-43.4 MPa. The maximum value of stress-strain curve located at the 8th extension step, that is, the crack initiation point, the maximum stress is 55.22 MPa, and the maximum strain is 2.26 × 10-4. On the crack tip, the stress changed as 32.24-40.16 MPa, the strain is at 1.292 × 10-4-1.897 × 10-4.
Stress generation in thermally grown oxide films. [oxide scale spalling from superalloy substrates
NASA Technical Reports Server (NTRS)
Kumnick, A. J.; Ebert, L. J.
1981-01-01
A three dimensional finite element analysis was conducted, using the ANSYS computer program, of the stress state in a thin oxide film thermally formed on a rectangular piece of NiCrAl alloy. The analytical results indicate a very high compressive stress in the lateral directions of the film (approximately 6200 MPa), and tensile stresses in the metal substrate that ranged from essentially zero to about 55 MPa. It was found further that the intensity of the analytically determined average stresses could be approximated reasonably well by the modification of an equation developed previously by Oxx for stresses induced into bodies by thermal gradients.
Hypersonic Wind Tunnel Nozzle Survivability for T&E
2007-03-01
Room-Temperature Compression Tests ..............................................................43 10. Strength of Hot-Rolled Inconel 600 (Ni-16Cr...6Fe, wt %) ...................................................45 11. Physical Properties of Inconel 600...Table 10. Strength of Hot-Rolled Inconel 600 (Ni-16Cr-6Fe, wt%) T, °C 0.2% Yield Stress (MPa) Ultimate Tensile Stress (MPa) 20 250 590 400 185 560
High-Temperature Mechanical Properties of Cr(3+) Doped Sapphire Fibers
NASA Technical Reports Server (NTRS)
Sayir, A.; QuispeCancapa, J. J.; deArellanoLopez, A. R.; Gray, Hugh R. (Technical Monitor)
2002-01-01
High-temperature slow-crack growth of single crystal 10 wt% Cr2O3 - Al2O3 (nominal composition) fibers has been studied by tensile rupture experiments at 1400 C, under different stressing rates (0.5 to 41.5 MPa/s). Slow-crack growth (SCG) is less pronounced with increasing Cr2O3. Rupture stresses increased with the stressing rate from 397 MPa to 515 MPa, resulting in a SCG exponent, N=19. The Cr2O3 composition was analyzed by Energy Dispersed X-Ray Spectra (EDS) and fracture surfaces were studied by scanning electron microscopy (SEM). Results are compared with previous studies on 100-300 ppm Cr3(+) doped sapphire fibers and on commercial sapphire fibers.
High reflectance and low stress Mo2C/Be multilayers
Bajt, Sasa; Barbee, Jr., Troy W.
2001-01-01
A material for extreme ultraviolet (EUV) multilayers that will reflect at about 11.3 nm, have a high reflectance, low stress, and high thermal and radiation stability. The material consists of alternating layers of Mo.sub.2 C and Be deposited by DC magnetron sputtering on a substrate, such as silicon. In one example a Mo.sub.2 C/Be multilayer gave 65.2% reflectance at 11.25 nm measured at 5 degrees off normal incidence angle, and consisted of 70 bilayers with a deposition period of 5.78 nm, and was deposited at 0.83 mTorr argon (Ar) sputtering pressure, with the first and last layers being Be. The stress of the multilayer is tensile and only +88 MPa, compared to +330 MPa of a Mo/Be multilayers of the same thickness. The Mo.sub.2 C/Be multilayer was capped with carbon which produced an increase in reflectivity of about 7% over a similar multilayer with no carbon capping material, thus raising the reflectivity from 58.3% to over 65%. The multilayers were formed using either Mo.sub.2 C or Be as the first and last layers, and initial testing has shown the formation of beryllium carbide at the interfaces between the layers which both stabilizes and has a smoothing effect, and appear to be smoother than the interfaces in Mo/Be multilayers.
Development of Low Cost Soil Stabilization Using Recycled Material
NASA Astrophysics Data System (ADS)
Ahmad, F.; Yahaya, A. S.; Safari, A.
2016-07-01
Recycled tyres have been used in many geotechnical engineering projects such as soil improvement, soil erosion and slope stability. Recycled tyres mainly in chip and shredded form are highly compressible under low and normal pressures. This characteristic would cause challenging problems in some applications of soil stabilization such as retaining wall and river bank projects. For high tensile stress and low tensile strain the use of fiberglass would be a good alternative for recycled tyre in some cases. To evaluate fiberglass as an alternative for recycled tyre, this paper focused on tests of tensile tests which have been carried out between fiberglass and recycled tyre strips. Fibreglass samples were produced from chopped strand fibre mat, a very low-cost type of fibreglass, which is cured by resin and hardener. Fibreglass samples in the thickness of 1 mm, 2 mm, 3 mm and 4 mm were developed 100 mm x 300 mm pieces. It was found that 3 mm fibreglass exhibited the maximum tensile load (MTL) and maximum tensile stress (MTS) greater than other samples. Statistical analysis on 3 mm fibreglass indicated that in the approximately equal MTL fibreglass samples experienced 2% while tyre samples experienced 33.9% ultimate tensile strain (UTST) respectively. The results also showed an approximately linear relationship between stress and strain for fibreglass samples and Young's modulus (E), ranging from 3581 MPa to 4728 MPa.
Stress-strain relationship of high-strength steel (HSS) reinforcing bars
NASA Astrophysics Data System (ADS)
Anggraini, Retno; Tavio, Raka, I. Gede Putu; Agustiar
2018-05-01
The introduction of High-Strength Steel (HSS) reinforcing bars in reinforced concrete members has gained much attention in recent years and led to many advantages such as construction timesaving. It is also more economical since it can reduce the amount of reinforcing steel bars used in concrete members which in turn alleviates the congestion of reinforcement. Up to present, the building codes, e.g. American Concrete Institute (ACI) 318M-14 and Standard National Indonesia (SNI) 2847:2013, still restrict the use of higher-strength steel reinforcing bars for concrete design up to Grade 420 MPa due to the possible suspected brittle behavior of concrete members. This paper evaluates the characteristics of stress-strain relationships of HSS bars if they are comparable to the characteristics of those of Grade 420 MPa. To achieve the objective of the study, a series of steel bars from various grades (420, 550, 650, and 700 MPa) was selected. Tensile tests of these steel samples were conducted under displacement-controlled mode to capture the complete stress-strain curves and particularly the post-yield response of the steel bars. The results indicate that all the steel bars tested had the actual yield strengths greater than the corresponding specified values. The stress-strain curves of HSS reinforcing bars (Grade 550, 650, and 700 MPa) performed slightly different characteristics with those of Grade 420 MPa.
The shear fracture toughness, KIIc, of graphite
Burchell, Timothy D.; Erdman, III, Donald L.
2015-11-05
In this study, the critical shear stress intensity factor, KIIc, here-in referred to as the shear fracture toughness, KIIc (MPa m), of two grades of graphite are reported. The range of specimen volumes was selected to elucidate any specimen size effect, but smaller volume specimen tests were largely unsuccessful, shear failure did not occur between the notches as expected. This was probably due to the specimen geometry causing the shear fracture stress to exceed the compressive failure stress. In subsequent testing the specimen geometry was altered to reduce the compressive footprint and the notches (slits) made deeper to reduce themore » specimen's ligament length. Additionally, we added the collection of Acoustic Emission (AE) during testing to assist with the identification of the shear fracture load. The means of KIIc from large specimens for PCEA and NBG-18 are 2.26 MPa m with an SD of 0.37 MPa m and 2.20 MPa m with an SD of 0.53 MPa m, respectively. The value of KIIc for both graphite grades was similar, although the scatter was large. In this work we found the ratio of KIIc/ KIc ≈ 1.6. .« less
Singh, S Vijay; Bhat, Manohar; Gupta, Saurabh; Sharma, Deepak; Satija, Harsha; Sharma, Sumeet
2015-01-01
A three-dimensional (3D) finite element analysis (FEA) on the stress distribution of endodontically treated teeth with titanium alloy post and carbon fiber post with different alveolar bone height. The 3D model was fabricated using software to represent an endodontically treated mandibular second premolar with post and restored with a full ceramic crown restoration, which was then analyzed using FEA using FEA ANSYS Workbench V13.0 (ANSYS Inc., Canonsburg, Pennsylvania, U.S.A) software. The FEA showed the maximum stresses of 137.43 Mpa in dentin with alveolar bone height of 4 mm when the titanium post was used, 138.48 Mpa when carbon fiber post was used as compared to 105.91 Mpa in the model with alveolar bone height of 2 mm from the cement enamel junction (CEJ) when the titanium post was used and 107.37 Mpa when the carbon fiber post was used. Stress was observed more in alveolar bone height level of 4 mm from CEJ than 2 mm from CEJ. Stresses in the dentin were almost similar when the carbon fiber post was compared to titanium post. However, stresses in the post and the cement were much higher when titanium post was used as compared to carbon fiber post.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tschaplinski, T.J.; Hanson, P.J.; Norby, R.J.
1991-05-01
Since osmotic adjustment to water stress requires carbon assimilation during stress, the stimulation of photosynthesis by elevated CO{sub 2} may enhance osmotic adjustment. Osmotic adjustment of American sycamore (Platanus occidentalis L.), sweetgum (Liquidambar styraciflua L.), sugar maple (Acer saccharum Marsh.), yellow-poplar (Liriodendron tulipifera L.), and northern red oak (Quercus rubra L.) to water stress was assessed under ambient and elevated CO{sub 2} (ambient +300 {mu}L L{sup {minus}1}), with seedlings grown in 8-L pots in four open-top chambers, fitted with rain exclusion canopies. Trees were subjected to repeated water stress cycles over a six-week period. Well-watered trees were watered daily tomore » maintain a soil matric potential > {minus}0.3 MPa, whereas stressed trees were watered when soil matric potential declined to < {minus}0.9 MPa. Gas exchange and water relations were monitored at the depth of stress and after rewatering. All species displayed an increase in leaf-level water-use efficiency (net photosynthesis/transpiration). Leaves of sycamore and sweetgum displayed an adjustment in osmotic potential at saturation (pressure-volume analysis) of 0.3 MPa and 0.6 MPa, respectively. Elevated CO{sub 2} did not enhance osmotic adjustment in leaves of any of the species studied. Studies to characterize organic solute concentrations in roots are ongoing to determine if osmotic adjustment occurred in the roots.« less
Belli, Sema; Eraslan, Oğuz; Eskitaşcıoğlu, Gürcan
The aim of this finite-element stress analysis (FEA) was to determine the effect of degradation due to water storage on stress distributions in root-filled premolar models restored with composite using either a self-etch (SE) or an etch-and-rinse (E&R) adhesive. Four premolar FEA models including root filling, MOD cavity, and composite restorations were created. The cavities were assumed to be treated by SE or E&R adhesives and stored in water for 18 months. The elastic properties of the adhesive-dentin interface after 24-h and 18-month water storage were obtained from the literature and applied to the FEA models. A 300-N load was applied on the functional cusps of the models. The SolidWorks/Cosmosworks structural analysis program was used and the results were presented considering the von Mises stresses. Stresses in the cervical region increased over time on the load-application side of the main tooth models (SE: 84.11 MPa to 87.51 MPa; E&R: 100.24 MPa to 120.8 MPa). When the adhesive interfaces (hybrid layer, adhesive layer) and dentin were evaluated separately, the stresses near the root canal orifices increased over time in both models; however, this change was more noticeable in the E&R models. Stresses at the cavity corners decreased in the E&R model (within the adhesive layer), while SE models showed the opposite (within the hybrid layer). Change in the elastic modulus of the adhesive layer, hybrid layer, and dentin due to water storage has an effect on stresses in root-filled premolar models. The location and the level of the stresses differed depending on the adhesive used.
Rapid nano impact printing of silk biopolymer thin films
NASA Astrophysics Data System (ADS)
White, Robert D.; Gray, Caprice; Mandelup, Ethan; Amsden, Jason J.; Kaplan, David L.; Omenetto, Fiorenzo G.
2011-11-01
In this paper, nano impact printing of silk biopolymer films is described. An indenter is rapidly accelerated and transfers the nanopattern from a silicon master into the silk film during an impact event that occurs in less than 1 ms. Contact stresses of greater than 100 MPa can be achieved during the short impact period with low power and inexpensive hardware. Ring shaped features with a diameter of 2 µm and a ring width of 100-200 nm were successfully transferred into untreated silk films using this method at room temperature. Mechanical modeling was carried out to determine the contact stress distribution, and demonstrates that imprinting can occur for contact stresses of less than 2 MPa. Thermal characterization at the impact location shows that raising the temperature to 70 °C has only a limited effect on pattern transfer. Contact stresses of greater than approximately 100 MPa result in excessive deformation of the film and poor pattern transfer.
Creep anomaly in electrospun fibers made of globular proteins
NASA Astrophysics Data System (ADS)
Regev, Omri; Arinstein, Arkadii; Zussman, Eyal
2013-12-01
The anomalous responses of electrospun nanofibers and film fabricated of unfolded bovine serum albumin (BSA) under constant stress (creep) is observed. In contrast to typical creep behavior of viscoelastic materials demonstrating (after immediate elastic response) a time-dependent elongation, in case of low applied stresses (<1 MPa) the immediate elastic response of BSA samples is followed by gradual contraction up to 2%. Under higher stresses (2-6 MPa) the contraction phase changes into elongation; and in case of stresses above 7 MPa only elongation was observed, with no initial contraction. The anomalous creep behavior was not observed when the BSA samples were subjected to additional creep cycles independently on the stress level. The above anomaly, which was not observed before either for viscoelastic solids or for polymers, is related to specific protein features, namely, to the ability to fold. We hypothesize that the phenomenon is caused by folding of BSA macromolecules into dry molten globule states, feasible after cross-linked bonds break up, resulting from the applied external force.
Growth and Comparison of Residual Stress of AlN Films on Silicon (100), (110) and (111) Substrates
NASA Astrophysics Data System (ADS)
Pandey, Akhilesh; Dutta, Shankar; Prakash, Ravi; Raman, R.; Kapoor, Ashok Kumar; Kaur, Davinder
2018-02-01
This paper reports on the comparison of residual stresses in AlN thin films sputter-deposited in identical conditions on Si (100) (110) and (111) substrates. The deposited films are of polycrystalline wurtzite structure with preferred orientation along the (002) direction. AlN film on the Si (111) substrate showed a vertical columnar structure, whereas films on Si (100) and (110) showed tilted columnar structures. Residual stress in the AlN films is estimated by x-ray diffraction (XRD), infra-red absorption method and wafer curvature technique. Films residual stress are found compressive and values are in the range of - 650 (± 50) MPa, - 730 (± 50) MPa and - 300 (± 50) MPa for the AlN films grown on Si (100), (110) and (111) substrates, respectively, with different techniques. The difference in residual stresses can be attributed to the microstructure of the films and mismatch between in plane atomic arrangements of the film and substrates.
[Characteristics of Raman spectra of minerals in the veins of Wenchuan earthquake fault zone].
Xie, Chao; Zhou, Ben-gang; Liu, Lei; Zhou, Xiao-cheng; Yi, Li; Chen, Zhi; Cui, Yue-ju; Li, Jing; Chen, Zheng-wei; Du, Jian-guo
2015-01-01
Quartz in the veins at the Shenxigou section of Wenchuan earthquake fault zone was investigated by micro-Raman spectroscopic measurement, and the distribution of compressive stress in the fault zone was estimated by the frequency shifts of the 464 cm-1 vibrational mode of quartz grains in the veins. It was showed that the 464 cm-1 peak arising from the quartz grains in the veins near the fault plane shifts by 3. 29 cm-1 , and the corresponding compressive stress is 368. 63 MPa, which is significantly lower than the stress accumulation on both sides due to multi-stage events. Stress accumulation increased with moving away from the fault plane in the footwall with the offset of the 464 cm-1 peak arising from the quartz grains in the veins increasing, which can reach 494. 77 MPa at a distance of 21 m with a high offset of 4. 40 cm-1 of the 464 cm-1 peak. The compressive stress gets the maximum value of 519.87 MPa at a distance of 10 m from the fault plane in the hanging wall with the offset of the 464 cm-1 peak arising from the quartz grains in the veins being 4. 62 cm-1, followed by a sudden drop in stress accumulation, and it drops to 359. 59 MPa at a distance of 17 m. Because of moving away from the foult plane at the edge of the foult zone, the stress drops to 359. 59 MPa with a small value of 464 cm-1 peak offset 3. 21 cm-1 at a distance of 27 m from the fault plane in the hanging wall due to the little effect by the fault activity. Therefore, the stress of Wenchuan earthquake fault zone is partially released, but the rest of the stress distribution is uneven, and there is also a high stress accumulation in somewhere in the fault zone, which reflects that the mechanical properties of the rocks in the fault zone have a characteristic of unevenness in space.
Morin, R.H.; Flamand, R.
1999-01-01
Deep Sea Drilling Project (DSDP) Hole 504B is located in the eastern equatorial Pacific Ocean and extends to a total depth of 2111 m beneath the seafloor (mbsf). Several acoustic televiewer logs have been obtained in this well during successive stages of drilling, and the resulting digital images have revealed numerous oval-shaped fractures seemingly etched into the borehole wall. A theoretical examination of these stress-induced features identifies a unique and ephemeral set of stress distributions and magnitudes that are necessary for their production. Consequently, the ovals provide a basis for quantifying the magnitudes and orientations of the maximum and minimum horizontal principal stresses, SH and Sh, at this site. Vertical, truncated breakouts and horizontal tensile fractures define the spatial boundaries of the ovals. Explicit criteria for their occurrence are combined with estimates for various physical properties of the rock to yield a range of possible values for the horizontal principal stresses. The conspicuous oval geometry is completed by a curved fracture that joins the vertical and horizontal components. Its degree of curvature is delineated by the modified Griffith failure criterion and is directly related to the principal stress difference (SH - Sh). Matching a series of type curves corresponding to specific values for (SH - Sh) with the actual undistorted well bore images allows the magnitude of the stress difference to be further constrained. With a value for (SH - Sh) of 45 ?? 5 MPa the individual magnitudes of SH and Sh are determined more precisely. Final estimates for the horizontal principal stresses in DSDP Hole 504B at a depth of 1200 mbsf are 141 MPa ??? SH ??? 149 MPa and 91 MPa ??? Sh ??? 109 MPa. Stress magnitudes derived from this approach rely heavily upon the values of a variety of physical properties, and complementary laboratory measurements performed on relevant rock samples provide critical information. Uncertainties in estimating these properties translate into less precise predictions of principal stresses. Copyright 1999 by the American Geophysical Union.
Frictional strength of wet and dry montmorillonite
Morrow, Carolyn A.; Moore, Diane E.; Lockner, David A.
2017-01-01
Montmorillonite is a common mineral in fault zones, and its low strength relative to other common gouge minerals is important in many models of fault rheology. However, the coefficient of friction, μ, varies with degree of saturation and is not well constrained in the literature due to the difficulty of establishing fully drained or fully dried states in the laboratory. We measured μ of both saturated and oven-dried montmorillonite at normal stresses up to 700 MPa. Care was taken to shear saturated samples slowly enough to avoid pore fluid overpressure. For saturated samples, μ increased from 0.10 to 0.28 with applied effective normal stress, while for dry samples μ decreased from 0.78 to 0.45. The steady state rate dependence of friction, (a − b), was positive, promoting stable sliding. The wide disparity in reported frictional strengths can be attributed to experimental procedures that promote differing degrees of partial saturation or overpressured pore fluid conditions.
Stress and structure development in polymeric coatings
NASA Astrophysics Data System (ADS)
Vaessen, Diane Melissa
2002-09-01
The main goal of this research is to measure the stress evolution in various polymer coating systems to establish the mechanisms responsible for stress development, stress relaxation, and defect formation. Investigated systems include ultraviolet (UV)-curable coatings, dense and porous coatings from polymer solutions, and latex coatings. Coating stress was measured using a controlled environment stress apparatus based on a cantilever deflection principle. For acrylate coatings, it was found that by cycling a UV-lamp on and off, keeping the total dose constant, coating stress was lowered by 60% by decreasing the cycle period. A stress minimum was also found to exist for a given dose of radiation. The lower stress is attributed to stress relaxation and/or slower reaction during dark periods. A viscoelastic stress model of this process was formulated and predicted stress values close to those observed experimentally. During drying of cellulose acetate (CA) coatings cast in acetone, final stress increased from 10 to 45 MPa as coating thickness decreased from 60 to 10 mum. This thickness dependent coating stress for a solvent-cast polymer coating is a new finding and is attributed to (1) less shrinkage in thicker coatings due to more trapped solvent (from skinning) and (2) greater amounts of polymer stress relaxation in thicker coatings. For porous CA coatings prepared by dry-cast phase separation, final in-plane stresses ranged from 20 MPa for coatings containing small pores (˜1 mum) to 5 MPa for coatings containing small pores and macrovoids (˜200 mum). For these coatings, a small amount of stress relaxation occurs due to capillary pressure relief. A stress plateau for the macrovoid-containing coating is likely caused by stress-induced rupture of the polymer-rich phase. Measured stress in pigment-free latex coatings was much lower (˜0.3 MPa) than UV-curable and solvent-cast polymer coatings and was found to increase with increasing latex glass transition temperature. Observations from infrared spectroscopy, scanning electron microscopy, camera imaging, and indentation were also studied to correlate coating properties to measured stresses. The results obtained in this thesis will lead to strategies for material selection, process optimization, and defect elimination in polymeric coatings.
Evaluation of the stress corrosion cracking resistance of several high strength low alloy steels
NASA Technical Reports Server (NTRS)
Humphries, T. S.; Nelson, E. E.
1980-01-01
The stress corrosion cracking resistance was studied for high strength alloy steels 4130, 4340, for H-11 at selected strength levels, and for D6AC and HY140 at a single strength. Round tensile and C-ring type specimens were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, salt spray, the atmosphere at Marshall Space Flight Center, and the seacoast at Kennedy Space Center. Under the test conditions, 4130 and 4340 steels heat treated to a tensile strength of 1240 MPa (180 ksi), H-11 and D6AC heat treated to a tensile strength of 1450 MPa (210 ksi), and HY140 (1020 MPa, 148 ksi) are resistant to stress corrosion cracking because failures were not encountered at stress levels up to 75 percent of their yield strengths. A maximum exposure period of one month for alternate immersion in salt water or salt spray and three months for seacoast is indicated for alloy steel to avoid false indications of stress corrosion cracking because of failure resulting from severe pitting.
An embedded stress sensor for concrete SHM based on amorphous ferromagnetic microwires.
Olivera, Jesús; González, Margarita; Fuente, José Vicente; Varga, Rastislav; Zhukov, Arkady; Anaya, José Javier
2014-10-24
A new smart concrete aggregate design as a candidate for applications in structural health monitoring (SHM) of critical elements in civil infrastructure is proposed. The cement-based stress/strain sensor was developed by utilizing the stress/strain sensing properties of a magnetic microwire embedded in cement-based composite (MMCC). This is a contact-less type sensor that measures variations of magnetic properties resulting from stress variations. Sensors made of these materials can be designed to satisfy the specific demand for an economic way to monitor concrete infrastructure health. For this purpose, we embedded a thin magnetic microwire in the core of a cement-based cylinder, which was inserted into the concrete specimen under study as an extra aggregate. The experimental results show that the embedded MMCC sensor is capable of measuring internal compressive stress around the range of 1-30 MPa. Two stress sensing properties of the embedded sensor under uniaxial compression were studied: the peak amplitude and peak position of magnetic switching field. The sensitivity values for the amplitude and position within the measured range were 5 mV/MPa and 2.5 µs/MPa, respectively.
Role of fluids in experimental calcite-bearing faults at seismic deformation conditions.
NASA Astrophysics Data System (ADS)
Violay, M.; Nielsen, S.; Cinti, D.; Spagnuolo, E.; Di Toro, G.; Smith, S.
2012-04-01
Fluids play a fundamental physical (fluid pressure, temperature buffering, etc.) and chemical (dissolution, hydrolytic weakening, etc.) role in controlling fault strength and earthquake nucleation, propagation and arrest. However, due to technical challenges, the influence of water at deformation conditions typical of earthquakes (i.e., slip rates of 1 m/s, displacements of 0.1-5 m, normal stress of tens of MPa) remains poorly constrained experimentally. Here we present results from high velocity friction experiments performed with a rotary shear apparatus (SHIVA: Slow to HIgh Velocity (friction) Apparatus) on Carrara marble. SHIVA is equipped with (1) an environmental/vacuum chamber to perform experiments in the absence of room-humidity, (2) a pressure vessel to perform experiments with fluids (up to 15 MPa confining pressure), including devices to determine fluid composition (Ca2+, Mg2+, HCO3-, etc). Experiments were conducted on hollow cylinders (50/30 mm ext/int diameter) of Carrara (98% calcite) marble at velocities of 1-6.5 m/s, displacements up to a few meters, normal stresses up to 40 MPa and fluid pressures between 0 (under vacuum) and 15 MPa (fluid-saturated conditions, with H2O in chemical equilibrium with the marble). Rock and fluid samples were recovered for post-run analysis to determine deformation mechanisms and changes in fluid composition. Under these deformation conditions: 1) the friction coefficient decays rapidly from a peak (= static) μp ~ 0.8 at the initiation of sliding towards a steady-state μss ~ 0.1. The absolute values of both peak and steady-state friction are not significantly influenced by the presence of fluids; 2) the decay from peak to steady-state friction is more abrupt in presence of fluids; 3) during deceleration of the friction apparatus, the friction coefficient recovers almost instantaneously to a value, μr, of 0.2-0.6 ( strength recovery) resulting in a small static stress drop. Strength recovery is smaller in the presence of fluids. 4) the fluid (H2O) after the experiment is enriched in Ca2+, Mg2+ and HCO3-. This chemical evolution suggests breakdown reactions (decarbonation of calcite) promoted by frictional heating and controlled by the presence of H2O. We conclude that the large decrease in friction and abrupt weakening, especially in the presence of fluids, indicates that calcite-bearing rocks are prone to earthquake nucleation and seismic rupture propagation (see the L'Aquila 2009 earthquake sequence). The chemical changes observed in water springs after large earthquakes in carbonatic rocks is similar to those found in these experiments, suggesting that the weakening mechanisms triggered in the experiments might occur in nature.
{Linking permeability and mechanical damage for basalt from Mt Etna Volcano, Italy}
NASA Astrophysics Data System (ADS)
Faoro, I.; Vinciguerra, S.; Marone, C.; Elsworth, D.
2009-04-01
Volcanic edifices, such as Mt. Etna volcano (Italy), are affected from repeated episodes of pressurisation due to magma emplacement from deep reservoirs to shallow depths. This mechanism pressurizes the large aquifers within the edifice and increases the level of crack damage within the rocks of the edifice over extended periods of times. In order to improve our understanding of the complex coupling between circulating fluids and the development of crack damage, we performed flow-through tests using cylindrical cores of Etna Basalt (Etna, Italy) to evaluate permeabilty changes as a function of approach to failure under non-hydrostatic stresses at confining pressures from 5 to 60 MPa. Samples were loaded to failure by increasing increments of axial stress or by cyclic stresses of increasing amplitude. Both intact samples and pre-drilled samples (1.18mm) were tested. Under hydrostatic stresses, the permeability values of the intact sample decrease linearly with the increments of pressure and range between 5.2*10-17 m2and 1.5*10-17m2Under non-hydrostatic conditions, at low deviatoric stresses from (up to 18 MPa), the permeability values ranged between 5.5*10-17 m2and 4*10-17m2 and tended to completely recover the initial value each time the sample was unloaded, indicating an elastic regime. At higher deviatoric stresses (up to 60 MPa) the permeability values range between 2*10-17 m2 and 0.6*10-17m2. We hypothesize that from 5MPa to 40MPa axial stress, anelastic deformation mechanisms start to occur, with progressive pore collapse and opening of microfractures, resulting in a change of permeability. Under incremental uniaxial cyclic loading up to peak stresses of 160 MPa permeability decreases up to 2 orders of magnitude from initial values of 1*10-15 m2 to 2*10-14m2 Higher initial permeability values are related to the presence of an open fracture in the sample. We interpreted the reduction as a result of progressive closure of the voids space, as the axial load is incremented. Overall it is shown that permeability on Etna basalt rocks is strongly dependent on the loading conditions. Ongoing work is expected to elucidate the mechanisms relating increasing damage mechanical damage to changes of permeability.
Effect of residual stress on modal patterns of MEMS vibratory gyroscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutta, Shankar, E-mail: shankardutta77@gmail.com; Panchal, Abha; Kumar, Manoj
Deep boron diffusion often induces residual stress in bulk micromachined MEMS structures, which may affect the MEMS devices operation. In this study, we studied the modal patterns of MEMS vibratory gyroscope under the residual stress (100 – 1000 MPa). Modal patterns and modal frequencies of the gyro are found to be dependent on the residual stress values. Without any residual stress, the modal frequencies drive and sense modeswere found to be 20.06 kHz and 20.36 kHz respectively. In presence of 450 MPa residual stress, the modal frequencies of the drive and sense modes were changed to 42.75 kHz and 43.07 kHz respectively.
Effect of Mechanical Stresses on Characteristics of Chip Tantalum Capacitors
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander A.
2007-01-01
The effect of compressive mechanical stresses on chip solid tantalum capacitors is investigated by monitoring characteristics of different part types under axial and hydrostatic stresses. Depending on part types, an exponential increase of leakage currents was observed when stresses exceeded 10 MPa to 40 MPa. For the first time, reversible variations of leakage currents (up to two orders of magnitude) with stress have been demonstrated. Mechanical stresses did not cause significant changes of AC characteristics of the capacitors, whereas breakdown voltages measured during the surge current testing decreased substantially indicating an increased probability of failures of stressed capacitors in low impedance applications. Variations of leakage currents are explained by a combination of two mechanisms: stress-induced scintillations and stress-induced generation of electron traps in the tantalum pentoxide dielectric.
Quartz phenocrysts preserve volcanic stresses at Long Valley and Yellowstone calderas
NASA Astrophysics Data System (ADS)
Befus, K. S.; Leonhardi, T. C.; Manga, M.; Tamura, N.; Stan, C. V.
2016-12-01
Magmatic processes and eruptions are the consequence of stresses active in volcanic environments. Few techniques are presently available to quantify those stresses because they operate in subsurface and/or hazardous environments, and thus new techniques are needed to advance our understanding of key processes. Here, we provide a dataset of volcanic stresses that were imparted to quartz crystals that traveled through, and were hosted within, pyroclastic and effusive eruptions from Long Valley and Yellowstone calderas. We measured crystal lattice deformation with submicron spatial resolution using the synchrotron X-ray microdiffraction beamline (12.3.2) at the Advanced Light Source, Lawrence Berkeley National Laboratory. Quartz from all units produces diffraction patterns with residual strains locked in the crystal lattice. We used Hooke's Law and the stiffness constants of quartz to calculate the stresses that caused the preserved residual strains. At Long Valley caldera, quartz preserves stresses of 187±80 MPa within pumice clasts in the F1 fall unit of the Bishop Tuff, and preserves stresses of 120±45 MPa from the Bishop Tuff welded ignimbrite. At Yellowstone caldera quartz preserves stresses of 115±30 and 140±60 MPa within pumices from the basal fall units of the Mesa Falls Tuff and the Tuff of Bluff Point, respectively. Quartz from near-vent and flow-front samples from Summit Lake lava flow preserves stresses up to 130 MPa, and show no variation with distance travelled. We believe that subsurface processes cause the measured residual stresses, but it remains unclear if they are relicts of fragmentation or from the magma chamber. The residual stresses from both Long Valley and Yellowstone samples roughly correlate to lithostatic pressures estimated for the respective pre-eruption magma storage depths. It is possible that residual stress in quartz provides a new geobarometer for crystallization pressure. Moving forward, we will continue to perform analyses and experiments on natural and synthetic crystals to better determine the source of residual stresses.
Martinelli, Nicolo; Baretta, Silvia; Pagano, Jenny; Bianchi, Alberto; Villa, Tomaso; Casaroli, Gloria; Galbusera, Fabio
2017-11-25
Mobile-bearing ankle implants with good clinical results continued to increase the popularity of total ankle arthroplasty to address endstage ankle osteoarthritis preserving joint movement. Alternative solutions used fixed-bearing designs, which increase stability and reduce the risk of bearing dislocation, but with a theoretical increase of contact stresses leading to a higher polyethylene wear. The purpose of this study was to investigate the contact stresses, pressure and area in the polyethylene component of a new total ankle replacement with a fixed-bearing design, using 3D finite element analysis. A three-dimensional finite element model of the Zimmer Trabecular Metal Total Ankle was developed and assembled based on computed tomography images. Three different sizes of the polyethylene insert were modeled, and a finite element analysis was conducted to investigate the contact pressure, the von Mises stresses and the contact area of the polyethylene component during the stance phase of the gait cycle. The peak value of pressure was found in the anterior region of the articulating surface, where it reached 19.8 MPa at 40% of the gait cycle. The average contact pressure during the stance phase was 6.9 MPa. The maximum von Mises stress of 14.1 MPa was reached at 40% of the gait cycle in the anterior section. In the central section, the maximum von Mises stress of 10.8 MPa was reached at 37% of the gait cycle, whereas in the posterior section the maximum stress of 5.4 MPa was reached at the end of the stance phase. The new fixed-bearing total ankle replacement showed a safe mechanical behavior and many clinical advantages. However, advanced models to quantitatively estimate the wear are need. To the light of the clinical advantages, we conclude that the presented prosthesis is a good alternative to the other products present in the market.
Low stress drops observed for aftershocks of the 2011 Mw 5.7 Prague, Oklahoma, earthquake
Sumy, Danielle F.; Neighbors, Corrie J.; Cochran, Elizabeth S.; Keranen, Katie M.
2017-01-01
In November 2011, three Mw ≥ 4.8 earthquakes and thousands of aftershocks occurred along the structurally complex Wilzetta fault system near Prague, Oklahoma. Previous studies suggest that wastewater injection induced a Mw 4.8 foreshock, which subsequently triggered a Mw 5.7 mainshock. We examine source properties of aftershocks with a standard Brune-type spectral model and jointly solve for seismic moment (M0), corner frequency (f0), and kappa (κ) with an iterative Gauss-Newton global downhill optimization method. We examine 934 earthquakes with initial moment magnitudes (Mw) between 0.33 and 4.99 based on the pseudospectral acceleration and recover reasonable M0, f0, and κ for 87 earthquakes with Mw 1.83–3.51 determined by spectral fit. We use M0 and f0 to estimate the Brune-type stress drop, assuming a circular fault and shear-wave velocity at the hypocentral depth of the event. Our observations suggest that stress drops range between 0.005 and 4.8 MPa with a median of 0.2 MPa (0.03–26.4 MPa with a median of 1.1 MPa for Madariaga-type), which is significantly lower than typical eastern United States intraplate events (>10 MPa). We find that stress drops correlate weakly with hypocentral depth and magnitude. Additionally, we find the stress drops increase with time after the mainshock, although temporal variation in stress drop is difficult to separate from spatial heterogeneity and changing event locations. The overall low median stress drop suggests that the fault segments may have been primed to fail as a result of high pore fluid pressures, likely related to nearby wastewater injection.
Response of CO and H2 uptake to extremes of water stress in saline and non-saline soils
NASA Astrophysics Data System (ADS)
King, G.
2017-12-01
Neither carbon monoxide (CO) nor hydrogen (H2) have direct impacts on radiative forcing, but both play important roles in tropospheric chemistry. Soils affect both the fate and significance of atmospheric CO and H2 by acting as strong global gas sinks ( 15% and >75 %, respectively), but much remains unknown about the microbiology of these gases, including responses to key environmental drivers. The role of water availability, measured as water potential, has been addressed to a limited extent by earlier studies with results suggesting that CO and H2 uptake are strongly limited by water stress. However recent results indicate a much greater tolerance of water stress than previously suspected. Ex situ assays have shown that non-saline playa soils from the Alvord Basin (Oregon, USA) consumed atmospheric and exogenous hydrogen and CO under conditions of severe water stress. CO uptake occurred at water potentials < -30 MPa, which are far below values considered optimal for terrestrial bacterial growth. Surface soils that had been exposed to water potentials as low as -300 MPa also oxidized CO and H2 after brief equilibration at higher potentials (less water stress), indicating remarkable tolerance of desiccating conditions. Tolerance to water stress for CO and H2 uptake was also observed for soils from a montane rainforest (Hawai`i, USA). However, unlike playa soils rainforest soils seldom experience extended drought that would select for desiccation tolerance. While CO uptake by forest soils was more sensitive to water stress (limits -10MPa) than in playa soils, H2 uptake was observed at -90 MPa to -100 MPa. Tolerance at these levels might be due to the formation of intracellular water that limits the local effects of stress. Comparisons of water stress responses between saline and non-saline soils further suggested that communities of CO- and H2-oxidizing were generally robust with respect to stresses resulting from solute and matric effects. Collectively the results indicate that models of global CO and H2 dynamics might be improved by incorporating responses to soil water stress that could be estimated using relative humidity regimes calibrated for different soil types and systems. Incorporating water stress responses into models offers a means for assessing potential climate change impacts on two important trace gases.
CVD silicon carbide monofilament reinforced SrO-Al2O3-2SiO2 (SAS) glass-ceramic composites
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.
1995-01-01
Unidirectional CVD SiC fiber-reinforced SrO.Al2O3.2SiO2 (SAS) glass-ceramic matrix composites have been fabricated by hot pressing at various combinations of temperature, pressure and time. Both carbon-rich surface coated SCS-6 and uncoated SCS-0 fibers were used as reinforcements. Almost fully dense composites have been obtained. Monoclinic celsian, SrAl2Si2O8, was the only crystalline phase observed in the matrix from x-ray diffraction. During three point flexure testing of composites, a test span to thickness ratio of approximately 25 or greater was necessary to avoid sample delamination. Strong and tough SCS-6/SAS composites having a first matrix crack stress of approximately 300 MPa and an ultimate bend strength of approximately 825 MPa were fabricated. No chemical reaction between the SCS-6 fibers and the SAS matrix was observed after high temperature processing. The uncoated SCS-0 fiber-reinforced SAS composites showed only limited improvement in strength over SAS monolithic. The SCS-0/SAS composite having a fiber volume fraction of 0.24 and hot pressed at 1400 deg C exhibited a first matrix cracking stress of approximately 231 +/- 20 MPa and ultimate strength of 265 +/- 17 MPa. From fiber push-out tests, the fiber/matrix interfacial debonding strength (tau(sub debond)) and frictional sliding stress (tau(sub friction)) in the SCS-6/SAS system were evaluated to be approximately 6.7 +/- 2.3 MPa and 4.3 +/- 0.6 MPa, respectively, indicating a weak interface. However, for the SCS-0/SAS composite, much higher values of approximately 17.5 +/- 2.7 MPa for tau(sub debond) and 11.3 +/- 1.6 MPa for tau(sub friction) respectively, were observed; some of the fibers were so strongly bonded to the matrix that they could not be pushed out. Examination of fracture surfaces revealed limited short pull-out length of SCS-0 fibers. The applicability of various micromechanical models for predicting the values of first matrix cracking stress and ultimate strength of these composites were examined.
Distribution of contact loads over the flank-land of the cutter with a rounded cutting edge
NASA Astrophysics Data System (ADS)
Kozlov, V.; Gerasimov, A.; Kim, A.
2016-04-01
In this paper, contact conditions between a tool and a workpiece material for wear-simulating turning by a cutter with a sharp-cornered edge and with a rounded cutting edge are analysed. The results of the experimental study of specific contact load distribution over the artificial flank wear-land of the cutter in free orthogonal turning of the disk from titanium alloy (Ti6Al2Mo2Cr), ductile (63Cu) and brittle (57Cu1Al3Mn) brasses are described. Investigations were carried out by the method of ‘split cutter’ and by the method of the artificial flank-land of variable width. The experiments with a variable feed rate and a cutting speed show that in titanium alloy machining with a sharp-cornered cutting edge the highest normal contact load (σh max = 3400…2200 MPa) is observed immediately at the cutting edge, and the curve has a horizontal region with the length of 0.2… 0.6 mm. At a distance from the cutting edge, the value of specific normal contact load is dramatically reduced to 1100…500 MPa. The character of normal contact load for a rounded cutting edge is different -it is uniform, and its value is approximately 2 times smaller compared to machining with a sharp-cornered cutting edge. In author’s opinion it is connected with generation of a seizure zone in a chip formation region and explains the capacity of highly worn-out cutting tools for titanium alloys machining. The paper analyses the distribution of tangential contact loads over the flank land, which pattern differs considerably for machining with a sharp-cornered edge and with a rounded cutting edge. Abbreviation and symbols: m/s - meter per second (cutting speed v); mm/r - millimeter per revolution (feed rate f); MPa - mega Pascal (specific contact load as a stress σ or τ) hf - the width of the flank wear land (chamfer) of the cutting tool, flank wear land can be natural or artificial like the one in this paper [mm]; xh - distance from the cutting edge on the surface of the flank-land [mm]; σh - normal specific contact load on the flank land [MPa]; τh - tangential (shear) specific contact load on the flank land [MPa]; HSS - high speed steel (material of cutting tool); Py - radial component of cutting force [N]; Py r - radial component of cutting force on the rake face [N]; Pz - tangential component of cutting force [N]; γ - rake angle of the cutting tool [°] α - clearance angle of the sharp cutting tool [°] αh - clearance angle of the flank wear land [°] ρ - rounding off radius of the cutting edge [mm]; b - width of the machined disk [mm].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Liang; Wang, Lu; Nie, Zhihua
Laser shock peening (LSP) with different cycles was performed on the Ti-based bulk metallic glasses (BMGs). The sub-surface residual stress of the LSPed specimens was measured by high-energy X-ray diffraction (HEXRD) and the near-surface residual stress was measured by scanning electron microscope/focused ion beam (SEM/FIB) instrument. The sub-surface residual stress in the LSP impact direction (about-170MPa) is much lower than that perpendicular to the impact direction (about -350 MPa), exhibiting anisotropy. The depth of the compressive stress zone increases from 400 mu m to 500 mu m with increasing LSP cycles. The highest near-surface residual stress is about -750 MPa.more » LSP caused the free volume to increase and the maximum increase appeared after the first LSP process. Compared with the hardness (567 +/- 7 HV) of the as-cast BMG, the hardness (590 +/- 9 HV) on the shocked surface shows a hardening effect due to the hardening mechanism of compressive residual stress; and the hardness (420 +/- 9 HV) on the longitudinal section shows a softening effect due to the softening mechanism of free volume.« less
Combined Effects of Diurnal and Nonsynchronous Surface Stresses on Europa
NASA Technical Reports Server (NTRS)
Stempel, M. M.; Pappalardo, R. T.; Wahr, J.; Barr, A. C.
2004-01-01
To date, modeling of the surface stresses on Europa has considered tidal, nonsynchronous, and polar wander sources of stress. The results of such models can be used to match lineament orientations with candidate stress patterns. We present a rigorous surface stress model for Europa that will facilitate comparison of principal stresses to lineament orientation, and which will be available in the public domain. Nonsynchronous rotation and diurnal motion contribute to a stress pattern that deforms the surface of Europa. Over the 85-hour orbital period, the diurnal stress pattern acts on the surface, with a maximum magnitude of approximately 0.1 MPa. The nonsynchronous stress pattern sweeps over the surface due to differential rotation of the icy shell relative to the tidally locked interior of the moon. Nonsynchronous stress builds cumulatively with approximately 0.1 MPa per degree of shell rotation.
The dynamic natures of implant loading.
Wang, Rui-Feng; Kang, Byungsik; Lang, Lisa A; Razzoog, Michael E
2009-06-01
A fundamental problem in fully understanding the dynamic nature of implant loading is the confusion that exists regarding the torque load delivered to the implant complex, the initial force transformation/stress/strain developed within the system during the implant complex assembly, and how the clamping forces at the interfaces and the preload stress impact the implant prior to any external loading. The purpose of this study was to create an accurately dimensioned finite element model with spiral threads and threaded bores included in the implant complex, positioned in a bone model, and to determine the magnitude and distribution of the force transformation/stress/strain patterns developed in the modeled implant system and bone and, thus, provide the foundational data for the study of the dynamic loading of dental implants prior to any external loading. An implant (Brånemark Mark III), abutment (CeraOne), abutment screw (Unigrip), and the bone surrounding the implant were modeled using HyperMesh software. The threaded interfaces between screw/implant and implant/bone were designed as a spiral thread helix assigned with specific coefficient of friction values. Assembly simulation using ABAQUS and LS-DYNA was accomplished by applying a 32-Ncm horizontal torque load on the abutment screw (Step 1), then decreasing the torque load to 0 Ncm to simulate the wrench removal (Step 2). The postscript data were collected and reviewed by HyperMesh. A regression analysis was used to depict the relationships between the torque load and the mechanical parameters. During the 32-Ncm tightening sequence, the abutment screw elongated 13.3 mum. The tightening torque generated a 554-N clamping force at the abutment/implant interface and a 522-N preload. The von Mises stress values were 248 MPa in the abutment at the abutment-implant interface, 765 MPa at the top of the screw shaft, 694 MPa at the bottom of the screw shaft, 1365 MPa in the top screw thread, and 21 MPa in the bone at the top of the implant-bone interface. This study also identified various characteristic isosurface stress patterns. The maximum stress magnitude to complete the von Mises stress joint pattern in the present model was 107 MPa during screw tightening, and was reduced to 104 MPa with removal of the wrench. Various specific stress patterns were identified within all elements of the implant complex during the assembly simulation. During the torque moment application, the abutment screw was elongated, and every 1.0-mum elongation of the screw was equivalent to a 47.9-N increase of the preload in the implant complex. The ideal index to determine the preload amount was the contact force at the interface between the screw threads and the threaded screw bore. The isosurface mode identified various characteristic stress patterns developed within the implant complex at the various interfaces during the assembly simulation. These patterns are the (1) spiral and ying-yang pattern of the XY stress, (2) spring, cap, clamping, and preload pattern of the ZZ stress, and (3) bone holding and joint pattern of the von Mises stress.
Structure and mechanics of the Hayward-Rodgers Creek Fault step-over, San Francisco Bay, California
Parsons, T.; Sliter, R.; Geist, E.L.; Jachens, R.C.; Jaffe, B.E.; Foxgrover, A.; Hart, P.E.; McCarthy, J.
2003-01-01
A dilatational step-over between the right-lateral Hayward and Rodgers Creek faults lies beneath San Pablo Bay in the San Francisco Bay area. A key seismic hazard issue is whether an earthquake on one of the faults could rupture through the step-over, enhancing its maximum possible magnitude. If ruptures are terminated at the step-over, then another important issue is how strain transfers through the step. We developed a combined seismic reflection and refraction cross section across south San Pablo Bay and found that the Hayward and Rodgers Creek faults converge to within 4 km of one another near the surface, about 2 km closer than previously thought. Interpretation of potential field data from San Pablo Bay indicated a low likelihood of strike-slip transfer faults connecting the Hayward and Rodgers Creek faults. Numerical simulations suggest that it is possible for a rupture to jump across a 4-km fault gap, although special stressing conditions are probably required (e.g., Harris and Day, 1993, 1999). Slip on the Hayward and Rodgers Creek faults is building an extensional pull-apart basin that could contain hazardous normal faults. We investigated strain in the pull-apart using a finite-element model and calculated a ???0.02-MPa/yr differential stressing rate in the step-over on a least-principal-stress orientation nearly parallel to the strike-slip faults where they overlap. A 1- to 10-MPa stress-drop extensional earthquake is expected on normal faults oriented perpendicular to the strike-slip faults every 50-500 years. The last such earthquake might have been the 1898 M 6.0-6.5 shock in San Pablo Bay that apparently produced a small tsunami. Historical hydrographic surveys gathered before and after 1898 indicate abnormal subsidence of the bay floor within the step-over, possibly related to the earthquake. We used a hydrodynamic model to show that a dip-slip mechanism in north San Pablo Bay is the most likely 1898 rupture scenario to have caused the tsunami. While we find no strike-slip transfer fault between the Hayward and Rodgers Creek faults, a normal-fault link could enable through-going segmented rupture of both strike-slip faults and may pose an independent hazard of M ???6 earthquakes like the 1898 event.
Stress and deformation analysis of tapered cantilever castellated beam using numerical method
NASA Astrophysics Data System (ADS)
Ilham Maulana, Taufiq; Soebandono, Bagus; Satria Jagad, Beta; Prayuda, Hakas
2018-05-01
The castellated beam is often used in buildings because of its lighter weight compared with a normal steel beam. There are many types of an opening in the castellated beam, one of which is hexagonal openings. This paper will discuss the analysis of stress and deformation on castellated beam with a variation of openings diameter, space between holes, and angle of hexagonal openings. Furthermore, stress distribution on specimen will be seen under static loading. This study used IWF section 150x75x5x7 with 4 variations of the span with one fixed support, and yield strength is 400 MPa. Linear finite element analysis is used with 10-node tetrahedron solid element, by observing von Misses stress. The software used in this study are freeware, which is LISAFEA 8.0 for analyzing and FreeCAD for drawing. The result shows that value of stress and deformation for each sample is quite volatile, but it can be concluded that stress distribution around the opening is larger than in web and flange.
Salmingo, Remel Alingalan; Skytte, Tina Lercke; Traberg, Marie Sand; Mikkelsen, Lars Pilgaard; Henneberg, Kaj-Åge; Wong, Christian
2017-01-01
Perthes' disease is a destructive hip joint disorder characterized by malformation of the femoral head in young children. While the morphological changes have been widely studied, the biomechanical effects of these changes still need to be further elucidated. The objective of this study was to develop a method to investigate the biomechanical alterations in Perthes' disease by finite element (FE) contact modeling using MRI. The MRI data of a unilateral Perthes' case was obtained to develop the three-dimensional FE model of the hip joint. The stress and contact pressure patterns in the unaffected hip were well distributed. Elevated concentrations of stress and contact pressure were found in the Perthes' hip. The highest femoral cartilage von Mises stress 3.9 MPa and contact pressure 5.3 MPa were found in the Perthes' hip, whereas 2.4 MPa and 4.9 MPa in the healthy hip, respectively. The healthy bone in the femoral head of the Perthes' hip carries additional loads as indicated by the increase of stress levels around the necrotic-healthy bone interface. Identifying the biomechanical changes, such as the location of stress and contact pressure concentrations, is a prerequisite for the preoperative planning to obtain stress relief for the highly stressed areas in the malformed hip. This single-patient study demonstrated that the biomechanical alterations in Perthes' disease can be evaluated individually by patient-specific finite element contact modeling using MRI. A multi-patient study is required to test the strength of the proposed method as a pre-surgery planning tool.
Qu, Huan; Ajuwon, Kolapo M
2018-05-04
Heat stress (HS) leads to increased lipid storage and expression of cytosolic phosphoenolpyruvate carboxykinase (PCK1) in pig adipocytes. However, the importance of PCK1 activation and lipid storage in the adaptive response to HS is unknown. Therefore, in vitro experiments were conducted to investigate the effect of PCK1 inhibition with 3-mercaptopicolinic acid (3MPA) on lipid storage and adipocyte response during HS. In vitro culture of adipocytes under HS (41.0 °C) increased (P < 0.05) triacylglycerol accumulation compared with control (37.0 °C). HS increased (P < 0.05) reactive oxygen species level and 3MPA further upregulated (P < 0.05) its level. Heat shock protein 70 (HSP70) gene expression was induced (P < 0.05) by HS compared to control, and PCK1 inhibition with 3MPA attenuated (P < 0.05) its induction by HS. The endoplasmic reticulum (ER) stress markers, C/EBP homologous protein (CHOP) was also upregulated by HS and 3MPA further upregulated (P < 0.05) CHOP mRNA level. These results suggest that with inhibition of PCK1 during HS, in vitro cultured adipocytes were less able to induce adaptive responses such as upregulation of HSP70 and triglycerides, and this exacerbated ER stress during HS. Thus, PCK1 may function to alleviate ER stress that occurs during HS.
Polymerization shrinkage kinetics and shrinkage-stress in dental resin-composites.
Al Sunbul, Hanan; Silikas, Nick; Watts, David C
2016-08-01
To investigate a set of resin-composites and the effect of their composition on polymerization shrinkage strain and strain kinetics, shrinkage stress and the apparent elastic modulus. Eighteen commercially available resin-composites were investigated. Three specimens (n=3) were made per material and light-cured with an LED unit (1200mW/cm(2)) for 20s. The bonded-disk method was used to measure the shrinkage strain and Bioman shrinkage stress instrument was used to measure shrinkage stress. The shrinkage strain kinetics at 23°C was monitored for 60min. Maximum strain and stress was evaluated at 60min. The shrinkage strain rate was calculated using numerical differentiation. The shrinkage strain values ranged from 1.83 (0.09) % for Tetric Evoceram (TEC) to 4.68 (0.04) % for Beautifil flow plus (BFP). The shrinkage strain rate ranged from 0.11 (0.01%s(-1)) for Gaenial posterior (GA-P) to 0.59 (0.07) %s(-1) for BFP. Shrinkage stress values ranged from 3.94 (0.40)MPa for TET to 10.45 (0.41)MPa for BFP. The apparent elastic modulus ranged from 153.56 (18.7)MPa for Ever X posterior (EVX) to 277.34 (25.5) MPa for Grandio SO heavy flow (GSO). The nature of the monomer system determines the amount of the bulk contraction that occurs during polymerization and the resultant stress. Higher values of shrinkage strain and stress were demonstrated by the investigated flowable materials. The bulk-fill materials showed comparable result when compared to the traditional resin-composites. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Impact-induced tensional failure in rock
NASA Technical Reports Server (NTRS)
Ahrens, Thomas J.; Rubin, Allan M.
1993-01-01
Planar impact experiments were employed to induce dynamic tensile failure in Bedford limestone. Rock disks were impacted with aluminum and polymethyl methacralate flyer plates at velocities of 10 to 25 m/s. This resulted in tensile stresses in the range of 11 to 160 MPa. Tensile stress durations of 0.5 and 1.3 microsec induced microcrack growth which in many experiments were insufficient to cause complete spalling of the samples. Velocity reduction, and by inference microcrack production, occurred in samples subjected to stresses above 35 MPa in the 1.3-microsec PMMA experiments and 60 MPa in the 0.5-microsec aluminum experiments. Apparent fracture toughnesses of 2.4 and 2.5 MPa m exp 1/2 are computed for the 1.3- and 0.5-microsec experiments. Three-dimensional impact experiments were conducted on 20 cm-sized blocks of Bedford limestone and San Marcos gabbro. Compressional wave velocity deficits up to 50-60 percent were observed in the vicinity of the crater. The damage decreases as about r exp -1.5 from the crater, indicating a dependence on the magnitude and duration of the tensile pulse.
Release characteristics of reattached barnacles to non-toxic silicone coatings.
Kim, Jongsoo; Nyren-Erickson, Erin; Stafslien, Shane; Daniels, Justin; Bahr, James; Chisholm, Bret J
2008-01-01
Release mechanisms of barnacles (Amphibalanus amphitrite or Balanus amphitrite) reattached to platinum-cured silicone coatings were studied as a function of coating thickness (210-770 microm), elastic modulus (0.08-1.3 MPa), and shear rate (2-22 microm s(-1)). It was found that the shear stress of the reattached, live barnacles necessary to remove from the silicone coatings was controlled by the combined term (E/t)(0.5) of the elastic modulus (E) and thickness (t). As the ratio of the elastic modulus to coating thickness decreased, the barnacles were more readily removed from the silicone coatings, showing a similar release behavior to pseudobarnacles (epoxy glue). The barnacle mean shear stress ranged from 0.017 to 0.055 MPa whereas the pseudobarnacle mean shear stress ranged from 0.022 to 0.095 MPa.
Microhardness and Stress Analysis of Laser-Cladded AISI 420 Martensitic Stainless Steel
NASA Astrophysics Data System (ADS)
Alam, Mohammad K.; Edrisy, Afsaneh; Urbanic, Jill; Pineault, James
2017-03-01
Laser cladding is a surface treatment process which is starting to be employed as a novel additive manufacturing. Rapid cooling during the non-equilibrium solidification process generates non-equilibrium microstructures and significant amounts of internal residual stresses. This paper investigates the laser cladding of 420 martensitic stainless steel of two single beads produced by different process parameters (e.g., laser power, laser speed, and powder feed rate). Metallographic sample preparation from the cross section revealed three distinct zones: the bead zone, the dilution zone, and the heat-affected zone (HAZ). The tensile residual stresses were in the range of 310-486 MPa on the surface and the upper part of the bead zone. The compressive stresses were in the range of 420-1000 MPa for the rest of the bead zone and the dilution zone. The HAZ also showed tensile residual stresses in the range of 140-320 MPa for both samples. The post-cladding heat treatment performed at 565 °C for an hour had significantly reduced the tensile stresses at the surface and in the subsurface and homogenized the compressive stress throughout the bead and dilution zones. The microstructures, residual stresses, and microhardness profiles were correlated for better understanding of the laser-cladding process.
Effects of Cooling Rate on Precipitate Evolution and Residual Stresses in Al-Si-Mn-Mg Casting Alloy
NASA Astrophysics Data System (ADS)
Lee, Eunkyung; Walde, Caitlin; Mishra, Brajendra
2018-07-01
The residual stresses with different heat treatment conditions have been measured and correlated with the microstructural behavior of AA365. 30 and 100 K/min cooling of AA365 inhibited the transformation of precipitates under 773 K, respectively. The alloy cooled at 30 and 100 K/min exhibited tensile residual stresses of 6.2 and 5.4 MPa, respectively, while the alloy cooled at 1 and 10 K/min showed compressive stresses of - 12.8 and - 10.3 MPa, respectively. The formation β', β″, and other intermetallic compounds affected the compressive residual stresses, and that the fracture of the brittle intermetallic phases could reduce the extent of residual stresses in the lattice through plastic deformation.
Effects of Cooling Rate on Precipitate Evolution and Residual Stresses in Al-Si-Mn-Mg Casting Alloy
NASA Astrophysics Data System (ADS)
Lee, Eunkyung; Walde, Caitlin; Mishra, Brajendra
2018-03-01
The residual stresses with different heat treatment conditions have been measured and correlated with the microstructural behavior of AA365. 30 and 100 K/min cooling of AA365 inhibited the transformation of precipitates under 773 K, respectively. The alloy cooled at 30 and 100 K/min exhibited tensile residual stresses of 6.2 and 5.4 MPa, respectively, while the alloy cooled at 1 and 10 K/min showed compressive stresses of - 12.8 and - 10.3 MPa, respectively. The formation β', β″, and other intermetallic compounds affected the compressive residual stresses, and that the fracture of the brittle intermetallic phases could reduce the extent of residual stresses in the lattice through plastic deformation.
Fault Frictional Stability in a Nuclear Waste Repository
NASA Astrophysics Data System (ADS)
Orellana, Felipe; Violay, Marie; Scuderi, Marco; Collettini, Cristiano
2016-04-01
Exploitation of underground resources induces hydro-mechanical and chemical perturbations in the rock mass. In response to such disturbances, seismic events might occur, affecting the safety of the whole engineering system. The Mont Terri Rock Laboratory is an underground infrastructure devoted to the study of geological disposal of nuclear waste in Switzerland. At the site, it is intersected by large fault zones of about 0.8 - 3 m in thickness and the host rock formation is a shale rock named Opalinus Clay (OPA). The mineralogy of OPA includes a high content of phyllosilicates (50%), quartz (25%), calcite (15%), and smaller proportions of siderite and pyrite. OPA is a stiff, low permeable rock (2×10-18 m2), and its mechanical behaviour is strongly affected by the anisotropy induced by bedding planes. The evaluation of fault stability and associated fault slip behaviour (i.e. seismic vs. aseismic) is a major issue in order to ensure the long-term safety and operation of the repository. Consequently, experiments devoted to understand the frictional behaviour of OPA have been performed in the biaxial apparatus "BRAVA", recently developed at INGV. Simulated fault gouge obtained from intact OPA samples, were deformed at different normal stresses (from 4 to 30 MPa), under dry and fluid-saturated conditions. To estimate the frictional stability, the velocity-dependence of friction was evaluated during velocity steps tests (1-300 μm/s). Slide-hold-slide tests were performed (1-3000 s) to measure the amount of frictional healing. The collected data were subsequently modelled with the Ruina's slip dependent formulation of the rate and state friction constitutive equations. To understand the deformation mechanism, the microstructures of the sheared gouge were analysed. At 7 MPa normal stress and under dry conditions, the friction coefficient decreased from a peak value of μpeak,dry = 0.57 to μss,dry = 0.50. Under fluid-saturated conditions and same normal stress, the friction coefficient decreased from a peak value of μpeak,sat = 0.45 to μss,sat = 0.34. Additionally, it has been observed that the weakening distance Dw is smaller under fluid- saturated conditions (˜4 mm) compared to dry conditions (˜6 mm). Results showed a linear decrease of both peak friction and steady state friction when normal stress increases. When fluid- saturation degree of gouges is reduced, gouge samples underwent a transition from velocity strengthening to velocity weakening behaviour, thus indicating a potentially unstable frictional behaviour of the fault. Furthermore, under both saturated and dry conditions, the frictional healing rate showed a low recovery of the friction coefficient under different holding times. Our experiments indicate that the frictional behaviour of Opalinus Clay is characterized by complex processes depending upon normal stress, sliding velocity, and saturation degree of the samples. This complexity highlights the need for further experiments in order to better evaluate the seismic risk during long-term nuclear waste disposal within the OPA clay formation.
