Sample records for mpa total pressure

  1. Extension of the shelf life of prawns (Penaeus japonicus) by vacuum packaging and high-pressure treatment.

    PubMed

    López-Caballero, M E; Pérez-Mateos, M; Borderías, J A; Montero, P

    2000-10-01

    The present study has investigated the application of high pressures (200 and 400 MPa) in chilled prawn tails, both conventionally stored (air) and vacuum packaged. Vacuum packaging and high-pressure treatment did extend the shelf life of the prawn samples, although it did affect muscle color very slightly, giving it a whiter appearance. The viable shelf life of 1 week for the air-stored samples was extended to 21 days in the vacuum-packed samples, 28 days in the samples treated at 200 MPa, and 35 days in the samples pressurized at 400 MPa. Vacuum packaging checked the onset of blackening, whereas high-pressure treatment aggravated the problem. From a microbiological point of view, batches conventionally stored reached about 6 log CFU/g or even higher at 14 days. Similar figures were reached in total number of bacteria in vacuum-packed samples and in pressurized at 200-MPa samples at 21 days. When samples were pressurized at 400 MPa, total numbers of bacteria were below 5.5 log CFU/g at 35 days of storage. Consequently, a combination of vacuum packaging and high-pressure treatment would appear to be beneficial in prolonging freshness and preventing spotting.

  2. The combined effect of high pressure and nisin or lysozyme on the inactivation of Alicyclobacillus acidoterrestris spores in apple juice

    NASA Astrophysics Data System (ADS)

    Sokołowska, B.; Skąpska, S.; Fonberg-Broczek, M.; Niezgoda, J.; Chotkiewicz, M.; Dekowska, A.; Rzoska, S.

    2012-03-01

    Alicyclobacillus acidoterrestris, a thermoacidophilic and spore-forming bacterium is one of the important target micro-organisms in the quality control of acidic canned foods. High pressure pasteurization (HPP) at 50°C was used for the inactivation of A. acidoterrestris spores in apple juice. Pressure applied both in a continuous and oscillatory mode gave the best results when 200 MPa was used. Increasing the pressure to 500 MPa, as well as lowering its value to 100 MPa, had an adverse effect on the effectiveness of the process. The best results were achieved with the use of a combined treatment, involving oscillatory pressurization at 200 MPa, followed by holding the sample for 60 min at atmospheric pressure and subsequent pressurization at 500 MPa, resulting in a reduction in the spore count of 6.15 log. Nisin significantly enhanced the effect of HPP at 300 MPa. Using pressure of 200 MPa for 45 min with a nisin concentration of 250 IU/mL enabled total spore inactivation (over 6 log). No significant effect of lysozyme at a concentration of 0.05 and 0.1 mg/L at 300 MPa was observed.

  3. Hyperbaric storage of melon juice at and above room temperature and comparison with storage at atmospheric pressure and refrigeration.

    PubMed

    Queirós, Rui P; Santos, Mauro D; Fidalgo, Liliana G; Mota, Maria J; Lopes, Rita P; Inácio, Rita S; Delgadillo, Ivonne; Saraiva, Jorge A

    2014-03-15

    Hyperbaric storage (8h) of melon juice (a highly perishable food) at 25, 30 and 37°C, under pressure at 25-150 MPa was compared with atmospheric pressure storage (0.1 MPa) at the same temperatures and under refrigeration (4°C). Comparatively to the refrigerated condition, hyperbaric storage at 50/75 MPa resulted in similar or lower microbial counts (total aerobic mesophiles, enterobacteriaceae, and yeasts/moulds) while at 100/150 MPa, the counts were lower for all the tested temperatures, indicating in the latter case, in addition to microbial growth inhibition, a microbial inactivation effect. At 25 MPa no microbial inhibition was observed. Physicochemical parameters of all samples stored under pressure (pH, titratable acidity, total soluble solids, browning degree and cloudiness) did not show a clear variation trend with pressure, being the results globally similar to refrigeration storage. These results show the potential of hyperbaric storage, at and above room temperature and with potential energy savings, comparatively to refrigeration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. A comparison between high hydrostatic pressure extraction and heat extraction of ginsenosides from ginseng (Panax ginseng CA Meyer).

    PubMed

    Lee, Hyun-Sun; Lee, Hyun Jung; Yu, Hyung Jo; Ju, Do Weon; Kim, Yoonsook; Kim, Chong-Tai; Kim, Chul-Jin; Cho, Yong-Jin; Kim, Namsoo; Choi, Sin-Yang; Suh, Hyung Joo

    2011-06-01

    To determine biomaterial components, the components must first be transferred into solution; thus extraction is the first step in biomaterial analysis. High hydrostatic pressure technology was used for ginsenoside extraction from ginseng roots. In the extraction of fresh and red ginseng, high hydrostatic pressure extraction (HHPE) was found to be more effective than heat extraction (HE). In fresh ginseng extraction under HHPE, total ginsenosides (1602.2 µg mL⁻¹) and ginsenoside metabolite (132.6 µg mL⁻¹) levels were slightly higher than those under HE (1259.0 and 78.7 µg mL⁻¹), respectively. In red ginseng, similar results indicated total ginsenoside and ginsenoside metabolite amounts according to the extraction methods. Most volatile compounds by HHPE were higher than by HE treatment. HHPE of red ginseng was conducted under four pressures: 0.1 MPa (1 atm), 30, 50, and 80 MPa. Total sugar, uronic acid, and polyphenol amounts increased until 30 MPa of pressure and then showed decreasing tendencies. Total ginsenoside and ginsenoside metabolite contents linearly increased with increasing pressure, and a maximum was reached at 80 MPa for the metabolites. HHPE used for red ginseng processing contributes to enhanced extraction efficiencies of functional materials such as ginsenosides through cell structure modification. Copyright © 2011 Society of Chemical Industry.

  5. Application of high pressure processing for shelf life extension of litchi fruits (Litchi chinensis cv. Bombai) during refrigerated storage.

    PubMed

    Kaushik, Neelima; Kaur, Barjinder P; Rao, P Srinivasa

    2014-10-01

    This study attempts to report the effect of high pressure processing (100, 200 and 300 MPa for 5, 10 and 15 min at 27 ± 2 ℃) on quality and shelf life extension of 'Bombai' variety peeled litchi fruits during refrigerated storage (5 ℃). High pressure processing significantly increased total colour difference, browning index, drip loss and total soluble solids, whereas pH decreased after processing. Also, ascorbic acid content significantly decreased after high pressure processing and retention of 83.5% was observed. Texture profile analysis showed that pressurization significantly affected firmness and increased cohesiveness, gumminess, springiness and chewiness of litchi fruits. Pressure-induced firming effect was observed at 100 and 200 MPa pressure. A maximum of 3.29, 3.24 and 3.77 log10 cycles reduction in aerobic mesophiles, yeast & mold and psychrotrophs count, respectively, was achieved after pressurization of 300 MPa for 10 and 15 min treatments. During storage, samples treated at 300 MPa for 10 and 15 min showed relatively minimal changes in physico-chemical attributes, textural parameters and maintained lower viable microbial counts. Treatments at 300 MPa for 10 min and 15 min were found to enhance the shelf life of litchi fruits up to 32 days as compared to 12 days of untreated during refrigerated storage (5 ℃). © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  6. Effect of high hydrostatic pressure on functional properties and quality characteristics of Aloe vera gel (Aloe barbadensis Miller).

    PubMed

    Vega-Gálvez, Antonio; Miranda, Margarita; Aranda, Mario; Henriquez, Karem; Vergara, Judith; Tabilo-Munizaga, Gipsy; Pérez-Won, Mario

    2011-12-01

    The aim of this study was to evaluate the effects of high hydrostatic pressure treatment at three pressure levels (300, 400 and 500Mpa) on the functional and quality characteristics of Aloe vera gel including vitamin C and E, aloin, minerals, phenolic content and antioxidant activity. The results show that HHP exerted a clear influence on minerals content, vitamin C and E content, antioxidant activity, total phenolic and aloin content. After 35days of storage all treated samples presented a decrease in mineral content, except for phosphorus. Total phenolic content and vitamin C and E content decreased at high pressures (500MPa), while all pressurised samples showed a higher antioxidant activity and aloin content than untreated sample after 35days of storage. The maximum values of antioxidant activity and aloin were 6.55±1.26μg/ml at 300MPa and 24.23±2.27mg/100g d.m. at 400MPa. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. High pressure extraction of phenolic compounds from citrus peels†

    NASA Astrophysics Data System (ADS)

    Casquete, R.; Castro, S. M.; Villalobos, M. C.; Serradilla, M. J.; Queirós, R. P.; Saraiva, J. A.; Córdoba, M. G.; Teixeira, P.

    2014-10-01

    This study evaluated the effect of high pressure processing on the recovery of high added value compounds from citrus peels. Overall, the total phenolic content in orange peel was significantly (P < .05) higher than that in lemon peel, except when pressure treated at 500 MPa. However, lemon peel demonstrated more antioxidant activity than orange peel. Pressure-treated samples (300 MPa, 10 min; 500 MPa, 3 min) demonstrated higher phenolic content and antioxidant activity comparatively to the control samples. For more severe treatments (500 MPa, 10 min), the phenolic content and antioxidant activity decreased in both lemon and orange peels. This paper was presented at the 8th International Conference on High Pressure Bioscience & Biotechnology (HPBB 2014), in Nantes (France), 15-18 July 2014.

  8. Enzymatic hydrolysis of anchovy fine powder at high and ambient pressure, and characterization of the hydrolyzates.

    PubMed

    Kim, Namsoo; Son, So-Hee; Maeng, Jin-Soo; Cho, Yong-Jin; Kim, Chong-Tai

    2016-02-01

    At specific conditions of high pressure, the stability and activity of some enzymes are reportedly known to increase. The aim of this study was to apply pressure-tolerant proteases to hydrolyzing anchovy fine powder (AFP) and to determine product characteristics of the resultant hydrolyzates. Anchovy fine powder enzyme hydrolyzates (AFPEHs) were produced at 300 MPa and ambient pressure using combinations of Flavourzyme 500MG, Alcalase 2.4L, Marugoto E and Protamex. When the same protease combination was used for hydrolysis, the contents of total soluble solids, total water-soluble nitrogen and trichloroacetic acid-soluble nitrogen in the AFPEHs produced at 300 MPa were conspicuously higher than those in the AFPEHs produced at ambient pressure. This result and electrophoretic characteristics indicated that the high-pressure process of this study accelerates protein hydrolysis compared with the ambient-pressure counterpart. Most peptides in the hydrolyzates obtained at 300 MPa had molecular masses less than 5 kDa. Functionality, sensory characteristics and the content of total free amino acids of selected hydrolyzates were also determined. The high-pressure hydrolytic process utilizing pressure-tolerant proteases was found to be an efficient method for producing protein hydrolyzates with good product characteristics. © 2015 Society of Chemical Industry.

  9. Hydro-isomerization of n-hexane on bi-functional catalyst: Effect of total and hydrogen partial pressures

    NASA Astrophysics Data System (ADS)

    Thoa, Dao Thi Kim; Loc, Luu Cam

    2017-09-01

    The effect of both total pressure and hydrogen partial pressure during n-hexane hydro-isomerization over platinum impregnated on HZSM-5 was studied. n-Hexane hydro-isomerization was conducted at atmospheric pressure and 0.7 MPa to observe the influence of total pressure. In order to see the effect of hydrogen partial pressure, the reaction was taken place at different partial pressure of hydrogen varied from 307 hPa to 718 hPa by dilution with nitrogen to keep the total pressure at 0.1 MPa. Physico-chemical characteristics of catalyst were determined by the methods of nitrogen physi-sorption BET, SEM, XRD, TEM, NH3-TPD, TPR, and Hydrogen Pulse Chemi-sorption. Activity of catalyst in the hydro-isomerization of n-hexane was studied in a micro-flow reactor in the temperature range of 225-325 °C; the molar ratio H2/ hydrocarbon: 5.92, concentration of n-hexane: 9.2 mol.%, GHSV 2698 h-1. The obtained catalyst expressed high acid density, good reducing property, high metal dispersion, and good balance between metallic and acidic sites. It is excellent contact for n-hexane hydro-isomerization. At 250 °C, n-hexane conversion and selectivity were as high as 59-76 % and 85-99 %, respectively. It was found that catalytic activity was promoted either by total pressure or hydrogen partial pressure. At total pressure of 0.7 MPa while hydrogen partial pressure of 718 hPa, catalyst produced 63 RON liquid product containing friendly environmental iso-paraffins which is superior blending stock for green gasoline. Hydrogen did not only preserve catalyst actives by depressing hydrocracking and removing coke precursors but also facilitated hydride transfer step in the bi-functional bi-molecular mechanism.

  10. Effects of high hydrostatic pressure on the functional and rheological properties of the protein fraction extracted from pine nuts.

    PubMed

    Cao, Baiying; Fang, Li; Liu, Chunlei; Min, Weihong; Liu, Jingsheng

    2018-01-01

    High hydrostatic pressure treatments could increase the protein solubility (200 MPa), water holding capacity (400 MPa), and oil holding capacity (400 MPa) of pine nuts protein fractions, respectively. The exposed sufhydryl content for albumin was highest at 100 MPa while for other fractions it was 400 MPa, contrary for total sufhydryl content-generally it was at 100 MPa, except glutelin (400 MPa). Pine nuts protein fractions demonstrated the typical behavior of weak gels (G' > G″). After the treatments of high hydrostatic pressure the specific surface area of pine nuts protein particle was increased upon pressure, and the surface of protein became rough which increased the particle size. The functional groups of protein were found to be unchanged, but the characteristic peaks of pine nuts protein moved to a low-band displacement and the value of peaks was amplified accordingly to the pressure. The high hydrostatic pressure treatments were found to improve the functional properties of pine nuts protein isolates by enhancing the heat-induced gel strength of pine nuts protein isolates which make proteins more stretchable. These results suggest that high hydrostatic pressure treatments can increase the functional properties and alter the rheological properties of pine nuts protein fractions which will broaden its applications in food industry.

  11. Contact stresses, pressure and area in a fixed-bearing total ankle replacement: a finite element analysis.

    PubMed

    Martinelli, Nicolo; Baretta, Silvia; Pagano, Jenny; Bianchi, Alberto; Villa, Tomaso; Casaroli, Gloria; Galbusera, Fabio

    2017-11-25

    Mobile-bearing ankle implants with good clinical results continued to increase the popularity of total ankle arthroplasty to address endstage ankle osteoarthritis preserving joint movement. Alternative solutions used fixed-bearing designs, which increase stability and reduce the risk of bearing dislocation, but with a theoretical increase of contact stresses leading to a higher polyethylene wear. The purpose of this study was to investigate the contact stresses, pressure and area in the polyethylene component of a new total ankle replacement with a fixed-bearing design, using 3D finite element analysis. A three-dimensional finite element model of the Zimmer Trabecular Metal Total Ankle was developed and assembled based on computed tomography images. Three different sizes of the polyethylene insert were modeled, and a finite element analysis was conducted to investigate the contact pressure, the von Mises stresses and the contact area of the polyethylene component during the stance phase of the gait cycle. The peak value of pressure was found in the anterior region of the articulating surface, where it reached 19.8 MPa at 40% of the gait cycle. The average contact pressure during the stance phase was 6.9 MPa. The maximum von Mises stress of 14.1 MPa was reached at 40% of the gait cycle in the anterior section. In the central section, the maximum von Mises stress of 10.8 MPa was reached at 37% of the gait cycle, whereas in the posterior section the maximum stress of 5.4 MPa was reached at the end of the stance phase. The new fixed-bearing total ankle replacement showed a safe mechanical behavior and many clinical advantages. However, advanced models to quantitatively estimate the wear are need. To the light of the clinical advantages, we conclude that the presented prosthesis is a good alternative to the other products present in the market.

  12. System Mass Variation and Entropy Generation in 100k We Closed-Brayton-Cycle Space Power Systems

    NASA Technical Reports Server (NTRS)

    Barrett, Michael J.; Reid, Bryan M.

    2004-01-01

    State-of-the-art closed-Brayton-cycle (CBC) space power systems were modeled to study performance trends in a trade space characteristic of interplanetary orbiters. For working-fluid molar masses of 48.6, 39.9, and 11.9 kg/kmol, peak system pressures of 1.38 and 3.0 MPa and compressor pressure ratios ranging from 1.6 to 2.4, total system masses were estimated. System mass increased as peak operating pressure increased for all compressor pressure ratios and molar mass values examined. Minimum mass point comparison between 72 percent He at 1.38 MPa peak and 94 percent He at 3.0 MPa peak showed an increase in system mass of 14 percent. Converter flow loop entropy generation rates were calculated for 1.38 and 3.0 MPa peak pressure cases. Physical system behavior was approximated using a pedigreed NASA Glenn modeling code, Closed Cycle Engine Program (CCEP), which included realistic performance prediction for heat exchangers, radiators and turbomachinery.

  13. System Mass Variation and Entropy Generation in 100-kWe Closed-Brayton-Cycle Space Power Systems

    NASA Technical Reports Server (NTRS)

    Barrett, Michael J.; Reid, Bryan M.

    2004-01-01

    State-of-the-art closed-Brayton-cycle (CBC) space power systems were modeled to study performance trends in a trade space characteristic of interplanetary orbiters. For working-fluid molar masses of 48.6, 39.9, and 11.9 kg/kmol, peak system pressures of 1.38 and 3.0 MPa and compressor pressure ratios ranging from 1.6 to 2.4, total system masses were estimated. System mass increased as peak operating pressure increased for all compressor pressure ratios and molar mass values examined. Minimum mass point comparison between 72 percent He at 1.38 MPa peak and 94 percent He at 3.0 MPa peak showed an increase in system mass of 14 percent. Converter flow loop entropy generation rates were calculated for 1.38 and 3.0 MPa peak pressure cases. Physical system behavior was approximated using a pedigreed NASA Glenn modeling code, Closed Cycle Engine Program (CCEP), which included realistic performance prediction for heat exchangers, radiators and turbomachinery.

  14. Effect of skim milk treated with high hydrostatic pressure on permeate flux and fouling during ultrafiltration.

    PubMed

    Leu, Mathilde; Marciniak, Alice; Chamberland, Julien; Pouliot, Yves; Bazinet, Laurent; Doyen, Alain

    2017-09-01

    Ultrafiltration (UF) is largely used in the dairy industry to generate milk and whey protein concentrate for standardization of milk or production of dairy ingredients. Recently, it was demonstrated that high hydrostatic pressure (HHP) extended the shelf life of milk and improved rennet coagulation and cheese yield. Pressurization also modified casein micelle size distribution and promoted aggregation of whey proteins. These changes are likely to affect UF performance. Consequently, this study determined the effect of skim milk pressurization (300 and 600 MPa, 5 min) on UF performance in terms of permeate flux decline and fouling. The effect of HHP on milk proteins was first studied and UF was performed in total recycle mode at different transmembrane pressures to determine optimal UF operational parameters and to evaluate the effect of pressurization on critical and limiting fluxes. Ultrafiltration was also performed in concentration mode at a transmembrane pressure of 345 kPa for 130 or 140 min to evaluate the decline of permeate flux and to determine fouling resistances. It was observed that average casein micelle size decreased by 32 and 38%, whereas β-lactoglobulin denaturation reached 30 and 70% at 300 and 600 MPa, respectively. These results were directly related to UF performance because initial permeate fluxes in total recycle mode decreased by 25% at 300 and 600 MPa compared with nonpressurized milk, critical flux, and limiting flux, which were lower during UF of milk treated with HHP. During UF in concentration mode, initial permeate fluxes were 30% lower at 300 and 600 MPa compared with the control, but the total flux decline was higher for nonpressurized milk (62%) compared with pressure-treated milk (30%). Fouling resistances were similar, whatever the treatment, except at 600 MPa where irreversible fouling was higher. Characterization of the fouling layer showed that caseins and β-lactoglobulin were mainly involved in membrane fouling after UF of pressure-treated milk. Our results demonstrate that HHP treatment of skim milk drastically decreased UF performance. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Pressure and temperature effects on degradation kinetics and storage stability of total anthocyanins in blueberry juice.

    PubMed

    Buckow, Roman; Kastell, Anja; Terefe, Netsanet Shiferaw; Versteeg, Cornelis

    2010-09-22

    The degradation kinetics of total anthocyanins in blueberry (Vaccinium myrtillus) juice were studied during thermal processing by treatment at selected temperatures (60-121 °C) and combined high pressure-temperature processing (100-700 MPa, 40-121 °C). Anthocyanin stability was also studied for several of these treatments during storage at 4, 25, and 40 °C. Both pressure and temperature increased d, the degradation rate of total anthocyanins in blueberry juice, meaning that at constant temperature, anthocyanins were more rapidly degraded with increasing pressure. For example, 32% degradation of anthocyanins was observed after 20 min heating at 100 °C and atmospheric pressure, whereas at 100 °C and 600 MPa, approximately 50% of total anthocyanins were lost. Degradation of anthocyanins was significantly accelerated with increasing storage temperatures. Combined pressure-temperature treatment of pasteurized juice led to a slightly faster degradation of total anthocyanins during storage compared to heat treatments at ambient pressure. Degradation of anthocyanins was best described by a 1.4th-order reaction at all conditions investigated. A mathematical model describing the degradation of blueberry anthocyanins in juice as a function of pressure, temperature, and treatment time is presented.

  16. High pressure, temperature and time-dependent effects on enzymatic and microbial properties of fresh sugarcane juice.

    PubMed

    Chauhan, O P; Ravi, N; Roopa, N; Kumar, Sumeet; Raju, P S

    2017-11-01

    Efficacy of variable high pressure, temperature and time on the browning causing enzymes and microbial activities, which are major spoilage factors during preservation of sugarcane juice, was studied. The juice was processed at 200-600 MPa pressure for 2-8 min at 40 and 60 °C and their effect on polyphenol oxidase and peroxidase as well as microbiological quality in terms of total plate count, yeast and molds and total coliforms was studied. Application of high pressures were found to cause significant decrease in enzymatic and microbial activities. The effects were found to be significantly more pronounced at 60 °C as compared to 40 °C. Process time also caused significant ( p  < 0.05) negative effect on microbial and enzyme activities. The sugarcane juice treated at 600 MPa for 6 min at 60 °C was found sufficient to inactivate the microbial counts completely. Whereas, enzymes were found to be completely inactivated in the samples processed at 600 MPa for 8 min at 60 °C. A pressure of 600 MPa at 60 °C for 8 min could be applied during commercial preservation of sugarcane juice for getting complete inactivation of browning causing enzymes and spoilage causing microorganisms.

  17. Effect of high-pressure processing of bovine colostrum on immunoglobulin G concentration, pathogens, viscosity, and transfer of passive immunity to calves.

    PubMed

    Foster, Derek M; Poulsen, Keith P; Sylvester, Hannah J; Jacob, Megan E; Casulli, Kaitlyn E; Farkas, Brian E

    2016-11-01

    This study aimed to determine the effects of high-pressure processing on the immunoglobulin concentration, microbial load, viscosity, and transfer of passive immunity to calves when applied to bovine colostrum as an alternative to thermal pasteurization. A pilot study using Staphylococcus aureus was conducted to determine which pressure-time treatments are most appropriate for use with bovine colostrum, with the goals of maximizing bacterial inactivation while minimizing IgG content and viscosity changes. Following the pilot study, an inoculation study was conducted in which first-milking colostrum samples from Holstein-Friesian cows were inoculated with known concentrations of various bacteria or viruses and pressure processed at either 300 MPa for up to 60min or at 400MPa for up to 30min. The recovery of total native aerobic bacteria, Escherichia coli, Salmonella enterica ssp. enterica serovar Dublin, Mycobacterium avium ssp. paratuberculosis, bovine herpesvirus type 1, and feline calicivirus were determined after processing. Colostrum IgG content was measured before and after pressure processing. Shear stress and viscosity for each treatment was determined over shear rates encompassing those found during calf feeding and at normal bovine body temperature (37.8°C). Following a calf trial, serum IgG concentration was measured in 14 calves fed 4 L of colostrum pressure processed at 400MPa for 15min. In the pilot study, S. aureus was effectively reduced with pressure treatment at 300 and 400MPa (0, 5, 10, 15, 30, and 45min), with 2 treatments at 400MPa (30, 45min) determined to be inappropriate for use with bovine colostrum due to viscosity and IgG changes. High-pressure processing at 300MPa (30, 45, and 60min) and 400MPa (10, 15, and 20min) was shown to effectively reduce total native aerobic bacteria, E. coli, Salmonella Dublin, bovine herpesvirus type 1, and feline calicivirus populations in bovine colostrum, but no decrease occurred in Mycobacterium avium ssp. paratuberculosis. All inoculation study pressure treatments insignificantly decreased IgG content of colostrum. Treatment of colostrum at 400MPa for 15min during the calf trial decreased IgG content of colostrum. Treatment at 400MPa for 15min increased colostrum viscosity, with 2 of 14 samples requiring dilution with water for calf feeding. Calves fed pressure-processed colostrum had similar serum IgG but lower efficiency of absorption than calves fed heat-treated colostrum. The results of this study suggest that high-pressure processing of bovine colostrum maintains an acceptable IgG level while decreasing bacterial and viral counts. Changes in viscosity sometimes made calf feeding more difficult, but still feasible. Additional research to optimize this technology for on-farm use is necessary. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Optimization of supercritical carbon dioxide extraction of Piper Betel Linn leaves oil and total phenolic content

    NASA Astrophysics Data System (ADS)

    Aziz, A. H. A.; Yunus, M. A. C.; Arsad, N. H.; Lee, N. Y.; Idham, Z.; Razak, A. Q. A.

    2016-11-01

    Supercritical Carbon Dioxide (SC-CO2) Extraction was applied to extract piper betel linn leaves. The piper betel leaves oil was used antioxidant, anti-diabetic, anticancer and antistroke. The aim of this study was to optimize the conditions of pressure, temperature and flowrate for oil yield and total phenolic content. The operational conditions of SC-CO2 studied were pressure (10, 20, 30 MPa), temperature (40, 60, 80 °C) and flowrate carbon dioxide (4, 6, 8 mL/min). The constant parameters were average particle size and extraction regime, 355pm and 3.5 hours respectively. First order polynomial expression was used to express the extracted oil while second order polynomial expression was used to express the total phenolic content and the both results were satisfactory. The best conditions to maximize the total extraction oil yields and total phenolic content were 30 MPa, 80 °C and 4.42 mL/min leading to 7.32% of oil and 29.72 MPa, 67.53 °C and 7.98 mL/min leading to 845.085 mg GAE/g sample. In terms of optimum condition with high extraction yield and high total phenolic content in the extracts, the best operating conditions were 30 MPa, 78 °C and 8 mL/min with 7.05% yield and 791.709 mg gallic acid equivalent (GAE)/g sample. The most dominant condition for extraction of oil yield and phenolic content were pressure and CO2 flowrate. The results show a good fit to the proposed model and the optimal conditions obtained were within the experimental range with the value of R2 was 96.13% for percentage yield and 98.52% for total phenolic content.

  19. Proteomics analysis in frozen horse mackerel previously high-pressure processed.

    PubMed

    Pazos, Manuel; Méndez, Lucía; Vázquez, Manuel; Aubourg, Santiago P

    2015-10-15

    The effect of high-pressure processing (HPP) (150, 300 and 450 MPa for 0, 2.5 and 5 min) on total sodium dodecyl sulphate (SDS)-soluble and sarcoplasmic proteins in frozen (-10 °C for 3 months) horse mackerel (Trachurus trachurus) was evaluated. Proteomics tools based on image analysis of SDS-PAGE protein gels and protein identification by tandem mass spectrometry (MS/MS) were applied. Although total SDS-soluble fraction indicated no important changes induced by HPP, this processing modified the 1-D SDS-PAGE sarcoplasmic patterns in a direct-dependent manner and exerted a selective effect on particular proteins depending on processing conditions. Thus, application of the highest pressure (450 MPa) provoked a significant degradation of phosphoglycerate mutase 2, glycogen phosphorylase muscle form, pyruvate kinase muscle isozyme, beta-enolase and triosephosphate isomerase and phosphoglucomutase-1. Conversely, protein bands assigned to tropomyosin alpha-1 chain, fast myotomal muscle troponin T and parvalbumin beta 2 increased their intensity after applying a 450-MPa processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Enzymatic and phytochemical stabilization of orange-strawberry-banana beverages by high hydrostatic pressure and mild heat.

    PubMed

    Escobedo-Avellaneda, Zamantha; Pérez-Simón, Izaskun; Lavilla-Martín, María; Baranda-González, Ana; Welti-Chanes, Jorge

    2017-03-01

    A new approach to the use of high hydrostatic pressure is its combination with high and intermediate temperatures applied to obtain safe foods of high quality. The effect of high hydrostatic pressure on color, residual polyphenol oxidase and pectin methylesterase activity, and total phenolic and l-ascorbic acid contents of orange-strawberry-banana beverages was evaluated. Beverages were treated at 500 and 600 MPa at 19-64 ℃ during 2-10 min. The effect of the come up time was also evaluated and results were compared with the untreated and the thermally processed (80 ℃/7 min) products. Untreated beverages had total phenolic content of 210.2±12.3 mg gallic acid/100 g and 19.1 ± 0.6 mg l-ascorbic acid/100 g. For most high hydrostatic pressure treatment conditions, total phenolic content, l-ascorbic acid, and color did not change significantly. Maximum levels of inactivation of polyphenol oxidase and pectin methylesterase were 96.2 and 48% at 600 MPa/64 ℃/10 min, while the thermal treatment led to inactivation of 99.6 and 94.1% of both enzymes, but with negative color changes. l-ascorbic acid content was slightly decreased with the thermal treatment while total phenolic content was not affected. High hydrostatic pressure treatments of beverages at 600 MPa/64 ℃/10 min are recommended to retain maximal total phenolic content and l-ascorbic acid and achieve an acceptable polyphenol oxidase inactivation level.

  1. High Pressure, Earth-storable Rocket Technology. Volume 1

    NASA Technical Reports Server (NTRS)

    Jassowski, D. M.

    1997-01-01

    The effect of elevated chamber pressure on combustion efficiency and heat transfer has been determined at the 100 lbf (445 N) thrust level for nitrogen tetroxide propellants. Measurements were made up to 500 psia (3.45 MPa) with testbed hardware; tests at 100 psia (0.690 MPa) and 250 psia (1.72 MPa) were made with radiation-cooled rhenium chambers. The first task of the program served to determine desirable thruster applications and operating conditions: high total impulse, i.e., communication satellite or spacecraft bus axial engines, at chamber pressures up to 250 psia (1.72 MPa) pressure-fed, or up to 500 psia (3.45 MPa) pump-fed. The hardware modifications and testing required to obtain the data were determined in Task 2, which included design-support hot fire tests; supplemental hardware, including a 250 psia (1.72 MPa) Pc rhenium chamber and a 20% fuel-film cooled platelet injector was fabricated in Task 3. Testing showed that satisfactory operation of Ir-Re radiation chambers is assured at pressures up to 250 psia and may be possible up to 500. The heat transfer data obtained show good correlation with throat Reynolds number and are generally under values given by the simplified Bartz equation; chambers equilibrium temperatures match predicted values. Preliminary optimization of trip configuration and mixture ratio were made; Isp performance from thrust measurements was within 1% of predicted values. Stability, compatibility, and front-end thermal management were determined to be satisfactory.

  2. High Pressure, Earth-storable Rocket Technology. Volume 2

    NASA Technical Reports Server (NTRS)

    Jassowski, D. M.

    1997-01-01

    The effect of elevated chamber pressure on combustion efficiency and heat transfer has been determined at the 100 lbf (445 N) thrust level for nitrogen tetroxide propellants. Measurements were made up to 500 psia (3.45 Mpa) with testbed hardware; tests at 100 psia (0.690 MPa) and 250 psia (1.72 MPa) were made with radiation-cooled rhenium chambers. The first task of the program served to determine desirable thruster applications and operating conditions: high total impulse, i.e. communication satellite or spacecraft bus axial engines, at chamber pressures up to 250 psia (1.72 MPa) pressure-fed, or up to 500 psia (3.45 MPa) pump-fed. The hardware modifications and testing required to obtain the data were determined in Task 2, which included design-support hot fire tests; supplemental hardware, including a 250 psia (1.72 MPa) Pc rhenium chamber and a 20% fuel-film cooled platelet injector was fabricated in Task 3. Testing showed that satisfactory operation of Ir-Re radiation chambers is assured at pressures up to 250 psia and may be possible up to 500. The heat transfer data obtained show good correlation with throat Reynolds number and are generally under values given by the simplified Bartz equation; chambers equilibrium temperatures match predicted values. Preliminary optimization of trip configuration and mixture ratio were made; Isp performance from thrust measurements was within 1% of predicted values. Stability, compatibility, and front-end thermal management were determined to be satisfactory.

  3. High Pressure, Earth-Storable Rocket Technology. Volume 3; Appendices C and D

    NASA Technical Reports Server (NTRS)

    Jassowski, D. M.

    1997-01-01

    The effect of elevated chamber pressure on combustion efficiency and heat transfer has been determined at the 100 lbf (445 N) thrust level for nitrogen tetroxide propellants. Measurements were made up to 500 psia (3.45 MPa) with testbed hardware; tests at 100 psia (0.690 MPa) and 250 psia (1.72 MPa) were made with radiation-cooled rhenium chambers. The first task of the program served to determine desirable thruster applications and operating conditions: high total impulse, i.e. communication satellite or spacecraft bus axial engines, at chamber pressures up to 250 psia (1.72 MPa) pressure-fed, or up to 500 psia (3.45 MPa) pump-fed. The hardware modifications and testing required to obtain the data were determined in Task 2, which included design-support hot fire tests; supplemental hardware, including a 250 psia (1.72 MPa) Pc rhenium chamber and a 20% fuel-film cooled platelet injector was fabricated in Task 3. Testing showed that satisfactory operation of Ir-Re radiation chambers is assured at pressures up to 250 psia and may be possible up to 500. The heat transfer data obtained show good correlation with throat Reynolds number and are generally under values given by the simplified Bartz equation; chambers equilibrium temperatures match predicted values. Preliminary optimization of trip configuration and mixture ratio were made; Isp performance from thrust measurements was within 1% of predicted values. Stability, compatibility, and front-end thermal management were determined to be satisfactory.

  4. Dissociation of Laboratory-Synthesized Methane Hydrate in Coarse-Grained Sediments by Slow Depressurization

    NASA Astrophysics Data System (ADS)

    Phillips, S. C.; You, K.; Borgfeldt, T.; Meyer, D.; Dong, T.; Flemings, P. B.

    2016-12-01

    We performed four dissociation experiments in which experimentally-formed methane hydrate was dissociated via slow, stepwise depressurization, revealing in situ salinity conditions. Overall, these results suggest the occurrence of local pore water freshening around dissociating hydrate in which bulk equilibrium behavior is limited by salt diffusion. Depressurization was performed at a constant confining temperature over 1 to 3 weeks by releasing small volumes of methane gas from the top of a vertically-oriented sample into an inverted graduated cylinder. We identify three distinct regimes of depressurization based on pressure drop behavior: (1) release of free gas down to initial hydrate dissociation at 3.3 MPa in NaBr or 4.64 MPa in NaCl, (2) dissociation of methane hydrate characterized by a slow, logarithmic increase in pressure after each gas release and (3) residual free gas release. Initial hydrate dissociation in NaCl brine at 4.64 MPa corresponds to the phase boundary for hydrate in 9.6 wt% NaCl. In the NaCl experiment, pressure increases of 0.16 MPa while the sample was shut in over 3 days likely correspond to a recovery in salinity of 0.7 wt. %. Salt ions likely diffuse from brine ahead of the hydrate front, based on a length scale for diffusion of NaCl of 6.3 cm for 3 days. In this experiment dissociation at bulk equilibrium is expected to decline from 4.54 to 4.04 MPa; however actual dissociation during 73 gas releases over 15 days, results in a pressure drop from 4.64 to 3.25 MPa. Hydrate samples were formed by injection of methane gas at 1 ºC and 12.24 MPa within a cylinder packed with medium-grained quartz sand and initially saturated in a 7 wt% NaBr or NaCl solution. In two experiments in which the system was thoroughly leak tested, total methane consumed during formation and recovered during depressurization match within 7% indicating this approach to be relatively accurate for determining total methane in experimental or pressure core samples.

  5. Effect of high-pressure treatment at various temperatures on indigenous proteolytic enzymes and whey protein denaturation in bovine milk.

    PubMed

    Moatsou, Golfo; Bakopanos, Constantinos; Katharios, Dimitis; Katsaros, George; Kandarakis, Ioannis; Taoukis, Petros; Politis, Ioannis

    2008-08-01

    The objective of the present study was to determine the effect of high pressure (HP) processing (200, 450 and 650 MPa) at various temperatures (20, 40 and 55 degrees C) on the total plasmin plus plasminogen-derived activity (PL), plasminogen activator(s) (PA) and cathepsin D activities and on denaturation of major whey proteins in bovine milk. Data indicated that transfer of both PL and PA from the casein micelles to milk serum occurred at all pressures utilized at room temperature (20 degrees C). In addition to the transfer of PL and PA from micelles, there were reductions in activities of PL (16-18%) and PA (38-62%) for the pressures 450 and 650 MPa, at room temperature. There were synergistic negative effects between pressure and temperature on residual PL activity at 450 and 650 MPa and on residual PA activity only at 450 MPa. Cathepsin D activity in the acid whey from HP-treated milk was in general baroresistant at room temperature. The residual activity of cathepsin D decreased significantly at 650 MPa and 40 degrees C and at the pressures 450 and 650 MPa at 55 degrees C. Synergistic negative effects on the amount of native beta-lactoglobulin were observed at 450 and 650 MPa and on the amount of native alpha-lactalbumin at 650 MPa. There were significant correlations between enzymatic activities (PL, PA and cathepsin D) and the residual native beta-lactoglobulin and alpha-lactalbumin in bovine milk. In conclusion, HP significantly affected the activity of indigenous proteolytic enzymes and whey protein denaturation in bovine milk. Reduction in activity of indigenous enzymes (PL, PA and cathepsin D) and transfer of PL and PA from the casein to milk serum induced by HP is expected to have a profound effect on cheese yield, proteolysis during cheese ripening and quality of UHT milk during storage.

  6. Sewage sludge solubilization by high-pressure homogenization.

    PubMed

    Zhang, Yuxuan; Zhang, Panyue; Guo, Jianbin; Ma, Weifang; Fang, Wei; Ma, Boqiang; Xu, Xiangzhe

    2013-01-01

    The behavior of sludge solubilization using high-pressure homogenization (HPH) treatment was examined by investigating the sludge solid reduction and organics solubilization. The sludge volatile suspended solids (VSS) decreased from 10.58 to 6.67 g/L for the sludge sample with a total solids content (TS) of 1.49% after HPH treatment at a homogenization pressure of 80 MPa with four homogenization cycles; total suspended solids (TSS) correspondingly decreased from 14.26 to 9.91 g/L. About 86.15% of the TSS reduction was attributed to the VSS reduction. The increase of homogenization pressure from 20 to 80 MPa or homogenization cycle number from 1 to 4 was favorable to the sludge organics solubilization, and the protein and polysaccharide solubilization linearly increased with the soluble chemical oxygen demand (SCOD) solubilization. More proteins were solubilized than polysaccharides. The linear relationship between SCOD solubilization and VSS reduction had no significant change under different homogenization pressures, homogenization cycles and sludge solid contents. The SCOD of 1.65 g/L was solubilized for the VSS reduction of 1.00 g/L for the three experimental sludge samples with a TS of 1.00, 1.49 and 2.48% under all HPH operating conditions. The energy efficiency results showed that the HPH treatment at a homogenization pressure of 30 MPa with a single homogenization cycle for the sludge sample with a TS of 2.48% was the most energy efficient.

  7. Impact of post-rigor high pressure processing on the physicochemical and microbial shelf-life of cultured red abalone (Haliotis rufescens).

    PubMed

    Hughes, Brianna H; Perkins, L Brian; Yang, Tom C; Skonberg, Denise I

    2016-03-01

    High pressure processing (HPP) of post-rigor abalone at 300MPa for 10min extended the refrigerated shelf-life to four times that of unprocessed controls. Shucked abalone meats were processed at 100 or 300MPa for 5 or 10min, and stored at 2°C for 35days. Treatments were analyzed for aerobic plate count (APC), total volatile base nitrogen (TVBN), K-value, biogenic amines, color, and texture. APC did not exceed 10(6) and TVBN levels remained below 35mg/100g for 35days for the 300MPa treatments. No biogenic amines were detected in the 300MPa treatments, but putrescine and cadaverine were detected in the control and 100MPa treatments. Color and texture were not affected by HPP or storage time. These results indicate that post-rigor processing at 300MPa for 10min can significantly increase refrigerated shelf-life of abalone without affecting chemical or physical quality characteristics important to consumers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Effect of high hydrostatic pressure on the polyphenols and antioxidant activity of plantain pulp (Musa paradisiaca AAB).

    PubMed

    Jiménez-Martínez, Miriam C; Montalvo-González, Efigenia; Sáyago-Ayerdi, Sonia G; Mercado-Mercado, Gilberto; Ramírez-de León, José A; Paz-Gamboa, Ernestina; Vivar-Vera, Maria A

    2017-06-01

    The impact of high-pressure processing (HPP) on the polyphenol (PP) content and antioxidant activity (AOX) of plantain pulp was evaluated. Pressures of 400, 500 and 600 MPa were applied to plantain pulp for 90 and 180 s at room temperature (25 °C). Polyphenoloxidase activity, extractable (EPP) and non-extractable PP (NEPP) contents, flavonoid content and AOX (FRAP, ABTS •+ ) were evaluated. In addition, PP identification was performed using high-performance liquid chromatography. Polyphenoloxidase activity was inhibited after HPP under all of the conditions studied. Increases of 110.80% and 137.40% in EPP content under conditions of 500 MPa/180 s and 600 MPa/90 s were observed with a simultaneous improvement in the AOX with increments of up to 128.71%. The treatment under conditions of 500 MPa/90 s had the highest total PP content, including the highest content of flavonoids (0.22 g ellagic acid equivalents kg -1  dry weight) and the proportion of NEPP that contained hydrolysable PPs (91.12 g gallic acid equivalents kg -1  dry weight with high AOX. The identified PPs included catechin, quercetin, gallic and hydroxybenzoic acids. HPP performed at a room temperature can be used for improving the total content of PP compounds in plantain pulp under specific pressure and time conditions. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Extraction of ewe's milk cream with supercritical carbon dioxide.

    PubMed

    González Hierro, M T; Ruiz-Sala, P; Alonso, L; Santa-María, G

    1995-04-01

    The extraction of ewe's milk cream by supercritical carbon dioxide in the pressure range 9-30 MPa (90-300 bar) and at temperatures of 40 degrees C and 50 degrees C was studied. The solubility of total fat increased with pressure at both temperatures until a plateau was reached. The extraction of cholesterol also increased with pressure until a plateau was reached and it was higher at 50 degrees C than at 40 degrees C when the pressure was > or = 15 MPa (150 bar). The triglyceride composition of each extract, determined by GC, showed that extracts obtained at lower pressures were enriched in short-chain triglycerides and their concentration decreased as the pressure increased. In the other hand, long-chain triglycerides were enriched in the extracts obtained at higher pressures and their concentration rose with increasing pressure.

  10. Solubility of single gases carbon dioxide and hydrogen sulfide in aqueous solutions of N-methyldiethanolamine in the temperature range 313--413 K at pressures up to 5 MPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuranov, G.; Smirnova, N.A.; Rumpf, B.

    1996-06-01

    Experimental results for the solubility of the single gases carbon dioxide and hydrogen sulfide in aqueous solutions of 2,2{prime}-methyliminodiethanol (N-methyldiethanolamine (MDEA)) at temperatures between 313 and 413 K and total pressures up to 5 MPa are reported. A model taking into account chemical reactions as well as physical interactions is used to correlate the new data. The correlation is also used to compare the new experimental data with literature data.

  11. High hydrostatic pressure processing affects the phenolic profile, preserves sensory attributes and ensures microbial quality of jabuticaba (Myrciaria jaboticaba) juice.

    PubMed

    Inada, Kim Op; Torres, Alexandre G; Perrone, Daniel; Monteiro, Mariana

    2018-01-01

    Jabuticaba (Myrciaria jaboticaba) is a Brazilian fruit rich in phenolic compounds and much appreciated for its sweet and slightly tangy taste. However, the high perishability of this fruit impairs its economic exploitation, creating an opportunity for the development of innovative products, such as high hydrostatic pressure (HHP) processed juices. We investigated the effect of HHP (200, 350 and 500 MPa for 5, 7.5 and 10 min) on phenolic compounds, antioxidant activity and microbiological quality of jabuticaba juice and the effect of the most effective HHP condition on its sensory acceptance. Pressurization increased total phenolic compound content (up to 38%) and antioxidant activity by FRAP assay (up to 46%), probably by increasing phenolic compound extractability due to tissue damage. Pressurization progressively decreased microbial counts, and colony growth was undetectable at pressures of 350 MPa or 500 MPa. With the exception of aroma, which was 10% lower in pressurized juice at 350 MPa for 7.5 min in relation to unprocessed juice, HHP did not affect sensory acceptance scores. Our results show that HHP was effective in ensuring microbiological quality, increasing bioactive potential and maintaining overall acceptance of jabuticaba juice, reinforcing the potential application of this processing technology in bioactive-rich foods. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Effect of high hydrostatic pressure on seed germination, microbial quality, anatomy-morphology and physiological characteristics of garden cress (Lepidium sativum) seedlings

    NASA Astrophysics Data System (ADS)

    İşlek, Cemil; Murat Altuner, Ergin; Çeter, Talip; Alpas, Hami

    2013-06-01

    High hydrostatic pressure is a non-thermal food processing technology that is found to increase the percentage of germination, decrease the germination time and improve the microbial quality of seeds. In this study, pressures of 100-400 MPa for 10 min at 30°C are used to compare the percentage of germination, the microbial quality of seeds, chlorophyll a and b, and total phenolic compounds concentrations in seedlings, and the anatomy-morphology characteristics of garden cress. Enhanced reductions of total aerobic mesophilic bacteria, total and fecal coliforms, and yeast and mould populations in seeds were observed, especially at 300 MPa. In addition, the percentage of germination, chlorophyll content and phenolic compounds concentrations, fresh and dry weights, and hypocotyl lengths of the seedlings are higher than those of all samples, where the percentage of germination is equal to controls but higher than other samples, and radicula length is lower than controls but higher than others.

  13. Effect of high hydrostatic pressure processing and squeezing pressure on some quality properties of pomegranate juice against thermal treatment

    NASA Astrophysics Data System (ADS)

    Subasi, B. G.; Alpas, H.

    2017-01-01

    The aim of this study was to investigate the effect of high hydrostatic pressure (HHP) treatment (200, 300, 400 MPa; 5°C, 15°C and 25°C; 5 and 10 min) on some quality properties of pomegranate juice. Juice samples are obtained under industrial conditions at two different squeezing pressure levels (100 and 150 psi - 0.689 and 1.033 MPa, respectively). Results are compared against conventional thermal treatment (85°C/10 min) and raw sample. For all three processing temperature, HHP combinations at 400 MPa for 10 min were sufficient to decrease the microbial load around 4.0 log cycles for both squeeze levels. All HHP treatments showed no significant decrease at antioxidant activity, total phenolic content and monomeric anthocyanin pigment concentrations, while there was a significant decrease (p ≤ .05) in thermal-treated samples. Being the highest sugar alcohol in pomegranate juice, mannitol content must be considered for determining the authenticity, and mannitol content increased with squeezing pressure and thermal treatment.

  14. A large volume 2000 MPA air source for the radiatively driven hypersonic wind tunnel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantino, M

    1999-07-14

    An ultra-high pressure air source for a hypersonic wind tunnel for fluid dynamics and combustion physics and chemistry research and development must provide a 10 kg/s pure air flow for more than 1 s at a specific enthalpy of more than 3000 kJ/kg. The nominal operating pressure and temperature condition for the air source is 2000 MPa and 900 K. A radial array of variable radial support intensifiers connected to an axial manifold provides an arbitrarily large total high pressure volume. This configuration also provides solutions to cross bore stress concentrations and the decrease in material strength with temperature. [hypersonic,more » high pressure, air, wind tunnel, ground testing]« less

  15. High hydrostatic pressure processing: a method having high success potential in pollen protein extraction

    NASA Astrophysics Data System (ADS)

    Murat Altuner, Ergin; Çeter, Talip; Alpas, Hami

    2012-06-01

    Even a single peptide that is present in the pollen wall and cytoplasm could cause pollen allergy. To produce skin-prick test kits, the first step is the extraction of these molecules. In this study, Cedrus atlantica pollens were subjected to 220 and 330 MPa for 10 and 30 min in order to extract these molecules. After high hydrostatic pressure processing (HHPP), the total amounts of proteins (TAPs) are measured and compared with the results of the conventional extraction method (CEM). As a result, the TAPs extracted by HHPP is 18.0210 μ g/mL at 220 MPa for 10 min, 22.5770 μ g/mL at 220 MPa for 30 min, 23.3810 μ g/mL at 330 MPa for 10 min and 25.9270 μ g/mL at 330 MPa for 30 min, while this is 1.9460 μ g/mL in 24 h by the CEM. In addition to these results, visual pollen deformation and eruption, pollen wall and surface damage have also been observed.

  16. High pressure treatments on the inactivation of Salmonella Enteritidis and the physicochemical, rheological and color characteristics of sliced vacuum-packaged dry-cured ham.

    PubMed

    de Alba, María; Montiel, Raquel; Bravo, Daniel; Gaya, Pilar; Medina, Margarita

    2012-06-01

    The effect of high pressure (HP) on Salmonella Enteritidis in sliced dry-cured ham stored under temperature abuse (8°C) during 60d was investigated. After treatment, reductions of S. Enteritidis were 1.06, 2.54 and 4.32 log units in ham treated at 400, 500 and 600MPa for 5min at 12°C, compared to non-pressurized samples. After 60d, counts of S. Enteritidis in ham treated at 400 and 500MPa were 2.56 and 2.66 log units lower than in non-treated ham, whereas the pathogen was only detected after enrichment in ham treated at 600MPa. Lipid oxidation increased with storage and pressurization, whereas total free amino acid contents were similar in HP and control samples after 60d. Dry-cured ham treated at the highest pressures exhibited lower shear resistance, whereas the maximum force to compress the sample was slightly changed. Color (L*, a* and b*) varied with pressurization and storage. Changes induced by HP in dry-cured ham were attenuated during storage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Mechanical behavior and localized failure modes in a porous basalt from the Azores

    NASA Astrophysics Data System (ADS)

    Loaiza, S.; Fortin, J.; Schubnel, A.; Guéguen, Y.; Moreira, M.; Vinciguerra, S.

    2012-04-01

    Basaltic rocks are the main component of the oceanic upper crust. This is of potential interest for water and geothermal resources, or for storage of CO2. The aim of our work is to investigate experimentally the mechanical behavior and the failure modes of porous basalt as well as the permeability evolution during deformation. Cylindrical basalt samples, from the Azores, of 30 mm in diameter and 60 mm in length were deformed the triaxial cell of the Laboratoire de Geologie at the Ecole Normale Supérieure (Paris) at room temperature and at a constant axial strain rate of 10-5 s-1. The initial porosity of the sample was 18%. The Geodesign triaxial cell can reach 300MPa confining pressure; axial load is performed through a piston and can reach 900 MPa (for a 30mm diameter sample); maximum pore pressure is 100MPa (applied using two precision volumetric pumps). In our study, a set of experiments were performed at confining pressure in the range of 25-290 MPa. The samples were deformed under saturated conditions at a constant pore pressure of 5MPa. Two volumetric pumps kept the pore pressure constant, and the pore volume variations were recorded. The evolution of the porosity was calculated from the total volume variation inside the volumetric pumps. Permeability measurements were performed using the steady-state technique. Our result shows that two modes of deformation can be highlighted in this basalt. At low confining pressure (Pc < 50 MPa), the differential stress attains a peak before the sample undergoes strain softening; the failure of sample occurs by shear localization. Yet, the brittle regime is commonly observed in this low Pc range, the experiments performed at confining pressure higher than 50 MPa, show a totally different mode of deformation. In this second mode of deformation, an appreciable inelastic porosity reduction is observed. Comparing to the hydrostatic loading, the rock sample started to compact beyond a critical stress state; and from then, strain hardening, with stress drops are observed. Such a behavior is characteristic of the formation of compaction localization, due to grain crushing and pore collapse. In addition, this inelastic compaction is accompanied by a decrease of permeability, indicating that these compaction bands or zones act as barrier for fluid flow, in agreement with observations done in sandstone (Fortin et al., 2005). Further studies, including microstructural observations carried out by mapping the compaction bands or zones throughout a mosaic of SEM images at high resolution and acoustic emission recording will be carried in order to confirm the formation of compaction localization, and the micromechanisms (pore collapse and grain crushing) taking place in this second mode of deformation.

  18. Empirical model based on Weibull distribution describing the destruction kinetics of natural microbiota in pineapple (Ananas comosus L.) puree during high-pressure processing.

    PubMed

    Chakraborty, Snehasis; Rao, Pavuluri Srinivasa; Mishra, Hari Niwas

    2015-10-15

    High pressure inactivation of natural microbiota viz. aerobic mesophiles (AM), psychrotrophs (PC), yeasts and molds (YM), total coliforms (TC) and lactic acid bacteria (LAB) in pineapple puree was studied within the experimental domain of 0.1-600 MPa and 30-50 °C with a treatment time up to 20 min. A complete destruction of yeasts and molds was obtained at 500 MPa/50 °C/15 min; whereas no counts were detected for TC and LAB at 300 MPa/30 °C/15 min. A maximum of two log cycle reductions was obtained for YM during pulse pressurization at the severe process intensity of 600 MPa/50 °C/20 min. The Weibull model clearly described the non-linearity of the survival curves during the isobaric period. The tailing effect, as confirmed by the shape parameter (β) of the survival curve, was obtained in case of YM (β<1); whereas a shouldering effect (β>1) was observed for the other microbial groups. Analogous to thermal death kinetics, the activation energy (Ea, kJ·mol(-1)) and the activation volume (Va, mL·mol(-1)) values were computed further to describe the temperature and pressure dependencies of the scale parameter (δ, min), respectively. A higher δ value was obtained for each microbe at a lower temperature and it decreased with an increase in pressure. A secondary kinetic model was developed describing the inactivation rate (k, min(-1)) as a function of pressure (P, MPa) and temperature (T, K) including the dependencies of Ea and Va on P and T, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Culturable prokaryotic diversity of deep, gas hydrate sediments: first use of a continuous high-pressure, anaerobic, enrichment and isolation system for subseafloor sediments (DeepIsoBUG)

    PubMed Central

    Parkes, R John; Sellek, Gerard; Webster, Gordon; Martin, Derek; Anders, Erik; Weightman, Andrew J; Sass, Henrik

    2009-01-01

    Deep subseafloor sediments may contain depressurization-sensitive, anaerobic, piezophilic prokaryotes. To test this we developed the DeepIsoBUG system, which when coupled with the HYACINTH pressure-retaining drilling and core storage system and the PRESS core cutting and processing system, enables deep sediments to be handled without depressurization (up to 25 MPa) and anaerobic prokaryotic enrichments and isolation to be conducted up to 100 MPa. Here, we describe the system and its first use with subsurface gas hydrate sediments from the Indian Continental Shelf, Cascadia Margin and Gulf of Mexico. Generally, highest cell concentrations in enrichments occurred close to in situ pressures (14 MPa) in a variety of media, although growth continued up to at least 80 MPa. Predominant sequences in enrichments were Carnobacterium, Clostridium, Marinilactibacillus and Pseudomonas, plus Acetobacterium and Bacteroidetes in Indian samples, largely independent of media and pressures. Related 16S rRNA gene sequences for all of these Bacteria have been detected in deep, subsurface environments, although isolated strains were piezotolerant, being able to grow at atmospheric pressure. Only the Clostridium and Acetobacterium were obligate anaerobes. No Archaea were enriched. It may be that these sediment samples were not deep enough (total depth 1126–1527 m) to obtain obligate piezophiles. PMID:19694787

  20. Desolventizing of Jatropha curcas oil from azeotropes of solvents using ceramic membranes.

    PubMed

    Carniel, Naira; Zabot, Giovani L; Paliga, Marshall; Mignoni, Marcelo L; Mazutti, Marcio A; Priamo, Wagner L; Oliveira, J V; Di Luccio, Marco; Tres, Marcus V

    2017-12-01

    The separation of Jatropha curcas oil from azeotropes of ethyl alcohol-n-hexane and isopropyl alcohol-n-hexane using ceramic membranes with different cutoffs (5, 10 and 20 kDa) is presented. The mass ratios of oil:azeotropes (O:S) studied were 1:3 for feeding pressures of 0.1, 0.2 and 0.3 MPa, and 1:1 for the feeding pressure of 0.1 MPa. Isopropyl alcohol was the best solvent for the membranes conditioning to permeate n-hexane (240 kg/m 2  h). In the separation of J. curcas oil and azeotropes of solvents, both membranes showed oil retention and total flux decreases with time. Overall, the lowest decrease in the retentions was reached in the 5 kDa membrane, while the lowest decrease in the total flux was reached in the 20 kDa. In the separation of oil and ethyl alcohol-n-hexane azeotrope, the best retention at 60 min of the process was equal to 17.3 wt% in the 20 kDa membrane at 0.3 MPa and O:S ratio equalled to 1:3. In this condition, the total permeate flux was 17.5 kg/m 2  h. Different retentions and permeabilities are provided when changing the O:S ratio, the feeding pressure and the molecular weight cutoff of membranes.

  1. Vulnerability of Xylem Vessels to Cavitation in Sugar Maple. Scaling from Individual Vessels to Whole Branches1

    PubMed Central

    Melcher, Peter J.; Zwieniecki, Maciej A.; Holbrook, N. Michele

    2003-01-01

    The relation between xylem vessel age and vulnerability to cavitation of sugar maple (Acer saccharum Marsh.) was quantified by measuring the pressure required to force air across bordered pit membranes separating individual xylem vessels. We found that the bordered pit membranes of vessels located in current year xylem could withstand greater applied gas pressures (3.8 MPa) compared with bordered pit membranes in vessels located in older annular rings (2.0 MPa). A longitudinal transect along 6-year-old branches indicated that the pressure required to push gas across bordered pit membranes of current year xylem did not vary with distance from the growing tip. To understand the contribution of age-related changes in vulnerability to the overall resistance to cavitation, we combined data on the pressure thresholds of individual xylem vessels with measurements of the relative flow rate through each annual ring. The annual ring of the current year contributed only 16% of the total flow measured on 10-cm-long segments cut from 6-year-old branches, but it contributed more than 70% of the total flow when measured through 6-year-old branches to the point of leaf attachment. The vulnerability curve calculated using relative flow rates measured on branch segments were similar to vulnerability curves measured on 6-year-old branches (pressure that reduces hydraulic conductance by 50% = 1.6–2.4 MPa), whereas the vulnerability curve calculated using relative flow rates measured on 6-year-old branches were similar to ones measured on the extension growth of the current year (pressure that reduces hydraulic conductance by 50% = 3.8 MPa). These data suggest that, in sugar maple, the xylem of the current year can withstand larger xylem tensions than older wood and dominates water delivery to leaves. PMID:12692336

  2. Impact reactivity of materials at very high oxygen pressure

    NASA Technical Reports Server (NTRS)

    Connor, H. W.; Minchey, J. G.; Crowder, R.; Davidson, R.

    1983-01-01

    The requirements for impact testing of materials in an oxygen atmosphere at pressures from 82.7 MPa (12,000 psi) to 172 MPa (25,000 psi) were evaluated. The impact tester system was evaluated for potential pressure increases from 69 MPa (10,000 psi) to 82.7 MPa (12,000 psi). The low pressure oxygen and nitrogen systems, the impact tower, the impact test cell, and the high pressure oxygen system were evaluated individually. Although the structural integrity of the impact test cell and the compressor were sufficient for operation at 82.7 MPa (12,000 psi), studies revealed possible material incompatibility at that pressure and above. It was recommended that if a component should be replaced for 82.7 MPa (12,000 psi) operation the replacement should meet the final objectives of 172 MPa (25,000 psi). Recommended changes in the system include; use of Monel 400 for pressures above 82.7 MPa (12,000 psi), use of bellows to replace the seal in the impact tester, use of a sapphire window attached to a fiber optic for event sensing, and use of a three diaphragm compressor.

  3. Effects of hydrostatic pressure on leporine meniscus cell-seeded PLLA scaffolds.

    PubMed

    Gunja, Najmuddin J; Athanasiou, Kyriacos A

    2010-03-01

    Hydrostatic pressure (HP) is an important component of the loading environment of the knee joint. Studies with articular chondrocytes and TMJ disc fibrochondrocytes have identified certain benefits of HP for tissue engineering purposes. However, similar studies with meniscus cells are lacking. Thus, in this experiment, the effects of applying 10 MPa of HP at three different frequencies (0, 0.1, and 1 Hz) to leporine meniscus cell-seeded PLLA scaffolds were examined. HP was applied once every 3 days for 1 h for a period of 28 days. Constructs were analyzed for cellular, biochemical, and biomechanical properties. At t = 4 weeks, total collagen/scaffold was found to be significantly higher in the 10 MPa, 0 Hz group when compared with other groups. This despite the fact that the cell numbers/scaffold were found to be lower in all HP groups when compared with the culture control. Additionally, the total GAG/scaffold, instantaneous modulus, and relaxation modulus were significantly increased in the 10 MPa, 0 Hz group when compared with the culture control. In summary, this experiment provides evidence for the benefit of a 10 MPa, 0 Hz stimulus, on both biochemical and biomechanical aspects, for the purposes of meniscus tissue engineering using PLLA scaffolds. (c) 2009 Wiley Periodicals, Inc.

  4. Multiple-pass high-pressure homogenization of milk for the development of pasteurization-like processing conditions.

    PubMed

    Ruiz-Espinosa, H; Amador-Espejo, G G; Barcenas-Pozos, M E; Angulo-Guerrero, J O; Garcia, H S; Welti-Chanes, J

    2013-02-01

    Multiple-pass ultrahigh pressure homogenization (UHPH) was used for reducing microbial population of both indigenous spoilage microflora in whole raw milk and a baroresistant pathogen (Staphylococcus aureus) inoculated in whole sterile milk to define pasteurization-like processing conditions. Response surface methodology was followed and multiple response optimization of UHPH operating pressure (OP) (100, 175, 250 MPa) and number of passes (N) (1-5) was conducted through overlaid contour plot analysis. Increasing OP and N had a significant effect (P < 0·05) on microbial reduction of both spoilage microflora and Staph. aureus in milk. Optimized UHPH processes (five 202-MPa passes; four 232-MPa passes) defined a region where a 5-log(10) reduction of total bacterial count of milk and a baroresistant pathogen are attainable, as a requisite parameter for establishing an alternative method of pasteurization. Multiple-pass UHPH optimized conditions might help in producing safe milk without the detrimental effects associated with thermal pasteurization. © 2012 The Society for Applied Microbiology.

  5. Effect of high pressures on the enzymatic activity of commercial milk protein coagulants

    NASA Astrophysics Data System (ADS)

    Wiśniewska, Krystyna; Reps, Arnold; Jankowska, Agnieszka

    2014-04-01

    This study was aimed at determining the effect of high pressures in the range of 100-1000 MPa/15 min, applied in 100 MPa increments, on the coagulating and proteolytic activity of commercial coagulants produced with genetic engineering methods: Maxiren, Chymogen, Chymax and of a natural rennin preparation, Hala. The coagulating activity of Hala preparation differed compared with the other preparations, due to greater resistance to high pressures, especially in the range of 500-600 MPa. The preparations produced with genetic engineering methods lost their capability for milk protein coagulation by 500 MPa. Pressurization at 200 MPa contributed to their reduced capability for casein macroproteolysis. In contrast, an increase in Chymax, Chymogen, Maxiren and Hala preparations' hydrolytic capability for the macroproteolysis of isoelectric casein was observed upon pressure treatment at 100 and 400 MPa and for microproteolysis after pressure treatment at 200 MPa. Storage (48 h/5°C) of the pressurized preparations had an insignificant effect on their coagulating and proteolytic activities.

  6. Stem geometry changes initial femoral fixation stability of a revised press-fit hip prosthesis: A finite element study.

    PubMed

    Russell, Robert D; Huo, Michael H; Rodrigues, Danieli C; Kosmopoulos, Victor

    2016-11-14

    Stable femoral fixation during uncemented total hip arthroplasty is critical to allow for subsequent osseointegration of the prosthesis. Varying stem designs provide surgeons with multiple options to gain femoral fixation. The purpose of this study was to compare the initial fixation stability of cylindrical and tapered stem implants using two different underreaming techniques (press-fit conditions) for revision total hip arthroplasty (THA). A finite element femur model was created from three-dimensional computed tomography images simulating a trabecular bone defect commonly observed in revision THA. Two 18-mm generic femoral hip implants were modeled using the same geometry, differing only in that one had a cylindrical stem and the other had a 2 degree tapered stem. Surgery was simulated using a 0.05-mm and 0.01-mm press-fit and tested with a physiologically relevant loading protocol. Mean contact pressure was influenced more by the surgical technique than by the stem geometry. The 0.05-mm press-fit condition resulted in the highest contact pressures for both the cylindrical (27.35 MPa) and tapered (20.99 MPa) stems. Changing the press-fit to 0.01-mm greatly decreased the contact pressure by 79.8% and 78.5% for the cylindrical (5.53 MPa) and tapered (4.52 MPa) models, respectively. The cylindrical stem geometry consistently showed less relative micromotion at all the cross-sections sampled as compared to the tapered stem regardless of press-fit condition. This finite element analysis study demonstrates that tapered stem results in lower average contact pressure and greater micromotion at the implant-bone interface than a cylindrical stem geometry. More studies are needed to establish how these different stem geometries perform in such non-ideal conditions encountered in revision THA cases where less bone stock is available.

  7. Effects of high pressure freezing (HPF) on denaturation of natural actomyosin extracted from prawn (Metapenaeus ensis).

    PubMed

    Cheng, Lina; Sun, Da-Wen; Zhu, Zhiwei; Zhang, Zhihang

    2017-08-15

    Effects of protein denaturation caused by high pressure freezing, involving Pressure-Factors (pressure, time) and Freezing-Factors (temperature, phase transition, recrystallization, ice crystal types), are complicated. In the current study, the conformation and functional changes of natural actomyosin (NAM) under pressure assisted freezing (PAF, 100,150,300,400,500MPa P -20°C/25min ), pressure shift freezing (PSF, 200MPa P -20°C/25min ), and immersion freezing ( 0.1MPa P -20°C/5min ) after pressure was released to 0.1MPa, as compared to normal immersion freezing process (IF, 0.1MPa P -20°C/30min ). Results indicated that PSF ( 200MPa P -20°C/30min ) could reduce the denaturation of frozen NAM and a pressure of 300MPa was the critical point to induce such a denaturation. During the periods of B→D in PSF or B→C→D in PAF, the generation and growth of ice crystals played an important role on changing the secondary and tertiary structure of the treated NAM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. An empirical equation with tables of smoothed solubilities of methane in water and aqueous sodium chloride solutions up to 25 weight percent, 360 degrees C, and 138 MPa

    USGS Publications Warehouse

    Haas, John L.

    1978-01-01

    The total pressure for the system H2O-CH 4 is given by p(total) = P(H2O,t) + exp10[log x(CH 4) - a - b x(CH4)], where P(H2O,t) is the vapor pressure of H2O liquid at the temperature t (?C) and x(CH 4) is the molal concentration of methane in the solution. The terms a and b are functions of temperature only. Where the total pressure and temperature are known, the concentration of methane, x(CH4), is found by iteration. The concentration of methane in a sodium chloride brine, y(CH4), is estimated using the function log y(CH4) = log x(CH4) - A I, where A is the salting out constant and I is the ionic strength. For sodium chloride solutions, the ionic strength is equal to the molality of the salt. The equations are valid to 360?C, 138 MPa, and 25 weight percent sodium chloride.

  9. Recovery of tobacco BY-2 cells after high hydrostatic pressure treatment.

    PubMed

    Kusube, Masataka; Nishino, Takumi; Nishikawa, Yuki; Goto, Masaki; Matsuki, Hitoshi; Iwahashi, Hitoshi

    2010-02-01

    The recovery of Nicotiana tabacum L. cv. Bright Yellow 2 (BY-2) cells in Linsmaire and Skoog medium after treatment at high hydrostatic pressure was investigated using an Evans Blue staining method to discriminate live from dead cells. The survival of BY-2 cells just after the high-pressure treatment at 5 degrees C and 25 degrees C decreased abruptly at pressures higher than 50 MPa and 100 MPa, respectively. Furthermore, almost all of the BY-2 cells treated at 5 degrees C and 25 degrees C recovered pressures below 25 MPa and 75 MPa, respectively. However, no BY-2 cells recovered at pressures above 100 MPa at either temperature.

  10. Blueberry polyphenol oxidase: Characterization and the kinetics of thermal and high pressure activation and inactivation.

    PubMed

    Terefe, Netsanet Shiferaw; Delon, Antoine; Buckow, Roman; Versteeg, Cornelis

    2015-12-01

    Partially purified blueberry polyphenol oxidase (PPO) in Mcllvaine buffer (pH=3.6, typical pH of blueberry juice) was subjected to processing at isothermal-isobaric conditions at temperatures from 30 to 80 °C and pressure from 0.1 to 700 MPa. High pressure processing at 30-50 °C at all pressures studied caused irreversible PPO activity increase with a maximum of 6.1 fold increase at 500 MPa and 30 °C. Treatments at mild pressure-mild temperature conditions (0.1-400 MPa, 60 °C) also caused up to 3 fold PPO activity increase. Initial activity increase followed by a decrease occurred at relatively high pressure-mild temperature (400-600 MPa, 60 °C) and mild pressure-high temperature (0.1-400 MPa, 70-80 °C) combinations. At temperatures higher than 76 °C, monotonic decrease in PPO activity occurred at 0.1 MPa and pressures higher than 500 MPa. The activation/inactivation kinetics of the enzyme was successfully modelled assuming consecutive reactions in series with activation followed by inactivation. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  11. N2 and CO2 capillary breakthrough experiments on Opalinus Clay

    NASA Astrophysics Data System (ADS)

    Amann, Alexandra; Busch, Andreas; Krooss, Bernhard M.

    2013-04-01

    The aim of this project was to identify the critical capillary pressures on the drainage and the imbibition path for clay-rich rocks, at a burial depth of 1500 m (30 MPa confining pressure, 45°C). The experiments were performed on fully water-saturated sample plugs of 38 mm diameter and 5 to 20 mm length. The capillary breakthrough pressure was determined by step-wise increase of the differential pressure (drainage), the capillary snap-off pressure was determined from the final pressure difference at the end of a spontaneous imbibition phase. The confining pressure was kept constant throughout the experiment, which resulted in a continuous change of effective stress. The measurements were performed in a closed system and the pressure response was interpreted in terms of different flow mechanisms (diffusion-controlled vs. viscous flow). In total, four breakthrough experiments with N2 and five experiments with CO2 were conducted. Because of very low flow rates and high critical capillary pressures the experiments took rather long. In some cases the experiments were allowed to run for half a year (drainage experiments). Substantial differences were observed between gas breakthrough (drainage) and snap-off (imbibition) pressures. As expected, breakthrough pressures were always higher than the snap-off pressures. For three samples a pbreakthrough/psnap-off ratio of 1.6 to 1.9 was observed, for one sample a ratio of 4. A clear permeability-capillary pressure relationship could not be identified. Based on (omnidirectional) Hg-injection porosimetry results, and assuming perfectly water wet mineral surfaces, gas breakthrough pressures were predicted to occur at approximately 16 MPa for N2 and 5.7 MPa for CO2. The gas breakthrough experiments, however, produced different results. Even though a relatively homogeneous sample set was chosen, with permeability coefficients ranging between 1E-21 and 6E-21 m², the critical capillary breakthrough pressures for nitrogen ranged between 3.4 and 12.3 MPa and snap-off pressures from 0.5 to 6.4 MPa. The CO2 experiments yielded breakthrough pressures of 14.0 to 17.5 MPa and snap-off pressures of 3.5 to 10 MPa. No significant changes in single-phase water permeability coefficients before and after the gas breakthrough experiments were observed. In our contribution we will discuss the following points: 1. Gas fluxes occurring during gas breakthrough experiments may be extremely low. Therefore an unambigous identification of gas breakthrough is not always possible. Besides viscous or diffusive transport, dissolution of CO2 in the pore water may affect the observed pressure changes in the upstream and downstream compartments. All of these processes occur simultaneously and can only be partly discriminated. Gas fluxes detected during the diffusion-controlled flow regimes result in nominal effective gas permeability coefficients as low as 6E-25 m² to 7E-24m². 2. The application of purely capillary-controlled flow models may not be justified. o Gas breakthrough is controlled by effective stress, i.e. the opening of pores or small fissures. o Assumptions about wettability (completely water-wet mineral surfaces) may be incorrect.

  12. Effects of pressure and temperature on the survival rate of adherent A-172 cells

    NASA Astrophysics Data System (ADS)

    Yasuhara, Ryo; Kushida, Ryo; Ishii, Shiwori; Yamanoha, Banri; Shimizu, Akio

    2013-06-01

    Preservation of cells under high pressure is an important alternative to cryopreservation. We studied the effect of temperature (4, 25, 37°C) and pressure (0.1-350 MPa) on the survival rate of A-172 glioblastoma cells. The survival rate was not changed by brief (10 min) pressurization of up to 150 MPa, but the survival rate began to decrease from 150 MPa, and most of the A-172 cells died when treated with over 200 MPa. Lengthy pressurization (4 days) at lower pressure (upto 20.1 MPa) without medium exchange showed complex results. The survival rate of cells preserved at 25°C showed two maxima at 1.6 and 20.1 MPa. After preservation, cells adhered and proliferated in the same way as normal cells when cultured at 37°C in a CO2 incubator. The other two temperatures, 4° and 37°C, showed no maximum survival rate. Therefore, a high survival rate can be maintained with high pressure treatment.

  13. Microbial activity at gigapascal pressures.

    PubMed

    Sharma, Anurag; Scott, James H; Cody, George D; Fogel, Marilyn L; Hazen, Robert M; Hemley, Russell J; Huntress, Wesley T

    2002-02-22

    We observed physiological and metabolic activity of Shewanella oneidensis strain MR1 and Escherichia coli strain MG1655 at pressures of 68 to 1680 megapascals (MPa) in diamond anvil cells. We measured biological formate oxidation at high pressures (68 to 1060 MPa). At pressures of 1200 to 1600 MPa, living bacteria resided in fluid inclusions in ice-VI crystals and continued to be viable upon subsequent release to ambient pressures (0.1 MPa). Evidence of microbial viability and activity at these extreme pressures expands by an order of magnitude the range of conditions representing the habitable zone in the solar system.

  14. Phase diagram and high-pressure boundary of hydrate formation in the ethane-water system.

    PubMed

    Kurnosov, Alexander V; Ogienko, Andrey G; Goryainov, Sergei V; Larionov, Eduard G; Manakov, Andrey Y; Lihacheva, Anna Y; Aladko, Eugeny Y; Zhurko, Fridrikh V; Voronin, Vladimir I; Berger, Ivan F; Ancharov, Aleksei I

    2006-11-02

    Dissociation temperatures of gas hydrate formed in the ethane-water system were studied at pressures up to 1500 MPa. In situ neutron diffraction analysis and X-ray diffraction analysis in a diamond anvil cell showed that the gas hydrate formed in the ethane-water system at 340, 700, and 1840 MPa and room temperature belongs to the cubic structure I (CS-I). Raman spectra of C-C vibrations of ethane molecules in the hydrate phase, as well as the spectra of solid and liquid ethane under high-pressure conditions were studied at pressures up to 6900 MPa. Within 170-3600 MPa Raman shift of the C-C vibration mode of ethane in the hydrate phase did not show any discontinuities, which could be evidence of possible phase transformations. The upper pressure boundary of high-pressure hydrate existence was discovered at the pressure of 3600 MPa. This boundary corresponds to decomposition of the hydrate to solid ethane and ice VII. The type of phase diagram of ethane-water system was proposed in the pressure range of hydrate formation (0-3600 MPa).

  15. Effects of high pressure application (400 and 900 MPa) and refrigerated storage time on the oxidative stability of sliced skin vacuum packed dry-cured ham.

    PubMed

    Clariana, Maria; Guerrero, Luis; Sárraga, Carmen; Garcia-Regueiro, José A

    2012-02-01

    The effect of high pressure processing at 400 MPa and 900 MPa on the oxidative stability of sliced and vacuum packaged commercial dry-cured ham was determined by analyzing the antioxidant enzyme activities, TBARS levels (thiobarbituric acid reactive substances), vitamin E content and physicochemical characteristics during refrigerated storage for 50 days in different light conditions. In dry-cured ham pressurized at 400 MPa color changes and sensory analyses were also assessed. The high pressure process at 900 MPa produced a decrease in superoxide dismutase (SOD) and glutathione peroxidase (GSHPx) activities and increased vitamin E content. In contrast, pressurization at 400 MPa, increased SOD activity, and showed no effect on vitamin E content and GSHPx activity. In general the physicochemical parameters determined (fat, moisture and collagen) were unaffected by pressurization. Treatment at 400 MPa increased the instrumental color measurement of lightness (L* values, CIELAB). This level of pressure also modified the hardness, chewiness, saltiness and color intensity. These changes of the sensory attributes in dry-cured ham were significant, but small. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Combined effects of high pressure processing and addition of soy sauce and olive oil on safety and quality characteristics of chicken breast meat.

    PubMed

    Kruk, Zbigniew A; Kim, Hyun Joo; Kim, Yun Ji; Rutley, David L; Jung, Samooel; Lee, Soo Kee; Jo, Cheorun

    2014-02-01

    This study was conducted to evaluate the combined effect of high pressure (HP) with the addition of soy sauce and/or olive oil on the quality and safety of chicken breast meats. Samples were cut into 100 g pieces and 10% (w/w) of soy sauce (SS), 10% (w/w) of olive oil (OO), and a mixture of both 5% of soy sauce and 5% olive oil (w/w) (SO) were pressurized into meat with high pressure at 300 or 600 MPa. Cooking loss was lower in OO samples than SS samples. With increased pressure to 600 MPa, the oleic acid content of OO samples increased. The total unsaturated fatty acids were the highest in SO and OO 600 MPa samples. Lipid oxidation was retarded by addition of olive oil combined with HP. The addition of olive oil and soy sauce followed by HP decreased the amount of volatile basic nitrogen during storage and reduced the population of pathogens. Sensory evaluation indicated that the addition of olive oil enhanced the overall acceptance and willingness to buy. In conclusion, the combination of HP with the addition of soy sauce and/or olive oil is an effective technology that can improve chemical, health, sensory qualities and safety of chicken breast.

  17. The effect of high hydrostatic pressure on the physiological and biochemical properties of pepper (Capsicum annuum L.) seedlings

    NASA Astrophysics Data System (ADS)

    İşlek, Cemil; Murat Altuner, Ergin; Alpas, Hami

    2015-10-01

    High hydrostatic pressure is a non-thermal food processing technology, which also has several successful applications in different areas besides food processing. In this study, Capsicum annuum L. (pepper) seeds are subjected to 50, 100, 200 and 300 MPa pressure for 5 min at 25°C and the seedlings of HHP processed seeds are used to compare percentage of seed germination and biochemical properties such as chlorophyll a, b and a/b, proline content, total protein, carotenoid, malondialdehyde, glucose, fructose and phenolic compounds concentrations. As a result of the study, it was observed that there are remarkable changes in terms of biochemical properties especially for seedlings, whose seeds were pressurized at 200 and 300 MPa. More detailed studies are needed to put forward the mechanism behind the changes in biochemical properties.

  18. [Research of the essential oil of Plumeria rubra var. actifolia from Laos by supercritical carbon dioxide extraction].

    PubMed

    Xiao, Xin-Yu; Cui, Long-Hai; Zhou, Xin-Xin; Wu, Yan; Ge, Fa-Huan

    2011-05-01

    The orthogonal test and the supercritical carbon dioxide fluid extraction were used for optimizing the extraction of the essential oil from Plumeria rubra var. actifolia for the first time. Compared with the steam distillation, the optimal operation parameter of extraction was as follows: extraction pressure 25 MPa, extraction temperature 45 degrees C; separator I pressure 12 MPa, separator I temperature 55 degrees C; separator II pressure 6 MPa, separator II temperature 30 degrees C. Under this condition the yield of the essential oil was 5.8927%. The components were separated and identified by GC-MS. 53 components of Plumeria rubra var. actifolia measured by SFE method were identified and determined by normalization method. The main components were 1, 6, 10-dodecatrien-3-ol, 3, 7, 11-trimethyl, benzoic acid, 2-hydroxy-, phenylmethyl ester, 1, 2-benzenedicarboxylic acid, bis(2-methylpropyl) ester,etc.. 1, 2-Benzenedicarboxylic acid, bis (2-methylpropyl) este. took up 66.11% of the total amount, and there was much difference of the results from SD method.

  19. Metabolic costs imposed by hydrostatic pressure constrain bathymetric range in the lithodid crab Lithodes maja.

    PubMed

    Brown, Alastair; Thatje, Sven; Morris, James P; Oliphant, Andrew; Morgan, Elizabeth A; Hauton, Chris; Jones, Daniel O B; Pond, David W

    2017-11-01

    The changing climate is shifting the distributions of marine species, yet the potential for shifts in depth distributions is virtually unexplored. Hydrostatic pressure is proposed to contribute to a physiological bottleneck constraining depth range extension in shallow-water taxa. However, bathymetric limitation by hydrostatic pressure remains undemonstrated, and the mechanism limiting hyperbaric tolerance remains hypothetical. Here, we assess the effects of hydrostatic pressure in the lithodid crab Lithodes maja (bathymetric range 4-790 m depth, approximately equivalent to 0.1 to 7.9 MPa hydrostatic pressure). Heart rate decreased with increasing hydrostatic pressure, and was significantly lower at ≥10.0 MPa than at 0.1 MPa. Oxygen consumption increased with increasing hydrostatic pressure to 12.5 MPa, before decreasing as hydrostatic pressure increased to 20.0 MPa; oxygen consumption was significantly higher at 7.5-17.5 MPa than at 0.1 MPa. Increases in expression of genes associated with neurotransmission, metabolism and stress were observed between 7.5 and 12.5 MPa. We suggest that hyperbaric tolerance in L maja may be oxygen-limited by hyperbaric effects on heart rate and metabolic rate, but that L maja 's bathymetric range is limited by metabolic costs imposed by the effects of high hydrostatic pressure. These results advocate including hydrostatic pressure in a complex model of environmental tolerance, where energy limitation constrains biogeographic range, and facilitate the incorporation of hydrostatic pressure into the broader metabolic framework for ecology and evolution. Such an approach is crucial for accurately projecting biogeographic responses to changing climate, and for understanding the ecology and evolution of life at depth. © 2017. Published by The Company of Biologists Ltd.

  20. Oilfield water treatment by electrocoagulation-reverse osmosis for agricultural use: effects on germination and early growth characteristics of sunflower.

    PubMed

    de Souza, Paulo S A; Cerqueira, Alexandre A; Rigo, Michelle M; de Paiva, Julieta L; Couto, Rafael S P; Merçon, Fábio; Perez, Daniel V; Marques, Monica R C

    2017-05-01

    This study aims to evaluate the effects of oilfield water (OW), treated by a hybrid process of electrocoagulation and reverse osmosis (EC-RO), on seed germination and early growth characteristics of sunflower (Heliantus annus L.). In the EC step, tests were conducted with 28.6 A m -2 current density and 4 min. reaction time. In the RO step, the system was operated with 1 L min -1 constant flow and 2 MPa, 2.5 MPa and 3 MPa feed pressures. In all feed pressures, RO polymeric membranes achieved very high removals of chemical oxygen demand (up to 89%) and oils and greases (100%) from EC-treated effluent. In best feed pressure (2.5 MPa), turbidity, total dissolved salts, electrical conductivity, salinity, toxic ions and sodium adsorption ratio values attained internationally recognized standards for irrigation water. Using EC-RO (feed pressure:2.5 MPa) treated OW, germinated sunflower seeds percentage (86 ± 6%), speed of germination (30 ± 2) and biomass production (49 ± 5 mg) were statistically similar to control (distilled water) results. Vigor index average values obtained using OW treated by EC-RO (3871)were higher than that obtained by OW water treated by EC (3300). The results of this study indicate that EC-RO seems to be a promising alternative for treatment of OW aiming sunflower crops irrigation, since the use of this treated effluent did not affect adversely seed germination and seedling development, and improved seedling vigor. Furthermore, OW treatment by EC-RO reduces sodium levels into acceptable standards values avoiding soil degradation.

  1. Critical properties and high-pressure volumetric behavior of the carbon dioxide+propane system at T=308.15 k. Krichevskii function and related thermodynamic properties.

    PubMed

    Blanco, Sofía T; Gil, Laura; García-Giménez, Pilar; Artal, Manuela; Otín, Santos; Velasco, Inmaculada

    2009-05-21

    Critical properties and volumetric behavior for the {CO2(1)+C3H8(2)} system have been studied. The critical locus was measured with a flow apparatus and detected by critical opalescence. For the mixtures, repeatabilities in critical temperature and pressure are rTc

  2. A meta-analysis of the effects of shockwave and high pressure processing on color and cook loss of fresh meat.

    PubMed

    Ha, Minh; Dunshea, Frank R; Warner, Robyn D

    2017-10-01

    Meta-analysis is a statistical approach for investigating experimental differences across studies. Meta-analyses were performed to examine the effects of hydrodynamic processing (shockwave; n=12 papers) and high pressure processing (HPP; n=8 papers) on the color and cook loss of fresh meat. Shockwave did not affect color (L*, a*), whereas cook loss was increased by 0.6% relative to untreated meat. HPP resulted in an increase in lightness (L*) and a decrease in redness (a*), with the effect being greater at higher pressures (>300MPa vs <300MPa). In addition, HPP applied at moderate pressure (<300MPa) reduced cook loss but at high pressure (>300MPa) the cook loss was increased (-1.5% vs 3.0% respectively). The increased cook loss with shockwave and high pressure (>300MPa) processing needs to be balanced against benefits in texture if this technology is applied to meat. The reduced cook loss of meat treated at moderate pressures (<300MPa) is an advantage which would likely improve sensory traits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Petrologic Constraints on Magma Plumbing Systems Beneath Hawaiian Volcanoes

    NASA Astrophysics Data System (ADS)

    Li, Y.; Peterman, K. J.; Scott, J. L.; Barton, M.