NASA Astrophysics Data System (ADS)
Gurnis, M.; Ratnaswamy, V.; Stadler, G.; Rudi, J.; Liu, X.; Ghattas, O.
2017-12-01
We are developing high-resolution inverse models for plate motions and mantle flow to recover the degree of mechanical coupling between plates and the non-linear and plastic parameters governing viscous flow within the lithosphere and mantle. We have developed adjoint versions of the Stokes equations with fully non-linear viscosity with a cost function that measures the fit with plate motions and with regional constrains on effective upper mantle viscosity (from post-glacial rebound and post seismic relaxation). In our earlier work, we demonstrate that when the temperature field is known, the strength of plate boundaries, the yield stress and strain rate exponent in the upper mantle are recoverable. As the plate boundary coupling drops below a threshold, the uncertainty of the inferred parameters increases due to insensitivity of plate motion to plate coupling. Comparing the trade-offs between inferred rheological parameters found from a Gaussian approximation of the parameter distribution and from MCMC sampling, we found that the Gaussian approximation—which is significantly cheaper to compute—is often a good approximation. We have extended our earlier method such that we can recover normal and shear stresses within the zones determining the interface between subducting and over-riding plates determined through seismic constraints (using the Slab1.0 model). We find that those subduction zones with low seismic coupling correspond with low inferred values of mechanical coupling. By fitting plate motion data in the optimization scheme, we find that Tonga and the Marianas have the lowest values of mechanical coupling while Chile and Sumatra the highest, among the subduction zones we have studies. Moreover, because of the nature of the high-resolution adjoint models, the subduction zones with the lowest coupling have back-arc extension. Globally we find that the non-linear stress-strain exponent, n, is about 3.0 +/- 0.25 (in the upper mantle and lithosphere) and a pressure-independent yield stress is 150 +/- 25 MPa. The stress in the shear zones is just tens of MPa, and in preliminary models, we find that both the shear and the normal stresses are elevated in the coupled compared to the uncoupled subduction zones.
Rohamare, Yogita; Dhumal, K N; Nikam, T D
2014-09-01
Seed germination and subsequent metabolic changes in Ajowan (Trachyspermum ammi L.) (NRCSS AA-2) seedlings was studied under water limiting conditions, imposed by increasing concentrations of polyethylene glycol (PEG 6000). Five water stress conditions (0, -0.05, -0.1, -0.15 and -0.2 MPa) were created in the laboratory in a completely randomized design. The results revealed that water stress (-0.2 MPa) significantly reduced seed germination components like final germination percent (80%) radical (64%) and plumule (63%) length, fresh (63%) and dry (74%) weight of seedlings and vigor index (SVI) by 92% over control. Decrease in osmotic potential resulted in decreased protein content (56%) with concomitant increase in total sugars (55%) at -0.2 MPa as compared to control. Significant increase in free proline and glycine betaine content by 1.5 to 2 folds was observed at the highest water stress condition. The seedlings exhibited increased activity of superoxide dismutase and peroxidase under stressed condition. In the present study, it was found that Ajowan was a moderately drought tolerant species at laboratory level.
Comparison of stress on knee cartilage during kneeling and standing using finite element models.
Wang, Yuxing; Fan, Yubo; Zhang, Ming
2014-04-01
Kneeling is a common activity required for both occupational and cultural reasons and has been shown to be associated with an increased risk of knee disorders. While excessive contact pressure is considered to be a possible aggressor, it is not clear whether and to what extent stress on the cartilage during kneeling is different from that while standing. In this study, finite element models of the knee joint for both kneeling and standing positions were constructed. The results indicated differences in high-stress regions between kneeling and standing. And both the peak von-Mises stress and contact pressure on the cartilage were larger in kneeling. During kneeling, the contact pressure reached 4.25 MPa under a 300 N compressive load. It then increased to 4.66 MPa at 600 N and 5.15 MPa at 1000 N. Changing the Poisson's ratio of the cartilage, which represents changes in compressibility caused by different loading rates, was found to have an influence on the magnitude of stress. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Basement diapirism associated with the emplacement of major ophiolite nappes: Some constraints
NASA Astrophysics Data System (ADS)
Andrews-Speed, C. P.; Johns, C. C.
1985-09-01
The association of basement uplifts with major ophiolite nappes in some Phanerozoic orogenic belts suggests that gravitational instability results in the local diapiric uplift of the basement following ophiolite emplacement. In previous analyses of diapirism in crustal silicate rocks, viscous behaviour of rocks has been assumed. It is argued that this assumption is not valid. An alternative analysis is offered to determine whether or not the stress would be sufficient for diapirism to occur. The negative buoyancy stress resulting from the emplacement of an ophiolite nappe 5-15 km thick onto continental basement may be in the range 10-50 MPa. If the horizontal deviatoric stress is zero, this will be the maximum principal compressive stress. After ophiolite emplacement the thermal profile through the ophiolite and the basement will relax from a saw-tooth form to an equilibrium profile. If the ophiolite is young and thick there will be a zone of ductile strain in the lower part of the ophiolite and in the upper part of the continental basement. Results from steady-state creep experiments suggest that temperatures in this zone may be high enough for a short time after ophiolite emplacement (3 Ma or more) for the rocks in this zone to deform at geologically significant strain rates (10 -14 or greater) in response to the negative buoyancy stress. A thin ophiolite or rapid erosion will result in this ductile zone being absent or too short-lived for significant strain. Aquaeous fluids may reduce the strength of brittle rocks by decreasing the effective normal stress or by encouraging pressure solution creep. Evidence suggests that the deviatoric stress across presently active faults may be as low at 10 MPa. Thus diapirism in response to ophiolite emplacement may occur through brittle strain. Gravity spreading within the ophiolite is an alternative mechanism for accommodating the gravitational instability. The critical evidence lies in the field.
NASA Astrophysics Data System (ADS)
Calderoni, G.
2015-12-01
We investigate the variability of Brune stress drop in the normal fault system activated by the Mw 6.1 L'Aquila earthquake in the complex tectonic setting of the central Apennine. We re-analyze the dataset used by Calderoni et al. [2013], augmented by additional earthquakes and additional records at closer distance stations. We refine the EGF method used by Calderoni et al. [2013] applying more restrictive criteria in the selection of the EGF events and removing outliers based on statistical criteria. We focus on spatio-temporal variations in the Paganica fault before the mainshock. Using 51 earthquakes (9 foreshocks, the mainshock, and 42 aftershocks), we show that, after the Mw 4.1 largest foreshock of 30 March 2009, the Brune stress drop goes down to the lowest values (0.4 MPa). This largest foreshock was indicated as a marker for the onset of the temporal variations in efficiency of fault-zone guided waves (Calderoni et al., 2015) and other independent seismic parameters such as the b value [Papadopoulos et al., 2010; Sugan et al., 2014], and the P-to-S wave velocity ratio [Di Luccio et al., 2010; Lucente et al., 2010]. The low values of stress drop after the Mw 4.1 foreshock are consistent with the increase of pore pressure invoked by other authors to explain the increase of the Vp/Vs ratio and the decrease of Vs in the damage fault zone. In contrast, immediate foreshocks occurring a few hours before the mainshock very close to its nucleation are characterized by the highest values observed for foreshocks (≈5 MPa). These high stress drop foreshocks are located in the fault patch where a low b value anomaly indicates highly stressed rock before the main shock rupture [Sugan et al., 2014]. These results provide further evidence to previous observations before major earthquakes suggesting that stress drop variations can provide insight into the preparatory phase of impending earthquakes.
Elastic and Plastic Behavior of an Ultrafine-Grained Mg Reinforced with BN Nanoparticles
NASA Astrophysics Data System (ADS)
Trojanová, Zuzanka; Dash, Khushbu; Máthis, Kristián; Lukáč, Pavel; Kasakewitsch, Alla
2018-04-01
Pure microcrystalline magnesium (µMg) was reinforced with hexagonal boron nitride (hBN) nanoparticles and was fabricated by powder metallurgy process followed by hot extrusion. For comparison pure magnesium powder was consolidated by hot extrusion too. Both materials exhibited a significant fiber texture. Mg-hBN nanocomposites (nc) and pure Mg specimens were deformed between room temperature and 300 °C under tension and compression mode. The yield strength and ultimate tensile and compression strength as well as characteristic stresses were evaluated and reported. The tensile and compressive strengths of Mg-hBN nc are quiet superior in values compared to monolithic counterpart as well as Mg alloys. The compressive yield strength of µMg was recorded as 90 MPa, whereas the Mg-hBN nancomposite shows 125 MPa at 200 °C. The tensile yield strength of µMg was computed as 67 MPa which is quite lower as compared to Mg-hBN nanocomposite's value which was recorded as 157 MPa at 200 °C. Under tensile stress the true stress-strain curves are flat in nature, whereas the stress-strain curves observed in compression at temperatures up to 100 °C exhibited small local maxima at the onset of deformation followed by a significant work hardening.
NASA Astrophysics Data System (ADS)
Mertens, R.; Vrancken, B.; Holmstock, N.; Kinds, Y.; Kruth, J.-P.; Van Humbeeck, J.
Powder bed preheating is a promising development in selective laser melting (SLM), mainly applied to avoid large thermal stresses in the material. This study analyses the effect of in-process preheating on microstructure, mechanical properties and residual stresses during SLM of H13 tool steel. Sample parts are produced without any preheating and are compared to the corresponding parts made with preheating at 100°, 200°, 300°, and 400°C. Interestingly, internal stresses at the top surface of the parts evolve from compressive (-324MPa) without preheating to tensile stresses (371MPa) with preheating at 400°C. Nevertheless, application of powder bed preheating results in a more homogeneous microstructure with better mechanical properties compared to H13 SLM parts produced without preheating. The fine bainitic microstructure leads to hardness values of 650-700Hv and ultimate tensile strength of 1965MPa, which are comparable to or even better than those of conventionally made and heat treated H13 tool steel.
Fatigue strength of socket welded pipe joint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higuchi, Makoto; Hayashi, Makoto; Yamauchi, Takayoshi
1995-12-01
Fully reversed four point bending fatigue tests were carried out on small diameter socket welded joints made of carbon steels. Experimental parameters were pipe diameter, thicknesses of pipe and socket wall, throat depth and shape of fillet welds, slip-on and diametral gaps in the socket welding, lack of penetration at the root of fillet welds, and peening of fillet welds. In most cases a fatigue crack started from the root of the fillet, but in the case of higher stress amplitude, it tended to start from the toe of fillet. The standard socket welded joint for a pipe with amore » 50 mm nominal diameter showed a relatively low fatigue strength of 46 MPa in stress amplitude at the 10{sup 7} cycles failure life. This value corresponds to about 1/5 of that for the smoothed base metal specimens in axial fatigue. The fatigue strength decreased with increasing pipe diameter, and increased with increasing thickness of the pipe and socket wall. The effects of throat depth and shape of fillet welds on fatigue strength were not significant. Contrary to expectation, the fatigue strength of a socket welded joint without slip-on gap is Higher than that of the joint with a normal gap. A lack of penetration at the root deleteriously reduced fatigue strength, showing 14 MPa in stress amplitude at the 10{sup 7} cycles failure life for the 50 mm diameter socket joint.« less
Truong, Quynh A; Bhatia, Harpreet Singh; Szymonifka, Jackie; Zhou, Qing; Lavender, Zachary; Waxman, Aaron B; Semigran, Marc J; Malhotra, Rajeev
We aimed to develop a severity classification system of the main pulmonary artery diameter (mPA) and its ratio to the ascending aorta diameter (ratio PA) for the diagnosis and prognosis of pulmonary hypertension (PH) on computed tomography (CT) scans. In 228 patients (136 with PH) undergoing right heart catheterization (RHC) and CT for dyspnea, we measured mPA and ratio PA. In a derivation cohort (n = 114), we determined cutpoints for a four-tier severity grading system that would maximize sensitivity and specificity, and validated it in a separate cohort (n = 114). Cutpoints for mPA were defined with ≤27 mm(F) and ≤29 mm(M) as the normal reference range; mild as >27 to <31 mm(F) and >29 to <31 mm(M); moderate≥31-34 mm; and severe>34 mm. Cutpoints for ratio PA were defined as normal ≤0.9; mild>0.9 to 1.0; moderate>1.0 to 1.1; and severe>1.1. Sensitivities for normal tier were 99% for mPA and 93% for ratio PA; while specificities for severe tier were 98% for mPA>34 mm and 100% for ratio PA>1.1. C-statistics for four-tier mPA and ratio PA were both 0.90 (derivation) and both 0.85 (validation). Severity of mPA and ratio PA corresponded to hemodynamics by RHC and echocardiography (both p < 0.001). Moderate-severe mPA values of ≥31 mm and ratio PA>1.1 had worse survival than normal values (all p ≤ 0.01). A CT-based four-tier severity classification system of PA diameter and its ratio to the aortic diameter has high accuracy for PH diagnosis with increased mortality in patients with moderate-severe severity grades. These results may support clinical utilization on chest and cardiac CT reports. Copyright © 2018 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.
Yoshikawa, Masanobu; Kosaka, Kenichi; Seki, Hirohumi; Kimoto, Tsunenobu
2016-07-01
We measured the depolarized and polarized Raman spectra of a 4H-SiC metal-oxide-semiconductor field-effect transistor (MOSFET) and found that compressive stress of approximately 20 MPa occurs under the source and gate electrodes and tensile stress of approximately 10 MPa occurs between the source and gate electrodes. The experimental result was in close agreement with the result obtained by calculation using the finite element method (FEM). A combination of Raman spectroscopy and FEM provides much data on the stresses in 4H-SiC MOSFET. © The Author(s) 2016.
An Embedded Stress Sensor for Concrete SHM Based on Amorphous Ferromagnetic Microwires
Olivera, Jesús; González, Margarita; Fuente, José Vicente; Varga, Rastislav; Zhukov, Arkady; Anaya, José Javier
2014-01-01
A new smart concrete aggregate design as a candidate for applications in structural health monitoring (SHM) of critical elements in civil infrastructure is proposed. The cement-based stress/strain sensor was developed by utilizing the stress/strain sensing properties of a magnetic microwire embedded in cement-based composite (MMCC). This is a contact-less type sensor that measures variations of magnetic properties resulting from stress variations. Sensors made of these materials can be designed to satisfy the specific demand for an economic way to monitor concrete infrastructure health. For this purpose, we embedded a thin magnetic microwire in the core of a cement-based cylinder, which was inserted into the concrete specimen under study as an extra aggregate. The experimental results show that the embedded MMCC sensor is capable of measuring internal compressive stress around the range of 1–30 MPa. Two stress sensing properties of the embedded sensor under uniaxial compression were studied: the peak amplitude and peak position of magnetic switching field. The sensitivity values for the amplitude and position within the measured range were 5 mV/MPa and 2.5 μs/MPa, respectively. PMID:25347582
NASA Astrophysics Data System (ADS)
Guglielmi, Y.; Nussbaum, C.; Birkholzer, J. T.; De Barros, L.; Cappa, F.
2017-12-01
There is a large spectrum of fault slow rupture processes such as stable creep and slow slip that radiate no or little seismic energy, and which relationships to normal earthquakes and fault permeability variations are enigmatic. Here we present measurements of a fault slow rupture, permeability variation and seismicity induced by fluid-injection in a fault affecting the Opalinus clay (Mt Terri URL, Switzerland) at a depth of 300 m. We observe multiple dilatant slow slip events ( 0.1-to-30 microm/s) associated with factor-of-1000 increase of permeability, and terminated by a magnitude -2.5 main seismic event associated with a swarm of very small magnitude ones. Using fully coupled numerical modeling, we calculate that the short term velocity strengthening behavior observed experimentally at laboratory scale is overcome by longer slip weakening that may be favored by slip induced dilation. Two monitoring points set across the fault allow estimating that, at the onset of the seismicity, the radius of the fault patch invaded by pressurized fluid is 9-to-11m which is in good accordance with a fault instability triggering when the dimensions of the critical slip distance are overcome. We then observe that the long term slip weakening is associated to an exponential permeability increase caused by a cumulated effective normal stress drop of about 3.4MPa which controls the successive slip activation of multiple fracture planes inducing a 0.1MPa shear stress drop in the fault zone. Therefore, our data suggest that the induced earthquake that terminated the rupture sequence may have represented enough dynamic stress release to arrest the fault permeability increase, suggesting the high sensitivity of the slow rupture processes to the structural heterogeneity of the fault zone hydromechanical properties.
Frictional properties of exhumed fault gouges in DFDP-1 cores, Alpine Fault, New Zealand
Boulton, Carolyn; Moore, Diane E.; Lockner, David A.; Toy, Virginia G.; Townend, John; Southerland, Rupert
2014-01-01
Principal slip zone gouges recovered during the Deep Fault Drilling Project (DFDP-1), Alpine Fault, New Zealand, were deformed in triaxial friction experiments at temperatures, T, of up to 350°C, effective normal stresses, σn′, of up to 156 MPa, and velocities between 0.01 and 3 µm/s. Chlorite/white mica-bearing DFDP-1A blue gouge, 90.62 m sample depth, is frictionally strong (friction coefficient, μ, 0.61–0.76) across all experimental conditions tested (T = 70–350°C, σn′ = 31.2–156 MPa); it undergoes a transition from positive to negative rate dependence as T increases past 210°C. The friction coefficient of smectite-bearing DFDP-1B brown gouge, 128.42 m sample depth, increases from 0.49 to 0.74 with increasing temperature and pressure (T = 70–210°C, σn′ = 31.2–93.6 MPa); the positive to negative rate dependence transition occurs as T increases past 140°C. These measurements indicate that, in the absence of elevated pore fluid pressures, DFDP-1 gouges are frictionally strong under conditions representative of the seismogenic crust.
NASA Astrophysics Data System (ADS)
le Graverend, J.-B.
2018-05-01
A lattice-misfit-dependent damage density function is developed to predict the non-linear accumulation of damage when a thermal jump from 1050 °C to 1200 °C is introduced somewhere in the creep life. Furthermore, a phenomenological model aimed at describing the evolution of the constrained lattice misfit during monotonous creep load is also formulated. The response of the lattice-misfit-dependent plasticity-coupled damage model is compared with the experimental results obtained at 140 and 160 MPa on the first generation Ni-based single crystal superalloy MC2. The comparison reveals that the damage model is well suited at 160 MPa and less at 140 MPa because the transfer of stress to the γ' phase occurs for stresses above 150 MPa which leads to larger variations and, therefore, larger effects of the constrained lattice misfit on the lifetime during thermo-mechanical loading.
Correlation between physical anomaly and behavioral abnormalities in Down syndrome
Bhattacharyya, Ranjan; Sanyal, Debasish; Roy, Krishna; Bhattacharyya, Sumita
2010-01-01
Objective: The minor physical anomaly (MPA) is believed to reflect abnormal development of the CNS. The aim is to find incidence of MPA and its behavioral correlates in Down syndrome and to compare these findings with the other causes of intellectual disability and normal population. Materials and Methods: One-hundred and forty intellectually disabled people attending a tertiary care set-up and from various NGOs are included in the study. The age-matched group from normal population was also studied for comparison. MPA are assessed by using Modified Waldrop scale and behavioral abnormality by Diagnostic assessment scale for severely handicapped (DASH II scale). Results: The Down syndrome group had significantly more MPA than other two groups and most of the MPA is situated in the global head region. There is strong correlation (P < 0.001) between the various grouped items of Modified Waldrop scale. Depression subscale is correlated with anomalies in the hands (P < 0.001), feet and Waldrop total items (P < 0.005). Mania item of DASH II scale is related with anomalies around the eyes (P < 0.001). Self-injurious behavior and total Waldrop score is negatively correlated with global head. Conclusion: Down syndrome group has significantly more MPA and a pattern of correlation between MPA and behavioral abnormalities exists which necessitates a large-scale study. PMID:21559153
NASA Astrophysics Data System (ADS)
Qu, Dandan; Zhou, Zhangjian; Yum, Youngjin; Aktaa, Jarir
2014-12-01
A rapidly solidified foil-type Ti-Zr based amorphous filler with a melting temperature of 850 °C was used to braze tungsten to Cu-Cr-Zr alloy for water cooled divertors and plasma facing components application. Brazed joints of dissimilar materials suffer from a mismatch in coefficients of thermal expansion. In order to release the residual stress caused by the mismatch, brazed joints of tungsten and Cu-Cr-Zr alloy using different interlayers were studied. The shear strength tests of brazed W/Cu joints show that the average strength of the joint with a W70Cu30 composite plate interlayer reached 119.8 MPa, and the average strength of the joint with oxygen free high conductivity copper (OFHC Cu)/Mo multi-interlayers reached 140.8 MPa, while the joint without interlayer was only 16.6 MPa. Finite element method (FEM) has been performed to investigate the stress distribution and effect of stress relief interlayers. FEM results show that the maximum von Mises stress occurs in the tungsten/filler interface and that the filler suffers the peak residual stresses and becomes the weakest zone. And the use of OFHC Cu/Mo multi-interlayers can reduce the residual stress significantly, which agrees with the mechanical experiment data.
NASA Astrophysics Data System (ADS)
Dhansay, Taufeeq; Navabpour, Payman; de Wit, Maarten; Ustaszewski, Kamil
2017-10-01
Understanding the kinematics of pre-existing fractures under the present-day stress field is an indispensable prerequisite for hydraulically increasing fracture-induced rock permeability, i.e. through hydraulic stimulation, which forms the basis of economically viable exploitation of resources such as natural gas and geothermal energy. Predicting the likelihood of reactivating pre-existing fractures in a target reservoir at particular fluid injection pressures requires detailed knowledge of the orientations and magnitudes of the prevailing stresses as well as pore fluid pressures. In the absence of actual in-situ stress measurements, e.g. derived from boreholes, as is mostly the case in previously underexplored ;frontier areas;, such predictions are often difficult. In this study, the potential of reactivating pre-existing fractures in a likely exploration region of the southern Karoo of South Africa is investigated. The orientations of the present-day in-situ stresses were assessed from surrounding earthquake focal mechanisms, implying c. NW-SE oriented maximum horizontal stress and a stress regime changing between strike-slip and normal faulting. A comparison with paleo-stress axes derived from inverted fault-slip data suggests that the stress field very likely did not experience any significant reorientation since Cretaceous times. Maximum possible in-situ stress magnitudes are estimated by assuming that these are limited by frictional strength on pre-existing planes and subsequently, slip and dilation tendency calculations were performed, assuming hydrostatic pore fluid pressures of c. 32 MPa at targeted reservoir depth. The results suggest that prevalent E-W and NW-SE oriented sub-vertical fractures are likely to be reactivated at wellhead pressures exceeding hydrostatic pore fluid pressures by as little as 2-5 MPa, while less prevalent sub-horizontal and moderately inclined fractures require higher wellhead pressures that are still technically feasible. Importantly, actual in-situ stress measurements are essential to test these theoretical considerations and to guide the design of safe and effective exploration linked to fracture manipulation, such as shale gas recovery.
New Laboratory Observations of Thermal Pressurization Weakening
NASA Astrophysics Data System (ADS)
Badt, N.; Tullis, T. E.; Hirth, G.
2017-12-01
Dynamic frictional weakening due to pore fluid thermal pressurization has been studied under elevated confining pressure in the laboratory, using a rotary-shear apparatus having a sample with independent pore pressure and confining pressure systems. Thermal pressurization is directly controlled by the permeability of the rocks, not only for the initiation of high-speed frictional weakening but also for a subsequent sequence of high-speed sliding events. First, the permeability is evaluated at different effective pressures using a method where the pore pressure drop and the flow-through rate are compared using Darcy's Law as well as a pore fluid oscillation method, the latter method also permitting measurement of the storage capacity. Then, the samples undergo a series of high-speed frictional sliding segments at a velocity of 2.5 mm/s, under an applied confining pressure and normal stress of 45 MPa and 50 MPa, respectively, and an initial pore pressure of 25 MPa. Finally the rock permeability and storage capacity are measured again to assess the evolution of the rock's pore fluid properties. For samples with a permeability of 10-20 m2 thermal pressurization promotes a 40% decrease in strength. However, after a sequence of three high-speed sliding events, the magnitude of weakening diminishes progressively from 40% to 15%. The weakening events coincide with dilation of the sliding interface. Moreover, the decrease in the weakening degree with progressive fast-slip events suggest that the hydraulic diffusivity may increase locally near the sliding interface during thermal pressurization-enhanced slip. This could result from stress- or thermally-induced damage to the host rock, which would perhaps increase both permeability and storage capacity, and so possibly decrease the susceptibility of dynamic weakening due to thermal pressurization in subsequent high-speed sliding events.
Publisher Correction: Hierarchical self-entangled carbon nanotube tube networks.
Schütt, Fabian; Signetti, Stefano; Krüger, Helge; Röder, Sarah; Smazna, Daria; Kaps, Sören; Gorb, Stanislav N; Mishra, Yogendra Kumar; Pugno, Nicola M; Adelung, Rainer
2018-01-09
The original version of this Article was missing the ORCID ID of Professor Nicola Pugno.Also in the original version of this Article, the third to last sentence of the fourth paragraph of the Results incorrectly read 'However, the stepwise addition of CNTs increases the self-entanglement and thereby the compressive strength value as well as the Young's modulus (up to 2.5 MPa (normalized by density 6.4) and 24.5 MPa (normalized by density 62 MPa cm 3 g -1 ).' The correct version adds the units 'MPa cm 3 g -1 ' to '6.4'.Finally, in the original version of this Article, the y-axis label of Figure 3f incorrectly read 'Comp. strengthy'. The new version corrects that to 'Comp. Strength'.These errors have now been corrected in both the PDF and the HTML versions of the Article.
NASA Astrophysics Data System (ADS)
Xie, Hongtao; Mead, James L.; Wang, Shiliang; Fatikow, Sergej; Huang, Han
2018-06-01
The adhesion and friction between two Al2O3 nanowires (NWs) was characterized by the use of optical microscopy based nanomanipulation, with which peeling, shearing and sliding was performed. The elastically deformed shape of the NWs during peeling and shearing was used to calculate the adhesion and frictional forces; force sensing was not required. The obtained adhesion stress between two Al2O3 NWs varied from 0.14 to 0.25 MPa, lower than that observed for carbon nanotube junctions, and was attributed to van der Waals attraction. Stick-slip was observed during the shearing and sliding of two NWs, and was the consequence of discrete contact between surface asperities. The obtained static and kinetic frictional stresses varied from 0.7 to 1.3 MPa and 0.4 to 0.8 MPa, respectively; significantly greater than the obtained adhesion stress.
Xie, Hongtao; Mead, James L; Wang, Shiliang; Fatikow, Sergej; Huang, Han
2018-06-01
The adhesion and friction between two Al 2 O 3 nanowires (NWs) was characterized by the use of optical microscopy based nanomanipulation, with which peeling, shearing and sliding was performed. The elastically deformed shape of the NWs during peeling and shearing was used to calculate the adhesion and frictional forces; force sensing was not required. The obtained adhesion stress between two Al 2 O 3 NWs varied from 0.14 to 0.25 MPa, lower than that observed for carbon nanotube junctions, and was attributed to van der Waals attraction. Stick-slip was observed during the shearing and sliding of two NWs, and was the consequence of discrete contact between surface asperities. The obtained static and kinetic frictional stresses varied from 0.7 to 1.3 MPa and 0.4 to 0.8 MPa, respectively; significantly greater than the obtained adhesion stress.
Water stress impacts on bacterial carbon monoxide oxidation on recent volcanic deposits.
Weber, Carolyn F; King, Gary M
2009-12-01
Water availability oscillates dramatically on young volcanic deposits, and may control the distribution and activity of microbes during early stages of biological succession. Carbon monoxide (CO)-oxidizing bacteria are among the pioneering colonists on volcanic deposits and are subjected to these water stresses. We report here the effects of water potential on CO-oxidizing bacteria in unvegetated (bare) and vegetated (canopy) sites on a 1959 volcanic deposit on Kilauea Volcano (Hawai'i). Time course measurements of water potential showed that average water potentials in the surface layer (0-1 cm) of canopy soil remained between -0.1 and 0 MPa, whereas dramatic diurnal oscillations (for example, between -60 and 0 MPa) occur in bare site surface cinders. During a moderate drying event in situ (-1.7 to 0 MPa), atmospheric CO consumption by intact bare site cores decreased 2.7-fold. For bare and canopy surface samples, maximum potential CO oxidation rates decreased 40 and 60%, respectively, when water potentials were lowered from 0 to -1.5 MPa in the laboratory. These observations indicated that CO oxidation is moderately sensitive to changes in water potential. Additional analyses showed that CO oxidation resumes within a few hours of rehydration, even after desiccation at -150 MPa for 63 days. Samples from both sites exposed to multiple cycles of drying and rewetting (-80 to 0 MPa), lost significant activity after the first cycle, but not after subsequent cycles. Similar responses of CO oxidation in both sites suggested that active CO-oxidizing communities in bare and canopy sites do not express differential adaptations to water stress.
Fault reactivation and seismicity risk from CO2 sequestration in the Chinshui gas field, NW Taiwan
NASA Astrophysics Data System (ADS)
Sung, Chia-Yu; Hung, Jih-Hao
2015-04-01
The Chinshui gas field located in the fold-thrust belt of western Taiwan was a depleted reservoir. Recently, CO2 sequestration has been planned at shallower depths of this structure. CO2 injection into reservoir will generate high fluid pressure and trigger slip on reservoir-bounding faults. We present detailed in-situ stresses from deep wells in the Chinshui gas field and evaluated the risk of fault reactivation for underground CO2 injection. The magnitudes of vertical stress (Sv), formation pore pressure (Pf) and minimum horizontal stress (Shmin) were obtained from formation density logs, repeat formation tests, sonic logs, mud weight, and hydraulic fracturing including leak-off tests and hydraulic fracturing. The magnitude of maximum horizontal stress (SHmax) was constrained by frictional limit of critically stressed faults. Results show that vertical stress gradient is about 23.02 MPa/km (1.02 psi/ft), and minimum horizontal stress gradient is 18.05 MPa/km (0.80 psi/ft). Formation pore pressures were hydrostatic at depths 2 km, and increase with a gradient of 16.62 MPa/km (0.73 psi/ft). The ratio of fluid pressure and overburden pressure (λp) is 0.65. The upper bound of maximum horizontal stress constrained by strike-slip fault stress regime (SHmax>Sv>Shmin) and coefficient of friction (μ=0.6) is about 18.55 MPa/km (0.82 psi/ft). The orientation of maximum horizontal stresses was calculated from four-arm caliper tools through the methodology suggested by World Stress Map (WMS). The mean azimuth of preferred orientation of borehole breakouts are in ~65。N. Consequently, the maximum horizontal stress axis trends in 155。N and sub-parallel to the far-field plate-convergence direction. Geomechanical analyses of the reactivation of pre-existing faults was assessed using 3DStress and Traptester software. Under current in-situ stress, the middle block fault has higher slip tendency, but still less than frictional coefficient of 0.6 a common threshold value for motion on incohesive faults. The results also indicate that CO2 injection in the Chinshui gas field will not compromise the stability of faults.
Evaluating the relationship between muscle and bone modeling response in older adults.
Reider, Lisa; Beck, Thomas; Alley, Dawn; Miller, Ram; Shardell, Michelle; Schumacher, John; Magaziner, Jay; Cawthon, Peggy M; Barbour, Kamil E; Cauley, Jane A; Harris, Tamara
2016-09-01
Bone modeling, the process that continually adjusts bone strength in response to prevalent muscle-loading forces throughout an individual's lifespan, may play an important role in bone fragility with age. Femoral stress, an index of bone modeling response, can be estimated using measurements of DXA derived bone geometry and loading information incorporated into an engineering model. Assuming that individuals have adapted to habitual muscle loading forces, greater stresses indicate a diminished response and a weaker bone. The purpose of this paper was to evaluate the associations of lean mass and muscle strength with the femoral stress measure generated from the engineering model and to examine the extent to which lean mass and muscle strength account for variation in femoral stress among 2539 healthy older adults participating in the Health ABC study using linear regression. Mean femoral stress was higher in women (9.51, SD=1.85Mpa) than in men (8.02, SD=1.43Mpa). Percent lean mass explained more of the variation in femoral stress than did knee strength adjusted for body size (R(2)=0.187 vs. 0.055 in men; R(2)=0.237 vs. 0.095 in women). In models adjusted for potential confounders, for every percent increase in lean mass, mean femoral stress was 0.121Mpa lower (95% CI: -0.138, -0.104; p<0.001) in men and 0.139Mpa lower (95% CI: -0.158, -0.121; p<0.001) in women. The inverse association of femoral stress with lean mass and with knee strength did not differ by category of BMI. Results from this study provide insight into bone modeling differences as measured by femoral stress among older men and women and indicate that lean mass may capture elements of bone's response to load. Copyright © 2016 Elsevier Inc. All rights reserved.
Stress drops for intermediate-depth intraslab earthquakes beneath Hokkaido, northern Japan
NASA Astrophysics Data System (ADS)
Kita, S.; Katsumata, K.
2015-12-01
Spatial variations in the stress drop for 1726 intermediate-depth intraslab earthquakes in the subducting Pacific plate beneath Hokkaido were examined, using precisely relocated hypocenters, the corner frequencies of events, and detailed determined geometry of the upper interface of the Pacific plate. The analysis results show that median stress drop for intraslab earthquakes generally increases with an increase in depth from 10 to 157 Mpa at depths of 70-300 km. Median stress drops for events in the oceanic crust decrease (9.9-6.8 MPa) at depths of 70-120 km and increase (6.8-17 MPa) at depths of 120- 170 km, whereas median stress drop for events in the oceanic mantle decrease (21.6-14.0 MPa) at depths of 70-170 km, where the geometry of the Pacific plate is well determined. The increase in stress drop with depth in the oceanic crust at depths of 120-170 km can be explained by a lithofacies change (increases in velocity and density and a decrease in the water content) due to the phase change with dehydration in the oceanic crust. At depths of 70-110 km, the decrease in the median stress drop in the oceanic crust would also be explained by that the temperature-induced rigidity decrease would be larger than that of the rigidity increase caused by lithofacies change and water content. Stress drops for events in the oceanic mantle were larger than those for events in the oceanic crust at depths of 70-120 km. Differences in both the rigidity of the rock types and in the rupture mechanisms for events between the oceanic crust and mantle could be causes for the stress drop differences within a slab. These analysis results can help clarify the nature of intraslab earthquakes and provide information useful for the prediction of strong motion associated with earthquakes in the slab at intermediate depths.
Low-Stress Upper Plate Near Subduction Zones and Implications for Temporal Changes in Loading Forces
NASA Astrophysics Data System (ADS)
Wang, K.; Hu, Y.; Yoshida, K.
2016-12-01
Subduction megathrusts are weak, often with effective friction coefficients as low as 0.03. Consequently, differential stress (S1 - S3) in the nearby upper plate is low. Compression due to plate coupling and tension due to gravity are in a subtle balance that can be tipped by small perturbations. For example, the 2011 M=9 Tohoku-oki earthquake, which has a rupture-zone-average stress drop of only a few MPa, switched offshore margin-normal stress from compression to tension and affected seismicity pattern and stress directions of various parts of the land area. The low differential stress is also reflected in spatial variations of stresses, such as with changes in topography. In the Andes, crustal earthquake focal mechanisms change from thrust-faulting in low-elevation areas to normal-faulting in high-elevation areas. Given the lack of evidence for a pervasively weak crust, the low differential stress may indicate that in general the crust near subduction zones is not critically stressed. If so, crustal earthquakes do not represent pervasive failure but only local failure due to stress, material, and fluid pressure heterogeneity. If distributed permanent deformation that creates topography is not the norm, it either happens in brief episodes or took place in the past. The outer wedge may enter a compressively or extensionally critical state due to coseismic strengthening or weakening, respectively, of the shallow megathrust in largest interplate earthquakes. Temporal changes in loading forces must occur also at much larger temporal and spatial scales in response to changes in the nature of the subducting plate and other tectonic conditions. We propose that submarine wedges and high topography in the upper plate attain their geometry in geologically brief episodes of high differential stress. They normally stay in a low-stress stable state, but their geometry often reflects high-stress episodes of critical states in the past. In other words, rocks have a sustained memory for the most traumatic moments. Except for the weaker outer wedge, the upper plate does not switch from one critical state to another in megathrust earthquake cycles, such as from compressional failure to gravitational collapse.
Study on creep behavior of Grade 91 heat-resistant steel using theta projection method
NASA Astrophysics Data System (ADS)
Ren, Facai; Tang, Xiaoying
2017-10-01
Creep behavior of Grade 91 heat-resistant steel used for steam cooler was characterized using the theta projection method. Creep tests were conducted at the temperature of 923K under the stress ranging from 100-150MPa. Based on the creep curve results, four theta parameters were established using a nonlinear least square fitting method. Four theta parameters showed a good linearity as a function of stress. The predicted curves coincided well with the experimental data and creep curves were also modeled to the low stress level of 60MPa.
NASA Astrophysics Data System (ADS)
Kuo, S. T.; Kitamura, M.; Kitajima, H.
2016-12-01
Mechanical properties and microstructural characteristics of accretionary prism sediments can provide detailed deformation history and processes in subduction zones. The IODP Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) Expedition 348 has extended the deep riser hole down to 3058.5 meters below sea floor (mbsf) to the inner accretionary wedge at Site C0002 located 35 km landward from the trench. Here, we conducted deformation experiments on the core samples recovered from 2185 msbf at Site C0002 to understand mechanical behaviors and deformation of inner prism sediments. We deformed the siltstone samples with a porosity of 20% at 25°C or 60°C under isotropic loading path (S1=S2=S3) and triaxial compression (S1>S2=S3). In the isotropic loading test, we step-wisely increased confining pressure (Pc) from 11.5 to 194 MPa and kept pore pressure (Pp) at 10 MPa. In a series of triaxial compression loading tests, we first increased Pc to the targeting 42-78 MPa and Pp to 20 MPa, and then applied the differential load at a constant displacement rate of 0.005 μm/s while keeping Pc and Pp constant. We will analyze the microstructures of the experimentally deformed samples to understand deformation mechanism. We define yield points based on slope changes in relationships between volumetric strain and effective mean stress (p') for isotropic loading and those between differential stress (q) and axial strain for triaxial loading. The sample yields at p' of 100 MPa (q = 0 MPa) in isotropic loading test. In triaxial loading, the samples at effective pressure (Pe) of 22, 28, and 58 MPa yield at q = 30 MPa (p' = 32 MPa), q = 30 MPa (p' = 38 MPa) and q = 45 MPa (p' = 73 MPa), respectively. Upon yield, the samples deformed at Pe of 22 MPa and 28 MPa show brittle behavior with a peak q of 50 MPa and 55 MPa followed by strain weakening to reach q of 36 and 46 MPa at steady state. Both samples show single fracture planes with angles of 30° to S1. On the other hand, the sample at Pe of 58 MPa shows strain hardening after the yield and exhibits barreling. In triaxial loading experiments, all samples show an increase in volumetric strain with increasing Pe. Our experiment results at different Pe are consistent with a critical state soil mechanics theory. We will further correlate the microstructural features of the deformed samples with the mechanical data.
Jang, Young Woong; Lim, DoHyung; Seo, Hansol; Lee, Myung Chul; Lee, O-Sung; Lee, Yong Seuk
2018-07-01
Open-wedge high tibial osteotomy (OWHTO) is a well-established surgical option for medial compartment osteoarthritis of the varus knee. The initial strength of the fixation plate is critical for successful correction maintenance and healing of the osteotomy site. This study was conducted to verify if a newly designed anatomical plate (LCfit) improves the stability of both the medial implant and lateral hinge area, as well as to evaluate how the metal block contributes to both medial and lateral stability. A finite element (FE) tibial model was combined with TomoFix plate, a LCfit plate with and without a metal block. Data analysis was conducted to evaluate the balanced stability, which refers to the enforced lateral stability resulting from redistribution of overall stress. We assessed the balanced stability of the medial implant and lateral hinge area in three cases using the same Sawbones and loads using the tibia FE model. The LCfit plate reduced stress by 23.1% at the lateral hinge compared to the TomoFix plate (TomoFix vs. LCfit: 34.2 ± 23.3 MPa vs. 26.3 ± 17.5 MPa). The LCfit plate with a metal block reduced stress by 40.1% at the medial plate (210.1 ± 64.2 MPa vs. 125.8 ± 65.7 MPa) and by 31.2% (26.3 ± 17.5 MPa vs. 18.1 ± 12.1 MPa) at the lateral hinge area compared to the reduction using the LCfit plate without a metal block. The newly designed fixation system for OWHTO balanced the overall stress distribution and reduced stress at the lateral hinge area compared to that using a conventional fixation system. The addition of the metal block showed additional benefits for balanced stability between the medial implant and lateral hinge area. However, this conclusion could only be drawn using the FE model in this study. Therefore, further clinical studies are necessary to reveal the clinical effect of reduced lateral stress on the occurrence of the lateral hinge fracture and the biologic effect of the metal block on the healing of the medial cortex.
Zhang, Sheng; Mai, Li-xiang; Liu, Cong-hua; Wang, Da-wei
2011-07-01
To investigate the displacement and stress distribution of upper incisors in three-dimensional (3D) space controlled by step-shaped vertical closing loop. The maxillary teeth and alveolar bone of a volunteer with normal occlusion were scanned with 3D spiral CT. Modeling and calculation were only carried out on right upper central incisor, lateral incisor and their alveolar bone in order to simplify the procedures. A 3D finite element model of archwire-brackets-upper incisors and periodontal tissues was developed using Ansys finite element package. Finally, a 3D finite element model of archwire-brackets-upper incisors and periodontal tissues was established based on mirror symmetry principle. The displacement of maxillary incisors and stress distribution in periodontal tissues were analyzed. When step-shaped vertical closing loop was simply drew back 1 mm, the maximum displacement of upper central incisor in labial and lingual direction were 5.29 × 10(-2) and 0.71 × 10(-2) mm; 10.47 × 10(-3) and 10.20 × 10(-3) mm in gingival and occlusal direction, 10.26 × 10(-3) and 1.63 × 10(-3) mm in medial and distal direction; the maximum displacement of upper lateral incisor in labial and lingual direction were 3.31 × 10(-2) and 0.41 × 10(-2) mm, 10.52 × 10(-3) and 5.10 × 10(-3) mm in gingival and occlusal direction, 6.29 × 10(-3) and 4.64 × 10(-3) mm in medial and distal direction, the displacement trend of them were moving lingually and gingivally similar to bodily movement. The stress peach of upper central incisor, periodontal ligament and alveolar bone were 31.35, 2.52 and 4.64 MPa, the stress peach of upper lateral incisor, periodontal ligament and alveolar bone were 19.59, 1.28 and 4.12 Mpa, the stress distribution of them were similar and the periodontal ligament buffered the stress imposed on the tooth.
Experimental study of dynamic effective stress coefficient for ultrasonic velocities of Bakken cores
NASA Astrophysics Data System (ADS)
Ma, X.; Zoback, M. D.
2016-12-01
We have performed a series of exhaustive experiments to measure the effective stress coefficient (α) of the tight cores from the Bakken shale oil play. Five distinct, bedding-normal cores from a vertical well were tested, covering the sequences of Lodgepole, Middle Bakken, and Three Forks. The scope of this laboratory study is two-fold: (1) to obtain the dynamic effective stress coefficient for ultrasonic velocities; (2) to characterize the poromechanical properties in relation to rock's mineral composition and microstructure. The experiments were carried out as follows: Argon-saturated specimen (1-inch length, 1-inch diameter) was subjected to hydrostatic confining pressure under drained conditions. Pore pressure was regulated as Argon was injected into both ends of the specimen. We drilled multiple non-through-going boreholes (1-mm diameter) in the specimen to facilitate pore pressure equilibrium, without compromising its integrity. The specimen was put through a loading path to experience confining pressure and pore pressure up to 70 and 60 MPa, respectively. P- and S- wave velocities were measured and used to calculate the rock's dynamic effective stress coefficient. Results of all five cores unanimously show that the dynamic a is a function of both confining and pore pressures, regardless of the wave type and loading path. When the simple effective stress is low, α is close to unity; however, α consistently increases as the simple effective stress rises and can reach as much as 3 when the latter reaches 60 MPa. This trend is rather surprising as it is diametrically the opposite of what was observed for the static α. A possible explanation is that high-frequency wave-induced pore pressure increment may have not remained equilibrated throughout the pore space, especially in very thin cracks, according to the squirt model. This phenomenon can be enhanced when the bulk modulus of pore fluid (gas typically considered to be `soft' and `non-viscous') increases with pore pressure and becomes comparable to the crack stiffness.
Evaluation of fatigue crack behavior in electron beam irradiated polyethylene pipes
NASA Astrophysics Data System (ADS)
Pokharel, Pashupati; Jian, Wei; Choi, Sunwoong
2016-09-01
A cracked round bar (CRB) fatigue test was employed to determine the slow crack growth (SCG) behavior of samples from high density polyethylene (HDPE) pipes using PE4710 resin. The structure property relationships of fatigue failure of polyethylene CRB specimens which have undergone various degree of electron beam (EB) irradiation were investigated by observing fatigue failure strength and the corresponding fracture surface morphology. Tensile test of these HDPE specimens showed improvements in modulus and yield strength while the failure strain decreased with increasing EB irradiation. The CRB fatigue test of HDPE pipe showed remarkable effect of EB irradiation on number of cycles to failure. The slopes of the stress-cycles to failure curve were similar for 0-100 kGy; however, significantly higher slope was observed for 500 kGy EB irradiated pipe. Also, the cycle to fatigue failure was seen to decrease as with EB irradiation in the high stress range, ∆σ=(16 MPa to 10.8 MPa); however, 500 kGy EB irradiated samples showed longer cycles to failure than the un-irradiated specimens at the stress range below 9.9 MPa and the corresponding initial stress intensity factor (∆KI,0)=0.712 MPa m1/2. The fracture surface morphology indicated that the cross-linked network in 500 kGy EB irradiated PE pipe can endure low dynamic load more effectively than the parent pipe.
Numerical Simulation of Shock Wave Propagation in Fractured Cortical Bone
NASA Astrophysics Data System (ADS)
Padilla, Frédéric; Cleveland, Robin
2009-04-01
Shock waves (SW) are considered a promising method to treat bone non unions, but the associated mechanisms of action are not well understood. In this study, numerical simulations are used to quantify the stresses induced by SWs in cortical bone tissue. We use a 3D FDTD code to solve the linear lossless equations that describe wave propagation in solids and fluids. A 3D model of a fractured rat femur was obtained from micro-CT data with a resolution of 32 μm. The bone was subject to a plane SW pulse with a peak positive pressure of 40 MPa and peak negative pressure of -8 MPa. During the simulations the principal tensile stress and maximum shear stress were tracked throughout the bone. It was found that the simulated stresses in a transverse plane relative to the bone axis may reach values higher than the tensile and shear strength of the bone tissue (around 50 MPa). These results suggest that the stresses induced by the SW may be large enough to initiate local micro-fractures, which may in turn trigger the start of bone healing for the case of a non union.
Characterization of SiC Fiber (SCS-6) Reinforced-Reaction-Formed Silicon Carbide Matrix Composites
NASA Technical Reports Server (NTRS)
Singh, M.; Dickerson, R. M.
1996-01-01
Silicon carbide fiber (SCS-6) reinforced-reaction-formed silicon carbide matrix composites were fabricated using a reaction-forming process. Silicon-2 at.% niobium alloy was used as an infiltrant instead of pure silicon to reduce the amount of free silicon in the matrix after reaction forming. The matrix primarily consists of silicon carbide with a bimodal grain size distribution. Minority phases dispersed within the matrix are niobium disilicide (NbSi2), carbon, and silicon. Fiber pushout tests on these composites determined a debond stress of approximately 67 MPa and a frictional stress of approximately 60 MPa. A typical four-point flexural strength of the composite is 297 MPa (43.1 KSi). This composite shows tough behavior through fiber pullout.
NASA Astrophysics Data System (ADS)
Pabst, Oliver; Schiffer, Michael; Obermeier, Ernst; Tekin, Tolga; Lang, Klaus Dieter; Ngo, Ha-Duong
2011-06-01
Silicon carbide (SiC) is a promising material for applications in harsh environments. Standard silicon (Si) microelectromechanical systems (MEMS) are limited in operating temperature to temperatures below 130 °C for electronic devices and below 600 °C for mechanical devices. Due to its large bandgap SiC enables MEMS with significantly higher operating temperatures. Furthermore, SiC exhibits high chemical stability and thermal conductivity. Young's modulus and residual stress are important mechanical properties for the design of sophisticated SiC-based MEMS devices. In particular, residual stresses are strongly dependent on the deposition conditions. Literature values for Young's modulus range from 100 to 400 GPa, and residual stresses range from 98 to 486 MPa. In this paper we present our work on investigating Young's modulus and residual stress of SiC films deposited on single crystal bulk silicon using bulge testing. This method is based on measurement of pressure-dependent membrane deflection. Polycrystalline as well as single crystal cubic silicon carbide samples are studied. For the samples tested, average Young's modulus and residual stress measured are 417 GPa and 89 MPa for polycrystalline samples. For single crystal samples, the according values are 388 GPa and 217 MPa. These results compare well with literature values.
Superelasticity by reversible variant reorientation in a Ni-Mn-Ga microwire with bamboo grains
Wang, Z. L.; Zheng, P.; Nie, Z. H.; ...
2015-08-26
The link between microstructure and mechanical properties is investigated for a superelastic Ni–Mn–Ga microwire with 226 μm diameter, created by solidification via the Taylor method. The wire, which consists of bamboo grains with tetragonal martensite matrix and coarse γ precipitates, exhibits fully reversible superelastic behavior up to 4% tensile strain. Upon multiple tensile load–unload cycles, reproducible stress fluctuations of ~3 MPa are measured on the loading superelastic stress plateau of ~50 MPa. During cycles at various temperatures spanning -70 to 55 °C, the plateau stress decreases from 58 to 48 MPa near linearly with increasing temperature. Based on in situmore » synchrotron X-ray diffraction measurements, we conclude that this superelastic behavior is due to reversible martensite variants reorientation (i.e., reversible twinning) with lattice rotation of ~13°. The reproducible stress plateau fluctuations are assigned to reversible twinning at well-defined locations along the wire. The strain recovery during unloading is attributed to reverse twinning, driven by the internal stress generated on loading between the elastic γ precipitates and the twinning martensite matrix. Lastly, the temperature dependence of the twining stress on loading is related to the change in tetragonality of the martensite, as measured by X-ray diffraction.« less
Laboratory-based maximum slip rates in earthquake rupture zones and radiated energy
McGarr, A.; Fletcher, Joe B.; Boettcher, M.; Beeler, N.; Boatwright, J.
2010-01-01
Laboratory stick-slip friction experiments indicate that peak slip rates increase with the stresses loading the fault to cause rupture. If this applies also to earthquake fault zones, then the analysis of rupture processes is simplified inasmuch as the slip rates depend only on the local yield stress and are independent of factors specific to a particular event, including the distribution of slip in space and time. We test this hypothesis by first using it to develop an expression for radiated energy that depends primarily on the seismic moment and the maximum slip rate. From laboratory results, the maximum slip rate for any crustal earthquake, as well as various stress parameters including the yield stress, can be determined based on its seismic moment and the maximum slip within its rupture zone. After finding that our new equation for radiated energy works well for laboratory stick-slip friction experiments, we used it to estimate radiated energies for five earthquakes with magnitudes near 2 that were induced in a deep gold mine, an M 2.1 repeating earthquake near the San Andreas Fault Observatory at Depth (SAFOD) site and seven major earthquakes in California and found good agreement with energies estimated independently from spectra of local and regional ground-motion data. Estimates of yield stress for the earthquakes in our study range from 12 MPa to 122 MPa with a median of 64 MPa. The lowest value was estimated for the 2004 M 6 Parkfield, California, earthquake whereas the nearby M 2.1 repeating earthquake, as recorded in the SAFOD pilot hole, showed a more typical yield stress of 64 MPa.
Some constraints on levels of shear stress in the crust from observations and theory.
McGarr, A.
1980-01-01
In situ stress determinations in North America, southern Africa, and Australia indicate that on the average the maximum shear stress increases linearly with depth to at least 5.1 km measured in soft rock, such as shale and sandstone, and to 3.7 km in hard rock, including granite and quartzite. Regression lines fitted to the data yield gradients of 3.8 MPa/km and 6.6 MPa/km for soft and hard rock, respectively. Generally, the maximum shear stress in compressional states of stress for which the least principal stress is oriented near vertically is substantially greater than in extensional stress regimes, with the greatest principal stress in a vertical direction. The equations of equilibrium and compatibility can be used to provide functional constrains on the state of stress. If the stress is assumed to vary only with depth z in a given region, then all nonzero components must have the form A + Bz, where A and B are constants which generally differ for the various components. - Author
Research on silicon microchannel array oxidation insulation technology and stress issues
NASA Astrophysics Data System (ADS)
Chai, Jin; Li, Mo; Liang, Yong-zhao; Yang, Ji-kai; Wang, Guo-zheng; Duanmu, Qing-duo
2013-08-01
Microchannel plate is widely used in the field of low light level night vision, photomultiplier, tubes, X-ray enhancer and so on. In order to meet the requirement of microchannel plate electron multiplier, we used the method of thermal oxidation to produce a thin film of silicon dioxide which could play a role in electric insulation. Silicon dioxide film has a high breakdown voltage, it can satisfy the high breakdown voltage requirements of electron multiplier. We should find the reasonable parameter values and preparation process in the oxidation so that the thickness and uniformity of the silicon dioxide layer would meet requirement. This article has been focused on researching and analyzing of the problem of oxide insulation and thermal stress in the process of production of silicon dioxide film. In this experiment, dry oxygen and wet oxygen were carried out respectively for 8 hours. The thickness of dry oxygen silicon dioxide films was 458 nm and wet oxygen silicon dioxide films was 1.4 μm. Under these conditions, the silicon microchannel is uniformity and neat, meanwhile the insulating layer's breakdown voltage was measured at 450 V after the wet oxygen oxidation. By using ANSYS finite element software, we analyze the thermal stress, which came from the microchannel oxygen processes, under the conditions of which ambient temperature was 27 ℃ and porosity was 64%, we simulated the thermal stress in the temperature of 1200 ℃ and 1000 ℃, finally we got the maximum equivalent thermal stress of 472 MPa and 403 MPa respectively. The higher thermal stress area was spread over Si-SiO2 interface, by simulate conditions 50% porosity silicon microchannel sample was selected for simulation analysis at 1100 ℃, we got the maximum equivalent thermal stress of 472 MPa, Thermal stress is the minimum value of 410 MPa.
NASA Astrophysics Data System (ADS)
Noda, H.; Okazaki, K.; Katayama, I.
2013-12-01
During diagenesis, incohesive sediments are compacted and gain strength against shear deformation for a geologically long time scale. The evolution of shear strength as well as the change in the mechanical and hydraulic characteristics under shear deformation is of significant importance in considering deformation at shallow part of the subduction zones and in accretionary prisms. Sediments after induration due to time-dependent diagenesis process probably deform with increases in porosity and permeability much more significantly than normally compacted incohesive sediments. An active fault in a shallow incohesive medium may favor thermal pressurization of pore fluid when slid rapidly, while the lack of time-dependent healing effect may cause stable (e.g., rate-strengthening) frictional property there. On the other hand, indurated sediments may deform with significant post-failure weakening, and thus exhibit localization of deformation or unstable behavior. In order to investigate how the time-dependent compaction and induration affect the mechanical and hydraulic characteristics of sediments under deformation, we have conducted a series of compaction experiments under hydrothermal conditions (at temperatures from R.T. to 500 °C, 200 MPa confining pressure, 100 MPa pore water pressure, and for various time), and following triaxial deformation experiments for the compacted samples, with monitoring permeability and storage capacity with pore pressure oscillation method [Fischer and Paterson, 1992]. Previous work [e.g., Niemeijer et at., 2003] reported that under the adopted conditions, quartz aggregate deforms by pressure solution-precipitation creep. The initial synthetic sediments have been prepared by depositing commercially available crushed quartzite the grain size of which is about 6 μm on average. 4 cm long samples have been extracted from the middle of 10 cm long deposited columns. The experiments have been performed with a gas-medium apparatus in Hiroshima University. As the compaction time and temperature increases, compressional strain increases and the synthetic sediments gain shear strength, flow stress during triaxial deformation tests. An uncooked sample yielded immediately on application of differential stress, and showed strengthening during triaxial deformation test with σ1-σ3 about 150 MPa at 0.1 compressional strain. On the other hand, a sample compacted at 500 °C for 5 hours (about 0.1 of isotropic compressional strain) deformed mainly elastically up to about 100 MPa differential stress. At 0.02 compressional strain σ1-σ3 reached 200 MPa which is the experimental limitation due to compressional strength of porous alumina spacers. In the presentation, we will focus on the relation between mechanical behavior under shear and the compressional strain during preceding compaction experiments.
NASA Astrophysics Data System (ADS)
Ito, H.; Kuwahara, M.; Ohta, R.; Usui, M.
2018-04-01
High-temperature joint materials are indispensable to realizing next-generation power modules with high-output performance. However, crack initiation resulting from stress concentration in semiconductor chips joined with high-temperature joint materials remains a critical problem in high-temperature operation. Therefore, clarifying the quantitative influence of joint materials on the stress generated in chips is essential. This study investigates the stress behavior of chips joined by Ni-Sn solid-liquid interdiffusion (SLID), which results in a high-temperature joint material likely to generate cracks after joining or when under thermal cycling. The results are compared with those fabricated using three types of solders, Pb-10%Sn, Sn-0.7%Cu, and Sn-10%Sb (mass %), which are conventional joint materials with different melting points and mechanical properties. Using Ni-Sn SLID results in the generation of high compressive stress (500 MPa) without stress relaxation after the joining process in contrast to the case of solders in which the compressive stresses are low (<300 MPa) and decrease to still lower levels (<250 MPa). In addition, no stress relaxation occurs during thermal cycling when using Ni-Sn SLID, whereas stress relaxation is clearly observed during heating to 200 °C using solders. Different stress behaviors between Ni-Sn SLID and other joint materials are illustrated by their mechanical strength and resistance against plastic and creep deformation. These results suggest that stress relaxation in a chip is key in suppressing crack initiation in highly reliable modules during high-temperature operation.
A Bed-Deformation Experiment Beneath Engabreen, Norway
NASA Astrophysics Data System (ADS)
Iverson, N. R.; Hooyer, T. S.; Fischer, U. H.; Cohen, D.; Jackson, M.; Moore, P. L.; Lappegard, G.; Kohler, J.