    2016-12-01

    We have calculated the pressures of partial crystalliztion of basaltic magmas from Hawaii using a petrological method. A total of 1576 major oxide analyses of glasses from four volcanoes (Kilauea and the Puna Ridge, Loihi, Mauna Loa, and Mauna Kea, on the Big Island) were compiled and used as input data. Glasses represent quenched liquid compositions and are ideal for calculation of pressures of partial crystallization. The results were filtered to exclude samples that yielded unrealistic high errors associated with the calculated pressure or negative value of pressure, and to exclude samples with non-basaltic compositions. Calculated pressures were converted to depths of partial crystallization. The majority (68.2%) of pressures for the shield-stage subaerial volcanoes Kilauea, Mauna Loa, and Mauna Kea, fall in the range 0-140 MPa, corresponding to depths of 0-5 km. Glasses from the Puna Ridge yield pressures ranging from 18 to 126 MPa and are virtually identical to pressures determined from glasses from Kilauea (0 to 129 MPa). These results are consistent with the presence of magma reservoirs at depths of 0-5 km beneath the large shield volcanoes. The inferred depth of the magma reservoir beneath the summit of Kilauea (average = 1.8 km, maximum = 5 km) agrees extremely well with depths ( 2-6 km) estimated from seismic studies. The results for Kilauea and Mauna Kea indicate that significant partial crystallization also occurs beneath the summit reservoirs at depths up to 11 km. These results are consistent with seismic evidence for the presence of a magma reservoir at 8-11 km beneath Kilauea at the base of the volcanic pile. The results for Loihi indicate crystallization at higher average pressures (100-400 MPa) and depths (3-14 km) than the large shield volcanoes, suggesting that the plumbing system is not yet fully developed, and that the Hawaiian volcanic plumbing systems evolve over time.

  4. Effects of different hydrostatic pressure on lesions in ex vivo bovine livers induced by high intensity focused ultrasound.

    PubMed

    He, Min; Zhong, Zhiqiang; Li, Xing; Gong, Xiaobo; Wang, Zhibiao; Li, Faqi

    2017-05-01

    It is well-known that acoustic cavitation associated with the high intensity focused ultrasound (HIFU) treatment often would change the morphology and size of lesions in its treatment. In most studies reported in literature, high ambient hydrostatic pressure was used to suppress the cavitation completely. Investigation of the effects by varying the ambient hydrostatic pressure (P stat ) is still lacking. In this paper, the effects of HIFU on lesions in ex vivo bovine liver specimens under various P stat are systematically investigated. A 1MHz HIFU transducer, with an aperture diameter of 70mm and a focal length of 55mm, was used to generate two groups US exposure of different acoustic intensities and exposure time (6095W/cm 2 ×8s and 9752W/cm 2 ×5s), while keeping the same acoustic energies per unit area (48760J/cm 2 ). The peak acoustic negative pressures (p - ) of the two groups were p 1 - =9.58MPa and p 2 - =10.82MPa, respectively, with the difference p d - =p 2 - -p 1 - =1.24MPa. A passive cavitation detection (PCD) was used to monitor the ultrasonic cavitation signal during exposure of the two groups. The US exposures were done under the following ambient hydrostatic pressures, P stat : atmospheric pressure, 0.5MPa, 1.0MPa, 1.5MPa, 2.0MPa, 2.5MPa and3.0MPa, respectively. The result of PCD showed that there was a statistically significant increase above background noise level in broadband emissions at dose of 9752W/cm 2 ×5s, but not at dose of 6095W/cm 2 ×8s under atmospheric pressure; i.e., the acoustic cavitation took place for p 2 - but not for p 1 - when under atmospheric pressure. The results also showed that there was no statistically difference of the morphology and size of lesions for 6095W/cm 2 ×8s exposure under the aforementioned different ambient hydrostatic pressures. But the lesions generated at 9752W/cm 2 ×5s exposure under P stat =atmospheric pressure, 0.5MPa, 1.0MPa (all of them are less than p d - ), were larger than those under 1.5MPa, 2.0MPa, 2.5MPa and 3.0MPa (all of them are over than p d - ) which were consistence with 6095W/cm 2 ×8s group. It was concluded that when P stat >p d - , the acoustic cavitation was suppressed and prompted that there was no need to elevate P stat higher than p - to suppress the acoustic cavitation in tissue, just need P stat higher than p d - . Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Pre-eruptive storage conditions and continuous decompression relations of rhyodacite magma erupted from Chaos Crags, Lassen Volcanic Center, California

    NASA Astrophysics Data System (ADS)

    Quinn, E. T.; Andrews, B. J.; Schwab, B. E.; Clynne, M. A.

    2013-12-01

    We performed a series of hydrothermal (high-temperature and -pressure) phase equilibrium experiments on a natural rhyodacite pumice from the 1103 ×13 years BP pyroclastic flow from the Chaos Crags, Lassen Volcanic Center, California. The pumice (LQ13-01, collected at the same location as LC84-417 (69.58 wt. % SiO2) by Clynne) is from the lower pyroclastic flow member of the group 1 lavas, the most silicic products known of Chaos Crags. Group 1 lavas are homogeneous (69-70 wt. % SiO2), petrographically and compositionally similar with rare to sparse mafic inclusions, and comprise the earliest emplaced units of Chaos Crags, the lower, middle, and upper pyroclastic flows, and domes A and B, whereas group 2 are comparatively heterogeneous (67-69 wt. % SiO2), with increasing abundance (10-15%) of mafic inclusions throughout the emplacement sequence, and comprise domes C through F. The phase assemblage in the natural sample used as experimental starting material comprises phenocrysts of quartz, plagioclase feldspars with rims of ~An35, biotite, hornblende, and Fe-Ti oxides in a vesiculated glassy matrix. Trace mafic enclaves are also present, but were removed from experimental starting material. All experiments were performed at the Smithsonian Institution. Experiments were run under H2O-saturated conditions at pressures of 75 MPa to 200 MPa and temperatures of 750°C to 900°C, at oxygen fugacity NNO+1 (×0.5-log-units), for 93 to 132 hours. EPMA and SEM analyses of experimental products show quartz is stable from <200 MPa at 750°C to <150 MPa at 800°C and is not stable at temperatures >800°C, within the investigated range. Amphibole is stable from >75 MPa at 750°C to >100 MPa at 800°C to 200 MPa at <850°C, and is not stable ≤75 MPa or ≥850°C. Biotite is stable at <800°C at 75 MPa to <825°C at 200 MPa, and not stable for any pressure at ≥850°C. Pyroxene, not present in the starting material is stable for 200MPa at >775°C and all pressures at temperatures ≥825°C, within the investigated range. FTIR analysis of quartz-hosted melt inclusions contain 4.0-5.0 wt. % H2O (average 4.3 wt. %), suggesting saturation pressures of 100-110 MPa (calculated using model of Papale et al., 2006). Comparison of the natural samples with the experimentally determined phase diagram and melt inclusions, suggests pre-eruptive storage conditions of 110-125 MPa and 775°C; given FeTi-oxide temperatures of 850 °C, magma may have been heated by as much as 75-100°C immediately prior to eruption. Ongoing work includes EPMA analysis of plagioclase feldspars and amphiboles to further constrain An-stability and hornblende-cummingtonite relations , respectively, and analysis of titanomagnetite-ilmenite pairs. Continuous decompression experiments are underway with rates ranging from 0.3 MPa/hr to 7.5 MPa/hr, corresponding to total decompression times of 16 hours to 18 days.

  6. THE EFFECT OF HORMONE THERAPY ON MEAN BLOOD PRESSURE AND VISIT-TO-VISIT BLOOD PRESSURE VARIABILITY IN POSTMENOPAUSAL WOMEN: RESULTS FROM THE WOMEN’S HEALTH INITIATIVE RANDOMIZED CONTROLLED TRIALS

    PubMed Central

    Shimbo, Daichi; Wang, Lu; Lamonte, Michael J.; Allison, Matthew; Wellenius, Gregory A.; Bavry, Anthony A.; Martin, Lisa W.; Aragaki, Aaron; Newman, Jonathan D.; Swica, Yael; Rossouw, Jacques E.; Manson, JoAnn E.; Wassertheil-Smoller, Sylvia

    2014-01-01

    Objectives Mean and visit-to-visit variability (VVV) of blood pressure are associated with an increased cardiovascular disease risk. We examined the effect of hormone therapy on mean and VVV of blood pressure in postmenopausal women from the Women’s Health Initiative (WHI) randomized controlled trials. Methods Blood pressure was measured at baseline and annually in the two WHI hormone therapy trials in which 10,739 and 16,608 postmenopausal women were randomized to conjugated equine estrogens (CEE, 0.625 mg/day) or placebo, and CEE plus medroxyprogesterone acetate (MPA, 2.5 mg/day) or placebo, respectively. Results At the first annual visit (Year 1), mean systolic blood pressure was 1.04 mmHg (95% CI 0.58, 1.50) and 1.35 mmHg (95% CI 0.99, 1.72) higher in the CEE and CEE+MPA arms respectively compared to corresponding placebos. These effects remained stable after Year 1. CEE also increased VVV of systolic blood pressure (ratio of VVV in CEE vs. placebo, 1.03, P<0.001), whereas CEE+MPA did not (ratio of VVV in CEE+MPA vs. placebo, 1.01, P=0.20). After accounting for study drug adherence, the effects of CEE and CEE+MPA on mean systolic blood pressure increased at Year 1, and the differences in the CEE and CEE+MPA arms vs. placebos also continued to increase after Year 1. Further, both CEE and CEE+MPA significantly increased VVV of systolic blood pressure (ratio of VVV in CEE vs. placebo, 1.04, P<0.001; ratio of VVV in CEE+MPA vs. placebo, 1.05, P<0.001). Conclusions Among postmenopausal women, CEE and CEE+MPA at conventional doses increased mean and VVV of systolic blood pressure. PMID:24991872

  7. Polymerization Experiment Of Amino Acids Under High Pressure And Temperature Conditions Simulating The Deep Lithosphere

    NASA Astrophysics Data System (ADS)

    Ohara, S.; Kakegawa, T.; Nakazawa, H.

    2005-12-01

    Chemical evolution in deep sea or deep lithosphere is one of the popular hypotheses for the origin of life on the early Earth. In such hypothesis, effects of pressure and temperature on polymerization (and/or stability) of amino acids needed to be evaluated. In this study, high temperature and pressure experiments were performed using of a test-tube-type autoclave for polymerization of amino acids. Approximately 100 mg of Glycine powder were placed into sterilized gold capsule. Multiple experiments were done at 150 degrees for 1 to 8 days at variable pressures (25MPa, 50MPa, 75MPa and 100MPa). Glycine peptides were identified and quantified by high performance liquid chromatography (HPLC). Each capsule was opened carefully and 1 ml of mobile phase was added to release the amino acids and oligopeptide from the solid phase. Liquid phases were separated by the cetrifugal method. Peptides were identified by retention times of authentic reference substances. The reaction yields were determined as percentage of the reactant converted to the reaction product. Pligopeptides more than hexamer were additionally identified by the detection of the molecular ion by liquid chromatography mass spectrometry (LC / MS). A HPLC chromatogram of the products indicated at least seven oligomers: diketopiperazine (cyc(Gly)2), di-glycine (Gly2), tri-glycine (Gly3), tetra-glycine (Gly4), penta-glycine (Gly5) and hexa-glycine (Gly6). We also identified hepta-glycine (Gly7), octa-glycine (Gly8) and nona-glycine (Gly9) with LC/MS. This is the first report that up to nona-glycine was synthesized under high temperature and pressure conditions. In addition, our experiments indicate that polymerization occurs wide range of pressure from 25 to 100 MPa. On the other hand, yields of total amounts of peptide did not change with pressure, suggesting that an unknown process in the autoclave is limiting the yield. We speculate the activity of water vapor, generated by peptide formation reaction, controlled the yield in the autoclave. The results from this study support the theory that chemical evolution could happen in deep Earth environments, such as inside of lithosphere.

  8. Localized fluid discharge in subduction zones: Insights from tension veins around an ancient megasplay fault (Nobeoka Thrust, SW Japan)

    NASA Astrophysics Data System (ADS)

    Otsubo, M.; Hardebeck, J.; Miyakawa, A.; Yamaguchi, A.; Kimura, G.

    2017-12-01

    Fluid-rock interactions along seismogenic faults are of great importance to understand fault mechanics. The fluid loss by the formation of mode I cracks (tension cracks) increases the fault strength and creates drainage asperities along the plate interface (Sibson, 2013, Tectonophysics). The Nobeoka Thrust, in southwestern Japan, is an on-land example of an ancient megasplay fault and provides an excellent record of deformation and fluid flow at seismogenic depths of a subduction zone (Kondo et al., 2005, Tectonics). We focus on (1) Pore fluid pressure loss, (2) Amount of fault strength recovery, and (3) Fluid circulation by the formation of mode I cracks in the post-seismic period around the fault zone of the Nobeoka Thrust. Many quartz veins that filled mode I crack at the coastal outcrops suggest a normal faulting stress regime after faulting of the Nobeoka Thrust (Otsubo et al., 2016, Island Arc). We estimated the decrease of the pore fluid pressure by the formation of the mode I cracks around the Nobeoka Thrust in the post-seismic period. When the pore fluid pressure exceeds σ3, veins filling mode I cracks are constructed (Jolly and Sanderson, 1997, Jour. Struct. Geol.). We call the pore fluid pressure that exceeds σ3 "pore fluid over pressure". The differential stress in the post-seismic period and the driving pore fluid pressure ratio P* (P* = (Pf - σ3) / (σ1 - σ3), Pf: pore fluid pressure) are parameters to estimate the pore fluid over pressure. In the case of the Nobeoka Thrust (P* = 0.4, Otsubo et al., 2016, Island Arc), the pore fluid over pressure is up to 20 MPa (assuming tensile strength = 10 MPa). 20 MPa is equivalent to <10% of the total pore fluid pressure around the Nobeoka Thrust (depth = 10 km, density = 2.7 kg/m3). When the pore fluid pressure decreases by 4%, the normalized pore pressure ratio λ* (λ* = (Pf - Ph) / (Pl - Ph), Pl: lithostatic pressure; Ph: hydrostatic pressure) changes from 0.95 to 0.86. In the case of the Nobeoka Thrust, the fault strength can increase by up to 10 MPa (assuming frictional coefficient = 0.6). 10 MPa is almost equivalent to the stress drop values in large trench type earthquakes. Hence, we suggest that the fluid loss caused by the formation of mode I cracks in the post-seismic period may play an important role by increasing frictional strength along the megasplay fault.

  9. Determination of extremely high pressure tolerance of brine shrimp larvae by using a new pressure chamber system.

    PubMed

    Seo, Mihye; Koyama, Sumihiro; Toyofuku, Takashi; Kojima, Shigeaki; Watanabe, Hiromi

    2013-11-01

    Hydrostatic pressure is the only one of a range of environmental parameters (water temperature, salinity, light availability, and so on) that increases in proportion with depth. Pressure tolerance is therefore essential to understand the foundation of populations and current diversity of faunal compositions at various depths. In the present study, we used a newly developed pressure chamber system to examine changes in larval activity of the salt-lake crustacean, Artemia franciscana, in response to a range of hydrostatic pressures. We showed that A. franciscana larvae were able to survive for a short period at pressures of ≤ 60 MPa (approximately equal to the pressure of 6000 m deep). At a pressure of > 20 MPa, larval motor ability was suppressed, but not lost. Meanwhile, at a pressure of > 40 MPa, some of the larval motor ability was lost without recovery after decompression. For all experiments, discordance of movement and timing between right and left appendages, was observed at pressures of > 20 MPa. Our results indicate that the limit of pressure for sustaining active behavior of A. franciscana larvae is ∼20 MPa, whereas the limit of pressure for survival is within the range 30-60 MPa. Thus, members of the genus Artemia possess the ability to resist a higher range of pressures than their natural habitat depth. Our findings demonstrated an example of an organism capable of invading deeper environment in terms of physical pressure tolerance, and indicate the need and importance of pressure study as an experimental method.

  10. The Alteration of the Epidermal Basement Membrane Complex of Human Nevus Tissue and Keratinocyte Attachment after High Hydrostatic Pressurization.

    PubMed

    Morimoto, Naoki; Jinno, Chizuru; Mahara, Atsushi; Sakamoto, Michiharu; Kakudo, Natsuko; Inoie, Masukazu; Fujisato, Toshia; Suzuki, Shigehiko; Kusumoto, Kenji; Yamaoka, Tetsuji

    2016-01-01

    We previously reported that human nevus tissue was inactivated after high hydrostatic pressure (HHP) higher than 200 MPa and that human cultured epidermis (hCE) engrafted on the pressurized nevus at 200 MPa but not at 1000 MPa. In this study, we explore the changes to the epidermal basement membrane in detail and elucidate the cause of the difference in hCE engraftment. Nevus specimens of 8 mm in diameter were divided into five groups (control and 100, 200, 500, and 1000 MPa). Immediately after HHP, immunohistochemical staining was performed to detect the presence of laminin-332 and type VII collagen, and the specimens were observed by transmission electron microscopy (TEM). hCE was placed on the pressurized nevus specimens in the 200, 500, and 1000 MPa groups and implanted into the subcutis of nude mice; the specimens were harvested at 14 days after implantation. Then, human keratinocytes were seeded on the pressurized nevus and the attachment was evaluated. The immunohistochemical staining results revealed that the control and 100 MPa, 200 MPa, and 500 MPa groups were positive for type VII collagen and laminin-332 immediately after HHP. TEM showed that, in all of the groups, the lamina densa existed; however, anchoring fibrils were not clearly observed in the 500 or 1000 MPa groups. Although the hCE took in the 200 and 500 MPa groups, keratinocyte attachment was only confirmed in the 200 MPa group. This result indicates that HHP at 200 MPa is preferable for inactivating nevus tissue to allow its reuse for skin reconstruction in the clinical setting.

  11. Impact of high pressure treatment on functional, rheological, pasting, and structural properties of lentil starch dispersions.

    PubMed

    Ahmed, Jasim; Thomas, Linu; Taher, Ayoub; Joseph, Antony

    2016-11-05

    Lentil starch (LS) dispersions (flour to water 1:4w/w) were subjected to high pressure (HP) treatment at 0.1, 400, 500 and 600MPa for 10min, followed by evaluation on the functional, particle size, rheological, pasting, and structural properties of post-process samples. Water holding capacity of pressurized starch increased with the pressure intensity due to increase in damaged starch. The amount of resistant starch increased from 5 to 6.8% after pressure treatment at 600MPa. An increase in starch granule particle size (196-207μm) was obvious after HP treatment. The lentil starch was completely gelatinized after pressure treatment at 600MPa for 10min as evidenced from differential scanning calorimetry, rheometry, X-ray diffraction (XRD) and scanning electron microscopy observation. The elastic modulus, G' of lentil starch gel was less frequency dependent, and higher in magnitude at high pressure (>500MPa) than at lower pressure range (≤400MPa). XRD analysis revealed the disappearance of two diffraction peak intensities at 14.86° and 22.82° at 600MPa for 10min, which confirms the transformation of crystalline to amorphous region of lentil starch. Pasting properties were significantly influenced by the pressure treatment especially at 600MPa, resulting in a considerable decrease in peak viscosity, breakdown and final viscosity, and an increase in peak time. It can be inferred that the functional properties of pressure-treated LS are mainly based on the structural destruction of granules. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Impact of Exposure to Pressure of 50 MPa on the Specific Surface Area of Clay

    NASA Astrophysics Data System (ADS)

    Koszela-Marek, Ewa

    2017-12-01

    The paper presents results of laboratory tests conducted to determine the impact of pressure of 50 MPa on specific surface area of clay. These tests were carried out in an original, high-pressure test stand. The specific surface area of clay extracted directly from an open pit mine was compared with the specific surface area of the same clay subjected to the pressure of 50 MPa in a high-pressure chamber. The study found that the specific surface area of the clay subjected to the pressure of 50 MPa increased distinctly by over 35 %. The increase in specific surface can be a result of changes in the microstructure of clay particles and microstructural alteration in the soil skeleton, caused by the pressure.

  13. Combined effects of high pressure and sodium hydrogen carbonate treatment on beef: improvement of texture and color

    NASA Astrophysics Data System (ADS)

    Ohnuma, Shun; Kim, Yun-Jung; Suzuki, Atsushi; Nishiumi, Tadayuki

    2013-06-01

    We investigated the effect of combined high pressure and sodium hydrogen carbonate (NaHCO3) treatment on the physical properties and color of silverside Australian beef. Meat samples were pressurized at 100-500 MPa and the water content, weight reduction, rupture stress, and meat color were determined. The water content of meat treated with NaHCO3 and high pressure (300 MPa) reached a maximum of 70.1%. Weight reduction tended to decrease with high pressure treatment at 300 MPa. Meats treated with NaHCO3 and high pressure at 400 MPa showed a>50% decrease in hardness. Whitening of the meat was reduced by the combined high pressure and NaHCO3 treatment. Therefore, the combined high pressure and NaHCO3 treatment is effective for improvement of beef quality.

  14. Response Surface Optimization of Process Parameters and Fuzzy Analysis of Sensory Data of High Pressure-Temperature Treated Pineapple Puree.

    PubMed

    Chakraborty, Snehasis; Rao, Pavuluri Srinivasa; Mishra, Hari Niwas

    2015-08-01

    The high-pressure processing conditions were optimized for pineapple puree within the domain of 400-600 MPa, 40-60 °C, and 10-20 min using the response surface methodology (RSM). The target was to maximize the inactivation of polyphenoloxidase (PPO) along with a minimal loss in beneficial bromelain (BRM) activity, ascorbic acid (AA) content, antioxidant capacity, and color in the sample. The optimum condition was 600 MPa, 50 °C, and 13 min, having the highest desirability of 0.604, which resulted in 44% PPO and 47% BRM activities. However, 93% antioxidant activity and 85% AA were retained in optimized sample with a total color change (∆E*) value less than 2.5. A 10-fold reduction in PPO activity was obtained at 600 MPa/70 °C/20 min; however, the thermal degradation of nutrients was severe at this condition. Fuzzy mathematical approach confirmed that sensory acceptance of the optimized sample was close to the fresh sample; whereas, the thermally pasteurized sample (treated at 0.1 MPa, 95 °C for 12 min) had the least sensory score as compared to others. © 2015 Institute of Food Technologists®

  15. Hydrogen-alkali exchange between silicate melts and two-phase aqueous mixtures: an experimental investigation

    NASA Astrophysics Data System (ADS)

    Williams, Thomas J.; Candela, Philip A.; Piccoli, Philip M.

    Experiments were performed in the three-phase system high-silica rhyolite melt + low-salinity aqueous vapor + hydrosaline brine, to investigate the exchange equilibria for hydrogen, potassium, and sodium in magmatic-hydrothermal systems at 800 °C and 100 MPa, and 850 °C and 50 MPa. The Kaqm/meltH,Na and Kaqm/meltH,K for hydrogen-sodium exchange between a vapor + brine mixture and a silicate melt are inversely proportional to the total chloride concentration (ΣCl) in the vapor + brine mixture indicating that HCl/NaCl and HCl/KCl are higher in the low-salinity aqueous vapor relative to high-salinity brine. The equilibrium constants for vapor/melt and brine/melt exchange were extracted from regressions of Kaqm/meltH,Na and Kaqm/meltH,K versus the proportion of aqueous vapor relative to brine in the aqueous mixture (Faqv) at P and T, expressed as a function of ΣCl. No significant pressure effect on the empirically determined exchange constants was observed for the range of pressures investigated. Model equilibrium constants are: Kaqv/meltH,Na(vapor/melt)=26(+/-1.3) at 100 MPa (800 °C), and 19( +/- 7.0) at 50 MPa (850 °C) Kaqv/meltH,K=14(+/-1.1) at 100 MPa (800 °C), and 24(+/-12) at 50 MPa (850 °C) Kaqb/meltH,b(brine/melt)= 1.6(+/-0.7) at 100 MPa (800 °C), and 3.9(+/-2.3) at 50 MPa (850 °C) and Kaqb/meltH,K=2.7(+/-1.2) at 100 MPa (800 °C) and 3.8(+/-2.3) at 50 MPa (850 °C). Values for Kaqv/meltH,K and Kaqb/meltH,K were used to calculate KCl/HCl in the aqueous vapor and brine as a function of melt aluminum saturation index (ASI: molar Al2O3/(K2O+Na2O+CaO) and pressure. The model log KCl/HCl values show that a change in melt ASI from peraluminous (ASI = 1.04) to moderately metaluminous (ASI = 1.01) shifts the cooling pathway (in temperature-log KCl/HCl space) of the aqueous vapor toward the andalusite+muscovite+K-feldspar reaction point.

  16. Combined Effects of High Pressure Processing and Addition of Soy Sauce and Olive Oil on Safety and Quality Characteristics of Chicken Breast Meat

    PubMed Central

    Kruk, Zbigniew A.; Kim, Hyun Joo; Kim, Yun Ji; Rutley, David L.; Jung, Samooel; Lee, Soo Kee; Jo, Cheorun

    2014-01-01

    This study was conducted to evaluate the combined effect of high pressure (HP) with the addition of soy sauce and/or olive oil on the quality and safety of chicken breast meats. Samples were cut into 100 g pieces and 10% (w/w) of soy sauce (SS), 10% (w/w) of olive oil (OO), and a mixture of both 5% of soy sauce and 5% olive oil (w/w) (SO) were pressurized into meat with high pressure at 300 or 600 MPa. Cooking loss was lower in OO samples than SS samples. With increased pressure to 600 MPa, the oleic acid content of OO samples increased. The total unsaturated fatty acids were the highest in SO and OO 600 MPa samples. Lipid oxidation was retarded by addition of olive oil combined with HP. The addition of olive oil and soy sauce followed by HP decreased the amount of volatile basic nitrogen during storage and reduced the population of pathogens. Sensory evaluation indicated that the addition of olive oil enhanced the overall acceptance and willingness to buy. In conclusion, the combination of HP with the addition of soy sauce and/or olive oil is an effective technology that can improve chemical, health, sensory qualities and safety of chicken breast. PMID:25049950

  17. Shear enhanced compaction in a porous basalt from San Miguel Island, Azores

    NASA Astrophysics Data System (ADS)

    Loaiza, S.; Fortin, J.; Schubnel, A. J.; Vinciguerra, S.; Moreira, M.; Gueguen, Y.

    2011-12-01

    Basaltic rocks are the main component of the oceanic upper crust. This is of potential interest for water and geothermal resources, or for storage of CO2. The aim of our work is to investigate experimentally the mechanical behavior and the failure modes of porous basalt as well its permeability evolution during deformation. Cylindrical basalt samples, from the Azores, of 30 mm in diameter and 60 mm in length were deformed the triaxial cell at room temperature and at a constant axial strain rate of 10-5 s-1. The initial porosity of the sample was 18%. In our study, a set of experiments were performed at confining pressure in the range of 25-290 MPa. The samples were deformed under saturated conditions at a constant pore pressure of 5MPa. Two volumetric pumps kept the pore pressure constant, and the pore volume variations were recorded. The evolution of the porosity was calculated from the total volume variation inside the volumetric pumps. Permeability measurements were performed using the steady-state technique. Our result shows that two modes of deformation can be highlighted in this basalt. At low confining pressure (Pc < 50 MPa), the differential stress attains a peak before the sample undergoes strain softening; failure occurs by shear localization. The experiments performed at confining pressure higher than 50 MPa, show a totally different mode of deformation. In this second mode of deformation, an appreciable inelastic porosity reduction is observed. Comparing to the hydrostatic loading, the rock sample started to compact beyond a critical stress state; and from then, strain hardening, with stress drops are observed. Such a behavior is characteristic of the formation of compaction localization, due to grain crushing and pore collapse. In addition, this inelastic compaction is accompanied by a decrease of permeability, indicating that these compaction bands or zones act as barrier for fluid flow, in agreement with observations done in sandstone. Further studies, including Acoustic Emission locations and microstructural observations will be carried out in order to map the compaction bands or zones and confirm or infirm the formation of compaction localization, and the micromechanisms (pore collapse and grain crushing) taking place in this second mode of deformation.

  18. Effect of high hydrostatic pressure and whey proteins on the disruption of casein micelle isolates.

    PubMed

    Harte, Federico M; Gurram, Subba Rao; Luedecke, Lloyd O; Swanson, Barry G; Barbosa-Cánovas, Gustavo V

    2007-11-01

    High hydrostatic pressure disruption of casein micelle isolates was studied by analytical ultracentrifugation and transmission electron microscopy. Casein micelles were isolated from skim milk and subjected to combinations of thermal treatment (85 degrees C, 20 min) and high hydrostatic pressure (up to 676 MPa) with and without whey protein added. High hydrostatic pressure promoted extensive disruption of the casein micelles in the 250 to 310 MPa pressure range. At pressures greater than 310 MPa no further disruption was observed. The addition of whey protein to casein micelle isolates protected the micelles from high hydrostatic pressure induced disruption only when the mix was thermally processed before pressure treatment. The more whey protein was added (up to 5 g/l) the more the protection against high hydrostatic pressure induced micelle disruption was observed in thermally treated samples subjected to 310 MPa.

  19. Influence of xanthan gum on the structural characteristics of myofibrillar proteins treated by high pressure.

    PubMed

    Villamonte, Gina; Jury, Vanessa; Jung, Stéphanie; de Lamballerie, Marie

    2015-03-01

    The effects of xanthan gum on the structural modifications of myofibrillar proteins (0.3 M NaCl, pH 6) induced by high pressure (200, 400, and 600 MPa, 6 min) were investigated. The changes in the secondary and tertiary structures of myofibrillar proteins were analyzed by circular dichroism. The protein denaturation was also evaluated by differential scanning calorimetry. Likewise, the protein surface hydrophobicity and the solubility of myofibrillar proteins were measured. High pressure (600 MPa) induced the loss of α-helix structures and an increase of β-sheet structures. However, the presence of xanthan gum hindered the former mechanism of protein denaturation by high pressure. In fact, changes in the secondary (600 MPa) and the tertiary structure fingerprint of high-pressure-treated myofibrillar proteins (400 to 600 MPa) were observed in the presence of xanthan gum. These modifications were confirmed by the thermal analysis, the thermal transitions of high-pressure (400 to 600 MPa)-treated myofibrillar proteins were modified in systems containing xanthan gum. As consequence, the high-pressure-treated myofibrillar proteins with xanthan gum showed increased solubility from 400 MPa, in contrast to high-pressure treatment (600 MPa) without xanthan gum. Moreover, the surface hydrophobicity of high-pressure-treated myofibrillar proteins was enhanced in the presence of xanthan gum. These effects could be due to the unfolding of myofibrillar proteins at high-pressure levels, which exposed sites that most likely interacted with the anionic polysaccharide. This study suggests that the role of food additives could be considered for the development of meat products produced by high-pressure processing. © 2015 Institute of Food Technologists®

  20. Effect of high pressure on growth and bacteriocin production of Pediococcus acidilactici HA-6111-2

    NASA Astrophysics Data System (ADS)

    Castro, S. M.; Kolomeytseva, M.; Casquete, R.; Silva, J.; Saraiva, J. A.; Teixeira, P.

    2015-10-01

    This study was aimed to investigate the effect of high pressure processing (HPP, 200-600 MPa) on the (i) survival of Listeria innocua and Pediococcus acidilactici HA-6111-2; (ii) production of bacteriocin bacHA-6111-2 and (iii) activity of bacteriocin against untreated and pressure-treated L. innocua cells. Inactivation of P. acidilactici was observed for pressures of >300 MPa. However, at this pressure level, L. innocua was more sensitive. Bacteriocin crude extract was pressure stable, with a decrease for pressures of ≥400 MPa. Pressures of ≤200 MPa did not affect bacteriocin production when compared with non-pressure-treated cells, whereas higher pressures caused a 2- to 4-fold decrease on the maximum level of bacteriocin production. Growth curves of P. acidilactici were fitted with the modified Gompertz model. The lag phase period depended on the magnitude of the pressure applied: there was a delay in the exponential phase as pressure increased and, as a consequence, in the beginning of bacteriocin production. Since P. acidilactici HA-6111-2 and its bacteriocin have shown resistance to pressures up to 300-400 MPa, they could be used in combination with HPP in order to improve food safety.

  1. Conventional freezing plus high pressure-low temperature treatment: Physical properties, microbial quality and storage stability of beef meat.

    PubMed

    Fernández, Pedro P; Sanz, Pedro D; Molina-García, Antonio D; Otero, Laura; Guignon, Bérengère; Vaudagna, Sergio R

    2007-12-01

    Meat high-hydrostatic pressure treatment causes severe decolouration, preventing its commercialisation due to consumer rejection. Novel procedures involving product freezing plus low-temperature pressure processing are here investigated. Room temperature (20°C) pressurisation (650MPa/10min) and air blast freezing (-30°C) are compared to air blast freezing plus high pressure at subzero temperature (-35°C) in terms of drip loss, expressible moisture, shear force, colour, microbial quality and storage stability of fresh and salt-added beef samples (Longissimus dorsi muscle). The latter treatment induced solid water transitions among ice phases. Fresh beef high pressure treatment (650MPa/20°C/10min) increased significantly expressible moisture while it decreased in pressurised (650MPa/-35°C/10min) frozen beef. Salt addition reduced high pressure-induced water loss. Treatments studied did not change fresh or salt-added samples shear force. Frozen beef pressurised at low temperature showed L, a and b values after thawing close to fresh samples. However, these samples in frozen state, presented chromatic parameters similar to unfrozen beef pressurised at room temperature. Apparently, freezing protects meat against pressure colour deterioration, fresh colour being recovered after thawing. High pressure processing (20°C or -35°C) was very effective reducing aerobic total (2-log(10) cycles) and lactic acid bacteria counts (2.4-log(10) cycles), in fresh and salt-added samples. Frozen+pressurised beef stored at -18°C during 45 days recovered its original colour after thawing, similarly to just-treated samples while their counts remain below detection limits during storage.

  2. Validation of a dew-point generator for pressures up to 6 MPa using nitrogen and air

    NASA Astrophysics Data System (ADS)

    Bosma, R.; Mutter, D.; Peruzzi, A.

    2012-08-01

    A new primary humidity standard was developed at VSL that, in addition to ordinary operation with air and nitrogen at atmospheric pressure, can be operated with other carrier gases such as natural gas at pressures up to 6 MPa and SF6 at pressures up to 1 MPa. The temperature range of the standard is from -80 °C to +20 °C. In this paper, we report the validation of the new primary dew-point generator in the temperature range -41 °C to +5 °C and the pressure range 0.1 MPa to 6 MPa using nitrogen and air. For the validation the flow through the dew-point generator was varied up to 10 l min-1 (at 23 °C and 1013 hPa) and the dew point of the gas entering the generator was varied up to 15 °C above the dew point exiting the generator. The validation results showed that the new generator, over the tested temperature and pressure range, can be used with a standard uncertainty of 0.02 °C frost/dew point. The measurements used for the validation at -41 °C and -20 °C with nitrogen and at +5 °C with air were also used to calculate the enhancement factor at pressures up to 6 MPa. For +5 °C the differences between the measured and literature values were compatible with the respective uncertainties. For -41 °C and -20 °C they were compatible only up to 3 MPa. At 6 MPa a discrepancy was observed.

  3. Effect of high hydrostatic pressure on background microflora and furan formation in fruit purée based baby foods.

    PubMed

    Kultur, Gulcin; Misra, N N; Barba, Francisco J; Koubaa, Mohamed; Gökmen, Vural; Alpas, Hami

    2018-03-01

    The baby foods industry is currently seeking technologies to pasteurize products without formation of processing contaminants such as furan. This work demonstrates the applicability of high hydrostatic pressure (HHP) as a non-thermal decontamination intervention for fruit purée based baby foods. HHP processing was evaluated at 200, 300, and 400 MPa pressures, for 5, 10 and 15 min of treatment times at 25, 35 and 45 °C. HHP application at 400 MPa, 45 °C for 15 min ensured complete inactivation (about 6 log 10 ) of total mesophilic aerophiles, as well as yeasts and molds. No furan was detected in HHP processed products. Thus, the key advantage of HHP over thermal processing is the ability to achieve commercially acceptable microbiological inactivation while avoiding the formation of processing contaminants such as furan.

  4. High-pressure-induced water penetration into 3-­isopropylmalate dehydrogenase

    PubMed Central

    Nagae, Takayuki; Kawamura, Takashi; Chavas, Leonard M. G.; Niwa, Ken; Hasegawa, Masashi; Kato, Chiaki; Watanabe, Nobuhisa

    2012-01-01

    Hydrostatic pressure induces structural changes in proteins, including denaturation, the mechanism of which has been attributed to water penetration into the protein interior. In this study, structures of 3-isopropylmalate dehydrogenase (IPMDH) from Shewanella oneidensis MR-1 were determined at about 2 Å resolution under pressures ranging from 0.1 to 650 MPa using a diamond anvil cell (DAC). Although most of the protein cavities are monotonically compressed as the pressure increases, the volume of one particular cavity at the dimer interface increases at pressures over 340 MPa. In parallel with this volume increase, water penetration into the cavity could be observed at pressures over 410 MPa. In addition, the generation of a new cleft on the molecular surface accompanied by water penetration could also be observed at pressures over 580 MPa. These water-penetration phenomena are considered to be initial steps in the pressure-denaturation process of IPMDH. PMID:22349232

  5. Nonthermal pasteurization of fermented green table olives by means of high hydrostatic pressure processing.

    PubMed

    Argyri, Anthoula A; Panagou, Efstathios Z; Nychas, George-John E; Tassou, Chrysoula C

    2014-01-01

    Green fermented olives cv. Halkidiki were subjected to different treatments of high hydrostatic pressure (HHP) processing (400, 450, and 500 MPa for 15 or 30 min). Total viable counts, lactic acid bacteria and yeasts/moulds, and the physicochemical characteristics of the product (pH, colour, and firmness) were monitored right after the treatment and after 7 days of storage at 20(°)C to allow for recovery of injured cells. The treatments at 400 MPa for 15 and 30 min, 450 MPa for 15 and 30 min, and 500 MPa for 15 min were found insufficient as a recovery of the microbiota was observed. The treatment at 500 MPa for 30 min was effective in reducing the olive microbiota below the detection limit of the enumeration method after the treatment and after 1 week of storage and was chosen as being more appropriate for storing olives for an extended time period (5 months). After 5 months of storage at 20(°)C, no microbiota was detected in treated samples, while significant changes for both HHP treated and untreated olives were observed for colour parameters only (minor degradation). In conclusion, HHP treatment may introduce a reliable nonthermal pasteurization method to extend the microbiological shelf-life of fermented table olives.

  6. Nonthermal Pasteurization of Fermented Green Table Olives by means of High Hydrostatic Pressure Processing

    PubMed Central

    Argyri, Anthoula A.; Panagou, Efstathios Z.; Nychas, George-John E.; Tassou, Chrysoula C.

    2014-01-01

    Green fermented olives cv. Halkidiki were subjected to different treatments of high hydrostatic pressure (HHP) processing (400, 450, and 500 MPa for 15 or 30 min). Total viable counts, lactic acid bacteria and yeasts/moulds, and the physicochemical characteristics of the product (pH, colour, and firmness) were monitored right after the treatment and after 7 days of storage at 20°C to allow for recovery of injured cells. The treatments at 400 MPa for 15 and 30 min, 450 MPa for 15 and 30 min, and 500 MPa for 15 min were found insufficient as a recovery of the microbiota was observed. The treatment at 500 MPa for 30 min was effective in reducing the olive microbiota below the detection limit of the enumeration method after the treatment and after 1 week of storage and was chosen as being more appropriate for storing olives for an extended time period (5 months). After 5 months of storage at 20°C, no microbiota was detected in treated samples, while significant changes for both HHP treated and untreated olives were observed for colour parameters only (minor degradation). In conclusion, HHP treatment may introduce a reliable nonthermal pasteurization method to extend the microbiological shelf-life of fermented table olives. PMID:25243146

  7. The effect of high pressures on the yoghurt from milk with the stabilizer

    NASA Astrophysics Data System (ADS)

    Reps, A.; Jankowska, A.; Wiśniewska, K.

    2008-07-01

    The effect of high pressures on the microbiological and physio-chemical properties of yoghurt was investigated. The best results were obtained when the yoghurt was manufactured from milk with the addition of MYO 752 stabilizer (starch, gelatin, pectin) selected from 10 stabilizers. Yoghurt manufactured with the addition of 0, 6% MYO 752 stabilizer was processed at the pressure of 400-600 MPa/15 min. in the range of 50 MPa. Pressurization caused a total reduction of number of Lactobacillus delbrueckii ssp. Bulgaricus and reduced the number of Streptococcus thermophilus by 1-2 orders of magnitude. Pressurized and non-pressurized yoghurts characterized of a homogenous consistency and typical plain yoghurt taste. The decrease of the number of living bacteria was observed in yoghurts during the storage. The acidity of pressurized yoghurts remained on the some level at the temperature of 4°C and 20°C. The more intensive antibacterial activity of microflora was observed in yoghurts storaged at 20°C in comparison with yoghurts storaged at 4°C. Disadvantageous changes of the pressurized yoghurts consistency were not found. The taste and aroma of yoghurts remained without any changes.

  8. Effect of high pressure treatment on the aging characteristics of Chinese liquor as evaluated by electronic nose and chemical analysis

    NASA Astrophysics Data System (ADS)

    Zhu, S. M.; Xu, M. L.; Ramaswamy, H. S.; Yang, M. Y.; Yu, Y.

    2016-08-01

    Several high pressure (HP) treatments (100-400 MPa 15 and 30 min) were applied to Chinese “Junchang” liquor, and aging characteristics of the liquor were evaluated. Results from the principal component analysis and the discriminant factor analysis of E-Nose demonstrated that HP treatment at 300 and 400 MPa resulted in significant (p < 0.05) changes in aroma components of the liquor. An increase in total ester content and a decrease in total acid content were observed for all treated samples (p < 0.05), which was verified by gas chromatography analysis. In addition, a slight decrease in alcohol content was found for HP treatment at 400 MPa for 30 min. These changes and trends were in accordance with the natural aging process of Chinese liquor. However, HP treatment caused a slight increase in solid content, which might be somewhat undesirable. Sensory evaluation results confirmed that favorable changes in color and flavor of Chinese liquor were induced by HP treatment; however, overall gaps still existed between the quality of treated and six-year aged samples. HP treatment demonstrated a potential to accelerate the natural aging process for Chinese liquor, but long term studies may be needed further to realize the full potential.

  9. High pressure applied to frozen ham at different process stages. 2. Effect on the sensory attributes and on the colour characteristics of dry-cured ham.

    PubMed

    Serra, X; Grèbol, N; Guàrdia, M D; Guerrero, L; Gou, P; Masoliver, P; Gassiot, M; Sárraga, C; Monfort, J M; Arnau, J

    2007-01-01

    This paper describes the effect of high pressure (400MPa and 600MPa) applied to frozen hams at early stages of the dry-cured ham process: green hams (GH) and hams at the end of the resting stage (ERS), on the appearance, some texture and flavour parameters and on the instrumental colour characteristics of dry-cured hams. Pressurized hams showed slightly lower visual colour intensity than the control ones. In general, pressurization did not have a significant effect on the flavour characteristics of the final product. The 600-MPa hams from the ERS process showed significantly lower crumbliness and higher fibrousness scores than the control and the 400-MPa hams. However, none of these differences were enough to affect the overall sensory quality of the hams negatively. Regarding instrumental colour characteristics (L(∗)a(∗)b(∗)), an increase in lightness was observed in the biceps femoris muscle from GH hams pressurized at 400MPa and 600MPa but not in the ERS hams.

  10. Ascorbic acid is the only bioactive that is better preserved by high hydrostatic pressure than by thermal treatment of a vegetable beverage.

    PubMed

    Barba, Francisco J; Esteve, Maria J; Frigola, Ana

    2010-09-22

    Variations in levels of antioxidant compounds (ascorbic acid, total phenolics, and total carotenoids), total antioxidant capacity, and color changes in a vegetable (tomato, green pepper, green celery, onion, carrot, lemon, and olive oil) beverage treated by high hydrostatic pressure (HHP) were evaluated in this work. The effects of HHP treatment, four different pressures (100, 200, 300, and 400 MPa) and four treatment times for each pressure (from 120 to 540 s) were compared with those of thermal treatment (90-98 °C for 15 and 21 s). High pressure treatment retained significantly more ascorbic acid in the vegetable beverage than thermal treatment. However, no significant changes in total phenolics were observed between HHP treated and thermally processed vegetable beverage and unprocessed beverage. Color changes (a*, b*, L, chroma, h°, and ΔE) were less for pressurized beverage than thermally treated samples compared with unprocessed beverage.

  11. Effects of Brass (Cu3Zn2) as High Thermal Expansion Material on Shrink Disc Performance During High Thermal Loading

    NASA Astrophysics Data System (ADS)

    Mazlan, MIS; Mohd, SA; Bahar, ND; Aziz, SAA

    2018-03-01

    This research work is focused on shrink disc operation at high temperature. Geometrical and material design selections have been done by taking into consideration the existing shrink disc operating at high temperature condition. The existing shrink disc confronted slip between shaft and shaft sleeve during thermal loading condition. The assessment has been obtained through virtual experiment by using Finite Element Analysis (FEA) -Thermal Transient Stress for 900 seconds with 300 °C of thermal loading. This investigation consists of the current and improved version of shrink disc, where identical geometries and material properties were utilized. High Thermal Expansion (HTE) material has been introduced to overcome the current design of the shrink disc. Brass (Cu3Zn2) has been selected as the HTE material in the improved shrink disc design due to its high thermal expansion properties. The HTE has shown a significant improvement on the total contact area and contact pressure on the shaft and the shaft sleeve. The improved shrink disc embedded with HTE during thermal loading exhibit a minimum of 1244.1 mm2 of the total area on shaft and shaft sleeve which uninfluenced the total contact area at normal condition which is 1254.3 mm2. Meanwhile, the total pressure of improved shrink disc had an increment of 108.1 MPa while existing shrink disc total pressure has lost 17.2 MPa during thermal loading.

  12. Psychrometric measurement of soil water potential: Stability of calibration and test of pressure-plate samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, T.L.; Gee, G.W.; Heller, P.R.

    1990-08-01

    A commercially available thermocouple psychrometer sample changer (Decagon SC-10A) was used to measure the water potential of field soils ranging in texture from sand to silty clay loam over a range of {minus}0.5 to {minus}20.0 MPa. The standard error of prediction based on regression statistics was generally between 0.04 and 0.14 MPa at {minus}5 MPa. Replacing the measuring junction of the unit changed the calibration slightly; however, it did not significantly alter measurement accuracy. Calibration curves measured throughout a year of testing are consistent and indicate no systematic drift in calibration. Most measurement uncertainty is produced by shifts in themore » intercept in the calibration equation rather than the slope. Both the variability in intercept and the regression error seem to be random. Measurements taken with the SC-10A show that water potential in both sand and silt loam samples removed from 1.5-MPa pressure plates was often 0.5 to 1.0 MPa greater than the 1.5-MPa applied pressure. Limited data from 0.5-MPa pressure plates show close agreement between SC-10A measurements and pressure applied to these more permeable plates.« less

  13. Compaction and Permeability Reduction of Castlegate Sandstone under Pore Pressure Cycling

    NASA Astrophysics Data System (ADS)

    Bauer, S. J.

    2014-12-01

    We investigate time-dependent compaction and permeability changes by cycling pore pressure with application to compressed air energy storage (CAES) in a reservoir. Preliminary experiments capture the impacts of hydrostatic stress, pore water pressure, pore pressure cycling, chemical, and time-dependent considerations near a borehole in a CAES reservoir analog. CAES involves creating an air bubble in a reservoir. The high pressure bubble serves as a mechanical battery to store potential energy. When there is excess grid energy, bubble pressure is increased by air compression, and when there is energy needed on the grid, stored air pressure is released through turbines to generate electricity. The analog conditions considered are depth ~1 km, overburden stress ~20 MPa and a pore pressure ~10MPa. Pore pressure is cycled daily or more frequently between ~10 MPa and 6 MPa, consistent with operations of a CAES facility at this depth and may continue for operational lifetime (25 years). The rock can vary from initially fully-to-partially saturated. Pore pressure cycling changes the effective stress.Jacketed, room temperature tap water-saturated samples of Castlegate Sandstone are hydrostatically confined (20 MPa) and subjected to a pore pressure resulting in an effective pressure of ~10 MPa. Pore pressure is cycled between 6 to 10 MPa. Sample displacement measurements yielded determinations of volumetric strain and from water flow measurements permeability was determined. Experiments ran for two to four weeks, with 2 to 3 pore pressure cycles per day. The Castlegate is a fluvial high porosity (>20%) primarily quartz sandstone, loosely calcite cemented, containing a small amount of clay.Pore pressure cycling induces compaction (~.1%) and permeability decreases (~20%). The results imply that time-dependent compactive processes are operative. The load path, of increasing and decreasing pore pressure, may facilitate local loosening and grain readjustments that results in the compaction and permeability decreases observed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Dept. of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.SAND2014-16586A

  14. Effect of high hydrostatic pressure on the microbiological, biochemical characteristics of white shrimp Litopenaeus vannamei.

    PubMed

    Li, Xiu-Xia; Tian, Xin; Li, Jian-Rong

    2016-06-01

    Using thermal processing (TP) treatment (100 ℃, 1-8 min) as a control, the effects of high hydrostatic pressure (HHP, 200-500 MPa, 2.5-20 min) on the microbiological and biochemical characteristics of white shrimp Litopenaeus vannamei were investigated. The results showed that the efficiency of polyphenol oxidase (PPO) inactivation and log reduction of total plate count (TPC) by HHP treatment were all significantly lower than by TP treatment (p < 0.05). The rate of inactivation for TPC and PPO all increased with the increase of HHP pressure and holding time (p < 0.05). The inactivation of PPO was in accordance with a first-order kinetics with the HHP treating time. Hardness of HHP-treated samples at the pressure of 300-500 MPa was higher than TP-treated samples, while the yield loss of HHP treatment was significantly lower than with TP treatment (p < 0.05), long time and high pressure of HHP treatment turned the appearance of shrimps slightly pink. © The Author(s) 2015.

  15. Solubility of carbon dioxide in aqueous solutions of 2-amino-2-methyl-1-propanol and N-methyldiethanolamine and their mixtures in the temperature range of 313 to 353 K and pressures up to 2.7 MPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silkenbaeumer, D.; Lichtenthaler, R.N.; Rumpf, B.

    1998-08-01

    The solubility of carbon dioxide in aqueous solutions containing 2-amino-2-methyl-1-propanol (AMP) was measured in the temperature range from 313 to 353 K at total pressures up to 2.7 MPa using an analytical method. A model taking into account chemical reactions in the liquid phase as well as physical interactions is used to correlate the new data. To test the predictive capability of the model, the solubility of carbon dioxide in an aqueous solution containing AMP and N-methyldiethanolamine (MDEA) was measured at 313 K. Experimental results are reported and compared to literature data and calculations.

  16. KEY COMPARISON: Final report on Key Comparison APMP.SIM.M.P-K1c: Bilateral comparison between NIST (USA) and NPLI (India) in the pneumatic pressure region 0.4 MPa to 4.0 MPa

    NASA Astrophysics Data System (ADS)

    Driver, R. Gregory; Olson, Douglas A.; Dilawar, Nita; Bandyopadhyay, A. K.

    2007-01-01

    We report the results of a bilateral comparison of pressure measurement between NIST and NPLI using a piston gauge transfer standard (TS), designated as NPLI-4, over the range of nominal applied pressure 0.4 MPa to 4.0 MPa. This TS was cross-floated against the laboratory secondary standard designated as PG13 at NIST, USA and against NPLI-8 at NPLI, India. The nominal pressure points of the bilateral comparison were (0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6 and 4.0) MPa, respectively. The comparison was performed in both the institutes in identical pressure cycles in increasing pressures. The comparison data were analysed in terms of the effective area [Ap (mm2)] as a function pressure [p (MPa)] of the TS at the above-mentioned pressures. We have also estimated the zero-pressure effective area [A0 (mm2)] and the pressure distortion coefficient [λ (MPa-1)] of the transfer standard. The consistency of the results at every pressure in the range indicates that the laboratory standards used in this comparison are compatible, uniform and can be considered traceable to each other. Finally, the degree of equivalence between NPLI and NIST is 11.4 × 10-6 or better, which is always less than the relative standard uncertainty of the difference (33.6 × 10-6). Main text. To reach the main text of this Paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  17. The application of high pressure-mild temperature processing for prolonging the shelf-life of strawberry purée

    NASA Astrophysics Data System (ADS)

    Marszałek, K.; Woźniak, Ł.; Skąpska, S.

    2016-04-01

    The aim of this study was to monitor the shelf-life and quality of strawberry purée preserved using combined high pressure processing (HPP)-mild temperature processing at 300 and 600 MPa for 15 min during cold storage (6°C). Increasing the pressure resulted in a prolonged shelf-life of from 4 to 28 weeks for HPP-preserved purée at 300 and 600 MPa, respectively. The highest inactivation of peroxidases, pectinesterases and polygalacturonases was noted when a higher pressure was used, whereas a lower pressure was more efficient for polyphenoloxidases. The degradation of vitamin C and anthocyanins was 20% and 5% higher at 600 MPa than at 300 MPa, respectively. Significantly fewer changes in the colour coefficient, expressed as ΔE, and the browning index, were observed in purée preserved at 600 MPa. Oxidative and hydrolytic enzymes are highly pressure-resistant, which suggests other inhibitors should be used to increase the shelf-life of good-quality fruit products.

  18. In Situ Observations of Thermoreversible Gelation and Phase Separation of Agarose and Methylcellulose Solutions under High Pressure.

    PubMed

    Kometani, Noritsugu; Tanabe, Masahiro; Su, Lei; Yang, Kun; Nishinari, Katsuyoshi

    2015-06-04

    Thermoreversible sol-gel transitions of agarose and methylcellulose (MC) aqueous solutions on isobaric cooling or heating under high pressure up to 400 MPa have been investigated by in situ observations of optical transmittance and falling-ball experiments. For agarose, which undergoes the gelation on cooling, the application of pressure caused a gradual rise in the cloud-point temperature over the whole pressure range examined, which is almost consistent with the pressure dependence of gelling temperature estimated by falling-ball experiments, suggesting that agarose gel is stabilized by compression and that the gelation occurs nearly in parallel with phase separation under ambient and high-pressure conditions. For MC, which undergoes the gelation on heating, the cloud-point temperature showed a slight rise with an initial elevation of pressure up to ∼150 MPa, whereas it showed a marked depression above 200 MPa. In contrast, the gelling temperature of MC, which is nearly identical to the cloud-point temperature at ambient pressure, showed a monotonous rise with increasing pressure up to 350 MPa, which means that MC undergoes phase separation prior to gelation on heating under high pressure above 200 MPa. Similar results were obtained for the melting process of MC gel on cooling. The unique behavior of the sol-gel transition of MC under high pressure has been interpreted in terms of the destruction of hydrophobic hydration by compression.

  19. HHP treatment of liquid egg at 200-350 MPa

    NASA Astrophysics Data System (ADS)

    Tóth, A.; Németh, Cs; Palotás, P.; Surányi, J.; Zeke, I.; Csehi, B.; Castillo, L. A.; Friedrich, L.; Balla, Cs

    2017-10-01

    High hydrostatic pressure (HHP) treatment of egg proteins partially limits their sensitivity to pressure. According to the literature, at the 450 MPa level, denaturation of some proteins sets in to the extent that sensory and functional characteristics are impacted. This study involved treating liquid egg (egg white, yolk, and melange) at less than the above-mentioned value, after which the microbiological effect was examined. For the study, pressure pouches were filled with 100ml of raw liquid egg per pouch. Then the samples were treated at 200, 250, 300 and 350 MPa. In each case, the level was reached by increasing pressure at a rate of 100 MPa/min. Measurements were taken at the Corvinus University of Budapest, Faculty of Food Science, Dept. of Refrigeration and Livestock Products Technology RESATO FPU 100-2000 equipment. Denaturation was determined with calorimetric (DSC) tests. From our results, it appears that even at 250 MPa pressure treatment, the viable cell count decreases. Further, it can be said that microbe count went down in the egg white samples at 300-350 MPa, below the impact level. Significant denaturation was not detected during our examinations. In summary, we state that the most HHP-sensitive liquid egg type, egg white, can be pressure treated to reduce microbe count at a level less than that which causes denaturation. Microbe reduction was smaller in yolk and melange, so higher pressure values are appropriate for these products.

  20. Effects of high hydrostatic pressure or hydrophobic modification on thermal stability of xanthine oxidase.

    PubMed

    Halalipour, Ali; Duff, Michael R; Howell, Elizabeth E; Reyes-De-Corcuera, José I

    2017-08-01

    The effect of high hydrostatic pressure (HHP) on the kinetics of thermal inactivation of xanthine oxidase (XOx) from bovine milk was studied. Inactivation of XOx followed pseudo-first-order kinetics at 0.1-300MPa and 55.0-70.0°C. High pressure up to at least 300MPa stabilized XOx at all the studied temperatures. The highest stabilization effect of HHP on XOx was at 200-300MPa at 55.0 and 58.6°C, and at 250-300MPa at 62.3-70.0°C. The stability of XOx increased 9.5 times at 300MPa and 70.0°C compared to atmospheric pressure at the same temperature. The activation energy of inactivation of XOx decreased with pressure and was 1.9 times less at 300MPa (97.0±8.2kJmol -1 ) than at 0.1MPa (181.7±12.1kJmol -1 ). High pressure decreased the dependence of the rate constant of inactivation to temperature effects compared to atmospheric pressure. The stabilizing effect of HHP on XOx was highest at 70.0°C where the activation volume of inactivation of XOx was 28.9±2.9cm 3 mol -1 . A second approach to try to increase XOx stability involved hydrophobic modification using aniline or benzoate. However, the thermal stability of XOx remained unaffected after 8-14 modifications of carboxyl side groups per XOx monomer with aniline, or 12-17 modifications of amino side groups per XOx monomer with benzoate. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Effects of the ultra-high pressure on structure and α-glucosidase inhibition of polysaccharide from Astragalus.

    PubMed

    Zhu, Zhen-Yuan; Luo, You; Dong, Guo-Ling; Ren, Yuan-Yuan; Chen, Li-Jing; Guo, Ming-Zhu; Wang, Xiao-Ting; Yang, Xue-Ying; Zhang, Yongmin

    2016-06-01

    A novel homogeneous polysaccharide fraction (APS) was extracted from Astragalus by hot water and purified by Sephadex G-100 and G-75 column. Its molecular weight was 693kDa. APS and APS with ultra-high pressure treatment exhibited significant inhibitory abilities on a-glucosidase, inhibition rate from high to low in order was 400MPa-APS, 300MPa-APS, 500MPa-APS and APS. The inhibition ​percentage of 400MPa-APS (1.5mg/mL) was 49% (max.). This suggested that the inhibitory activity of APS on a-glucosidase was improved by ultra-high pressure treatment. FT-IR, SEM, CD spectra, atomic force microscope and Congo red test analysis of APS and 400MPa-APS showed ultra-high pressure treatment didn't change the preliminary structure but had an effect on its advanced structure. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. High-pressure protein crystallography of hen egg-white lysozyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Hiroyuki; Nagae, Takayuki; Watanabe, Nobuhisa, E-mail: nobuhisa@nagoya-u.jp

    The crystal structure of hen egg-white lysozyme (HEWL) was analyzed under pressures of up to 950 MPa. The high pressure modified the conformation of the molecule and induced a novel phase transition in the tetragonal crystal of HEWL. Crystal structures of hen egg-white lysozyme (HEWL) determined under pressures ranging from ambient pressure to 950 MPa are presented. From 0.1 to 710 MPa, the molecular and internal cavity volumes are monotonically compressed. However, from 710 to 890 MPa the internal cavity volume remains almost constant. Moreover, as the pressure increases to 950 MPa, the tetragonal crystal of HEWL undergoes a phasemore » transition from P4{sub 3}2{sub 1}2 to P4{sub 3}. Under high pressure, the crystal structure of the enzyme undergoes several local and global changes accompanied by changes in hydration structure. For example, water molecules penetrate into an internal cavity neighbouring the active site and induce an alternate conformation of one of the catalytic residues, Glu35. These phenomena have not been detected by conventional X-ray crystal structure analysis and might play an important role in the catalytic activity of HEWL.« less

  3. Final report on supplementary comparison APMP.M.P-S6 in gas gauge pressure from 10 MPa to 100 MPa

    NASA Astrophysics Data System (ADS)

    Kajikawa, Hiroaki; Olson, Douglas A.; Iizumi, Hideaki; Driver, Robert Greg; Kojima, Momoko

    2016-01-01

    A supplementary comparison of gas high-pressure standards was conducted between the National Metrology Institute of Japan (NMIJ/AIST) and the National Institute of Standards and Technology (NIST), within the framework of the Asia-Pacific Metrology Programme (APMP), in order to determine their degrees of equivalence in the pressure range from 10 MPa to 100 MPa in gauge mode. The pilot institute was NMIJ/AIST. The measurements were carried out from July 2014 to October 2014. Both participating institutes used pressure balances as their pressure standards. Different gases were used for the pressure medium: NMIJ/AIST used Nitrogen, while NIST used Helium. A set of two pressure monitors was used as the transfer standard. The pressure monitors were found sufficiently stable during the measurements. Characteristics of the pressure monitors were evaluated at the pilot institute, and then used for data corrections and uncertainty estimations. In particular, the effect of the gas medium on the pressure monitors was found to be significant, and then all the measurement data were corrected to those with Nitrogen. The degrees of equivalence between the two institutes were evaluated by the relative differences of the participant's results and their associated expanded (k = 2) uncertainties. The gas pressure standards in the range 10 MPa to 100 MPa for gauge mode of the two participating institutes were found to be equivalent within their claimed uncertainties. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  4. Impact of high pressure processing on color, bioactive compounds, polyphenol oxidase activity, and microbiological attributes of pumpkin purée.

    PubMed

    González-Cebrino, Francisco; Durán, Rocío; Delgado-Adámez, Jonathan; Contador, Rebeca; Bernabé, Rosario Ramírez

    2016-04-01

    Physicochemical parameters, bioactive compounds' content (carotenoids and total phenols), total antioxidant activity, and enzymatic activity of polyphenol oxidase (PPO) were evaluated after high pressure processing (HPP) on a pumpkin purée (cv. 'Butternut'). Three pressure levels (400, 500, and 600 MPa) were combined with three holding times (200, 400, and 600 s). The applied treatments reduced the levels of total aerobic mesophilic (TAM), total psychrophilic and psychrotrophic bacteria (TPP), and molds and yeasts (M&Y). All applied treatments did not affect enzymatic activity of PPO. Pressure level increased CIE L* values, which could enhance the lightness perception of high pressure (HP)-treated purées. No differences were found between the untreated and HP-treated purées regarding total phenols and carotenoids content (lutein, α-carotene, and β-carotene) and total antioxidant activity. HPP did not affect most quality parameters and maintained the levels of bioactive compounds. However, it did not achieve the complete inhibition of PPO, which could reduce the shelf-life of the pumpkin purée. © The Author(s) 2015.

  5. Effect of high hydrostatic pressure processing on the background microbial loads and quality of cantaloupe puree.

    PubMed

    Mukhopadhyay, Sudarsan; Sokorai, Kimberly; Ukuku, Dike; Fan, Xuetong; Juneja, Vijay

    2017-01-01

    The objective of this study was to investigate and evaluate the effects of high hydrostatic pressure (HHP) applied to cantaloupe puree (CP) on microbial loads and product quality during storage for 10days at 4°C. Freshly prepared, double sealed and double bagged CP (ca. 5g) was pressure treated at 300, 400 and 500MPa at 8°C and 15°C for 5min. Microflora populations, soluble solid content, pH, color, antioxidant activity, appearance and aroma were measured at 1, 6, and 10d of storage. Results showed that high pressure treatment of 300MPa (8°C and 15°C) resulted in reduction of total aerobic plate count from 3.3 to 1.8logCFU/g. The treatment reduced the populations of native aerobic plate count to non-detectable levels (detection limit 1logCFU/g) at 400MPa and 500MPa pressures at 15°C. Pressure treatment completely inactivated mold and yeast in puree below the limits of detection at day 1 and no regrowth was observed during 10days of storage at 4°C while mold and yeast in untreated puree survived during the storage. High pressure treatment did not show any adverse impact on physical properties as soluble solid content (SSC, 11.2°Brix) and acidity (pH, 6.9). The instrumental color parameters (L*, a*, b*) were affected due to HHP treatment creating a slightly lighter product, compared to control, as indicated by higher L.* and lower a* values. However the change was not detected by the sensory panel while evaluating appearance scores. Pressure treatment did not affect the antioxidant capacity of puree product compared to control. Visual appearance and sniffing aroma test by panel revealed no adverse changes in the sensory parameters as a result of HHP treatment. HHP method described in this study appears to be a promising way to inactivate spoilage microorganisms in the cantaloupe puree and maintain quality. This study provides a viable option for preservation and marketing this product. Published by Elsevier Ltd.

  6. Oenological characteristics, amino acids and volatile profiles of Hongqu rice wines during pottery storage: Effects of high hydrostatic pressure processing.

    PubMed

    Tian, Yuting; Huang, Jiamei; Xie, Tingting; Huang, Luqiang; Zhuang, Weijin; Zheng, Yafeng; Zheng, Baodong

    2016-07-15

    Hongqu rice wines were subjected to high hydrostatic pressure (HHP) treatments of 200 MPa and 550 MPa at 25 °C for 30 min and effects on wine quality during pottery storage were examined. HHP treatment can significantly (p<0.05) decrease the content of fusel-like alcohols and maintain the concentration of lactones in these wines. After 18 months of storage, the HHP-treated wines exhibited a more rapid decrease in total sugars (9.3-15.3%), lower free amino acid content (e.g. lysine content decreased by 45.0-84.5%), and higher ketone content (e.g. 6- and 14-fold increase for 2-nonanone). These changes could be attributed to the occurrence of Maillard and oxidation reactions. The wines treated at 550 MPa for 30 min developed about twice as rapidly during pottery storage than untreated wines based on principal component analysis. After only 6 months, treated wines had a volatile composition and an organoleptic quality similar to that of untreated wines stored in pottery for 18 months. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Preparation of black soybean (Glycine max L) extract with enhanced levels of phenolic compound and estrogenic activity using high hydrostatic pressure and pre-germination

    NASA Astrophysics Data System (ADS)

    Kim, Min Young; Jang, Gwi Yeong; Lee, Sang Hoon; Kim, Kyung Mi; Lee, Junsoo; Jeong, Heon Sang

    2018-04-01

    We investigated the influence of high hydrostatic pressure (HHP) treatment on the estrogenic properties and conversion of the phenolic compounds in germinated black soybean. The black soybean was germinated for two- or four-days, and then subjected to HHP at 0.1, 50, 100, or 150 MPa for 12 or 24 h. The highest total polyphenol content (3.9 mg GAE/g), flavonoid content (0.8 mg CE/g), phenolic acid content (940 ± 18.96 μg/g), and isoflavonone content (2600 μg/g) were observed after germination for four days and HHP treatment at 100 MPa for 24 h. In terms of isoflavone composition, the malonyl, acetyl and β-glycoside contents decreased, while the aglycone content increased with HHP. The highest proliferative effect (150%) is observed at four days germination and HHP treatment at 100 MPa. These results suggest that application of HHP may provide useful information regarding the utility of black soybean as alternative hormone replacement therapy.

  8. High pressure droplet burning experiments in reduced gravity

    NASA Technical Reports Server (NTRS)

    Chauveau, Christian; Goekalp, Iskender

    1995-01-01

    A parametric investigation of single droplet gasification regimes is helpful in providing the necessary physical ideas for sub-grid models used in spray combustion numerical prediction codes. A research program has been initiated at the LCSR to explore the vaporization regimes of single and interacting hydrocarbon and liquid oxygen droplets under high pressure conditions. This paper summarizes the status of the LCSR program on the high pressure burning of single fuel droplets; recent results obtained under normal and reduced gravity conditions with suspended droplets are presented. In the work described here, parabolic flights of the CNES Caravelle is used to create a reduced gravity environment of the order of 10(exp -2) g(sub O). For all the droplet burning experiments reported here, the suspended droplet initial diameters are scattered around 1.5 mm; and the ambient air temperature is 300 K. The ambient pressure is varied between 0.1 MPa and 12 MPa. Four fuels are investigated: methanol (Pc = 7.9 MPa), n-heptane (Pc = 2.74 MPa), n-hexane (Pc = 3.01 MPa) and n-octane (Pc = 2.48 MPa).

  9. Measurement and Modeling of Acoustic Fields in a Gel Phantom at High Intensities

    NASA Astrophysics Data System (ADS)

    Canney, Michael S.; Bailey, Michael R.; Khokhlova, Vera A.; Crum, Lawrence A.

    2006-05-01

    The goal of this work was to compare measured and numerically predicted HIFU pressure waveforms in water and a tissue-mimicking phantom. Waveforms were measured at the focus of a 2-MHz HIFU transducer with a fiber optic hydrophone. The transducer was operated with acoustic powers ranging from 2W to 300W. A KZK-type equation was used for modeling the experimental conditions. Strongly asymmetric nonlinear waves with peak positive pressure up to 80 MPa and peak negative pressure up to 20 MPa were measured in water, while waves up to 50 MPa peak positive pressure and 15 MPa peak negative pressure were measured in tissue phantoms. The values of peak negative pressure corresponded well with numerical simulations and were significantly smaller than predicted by linear extrapolation from low-level measurements. The values of peak positive pressures differed only at high levels of excitation where bandwidth limitations of the hydrophone failed to fully capture the predicted sharp shock fronts.

  10. Effect of high pressure treatment on the aging characteristics of Chinese liquor as evaluated by electronic nose and chemical analysis

    PubMed Central

    Zhu, S. M.; Xu, M. L.; Ramaswamy, H. S.; Yang, M. Y.; Yu, Y.

    2016-01-01

    Several high pressure (HP) treatments (100–400 MPa; 15 and 30 min) were applied to Chinese “Junchang” liquor, and aging characteristics of the liquor were evaluated. Results from the principal component analysis and the discriminant factor analysis of E-Nose demonstrated that HP treatment at 300 and 400 MPa resulted in significant (p < 0.05) changes in aroma components of the liquor. An increase in total ester content and a decrease in total acid content were observed for all treated samples (p < 0.05), which was verified by gas chromatography analysis. In addition, a slight decrease in alcohol content was found for HP treatment at 400 MPa for 30 min. These changes and trends were in accordance with the natural aging process of Chinese liquor. However, HP treatment caused a slight increase in solid content, which might be somewhat undesirable. Sensory evaluation results confirmed that favorable changes in color and flavor of Chinese liquor were induced by HP treatment; however, overall gaps still existed between the quality of treated and six-year aged samples. HP treatment demonstrated a potential to accelerate the natural aging process for Chinese liquor, but long term studies may be needed further to realize the full potential. PMID:27484292

  11. Combined pressure-thermal inactivation kinetics of Bacillus amyloliquefaciens spores in egg patty mince.

    PubMed

    Rajan, S; Ahn, J; Balasubramaniam, V M; Yousef, A E

    2006-04-01

    Bacillus amyloliquefaciens is a potential surrogate for Clostridium botulinum in validation studies involving bacterial spore inactivation by pressure-assisted thermal processing. Spores of B. amyloliquefaciens Fad 82 were inoculated into egg patty mince (approximately 1.4 x 10(8) spores per g), and the product was treated with combinations of pressure (0.1 to 700 MPa) and heat (95 to 121 degrees C) in a custom-made high-pressure kinetic tester. The values for the inactivation kinetic parameter (D), temperature coefficient (zT), and pressure coefficient (zP) were determined with a linear model. Inactivation parameters from the nonlinear Weibull model also were estimated. An increase in process pressure decreased the D-value at 95, 105, and 110 degrees C; however, at 121 degrees C the contribution of pressure to spore lethality was less pronounced. The zP-value increased from 170 MPa at 95 degrees C to 332 MPa at 121 degrees C, suggesting that B. amyloliquefaciens spores became less sensitive to pressure changes at higher temperatures. Similarly, the zT-value increased from 8.2 degrees C at 0.1 MPa to 26.8 degrees C at 700 MPa, indicating that at elevated pressures, the spores were less sensitive to changes in temperature. The nonlinear Weibull model parameter b increased with increasing pressure or temperature and was inversely related to the D-value. Pressure-assisted thermal processing is a potential alternative to thermal processing for producing shelf-stable egg products.

  12. Effect of high pressure processing on dispersive and aggregative properties of almond milk.

    PubMed

    Dhakal, Santosh; Giusti, M Monica; Balasubramaniam, V M

    2016-08-01

    A study was conducted to investigate the impact of high pressure (450 and 600 MPa at 30 °C) and thermal (72, 85 and 99 °C at 0.1 MPa) treatments on dispersive and aggregative characteristics of almond milk. Experiments were conducted using a kinetic pressure testing unit and water bath. Particle size distribution, microstructure, UV absorption spectra, pH and color changes of processed and unprocessed samples were analyzed. Raw almond milk represented the mono model particle size distribution with average particle diameters of 2 to 3 µm. Thermal or pressure treatment of almond milk shifted the particle size distribution towards right and increased particle size by five- to six-fold. Micrographs confirmed that both the treatments increased particle size due to aggregation of macromolecules. Pressure treatment produced relatively more and larger aggregates than those produced by heat treated samples. The apparent aggregation rate constant for 450 MPa and 600 MPa processed samples were k450MPa,30°C  = 0.0058 s(-1) and k600MPa,30°C  = 0.0095 s(-1) respectively. This study showed that dispersive and aggregative properties of high pressure and heat-treated almond milk were different due to differences in protein denaturation, particles coagulation and aggregates morphological characteristics. Knowledge gained from the study will help food processors to formulate novel plant-based beverages treated with high pressure. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  13. Effects of Jet Pressure on the Ground Surface Quality and CBN Wheel Wear in Grinding AISI 690 Nickel-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Guitouni, Ahmed; Chaieb, Iheb; Rhouma, Amir Ben; Fredj, Nabil Ben

    2016-11-01

    Fluid application in grinding is getting attention as higher stock removal rates, higher surface integrity and longer wheel life are required. It is necessary to define proper conditions of application for meeting high productivity goals by lowering the specific grinding energy and reducing the temperature of the contact zone. The present study investigated the capacity of the jet pressure of a spot nozzle to improve the wear of a CBN wheel when grinding the AISI 690 superalloy. Grinding experiments were conducted with an emulsion-type cooling fluid delivered at pressure ranging from 0.1 to 4 MPa. Results show that the maximum stock removal, reached at 4 MPa, is 5 times the stock removal obtained at 0.1 MPa, while the grinding ratio at 4 MPa is 8 times that at 0.1 MPa, and there is a critical pressure ( P c) around 1.5 MPa corresponding to the minimum specific grinding energy. Scanning electron microscopy of the grain tips showed that the wear mechanism shifts from breaking and dislodgment at low jet pressure to micro-fracture resulting in continuous self-sharpening of the abrasive grains. By lubricating at jet pressure close to P c, there is less thermal damage due to plowing and sliding and the resulting lower loading of the abrasive grains favors the micro-fracture of grains and thus a longer wheel life.

  14. Inactivation of Vibrio parahaemolyticus in hard clams (Mercanaria mercanaria) by high hydrostatic pressure (HHP) and the effect of HHP on the physical characteristics of hard clam meat.

    PubMed

    Mootian, Gabriel K; Flimlin, George E; Karwe, Mukund V; Schaffner, Donald W

    2013-02-01

    Shellfish may internalize dangerous pathogens during filter feeding. Traditional methods of depuration have been found ineffective against certain pathogens. The objective was to explore high hydrostatic pressure (HHP) as an alternative to the traditional depuration process. The effect of HHP on the survival of Vibrio parahaemolyticus in live clams (Mercanaria mercanaria) and the impact of HHP on physical characteristics of clam meat were investigated. Clams were inoculated with up to 7 log CFU/g of a cocktail of V. parahaemolyticus strains via filter feeding. Clams were processed at pressures ranging from 250 to 552 MPa for hold times ranging between 2 and 6 min. Processing conditions of 450 MPa for 4 min and 350 MPa for 6 min reduced the initial concentration of V. parahaemolyticus to a nondetectable level (<10(1) CFU/g), achieving >5 log reductions. The volume of clam meat (processed in shell) increased with negligible change in mass after exposure to pressure at 552 MPa for 3 min, while the drip loss was reduced. Clams processed at 552 MPa were softer compared to those processed at 276 MPa. However, all HHP processed clams were found to be harder compared to unprocessed. The lightness (L*) of the meat increased although the redness (a*) decreased with increasing pressure. Although high pressure-processed clams may pose a significantly lower risk from V. parahaemolyticus, the effect of the accompanied physical changes on the consumer's decision to purchase HHP clams remains to be determined. Shellfish may contain dangerous foodborne pathogens. Traditional methods of removing those pathogen have been found ineffective against certain pathogens. The objective of this research was to determine the effect of high hydrostatic pressure on V. parahaemolyticus in clams. Processing conditions of 450 MPa for 4 min and 350 MPa for 6 min reduced the initial concentration of V. parahaemolyticus to a nondetectable level, achieving >5 log reductions. © 2013 Institute of Food Technologists®

  15. Miniature microwave plasmas generated in high pressure argon

    NASA Astrophysics Data System (ADS)

    Inoue, Kenichi; Stauss, Sven; Kim, Jaeho; Ito, Tsuyohito; Terashima, Kazuo

    2018-05-01

    Miniature microwave plasmas with diameters of approximately 1 mm were generated in high-pressure argon (0.1–5.0 MPa) using a microgap electrode. The microwave power required to sustain plasmas was 1–10 W, depending on the pressure. Strong electron-neutral bremsstrahlung emission, indicating an electron temperature of approximately 12000 K, was observed at high pressures (>1 MPa), and electron densities estimated from Stark broadening revealed high values on the order of 1023 m‑3. The analysis confirmed that the coefficient for the pressure shift of the Ar I line at 696.5 nm reported by Copley and Camm can be extended to 5 MPa.

  16. Preliminary tests of an advanced high-temperature combustion system

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Trout, A. M.; Smith, J. M.; Jacobs, R. E.

    1983-01-01

    A combustion system has been developed to operate efficiently and with good durability at inlet pressures to 4.05 MPa (40 atm), inlet air temperatures to 900 K, and exhaust gas temperatures to 2480 K. A preliminary investigation of this system was conducted at inlet pressures to 0.94 MPa (9 atm), a nominal inlet air temperature of 560 K, and exhaust gas temperatures to 2135 K. A maximum combustion efficiency of 98.5 percent was attained at a fuel-air ratio of 0.033; the combustion efficiency decreased to about 90 percent as the fuel-air ratio was increased to 0.058. An average liner metal temperature of 915 K, 355 kelvins greater than the nominal inlet air temperature, was reached with an average exhaust gas temperature of 2090 K. The maximum local metal temperature at this condition was about 565 kelvins above the nominal inlet air temperature and decreased to 505 kelvins above with increasing combustor pressure. Tests to determine the isothermal total pressure loss of the combustor showed a liner loss of 1.1 percent and a system loss of 6.5 percent.

  17. High pressure and thermal pasteurization effects on sweet cherry juice microbiological stability and physicochemical properties

    NASA Astrophysics Data System (ADS)

    Queirós, Rui P.; Rainho, Daniel; Santos, Mauro D.; Fidalgo, Liliana G.; Delgadillo, Ivonne; Saraiva, Jorge A.

    2015-01-01

    This study evaluated high pressure processing (P1 - 400 MPa/5 min; P2 - 550 MPa/2 min) and thermal pasteurization (TP - 70°C/30 s) effects on sweet cherry juice's microbiological and physicochemical parameters, during four weeks of refrigerated storage. All treatments reduced the microbiological load to undetectable levels not affecting total soluble solids and titratable acidity. The pH increased with all treatments, however, it decreased during storage. Phenols were differently affected: TP increased them by 6%, P1 had no effect while P2 decreased them by 11%. During storage, phenols in control and TP samples decreased by 26% and 20%, P1 samples decreased them by 11% whereas P2 showed no variation. TP had no effect on anthocyanins, while pressure treatments increased them by 8%. Anthocyanins decreased during storage, particularly in the control and P1 (decreasing 41%). All treatments had no effect on antioxidant activity until the 14th day, thereafter high pressure processing samples showed the highest antioxidant activity.

  18. Effect of high pressure treatment on metabolite profile of marinated meat in soy sauce.

    PubMed

    Yang, Yang; Ye, Yangfang; Wang, Ying; Sun, Yangying; Pan, Daodong; Cao, Jinxuan

    2018-02-01

    Marinated meat in soy sauce was produced using hind leg by washing, rubbing salt, marinating with soy sauce and spices, and air dry-ripening for 15d. The effect of high pressure (HP) (150 and 300MPa for 15min) on the metabolite profiles of products was characterized using 1 H NMR and multivariate data analysis. The results showed that the metabonome was dominated by 26 metabolites, including amino acids, sugars, organic acids, nucleic aides and their derivatives. PC1 and PC2 explained a total of 75.4 and 11.9% of variables, respectively. HP treatments increased most of the metabolites, especially PC1, glutamate, sugars, nucleotides, anserine, lactate and creatine compared to the control. The increase of metabolites under HP was not dependent on pressure level except for alanine, lactate, acetate, formate, fumarate, glucose and 5'-IMP. These findings demonstrated that HP treatment at 150MPa was economical to improve the taste of marinated meat in soy sauce. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effect of high hydrostatic pressure on phenolic compounds, ascorbic acid and antioxidant activity in cashew apple juice

    NASA Astrophysics Data System (ADS)

    Queiroz, C.; Moreira, C. F. F.; Lavinas, F. C.; Lopes, M. L. M.; Fialho, E.; Valente-Mesquita, V. L.

    2010-12-01

    The cashew apple is native to Brazil, but there is insufficient information regarding the nutritional properties of this fruit. The objective of this study was to evaluate the impact of high pressure processing (HPP) at room temperature (25 °C) on phenolic compound and ascorbic acid contents and antioxidant capacity of cashew apple juice. This study showed that HPP at 250 or 400 MPa for 3, 5 and 7 min did not change pH, acidity, total soluble solids, ascorbic acid or hydrolysable polyphenol contents. However, juice pressurized for 3 and 5 min showed higher soluble polyphenol contents. Antioxidant capacity, measured by the ferric-reducing antioxidant power method, was not altered by HPP, but when treated at 250 MPa for 3 min, it resulted in an increased value when 2,2-diphenyl-1-picrylhydrazyl was used. These data demonstrate that HPP can be used in the food industry for the generation of products with higher nutritional quality.

  20. Phase Behavior of Three PBX Elastomers in High-Pressure Chlorodifluoromethane

    NASA Astrophysics Data System (ADS)

    Lee, Byung-Chul

    2017-10-01

    The phase equilibrium behavior data are presented for three kinds of commercial polymer-bonded explosive (PBX) elastomers in chlorodifluoromethane (HCFC22). Levapren^{{registered }} ethylene- co-vinyl acetate (LP-EVA), HyTemp^{{registered }} alkyl acrylate copolymer (HT-ACM), and Viton^{{registered }} fluoroelastomer (VT-FE) were used as the PBX elastomers. For each elastomer + HCFC22 system, the cloud point (CP) and/or bubble point (BP) pressures were measured while varying the temperature and elastomer composition using a phase equilibrium apparatus fitted with a variable-volume view cell. The elastomers examined in this study indicated a lower critical solution temperature phase behavior in the HCFC22 solvent. LP-EVA showed the CPs at temperatures of 323 K to 343 K and at pressures of 3 MPa to 10 MPa, whereas HT-ACM showed the CPs at conditions between 338 K and 363 K and between 4 MPa and 12 MPa. For the LP-EVA and HT-ACM elastomers, the BP behavior was observed at temperatures below about 323 K. For the VT-FE + HCFC22 system, only the CP behavior was observed at temperatures between 323 K and 353 K and at pressures between 6 MPa and 21 MPa. As the elastomer composition increased, the CP pressure increased, reached a maximum value at a specific elastomer composition, and then remained almost constant.

  1. Diamond-anvil cell observations of a new methane hydrate phase in the 100-MPa pressure range

    USGS Publications Warehouse

    Chou, I.-Ming; Sharma, A.; Burruss, R.C.; Hemley, R.J.; Goncharov, A.F.; Stern, L.A.; Kirby, S.H.

    2001-01-01

    A new high-pressure phase of methane hydrate has been identified based on its high optical relief, distinct pressure-temperature phase relations, and Raman spectra. In-situ optical observations were made in a hydrothermal diamond-anvil cell at temperatures between -40?? and 60 ??C and at pressures up to 900 MPa. Two new invariant points were located at -8.7 ??C and 99 MPa for the assemblage consisting of the new phase, structure I methane hydrate, ice Ih, and water, and at 35.3 ??C and 137 MPa for the new phase-structure I methane hydrate-water-methane vapor. Existence of the new phase is critical for understanding the phase relations among the hydrates at low to moderate pressures, and may also have important implications for understanding the hydrogen bonding in H2O and the behavior of water in the planetary bodies, such as Europa, of the outer solar system.

  2. Effects of high pressure treatment and temperature on lipid oxidation and fatty acid composition of yak (Poephagus grunniens) body fat.

    PubMed

    Wang, Qiang; Zhao, Xin; Ren, Yanrong; Fan, Enguo; Chang, Haijun; Wu, Hongbin

    2013-08-01

    Effects of high-pressure treatment (100 MPa to 600 MPa) on lipid oxidation and composition of fatty acids in yak body fat at 4 °C and 15 °C were investigated for up to 20 days storage. 400 and 600 MPa treatments increase the level of thiobarbituric acid-reactive substances (TBARS) 335% and 400% (p<0.05), respectively. Composition analysis shows that 600 MPa treatment induces a lower (p<0.05) percentage of polyunsaturated fatty acids, and C22:6 decreased significantly. A significant decrease in PUFA/SFA and n-6/n-3 PUFA values was observed at the end of storage. Samples treated at the lower pressures gave good sensory acceptability. It is concluded that a higher-pressure treatment is important in catalyzing lipid oxidation and the evolution of fatty acids in pressure-treated yak body fat. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Sewage sludge disintegration by high-pressure homogenization: a sludge disintegration model.

    PubMed

    Zhang, Yuxuan; Zhang, Panyue; Ma, Boqiang; Wu, Hao; Zhang, Sheng; Xu, Xin

    2012-01-01

    High-pressure homogenization (HPH) technology was applied as a pretreatment to disintegrate sewage sludge. The effects of homogenization pressure, homogenization cycle number, and total solid content on sludge disintegration were investigated. The sludge disintegration degree (DD(COD)), protein concentration, and polysaccharide concentration increased with the increase of homogenization pressure and homogenization cycle number, and decreased with the increase of sludge total solid (TS) content. The maximum DD(COD) of 43.94% was achieved at 80 MPa with four homogenization cycles for a 9.58 g/L TS sludge sample. A HPH sludge disintegration model of DD(COD) = kNaPb was established by multivariable linear regression to quantify the effects of homogenization parameters. The homogenization cycle exponent a and homogenization pressure exponent b were 0.4763 and 0.7324 respectively, showing that the effect of homogenization pressure (P) was more significant than that of homogenization cycle number (N). The value of the rate constant k decreased with the increase of sludge total solid content. The specific energy consumption increased with the increment of sludge disintegration efficiency. Lower specific energy consumption was required for higher total solid content sludge.

  4. Genes Required for Growth at High Hydrostatic Pressure in Escherichia coli K-12 Identified by Genome-Wide Screening

    PubMed Central

    Black, S. Lucas; Dawson, Angela; Ward, F. Bruce; Allen, Rosalind J.