2001-12-01
Although deformation of sediment beneath ice masses may contribute to their motion and may sometimes enable fast glacier flow, both the kinematics and mechanics of deformation are controversial. This controversy stems, in part, from subglacial measurements that are difficult to interpret. Measurements have been made either beneath ice margins or remotely through boreholes with interpretive limitations caused by uncertain instrument position and performance, uncertain sediment thickness and bed geometry, and unknown disturbance of the bed and stress state by drilling. We have used a different approach made possible by the Svartisen Subglacial Laboratory, which enables human access to the bed of Engabreen, Norway, beneath 230 m of temperate ice. A trough (2 m x 1.5 m x 0.4 m deep) was blasted in the rock bed and filled with sediment (75 percent sand and gravel, 20 percent silt, 5 percent clay). Instruments were placed in the sediment to record shear deformation (tiltmeters), dilation and contraction, total normal stress, and pore-water pressure. Pore pressure was manipulated by feeding water to the base of the sediment with a high-pressure pump, operated in a rock tunnel 4 m below the bed surface. After irregular deformation during closure of ice on the sediment, shear deformation and volume change stopped, and total normal stress became constant at 2.2 MPa. Subsequent pump tests, which lasted several hours, induced pore-water pressures greater than 70 percent of the total normal stress and resulted in shear deformation over most of the sediment thickness with attendant dilation. Ice separated from the sediment when effective normal stress was lowest, arresting shear deformation. Displacement profiles during pump tests were similar to those observed by Boulton and co-workers at Breidamerkurjökull, Iceland, with rates of shear strain increasing upward toward the glacier sole. Such deformation does not require viscous deformation resistance and is expected in a Coulomb material, a model for till advocated by B. Kamb.
Implant platform switching: biomechanical approach using two-dimensional finite element analysis.
Tabata, Lucas Fernando; Assunção, Wirley Gonçalves; Adelino Ricardo Barão, Valentim; de Sousa, Edson Antonio Capello; Gomes, Erica Alves; Delben, Juliana Aparecida
2010-01-01
In implant therapy, a peri-implant bone resorption has been noticed mainly in the first year after prosthesis insertion. This bone remodeling can sometimes jeopardize the outcome of the treatment, especially in areas in which short implants are used and also in aesthetic cases. To avoid this occurrence, the use of platform switching (PS) has been used. This study aimed to evaluate the biomechanical concept of PS with relation to stress distribution using two-dimensional finite element analysis. A regular matching diameter connection of abutment-implant (regular platform group [RPG]) and a PS connection (PS group [PSG]) were simulated by 2 two-dimensional finite element models that reproduced a 2-piece implant system with peri-implant bone tissue. A regular implant (prosthetic platform of 4.1 mm) and a wide implant (prosthetic platform of 5.0 mm) were used to represent the RPG and PSG, respectively, in which a regular prosthetic component of 4.1 mm was connected to represent the crown. A load of 100 N was applied on the models using ANSYS software. The RPG spreads the stress over a wider area in the peri-implant bone tissue (159 MPa) and the implant (1610 MPa), whereas the PSG seems to diminish the stress distribution on bone tissue (34 MPa) and implant (649 MPa). Within the limitation of the study, the PS presented better biomechanical behavior in relation to stress distribution on the implant but especially in the bone tissue (80% less). However, in the crown and retention screw, an increase in stress concentration was observed.
Wong, Duo Wai-Chi; Niu, Wenxin; Wang, Yan; Zhang, Ming
2016-01-01
Foot and ankle impact injury is common in geriatric trauma and often leads to fracture of rearfoot, including calcaneus and talus. The objective of this study was to assess the influence of foot impact on the risk of calcaneus and talus fracture via finite element analysis. A three-dimensional finite element model of foot and ankle was constructed based on magnetic resonance images of a female aged 28. The foot sustained a 7-kg passive impact through a foot plate. The simulated impact velocities were from 2.0 to 7.0 m/s with 1.0 m/s interval. At 5.0 m/s impact velocity, the maximum von Mises stress of the trabecular calcaneus and talus were 3.21MPa and 2.41MPa respectively, while that of the Tresca stress were 3.46MPa and 2.55MPa. About 94% and 84% of the trabecular calcaneus and talus exceeded the shear yielding stress, while 21.7% and 18.3% yielded the compressive stress. The peak stresses were distributed around the talocalcaneal articulation and the calcaneal tuberosity inferiorly, which corresponded to the common fracture sites. The prediction in this study showed that axial compressive impact at 5.0 m/s could produce considerable yielding of trabecular bone in both calcaneus and talus, dominantly by shear and compounded with compression that predispose the rearfoot in the risk of fracture. This study suggested the injury pattern and fracture mode of high energy trauma that provides insights in injury prevention and fracture management.
Nucleation and triggering of earthquake slip: effect of periodic stresses
Dieterich, J.H.
1987-01-01
Results of stability analyses for spring and slider systems, with state variable constitutive properties, are applied to slip on embedded fault patches. Unstable slip may nucleate only if the slipping patch exceeds some minimum size. Subsequent to the onset of instability the earthquake slip may propagate well beyond the patch. It is proposed that the seismicity of a volume of the earth's crust is determined by the distribution of initial conditions on the population of fault patches that nucleate earthquake slip, and the loading history acting upon the volume. Patches with constitutive properties inferred from laboratory experiments are characterized by an interval of self-driven accelerating slip prior to instability, if initial stress exceeds a minimum threshold. This delayed instability of the patches provides an explanation for the occurrence of aftershocks and foreshocks including decay of earthquake rates by time-1. A population of patches subjected to loading with a periodic component results in periodic variation of the rate of occurrence of instabilities. The change of the rate of seismicity for a sinusoidal load is proportional to the amplitude of the periodic stress component and inversely proportional to both the normal stress acting on the fault patches and the constitutive parameter, A1, that controls the direct velocity dependence of fault slip. Values of A1 representative of laboratory experiments indicate that in a homogeneous crust, correlation of earthquake rates with earth tides should not be detectable at normal stresses in excess of about 8 MPa. Correlation of earthquakes with tides at higher normal stresses can be explained if there exist inhomogeneities that locally amplify the magnitude of the tidal stresses. Such amplification might occur near magma chambers or other soft inclusions in the crust and possibly near the ends of creeping fault segments if the creep or afterslip rates vary in response to tides. Observations of seismicity rate variations associated with seasonal fluctuations of reservoir levels appear to be consistent with the model. ?? 1987.
2008-03-01
creep life . This degradation increased with increasing temperatures. At 1000°, all specimens achieved creep run-out, defined as...strain measurement 29 Table 4. Summary of N720/AM creep data. Sample Environment Thermal Strain (%) E (GPa) Creep Stress (MPa) Creep Life (h...Material Creep Stress(MPa) Creep Life (h) Creep Strain (%) Secondary Creep Rate (s-1) N720/A 80 >100 0.798 1.5E-08 N720/A 100 41 1.520
A Directionally Solidified Iron-chromium-aluminum-tantalum Carbide Eutectic Alloy
NASA Technical Reports Server (NTRS)
Harf, F. H.
1977-01-01
A eutectic alloy, Fe-13.6CR-3.7Al+9TaC, was directionally solidified in a high gradient furnace, producing a microstructure of alined TaC fibers in an oxidation resistant alpha-iron matrix. Tensile and stress rupture properties, thermal cycling resistance, and microstructures were evaluated. The alloy displays at 1000 C an ultimate tensile strength of 58 MPa and a 100-hour rupture life at a stress of 21 MPa. Thermal cycling to 1100 C induces faceting in the TaC fibers.
NASA Astrophysics Data System (ADS)
Lee, Juhwa; Hwang, Jeongho; Bae, Dongho
2018-03-01
In this paper, welding residual stress analysis and fatigue strength assessment were performed at elevated temperature for multi-pass dissimilar material weld between Alloy 617 and P92 steel, which are used in thermal power plant. Multi-pass welding between Alloy 617 and P92 steel was performed under optimized welding condition determined from repeated pre-test welding. In particular, for improving dissimilar material weld-ability, the buttering welding technique was applied on the P92 steel side before multi-pass welding. Welding residual stress distribution at the dissimilar material weld joint was numerically analyzed by using the finite element method, and compared with experimental results which were obtained by the hole-drilling method. Additionally, fatigue strength of dissimilar material weld joint was assessed at the room temperature (R.T), 300, 500, and 700 °C. In finite element analysis results, numerical peak values; longitudinal (410 MPa), transverse (345 MPa) were higher than those of experiments; longitudinal (298 MPa), transverse (245 MPa). There are quantitatively big differences between numerical and experimental results, due to some assumption about the thermal conductivity, specific heat, effects of enforced convection of the molten pool, dilution, and volume change during phase transformation caused by actual shield gas. The low fatigue limit at R.T, 300 °C, 500 °C and 700 °C was assessed to be 368, 276, 173 and 137 MPa respectively.
NASA Astrophysics Data System (ADS)
Lee, Juhwa; Hwang, Jeongho; Bae, Dongho
2018-07-01
In this paper, welding residual stress analysis and fatigue strength assessment were performed at elevated temperature for multi-pass dissimilar material weld between Alloy 617 and P92 steel, which are used in thermal power plant. Multi-pass welding between Alloy 617 and P92 steel was performed under optimized welding condition determined from repeated pre-test welding. In particular, for improving dissimilar material weld-ability, the buttering welding technique was applied on the P92 steel side before multi-pass welding. Welding residual stress distribution at the dissimilar material weld joint was numerically analyzed by using the finite element method, and compared with experimental results which were obtained by the hole-drilling method. Additionally, fatigue strength of dissimilar material weld joint was assessed at the room temperature (R.T), 300, 500, and 700 °C. In finite element analysis results, numerical peak values; longitudinal (410 MPa), transverse (345 MPa) were higher than those of experiments; longitudinal (298 MPa), transverse (245 MPa). There are quantitatively big differences between numerical and experimental results, due to some assumption about the thermal conductivity, specific heat, effects of enforced convection of the molten pool, dilution, and volume change during phase transformation caused by actual shield gas. The low fatigue limit at R.T, 300 °C, 500 °C and 700 °C was assessed to be 368, 276, 173 and 137 MPa respectively.
NASA Astrophysics Data System (ADS)
Ingraham, M. D.; Dewers, T. A.; Heath, J. E.
2016-12-01
Utilizing the localization conditions laid out in Rudnicki 2002, the failure of a series of tests performed on Mancos shale has been analyzed. Shale specimens were tested under constant mean stress conditions in an axisymmetric stress state, with specimens cored both parallel and perpendicular to bedding. Failure data indicates that for the range of pressures tested the failure surface is well represented by a Mohr- Coulomb failure surface with a friction angle of 34.4 for specimens cored parallel to bedding, and 26.5 for specimens cored perpendicular to bedding. There is no evidence of a yield cap up to 200 MPa mean stress. Comparison with the theory shows that the best agreement in terms of band angles comes from assuming normality of the plastic strain increment. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Influence of Mineralogy, Pressure, Temperature and Stress on Mechanical roperties of shale Rocks
NASA Astrophysics Data System (ADS)
Herrmann, J.; Rybacki, E.; Sone, H.; Dresen, G. H.
2017-12-01
The production of hydrocarbons from unconventional reservoirs, like tight shale plays increased tremendously over the past decade. Hydraulic fracturing is a common method to increase the productivity of a well drilled in these reservoirs. Unfortunately, the production rate decreases over time presumably due to fracture healing. The healing rate induced by proppant embedment depends on pressure (p), temperature (T), stress (σ) - conditions and on shale composition. To improve understanding of the influence of these parameters on fracture healing, we conducted constant strain rate experiments (p = 50 - 100 MPa, T = 50 - 125 °C, ɛ/t = 5 * 10-4 - 5 * 10-6 s-1) on porous ( 8 %), quartz - rich ( 72 vol %) Bowland shale (UK) and on low porosity ( 3 %), clay - rich ( 33 vol %) Posidonia shale (GER), deformed perpendicular to bedding and with as-is water content. Bowland shale showed mainly brittle behaviour with predominantly elastic deformation before failure and a high strength (280 - 350 MPa). In contrast, Posidonia shale deformed semibrittle with pronounced inelastic deformation and low peak strength (165 - 220 MPa). For both shale rocks, static Young's moduli vary between 12 - 18 GPa. In addition, we performed a series of constant stress tests on both shales at p = 30 - 115 MPa, T = 75 - 150 °C and σ = 160 - 450 MPa. Samples showed transient (primary) creep with increasing strain rates for increasing temperature and stress and decreasing pressure. An empirical power law in the form of ɛ = A*tm is used to describe the observed relation between inelastic strain (ɛ) and time (t), where the constant A is mainly affected by temperature and stress and the exponent m accounts for the influence of pressure. Compared to quartz - rich, strong Bowland shale, the creep behaviour of clay - rich, weak Posidonia shale is much more sensitive to changes in pressure, temperature and stress. Electron microscopy suggests that creep was mainly accommodated by deformation of weak phases (TOC, clay, mica). Our results suggest a low fracture healing rate of Bowland shale, whereas fractures within the Posidonia formation tend to close faster.
Herrmann, M; Gieschke, P; Ruther, P; Paul, O
2011-12-01
We present a torsional bridge setup for the electro-mechanical characterization of devices integrated in the surface of silicon beams under mechanical in-plane shear stress. It is based on the application of a torsional moment to the longitudinal axis of the silicon beams, which results in a homogeneous in-plane shear stress in the beam surface. The safely applicable shear stresses span the range of ±50 MPa. Thanks to a specially designed clamping mechanism, the unintended normal stress typically stays below 2.5% of the applied shear stress. An analytical model is presented to compute the induced shear stress. Numerical computations verify the analytical results and show that the homogeneity of the shear stress is very high on the beam surface in the region of interest. Measurements with piezoresistive microsensors fabricated using a complementary metal-oxide-semiconductor process show an excellent agreement with both the computational results and comparative measurements performed on a four-point bending bridge. The electrical connection to the silicon beam is performed with standard bond wires. This ensures that minimal forces are applied to the beam by the electrical interconnection to the external instrumentation and that devices with arbitrary bond pad layout can be inserted into the setup.
Dislocation, crystallite size distribution and lattice strain of magnesium oxide nanoparticles
NASA Astrophysics Data System (ADS)
Sutapa, I. W.; Wahid Wahab, Abdul; Taba, P.; Nafie, N. L.
2018-03-01
The oxide of magnesium nanoparticles synthesized using sol-gel method and analysis of the structural properties was conducted. The functional groups of nanoparticles has been analysed by Fourier Transform Infrared Spectroscopy (FT-IR). Dislocations, average size of crystal, strain, stress, the energy density of crystal, crystallite size distribution and morphologies of the crystals were determined based on X-ray diffraction profile analysis. The morphological of the crystal was analysed based on the image resulted from SEM analysis. The crystallite size distribution was calculated with the contention that the particle size has a normal logarithmic form. The most orientations of crystal were determined based on the textural crystal from diffraction data of X-ray diffraction profile analysis. FT-IR results showed the stretching vibration mode of the Mg-O-Mg in the range of 400.11-525 cm-1 as a broad band. The average size crystal of nanoparticles resulted is 9.21 mm with dislocation value of crystal is 0.012 nm-2. The strains, stress, the energy density of crystal are 1.5 x 10-4 37.31 MPa; 0.72 MPa respectively. The highest texture coefficient value of the crystal is 0.98. This result is supported by morphological analysis using SEM which shows most of the regular cubic-shaped crystals. The synthesis method is suitable for simple and cost-effective synthesis model of MgO nanoparticles.
NASA Astrophysics Data System (ADS)
Mohamed, Gad-Elkareem Abdrabou; Omar, Khaled
2014-06-01
The southern part of the Gulf of Suez is one of the most seismically active areas in Egypt. On Saturday November 19, 2011 at 07:12:15 (GMT) an earthquake of ML 4.6 occurred in southwest Sharm El-Sheikh, Egypt. The quake has been felt at Sharm El-Sheikh city while no casualties were reported. The instrumental epicenter is located at 27.69°N and 34.06°E. Seismic moment is 1.47 E+22 dyne cm, corresponding to a moment magnitude Mw 4.1. Following a Brune model, the source radius is 101.36 m with an average dislocation of 0.015 cm and a 0.06 MPa stress drop. The source mechanism from a fault plane solution shows a normal fault, the actual fault plane is strike 358, dip 34 and rake -60, the computer code ISOLA is used. Twenty seven small and micro earthquakes (1.5 ⩽ ML ⩽ 4.2) were also recorded by the Egyptian National Seismological Network (ENSN) from the same region. We estimate the source parameters for these earthquakes using displacement spectra. The obtained source parameters include seismic moments of 2.77E+16-1.47E+22 dyne cm, stress drops of 0.0005-0.0617 MPa and relative displacement of 0.0001-0.0152 cm.
Thermally induced stresses in boulders on airless body surfaces, and implications for rock breakdown
NASA Astrophysics Data System (ADS)
Molaro, J. L.; Byrne, S.; Le, J.-L.
2017-09-01
This work investigates the macroscopic thermomechanical behavior of lunar boulders by modeling their response to diurnal thermal forcing. Our results reveal a bimodal, spatiotemporally-complex stress response. During sunrise, stresses occur in the boulders' interiors that are associated with large-scale temperature gradients developed due to overnight cooling. During sunset, stresses occur at the boulders' exteriors due to the cooling and contraction of the surface. Both kinds of stresses are on the order of 10 MPa in 1 m boulders and decrease for smaller diameters, suggesting that larger boulders break down more quickly. Boulders ≤ 30 cm exhibit a weak response to thermal forcing, suggesting a threshold below which crack propagation may not occur. Boulders of any size buried by regolith are shielded from thermal breakdown. As boulders increase in size (>1 m), stresses increase to several 10 s of MPa as the behavior of their surfaces approaches that of an infinite halfspace. As the thermal wave loses contact with the boulder interior, stresses become limited to the near-surface. This suggests that the survival time of a boulder is not only controlled by the amplitude of induced stress, but also by its diameter as compared to the diurnal skin depth. While stresses on the order of 10 MPa are enough to drive crack propagation in terrestrial environments, crack propagation rates in vacuum are not well constrained. We explore the relationship between boulder size, stress, and the direction of crack propagation, and discuss the implications for the relative breakdown rates and estimated lifetimes of boulders on airless body surfaces.
Effect of restoration technique on stress distribution in roots with flared canals: an FEA study.
Belli, Sema; Eraslan, Öznur; Eraslan, Oğuz; Eskitaşcıoğlu, Gürcan
2014-04-01
The aim of this finite element analysis (FEA) study was to test the effect of different restorative techniques on stress distribution in roots with flared canals. Five three-dimensional (3D) FEA models that simulated a maxillary incisor with excessive structure loss and flared root canals were created and restored with the following techniques/materials: 1) a prefabricated post: 2) one main and two accessory posts; 3) i-TFC post-core (Sun Medical); 4) the thickness of the root was increased by using composite resin and the root was then restored using a prefabricated post; 5) an anatomic post was created by using composite resin and a prefabricated glass-fiber post. Composite cores and ceramic crowns were created. A 300-N static load was applied at the center of the palatal surface of the tooth to calculate stress distributions. SolidWorks/Cosmosworks structural analysis programs were used for FEA analysis. The analysis of the von Mises and tensile stress values revealed that prefabricated post, accessory post, and i-TFC post systems showed similar stress distributions. They all showed high stress areas at the buccal side of the root (3.67 MPa) and in the cervical region of the root (> 3.67 MPa) as well as low stress accumulation within the post space (0 to 1 MPa). The anatomic post kept the stress within its body and directed less stress towards the remaining tooth structure. The creation of an anatomic post may save the remaining tooth structure in roots with flared canals by reducing the stress levels.
Zarrati, Simindokht; Bahrami, Mehran; Heidari, Fatemeh; Kashani, Jamal
2015-06-01
This finite element method study aimed to compare the amount of stress on an isolated mandibular second premolar in two conventional reciprocal parallel interface designs of removable partial dentures (RPDs) and the same RPD abutment tooth (not isolated). A Kennedy Class 1, modification 1 RPD framework was simulated on a 3D model of mandible with three different designs: an isolated tooth with a mesial rest, an isolated tooth with mesial and distal rests and an abutment with a mesial rest (which was not isolated); 26 N occlusal forces were exerted bilaterally on the first molar sites. Stress on the abutment teeth was analyzed using Cosmos Works 2009 Software. In all designs, the abutment tooth stress concentration was located in the buccal alveolar crest. In the first model, the von Mises stress distribution in the contact area of I-bar clasp and cervical portion of the tooth was 19 MPa and the maximum stress was 30 MPa. In the second model, the maximum von Mises stress distribution was 15 MPa in the cervical of the tooth. In the third model, the maximum von Mises stress was located in the cervical of the tooth and the distal proximal plate. We recommend using both mesial and distal rests on the distal abutment teeth of distal extension RPDs. The abutment of an extension base RPD, which is not isolated in presence of its neighboring more anterior tooth, may have a better biomechanical prognosis.
Permeability Evolution of Slowly Slipping Faults in Shale Reservoirs
NASA Astrophysics Data System (ADS)
Wu, Wei; Reece, Julia S.; Gensterblum, Yves; Zoback, Mark D.
2017-11-01
Slow slip on preexisting faults during hydraulic fracturing is a process that significantly influences shale gas production in extremely low permeability "shale" (unconventional) reservoirs. We experimentally examined the impacts of mineralogy, surface roughness, and effective stress on permeability evolution of slowly slipping faults in Eagle Ford shale samples. Our results show that fault permeability decreases with slip at higher effective stress but increases with slip at lower effective stress. The permeabilities of saw cut faults fully recover after cycling effective stress from 2.5 to 17.5 to 2.5 MPa and increase with slip at constant effective stress due to asperity damage and dilation associated with slip. However, the permeabilities of natural faults only partially recover after cycling effective stress returns to 2.5 MPa and decrease with slip due to produced gouge blocking fluid flow pathways. Our results suggest that slowly slipping faults have the potential to enhance reservoir stimulation in extremely low permeability reservoirs.
Characterization of SiC (SCS-6) Fiber Reinforced Reaction-Formed Silicon Carbide Matrix Composites
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay; Dickerson, Robert M.
1995-01-01
Silicon carbide (SCS-6) fiber reinforced-reaction formed silicon carbide matrix composites were fabricated using NASA's reaction forming process. Silicon-2 at a percent of niobium alloy was used as an infiltrant instead of pure silicon to reduce the amount of free silicon in the matrix after reaction forming. The matrix primarily consists of silicon carbide with a bi-modal grain size distribution. Minority phases dispersed within the matrix are niobium disilicide (NbSi2), carbon and silicon. Fiber push-out tests on these composites determined a debond stress of approx. 67 MPa and a frictional stress of approx. 60 MPa. A typical four point flexural strength of the composite is 297 MPa (43.1 KSi). This composite shows tough behavior through fiber pull out.
Creep, creep-rupture tests of Al-surface-alloyed T91 steel in liquid lead bismuth at 500 and 550 °C
NASA Astrophysics Data System (ADS)
Weisenburger, A.; Jianu, A.; An, W.; Fetzer, R.; Del Giacco, Mattia; Heinzel, A.; Müller, G.; Markov, V. G.; Kasthanov, A. D.
2012-12-01
Surface layers made of FeCrAl alloys on T91 steel have shown their capability as corrosion protection barriers in lead bismuth. Pulsed electron beam treatment improves the density and more over the adherence of such layers. After the treatment of previously deposited coatings a surface graded material is achieved with a metallic bonded interface. Creep-rupture tests of T91 in lead-alloy at 550 °C reveal significant reduced creep strength of non-modified T91 test specimens. Oxide scales protecting the steels from attacks of the liquid metal will crack at a certain strain leading to a direct contact between the steel and the liquid metal. The negative influence of the lead-alloy on the creep behavior of non-modified T91 is stress dependent, but below a threshold stress value of 120 MPa at 550 °C this influence becomes almost negligible. At 500 °C and stress values of 200 MPa and 220 MPa the creep rates are comparable between them and significantly lower than creep rates at 180 MPa of original T91 in air at 550 °C. No signs of LBE influence are detected. The surface modified specimens tested at high stress levels instead had creep-rupture times similar to T91 (original state) tested in air. The thin oxide layers formed on the surface modified steel samples are less susceptible to crack formation and therefore to lead-alloy enhanced creep.
Regional and depth variability of porcine meniscal mechanical properties through biaxial testing.
Kahlon, A; Hurtig, M B; Gordon, K D
2015-01-01
The menisci in the knee joint undergo complex loading in-vivo resulting in a multidirectional stress distribution. Extensive mechanical testing has been conducted to investigate the tissue properties of the knee meniscus, but the testing conditions do not replicate this complex loading regime. Biaxial testing involves loading tissue along two different directions simultaneously, which more accurately simulates physiologic loading conditions. The purpose of this study was to report mechanical properties of meniscal tissue resulting from biaxial testing, while simultaneously investigating regional variations in properties. Ten left, fresh porcine joints were obtained, and the medial and lateral menisci were harvested from each joint (twenty menisci total). Each menisci was divided into an anterior, middle and posterior region; and three slices (femoral, deep and tibial layers) were obtained from each region. Biaxial and constrained uniaxial testing was performed on each specimen, and Young's moduli were calculated from the resulting stress strain curves. Results illustrated significant differences in regional mechanical properties, with the medial anterior (Young's modulus (E)=11.14 ± 1.10 MPa), lateral anterior (E=11.54 ± 1.10 MPa) and lateral posterior (E=9.0 ± 1.2 MPa) regions exhibiting the highest properties compared to the medial central (E=5.0 ± 1.22 MPa), medial posterior (E=4.16 ± 1.13 MPa) and lateral central (E=5.6 ± 1.20 MPa) regions. Differences with depth were also significant on the lateral meniscus, with the femoral (E=12.7 ± 1.22 MPa) and tibial (E=8.6 ± 1.22 MPa) layers exhibiting the highest Young's moduli. This data may form the basis for future modeling of meniscal tissue, or may aid in the design of synthetic replacement alternatives. Copyright © 2014 Elsevier Ltd. All rights reserved.
Distributed transverse stress measurement along an optic fiber using polarimetric OFDR.
Wei, Changjiang; Chen, Hongxin; Chen, Xiaojun; Chen, David; Li, Zhihong; Yao, X Steve
2016-06-15
We report a novel polarimetric optical frequency domain reflectometer (P-OFDR) that can simultaneously measure both space-resolved transverse stresses and light back-reflections along an optic fiber with sub-mm spatial resolution. By inducing transversal stresses and optical back-reflections at multiple points along a length of optic fiber, we demonstrate that our system can unambiguously distinguish the stresses from the back-reflections of a fiber with a fiber length longer than 800 m, a spatial resolution of 0.5 mm, a maximum stress level of up to 200 kpsi (1379 Mpa), a minimum stress of about 10 kpsi (69 Mpa), and a stress measurement uncertainty of 10%. We show that our P-OFDR can clearly identify the locations and magnitudes of the stresses inside a fiber coil induced during a fiber winding process. The P-OFDR can be used for fiber health monitoring for critical fiber links, fiber gyro coil characterization, and other distributed fiber sensing applications.
Sokolowski, Grzegorz; Szczesio, Agata; Bociong, Kinga; Kaluzinska, Karolina; Lapinska, Barbara; Sokolowski, Jerzy; Domarecka, Monika; Lukomska-Szymanska, Monika
2018-06-08
Resin matrix dental materials undergo contraction and expansion changes due to polymerization and water absorption. Both phenomena deform resin-dentin bonding and influence the stress state in restored tooth structure in two opposite directions. The study tested three composite resin cements (Cement-It, NX3, Variolink Esthetic DC), three adhesive resin cements (Estecem, Multilink Automix, Panavia 2.0), and seven self-adhesive resin cements (Breeze, Calibra Universal, MaxCem Elite Chroma, Panavia SA Cement Plus, RelyX U200, SmartCem 2, and SpeedCEM Plus). The stress generated at the restoration-tooth interface during water immersion was evaluated. The shrinkage stress was measured immediately after curing and after 0.5 h, 24 h, 72 h, 96 h, 168 h, 240 h, 336 h, 504 h, 672 h, and 1344 h by means of photoelastic study. Water sorption and solubility were also studied. All tested materials during polymerization generated shrinkage stress ranging from 4.8 MPa up to 15.1 MPa. The decrease in shrinkage strain (not less than 57%) was observed after water storage (56 days). Self-adhesive cements, i.e., MaxCem Elite Chroma, SpeedCem Plus, Panavia SA Plus, and Breeze exhibited high values of water expansion stress (from 0 up to almost 7 MPa). Among other tested materials only composite resin cement Cement It and adhesive resin cement Panavia 2.0 showed water expansion stress (1.6 and 4.8, respectively). The changes in stress value (decrease in contraction stress or built up of hydroscopic expansion) in time were material-dependent.
Polymerization contraction stress in thin resin composite layers as a function of layer thickness.
Alster, D; Feilzer, A J; de Gee, A J; Davidson, C L
1997-05-01
In the present study, the effect of layer thickness on the curing stress in thin resin composite layers was investigated. Since the value of the contraction stress is dependent on the compliance of the measuring equipment (especially for thin films), a method to determine the compliance of the test apparatus was tested. A chemically initiated resin composite (Clearfil F2, Kuraray) was inserted between two sandblasted and silane-coated stainless steel discs in a tensilometer. The curing contraction of the cylindrical samples was continuously counteracted by feedback displacement of the tensilometer crosshead, and the curing stress development was registered. After 20 min, the samples were loaded in tension until fracture. The curing stress was determined for layer thicknesses of 50, 100, 200, 300, 400, 500, 600, 700 microns, 1.4 mm and 2.7 mm. The compliance of the apparatus was calculated with the aid of a non-linear regression analysis, using an equation derived from Hooke's Law as the model. None of the samples fractured due to contraction stress prior to tensile loading. The contraction stress after 20 min decreased from 23.3 +/- 5.3 MPa for the 50 microns layer to 5.5 +/- 0.6 MPa for the 2.7 mm layer. The compliance on the apparatus was 0.029 mm/MPa. A measuring method was developed which was found to be suitable for the determination of axial polymerization contraction stress in this films of chemically initiated resin composites. The method makes it possible to estimate the stress levels that occur in resin composite films in the clinical situation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Shijie; Liu, Yinong; Ren, Yang
2016-06-08
Inspired by the driving principle of traditional bias-type two-way actuators, we developed a novel two-way actuation nanocomposite wire in which a massive number of Nb nanoribbons with ultra-large elastic strains are loaded inside a shape memory alloy (SMA) matrix to form a continuous array of nano bias actuation pairs for two-way actuation. The composite exhibits a two-way actuation strain of 3.2% during a thermal cycle and an actuation stress of 934 MPa upon heating, which is about twice higher than that (~500 MPa) found in reported two-way SMAs. Upon cooling, the composite shows an actuation stress of 134 MPa andmore » a mechanical work output of 1.08*106 J/ m3, which are about three and five times higher than that of reported two-way SMAs, respectively. It is revealed that the massive number of Nb nanoribbons in compressive state provides the high actuation stress and high work output upon cooling and the SMA matrix with high yield strength offers the high actuation stress upon heating. Compared to traditional bias-type two-way actuators, the two-way actuation composite with small volume and simple construct is in favour of the miniaturization and simplification of actuators.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esteves, Giovanni; Fancher, Chris M.; Röhrig, Sören
The effects of electrical and mechanical loading on the behavior of domains and phases in Multilayer Piezoelectric Actuators (MAs) is studied using in situ high-energy X-ray diffraction (XRD) and macroscopic property measurements. Rietveld refinement is carried out on measured diffraction patterns using a two-phase tetragonal (P4mm) and rhombohedral (R3m) model. Applying an electric field promotes the rhombohedral phase, while increasing compressive uniaxial pre-stress prior to electric field application favors the tetragonal phase. The competition between electrical and mechanical energy leads to a maximal difference between electric-field-induced phase fractions at 70 MPa pre-stress. Additionally, the available volume fraction of non-180° domainmore » reorientation that can be accessed during electric field application increases with compressive pre-stress up to 70 MPa. The origin for enhanced strain and polarization with applied pre-stress is attributed to a combination of enhanced non-180° domain reorientation and electric-field-induced phase transitions. The suppression of both the electric-field-induced phase transitions and domain reorientation at high pre-stresses (>70 MPa) is attributed to a large mechanical energy barrier, and alludes to the competition of the electrical and mechanical energy within the MA during applied stimuli.« less
Tanaka, E; Sasaki, A; Tahmina, K; Yamaguchi, K; Mori, Y; Tanne, K
2001-03-01
The present study was designed to investigate the elastic modulus of human temporomandibular joint (TMJ) disk under tension and its influences on TMJ loading. Seven human TMJ disks served as specimens. Continuous tensile stress was applied to each specimen, and the elastic moduli of human TMJ disks were calculated at 2% strain. Furthermore, using a three-dimensional finite element model of the mandible including the TMJ, changes in the TMJ stresses during clenching were evaluated in association of varying elastic moduli of the articular disk determined by the tensile tests. The elastic moduli at 2% strain varied from 27.1 to 65.2 MPa with a mean of 47.1 MPa. A significant correlation was found between the elastic moduli and age (P < 0.01). On the surface of condyle, compressive stress in the anterior area and tensile stress in the posterior area increased when the elastic moduli of the TMJ disk was varied from 25 to 65 MPa. In the TMJ disk, shear stresses in all the areas became larger with greater stiffness. In conclusion, it is shown that the elastic modulus of human TMJ disk is increased with age and that higher stiffness of the disk exerts substantial influences on mechanical loading for the TMJ structures.
Esteves, Giovanni; Fancher, Chris M.; Röhrig, Sören; ...
2017-04-08
The effects of electrical and mechanical loading on the behavior of domains and phases in Multilayer Piezoelectric Actuators (MAs) is studied using in situ high-energy X-ray diffraction (XRD) and macroscopic property measurements. Rietveld refinement is carried out on measured diffraction patterns using a two-phase tetragonal (P4mm) and rhombohedral (R3m) model. Applying an electric field promotes the rhombohedral phase, while increasing compressive uniaxial pre-stress prior to electric field application favors the tetragonal phase. The competition between electrical and mechanical energy leads to a maximal difference between electric-field-induced phase fractions at 70 MPa pre-stress. Additionally, the available volume fraction of non-180° domainmore » reorientation that can be accessed during electric field application increases with compressive pre-stress up to 70 MPa. The origin for enhanced strain and polarization with applied pre-stress is attributed to a combination of enhanced non-180° domain reorientation and electric-field-induced phase transitions. The suppression of both the electric-field-induced phase transitions and domain reorientation at high pre-stresses (>70 MPa) is attributed to a large mechanical energy barrier, and alludes to the competition of the electrical and mechanical energy within the MA during applied stimuli.« less
Rakngarm Nimkerdphol, Achariya; Otsuka, Yuichi; Mutoh, Yoshiharu
2014-08-01
The residual stress distributions in hydroxyapatite (HAp) coating with and without mixed hydroxyapatite/titanium (HAp/Ti) bond coating on commercially pure Titanium substrate (cp-Ti) were evaluated by Raman piezo-spectroscopy analysis. The Raman shifted position 962cm(-1), which is the symmetrical stretching of surrounded oxygen atoms with phosphorous atom ( [Formula: see text] ), was referred to analyses of stress dependency. The piezo-spectroscopic coefficient, which is a Raman shift value per stress (cm(-1)/GPa), was fitted from the result of four-points bending test of rectangular HAp bar and as-sprayed HAp on Zn plate. The calculated values were 3.89cm(-1)/GPa for the former and 7.11cm(-1)/GPa for the latter. By using these calibrations, the compressive residual stress in HAp coating with HAp/Ti bond coating (HA-B) has been found to be distributed in the range of -137MPa to -75MPa. For the heat-treated HAp coating (HA-B-HT) specimen, the compressive residual stresses placed in the range of -40--22MPa. The changes in the values of residual stress of the HAp coating after immersion in SBF were also evaluated. The residual stress in HA-WB specimens tend to change from compressive to tensile after 30 days immersion. The HA-B-HT specimens exhibited similar behavior and reached to zero stress after the immersion. The mechanism of the changes in residual stress would be the effect of stress redistribution around melted calcium phosphate particles to remained HAp splats. Copyright © 2014 Elsevier Ltd. All rights reserved.
A mechanism for tectonic deformation on Venus
NASA Technical Reports Server (NTRS)
Phillips, Roger J.
1986-01-01
In the absence of identifiable physiographic features directly associated with plate tectonics, alternate mechanisms are sought for the intense tectonic deformation observed in radar images of Venus. One possible mechanism is direct coupling into an elastic lithosphere of the stresses associated with convective flow in the interior. Spectral Green's function solutions have been obtained for stresses in an elastic lithosphere overlying a Newtonian interior with an exponential depth dependence of viscosity, and a specified surface-density distribution driving the flow. At long wavelengths and for a rigid elastic/fluid boundary condition, horizontal normal stresses in the elastic lid are controlled by the vertical shear stress gradient and are directly proportional to the depth of the density disturbance in the underlying fluid. The depth and strength of density anomalies in the Venusian interior inferred by analyses of long wavelength gravity data suggest that stresses in excess of 100 MPa would be generated in a 10 km thick elastic lid unless a low viscosity channel occurring beneath the lid or a positive viscosity gradient uncouples the flow stresses. The great apparent depth of compensation of topographic features argues against this, however, thus supporting the importance of the coupling mechanism. If there is no elastic lid, stresses will also be very high near the surface, providing also that the viscosity gradient is negative.
NASA Astrophysics Data System (ADS)
Lebedev, M.; Collet, O.; Bona, A.; Gurevich, B.
2015-12-01
Estimations of hydrocarbon and water resources as well as reservoir management during production are the main challenges facing the resource recovery industry nowadays. The recently discovered reservoirs are not only deep but they are also located in complicated geological formations. Hence, the effect of anisotropy on reservoir imaging becomes significant. Shear wave (S-wave) splitting has been observed in the field and laboratory experiments for decades. Despite the fact that S-wave splitting is widely used for evaluation of subsurface anisotropy, the effects of stresses as well fluid saturation on anisotropy have not been understood in detail. In this paper we present the laboratory study of the effect of stress and saturation on S-wave splitting for a Bentheim sandstone sample. The cubic sample (50mm3), porosity 22%, density 1890kg/m3) was placed into a true-triaxial cell. The sample was subjected to several combinations of stresses varying from 0 to 10MPa and applied to the sample in two directions (X and Y), while no stress was applied to the sample in the Z-direction. The sample's bedding was nearly oriented parallel to Y-Z plane. The ultrasonic S-waves were exited at a frequency of 0.5MHz by a piezoelectric transducer and were propagating in the Z-direction. Upon wave arrival onto the free surface the displacement of the surface was monitored by a Laser Doppler interferometer. Hodograms of the central point of the dry sample (Fig. 1) demonstrate how S-wave polarizations for both "fast" and "slow" S-waves change when increasing the stress in the X direction, while the stress in direction Y is kept constant at 3 MPa. Polarization of the fast S wave is shifted towards the X-axis (axis of the maximum stress). While both S-wave velocities increase with stress, the anisotropy level remains the same. No shift of polarization of fast wave was observed when the stress along the Y-axis was kept at 3 MPa, while the stress along the X-axis was increasing. However, in that case, S-wave splitting is more prominent. The fast S-wave velocity is increasing with the stress increase while the slow S-wave velocity starts decreasing after 5MPa, indicating possible cracks opening in the Y-direction. Interestingly no change in anisotropy was observed for the water-saturated sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Paul Allan
We investigate dynamic wave-triggered slip under laboratory shear conditions. The experiment is composed of a three-block system containing two gouge layers composed of glass beads and held in place by a fixed load in a biaxial configuration. When the system is sheared under steady state conditions at a normal load of 4 MPa, we find that shear failure may be instantaneously triggered by a dynamic wave, corresponding to material weakening and softening if the system is in a critical shear stress state (near failure). Following triggering, the gouge material remains in a perturbed state over multiple slip cycles as evidencedmore » by the recovery of the material strength, shear modulus, and slip recurrence time. This work suggests that faults must be critically stressed to trigger under dynamic conditions and that the recovery process following a dynamically triggered event differs from the recovery following a spontaneous event.« less
Johnson, Paul Allan
2016-02-28
We investigate dynamic wave-triggered slip under laboratory shear conditions. The experiment is composed of a three-block system containing two gouge layers composed of glass beads and held in place by a fixed load in a biaxial configuration. When the system is sheared under steady state conditions at a normal load of 4 MPa, we find that shear failure may be instantaneously triggered by a dynamic wave, corresponding to material weakening and softening if the system is in a critical shear stress state (near failure). Following triggering, the gouge material remains in a perturbed state over multiple slip cycles as evidencedmore » by the recovery of the material strength, shear modulus, and slip recurrence time. This work suggests that faults must be critically stressed to trigger under dynamic conditions and that the recovery process following a dynamically triggered event differs from the recovery following a spontaneous event.« less
NASA Astrophysics Data System (ADS)
Oliveira, V. A.; Rocha, M.; Lantreibecq, A.; Tsoutsouva, M. G.; Tran-Thi, T. N.; Baruchel, J.; Camel, D.
2018-05-01
Besides the well-known local sub-grain boundaries (SGBs) defects, monolike Si ingots grown by Directional Solidification present distributed background cellular dislocation structures. In the present work, the influence of stress level, time under stress, and doping by O and Ge, on the formation of dislocation cells in monolike silicon, is analysed. This is achieved by performing a comparative study of the dislocation structures respectively obtained during crystallisation of pilot scale monolike ingots on Czochralski (CZ) and monolike seeds, during annealing of Float Zone (FZ), CZ, and 1 × 1020 at/cm3 Ge-doped CZ (GCZ) samples, and during 4-point bending of FZ and GCZ samples at 1300 °C under resolved stresses of 0.3, 0.7 and 1.9 MPa during 1-20 h. Synchrotron X-ray White-beam Topography and Rocking Curve Imaging (RCI) are applied to visualize the dislocation arrangements and to quantify the spatial distribution of the associated lattice distortions. Annealed samples and samples bent under 0.3 MPa present dislocation structures corresponding to transient creep stages where dislocations generated from surface defects are propagating and multiplying in the bulk. The addition of the hardening element Ge is found to block the propagation of dislocations from these surface sources during the annealing test, and to retard dislocation multiplication during bending under 0.3 MPa. On the opposite, cellular structures corresponding to the final stationary creep stage are obtained both in the non-molten seeds and grown part of monolike ingots and in samples bent under 0.7 and 1.9 MPa. A comparative discussion is made of the dynamics of formation of these final dislocation structures during deformation at high temperature and monolike growth.
NASA Astrophysics Data System (ADS)
Kireeva, I. V.; Platonova, Yu. N.; Chumlyakov, Yu. I.
2017-02-01
The ordinary and two-way shape memory effects (SMEs) are investigated for [ overline{1} 12] single crystals of Ti-51.3Ni (at.%) alloy aged at 823 K for 1.5 h in free state and under tensile stress of 150 MPa without hydrogen and after saturation by hydrogen. It is established that without hydrogen in [ overline{1} 12] single crystals with one and four variants of Ti3Ni4 particles the maximum magnitude of the ordinary SME is 1.9-2.6% under the external stress σext = 250 MPa. Under σext > 250 MPa, crystals are destroyed. The magnitude of the two-way SME caused by the B2- R- B19' MT equal to 1.1% at σext = 0 is observed in [ overline{1} 12] single crystals with one variant of Ti3Ni4 particles. The physical reason for the observed two-way SME is the internal compressive stresses oriented along the [ overline{1} 12] directions arising from one variant of Ti3Ni4 particles as a result of aging under tensile stress of 150 MPa. It is established that hydrogen does not influence the TR temperature, reduces the plasticity, and suppresses the two-way SME. The suppression of two-way SME in the [ overline{1} 12] single crystals of the Ti-51.3Ni (at.%) alloy with one variant of Ti3Ni4 particles is caused by shielding of stress fields from one variant of Ti3Ni4 particles and multiple nucleation of R- and B19' martensite variants under loading with saturation by hydrogen.
Fletcher, Joe B.; McGarr, A.
2011-01-01
By averaging the spectra of events within two episodes of tremor (on Jan. 21 and 24, 2005) across the 12 stations of UPSAR, we improved the S/N sufficiently to define source spectra. Analysis of eleven impulsive events revealed attenuation-corrected spectra of displacement similar to those of earthquakes, with a low-frequency plateau, a corner frequency, and a high frequency decay proportional to f−2. Seismic moments, M0, estimated from these spectra range from about 3 to 10 × 1011 N-m or moment magnitudes in the range 1.6 to 1.9. The corner frequencies range from 2.6 to 7.2 Hz and, if interpreted in the same way as for earthquakes, indicate low stress drops that vary from 0.001 to 0.04 MPa. Seismic energies, estimated from the ground motion spectra, vary from 0.2 × 105 to 4.4 × 105 J, or apparent stresses in the range 0.002 to 0.02 MPa. The low stress parameters are consistent with a weak fault zone in the lower crust at the depth of tremor. In contrast, the same analysis on a micro-earthquake, located near Cholame (depth = 10.3 km), revealed a stress drop of 0.5 MPa and an apparent stress of 0.02 MPa. Residual spectra from ω−2 model fits to the displacement spectra of the non-volcanic tremor events show peaks near 4 Hz that are not apparent in the spectra for the microearthquake nor for the spectrum of earth noise. These spectral peaks may indicate that tremor entails more than shear failure reminiscent of mechanisms, possibly entailing fluid flow, associated with volcanic tremor or deep volcanic earthquakes.
Al-Sukhun, Jehad; Lindqvist, Christian; Ashammakhi, Nureddin; Penttilä, Heikki
2007-03-01
To develop a finite element model (FEM) to study the effect of the stress and strain, in microvascular anastomoses that result from the geometrical mismatch of anastomosed vessels. FEMs of end-to-end and end-to-side anastomoses were constructed. Simulations were made using finite element software (NISA). We investigated the angle of inset in the end-to-side anastomosis and the discrepancy in the size of the opening in the vessel between the host and recipient vessels. The FEMs were used to predict principal and shear stress and strain at the position of each node. Two types of vascular deformation were predicted during different simulations: longitudinal distortion, and rotational distortion. Stress values ranged from 151.1 to 282.4MPa for the maximum principal stress, from -122.9 to -432.2MPa for the minimum principal stress, and from 122.1 to 333.1MPa for the maximum shear stress. The highest values were recorded when there was a 50% mismatch in the diameter of the vessels at the site of the end-to-end anastomosis. The effect of the vessel's size discrepancy on the blood flow and deformation was remarkable in the end-to-end anastomosis. End-to-side anastomosis was superior to end-to-end anastomosis. FEM is a powerful tool to study vascular deformation, as it predicts deformation and biomechanical processes at sites where physical measurements are likely to remain impossible in living humans.
Investigation of the mechanical properties of organoplastic under shock wave loading conditions
NASA Astrophysics Data System (ADS)
Bragov, A. M.; Igumnov, L. A.; Konstantinov, A. Yu; Lomunov, A. K.
2018-04-01
The paper presents results of dynamic tests of a typical representative of new composite and damping materials: organoplastics. Compression testing was performed using the traditional Kolsky method and its original modification. The strength and deformation properties of organoplastics under conditions of uniaxial stress and uniaxial deformation were studied. When the organoplastic is compressed transversely to the Kevlar fabric layers under conditions of a uniaxial stress state, the material begins to break down (to lose the layer cohesion) at a stress of about 200 MPa, while under the conditions of uniaxial strain, it retains its apparent integrity at stresses up to 500 MPa. The small value of the lateral thrust factor indicates a large internal strength of the material in tension in the radial direction.
Effect of oxygen on dislocation multiplication in silicon crystals
NASA Astrophysics Data System (ADS)
Fukushima, Wataru; Harada, Hirofumi; Miyamura, Yoshiji; Imai, Masato; Nakano, Satoshi; Kakimoto, Koichi
2018-03-01
This paper aims to clarify the effect of oxygen on dislocation multiplication in silicon single crystals grown by the Czochralski and floating zone methods using numerical analysis. The analysis is based on the Alexander-Haasen-Sumino model and involves oxygen diffusion from the bulk to the dislocation cores during the annealing process in a furnace. The results show that after the annealing process, the dislocation density in silicon single crystals decreases as a function of oxygen concentration. This decrease can be explained by considering the unlocking stress caused by interstitial oxygen atoms. When the oxygen concentration is 7.5 × 1017 cm-3, the total stress is about 2 MPa and the unlocking stress is less than 1 MPa. As the oxygen concentration increases, the unlocking stress also increases; however, the dislocation velocity decreases.
Dynamic and static fatigue behavior of sintered silicon nitrides
NASA Technical Reports Server (NTRS)
Chang, J.; Khandelwal, P.; Heitman, P. W.
1987-01-01
The dynamic and static fatigue behavior of Kyocera SN220M sintered silicon nitride at 1000 C was studied. Fractographic analysis of the material failing in dynamic fatigue revealed the presence of slow crack growth (SCG) at stressing rates below 41 MPa/min. Under conditions of static fatigue this material also displayed SCG at stresses below 345 MPa. SCG appears to be controlled by microcracking of the grain boundaries. The crack velocity exponent (n) determined from both dynamic and static fatigue tests ranged from 11 to 16.
Liu, Jia-Ming; Zhang, Yu; Zhou, Yang; Chen, Xuan-Yin; Huang, Shan-Hu; Hua, Zi-Kai; Liu, Zhi-Li
2017-06-01
Posterior reduction and pedicle screw fixation is a widely used procedure for thoracic and lumbar vertebrae fractures. Usually, the pedicle screws would be removed after the fracture healing and screw tunnels would be left. The aim of this study is to evaluate the effect of screw tunnels on the biomechanical stability of the lumbar vertebral body after pedicle screws removal by finite element analysis (FEA). First, the CT values of the screw tunnels wall in the fractured vertebral bodies were measured in patients whose pedicle screws were removed, and they were then compared with the values of vertebral cortical bone. Second, an adult patient was included and the CT images of the lumbar spine were harvested. Three dimensional finite element models of the L1 vertebra with unilateral or bilateral screw tunnels were created based on the CT images. Different compressive loads were vertically acted on the models. The maximum loads which the models sustained and the distribution of the force in the different parts of the models were recorded and compared with each other. The CT values of the tunnels wall and vertebral cortical bone were 387.126±62.342 and 399.204±53.612, which were not statistically different (P=0.149). The models of three dimensional tetrahedral mesh finite element of normal lumbar 1 vertebra were established with good geometric similarity and realistic appearance. After given the compressive loads, the cortical bone was the first one to reach its ultimate stress. The maximum loads which the bilateral screw tunnels model, unilateral screw tunnel model, and normal vertebral model can sustain were 3.97 Mpa, 3.83 Mpa, and 3.78 Mpa, respectively. For the diameter of the screw tunnels, the model with a diameter of 6.5 mm could sustain the largest load. In addition, the stress distributing on the outside of the cortical bone gradually decreased as the thickness of the tunnel wall increased. Based on the FEA, pedicle screw tunnels would not decrease the biomechanical stability and strength of the vertebral body. A large diameter of screw tunnel and thick tunnel wall were helpful for the biomechanical stability of the vertebral body.
Bazou, Despina; Kuznetsova, Larisa A; Coakley, W Terence
2005-03-01
2-D mammalian cell aggregates can be formed and levitated in a 1.5 MHz single half wavelength ultrasound standing wave trap. The physical environment of cells in such a trap has been examined. Attention was paid to parameters such as temperature, acoustic streaming, cavitation and intercellular forces. The extent to which these factors might be intrusive to a neural cell aggregate levitated in the trap was evaluated. Neural cells were exposed to ultrasound at a pressure amplitude of 0.54 MPa for 30 s; a small aggregate had been formed at the center of the trap. The pressure amplitude was then decreased to 0.27 MPa for 2 min, at which level the aggregation process continued at a slower rate. The pressure amplitude was then decreased to 0.06 MPa for 1 h. Temperature measurements that were conducted in situ with a 200 microm thermocouple over a 30 min period showed that the maximum temperature rise was less than 0.5 K. Acoustic streaming was measured by the particle image velocimetry method (PIV). It was shown that the hydrodynamic stress imposed on cells by acoustic streaming is less than that imposed by gentle preparative centrifugation procedures. Acoustic spectrum analysis showed that cavitation activity does not occur in the cell suspensions sonicated at the above pressures. White noise was detected only at a pressure amplitude of 1.96 MPa. Finally, it was shown that the attractive acoustic force between ultrasonically agglomerated cells is small compared with the normal attractive van der Waals force that operates at close cell surface separations. It is concluded that the standing wave trap operates only to concentrate cells locally, as in tissue, and does not modify the in vitro expression of surface receptor interactions.
NASA Astrophysics Data System (ADS)
Noor, M. J. Md; Jobli, A. F.
2018-04-01
Currently rock deformation is estimated using the relationship between the deformation modulus Em and the stress-strain curve. There have been many studies conducted to estimate the value of Em. This Em is basically derived from conducting unconfined compression test, UCS. However, the actual stress condition of the rock in the ground is anisotropic stress condition where the rock mass is subjected to different confining and vertical pressures. In addition, there is still no empirical or semi-empirical framework that has been developed for the prediction of rock stress-strain response under anisotropic stress condition. Arock triaxial machine GCTS Triaxial RTX-3000 has been deployed to obtain the anisotropic stress-strain relationship for weathered granite grade II from Rawang, Selangor sampled at depth of 20 m and subjected to confining pressure of 2 MPa, 7.5 MPa and 14 MPa. The developed mobilised shear strength envelope within the specimen of 50 mm diameter and 100 mm height during the application of the deviator stress is interpreted from the stress-strain curves. These mobilised shear strength envelopes at various axial strains are the intrinsic property and unique for the rock. Once this property has been established then it is being used to predict the stress-strain relationship at any confining pressure. The predicted stress-strain curves are compared against the curves obtained from the tests. A very close prediction is achieved to substantiate the applicability of this rock deformation model. This is a state-of-the art rock deformation theory which characterise the deformation base on the applied load and the developed mobilised shear strength within the rock body.
Step-stress analysis for predicting dental ceramic reliability.
Borba, Márcia; Cesar, Paulo F; Griggs, Jason A; Della Bona, Alvaro
2013-08-01
To test the hypothesis that step-stress analysis is effective to predict the reliability of an alumina-based dental ceramic (VITA In-Ceram AL blocks) subjected to a mechanical aging test. Bar-shaped ceramic specimens were fabricated, polished to 1μm finish and divided into 3 groups (n=10): (1) step-stress accelerating test; (2) flexural strength-control; (3) flexural strength-mechanical aging. Specimens from group 1 were tested in an electromagnetic actuator (MTS Evolution) using a three-point flexure fixture (frequency: 2Hz; R=0.1) in 37°C water bath. Each specimen was subjected to an individual stress profile, and the number of cycles to failure was recorded. A cumulative damage model with an inverse power law lifetime-stress relation and Weibull lifetime distribution were used to fit the fatigue data. The data were used to predict the stress level and number of cycles for mechanical aging (group 3). Groups 2 and 3 were tested for three-point flexural strength (σ) in a universal testing machine with 1.0MPa/s stress rate, in 37°C water. Data were statistically analyzed using Mann-Whitney Rank Sum test. Step-stress data analysis showed that the profile most likely to weaken the specimens without causing fracture during aging (95% CI: 0-14% failures) was: 80MPa stress amplitude and 10(5) cycles. The median σ values (MPa) for groups 2 (493±54) and 3 (423±103) were statistically different (p=0.009). The aging profile determined by step-stress analysis was effective to reduce alumina ceramic strength as predicted by the reliability estimate, confirming the study hypothesis. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Research on residual stress inside Fe-Mn-Si shape memory alloy coating by laser cladding processing
NASA Astrophysics Data System (ADS)
Ju, Heng; Lin, Cheng-xin; Zhang, Jia-qi; Liu, Zhi-jie
2016-09-01
The stainless Fe-Mn-Si shape memory alloy (SMA) coating was prepared on the surface of AISI 304 stainless steel. The principal residual stress measured by the mechanical hole-drilling method indicates that the Fe-Mn-Si SMA cladding specimen possesses a lower residual stress compared with the 304 stainless steel cladding specimen. The mean stress values of the former and the latter on 10-mm-thick substrate are 4.751 MPa and 7.399 MPa, respectively. What's more, their deformation values on 2-mm-thick substrate are about 0° and 15°, respectively. Meanwhile, the variation trend and the value of the residual stress simulated by the ANSYS finite element software consist with experimental results. The X-ray diffraction (XRD) pattern shows ɛ-martensite exists in Fe-Mn-Si SMA coating, which verifies the mechanism of low residual stress. That's the γ→ɛ martensite phase transformation, which relaxes the residual stress of the specimen and reduces its deformation in the laser cladding processing.
The nucleation of "fast" and "slow" stick slip instabilities in sheared granular aggregates
NASA Astrophysics Data System (ADS)
Korkolis, Evangelos; Ampuero, Jean-Paul; Niemeijer, André
2017-04-01
Seismological observations in the past few decades have revealed a diversity of slip behaviors of faults, involving interactions and transition between slow to fast slip phenomena. Field studies show that exhumed fault zones comprise mixtures of materials with variable frictional strength and stability. Emergent models of slip diversity emphasize the role of heterogeneities of fault zone properties and the potential interactions between seismic and aseismic deformation. Here, we develop analog laboratory experiments to study the mechanics of heterogeneous faults with the goal to identify factors controlling their slip stability and rupture style. We report on results from room temperature sliding experiments using a rotary shear apparatus. We simulated gouge heterogeneity by using materials with different frictional strength and stability. At room temperature conditions, dry glass beads typically stick slip, whereas dry granular calcite exhibits stable sliding. The peak strength of glass beads aggregates is typically lower than that of granular calcite aggregates. Our samples consisted of a layer of glass beads sandwiched between two layers of granular calcite. The initial particle size was between 100 and 200 μm for both materials and the initial thickness of each layer was about 1.5 mm. We tested our layered aggregates under 1 to 7 MPa normal stress and at sliding velocities between 1 and 100 μm/s. Within that range of conditions, high normal stress and slow sliding velocities promoted fast, regular stick slip. For normal stress values of less than about 4 MPa, the recurrence time and stress drop of stick slips became irregular, particularly at sliding rates above 20 μm/s. As the accumulated shear displacement increased, slip events became slower and the magnitudes of their stress drop, compaction and slip distance decreased. We recorded acoustic emissions (AEs) associated with each slip event (fast and slow) and estimated their source azimuth. AE activity was distributed in several clusters, some of which remained stationary, whereas others appeared to migrate with increasing shear displacement. We performed post-mortem microstructural analysis (tabletop SEM) of select AE nucleation sites and found significant mixing of glass beads with the calcite layer abutting the rotating piston ring. No mixing was observed between the glass beads and the calcite layer on the opposite side, nor any features that would indicate strain localization along the interface of the calcite and the adjacent stationary piston. These results show that the frictional behavior of our aggregates changed from fast to slow slip as the amount of glass beads mixed with granular calcite increased. Migrating AE clusters imply that nucleation occurred within the mixed calcite-glass beads layer, where most of the shear strain appears to have been accommodated, whereas stationary clusters probably originated within the adjacent, more slowly deforming layer of glass beads. This suggests that AEs belonging to migrating clusters were perhaps triggered by stress changes due to the gradual mixing of the two sample constituents. This process may explain migrating seismicity in natural fault zones.
Investigation of Shallow Undex in Littoral Ocean Domain
2014-06-01
pPos Units=Pa #Units: psi, ksi, Pa, MPa, bar or scaling factor # Var=pNeg Units=Pa #Units: psi, ksi, Pa, MPa...net) # i = Impulse intensity (time in sec) # ppos = Element pressure on "positive" side (normal points toward "eye") of coupling interface
Strength of inserts in titanium alloy machining
NASA Astrophysics Data System (ADS)
Kozlov, V.; Huang, Z.; Zhang, J.
2016-04-01
In this paper, a stressed state of a non-worn cutting wedge in a machined titanium alloy (Ti6Al2Mo2Cr) is analyzed. The distribution of contact loads on the face of a cutting tool was obtained experimentally with the use of a ‘split cutting tool’. Calculation of internal stresses in the indexable insert made from cemented carbide (WC8Co) was carried out with the help of ANSYS 14.0 software. Investigations showed that a small thickness of the cutting insert leads to extremely high compressive stresses near the cutting edge, stresses that exceed the ultimate compressive strength of cemented carbide. The face and the base of the insert experience high tensile stresses, which approach the ultimate tensile strength of cemented carbide and increase a probability of cutting insert destruction. If the thickness of the cutting insert is bigger than 5 mm, compressive stresses near the cutting edge decrease, and tensile stresses on the face and base decrease to zero. The dependences of the greatest normal and tangential stresses on thickness of the cutting insert were found. Abbreviation and symbols: m/s - meter per second (cutting speed v); mm/r - millimeter per revolution (feed rate f); MPa - mega Pascal (dimension of specific contact loads and stresses); γ - rake angle of the cutting tool [°] α - clearance angle of the sharp cutting tool [°].
How does yeast respond to pressure?
Fernandes, P M B
2005-08-01
The brewing and baking yeast Saccharomyces cerevisiae has been used as a model for stress response studies of eukaryotic cells. In this review we focus on the effect of high hydrostatic pressure (HHP) on S. cerevisiae. HHP exerts a broad effect on yeast cells characteristic of common stresses, mainly associated with protein alteration and lipid bilayer phase transition. Like most stresses, pressure induces cell cycle arrest. Below 50 MPa (500 atm) yeast cell morphology is unaffected whereas above 220 MPa wild-type cells are killed. S. cerevisiae cells can acquire barotolerance if they are pretreated with a sublethal stress due to temperature, ethanol, hydrogen peroxide, or pressure. Nevertheless, pressure only leads to protection against severe stress if, after pressure pretreatment, the cells are also re-incubated at room pressure. We attribute this effect to the inhibition of the protein synthesis apparatus under HHP. The global genome expression analysis of S. cerevisiae cells submitted to HHP revealed a stress response profile. The majority of the up-regulated genes are involved in stress defense and carbohydrate metabolism while most repressed genes belong to the cell cycle progression and protein synthesis categories. However, the signaling pathway involved in the pressure response is still to be elucidated. Nitric oxide, a signaling molecule involved in the regulation of a large number of cellular functions, confers baroprotection. Furthermore, S. cerevisiae cells in the early exponential phase submitted to 50-MPa pressure show induction of the expression level of the nitric oxide synthase inducible isoform. As pressure becomes an important biotechnological tool, studies concerning this kind of stress in microorganisms are imperative.
Krofta, Ladislav; Havelková, Linda; Urbánková, Iva; Krčmář, Michal; Hynčík, Luděk; Feyereisl, Jaroslav
2017-02-01
During vaginal delivery, the levator ani muscle (LAM) undergoes severe deformation. This stress can lead to stretch-related LAM injuries. The objective of this study was to develop a sophisticated MRI-based model to simulate changes in the LAM during vaginal delivery. A 3D finite element model of the female pelvic floor and fetal head was developed. The model geometry was based on MRI data from a nulliparous woman and 1-day-old neonate. Material parameters were estimated using uniaxial test data from the literature and by least-square minimization method. The boundary conditions reflected all anatomical constraints and supports. A simulation of vaginal delivery with regard to the cardinal movements of labor was then performed. The mean stress values in the iliococcygeus portion of the LAM during fetal head extension were 4.91-7.93 MPa. The highest stress values were induced in the pubovisceral and puborectal LAM portions (mean 27.46 MPa) at the outset of fetal head extension. The last LAM subdivision engaged in the changes in stress was the posteromedial section of the puborectal muscle. The mean stress values were 16.89 MPa at the end of fetal head extension. The LAM was elongated by nearly 2.5 times from its initial resting position. The cardinal movements of labor significantly affect the subsequent heterogeneous stress distribution in the LAM. The absolute stress values were highest in portions of the muscle that arise from the pubic bone. These areas are at the highest risk for muscle injuries with long-term complications.
NASA Astrophysics Data System (ADS)
Jeřábek, Petr; Bukovská, Zita; Morales, Luiz F. G.
2017-04-01
The micro-scale shear zones (shear bands) in granitoids from the South Armorican Shear Zone reflect localization of deformation and progressive weakening in the conditions of brittle-ductile transition. We studied microstructures in the shear bands with the aim to establish their P-T conditions and to derive stress and strain rates for specific deformation mechanisms. The evolving microstructure within shear bands documents switches in deformation mechanisms related to positive feedbacks between deformation and chemical processes and imposes mechanical constraints on the evolution of the brittle-ductile transition in the continental transform fault domains. The metamorphic mineral assemblage present in the shear bands indicate their formation at 300-350 ˚ C and 100-400 MPa. Focusing on the early development of shear bands, we identified three stages of shear band evolution. The early stage I associated with initiation of shear bands occurs via formation of microcracks with possible yielding differential stress of up to 250 MPa (Diamond and Tarantola, 2015). Stage II is associated with subgrain rotation recrystallization and dislocation creep in quartz and coeval dissolution-precipitation creep of microcline. Recrystallized quartz grains in shear bands show continual increase in size, and decrease in stress and strain rates from 94 MPa to 17-26 MPa (Stipp and Tullis, 2003) and 3.8*10-12 s-1- 1.8*10-14 s-1 (Patterson and Luan, 1990) associated with deformation partitioning into weaker microcline layer and shear band widening. The quartz mechanical data allowed us to set some constrains for coeval dissolution-precipitation of microcline which at our estimated P-T conditions suggests creep at 17-26 MPa differential stress and 3.8*10-13 s-1 strain rate. Stage III is characterized by localized slip along interconnected white mica bands accommodated by dislocation creep at strain rate 3.8*10-12 s-1 and stress 9.36 MPa (Mares and Kronenberg, 1993). The studied example documents a competition between shear zone widening and narrowing mechanisms, i.e. distributed and localized deformation, depending on the specific mineral phase and deformation mechanism active in each moment of the shear zone evolution. In addition, our mechanical data point to dynamic evolution of the studied brittle-ductile transition characterized by major weakening to strengths ˜10 MPa. Such non-steady-state evolution may be common in crustal shear zones especially when phase transformations are involved. References: Diamond, L. W., and A. Tarantola (2015), Interpretation of fluid inclusions in quartz deformed by weak ductile shearing: Reconstruction of differential stress magnitudes and pre-deformation fluid properties, Earth Planet. Sci. Lett., 417, 107-119. Mares, V. M., and A. K. Kronenberg (1993), Experimental deformation of muscovite, J. Struct. Geol., 15(9), 1061-1075. Paterson, M. S., and F. C. Luan (1990), Quartzite rheology under geological conditions, Geol. Soc. London, Spec. Publ., 54(1), 299-307. Stipp, M., and J. Tullis (2003), The recrystallized grain size piezometer for quartz, Geophys. Res. Lett., 30(21), 1-5.
Neutron diffraction studies of laser welding residual stresses
NASA Astrophysics Data System (ADS)
Petrov, Peter I.; Bokuchava, Gizo D.; Papushkin, Igor V.; Genchev, Gancho; Doynov, Nikolay; Michailov, Vesselin G.; Ormanova, Maria A.
2016-01-01
The residual stress and microstrain distribution induced by laser beam welding of the low-alloyed C45 steel plate was investigated using high-resolution time-of-flight (TOF) neutron diffraction. The neutron diffraction experiments were performed on FSD diffractometer at the IBR-2 pulsed reactor in FLNP JINR (Dubna, Russia). The experiments have shown that the residual stress distribution across weld seam exhibit typical alternating sign character as it was observed in our previous studies. The residual stress level is varying in the range from -60 MPa to 450 MPa. At the same time, the microstrain level exhibits sharp maxima at weld seam position with maximal level of 4.8·10-3. The obtained experimental results are in good agreement with FEM calculations according to the STAAZ model. The provided numerical model validated with measured data enables to study the influence of different conditions and process parameters on the development of residual welding stresses.
Dynamic Rupture Simulations of 11 March 2011 Tohoku Earthquake
NASA Astrophysics Data System (ADS)
Kozdon, J. E.; Dunham, E. M.
2012-12-01
There is strong observational evidence that the 11 March 2011 Tohoku earthquake rupture reached the seafloor. This was unexpected because the shallow portion of the plate interface is believed to be frictionally stable and thus not capable of sustaining coseismic rupture. In order to explore this seeming inconsistency we have developed a two-dimensional dynamic rupture model of the Tohoku earthquake. The model uses a complex fault, seafloor, and material interface structure as derived from seismic surveys. We use a rate-and-state friction model with steady state shear strength depending logarithmically on slip velocity, i.e., there is no dynamic weakening in the model. The frictional parameters are depth dependent with the shallowest portions of the fault beneath the accretionary prism being velocity strengthening. The total normal stress on the fault is taken to be lithostatic and the pore pressure is hydrostatic until a maximum effective normal stress is reached (40 MPa in our preferred model) after which point the pore pressure follows the lithostatic gradient. We also account for poroelastic buffering of effective normal stress changes on the fault. The off-fault response is linear elastic. Using this model we find that large stress changes are dynamically transmitted to the shallowest portions of the fault by waves released by deep slip that are reflected off the seafloor. These stress changes are significant enough to drive the rupture through a velocity strengthening region that is tens of kilometers long. Rupture to the trench is therefore consistent with standard assumptions about depth-dependence of subduction zone properties, and does not require extreme dynamic weakening, shallow high stress drop asperities, or other exceptional processes. We also make direct comparisons with measured seafloor deformation and onshore 1-Hz GPS data from the Tohoku earthquake. Through these comparisons we are able to determine the sensitivity of these data to several dynamic source parameters (prestress, seismogenic depth, and the extent and frictional properties of the shallow plate interface). We find that there is a trade-off between the near-trench frictional properties and effective normal stress, particularly for onshore measurements. That is, the data can be equally well fit by either a velocity strengthening or velocity weakening near-trench fault segment, provided that compensating adjustments are also made to the maximum effective normal stress on the fault. On the other hand, the seismogenic depth is fairly well constrained from the static displacement field, independent of effective normal stress and near-trench properties. Finally, we show that a water layer (modeled as an isotropic linear acoustic material) has a negligible effect on the rupture process. That said, the inclusion of a water layer allows us to make important predictions concerning hydroacoustic signals that were observed by ocean bottom pressure sensors.
New mechanism for toughening ceramic materials. Final report, 15 March 1989-15 July 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cutler, R.A.; Virkar, A.V.; Cross, L.E.
Ferroelastic toughening was identified as a viable mechanism for toughening ceramics. Domain structure and domain switching was identified by x-ray diffraction, transmission optical microscopy, and transmission electron microscopy in zirconia, lead zirconate titanate and gadolinium molybdata. Switching in compression was observed at stresses greater than 600 MPa and at 400 MPa in tension for polycrystalline t'-zirconia. Domain switching contributes to toughness, as evidenced by data for monoclinic zirconia, t'-zirconia, PZT and GMO. The magnitude of toughening varied between 0.6 MPa.ml/2 for GMO to 2-6 MPa-ml/2 for zirconia. Polycrystalline monoclinic and t'-zirconias, which showed no transformation toughening, had similar toughness valuesmore » as Y-TZP which exhibits transformation. Coarse-grained monoclinic and tetragonal (t') zirconia samples could be cooled to room temperature for mechanical property evaluation since fine domain size, not grain size, controlled transformation for t'-zirconia and minimized stress for m-ZrO2. LnAlO3, LnNbO4, and LnCrO3 were among the materials identified as high temperature ferroelastics.« less
NASA Astrophysics Data System (ADS)
Zhang, Yanhua; Clennell, Michael B.; Delle Piane, Claudio; Ahmed, Shakil; Sarout, Joel
2016-12-01
This generic 2D elastic-plastic modelling investigated the reactivation of a small isolated and critically-stressed fault in carbonate rocks at a reservoir depth level for fluid depletion and normal-faulting stress conditions. The model properties and boundary conditions are based on field and laboratory experimental data from a carbonate reservoir. The results show that a pore pressure perturbation of -25 MPa by depletion can lead to the reactivation of the fault and parts of the surrounding damage zones, producing normal-faulting downthrows and strain localization. The mechanism triggering fault reactivation in a carbonate field is the increase of shear stresses with pore-pressure reduction, due to the decrease of the absolute horizontal stress, which leads to an expanded Mohr's circle and mechanical failure, consistent with the predictions of previous poroelastic models. Two scenarios for fault and damage-zone permeability development are explored: (1) large permeability enhancement of a sealing fault upon reactivation, and (2) fault and damage zone permeability development governed by effective mean stress. In the first scenario, the fault becomes highly permeable to across- and along-fault fluid transport, removing local pore pressure highs/lows arising from the presence of the initially sealing fault. In the second scenario, reactivation induces small permeability enhancement in the fault and parts of damage zones, followed by small post-reactivation permeability reduction. Such permeability changes do not appear to change the original flow capacity of the fault or modify the fluid flow velocity fields dramatically.
Xu, Chun; Silder, Amy; Zhang, Ju; Reifman, Jaques; Unnikrishnan, Ginu
2017-03-23
Load carriage is associated with musculoskeletal injuries, such as stress fractures, during military basic combat training. By investigating the influence of load carriage during exercises on the kinematics and kinetics of the body and on the biomechanical responses of bones, such as the tibia, we can quantify the role of load carriage on bone health. We conducted a cross-sectional study using an integrated musculoskeletal-finite-element model to analyze how the amount of load carriage in women affected the kinematics and kinetics of the body, as well as the tibial mechanical stress during running. We also compared the biomechanics of walking (studied previously) and running under various load-carriage conditions. We observed substantial changes in both hip kinematics and kinetics during running when subjects carried a load. Relative to those observed during running without load, the joint reaction forces at the hip increased by an average of 49.1% body weight when subjects carried a load that was 30% of their body weight (ankle, 4.8%; knee, 20.6%). These results indicate that the hip extensor muscles in women are the main power generators when running with load carriage. When comparing running with walking, finite element analysis revealed that the peak tibial stress during running (tension, 90.6 MPa; compression, 136.2 MPa) was more than three times as great as that during walking (tension, 24.1 MPa; compression, 40.3 MPa), whereas the cumulative stress within one stride did not differ substantially between running (15.2 MPa · s) and walking (13.6 MPa · s). Our findings highlight the critical role of hip extensor muscles and their potential injury in women when running with load carriage. More importantly, our results underscore the need to incorporate the cumulative effect of mechanical stress when evaluating injury risk under various exercise conditions. The results from our study help to elucidate the mechanisms of stress fracture in women.
Diabetes mellitus affects biomechanical properties of the optic nerve head in the rat.
Terai, Naim; Spoerl, Eberhard; Haustein, Michael; Hornykewycz, Karin; Haentzschel, Janek; Pillunat, Lutz E
2012-01-01
To investigate the effect of diabetes on the biomechanical behavior of the optic nerve head (ONH) and the peripapillary sclera (ppSc) in streptozocine-induced diabetic rats. Diabetes mellitus was induced in 20 Wistar rats using streptozocine. Twenty-five nondiabetic rats served as controls. Eyes were enucleated after 12 weeks and 2 strips of one eye were prepared containing ONH or ppSc. The stress-strain relation was measured in the stress range of 0.05-10 MPa using a biomaterial tester. At 5% strain the stress of the ONH in diabetic rats was 897±295 kPa and in the control group it was 671±246 kPa; there was a significant difference between both groups (p=0.011). The stress of the diabetic ppSc (574±185 kPa) increased compared to that of the nondiabetic ppSc (477±171 kPa), but this did not reach statistical significance (p=0.174). The calculated tangent modulus at 5% strain was 11.79 MPa in the diabetic ONH and 8.77 MPa in the nondiabetic ONH; there was a significant difference between both groups (p=0.006). The calculated tangent modulus at 5% strain was 7.17 MPa in the diabetic ppSc and 6.12 MPa in the nondiabetic ppSc, without a statistically significant difference (p=0.09). In contrast to the ppSc, the ONH of diabetic rats showed a significant increase in stiffness compared to nondiabetic rats, which might be explained by nonenzymatic collagen cross-linking mediated by advanced glycation end products due to high blood glucose levels in diabetes. Further studies are needed to investigate if these biomechanical changes represent a detrimental risk factor for intraocular pressure regulation in diabetic glaucoma patients. Copyright © 2011 S. Karger AG, Basel.
Study of interface influence on bending performance of CFRP with embedded optical fibers
NASA Astrophysics Data System (ADS)
Liu, Rong-mei; Liang, Da-kai
2008-11-01
Studies showed that the bending strength of composite would be affected by embedded optical fibers. Interface strength between the embedded optical fiber and the matrix was studied in this paper. Based on the single fiber pull out tests, the interfacial shear strength between the coating and the clad is the weakest. The shear strength of the optical fiber used in this study is near to 0.8MPa. In order to study the interfacial effect on bending property of generic smart structure, a quasi-isotropic composite laminates were produced from Toray T300C/ epoxy prepreg. Optical fibers were embedded within different orientation plies of the plates, with the optical fibers embedded in the same direction. Accordingly, five different types of plates were produced. Impact tests were carried out on the 5 different plate types. It is shown that when the fiber was embedded at the upper layer, the bending strength drops mostly. The bending normal stress on material arrives at the maximum. So does the normal stress applied on the optical fiber at the surface. Therefore, destructions could originate at the interface between the coating and the clad foremost. The ultimate strength of the smart structure will be affected furthest.
Zhang, Shanshan; Kang, Hongmei; Yang, Wenzhong
2017-01-01
Climatic change-induced water stress has been found to threaten the viability of trees, especially endangered species, through inhibiting their recruitment. Nyssa yunnanensis, a plant species with extremely small populations (PSESP), consists of only two small populations of eight mature individuals remaining in southwestern China. In order to determine the barriers to regeneration, both in situ and laboratory experiments were performed to examine the critical factors hindering seed germination and seedling establishment. The results of in situ field experiments demonstrated that soil water potentials lower than -5.40 MPa (experienced in December) had significantly inhibitory effects on seedling survival, and all seedlings perished at a soil water potential of -5.60 MPa (January). Laboratory experiments verified that N. yunnanensis seedlings could not survive at a 20% PEG 6000 concentration (-5.34 MPa) or 1/5 water-holding capacity (WHC; -5.64 MPa), and seed germination was inhibited in the field from September (-1.10 MPa) to November (-4.30 MPa). Our results suggested that soil water potentials between -5.34 and -5.64 MPa constituted the range of soil water potentials in which N. yunnanensis seedlings could not survive. In addition to water deficit, intensified autotoxicity, which is concentration-dependent, resulted in lower seed germination and seedling survival. Thus, seed establishment was probably simultaneously impacted by water deficit and aggravated autotoxicity. Meteorological records from the natural distribution areas of N. yunnanensis indicated that mean annual rainfall and relative humidity have declined by 21.7% and 6.3% respectively over past 55 years, while the temperature has increased by 6.0%. Climate change-induced drought, along with a poor resistance and adaptability to drought stress, has severely impacted the natural regeneration of N. yunnanensis. In conclusion, climate change-induced drought has been implicated as a regulating factor in the natural regeneration of N. yunnanensis through suppressing seed germination and screening out seedlings in the dry season. Based on the experimental findings, habitat restoration and microclimate improvement should both be highlighted in the conservation of this particular plant species. PMID:28763476
Compaction and Permeability Reduction of Castlegate Sandstone under Pore Pressure Cycling
NASA Astrophysics Data System (ADS)
Bauer, S. J.
2014-12-01
We investigate time-dependent compaction and permeability changes by cycling pore pressure with application to compressed air energy storage (CAES) in a reservoir. Preliminary experiments capture the impacts of hydrostatic stress, pore water pressure, pore pressure cycling, chemical, and time-dependent considerations near a borehole in a CAES reservoir analog. CAES involves creating an air bubble in a reservoir. The high pressure bubble serves as a mechanical battery to store potential energy. When there is excess grid energy, bubble pressure is increased by air compression, and when there is energy needed on the grid, stored air pressure is released through turbines to generate electricity. The analog conditions considered are depth ~1 km, overburden stress ~20 MPa and a pore pressure ~10MPa. Pore pressure is cycled daily or more frequently between ~10 MPa and 6 MPa, consistent with operations of a CAES facility at this depth and may continue for operational lifetime (25 years). The rock can vary from initially fully-to-partially saturated. Pore pressure cycling changes the effective stress.Jacketed, room temperature tap water-saturated samples of Castlegate Sandstone are hydrostatically confined (20 MPa) and subjected to a pore pressure resulting in an effective pressure of ~10 MPa. Pore pressure is cycled between 6 to 10 MPa. Sample displacement measurements yielded determinations of volumetric strain and from water flow measurements permeability was determined. Experiments ran for two to four weeks, with 2 to 3 pore pressure cycles per day. The Castlegate is a fluvial high porosity (>20%) primarily quartz sandstone, loosely calcite cemented, containing a small amount of clay.Pore pressure cycling induces compaction (~.1%) and permeability decreases (~20%). The results imply that time-dependent compactive processes are operative. The load path, of increasing and decreasing pore pressure, may facilitate local loosening and grain readjustments that results in the compaction and permeability decreases observed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Dept. of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.SAND2014-16586A
Stout, Deborah H; Sala, Anna
2003-01-01
In the Rocky Mountains, ponderosa pine (Pinus ponderosa (ssp.) ponderosa Dougl. ex P. Laws. & C. Laws) often co-occurs with Douglas-fir (Pseudotsuga menziesii var. glauca (Mayr) Franco). Despite previous reports showing higher shoot vulnerability to water-stress-induced cavitation in ponderosa pine, this species extends into drier habitats than Douglas-fir. We examined: (1) whether roots and shoots of ponderosa pine in riparian and slope habitats are more vulnerable to water-stress-induced cavitation than those of Douglas-fir; (2) whether species-specific differences in vulnerability translate into differences in specific conductivity in the field; and (3) whether the ability of ponderosa pine to extend into drier sites is a result of (a) greater plasticity in hydraulic properties or (b) functional or structural adjustments. Roots and shoots of ponderosa pine were significantly more vulnerable to water-stress-induced cavitation (overall mean cavitation pressure, Psi(50%) +/- SE = -3.11 +/- 0.32 MPa for shoots and -0.99 +/- 0.16 MPa for roots) than those of Douglas-fir (Psi(50%) +/- SE = -4.83 +/- 0.40 MPa for shoots and -2.12 +/- 0.35 MPa for roots). However, shoot specific conductivity did not differ between species in the field. For both species, roots were more vulnerable to cavitation than shoots. Overall, changes in vulnerability from riparian to slope habitats were small for both species. Greater declines in stomatal conductance as the summer proceeded, combined with higher allocation to sapwood and greater sapwood water storage, appeared to contribute to the ability of ponderosa pine to thrive in dry habitats despite relatively high vulnerability to water-stress-induced cavitation.
[The adhesive properties of two bonding systems to tetracycline stained dentin].
Liu, H L; Liang, K N; Cheng, L; Li, J Y; He, L B
2016-01-01
To investigate and compare the bonding properties of Single Bond 2 and SE Bond to tetracycline stained dentin in vitro. Ten extracted tetracycline stained human teeth and ten extracted normal human teeth were collected and the occlusal dentin surfaces of all extracted teeth were exposed. The tetracycline stained teeth and normal teeth were divided into two groups, respectively and randomly, based on the adhesives applied. Total-etch adhesive(Single Bond 2) and self-etch adhesive(SE Bond) were used. After application of the adhesives to the dentin surfaces, composite crowns were built up. After 24 h water storage, the teeth were sectioned longitudinally into sticks(0.9 mm×0.9 mm bonding area) for micro tensile testing or micro Raman spectroscopy detection. Bonding strength(μTBS) and resin conversion rate were analyzed using one-way ANOVA. The tetracycline Single Bond 2 group presented lower bonding strength[(16.17 ± 3.16) MPa] than the tetracycline SE Bond group[(25.82 ± 2.62) MPa], and also demonstrated lower bonding strength than the normal Single Bond 2 group[(29.13 ± 2.44) MPa] and the normal SE Bond group[(24.29±2.83) MPa] (P<0.05) , while there was no statistical differences among the other three groups(P>0.05). The resin conversion rate of tetracycline Single Bond 2 group[(55±6)%] was significantly lower than the tetracycline SE Bond group[(66±3)% ](P<0.05) and also lower than the normal Single Bond 2 group[(64 ± 5)%] and the normal SE Bond group[(65 ± 4)%] (P<0.05). No statistically significant differences were observed among the other three groups(P>0.05). The bonding strength of total-etch adhesive system to the tetracycline stained dentin was significantly lower than that to the normal dentin.
A critical state model for mudrock behavior at high stress levels
NASA Astrophysics Data System (ADS)
Heidari, M.; Nikolinakou, M. A.; Flemings, P. B.
2016-12-01
Recent experimental work has documented that the compression behavior, friction angle, and lateral stress ratio (k0) of mudrocks vary over the stress range of 1 to 100 MPa. We integrate these observations into a critical state model. The internal friction angle and the slope of the compression curve are key parameters in a mudrock critical state model. Published models assume that these parameters do not depend on the stress level, and hence predict lateral stress and normalized strength ratios that do not change with the stress level. However, recent experimental data on resedimented mudrock samples from Eugene Island, Gulf of Mexico, demonstrate that all these parameters vary considerably with the stress level (Casey and Germaine, 2013; Casey et al., 2015). To represent these variations, we develop an enhanced critical state model that uses a stress-level-dependent friction angle and a curvilinear compression curve. We show that this enhanced model predicts the observed variations of the lateral stress and strength ratios. The successful performance of our model indicates that the critical state theory developed for soil can predict mudrock nonlinear behavior at high stress levels and thus can be used in modeling geologic systems. Casey, B., Germaine, J., 2013. Stress Dependence of Shear Strength in Fine-Grained Soils and Correlations with Liquid Limit. J. Geotech. Geoenviron. Eng. 139, 1709-1717. Casey, B., Germaine, J., Flemings, P.B., Fahy, B.P., 2015. Estimating horizontal stresses for mudrocks under one-dimensional compression. Mar. Pet. Geol. 65, 178-186.
NASA Astrophysics Data System (ADS)
Giacomoni, P. P.; Coltorti, M.; Bryce, J. G.; Fahnestock, M. F.; Guitreau, M.
2016-04-01
Coupled textural and in situ geochemical studies of clinopyroxene (cpx) phenocrysts, from both historical and recent eruptions of Mt. Etna volcano, provide a means to investigate the processes occurring in the deepest portion of the feeding system (>10 km depth). Five distinct textures were recognized: (1) normal oscillatory zoning, (2) normal zoning with Fe-rich rim, (3) sieve-textured core, (4) reverse oscillatory zoning, and (5) dusty rim. Electron microprobe analyses indicate an almost constant diopside-augite composition, with a slight enrichment in the enstatite for more recent erupted cpx. Core-to-rim compositional profiles, performed along the cpx, reveal distinct compositional characteristics. Normal oscillatory zoning is often characterized by a sharp increase in FeO (Δ ~ 2 wt%) accompanied by a drop in Al2O3 on the outermost 30 μm. Reverse oscillatory zoning, by contrast, exhibits a drop in FeO, Al2O3 (Δ ~ 2 wt%), and a remarkable crystal rim increase in MgO (up to 5 wt%). Similar compositional changes are evident in dusty-textured rims, which are characterized by dissolution edges and overgrowth containing glass pockets and channels. No significant compositional variations have been observed across crystals with sieve-textured cores. Trace element concentrations show enrichments in Sr, La, Zr, and REE, together with a decreasing La/Yb ratio (from ~7 to ~4) in rims of normally zoned crystals. Cpx with reverse zoning and dusty rims has low Sr, La, Zr, and REE contents toward crystal rims. Thermometers and barometers, based on equilibrium cpx-melt pairs, suggest that cpx cores start nucleating at 720 MPa, with the majority of them forming between 600 and 400 MPa but continuing to crystallize until very shallow depths (<100 MPa). Normal oscillatory-zoned phenocrysts surrounded by rims form at pressures shallower than 400 MPa, while reverse zoning and dusty rims occur between 400 and 500 MPa. Coupled petrologic and thermobarometric studies on both clinopyroxenes and plagioclases, associated with detailed textural and in situ geochemical analyses, are promising tools to reconstruct the entire magma ascent path beneath open-system volcanoes. At Mt. Etna, two distinct processes could account for the observed textures: Fe-rich rims in normal oscillatory-zoned crystals can be related to decompression-induced crystallization, while reverse zoning and dusty rims can be produced by mixing with a more basic magma at 400-500 MPa (i.e., ~10 km). Textural features are not restricted to a particular evolutionary phase of the volcano, which suggest that the deep feeding system has not changed significantly since the first alkaline volcanic phase.
NASA Astrophysics Data System (ADS)
Shi, X. H.; Jiang, W.; Chen, H. Z.; Zou, W.; Wang, W. D.; Guo, Z.; Luo, J. M.; Gu, Z. W.; Zhang, X. D.
2008-11-01
The mechanical behaviors of calcar-defected femur and restorations under physiological load are the key factors that will greatly influence the success of femur calcar defect repairing, especially the stress distribution on the bone-restoration interface. 3D finite elements analysis (FEA) was used to analyze the mechanical characters on the interfaces between femoral calcar defects and bone cement or HA restorations. Under the load of two times of a human weight (1436.03 N) and with the increase of the defect dimension from 6 mm to 12 mm, the maximal stresses on the surface of restorations are from 7.06 MPa to 11.89 MPa for bone cement and 2.97-9 MPa for HA separately. In this condition, HA restoration will probably be broken on the bone-restoration interface when the defect diameter is beyond 8 mm. Furthermore, under the load of 1.5 times of a human weight, HA restoration would not be safe unless the defect dimension is smaller than 10 mm, because the maximal stress (4.62 MPa) on the restoration is only a little lower than compressive strength of HA, otherwise the bone fixation device should be applied to ensure the safety. It is relatively safe for all restorations under all the tested defect sizes when the load is just the weight of a human body.
Luo, Y; McCann, L; Ingham, E; Jin, Z-M; Ge, S; Fisher, J
2010-01-01
Hemiarthroplasty is an attractive alternative to total joint replacement for the young active patient, when only one side of the synovial joint is damaged. In the development of a hemiarthroplasty prosthesis, a comprehensive understanding of the tribology of both the natural joint and the hemireplaced joint is necessary. The objectives of this study were to investigate the tribological response of polyurethane (PU) as a potential hemiarthroplasty material. Bovine medial compartmental knees were tested in a Prosim pendulum friction simulator, which applied physiologically relevant loading and motion. The healthy medial compartment was investigated as a negative control; a stainless steel hemiarthroplasty was investigated as a positive control; and three PU hemiarthroplasty plates of different moduli (1.4 MPa, 6.5 MPa, and 22 MPa) were also investigated. Using the lower-modulus PU caused reduced levels of contact stress and friction shear stress, which resulted in reduced levels of opposing cartilage wear. The two PU bearings with the lowest moduli demonstrated a similar tribological performance to the negative control. The higher-modulus PU (22 MPa) did demonstrate higher levels of friction shear stress, and wear resulted on the opposing cartilage, although not as severe as the wear from the stainless steel group. This study supports the use of compliant PU designs in future tribological experiments and hemiarthroplasty design applications.
Li, Peng; Tang, Youchao; Li, Jia; Shen, Longduo; Tian, Weidong; Tang, Wei
2013-09-01
The aim of this study is to describe the sequential software processing of computed tomography (CT) dataset for reconstructing the finite element analysis (FEA) mandibular model with custom-made plate, and to provide a theoretical basis for clinical usage of this reconstruction method. A CT scan was done on one patient who had mandibular continuity defects. This CT dataset in DICOM format was imported into Mimics 10.0 software in which a three-dimensional (3-D) model of the facial skeleton was reconstructed and the mandible was segmented out. With Geomagic Studio 11.0, one custom-made plate and nine virtual screws were designed. All parts of the reconstructed mandible were converted into NURBS and saved as IGES format for importing into pro/E 4.0. After Boolean operation and assembly, the model was switched to ANSYS Workbench 12.0. Finally, after applying the boundary conditions and material properties, an analysis was performed. As results, a 3-D FEA model was successfully developed using the softwares above. The stress-strain distribution precisely indicated biomechanical performance of the reconstructed mandible on the normal occlusion load, without stress concentrated areas. The Von-Mises stress in all parts of the model, from the maximum value of 50.9MPa to the minimum value of 0.1MPa, was lower than the ultimate tensile strength. In conclusion, the described strategy could speedily and successfully produce a biomechanical model of a reconstructed mandible with custom-made plate. Using this FEA foundation, the custom-made plate may be improved for an optimal clinical outcome. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Rheology of ice I at low stress and elevated confining pressure
Durham, W.B.; Stern, L.A.; Kirby, S.H.
2001-01-01
Triaxial compression testing of pure, polycrystalline water ice I at conditions relevant to planetary interiors and near-surface environments (differential stresses 0.45 to 10 MPa, temperatures 200 to 250 K, confining pressure 50 MPa) reveals that a complex variety of rheologies and grain structures may exist for ice and that rheology of ice appears to depend strongly on the grain structures. The creep of polycrystalline ice I with average grain size of 0.25 mm and larger is consistent with previously published dislocation creep laws, which are now extended to strain rates as low as 2 ?? 10-8s-1. When ice I is reduced to very fine and uniform grain size by rapid pressure release from the ice II stability field, the rheology changes dramatically. At 200 and 220 K the rheology matches the grain-size-sensitive rheology measured by Goldsby and Kohlstedt [1997, this issue] at 1 atm. This finding dispels concerns that the Goldsby and Kohlstedt results were influenced by mechanisms such as microfracturing and cavitation, processes not expected to operate at elevated pressures in planetary interiors. At 233 K and above, grain growth causes the fine-grained ice to become more creep resistant. Scanning electron microscopy investigation of some of these deformed samples shows that grains have markedly coarsened and the strain hardening can be modeled by normal grain growth and the Goldsby and Kohlstedt rheology. Several samples also displayed very heterogeneous grain sizes and high aspect ratio grain shapes. Grain-size-sensitive creep and dislocation creep coincidentally contribute roughly equal amounts of strain rate at conditions of stress, temperature, and grain size that are typical of terrestrial and planetary settings, so modeling ice dynamics in these settings must include both mechanisms. Copyright 2001 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Winner, A.; Saffer, D. M.; Valdez, R. D.
2014-12-01
Sediment permeability and consolidation behavior are key parameters in governing the drainage state and thus potential for excess pore fluid pressure in subduction zones. Elevated pore pressure, in turn, is one important control on the strength and sliding behavior of faults. Along many subduction margins, evidence of elevated, near-lithostatic, in situ pore pressure comes from high seismic reflectivity, low P-wave velocity (Vp), and high Vp/Vs ratios. This inference is broadly supported by numerical modeling studies that indicate elevated pore pressures are likely given high rates of burial and tectonic loading, combined with the low permeability of marine mudstones. Here, we report on a series of high-stress consolidation experiments on sediment core samples from the incoming Cocos plate obtained as part of Integrated Ocean Drilling Program (IODP) Expedition 344. Our experiments were designed to measure the consolidation behavior, permeability, and P-wave velocity of the incoming sediments over a range of confining stresses from .5 to 90 MPa. We explore a range of paths,including isostatic loading (σ1=σ2=σ3), K0 consolidation, in which the ratio of σ3/σ1 is maintained at ~0.6, and the trixial loading paths designed to maintain a near critical-state failure condition. In our tests, load is increased in a series of steps. After equilibration at each step, we conduct constant head permeability tests, and measure P-wave velocities in a "time of flight" mode. Initial results from isostatic loading tests on hemipelagic mudstone samples from 34 mbsf document consolidation and permeability-porosity trends, in which porosity decreases from 69% to 54% as stress in increased from .5 MPa to 15 MPa, and permeability decreases from 8.1 X 10-18 m2 at 1 MPa to 1.1 X 10-19 m2 at 15 MPa. P-wave velocity increases by 486-568 km/s over this effective stress range. Ultimately, data from our experiments will provide a robust basis for quantifying fluid content and pressure from seismic velocity and fault plane reflectivity at this margin, and provide data to parameterize forward models of fluid flow and consolidation.
Dynamic tensile-failure-induced velocity deficits in rock
NASA Technical Reports Server (NTRS)
Rubin, Allan M.; Ahrens, Thomas J.
1991-01-01
Planar impact experiments were employed to induce dynamic tensile failure in Bedford limestone. Rock disks were impacted with aluminum and polymethyl methacralate (PMMA) flyer plates at velocities of 10 to 25 m/s. Tensile stress magnitudes and duration were chosen so as to induce a range of microcrack growth insufficient to cause complete spalling of the samples. Ultrasonic P- and S-wave velocities of recovered targets were compared to the velocities prior to impact. Velocity reduction, and by inference microcrack production, occurred in samples subjected to stresses above 35 MPa in the 1.3 microsec PMMA experiments and 60 MPa in the 0.5 microsec aluminum experiments. Using a simple model for the time-dependent stress-intensity factor at the tips of existing flaws, apparent fracture toughnesses of 2.4 and 2.5 MPa sq rt m are computed for the 1.3 and 0.5 microsec experiments. These are a factor of about 2 to 3 greater than quasi-static values. The greater dynamic fracture toughness observed may result from microcrack interaction during tensile failure. Data for water-saturated and dry targets are indistinguishable.
NASA Astrophysics Data System (ADS)
Fondriest, M.; Smith, S. A.; Di Toro, G.; Nielsen, S. B.
2012-12-01
The lack of clear geological markers of seismic faulting represents a major limitation in our current comprehension of earthquake physics. At present pseudotachylytes (i.e. friction-induced melts) are the only unambiguously identified indicator of ancient seismicity in exhumed fault zones, but pseudotachylytes are not found in many rock types, including carbonates. We report the occurrence of small-displacement, mirror-like slip surfaces from a fault zone cutting dolostones. A combination of field observations and rotary shear friction experiments suggests that such slip surfaces: 1) are formed only at seismic slip rates, and 2) could potentially be used to estimate power dissipation during individual slip events. The Foiana Line (FL) is a major NNE-SSW-trending sinistral transpressive fault in the Italian Southern Alps. The outcropping fault zone consists of a <300 m wide zone of heavily fractured ("pulverized") dolostones cut by a network of mirror-like slip surfaces. The slip surfaces have displacements ranging between 0.04 m and 0.5 m and their mirror-like appearance indicates that the wavelength of surface roughness is <1 μm. The slip surfaces have mainly dip-slip reverse kinematics and were exhumed from ~2 km depth. Resolved normal stress on the slip surfaces is estimated in the range 30-50 MPa. To understand how the mirror-like slip surfaces may have developed, slow- to high-velocity rotary-shear experiments using SHIVA (INGV, Rome) were performed on 3 mm thick layers of dolomite gouge (grain size <250 μm) collected from the FL. Tests were conducted using a purpose-built gouge sample holder at slip rates of 0.0001-1.13 m/s, normal stresses up to 26 MPa and displacements in the range 0.02-3.5 m. At seismic slip rates of 1.13 m/s the dolomite gouge shows a dramatic reduction of the friction coefficient (μ) from a peak value of ~0.7 to a steady-state value of ~0.25. The gouge starts to weaken above a threshold velocity in the range 0.19-0.49 m/s following a transient phase of strengthening. During the tests the instantaneous power density (shear stress*slip rate) dissipated on the sample reaches values of 6-10 MW/m2 over distances of 0.02-1 m, comparable to those of natural earthquakes. At 26 MPa normal stress a mirror-like slip surface is formed after only 0.03 m of slip. At intermediate slip rates (0.113 m/s) only moderate reductions in μ are observed. Instantaneous power density is ~1 MW/m2 and the mirror-like slip surface starts to develop after 0.1 m of slip. At sub-seismic slip rates (0.0001-0.0013 m/s) μ remains ~0.7, instantaneous power density is ~0.02 MW/m2, and no mirror-like slip surface develops. Microstructural observations suggest that the natural and experimental slip zones are comparable: both have a compacted layer up to 20 μm thick immediately below the mirror-like slip surface in which deformation is strongly localized. The layer consists of partially-welded dolomite clasts 0.1-10 μm in size. In the experimental samples, chemical analyses recognized small (<100 μm long), discontinuous patches of periclase and Mg-calcite nanoparticles formed by dolomite decomposition. Field, experimental and microstructural data suggest that mirror-like slip surfaces in dolostone develop at seismic conditions, when instantaneous power density is of the order of 1-10 MW/m2.
2007-05-01
4 1e+5 1e+ 6 1000MPa... 6 1e-5 1e- 4 1e-3 1e-2 1e-1 1e-1 1e+0 1e+1 1e+2 1e+3 1e+ 4 1e+5 1e+ 6 1000MPa 900MPa 800MPa C re ep R at e (/s ) Creep Time (s) 0% Prestrain, 650°C...increase in strain rate. The change in deformation response is significant even for small plastic strains. 1e-9 1e-8 1e-7 1e- 6 1e-5 1e- 4 1e-3
Residual stress determination in an overlay dissimilar welded pipe by neutron diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woo, Wan Chuck; Em, Vyacheslav; Hubbard, Camden R
2011-01-01
Residual stresses were determined through the thickness of a dissimilar weld overlay pipe using neutron diffraction. The specimen has a complex joining structure consisting of a ferritic steel (SA508), austenitic steel (F316L), Ni-based consumable (Alloy 182), and overlay of Ni-base superalloy (Alloy 52M). It simulates pressurized nozzle components, which have been a critical issue under the severe crack condition of nuclear power reactors. Two neutron diffractometers with different spatial resolutions have been utilized on the identical specimen for comparison. The macroscopic 'stress-free' lattice spacing (d{sub o}) was also obtained from both using a 2-mm width comb-like coupon. The results showmore » significant changes in residual stresses from tension (300-400 MPa) to compression (-600 MPa) through the thickness of the dissimilar weld overlay pipe specimen.« less
Influence of stress, temperature, and strain on calcite twins constrained by deformation experiments
NASA Astrophysics Data System (ADS)
Rybacki, E.; Evans, B.; Janssen, C.; Wirth, R.; Dresen, G.
2013-08-01
A series of low-strain triaxial compression and high-strain torsion experiments were performed on marble and limestone samples to examine the influence of stress, temperature, and strain on the evolution of twin density, the percentage of grains with 1, 2, or 3 twin sets, and the twin width—all parameters that have been suggested as either paleopiezometers or paleothermometers. Cylindrical and dog-bone-shaped samples were deformed in the semibrittle regime between 20 °C and 350 °C, under confining pressures of 50-400 MPa, and at strain rates of 10- 4-10- 6 s- 1. The samples sustained shear stresses, τ, up to 280 MPa, failing when deformed to shear strains γ > 1. The mean width of calcite twins increased with both temperature and strain, and thus, measurement of twin width provides only a rough estimation of peak temperature, unless additional constraints on deformation are known. In Carrara marble, the twin density, NL (no of twins/mm), increased as the rock hardened with strain and was approximately related to the peak differential stress, σ (MPa), by the relation σ=19.5±9.8√{N}. Dislocation tangles occurred along twin boundaries, resulting in a complicated cell structure, which also evolved with stress. As previously established, the square root of dislocation density, observed after quench, also correlated with peak stress. Apparently, both twin density and dislocation cell structure are important state variables for describing the strength of these rocks.
Mechanical Failure of Fine Root Cortical Cells Initiates Plant Hydraulic Decline during Drought.
Cuneo, Italo F; Knipfer, Thorsten; Brodersen, Craig R; McElrone, Andrew J
2016-11-01
Root systems perform the crucial task of absorbing water from the soil to meet the demands of a transpiring canopy. Roots are thought to operate like electrical fuses, which break when carrying an excessive load under conditions of drought stress. Yet the exact site and sequence of this dysfunction in roots remain elusive. Using in vivo x-ray computed microtomography, we found that drought-induced mechanical failure (i.e. lacunae formation) in fine root cortical cells is the initial and primary driver of reduced fine root hydraulic conductivity (Lp r ) under mild to moderate drought stress. Cortical lacunae started forming under mild drought stress (-0.6 MPa Ψ stem ), coincided with a dramatic reduction in Lp r , and preceded root shrinkage or significant xylem embolism. Only under increased drought stress was embolism formation observed in the root xylem, and it appeared first in the fine roots (50% loss of hydraulic conductivity [P 50 ] reached at -1.8 MPa) and then in older, coarse roots (P 50 = -3.5 MPa). These results suggest that cortical cells in fine roots function like hydraulic fuses that decouple plants from drying soil, thus preserving the hydraulic integrity of the plant's vascular system under early stages of drought stress. Cortical lacunae formation led to permanent structural damage of the root cortex and nonrecoverable Lp r , pointing to a role in fine root mortality and turnover under drought stress. © 2016 American Society of Plant Biologists. All Rights Reserved.
Experimental Simulations of Methane Gas Migration through Water-Saturated Sediment Cores
NASA Astrophysics Data System (ADS)
Choi, J.; Seol, Y.; Rosenbaum, E. J.
2010-12-01
Previous numerical simulations (Jaines and Juanes, 2009) showed that modes of gas migration would mainly be determined by grain size; capillary invasion preferably occurring in coarse-grained sediments vs. fracturing dominantly in fine-grained sediments. This study was intended to experimentally simulate preferential modes of gas migration in various water-saturated sediment cores. The cores compacted in the laboratory include a silica sand core (mean size of 180 μm), a silica silt core (1.7 μm), and a kaolin clay core (1.0 μm). Methane gas was injected into the core placed within an x-ray-transparent pressure vessel, which was under continuous x-ray computed tomography (CT) scanning with controlled radial (σr), axial (σa), and pore pressures (P). The CT image analysis reveals that, under the radial effective stress (σr') of 0.69 MPa and the axial effective stress (σa') of 1.31 MPa, fracturings by methane gas injection occur in both silt and clay cores. Fracturing initiates at the capillary pressure (Pc) of ~ 0.41 MPa and ~ 2.41 MPa for silt and clay cores, respectively. Fracturing appears as irregular fracture-networks consisting of nearly invisibly-fine multiple fractures, longitudinally-oriented round tube-shape conduits, or fine fractures branching off from the large conduits. However, for the sand core, only capillary invasion was observed at or above 0.034 MPa of capillary pressure under the confining pressure condition of σr' = 1.38 MPa and σa' = 2.62 MPa. Compared to the numerical predictions under similar confining pressure conditions, fracturing occurs with relatively larger grain sizes, which may result from lower grain-contact compression and friction caused by loose compaction and flexible lateral boundary employed in the experiment.
Rezende, Carlos Eduardo Edwards; Chase-Diaz, Melody; Costa, Max Doria; Albarracin, Max Laurent; Paschoeto, Gabriela; Sousa, Edson Antonio Capello; Rubo, José Henrique; Borges, Ana Flávia Sanches
2015-10-01
This study aimed to analyze the stress distribution in single implant system and to evaluate the compatibility of an in vitro model with finite element (FE) model. The in vitro model consisted of Brånemark implant; multiunit set abutment of 5 mm height; metal-ceramic screw-retained crown, and polyurethane simulating the bone. Deformations were recorded in the peri-implant region in the mesial and distal aspects, after an axial 300 N load application at the center of the occlusal aspect of the crown, using strain gauges. This in vitro model was scanned with micro CT to design a three-dimensional FE model and the strains in the peri-implant bone region were registered to check the compatibility between both models. The FE model was used to evaluate stress distribution in different parts of the system. The values obtained from the in vitro model (20-587 με) and the finite element analysis (81-588 με) showed agreement among them. The highest stresses because of axial and oblique load, respectively were 5.83 and 40 MPa for the cortical bone, 55 and 1200 MPa for the implant, and 80 and 470 MPa for the abutment screw. The FE method proved to be effective for evaluating the deformation around single implant. Oblique loads lead to higher stress concentrations.
Medroxyprogesterone Acetate Antagonizes Estrogen Up-Regulation of Brain Mitochondrial Function
Irwin, Ronald W.; Yao, Jia; Ahmed, Syeda S.; Hamilton, Ryan T.; Cadenas, Enrique
2011-01-01
The impact of clinical progestins used in contraception and hormone therapies on the metabolic capacity of the brain has long-term implications for neurological health in pre- and postmenopausal women. Previous analyses indicated that progesterone and 17β-estradiol (E2) sustain and enhance brain mitochondrial energy-transducing capacity. Herein we determined the impact of the clinical progestin, medroxyprogesterone acetate (MPA), on glycolysis, oxidative stress, and mitochondrial function in brain. Ovariectomized female rats were treated with MPA, E2, E2+MPA, or vehicle with ovary-intact rats serving as a positive control. MPA alone and MPA plus E2 resulted in diminished mitochondrial protein levels for pyruvate dehydrogenase, cytochrome oxidase, ATP synthase, manganese-superoxide dismutase, and peroxiredoxin V. MPA alone did not rescue the ovariectomy-induced decrease in mitochondrial bioenergetic function, whereas the coadministration of E2 and MPA exhibited moderate efficacy. However, the coadministration of MPA was detrimental to antioxidant defense, including manganese-superoxide dismutase activity/expression and peroxiredoxin V expression. Accumulated lipid peroxides were cleared by E2 treatment alone but not in combination with MPA. Furthermore, MPA abolished E2-induced enhancement of mitochondrial respiration in primary cultures of the hippocampal neurons and glia. Collectively these findings indicate that the effects of MPA differ significantly from the bioenergetic profile induced by progesterone and that, overall, MPA induced a decline in glycolytic and oxidative phosphorylation protein and activity. These preclinical findings on the basis of acute exposure to MPA raise concerns regarding neurological health after chronic use of MPA in contraceptive and hormone therapy. PMID:21159850
Highly mobile type II twin boundary in Ni-Mn-Ga five-layered martensite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sozinov, A.; Lanska, N.; Soroka, A.
2011-09-19
Twin relationships and stress-induced reorientation were studied in Ni{sub 2}Mn{sub 1.14}Ga{sub 0.86} single crystal with five-layered modulated martensite crystal structure. Very low twinning stress of about 0.1 MPa was found for twin boundaries which deviated a few degrees from the (011) crystallographic plane. However, twin boundaries oriented exactly parallel to the (011) plane exhibited considerably higher level of twinning stress, above 1 MPa. X-ray diffraction experiments and calculations based on approximation of the martensite crystal lattice as a tetragonal lattice with a slight monoclinic distortion identified the two different kinds of twin interfaces as type II and type I twinmore » boundaries.« less
Mechanical, structural, and optical properties of PEALD metallic oxides for optical applications.
Shestaeva, Svetlana; Bingel, Astrid; Munzert, Peter; Ghazaryan, Lilit; Patzig, Christian; Tünnermann, Andreas; Szeghalmi, Adriana
2017-02-01
Structural, optical, and mechanical properties of Al2O3, SiO2, and HfO2 materials prepared by plasma-enhanced atomic layer deposition (PEALD) were investigated. Residual stress poses significant challenges for optical coatings since it may lead to mechanical failure, but in-depth understanding of these properties is still missing for PEALD coatings. The tensile stress of PEALD alumina films decreases with increasing deposition temperature and is approximately 100 MPa lower than the stress in thermally grown films. It was associated with incorporation of -OH groups in the film as measured by infrared spectroscopy. The tensile stress of hafnia PEALD layers increases with deposition temperature and was related to crystallization of the film. HfO2 nanocrystallites were observed even at 100°C deposition temperature with transmission electron microscopy. Stress in hafnia films can be reduced from approximately 650 MPA to approximately 450 MPa by incorporating ultrathin Al2O3 layers. PEALD silica layers have shown moderate stress values and stress relaxation with the storage time, which was correlated to water adsorption. A complex interference coating system for a dichroic mirror (DCM) at 355 nm wavelength was realized with a total coating thickness of approximately 2 μm. Severe cracking of the DCM coating was observed, and it propagates even into the substrate material, showing a good adhesion of the ALD films. The reflectance peak is above 99.6% despite the mechanical failure, and further optimization on the material properties should be carried out for demanding optical applications.
Aalaei, Shima; Rajabi Naraki, Zahra; Nematollahi, Fatemeh; Beyabanaki, Elaheh; Shahrokhi Rad, Afsaneh
2017-01-01
Background. Screw-retained restorations are favored in some clinical situations such as limited inter-occlusal spaces. This study was designed to compare stresses developed in the peri-implant bone in two different types of screw-retained restorations (segmented vs. non-segmented abutment) using a finite element model. Methods. An implant, 4.1 mm in diameter and 10 mm in length, was placed in the first molar site of a mandibular model with 1 mm of cortical bone on the buccal and lingual sides. Segmented and non-segmented screw abutments with their crowns were placed on the simulated implant in each model. After loading (100 N, axial and 45° non-axial), von Mises stress was recorded using ANSYS software, version 12.0.1. Results. The maximum stresses in the non-segmented abutment screw were less than those of segmented abutment (87 vs. 100, and 375 vs. 430 MPa under axial and non-axial loading, respectively). The maximum stresses in the peri-implant bone for the model with segmented abutment were less than those of non-segmented ones (21 vs. 24 MPa, and 31 vs. 126 MPa under vertical and angular loading, respectively). In addition, the micro-strain of peri-implant bone for the segmented abutment restoration was less than that of non-segmented abutment. Conclusion. Under axial and non-axial loadings, non-segmented abutment showed less stress concentration in the screw, while there was less stress and strain in the peri-implant bone in the segmented abutment. PMID:29184629
Locating the origin of stick slip instabilities in sheared granular layers
NASA Astrophysics Data System (ADS)
Korkolis, Evangelos; Niemeijer, André
2017-04-01
Acoustic emission (AE) monitoring is a non-invasive technique widely used to evaluate the state of materials and structures. We have developed a system that can locate the source of AE events associated with unstable sliding (stick-slip) of sheared granular layers during laboratory friction experiments. Our aim is to map the spatial distribution of energy release due to permanent microstructural changes, using AE source locations as proxies. This will allow us to determine the distribution of applied work in a granular medium, which will be useful in developing constitutive laws that describe the frictional behavior of such materials. The AE monitoring system is installed on a rotary shear apparatus. This type of apparatus is used to investigate the micromechanical processes responsible for the macroscopic frictional behavior of granular materials at large shear displacements. Two arrays of 8 piezoelectric sensors each are installed into the ring-shaped steel pistons that confine our samples. The sensors are connected to a high-speed, multichannel oscilloscope that can record full waveforms. The apparatus is also equipped with a system that continuously records normal and lateral (shear) loads and displacements, as well as pore fluid pressure. Thus, we can calculate the frictional and volumetric response of our granular aggregates, as well as the location of AE sources. Here, we report on the results of room temperature experiments on granular aggregates consisting of glass beads or segregated mixtures of glass beads and calcite, at up to 5 MPa normal stress and sliding velocities between 1 and 100 μm/s. Under these conditions, glass beads exhibit unstable sliding behavior accompanied by significant AE activity, whereas calcite exhibits stable sliding and produces no AEs. We recorded a range of unstable sliding behaviors, from fast, regular stick slip at high normal stress (> 4 MPa) and sliding velocities below 20 μm/s, to irregular stick slip at low normal stress or sliding velocities above 20 μm/s. We calculated the source location of each AE associated with significant stress drops (slip events). A very prominent feature, particularly among the large shear displacement experiments, was the development of regions that sustained increased AE activity. Some of these regions remained fixed in space, whereas others kept migrating with increasing shear displacement. We observed that for an arbitrarily small number of consecutive slip events, their associated AEs did not necessarily nucleate in the same region. We believe that the calculated AE source locations reveal the sites where load-bearing microstructures, known as force chains, begin to fail, leading to slip instabilities. The existence of regions of increased AE activity suggests that triggering of force chain failure is controlled to some extent by the loading conditions imposed on the sample by the machine, but may also indicate the lasting influence of previous particle re-organization events on the particles populating these regions.
Piezomagnetic behavior of Fe-Al-B alloys
NASA Astrophysics Data System (ADS)
Bormio-Nunes, Cristina; Hubert, Olivier
2015-11-01
For the first time, the piezomagnetic behavior of polycrystalline Fe-Al-B alloys is accessed. Piezomagnetic factors of up to 4.0 kA m-1/MPa were reached for an interval of applied compressive stresses between 0 and -140 MPa. The experimental results together with a powerful multiscale and biphasic modeling allowed the general understanding of the magnetostrictive and piezomagnetic behaviors of these materials. The magnetic and mechanical localizations as well as homogeneous stresses were considered in the modeling and are associated to the intrinsic presence of the Fe2B phase. The interplay of the magnetocrystalline anisotropy, initial susceptibility, saturation magnetostriction and texture were quantified by the model and compared to the experimental results. An improvement of the piezomagnetic factor to 15 kA m-1/MPa is predicted, for an alloy containing 20% of aluminum, by getting an adequate texture near < 100 > directions.
Kroeber, Markus W; Rovinsky, David; Haskell, Andrew; Heilmann, Moira; Llotz, Jeff; Otsuka, Norman
2002-06-01
This study compared cannulated 4.5-mm bioabsorbable screws made of self-reinforced poly-levolactic acid to cannulated 4.5-mm steel and titanium screws for resistance to shear stress and ability to generate compression in a polyurethane foam model of slipped capital femoral epiphysis fixation. The maximum shear stress resisted by the three screw types was similar (self-reinforced poly-levolactic acid 371 +/- 146 MPa, steel 442 +/- 43 MPa, and titanium 470 +/- 91 MPa). The maximum compression generated by both the self-reinforced poly-levolactic acid screw (68.5 +/- 3.3 N) and the steel screw (63.3 +/- 5.9 N) was greater than that for the titanium screw (3 +/- 1.4 N, P <.05). These data suggest cannulated self-reinforced poly-levolactic acid screws can be used in the treatment of slipped capital femoral epiphysis because of their sufficient biomechanical strength.
Direct measurement of asperity contact growth in quartz at hydrothermal conditions
NASA Astrophysics Data System (ADS)
Beeler, N. M.; Hickman, S. H.
2008-12-01
Room-temperature friction and indentation experiments suggest fault strengthening during the interseismic period results from increases in asperity contact area due to solid-state deformation. However, field observations on exhumed fault zones indicate that solution-transport processes, pressure solution, crack healing and contact overgrowth, influence fault zone rheology near the base of the seismogenic zone. Contact overgrowths result from gradients in surface curvature, where material is dissolved from the pore walls, diffuses through the fluid and precipitates at the contact between two asperities, cementing the asperities together without convergence normal to the contact. To determine the mechanisms and kinetics of asperity cementation, we conducted laboratory experiments in which convex and flat lenses prepared from quartz single crystals were pressed together in an externally heated pressure vessel equipped with an optical observation port. Convergence between the two lenses and contact morphology were continuously monitored during these experiments using reflected-light interferometry through a long-working-distance microscope. Contact normal force is constant with an initial effective normal stress of 1.7 MPa. Four single-phase experiments were conducted at temperatures between 350 and 530C at 150 MPa water pressure, along with two controls: one single phase, dry at 425C and one bimaterial (qtz/sapphire) at 425C and 150 MPa water pressure. No contact growth or convergence was observed in either of the controls. For wet single-phase contacts, however, growth was initially rapid and then decreased with time following an inverse squared dependence of contact radius on aperture. No convergence was observed over the duration of these experiments, suggesting that neither significant pressure solution nor crystal plasticity occurred at these stresses and temperatures. The formation of fluid inclusions between the lenses indicate that the contact is not uniformly wetted. The contact is bounded by small regions of high aperture, reflecting local free-face dissolution as the source for the overgrowth, a definitive indication of diffusion-limited growth. Diffusion-limited growth is also consistent with the inverse squared aperture dependence. However, the apparent activation energy is ~125 kJ/mol, much higher than expected for silica diffusion in bulk water; at present we do not have a complete explanation for the high activation energy. When our lab-measured overgrowth rates are extrapolated to the 5 to 30 micron radius contacts inferred from near-field recordings of M-2 sized earthquakes in deep drill holes and mines (i.e., SAFOD and NELSAM), we predict rates of contact area increase that are orders of magnitude faster than seen in dry, room-temperature friction experiments. This suggests that natural strength recovery should be dominated by fluid-assisted processes at hypocentral conditions near the base of the seismogenic zone.
NASA Technical Reports Server (NTRS)
Montano, J. W.