    2013-01-01

    Despite the fact that much of the global microbial biosphere is believed to exist in high pressure environments, the effects of hydrostatic pressure on microbial physiology remain poorly understood. We use a genome-wide screening approach, combined with a novel high-throughput high-pressure cell culture method, to investigate the effects of hydrostatic pressure on microbial physiology in vivo. The Keio collection of single-gene deletion mutants in Escherichia coli K-12 was screened for growth at a range of pressures from 0.1 MPa to 60 MPa. This led to the identification of 6 genes, rodZ, holC, priA, dnaT, dedD and tatC, whose products were required for growth at 30 MPa and a further 3 genes, tolB, rffT and iscS, whose products were required for growth at 40 MPa. Our results support the view that the effects of pressure on cell physiology are pleiotropic, with DNA replication, cell division, the cytoskeleton and cell envelope physiology all being potential failure points for cell physiology during growth at elevated pressure. PMID:24040140

  5. Effect of High Hydrostatic Pressure Combined with Moderate Heat to Inactivate Pressure-Resistant Bacteria in Water-Boiled Salted Duck.

    PubMed

    Ye, Keping; Feng, Yulin; Wang, Kai; Bai, Yun; Xu, Xinglian; Zhou, Guanghong

    2015-06-01

    The objective of this work was to study the effect of high hydrostatic pressure combined with moderate heat to inactivate pressure-resistant bacteria in water-boiled salted duck meat (WBSDM), and to establish suitable procedures to improve the quality of WBSDM. The conditions (300 MPa/60 °C, 400 MPa/60 °C, and 500 MPa/50 °C) effectively inactivated the pressure-resistant bacteria (Bacillus cereus and Staphylococcus warneri) in WBSDM. Although more pressure-resistant than S. warneri, the above treatment conditions inactivated B. cereus more than 10(7) CFU/mL in buffer, and more than 10(6) CFU/g in WBSDM, and did not cause any changes in color, texture, or moisture content of products. The interaction between pressure and temperature is a more significant factor than only pressure in inactivating both B. cereus and S. warneri, the treatment of WBSDM at 400 MPa/ 60 °C/ 10 min is the most practical condition for postprocess of WBSDM after cooking. © 2015 Institute of Food Technologists®

  6. High-resolution thermal expansion measurements under helium-gas pressure

    NASA Astrophysics Data System (ADS)

    Manna, Rudra Sekhar; Wolf, Bernd; de Souza, Mariano; Lang, Michael

    2012-08-01

    We report on the realization of a capacitive dilatometer, designed for high-resolution measurements of length changes of a material for temperatures 1.4 K ⩽ T ⩽ 300 K and hydrostatic pressure P ⩽ 250 MPa. Helium (4He) is used as a pressure-transmitting medium, ensuring hydrostatic-pressure conditions. Special emphasis has been given to guarantee, to a good approximation, constant-pressure conditions during temperature sweeps. The performance of the dilatometer is demonstrated by measurements of the coefficient of thermal expansion at pressures P ≃ 0.1 MPa (ambient pressure) and 104 MPa on a single crystal of azurite, Cu3(CO3)2(OH)2, a quasi-one-dimensional spin S = 1/2 Heisenberg antiferromagnet. The results indicate a strong effect of pressure on the magnetic interactions in this system.

  7. Structure and Activity Changes of Phytohemagglutinin from Red Kidney Bean (Phaseolus vulgaris) Affected by Ultrahigh-Pressure Treatments.

    PubMed

    Lu, Yunjun; Liu, Cencen; Zhao, Mouming; Cui, Chun; Ren, Jiaoyan

    2015-11-04

    Phytohemagglutin (PHA), purified from red kidney beans (Phaseolus vulgaris) by Affi-Gel blue affinity chromatography, was subjected to ultrahigh-pressure (UHP) treatment (150, 250, 350, and 450 MPa). The purified PHA lost its hemagglutination activity after 450 MPa treatment and showed less pressure tolerance than crude PHA. However, the saccharide specificity and α-glucosidase inhibition activity of the purified PHA did not change much after UHP treatment. Electrophoresis staining by periodic acid-Schiff (PAS) manifested that the glycone structure of purified PHA remained stable even after 450 MPa pressure treatment. However, electrophoresis staining by Coomassie Blue as well as circular dichroism (CD) and differential scanning calorimetry (DSC) assay proved that the protein unit structure of purified PHA unfolded when treated at 0-250 MPa but reaggregates at 250-450 MPa. Therefore, the hemagglutination activity tends to be affected by the protein unit structure, while the stability of the glycone structure contributed to the remaining α-glucosidase inhibition activity.

  8. The YPR153W gene is essential for the pressure tolerance of tryptophan permease Tat2 in the yeast Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Kurosaka, Goyu; Abe, Fumiyoshi

    2018-01-01

    In the yeast Saccharomyces cerevisiae, hydrostatic pressure at 25 MPa is known to be nonlethal but significantly impairs the uptake of tryptophan by the permease Tat2, thereby inhibiting the growth of strains that require tryptophan from the medium. Here, we found that the lack of the YPR153W gene, so far poorly characterized for its role in yeast, caused a serious adverse effect on the growth at 10-25 MPa in the strain that required tryptophan. Deletion for YPR153W resulted in an increased rate of pressure-induced degradation of Tat2, suggesting that Tat2 is destabilized in the YPR153W deletion mutant at 25 MPa. Overexpression of the TAT2 gene enabled the deletion mutant to grow at 25 MPa. These results suggest that Ypr153w is essential for the stability and proper transport function of Tat2 under pressure at 10-25 MPa.

  9. Analysis of the Effect of Injection Pressure on Ignition Delay and Combustion Process of Biodiesel from Palm Oil, Algae and Waste Cooking Oil

    NASA Astrophysics Data System (ADS)

    Irham Anas, Mohd; Khalid, Amir; Hakim Zulkifli, Fathul; Jaat, Norrizam; Faisal Hushim, Mohd; Manshoor, Bukhari; Zaman, Izzuddin

    2017-10-01

    Biodiesel is a domestically produced, renewable fuel that can be manufactured from vegetable oils, animal fats, or recycled restaurant grease for use in diesel engines. The objective of this research is investigation the effects of the variant injection pressure on ignition delay and emission for different biodiesel using rapid compression machine. Rapid Compression Machine (RCM) is used to simulate a single compression stroke of an internal combustion engine as a real engine. Four types of biodiesel which are waste cooking oil, crude palm oil, algae and jatropha were tested at injection pressure of 80 MPa, 90 MPa and 130 MPa under constant ambient temperature at 950 K. Increased in injection pressure resulted shorter ignition delay proven by WCO5 which decreased from 1.3 ms at 80 MPa to 0.7 ms at 130 MPa. Meanwhile, emission for CO2 increased due to better fuel atomization for fuel-air mixture formation lead to completed combustion.

  10. Stress and Pore Pressure Measurement in IODP Riser Drilling: An Example from Expedition 319, Kumano Basin offshore SW Honshu, Japan

    NASA Astrophysics Data System (ADS)

    Saffer, D. M.; McNeill, L. C.; Byrne, T. B.; Araki, E.; Flemings, P. B.; Conin, M.; Eguchi, N. O.; Takahashi, K.; Toczko, S.; Boutt, D. F.; Doan, M.; Kano, Y.; Ito, T.; Lin, W.

    2009-12-01

    In summer 2009, Integrated Ocean Drilling Program (IODP) Expedition 319 drilled a 1600 m deep riser borehole (Site C0009) in the Kumano Basin offshore SW Japan, to investigate the properties, structure and state of stress in the hanging wall above the subduction plate boundary. The first riser-based scientific drilling in IODP history allowed us to make several new scientific measurements including in situ stress magnitude, pore pressure and permeability using the Modular Formation Dynamics Tester (MDT) wireline tool, and measurement of minimum stress magnitude from Leak-off Tests (LOT). In addition, continuous monitoring of mud weight, mud gas, annular pressure, and mud losses provided data to constrain formation pore fluid pressure and stress. At Site C0009, we conducted 2 LOTs below a casing shoe at 708.6 m depth and 11 successful MDT measurements, including 9 single probe tests to measure pore pressure and fluid mobility and 2 dual packer tests: 1 to measure permeability by a drawdown test, and 1 to measure in situ stress. Measured pore pressures are approximately hydrostatic to 1463.7 m depth. We observed only minor gas shows when drilling ahead (as in-place methane was liberated from the rock at the bit) but little or no gas during pipe connections. This indicates that the borehole mud pressure exceeded the formation pore pressure, and is consistent with the MDT measurements. Permeabilities range from ~10-16 m2 - 10-14 m2, and the observed variation is consistent with lithologic changes defined in gamma ray logs. The MDT measurement at 874.3 mbsf and the LOT at 708.6 m yield values for the least principal stress of 34.8 MPa and 30.2 MPa, respectively. Both are less than the vertical stress (Sv) computed from density logs. Partial mud circulation losses occurred when the borehole mud pressure exceeded the leak-off stress measured at the base of the casing shoe; this provides an additional indirect constraint on Shmin magnitude. Mud pressure slightly in excess of the leak-off stress may have also generated poorly-developed drilling-induced tensile fractures (DITF) observed in resistivity image logs between ~750 - 1000 m. From the presence of DITF, Shmin measurements, and assuming a rock tensile strength of 1 MPa, we determine that SHmax is 35.1 MPa for the MDT stress measurement, and 30.2 MPa for the LOT. Using the MDT measurement of Shmin, the resulting principal stress magnitudes define a strike-slip faulting regime with effective stresses of Shmax’ = 14 MPa, Sv' = 7.3 MPa, and Shmin’ = 6.4 MPa. In contrast, using the LOT measurement of Shmin, the stress magnitudes indicate a normal faulting regime in which Sv’ = 6.2 MPa, Shmax’ = 2.8 MPa, and Shmin’ = 2.6 MPa.

  11. Casein micelle dissociation in skim milk during high-pressure treatment: effects of pressure, pH, and temperature.

    PubMed

    Orlien, V; Boserup, L; Olsen, K

    2010-01-01

    The effect of pH (from 5.5 to 7.5) and temperature (from 5 to 40 degrees C) on the turbidity of reconstituted skim milk powder was investigated at ambient pressure and in situ under pressure (up to 500MPa) by measurement of light scattering. High-pressure treatment reduced the turbidity of milk for all combinations of pH and temperature due to micelle dissociation. The turbidity profiles had a characteristic sigmoidal shape in which almost no effect on turbidity was observed at low pressures (100MPa), followed by a stronger pressure dependency over a pressure range of 150MPa during which turbidity decreased extremely. From the turbidity profiles, the threshold pressure for disruption of micelle integrity was determined and ranged from 150MPa at low pH to 350-400MPa at high pH. The threshold pressure diagram clearly showed a relationship between the barostability of casein micelles and pH, whereas almost no effect of temperature was shown. This remarkable pH effect was a consequence of pressure-induced changes in the electrostatic interactions between colloidal calcium phosphate and the caseins responsible for maintaining micellar structure and was explained by a shift in the calcium phosphate balance in the micelle-serum system. Accordingly, a mechanism for high pressure-induced disruption of micelle integrity is suggested in which the state of calcium plays a crucial role in the micelle dissociation process. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Evaluation of films for packaging applications in high pressure processing

    NASA Astrophysics Data System (ADS)

    Largeteau, A.; Angulo, I.; Coulet, J. P.; Demazeau, G.

    2010-03-01

    Food treatments implying high pressures used pre-packaging systems; consequently it appeared necessary to validate different packaging films able to be used in such processes. Two different packaging films from AMCOR FLEXIBLES have been evaluated: VIROFLEXAL: BOLSA 80 MICRAS, coextrusion PA/PE (20/60μm) RILTHENE: SEMI 20/60 MICRAS, laminate PA/PE (20/60μm) Three different physico-chemical characterizations have been developed for the evaluation of films behaviour after High Hydrostatic Pressure (HHP): (i) Mechanical properties (tensile strength and sealing strength), (ii) Oxygen permeability, (iii) Migration, through the contact with four food simulating liquids FSLs (water, acetic acid 3%, ethyl alcohol 10%, iso-octane). Two different pressures values (P = 400MPa and 500MPa) have been tested, with a duration of 15 min, at ambient temperature (+20°C) and only one pressure (P = 200MPa) for the experiments at low temperature (T = -20°C) with the same duration (15min). The selection of such values can be justified taking into account that experimental conditions as a temperature close to +20°C and a pressure between 400 and 500MPa are appropriated to inactivate bacteria and different others micro-organisms. Due to the efficiency of the association of hydrostatic pressure processing and low temperature (HHP/LT) [1, 2], the same films have been tested under high pressure processing (200MPa) but at negative temperature (-20°C).

  13. Hydrostatic pressure influences HIF-2 alpha expression in chondrocytes.

    PubMed

    Inoue, Hiroaki; Arai, Yuji; Kishida, Tsunao; Terauchi, Ryu; Honjo, Kuniaki; Nakagawa, Shuji; Tsuchida, Shinji; Matsuki, Tomohiro; Ueshima, Keiichirou; Fujiwara, Hiroyoshi; Mazda, Osam; Kubo, Toshikazu

    2015-01-05

    Hypoxia-inducible factor (HIF)-2α is considered to play a major role in the progression of osteoarthritis. Recently, it was reported that pressure amplitude influences HIF-2α expression in murine endothelial cells. We examined whether hydrostatic pressure is involved in expression of HIF-2α in articular chondrocytes. Chondrocytes were cultured and stimulated by inflammation or hydrostatic pressure of 0, 5, 10, or 50 MPa. After stimulation, heat shock protein (HSP) 70, HIF-2α, nuclear factor kappa B (NF-κB), matrix metalloproteinase (MMP)-13, MMP-3, and vascular endothelial growth factor (VEGF) gene expression were evaluated. The levels of all gene expression were increased by inflammatory stress. When chondrocytes were exposed to a hydrostatic pressure of 5 MPa, HIF-2α, MMP-13, and MMP-3 gene expression increased significantly although those of HSP70 and NF-κB were not significantly different from the control group. In contrast, HIF-2α gene expression did not increase under a hydrostatic pressure of 50 MPa although HSP70 and NF-κB expression increased significantly compared to control. We considered that hydrostatic pressure of 5 MPa could regulate HIF-2α independent of NF-κB, because the level of HIF-2α gene expression increased significantly without upregulation of NF-κB expression at 5 MPa. Hydrostatic pressure may influence cartilage degeneration, inducing MMP-13 and MMP-3 expression through HIF-2α.

  14. High-pressure-induced interactions between milk fat globule membrane proteins and skim milk proteins in whole milk.

    PubMed

    Ye, A; Anema, S G; Singh, H

    2004-12-01

    The association of beta-lactoglobulin (beta-LG) and alpha-lactalbumin (alpha-LA) with milk fat globule membrane (MFGM), when whole milk was treated by high pressure in the range 100 to 800 MPa, was investigated using sodium dodecyl sulfate (SDS)-PAGE under reducing and nonreducing conditions. In SDS-PAGE under reducing conditions, beta-LG was observed in the MFGM material isolated from milk treated at 100 to 800 MPa for 30 min, and small amounts of alpha-LA and kappa-casein were also observed at pressures >600 MPa for 30 min. However, these proteins were not observed in SDS-PAGE under nonreducing conditions. These results indicate that beta-LG and alpha-LA associated with MFGM proteins via disulfide bonds during the high-pressure treatment of whole milk. The amount of beta-LG associated with the MFGM increased with an increase in pressure up to 800 MPa and with increasing time of pressure treatment. The maximum value for beta-LG association with the MFGM was approximately 0.75 mg/g of fat. Of the major original MFGM proteins, no change in butyrophilin was observed during the high-pressure treatment of whole milk, whereas xanthine oxidase was reduced to some extent beyond 400 MPa. In contrast to the behavior during heat treatment, PAS 6 and PAS 7 were stable during high-pressure treatment, and they remained associated with the MFGM.

  15. Mechanical behavior in the Nankai inner accretionary prism, IODP Site C0002

    NASA Astrophysics Data System (ADS)

    Valdez, R. D., II; Saffer, D. M.

    2017-12-01

    Understanding the processes that control seismogenesis and stress state at subduction zones requires knowledge of fault zone and sediment physical and mechanical properties. As part of the International Ocean Discovery Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE), Expedition 348 drilled into the Kumano forearc basin and underlying inner accretionary prism at Site C0002, located 35 km landward of the trench. One primary objective was to sample and characterize the mechanical behavior of the inner accretionary prism. Here we report on the frictional and unconfined compressive strength (UCS) of mudstone samples and a clay-rich shear zone recovered from 2182-2209 meters below sea floor (mbsf), determined from triaxial deformation tests at confining pressures from 1 to 7 MPa (UCS measurements on mudstones) and 36 MPa (strength of fault zone). Our results show that at a confining pressure of 1 MPa, the wall rock sediments fail at a peak differential stress of 9.1 MPa with a residual stress of 2.8 MPa. A clear peak and evolution to residual strength remains present at 7 MPa, and both the peak and residual strengths of the mudstones increases systematically with confining pressure. At a confining pressure of 36 MPa, the shear zone sediment yields at a differential stress of 25.2 MPa followed by strain-hardening to a maximum stress of 33.1 MPa. The shear zone is frictionally weaker than the surrounding mudstones, with a friction coefficient (μ) of 0.26-0.31, versus µ = 0.45 for the wall rock. The suite of tests defines a UCS for the mudstone of 7.9 MPa. Our friction data suggest that the inner wedge may be weaker than commonly assumed in applications of critical wedge theory to estimate the properties and conditions in accretionary prisms. One key implication is that for a given basal detachment friction coefficient, higher basal pore pressures (or lower wedge pore pressures) would be required to sustain observed taper angles. Additionally, the UCS we define is significantly lower than predicted by widely-adopted empirical relations between P wave velocity and UCS for shales (UCS of 15.5 MPa), suggesting that existing analyses of stress magnitudes from borehole breakout widths may overestimate horizontal stress magnitudes.

  16. Influence of cell integrity on textural properties of raw, high pressure, and thermally processed onions.

    PubMed

    Gonzalez, M E; Jernstedt, J A; Slaughter, D C; Barrett, D M

    2010-09-01

    The integrity of onion cells and its impact on tissue texture after high pressure and thermal processing was studied. The contribution of cell membranes and the pectic component of cell walls on the texture properties of onion tissue were analyzed. Neutral red (NR) staining of onion parenchyma cell vacuoles was used for the evaluation of cell membrane integrity and microscopic image analysis was used for its quantification. The content of methanol in tissue as a result of pectin methylesterase activity was used to evaluate the pectin component of the middle lamella and cell walls and the hardening effect on the tissue after processing. High pressure treatments consisted of 5-min holding times at 50, 100, 200, 300, or 600 MPa. Thermal treatments consisted of 30-min water bath exposure to 40, 50, 60, 70, or 90 °C. In the high pressure treatments, loss of membrane integrity commenced at 200 MPa and total loss of membrane integrity occurred at 300 MPa and above. In the thermal treatments, membrane integrity was lost between 50 and 60 °C. The texture of onions was influenced by the state of the membranes and texture profiles were abruptly modified once membrane integrity was lost. Hardening of the tissue corresponded with pressure and temperature PME activation and occurred after membrane integrity loss. The texture of vegetables is an important quality attribute that affects consumer preference. Loss of textural integrity also indicates that other biochemical reactions that affect color, flavor, and nutrient content may occur more rapidly. In this study, we analyzed changes in the texture of onions after preservation with heat and high pressure.

  17. Synergistic Effects of High Hydrostatic Pressure, Mild Heating, and Amino Acids on Germination and Inactivation of Clostridium sporogenes Spores

    PubMed Central

    Ishimori, Takateru; Takahashi, Katsutoshi; Goto, Masato; Nakagawa, Suguru; Kasai, Yoshiaki; Konagaya, Yukifumi; Batori, Hiroshi; Kobayashi, Atsushi

    2012-01-01

    The synergistic effects of high hydrostatic pressure (HHP), mild heating, and amino acids on the germination of Clostridium sporogenes spores were examined by determining the number of surviving spores that returned to vegetative growth after pasteurization following these treatments. Pressurization at 200 MPa at a temperature higher than 40°C and treatment with some of the 19 l-amino acids at 10 mM or higher synergistically facilitated germination. When one of these factors was omitted, the level of germination was insignificant. Pressures of 100 and 400 MPa were less effective than 200 MPa. The spores were effectively inactivated by between 1.8 and 4.8 logs by pasteurization at 80°C after pressurization at 200 MPa at 45°C for 120 min with one of the amino acids with moderate hydrophobicity, such as Leu, Phe, Cys Met, Ala, Gly, or Ser. However, other amino acids showed poor inactivation effects of less than 0.9 logs. Spores in solutions containing 80 mM of either Leu, Phe, Cys, Met, Ala, Gly, or Ser were successfully inactivated by pasteurization by more than 5.4 logs after pressurization at 200 MPa at 70°C for 15 to 120 min. Ala and Met reduced the spore viability by 2.8 and 1.8 logs, respectively, by pasteurization at a concentration of 1 mM under 200 MPa at 70°C. These results indicate that germination of the spores is facilitated by a combination of high hydrostatic pressure, mild heating, and amino acids. PMID:22983975

  18. Computational Fluid Dynamics Analysis of High Injection Pressure Blended Biodiesel

    NASA Astrophysics Data System (ADS)

    Khalid, Amir; Jaat, Norrizam; Faisal Hushim, Mohd; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari

    2017-08-01

    Biodiesel have great potential for substitution with petrol fuel for the purpose of achieving clean energy production and emission reduction. Among the methods that can control the combustion properties, controlling of the fuel injection conditions is one of the successful methods. The purpose of this study is to investigate the effect of high injection pressure of biodiesel blends on spray characteristics using Computational Fluid Dynamics (CFD). Injection pressure was observed at 220 MPa, 250 MPa and 280 MPa. The ambient temperature was kept held at 1050 K and ambient pressure 8 MPa in order to simulate the effect of boost pressure or turbo charger during combustion process. Computational Fluid Dynamics were used to investigate the spray characteristics of biodiesel blends such as spray penetration length, spray angle and mixture formation of fuel-air mixing. The results shows that increases of injection pressure, wider spray angle is produced by biodiesel blends and diesel fuel. The injection pressure strongly affects the mixture formation, characteristics of fuel spray, longer spray penetration length thus promotes the fuel and air mixing.

  19. Effect of high-pressure homogenization on droplet size distribution and rheological properties of ice cream mixes.

    PubMed

    Innocente, N; Biasutti, M; Venir, E; Spaziani, M; Marchesini, G

    2009-05-01

    The effect of different homogenization pressures (15/3 MPa and 97/3 MPa) on fat globule size and distribution as well as on structure-property relationships of ice cream mixes was investigated. Dynamic light scattering, steady shear, and dynamic rheological analyses were performed on mixes with different fat contents (5 and 8%) and different aging times (4 and 20 h). The homogenization of ice cream mixes determined a change from bimodal to monomodal particle size distributions and a reduction in the mean particle diameter. Mean fat globule diameters were reduced at higher pressure, but the homogenization effect on size reduction was less marked with the highest fat content. The rheological behavior of mixes was influenced by both the dispersed and the continuous phases. Higher fat contents caused greater viscosity and dynamic moduli. The lower homogenization pressure (15/3 MPa) mainly affected the dispersed phase and resulted in a more pronounced viscosity reduction in the higher fat content mixes. High-pressure homogenization (97/3 MPa) greatly enhanced the viscoelastic properties and the apparent viscosity. Rheological results indicated that unhomogenized and 15/3 MPa homogenized mixes behaved as weak gels. The 97/3 MPa treatment led to stronger gels, perhaps as the overall result of a network rearrangement or interpenetrating network formation, and the fat globules were found to behave as interactive fillers. High-pressure homogenization determined the apparent viscosity of 5% fat to be comparable to that of 8% fat unhomogenized mix.

  20. Short communication: Effects of high-pressure processing on the inactivity of Cronobacter sakazakii in whole milk and skim milk samples.

    PubMed

    Jiao, Rui; Gao, Jina; Li, Yinxiang; Zhang, Xiyan; Zhang, Maofeng; Ye, Yingwang; Wu, Qingping; Fan, Hongying

    2016-10-01

    Powdered infant formula is considered as the main transmission vehicle for Cronobacter sakazakii infections including meningitis, septicemia, and necrotizing enterocolitis. The effects of high-pressure processing treatment on inactivation of C. sakazakii ranging from 100 to 400 MPa for 3.0, 5.0, and 7.0 min in whole milk and skim milk were studied. Significant differences in inactivation of C. sakazakii were observed in milk samples under different pressures for 3 to 7 min compared with untreated samples, and C. sakazakii was not detected after 400 MPa for 3 min. The lethality rates of C. sakazakii cells in whole and skim milk with an initial level of 10(4) cfu/mL after 100 and 200 MPa treatments were not significantly different, but relatively higher lethality rates were found in whole milk after 300 MPa treatment than in skim milk. Finally, the scanning electron micrographs indicated that cellular envelope and intracellular damage of C. sakazakii cells were apparent after 300 and 400 MPa for 5.0 min compared with the untreated cells, and a progressive increase of injured cells with increased pressure treatment was found. It was concluded that C. sakazakii was sensitive to high-pressure processing treatment and that high-pressure processing treatment with 400 MPa for 3.0 min can be used to control C. sakazakii contamination in milk samples. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Experimental Simulations of Methane Gas Migration through Water-Saturated Sediment Cores

    NASA Astrophysics Data System (ADS)

    Choi, J.; Seol, Y.; Rosenbaum, E. J.

    2010-12-01

    Previous numerical simulations (Jaines and Juanes, 2009) showed that modes of gas migration would mainly be determined by grain size; capillary invasion preferably occurring in coarse-grained sediments vs. fracturing dominantly in fine-grained sediments. This study was intended to experimentally simulate preferential modes of gas migration in various water-saturated sediment cores. The cores compacted in the laboratory include a silica sand core (mean size of 180 μm), a silica silt core (1.7 μm), and a kaolin clay core (1.0 μm). Methane gas was injected into the core placed within an x-ray-transparent pressure vessel, which was under continuous x-ray computed tomography (CT) scanning with controlled radial (σr), axial (σa), and pore pressures (P). The CT image analysis reveals that, under the radial effective stress (σr') of 0.69 MPa and the axial effective stress (σa') of 1.31 MPa, fracturings by methane gas injection occur in both silt and clay cores. Fracturing initiates at the capillary pressure (Pc) of ~ 0.41 MPa and ~ 2.41 MPa for silt and clay cores, respectively. Fracturing appears as irregular fracture-networks consisting of nearly invisibly-fine multiple fractures, longitudinally-oriented round tube-shape conduits, or fine fractures branching off from the large conduits. However, for the sand core, only capillary invasion was observed at or above 0.034 MPa of capillary pressure under the confining pressure condition of σr' = 1.38 MPa and σa' = 2.62 MPa. Compared to the numerical predictions under similar confining pressure conditions, fracturing occurs with relatively larger grain sizes, which may result from lower grain-contact compression and friction caused by loose compaction and flexible lateral boundary employed in the experiment.

  2. Hydrostatic pressure modifies the action of octanol and atropine on frog endplate conductance.

    PubMed Central

    Ashford, M. L.; Macdonald, A. G.; Wann, K. T.

    1984-01-01

    The effects of octanol, ethanol and atropine were examined on the time course of decay (tau D) of miniature endplate currents (m.e.p.cs) in the frog neuromuscular junction at normal and high pressure. Octanol (25-100 microM) decreased reversibly the tau D of m.e.p.cs in a dose-dependent manner, 100 microM reducing tau D to 0.39 of the control value. Higher concentrations (200-500 microM) additionally depressed the amplitude of m.e.p.cs. Hydrostatic pressure (3.19 and 5.25 MPa) reduced the tau D of octanol (25-100 microM)-shortened m.e.p.cs. Thus 3.19 MPa and 5.25 MPa reduced the tau D in the presence of 100 microM octanol to 0.75 and 0.78 of the octanol treated values. This effect was not completely reversed on decompression. The m.e.p.c. amplitude is reversibly decreased by pressure in the presence of octanol. Hydrostatic pressure (3.19-15.55 MPa) did not modify the effect of ethanol on tau D. At 10.40 and 15.55 MPa the tau D was increased equally in the absence or presence of ethanol. Atropine (60 microM) reduced the tau D and amplitude of m.e.p.cs to 0.33 and 0.63 of the control values. These effects were completely reversible. Hydrostatic pressure (3.19 and 5.25 MPa) reduced the tau D of atropine-shortened m.e.p.cs to 0.82 and 0.77 of the atropine-treated values respectively. This effect was not completely reversed on decompression. Hydrostatic pressure also reversibly depressed the amplitude of atropine-treated m.e.p.cs. The implications of these drug-hydrostatic pressure interactions are discussed. PMID:6333262

  3. Effect of ultra high pressure homogenization treatment on the bioactive compounds of soya milk.

    PubMed

    Toro-Funes, N; Bosch-Fusté, J; Veciana-Nogués, M T; Vidal-Carou, M C

    2014-01-01

    Ultra high pressure homogenization (UHPH) is a useful novel technology to obtain safe and high-quality liquid foods. The effect of UHPH at 200 and 300 MPa in combination with different inlet temperatures (Tin) (55, 65 and 75 °C) on the bioactive compounds of soya milk was studied. Total phytosterols increased with the higher combination of pressure and temperature. The main phytosterol was β-sitosterol, followed by stigmasterol and campesterol. Total tocopherols in UHPH-treated soya milks decreased as the temperature and pressure increased. UHPH treatment also affected the different chemical forms of tocopherols. No biogenic amines were detected in any of the analyzed soya milks. Meanwhile, the polyamines SPD and SPM were found in all soya milks, being stable to the UHPH treatment. Total isoflavones increased with the higher combination of pressure and temperature. No differences in the isoflavone profile were found, with β-glucoside conjugates being the predominant form. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Nonenzymatic modification of Ubiquitin under high-pressure and -temperature treatment: mass spectrometric studies.

    PubMed

    Kijewska, Monika; Radziszewska, Karolina; Kielmas, Martyna; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2015-01-21

    The effect of high-pressure and/or high-temperature on the glycation of a model protein (ubiquitin) was investigated by mass spectrometry. This paper reports the impact of high pressure (up to 1200 MPa) on the modification of a ubiquitin using ESI-MS measurements. The application of glucose labeled with stable isotope allows a quantitative assessment of modification under the conditions of high-pressure (HPG) and high-temperature (HTG) glycation. A higher degree of modification was observed for the sample heated at 80 °C for 25 min under atmospheric pressure than for sample treated under high pressure. In samples treated at pressure below 400 MPa an insignificant increase of glycation level was observed, whereas high pressure (>600 MPa) has only a minor effect on the number of hexose moieties (Fru) attached to the lysine residue side chain.

  5. Irradiated ignition over solid materials in reduce pressure environment: Fire safety issue in man-made enclosure system

    NASA Astrophysics Data System (ADS)

    Nakamura, N.; Aoki, A.

    Effects of ambient pressure and oxygen yield on irradiated ignition characteristics over solid combustibles have been studied experimentally Aim of the present study is to elucidate the flammability and chance of fire in depressurized enclosure system and give ideas for the fire safety and fire fighting strategies in such environment Thin cellulosic paper is considered as the solid combustible since cellulose is one of major organic compounds and flammables in the nature Applied atmosphere consists of inert gas either CO2 or N2 and oxygen and various mixture ratios are of concerned Total ambient pressure level is varied from 0 1MPa standard atmospheric pressure to 0 02MPa Ignition is initiated by external thermal flux exposed into the solid surface as a model of unexpected thermal input to initiate the localized fire Thermal degradation of the solid induces combustible gaseous products e g CO H2 or other low class of HCs and the gas mixes with ambient oxygen to form the combustible mixture over the solid Heat transfer from the hot irradiated surface into the mixture accelerates the local exothermic reaction in the gas phase and finally thermal runaway ignition is achieved Ignition event is recorded by high-speed digital video camera to analyze the ignition characteristics Flammable map in partial pressure of oxygen Pox and total ambient pressure Pt plane is made to reveal the fire hazard in depressurized environment Results show that wider flammable range is obtained depending on the imposed ambient

  6. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems

    USGS Publications Warehouse

    Zhang, Tongwei; Ellis, Geoffrey S.; Ruppel, Stephen C.; Milliken, Kitty; Yang, Rongsheng

    2012-01-01

    A series of methane (CH4) adsorption experiments on bulk organic rich shales and their isolated kerogens were conducted at 35 °C, 50 °C and 65 °C and CH4 pressure of up to 15 MPa under dry conditions. Samples from the Eocene Green River Formation, Devonian–Mississippian Woodford Shale and Upper Cretaceous Cameo coal were studied to examine how differences in organic matter type affect natural gas adsorption. Vitrinite reflectance values of these samples ranged from 0.56–0.58 %Ro. In addition, thermal maturity effects were determined on three Mississippian Barnett Shale samples with measured vitrinite reflectance values of 0.58, 0.81 and 2.01 %Ro. For all bulk and isolated kerogen samples, the total amount of methane adsorbed was directly proportional to the total organic carbon (TOC) content of the sample and the average maximum amount of gas sorption was 1.36 mmol of methane per gram of TOC. These results indicate that sorption on organic matter plays a critical role in shale-gas storage. Under the experimental conditions, differences in thermal maturity showed no significant effect on the total amount of gas sorbed. Experimental sorption isotherms could be fitted with good accuracy by the Langmuir function by adjusting the Langmuir pressure (PL) and maximum sorption capacity (Γmax). The lowest maturity sample (%Ro = 0.56) displayed a Langmuir pressure (PL) of 5.15 MPa, significantly larger than the 2.33 MPa observed for the highest maturity (%Ro > 2.01) sample at 50 °C. The value of the Langmuir pressure (PL) changes with kerogen type in the following sequence: type I > type II > type III. The thermodynamic parameters of CH4 adsorption on organic rich shales were determined based on the experimental CH4 isotherms. For the adsorption of CH4 on organic rich shales and their isolated kerogen, the heat of adsorption (q) and the standard entropy (Δs0) range from 7.3–28.0 kJ/mol and from −36.2 to −92.2 J/mol/K, respectively.

  7. Influence of Pore-Fluid Pressure on Elastic Wave Velocity and Electrical Conductivity in Water-Saturated Rocks

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Watanabe, T.

    2013-12-01

    Pore-fluid pressure in seismogenic zones can play a key role in the occurrence of earthquakes (e.g., Sibson, 2009). Its evaluation via geophysical observations can lead to a good understanding of seismic activities. The evaluation requires a thorough understanding of the influence of the pore-fluid pressure on geophysical observables like seismic velocity and electrical conductivity. We have studied the influence of pore-fluid pressure on elastic wave velocity and electrical conductivity in water-saturated rocks. Fine grained (100-500μm) biotite granite (Aji, Kagawa pref., Japan) was used as rock samples. The density is 2.658-2.668 g/cm3, and the porosity 0.68-0.87%. The sample is composed of 52.8% plagioclase, 36.0% Quartz, 3.0% K-feldspar, 8.2% biotite. SEM images show that a lot of grain boundaries are open. Few intracrystalline cracks were observed. Following the method proposed by David and Zimmerman (2012), the distribution function of crack aspect ratio was evaluated from the pressure dependence of compressional and shear wave velocities in a dry sample. Cylindrical sample has dimensions of 25 mm in diameter and 30 mm in length, and saturated with 0.01 mol/l KCl aqueous solution. Compressional and shear wave velocities were measured with the pulse transmission technique (PZT transducers, f=2 MHz), and electrical conductivity the two-electrode method (Ag-AgCl electrodes, f=1 Hz-100 kHz). Simultaneous measurements of velocities and conductivity were made using a 200 MPa hydrostatic pressure vessel, in which confining and pore-fluid pressures can be separately controlled. The pore-fluid is electrically insulated from the metal work of the pressure vessel by using a newly designed plastic device (Watanabe and Higuchi, 2013). The confining pressure was progressively increased up to 25 MPa, while the pore-fluid pressure was kept at 0.1 MPa. It took five days or longer for the electrical conductivity to become stationary after increasing the confining pressure. Elastic wave velocities and electrical conductivity showed reproducibly contrasting changes for a small increase in the confining pressure. The elastic wave velocities increased only by 5% as the confining pressure increased from 0.1 MPa to 25 MPa, while the electrical conductivity decreased by an order of magnitude. Based on the SEM examinations, open grain boundaries work as cracks. The changes in elastic wave velocities and electrical conductivity must be caused by the closure of open grain boundaries. Most (˜80%) of the decrease in electrical conductivity occurred below the confining pressure of 5 MPa. As the confining pressure increased from 0.1 MPa to 5 MPa, cracks with the aspect ratio smaller than 7.5×10-5 were closed. The decrease in porosity was only 0.0005%. Such a small change in porosity caused a large change in electrical conductivity. The connectivity of fluid was maintained at the confining pressure of 25 MPa by cracks with the aspect ratio larger than 3.7×10-4. Simultaneous measurements have provided us a lot of information on the microstructure of fluid-bearing rocks.

  8. Final report on bilateral supplementary comparison APMP.M.P-S5 in hydraulic gauge pressure from 1 MPa to 10 MPa

    NASA Astrophysics Data System (ADS)

    Yue, J.; Yang, Y.; Sabuga, W.

    2016-01-01

    This report summarizes the results of the Asia-Pacific Metrology Programme (APMP) supplementary comparison APMP.M.P-S5 for hydraulic gauge pressure in the range of 1 MPa to 10 MPa, which is a bilateral comparison carried out at the National Institute of Metrology, China (NIM) and the Physikalisch-Technische Bundesanstalt, Germany (PTB) during the period June 2014 to June 2015. NIM piloted the comparison and provided the transfer standard, which was a piston-cylinder assembly (PCA) of 1 cm2 nominal effective area built in a hydraulic pressure balance manufactured by Fluke Corporation. The laboratory standards of NIM and PTB are both hydraulic pressure balances equipped with PCAs, of which the nominal effective area is 1 cm2 for NIM and 5 cm2 for PTB. The results of the comparison successfully demonstrated that the hydraulic gauge pressure standards of NIM and PTB in the range of 1 MPa to 10 MPa are equivalent within their claimed uncertainties. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  9. Testing of polyimide second-stage rod seals for single-state applications in advanced aircraft hydraulic systems

    NASA Technical Reports Server (NTRS)

    Waterman, A. W.

    1977-01-01

    Machined polyimide second-stage rod seals were evaluated to determine their suitability for single-stage applications where full system pressure acts on the upstream side of the seal. The 6.35-cm (2.5-in.) K-section seal was tested in impulse screening tests where peak pressure was increased in 3.448-MPa (500-psi) increments each 20,000 cycles. Seal failure occurred at 37.92 MPa (5,500 psi), indicating a potential for acceptability in a 27.58-MPa (4,000-psi) system. Static pressurization for 600 sec at pressures in excess of 10.34 MPa (1,500 psi) revealed structural inadequacy of the seal cross section to resist fracture and extrusion. Endurance testing showed the seals capable of at least 65,000 1.27-cm (0.5-in.) cycles at 450 K (350 F) without leakage. It was concluded that the second-stage seals were proven to be exceptional in the 1.379-MPa (200-psi) applications for which they were designed, but polyimide material properties are not adequate for use in this design at pressure loading equivalent to that present in single-stage applications.

  10. Effect of cleaning methods after reduced-pressure air abrasion on bonding to zirconia ceramic.

    PubMed

    Attia, Ahmed; Kern, Matthias

    2011-12-01

    To evaluate in vitro the influence of different cleaning methods after low-pressure air abrasion on the bond strength of a phosphate monomer-containing luting resin to zirconia ceramic. A total of 112 zirconia ceramic disks were divided into 7 groups (n = 16). In the test groups, disks were air abraded at low pressure (L) 0.05 MPa using 50-μm alumina particles. Prior to bonding, the disks were ultrasonically (U) cleaned either in isopropanol alcohol (AC), hydrofluoric acid (HF), demineralized water (DW), or tap water (TW), or they were used without ultrasonic cleaning. Disks air abraded at a high (H) pressure of 0.25 MPa and cleaned ultrasonically in isopropanol served as positive control; original (O) milled disks used without air abrasion served as the negative control group. Plexiglas tubes filled with composite resin were bonded with the adhesive luting resin Panavia 21 to the ceramic disks. Prior to testing tensile bond strength (TBS), each main group was further subdivided into 2 subgroups (n=8) which were stored in distilled water either at 37°C for 3 days or for 30 days with 7500 thermal cycles. Statistical analyses were conducted with two- and one-way analyses of variance (ANOVA) and Tukey's HSD test. Initial tensile bond strength (TBS) ranged from 32.6 to 42.8 MPa. After 30 days storage in water with thermocycling, TBS ranged from 21.9 to 36.3 MPa. Storage in water and thermocycling significantly decreased the TBS of test groups which were not air abraded (p = 0.05) or which were air abraded but cleaned in tap water (p = 0.002), but not the TBS of the other groups (p > 0.05). Also, the TBS of air-abraded groups were significantly higher than the TBS of the original milled (p < 0.01). Cleaning procedures did not significantly affect TBS either after 3 days or 30 days storage in water and thermocycling (p > 0.05). Air abrasion at 0.05 MPa and ultrasonic cleaning are important factors for improving bonding to zirconia ceramic.

  11. Recovery of oil components of okara by ethanol-modified supercritical carbon dioxide extraction.

    PubMed

    Quitain, Armando T; Oro, Kazuyuki; Katoh, Shunsaku; Moriyoshi, Takashi

    2006-09-01

    Recovery of the oil components of okara by ethanol-modified supercritical carbon dioxide extraction was investigated at 40-80 degrees C temperature and 12-30 MPa pressure. In a typical run (holding period of 2 h, continuous flow extraction of 5 h), results indicated that the oil component could be best obtained with a recovery of 63.5% at relatively low temperature of 40 degrees C and mild pressure of 20 MPa in the presence of 10 mol% EtOH as entrainer. Based on gas chromatography-mass spectrometry (GC-MS) analysis, the extracts consisted mainly of fatty acids and phytosterols, and traces of decadienal. Folin-Ciocalteau estimates of total phenols showed that addition of EtOH as entrainer increased the yield and the amount of phenolic compounds in the extracts. The amounts of two primary soy isoflavones, genistein and daidzein, in the extracts also increased with increasing amount of EtOH.

  12. Impact of pressure and temperature on CO2-brine-mica contact angles and CO2-brine interfacial tension: Implications for carbon geo-sequestration.

    PubMed

    Arif, Muhammad; Al-Yaseri, Ahmed Z; Barifcani, Ahmed; Lebedev, Maxim; Iglauer, Stefan

    2016-01-15

    Precise characterization of wettability of CO2-brine-rock system and CO2-brine interfacial tension at reservoir conditions is essential as they influence capillary sealing efficiency of caprocks, which in turn, impacts the structural and residual trapping during CO2 geo-sequestration. In this context, we have experimentally measured advancing and receding contact angles for brine-CO2-mica system (surface roughness ∼12nm) at different pressures (0.1MPa, 5MPa, 7MPa, 10MPa, 15MPa, 20MPa), temperatures (308K, 323K, and 343K), and salinities (0wt%, 5wt%, 10wt%, 20wt% and 30wt% NaCl). For the same experimental matrix, CO2-brine interfacial tensions have also been measured using the pendant drop technique. The results indicate that both advancing and receding contact angles increase with pressure and salinity, but decrease with temperature. On the contrary, CO2-brine interfacial tension decrease with pressure and increase with temperature. At 20MPa and 308K, the advancing angle is measured to be ∼110°, indicating CO2-wetting. The results have been compared with various published literature data and probable factors responsible for deviations have been highlighted. Finally we demonstrate the implications of measured data by evaluating CO2 storage heights under various operating conditions. We conclude that for a given storage depth, reservoirs with lower pressures and high temperatures can store larger volumes and thus exhibit better sealing efficiency. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. The superiority of the autografts inactivated by high hydrostatic pressure to decellularized allografts in a porcine model.