1986-01-01
Presented are the mechanical properties and the stress corrosion resistance of triple melted vacuum induction melted (VIM), electro-slag remelted (ESR), and vacuum arc remelted (VAR), solution treated, work strengthened and direct double aged Inconel 718 alloy bars 4.00 in. (10.16) and 5.75 in. (14.60 cm) diameter. Tensile, charpy v-notched impact, and compact tension specimens were tested at ambient temperature in both the longitudinal and transverse directions. Longitudinal tensile and yield strengths in excess of 220 ksi (1516.85 MPa) and 200 ksi (1378.00 MPa) respectively, were realized at ambient temperature. Additional charpy impact and compact tension tests were performed at -100 F (-73 C). Longitudinal charpy impact strength equalled or exceeded 12.0 ft-lbs (16.3 Joules) at ambient and at -100 F(-73 C) while longitudinal compact (LC) tension fracture toughness strength remained above 79 ksi (86.80 MPa) at ambient and at -100 F(-73 C) temperatures. No failures occurred in the longitudinal or transverse tensile specimens stressed to 75 and 100 percent of their respective yield strengths and exposed to a salt fog environment for 180 days. Tensile tests performed after the stress corrosion test indicated no mechanical property degradation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsunaga, Tadashi; Lin, Hua-Tay; Singh, Mrityunjay
2011-01-01
The stress-temperature-lifetime response of Si-Ti-C-O fiber-bonded ceramic (Tyrannohex ) and sintered SiC fiber-bonded ceramic (SA-Tyrannohex ) materials were investigated in air from 500 to 1150 C and 500 to 1400 C, respectively. The apparent threshold stress of Si-Ti-C-O fiber-bonded ceramic was about 175 MPa in the 500-1150 C temperature range. When the applied stress of the sintered SiC fiber-bonded ceramic was below an apparent threshold stress (e.g., ~225MPa) for tests conducted 1150 C, no failures were observed for lifetimes up to 1000h. In the case of sintered SiC fiber-bonded ceramic, at the temperature of 1300 C, the apparent threshold stressmore » decreased to 175 MPa. The decrease in strength seemed to be caused by grain growth which was confirmed from the SEM fractography. Both fiber-bonded ceramics exhibited much higher durability than a commercial SiC/SiC composite at temperatures above 500 C. In addition, results suggested that the sintered SiC fiber-bonded ceramic (SA-Tyrannohex) is more stable than a Hi-Nicalon/MI SiC composite with BN/SiC fiber coating at temperatures above 1300 C.« less
Rheological structure of the lithosphere in plate boundary strike-slip fault zones
NASA Astrophysics Data System (ADS)
Chatzaras, Vasileios; Tikoff, Basil; Kruckenberg, Seth C.; Newman, Julie; Titus, Sarah J.; Withers, Anthony C.; Drury, Martyn R.
2016-04-01
How well constrained is the rheological structure of the lithosphere in plate boundary strike-slip fault systems? Further, how do lithospheric layers, with rheologically distinct behaviors, interact within the strike-slip fault zones? To address these questions, we present rheological observations from the mantle sections of two lithospheric-scale, strike-slip fault zones. Xenoliths from ˜40 km depth (970-1100 ° C) beneath the San Andreas fault system (SAF) provide critical constraints on the mechanical stratification of the lithosphere in this continental transform fault. Samples from the Bogota Peninsula shear zone (BPSZ, New Caledonia), which is an exhumed oceanic transform fault, provide insights on lateral variations in mantle strength and viscosity across the fault zone at a depth corresponding to deformation temperatures of ˜900 ° C. Olivine recrystallized grain size piezometry suggests that the shear stress in the SAF upper mantle is 5-9 MPa and in the BPSZ is 4-10 MPa. Thus, the mantle strength in both fault zones is comparable to the crustal strength (˜10 MPa) of seismogenic strike-slip faults in the SAF system. Across the BPSZ, shear stress increases from 4 MPa in the surrounding rocks to 10 MPa in the mylonites, which comprise the core of the shear zone. Further, the BPSZ is characterized by at least one order of magnitude difference in the viscosity between the mylonites (1018 Paṡs) and the surrounding rocks (1019 Paṡs). Mantle viscosity in both the BPSZ mylonites and the SAF (7.0ṡ1018-3.1ṡ1020 Paṡs) is relatively low. To explain our observations from these two strike-slip fault zones, we propose the "lithospheric feedback" model in which the upper crust and lithospheric mantle act together as an integrated system. Mantle flow controls displacement and the upper crust controls the stress magnitude in the system. Our stress data combined with data that are now available for the middle and lower crustal sections of other transcurrent fault systems support the prediction for constant shear strength (˜10 MPa) throughout the lithosphere; the stress magnitude is controlled by the shear strength of the upper crustal faults. Fault rupture in the upper crust induces displacement rate loading of the upper mantle, which in turn, causes strain localization in the mantle shear zone beneath the strike-slip fault. Such forced localization leads to higher stresses and strain rates in the shear zone compared to the surrounding rocks. Low mantle viscosity within the shear zone is critical for facilitating mantle flow, which induces widespread crustal deformation and displacement loading. The lithospheric feedback model suggests that strike-slip fault zones are not mechanically stratified in terms of shear stress, and that it is the time-dependent interaction of the different lithospheric layers - rather than their relative strengths - that governs the rheological behavior of the plate boundary, strike-slip fault zones.
Morrell, Kjirste C; Hodge, W Andrew; Krebs, David E; Mann, Robert W
2005-10-11
Pressures on normal human acetabular cartilage have been collected from two implanted instrumented femoral head hemiprostheses. Despite significant differences in subjects' gender, morphology, mobility, and coordination, in vivo pressure measurements from both subjects covered similar ranges, with maximums of 5-6 MPa in gait, and as high as 18 MPa in other movements. Normalized for subject weight and height (nMPa), for free-speed walking the maximum pressure values were 25.2 for the female subject and 24.5 for the male subject. The overall maximum nMPa values were 76.2 for the female subject during rising from a chair at 11 months postoperative and 82.3 for the male subject while descending steps at 9 months postoperative. These unique in vivo data are consistent with corresponding cadaver experiments and model analyses. The collective results, in vitro data, model studies, and now corroborating in vivo data support the self-pressurizing "weeping" theory of synovial joint lubrication and provide unique information to evaluate the influence of in vivo pressure regimes on osteoarthritis causation and the efficacy of augmentations to, and substitutions for, natural cartilage.
NASA Astrophysics Data System (ADS)
Cameron, M. E.; Smith-Konter, B. R.; Burkhard, L. M.; Patthoff, D. A.; Pappalardo, R. T.; Collins, G. C.
2017-12-01
Laplace-like resonances among Ganymede, Europa, and Io may have once led Ganymede to have an eccentricity as high as 0.07 (presently e = 0.0013). While diurnal stresses at Ganymede today are small (<10 kPa), a previous period of high eccentricity may have produced significant diurnal tidal stresses that influenced faulting during a past period of active tectonism. We investigate the role of tidal stresses on faulting by using the numerical model SatStress to calculate both diurnal and non-synchronous rotation (NSR) tidal stresses at Ganymede's surface. We assume an NSR rate of 105 years, and steady-state rotation of a viscoelastic ice shell of viscosity 1019 Pa s, yielding stresses on the order of MPa. We adopt two end-member models: (1) present-day Ganymede, and (2) Ganymede in the past (e = 0.05). For the present-day model, we assume a spherical ice shell of thickness 150 km (upper 10 km is cold, stiff ice), underlain by a 40 km deep global subsurface ocean. For the warmer past model, we assume a 100 km ice shell (upper 2 km is cold, stiff ice), and a 140 km ocean. We resolve normal and shear stress components onto discrete fault segments of specified orientation and assess Coulomb failure stress criteria along three previously inferred shear zones: Dardanus Sulcus, Tiamat Sulcus, and Nun Sulci. Models of stress contributions from only the diurnal tidal cycle are strongly dependent on eccentricity, while combined diurnal and NSR stress models are largely insensitive due to large (MPa) NSR stresses. For the diurnal only model, failure is not expected for the present eccentricity along any of the three shear zones. For the past, high eccentricity case, failure is predicted in isolated diurnal slip windows and limited to very shallow depths (< 250 m). This model predicts a dominant right-lateral slip window for both Dardanus and Tiamat Sulcus and significant right- and left-lateral slip windows are predicted along both north and south branches of Nun Sulci. Likewise, the sense of inferred shear from imagery and structural mapping efforts is right-lateral for Dardanus and Tiamat Sulcus, and left-lateral for Nun Sulci. Moreover, a low coefficient of friction (μf = 0.2) Coulomb failure model of right- and left- lateral slip episodes over a diurnal cycle could indicate a plausible case for tidal walking in Ganymede's high-eccentricity past.
Fault Interaction and Stress Accumulation in Chaman Fault System, Balouchistan, Pakistan, Since 1892
NASA Astrophysics Data System (ADS)
Riaz, M. S.; Shan, B.; Xiong, X.; Xie, Z.
2017-12-01
The curved-shaped left-lateral Chaman fault is the Western boundary of the Indian plate, which is approximately 1000 km long. The Chaman fault is an active fault and also locus of many catastrophic earthquakes. Since the inception of strike-slip movement at 20-25Ma along the western collision boundary between Indian and Eurasian plates, the average geologically constrained slip rate of 24 to 35 mm/yr accounts for a total displacement of 460±10 km along the Chaman fault system (Beun et al., 1979; Lawrence et al., 1992). Based on earthquake triggering theory, the change in Coulomb Failure Stress (DCFS) either halted (shadow stress) or advances (positive stress) the occurrence of subsequent earthquakes. Several major earthquakes occurred in Chaman fault system, and this region is poorly studied to understand the earthquake/fault interaction and hazard assessment. In order to do so, we have analyzed the earthquakes catalog and collected significant earthquakes with M ≥6.2 since 1892. We then investigate the evolution of DCFS in the Chaman fault system is computed by integration of coseismic static and postseismic viscoelastic relaxation stress transfer since the 1892, using the codePSGRN/PSCMP (Wang et al., 2006). Moreover, for postseismic stress transfer simulation, we adopted linear Maxwell rheology to calculate the viscoelastic effects in this study. Our results elucidate that three out of four earthquakes are triggered by the preceding earthquakes. The 1892-earthquake with magnitude Mw6.8, which occurred on the North segment of Chaman fault has not influence the 1935-earthquake which occurred on Ghazaband fault, a parallel fault 20km east to Chaman fault. The 1935-earthquake with magnitude Mw7.7 significantly loaded the both ends of rupture with positive stress (CFS ≥0.01 Mpa), which later on triggered the 1975-earthquake with 23% of its rupture length where CFS ≥0.01 Mpa, on Chaman fault, and 1990-earthquke with 58% of its rupture length where CFS ≥0.01 Mpa, on Ghazaband fault. Since the 1935-earthquke significantly increased the stress on both ends of its rupture, the 2013-earthquake with magnitude Mw7.7 occurred on Hoshab fault in the positive stress zone with 26% of its rupture length where CFS ≥0.01 Mpa, Fig 1. Our results revealed the interaction among the earthquakes as well as faults in the study region.
Stress transfer mechanisms at the submicron level for graphene/polymer systems.
Anagnostopoulos, George; Androulidakis, Charalampos; Koukaras, Emmanuel N; Tsoukleri, Georgia; Polyzos, Ioannis; Parthenios, John; Papagelis, Konstantinos; Galiotis, Costas
2015-02-25
The stress transfer mechanism from a polymer substrate to a nanoinclusion, such as a graphene flake, is of extreme interest for the production of effective nanocomposites. Previous work conducted mainly at the micron scale has shown that the intrinsic mechanism of stress transfer is shear at the interface. However, since the interfacial shear takes its maximum value at the very edge of the nanoinclusion it is of extreme interest to assess the effect of edge integrity upon axial stress transfer at the submicron scale. Here, we conduct a detailed Raman line mapping near the edges of a monolayer graphene flake that is simply supported onto an epoxy-based photoresist (SU8)/poly(methyl methacrylate) matrix at steps as small as 100 nm. We show for the first time that the distribution of axial strain (stress) along the flake deviates somewhat from the classical shear-lag prediction for a region of ∼ 2 μm from the edge. This behavior is mainly attributed to the presence of residual stresses, unintentional doping, and/or edge effects (deviation from the equilibrium values of bond lengths and angles, as well as different edge chiralities). By considering a simple balance of shear-to-normal stresses at the interface we are able to directly convert the strain (stress) gradient to values of interfacial shear stress for all the applied tensile levels without assuming classical shear-lag behavior. For large flakes a maximum value of interfacial shear stress of 0.4 MPa is obtained prior to flake slipping.
On the effect of stress on nucleation and growth of precipitates in an Al-Cu-Mg-Ag alloy
NASA Astrophysics Data System (ADS)
Skrotzki, B.; Shiflet, G. J.; Starke, E. A.
1996-11-01
A study has been made of the effect of an externally applied tensile stress on Ω and Θ' precipitate nucleation and growth in an Al-Cu-Mg-Ag alloy and a binary Al-Cu alloy which was used as a model system. Both solutionized and solutionized and aged conditions were studied. The mechanical properties have been measured and the microstructures have been characterized by transmission electron microscopy (TEM). The volume fraction and number density, as well as the precipitate size, have been experimentally determined. It was found that for as-solutionized samples aged under stress, precipitation occurs preferentially parallel to the stress axis. A threshold stress has to be exceeded before this effect can be observed. The critical stress for influencing the precipitate habit plane is between 120 and 140 MPa for Ω and between 16 and 19 MPa for Θ' for the aging temperature of 160 °C. The major effect of the applied stress is on the nucleation process. The results are discussed in terms of the role of the lattice misfit between the matrix and the precipitate nucleus.
Anisotropy of nickel-base superalloy single crystals
NASA Technical Reports Server (NTRS)
Mackay, R. A.; Dreshfield, R. L.; Maier, R. D.
1980-01-01
The influence of orientation on the tensile and stress rupture behavior of 52 Mar-M247 single crystals was studied. Tensile tests were performed at temperatures between 23 and 1093 C; stress rupture behavior was examined between 760 and 1038 C. The mechanical behavior of the single crystals was rationalized on the basis of the Schmid factor contours for the operative slip systems and the lattice rotations which the crystals underwent during deformation. The tensile properties correlated well with the appropriate Schmid factor contours. The stress rupture lives at lower testing temperatures were greatly influenced by the lattice rotations required to produce cross slip. A unified analysis was attained for the stress rupture life data generated for the Mar-M247 single crystals at 760 and 774 C under a stress of 724 MPa and the data reported for Mar-M200 single crystals tested at 760 C under a stress of 689 MPa. Based on this analysis, the stereographic triangle was divided into several regions which were rank ordered according to stress rupture life for this temperature regime.
Hosseini, Fatemeh; Mosaddeghi, Mohammad Reza; Dexter, Anthony Roger
2017-09-01
This study was done to evaluate the effects of the root-colonizing endophytic fungus Piriformospora indica on wheat growth under combined drought and mechanical stresses. Inoculated (colonized) and non-inoculated (uncolonized) wheat (Triticum aestivum L. cv. Chamran) seedlings were planted in growth chambers filled with moist sand (at a matric suction of 20 hPa). Slight, moderate and severe mechanical stresses (i.e., penetration resistance, Q p , of 1.17, 4.17 and 5.96 MPa, respectively) were produced by a dead-load technique (i.e., placing a weight on the sand surface) in the root medium. Slight, moderate and severe drought stresses were induced using PEG 6000 solutions with osmotic potentials of 0, -0.3 and -0.5 MPa, respectively. After 30 days, plant physiological characteristics and root morphology were measured. An increase in Q p from 1.17 to 5.96 MPa led to greater leaf proline concentration and root diameter, and lower relative water content (RWC), leaf water potential (LWP), chlorophyll contents and root volume. Moreover, severe drought stress decreased root and shoot fresh weights, root volume, leaf area, RWC, LWP and chlorophyll content compared to control. Catalase (CAT) and ascorbate peroxidase (APX) activities under severe drought stress were about 1.5 and 2.9 times greater than control. Interaction of the stresses showed that mechanical stress primarily controls plant water status and physiological responses. However, endophyte presence mitigated the adverse effects of individual and combined stresses on plant growth. Colonized plants were better adapted and had greater root length and volume, RWC, LWP and chlorophyll contents under stressful conditions due to higher absorption sites for water and nutrients. Compared with uncolonized plants, colonized plants showed lower CAT activity implying that wheat inoculated with P. indica was more tolerant and experienced less oxidative damage induced by drought and/or mechanical stress. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Nanostructured carbon materials based electrothermal air pump actuators
NASA Astrophysics Data System (ADS)
Liu, Qing; Liu, Luqi; Kuang, Jun; Dai, Zhaohe; Han, Jinhua; Zhang, Zhong
2014-05-01
Actuator materials can directly convert different types of energy into mechanical energy. In this work, we designed and fabricated electrothermal air pump-type actuators by utilization of various nanostructured carbon materials, including single wall carbon nanotubes (SWCNTs), reduced graphene oxide (r-GO), and graphene oxide (GO)/SWCNT hybrid films as heating elements to transfer electrical stimulus into thermal energy, and finally convert it into mechanical energy. Both the actuation displacement and working temperature of the actuator films show the monotonically increasing trend with increasing driving voltage within the actuation process. Compared with common polymer nanocomposites based electrothermal actuators, our actuators exhibited better actuation performances with a low driving voltage (<10 V), large generated stress (tens of MPa), high gravimetric density (tens of J kg-1), and short response time (few hundreds of milliseconds). Besides that, the pump actuators exhibited excellent stability under cyclic actuation tests. Among these actuators, a relatively larger actuation strain was obtained for the r-GO film actuator due to the intrinsic gas-impermeability nature of graphene platelets. In addition, the high modulus of the r-GO and GO/SWCNT films also guaranteed the large generated stress and high work density. Specifically, the generated stress and gravimetric work density of the GO/SWCNT hybrid film actuator could reach up to more than 50 MPa and 30 J kg-1, respectively, under a driving voltage of 10 V. The resulting stress value is at least two orders of magnitude higher than that of natural muscles (~0.4 MPa).Actuator materials can directly convert different types of energy into mechanical energy. In this work, we designed and fabricated electrothermal air pump-type actuators by utilization of various nanostructured carbon materials, including single wall carbon nanotubes (SWCNTs), reduced graphene oxide (r-GO), and graphene oxide (GO)/SWCNT hybrid films as heating elements to transfer electrical stimulus into thermal energy, and finally convert it into mechanical energy. Both the actuation displacement and working temperature of the actuator films show the monotonically increasing trend with increasing driving voltage within the actuation process. Compared with common polymer nanocomposites based electrothermal actuators, our actuators exhibited better actuation performances with a low driving voltage (<10 V), large generated stress (tens of MPa), high gravimetric density (tens of J kg-1), and short response time (few hundreds of milliseconds). Besides that, the pump actuators exhibited excellent stability under cyclic actuation tests. Among these actuators, a relatively larger actuation strain was obtained for the r-GO film actuator due to the intrinsic gas-impermeability nature of graphene platelets. In addition, the high modulus of the r-GO and GO/SWCNT films also guaranteed the large generated stress and high work density. Specifically, the generated stress and gravimetric work density of the GO/SWCNT hybrid film actuator could reach up to more than 50 MPa and 30 J kg-1, respectively, under a driving voltage of 10 V. The resulting stress value is at least two orders of magnitude higher than that of natural muscles (~0.4 MPa). Electronic supplementary information (ESI) available: A movie showing the weight-lifting actuation process of the GO/SWCNT actuator. See DOI: 10.1039/c4nr00536h
NASA Astrophysics Data System (ADS)
Guo, Hong-Yan; Xia, Min; Wu, Zheng-Tao; Chan, Lap-Chung; Dai, Yong; Wang, Kun; Yan, Qing-Zhi; He, Man-Chao; Ge, Chang-Chun; Lu, Jian
2016-11-01
A nanostructured surface layer was fabricated on commercial pure tungsten using the method of surface mechanical attrition treatment (SMAT). The microstructure evolution of the surface layer was characterized by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and its formation mechanism was discussed as well. Both refinement and elongation of the brittle W grains were confirmed. The elongated SMATed W was heavily strained, the maximum value of the strain at the grain boundaries reaches as high as 3-5%. Dislocation density in the SMATed W nanograins was found to be 5 × 1012 cm-2. The formation of the nanograins in the top surface layer of the W was ascribed to the extremely high strain and strain rate, as well as the multidirectional repetitive loading. Bending strength of commercial W could be improved from 825 MPa to 1850 MPa by SMAT process. Microhardness results indicated the strain range in SMATed W can reach up to 220 μm beneath the top surface. The notched Charpy testing results demonstrated that SMATed W possess higher ductility than that of commercial W. The top surface of the W plates with and without SMATe processing possesses residual compressive stress of about -881 MPa and -234 MPa in y direction, and -872 MPa and -879 MPa in x direction respectively. The improvement of toughness (DBTT shift) of SMATed W may be the synergistic effect of residual compressive stress, dislocation density improvement and microstructure refinement induced by SMAT processing. SMAT processing could be a complementary method to further decrease the DBTT value of tungsten based materials.
Li, Gang; Qu, Shengguan; Xie, Mingxin; Ren, Zhaojun; Li, Xiaoqiang
2017-01-01
The main purpose of this paper was to investigate the effect of a surface plastic deformation layer introduced by multi-pass ultrasonic surface rolling (MUSR) on the mechanical and fatigue properties of HIP Ti-6Al-4V alloys. Some microscopic analysis methods (SEM, TEM and XRD) were used to characterize the modified microstructure in the material surface layer. The results indicated that the material surface layer experienced a certain extent plastic deformation, accompanied by some dense dislocations and twin generation. Moreover, surface microhardness, residual stress and roughness values of samples treated by MUSR were also greatly improved compared with that of untreated samples. Surface microhardness and compressive residual stress were increased to 435 HV and −1173 MPa, respectively. The minimum surface roughness was reduced to 0.13 μm. The maximum depth of the surface hardening layer was about 55 μm. However, the practical influence depth was about 450 μm judging from the tensile and fatigue fracture surfaces. The ultimate tensile strength of the MUSR-treated sample increased to 990 MPa from the initial 963 MPa. The fatigue strength of the MUSR-treated sample was increased by about 25% on the base of 107 cycles, and the lifetime was prolonged from two times to two orders of magnitude at the applied stress amplitudes of 650–560 MPa. The improved mechanical and fatigue properties of MUSR-treated samples should be attributed to the combined effects of the increased microhardness and compressive residual stress, low surface roughness, grain refinement and micro-pore healing in the material surface-modified layer. PMID:28772494
NASA Technical Reports Server (NTRS)
Montano, J. W.
1987-01-01
This report presents a preliminary mechanical property and stress corrosion evaluation of double melted (vacuum induction melted (VIM), and vacuum arc remelted (VAR)), solution treated, work strengthened and direct aged Inconel 718 alloy bar (5.50 in. (13.97 cm) diameter). Two sets of tensile specimens, one direct single aged and the other direct double aged, were tested at ambient temperature in both the longitudinal and transverse directions. Longitudinal tensile and yield strengths in excess of 200 ksi (1378.96 MPa) and 168 ksi (1158.33 MPa), respectively, were realized at ambient temperature, for the direct double aged specimen. No failures occurred in the single or double edged longitudinal and transverse tensile specimens stressed to 75 and 100 percent of their respective yield strengths and exposed to a salt fog environment for 180 days. Tensile tests performed after the stress corrosion test showed no mechanical property degradation.
NASA Astrophysics Data System (ADS)
Ames, A.; Bruni, R.; Cotroneo, V.; Johnson-Wilke, R.; Kester, T.; Reid, P.; Romaine, S.; Tolier-McKinstry, S.; Wilke, R. H. T.
2015-09-01
Adjustable X-ray optics represent a potential enabling technology for simultaneously achieving large effective area and high angular resolution for future X-ray Astronomy missions. The adjustable optics employ a bimorph mirror composed of a thin (1.5 μm) film of piezoelectric material deposited on the back of a 0.4 mm thick conical mirror segment. The application of localized electric fields in the piezoelectric material, normal to the mirror surface, result in localized deformations in mirror shape. Thus, mirror fabrication and mounting induced figure errors can be corrected, without the need for a massive reaction structure. With this approach, though, film stresses in the piezoelectric layer, resulting from deposition, crystallization, and differences in coefficient of thermal expansion, can distort the mirror. The large relative thickness of the piezoelectric material compared to the glass means that even 100MPa stresses can result in significant distortions. We have examined compensating for the piezoelectric processing related distortions by the deposition of controlled stress chromium/iridium films on the front surface of the mirror. We describe our experiments with tuning the product of the chromium/iridium film stress and film thickness to balance that resulting from the piezoelectric layer. We also evaluated the repeatability of this deposition process, and the robustness of the iridium coating.
Normalized fluctuations, H2O vs n-hexane: Site-correlated percolation
NASA Astrophysics Data System (ADS)
Koga, Yoshikata; Westh, Peter; Sawamura, Seiji; Taniguchi, Yoshihiro
1996-08-01
Entropy, volume and the cross fluctuations were normalized to the average volume of a coarse grain with a fixed number of molecules, within which the local and instantaneous value of interest is evaluated. Comparisons were made between liquid H2O and n-hexane in the range from -10 °C to 120 °C and from 0.1 MPa to 500 MPa. The difference between H2O and n-hexane in temperature and pressure dependencies of these normalized fluctuations was explained in terms of the site-correlated percolation theory for H2O. In particular, the temperature increase was confirmed to reduce the hydrogen bond probability, while the pressure appeared to have little effect on the hydrogen bond probability. According to the Le Chatelier principle, however, the putative formation of ``ice-like'' patches at low temperatures due to the site-correlated percolation requirement is retarded by pressure increases. Thus, only in the limited region of low pressure (<300 MPa) and temperature (<60 °C), the fluctuating ice-like patches are considered to persist.
Magma explains low estimates of lithospheric strength based on flexure of ocean island loads
NASA Astrophysics Data System (ADS)
Buck, W. Roger; Lavier, Luc L.; Choi, Eunseo
2015-04-01
One of the best ways to constrain the strength of the Earth's lithosphere is to measure the deformation caused by large, well-defined loads. The largest, simple vertical load is that of the Hawaiian volcanic island chain. An impressively detailed recent analysis of the 3D response to that load by Zhong and Watts (2013) considers the depth range of seismicity below Hawaii and the seismically determined geometry of lithospheric deflection. These authors find that the friction coefficient for the lithosphere must be in the normal range measured for rocks, but conclude that the ductile flow strength has to be far weaker than laboratory measurements suggest. Specifically, Zhong and Watts (2013) find that stress differences in the mantle lithosphere below the island chain are less than about 200 MPa. Standard rheologic models suggest that for the ~50 km thick lithosphere inferred to exist below Hawaii yielding will occur at stress differences of about 1 GPa. Here we suggest that magmatic accommodation of flexural extension may explain Hawaiian lithospheric deflection even with standard mantle flow laws. Flexural stresses are extensional in the deeper part of the lithosphere below a linear island load (i.e. horizontal stresses orthogonal to the line load are lower than vertical stresses). Magma can accommodate lithospheric extension at smaller stress differences than brittle and ductile rock yielding. Dikes opening parallel to an island chain would allow easier downflexing than a continuous plate, but wound not produce a freely broken plate. The extensional stress needed to open dikes at depth depends on the density contrast between magma and lithosphere, assuming magma has an open pathway to the surface. For a uniform lithospheric density ρL and magma density ρM the stress difference to allow dikes to accommodate extension is: Δσxx (z) = g z (ρM - gρL), where g is the acceleration of gravity and z is depth below the surface. For reasonable density values (i.e. ρL = 3300 Kg/m3 and ρM = 2800 kg/m3) this 'magmatic yield stress' is 250 MPa at 50 km depth. Dikes accommodating flexing below Hawaii would be at most about 2 km wide. This amount of intrusion would significantly heat the lithosphere, leading to lower stress differences below the islands. Since Hawaii marks the highest magma flux on Earth today it seems that 'magma assisted flexure' offers a viable alternative to extremely weak lithospheric rheology as an explanation for low stresses below this load.
NASA Astrophysics Data System (ADS)
Gehne, Stephan; Benson, Philip M.
2017-08-01
Permeability in tight crustal rocks is primarily controlled by the connected porosity, shape and orientation of microcracks, the preferred orientation of cross-bedding, and sedimentary features such as layering. This leads to a significant permeability anisotropy. Less well studied, however, are the effects of time and stress recovery on the evolution of the permeability hysteresis which is becoming increasingly important in areas ranging from fluid migration in ore-forming processes to enhanced resource extraction. Here, we report new data simulating spatio-temporal permeability changes induced using effective pressure, simulating burial depth, on a tight sandstone (Crab Orchard). We find an initially (measured at 5 MPa) anisotropy of 2.5% in P-wave velocity and 180% in permeability anisotropy is significantly affected by the direction of the effective pressure change and cyclicity; anisotropy values decrease to 1% and 10% respectively after 3 cycles to 90 MPa and back. Furthermore, we measure a steadily increasing recovery time (10-20 min) for flow parallel to cross-bedding, and a far slower recovery time (20-50 min) for flow normal to cross-bedding. These data are interpreted via strain anisotropy and accommodation models, similar to the "seasoning" process often used in dynamic reservoir extraction.
Prediction of Precipitation Strengthening in the Commercial Mg Alloy AZ91 Using Dislocation Dynamics
Aagesen, L. K.; Miao, J.; Allison, J. E.; ...
2018-03-05
In this paper, dislocation dynamics simulations were used to predict the strengthening of a commercial magnesium alloy, AZ91, due to β-Mg 17Al 12 formed in the continuous precipitation mode. The precipitate distributions used in simulations were determined based on experimental characterization of the sizes, shapes, and number densities of the precipitates for 10-hour aging and 50-hour aging. For dislocations gliding on the basal plane, which is expected to be the dominant contributor to plastic deformation at room temperature, the critical resolved shear stress to bypass the precipitate distribution was 3.5 MPa for the 10-hour aged sample and 16.0 MPa formore » the 50-hour aged sample. The simulation results were compared to an analytical model of strengthening in this alloy, and the analytical model was found to predict critical resolved shear stresses that were approximately 30 pct lower. A model for the total yield strength was developed and compared with experiment for the 50-hour aged sample. Finally, the predicted yield strength, which included the precipitate strengthening contribution from the DD simulations, was 132.0 MPa, in good agreement with the measured yield strength of 141 MPa.« less
Prediction of Precipitation Strengthening in the Commercial Mg Alloy AZ91 Using Dislocation Dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aagesen, L. K.; Miao, J.; Allison, J. E.
In this paper, dislocation dynamics simulations were used to predict the strengthening of a commercial magnesium alloy, AZ91, due to β-Mg 17Al 12 formed in the continuous precipitation mode. The precipitate distributions used in simulations were determined based on experimental characterization of the sizes, shapes, and number densities of the precipitates for 10-hour aging and 50-hour aging. For dislocations gliding on the basal plane, which is expected to be the dominant contributor to plastic deformation at room temperature, the critical resolved shear stress to bypass the precipitate distribution was 3.5 MPa for the 10-hour aged sample and 16.0 MPa formore » the 50-hour aged sample. The simulation results were compared to an analytical model of strengthening in this alloy, and the analytical model was found to predict critical resolved shear stresses that were approximately 30 pct lower. A model for the total yield strength was developed and compared with experiment for the 50-hour aged sample. Finally, the predicted yield strength, which included the precipitate strengthening contribution from the DD simulations, was 132.0 MPa, in good agreement with the measured yield strength of 141 MPa.« less
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.
1997-01-01
Unidirectional SrO Al2O3 2SiO2 glass-ceramic matrix composites reinforced with uncoated Chemical Vapor Deposited (CVD) SiC (SCS-0) fibers have been fabricated by hot-pressing under appropriate conditions using the glass-ceramic approach. Almost fully dense composites having a fiber volume fraction of 0.24 have been obtained. Monoclinic celsian, SrAl2Si2O8, was the only crystalline phase observed in the matrix by x-ray diffraction. No chemical reaction was observed between the fiber and the matrix after high temperature processing. In three-point flexure, the composite exhibited a first matrix cracking stress of approx. 231 +/- 20 MPa and an ultimate strength of 265 +/- 17 MPa. Examination of fracture surfaces revealed limited short length fiber pull-out. From fiber push-out, the fiber/matrix interfacial debonding and frictional strengths were evaluated to be approx. 17.5 +/- 2.7 MPa and 11.3 +/- 1.6 MPa, respectively. Some fibers were strongly bonded to the matrix and could not be pushed out. The micromechanical models were not useful in predicting values of the first matrix cracking stress as well as the ultimate strength of the composites.
Prediction of Precipitation Strengthening in the Commercial Mg Alloy AZ91 Using Dislocation Dynamics
NASA Astrophysics Data System (ADS)
Aagesen, L. K.; Miao, J.; Allison, J. E.; Aubry, S.; Arsenlis, A.
2018-03-01
Dislocation dynamics simulations were used to predict the strengthening of a commercial magnesium alloy, AZ91, due to β-Mg17Al12 formed in the continuous precipitation mode. The precipitate distributions used in simulations were determined based on experimental characterization of the sizes, shapes, and number densities of the precipitates for 10-hour aging and 50-hour aging. For dislocations gliding on the basal plane, which is expected to be the dominant contributor to plastic deformation at room temperature, the critical resolved shear stress to bypass the precipitate distribution was 3.5 MPa for the 10-hour aged sample and 16.0 MPa for the 50-hour aged sample. The simulation results were compared to an analytical model of strengthening in this alloy, and the analytical model was found to predict critical resolved shear stresses that were approximately 30 pct lower. A model for the total yield strength was developed and compared with experiment for the 50-hour aged sample. The predicted yield strength, which included the precipitate strengthening contribution from the DD simulations, was 132.0 MPa, in good agreement with the measured yield strength of 141 MPa.
Spherical Nanoindentation Stress-Strain Measurements of BOR-60 14YWT-NFA1 Irradiated Tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, Jordan; Carvajal Nunez, Ursula; Krumwiede, David
Spherical nanoindentation stress-strain protocols were applied to characterize unirradiated and fast neutron irradiated nanostructured ferritic alloy (NFA) 14YWT and compared against Berkovich nanohardness and available tensile data. The predicted uniaxial yield strength from spherical, 100 and 5 micron radii, indentation yield strength measurements was 1100-1400 MPa which compares well with the predictions from Berkovich nanohardness, 1200 MPa, and available tensile data, ~1100 MPa. However, spherical indentation measurements predict an increase in the uniaxial yield strength of ~1 GPa while Berkovich nanohardness measurements predict an increase of only ~250 MPa. No tensile data exists on the irradiated condition. It is believedmore » the difference in the predicted uniaxial yield strength between spherical and Berkovich nanoindentation are due to a low number of tests on the irradiated sample combined with the significant heterogeneity in the microstructure, the differences in sensitivity to sample preparation on the irradiated sample between the two indentation protocols , and/or in how strain localizes under the indenter with the possibility of dislocation channeling under Berkovich hardness indents leading to strain softening. Nanoindentation capabilities to test neutron irradiated samples in a radiological area were realized.« less
Thermal stresses in layered barium titanate-based semiconductor ceramics
NASA Astrophysics Data System (ADS)
Shut, V. N.; Gavrilov, A. V.
2008-11-01
Thermal stresses emerging in a barium titanate-based semiconducting ceramic during heating by electric current are studied using numerical methods. It is shown that the highest tensile stresses are formed in the plane equidistant from the electrodes. The values of these stresses can be as high as 70 MPa, which is commensurate with the critical stresses. A method is proposed for reducing stresses by developing thermistors with a layered structure.
NASA Astrophysics Data System (ADS)
Ryan, K. L.; Marone, C.
2015-12-01
During the seismic cycle, faults repeatedly fail and regain strength. The gradual strength recovery is often referred to as frictional healing, and existing works suggest that healing can play an important role in determining the mode of fault slip ranging from dynamic rupture to slow earthquakes. Laboratory studies can play an important role in identifying the processes of frictional healing and their evolution with shear strain during the seismic cycle. These studies also provide data for laboratory-derived friction constitutive laws, which can improve dynamic earthquake models. Previous work shows that frictional healing varies with shear stress on a fault during the interseismic period. Unfortunately, the micromechanical processes that cause shear stress dependent frictional healing are not well understood and cannot be incorporated into current earthquake models. In fault gouge, frictional healing involves compaction and particle rearrangement within sheared granular layers. Therefore, to address these issues, we investigate the role grain size reduction plays in frictional re-strengthening processes at different levels of shear stress. Sample material was preserved from biaxial deformation experiments on granular Westerly granite. The normal stress was held constant at 25 MPa and we performed several 100 second slide-hold-slide tests in each experiment. We conducted a series of 5 experiments each with a different value of normalized shear stress (ranging from 0 to 1), defined as the ratio of the pre-hold shear stress to the shear stress during the hold. The particle size distribution for each sample was analyzed. In addition, acoustic measurements were recorded throughout our experiments to investigate variations in ultrasonic velocity and signal amplitude that reflect changes in the elastic moduli of the layer. Acoustic monitoring provides information about healing mechanisms and can provide a link between laboratory studies and tectonic fault zones.
Drop test analysis of fuselage section of R80 commuter aircraft by using finite element method
NASA Astrophysics Data System (ADS)
Anggono, Agus Dwi; Ardianto, Adik Nofa Rochma Wahyu
2017-04-01
In commercial aerospace development, feasibility accidents design or crashworthiness is a major concern in aviation safety. Fuselage structure plays an important role in absorbing energy during an accident. The research aims are to determine drop test phenomenon on the fuselage, to investigate deformation occurred in the structure of the fuselage, and to know the influence of the airframe falls position to the stress strain which occurred in the structure of the fuselage. This research was conducted by varying the fall angle of the fuselage in a vertical position or 0° and 15°. Fuselage design was modeled by using SolidWorks. Then the model is imported to the Abaqus for drop test simulation. From the simulation results, it can be obtained the phenomenon of deformation on the structure of the fuselage when it comes in contact with the rigid ground. The high deformation occurs shows the structure capabilities in order to absorb the impact. It could be happened because the deformation is influenced by internal energy and strain energy. The various positions shows the structure capability in order to withstand impact loads during periods of 4-8 seconds and the maximum deformation was reached in 12 seconds. The experiment on the vertical position and the position falls of 15° angle was delivered the highest stress strain. The stress was 483 MPa in struts section, 400.78 MPa in skin section, 358.28 MPa in the floor and 483 MPa in the cargo frame section.
Li, Dongliang; Liu, Xinrong; Liu, Xianshan
2015-07-02
Artificial cemented sand test samples were prepared by using ordinary Portland cement (OPC) as the cementing agent. Through uniaxial compression tests and consolidated drained triaxial compression tests, the stress-strain curves of the artificial cemented sand with different cementing agent contents (0.01, 0.03, 0.05 and 0.08) under various confining pressures (0.00 MPa, 0.25 MPa, 0.50 MPa and 1.00 MPa) were obtained. Based on the test results, the effect of the cementing agent content ( C v ) on the physical and mechanical properties of the artificial cemented sand were analyzed and the Mohr-Coulomb strength theory was modified by using C v . The research reveals that when C v is high (e.g., C v = 0.03, 0.05 or 0.08), the stress-strain curves of the samples indicate a strain softening behavior; under the same confining pressure, as C v increases, both the peak strength and residual strength of the samples show a significant increase. When C v is low (e.g., C v = 0.01), the stress-strain curves of the samples indicate strain hardening behavior. From the test data, a function of C v (the cementing agent content) with c ' (the cohesion force of the sample) and Δϕ' (the increment of the angle of shearing resistance) is obtained. Furthermore, through modification of the Mohr-Coulomb strength theory, the effect of cementing agent content on the strength of the cemented sand is demonstrated.
Effect of welding on creep damage evolution in P91B steel
NASA Astrophysics Data System (ADS)
Baral, J.; Swaminathan, J.; Chakrabarti, D.; Ghosh, R. N.
2017-07-01
Study of creep behavior of base metal (without weld) and welded specimens of P91B steel over a range of temperatures (600-650 °C) and stresses (50-180 MPa) showed similar values of minimum creep-rates for both specimens at higher stress regime (>100 MPa) whilst, significantly higher creep rates in the case of welded specimens at lower stress regime. Considering that welded specimen is comprised of two distinct structural regimes, i.e. weld affected zone and base metal, a method has been proposed for estimating the material parameters describing creep behavior of those regimes. Stress-strain distribution across welded specimen predicted from finite element analysis based on material parameters revealed preferential accumulation of stress and creep strain at the interface between weld zone and base metal. This is in-line with the experimental finding that creep rupture preferentially occurs at inter-critical heat affected zone in welded specimens owing to ferrite-martensite structure with coarse Cr23C6 particles.
Effect of water stress on in vitro mycelium cultures of two mycorrhizal desert truffles.
Navarro-Ródenas, Alfonso; Lozano-Carrillo, M Cecilia; Pérez-Gilabert, Manuela; Morte, Asunción
2011-05-01
The ability of two species of desert truffle, Terfezia claveryi strain TcS2 and Picoa lefebvrei strain OL2, to tolerate water stress in pure culture has been investigated. Both T. claveryi and P. lefebvrei strains exhibited a mycelium growth pattern characteristic of drought tolerant species. However, they were only tolerant to moderate water stress, below -1.07 MPa, with the P. lefebvrei isolate being slightly more drought tolerant than the T. claveryi isolate. The increased alkaline phosphatase (ALP) activity observed in both fungi at moderate water stress with respect to the control indicated the functional adaptation of these mycelia to these drought conditions. ALP activity can be used as an indicator of the metabolic activity of these fungi. Slight water stress (-0.45 MPa) could improve mycelial inoculum production of these desert truffles. Moreover, P. lefebvrei could be a good candidate for further desert truffle mycorrhizal plant cultivation programmes in semiarid Mediterranean areas.
NASA Technical Reports Server (NTRS)
Gray, H. H.
1976-01-01
Tensile and stress rupture properties were determined primarily at 760 C for specimens oriented at various angles (0 deg, 10 deg, 45 deg, and 90 deg) from the solidification direction of bars and/or slabs of the Ni-20Cb-6Cr-2.5A (gamma/gamma prime-delta) eutectic. Threaded-head specimens yielded longer rupture lives with significantly less scatter than did tapered-head specimens. Miniature specimens are suitable for determining traverse tensile and rupture properties of 1.2 centimeter diameter bar stock. The 300 hour rupture stress at 760 C for specimens oriented at 10 deg from the solidification direction was reduced from 740 to 460 MPa, and to 230 MPa for material oriented at either 45 deg or 90 deg.
Permeability of the San Andreas Fault Zone at Depth
NASA Astrophysics Data System (ADS)
Rathbun, A. P.; Song, I.; Saffer, D.
2010-12-01
Quantifying fault rock permeability is important toward understanding both the regional hydrologic behavior of fault zones, and poro-elastic processes that affect fault mechanics by mediating effective stress. These include long-term fault strength as well as dynamic processes that may occur during earthquake slip, including thermal pressurization and dilatancy hardening. Despite its importance, measurements of fault zone permeability for relevant natural materials are scarce, owing to the difficulty of coring through active fault zones seismogenic depths. Most existing measurements of fault zone permeability are from altered surface samples or from thinner, lower displacement faults than the SAF. Here, we report on permeability measurements conducted on gouge from the actively creeping Central Deformation Zone (CDZ) of the San Andreas Fault, sampled in the SAFOD borehole at a depth of ~2.7 km (Hole G, Run 4, sections 4,5). The matrix of the gouge in this interval is predominantly composed of particles <10 µm, with ~5 vol% clasts of serpentinite, very fine-grained sandstone, and siltstone. The 2.6 m-thick CDZ represents the main fault trace and hosts ~90% of the active slip on the SAF at this location, as documented by repeated casing deformation surveys. We measured permeability in two different configurations: (1) in a uniaxial pressure cell, in which a sample is placed into a rigid steel ring which imposes a zero lateral strain condition and subjected to axial load, and (2) in a standard triaxial system under isostatic stress conditions. In the uniaxial configuration, we obtained permeabilities at axial effective stresses up to 90 MPa, and in the triaxial system up to 10 MPa. All experiments were conducted on cylindrical subsamples of the SAFOD core 25 mm in diameter, with lengths ranging from 18mm to 40mm, oriented for flow approximately perpendicular to the fault. In uniaxial tests, permeability is determined by running constant rate of strain (CRS) tests up to 90 MPa axial stress. In these tests, axial stress is increased via a constant rate of displacement, and the excess pore pressure build up at the base of the sample is measured. Stress, pore pressure and strain are monitored to calculate coefficient of consolidation and volumetric compressibility in addition to permeability. In triaxial experiments, permeability is measured from by flow through tests under constant head boundary conditions. Permeability of the CDZ rapidly decreases to ~10-19 m2 by 20 MPa axial stress in our CRS tests. Over axial stresses from 20-85 MPa, permeability decreases log-linearly with effective stress from 8x10-20 m2 to 1x10-20 m2. Flow-through tests in the triaxial system under isostatic conditions yield permeabilities of 2.2x10-19 m2 and 1x10-20 m2 at 5 and 10 MPa, respectively. Our results are consistent with published geochemical data from SAFOD mud gas samples and inferred pore pressures during drilling [Zoback et al., 2010], which together suggest that the fault is a barrier to regional fluid flow. Our results indicate that the permeability of the fault core is sufficiently low to result in effectively undrained behavior during slip, thus allowing dynamic processes including thermal pressurization and dilatancy hardening to affect slip behavior.
Cheng, Lina; Sun, Da-Wen; Zhu, Zhiwei; Zhang, Zhihang
2017-08-15
Effects of protein denaturation caused by high pressure freezing, involving Pressure-Factors (pressure, time) and Freezing-Factors (temperature, phase transition, recrystallization, ice crystal types), are complicated. In the current study, the conformation and functional changes of natural actomyosin (NAM) under pressure assisted freezing (PAF, 100,150,300,400,500MPa P -20°C/25min ), pressure shift freezing (PSF, 200MPa P -20°C/25min ), and immersion freezing ( 0.1MPa P -20°C/5min ) after pressure was released to 0.1MPa, as compared to normal immersion freezing process (IF, 0.1MPa P -20°C/30min ). Results indicated that PSF ( 200MPa P -20°C/30min ) could reduce the denaturation of frozen NAM and a pressure of 300MPa was the critical point to induce such a denaturation. During the periods of B→D in PSF or B→C→D in PAF, the generation and growth of ice crystals played an important role on changing the secondary and tertiary structure of the treated NAM. Copyright © 2017 Elsevier Ltd. All rights reserved.
Twin nucleation and migration in FeCr single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patriarca, L.; Abuzaid, Wael; Sehitoglu, Huseyin, E-mail: huseyin@illinois.edu
2013-01-15
Tension and compression experiments were conducted on body-centered cubic Fe -47.8 at pct. Cr single crystals. The critical resolved shear stress (CRSS) magnitudes for slip nucleation, twin nucleation and twin migration were established. We show that the nucleation of slip occurs at a CRSS of about 88 MPa, while twinning nucleates at a CRSS of about 191 MPa with an associated load drop. Following twin nucleation, twin migration proceeds at a CRSS that is lower than the initiation stress ( Almost-Equal-To 114-153 MPa). The experimental results of the nucleation stresses indicate that the Schmid law holds to a first approximationmore » for the slip and twin nucleation cases, but to a lesser extent for twin migration particularly when considerable slip strains preceded twinning. The CRSSs were determined experimentally using digital image correlation (DIC) in conjunction with electron back scattering diffraction (EBSD). The DIC measurements enabled pinpointing the precise stress on the stress-strain curves where twins or slip were activated. The crystal orientations were obtained using EBSD and used to determine the activated twin and slip systems through trace analysis. - Highlights: Black-Right-Pointing-Pointer Digital image correlation allows to capture slip/twin initiation for bcc FeCr. Black-Right-Pointing-Pointer Crystal orientations from EBSD allow slip/twin system indexing. Black-Right-Pointing-Pointer Nucleation of slip always precedes twinning. Black-Right-Pointing-Pointer Twin growth is sustained with a lower stress than required for nucleation. Black-Right-Pointing-Pointer Twin-slip interactions provide high hardening at the onset of plasticity.« less
Gerber, Markus; Brand, Serge; Herrmann, Christian; Colledge, Flora; Holsboer-Trachsler, Edith; Pühse, Uwe
2014-08-01
The role of physical activity as a factor that protects against stress-related mental disorders is well documented. Nevertheless, there is still a dearth of research using objective measures of physical activity. The present study examines whether objectively assessed vigorous physical activity (VPA) is associated with mental health benefits beyond moderate physical activity (MPA). Particularly, this study examines whether young adults who accomplish the American College of Sports Medicine's (ACSM) vigorous-intensity exercise recommendations differ from peers below these standards with regard to their level of perceived stress, depressive symptoms, perceived pain, and subjective and objective sleep. A total of 42 undergraduate students (22 women, 20 men; M=21.24years, SD=2.20) volunteered to take part in the study. Stress, pain, depressive symptoms, and subjective sleep were assessed via questionnaire, objective sleep via sleep-EEG assessment, and VPA via actigraphy. Meeting VPA recommendations had mental health benefits beyond MPA. VPA was associated with less stress, pain, subjective sleep complaints and depressive symptoms. Moreover, vigorous exercisers had more favorable objective sleep pattern. Especially, they had increased total sleep time, more stage 4 and REM sleep, more slow wave sleep and a lower percentage of light sleep. Vigorous exercisers also reported fewer mental health problems if exposed to high stress. This study provides evidence that meeting the VPA standards of the ACSM is associated with improved mental health and more successful coping among young people, even compared to those who are meeting or exceeding the requirements for MPA. Copyright © 2014 Elsevier Inc. All rights reserved.
Huang, Xiaowei; Zhi, Zhongzheng; Yu, Baoqing; Chen, Fancheng
2015-11-25
The purpose of this study is to compare the stress and stability of plate-screw fixation and screw fixation in the treatment of Schatzker type IV medial tibial plateau fracture. A three-dimensional (3D) finite element model of the medial tibial plateau fracture (Schatzker type IV fracture) was created. An axial force of 2500 N with a distribution of 60% to the medial compartment was applied to simulate the axial compressive load on an adult knee during single-limb stance. The equivalent von Mises stress, displacement of the model relative to the distal tibia, and displacement of the implants were used as the output measures. The mean stress value of the plate-screw fixation system was 18.78 MPa, which was significantly (P < 0.001) smaller than that of the screw fixation system. The maximal value of displacement (sum) in the plate-screw fixation system was 2.46 mm, which was lower than that in the screw fixation system (3.91 mm). The peak stress value of the triangular fragment in the plate-screw fixation system model was 42.04 MPa, which was higher than that in the screw fixation model (24.18 MPa). But the mean stress of the triangular fractured fragment in the screw fixation model was significantly higher in terms of equivalent von Mises stress (EVMS), x-axis, and z-axis (P < 0.001). This study demonstrated that the load transmission mechanism between plate-screw fixation system and screw fixation system was different and the stability provided by the plate-screw fixation system was superior to the screw fixation system.
The influence of temperature on brittle creep in sandstones
NASA Astrophysics Data System (ADS)
Heap, M. J.; Baud, P.; Meredith, P. G.; Vinciguerra, S.
2009-04-01
The characterization of time-dependent brittle rock deformation is fundamental to understanding the long-term evolution and dynamics of the Earth's upper crust. The presence of water promotes time-dependent deformation through environment-dependent stress corrosion cracking that allows rocks to deform at stresses far below their short-term failure stress. Here we report results from an experimental study of the influence of an elevated temperature on time-dependent brittle creep in water-saturated samples of Darley Dale (initial porosity of 13%), Bentheim (23%) and Crab Orchard (4%) sandstones. We present results from both conventional creep experiments (or ‘static fatigue' tests) and stress-stepping creep experiments performed under 20°C and 75°C and an effective confining pressure of 30 MPa (50 MPa confining pressure and a 20 MPa pore fluid pressure). The evolution of crack damage was monitored throughout each experiment by measuring the three proxies for damage (1) axial strain (2) pore volume change and (3) the output of AE energy. Conventional creep experiments have demonstrated that, for any given applied differential stress, the time-to-failure is dramatically reduced and the creep strain rate is significantly increased by application of an elevated temperature. Stress-stepping creep experiments have allowed us to investigate the influence of temperature in detail. Results from these experiments show that the creep strain rate for Darley Dale and Bentheim sandstones increases by approximately 3 orders of magnitude, and for Crab Orchard sandstone increases by approximately 2 orders of magnitude, as temperature is increased from 20°C to 75°C at a fixed effective differential stress. We discuss these results in the context of the different mineralogical and microstructural properties of the three rock types and the micro-mechanical and chemical processes operating on them.
Effects of pressure and temperature on the survival rate of adherent A-172 cells
NASA Astrophysics Data System (ADS)
Yasuhara, Ryo; Kushida, Ryo; Ishii, Shiwori; Yamanoha, Banri; Shimizu, Akio
2013-06-01
Preservation of cells under high pressure is an important alternative to cryopreservation. We studied the effect of temperature (4, 25, 37°C) and pressure (0.1-350 MPa) on the survival rate of A-172 glioblastoma cells. The survival rate was not changed by brief (10 min) pressurization of up to 150 MPa, but the survival rate began to decrease from 150 MPa, and most of the A-172 cells died when treated with over 200 MPa. Lengthy pressurization (4 days) at lower pressure (upto 20.1 MPa) without medium exchange showed complex results. The survival rate of cells preserved at 25°C showed two maxima at 1.6 and 20.1 MPa. After preservation, cells adhered and proliferated in the same way as normal cells when cultured at 37°C in a CO2 incubator. The other two temperatures, 4° and 37°C, showed no maximum survival rate. Therefore, a high survival rate can be maintained with high pressure treatment.
Achieving Zero Stress in Iridium, Chromium, and Nickel Thin Films
NASA Technical Reports Server (NTRS)
Broadway, David M.; Weimer, Jeffrey; Gurgew, Danielle; Lis, Tomasz; Ramsey, Brian D.; O'Dell, Stephen L.; Ames, A.; Bruni, R.
2015-01-01
We examine a method for achieving zero intrinsic stress in thin films of iridium, chromium, and nickel deposited by magnetron sputter deposition. The examination of the stress in these materials is motivated by efforts to advance the optical performance of light-weight x-ray space telescopes into the regime of sub-arc second resolution that rely on control of the film stress to values within 10-100 MPa. A characteristic feature of the intrinsic stress behavior in chromium and nickel is their sensitivity to the magnitude and sign of the intrinsic stress with argon gas pressure, including the existence of a critical pressure that results in zero film stress. This critical pressure scales linearly with the film's density. While the effect of stress reversal with argon pressure has been previously reported by Hoffman and others for nickel and chromium, we have discovered a similar behavior for iridium. Additionally, we have identified zero stress in iridium shortly after island coalescence. This feature of film growth is used for achieving a total internal stress of -2.89 MPa for a 15.8 nm thick iridium film. The surface roughness of this low-stress film was examined using scanning probe microscopy (SPM) and x-ray reflectivity (XRR) at CuKa and these results presented and discussed.
Anisotropic Effects on Constitutive Model Parameters of Aluminum Alloys
NASA Astrophysics Data System (ADS)
Brar, Nachhatter; Joshi, Vasant
2011-06-01
Simulation of low velocity impact on structures or high velocity penetration in armor materials heavily rely on constitutive material models. The model constants are required input to computer codes (LS-DYNA, DYNA3D or SPH) to accurately simulate fragment impact on structural components made of high strength 7075-T651 aluminum alloys. Johnson-Cook model constants determined for Al7075-T651 alloy bar material failed to simulate correctly the penetration into 1' thick Al-7075-T651plates. When simulations go well beyond minor parameter tweaking and experimental results are drastically different it is important to determine constitutive parameters from the actual material used in impact/penetration experiments. To investigate anisotropic effects on the yield/flow stress of this alloy we performed quasi-static and high strain rate tensile tests on specimens fabricated in the longitudinal, transverse, and thickness directions of 1' thick Al7075-T651 plate. Flow stresses at a strain rate of ~1100/s in the longitudinal and transverse direction are similar around 670MPa and decreases to 620 MPa in the thickness direction. These data are lower than the flow stress of 760 MPa measured in Al7075-T651 bar stock.
Tension-Compression Fatigue of a Nextel™720/alumina Composite at 1200 °C in Air and in Steam
NASA Astrophysics Data System (ADS)
Lanser, R. L.; Ruggles-Wrenn, M. B.
2016-08-01
Tension-compression fatigue behavior of an oxide-oxide ceramic-matrix composite was investigated at 1200 °C in air and in steam. The composite is comprised of an alumina matrix reinforced with Nextel™720 alumina-mullite fibers woven in an eight harness satin weave (8HSW). The composite has no interface between the fiber and matrix, and relies on the porous matrix for flaw tolerance. Tension-compression fatigue behavior was studied for cyclical stresses ranging from 60 to 120 MPa at a frequency of 1.0 Hz. The R ratio (minimum stress to maximum stress) was -1.0. Fatigue run-out was defined as 105 cycles and was achieved at 80 MPa in air and at 70 MPa in steam. Steam reduced cyclic lives by an order of magnitude. Specimens that achieved fatigue run-out were subjected to tensile tests to failure to characterize the retained tensile properties. Specimens subjected to prior cyclic loading in air retained 100 % of their tensile strength. The steam environment severely degraded tensile properties. Tension-compression cyclic loading was considerably more damaging than tension-tension cyclic loading. Composite microstructure, as well as damage and failure mechanisms were investigated.
Inferring fault rheology from low-frequency earthquakes on the San Andreas
Beeler, Nicholas M.; Thomas, Amanda; Bürgmann, Roland; Shelly, David R.
2013-01-01
Families of recurring low-frequency earthquakes (LFEs) within nonvolcanic tremor (NVT) on the San Andreas fault in central California show strong sensitivity to shear stress induced by the daily tidal cycle. LFEs occur at all levels of the tidal shear stress and are in phase with the very small, ~400 Pa, stress amplitude. To quantitatively explain the correlation, we use a model from the existing literature that assumes the LFE sources are small, persistent regions that repeatedly fail during shear of a much larger scale, otherwise aseismically creeping fault zone. The LFE source patches see tectonic loading, creep of the surrounding fault which may be modulated by the tidal stress, and direct tidal loading. If the patches are small relative to the surrounding creeping fault then the stressing is dominated by fault creep, and if patch failure occurs at a threshold stress, then the resulting seismicity rate is proportional to the fault creep rate or fault zone strain rate. Using the seismicity rate as a proxy for strain rate and the tidal shear stress, we fit the data with possible fault rheologies that produce creep in laboratory experiments at temperatures of 400 to 600°C appropriate for the LFE source depth. The rheological properties of rock-forming minerals for dislocation creep and dislocation glide are not consistent with the observed fault creep because strong correlation between small stress perturbations and strain rate requires perturbation on the order of the ambient stress. The observed tidal modulation restricts ambient stress to be at most a few kilopascal, much lower than rock strength. A purely rate dependent friction is consistent with the observations only if the product of the friction rate dependence and effective normal stress is ~ 0.5 kPa. Extrapolating the friction rate strengthening dependence of phyllosilicates (talc) to depth would require the effective normal stress to be ~50 kPa, implying pore pressure is lithostatic. If the LFE source is on the order of tens of meters, as required by the model, rate-weakening friction rate dependence (e.g., olivine) at 400 to 600°C requires that the minimum effective pressure at the LFE source is ~ 2.5 MPa.
NASA Astrophysics Data System (ADS)
Urano, S.; Hiramatsu, Y.; Yamada, T.
2013-12-01
The 2007 Noto Hanto earthquake (MJMA 6.9; hereafter referred to the main shock) occurred at 0:41(UTC) on March 25, 2007 at a depth of 11km beneath the west coast of Noto Peninsula, central Japan. The dominant slip of the main shock was on a reverse fault with a right-lateral slip and the large slip area was distributed from hypocenter to the shallow part on the fault plane (Horikawa, 2008). The aftershocks are distributed not only in the small slip area but also in the large slip area (Hiramatsu et al., 2011). In this study, we estimate static stress drops of aftershocks on the fault plane of the main shock. We discuss the relationship between the static stress drops of the aftershocks and the large slip area of the main shock by investigating spatial pattern of the values of the static stress drops. We use the waveform data obtained by the group for the joint aftershock observations of the 2007 Noto Hanto Earthquake (Sakai et al., 2007). The sampling frequency of the waveform data is 100 Hz or 200 Hz. Focusing on similar aftershocks reported by Hiramatsu et al. (2011), we analyze static stress drops by using the method of empirical Green's function (EGF) (Hough, 1997) as follows. The smallest earthquake (MJMA≥2.0) of each group of similar earthquakes is set to the EGF earthquake, and the largest earthquake (MJMA≥2.5) is set to the target earthquake. We then deconvolve the waveform of an interested earthquake with that of the EGF earthquake at each station and obtain the spectral ratio of the sources that cancels the propagation effects (path and site effects). Following the procedure of Yamada et al. (2010), we finally estimate static stress drops for P- and S-waves from corner frequencies of the spectral ratio by using a model of Madariaga (1976). The estimated average value of static stress drop is 8.2×1.3 MPa (8.6×2.2 MPa for P-wave and 7.8×1.3 MPa for S-wave). These values are coincident approximately with the static stress drop of aftershocks of other inland earthquakes in Japan (Ito et al., 2005; Iio et al., 2006) and independent of the seismic moment. We then compare the values with the coseismic slip distribution of the main shock reported by Horikawa (2008). If we define large slip areas as areas with a slip exceeding 1 m, the average value of static stress drop is 12×2.3 (MPa) in the area. On the other hand, the average value is 5.7×0.9 (MPa) outside the large slip area. These results suggest that aftershocks in the large slip area likely have larger values of static stress drop, which would reflect the spatial heterogeneity of shear strength and dynamic stress level. Our results are coincident with the result of Yamada et al. (2010).