    PubMed

    Morimoto, Naoki; Mahara, Atsushi; Jinno, Chizuru; Ogawa, Mami; Kakudo, Natsuko; Suzuki, Shigehiko; Fujisato, Toshia; Kusumoto, Kenji; Yamaoka, Tetsuji

    2017-11-01

    We are developing a novel skin regeneration therapy in which the inactivation of nevus tissue via high hydrostatic pressure (HHP) is used in the reconstruction of the dermis in combination with a cultured epidermal autograft. In this study, we used a porcine skin graft model to explore whether autologous skin including cellular debris inactivated by HHP or allogeneic skin decellularized by HHP is better for dermal reconstruction. Grafts (n = 6) were prepared for five groups each: autologous skin without pressurization group (control group), autologous skin inactivated by 200 MPa group, autologous skin inactivated by 1000 MPa group, allogeneic skin decellularized by 200 MPa group, and allogeneic skin decellularized by 1000 MPa group. All of the grafts at 1, 4, and 12 weeks showed complete engraftment macroscopically. The mean areas of the grafts of the control group (p < 0.01) and autologous 200 MPa group (p < 0.01) were larger than that of the allogeneic 1000 MPa group at four weeks after implantation. The thickness of the control group and autologous 200 MPa group was comparable, and that of the autologous 200 MPa group was significantly thicker than that of the allogeneic 200 MPa group (p < 0.01). This suggests that the autologous dermis was superior to the allogeneic decellularized dermis as a skin graft, and that HHP at 200 MPa provided a better outcome than HHP at 1000 MPa. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2653-2661, 2017. © 2016 Wiley Periodicals, Inc.

  14. High pressure inactivation of Pseudomonas in black truffle - comparison with Pseudomonas fluorescens in tryptone soya broth

    NASA Astrophysics Data System (ADS)

    Ballestra, Patricia; Verret, Catherine; Cruz, Christian; Largeteau, Alain; Demazeau, Gerard; El Moueffak, Abdelhamid

    2010-03-01

    Pseudomonas is one of the most common genera in black Perigord truffle. Its inactivation by high pressure (100-500 MPa/10 min) applied on truffles at sub-zero or low temperatures was studied and compared with those of Pseudomonas fluorescens in tryptone soya broth. Pressurization of truffles at 300 MPa/4 °C reduced the bacterial count of Pseudomonas by 5.3 log cycles. Higher pressures of 400 or 500 MPa, at 4 °C or 20 °C, allowed us to slightly increase the level of destruction to the value of ca. 6.5 log cycles but did not permit us to completely inactivate Pseudomonas. The results showed a residual charge of about 10 CFU/g. Pressure-shift freezing of truffles, which consists in applying a pressure of 200 MPa/-18 °C for 10 min and then quickly releasing this pressure to induce freezing, reduced the population of Pseudomonas by 3.3 log cycles. The level of inactivation was higher than those obtained with conventional freezing. Endogenous Pseudomonas in truffle was shown to be more resistant to high pressure treatments than P. fluorescens used for inoculation of broths.

  15. Preservation of rat hearts in subfreezing temperature isochoric conditions to - 8 °C and 78 MPa.

    PubMed

    Wan, Lili; Powell-Palm, Matthew J; Lee, Charles; Gupta, Anshal; Weegman, Bradley P; Clemens, Mark G; Rubinsky, Boris

    2018-02-12

    Isochoric (constant volume) preservation at subfreezing temperatures is being investigated as a novel method for preserving cells and organs. This study is a first initial effort to evaluate the efficacy of this method for heart preservation, and to provide a preliminary outline of appropriate preservation parameters. To establish a baseline for further studies, rat hearts were preserved in a University of Wisconsin (UW) intracellular solution for one hour under isochoric conditions at: 0 °C (atmospheric pressure - 0.1 MPa), - 4 °C (41 MPa), - 6 °C (60 MPa) and - 8 °C (78 MPa). The viability of the heart was evaluated using Langendorff perfusion and histological examination. The physiological performance of hearts preserved at - 4 °C (41 MPa) was comparable to that of a heart preserved on ice at atmospheric pressure, with no statistically significant difference in histological injury score. However, hearts preserved at -4 °C displayed substantially reduced interstitial edema compared to hearts preserved by conventional hypothermic preservation in UW on ice at atmospheric pressure, suggesting significant protection from increased vascular permeability following preservation. Hearts preserved at - 6 °C (60 MPa) suffered injury from cellular swelling and extensive edema, and at - 8 °C (78 MPa) hearts experienced significant morphological disruption. To the best of our knowledge, this is the first publication showing that a mammalian organ can survive low subfreezing temperatures without the use of a cryoprotective additive. Lowering the preservation temperature reduces metabolism and improves preservation quality, and these results suggest that improvements in preservation are possible at subzero temperatures with low to moderate pressures observed at -4 °C. Notably, tissue damage was observed at lower temperatures (-6 °C or below) accompanying further elevation of pressure associated with isochoric preservation that may prove detrimental. Therefore, subfreezing temperature isochoric preservation protocols should optimize, a combination of temperature and pressure that will minimize the negative effects of elevated pressure while retaining the beneficial effect of lower temperatures and reduced metabolism. Copyright © 2018. Published by Elsevier Inc.

  16. Hydrostatic Pressure Influences HIF-2 Alpha Expression in Chondrocytes

    PubMed Central

    Inoue, Hiroaki; Arai, Yuji; Kishida, Tsunao; Terauchi, Ryu; Honjo, Kuniaki; Nakagawa, Shuji; Tsuchida, Shinji; Matsuki, Tomohiro; Ueshima, Keiichirou; Fujiwara, Hiroyoshi; Mazda, Osam; Kubo, Toshikazu

    2015-01-01

    Hypoxia-inducible factor (HIF)-2α is considered to play a major role in the progression of osteoarthritis. Recently, it was reported that pressure amplitude influences HIF-2α expression in murine endothelial cells. We examined whether hydrostatic pressure is involved in expression of HIF-2α in articular chondrocytes. Chondrocytes were cultured and stimulated by inflammation or hydrostatic pressure of 0, 5, 10, or 50 MPa. After stimulation, heat shock protein (HSP) 70, HIF-2α, nuclear factor kappa B (NF-κB), matrix metalloproteinase (MMP)-13, MMP-3, and vascular endothelial growth factor (VEGF) gene expression were evaluated. The levels of all gene expression were increased by inflammatory stress. When chondrocytes were exposed to a hydrostatic pressure of 5 MPa, HIF-2α, MMP-13, and MMP-3 gene expression increased significantly although those of HSP70 and NF-κB were not significantly different from the control group. In contrast, HIF-2α gene expression did not increase under a hydrostatic pressure of 50 MPa although HSP70 and NF-κB expression increased significantly compared to control. We considered that hydrostatic pressure of 5 MPa could regulate HIF-2α independent of NF-κB, because the level of HIF-2α gene expression increased significantly without upregulation of NF-κB expression at 5 MPa. Hydrostatic pressure may influence cartilage degeneration, inducing MMP-13 and MMP-3 expression through HIF-2α. PMID:25569085

  17. Inactivation of Geobacillus stearothermophilus Spores by High-Pressure Carbon Dioxide Treatment

    PubMed Central

    Watanabe, Taisuke; Furukawa, Soichi; Hirata, Junichi; Koyama, Tetsuya; Ogihara, Hirokazu; Yamasaki, Makari

    2003-01-01

    High-pressure CO2 treatment has been studied as a promising method for inactivating bacterial spores. In the present study, we compared this method with other sterilization techniques, including heat and pressure treatment. Spores of Bacillus coagulans, Bacillus subtilis, Bacillus cereus, Bacillus licheniformis, and Geobacillus stearothermophilus were subjected to CO2 treatment at 30 MPa and 35°C, to high-hydrostatic-pressure treatment at 200 MPa and 65°C, or to heat treatment at 0.1 MPa and 85°C. All of the bacterial spores except the G. stearothermophilus spores were easily inactivated by the heat treatment. The highly heat- and pressure-resistant spores of G. stearothermophilus were not the most resistant to CO2 treatment. We also investigated the influence of temperature on CO2 inactivation of G. stearothermophilus. Treatment with CO2 and 30 MPa of pressure at 95°C for 120 min resulted in 5-log-order spore inactivation, whereas heat treatment at 95°C for 120 min and high-hydrostatic-pressure treatment at 30 MPa and 95°C for 120 min had little effect. The activation energy required for CO2 treatment of G. stearothermophilus spores was lower than the activation energy for heat or pressure treatment. Although heat was not necessary for inactivationby CO2 treatment of G. stearothermophilus spores, CO2 treatment at 95°C was more effective than treatment at 95°C alone. PMID:14660357

  18. Inactivation of Geobacillus stearothermophilus spores by high-pressure carbon dioxide treatment.

    PubMed

    Watanabe, Taisuke; Furukawa, Soichi; Hirata, Junichi; Koyama, Tetsuya; Ogihara, Hirokazu; Yamasaki, Makari

    2003-12-01

    High-pressure CO2 treatment has been studied as a promising method for inactivating bacterial spores. In the present study, we compared this method with other sterilization techniques, including heat and pressure treatment. Spores of Bacillus coagulans, Bacillus subtilis, Bacillus cereus, Bacillus licheniformis, and Geobacillus stearothermophilus were subjected to CO2 treatment at 30 MPa and 35 degrees C, to high-hydrostatic-pressure treatment at 200 MPa and 65 degrees C, or to heat treatment at 0.1 MPa and 85 degrees C. All of the bacterial spores except the G. stearothermophilus spores were easily inactivated by the heat treatment. The highly heat- and pressure-resistant spores of G. stearothermophilus were not the most resistant to CO2 treatment. We also investigated the influence of temperature on CO2 inactivation of G. stearothermophilus. Treatment with CO2 and 30 MPa of pressure at 95 degrees C for 120 min resulted in 5-log-order spore inactivation, whereas heat treatment at 95 degrees C for 120 min and high-hydrostatic-pressure treatment at 30 MPa and 95 degrees C for 120 min had little effect. The activation energy required for CO2 treatment of G. stearothermophilus spores was lower than the activation energy for heat or pressure treatment. Although heat was not necessary for inactivationby CO2 treatment of G. stearothermophilus spores, CO2 treatment at 95 degrees C was more effective than treatment at 95 degrees C alone.

  19. Pseudotachylyte increases the post-slip strength of faults

    USGS Publications Warehouse

    Proctor, Brooks; Lockner, David A.

    2016-01-01

    Solidified frictional melts, or pseudotachylytes, are observed in exhumed faults from across the seismogenic zone. These unique fault rocks, and many experimental studies, suggest that frictional melting can be an important process during earthquakes. However, it remains unknown how melting affects the post-slip strength of the fault and why many exhumed faults do not contain pseudotachylyte. Analyses of triaxial stick-slip events on Westerly Granite (Rhode Island, USA) sawcuts at confining pressures from 50 to 400 MPa show evidence for frictional heating, including some events energetic enough to generate surface melt. Total and partial stress drops were observed with slip as high as 6.5 mm. We find that in dry samples following melt-producing stick slip, the shear failure strength increased as much as 50 MPa, while wet samples had <10 MPa strengthening. Microstructural analysis indicates that the strengthening is caused by welding of the slip surface during melt quenching, suggesting that natural pseudotachylytes may also strengthen faults after earthquakes. These results predict that natural pseudotachylyte will inhibit slip reactivation and possibly generate stress heterogeneities along faults. Wet samples do not exhibit melt welding, possibly because of thermal pressurization of water reducing frictional heating during slip.

  20. Effect of high hydrostatic pressure on the color and texture parameters of refrigerated Caiman (Caiman crocodilus yacare) tail meat.

    PubMed

    Canto, A C V C S; Lima, B R C C; Cruz, A G; Lázaro, C A; Freitas, D G C; Faria, Jose A F; Torrezan, R; Freitas, M Q; Silva, T P J

    2012-07-01

    The effect of applying high hydrostatic pressure (HHP) on the instrumental parameters of color and texture and sensory characteristics of alligator meat were evaluated. Samples of alligator tail meat were sliced, vacuum-packed, pressurized and distributed into four groups: control, treated with 200 MPa/10 min, 300 MPa/10 min and 400 MPa/10 min, then stored at 4°C±1°C for 45 days. Instrumental color, texture profile and a sensory profiling using quantitative descriptive analysis were carried out on the 1st, 15th, 30th and 45th days of storage. HHP was shown to affect the color and texture of the product, and the sensory descriptors (p<0.05). The results suggest that high pressure is a promising technology for the processing of alligator meat, especially low pressures (200 MPa) which can have positive effects on the quality of the product. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Effect of high pressure processing on textural and microbiological quality of pink perch (Nemipterus japonicus) sausage during chilled storage

    NASA Astrophysics Data System (ADS)

    Kunnath, Sarika; Panda, Satyen Kumar; Jaganath, Bindu; Gudipati, Venkateshwarlu

    2015-10-01

    The non-thermal high pressure (HP) processing was studied on fish sausage to enhance the quality during chilled storage. Pink perch (Nemipterus japonicus) sausages, packed in poly amide casing under vacuum were subjected to 400, 500 and 600 MPa pressures (dwell time: 10 min and ramp rate: 300 MPa/min) and compared with heat-set samples for physico-chemical and microbial quality parameters. Pressurized samples formed softer and glossier gels with a slight reduction in water-holding capacity. HP made the texture of sausage softer, cohesive and less chewy and gummier than heat-treated ones. Folding test seen higher acceptance values in samples treated at 500 and 600 MPa, during storage. Maximum log reduction in microbial count was observed in 600 MPa immediately, and significant difference in cooked and pressurized sausages was seen only up to 7th day. This revealed the potential application of HP in replacing conventional heat treatment for sausages preparation with enhanced shelf-life.

  2. High hydrostatic pressure (HHP) effects on antigenicity and structural properties of soybean β-conglycinin.

    PubMed

    Xi, Jun; He, Mengxue

    2018-02-01

    In this study, the effect of high hydrostatic pressure (HHP) on antigenicity, free sulfhydryl group (SH) content, hydrophobicity (Ho), fluorescence intensity and circular dichroism data of soybean β-conglycinin was studied. The antigenicity of soybean β-conglycinin was decreased significantly at pressures 200-400 MPa. The antigenicity inhibition rate of β-conglycinin declined from 92.72 to 55.15%, after being treated at 400 MPa for 15 min. Results indicated that free sulphydryl (SH) groups and surface Ho of β-conglycinin were significantly increased at pressures 200-400 MPa and 5-15 min, whereas these properties decreased at the treatments above 400 MPa and 15 min. The maximum fluorescence intensity was noticed at 400 MPa and 15 min. The circular dichroism data analysis revealed that the amount of β-turns and unordered structure significantly increased, while the content of α-helix1 and β-strand1 noticeably decreased. These results provide evidence that HHP-induced the structural modification of β-conglycinin and could alter the antigenicity of β-conglycinin.

  3. Viscous Creep in Dry Unconsolidated Gulf of Mexico Shale

    NASA Astrophysics Data System (ADS)

    Chang, C.; Zoback, M. D.

    2002-12-01

    We conducted laboratory experiments to investigate creep characteristics of dry unconsolidated shale recovered from the pathfinder well, Gulf of Mexico (GOM). We subjected jacketed cylindrical specimens (25.4 mm diameter) to hydrostatic pressure that increased from 10 to 50 MPa in steps of 5 MPa. We kept the pressure constant in each step for at least 6 hours and measured axial and lateral strains (provided by LVDTs) and ultrasonic velocities (provided by seismic-wave transducers). The dry shale exhibited pronounced creep strain at all pressure levels, indicating that the dry frame of the shale possesses an intrinsic viscous property. Interestingly, the creep behavior of the shale is different above and below 30 MPa confining pressure. Above 30 MPa, the amount of creep strain in 6 hours is nearly constant with equal pressurization steps, indicating a linear viscous rheology. Below 30 MPa, the amount of creep increases linearly as pressure is raised in constant incremental steps, suggesting that the creep deformation accelerates as pressure increases within this pressure range. Thus, the general creep behavior of the GOM shale is characterized by a bilinear dependence on pressure magnitude. This creep characteristic is quite different from that observed in unconsolidated reservoir sands (Hagin and Zoback, 2002), which exhibited nearly constant amount of creep regardless of the pressure magnitude for equal increasing steps of pressure. The shale exhibits a lack of creep (and nearly negligible strain recovery) when unloaded, suggesting that the creep strain is irrecoverable and can be considered viscoplastic deformation. SEM observations show that the major mechanism of compaction of the dry shale appears to be packing of clay and a progressive collapse of pore (void) spaces. Creep compaction is considerably more significant than compaction that occurs instantaneously, indicating that the process of shale compaction is largely time-dependent.

  4. Structural changes induced by high-pressure processing in micellar casein and milk protein concentrates.

    PubMed

    Cadesky, Lee; Walkling-Ribeiro, Markus; Kriner, Kyle T; Karwe, Mukund V; Moraru, Carmen I

    2017-09-01

    Reconstituted micellar casein concentrates and milk protein concentrates of 2.5 and 10% (wt/vol) protein concentration were subjected to high-pressure processing at pressures from 150 to 450 MPa, for 15 min, at ambient temperature. The structural changes induced in milk proteins by high-pressure processing were investigated using a range of physical, physicochemical, and chemical methods, including dynamic light scattering, rheology, mid-infrared spectroscopy, scanning electron microscopy, proteomics, and soluble mineral analyses. The experimental data clearly indicate pressure-induced changes of casein micelles, as well as denaturation of serum proteins. Calcium-binding α S1 - and α S2 -casein levels increased in the soluble phase after all pressure treatments. Pressurization up to 350 MPa also increased levels of soluble calcium and phosphorus, in all samples and concentrations, whereas treatment at 450 MPa reduced the levels of soluble Ca and P. Experimental data suggest dissociation of calcium phosphate and subsequent casein micelle destabilization as a result of pressure treatment. Treatment of 10% micellar casein concentrate and 10% milk protein concentrate samples at 450 MPa resulted in weak, physical gels, which featured aggregates of uniformly distributed, casein substructures of 15 to 20 nm in diameter. Serum proteins were significantly denatured by pressures above 250 MPa. These results provide information on pressure-induced changes in high-concentration protein systems, and may inform the development on new milk protein-based foods with novel textures and potentially high nutritional quality, of particular interest being the soft gel structures formed at high pressure levels. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  5. Corroboration of in vivo cartilage pressures with implications for synovial joint tribology and osteoarthritis causation.

    PubMed

    Morrell, Kjirste C; Hodge, W Andrew; Krebs, David E; Mann, Robert W

    2005-10-11

    Pressures on normal human acetabular cartilage have been collected from two implanted instrumented femoral head hemiprostheses. Despite significant differences in subjects' gender, morphology, mobility, and coordination, in vivo pressure measurements from both subjects covered similar ranges, with maximums of 5-6 MPa in gait, and as high as 18 MPa in other movements. Normalized for subject weight and height (nMPa), for free-speed walking the maximum pressure values were 25.2 for the female subject and 24.5 for the male subject. The overall maximum nMPa values were 76.2 for the female subject during rising from a chair at 11 months postoperative and 82.3 for the male subject while descending steps at 9 months postoperative. These unique in vivo data are consistent with corresponding cadaver experiments and model analyses. The collective results, in vitro data, model studies, and now corroborating in vivo data support the self-pressurizing "weeping" theory of synovial joint lubrication and provide unique information to evaluate the influence of in vivo pressure regimes on osteoarthritis causation and the efficacy of augmentations to, and substitutions for, natural cartilage.

  6. Optical monitoring of ultrasound-induced bioeffects in glass catfish.

    PubMed

    Maruvada, Subha; Hynynen, Kullervo

    2004-01-01

    This study is an investigation of the therapeutic ultrasound (US) effects on the blood vessels of optically transparent fish in vivo. Although many investigators have characterized cavitation in vivo using remote-sensing methods (i.e., measuring the acoustic emissions caused by oscillating bubbles) very few have made direct observations of cavitation-induced damage. Anesthetized glass catfish, which are optically transparent, was injected with the contrast agent, Optison, and then insonified at pressures that ranged from 0.5-10 MPa (peak negative pressures). Two focused transducers were used in these experiments to cover a frequency range of 0.7-3.3 MHz. Sonications were pulsed with pulse durations of 100, 10, 1, 0.1 and 0.01 ms and a pulse repetition frequency (PRF) of 1 Hz. The entire length of one sonication at a specific pressure level was 20 s. An inverted microscope combined with a digital camera and video monitor were used optically to monitor and record US interaction with the blood vessels in the tail of the anesthetized fish at 200x magnification. The effects of the burst sonication were analyzed visually at each pressure level. For the 1.091-MHz sonications, the first type of damage that occurred due to the US interaction was structural damage to the cartilage rods that comprise the tail of the fish, and was characterized by a disintegration of the lining of the rod. Damage to the rods occurred, starting at 3.5 MPa, 3.1 MPa, 4.1 MPa and 5.5 MPa for the 100-ms, 10-ms, 1-ms and 100-micros sonications, respectively. The formation of large gas bubbles was observed in the blood vessels of the fish at threshold values of 3.8 MPa, 3.8 MPa and 5.3 MPa, for the 100-ms, 10-ms and 1-ms sonications, respectively. Neither gas bubble formation nor hemorrhaging was observed during 100-micros sonications. Bubble formation was always accompanied by an increase of damage to the rods at the area surrounding the bubble. At 1.091 MHz, petechial hemorrhage thresholds were observed at 4.1 MPa, 4.1 MPa and 6.1 MPa, respectively, for the three pulse durations. The thresholds for damage were the lowest for the 0.747-MHz sonications: they were 2.6 MPa for damage to the rods, 3.7 MPa for gas bubble formation and 2.4 MPa for hemorrhaging.

  7. Development of a primary standard for dynamic pressure based on drop weight method covering a range of 10 MPa-400 MPa

    NASA Astrophysics Data System (ADS)

    Salminen, J.; Högström, R.; Saxholm, S.; Lakka, A.; Riski, K.; Heinonen, M.

    2018-04-01

    In this paper we present the development of a primary standard for dynamic pressures that is based on the drop weight method. At the moment dynamic pressure transducers are typically calibrated using reference transducers, which are calibrated against static pressure standards. Because dynamic and static characteristics of pressure transducers may significantly differ from each other, it is important that these transducers are calibrated against dynamic pressure standards. In a method developed in VTT Technical Research Centre of Finland Ltd, Centre for Metrology MIKES, a pressure pulse is generated by impact between a dropping weight and a piston of a liquid-filled piston-cylinder assembly. The traceability to SI-units is realized through interferometric measurement of the acceleration of the dropping weight during impact, the effective area of the piston-cylinder assembly and the mass of the weight. Based on experimental validation and an uncertainty evaluation, the developed primary standard provides traceability for peak pressures in the range from 10 MPa to 400 MPa with a few millisecond pulse width and a typical relative expanded uncertainty (k  =  2) of 1.5%. The performance of the primary standard is demonstrated by test calibrations of two dynamic pressure transducers.

  8. Potential application of high hydrostatic pressure to eliminate Escherichia coli O157:H7 on alfalfa sprouted seeds.

    PubMed

    Neetoo, Hudaa; Ye, Mu; Chen, Haiqiang

    2008-12-10

    Sprouts eaten raw are increasingly being perceived as hazardous foods as they have been implicated in Escherichia coli O157:H7 outbreaks where the seeds were found to be the likely source of contamination. The objective of our study was to evaluate the potential of using high hydrostatic pressure (HHP) technology for alfalfa seed decontamination. Alfalfa seeds inoculated with a cocktail of five strains of E. coli O157:H7 were subjected to pressures of 500 and 600 MPa for 2 min at 20 degrees C in a dry or wet (immersed in water) state. Immersing seeds in water during pressurization considerably enhanced inactivation of E. coli O157:H7 achieving reductions of 3.5 log and 5.7 log at 500 and 600 MPa, respectively. When dry seeds were pressurized, both pressure levels reduced the counts by <0.7 log. To test the efficacy of HHP to completely decontaminate seeds whilst meeting the FDA requirement of 5 log reductions, seeds inoculated with a ~5 log CFU/g of E. coli O157:H7 were pressure-treated at 600 and 650 MPa at 20 degrees C for holding times of 2 to 20 min. A >5 log reduction in the population was achieved when 600 MPa was applied for durations of > or =6 min although survivors were still detected by enrichment. When the pressure was stepped up to 650 MPa, the threshold time required to achieve complete elimination was 15 min. Un-inoculated seeds pressure-treated at 650 MPa for 15 min at 20 degrees C successfully sprouted achieving a germination rate identical to untreated seeds after eight days of sprouting. These results therefore demonstrate the promising application of HHP on alfalfa seeds to eliminate the risk of E. coli O157:H7 infections associated with consumption of raw alfalfa sprouts.

  9. Final report on key comparison APMP.M.P-K13 in hydraulic gauge pressure from 50 MPa to 500 MPa

    NASA Astrophysics Data System (ADS)

    Kajikawa, Hiroaki; Kobata, Tokihiko; Yadav, Sanjay; Jian, Wu; Changpan, Tawat; Owen, Neville; Yanhua, Li; Hung, Chen-Chuan; Ginanjar, Gigin; Choi, In-Mook

    2015-01-01

    This report describes the results of a key comparison of hydraulic high-pressure standards at nine National Metrology Institutes (NMIs: NMIJ/AIST, NPLI, NMC/A*STAR, NIMT, NMIA, NIM, CMS/ITRI, KIM-LIPI, and KRISS) within the framework of the Asia-Pacific Metrology Programme (APMP) in order to determine their degrees of equivalence in the pressure range from 50 MPa to 500 MPa in gauge mode. The pilot institute was the National Metrology Institute of Japan (NMIJ/AIST). All participating institutes used hydraulic pressure balances as their pressure standards. A set of pressure balance with a free-deformational piston-cylinder assembly was used as the transfer standard. Three piston-cylinder assemblies, only one at a time, were used to complete the measurements in the period from November 2010 to January 2013. Ten participants completed their measurements and reported the pressure-dependent effective areas of the transfer standard at specified pressures with the associated uncertainties. Since one of the participants withdrew its results, the measurement results of the nine participants were finally compared. The results were linked to the CCM.P-K13 reference values through the results of two linking laboratories, NMIJ/AIST and NPLI. The degrees of equivalence were evaluated by the relative deviations of the participants' results from the CCM.P-K13 key comparison reference values, and their associated combined expanded (k=2) uncertainties. The results of all the nine participating NMIs agree with the CCM.P-K13 reference values within their expanded (k=2) uncertainties in the entire pressure range from 50 MPa to 500 MPa. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  10. Magma storage conditions of historic Plinian eruptions of Volcán de Colima, México

    NASA Astrophysics Data System (ADS)

    Macias, J.; Arce, J.; Sosa, G.; Gardner, J. E.; Saucedo, R.

    2013-12-01

    Volcán de Colima has a historical record with major explosive eruptions occurring every ~100 years (1606, 1690, 1818, and 1913) followed by intra-Plinian effusive activity. The 1818 and 1913 Plinian eruptions erupted andesitic magmas (Pl > Opx > Cpx >> Hbl + Fe-Ti oxides + Ap and rare resorbed Ol) with homogeneous bulk compositions (1913; 58.3 × 0.5 wt.% SiO2, 1818; 58.9 × 0.2 wt.% SiO2; Saucedo et al., 2010). Instead, intra-Plinian magmas are devoid of hornblende and have compositions of 59-61 wt. % in silica (Savov et al., 2008). Pre-eruptive temperatures of oxide Fe-Ti pairs in 1818 and 1913 products yielded temperatures of 830×20°C colder than intra-Plinian magmas usually >970°C (Luhr et al., 2002) depending on the mineral phase analyzed. Amphibole in 1818 and 1913 products consists of two populations: a) large xenocrysts, with plag-px-Fe-Ti oxide rims with equilibrium pressures and temperatures of 380 MPa and 950 °C (Ridolfi et al., 2010), and b) microphenocryst with equilibrium pressures and temperatures of 190-280 MPa and 870-910 °C, respectively. Some phenocrysts in the 1818 magma have a high pressure core overgrowth by a low pressure rim. In order to understand the storage conditions of Colima explosive magmas we carried out a set of hydrothermal experiments with a 1818 pumice sample. Experiments were water oversaturated and close to the oxygen fugacity of the NNO buffer. Experiments show that amphibole is stable at pressures greater than 75 MPa at 850°C, and greater than 100 MPa at 925°C. For the same range of temperature, plagioclase is stable at pressures below ~210 MPa and 100 MPa, respectively. Experimental plagioclase and experimental glass were analyzed and compared to those from the natural sample, yielding an approximate storage pressure of 210 MPa. This pressure is confirmed by the chemical equilibrium of microphenocrystic amphibole of the natural sample. Given the nearly equivalent composition of the most recent Plinain magmas is possible to assume the storage pressure of the 1913 Plinian magma. Previous studies found ~6 wt. % of water dissolved in orthopyroxene melt inclusions in the 1913 magma (Luhr, 2006). That water concentration would be dissolved in a melt with the 1913 composition at ~200 MPa (Papale et al., 2006). Equilibrium pressure of 1913 amphiboles, microphenocrysts, and xenocrysts (280-380 MPa), overall, are deeper than those of the 1818 suggesting a deeper 1913 reservoir. Therefore, the 1818 amphiboles with lower pressure rims found in the natural sample could have been inherited from a previous magma (>280 MPa) seated at similar depths than the 1913 reservoir from which were taped. Luhr, J.F., 2002 JVGR 117, 169-194. Ridolfi, F., Renzulli, A., Puerini, M., 2010. Cont Min Petrol 160, 45-66. R. Saucedo, J.L. Macías, J.C. Gavilanes, J.L. Arce, J.C. Komorowski, J.E. Gardner, G. Valdez-Moreno JVGR 191, 149-166 Savov, I.P., Luhr, J.F., Navarro-Ochoa, C., 2008. JVGR 174: 241-256.

  11. Effects of high hydrostatic pressure and thermal processing on bioactive compounds, antioxidant activity, and volatile profile of mulberry juice.

    PubMed

    Wang, Fan; Du, Bao-Lei; Cui, Zheng-Wei; Xu, Li-Ping; Li, Chun-Yang

    2017-03-01

    The aim of this study was to investigate the effects of high hydrostatic pressure and thermal processing on microbiological quality, bioactive compounds, antioxidant activity, and volatile profile of mulberry juice. High hydrostatic pressure processing at 500 MPa for 10 min reduced the total viable count from 4.38 log cfu/ml to nondetectable level and completely inactivated yeasts and molds in raw mulberry juice, ensuring the microbiological safety as thermal processing at 85 ℃ for 15 min. High hydrostatic pressure processing maintained significantly (p < 0.05) higher contents of total phenolic, total flavonoid and resveratrol, and antioxidant activity of mulberry juice than thermal processing. The main volatile compounds of mulberry juice were aldehydes, alcohols, and ketones. High hydrostatic pressure processing enhanced the volatile compound concentrations of mulberry juice while thermal processing reduced them in comparison with the control. These results suggested that high hydrostatic pressure processing could be an alternative to conventional thermal processing for production of high-quality mulberry juice.

  12. High-calorific biogas production from anaerobic digestion of food waste using a two-phase pressurized biofilm (TPPB) system.

    PubMed

    Li, Yeqing; Liu, Hong; Yan, Fang; Su, Dongfang; Wang, Yafei; Zhou, Hongjun

    2017-01-01

    To obtain high calorific biogas via anaerobic digestion without additional upgrading equipment, a two-phase pressurized biofilm system was built up, including a conventional continuously stirred tank reactor and a pressurized biofilm anaerobic reactor (PBAR). Four different pressure levels (0.3, 0.6, 1.0 and 1.7MPa) were applied to the PBAR in sequence, with the organic loading rate maintained at 3.1g-COD/L/d. Biogas production, gas composition, process stability parameters were measured. Results showed that with the pressure increasing from 0.3MPa to 1.7MPa, the pH value decreased from 7.22±0.19 to 6.98±0.05, the COD removal decreased from 93.0±0.9% to 79.7±1.2% and the methane content increased from 80.5±1.5% to 90.8±0.8%. Biogas with higher calorific value of 36.2MJ/m 3 was obtained at a pressure of 1.7MPa. Pressure showed a significant effect on biogas production and gas quality in methanogenesis reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Pressure determination in Hydrothermal Diamond Anvil Cell via laser interferometry: Investigation of hydrothermal melting of haplogranitic glass

    NASA Astrophysics Data System (ADS)

    Solferino, G.; Anderson, A. J.

    2012-12-01

    Pressure determination in HDAC experiments of hydrothermal melting of a haplogranitic glass at 130-830 MPa and 600-800 °C were performed employing in-situ visualization of alpha to beta quartz via laser interferometry. Hitherto, Raman spectroscopy of ruby, quartz, 13C and zircon has been used for the same purpose, with a best resolution of 40-50 MPa. Our method average uncertainty is just 3.4 MPa. This augmented precision is critical in estimate of the emplacement depth of mid to upper crustal magmatic bodies, e.g., intermediate-felsic intrusions, or definition of formation conditions of magmatic ores, like rare metal pegmatites. Moreover, thanks to this improved resolution on pressure measurements, we observed that actual run pressure, named Pα/β, is smaller than pressure computed using the equation of state (EOS) of pure water, here labeled PH2O for an ample range of pressures, up to 400 MPa. The absolute value of ΔP = Pα/β- PH2O decrease at higher pressure, and switches from negative to positive at P > 800 MPa. Since dissolution of the glass/melt into the pressure medium (water) leads to increment of the medium compressibility (density), then the medium should be able to impose a larger pressure than pure water for every observed temperature of alpha to beta transition (i.e., steeper isochor). A possible explanation of this discrepancy is found in the differential density between the pressure medium and the melt, and in the change of the volume occupied by the fluid for increasing temperature, as it emerges from a simplified model of dissolution of albite feldspar / albite melt in water, prepared for this study on the base of solubility data available in literature.

  14. Bonding of Resin Cement to Zirconia with High Pressure Primer Coating

    PubMed Central

    Wang, Ying-jie; Jiao, Kai; Liu, Yan; Zhou, Wei; Shen, Li-juan; Fang, Ming; Li, Meng; Zhang, Xiang; Tay, Franklin R.; Chen, Ji-hua

    2014-01-01

    Objectives To investigate the effect of air-drying pressure during ceramic primer coating on zirconia/resin bonding and the surface characteristics of the primed zirconia. Methods Two ceramic primers (Clearfil Ceramic Primer, CCP, Kuraray Medical Inc. and Z-Prime Plus, ZPP, Bisco Inc.) were applied on the surface of air-abraded zirconia (Katana zirconia, Noritake) and dried at 4 different air pressures (0.1–0.4 MPa). The primed zirconia ceramic specimens were bonded with a resin-based luting agent (SA Luting Cement, Kuraray). Micro-shear bond strengths of the bonded specimens were tested after 3 days of water storage or 5,000× thermocycling (n = 12). Failure modes of the fractured specimens were examined with scanning electron miscopy. The effects of air pressure on the thickness of the primer layers and the surface roughness (Sa) of primed zirconia were evaluated using spectroscopic ellipsometry (n = 6), optical profilometry and environmental scanning electron microscopy (ESEM) (n = 6), respectively. Results Clearfil Ceramic Primer air-dried at 0.3 and 0.4 MPa, yielding significantly higher µSBS than gentle air-drying subgroups (p<0.05). Compared to vigorous drying conditions, Z-Prime Plus air-dried at 0.2 MPa exhibited significantly higher µSBS (p<0.05). Increasing air-drying pressure reduced the film thickness for both primers. Profilometry measurements and ESEM showed rougher surfaces in the high pressure subgroups of CCP and intermediate pressure subgroup of ZPP. Conclusion Air-drying pressure influences resin/zirconia bond strength and durability significantly. Higher air-drying pressure (0.3-0.4 MPa) for CCP and intermediate pressure (0.2 MPa) for ZPP are recommended to produce strong, durable bonds between resin cement and zirconia ceramics. PMID:24992678

  15. [Studies on technology of supercritical-CO2 fluid extraction for volatile oils and saikosaponins in Bupleurum chinense DC].

    PubMed

    Ge, F H; Li, Y; Xie, J M; Li, Q; Ma, G J; Chen, Y H; Lin, Y C; Li, X F

    2000-03-01

    To study the technology of supercritical-CO2 fluid extraction (SFE-CO2) for the volatile oils and saikosaponins in Bupleurum chinense. Exploring the effects of pressure, temperature, extraction time, flow rate of CO2 and entrainers on the yield of the oils and saikosaponin-contained extracts; determining the optimum conditions for SFE-CO2; analyzing the oils by GC/MS and comparing the technology of SFE-CO2 with that of traditional steam distillation. The optimum extraction conditions turned out to be--for volatile oils: pressure (EP) = 20 MPa, temperature (ET) = 30 degrees C, isolator I pressure (1P-I) = 12 MPa, temperature(1T-I) = 65 degrees C, isolator II pressure (1P-II) = 6 MPa, temperature (1T-II) = 40 degrees C, extraction time = 4 hours, and CO2 flow rate = 10-20 kg.(h.kg)-1 crude drug; for saikosaponins: EP = 30 MPa, ET = 65 degrees C, 1P I = 12 MPa, 1T I = 55 degrees C, 1P II = 6 MPa, 1T II = 43 degrees C, extraction time = 3 hours, entrainer = 60% ethanol, and CO2 flow rate = 20-25 kg.(h.kg)-1 crude drug. SFE-CO2 excels the traditional steam distillation in raising yield and reducing extraction time. The oils are composed of 22 constituents including caproaldehyde, and the saikosaponins can only be extracted with the help of entrainers under higher pressure and temperature.

  16. Bacterial spore inactivation at 45-65 °C using high pressure processing: study of Alicyclobacillus acidoterrestris in orange juice.

    PubMed

    Silva, Filipa V M; Tan, Eng Keat; Farid, Mohammed

    2012-10-01

    High pressure processing (HPP) is a new non-thermal technology commercially used to pasteurize fruit juices and extend shelf-life, while preserving delicate aromas/flavours and bioactive constituents. Given the spoilage incidents and economic losses due to Alicyclobacillus acidoterrestris in the fruit juice industry, the use of high pressure (200 MPa - 600 MPa) in combination with mild temperature (45 °C-65 °C) for 1-15 min, to inactivate these spores in orange juice were investigated. As expected, the higher the temperature, pressure and time, the larger was the A. acidoterrestris inactivation. The survival curves were described by the first order Bigelow model. For 200 MPa, D(45 °C) = 43.9 min, D(55 °C) = 28.8 min, D(65 °C) = 5.0 min and z-value = 21.3 °C. At 600 MPa, D(45 °C) = 12.9 min, D(55 °C) = 7.0 min, D(65 °C) = 3.4 min and z-value = 34.4 °C. Spores were inactivated at 45 °C and 600 MPa, and at 65 °C only 200 MPa was needed to achieve reduction in spore numbers. Results demonstrated that HPP allowed A. acidoterrestris spore inactivation at lower temperatures (45-65 °C) than conventional thermal processing (85-95 °C) without pressure, yielding a fresher and higher quality preserved food. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Low-pressure pulsed focused ultrasound with microbubbles promotes an anticancer immunological response.

    PubMed

    Liu, Hao-Li; Hsieh, Han-Yi; Lu, Li-An; Kang, Chiao-Wen; Wu, Ming-Fang; Lin, Chun-Yen

    2012-11-11

    High-intensity focused-ultrasound (HIFU) has been successfully employed for thermal ablation of tumors in clinical settings. Continuous- or pulsed-mode HIFU may also induce a host antitumor immune response, mainly through expansion of antigen-presenting cells in response to increased cellular debris and through increased macrophage activation/infiltration. Here we demonstrated that another form of focused ultrasound delivery, using low-pressure, pulsed-mode exposure in the presence of microbubbles (MBs), may also trigger an antitumor immunological response and inhibit tumor growth. A total of 280 tumor-bearing animals were subjected to sonographically-guided FUS. Implanted tumors were exposed to low-pressure FUS (0.6 to 1.4 MPa) with MBs to increase the permeability of tumor microvasculature. Tumor progression was suppressed by both 0.6 and 1.4-MPa MB-enhanced FUS exposures. We observed a transient increase in infiltration of non-T regulatory (non-Treg) tumor infiltrating lymphocytes (TILs) and continual infiltration of CD8+ cytotoxic T-lymphocytes (CTL). The ratio of CD8+/Treg increased significantly and tumor growth was inhibited. Our findings suggest that low-pressure FUS exposure with MBs may constitute a useful tool for triggering an anticancer immune response, for potential cancer immunotherapy.

  18. FEM analysis of escape capsule suffered to gas explosion

    NASA Astrophysics Data System (ADS)

    Li, Chang-lu; Mei, Rui-bin; Li, Chang-sheng; Cai, Ban; Liu, Xiang-hua

    2013-05-01

    Escape capsules are new devices for underground coal mines that provide air, water, food and supplies in the event of an emergency in where miners are unable to escape. It is difficult to carry out the experiments of explosion and safety because the danger and nonrepeatability of explosion. The structure deformation and distribution of equivalent stress has been investigated under different impact pressure conditions including unimodal and bimodal loads based on the FEM and software LS-DYNA. The results show that the distribution of deformation and equivalent stress has the same trend on the same surface with the increment of explosion pressure. The deformation and stress are larger with side impact pressure compared with that of the same front impact pressure. Furthermore, the maximum equivalent stress is 246MPa and 260MPa on the front and sides of capsule with five times for national standard impact pressure 1.5MPa. Under these conditions, the deformation is less than about 9.97mm and 10.47mm, respectively. When the front impact pressure is 2.0MPa, the deformation of capsule still belongs to elasticity but the less plastic deformation occurs on the Ushape stiffening channels with the same side impact pressure. However, it is safe for capsule structure because the equivalent stress 283MPa is much less than the tensile strength. It is noted that bimodal load accelerates the capsule deformation so that it is more dangerous compared with unimodal load.

  19. The latent fingerprint in mass transport of polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Thirunavukarasu, Gopinath; Kundu, Sukumar; Chatterjee, Subrata

    2016-02-01

    Herein, a systematic investigation was carried out to reach a rational understanding and to provide information concerning the possible causes for a significant influence of pressure variation in the underlying processes of mass transport in polycrystalline materials. The authors focused their research in solid-state diffusion, a part of the subject "Mass Transport in Solids". Theories on diffusion are the subject by itself which exists as a latent fingerprint in every text of higher learning in interdisciplinary science. In this research, authors prepared sandwich samples of titanium alloy and stainless steel using nickel as an intermediate metal. The samples were processed at three different levels of bonding pressure (3, 4 and 5 MPa) while bonding temperature and bonding time was maintained at 750 °C and 1 h, respectively, throughout the experiments. It was observed that the net flux of atomic diffusion of nickel atoms into Ti-alloy at TiA/Ni interface increased by ~63 % with the rise in the bonding pressure from 3 to 4 MPa, but decreased by ~40 % with the rise in the bonding pressure from 4 to 5 MPa. At the same time, the net flux of atomic diffusion of nickel atoms into stainless steel at Ni/SS interface increased by ~19 % with the rise in the bonding pressure from 3 to 4 MPa, but increased by ~17 % with the rise in the bonding pressure from 4 to 5 MPa. Here authors showed that the pressure variations have different effects at the TiA/Ni interface and Ni/SS interface, and tried to explain the explicit mechanisms operating behind them. In general for sandwich samples processed irrespective of bonding pressure chosen, the net flux of Ni-atoms diffused into SS is greater than that of the net flux of Ni-atoms diffused in Ti-alloy matrix by four orders of magnitude. The calculated diffusivity of Ni-atoms into Ti-alloy reaches its highest value of ~5.083 × 10-19 m2/s for the sandwich sample processed using 4-MPa bonding-pressure, whereas the diffusivity of Ni-atoms into SS reaches its peak value of ~1.615 × 10-14 m2/s for the sample bonded using 5-MPa bonding-pressure.