Modeling and Analysis of a Combined Stress-Vibration Fiber Bragg Grating Sensor
Yao, Kun; Lin, Qijing; Jiang, Zhuangde; Zhao, Na; Tian, Bian; Shi, Peng; Peng, Gang-Ding
2018-01-01
A combined stress-vibration sensor was developed to measure stress and vibration simultaneously based on fiber Bragg grating (FBG) technology. The sensor is composed of two FBGs and a stainless steel plate with a special design. The two FBGs sense vibration and stress and the sensor can realize temperature compensation by itself. The stainless steel plate can significantly increase sensitivity of vibration measurement. Theoretical analysis and Finite Element Method (FEM) were used to analyze the sensor’s working mechanism. As demonstrated with analysis, the obtained sensor has working range of 0–6000 Hz for vibration sensing and 0–100 MPa for stress sensing, respectively. The corresponding sensitivity for vibration is 0.46 pm/g and the resulted stress sensitivity is 5.94 pm/MPa, while the nonlinearity error for vibration and stress measurement is 0.77% and 1.02%, respectively. Compared to general FBGs, the vibration sensitivity of this sensor is 26.2 times higher. Therefore, the developed sensor can be used to concurrently detect vibration and stress. As this sensor has height of 1 mm and weight of 1.15 g, it is beneficial for minimization and integration. PMID:29494544
Modeling and Analysis of a Combined Stress-Vibration Fiber Bragg Grating Sensor.
Yao, Kun; Lin, Qijing; Jiang, Zhuangde; Zhao, Na; Tian, Bian; Shi, Peng; Peng, Gang-Ding
2018-03-01
A combined stress-vibration sensor was developed to measure stress and vibration simultaneously based on fiber Bragg grating (FBG) technology. The sensor is composed of two FBGs and a stainless steel plate with a special design. The two FBGs sense vibration and stress and the sensor can realize temperature compensation by itself. The stainless steel plate can significantly increase sensitivity of vibration measurement. Theoretical analysis and Finite Element Method (FEM) were used to analyze the sensor's working mechanism. As demonstrated with analysis, the obtained sensor has working range of 0-6000 Hz for vibration sensing and 0-100 MPa for stress sensing, respectively. The corresponding sensitivity for vibration is 0.46 pm/g and the resulted stress sensitivity is 5.94 pm/MPa, while the nonlinearity error for vibration and stress measurement is 0.77% and 1.02%, respectively. Compared to general FBGs, the vibration sensitivity of this sensor is 26.2 times higher. Therefore, the developed sensor can be used to concurrently detect vibration and stress. As this sensor has height of 1 mm and weight of 1.15 g, it is beneficial for minimization and integration.
NASA Astrophysics Data System (ADS)
Wang, Junxia; Cao, Changlin; Yu, Dingshan; Chen, Xudong
2018-02-01
In this paper, the effect of varying extensional-shear couple loading on deformation and stress response of Carbon Nanotubes/ ultra-high molecular weight polyethylene (CNTs/UHMWPE) composites was investigated using finite element numerical simulation, with expect to improve the manufacturing process of UHMWPE-based composites with reduced stress and lower distortion. When applying pure extensional loading and pure X-Y shear loading, it was found that the risk of a structural breakage greatly rises. For identifying the coupling between extensional and shear loading, distinct generations of force loading were defined by adjusting the magnitude of extensional loading and X-Y shear loading. It was shown that with the decrement of X-Y shear loading the deformation decreases obviously where the maximal Mises stress in Z-direction at 0.45 m distance is in the range from 24 to 10 MPa and the maximal shear stress at 0.61 m distance is within the range from 0.9 to 0.3 MPa. In addition, all the stresses determined were clearly below the yield strength of CNTs/UHMWPE composites under extensional-shear couple loading.
Stress analysis in high-temperature superconductors under pulsed field magnetization
NASA Astrophysics Data System (ADS)
Wu, Haowei; Yong, Huadong; Zhou, Youhe
2018-04-01
Bulk high-temperature superconductors (HTSs) have a high critical current density and can trap a large magnetic field. When bulk superconductors are magnetized by the pulsed field magnetization (PFM) technique, they are also subjected to a large electromagnetic stress, and the resulting thermal stress may cause cracking of the superconductor due to the brittle nature of the sample. In this paper, based on the H-formulation and the law of heat transfer, we can obtain the distributions of electromagnetic field and temperature, which are in qualitative agreement with experiment. After that, based on the dynamic equilibrium equations, the mechanical response of the bulk superconductor is determined. During the PFM process, the change in temperature has a dramatic effect on the radial and hoop stresses, and the maximum radial and hoop stress are 24.2 {{MPa}} and 22.6 {{MPa}}, respectively. The mechanical responses of a superconductor for different cases are also studied, such as the peak value of the applied field and the size of bulk superconductors. Finally, the stresses are also presented for different magnetization methods.
Semi-brittle flow of granitoid fault rocks in experiments
NASA Astrophysics Data System (ADS)
Pec, Matej; Stünitz, Holger; Heilbronner, Renée.; Drury, Martyn
2016-03-01
Field studies and seismic data show that semi-brittle flow of fault rocks probably is the dominant deformation mechanism at the base of the seismogenic zone at the so-called frictional-viscous transition. To understand the physical and chemical processes accommodating semi-brittle flow, we have performed an experimental study on synthetic granitoid fault rocks exploring a broad parameter space (temperature, T = 300, 400, 500, and 600°C, confining pressure, Pc ≈ 300, 500, 1000, and 1500 MPa, shear strain rate, γṡ ≈ 10-3, 10-4, 10-5, and 10-6 s-1, to finite shear strains, γ = 0-5). The experiments have been carried out using a granular material with grain size smaller than 200 µm with a little H2O added (0.2 wt %). Only two experiments (performed at the fastest strain rates and lowest temperatures) have failed abruptly right after reaching peak strength (τ ~ 1400 MPa). All other samples reach high shear stresses (τ ~ 570-1600 MPa) then weaken slightly (by Δτ ~ 10-190 MPa) and continue to deform at a more or less steady state stress level. Clear temperature dependence and a weak strain rate dependence of the peak as well as steady state stress levels are observed. In order to express this relationship, the strain rate-stress sensitivity has been fit with a stress exponent, assuming γ˙ ∝ τn and yields high stress exponents (n ≈ 10-140), which decrease with increasing temperature. The microstructures show widespread comminution, strain partitioning, and localization into slip zones. The slip zones contain at first nanocrystalline and partly amorphous material. Later, during continued deformation, fully amorphous material develops in some of the slip zones. Despite the mechanical steady state conditions, the fabrics in the slip zones and outside continue to evolve and do not reach a steady state microstructure below γ = 5. Within the slip zones, the fault rock material progressively transforms from a crystalline solid to an amorphous material. We present and interpret the experimental results both in terms of sliding friction and viscous flow, and we discuss the possible effect that the formation of nanocrystalline and amorphous layers may have on earthquake nucleation.
Coulomb Stress Accumulation along the San Andreas Fault System
NASA Technical Reports Server (NTRS)
Smith, Bridget; Sandwell, David
2003-01-01
Stress accumulation rates along the primary segments of the San Andreas Fault system are computed using a three-dimensional (3-D) elastic half-space model with realistic fault geometry. The model is developed in the Fourier domain by solving for the response of an elastic half-space due to a point vector body force and analytically integrating the force from a locking depth to infinite depth. This approach is then applied to the San Andreas Fault system using published slip rates along 18 major fault strands of the fault zone. GPS-derived horizontal velocity measurements spanning the entire 1700 x 200 km region are then used to solve for apparent locking depth along each primary fault segment. This simple model fits remarkably well (2.43 mm/yr RMS misfit), although some discrepancies occur in the Eastern California Shear Zone. The model also predicts vertical uplift and subsidence rates that are in agreement with independent geologic and geodetic estimates. In addition, shear and normal stresses along the major fault strands are used to compute Coulomb stress accumulation rate. As a result, we find earthquake recurrence intervals along the San Andreas Fault system to be inversely proportional to Coulomb stress accumulation rate, in agreement with typical coseismic stress drops of 1 - 10 MPa. This 3-D deformation model can ultimately be extended to include both time-dependent forcing and viscoelastic response.
Effects of dislocations on polycrystal anelasticity
NASA Astrophysics Data System (ADS)
Sasaki, Y.; Takei, Y.; McCarthy, C.; Suzuki, A.
2017-12-01
Effects of dislocations on the seismic velocity and attenuation have been poorly understood, because only a few experimental studies have been performed [Guéguen et al., 1989; Farla et al., 2012]. By using organic borneol as a rock analogue, we measured dislocation-induced anelasticity accurately over a broad frequency range. We first measured the flow law of borneol aggregates by uniaxial compression tests under a confining pressure of 0.8 MPa. A transition from diffusion creep (n = 1) to dislocation creep (n = 5) was captured at about σ = 1 MPa (40°C-50°C). After deforming in the dislocation creep regime, sample microstructure showed irregular grain shape consistent with grain boundary migration. Next, we conducted three creep tests at σ = 0.27 MPa (diffusion creep regime), σ = 1.3 MPa and σ = 1.9 MPa (dislocation creep regime) on the same sample in increasing order, and measured Young's modulus E and attenuation Q-1 after each creep test by forced oscillation tests. The results show that as σ increased, E decreased and Q-1 increased. These changes induced by dislocations, however, almost fully recovered during the forced oscillation tests performed for about two weeks under a small stress (σ = 0.27 MPa) due to the dislocation recovery (annihilation). In order to constrain the time scale of the dislocation-induced anelastic relaxation, we further measured Young's modulus E at ultrasonic frequency before and after the dislocation creep and found that E at 106 Hz is not influenced by dislocations. Because E at 100 Hz is reduced by dislocations by 10%, the dislocation-induced anelastic relaxation occurs mostly between 102-106 Hz which is at a higher frequency than grain-boundary-induced anelasticity. To avoid dislocation recovery during the anelasticity measurement, we are now trying to perform an in-situ measurement of anelasticity while simultaneously deforming under a high stress associated with dislocation creep. The combination of persistent creep stress with small amplitude perturbations is similar to a seismic wave traveling through a region of active tectonic deformation.
Sperling, Or; Secchi, Francesca; Godfrey, Jessie; Zwieniecki, Maciej A
2017-03-01
Main conclusion Cold acclimation is revealed through induced stem respiration during pre-winter frost of native Pistacia integerrima trees in continental semi-arid environments. Semi-arid environments challenge vegetation by simultaneous abiotic stresses. In this study, we examine the combined effects of water stress and frost on the physiology of Pistacia integerrima stems. This species is native to semi-arid environments where drought and frost frequently co-occur. We quantified carbohydrates and proline in P. integerrima stems responding to frost and experiencing water potentials between -0.2 and -1.8 MPa. We report that dehydrated trees (i.e., Ψ stem <=-1 MPa) had more soluble sugars and proline than the well-watered trees (-0.2 MPa). The dehydrated trees also froze at lower temperatures and were less damaged by freezing. Interestingly, we observed a significant increase in stem CO 2 efflux at near-freezing temperatures that could be linked to frost protection. This novel finding challenges current paradigm of plant respiration-kinetics which predicts, according to Arrhenius equation, lower respiration rates during frost. Our results support the notion that drought and frost are analogous stresses that can independently activate corresponding physiological processes in trees and amplify protection. This inevitable stress response 'collaboration' may be the key to understanding how non-dormant perennial plants survive the highly variable weather patterns of early winters in semi-arid environments.
Caprock integrity susceptibility to permeable fracture creation
Frash, Luke; Carey, James William; Ickes, Timothy Lee; ...
2017-07-14
Caprock leakage is of crucial concern for environmentally and economically sustainable development of carbon dioxide sequestration and utilization operations. One potential leakage pathway is through fractures or faults that penetrate the caprock. In this study, we investigate the permeability induced by fracturing initially intact Marcellus shale outcrop specimens at stressed conditions using a triaxial direct-shear method. Measurements of induced permeability, fracture geometry, displacement, and applied stresses were all obtained at stressed conditions to investigate the coupled processes of fracturing and fluid flow as may occur in the subsurface. Fracture geometry was directly observed at stressed conditions using X-ray radiography video.more » Numerical simulation was performed to evaluate the stress distribution developed in the experiments. Our experiments show that permeability induced by fracturing is strongly dependent on the stresses at which the fractures are created, the magnitude of shearing displacement, and the duration of flow. The strongest permeability contrast was observed when comparing specimens fractured at low stress to others fractured at higher stress. Measureable fracture permeability decreased by up to 7 orders of magnitude over a corresponding triaxial confining stress range of 3.5 MPa to 30 MPa. These results show that increasing stress, depth, and time are all significant permeability inhibitors that may limit potential leakage through fractured caprock.« less
Caprock integrity susceptibility to permeable fracture creation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frash, Luke; Carey, James William; Ickes, Timothy Lee
Caprock leakage is of crucial concern for environmentally and economically sustainable development of carbon dioxide sequestration and utilization operations. One potential leakage pathway is through fractures or faults that penetrate the caprock. In this study, we investigate the permeability induced by fracturing initially intact Marcellus shale outcrop specimens at stressed conditions using a triaxial direct-shear method. Measurements of induced permeability, fracture geometry, displacement, and applied stresses were all obtained at stressed conditions to investigate the coupled processes of fracturing and fluid flow as may occur in the subsurface. Fracture geometry was directly observed at stressed conditions using X-ray radiography video.more » Numerical simulation was performed to evaluate the stress distribution developed in the experiments. Our experiments show that permeability induced by fracturing is strongly dependent on the stresses at which the fractures are created, the magnitude of shearing displacement, and the duration of flow. The strongest permeability contrast was observed when comparing specimens fractured at low stress to others fractured at higher stress. Measureable fracture permeability decreased by up to 7 orders of magnitude over a corresponding triaxial confining stress range of 3.5 MPa to 30 MPa. These results show that increasing stress, depth, and time are all significant permeability inhibitors that may limit potential leakage through fractured caprock.« less
Zheng, Xiaoying; Li, Xiaomei; Tang, Zhen; Gong, Lulu; Wang, Dalin
2014-06-01
To study the effect of implant number and inclination on stress distribution in implant and its surrounding bone with three-dimensional finite element analysis. A special denture was made for an edentulous mandible cast to collect three-dimensional finite element data. Three three-dimensional finite element models were established as follows. Model 1: 6 paralleled implants; model 2: 4 paralleled implants; model 3: 4 implants, the two anterior implants were parallel, the two distal implants were tilted 30° distally. Among the three models, the maximum stress values found in anterior implants, posterior implants, and peri-implant bone were modle 3
Analysis of Subcritical Crack Growth in Dental Ceramics Using Fracture Mechanics and Fractography
Taskonak, Burak; Griggs, Jason A.; Mecholsky, John J.; Yan, Jia-Hau
2008-01-01
Objectives The aim of this study was to test the hypothesis that the flexural strengths and critical flaw sizes of dental ceramic specimens will be affected by the testing environment and stressing rate even though their fracture toughness values will remain the same. Methods Ceramic specimens were prepared from an aluminous porcelain (Vitadur Alpha; VITA Zahnfabrik, Bad Säckingen, Germany) and an alumina-zirconia-glass composite (In-Ceram® Zirconia; VITA Zahnfabrik). Three hundred uniaxial flexure specimens (150 of each material) were fabricated to dimensions of 25 mm × 4 mm × 1.2 mm according to the ISO 6872 standard. Each group of 30 specimens was fractured in water using one of four different target stressing rates ranging on a logarithmic scale from 0.1 to 100 MPa/s for Vitadur Alpha and from 0.01 to 10 MPa/s for In-Ceram® Zirconia. The fifth group was tested in inert environment (oil) with a target stressing rate of 100 MPa/s for Vitadur Alpha and 1000 MPa/s for In-Ceram® Zirconia. The effects of stressing rate and environment on flexural strength, critical flaw size, and fracture toughness were analyzed statistically by Kruskal-Wallis one-way ANOVA on ranks followed by post-hoc comparisons using Dunn’s test (α=0.05). In addition, 20 Vitadur Alpha specimens were fabricated with controlled flaws to simplify fractography. Half of these specimens were fracture tested in water and half in oil at a target stressing rate of 100 MPa/s, and the results were compared using Mann-Whitney rank sum tests (α=0.05). A logarithmic regression model was used to determine the fatigue parameters for each material. Results For each ceramic composition, specimens tested in oil had significantly higher strength (P≤0.05) and smaller critical flaw size (significant for Vitadur Alpha, P≤0.05) than those tested in water but did not have significantly different fracture toughness (P>0.05). Specimens tested at faster stressing rates had significantly higher strength (P≤0.05) but did not have significantly different fracture toughness (P>0.05). Regarding critical flaw size, stressing rate had a significant effect for In-Ceram® Zirconia specimens (P≤0.05) but not for Vitadur Alpha specimens (P>0.05). Fatigue parameters, n and ln B, were 38.4 and −12.7 for Vitadur Alpha and were 13.1 and 10.4 for In-Ceram® Zirconia. Significance Moisture assisted subcritical crack growth had a more deleterious effect on In-Ceram® Zirconia core ceramic than on Vitadur Alpha porcelain. Fracture surface analysis identified fracture surface features that can potentially mislead investigators into misidentifying the critical flaw. PMID:17845817
Analysis of subcritical crack growth in dental ceramics using fracture mechanics and fractography.
Taskonak, Burak; Griggs, Jason A; Mecholsky, John J; Yan, Jia-Hau
2008-05-01
The aim of this study was to test the hypothesis that the flexural strengths and critical flaw sizes of dental ceramic specimens will be affected by the testing environment and stressing rate even though their fracture toughness values will remain the same. Ceramic specimens were prepared from an aluminous porcelain (Vitadur Alpha; VITA Zahnfabrik, Bad Säckingen, Germany) and an alumina-zirconia-glass composite (In-Ceram Zirconia; VITA Zahnfabrik). Three hundred uniaxial flexure specimens (150 of each material) were fabricated to dimensions of 25 mmx4 mmx1.2 mm according to the ISO 6872 standard. Each group of 30 specimens was fractured in water using one of four different target stressing rates ranging on a logarithmic scale from 0.1 to 100 MPa/s for Vitadur Alpha and from 0.01 to 10 MPa/s for In-Ceram Zirconia. The fifth group was tested in inert environment (oil) with a target stressing rate of 100 MPa/s for Vitadur Alpha and 1000 MPa/s for In-Ceram Zirconia. The effects of stressing rate and environment on flexural strength, critical flaw size, and fracture toughness were analyzed statistically by Kruskal-Wallis one-way ANOVA on ranks followed by post hoc comparisons using Dunn's test (alpha=0.05). In addition, 20 Vitadur Alpha specimens were fabricated with controlled flaws to simplify fractography. Half of these specimens were fracture tested in water and half in oil at a target stressing rate of 100 MPa/s, and the results were compared using Mann-Whitney rank sum tests (alpha=0.05). A logarithmic regression model was used to determine the fatigue parameters for each material. For each ceramic composition, specimens tested in oil had significantly higher strength (P
Fretting Fatigue Experiment and Analysis of AlSi9Cu2Mg Alloy
Wang, Jun; Xu, Hong; Su, Tiexiong; Zhang, Yi; Guo, Zhen; Mao, Huping; Zhang, Yangang
2016-01-01
An investigation was carried out in order to study the fretting fatigue behavior of an AlSi9Cu2Mg aluminum alloy. The fretting fatigue tests of AlSi9Cu2Mg were performed using a specially designed testing machine. The failure mechanism of fretting fatigue was explored by studying the fracture surfaces, fretting scars, fretting debris, and micro-hardness of fretting fatigue specimens using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and micro Vickers hardness test techniques. The experimental results show that the fretting fatigue limit (42 MPa) is significantly reduced to approximately 47% of the plain fatigue limit (89 MPa) under 62.5 MPa contact pressure. Furthermore, the fretting fatigue life decreases with increasing alternating stress and increasing contact pressure. The examination results suggest that the stress concentrates induced by oxidation-assisted wear on the contact interface led to the earlier initiation and propagation of crack under the fretting condition. PMID:28774103
Fretting Fatigue Experiment and Analysis of AlSi9Cu2Mg Alloy.
Wang, Jun; Xu, Hong; Su, Tiexiong; Zhang, Yi; Guo, Zhen; Mao, Huping; Zhang, Yangang
2016-12-05
An investigation was carried out in order to study the fretting fatigue behavior of an AlSi9Cu2Mg aluminum alloy. The fretting fatigue tests of AlSi9Cu2Mg were performed using a specially designed testing machine. The failure mechanism of fretting fatigue was explored by studying the fracture surfaces, fretting scars, fretting debris, and micro-hardness of fretting fatigue specimens using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and micro Vickers hardness test techniques. The experimental results show that the fretting fatigue limit (42 MPa) is significantly reduced to approximately 47% of the plain fatigue limit (89 MPa) under 62.5 MPa contact pressure. Furthermore, the fretting fatigue life decreases with increasing alternating stress and increasing contact pressure. The examination results suggest that the stress concentrates induced by oxidation-assisted wear on the contact interface led to the earlier initiation and propagation of crack under the fretting condition.
A Thermal Technique of Fault Nucleation, Growth, and Slip
NASA Astrophysics Data System (ADS)
Garagash, D.; Germanovich, L. N.; Murdoch, L. C.; Martel, S. J.; Reches, Z.; Elsworth, D.; Onstott, T. C.
2009-12-01
Fractures and fluids influence virtually all mechanical processes in the crust, but many aspects of these processes remain poorly understood largely because of a lack of controlled field experiments at appropriate scale. We have developed an in-situ experimental approach to create carefully controlled faults at scale of ~10 meters using thermal techniques to modify in situ stresses to the point where the rock fails in shear. This approach extends experiments on fault nucleation and growth to length scales 2-3 orders of magnitude greater than are currently possible in the laboratory. The experiments could be done at depths where the modified in situ stresses are sufficient to drive faulting, obviating the need for unrealistically large loading frames. Such experiments require an access to large rock volumes in the deep subsurface in a controlled setting. The Deep Underground Science and Engineering Laboratory (DUSEL), which is a research facility planned to occupy the workings of the former Homestake gold mine in the northern Black Hills, South Dakota, presents an opportunity for accessing locations with vertical stresses as large as 60 MPa (down to 2400 m depth), which is sufficient to create faults. One of the most promising methods for manipulating stresses to create faults that we have evaluated involves drilling two parallel planar arrays of boreholes and circulating cold fluid (e.g., liquid nitrogen) to chill the region in the vicinity of the boreholes. Cooling a relatively small region around each borehole causes the rock to contract, reducing the normal compressive stress throughout much larger region between the arrays of boreholes. This scheme was evaluated using both scaling analysis and a finite element code. Our results show that if the boreholes are spaced by ~1 m, in several days to weeks, the normal compressive stress can be reduced by 10 MPa or more, and it is even possible to create net tension between the borehole arrays. According to the Mohr-Coulomb strength criterion with standard Byerlee parameters, a fault will initiate before the net tension occurs. After a new fault is created, hot fluid can be injected into the boreholes to increase the temperature and reverse the direction of fault slip. This process can be repeated to study the formation of gouge, and how the properties of gouge control fault slip and associated seismicity. Instrumenting the site with arrays of geophones, tiltmeters, strain gauges, and displacement transducers as well as back mining - an opportunity provided by the DUSEL project - can reveal details of the fault geometry and gouge. We also expect to find small faults (with cm-scale displacement) during construction of DUSEL drifts. The same thermal technique can be used to induce slip on one of them and compare the “man-made” and natural gouges. The thermal technique appears to be a relatively simple way to rapidly change the stress field and either create slip on existing fractures or create new faults at scales up to 10 m or more.
Differences in tendon properties in elite badminton players with or without patellar tendinopathy.
Couppé, C; Kongsgaard, M; Aagaard, P; Vinther, A; Boesen, M; Kjaer, M; Magnusson, S P
2013-03-01
The aim of this study was to examine the structural and mechanical properties of the patellar tendon in elite male badminton players with and without patellar tendinopathy. Seven players with unilateral patellar tendinopathy (PT group) on the lead extremity (used for forward lunge) and nine players with no current or previous patellar tendinopathy (CT group) were included. Magnetic resonance imaging was used to assess distal patellar tendon dimensions. Patellar tendon mechanical properties were assessed using simultaneous tendon force and deformation measurements. Distal tendon cross-sectional area (CSA) normalized for body weight (mm(2) /kg(2/3) ) was lower in the PT group compared with the CT group on both the non-lead extremity (6.1 ± 0.3 vs 7.4 ± 0.2, P < 0.05) and the lead extremity (6.5 ± 0.6 vs 8.4 ± 0.3, P < 0.05). Distal tendon stress was higher in the PT group compared with the CT group for both the non-lead extremity (31 ± 1 vs 27 ± 1 MPa, P < 0.05) and the lead extremity (32 ± 3 vs 21 ± 3 MPa, P < 0.01). Conclusively, the PT group had smaller distal patellar tendon CSA on both the injured (lead extremity) and the uninjured side (non-lead extremity) compared with the CT group. Subsequently, the smaller CSA yielded a greater distal patellar tendon stress in the PT group. Therefore, a small tendon CSA may predispose to the development of tendinopathy. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
Effect of dynamic hydrostatic pressure on rabbit intervertebral disc cells.
Kasra, Mehran; Goel, Vijay; Martin, James; Wang, Shea-Tien; Choi, Woosung; Buckwalter, Joseph
2003-07-01
The pathogenesis of vibration-induced disorders of intervertebral disc at the cellular level is largely unknown. The objective of this study was to establish a method to investigate the ranges of constructive and destructive hydrostatic loading frequencies and amplitudes in preventing or inducing extracellular disc matrix degradation. Using a hydraulic chamber, normal rabbit intervertebral disc cells were tested under dynamic hydrostatic loading. Monolayer cultures of disc outer annulus cells and 3-dimensional (3-D) alginate cultures of disc nucleus pulposus cells were tested. Effects of different loading amplitudes (3-D culture, 0-3 MPa; monolayer, 0-1.7 MPa) and frequencies (1-20 Hz) on disc collagen and protein metabolism were investigated by measuring 3H-proline-labeled proteins associated with the cells in the extracellular matrix and release of 3H-proline-labeled molecules into culture medium. High frequency and high amplitude hydrostatic stress stimulated collagen synthesis in cultures of outer annulus cells whereas the lower amplitude and frequency hydrostatic stress had little effect. For the same loading duration and repetition, neither treatment significantly affected the relative amount of protein released from the cell layers, indicating that protein degradation and stability were unaffected. In the 3-D nucleus culture, higher amplitude and frequency increased synthesis rate and lowered degradation. In this case, loading amplitude had a stronger influence on cell response than that of loading frequency. Considering the ranges of loading amplitude and frequency used in this study, short-term application of high loading amplitudes and frequencies was beneficial in stimulation of protein synthesis and reduction of protein degradation.
High performance lignin-acrylonitrile polymer blend materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naskar, Amit K.; Tran, Chau D.
A polymer blend material comprising: (i) a lignin component having a weight-average molecular weight of up to 1,000,000 g/mol; and (ii) an acrylonitrile-containing copolymer rubber component comprising acrylonitrile units in combination with diene monomer units, and having an acrylonitrile content of at least 20 mol %; wherein said lignin component is present in an amount of at least 5 wt % and up to about 95 wt % by total weight of components (i) and (ii); and said polymer blend material possesses a tensile yield stress of at least 5 MPa, or a tensile stress of at least 5 MPamore » at 10% elongation, or a tensile stress of at least 5 MPa at 100% elongation. Methods for producing the polymer blend, molded forms thereof, and articles thereof, are also described.« less
NASA Technical Reports Server (NTRS)
Pizzo, P. P.
1980-01-01
The microstructure and tensile properties of two powder metallurgy processed aluminum-lithium alloys were determined. Strength properties of 480 MPa yield and 550 MPa ultimate tensile strength with 5% strain to fracture were attained. Very little reduction in area was observed and fracture characteristics were brittle. The magnesium bearing alloy exhibited the highest strength and ductility, but fracture was intergranular. Recrystallization and grain growth, as well as coarse grain boundary precipitation, occurred in Alloy 2. The fracture morphology of the two alloys differed. Alloy 1 fractured along a plane of maximum shear stress, while Alloy 2 fractured along a plane of maximum tensile stress. It is found that a fixed orientation relationship exists between the shear fracture plane and the rolling direction which suggests that the PM alloys are strongly textured.
Foster, Derek M; Poulsen, Keith P; Sylvester, Hannah J; Jacob, Megan E; Casulli, Kaitlyn E; Farkas, Brian E
2016-11-01
This study aimed to determine the effects of high-pressure processing on the immunoglobulin concentration, microbial load, viscosity, and transfer of passive immunity to calves when applied to bovine colostrum as an alternative to thermal pasteurization. A pilot study using Staphylococcus aureus was conducted to determine which pressure-time treatments are most appropriate for use with bovine colostrum, with the goals of maximizing bacterial inactivation while minimizing IgG content and viscosity changes. Following the pilot study, an inoculation study was conducted in which first-milking colostrum samples from Holstein-Friesian cows were inoculated with known concentrations of various bacteria or viruses and pressure processed at either 300 MPa for up to 60min or at 400MPa for up to 30min. The recovery of total native aerobic bacteria, Escherichia coli, Salmonella enterica ssp. enterica serovar Dublin, Mycobacterium avium ssp. paratuberculosis, bovine herpesvirus type 1, and feline calicivirus were determined after processing. Colostrum IgG content was measured before and after pressure processing. Shear stress and viscosity for each treatment was determined over shear rates encompassing those found during calf feeding and at normal bovine body temperature (37.8°C). Following a calf trial, serum IgG concentration was measured in 14 calves fed 4 L of colostrum pressure processed at 400MPa for 15min. In the pilot study, S. aureus was effectively reduced with pressure treatment at 300 and 400MPa (0, 5, 10, 15, 30, and 45min), with 2 treatments at 400MPa (30, 45min) determined to be inappropriate for use with bovine colostrum due to viscosity and IgG changes. High-pressure processing at 300MPa (30, 45, and 60min) and 400MPa (10, 15, and 20min) was shown to effectively reduce total native aerobic bacteria, E. coli, Salmonella Dublin, bovine herpesvirus type 1, and feline calicivirus populations in bovine colostrum, but no decrease occurred in Mycobacterium avium ssp. paratuberculosis. All inoculation study pressure treatments insignificantly decreased IgG content of colostrum. Treatment of colostrum at 400MPa for 15min during the calf trial decreased IgG content of colostrum. Treatment at 400MPa for 15min increased colostrum viscosity, with 2 of 14 samples requiring dilution with water for calf feeding. Calves fed pressure-processed colostrum had similar serum IgG but lower efficiency of absorption than calves fed heat-treated colostrum. The results of this study suggest that high-pressure processing of bovine colostrum maintains an acceptable IgG level while decreasing bacterial and viral counts. Changes in viscosity sometimes made calf feeding more difficult, but still feasible. Additional research to optimize this technology for on-farm use is necessary. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Thermophysical properties of Helium-4 from 0.8 to 1500 K with pressures to 2000 MPa
NASA Technical Reports Server (NTRS)
Arp, Vincent D.; Mccarty, Robert D.
1989-01-01
Tabular summary data of the thermophysical properties of fluid helium are given for temperatures from 0.8 to 1500 K, with pressures to 2000 MPa between 75 and 300 K, or to 100 MPa outside of this temperature band. Properties include density, specific heats, enthalpy, entropy, internal energy, sound velocity, expansivity, compressibility, thermal conductivity, and viscosity. The data are calculated from a computer program which is available from the National Institute of Standards and Technology. The computer program is based on carefully fitted state equations for both normal and superfluid helium.
Kilic, Kerem; Esim, Emir; Aslan, Tugrul; Kilinc, Halil Ibrahim; Yildirim, Sahin
2013-01-01
PURPOSE The aim of the present study was to evaluate the effects of posts with different morphologies on stress distribution in an endodontically treated mandibular premolar by using finite element models (FEMs). MATERIALS AND METHODS A mandibular premolar was modeled using the ANSYS software program. Two models were created to represent circular and oval fiber posts in this tooth model. An oblique force of 300 N was applied at an angle of 45° to the occlusal plane and oriented toward the buccal side. von Mises stress was measured in three regions each for oval and circular fiber posts. RESULTS FEM analysis showed that the von Mises stress of the circular fiber post (426.81 MPa) was greater than that of the oval fiber post (346.34 MPa). The maximum distribution of von Mises stress was in the luting agent in both groups. Additionally, von Mises stresses accumulated in the coronal third of root dentin, close to the post space in both groups. CONCLUSION Oval fiber posts are preferable to circular fiber posts in oval-shaped canals given the stress distribution at the post-dentin interface. PMID:24353882
Stress Transfer Mechanisms at the Submicron Level for Graphene/Polymer Systems
2015-01-01
The stress transfer mechanism from a polymer substrate to a nanoinclusion, such as a graphene flake, is of extreme interest for the production of effective nanocomposites. Previous work conducted mainly at the micron scale has shown that the intrinsic mechanism of stress transfer is shear at the interface. However, since the interfacial shear takes its maximum value at the very edge of the nanoinclusion it is of extreme interest to assess the effect of edge integrity upon axial stress transfer at the submicron scale. Here, we conduct a detailed Raman line mapping near the edges of a monolayer graphene flake that is simply supported onto an epoxy-based photoresist (SU8)/poly(methyl methacrylate) matrix at steps as small as 100 nm. We show for the first time that the distribution of axial strain (stress) along the flake deviates somewhat from the classical shear-lag prediction for a region of ∼2 μm from the edge. This behavior is mainly attributed to the presence of residual stresses, unintentional doping, and/or edge effects (deviation from the equilibrium values of bond lengths and angles, as well as different edge chiralities). By considering a simple balance of shear-to-normal stresses at the interface we are able to directly convert the strain (stress) gradient to values of interfacial shear stress for all the applied tensile levels without assuming classical shear-lag behavior. For large flakes a maximum value of interfacial shear stress of 0.4 MPa is obtained prior to flake slipping. PMID:25644121
NASA Astrophysics Data System (ADS)
Lin, W.; Masago, H.; Yamamoto, K.; Kawamura, Y.; Saito, S.; Kinoshita, M.
2007-12-01
By means of introduction of the drilling vessel 'CHIKYU', riser drilling operations using mud fluid will be carried out in NanTroSEIZE Stage 2 for the first time as an oceanic scientific-drilling. For determining drilling operation parameter such as a mud density, a downhole experiment, leak-off test (LOT) or extended leak-off test (XLOT), is going to be implemented next to casing and cementing at each casing shoe during the drilling process. Data of the downhole experiment aimed for operation can also be used for an important scientific application to obtain in-situ stress information which is necessary for various cases of scientific drillings such as seismogenic zone drillings etc. In order to examine feasibility of the application of the LOT or XLOT data, we analyzed an example of XLOT conducted by the riser vessel CHIKYU during its Shimokita shakedown cruise, 2006; and then estimated magnitude of minimum principal stress in horizontal plane, Shmin. Moreover, we will propose the test procedures to possibly improve the quality of stress result from the applications of LOT or XLOT. The XLOT of Shimokita cruise was conducted under following conditions; 1180 m water depth, 525 mbsf (meter below seafloor) depth, 1030 kg/m3 fluid density (seawater) and 80 litter/min injection flow-rate. Estimated magnitude of the Shmin is equal to 18.3 MPa based on the assumption that fracture closure pressure balances with the minimum principal stress perpendicular to the fracture plane. For comparison, the vertical stress magnitude at the depth was estimated from density profile of core samples retrieved from the same borehole; and was equal to 20 MPa approximately. These two values can be considered to be not disagreement. Therefore, we can say that the XLOT data is valuable and practical for estimating the magnitude of minimum horizontal stress. From the viewpoint of determining stress magnitude, the XLOT is more essential rather than the LOT because it might be hardly to obtain reliable Shmin magnitude only by leak-off pressure which is exclusive stress-related parameter obtained from the latter. In addition, implementation of the LOT/XLOT multi-cycles (3 cycles) is preferable if possible. The first cycle with a lower maximum injection pressure is for knowing permeable property of the formation and for examining whether there is pre-existing fracture(s). The second cycle is a normal XLOT; and the third one is the repeat of the second one for confirm the pressure values obtained from the XLOTs.
Shah, Suraj; Bougherara, Habiba; Schemitsch, Emil H; Zdero, Rad
2012-12-01
Femurs are the heaviest, longest, and strongest long bones in the human body and are routinely subjected to cyclic forces. Strain gages are commonly employed to experimentally validate finite element models of the femur in order to generate 3D stresses, yet there is little information on a relatively new infrared (IR) thermography technique now available for biomechanics applications. In this study, IR thermography validated with strain gages was used to measure the principal stresses in the artificial femur model from Sawbones (Vashon, WA, USA) increasingly being used for biomechanical research. The femur was instrumented with rosette strain gages and mechanically tested using average axial cyclic forces of 1500 N, 1800 N, and 2100 N, representing 3 times body weight for a 50 kg, 60 kg, and 70 kg person. The femur was oriented at 7° of adduction to simulate the single-legged stance phase of walking. Stress maps were also obtained using an IR thermography camera. Results showed good agreement of IR thermography vs. strain gage data with a correlation of R(2)=0.99 and a slope=1.08 for the straight line of best fit. IR thermography detected the highest principal stresses on the superior-posterior side of the neck, which yielded compressive values of -91.2 MPa (at 1500 N), -96.0 MPa (at 1800 N), and -103.5 MPa (at 2100 N). There was excellent correlation between IR thermography principal stress vs. axial cyclic force at 6 locations on the femur on the lateral (R(2)=0.89-0.99), anterior (R(2)=0.87-0.99), and posterior (R(2)=0.81-0.99) sides. This study shows IR thermography's potential for future biomechanical applications. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
New definition of Regulated Deficit Irrigation phases in pistachio: more sustainable, more efficient
NASA Astrophysics Data System (ADS)
Pérez-López, David; Moreno, Marta M.; Memmi, Houssem; Guerrero, Julián; Galindo, Alejandro; Centeno, Ana; Corell, Mireilla; Giron, Ignacio; José Martín-Palomo, María; Gijón, Mª Carmen; Moreno, Carmen; Torrecillas, Arturo; Moriana, Alfonso
2017-04-01
Regulated Deficit Irrigation (RDI) is an irrigation methodology in which a water stress is imposed by irrigation withholding in function of fruit growth phases. The objective of this method is to found phases where water stress has no effect on yield or only a slight effect. RDI in pistachio has been demonstrated as an efficient tool to save water without negative effect on yield, or even the contrary, a slight water stress has produced pistachios more appreciated by consumers opposite to well irrigated. Phases of fruit growth are widely defined as: Phase I, from leaf out to full shell expansion; Phase II, from full shell expansion to the onset of rapid kernel growth; Phase III, from rapid growth to harvest. Water stress applied in Phase II does not affect yield. Traditionally Phase II had been considered interchangeable with shell hardening; however, recent studies have showed that shell hardening extends for two weeks from the beginning of the kernel growth. In this assay, conducted in Ciudad Real (Spain) in 2015 and 2016, different irrigation treatments were applied on a pistachio crop in order to check if shell hardening can be considered as phase II instead the previous definition. The T1 treatment consisted of water stress during the shell hardening, always trying to maintain a stem water potential (SWP) of -1.5 MPa during this phase. The T2 treatment was severely water stressed, in this case trying to maintain -2 MPa during the phase II, as previous definition. In the rest of the season, both treatments were irrigated in order to have no water stress. Additionally, a control treatment (T0), irrigated following FAO methodology, was stablished to evaluate the loss of yield. Water irrigation applied in T0 was 596 and 505 mm in 2015 and 2016, respectively. In T1, 317 and 245 mm were applied, respectively, which means an average water save about 270 mm year-1. In T2, water irrigation was 396 and 272 mm, respectively, higher amounts than in T1, which an average water save of 217 mm year-1. In relation to the minimum SWP measured in the different treatments in 2015 and 2016, T0 reached -1.53 and -1.39 MPa, T1 -1.89 and -1.82 MPa, and T2 -2.26 and -2.21 MPa, respectively. There were not significant differences among yield treatments, neither when considering each year independently or over the entire period of study. In this sense, cumulative yields from the two years were 61, 57 and 68 kg tree-1 in T0, T1 and T2 respectively. Therefore, a new definition of Phase II allows the same yield with a higher water save than when applying an intense water stress during the previous definition.
The effect of stress state on zirconium hydride reorientation
NASA Astrophysics Data System (ADS)
Cinbiz, Mahmut Nedim
Prior to storage in a dry-cask facility, spent nuclear fuel must undergo a vacuum drying cycle during which the spent fuel rods are heated up to elevated temperatures of ≤ 400°C to remove moisture the canisters within the cask. As temperature increases during heating, some of the hydride particles within the cladding dissolve while the internal gas pressure in fuel rods increases generating multi-axial hoop and axial stresses in the closed-end thin-walled cladding tubes. As cool-down starts, the hydrogen in solid solution precipitates as hydride platelets, and if the multiaxial stresses are sufficiently large, the precipitating hydrides reorient from their initial circumferential orientation to radial orientation. Radial hydrides can severely embrittle the spent nuclear fuel cladding at low temperature in response to hoop stress loading. Because the cladding can experience a range of stress states during the thermo-mechanical treatment induced during vacuum drying, this study has investigated the effect of stress state on the process of hydride reorientation during controlled thermo-mechanical treatments utilizing the combination of in situ X-ray diffraction and novel mechanical testing analyzed by the combination of metallography and finite element analysis. The study used cold worked and stress relieved Zircaloy-4 sheet containing approx. 180 wt. ppm hydrogen as its material basis. The failure behavior of this material containing radial hydrides was also studied over a range of temperatures. Finally, samples from reactor-irradiated cladding tubes were examined by X-ray diffraction using synchrotron radiation. To reveal the stress state effect on hydride reorientation, the critical threshold stress to reorient hydrides was determined by designing novel mechanical test samples which produce a range of stress states from uniaxial to "near-equibiaxial" tension when a load is applied. The threshold stress was determined after thermo-mechanical treatments by correlating the finite element stress-state results with the spatial distribution of hydride microstructures observed within the optical micrographs for each sample. Experiments showed that the hydride reorientation was enhanced as the stress biaxiality increased. The threshold stress decreased from 150 MPa to 80 MPa when stress biaxiality ratio increased from uniaxial tension to near-equibiaxial tension. This behavior was also predicted by classical nucleation theory based on the Gibbs free energy of transformation being assisted by the far-field stress. An analysis of in situ X-ray diffraction data obtained during a thermo-mechanical cycle typical of vacuum drying showed a complex lattice-spacing behavior of the hydride phase during the dissolution and precipitation. The in-plane hydrides showed bilinear lattice expansion during heating with the intrinsic thermal expansion rate of the hydrides being observed only at elevated temperatures as they dissolve. For radial hydrides that precipitate during cooling under stress, the spacing of the close-packed {111} planes oriented normal to the maximum applied stress was permanently higher than the corresponding {111} plane spacing in the other directions. This behavior is believed to be a result of a complex stress state within the precipitating plate-like hydrides that induces a strain component within the hydrides normal to its "plate" face (i.e., the applied stress direction) that exceeds the lattice spacing strains in the other directions. During heat-up, the lattice spacing of these same "plate" planes actually contract due to the reversion of the stress state within the plate-like hydrides as they dissolve. The presence of radial hydrides and their connectivity with in-plane hydrides was shown to increase the ductile-to-brittle transition temperature during tensile testing. This behavior can be understood in terms of the role of radial hydrides in promoting the initiation of a long crack that subsequently propagates under fracture mechanics conditions. Finally, the d-spacing of irradiated Zircaloy-4 and M5 cladding tubes was measured at room temperature and compared to that of unirradiated samples.
Creep of salt from the ERDA-9 borehole and the WIPP (Waste Isolation Pilot Plant) workings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senseny, P.E.
1990-01-01
Six triaxial compression creep tests were performed to measure the creep deformation of salt from the ERDA-9 borehole and salt from the underground workings at the Waste Isolation Pilot Plant (WIPP). Even though the test matrix is quite limited, important results were obtained that added to existing data from previous test matrices. The WIPP salt was annealed to reduce the hardening that occurred as the openings deformed after mining. Five tests were performed at a temperature of 25{degree}C, a confining pressure of 15 MPa, and stress differences of either 10.0 or 15.0 MPa. The sixth test was performed at amore » temperature of 22{degree}C, a confining pressure of 20.7 MPa, and a stress difference of 11.7 MPa. Test duration ranged from approximately 160 to 335 days. Deformation of these six specimens is compared with that obtained previously under identical test conditions for specimens from other horizons of the ERDA-9 borehole and from unannealed specimens from the WIPP workings. Results suggest that the magnitude of the transient deformation depends on the horizon from which the specimen was taken and whether or not the specimen hardened in situ as the mined openings deformed. 9 refs., 7 figs., 3 tabs.« less
Unraveling the Effects of Plant Hydraulics on Stomatal Closure during Water Stress in Walnut
Cochard, Hervé; Coll, Lluis; Le Roux, Xavier; Améglio, Thierry
2002-01-01
The objectives of the study were to identify the relevant hydraulic parameters associated with stomatal regulation during water stress and to test the hypothesis of a stomatal control of xylem embolism in walnut (Juglans regia × nigra) trees. The hydraulic characteristics of the sap pathway were experimentally altered with different methods to alter plant transpiration (Eplant) and stomatal conductance (gs). Potted trees were exposed to a soil water depletion to alter soil water potential (Ψsoil), soil resistance (Rsoil), and root hydraulic resistances (Rroot). Soil temperature was changed to alter Rroot alone. Embolism was created in the trunk to increase shoot resistance (Rshoot). Stomata closed in response to these stresses with the effect of maintaining the water pressure in the leaf rachis xylem (Prachis) above −1.4 MPa and the leaf water potential (Ψleaf) above −1.6 MPa. The same dependence of Eplant and gs on Prachis or Ψleaf was always observed. This suggested that stomata were not responding to changes in Ψsoil, Rsoil, Rroot, or Rshoot per se but rather to their impact on Prachis and/or Ψleaf. Leaf rachis was the most vulnerable organ, with a threshold Prachis for embolism induction of −1.4 MPa. The minimum Ψleaf values corresponded to leaf turgor loss point. This suggested that stomata are responding to leaf water status as determined by transpiration rate and plant hydraulics and that Prachis might be the physiological parameter regulated by stomatal closure during water stress, which would have the effect of preventing extensive developments of cavitation during water stress. PMID:11788773
Effects of stress paths on physical properties of sediments at the Nankai Trough subduction zone
NASA Astrophysics Data System (ADS)
Kitajima, H.; Saffer, D. M.
2011-12-01
Stress states are one of the most important factors governing deformation modes and fault strength. In subduction systems where tectonic stress is large, sediments are subjected to complicated stress conditions in time and space. Because direct measurements of stress are very limited, stress conditions at depths have been estimated by combining seismic reflection data with empirical relations between compressional-wave, porosity, and effective stress [Tsuji et al., 2008; Tobin and Saffer, 2009]. However, most of the empirical relations are derived from experiments conducted under isotropic conditions, and do not account for the more complicated stress states expected in active subduction-accretion complexes. In this study, we aim to derive relations between physical properties and stress states from triaxial deformation experiments on sediments. During the Integrated Ocean Drilling Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) Expeditions 314, 315, 319, 322, and 333, core samples were recovered from shallow boreholes into the accretionary prism and two sites seaward of the deformation front (reference sites). We used core samples from reference sites (Sites C0011 and C0012) for this study because they represent input material for the subduction system, and have not been subjected to tectonic compression in the accretionary wedge. In our deformation tests, samples are loaded under a range of different stress paths including isotropic loading, triaxial compression, and triaxial extension by controlling axial stress (up to 100 MPa), confining pressure (up to 100 MPa), and pore pressure (0.5-28 MPa). During tests, all pressures, axial displacement, and pore volume change were monitored. Permeability, and ultrasonic velocity were also measured during the tests. Two experiments have been conducted on samples taken from the core 322-C0011B-19R-5 (Lower Shikoku Basin hemipelagic mudstone, initial porosity of 43 %). The first test was conducted under istotropic loading and unloading by (1) increase and decrease in confining pressure, and (2) decrease and increase in pore pressure. The evolution of physical properties depends on effective pressure regardless of whether confining pressure or pore pressure is controlled. As effective pressure increases from 0.2 to 30 MPa, porosity decreases from 43 to 18 %, permeability decreases from 1.1×10-18 to 4.1×10-20 m2, and compressional-wave velocity increases from 1.76 to 2.5 km/s, respectively. The same physical properties do not fully recover during unloading, which corresponds to overconsolidated or overpressured condition. The second test included various loading paths including triaxial compression and extension, and drained and undrained condition of pore pressure. The results indicate that the evolution of physical properties be dependent on both effective mean stress and differential stress. The experimental results suggest that it is important to consider consolidation state and loading paths. We will present more experimental results and derive relations between physical properties and stress states.
NASA Astrophysics Data System (ADS)
Noro, Atsushi; Hayashi, Mikihiro
We prepared block copolymer-based supramolecular elastomers with high extensibility and large stress generation capability. Reversible addition fragmentation chain transfer polymerizations were conducted under normal pressure and high pressure to synthesize several large molecular weight polystyrene-b-[poly(butyl acrylate)-co-polyacrylamide]-b-polystyrene (S-Ba-S) block copolymers. Tensile tests revealed that the largest S-Ba-S with middle block molecular weight of 3140k achieved a breaking elongation of over 2000% with a maximum tensile stress of 3.6 MPa and a toughness of 28 MJ/m3 while the reference sample without any middle block hydrogen bonds, polystyrene-b-poly(butyl acrylate)-b-polystyrene with almost the same molecular weight, was merely viscous and not self-standing. Hence, incorporation of hydrogen bonds into a long soft middle block was found to be beneficial to attain high extensibility and large stress generation capability probably due to concerted combination of entropic changes and internal potential energy changes originaing from the dissociation of multiple hydrogen bonds by elongation. This work was supported by JSPS KAKENHI Grant Numbers 13J02357, 24685035, 15K13785, and 23655213 for M.H. and A.N. A.N. also expresses his gratitude for Tanaka Rubber Science & Technology Award by Enokagaku-Shinko Foundation, Japan.
Did the Zipingpu Reservoir trigger the 2008 Wenchuan earthquake?
Ge, S.; Liu, M.; Lu, N.; Godt, J.W.; Luo, G.
2009-01-01
The devastating May 2008 Wenchuan earthquake (Mw 7.9) resulted from thrust of the Tibet Plateau on the Longmen Shan fault zone, a consequence of the Indo-Asian continental collision. Many have speculated on the role played by the Zipingpu Reservoir, impounded in 2005 near the epicenter, in triggering the earthquake. This study evaluates the stress changes in response to the impoundment of the Zipingpu Reservoir and assesses their impact on the Wenchuan earthquake. We show that the impoundment could have changed the Coulomb stress by -0.01 to 0.05 MPa at locations and depth consistent with reported hypocenter positions. This level of stress change has been shown to be significant in triggering earthquakes on critically stressed faults. Because the loading rate on the Longmen Shan fault is <0.005 MPa/yr, we thus suggest that the Zipingpu Reservoir potentially hastened the occurrence of the Wenchuan earthquake by tens to hundreds of years. Copyright 2009 by the American Geophysical Union.
Electroplating chromium on CVD SiC and SiCf-SiC advanced cladding via PyC compatibility coating
NASA Astrophysics Data System (ADS)
Ang, Caen; Kemery, Craig; Katoh, Yutai
2018-05-01
Electroplating Cr on SiC using a pyrolytic carbon (PyC) bond coat is demonstrated as an innovative concept for coating of advanced fuel cladding. The quantification of coating stress, SEM morphology, XRD phase analysis, and debonding test of the coating on CVD SiC and SiCf-SiC is shown. The residual tensile stress (by ASTM B975) of electroplated Cr is > 1 GPa prior to stress relaxation by microcracking. The stress can remove the PyC/Cr layer from SiC. Surface etching of ∼20 μm and roughening to Ra > 2 μm (by SEM observation) was necessary for successful adhesion. The debonding strength (by ASTM D4541) of the coating on SiC slightly improved from 3.6 ± 1.4 MPa to 5.9 ± 0.8 MPa after surface etching or machining. However, this improvement is limited due to the absence of an interphase, and integrated CVI processing may be required for further advancement.
Murray, T I; Boxt, L M; Katz, J; Reagan, K; Barst, R J
1994-01-01
The use of magnetic resonance (MR) images for estimating mean pulmonary artery pressure (PAP) was tested by comparing main pulmonary artery (MPA) and middescending thoracic aorta (AO) caliber in 12 patients with primary pulmonary hypertension (PPH) with measurements made in eight other patients who were observed for diseases other than heart disease (controls). The ratio MPA/AO and the ratios of vessel caliber normalized to body surface area (MPAI and AOI, respectively) were computed. The PAP was obtained in all PPH patients and compared with caliber measurements. The PPH MPA (3.6 +/- 0.8 cm) was significantly larger than the control MPA (2.9 +/- 0.3 cm, p = 0.02); the PPH MPAI (2.8 +/- 0.7 cm/M2) was significantly greater than the control MPA (1.7 +/- 0.2 cm/M2, p < 0.0001). Control AO (2.2 +/- 0.3 cm) was significantly greater than PPH AO (1.6 +/- 0.4 cm, p < 0.0001); there was no significant difference between control AOI (1.3 +/- 0.2 cm/M2) and PPH AOI (1.2 +/- 0.2 cm/M2, p = 0.25). The PPH MPA/AO (2.3 +/- 0.6) was significantly greater than the control MPA/AO (1.3 +/- 0.1, p < 0.0001); overlap between MPA in the two groups was eliminated by indexing values to AO caliber (MPA/AO). Among PPH patients there was strong correlation between PAP and MPA/AO (PAP = 24 x MPA/AO + 3.7, r = 0.7, p < 0.01). Increased MPA/AO denotes the presence of pulmonary hypertension and may be used to estimate PAP.
NASA Astrophysics Data System (ADS)
Ohnuma, Shun; Kim, Yun-Jung; Suzuki, Atsushi; Nishiumi, Tadayuki
2013-06-01
We investigated the effect of combined high pressure and sodium hydrogen carbonate (NaHCO3) treatment on the physical properties and color of silverside Australian beef. Meat samples were pressurized at 100-500 MPa and the water content, weight reduction, rupture stress, and meat color were determined. The water content of meat treated with NaHCO3 and high pressure (300 MPa) reached a maximum of 70.1%. Weight reduction tended to decrease with high pressure treatment at 300 MPa. Meats treated with NaHCO3 and high pressure at 400 MPa showed a>50% decrease in hardness. Whitening of the meat was reduced by the combined high pressure and NaHCO3 treatment. Therefore, the combined high pressure and NaHCO3 treatment is effective for improvement of beef quality.
High pressure droplet burning experiments in reduced gravity
NASA Technical Reports Server (NTRS)
Chauveau, Christian; Goekalp, Iskender
1995-01-01
A parametric investigation of single droplet gasification regimes is helpful in providing the necessary physical ideas for sub-grid models used in spray combustion numerical prediction codes. A research program has been initiated at the LCSR to explore the vaporization regimes of single and interacting hydrocarbon and liquid oxygen droplets under high pressure conditions. This paper summarizes the status of the LCSR program on the high pressure burning of single fuel droplets; recent results obtained under normal and reduced gravity conditions with suspended droplets are presented. In the work described here, parabolic flights of the CNES Caravelle is used to create a reduced gravity environment of the order of 10(exp -2) g(sub O). For all the droplet burning experiments reported here, the suspended droplet initial diameters are scattered around 1.5 mm; and the ambient air temperature is 300 K. The ambient pressure is varied between 0.1 MPa and 12 MPa. Four fuels are investigated: methanol (Pc = 7.9 MPa), n-heptane (Pc = 2.74 MPa), n-hexane (Pc = 3.01 MPa) and n-octane (Pc = 2.48 MPa).
Bertsias, George K; Tektonidou, Maria; Amoura, Zahir; Aringer, Martin; Bajema, Ingeborg; Berden, Jo H M; Boletis, John; Cervera, Ricard; Dörner, Thomas; Doria, Andrea; Ferrario, Franco; Floege, Jürgen; Houssiau, Frederic A; Ioannidis, John P A; Isenberg, David A; Kallenberg, Cees G M; Lightstone, Liz; Marks, Stephen D; Martini, Alberto; Moroni, Gabriela; Neumann, Irmgard; Praga, Manuel; Schneider, Matthias; Starra, Argyre; Tesar, Vladimir; Vasconcelos, Carlos; van Vollenhoven, Ronald F; Zakharova, Helena; Haubitz, Marion; Gordon, Caroline; Jayne, David; Boumpas, Dimitrios T
2012-01-01
Objectives To develop recommendations for the management of adult and paediatric lupus nephritis (LN). Methods The available evidence was systematically reviewed using the PubMed database. A modified Delphi method was used to compile questions, elicit expert opinions and reach consensus. Results Immunosuppressive treatment should be guided by renal biopsy, and aiming for complete renal response (proteinuria <0.5 g/24 h with normal or near-normal renal function). Hydroxychloroquine is recommended for all patients with LN. Because of a more favourable efficacy/toxicity ratio, as initial treatment for patients with class III–IVA or A/C (±V) LN according to the International Society of Nephrology/Renal Pathology Society 2003 classification, mycophenolic acid (MPA) or low-dose intravenous cyclophosphamide (CY) in combination with glucocorticoids is recommended. In patients with adverse clinical or histological features, CY can be prescribed at higher doses, while azathioprine is an alternative for milder cases. For pure class V LN with nephrotic-range proteinuria, MPA in combination with oral glucocorticoids is recommended as initial treatment. In patients improving after initial treatment, subsequent immunosuppression with MPA or azathioprine is recommended for at least 3 years; in such cases, initial treatment with MPA should be followed by MPA. For MPA or CY failures, switching to the other agent, or to rituximab, is the suggested course of action. In anticipation of pregnancy, patients should be switched to appropriate medications without reducing the intensity of treatment. There is no evidence to suggest that management of LN should differ in children versus adults. Conclusions Recommendations for the management of LN were developed using an evidence-based approach followed by expert consensus. PMID:22851469
Liu, Yue; Li, Nan; Mariyappan, Arul Kumar; ...