  20. Functional properties and in vitro trypsin digestibility of red kidney bean (Phaseolus vulgaris L.) protein isolate: Effect of high-pressure treatment.

    PubMed

    Yin, Shou-Wei; Tang, Chuan-He; Wen, Qi-Biao; Yang, Xiao-Quan; Li, Lin

    2008-10-15

    The effects of high-pressure (HP) treatment at 200-600MPa, prior to freeze-drying, on some functional properties and in vitro trypsin digestibility of vicilin-rich red kidney bean (Phaseolus vulgaris L.) protein isolate (KPI) were investigated. Surface hydrophobicity and free sulfhydryl (SH) and disulfide bond (SS) contents were also evaluated. HP treatment resulted in gradual unfolding of protein structure, as evidenced by gradual increases in fluorescence strength and SS formation from SH groups, and decrease in denaturation enthalpy change. The protein solubility of KPI was significantly improved at pressures of 400MPa or higher, possibly due to formation of soluble aggregate from insoluble precipitate. HP treatment at 200 and 400MPa significantly increased emulsifying activity index (EAI) and emulsion stability index (ESI); however, EAI was significantly decreased at 600MPa (relative to untreated KPI). The thermal stability of the vicilin component was not affected by HP treatment. Additionally, in vitro trypsin digestibility of KPI was decreased only at a pressure above 200MPa and for long incubation time (e.g., 120min). The data suggest that some physiochemical and functional properties of vicilin-rich kidney proteins can be improved by means of high-pressure treatment. Copyright © 2008 Elsevier Ltd. All rights reserved.

  1. High pressure processing of fresh meat--is it worth it?

    PubMed

    Ma, Hanjun; Ledward, D A

    2013-12-01

    When subjected to high pressures at ambient temperatures, the shelf life of fresh meat is increased; however the meat takes on a cooked appearance as the actomyosin denatures at about 200MPa and the myoglobin denatures and/or co-precipitates with other proteins at about 400MPa. In addition, at pressures of 400MPa and above the unsaturated lipids in the meat become more susceptible to oxidation, probably due to the release of iron from complexes present in meat (haemosiderin and ferritin?) and/or changes in the lipid membrane. Thus, even if legislation allowed it, it is unlikely that many consumers would be prepared to buy such meat. However if pre-rigor meat is subjected to pressures of about 100-150MPa, below those necessary to cause colour changes, it becomes significantly more tender than its untreated counterpart and this may now be a commercially viable process, given the decreasing cost of high pressure rigs. When treated at 100-200MPa while the temperature is raised from ambient to around 60°C post-rigor meat also yields a tender product and this may also be a commercially attractive process to parts of the food industry, for example those involved in catering. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Temperature and Pressure Effects of Desalination Using a MFI-Type Zeolite Membrane

    PubMed Central

    Zhu, Bo; Kim, Jun Hyun; Na, Yong-Han; Moon, Il-Shik; Connor, Greg; Maeda, Shuichi; Morris, Gayle; Gray, Stephen; Duke, Mikel

    2013-01-01

    Zeolites are potentially a robust desalination alternative, as they are chemically stable and possess the essential properties needed to reject ions. Zeolite membranes could desalinate “challenging” waters, such as saline secondary effluent, without any substantial pre-treatment, due to the robust mechanical properties of ceramic membranes. A novel MFI-type zeolite membrane was developed on a tubular α-Al2O3 substrate by a combined rubbing and secondary hydrothermal growth method. The prepared membrane was characterised by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and single gas (He or N2) permeation and underwent desalination tests with NaCl solutions under different pressures (0.7 MPa and 7 MPa). The results showed that higher pressure resulted in higher Na+ rejection and permeate flux. The zeolite membrane achieved a good rejection of Na+ (~82%) for a NaCl feed solution with a TDS (total dissolved solids) of 3000 mg·L−1 at an applied pressure of 7 MPa and 21 °C. To explore the opportunity for high salinity and high temperature desalination, this membrane was also tested with high concentration NaCl solutions (up to TDS 90,000 mg·L−1) and at 90 °C. This is the first known work at such high salinities of NaCl. It was found that increasing the salinity of the feed solution decreased both Na+ rejection and flux. An increase in testing temperature resulted in an increase in permeate flux, but a decrease in ion rejection. PMID:24956943

  3. Optimization of high pressure bioactive compounds extraction from pansies (Viola × wittrockiana) by response surface methodology

    NASA Astrophysics Data System (ADS)

    Fernandes, Luana; Casal, Susana I. P.; Pereira, José A.; Ramalhosa, Elsa; Saraiva, Jorge A.

    2017-07-01

    Response surface methodology (RSM) was employed for the first time to optimize high pressure extraction (HPE) conditions of bioactive compounds from pansies, namely: pressure (X1: 0-500 MPa), time (X2: 5-15 min) and ethanol concentration (X3: 0-100%). Consistent fittings using second-order polynomial models were obtained for flavonoids, tannins, anthocyanins, total reducing capacity (TRC) and DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity. The optimum extraction conditions based on combination responses for TRC, tannins and anthocyanins were: X1 = 384 MPa, X2 = 15 min and X3 = 35% (v/v) ethanol, shortening the extraction time when compared to the classic method of stirring (approx. 24 h). When the optimum extraction conditions were applied, 65.1 mg of TRC, 42.8 mg of tannins and 56.15 mg of anthocyanins/g dried flower were obtained. Thus, HPE has shown to be a promising technique to extract bioactive compounds from pansies, by reducing the extraction time and by using green solvents (ethanol and water), for application in diverse industrial fields.

  4. Exocytosis from chromaffin cells: hydrostatic pressure slows vesicle fusion

    PubMed Central

    Stühmer, Walter

    2015-01-01

    Pressure affects reaction kinetics because chemical transitions involve changes in volume, and therefore pressure is a standard thermodynamic parameter to measure these volume changes. Many organisms live in environments at external pressures other than one atmosphere (0.1 MPa). Marine animals have adapted to live at depths of over 7000 m (at pressures over 70 MPa), and microorganisms living in trenches at over 110 MPa have been retrieved. Here, kinetic changes in secretion from chromaffin cells, measured as capacitance changes using the patch-clamp technique at pressures of up to 20 MPa are presented. It is known that these high pressures drastically slow down physiological functions. High hydrostatic pressure also affects the kinetics of ion channel gating and the amount of current carried by them, and it drastically slows down synaptic transmission. The results presented here indicate a similar change in volume (activation volume) of 390 ± 57 Å3 for large dense-core vesicles undergoing fusion in chromaffin cells and for degranulation of mast cells. It is significantly larger than activation volumes of voltage-gated ion channels in chromaffin cells. This information will be useful in finding possible protein conformational changes during the reactions involved in vesicle fusion and in testing possible molecular dynamic models of secretory processes. PMID:26009771

  5. [Effect of compaction pressure on the properties of dental machinable zirconia ceramic].

    PubMed

    Huang, Hui; Wei, Bin; Zhang, Fu-qiang; Sun, Jing; Gao, Lian

    2010-10-01

    To investigate the effect of compaction pressure on the linear shrinkage, sintering property and machinability of the dental zirconia ceramic. The nano-size zirconia powder was compacted at different isostatic pressure and sintered at different temperature. The linear shrinkage of sintered body was measured and the relative density was tested using the Archimedes method. The cylindrical surface of pre-sintering blanks was traversed using a hard metal tool. Surface and edge quality were checked visually using light stereo microscopy. The sintering behaviour depended on the compaction pressure. Increasing compaction pressure led to higher sintering rate and lower sintering temperature. Increasing compaction pressure also led to decreasing linear shrinkage of the sintered bodies, from 24.54% of 50 MPa to 20.9% of 400 MPa. Compaction pressure showed only a weak influence on machinability of zirconia blanks, but the higher compaction pressure resulted in the poor surface quality. The better sintering property and machinability of dental zirconia ceramic is found for 200-300 MPa compaction pressure.

  6. High hydrostatic pressure as a method to preserve fresh-cut Hachiya persimmons: A structural approach.

    PubMed

    Vázquez-Gutiérrez, José Luis; Quiles, Amparo; Vonasek, Erica; Jernstedt, Judith A; Hernando, Isabel; Nitin, Nitin; Barrett, Diane M

    2016-12-01

    The "Hachiya" persimmon is the most common astringent cultivar grown in California and it is rich in tannins and carotenoids. Changes in the microstructure and some physicochemical properties during high hydrostatic pressure processing (200-400 MPa, 3 min, 25 ℃) and subsequent refrigerated storage were analyzed in this study in order to evaluate the suitability of this non-thermal technology for preservation of fresh-cut Hachiya persimmons. The effects of high-hydrostatic pressure treatment on the integrity and location of carotenoids and tannins during storage were also analyzed. Significant changes, in particular diffusion of soluble compounds which were released as a result of cell wall and membrane damage, were followed using confocal microscopy. The high-hydrostatic pressure process also induced changes in physicochemical properties, e.g. electrolyte leakage, texture, total soluble solids, pH and color, which were a function of the amount of applied hydrostatic pressure and may affect the consumer acceptance of the product. Nevertheless, the results indicate that the application of 200 MPa could be a suitable preservation treatment for Hachiya persimmon. This treatment seems to improve carotenoid extractability and tannin polymerization, which could improve functionality and remove astringency of the fruit, respectively. © The Author(s) 2016.

  7. Radiofrequency-induced small bowel thermofusion: an ex vivo study of intestinal seal adequacy using mechanical and imaging modalities.

    PubMed

    Arya, Shobhit; Hadjievangelou, Nancy; Lei, Su; Kudo, Hiromi; Goldin, Robert D; Darzi, Ara W; Elson, Daniel S; Hanna, George B

    2013-09-01

    Bipolar radiofrequency (RF) induced tissue fusion is believed to have the potential to seal and anastomose intestinal tissue thereby providing an alternative to current techniques which are associated with technical and functional complications. This study examines the mechanical and cellular effects of RF energy and varying compressive pressures when applied to create ex vivo intestinal seals. A total of 299 mucosa-to-mucosa fusions were formed on ex vivo porcine small bowel segments using a prototype bipolar RF device powered by a closed-loop, feedback-controlled RF generator. Compressive pressures were increased at 0.05 MPa intervals from 0.00 to 0.49 MPa and RF energy was applied for a set time period to achieve bowel tissue fusion. Seal strength was subsequently assessed using burst pressure and tensile strength testing, whilst morphological changes were determined through light microscopy. To further identify the subcellular tissue changes that occur as a result of RF energy application, the collagen matrix in the fused area of a single bowel segment sealed at an optimal pressure was examined using transmission electron microscopy (TEM). An optimal applied compressive pressure range was observed between 0.10 and 0.25 MPa. Light microscopy demonstrated a step change between fused and unfused tissues but was ineffective in distinguishing between pressure levels once tissues were sealed. Non uniform collagen damage was observed in the sealed tissue area using TEM, with some areas showing complete collagen denaturation and others showing none, despite the seal being complete. This finding has not been described previously in RF-fused tissue and may have implications for in vivo healing. This study shows that both bipolar RF energy and optimal compressive pressures are needed to create strong intestinal seals. This finding suggests that RF fusion technology can be effectively applied for bowel sealing and may lead to the development of novel anastomosis tools.

  8. Final report on APMP.M.P-S3: Results of the supplementary comparison in gas media in the range 1.77 MPa to 6.8 MPa

    NASA Astrophysics Data System (ADS)

    Owen, N.; Bergoglio, M.

    2013-01-01

    This report provides the results of the supplementary bilateral comparison APMP.M.P-S3 between NMI Australia (NMIA) and INRIM, Italy executed from November 2010 to November 2011. NMIA acted as the pilot laboratory and provided a Ruska G series piston gauge as the transfer standard, with a nominal area 16.8 mm2 requiring a nominal load of 12 kg to balance a pressure of 7.0 MPa. The purpose of this supplementary bilateral comparison was to provide data for linking NMIA to CCM.P-K1.c in the pressure range greater than 4 MPa to extend the range covered by key comparison APMP.M.P-K1c. The original protocol called for the pressure range from 80 kPa to 6.80 MPa. Both participants agreed to limit this comparison range to 1.77 MPa to 6.50 MPa. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the APMP, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  9. Measurement of the ( p, , T) Properties for Pure Hydrocarbons at Temperatures up to 600 K and Pressures up to 200 MPa

    NASA Astrophysics Data System (ADS)

    Ito, T.; Nagata, Y.; Miyamoto, H.

    2014-10-01

    The data available for the thermodynamic properties of propane, -butane, and isobutane at temperatures above 440 K are outdated and show significant discrepancies with each other. The ambiguity associated with these data could be limiting to the development of any understanding related to the effects of mixing of these substances with other materials such as , ammonia, and non-flammable or lower-flammable HFC refrigerants. In this study, the ( p, , T) properties of propane, -butane, and isobutane were measured at temperatures ranging from (360 to 600) K and pressures ranging from (50 to 200) MPa. Precise measurements were carried out using a metal-bellows variable volumometer with a thermostatted air bath. The expanded uncertainties in the temperature, pressure, and density measurements were estimated to be 5 mK, 0.02 MPa, and 0.88 kg m ( K, MPa), 0.76 kg ( K, MPa), 0.76 kg ( K, MPa), and 2.94 kg ( K, MPa), respectively. The data obtained throughout this study were systematically compared with the calculated values derived from the available equations of state. These models agree well with the measured data at higher temperatures up to 600 K, demonstrating their suitability for an effective and precise examination of the mixing effects of potential alternative mixtures.

  10. In situ gas analysis for high pressure applications using property measurements

    NASA Astrophysics Data System (ADS)

    Moeller, J.; Span, R.; Fieback, T.

    2013-10-01

    As the production, distribution, and storage of renewable energy based fuels usually are performed under high pressures and as there is a lack of in situ high pressure gas analysis instruments on the market, the aim of this work was to develop a method for in situ high pressure gas analysis of biogas and hydrogen containing gas mixtures. The analysis is based on in situ measurements of optical, thermo physical, and electromagnetic properties in gas mixtures with newly developed high pressure sensors. This article depicts the calculation of compositions from the measured properties, which is carried out iteratively by using highly accurate equations of state for gas mixtures. The validation of the method consisted of the generation and measurement of several mixtures, of which three are presented herein: a first mixture of 64.9 mol. % methane, 17.1 mol. % carbon dioxide, 9 mol. % helium, and 9 mol. % ethane at 323 K and 423 K in a pressure range from 2.5 MPa to 17 MPa; a second mixture of 93.0 mol. % methane, 4.0 mol. % propane, 2.0 mol. % carbon dioxide, and 1.0 mol. % nitrogen at 303 K, 313 K, and 323 K in a pressure range from 1.2 MPa to 3 MPa; and a third mixture of 64.9 mol. % methane, 30.1 mol. % carbon dioxide, and 5.0 mol. % nitrogen at 303 K, 313 K, and 323 K in a pressure range from 2.5 MPa to 4 MPa. The analysis of the tested gas mixtures showed that with measured density, velocity of sound, and relative permittivity the composition can be determined with deviations below 1.9 mol. %, in most cases even below 1 mol. %. Comparing the calculated compositions with the generated gas mixture, the deviations were in the range of the combined uncertainty of measurement and property models.

  11. High-pressure tolerance of earthworm fibrinolytic and digestive enzymes.

    PubMed

    Akazawa, Shin-Ichi; Tokuyama, Haruka; Sato, Shunsuke; Watanabe, Toshinori; Shida, Yosuke; Ogasawara, Wataru

    2018-02-01

    Earthworms contain several digestive and therapeutic enzymes that are beneficial to our health and useful for biomass utilization. Specifically, earthworms contain potent fibrinolytic enzymes called lumbrokinases, which are highly stable even at room temperature and remain active in dried earthworm powder. However, the high-temperature sterilization method leads to the inactivation of enzymes. Therefore, we investigated the effect of high-pressure treatment (HPT) (from 0.1 MPa to 500 MPa at 25°C and 50°C) on the enzymatic activity of lumbrokinase (LK), α-amylase (AMY), endoglucanase (EG), β-glucosidase (BGL), and lipase (LP) of the earthworm Eisenia fetida, Waki strain, and its sterilization ability in producing dietary supplement. LK showed thermo- and high-pressure tolerance. In addition, HPT may have resulted in pressure-induced stabilization and activation of LK. Although AMY activity was maintained up to 400 MPa at 25°C, the apparent activity decreased slightly at 50°C with HPT. EG showed almost the same pattern as AMY. However, it is possible that the effects of temperature and pressure compensated each other under 100 MPa at 50°C. BGL was shown to be a pressure- and temperature-sensitive enzyme, and LP showed a thermo- and high-pressure tolerance. The slight decrease in apparent activity occurred under 200 MPa at both temperatures. Furthermore, the low-temperature and pressure treatment completely sterilized the samples. These results provide a basis for the development of a novel earthworm dietary supplement with fibrinolytic and digestive activity and of high-pressure-tolerant enzymes to be used for biomass pretreatment. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Viscoelastic characteristics and phytochemical properties of purple-rice drinks following ultrahigh pressure and pasteurization

    NASA Astrophysics Data System (ADS)

    Worametrachanon, Srivilai; Apichartsrangkoon, Arunee

    2014-10-01

    This study investigated how pressure (500, 600 MPa/20 min) altered the viscoelastic characteristics and phytochemical properties of germinated and non-germinated purple-rice drinks in comparison with pasteurization. Accordingly, color parameters, storage and loss moduli, anthocyanin content, γ-oryzanol, γ-aminobutyric acid (GABA), total phenolic compounds and 2,2-diphenyl-1-picrylthydrazyl (DPPH) capacity of the processed drinks were determined. The finding showed that germinated and pressurized rice drink had lower Browning Index than the non-germinated and pasteurized rice drink. The plots of storage and loss moduli for processed rice drinks indicated that time of pressurization had greater impact on gel structural modification than the level of pressure used. The phytochemicals, including total phenolics, and DPPH capacity in pressurized rice drinks retained higher quantity than those in pasteurized drink, despite less treatment effects on anthocyanin. On the contrary, both γ-oryzanol and GABA were found in high amounts in germinated rice drink with little variation among processing effects.

  13. Final report on supplementary comparison APMP.M.P-S7.TRI in hydraulic gauge pressure from 40 MPa to 200 MPa

    NASA Astrophysics Data System (ADS)

    Kobata, Tokihiko; Olson, Douglas A.; Eltawil, Alaaeldin A.

    2017-01-01

    This report describes the results of a supplementary comparison of hydraulic high-pressure standards at three national metrology institutes (NMIs); National Metrology Institute of Japan, AIST (NMIJ/AIST), National Institute of Standards and Technology (NIST), USA and National Institute for Standards (NIS), Egypt, which was carried out at NIST during the period May 2001 to September 2001 within the framework of the Asia-Pacific Metrology Programme (APMP) in order to evaluate their degrees of equivalence at pressures in the range 40 MPa to 200 MPa for gauge mode. The pilot institute was NMIJ/AIST. Three working pressure standards from the institutes, in the form of piston-cylinder assemblies, were used for the comparison. The comparison and calculation methods used are discussed in this report. From the cross-float measurements, the differences between the working pressure standards of each institute were examined through an evaluation of the effective area of each piston-cylinder assembly with its uncertainty. From the comparison results, it was revealed that the values claimed by the participating institutes, NMIJ, NIST, and NIS, agree within the expanded (k = 2) uncertainties. The hydraulic pressure standards in the range 40 MPa to 200 MPa for gauge mode of the three participating NMIs were found to be equivalent within their claimed uncertainties. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  14. The 371 deg C mechanical properties of graphite/polyimide composites

    NASA Technical Reports Server (NTRS)

    Delvigs, P.

    1985-01-01

    A series of condensation polyimides based on pyromellitic dianhydride is synthesized and evaluated for potential application at 371 C. Several three-and four-ring benzenoid diamine systems containing oxygen bridging groups are investigated. Thermomechanical analysis of neat resin specimens indicate that the polyimide prepared from the dimethyl ester of pyrometallitic acid (PMDE) and 2,2-bis4-(4'-aminophenoxy) phenyl]-1,1,1,3,3,3- hexafluoropropane (BDAF) is the only resin system which has a glass transition temperature (Tg) above 371 C. The Tg of the PMDE/BDAF polyimide is found to be 390 C after a postcure air at 371 C for 24 hr. Unidirectional composites are fabricated from the PMDE/BDAF system and unsized Celion 6000 graphite fibers. Final cure temperatures in the range of 371 to 427 C with an applied pressure of 10.34 to 13.78 MPa are investigated. The void content of the composites ranges from 4.6 to 8.6 percent. Composites cured at 399 C under a pressure of 10.34 MPa and postcured in air at 371 C for 24 hr exhibit the highest 371 C interlaminar shear strength (ILSS, 40.7 MPa) and flexural strength (758 MPa). The thermo-oxidative stability of the composites is determined by subjecting specimens to isothermal exposure at 371 C in air at atmospheric pressure, as well as a pressure of 0.52 MPa. Specimens exposed at atmospheric pressure exhibit a weight loss of 12 percent after 200 hr of exposure and 88 percent retention of its original 371 C ILSS. In contrast, the specimens exposed at 0.52 MPa pressure exhibit a comparable weight loss after only 72 hr, and a 71 percent retention of its original 371 C ILSS.

  15. Structural stability of methane hydrate at high pressures

    USGS Publications Warehouse

    Shu, J.; Chen, X.; Chou, I-Ming; Yang, W.; Hu, Jiawen; Hemley, R.J.; Mao, Ho-kwang

    2011-01-01

    The structural stability of methane hydrate under pressure at room temperature was examined by both in-situ single-crystal and powder X-ray diffraction techniques on samples with structure types I, II, and H in diamond-anvil cells. The diffraction data for types II (sII) and H (sH) were refined to the known structures with space groups Fd3m and P63/mmc, respectively. Upon compression, sI methane hydrate transforms to the sII phase at 120 MPa, and then to the sH phase at 600 MPa. The sII methane hydrate was found to coexist locally with sI phase up to 500 MPa and with sH phase up to 600 MPa. The pure sH structure was found to be stable between 600 and 900 MPa. Methane hydrate decomposes at pressures above 3 GPa to form methane with the orientationally disordered Fm3m structure and ice VII (Pn3m). The results highlight the role of guest (CH4)-host (H2O) interactions in the stabilization of the hydrate structures under pressure.

  16. High pressure processing alters water distribution enabling the production of reduced-fat and reduced-salt pork sausages.

    PubMed

    Yang, Huijuan; Han, Minyi; Bai, Yun; Han, Yanqing; Xu, Xinglian; Zhou, Guanghong

    2015-04-01

    High pressure processing (HPP) was used to explore novel methods for modifying the textural properties of pork sausages with reduced-salt, reduced-fat and no fat replacement additions. A 2×7 factorial design was set up, incorporating two pressure levels (0.1 or 200 MPa) and seven fat levels (0, 5, 10, 15, 20, 25 and 30%). Sausages treated at 200 MPa exhibited improved tenderness at all fat levels compared with 0.1 MPa treated samples, and the shear force of sausages treated at 200 MPa with 15 or 20% fat content was similar to the 0.1 MPa treated sausages with 30% fat. HPP significantly changed the P₂ peak ratio of the four water components in raw sausages, resulting in improved textural properties of emulsion-type sausages with reduced-fat and reduced-salt. Significant correlations were found between pH, color, shear force and water proportions. The scanning and transmission micrographs revealed the formation of smaller fat globules and an improved network structure in the pressure treated sausages. In conclusion, there is potential to manufacture sausages with reduced-fat and reduced-salt by using HPP to maintain textural qualities. Copyright © 2014. Published by Elsevier Ltd.

  17. Effects of high-pressure extruding pretreatment on MSW upgrading and hydrolysis enhancement.

    PubMed

    Xu, Shuang; Kong, Xin; Liu, Jianguo; Zhao, Ke; Zhao, Guangqi; Bahdolla, Amanjol

    2016-12-01

    High-pressure extruding (HPE) is an efficient technology used to separate municipal solid waste (MSW) into wet (biodegradable) and dry (combustible) fractions. Effects of pressure, 10, 20, 30, and 40MPa on quality upgrading of the MSW and hydrolysis of the wet fraction were examined. TS of the dry fraction increased from 48.5% to 59.4% when the extruding pressure increased from 10 to 40MPa, meanwhile the biochemical methane potential (BMP) of the wet fraction extruded under 40MPa was 674mL CH 4 /g·VS, 33% higher than that of the organic fraction of the MSW (OFMSW) control. Furthermore, in the initial stage of hydrolysis experiment, the extruded wet fractions had lower pH and higher COD, volatile fatty acids (VFAs) and COD/VFA than those of the OFMSW control. The results confirmed that HPE upgraded the MSW and enhanced hydrolysis of the wet fractions. However, high extruding pressure as 40MPa aggravated the excessive acidification of the wet fractions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Whey-grape juice drink processed by supercritical carbon dioxide technology: Physicochemical characteristics, bioactive compounds and volatile profile.

    PubMed

    Amaral, Gabriela V; Silva, Eric Keven; Cavalcanti, Rodrigo N; Martins, Carolina P C; Andrade, Luiz Guilherme Z S; Moraes, Jeremias; Alvarenga, Verônica O; Guimarães, Jonas T; Esmerino, Erick A; Freitas, Mônica Q; Silva, Márcia C; Raices, Renata S L; Sant' Ana, Anderson S; Meireles, M Angela A; Cruz, Adriano G

    2018-01-15

    The effect of supercritical carbon dioxide technology (SCCD, 14, 16, and 18MPa at 35±2°C for 10min) on whey-grape juice drink characteristics was investigated. Physicochemical characterization (pH, titratable acidity, total soluble solids), bioactive compounds (phenolic compounds, anthocyanin, DPPH and ACE activity) and the volatile compounds were performed. Absence of differences were found among treatments for pH, titratable acidity, soluble solids, total anthocyanin and DPPH activity (p-value>0.05). A direct relationship between SCCD pressure and ACE inhibitory activity was observed, with 34.63, 38.75, and 44.31% (14, 16, and 18MPa, respectively). Regards the volatile compounds, it was noted few differences except by the presence of ketones. The findings confirm the SCCD processing as a potential promising technology to the conventional thermal treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. One-Dimensional Analysis of a Liquid Jet in a Regenerative Liquid Propellant Gun

    DTIC Science & Technology

    1990-04-01

    1.400 MOLECULAR WEIGHT(GM/GMOL) 28.960 PROPERTIES OF PROJECTILE 42 MASS(GM) 97.300 LOCATION OF BASE WITH RESPECT TO TUBE ENTRANCE(CM) 0.000 TRAVEL...MPA) 1206.500 DERIVATIVE OF MODULUS W.R.T PRESSURE(-) 2.500 CHEMICAL ENERGY(J/GM) 3240.807 RATIO OF SPECIFIC HEATS OF PRODUCTS(-) 1.267 MOLECULAR ...0.147100 EMISIVITY FACTOR (-) 1.00000 HEAT LOSS MULTIPLIER FACTOR (-) 1.00000 TOTAL PROPELLANT WEIGHT (GM) 117.2470 TOTAL CHEMICAL ENERGY (KJ) 379.9750

  20. Calcium Sensitive Fluorescent Dyes Fluo-4 and Fura Red under Pressure: Behaviour of Fluorescence and Buffer Properties under Hydrostatic Pressures up to 200 MPa.

    PubMed

    Schneidereit, D; Vass, H; Reischl, B; Allen, R J; Friedrich, O

    2016-01-01

    The fluorescent Ca2+ sensitive dyes Fura Red (ratiometric) and Fluo-4 (non-ratiometric) are widely utilized for the optical assessment of Ca2+ fluctuations in vitro as well as in situ. The fluorescent behavior of these dyes is strongly depends on temperature, pH, ionic strength and pressure. It is crucial to understand the response of these dyes to pressure when applying calcium imaging technologies in the field of high pressure bioscience. Therefore, we use an optically accessible pressure vessel to pressurize physiological Ca2+-buffered solutions at different fixed concentrations of free Ca2+ (1 nM to 25.6 μM) and a specified dye concentration (12 μM) to pressures of 200 MPa, and record dye fluorescence intensity. Our results show that Fluo-4 fluorescence intensity is reduced by 31% per 100 MPa, the intensity of Fura Red is reduced by 10% per 100 MPa. The mean reaction volume for the dissociation of calcium from the dye molecules [Formula: see text] is determined to -17.8 ml mol-1 for Fluo-4 and -21.3 ml mol-1 for Fura Red. Additionally, a model is presented that is used to correct for pressure-dependent changes in pH and binding affinity of Ca2+ to EGTA, as well as to determine the influence of these changes on dye fluorescence.

  1. [Effects of dynamic high-pressure microfluidization on the structure of waxy rice starch].

    PubMed

    Tu, Zong-Cai; Zhu, Xiu-Mei; Chen, Gang; Wang, Hui; Zhang, Bo; Huang, Xiao-Qin; Li, Zhi

    2010-03-01

    The effects of dynamic ultra high-pressure microfluidization on the structure of waxy rice starch solutions (6%) were analyzed using SEM, UV-Vis spectra, polarized light microscopy, and X-ray diffraction spectra. The results showed that: SEM graphs demonstrated that the crystal structure of waxy rice starch under different pressure treatment was destroyed with different degrees and impacted into flake up to 160 MPa; from the ultraviolet-visible spectrum we know the reduction in the blue iodine value and the decrease in the amylopectin content, which illustrated that the structure of waxy rice starch was fractured; polarized microscopic images showed that the polarization crosses of starch molecules became misty with the pressure increasing, and most of starch molecules lost polarization cross when the pressure reached 160 MPa; X-ray diffraction spectra indicated that relative crystallinity began to decline at 120 MPa with pressure treatment, and the decreased amplitude was slightly lower.

  2. Cyclic loading of simulated fault gouge to large strains

    NASA Astrophysics Data System (ADS)

    Jones, Lucile M.

    1980-04-01

    As part of a study of the mechanics of simulated fault gouge, deformation of Kayenta Sandstone (24% initial porosity) was observed in triaxial stress tests through several stress cycles. Between 50- and 300-MPa effective pressure the specimens deformed stably without stress drops and with deformation occurring throughout the sample. At 400-MPa effective pressure the specimens underwent strain softening with the deformation occurring along one plane. However, the difference in behavior seems to be due to the density variation at different pressures rather than to the difference in pressure. After peak stress was reached in each cycle, the samples dilated such that the volumetric strain and the linear strain maintained a constant ratio (approximately 0.1) at all pressures. The behavior was independent of the number of stress cycles to linear strains up to 90% and was in general agreement with laws of soil behavior derived from experiments conducted at low pressure (below 5 MPa).

  3. Investigation on the suitable pressure for the preservation of astrocyte

    NASA Astrophysics Data System (ADS)

    Sotome, S.; Nakajima, K.; Yoshimura, Y.; Shimizu, A.

    2010-03-01

    The effects of pressure on the survival rate of astrocytes in growth medium (DMEM) were investigated at room temperature and at 4°C, in an effort to establish the best conditions for the preservation. Survival rate at 4°C was found to be higher than that at room temperature. The survival rate of astrocytes preserved for 4 days at 4°C increased with increasing pressure up to 1.6 MPa, but decreased with increasing pressure above 1.6 MPa. At 10 MPa, all astrocytes died. The survival rate of cultured astrocytes decreased significantly following pressurization for 2 hours and the subsequent preservation for 2 days at atmospheric pressure. Therefore, it is necessary to maintain pressure when preserving astrocytes. These results indicate that the cells can be stored at 4°C under pressurization without freezing and without adding cryoprotective agents. Moreover, it may be possible to use this procedure as a new preservation method when cryopreservation is impractical.

  4. Strain partitioning and deformation mode analysis of the normal faults at Red Mountain, Birmingham, Alabama

    NASA Astrophysics Data System (ADS)

    Wu, Schuman

    1989-12-01

    In a low-temperature environment, the thin-section scale rock-deformation mode is primarily a function of confining pressure and total strain at geological strain rates. A deformation mode diagram is constructed from published experimental data by plotting the deformation mode on a graph of total strain versus the confining pressure. Four deformation modes are shown on the diagram: extensional fracturing, mesoscopic faulting, incipient faulting, and uniform flow. By determining the total strain and the deformation mode of a naturally deformed sample, the confining pressure and hence the depth at which the rock was deformed can be evaluated. The method is applied to normal faults exposed on the gently dipping southeast limb of the Birmingham anticlinorium in the Red Mountain expressway cut in Birmingham, Alabama. Samples of the Ordovician Chickamauga Limestone within and adjacent to the faults contain brittle structures, including mesoscopic faults and veins, and ductile deformation features including calcite twins, intergranular and transgranular pressure solution, and deformed burrows. During compaction, a vertical shortening of about 45 to 80% in shale is indicated by deformed burrows and relative compaction of shale to burrows, about 6% in limestone by stylolites. The normal faults formed after the Ordovician rocks were consolidated because the faults and associated veins truncate the deformed burrows and stylolites, which truncate the calcite cement. A total strain of 2.0% was caused by mesoscopic faults during normal faulting. A later homogenous deformation, indicated by the calcite twins in veins, cement and fossil fragments, has its major principal shortening strain in the dip direction at a low angle (about 22°) to bedding. The strain magnitude is about 2.6%. By locating the observed data on the deformation mode diagram, it is found that the normal faulting characterized by brittle deformation occurred under low confining pressure (< 18 MPa) at shallow depth (< 800 m), and the homogenous horizontal compression characterized by uniform flow occurred under higher confining pressure (at least 60 MPa) at greater depth (> 2.5 km).

  5. Effect of high pressure treatment on the characteristics of a model emulsion

    NASA Astrophysics Data System (ADS)

    Denavaut, Maxence; Verret, Catherine; El Moueffak, Abdelhamid; Largeteau, Alain; Quéveau, Delphine; de Lamballerie, Marie

    2014-10-01

    The aim of this study was to investigate the use of HP (high pressure) technology as a possible alternative method for decontamination of non-food medium. HP (500 MPa) did not modify significantly the physicochemical characteristics of a model non-food emulsion. A 10 min HP treatment inactivated totally Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Aspergillus niger and Candida albicans even if all the five microorganisms were inoculated together, regardless of the initial load. No recovery was observed until six months of storage at 25°C.

  6. Methane, Ethane, And Ethylene Laminar Counterflow Diffusion Flames At Elevated Pressures: Experimental And Computational Investigations Up To 2.0MPa

    DTIC Science & Technology

    2013-08-27

    surrounded by annular shrouds that provide an inert curtain flow to minimize the influence of ambient gas on the reaction zone. The products of combustion...thermo- couple was mounted on an XY-stage that is controlled by stepper motors inside the pressure chamber. The probe is programmed to move vertically at...covering a total traverse dis- tance of 7 mm. The probe then approaches the flame from the top in a similar manner. This method was used to rule out

  7. Regulation of gene expression in intervertebral disc cells by low and high hydrostatic pressure.

    PubMed

    Neidlinger-Wilke, Cornelia; Würtz, Karin; Urban, Jill P G; Börm, Wolfgang; Arand, Markus; Ignatius, Anita; Wilke, Hans-Joachim; Claes, Lutz E

    2006-08-01

    Intervertebral disc structures are exposed to wide ranges of intradiscal hydrostatic pressure during different loading exercises and are at their minimum during lying or relaxed sitting and at maximum during lifting weights with a round back. We hypothesize that these different loading magnitudes influence the intervertebral disc (IVD) by alteration of disc matrix turnover depending on their magnitudes. Therefore the aim of this study was to assess changes in gene expression of human nucleus cells after the application of low hydrostatic pressure (0.25 MPa) and high hydrostatic pressure (2.5 MPa). IVD cells isolated from the nucleus of human (n = 18) and bovine (n = 24 from four animals) disc biopsies were seeded into three-dimensional collagen type-I matrices and exposed to the different loading magnitudes by specially developed pressure chambers. The lower pressure range (0.25 MPa, 30 min, 0.1 Hz) was applied with a recently published device by using an external compression cylinder. For the application of higher loads (2.5 MPa, 30 min, 0.1 Hz) the cell-loaded collagen gels were sealed into sterile bags with culture medium and stimulated in a newly developed water-filled compression cylinder by using a loading frame. These methods allowed the comparison of loading regimes in a wide physiological range under an equal three-dimensional culture conditions. Cells were harvested 24 h after the end of stimulation and changes in the expression of genes known to influence IVD matrix turnover (collagen-I, collagen-II, aggrecan, MMP1, MMP2, MMP3, MMP13) were analyzed by real-time RT-PCR. A Wilcoxon signed-rank test(1) and a Wilcoxon 2-sample test(2) were performed to detect differences between the stimulated and control samples(1) and differences between low and high hydrostatic pressure(2). Multiple testing was considered by adjusting the p value appropriately. Both regimes of hydrostatic pressure influenced gene expression in nucleus cells with opposite tendencies for the matrix forming proteins aggrecan and collagen type-I in response to the two different pressure magnitudes: Low hydrostatic-pressure (0.25 MPa) tended to increase collagen-I and aggrecan expression of human nucleus cells (P < 0.05) but only to a small degree. High hydrostatic pressure (2.5 MPa) tended to decrease gene expression of all anabolic proteins with significant effects on aggrecan expression of nucleus cells (P = 0.004). Low hydrostatic pressure had no influence on the expression of matrix metalloproteinases (MMP1, MMP2, MMP3 and MMP13). In contrast, high hydrostatic pressure tended to increase the expression of MMP1, MMP3 and MMP13 of human nucleus cells with high individual-individual variations. The decreased expression of aggrecan (P = 0.008) and collagen type II (P = 0.023) and the increased MMP3 expression (P = 0.008) in response to high hydrostatic pressure could be confirmed in additional experiments with bovine nucleus cells. These results suggest that hydrostatic pressure as one of the physiological stimuli of the IVD may influence matrix turnover in a magnitude dependent way. Low hydrostatic pressure (0.25 MPa) has quite small influences with a tendency to anabolic effects, whereas high hydrostatic pressure (2.5 MPa) tends to decrease the matrix protein expression with a tendency to increase some matrix-turnover enzymes. Therefore, hydrostatic pressure may regulate disc matrix turnover in a dose-dependent way.

  8. Influence of high-pressure processing on the profile of polyglutamyl 5-methyltetrahydrofolate in selected vegetables.

    PubMed

    Wang, Chao; Riedl, Ken M; Somerville, Jeremy; Balasubramaniam, V M; Schwartz, Steven J

    2011-08-24

    In plants, folate occurs predominantly as 5-methyltetrahydrofolate (5MTHF) polyglutamyl forms. Differences in stability and bioavailability of food folate compared to synthetic folic acid have been attributed to the presence of the polyglutamyl chain. High-pressure processing (HPP) was tested for whether it might shorten polyglutamyl chains of 5MTHF species in fresh vegetables by enabling action of native γ-glutamylhydrolase (GGH). A validated ultrahigh-performance reversed-phase liquid chromatography-tandem mass spectrometry method using stable isotope as internal standard was applied for characterizing 5MTHF polyglutamyl profiles. HPP conditions included 300, 450, and 600 MPa at 30 °C for 0 or 5 min, and vegetables were vacuum-packed before treatment. Investigated vegetables included cauliflower (Brassica oleracea), baby carrots (Daucus carota), and carrot greens (D. carota). HPP treatment caused conversion of polyglutamyl 5MTHF species to short-chain and monoglutamyl forms. Maximal conversion of polyglutamyl folate to monoglutamyl folate occurred at the highest pressure/time combination investigated, 600 MPa/30 °C/5 min. Under this condition, cauliflower monoglutamyl folate increased nearly 4-fold, diglutamyl folate 32-fold, and triglutamyl folate 8-fold; carrot monoglutamyl increased 23-fold and diglutamyl 32-fold; and carrot greens monoglutamyl increased 2.5-fold and the diglutamyl form 19-fold. Although some folate degradation was observed at certain intermediate HPP conditions, total 5MTHF folate was largely preserved at 600 MPa/5 min. Thus, HPP of raw vegetables is a feasible strategy for enhancing vegetable monoglutamate 5MTHF.

  9. Influence of High-Pressure Processing on the Profile of Polyglutamyl 5-Methyltetrahydrofolate in Selected Vegetables

    PubMed Central

    Wang, Chao; Riedl, Ken M.; Somerville, Jeremy; Balasubramaniam, V. M.; Schwartz, Steven J.

    2013-01-01

    In plants, folate occurs predominantly as 5-methyltetrahydrofolate (5MTHF) polyglutamyl forms. Differences in stability and bioavailability of food folate compared to synthetic folic acid have been attributed to the presence of the polyglutamyl chain. High-pressure processing (HPP) was tested for whether it might shorten polyglutamyl chains of 5MTHF species in fresh vegetables by enabling action of native γ-glutamylhydrolase (GGH). A validated ultrahigh-performance reversed-phase liquid chromatography–tandem mass spectrometry method using stable isotope as internal standard was applied for characterizing 5MTHF polyglutamyl profiles. HPP conditions included 300, 450, and 600 MPa at 30 °C for 0 or 5 min, and vegetables were vacuum-packed before treatment. Investigated vegetables included cauliflower (Brassica oleracea), baby carrots (Daucus carota), and carrot greens (D. carota). HPP treatment caused conversion of polyglutamyl 5MTHF species to short-chain and monoglutamyl forms. Maximal conversion of polyglutamyl folate to monoglutamyl folate occurred at the highest pressure/time combination investigated, 600 MPa/30 °C/5 min. Under this condition, cauliflower monoglutamyl folate increased nearly 4-fold, diglutamyl folate 32-fold, and triglutamyl folate 8-fold; carrot monoglutamyl increased 23-fold and diglutamyl 32-fold; and carrot greens monoglutamyl increased 2.5-fold and the diglutamyl form 19-fold. Although some folate degradation was observed at certain intermediate HPP conditions, total 5MTHF folate was largely preserved at 600 MPa/5 min. Thus, HPP of raw vegetables is a feasible strategy for enhancing vegetable monoglutamate 5MTHF. PMID:21770413

  10. Effects of hydrogen fugacity and confining pressure on the interdiffusion rate of NaSi-CaAl in plagioclase

    NASA Astrophysics Data System (ADS)

    Yund, Richard A.; Snow, Eleanour

    1989-08-01

    Average? values for NaSi-CaAl interdiffusion in the compositional interval from An0 to An26 have been determined at 1000°C by the method of lamellar homogenization. At 1500 MPa confining pressure (P), ? increases 1 order of magnitude (5.0×10-21 to 4.0×10-20 m2/s) for 4 orders of magnitude increase in hydrogen fugacity (0.029, Mn3O4-Mn2O3 buffer, to 197 MPa, FeO-Fe3O4 buffer). At constant hydrogen fugacity (fH2), ? increases rapidly at low pressure and becomes nearly independent of P above 1000 MPa. (For fH2 = 0.1 MPa, ? = 2.8 × 10-22 m2/s at P = 0.1 MPa, 5.0 × 10-21 at P = 500, 1.3×10-20 at P = 1000, and 1.4×10-20 at P = 1500). The dependence of ? on increasing pressure, when a hydrogen-related species is present, is believed to be due to an increase in the concentration of the structural defect associated with increase in the hydrogen impurity. In most crustal igneous rocks, which are internally buffered near quartz-fayalite-magnetite, the dependence of ? on fH2 is relatively minor compared to the effect of confining pressure.

  11. Evolution of Mechanical Properties and Microstructures in the Inner Accretionary Prism of the Nankai Subduction Zone

    NASA Astrophysics Data System (ADS)

    Kuo, S. T.; Kitamura, M.; Kitajima, H.