2017-06-07
Basal slip and {01more » $$\\bar{1}$$2} twinning are two major plastic deformation mechanisms in hexagonal closed-packed magnesium. Here in this paper, we quantify the critical stresses associated with basal slip and twinning in single-crystal and bi-crystal magnesium samples by performing in situ compression of micropillars with different diameters in a scanning electron microscope. The micropillars are designed to favor either slip or twinning under uniaxial compression. Compression tests imply a negligible size effect related to basal slip and twinning as pillar diameter is greater than 10 μm. The critical resolved shear stresses are deduced to be 29 MPa for twinning and 6 MPa for basal slip from a series of micropillar compression tests. Employing full-field elasto-visco-plastic simulations, we further interpret the experimental observations in terms of the local stress distribution associated with multiple twinning, twin nucleation, and twin growth. Our simulation results suggest that the twinning features being studied should not be close to the top surface of the micropillar because of local stress perturbations induced by the hard indenter.« less
Konya, Mehmet Nuri; Verim, Özgür
2017-09-29
Proximal femoral fracture rates are increasing due to osteoporosis and traffic accidents. Proximal femoral nails are routinely used in the treatment of these fractures in the proximal femur. To compare various combinations and to determine the ideal proximal lag screw position in pertrochanteric fractures (Arbeitsgemeinschaft für Osteosynthesefragen classification 31-A1) of the femur by using optimized finite element analysis. Biomechanical study. Computed tomography images of patients' right femurs were processed with Mimics. Afterwards a solid femur model was created with SolidWorks 2015 and transferred to ANSYS Workbench 16.0 for response surface optimization analysis which was carried out according to anterior-posterior (-10°
García Páez, J M; Jorge Herrero, E; Rocha, A; Martín-Maestro, M; Castillo-Olivares, J L; Millán, I; Carrera Sanmartín, A; Cordón, A
2002-10-01
Ostrich pericardium, sutured using a telescoping or overlapping technique, was studied to determine its mechanical behavior. From each of 12 pericardial sacs, four contiguous strips were cut longitudinally, from root to apex, and another four contiguous strips were cut in transverse direction. One of the strips in each set of four was used as an unsutured control and the remaining three were sutured by overlapping 0.5 cm of the tissue and sewing with Gore-tex, Prolene or Pronova. These 96 samples were then subjected to tensile testing along their major axes until rupture. The tensile stresses recorded in the suture materials at the moment tears appeared in the pericardium ranged between 55.99 MPa and 70.23 MPa for Gore-tex in samples cut in the two directions. Shear stress became ostensible at 56 MPa, with clearly evident tears. However, microfracture of the collagen fibers must be produced at much lower stress levels. The comparison of the resistance in kilograms (machine-imposed), without taking into account the sections in which the load was applied, demonstrated only a slight loss of load when the telescoping suture was employed in ostrich pericardium samples. Ostrich pericardium may continue to be an alternative biological material for the construction of heart valve leaflets.
Mechanical Properties of Shock-Damaged Rocks
NASA Technical Reports Server (NTRS)
He, Hongliang; Ahrens, T. J.
1994-01-01
Stress-strain tests were performed both on shock-damaged gabbro and limestone. The effective Young's modulus decreases with increasing initial damage parameter value, and an apparent work-softening process occurs prior to failure. To further characterize shock-induced microcracks, the longitudinal elastic wave velocity behavior of shock-damaged gabbro in the direction of compression up to failure was measured using an acoustic transmission technique under uniaxial loading. A dramatic increase in velocity was observed for the static compressive stress range of 0-50 MPa. Above that stress range, the velocity behavior of lightly damaged (D(sub 0) less than 0.1) gabbro is almost equal to unshocked gabbro. The failure strength of heavily-damaged (D(sub 0) greater than 0.1) gabbro is approx. 100-150 MPa, much lower than that of lightly damaged and unshocked gabbros (approx. 230-260 MPa). Following Nur's theory, the crack shape distribution was analyzed. The shock-induced cracks in gabbro appear to be largely thin penny-shaped cracks with c/a values below 5 x 10(exp -4). Moreover, the applicability of Ashby and Sammis's theory relating failure strength and damage parameter of shock-damaged rocks was examined and was found to yield a good estimate of the relation of shock-induced deficit in elastic modulus with the deficit in compressive strength.
Rismanchian, Mansoor; Dakhilalian, Mansour; Bajoghli, Farshad; Ghasemi, Ehsan; Sadr-Eshkevari, Pooyan
2012-04-01
Proper stress distribution on dental implants is necessary in bar-retained implant overlay dentures. We aimed to comparatively assess this stress distribution according to different bar heights using finite element models. A three-dimensional (3D) computer model of mandible with 2 implants (ITI, 4.1 mm diameter and 12 mm length) in canine areas and an overlying implant-supported bar-retained overlay denture were simulated with 0-, 1-, 2-, and 3-mm bar heights using ABAQUS software. A vertical force was applied to the left first molar and gradually increased from 0 to 50 N. The resultant stress distribution was evaluated. Bars of 1 and 2 mm in height transferred the least stress to the implants (3.882 and 3.896 MPa, respectively). The 0-mm height of the bar connection transferred the highest stress value (4.277 MPa). The amount of stress transferred by 3-mm heights of the bar connection was greater than that of 1- and 2-mm bar connections and smaller than that of 0-mm bar connection (4.165 kgN). This 3D finite element analysis study suggested that the use of Dolder bar attachment with 1- and 2-mm heights could be associated with appropriate stress distribution for implant-retained overlay dentures.
Microstructure evolution of fault rocks at the "brittle-to-plastic" transition
NASA Astrophysics Data System (ADS)
Heilbronner, R.; Pec, M.; Stunitz, H.
2011-12-01
In the continental crust, large earthquakes tend to nucleate at the "brittle-to-plastic" transition at depths of ~ 10 - 20 km indicating stress release by rupture at elevated PT. Experimental studies, field observations, and models predict peak strength of the lithosphere at depths where rocks deform by "semi-brittle" flow. Thus, the deformation processes taking place at these conditions are important aspects of the seismic cycle and fault rheology in general. We performed a series of experiments with crushed Verzasca gneiss powder (d ≤ 200 μm), "pre-dried" and 0.2 wt% H2O added, placed between alumina forcing blocks (45° pre-cut) and weld-sealed in Pt jackets. The experiments were performed at Pc = 500, 1000 and 1500 MPa, T = 300°C and 500°C. and shear strain rates of ~10-3 s-1 to ~10-5 s-1 in a solid medium deformation apparatus (Griggs rig). Samples deformed at Pc = 500 MPa attain peak strength (~ 1100-1400 MPa) at γ ~ 2, they weaken by ~20 MPa (300°C) to ~140 MPa (500°C) and reach a steady state. The 300°C experiments are systematically stronger by ~ 330 - 370 MPa than the 500°C experiments, and flow stress increases with increasing strain rate. At Pc = 1000 and 1500 MPa, peak strength (~1300-1600 MPa) is reached at γ = 1 to 1.5 followed by weakening of ~60 (300°C) and ~150 MPa (500°C). The strength difference between 300°C and 500°C samples is 270-330 MPa and does not increase with increasing confining pressure. The peak strength increase with confining pressure is modest (50-150 MPa), indicating that the rocks reach their maximal compressive strength. The microstructure develops as an S-C-C' fabric with dominant C' slip zones. At low strains, the gouge zone is pervasively cut by closely spaced C' shears containing fine-grained material (d < 100 nm). At peak strength, deformation localizes into less densely spaced, ~10 μm thick C'-C slip zones which develop predominantly in feldspars. In TEM, they show no porosity and consist of amorphous material and small crystalline fragments (d ~ 20 nm). During steady state flow, pseudotachylites appear as isolated patches, typically associated with micas (melting temperature ~650°C). Quartz grains show the lowest degree of fragmentation and represent the rheologically strongest phase. Feldspar grains fracture more easily and are the weakest phase. The development of the bulk microstructure evolves with finite strain and does not show any dependence on temperature. CL observations, EDS maps and WDS microprobe data show changes in chemical composition in the slip zones indicating that mechanical disintegration of the grains is accompanied by transport of alkalis, producing a different mineral chemistry even at short experimental time scales (~20 min to 30 hrs). The amorphous to nano-crystalline material is viscously deformed and a pre-cursor for the formation of frictional melt, which is typically more ferromagnesian and basic than the bulk rock composition. Our results indicate that 1) frictional melting can occur even at slow strain-rates 2) is possible during steady-state plastic flow and is not accompanied by a stress drop.
Residual-stress measurement in socket welded joints by neutron diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, M.; Ishiwata, M.; Minakawa, N.
1994-12-31
Neutron diffraction measurements of lattice strains provide spatial maps of residual stress near welds in ferritic steel socket joints. The highest tensile stresses in the welds are found in axial, radial and hoop direction at the weld root. However, the highest tensile stress in the axial direction is about 110MPa. Balancing compressive stresses are found near the surface of the socket weld fusion zone. Heat treatment at 600 C for 2 hours is sufficient to relieve residual stress in socket welds.
Development of a MEMS shear stress sensor for use in wind tunnel applications
NASA Astrophysics Data System (ADS)
Barnard, Casey; Meloy, Jessica; Sheplak, Mark; Interdisciplinary Microsystems Group Team
2013-11-01
The measurement of mean and fluctuating wall shear-stress in laminar, transitional, and turbulent boundary layers and channel flows has applications both in industry and the scientific community. Currently there is no method for time resolved, direct measurement of wall shear stress at the spatial and temporal scales of turbulent flow structures inside model testing facilities. To address this need, a silicon micromachined differential capacitance shear stress sensor system has been developed. Mean measurements are enabled by custom synchronous modulation/demodulation circuitry, which allows for measurement of both magnitude and phase of incident wall shear stress. Sizes of the largest device features are on the order of relevant viscous length scales, to minimize flow disturbance and provide a hydraulically smooth sensing surface. Static calibration is performed in a flow cell setup, and an acoustic plane wave tube is used for dynamic response data. Normalized sensitivity of 1.34 mV/V/Pa has been observed over a bandwidth of 4.8 kHz, with a minimum detectable signal of 6.5 mPa. Initial results show qualitative agreement with contemporary measurement techniques. The design, fabrication, support electronics, characterization, and preliminary experimental performance of this sensor will be presented. The support of NASA SFW-NRA NNX11AI30A, AFOSR grant #FA 9550-12-1-0469, and Sandia Campus Executive Fellowship are gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Domínguez, Carlos; García, Rafael A.; Aroca, Marcelo; Carrero, Alicia
2012-02-01
A thorough study of the physical conditions in the Pennsylvania Edge Notch Tensile (PENT) test, such as stress and temperature, is carried out in order to reduce the long test times observed in new bimodal and multimodal polyethylene grades (third and fourth generation grades) which may withstand hundreds or thousands of hours at the standard conditions (80○C, 2.4 MPa). The results show how on increasing the temperature up to 90○C and the applied stress up to 2.8 MPa, the failure time may be reduced by a factor of 6. Special attention should be paid to the n and Q parameters of the Brown and Lu equation, because variations in those parameters could dramatically change the result of the comparison between different systems depending on the temperature and stress value.
Osmotic pressure induced tensile forces in tendon collagen
NASA Astrophysics Data System (ADS)
Masic, Admir; Bertinetti, Luca; Schuetz, Roman; Chang, Shu-Wei; Metzger, Till Hartmut; Buehler, Markus J.; Fratzl, Peter
2015-01-01
Water is an important component of collagen in tendons, but its role for the function of this load-carrying protein structure is poorly understood. Here we use a combination of multi-scale experimentation and computation to show that water is an integral part of the collagen molecule, which changes conformation upon water removal. The consequence is a shortening of the molecule that translates into tensile stresses in the range of several to almost 100 MPa, largely surpassing those of about 0.3 MPa generated by contractile muscles. Although a complete drying of collagen would be relevant for technical applications, such as the fabrication of leather or parchment, stresses comparable to muscle contraction already occur at small osmotic pressures common in biological environments. We suggest, therefore, that water-generated tensile stresses may play a role in living collagen-based materials such as tendon or bone.
NASA Astrophysics Data System (ADS)
Kewel, M.; Renner, J.
2017-12-01
The variation of hydraulic properties during sliding events is of importance for source mechanics and analyses of the evolution in effective stresses. We conducted laboratory experiments on samples of Padang granite to elucidate the interrelation between shear displacement on faults and their hydraulic properties. The cylindrical samples of 30 mm diameter and 75 mm length were prepared with a ground sawcut, inclined 35° to the cylindrical axis and accessed by a central bore of 3 mm diameter. The conventional triaxial compression experiments were conducted at effective pressures of 30, 50, and 70 MPa at slip rates of 2×10-4 and 8×10-4 mm s-1. The nominally constant fluid pressure of 30 MPa was modulated by oscillations with an amplitude of up to 0.5 MPa. Permeability and specific storage capacity of the fault were determined using the oscillatory radial-flow method that rests on an analysis of amplitude ratio and phase shift between the oscillatory fluid pressure and the oscillatory fluid flow from and into the fault plane. This method allowed us to continuously monitor the hydraulic evolution during elastic loading and frictional sliding. The chosen oscillation period of 60 s guaranteed a resolution of hydraulic properties for slip increments as small as 20 μm. The determined hydraulic properties show a fairly uniform dependence on normal stress at hydrostatic conditions and initial elastic loading. The samples exhibited stable frictional sliding with modest strengthening with increasing strain. Since not all phase-shift values fell inside the theoretical range for purely radial pressure diffusion during frictional sliding, the records of equivalent hydraulic properties exhibit some gaps. In the phases with evaluable phase-shift values, permeability fluctuates by almost one order of magnitude over slip intervals of as little as 100 μm. We suppose that the observed fluctuations are related to comminution and reconfiguration of asperities on the fault planes that constantly alter the flow path geometry. Temporarily, the flow regime deviates from approximately radial flow and a specific direction dominates leading to one-dimensional flow. Further analytical and numerical modelling is necessary to elucidate possible flow patterns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, L.; Zheng, Z.; Phukan, H.
Knowledge of the critical resolved shear stress (CRSS) values of different slip modes is important for accurately modeling plastic deformation of hexagonal materials. Here, we demonstrate that CRSS can be directly measured with an in-situ high energy X-ray diffraction microscopy (HEDM) experiment. A commercially pure Ti tensile specimen was deformed up to 2.6% strain. In-situ far-field HEDM experiments were carried out to track the evolution of crystallographic orientations, centers of masses, and stress states of 1153 grains in a material volume of 1.1mm×1mm×1mm. Predominant prismatic slip was identified in 18 grains, where the orientation change occurred primarily by rotation aroundmore » the c-axis during specimen deformation. By analyzing the resolved shear stress on individual slip systems, the estimated CRSS for prismatic slip is 96±18 MPa. Predominant basal slip was identified in 22 other grains, where the 2 orientation change occurred primarily by tilting the c-axis about an axis in the basal plane. The estimated CRSS for basal slip is 127±33 MPa. The ratio of CRSS basal/CRSS prismatic is in the range of 1.7-2.1. From indirect assessment, the CRSS for pyramidal < c+a > slip is likely greater than 240MPa. Lastly, grain size and free surface effects on the CRSS value in different grains are also examined.« less
Wang, L.; Zheng, Z.; Phukan, H.; ...
2017-05-07
Knowledge of the critical resolved shear stress (CRSS) values of different slip modes is important for accurately modeling plastic deformation of hexagonal materials. Here, we demonstrate that CRSS can be directly measured with an in-situ high energy X-ray diffraction microscopy (HEDM) experiment. A commercially pure Ti tensile specimen was deformed up to 2.6% strain. In-situ far-field HEDM experiments were carried out to track the evolution of crystallographic orientations, centers of masses, and stress states of 1153 grains in a material volume of 1.1mm×1mm×1mm. Predominant prismatic slip was identified in 18 grains, where the orientation change occurred primarily by rotation aroundmore » the c-axis during specimen deformation. By analyzing the resolved shear stress on individual slip systems, the estimated CRSS for prismatic slip is 96±18 MPa. Predominant basal slip was identified in 22 other grains, where the 2 orientation change occurred primarily by tilting the c-axis about an axis in the basal plane. The estimated CRSS for basal slip is 127±33 MPa. The ratio of CRSS basal/CRSS prismatic is in the range of 1.7-2.1. From indirect assessment, the CRSS for pyramidal < c+a > slip is likely greater than 240MPa. Lastly, grain size and free surface effects on the CRSS value in different grains are also examined.« less
Mechanical properties of β-HMX.
Gallagher, Hugh G; Miller, John C; Sheen, David B; Sherwood, John N; Vrcelj, Ranko M
2015-01-01
For a full understanding of the mechanical properties of a material, it is essential to understand the defect structures and associated properties and microhardness indentation is a technique that can aid this understanding. The Vickers hardness on (010), {011} and {110} faces lay in the range of 304-363 MPa. The Knoop Hardnesses on the same faces lay in the range 314-482 MPa. From etching of three indented surfaces, the preferred slip planes have been identified as (001) and (101). For a dislocation glide, the most likely configuration for dislocation movement on the (001) planes is (001) [100] (|b| = 0.65 nm) and for the (101) plane as (101) [Formula: see text] (|b| = 1.084 nm) although (101) [010] (|b| = 1.105 nm) is possible. Tensile testing showed that at a stress value of 2.3 MPa primary twinning occurred and grew with increasing stress. When the stress was relaxed, the twins decreased in size, but did not disappear. The twinning shear strain was calculated to be 0.353 for the (101) twin plane. HMX is considered to be brittle, compared to other secondary explosives. Comparing HMX with a range of organic solids, the values for hardness numbers are similar to those of other brittle systems. Under the conditions developed beneath a pyramidal indenter, dislocation slip plays a major part in accommodating the local deformation stresses. Graphical abstractHMX undergoing tensile testing.
Premonitory slip and tidal triggering of earthquakes
Lockner, D.A.; Beeler, N.M.
1999-01-01
We have conducted a series of laboratory simulations of earthquakes using granite cylinders containing precut bare fault surfaces at 50 MPa confining pressure. Axial shortening rates between 10-4 and 10-6 mm/s were imposed to simulate tectonic loading. Average loading rate was then modulated by the addition of a small-amplitude sine wave to simulate periodic loading due to Earth tides or other sources. The period of the modulating signal ranged from 10 to 10,000 s. For each combination of amplitude and period of the modulating signal, multiple stick-slip events were recorded to determine the degree of correlation between the timing of simulated earthquakes and the imposed periodic loading function. Over the range of parameters studied, the degree of correlation of earthquakes was most sensitive to the amplitude of the periodic loading, with weaker dependence on the period of oscillations and the average loading rate. Accelerating premonitory slip was observed in these experiments and is a controlling factor in determining the conditions under which correlated events occur. In fact, some form of delayed failure is necessary to produce the observed correlations between simulated earthquake timing and characteristics of the periodic loading function. The transition from strongly correlated to weakly correlated model earthquake populations occurred when the amplitude of the periodic loading was approximately 0.05 to 0.1 MPa shear stress (0.03 to 0.06 MPa Coulomb failure function). Lower-amplitude oscillations produced progressively lower correlation levels. Correlations between static stress increases and earthquake aftershocks are found to degrade at similar stress levels. Typical stress variations due to Earth tides are only 0.001 to 0.004 MPa, so that the lack of correlation between Earth tides and earthquakes is also consistent with our findings. A simple extrapolation of our results suggests that approximately 1% of midcrustal earthquakes should be correlated with Earth tides. Triggered seismicity has been reported resulting from the passage of surface waves excited by the Landers earthquake. These transient waves had measured amplitudes in excess of 0.1 MPa at frequencies of 0.05 to 0.2 Hz in regions of notable seismicity increase. Similar stress oscillations in our laboratory experiments produced strongly correlated stick-slip events. We suggest that seemingly inconsistent natural observations of triggered seismicity and absence of tidal triggering indicate that failure is amplitude and frequency dependent. This is the expected result if, as in our laboratory experiments, the rheology of the Earth's crust permits delayed failure.
Time-dependent brittle deformation (creep) at Mt. Etna volcano
NASA Astrophysics Data System (ADS)
Heap, M. J.; Baud, P.; Meredith, P. G.; Vinciguerra, S.; Bell, A. F.; Main, I. G.
2009-04-01
Mt. Etna is the largest and most active volcano in Europe. Time-dependent weakening mechanisms, leading to slow fracturing, have been shown to act during pre-eruptive patterns of flank eruptions at Mt. Etna volcano. Due to the high permeability of its volcanic rocks, the volcanic edifice hosts one of the biggest hydrogeologic reservoirs of Sicily (Ogniben, 1966). The presence of a fluid phase in cracks within rock has been shown to dramatically affect both mechanical and chemical interactions. Chemically, it promotes time-dependent brittle deformation through such mechanisms as stress corrosion cracking that allows rocks to deform at stresses far below their short-term failure strength. Such crack growth is highly non-linear and accelerates towards dynamic failure over extended periods of time, even under constant applied stress; a phenomenon known as ‘brittle creep'. Here we report results from a study of time-dependent brittle creep in water-saturated samples of Etna basalt (EB) under triaxial stress conditions (confining pressure of 50 MPa and pore fluid pressure of 20 MPa). Samples of EB were loaded at a constant strain rate of 10-5 s-1 to a pre-determined percentage of the short-term strength and left to deform under constant stress until failure. Crack damage evolution was monitored throughout each experiment by measuring the independent damage proxies of axial strain, pore volume change and output of acoustic emission (AE) energy, during brittle creep of creep strain rates ranging over four orders of magnitude. Our data not only demonstrates that basalt creeps in the brittle regime but also that the applied differential stress exerts a crucial influence on both time-to-failure and creep strain rate in EB. Furthermore, stress corrosion is considered to be responsible for the acceleratory cracking and seismicity prior to volcanic eruptions and is invoked as an important mechanism in forecasting models. Stress-stepping creep experiments were then performed to allow the influence of the effective confining stress to be studied in detail. Experiments were performed under effective stress conditions of 10, 30 and 50 MPa (whilst maintaining a constant pore fluid pressure of 20 MPa). In addition to the purely mechanical influence of water, governed by the effective stress, which results in a shift of the creep strain rate curves to lower strain rates at higher effective stresses. Our results also demonstrate that the chemically-driven process of stress corrosion cracking appears to be inhibited at higher effective stress. This results in an increase in the gradient of the creep strain rate curves with increasing effective stress. We suggest that the most likely cause of this change is a decrease in water mobility due to a reduction in crack aperture and an increase in water viscosity at higher pressure. Finally, we show that a theoretical model based on mean-field damage mechanics creep laws is able to reproduce the experimental strain-time relations. Our results indicate that the local changes in the stress field and fluid circulation can have a profound impact in the time-to-failure properties of the basaltic volcanic pile.
Time-dependent Brittle Deformation in Etna Basalt
NASA Astrophysics Data System (ADS)
Heap, M. J.; Baud, P.; Meredith, P. G.; Vinciguerra, S.; Bell, A. F.; Main, I. G.
2008-12-01
Mt Etna is the largest and most active volcano in Europe. Due to the high permeability of its volcanic rocks, the volcanic edifice hosts one of the biggest hydrogeologic reservoirs of Sicily (Ogniben, 1966). Pre-eruptive patterns of flank eruptions, closely monitored by means of ground deformation and seismicity, revealed the slow development of fracture systems at different altitudes, marked by repeated bursts of seismicity and accelerating/decelerating deformation patterns acting over the scale of months to days. The presence of a fluid phase in cracks within rock has been shown to dramatically affect both mechanical and chemical interactions. Chemically, it promotes time-dependent brittle deformation through such mechanisms as stress corrosion cracking that allows rocks to deform at stresses far below their short-term failure strength. Such crack growth is highly non-linear and accelerates towards dynamic failure over extended periods of time, even under constant applied stress; a phenomenon known as 'brittle creep'. Stress corrosion is considered to be responsible for the acceleratory cracking and seismicity prior to volcanic eruptions and is invoked as an important mechanism in forecasting models. Here we report results from a study of time-dependent brittle creep in water-saturated samples of Etna basalt (EB) under triaxial stress conditions (confining pressure of 50 MPa and pore fluid pressure of 20 MPa). Samples of EB were loaded at a constant strain rate of 10-5 s-1 to a pre-determined percentage of the short- term strength and left to deform under constant stress until failure. Crack damage evolution was monitored throughout each experiment by measuring the independent damage proxies of axial strain, pore volume change and output of acoustic emission (AE) energy, during brittle creep of creep strain rates ranging over four orders of magnitude. Our data demonstrate that the applied differential stress exerts a crucial influence on both time-to-failure and creep strain rate in EB. Stress-stepping creep experiments were then performed to allow the influence of the effective confining stress to be studied in detail. Experiments were performed under effective stress conditions of 10, 30 and 50 MPa (whilst maintaining a constant pore fluid pressure of 20 MPa). In addition to the purely mechanical influence of water, governed by the effective stress, which results in a shift of the creep strain rate curves to lower strain rates at higher effective stresses. Our results also demonstrate that the chemically-driven process of stress corrosion cracking appears to be inhibited at higher effective stress. This results in an increase in the gradient of the creep strain rate curves with increasing effective stress. We suggest that the most likely cause of this change is a decrease in water mobility due to a reduction in crack aperture and an increase in water viscosity at higher pressure. Finally, we show that a theoretical model based on mean-field damage mechanics creep laws is able to reproduce the experimental strain-time relations. Our results indicate that the local changes in the stress field and fluid circulation can have a profound impact in the time- to-failure properties of the basaltic volcanic pile.
Time-dependent brittle deformation at Mt. Etna volcano
NASA Astrophysics Data System (ADS)
Baud, Patrick; Heap, Michael; Meredith, Philip; Vinciguerra, Sergio; Bell, Andrew; Main, Ian
2010-05-01
Time-dependent weakening mechanisms, leading to slow fracturing, are likely to act during the build up to flank eruptions at Mt. Etna volcano and are potentially a primary control on pre-eruptive patterns of seismicity and deformation. Due to the high permeability of its volcanic rocks, the volcanic edifice hosts a large water reservoir (Ogniben, 1966). The presence of a fluid phase in cracks within rock has been shown to dramatically affect both mechanical and chemical interactions. Chemically, it promotes time-dependent brittle deformation through such mechanisms as stress corrosion cracking that allows rocks to deform at stresses far below their short-term failure strength. Such crack growth is highly non-linear and accelerates towards dynamic failure over extended periods of time, even under constant applied stress; a phenomenon known as ‘brittle creep'. Here we report results from a study of time-dependent brittle creep in water-saturated samples of Etna basalt (EB) under triaxial stress conditions (confining pressure of 50 MPa and pore fluid pressure of 20 MPa). Samples of EB were loaded at a constant strain rate of 10-5 s-1 to a pre-determined percentage of the short-term strength and left to deform under constant stress until failure. Crack damage evolution was monitored throughout each experiment by measuring the independent damage proxies of axial strain, pore volume change and output of acoustic emission (AE) energy, during brittle creep of creep strain rates ranging over four orders of magnitude. Our data not only demonstrates that basalt creeps in the brittle regime but also that the applied differential stress exerts a crucial influence on both time-to-failure and creep strain rate in EB. Furthermore, stress corrosion is considered to be responsible for the acceleratory cracking and seismicity prior to volcanic eruptions and is invoked as an important mechanism in forecasting models. Stress-stepping creep experiments were then performed to allow the influence of the effective confining stress to be studied in detail. Experiments were performed under effective stress conditions of 10, 30 and 50 MPa (whilst maintaining a constant pore fluid pressure of 20 MPa). In addition to the purely mechanical influence of water, governed by the effective stress, which results in a shift of the creep strain rate curves to lower strain rates at higher effective stresses. Our results also demonstrate that the chemically-driven process of stress corrosion cracking appears to be inhibited at higher effective stress. This results in an increase in the gradient of the creep strain rate curves with increasing effective stress. We suggest that the most likely cause of this change is a decrease in water mobility due to a reduction in crack aperture and an increase in water viscosity at higher pressure. Finally, we show that a theoretical model based on mean-field damage mechanics creep laws is able to reproduce the experimental strain-time relations and inverse seismicity plots using our experimental AE data. Our results indicate that the local changes in the stress field and fluid circulation can have a profound impact in the time-to-failure properties of the basaltic volcanic pile.
NASA Astrophysics Data System (ADS)
Ebenhack, Johnathan Foss
Underground workings in fractured rock are common worldwide. They have applications in numerous areas and fields of study. These include mining operations, civil engineering projects like tunnels and underground facilities, and research projects that require underground laboratories such as the physics research being conducted by Sanford Laboratory at the former Homestake mine and Fermi Laboratory near Chicago (Bahcall et al. 2001, Elsworth 2009, Sadoulet et al. 2006, bge science DUSEL, fnal.gov). These excavations can reach several kilometers in depth including the 3.9 km deep TauTona mine in South Africa, the 3 km deep LaRonde mine in Quebec and the 2.4 km deep Homestake mine in South Dakota. Large quantities of rock are removed when constructing deep excavations, for example Rahn and Roggenthen (2002) estimated the total volume of rock removed from the Homestake mine to be 2.1x107 m3. Removing large volumes of rock alters the local stress state and ground water flow, potentially increasing risks to workers and the environment (Kaiser et al. 2008, Blodgett et al. 2002, Lucier et al. 2009, Goldbach 2010, Kang et al. 2010). The objective of this research is to develop a better understanding of how deep rock excavations can alter groundwater flow, stress state, and deformation in the rock that envelopes them. The approach is to evaluate how the hydraulic head, flow paths and stress state have been affected by excavation at the Homestake mine in Lead, South Dakota, one of the deepest mines in North America. The Homestake mine was selected as a focus of this research because it has recently been evaluated as the site of a deep underground research laboratory where an understanding of the groundwater flow and stress state was needed to plan underground experiments. The investigation includes poroelastic modeling of the Homestake mine using available geologic and geophysical data and mine records. Results from the analyses indicate that mining and dewatering have changed the hydrology and stress state in the vicinity of the Homestake mine. Dewatering reduces the hydraulic head and changes the flow systems in the vicinity of the mine. Four major hydrogeologic zones are recognized: 1.) a Shallow Flow System in the upper few hundred meters that dominates recharge and discharge to streams, 2.) a Recharge Capture Zone where water that has entered the region as recharge since mining began is captured by the mine, 3.) a Storage Capture Zone where water from storage in the host rock around the mine is captured, and 4.) a Mine Workings Zone where rock has been removed. Water enters the system at the top of the Shallow Flow System and either discharges to the streams or flows downward and becomes recharge to the lower capture zones. The Recharge Capture Zone grows with time as regions of storage are depleted and new recharge enters, and eventually it is assumed that the entire capture zone for the mine will become the Recharge Capture Zone. Fluxes from the Shallow Flow System to the Recharge Capture Zone typically range from 1x10-9 to 4x10-9 m/s. The largest recharge fluxes from the Shallow Flow System to the Recharge Capture Zone occur above the shallowest portions of the mine. Recharge flux also occurs above areas adjacent to the mine, and when projected to the surface the Recharge Capture Zone creates a roughly elliptical shape that is 6 km x 3.6 km. The Storage Capture Zone extends out beyond and below the Recharge Capture Zone and when projected to the surface creates a roughly elliptical region that is approximately 8.3 km x 6.6 km and extends down to depths of almost 5 km. Hydraulic heads and flow paths have been affected beyond the Storage Capture Zone but this water had not reached the mine by 135 years and therefore these regions are not included in the capture zones. The model was calibrated using in-situ stress data at various points in the mine to improve its ability to estimate the stress state and mechanical deformation around the Homestake mine. This was done by varying the rock density, Poisson's ratio, the effective Young's modulus of the workings region, and including initial stresses until predicted stresses best fit in-situ stress data. The changing mechanical properties in the workings and dewatering cause changes to the stress around the mine. The mining process typically causes increased compression laterally around the workings and decreased compression above, below, and within the workings. The greatest changes in total stress are near the base of the mine and reach roughly 40 MPa between the ore bodies and in the lower portions of the West Ore Body. The softening of the mine region because of material removal and decreased fluid pressure in the workings results in deformation in the vicinity of the mine. Subsidence occurs above the mine region and is greatest near the surface and decreases with depth; above the shallowest workings subsidence can reach approximately 0.18 m. There is also uplift along the footwall of the workings in the deeper portions of the mine that can reach up to 0.022 m. Horizontal displacements of as much as several centimeters occur around the mine and with displacement towards the workings region. Deformation in the vicinity of the mine results in tilt that is towards the workings with the greatest tilts near the surface. A fault that intersects the West Ore Body was considered as a location for an experiment into the mechanics of earthquake nucleation, so the stress state in the vicinity of this feature was of particular interest. This simulation shows that mining and dewatering reduce fluid pressure and change stresses along the fault. The shear stress along the fault typically increases along most of the fault and decreases in the region where the fault and West Ore Body intersect. Increased shear is typically on the order of 1 to 2 MPa but can reach as much as 5 MPa in areas around the intersection of the fault and West Ore Body. In the region along the fault intersecting the West Ore Body, the decrease in shear can reach -11 MPa. The total normal stress along the fault becomes more compressive along most of the fault and less compressive in the intersection between the fault and West Ore Body. The increase in total compression is approximately 2 MPa, and the reduction in compression in the intersection is approximately 10 MPa. The critical shear stress along the fault was calculated using Mohr-Coulomb failure criteria presented by Byerlee (1978), and the ratio of the estimated shear stress along the fault and the critical shear stress (ts/tf) was found to approximate the potential for slip along the fault. Mining results in a reduction in slip potential with values of ts/t f ranging from 0.66 to 1.1 before mining and from 0.22 to 0.67 after mining. This reduction in slip potential results from reductions in fluid pressure and increased normal compression caused by mining activities.
The kinetics of dolomite reaction rim growth under isostatic and non-isostatic pressure conditions
NASA Astrophysics Data System (ADS)
Helpa, V.; Rybacki, E.; Morales, L. G.; Abart, R.; Dresen, G. H.
2013-12-01
During burial and exhumation, rocks are simultaneously exposed to metamorphic reactions and tectonic stresses. Therefore, the reaction rate of newly formed minerals may depend on chemical and mechanical driving forces. Here, we investigate the reaction kinetics of dolomite (CaMg[CO3]2) rim growth by solid-state reactions experiments on oriented calcite (CaCO3) and magnesite (MgCO3) single crystals under isostatic and non-isostatic pressure conditions. Cylindrical samples of 3-5 mm length and 7 mm diameter were drilled and polished perpendicular to the rhombohedral cleavage planes of natural clear crystals. The tests were performed using a Paterson-type deformation apparatus at P = 400 MPa confining pressure, temperatures, T, between 750 and 850°C, and reaction durations, t, of 2 - 146 h to calculate the kinetic parameters of dolomite rim growth under isostatic stress conditions. For non-isostatic reaction experiments we applied in addition differential stresses, σ, up to 40 MPa perpendicular to the contact interface at T = 750°C for 4 - 171 h duration, initiating minor inelastic deformation of calcite. The thickness of the resulting dolomite reaction rims increases linearly with the square root of time, indicating a diffusion-controlled reaction. The rims consist of two different textural domains. Granular dolomite grains (≈ 2 -5 μm grain size) form next to calcite and elongated palisade-shaped grains (1-6 μm diameter) grow perpendicular to the magnesite interface. Texture measurements with the electron backscatter diffraction technique indicate that the orientations of dolomite grains are mainly influenced by the orientation of the calcite educt crystal, in particular in the granular rim. To some extent, the texture of dolomite palisades is also influenced by the orientation of magnesite. The thickness of the two individual layers increases with temperature. At 400 MPa isostatic pressure, T = 750°C and t = 29 hours, a 5 μm thick granular dolomite layer and a 7 μm thick palisade-shaped layer evolve. At similar conditions and a differential stress of 30 MPa, the rim thickness remains similar; consequently the effect of non-isostatic stress on dolomite rim growth is negligible. Platinum markers show that the initial calcite-magnesite interface is located between granular and palisade-forming dolomite, indicating that rim growth occurs by counter diffusion of MgO and CaO. Diffusion of MgO across the dolomite reaction rim into calcite forms additionally magnesio-calcite grains with diameters of ≈ 13 - 46 μm, depending on the experimental conditions and increasing with increasing distance to the dolomite boundary. At T = 750°C, t = 29 hours, the thickness of the magnesio-calcite layer is 32 μm (isostatic) - 35 μm (σ = 30 MPa). The experiments indicate that solid-state reaction rim growth of dolomite between calcite and magnesite is primarily controlled by diffusion of MgO and CaO, forming layers with different microstructures during growth into the educt phases. The kinetics of the reaction in the carbonate system are not significantly changed by differential stresses up to 40 MPa. We suggest that volume diffusion is the dominant transport mechanism, which is presumably less affected by non-isostatic stresses than grain boundary diffusion.
A large format membrane-based x-ray mask for microfluidic chip fabrication
NASA Astrophysics Data System (ADS)
Wang, Lin; Zhang, Min; Desta, Yohannes; Melzak, J.; Wu, C. H.; Peng, Zhengchun
2006-02-01
X-ray lithography is a very good option for the fabrication of micro-devices especially when high aspect ratio patterns are required. Membrane-based x-ray masks are commonly used for high-resolution x-ray lithography. A thin layer of silicon nitride (Si3N4) or silicon carbide (SiC) film (1-2 µm) is normally used as the membrane material for x-ray mask fabrication (Wells G M, Reilly M, Nachman R, Cerrina F, El-Khakani M A and Chaker M 1993 Mater. Res. Soc. Conf. Proc. 306 81-9 Shoki T, Nagasawa H, Kosuga H, Yamaguchi Y, Annaka N, Amemiya I and Nagarekawa O 1993 SPIE Proc. 1924 450-6). The freestanding membrane window of an x-ray mask, which defines the exposing area of the x-ray mask, can be obtained by etching a pre-defined area on a silicon wafer from the backside (Wang L, Desta Y, Fettig R K, Goettert J, Hein H, Jakobs P and Chulz J 2004 J. Micromech. Microeng. 14 722-6). Usually, the window size of an x-ray mask is around 20 × 20 mm because of the low tensile stress of the membrane (10-100 MPa), and the larger window dimension of an x-ray mask may cause the deformation of membranes and lower the mask quality. However, x-ray masks with larger windows are preferred for micro-device fabrication in order to increase the productivity. We analyzed the factors which influence the flatness of large format x-ray masks and fabricated x-ray masks with a window size of 55 × 55 mm and 46 × 65 mm on 1 µm thick membranes by increasing the tensile stress of the membranes (>300 MPa) and optimizing the stress of the absorber layer. The large format x-ray mask was successfully applied for the fabrication of microfluidic chips.
A new confined high pressure rotary shear apparatus: preliminary results
NASA Astrophysics Data System (ADS)
Faulkner, D.; Coughlan, G.; Bedford, J. D.
2017-12-01
The frictional properties of fault zone materials, and their evolution during slip, are of paramount importance for determining the earthquake mechanics of large tectonic faults. Friction is a parameter that is difficult to determine from seismological methods so much of our understanding comes from experiment. Rotary shear apparatuses have been widely used in experimental studies to elucidate the frictional properties of faults under realistic earthquake slip velocities (0.1-10 m/s) and displacements (>20 m). However one technical limitation of rotary shear experiments at seismic slip rates has been the lack of confinement. This has led to a limit on the normal stress (due to the strength of the forcing blocks) and also a lack of control of measurements of the pore fluid pressure. Here we present the first preliminary results from a rotary shear apparatus that has been developed to attempt to address this issue. The new fully confined ring shear apparatus has a fast-acting servo-hydraulic confining pressure system of up to 200 MPa and a servo-controlled upstream and downstream pore pressure system of up to 200 MPa. Displacement rates of 0.01μ/s to 2 m/s can be achieved. Fault gouge samples can therefore be sheared at earthquake speed whilst being subject to pressures typically associated with the depth of earthquake nucleation.
An investigation on the deicing of helicopter blades using shear horizontal guided waves
NASA Astrophysics Data System (ADS)
Ramanathan, Srinivasan
Despite all the advances that have made air travel safer than ever, the accumulation of ice on airplane and rotorcraft wings continues to be one of aviation's most challenging problems. Hence the presence of a reliable and efficient deicing or anti-icing system is imperative for their safe operation. The current method used to deice helicopter blades is similar to that available in automobile rear windows. These electro-thermal systems consist of heating coils that run along the span or chord of the rotor-blade. A current source connected via a slip ring configuration heats the coils, which in turn melt the ice on the surface. Due to their enormous power consumption, electro-thermal systems are generally configured to deice one foot of one blade at a time. This makes it hazardous to fly the helicopters under severe icing conditions. Even with the energy saving deicing procedure the electrical power required substantially exceeds the normal helicopter electrical system capacity, necessitating a large secondary electrical system with redundant, dual alternator features. The electro-thermal system for the Bell 412 helicopter weighed 162 lbs and required 26 kW of power for 2 blades! Various types of deicing systems were compared in chapter 1 and electromechanical systems were found to be the most energy efficient and practical for in-flight conditions. A novel approach of breaking the ice-substrate bonds by exceeding their adhesive strength using guided shear horizontal waves was chosen as the deicing mechanism. A comparison of the different electro-mechanical actuation systems pointed towards monolithic shear mode piezoelectric actuators as the choice that would satisfy the energy and dimensional requirements. A survey of literature on the mechanics of ice adhesion, in chapter 2, led to the selection of 1.42MPa as the target adhesive bond strength for the refrigerated icealuminum interface. The static adhesive strength of naturally occurring forms of ice such as rime ice and glaze ice to aluminum (0.12MPa and 0.4MPa respectively) is much lower than that of the refrigerated ice-aluminum adhesive strength (1.42MPa). Therefore, selecting the static adhesive strength of the refrigerated ice-aluminum interface as the bond strength to overcome would enable the system to deice rotor-blades under natural icing conditions. Equivalent circuit analysis was applied to the actuator, aluminum plate and ice layer system to determine an expression for the shear stress at the ice aluminum interface per unit excitation voltage supplied to the actuator and the corresponding electrical power consumed. All the parameters that affected the stress at the ice-aluminum interface were identified from the equivalent circuit model of the system. The parameters were split into control (can be actively changed by user) parameters and material (no user control over the variation of these parameter due to temperature and electric field) parameters. A statistical approach (Design of Experiments) was used to determine the control parameter settings that resulted in the maximum shear stress at the ice aluminum interface per unit actuator excitation voltage. A material parameter design of experiments was carried out to determine the effect of the deviation in the variable parameters on the stress at the ice-aluminum interface and actuator power consumption. A simplified approach to calculate the shear piezoelectric actuator losses under high excitation fields was presented. The experimental results indicated that the adhesive shear strength of the ice-aluminum bond under high frequency dynamic loads is much lower that its static adhesive strength. This was proved by the fact that the ice-aluminum interface bonds were broken at stress values of 0.73MPa as opposed to the target 1.42Mpa. This can be attributed to inherently stochastic nature of ice and the fact that the ice-aluminum bond fails at a much lower stress under dynamic loading as opposed to static loading. The shear mode actuator has a projected power consumption of 0.6kW for the twin bladed Bell 412 (assuming 6 actuators per foot per blade each consuming 50W) if deiced by station as opposed to 26kW for a corresponding electro-thermal system. The shear mode actuator has a projected power consumption of 3.6kW if both blades are deiced simultaneously over the desired length (1/3 rd span from the root) as required in severe icing conditions. The piezoelectric shear mode actuation system (estimated weight of 50 lbs with the actuators themselves accounting for less than 1 lb.) has the potential of delivering this performance while being 70% lighter than a comparable electro-thermal system (weight of 162 lbs). (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Hickman, S.; Davatzes, N. C.; Zemach, E.; Stacey, R.; Drakos, P. S.; Lutz, S.; Rose, P. E.; Majer, E.; Robertson-Tait, A.
2011-12-01
An integrated study of fluid flow, fracturing, stress and rock mechanical properties is being conducted to develop the geomechanical framework for creating an Enhanced Geothermal System (EGS) through hydraulic stimulation. This stimulation is being carried out in the relatively impermeable well 27-15 located on the margins of the Desert Peak Geothermal Field, in silicified rhyolite tuffs and metamorphosed mudstones at depths of ~0.9 to 1.1 km and ambient temperatures of ~180 to 195° C. Extensive drilling-induced tensile fractures seen in image logs from well 27-15 indicate that the direction of the minimum horizontal principal stress, Shmin, is 114±17°. This orientation is consistent with normal faulting on ESE- and WNW-dipping normal faults also seen in these image logs. A hydraulic fracturing stress test conducted at 931 m indicates that the magnitude of Shmin is 13.8 MPa, which is ~0.61 of the calculated vertical stress, Sv. Coulomb failure calculations using these stresses and friction coefficients measured on core indicate that shear failure should be induced on pre-existing fractures once fluid pressures are increased ~2.5 MPa or more above the ambient formation fluid pressure. The resulting activation of faults well-oriented for shear failure should generate a zone of enhanced permeability propagating to the SSW, in the direction of nearby geothermal injection and production wells, and to the NNE, into an unexploited part of the field. Stimulation of well 27-15 began in August 2010, and is being monitored by flow-rate/pressure recording, a local seismic network, periodic temperature-pressure-flowmeter logging, tracer tests and pressure transient analyses. An initial phase of shear stimulation was carried out over 110 days at low pressures (< Shmin) and low injection rates (< 380 l/min), employing stepwise increases in pressure to induce shear failure along pre-existing natural fractures. This phase increased injectivity by one order of magnitude. Chelating agents and mud acid treatments were then used to dissolve mineral precipitates and open up partially sealed fractures. This chemical stimulation phase only temporarily increased injectivity and worsened the stability of the wellbore. A large-volume hydraulic fracturing operation was subsequently carried out at high pressures (> Shmin) and high injection rates (up to 2800 l/min) over 23 days to promote fluid pressure transfer to greater distances from the borehole, resulting in an additional 4-fold increase in injectivity. Locations of microseismic events induced by these operations plus tracer testing showed growth of the stimulated volume between well 27-15 and active geothermal wells located ~0.5 to 2 km to the SSW, as predicted by the stress model. Future plans for the Desert Peak EGS project involve augmenting the seismic array before executing additional hydraulic fracturing and shear stimulation to further improve the injection performance of well 27-15.
Stress-sensitivity of The Hydraulic Properties of A Fault Gouge
NASA Astrophysics Data System (ADS)
Harrington, J. F.; Horseman, S. T.; Hama, K.; Metcalfe, R.
Tono Mine is located about 350 km southwest of Tokyo and is the site of the most extensive uranium deposits in Japan. The geological setting comprises Tertiary (Mizu- nami Group) sedimentary rocks overlying Cretaceous granitic basement rocks. In as- cending order, the sedimentary rocks are the Toki Lignite-bearing Formation (con- glomerate, interbedded sandstone and mudstone), the Akeyo Formation (tuffaceous sandstone) and the Oidawara Formation (siltstone and mudstone). The Tsukiyoshi Fault cuts through this sequence and is a reverse fault, dipping to the south at 60- 70 degrees, with a throw of about 30 metres. As part of its hydrogeological studies, JNC is evaluating the impact of the fault on groundwater flow in the Tertiary sedi- ments. A sample was taken from a borehole in the NATM Drift, where the fault zone contains gouge material with two clay-bearing layers around 2 to 3 cm thick, separated by a 10 to 20 cm thick layer of unconsolidated fine sandy material. The sample was obtained using a triple-tube core barrel fitted with a split sample tube and a diamond bit. A specimen was prepared and consolidated at successive effective stress levels of 2, 6 and 12 MPa. The plot of void ratio against the logarithm of effective stress was found to be sensibly linear with a negative slope, kappa, of 0.036 rising to 0.044 at higher stress levels. The evidence suggests that the gouge is overconsolidated. Hy- draulic conductivity and specific storage were also measured at each stress level using the constant flow rate method. Hydraulic conductivity was found to be strongly stress sensitive, falling from 1.84 x 10-12 m.s-1 at 2 MPa to 7.9 x 10-14 m.s-1 at 12 MPa. Specific storage values were analysed using the critical state soil mechanics approach assuming a stress-dependent pore compressibility. Reasonable agreement was found between the theoretical curve with kappa = 0.036 and the measured values.
LAZARI, Priscilla Cardoso; de OLIVEIRA, Rodrigo Caldeira Nunes; ANCHIETA, Rodolfo Bruniera; de ALMEIDA, Erika Oliveira; FREITAS JUNIOR, Amilcar Chagas; KINA, Sidney; ROCHA, Eduardo Passos
2013-01-01
Objective The aim of the present study was to analyze the influence of root canal and glass fiber post diameters on the biomechanical behavior of the dentin/cement/post interface of a root-filled tooth using 3D finite element analysis. Material and Methods Six models were built using micro-CT imaging data and SolidWorks 2007 software, varying the root canal (C) and the glass fiber post (P) diameters: C1P1-C=1 mm and P=1 mm; C2P1-C=2 mm and P=1 mm; C2P2-C=2 mm and P=2 mm; C3P1-C=3 mm and P=1 mm; C3P2-C=3 mm and P=2 mm; and C3P3-C=3 mm and P=3 mm. The numerical analysis was conducted with ANSYS Workbench 10.0. An oblique force (180 N at 45º) was applied to the palatal surface of the central incisor. The periodontal ligament surface was constrained on the three axes (x=y=z=0). Maximum principal stress (σmax) values were evaluated for the root dentin, cement layer, and glass fiber post. Results: The most evident stress was observed in the glass fiber post at C3P1 (323 MPa), and the maximum stress in the cement layer occurred at C1P1 (43.2 MPa). The stress on the root dentin was almost constant in all models with a peak in tension at C2P1 (64.5 MPa). Conclusion The greatest discrepancy between root canal and post diameters is favorable for stress concentration at the post surface. The dentin remaining after the various root canal preparations did not increase the stress levels on the root. PMID:24473716
Forouzan, Omid; Warczytowa, Jared; Wieben, Oliver; François, Christopher J; Chesler, Naomi C
2015-12-13
Exercise stress tests are commonly used in clinical settings to monitor the functional state of the heart and vasculature. Large artery stiffness is one measure of arterial function that can be quantified noninvasively during exercise stress. Changes in proximal pulmonary artery stiffness are especially relevant to the progression of pulmonary hypertension (PH), since pulmonary artery (PA) stiffness is the best current predictor of mortality from right ventricular failure. Cardiovascular magnetic resonance (CMR) was used to investigate the effect of exercise stress on PA pulse wave velocity (PWV) and relative area change (RAC), which are both non-invasive measures of PA stiffness, in healthy subjects. All 21 subjects (average age 26 ± 4 years; 13 female and 8 male) used a custom-made MR-compatible stepping device to exercise (two stages of mild-to-moderate exercise of 3-4 min duration each) in a supine position within the confines of the scanner. To measure the cross-sectional area and blood flow velocity in the main PA (MPA), two-dimensional phase-contrast (2D-PC) CMR images were acquired. To measure the reproducibility of metrics, CMR images were analyzed by two independent observers. Inter-observer agreements were calculated using the intraclass correlation and Bland-Altman analysis. From rest to the highest level of exercise, cardiac output increased from 5.9 ± 1.4 L/min to 8.2 ± 1.9 L/min (p < 0.05), MPA PWV increased from 1.6 ± 0.5 m/s to 3.6 ± 1.4 m/s (p < 0.05), and MPA RAC decreased from 0.34 ± 0.11 to 0.24 ± 0.1 (p < 0.05). While PWV also increased from the first to second exercise stage (from 2.7 ± 1.0 m/s to 3.6 ± 1.4 m/s, p < 0.05), there was no significant change in RAC between the two exercise stages. We found good inter-observer agreement for quantification of MPA flow, RAC and PWV. These results demonstrate that metrics of MPA stiffness increase in response to acute moderate exercise in healthy subjects and that CMR exercise stress offers great potential in clinical practice to noninvasively assess vascular function.
NASA Astrophysics Data System (ADS)
Yin, Jiang; Tao, Anxiang; Xu, Pingguang; Ping, Dehai
The present paper involves a fundamental research on microdomain yield behavior of an ultrahigh strength low alloy steel with high temperature tempered bainite. The smooth cylinder specimen was took from deep water mooring chain links from the steel with the chemical composition of 0.23C-0.25Si -0.70Mn-3.55 (Cr+Ni+Mo) -0.13 (V+Nb+Ti) (mass %) ,which was quenched from 1253K and then tempered at 873K Its macroscopic yield strength is 1120MPa and the tensile strength is 1250MPa In-situ neutron diffraction measurements of loading tension have suggested that a good linear elastic deformation can be kept up to 500MPa stress, and then (200) priority non-linear elastic strain, that is the yield of crystal lattice occur at 700MPa and the (110) non-linear elastic strain was found at 800MPa. The (200) and (110) nonlinear elastic strain increases gradually when the stress was further increased, however, the (211) kept its linear elastic deformation stage as before. The sub-microstructural analysis carried out using TEM and additional determine the nature and quantitative analysis has revealed that there are three kinds of alloy carbides: (1) θ-M3C cementites with an average particle size of less than 50 nm which inside laths and lath boundaries; (2) ɛ-M2C formed uniformly within the ferrites with a length of less than 200 nm and width of less than 20 nm; (3) ultra-fine high density MC cohered with matrix α-Fe and its particle size is about 2 nm. The whole microdomain yield behaviour of the material was possibly influenced by the fcc-MC with high density. The results of CLT (constant load), SSRT (slow strain rate) and KIscc test of the present chain in seawater solution indicate, that threshold value of SCC (stress corrosion cracking) stress exceed 0.8 tensile strength and the chain's KIscc value is double of KIscc value of 4340 steel type parts. MC not only form strong hydrogen trap, but also slow down microdomain yield likely by means of increasing yield strength of crystal lattice, thus reduce SCC sensibility of the steel.
NASA Astrophysics Data System (ADS)
Shrestha, Triratna
Modified 9Cr-1 Mo (Grade 91) steel is currently considered as a candidate material for reactor pressure vessels (RPVs) and reactor internals for the Very High Temperature Reactor (VHTR), and in fossil-fuel fired power plants at higher temperatures and stresses. The tensile creep behavior of Grade 91 steel was studied in the temperature range of 600°C to 750°C and stresses between 35 MPa and 350 MPa. Heat treatment of Grade 91 steel was studied by normalizing and tempering the steel at various temperatures and times. Moreover, Thermo-Ca1c(TM) calculation was used to predict the precipitate stability and their evolution, and construct carbon isopleths of Grade 91 steel. Residual stress distribution across gas tungsten arc welds (GTAW) in Grade 91 steel was measured by the time-of-flight neutron diffraction using the Spectrometer for Materials Research at Temperature and Stress (SMARTS) diffractometer at Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, NM, USA. Analysis of creep results yielded stress exponents of ˜9-11 in the higher stress regime and ˜1 in the lower stress regime. The creep behavior of Grade 91 steel was described by the modified Bird-Mukherjee-Dorn relation. The rate-controlling creep deformation mechanism in the high stress regime was identified as the edge dislocation climb with a stress exponent of n = 5. On the other hand, the deformation mechanism in the Newtonian viscous creep regime (n = 1) was identified as the Nabarro-Herring creep. Creep rupture data were analyzed in terms of Monkman-Grant relation and Larson-Miller parameter. Creep damage tolerance factor and stress exponent were used to identify the cause of creep damage. The fracture surface morphology of the ruptured specimens was studied by scanning electron microscopy to elucidate the failure mechanisms. Fracture mechanism map for Grade 91 steel was developed based on the available material parameters and experimental observations. The microstructural evolution of heat treated steel was correlated with the differential scanning calorimetric study. The combination of microstructural studies with optical microscopy, scanning and transmission electron microscopy, microhardness profiles, and calorimetric plots helped in the understanding of the evolution of microstructure and precipitates in Grade 91 steel. The residual stresses were determined at the mid-thickness of the plate, 4.35 mm and 2.35 mm below the surface of the as-welded and post-weld heat treated plate. The residual stresses of the as-welded plate were compared with the post-weld heat treated plate. The post-weld heat treatment significantly reduced the residual stress in the base metal, heat affected zone, and the weld zone. Vickers microhardness profiles of the as-welded, and post-weld heat treated specimens were also determined and correlated with the observed residual stress profile and microstructure.
NASA Astrophysics Data System (ADS)
Little, T. A.; Boulton, C. J.; Webber, S. M.; Mizera, M.; Oesterle, J.; Ellis, S. M.; Norton, K. P.; Wallace, L.; Biemiller, J.; Seward, D.; Boles, A.
2016-12-01
The Mai'iu Fault is a corrugated low-angle normal fault (LANF) that has slipped >24 km. It emerges near sea level at 21° N dip, and flattens southward over the dome crest at 3000 m. This reactivated Paleogene suture is slipping at up to 1 cm/year based on previous GPS data and preliminary 10Be cosmogenic nuclide exposure scarp dating. An alignment of microseismicity (Eilon et al. 2015) suggests a dip of 30° N at 15-25 km depth. Pseudotachylites are abundant in lower, mylonitic parts of the footwall. One vein yielded 40Ar/39Ar ages of 1.9-2.2 Ma, implying seismicity at 8-10 km depth at the above slip rate. Widespread, antithetic normal faults in the footwall are attributed to rolling-hinge controlled yielding during exhumation. A single rider block is downfolded into synformal megamullion. Unconformities within this block, and ductile folding and conjugate strike-slip faulting of mylonitic footwall fabrics record prolonged EW shortening and constriction. Many normal and strike-slip faults cut the metabasaltic footwall recording Andersonian stresses and flipping between σ1 and σ2. To exhume the steep faults, the LANF must have remained active despite differential stress being locally high enough to initiate well-oriented faults—relationships that bracket the frictional strength of the LANF. Quantitative XRD on mafic and serpentinitic gouges reveal the Mai'iu fault core is enriched in weak clays corrensite and saponite. Hydrothermal friction experiments were done at effective normal stresses of 30-210 MPa, and temperatures of 50-450oC. At shallow depths (T≤200 oC), clay-rich fault gouges are frictionally weak (μ=0.13-0.15 and 0.20-0.28) and velocity-strengthening. At intermediate depths (T>200 oC), the footwall is frictionally strong (μ=0.71-0.78 and 0.50-0.64) and velocity-weakening. Velocity-strengthening is observed at T≥400 oC. The experiments provide evidence for deep unstable slip, consistent with footwall pseudotachylites and microseismicity at depth
Improved silicon carbide for advanced heat engines
NASA Technical Reports Server (NTRS)
Whalen, T. J.; Winterbottom, W. L.
1986-01-01
Work performed to develop silicon carbide materials of high strength and to form components of complex shape and high reliability is described. A beta-SiC powder and binder system was adapted to the injection molding process and procedures and process parameters developed capable of providing a sintered silicon carbide material with improved properties. The initial effort has been to characterize the baseline precursor materials (beta silicon carbide powder and boron and carbon sintering aids), develop mixing and injection molding procedures for fabricating test bars, and characterize the properties of the sintered materials. Parallel studies of various mixing, dewaxing, and sintering procedures have been carried out in order to distinguish process routes for improving material properties. A total of 276 MOR bars of the baseline material have been molded, and 122 bars have been fully processed to a sinter density of approximately 95 percent. The material has a mean MOR room temperature strength of 43.31 ksi (299 MPa), a Weibull characteristic strength of 45.8 ksi (315 MPa), and a Weibull modulus of 8.0. Mean values of the MOR strengths at 1000, 1200, and 14000 C are 41.4, 43.2, and 47.2 ksi, respectively. Strength controlling flaws in this material were found to consist of regions of high porosity and were attributed to agglomerates originating in the initial mixing procedures. The mean stress rupture lift at 1400 C of five samples tested at 172 MPa (25 ksi) stress was 62 hours and at 207 MPa (30 ksi) stress was 14 hours. New fluid mixing techniques have been developed which significantly reduce flaw size and improve the strength of the material. Initial MOR tests indicate the strength of the fluid-mixed material exceeds the baseline property by more than 33 percent.
Aziz, Mina S R; Dessouki, Omar; Samiezadeh, Saeid; Bougherara, Habiba; Schemitsch, Emil H; Zdero, Radovan
2017-08-01
Acetabular fractures potentially account for up to half of all pelvic fractures, while pelvic fractures potentially account for over one-tenth of all human bone fractures. This is the first biomechanical study to assess acetabular fracture fixation using plates versus cables in the presence of a total hip arthroplasty, as done for the elderly. In Phase 1, finite element (FE) models compared a standard plate method versus 3 cable methods for repairing an acetabular fracture (type: anterior column plus posterior hemi-transverse) subjected to a physiological-type compressive load of 2207N representing 3 x body weight for a 75kg person during walking. FE stress maps were compared to choose the most mechanically stable cable method, i.e. lowest peak bone stress. In Phase 2, mechanical tests were then done in artificial hemipelvises to compare the standard plate method versus the optimal cable method selected from Phase 1. FE analysis results showed peak bone stresses of 255MPa (Plate method), 205MPa (Mears cable method), 250MPa (Kang cable method), and 181MPa (Mouhsine cable method). Mechanical tests then showed that the Plate method versus the Mouhsine cable method selected from Phase 1 had higher stiffness (662versus 385N/mm, p=0.001), strength (3210versus 2060N, p=0.009), and failure energy (8.8versus 6.2J, p=0.002), whilst they were statistically equivalent for interfragmentary sliding (p≥0.179) and interfragmentary gapping (p≥0.08). The Plate method had superior mechanical properties, but the Mouhsine cable method may be a reasonable alternative if osteoporosis prevents good screw thread interdigitation during plating. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Modeling of sheet metal fracture via cohesive zone model and application to spot welds
NASA Astrophysics Data System (ADS)
Wu, Joseph Z.
Even though the cohesive zone model (CZM) has been widely used to analyze ductile fracture, it is not yet clearly understood how to calibrate the cohesive parameters including the specific work of separation (the work of separation per unit crack area) and the peak stress. A systematic approach is presented to first determine the cohesive values for sheet metal and then apply the calibrated model to various structure problems including the failure of spot welds. Al5754-0 was chosen for this study since it is not sensitive to heat treatment so the effect of heat-affected-zone (HAZ) can be ignored. The CZM has been applied to successfully model both mode-I and mode-III fracture for various geometries including Kahn specimens, single-notch specimens, and deep double-notch specimens for mode-I and trouser specimens for mode-III. The mode-I fracture of coach-peel spot-weld nugget and the mixed-mode fracture of nugget pull-out have also been well simulated by the CZM. Using the mode-I average specific work of separation of 13 kJ/m2 identified in a previous work and the mode-III specific work of separation of 38 kJ/m 2 found in this thesis, the cohesive peak stress has been determined to range from 285 MPa to 600 MPa for mode-I and from 165 MPa to 280 MPa for mode-III, depending on the degree of plastic deformation. The uncertainty of these cohesive values has also been examined. It is concluded that, if the specific work of separation is a material constant, the peak stress changes with the degree of plastic deformation and is therefore geometry-dependent.
Lombardo, Giuseppe; Serrao, Sebastiano; Rosati, Marianna; Lombardo, Marco
2014-01-01
Purpose To demonstrate a Scheimpflug-based imaging procedure for investigating the depth- and time-dependent strain response of the human cornea to inflation testing of whole eye globes. Methods Six specimens, three of which with intact corneal epithelium, were mounted in a customized apparatus within a humidity and temperature-monitored wet chamber. Each specimen was subjected to two mechanical tests in order to measure corneal strain resulting from application of cyclic (cyclic regimen) and constant (creep regimen) stress by changing the intra-ocular pressure (IOP) within physiological ranges (18–42 mmHg). Corneal shape changes were analyzed as a function of IOP and both corneal stress-strain curves and creep curves were generated. Results The procedure was highly accurate and repeatable. Upon cyclic stress application, a biomechanical corneal elasticity gradient was found in the front-back direction. The average Young's modulus of the anterior cornea ranged between 2.28±0.87 MPa and 3.30±0.90 MPa in specimens with and without intact epithelium (P = 0.05) respectively. The Young's modulus of the posterior cornea was on average 0.21±0.09 MPa and 0.17±0.06 MPa (P>0.05) respectively. The time-dependent strain response of the cornea to creep testing was quantified by fitting data to a modified Zener model for extracting both the relaxation time and compliance function. Conclusion Cyclic and creep mechanical tests are valuable for investigating the strain response of the intact human cornea within physiological IOP ranges, providing meaningful results that can be translated to clinic. The presence of epithelium influences the results of anterior corneal shape changes when monitoring deformation via Scheimpflug imaging in inflation experiments of whole eye globes. PMID:25397674
Chen, W P; Tang, F T; Ju, C W
2001-08-01
To quantify stress distribution of the foot during mid-stance to push-off in barefoot gait using 3-D finite element analysis. To simulate the foot structure and facilitate later consideration of footwear. Finite element model was generated and loading condition simulating barefoot gait during mid-stance to push-off was used to quantify the stress distributions. A computational model can provide overall stress distributions of the foot subject to various loading conditions. A preliminary 3-D finite element foot model was generated based on the computed tomography data of a male subject and the bone and soft tissue structures were modeled. Analysis was performed for loading condition simulating barefoot gait during mid-stance to push-off. The peak plantar pressure ranged from 374 to 1003 kPa and the peak von Mises stress in the bone ranged from 2.12 to 6.91 MPa at different instants. The plantar pressure patterns were similar to measurement result from previous literature. The present study provides a preliminary computational model that is capable of estimating the overall plantar pressure and bone stress distributions. It can also provide quantitative analysis for normal and pathological foot motion. This model can identify areas of increased pressure and correlate the pressure with foot pathology. Potential applications can be found in the study of foot deformities, footwear, surgical interventions. It may assist pre-treatment planning, design of pedorthotic appliances, and predict the treatment effect of foot orthosis.
Toda, S.; Stein, R.S.; Reasenberg, P.A.; Dieterich, J.H.; Yoshida, A.
1998-01-01
The Kobe earthquake struck at the edge of the densely populated Osaka-Kyoto corridor in southwest Japan. We investigate how the earthquake transferred stress to nearby faults, altering their proximity to failure and thus changing earthquake probabilities. We find that relative to the pre-Kobe seismicity, Kobe aftershocks were concentrated in regions of calculated Coulomb stress increase and less common in regions of stress decrease. We quantify this relationship by forming the spatial correlation between the seismicity rate change and the Coulomb stress change. The correlation is significant for stress changes greater than 0.2-1.0 bars (0.02-0.1 MPa), and the nonlinear dependence of seismicity rate change on stress change is compatible with a state- and rate-dependent formulation for earthquake occurrence. We extend this analysis to future mainshocks by resolving the stress changes on major faults within 100 km of Kobe and calculating the change in probability caused by these stress changes. Transient effects of the stress changes are incorporated by the state-dependent constitutive relation, which amplifies the permanent stress changes during the aftershock period. Earthquake probability framed in this manner is highly time-dependent, much more so than is assumed in current practice. Because the probabilities depend on several poorly known parameters of the major faults, we estimate uncertainties of the probabilities by Monte Carlo simulation. This enables us to include uncertainties on the elapsed time since the last earthquake, the repeat time and its variability, and the period of aftershock decay. We estimate that a calculated 3-bar (0.3-MPa) stress increase on the eastern section of the Arima-Takatsuki Tectonic Line (ATTL) near Kyoto causes fivefold increase in the 30-year probability of a subsequent large earthquake near Kyoto; a 2-bar (0.2-MPa) stress decrease on the western section of the ATTL results in a reduction in probability by a factor of 140 to 2000. The probability of a Mw = 6.9 earthquake within 50 km of Osaka during 1997-2007 is estimated to have risen from 5-6% before the Kobe earthquake to 7-11% afterward; during 1997-2027, it is estimated to have risen from 14-16% before Kobe to 16-22%.
Crystal plastic earthquakes in dolostones
NASA Astrophysics Data System (ADS)
Passelegue, Francois; Aubry, Jerome; Nicolas, Aurelien; Fondriest, Michele; Schubnel, Alexandre; Di Toro, Giulio
2017-04-01
Dolostone is the most dominant lithology of the seismogenic upper crust around the Mediterranean Sea. Understanding the internal mechanisms controlling fault friction is crucial for understanding seismicity along active faults. Displacement in such fault zones is frequently highlighted by highly reflective (mirror-like) slip surfaces, created by thin films of nanogranular fault rock. Using saw-cut dolostone samples coming from natural fault zones, we conducted friction experiments under triaxial loading conditions. To reproduce the natural conditions, experiments were conducted at 30, 60 and 90 MPa confining pressure at respectively 30, 65 and 100 degrees C. At 30 and 65 degrees C, only slow rupture was observed and the experimental fault exhibits frictional behaviour, i.e. a dependence of normal stress on peak shear stress. At 65 degrees C, a strengthening behaviour is observed after the main rupture, leading to a succession of slow rupture. At 100 degrees C, the macroscopic behaviour of the fault becomes ductile, and no dependence of pressure on the peak shear stress is observed. In addition, the increase of the confining pressure up to 60 and 90 MPa allow the transition from slow to fast rupture, highlighted by the records of acoustic activity and by dynamic stress drop occurring in a few tens of microseconds. Using strain gages located along the fault surface and acoustic transducers, we were able to measure the rupture velocities during slow and fast rupture. Slow ruptures propagated around 0.1 m/s, in agreement with natural observations. Fast ruptures propagated up the supershear velocities, i.e. faster than the shear wave speed (>3500 m/s). A complete study of the microstructures was realized before and after ruptures. Slow ruptures lead to the production of mirror-like surface driven by the production of nanograins due to dislocation processes. Fast ruptures induce the production of amorphous material along the fault surface, which may come from melting processes. We demonstrate that the transition from slow to dynamic instabilities is observed when the entire fault exhibits plastic processes, which increase the stiffness of the fault.
The use of functionally graded dental crowns to improve biocompatibility: a finite element analysis.
Mahmoudi, Mojtaba; Saidi, Ali Reza; Hashemipour, Maryam Alsadat; Amini, Parviz
2018-02-01
In post-core crown restorations, the significant mismatch between stiffness of artificial crowns and dental tissues leads to stress concentration at the interfaces. The aim of the present study was to reduce the destructive stresses by using a class of inhomogeneous materials called functionally graded materials (FGMs). For the purpose of the study, a 3-dimentional computer model of a premolar tooth and its surrounding tissues were generated. A post-core crown restoration with various crown materials, homogenous and FGM materials, were simulated and analyzed by finite element method. Finite element and statistical analysis showed that, in case of oblique loading, a significant difference (p < 0.05) was found at the maximum von Mises stresses of the crown margin between FGM and homogeneous crowns. The maximum von Mises stresses of the crown margin generated by FGM crowns were lower than those generated by homogenous crowns (70.8 vs. 46.3 MPa) and alumina crown resulted in the highest von Mises stress at the crown margin (77.7 MPa). Crown materials of high modulus of elasticity produced high stresses at the cervical region. FGM crowns may reduce the stress concentration at the cervical margins and consequently reduce the possibility of fracture.
Sharkey, T D; Badger, M R
1982-12-01
Several component processes of photosynthesis were measured in osmotically stressed mesophyll cells of Xanthium strumarium L. The ribulose-1,5-bisphosphate regeneration capacity was reduced by water stress. Photophoshorylation was sensitive to water stress but photosynthetic electron transport was unaffected by water potentials down to-40 bar (-4 MPa). The concentrations of several intermediates of the photosynthetic carbon-reduction cycle remained relatively constant and did not indicate that ATP supply was limiting photosynthesis in the water-stressed cells.
Impact of mechanical stress induced in silica vacuum windows on laser-induced damage.
Gingreau, Clémence; Lanternier, Thomas; Lamaignère, Laurent; Donval, Thierry; Courchinoux, Roger; Leymarie, Christophe; Néauport, Jérôme
2018-04-15
At the interface between vacuum and air, optical windows must keep their optical properties, despite being subjected to mechanical stress. In this Letter, we investigate the impact of such stress on the laser-induced damage of fused silica windows at the wavelength of 351 nm in the nanosecond regime. Different stress values, from 1 to 30 MPa, both tensile and compressive, were applied. No effect of the stress on the laser-induced damage was evidenced.
NASA Astrophysics Data System (ADS)
Huepers, Andre; Kopf, Achim J.
2013-04-01
Subduction zones play a central role in the geological activity of the earth which is expressed as devastating events such as earthquakes, tsunamis and explosive volcanism. Many processes that lead to such catastrophic behavior are driven by fluids, which in turn affect the rock mechanical behavior. The kinetic reaction of hydrous smectite to illite is widely accepted as a fluid source in subduction zone forearcs that also affects the mechanical state of subduction zone sediments. The released fluids are characterized by low-chlorinity and high volatile content. Also, previous workers demonstrated in uniaxial deformation tests that smectite partially dehydrates with increasing effective stress. To shed light on this process we performed uniaxial deformation experiments on smectite-rich samples from the Nankai and Costa Rica subduction zones. Experiments were conducted at temperatures of up to 100°C under constant rate of strain and effective stresses of up to ~100MPa. Fluids expelled during the experiments were analyzed for major and minor element content. The fluids are characterized by fluid-freshening and increasing volatile content that starts at ~1.3MPa effective stress. During the course of the experiments the smectite interlayer water content decreases from 27 wt-% to 20 wt-%. The released interlayer water comprises up to 17% of the total fluid volume released from the consolidating sediment. The onset of fluid freshening is characterized by a change in deformation behavior of the samples. The porosity decrease with increasing effective stress is smaller at effective stresses greater 1.3MPa. We propose that dehydration of the low permeable smectite leads to excess pore pressures in the sample, which causes a load transfer from the solid phase to the pore fluid.
Simulation of blast-induced early-time intracranial wave physics leading to traumatic brain injury.
Taylor, Paul A; Ford, Corey C
2009-06-01
The objective of this modeling and simulation study was to establish the role of stress wave interactions in the genesis of traumatic brain injury (TBI) from exposure to explosive blast. A high resolution (1 mm3 voxels) five material model of the human head was created by segmentation of color cryosections from the Visible Human Female data set. Tissue material properties were assigned from literature values. The model was inserted into the shock physics wave code, CTH, and subjected to a simulated blast wave of 1.3 MPa (13 bars) peak pressure from anterior, posterior, and lateral directions. Three-dimensional plots of maximum pressure, volumetric tension, and deviatoric (shear) stress demonstrated significant differences related to the incident blast geometry. In particular, the calculations revealed focal brain regions of elevated pressure and deviatoric stress within the first 2 ms of blast exposure. Calculated maximum levels of 15 KPa deviatoric, 3.3 MPa pressure, and 0.8 MPa volumetric tension were observed before the onset of significant head accelerations. Over a 2 ms time course, the head model moved only 1 mm in response to the blast loading. Doubling the blast strength changed the resulting intracranial stress magnitudes but not their distribution. We conclude that stress localization, due to early-time wave interactions, may contribute to the development of multifocal axonal injury underlying TBI. We propose that a contribution to traumatic brain injury from blast exposure, and most likely blunt impact, can occur on a time scale shorter than previous model predictions and before the onset of linear or rotational accelerations traditionally associated with the development of TBI.
Chen, Fancheng; Huang, Xiaowei; Ya, Yingsun; Ma, Fenfen; Qian, Zhi; Shi, Jifei; Guo, Shuolei; Yu, Baoqing
2018-01-16
Proximal tibia fractures are one of the most familiar fractures. Surgical approaches are usually needed for anatomical reduction. However, no single treatment method has been widely established as the standard care. Our present study aims to compare the stress and stability of intramedullary nails (IMN) fixation and double locking plate (DLP) fixation in the treatment of extra-articular proximal tibial fractures. A three-dimensional (3D) finite element model of the extra-articular proximal tibial fracture, whose 2-cm bone gap began 7 cm from the tibial plateau articular surface, was created fixed by different fixation implants. The axial compressive load on an adult knee during single-limb stance was imitated by an axial force of 2500 N with a distribution of 60% to the medial compartment, while the distal end was fixed effectively. The equivalent von Mises stress and displacement of the model was used as the output measures for analysis. The maximal equivalent von Mises stress value of the system in the IMN model was 293.23 MPa, which was higher comparing against that in the DLP fixation model (147.04 MPa). And the mean stress of the model in the IMN model (9.25 MPa) was higher than that of the DLP fixation system in terms of equivalent von Mises stress (EVMS) (P < 0.0001). The maximal value of displacement (sum) in the IMN system was 8.82 mm, which was lower than that in the DLP fixation system (9.48 mm). This study demonstrated that the stability provided by the locking plate fixation system was superior to the intramedullary nails fixation system and served as an alternative fixation for the extra-articular proximal tibial fractures of young patients.
Li, Haiyan; Li, Xiaoshuang; Zhang, Daoyuan; Liu, Huiliang; Guan, Kaiyun
2013-01-01
Eremosparton songoricum (Litv.) Vass. is an endemic and extremely drought-resistant desert plant with populations that are gradually declining due to the failure of sexual recruitment. The effects of drought stress on the seed germination and physiological characteristics of seeds and seedlings were investigated. The results showed that the germination percentage decreased with an increase of polyethylene glycol 6000 (PEG) concentration: -0.3 MPa (5 % PEG) had a promoting effect on seed germination, -0.9 MPa (15 % PEG) dramatically reduced germination, and -1.8 MPa (30 % PEG) was the threshold for E. songoricum germination. However, the contents of proline and soluble sugars and the activity of CAT increased with increasing PEG concentrations. At the young seedling stage, the proline content and CAT, SOD and POD activities all increased at 2 h and then decreased; except for a decrease at 2 h, the MDA content also increased compared to the control (0 h). These results indicated that 2 h may be a key response time point for E. songoricum to resist drought stress. The above results demonstrate that drought stress can suppress and delay the germination of E. songoricum and that the seeds accumulate osmolytes and augment the activity of antioxidative enzymes to cope with drought injury. E. songoricum seedlings are sensitive to water stress and can quickly respond to drought but cannot tolerate drought for an extended period. Although such physiological and biochemical changes are important strategies for E. songoricum to adapt to a drought-prone environment, they may be, at least partially, responsible for the failure of sexual reproduction under natural conditions.
Gas and Liquid Permeability Measurements in Wolfcamp Samples
NASA Astrophysics Data System (ADS)
Bhandari, A. R.; Flemings, P. B.; Ramiro-Ramirez, S.; Polito, P. J.
2017-12-01
Argon gas and liquid (dodecane) permeability measurements in three mixed quality Wolfcamp samples demonstrate it is possible to close multiple bedding parallel open artificial micro-fractures and obtain representative matrix permeability by applying two confining stress cycles at a constant pore pressure under effective stresses ranging from 6.9 MPa to 59.7 MPa. The fractured sample (with no bridging-cement in fractures) exhibited a three order decrease in permeability from 4.4×10-17 m2 to 2.1×10-20 m2. In contrast, the most intact sample exhibited initial liquid permeability of 1.61×10-19 m2 that declined gradually to 2.0×10-20 m2 over the same effective stress range. A third sample, that contained a bridging-cement (gypsum) fracture, exhibited much higher initial liquid permeability of 2.8×10-15 m2 and declined gradually to 1.3×10-17 m2 with stress; this suggested that it is difficult to close partially cemented fractures and that the permeability we measured was impacted by the presence of a propped-fracture and not the matrix. We developed a new permeability testing protocol and analytical approaches to interpret the evolution of fractures and resolve the matrix permeability using matrix permeability estimates based on initial pulse decay gas permeability measurements at effective stress of 6.9 MPa. The tested samples are an argillaceous siliceous siltstone facies within the Wolfcamp Formation. A better understanding of permeability will lead to new approaches to determine the best completion and production strategies and, more importantly, to reduce the high water cut problem in Wolfcamp reservoirs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ford, Corey C.; Taylor, Paul Allen
The objective of this modeling and simulation study was to establish the role of stress wave interactions in the genesis of traumatic brain injury (TBI) from exposure to explosive blast. A high resolution (1 mm{sup 3} voxels), 5 material model of the human head was created by segmentation of color cryosections from the Visible Human Female dataset. Tissue material properties were assigned from literature values. The model was inserted into the shock physics wave code, CTH, and subjected to a simulated blast wave of 1.3 MPa (13 bars) peak pressure from anterior, posterior and lateral directions. Three dimensional plots ofmore » maximum pressure, volumetric tension, and deviatoric (shear) stress demonstrated significant differences related to the incident blast geometry. In particular, the calculations revealed focal brain regions of elevated pressure and deviatoric (shear) stress within the first 2 milliseconds of blast exposure. Calculated maximum levels of 15 KPa deviatoric, 3.3 MPa pressure, and 0.8 MPa volumetric tension were observed before the onset of significant head accelerations. Over a 2 msec time course, the head model moved only 1 mm in response to the blast loading. Doubling the blast strength changed the resulting intracranial stress magnitudes but not their distribution. We conclude that stress localization, due to early time wave interactions, may contribute to the development of multifocal axonal injury underlying TBI. We propose that a contribution to traumatic brain injury from blast exposure, and most likely blunt impact, can occur on a time scale shorter than previous model predictions and before the onset of linear or rotational accelerations traditionally associated with the development of TBI.« less
Experimental Study of Nonassociated Flow and Instability of Frictional Materials. Attachment No. 1
1993-04-01
pressure range of 0.25 to 68.9 MPa. One-dimensional compression tests up to 900 MPa axial stress level were also performed. U Strain localization was studied... range of confining pressures. Vesic and Clough (1968) performed a series of drained, triaxial compression tests on Chattahoochee River sand at confining...realization resulted in many investigators developing cubical triaxial testing apparatus, in which the full range of the effect of the intermediate I principal
[Stress-corrosion test of TIG welded CP-Ti].
Li, H; Wang, Y; Zhou, Z; Meng, X; Liang, Q; Zhang, X; Zhao, Y
2000-12-01
In this study TIG (Tungsten Inert Gas) welded CP-Ti were subjected to stress-corrosion test under 261 MPa in artificial saliva of 37 degrees C for 3 months. No significant difference was noted on mechanical test (P > 0.05). No color-changed and no micro-crack on the sample's surface yet. These results indicate that TIG welded CP-Ti offers excellent resistance to stress corrosion.
NiTi-Enabled Composite Design for Exceptional Performances
Shao, Yang; Guo, Fangmin; Ren, Yang; ...
2017-03-08
In an effort to further develop shape memory alloys (SMAs) for functional applications, much focus has been given in recent years to design and create innovative forms of SMAs, such as functionally graded SMAs, architecture SMAs, and SMA-based metallic composites. Here, we reports on the progress in creating NiTi-based composites of exceptional properties stimulated by the recent discovery of the principle of lattice strain matching between the SMA matrix and superelastic nanoinclusions embedded in the matrix. And based on this principle, different SMA–metal composites have been designed to achieve extraordinary shape memory performances, such as complete pseudoelastic behavior at asmore » low as 77 K and stress plateau as high as 1600 MPa, and exceptional mechanical properties, such as tensile strength as high as 2000 MPa and Young’s modulus as low as 28 GPa. Details are given for a NiTi–W micro-fiber composite prepared by melt infiltration, hot pressing, forging, and cold rolling. Furthermore, the composite contained 63% in volume of W micro-fibers of ~0.6 μm thickness. In situ synchrotron X-ray diffraction revealed that the NiTi matrix underwent martensite transformation during tensile deformation while the W micro-fiber deformed elastically with a maximum strain of 0.83% in the loading direction, implying a W fiber stress of 3280 MPa. The composite showed a maximum high tensile strength of 2300 MPa.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Yang; Guo, Fangmin; Ren, Yang
In an effort to further develop shape memory alloys (SMAs) for functional applications, much focus has been given in recent years to design and create innovative forms of SMAs, such as functionally graded SMAs, architecture SMAs, and SMA-based metallic composites. Here, we reports on the progress in creating NiTi-based composites of exceptional properties stimulated by the recent discovery of the principle of lattice strain matching between the SMA matrix and superelastic nanoinclusions embedded in the matrix. And based on this principle, different SMA–metal composites have been designed to achieve extraordinary shape memory performances, such as complete pseudoelastic behavior at asmore » low as 77 K and stress plateau as high as 1600 MPa, and exceptional mechanical properties, such as tensile strength as high as 2000 MPa and Young’s modulus as low as 28 GPa. Details are given for a NiTi–W micro-fiber composite prepared by melt infiltration, hot pressing, forging, and cold rolling. Furthermore, the composite contained 63% in volume of W micro-fibers of ~0.6 μm thickness. In situ synchrotron X-ray diffraction revealed that the NiTi matrix underwent martensite transformation during tensile deformation while the W micro-fiber deformed elastically with a maximum strain of 0.83% in the loading direction, implying a W fiber stress of 3280 MPa. The composite showed a maximum high tensile strength of 2300 MPa.« less
A new barometer from stress fields around inclusions
NASA Astrophysics Data System (ADS)
Avadanii, Diana; Hansen, Lars; Wallis, David; Waters, David
2017-04-01
A key step in understanding geological and geodynamic processes is modelling the pressure-temperature paths of metamorphic rocks. Traditional thermobarometry relies on mineral assemblage equilibria and thermodynamic modelling to infer the pressures and temperatures of chemical equilibration. This approach requires the presence of specific mineral assemblages and compositions, which narrows its applicability. In this study we aim to develop a geobarometer based on mechanical interactions between inclusions and their host grains. Exhumation of minerals with inclusions causes heterogeneous residual stress fields due to the different, and often anisotropic, elastic properties of the inclusion and host. Recent studies measure residual mean stresses within inclusions using Raman spectroscopy and use those stresses as a barometer. In contrast, we map each component of the stress tensor around inclusions using high angular-resolution electron backscatter diffraction (HR-EBSD). This technique provides both higher spatial resolution and increased sensitivity to elastic strains relative to Raman spectroscopy. We focus on quartz inclusions in garnet, a common feature in metamorphic rocks. This assemblage also provides an opportunity to test our results with compositional thermobarometry. We analyse samples metamorphosed at pressures ranging from ˜ 300 MPa to ˜ 1600 MPa, as recorded by independent geobarometers. HR-EBSD reveals symmetric and lobate signals around inclusions, with elastic strains and residual stresses of the order 10-3 and ±102 -103 MPa, respectively. We solve Eshelby's problem for the 'inhomogeneous inclusion' case to simulate the elastic strain/stress field around an anisotropic ellipsoidal inclusion surrounded by an isotropic, homogeneous, infinite matrix. This model calculates the stress disturbances caused by differential expansion of an inclusion and host subjected to decompression. We additionally account for differential expansion related to cooling by imposing an eigenstrain in the inclusion, according to the thermal expansivity of quartz. Thermal contraction in the host garnet is accounted for by modifying the macroscopic pressure. The simulations reproduce the general pattern of the elastic fields that we observe from HR-EBSD and account for different geometries of the inclusion. The simulations provide the basis for quantitatively relating the stress fields measured by HR-EBSD to the entrapment pressures of inclusions.
Stress distribution along the Fairweather-Queen Charlotte transform fault system
Bufe, C.G.
2005-01-01
Tectonic loading and Coulomb stress transfer are modeled along the right-lateral Fairweather-Queen Charlotte transform fault system using a threedimensional boundary element program. The loading model includes slip below 12 km along the transform as well as motion of the Pacific plate, and it is consistent with most available Global Positioning System (GPS) displacement rate data. Coulomb stress transfer is shown to have been a weak contributing factor in the failure of the southeastern (Sitka) segment of the Fairweather fault in 1972, hastening the occurrence of the earthquake by only about 8 months. Failure of the Sitka segment was enhanced by a combination of cumulative loading from below (95%) by slip of about 5 cm/yr since 1848, by stress transfer (about 1%) from major earthquakes on straddling segments of the Queen Charlotte fault (M 8.1 in 1949) and the Fairweather fault (M 7.8 in 1958), and by viscoelastic relaxation (about 4%) following the great 1964 Alaska earthquake, modeled by Pollitz et al. (1998). Cumulative stress increases in excess of 7 MPa at a depth of 8 km are projected prior to the M 7.6 earthquake. Coulomb stress transferred by the rupture of the great M 9.2 Alaska earthquake in 1964 (Bufe, 2004a) also hastened the occurrence of the 1972 event, but only by a month or two. Continued tectonic loading over the last half century and stress transfer from the M 7.6 Sitka event has resulted in restressing of the adjacent segments by about 3 MPa at 8 km depth. The occurrence of a M 6.8 earthquake on the northwestern part of the Queen Charlotte fault on 28 June 2004, the largest since 1949, also suggests increased stress. The Cape St. James segment of the fault immediately southeast of the 1949 Queen Charlotte rupture has accumulated about 6 MPa at 8 km through loading since 1900 and stress transfer in 1949. A continued rise in earthquake hazard is indicated for the Alaska panhandle and Queen Charlotte Islands region in the decades ahead as the potential for damaging earthquakes increases.
The action of water films at Å-scales in the Earth: Implications for the Nankai subduction system
NASA Astrophysics Data System (ADS)
Brown, Kevin M.; Poeppe, Dean; Josh, Matthew; Sample, James; Even, Emilie; Saffer, Demian; Tobin, Harold; Hirose, Takehiro; Kulongoski, J. T.; Toczko, Sean; Maeda, Lena; IODP Expedition 348 Shipboard Party
2017-04-01
Water properties change with confinement within nanofilms trapped between natural charged clay particles. We investigated nanofilm characteristics through high-stress laboratory compression tests in combination with analyses of expelled pore fluids. We utilized sediments obtained from deep drilling of the Nankai subduction zone at Site C0002 of the Integrated Ocean Drilling Program (IODP). We show that below 1-2 km, there should be widespread ultrafiltration of migrating fluids. Experiments to > ∼ 100 MPa normal compression collapse pores below a few ion monofilm thicknesses. A reduction towards a single condensing/dehydrating ion monofilm occurs as stresses rise >100-200 MPa and clay separations are reduced to <10-20 Å. Thus, porosity in high mineral surface area systems only consists of double and single monofilms at depths below a few km leaving little room for either bulk water or the deep biosphere. The resulting semipermeable properties result in variable segregation of ions and charged isotopes and water during active flow. The ultrafiltration and ion dehydration processes are coupled in that both require the partial immobilization of ions between the charged clay surfaces. The general effect is to increase salinities in residual pore fluids at depth and freshen fluids expelled during consolidation. Cessation of nanofilm collapse to a near constant ∼17 Å below 2 km depth at Nankai supports the contention for the onset of substantial geopressuring on the deeper seismogenic fault. The properties of monofilm water, thus, have considerable implications for the deep water properties of subduction zones generating major tremor and Mw 8+ earthquakes. Indeed, the combined effects of advective flow, ultrafiltration, diffusion, and diagenesis could provide a unifying explanation for the origins of overpressuring and pore water geochemical signals observed in many natural systems.
Effect of σ2 on All Aspects of Failure in Rocks from Granite to Sandstone
NASA Astrophysics Data System (ADS)
Haimson, B. C.; Ma, X.
2014-12-01
We have studied the effect of σ2 on failure characteristics of two crystalline and three clastic rocks subjected to true triaxial stresses. Common to all rocks tested is the rise in both strain localization onset and σ1 at failure (σ1,peak) for a given σ3, as σ2 is elevated beyond its base level (σ2 = σ3). σ1,peak reaches a maximum at some level of σ2, beyond which it gradually declines, approaching its base magnitude when σ2 nears its own maximum. Failure-plane angle with respect to σ1 for a given σ3 also increases with σ2, at least until the maximum σ1,peak is reached. Westerly granite (Haimson and Chang, IJRMMS, 2000) and KTB amphibolite (Chang and Haimson, JGR, 2000), exhibited a dramatic σ2 effect: at low σ3 (20-30 MPa), higher σ2 lifted σ1,peak by up to 50% over its base level. At high σ3, the increase in σ1,peak was reduced, but even at σ3 = 100 MPa, maximum σ1,peak in both rocks was over 20% higher than its base level. Failure mode remained brittle throughout the stress range tested, but the onset of dilatancy rose with σ2, as did the failure-plane (shear-band) angle (by up to 20°). A gentler effect of σ2 on σ1, peak and failure-plane angle was observed in the clastics, and that effect subsided as porosity increased. In low porosity (φ = 7%) TCDP siltstone (Oku, et al, GRL, 2007), the maximum σ1,peak at σ3 = 25 MPa was about 30% larger than at σ2 = σ3 level, and only 12.5% larger at σ3 = 100 MPa. Failure mode stayed brittle throughout, but shear-band angle increase with σ2 was limited to about 10°, irrespective of σ3 level. An even smaller σ2 effect was observed in Coconino sandstone (φ = 17%) (Ma, PhD thesis, 2014). σ1,peak reached a maximum of about 10% higher than at σ2 = σ3 level; failure-plane angle rise with σ2 was less than 10°. The weakest σ2 effect was found in the high porosity (φ= 25%) Bentheim sandstone (Ma, PhD thesis, 2014). Here σ1, peak reached a maximum of well under 10% higher than its base magnitude, regardless of σ3 level; average failure-plane angle rise with σ2 was below 10°. Failure at σ3 = 150 MPa was along a compaction band(s) normal to σ1, regardless of σ2. Both Coconino and Bentheim underwent dilatant failure at low σ3, shifting to compactive failure at high σ3 levels. But σ2 also affected the failure mode: compactive failure at σ2 = σ3 gradually reverted to a dilatant mode as σ2 was raised.
In situ frustum indentation of nanoporous copper thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ran; Pathak, Siddhartha; Mook, William M.
Mechanical properties of thin films are often obtained solely from nanoindentation. At the same time, such measurements are characterized by a substantial amount of uncertainty, especially when mean pressure or hardness are used to infer uniaxial yield stress. In this paper we demonstrate that indentation with a pyramidal flat tip (frustum) indenter near the free edge of a sample can provide a significantly better estimate of the uniaxial yield strength compared to frequently used Berkovich indenter. This is first demonstrated using a numerical model for a material with an isotropic pressure sensitive yield criterion. Numerical simulations confirm that the indentermore » geometry provides a clear distinction of the mean pressure at which a material transitions to inelastic behavior. The mean critical pressure is highly dependent on the plastic Poisson ratio ν p so that at the 1% offset of normalized indent depth, the critical pressure p m c normalized to the uniaxial yield strength σ 0 is 1 < p m c/σ 0 < 1.3 for materials with 0 < ν p < 0.5. Choice of a frustum over Berkovich indenter reduces uncertainty in hardness by a factor of 3. These results are used to interpret frustum indentation experiments on nanoporous (NP) Copper with struts of typical diameter of 45 nm. An estimate of the yield strength of NP Copper is obtained 230 MPa < σ 0 < 300 MPa. Edge indentation further allows one to obtain in-plane strain maps near the critical pressure. Finally, comparison of the experimentally obtained in-plane strain maps of NP Cu during deformation and the strain field for different plastic Poisson ratios suggest that this material has a plastic Poisson ratio of the order of 0.2–0.3. However, existing constitutive models may not adequately capture post-yield behavior of NP metals.« less
In situ frustum indentation of nanoporous copper thin films
Liu, Ran; Pathak, Siddhartha; Mook, William M.; ...
2017-07-24
Mechanical properties of thin films are often obtained solely from nanoindentation. At the same time, such measurements are characterized by a substantial amount of uncertainty, especially when mean pressure or hardness are used to infer uniaxial yield stress. In this paper we demonstrate that indentation with a pyramidal flat tip (frustum) indenter near the free edge of a sample can provide a significantly better estimate of the uniaxial yield strength compared to frequently used Berkovich indenter. This is first demonstrated using a numerical model for a material with an isotropic pressure sensitive yield criterion. Numerical simulations confirm that the indentermore » geometry provides a clear distinction of the mean pressure at which a material transitions to inelastic behavior. The mean critical pressure is highly dependent on the plastic Poisson ratio ν p so that at the 1% offset of normalized indent depth, the critical pressure p m c normalized to the uniaxial yield strength σ 0 is 1 < p m c/σ 0 < 1.3 for materials with 0 < ν p < 0.5. Choice of a frustum over Berkovich indenter reduces uncertainty in hardness by a factor of 3. These results are used to interpret frustum indentation experiments on nanoporous (NP) Copper with struts of typical diameter of 45 nm. An estimate of the yield strength of NP Copper is obtained 230 MPa < σ 0 < 300 MPa. Edge indentation further allows one to obtain in-plane strain maps near the critical pressure. Finally, comparison of the experimentally obtained in-plane strain maps of NP Cu during deformation and the strain field for different plastic Poisson ratios suggest that this material has a plastic Poisson ratio of the order of 0.2–0.3. However, existing constitutive models may not adequately capture post-yield behavior of NP metals.« less
NASA Astrophysics Data System (ADS)
Bandriyana, B.; Utaja
2010-06-01
Thermal stratification introduces thermal shock effect which results in local stress and fatique problems that must be considered in the design of nuclear power plant components. Local stress and fatique calculation were performed on the Pressurize Surge Line piping system of the Pressurize Water Reactor of the Nuclear Power Plant. Analysis was done on the operating temperature between 177 to 343° C and the operating pressure of 16 MPa (160 Bar). The stagnant and transient condition with two kinds of stratification model has been evaluated by the two dimensional finite elements method using the ANSYS program. Evaluation of fatigue resistance is developed based on the maximum local stress using the ASME standard Code formula. Maximum stress of 427 MPa occurred at the upper side of the top half of hot fluid pipe stratification model in the transient case condition. The evaluation of the fatigue resistance is performed on 500 operating cycles in the life time of 40 years and giving the usage value of 0,64 which met to the design requirement for class 1 of nuclear component. The out surge transient were the most significant case in the localized effects due to thermal stratification.
Hübner, André Rafael; Gasparin, Daniel; de Meira Junior, Agenor Dias; Israel, Charles Leonardo; Dambrós, Jean Marcel; Ribeiro, Marcelo; de Freitas Spinelli, Leandro
2015-07-01
The research analyses the strength of metallic implants in posterior spinal instrumentation for the treatment of thoracolumbar fractures, considering extended and short fixation techniques on the immediate post-surgical load. Considering that short fixation may bring the advantage of a less invasive surgical procedure to the patient and may also result in lower costs, this evaluation becomes necessary. Three-dimensional modelling of the thoracolumbar spine was initially performed. CT images were captured and converted for analysis with the ANSYS program. Both treatment techniques were analysed for stresses, and strains generated in the immediate postoperative period, when the fracture is still not healed. The maximum stress obtained for long fixation by the theory of Von Mises was 230 MPa, and it was located in the rod area next to the L2 vertebra. The maximum stress obtained for short fixation was 274.24 MPa, and it was located in the pedicle screw on the T12 vertebra. There were no significant differences between the two techniques, since the observed stresses are well below the flow stress of the material, ensuring good safety factor (ranging from 3.5 to 4.1).
Selvakumar, Govindan; Bhatt, Ravindra M; Upreti, Kaushal K; Bindu, Gurupadam Hema; Shweta, Kademani
2015-05-01
The water potential of rhizospheric soil is a key parameter that determines the availability of water, oxygen, and nutrients to plants and microbes. Recent global warming trends and erratic precipitation patterns have resulted in the emergence of drought as a major constraint of agricultural productivity. Though several strategies are being evaluated to address this issue, a novel approach is the utilization of microbes for alleviation of drought stress effects in crops. Citricoccus zhacaiensis B-4 is an osmotolerant actinobacterium isolated from banana rhizosphere on mannitol supplemented medium (-2.92 MPa osmotic potential). This isolate expressed plant growth promotion traits viz, IAA, GA3 production, phosphate, zinc solubilization, ACC deaminase activity and ammonia production under PEG induced osmotic stress and non-stress conditions. Under in vitro osmotic conditions, biopriming with the actinobacterium improved the percent germination, seedling vigour and germination rate of onion seeds (cv. Arka Kalyan) at osmotic potentials up to -0.8 MPa. Considering its novelty, osmotolerance and plant growth promoting traits, biopriming with C. zhacaiensis is suggested as a viable option for the promotion of onion seed germination under drought stressed environments.
Hochberg, Uri; Albuquerque, Caetano; Rachmilevitch, Shimon; Cochard, Herve; David-Schwartz, Rakefet; Brodersen, Craig R; McElrone, Andrew; Windt, Carel W
2016-09-01
The 'hydraulic vulnerability segmentation' hypothesis predicts that expendable distal organs are more susceptible to water stress-induced embolism than the main stem of the plant. In the current work, we present the first in vivo visualization of this phenomenon. In two separate experiments, using magnetic resonance imaging or synchrotron-based microcomputed tomography, grapevines (Vitis vinifera) were dehydrated while simultaneously scanning the main stems and petioles for the occurrence of emboli at different xylem pressures (Ψx ). Magnetic resonance imaging revealed that 50% of the conductive xylem area of the petioles was embolized at a Ψx of -1.54 MPa, whereas the stems did not reach similar losses until -1.9 MPa. Microcomputed tomography confirmed these findings, showing that approximately half the vessels in the petioles were embolized at a Ψx of -1.6 MPa, whereas only few were embolized in the stems. Petioles were shown to be more resistant to water stress-induced embolism than previously measured with invasive hydraulic methods. The results provide the first direct evidence for the hydraulic vulnerability segmentation hypothesis and highlight its importance in grapevine responses to severe water stress. Additionally, these data suggest that air entry through the petiole into the stem is unlikely in grapevines during drought. © 2015 John Wiley & Sons Ltd.
The effects of Ni, Mo, Ti and Si on the mechanical properties of Cr free Mn steel (Fe-25Mn-5Al-2C)
NASA Technical Reports Server (NTRS)
Schuon, S. R.
1982-01-01
The FeMnAlC alloys may hold potential as Cr-free replacements for high strategic material iron base superalloys, but little is known about their intermediate temperature (650 C to 870 C) mechanical properties. The effects of alloying elements on the mechanical properties of model FeMnAlC alloys were studied. Results showed that modified FeMnAlC alloys had promising short term, intermediate temperature properties but had relatively poor stress rupture lives at 172 MPa and 788 C. Room temperature and 788 C tensile strength of FeMnAlC alloys were better than common cast stainless steels. Changes in room temperature tensile and 788 C tensile strength and ductility, and 788 C stress rupture life were correlated with changes in Ni, Mo, Ti, and Si levels due to alloying effects on interstitial carbon levels and carbide morphology. Fe-25Mn-5Al-2C had a very poor stress rupture life at 172 MPa and 788 C. Addition of carbide-forming elements improved the stress rupture life.
Stress remagnetization in pyrrhotite-calcite synthetic aggregates
NASA Astrophysics Data System (ADS)
Robion, Philippe; Borradaile, Graham J.
2001-01-01
Stress-induced remagnetization has been applied to multidomain pyrrhotite-calcite synthetic aggregates in a triaxial rig. Experimental deformation used 150MPa confining pressure, a constant strain rate of 10-5 s-1 and applied differential stresses of up to 70MPa. New components of magnetization, parallel to the direction of the pressure vessel field, were added to the pre-deformational magnetization. The intensity of remagnetization (M'-M0) increases with the intensity of the applied differential stress and affects the coercivity fraction below 15mT. Bulk shortening is less than 8 per cent, thus grain rotation cannot explain selective remagnetization of the low-coercivity fraction. Remagnetization is thus attributed to deformational viscous remanent magnetization (DVRM). It is observed that high-coercivity (>15mT) grains do not remagnetize. There is, however, slight progressive rotation of pre-deformational magnetization with increasing strain up to 8 per cent of bulk shortening. The lack of piezoremanent magnetization in the high-coercivity range may be due to defects introduced in pyrrhotite during sample preparation. Experiments using synthetic pyrrhotite, expected to show low dislocation densities, would be necessary to test this effect.
Material properties of CorCap passive cardiac support device.
Chitsaz, Sam; Wenk, Jonathan F; Ge, Liang; Wisneski, Andrew; Mookhoek, Aart; Ratcliffe, Mark B; Guccione, Julius M; Tseng, Elaine E
2013-01-01
Myocardial function deteriorates during ventricular remodeling in patients with congestive heart failure (HF). Ventricular restraint therapy using a cardiac support device (CSD) is designed to reduce the amount of stress inside the dilated ventricles, which in turn halts remodeling. However, as an open mesh surrounding the heart, it is unknown what the mechanical properties of the CSD are in different fiber orientations. Composite specimens of CorCap (Acorn Cardiovascular, Inc, St. Paul, MN) CSD fabric and silicone were constructed in different fiber orientations and tested on a custom-built biaxial stretcher. Silicone controls were made and stretched to detect the parameters of the matrix. CSD coefficients were calculated using the composite and silicone matrix stress-strain data. Stiffness in different fiber orientations was determined. Silicone specimens exerted a linear behavior, with stiffness of 2.57 MPa. For the composites with 1 fiber set aligned with respect to the stretch axes, stiffness in the direction of the aligned fiber set was higher than that in the cross-fiber direction (14.39 MPa versus 5.66 MPa), indicating greater compliance in the cross-fiber direction. When the orientation of the fiber sets in the composite were matched to the expected clinical orientation of the implanted CorCap, the stiffness in the circumferential axis (with respect to the heart) was greater than in the longitudinal axis (10.55 MPa versus 9.70 MPa). The mechanical properties of the CorCap demonstrate directionality with greater stiffness circumferentially than longitudinally. Implantation of the CorCap clinically should take into account the directionality of the biomechanics to optimize ventricular restraint. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Effect of dispersal networks on bacterial dispersal and biodegradation at varying water potentials
NASA Astrophysics Data System (ADS)
Worrich, Anja; Kästner, Matthias; Miltner, Anja; Wick, Lukas Y.
2015-04-01
In porous media the matric and the osmotic potential contribute to the availability of water to microbes and decisively influence important microbial ecosystem services such as biodegradation. Bacterial motility is considered as a key driver for biodegradation and fungal mycelia have been shown to serve as effective dispersal networks thereby increasing bacterial movement in water unsaturated environments. However, poor knowledge exists on the beneficial effects of mycelia at varying water potentials (Ψw). We therefore established experimental microcosms to investigate the effect of mycelia-like dispersal networks on the dispersal and growth of Pseudomonas putida KT2440-gfp at given osmotic and matric potentials and determined their benefit for the biodegradation of benzoate. Using either NaCl or polyethylene glycol 8000 the Ψw of agar was modified between ΔΨw 0 - -1.5 MPa (i.e. water potentials representing completely saturated or plant permanent wilting point conditions). We found that dispersal, growth and biodegradation rates dropped noticeably below ΔΨw -0.5 MPa in osmotically stressed systems. However, in matric stress treatments this decline occurred at ΔΨw -0.25 MPa due to a complete repression of bacterial movement at this Ψw. The presence of dispersal networks effectively defused the negative effects of lowered matric potentials by enhancing bacterial dispersal. No benefical network effect was observed in the osmotically stressed systems, likely due to NaCl toxicity rather than the water depriviation effects. We propose that dispersal networks act as an important buffer mechanism and hence may increase the microbial ecosystem's functional resistance to matric stress.
Effect of stresses on the structural changes in high-chromium steel upon creep
NASA Astrophysics Data System (ADS)
Fedoseeva, A. E.; Dudova, N. R.; Kaibyshev, R. O.
2017-06-01
The effect of stresses on the microstructure and dispersed particles in a heating-performance Fe‒0.12C-0.06Si-0.04Ni-0.2Mn-9.5Cr-3.2Co-0.45Mo-3.1W-0.2V-0.06Nb-0.005B-0.05N (wt %) steel has been studied under long-term strength tests at T = 650°C under initial applied stresses ranging from 220 to 100 MPa with a step of 20 MPa. Under an applied stress of 160 MPa, which corresponds to a time to fracture of 1703 h, a transfer from short- to long-term creep takes place. It has been shown that alloying with 3% Co and an increase in W content to 3% significantly increase the short-term creep resistance and slightly increase the long-term strength upon tests by more than 104 h. The transfer from short- to the long-term creep is accompanied by substantial changes in the microstructure of the steel. Under long-term creep, the solid solution became depleted of tungsten and of molybdenum down to the thermodynamically equilibrium content of these elements in the solid solution, which leads to the precipitation of a large amount of fine particles of the Laves phase at the boundaries of laths and prior austenitic grains. At a time to fracture of more than 4 × 103 h, the coalescence of the M23C6 carbides and Laves-phase particles occurs, which causes the transformation of the structure of fine tempered martensite lath structure into a subgrained structure.
NASA Astrophysics Data System (ADS)
Reches, Z.; Zu, X.; Jeffers, J.
2017-12-01
We explored the evolution of dynamic rupture along a circular experimental fault composed of clear acrylic blocks. The ring-shaped fault surface has inner and outer diameters of 7.72 and 10.16 cm, respectively. An array of ten rossette strain-gauges is attached to the outer rim of one block that provide the 2D strain tensor in a plane normal to the fault. The 30 components of the gauges are monitored at 10^6 samples/second. One 3D miniature accelerometer is attached to the fault block. The initial asperities of the fault surface generated a non-uniform strain (=stress) distribution that was recorded, and indicated local deviations of ±30% from the mean stress. The mean normal stress was up to 3.5 MPa, the remotely applied velocity was up to .002 m/s, and the slip velocities during rupture were not measured. The rupture characteristics, namely propagation velocity and rupture front strain-field, were determined from strain-gauge outputs. The analysis of tens of stick-slip events revealed the following preliminary results: (1) The ruptures consistently nucleated at sites of high local strains (=stresses) that were formed by the pre-shear, normal stress loading. (2) The pre-rupture nucleation process was recognized a by temporal (< 0.1 s), local (<20 mm) reduction of the shear strain. (3) Commonly, the initiation of nucleation was associated with micro acoustic emissions, whereas the initiation of rupture was associated with intense acoustic activity. (4) Nucleation could occur quasi-simultaneously at two, highly stressed sites. (5) From the nucleation site, the ruptures propagated in two directions along the ring-shaped fault, and the collision between the two fronts led to rupture `shut-off'. (5) The strain-field of rupture fronts was well-recognized for ruptures propagating faster than 50 m/s, and the fastest fronts propagated at 1000 m/s. (7) It appears that the rupture front strain-field close to the nucleation site differs from the front strain-field far from nucleation site. (8) Post-shear examination of the fault surfaces revealed evidence of brittle wear of the acrylic including gouge formation, ploughing, and powder smearing. (9) Work in progress includes attempts to achieve faster dynamic ruptures, and the utilization of the existing monitoring system to rupture granite faults.
Final Report to the Office of Naval Research on Precision Engineering
1991-09-30
Microscope equipped with a Panasonic Video Camera and Monitor was used to view the dressing process. Two scaled, transparent templates were made to...reservoir of hydraulic fluid. Loads were monitored by a miniature strain-guage load cell. A computer-based video image system was used to measure crack...was applied in a stepwise fashion, the stressing rate being approximately 1 MPa/s with hold periods of about 5 s at 2.5 - 5 MPa intervals. Video images
Aouba, Achille; Khoy, Kathy; Mariotte, Delphine; Lobbedez, Thierry; Martin Silva, Nicolas
2018-01-01
Recent data suggest the existence of a complement alternative pathway activation in the pathogenesis of antineutrophilic cytoplasmic antibody (ANCA)-associated vasculitis (AAV), a condition that remains poorly understood. This study aims to assess the clinical characteristics and outcomes of granulomatosis with polyangiitis (GPA) and microscopic polyangiitis (MPA) patients with regard to their plasma complement levels at diagnosis. A retrospective monocentric study carried out at Caen University Hospital led to the identification of proteinase-3- or myeloperoxidase-ANCA-positive GPA and MPA patients from January 2000 to June 2016 and from September 2011 to June 2016, respectively. All patients with available C3 and C4 levels at diagnosis were included. Patients were categorized in the hypocomplementemia group if their C3 and/or C4 levels at diagnosis were below the lower limit of the normal range. Among the 76 AAV patients (43 GPA, 33 MPA), 4 (5%) had hypocomplementemia, and the 72 remaining patients exhibited normal plasma complement levels. All 4 hypocomplementemia patients had renal involvement. Hypocomplementemia was followed in 1 patient whose post-treatment complement level normalized within 1 month. Among all clinical and ANCA specificity, including relapse-free survival (p = 0.093), only overall and renal survival rates were significantly lower in the hypocomplementemia group (p = 0.0011 and p<0.001, respectively). Hypocomplementemia with low C3 and/or C4 levels at GPA or MPA diagnosis may be responsible for worse survival and renal prognosis. These results argue for larger and prospective studies to better determine the epidemiology of the disease and to assess complement-targeting therapy in these patients. PMID:29621352
Rupture preparation process controlled by surface roughness on meter-scale laboratory fault
NASA Astrophysics Data System (ADS)
Yamashita, Futoshi; Fukuyama, Eiichi; Xu, Shiqing; Mizoguchi, Kazuo; Kawakata, Hironori; Takizawa, Shigeru
2018-05-01
We investigate the effect of fault surface roughness on rupture preparation characteristics using meter-scale metagabbro specimens. We repeatedly conducted the experiments with the same pair of rock specimens to make the fault surface rough. We obtained three experimental results under the same experimental conditions (6.7 MPa of normal stress and 0.01 mm/s of loading rate) but at different roughness conditions (smooth, moderately roughened, and heavily roughened). During each experiment, we observed many stick-slip events preceded by precursory slow slip. We investigated when and where slow slip initiated by using the strain gauge data processed by the Kalman filter algorithm. The observed rupture preparation processes on the smooth fault (i.e. the first experiment among the three) showed high repeatability of the spatiotemporal distributions of slow slip initiation. Local stress measurements revealed that slow slip initiated around the region where the ratio of shear to normal stress (τ/σ) was the highest as expected from finite element method (FEM) modeling. However, the exact location of slow slip initiation was where τ/σ became locally minimum, probably due to the frictional heterogeneity. In the experiment on the moderately roughened fault, some irregular events were observed, though the basic characteristics of other regular events were similar to those on the smooth fault. Local stress data revealed that the spatiotemporal characteristics of slow slip initiation and the resulting τ/σ drop for irregular events were different from those for regular ones even under similar stress conditions. On the heavily roughened fault, the location of slow slip initiation was not consistent with τ/σ anymore because of the highly heterogeneous static friction on the fault, which also decreased the repeatability of spatiotemporal distributions of slow slip initiation. These results suggest that fault surface roughness strongly controls the rupture preparation process, and generally increases its complexity with the degree of roughness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medvedev, Pavel G; Ozaltun, Hakan; Robinson, Adam Brady
2014-04-01
Post-irradiation examination of Reduced Enrichment for Research and Test Reactors (RERTR)-12 miniplates showed that in-reactor pillowing occurred in at least 4 plates, rendering performance of these plates unacceptable. To address in-reactor failures, efforts are underway to define the mechanisms responsible for in-reactor pillowing, and to suggest improvements to the fuel plate design and operational conditions. To achieve these objectives, the mechanical response of monolithic fuel to fission and thermally-induced stresses was modeled using a commercial finite element analysis code. Calculations of stresses and deformations in monolithic miniplates during irradiation and after the shutdown revealed that the tensile stress generated inmore » the fuel increased from 2 MPa to 100 MPa at shutdown. The increase in tensile stress at shutdown possibly explains in-reactor pillowing of several RERTR-12 miniplates irradiated to the peak local burnup of up to 1.11x1022 fissions/cm3 . This paper presents the modeling approach and calculation results, and compares results with post-irradiation examinations and mechanical testing of irradiated fuel. The implications for the safe use of the monolithic fuel in research reactors are discussed, including the influence of fuel burnup and power on the magnitude of the shutdown-induced tensile stress.« less
Manipulation of Suspended Single Cells by Microfluidics and Optical Tweezers
Nève, Nathalie; Kohles, Sean S.; Winn, Shelley R.; Tretheway, Derek C.
2010-01-01
Chondrocytes and osteoblasts experience multiple stresses in vivo. The optimum mechanical conditions for cell health are not fully understood. This paper describes the optical and microfluidic mechanical manipulation of single suspended cells enabled by the μPIVOT, an integrated micron resolution particle image velocimeter (μPIV) and dual optical tweezers instrument (OT). In this study, we examine the viability and trap stiffness of cartilage cells, identify the maximum fluid-induced stresses possible in uniform and extensional flows, and compare the deformation characteristics of bone and muscle cells. These results indicate cell photodamage of chondrocytes is negligible for at least 20 min for laser powers below 30 mW, a dead cell presents less resistance to internal organelle rearrangement and deforms globally more than a viable cell, the maximum fluid-induced shear stresses are limited to ~15 mPa for uniform flows but may exceed 1 Pa for extensional flows, and osteoblasts show no deformation for shear stresses up to 250 mPa while myoblasts are more easily deformed and exhibit a modulated response to increasing stress. This suggests that global and/or local stresses can be applied to single cells without physical contact. Coupled with microfluidic sensors, these manipulations may provide unique methods to explore single cell biomechanics. PMID:20824110
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, M.G.; Kohles, S.S.; Stevens, T.L.
1996-12-31
Duality of failure mechanisms (slow crack growth from pre-existing defects versus cumulative creep damage) is examined in a silicon nitride advanced ceramic recently tested at elevated-temperatures. Static (constant stress over time), dynamic (monotonically-increasing stress over time), and cyclic (fluctuating stress over time) fatigue behaviors were evaluated in tension in ambient air at temperatures of 1150, 1260, and 1370{degrees}C for a hot-isostatically pressed monolithic {beta}-silicon nitride. At 1150{degrees}C, all three types of fatigue results showed the similar failure mechanism of slow crack growth (SCG). At 1260 and 1370{degrees}C the failure mechanism was more complex. Failure under static fatigue was dominated bymore » the accumulation of creep damage via diffusion-controlled cavities. In dynamic fatigue, failure occurred by SCG at high stress rates (>10{sup {minus}2}MPa/s) and by creep damage at low stress rates ({le}10{sup {minus}2} MPa/s). For cyclic fatigue, such rate effects influenced the stress rupture results in which times to failure were greater for dynamic and cyclic fatigue than for static fatigue. Elucidation of failure mechanisms is necessary for accurate prediction of long-term survivability and reliability of structural ceramics.« less
Rheology and stress in subduction zones around the aseismic/seismic transition
NASA Astrophysics Data System (ADS)
Platt, John P.; Xia, Haoran; Schmidt, William Lamborn
2018-12-01
Subduction channels are commonly occupied by deformed and metamorphosed basaltic rocks, together with clastic and pelagic sediments, which form a zone up to several kilometers thick to depths of at least 40 km. At temperatures above 350 °C (corresponding to depths of > 25-35 km), the subduction zone undergoes a transition to aseismic behavior, and much of the relative motion is accommodated by ductile deformation in the subduction channel. Microstructures in metagreywacke suggest deformation occurs mainly by solution-redeposition creep in quartz. Interlayered metachert shows evidence for dislocation creep at relatively low stresses (8-13 MPa shear stress). Metachert is likely to be somewhat stronger than metagreywacke, so this value may be an upper limit for the shear stress in the channel as a whole. Metabasaltic rocks deform mainly by transformation-assisted diffusional creep during low-temperature metamorphism and, when dry, are somewhat stronger than metachert. Quartz flow laws for dislocation and solution-redeposition creep suggest strain rates of 10-12 s-1 at 500 °C and 10 MPa shear stress: this is sufficient to accommodate a 100 mm/yr. convergence rate within a 1 km wide ductile shear zone. The up-dip transition into the seismic zone occurs through a region where deformation is still distributed over a thickness of several kilometers, but occurs by a combination of microfolding, dilational microcracking, and solution-redeposition creep. This process requires a high fluid flux, released by dehydration reactions down-dip, and produces a highly differentiated deformational fabric with alternating millimeter-scale quartz and phyllosilicate-rich bands, and very abundant quartz veins. Bursts of dilational microcracking in zones 100-200 m thick may cause cyclic fluctuations in fluid pressure and may be associated with episodic tremor and slow slip events. Shear stress estimates from dislocation creep microstructures in dynamically recrystallized metachert are 10 MPa. [Figure not available: see fulltext.
Creep of Posidonia and Bowland shale at elevated pressures and temperatures
NASA Astrophysics Data System (ADS)
Herrmann, Johannes; Rybacki, Erik; Sone, Hiroki; Dresen, Georg
2017-04-01
The fracture-healing rate of artificial cracks generated by hydraulic fracturing is of major interest in the E&P industry since it is important for the long-time productivity of a well. To estimate the stress-induced healing rate of unconventional reservoir rocks, we performed deformation tests on Bowland shale rocks (UK) and on Posidonia shales (Germany). Samples of 1cm diameter and 2cm length were drilled perpendicular to the bedding and deformed in a high pressure, high temperature deformation apparatus. Constant strain rate tests at 5*10-4*s-1, 50 MPa confining pressure and 100˚ C temperature reveal a mainly brittle behaviour with predominantly elastic deformation before failure and high strength of low porosity (˜2%), quartz-rich (˜42 vol%) Bowland shale. In contrast, the low porosity (˜3%), carbonate- (˜43 vol%) and clay-rich (˜33 vol%) Posidonia shale deforms semi-brittle with pronounced inelastic deformation and low peak strength. These results suggest a good fracability of the Bowland formation compared to the Posidonia shale. Constant load (creep) experiments performed on Bowland shale at 100˚ C temperature and 75 MPa pressure show mainly transient (primary) deformation with increasing strain rate at increasing axial stress. The strain rate increases also with increasing temperature, measured in the range of 75 - 150˚ C at fixed stress and confinement. In contrast, increasing confining pressure (from 30 to 115 MPa) at given temperature and stress results in decreasing strain rate. In contrast, Posidonia shale rocks are much more sensitive to changes in stress, temperature and pressure than Bowland shale. Empirical relations between strain and stress that account for the influence of pressure and temperature on creep properties of Posidonia and Bowland shale rocks can be used to estimate the fracture healing rate of these shales under reservoir conditions.