    2016-12-01

    Mechanical properties and microstructural characteristics of accretionary prism sediments can provide detailed deformation history and processes in subduction zones. The IODP Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) Expedition 348 has extended the deep riser hole down to 3058.5 meters below sea floor (mbsf) to the inner accretionary wedge at Site C0002 located 35 km landward from the trench. Here, we conducted deformation experiments on the core samples recovered from 2185 msbf at Site C0002 to understand mechanical behaviors and deformation of inner prism sediments. We deformed the siltstone samples with a porosity of 20% at 25°C or 60°C under isotropic loading path (S1=S2=S3) and triaxial compression (S1>S2=S3). In the isotropic loading test, we step-wisely increased confining pressure (Pc) from 11.5 to 194 MPa and kept pore pressure (Pp) at 10 MPa. In a series of triaxial compression loading tests, we first increased Pc to the targeting 42-78 MPa and Pp to 20 MPa, and then applied the differential load at a constant displacement rate of 0.005 μm/s while keeping Pc and Pp constant. We will analyze the microstructures of the experimentally deformed samples to understand deformation mechanism. We define yield points based on slope changes in relationships between volumetric strain and effective mean stress (p') for isotropic loading and those between differential stress (q) and axial strain for triaxial loading. The sample yields at p' of 100 MPa (q = 0 MPa) in isotropic loading test. In triaxial loading, the samples at effective pressure (Pe) of 22, 28, and 58 MPa yield at q = 30 MPa (p' = 32 MPa), q = 30 MPa (p' = 38 MPa) and q = 45 MPa (p' = 73 MPa), respectively. Upon yield, the samples deformed at Pe of 22 MPa and 28 MPa show brittle behavior with a peak q of 50 MPa and 55 MPa followed by strain weakening to reach q of 36 and 46 MPa at steady state. Both samples show single fracture planes with angles of 30° to S1. On the other hand, the sample at Pe of 58 MPa shows strain hardening after the yield and exhibits barreling. In triaxial loading experiments, all samples show an increase in volumetric strain with increasing Pe. Our experiment results at different Pe are consistent with a critical state soil mechanics theory. We will further correlate the microstructural features of the deformed samples with the mechanical data.

  12. Inactivation of Anisakis simplex L3 in the flesh of white spotted conger (Conger myriaster) by high hydrostatic pressure and its effect on quality.

    PubMed

    Lee, Ki-Hoon; Park, Shin Young; Ha, Sang-Do

    2016-06-01

    Koreans consume much seafood; the country is surrounded on the east, west and south by the sea. Koreans have eaten raw sashimi for a long time. However, a concern in the raw sea food industry is that the parasitic nematode Anisakis simplex L3 occurs naturally in marine fish. Thus, the fishery industry needs a non-thermal processing method. High hydrostatic pressure (HPP) has been demonstrated to be effective. White spotted conger flesh containing 20 live larvae was exposed to different pressures (150 and 200 MPa for 1 and 5 min; 250 and 300 MPa each for 1 min). The viability of A. simplex L3 was significantly (p < 0.05) reduced in the flesh of white spotted conger by the stepwise increase of high pressure and time. The conditions required to eliminate A. simplex L3 were as follows: 200 MPa for 5 min or 300 MPa for 1 min. The flesh of the white spotted conger treated at 300 MPa for 1 min was whiter and yellower than untreated controls or that treated at 200 MPa for 5 min. No significant changes (p > 0.05) in any of the Hunter colour ('L', 'a' and 'b') values were found after HPP at 200 MPa for 5 min. The fresh treated at 300 MPa for 1 min scored < 4.0 (the defect limit of quality) of flavour, texture and overall acceptability in untrained sensory evaluation using a seven-point hedonic scale. However, the flesh treated at 200 MPa for 5 min scored > 5.0 ('like') for all sensory parameters. This study suggested that HPP at 200 MPa for 5 min could potentially be used for the inactivation of A. simplex L3 in raw fishery food products without any concomitant changes in their colour or sensory qualities.

  13. Characteristics of low-and high-fat beef patties: effect of high hydrostatic pressure.

    PubMed

    Carballo, J; Fernandez, P; Carrascosa, A V; Solas, M T; Colmenero, F J

    1997-01-01

    The purpose of this study was to analyze the consequences of applying high pressures (100 and 300 MPa for 5 or 20 min) on characteristics such as water- and fat-binding properties, texture, color, microstructure, and microbiology of low-fat (9.2%) and high-fat (20.3%) beef patties. In nonpressurized patties, the low-fat product exhibited significantly poorer (P < 0.05) binding properties and higher (P < 0.05) Kramer shear force and Kramer energy than did high-fat patties. Although high pressure did not clearly influence the binding properties of low- and high-fat beef patties, it did produce a rise in the Kramer shear force and energy which were more pronounced at 300 MPa. High pressures altered patty color, the extent of alteration depending on fat content, pressure, and pressurizing time. Pressurizing high- and low-fat beef patties at 300 MPa not only produced a lethal effect (P < 0.05) on microorganisms, but caused sublethal damage as well.

  14. [Experimental study of Raman spectra of magnesite at 297 K and at the pressure of 0.13-1 GPa].

    PubMed

    Wang, Yu; Zheng, Hai-fei

    2005-09-01

    The experimental study of Raman spectra of magnesite has been conducted at the pressure of 967 MPa and at the temperatureof 297 K using a cubic zirconia-anvil cell. The result shows that neither phase transition nor organic substances were observed during compression, and the Raman peak of magnesite shifted to higher frequency with increasing pressure. The relation between the pressure and the Raman peak position of magnesite (1094 cm(-1)) was obtained as follows: v (cm(-1)) = 0.007 44 x P(MPa) + 1 093.3. The value of dv/dP of magnesite is greater than the previous data obtained by Gillet, which was mostly taken under the mantle pressure. And at the ambient temperature, magnesite can be used as a pressure gauge, and the relation between the pressure and Raman shift of 1 094 cm(-1) peak position is given as following: P(MPa) = 125.8 x (deltavp) 1094 + 124.7 (1094 cm(-1) < vp < 1101 cm(-1)).

  15. High-pressure processing of a raw milk cheese improved its food safety maintaining the sensory quality.

    PubMed

    Delgado, Francisco José; Delgado, Jonathan; González-Crespo, José; Cava, Ramón; Ramírez, Rosario

    2013-12-01

    The effect of high-pressure treatment (400 or 600 MPa for 7 min) on microbiology, proteolysis, texture and sensory parameters was investigated in a mature raw goat milk cheese. At day 60 of analysis, Mesophilic aerobic, Enterobacteriaceae, lactic acid bacteria and Listeria spp. were inactivated after high-pressure treatment at 400 or 600 MPa. At day 90, mesophilic aerobic, lactic acid bacteria and Micrococacceae counts were significantly lower in high-pressure-treated cheeses than in control ones. In general, nitrogen fractions were significantly modified after high-pressure treatment on day 60 at 600 MPa compared with control cheeses, but this effect was not found in cheeses after 30 days of storage (day 90). On the other hand, high-pressure treatment caused a significant increase of some texture parameters. However, sensory analysis showed that neither trained panellists nor consumers found significant differences between control and high-pressure-treated cheeses.

  16. Pressure in isochoric systems containing aqueous solutions at subzero Centigrade temperatures.

    PubMed

    Ukpai, Gideon; Năstase, Gabriel; Șerban, Alexandru; Rubinsky, Boris

    2017-01-01

    Preservation of biological materials at subzero Centigrade temperatures, cryopreservation, is important for the field of tissue engineering and organ transplantation. Our group is studying the use of isochoric (constant volume) systems of aqueous solution for cryopreservation. Previous studies measured the pressure-temperature relations in aqueous isochoric systems in the temperature range from 0°C to - 20°C. The goal of this study is to expand the pressure-temperature measurement beyond the range reported in previous publications. To expand the pressure-temperature measurements beyond the previous range, we have developed a new isochoric device capable of withstanding liquid nitrogen temperatures and pressures of up to 413 MPa. The device is instrumented with a pressure transducer than can monitor and record the pressures in the isochoric chamber in real time. Measurements were made in a temperature range from - 5°C to liquid nitrogen temperatures for various solutions of pure water and Me2SO (a chemical additive used for protection of biological materials in a frozen state and for vitrification (glass formation) of biological matter). Undissolved gaseous are is carefully removed from the system. Temperature-pressure data from - 5°C to liquid nitrogen temperature for pure water and other solutions are presented in this study. Following are examples of some, temperature-pressure values, that were measured in an isochoric system containing pure water: (- 20°C, 187 MPa); (-25°C, 216 MPa); (- 30°C, 242.3 MPa); (-180°C, 124 MPa). The data is consistent with the literature, which reports that the pressure and temperature at the triple point, between ice I, ice III and water is, - 21.993°C and 209.9 MPa, respectively. It was surprising to find that the pressure in the isochoric system increases at temperatures below the triple point and remains high to liquid nitrogen temperatures. Measurements of pressure-temperature relations in solutions of pure water and Me2SO in different concentrations show that, for concentrations in which vitrification is predicted, no increase in pressure was measured during rapid cooling to liquid nitrogen temperatures. However, ice formation either during cooling or warming to and from liquid nitrogen temperatures produced an increase in pressure. The data obtained in this study can be used to aid in the design of isochoric cryopreservation protocols. The results suggest that the pressure measurement is important in the design of "constant volume" systems and can provide a simple means to gain information on the occurrence of vitrification and devitrification during cryopreservation processes of aqueous solutions in an isochoric system.

  17. Stevia rebaudiana Bertoni as a natural antioxidant/antimicrobial for high pressure processed fruit extract: processing parameter optimization.

    PubMed

    Barba, Francisco José; Criado, María Nieves; Belda-Galbis, Clara Miracle; Esteve, María José; Rodrigo, Dolores

    2014-04-01

    Response surface methodology was used to evaluate the optimal high pressure processing treatment (300-500 MPa, 5-15 min) combined with Stevia rebaudiana (Stevia) addition (0-2.5% (w/v)) to guarantee food safety while maintaining maximum retention of nutritional properties. A fruit extract matrix was selected and Listeria monocytogenes inactivation was followed from the food safety point of view while polyphenoloxidase (PPO) and peroxidase (POD) activities, total phenolic content (TPC) and antioxidant capacity (TEAC and ORAC) were studied from the food quality point of view. A combination of treatments achieved higher levels of inactivation of L. monocytogenes and of the oxidative enzymes, succeeding in completely inactivating POD and also increasing the levels of TPC, TEAC and ORAC. A treatment of 453 MPa for 5 min with a 2.5% (w/v) of Stevia succeeded in inactivating over 5 log cycles of L. monocytogenes and maximizing inactivation of PPO and POD, with the greatest retention of bioactive components. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. A possible molecular mechanism for the pressure reversal of general anaesthetics: Aggregation of halothane in POPC bilayers at high pressure

    NASA Astrophysics Data System (ADS)

    Tu, K. M.; Matubayasi, N.; Liang, K. K.; Todorov, I. T.; Chan, S. L.; Chau, P.-L.

    2012-08-01

    We placed halothane, a general anaesthetic, inside palmitoyloleoylphosphatidylcholine (POPC) bilayers and performed molecular dynamics simulations at atmospheric and raised pressures. We demonstrated that halothane aggregated inside POPC membranes at 20 MPa but not at 40 MPa. The pressure range of aggregation matches that of pressure reversal in whole animals, and strongly suggests that this could be the mechanism for this effect. Combining these results with previous experimental data, we describe a testable hypothesis of how aggregation of general anaesthetics at high pressure can lead to pressure reversal, the effect whereby these drugs lose the efficacy at high pressure.

  19. Calcium Sensitive Fluorescent Dyes Fluo-4 and Fura Red under Pressure: Behaviour of Fluorescence and Buffer Properties under Hydrostatic Pressures up to 200 MPa

    PubMed Central

    Vass, H.; Reischl, B.; Allen, R. J.; Friedrich, O.

    2016-01-01

    The fluorescent Ca2+ sensitive dyes Fura Red (ratiometric) and Fluo-4 (non-ratiometric) are widely utilized for the optical assessment of Ca2+ fluctuations in vitro as well as in situ. The fluorescent behavior of these dyes is strongly depends on temperature, pH, ionic strength and pressure. It is crucial to understand the response of these dyes to pressure when applying calcium imaging technologies in the field of high pressure bioscience. Therefore, we use an optically accessible pressure vessel to pressurize physiological Ca2+-buffered solutions at different fixed concentrations of free Ca2+ (1 nM to 25.6 μM) and a specified dye concentration (12 μM) to pressures of 200 MPa, and record dye fluorescence intensity. Our results show that Fluo-4 fluorescence intensity is reduced by 31% per 100 MPa, the intensity of Fura Red is reduced by 10% per 100 MPa. The mean reaction volume for the dissociation of calcium from the dye molecules Δdv¯ is determined to -17.8 ml mol-1 for Fluo-4 and -21.3 ml mol-1 for Fura Red. Additionally, a model is presented that is used to correct for pressure-dependent changes in pH and binding affinity of Ca2+ to EGTA, as well as to determine the influence of these changes on dye fluorescence. PMID:27764134

  20. Oxygen diffusion in zircon

    NASA Astrophysics Data System (ADS)

    Watson, E. B.; Cherniak, D. J.

    1997-05-01

    Oxygen diffusion in natural, non-metamict zircon was characterized under both dry and water-present conditions at temperatures ranging from 765°C to 1500°C. Dry experiments were performed at atmospheric pressure by encapsulating polished zircon samples with a fine powder of 18O-enriched quartz and annealing the sealed capsules in air. Hydrothermal runs were conducted in cold-seal pressure vessels (7-70 MPa) or a piston cylinder apparatus (400-1000 MPa) on zircon samples encapsulated with both 18O-enriched quartz and 18O water. Diffusive-uptake profiles of 18O were measured in all samples with a particle accelerator, using the 18O(p, α) 15N reaction. For dry experimental conditions at 1100-1500°C, the resulting oxygen diffusivities (24 in all) are well described by: D dry (m 2/s) = 1.33 × 10 -4exp(-53920/T) There is no suggestion of diffusive anisotropy. Under wet conditions at 925°C, oxygen diffusion shows little or no dependence upon P H 2O in the range 7-1000 MPa, and is insensitive to total pressure as well. The results of 27 wet experiments at 767-1160°C and 7-1000 MPa can be described a single Arrhenius relationship: D wet (m 2/s) = 5.5 × 10 -12exp(-25280/T) The insensitivity of oxygen diffusion to P H 2O means that applications to geologic problems can be pursued knowing only whether the system of interest was 'wet' (i.e., P H 2O > 7MPa ) or 'dry'. Under dry conditions (presumably rare in the crust), zircons are extremely retentive of their oxygen isotopic signatures, to the extent that δ 18O would be perturbed at the center of a 200 μm zircon only during an extraordinarily hot and protracted event (e.g., 65 Ma at 900°C). Under wet conditions, δ 18O may or may not be retained in the central regions of individual crystals, cores or overgrowth rims, depending upon the specific thermal history of the system.

  1. The effect of condensation pressure on selected physical properties of mineral trioxide aggregate.

    PubMed

    Nekoofar, M H; Adusei, G; Sheykhrezae, M S; Hayes, S J; Bryant, S T; Dummer, P M H

    2007-06-01

    To examine the effect of condensation pressure on surface hardness, microstructure and compressive strength of mineral trioxide aggregate (MTA). White ProRoot MTA (Dentsply Tulsa Dental, Johnson City, TN, USA) was mixed and packed into cylindrical polycarbonate tubes. Six groups each of 10 specimens were subjected to pressures of 0.06, 0.44, 1.68, 3.22, 4.46 and 8.88 MPa respectively. The surface hardness of each specimen was measured using Vickers microhardness. Cylindrical specimens of 4 mm in diameter and 6 mm in height were prepared in polycarbonate cylindrical moulds for testing the compressive strength. Five groups of 10 specimens were prepared using pressures of 0.06, 0.44, 1.68, 3.22 or 4.46 MPa. Data were subjected to one-way anova. The microstructure was analysed using a scanning electron microscope (SEM) after sectioning specimens with a scalpel. A trend was observed for higher condensation pressures to produce lower surface hardness values. A condensation pressure of 8.88 MPa produced specimens with significantly lower values in terms of surface hardness than other groups (P<0.001). A condensation pressure of 1.68 MPa conferred the maximum compressive strength; however, it was not statistically different. Higher condensation pressures resulted in fewer voids and microchannels when analysed with SEM. In specimens prepared with lower condensation pressures distinctive crystalline structures were observed. They tended to appear around microchannels. Condensation pressure may affect the strength and hardness of MTA. Use of controlled condensation pressure in sample preparation for future studies is suggested.

  2. Pressure-Induced Phase Transitions of n-Tridecane

    NASA Astrophysics Data System (ADS)

    Yamashita, Motoi

    Pressure-induced phase transition behavior of n-tridecane from the ordered phase through the rotator phase into the liquid phase has been investigated by using Fourier transform infrared spectroscopy at 25 °C. The transition between the ordered and rotator phases has been observed in the pressure range of 270-220 MPa and the transition between the rotator and liquid phases has been observed in the pressure range of 171-112 MPa, within the experimental error of ±50 MPa. The populations of the -gtg- + -gtg'-, -gg- and gt- defects determined from the methylene wagging mode are smaller in the rotator phase than in the liquid phase and are smaller under higher pressure in both of the rotator and liquid phases. A relationship has been found between the conformation and the intensity of the 890 cm-1 band, which has been assigned as the methyl rocking mode and has been considered as insensitive to conformation.

  3. The effect of stress on limestone permeability and its effective stress behavior

    NASA Astrophysics Data System (ADS)

    Meng, F.; Baud, P.; Ge, H.; Wong, T. F.

    2017-12-01

    The evolution of permeability and its effective stress behavior is related to inelastic deformation and failure mode. This was investigated in Indiana and Purbeck limestones with porosities of 18% and 13%, respectively. Hydrostatic and triaxial compression tests were conducted at room temperature on water-saturated samples at pore pressure of 5 MPa and confining pressures up to 90 MPa. Permeability was measured using steady flow at different stages of deformation. For Indiana limestone, under hydrostatic loading pore collapse initiated at critical pressure P* 55 MPa with an accelerated reduction of permeability by 1/2. At a confinement of 35 MPa and above, shear-enhanced compaction initiated at critical stress C*, beyond which permeability reduction up to a factor of 3 was observed. At a confinement of 15 MPa and below, dilatancy initiated at critical stress C', beyond which permeability continued to decrease, with a negative correlation between porosity and permeability changes. Purbeck limestone showed similar evolution of permeability. Microstructural and mercury porosimetry data showed that pore size distribution in both Indiana and Purbeck limestones is bimodal, with significant proportions of macropores and micropores. The effective stress behaviour of a limestone with dual porosity is different from the prediction for a microscopically homogeneous assemblage, in that its effective stress coefficients for permeability and porosity change may attain values significantly >1. Indeed this was confirmed by our measurements (at confining pressures of 7-15 MPa and pore pressures of 1-3 MPa) in samples that had not been deformed inelastically. We also investigated the behavior in samples hydrostatically and triaxially compacted to beyond the critical stresses P* and C*, respectively. Experimental data for these samples consistently showed effective stress coefficients for both permeability and porosity change with values <1. Thus the effective stress behavior in an inelastically compacted sample is fundamentally different, with attributes akin to that of a microscopically homogeneous assemblage. This is likely related to compaction from pervasive collapse of macropores, which would effectively homogenize the initially bimodal pore size distribution.

  4. The effect of elevated methane pressure on methane hydrate dissociation

    USGS Publications Warehouse

    Circone, S.; Stern, L.A.; Kirby, S.H.

    2004-01-01

    Methane hydrate, equilibrated at P, T conditions within the hydrate stability field, was rapidly depressurized to 1.0 or 2.0 MPa and maintained at isobaric conditions outside its stability field, while the extent and rate of hydrate dissociation was measured at fixed, externally maintained temperatures between 250 and 288 K. The dissociation rate decreases with increasing pressure at a given temperature. Dissociation rates at 1.0 MPa parallel the complex, reproducible T-dependence previously observed between 250 and 272 K at 0.1 MPa. The lowest rates were observed near 268 K, such that >50% of the sample can persist for more than two weeks at 0.1 MPa to more than a month at 1 and 2 MPa. Varying the pressure stepwise in a single experiment increased or decreased the dissociation rate in proportion to the rates observed in the isobaric experiments, similar to the rate reversibility previously observed with stepwise changes in temperature at 0.1 MPa. At fixed P, T conditions, the rate of methane hydrate dissociation decreases monotonically with time, never achieving a steady rate. The relationship between time (t) and the extent of hydrate dissociation is empirically described by: Evolved gas (%) = A??tB where the pre-exponential term A ranges from 0 to 16% s-B and the exponent B is generally <1. Based on fits of the dissociation results to Equation 1 for the full range of temperatures (204 to 289 K) and pressures (0.1 to 2.0 MPa) investigated, the derived parameters can be used to predict the methane evolution curves for pure, porous methane hydrate to within ??5%. The effects of sample porosity and the presence of quartz sand and seawater on methane hydrate dissociation are also described using Equation 1.

  5. Pressures of Partial Crystallization of Magmas Along Transforms: Implications for Crustal Accretion

    NASA Astrophysics Data System (ADS)

    Scott, J. L.; Zerda, C.; Brown, D.; Ciaramitaro, S. C.; Barton, M.

    2016-12-01

    Plate spreading at mid-ocean ridges is responsible for the creation of most of the crust on earth. The ridge system is very complex and many questions remain unresolved. Among these is the nature of magma plumbing systems beneath transform faults. Pervious workers have suggested that increased conductive cooling along transforms promotes higher pressures of partial crystallization, and that this explains the higher partial pressures of crystallization inferred for magmas erupted along slow spreading ridges compared to magmas erupted along faster spreading ridges. To test this hypothesis, we undertook a detailed analysis of pressures of partial crystallization for magmas erupted at 3 transforms along the fast to intermediate spreading East Pacific Rise(Blanco, Clipperton, and Siqueiros) and 3 transforms along the slow spreading Mid Atlantic Ridge(Famous Transform B, Kane, and 15°20'N). Pressures of partial crystallization were calculated from the compositions of glasses (quenched liquids) lying along the P (and T) dependent olivine, plagioclase, and augite cotectic using the method described by Kelley and Barton (2008). Published analyses of mid-ocean ridge basalt glasses sampled from these transforms and surrounding ridge segments were used as input data. Samples with anomalous chemical compositions and samples that yielded pressures associated with unrealistically large uncertainties were filtered out of the database. The pressures of partial crystallization for the remaining 916 samples ranged from 0 to 520 MPa with the great majority ( 95%) of sample returning pressures of less than 300 MPa. Pressures of < 300 MPa are within error of the pressure range associated with partial crystallization within oceanic crust with a thickness of 7 km. Higher (sub-crustal) pressures (>300 MPa) are associated with a small number of samples from the Pacific segments. Except for the Blanco, pressures of partial crystallization do not increase as transforms are approached. These observations contrast with those of previous workers, who reported anomalously high pressures (up to 1000 MPa) for a large number of samples erupted near both Atlantic and Pacific Transforms. We conclude that higher rates of cooling along transform does not have a major effect on the onset of partial crystallization along the mid-ocean ridges

  6. Achieving Zero Stress in Iridium, Chromium, and Nickel Thin Films

    NASA Technical Reports Server (NTRS)

    Broadway, David M.; Weimer, Jeffrey; Gurgew, Danielle; Lis, Tomasz; Ramsey, Brian D.; O'Dell, Stephen L.; Ames, A.; Bruni, R.

    2015-01-01

    We examine a method for achieving zero intrinsic stress in thin films of iridium, chromium, and nickel deposited by magnetron sputter deposition. The examination of the stress in these materials is motivated by efforts to advance the optical performance of light-weight x-ray space telescopes into the regime of sub-arc second resolution that rely on control of the film stress to values within 10-100 MPa. A characteristic feature of the intrinsic stress behavior in chromium and nickel is their sensitivity to the magnitude and sign of the intrinsic stress with argon gas pressure, including the existence of a critical pressure that results in zero film stress. This critical pressure scales linearly with the film's density. While the effect of stress reversal with argon pressure has been previously reported by Hoffman and others for nickel and chromium, we have discovered a similar behavior for iridium. Additionally, we have identified zero stress in iridium shortly after island coalescence. This feature of film growth is used for achieving a total internal stress of -2.89 MPa for a 15.8 nm thick iridium film. The surface roughness of this low-stress film was examined using scanning probe microscopy (SPM) and x-ray reflectivity (XRR) at CuKa and these results presented and discussed.

  7. Final report on key comparison EURAMET.M.P-K13 in the range 50 MPa to 500 MPa of hydraulic gauge pressure

    NASA Astrophysics Data System (ADS)

    Kocas, I.; Sabuga, W.; Bergoglio, M.; Eltaweel, A.; Korasie, C.; Farar, P.; Setina, J.; Waller, B.; Durgut, Y.

    2015-01-01

    The regional key comparison EURAMET.M.P-K13 for pressure measurements in liquid media from 50 MPa to 500 MPa was piloted by the TÜBİTAK UME Pressure Group Laboratories, Turkey. The transfer standard was a DH-Budenberg pressure balance with a free deformation piston-cylinder unit of 2 mm2 nominal effective area. Six laboratories from the EURAMET region, namely PTB, INRIM, SMU, IMT, NPL and UME, and two laboratories from the AFRIMETS region, NIS and NMISA participated in this comparison. Participant laboratories and countries are given in the bottom of the page. PTB participated in this comparison to provide a link to corresponding 500 MPa CCM key comparison CCM.P-K13. The results of all participants excepting NMISA and NPL were found to be consistent with the reference value of the actual comparison and of CCM.P-K13 within their claimed uncertainties (k = 2), at all pressures. Compared in pairs all laboratories with exception of NPL and NMISA demonstrate their agreement with each other within the expanded uncertainties (k = 2) at all pressures. The results are therefore considered to be satisfactory. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  8. Effects of pressure and pressure cycling on disinfection of Enterococcus sp. in seawater using pressurized carbon dioxide with different content rates.

    PubMed

    Dang, Loc T T; Imai, Tsuyoshi; Le, Tuan V; Nishihara, Satoshi; Higuchi, Takaya; Nguyen, Mai K D; Kanno, Ariyo; Yamamoto, Koichi; Sekine, Masahiko

    2016-09-18

    Interest is growing in a disinfection technique for water treatment without disinfection byproducts. This study presents the result of using a liquid-film-forming apparatus at less than 1.0 MPa for disinfection of seawater. The sensitivity of Enterococcus sp. (ATCC 202155) to the pressurized carbon dioxide (CO2) was examined under various conditions of pressure cycling, pressure, working volume ratio (WVR), and CO2 content rate. The key influences on frequency and magnitude of pressure cycling in enhancing Enterococcus sp. inactivation are elucidated. The results reveal strong correlation between pressure cycling and inactivation efficiency (P-value < 0.001). The outcome of linear regression model analysis suggests that the model can explain 93%, 85%, and 89% of the inactivation efficiency of (25% CO2 + 75% N2), (50% CO2 + 50% N2), and 100% CO2, respectively. The predicted value was fit with experimental results (p-value <0.05). Under identical treatment conditions (pressure = 0.9 MPa, ΔP = 0.14 MPa, 70% WVR, and 20 ± 1°C), treatment with pressurized CO2 (100% purity) resulted in complete inactivation 5.2 log of Enterococcus sp. after 70 cycles within 20 min. The Enterococcus sp. inactivation of pressurized CO2 followed first-order reaction kinetics. The smallest D-value (largest k-value) was induced by pressurized CO2 (100% purity) at 0.9 MPa, which was obtained at 3.85 min (0.5988 min(-1), R(2) ≥ 0.95). The findings could provide an effective method for enhanced bactericidal performance of pressurized CO2, to address recently emerging problems in water disinfection.

  9. Germination and Inactivation of Alicyclobacillus acidoterrestris Spores Induced by Moderate Hydrostatic Pressure.

    PubMed

    Sokołowska, Barbara; Skapska, Sylwia; Fonberg-Broczek, Monika; Niezgoda, Jolanta; Porebska, Izabela; Dekowska, Agnieszka; Rzoska, Sylwester J

    2015-01-01

    Given the importance of spoilage caused by Alicyclobacillus acidoterrestris for the fruit juice industry, the objective of this work was to study the germination and inactivation of A. acidoterrestris spores induced by moderate hydrostatic pressure. Hydrostatic pressure treatment can induce the germination and inactivation of A. acidoterrestris spores. At low pH, spore germination of up to 3.59-3.75 log and inactivation of 1.85-2.04 log was observed in a low pressure window (200-300 MPa) applied at 50 degrees C for 20 min. Neutral pH suppressed inactivation, the number of spores inactivated at pH 7.0 was only 0.24-1.06 log. The pressurization temperature significantly affected spore germination and inactivation. The degree of germination in apple juice after pressurization for 30 min with 200 MPa at 20 degrees C was 2.04 log, with only 0.61 log of spores being inactivated, while at 70 degrees C spore germination was 5.94 log and inactivation 4.72 log. This temperature strongly stimulated germination and inactivation under higher (500 MPa) than lower (200 MPa) pressure. When the oscillatory mode was used, the degree of germination and inactivation was slightly higher than at continuous mode. The degree of germination and inactivation was inversely proportional to the soluble solids content and was lowest in concentrated apple juice.

  10. A (1)H-NMR study on the effect of high pressures on beta-lactoglobulin.

    PubMed

    Belloque, J; López-Fandiño, R; Smith, G M

    2000-09-01

    1H NMR was used to study the effect of high pressure on changes in the structure of beta-lactoglobulin (beta-Lg), particularly the strongly bonded regions, the "core". beta-Lg was exposed to pressures ranging from 100 to 400 MPa at neutral pH. After depressurization and acidification to pH 2.0, (1)H NMR spectra were taken. Pressure-induced unfolding was studied by deuterium exchange. Refolding was also evaluated. Our results showed that the core was unaltered at 100 MPa but increased its conformational flexibility at >/=200 MPa. Even though the core was highly flexible at 400 MPa, its structure was found to be identical to the native structure after equilibration back to atmospheric pressure. It is suggested that pressure-induced aggregates are formed by beta-Lg molecules maintaining most of their structure, and the intermolecular -SS- bonds, formed by -SH/-SS- exchange reaction, are likely to involve C(66)-C(160) rather than C(106)-C(119). In addition, the beta-Lg variants A and B could be distinguished in a (1)H NMR spectrum from a solution made with the AB mixed variant, by the differences in chemical shifts of M(107) and C(106); structural implications are discussed. Under pressure, the core of beta-Lg A seemed to unfold faster than that of beta-LgB. The structural recovery of the core was full for both variants.

  11. Effect of high-pressure homogenization on different matrices of food supplements.

    PubMed

    Martínez-Sánchez, Ascensión; Tarazona-Díaz, Martha Patricia; García-González, Antonio; Gómez, Perla A; Aguayo, Encarna

    2016-12-01

    There is a growing demand for food supplements containing high amounts of vitamins, phenolic compounds and mineral content that provide health benefits. Those functional compounds have different solubility properties, and the maintenance of their compounds and the guarantee of their homogenic properties need the application of novel technologies. The quality of different drinkable functional foods after thermal processing (0.1 MPa) or high-pressure homogenization under two different conditions (80 MPa, 33 ℃ and 120 MPa, 43 ℃) was studied. Physicochemical characteristics and sensory qualities were evaluated throughout the six months of accelerated storage at 40 ℃ and 75% relative humidity (RH). Aroma and color were better maintained in high-pressure homogenization-treated samples than the thermally treated ones, which contributed significantly to extending their shelf life. The small particle size obtained after high-pressure homogenization treatments caused differences in turbidity and viscosity with respect to heat-treated samples. The use of high-pressure homogenization, more specifically, 120 MPa, provided active ingredient homogeneity to ensure uniform content in functional food supplements. Although the effect of high-pressure homogenization can be affected by the food matrix, high-pressure homogenization can be implemented as an alternative to conventional heat treatments in a commercial setting within the functional food supplement or pharmaceutical industry. © The Author(s) 2016.

  12. Advanced onboard storage concepts for natural gas-fueled automotive vehicles

    NASA Technical Reports Server (NTRS)

    Remick, R. J.; Elkins, R. H.; Camara, E. H.; Bulicz, T.

    1984-01-01

    The evaluation of several advanced concepts for storing natural gas at reduced pressure is presented. The advanced concepts include adsorption on high surface area carbon, adsorption in high porosity zeolite, storage in clathration compounds, and storage by dissolution in liquid solvents. High surface area carbons with high packing density are the best low pressure storage mediums. A simple mathematical model is used to compare adsorption storage on a state of the art carbon with compression storage. The model indicates that a vehicle using adsorption storage of natural gas at 3.6 MPa will have 36 percent of the range, on the EPA city cycle, of a vehicle operating on a compression storage system having the same physical size and a peak storage pressure of 21 MPa. Preliminary experiments and current literature suggest that the storage capacity of state of the art carbons could be improved by as much as 50 percent, and that adsorption systems having a capacity equal to compression storage at 14 MPa are possible without exceeding a maximum pressure of 3.6 MPa.

  13. Advanced onboard storage concepts for natural gas-fueled automotive vehicles

    NASA Astrophysics Data System (ADS)

    Remick, R. J.; Elkins, R. H.; Camara, E. H.; Bulicz, T.

    1984-06-01

    The evaluation of several advanced concepts for storing natural gas at reduced pressure is presented. The advanced concepts include adsorption on high surface area carbon, adsorption in high porosity zeolite, storage in clathration compounds, and storage by dissolution in liquid solvents. High surface area carbons with high packing density are the best low pressure storage mediums. A simple mathematical model is used to compare adsorption storage on a state of the art carbon with compression storage. The model indicates that a vehicle using adsorption storage of natural gas at 3.6 MPa will have 36 percent of the range, on the EPA city cycle, of a vehicle operating on a compression storage system having the same physical size and a peak storage pressure of 21 MPa. Preliminary experiments and current literature suggest that the storage capacity of state of the art carbons could be improved by as much as 50 percent, and that adsorption systems having a capacity equal to compression storage at 14 MPa are possible without exceeding a maximum pressure of 3.6 MPa.

  14. Conformational fluctuations in a green fluorescent protein-like Akane family protein: a high-pressure fluorescence study at 0.1-700 MPa

    NASA Astrophysics Data System (ADS)

    Maeno, Akihiro; Kato, Yuko; Jimbo, Mitsuru; Amada, Kei; Mita, Hajime; Akasaka, Kazuyuki

    2017-04-01

    We have investigated conformational fluctuations in a new green fluorescent protein(GFP)-like protein rb-Akane found in a red-brown-colored octocoral, Scleronephthya gracillima (Kuekenthal)), with high pressure fluorescence spectroscopy at 0.1-700 MPa. Besides the green fluorescence at 510 nm, two red fluorescence peaks are observed at 590 and 629 nm, the relative intensity of which varies reversibly with pressure. The phenomenon is interpreted as representing the cis-trans isomerization of the chromophore accompanied by the conformational transition between two sub-states of the red fluorescence form of rb-Akane. The two sub-states are separated only marginally in free energy (ΔG0 = 1.9 ± 0.4 kJ mol-1), but significantly in partial molar volume (ΔV0 = -19.8 ± 1.4 ml mol-1) at 0.1 MPa (pH 7.5, 25°C). Above 500 MPa, the fluorescence at λmax 629 nm undergoes another reversible change with pressure, showing the onset of unfolding.

  15. Comparison of microbiological loads and physicochemical properties of raw milk treated with single-/multiple-cycle high hydrostatic pressure and ultraviolet-C light

    NASA Astrophysics Data System (ADS)

    Hu, Guanglan; Zheng, Yuanrong; Wang, Danfeng; Zha, Baoping; Liu, Zhenmin; Deng, Yun

    2015-07-01

    The effects of ultraviolet-C radiation (UV-C, 11.8 W/m2), single-cycle and multiple-cycle high hydrostatic pressure (HHP at 200, 400 or 600 MPa) on microbial load and physicochemical quality of raw milk were evaluated. Reductions of aerobic plate count (APC) and coliform count (CC) by HHP were more than 99.9% and 98.7%, respectively. Inactivation efficiency of microorganisms increased with pressure level. At the same pressure level, two-cycle treatments caused lower APC, but did not show CC differences compared with single-cycle treatments. Reductions of APC and CC by UV-C were somewhere between 200 MPa and 400/600 MPa. Both HHP and UV-C significantly decreased lightness and increased pH, but did not change soluble solids content and thiobarbituric acid-reactive substances' values. Two 2.5 min cycles of HHP at 600 MPa caused minimum APC and CC, and maximum conductivity. Compared with HHP, UV-C markedly increased protein oxidation and reduced darkening.

  16. Supercritical carbon dioxide (SC-CO2) extraction of essential oil from Swietenia mahagoni seeds

    NASA Astrophysics Data System (ADS)

    Norodin, N. S. M.; Salleh, L. M.; Hartati; Mustafa, N. M.

    2016-11-01

    Swietenia mahagoni (Mahogany) is a traditional plant that is rich with bioactive compounds. In this study, process parameters such as particle size, extraction time, solvent flowrate, temperature and pressure were studied on the extraction of essential oil from Swietenia mahagoni seeds by using supercritical carbon dioxide (SC-CO2) extraction. Swietenia mahagoni seeds was extracted at a pressure of 20-30 MPa and a temperature of 40-60°C. The effect of particle size on overall extraction of essential oil was done at 30 MPa and 50°C while the extraction time of essential oil at various temperatures and at a constant pressure of 30 MPa was studied. Meanwhile, the effect of flowrate CO2 was determined at the flowrate of 2, 3 and 4 ml/min. From the experimental data, the extraction time of 120 minutes, particle size of 0.5 mm, the flowrate of CO2 of 4 ml/min, at a pressure of 30 MPa and the temperature of 60°C were the best conditions to obtain the highest yield of essential oil.

  17. High-pressure effects on cooking loss and histological structure of beef muscle

    NASA Astrophysics Data System (ADS)

    Liu, Anjun; Zhan, Hu; Zheng, Jie; Liu, Dongyue; Jia, Peiqi

    2010-12-01

    In this study, we investigate the effects of high pressures (up to 600 MPa) applied at room temperature for 10 min on beef cooking loss and structure. The data on cooking loss, pH and protein solubility, as well as the electron microscopy, illustrate the changes in cooking loss and structure with high pressure processing (HPP). There is a significant reduction in cooking loss of beef with HPP. When the beef sample is imposed upon by 300 or 400 MPa, the cooking loss reduction is about 12%. Further, the pH of beef is dramatically increased as the pressure increases, and the pH increases by about 5% when imposed upon by 500 MPa. When a high pressure was applied at room temperature, the structure of the beef tissue apparently changed. Muscle fiber fragments gradually became slender and sarcomeres became lengthened. Our data indicated that high-pressure treatment on beef leads to stretching of the muscle fiber and an increase in the water-holding capacity.

  18. Development of a Dew-Point Generator for Gases Other than Air and Nitrogen and Pressures up to 6 MPa

    NASA Astrophysics Data System (ADS)

    Bosma, R.; Peruzzi, A.

    2012-09-01

    A new primary humidity standard is currently being developed at VSL that, in addition to ordinary operation with air and nitrogen at atmospheric pressure, can be operated also with special carrier gases such as natural gas and SF6 and at pressures up to 6 MPa. In this paper, the design and construction of this new primary dew-point generator and the preliminary tests performed on the generator are reported. The results of the first efficiency tests, performed for the dew-point temperature range from -50 °C to 20°C, for pressures up to 0.7MPa and for carrier gas flow rates up to 4L· min-1, showed satisfactory generator performance when used in the single-pass mode, i.e., with no recirculation of the carrier gas.

  19. Effects of High-Pressure Treatment on the Muscle Proteome of Hake by Bottom-Up Proteomics.

    PubMed

    Carrera, Mónica; Fidalgo, Liliana G; Saraiva, Jorge A; Aubourg, Santiago P

    2018-05-02

    A bottom-up proteomics approach was applied for the study of the effects of high-pressure (HP) treatment on the muscle proteome of fish. The performance of the approach was established for a previous HP treatment (150-450 MPa for 2 min) on frozen (up to 5 months at -10 °C) European hake ( Merluccius merluccius). Concerning possible protein biomarkers of quality changes, a significant degradation after applying a pressure ≥430 MPa could be observed for phosphoglycerate mutase-1, enolase, creatine kinase, fructose bisphosphate aldolase, triosephosphate isomerase, and nucleoside diphosphate kinase; contrary, electrophoretic bands assigned to tropomyosin, glyceraldehyde-3-phosphate dehydrogenase, and beta parvalbumin increased their intensity after applying a pressure ≥430 MPa. This repository of potential protein biomarkers may be very useful for further HP investigations related to fish quality.

  20. Analysis of flexural strength and contact pressure after simulated chairside adjustment of pressed lithium disilicate glass-ceramic.

    PubMed

    Ramadhan, Ali; Thompson, Geoffrey A; Maroulakos, Georgios; Berzins, David

    2018-04-30

    Research evaluating load-to-failure of pressed lithium disilicate glass-ceramic (LDGC) with a clinically validated test after adjustment and repair procedures is scarce. The purpose of this in vitro study was to investigate the effect of the simulated chairside adjustment of the intaglio surface of monolithic pressed LDGC and procedures intended to repair damage. A total of 423 IPS e.max Press (Ivoclar Vivadent AG) disks (15 mm diameter, 1 mm height) were used in the study. The material was tested by using an equibiaxial loading arrangement (n≥30/group) and a contact pressure test (n≥20/group). Specimens were assigned to 1 of 14 groups. One-half was assigned to the equibiaxial load test and the other half underwent contact pressure testing. Testing was performed in 2 parts, before glazing and after glazing. Before-glazing specimens were devested and entered in the test protocol, while after-glazing specimens were devested and glazed before entering the test protocol. Equibiaxial flexure test specimens were placed on a ring-on-ring apparatus and loaded until failure. Contact pressure specimens were cemented to epoxy resin blocks with a resin cement and loaded with a 50-mm diameter hemisphere until failure. Tests were performed on a universal testing machine with a crosshead speed of 0.5 mm/min. Weibull statistics and likelihood ratio contour plots determined intergroup differences (95% confidence bounds). Before glazing, the equibiaxial flexural strength test and the Weibull and likelihood ratio contour plots demonstrated a significantly higher failure strength for 1EC (188 MPa) than that of the damaged and/or repaired groups. Glazing following diamond-adjustment (1EGG) was the most beneficial post-damage procedure (176 MPa). Regarding the contact pressure test, the Weibull and likelihood ratio contour plots revealed no significant difference between the 1PC (98 MPa) and 1PGG (98 MPa) groups. Diamond-adjustment, without glazing (1EG and 1PG), resulted in the next-to-lowest equibiaxial flexure strength and the lowest contact pressure. After glazing, the strength of all the groups, when subjected to glazing following devesting, increased in comparison with corresponding groups in the before-glazing part of the study. A glazing treatment improved the mechanical properties of diamond-adjusted IPS e.max Press disks when evaluated by equibiaxial flexure and contact pressure tests. Copyright © 2018 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  1. Enduring medial perforant path short-term synaptic depression at high pressure.

    PubMed

    Talpalar, Adolfo E; Giugliano, Michele; Grossman, Yoram

    2010-01-01

    The high pressure neurological syndrome develops during deep-diving (>1.1 MPa) involving impairment of cognitive functions, alteration of synaptic transmission and increased excitability in cortico-hippocampal areas. The medial perforant path (MPP), connecting entorhinal cortex with the hippocampal formation, displays synaptic frequency-dependent-depression (FDD) under normal conditions. Synaptic FDD is essential for specific functions of various neuronal networks. We used rat cortico-hippocampal slices and computer simulations for studying the effects of pressure and its interaction with extracellular Ca(2+) ([Ca(2+)](o)) on FDD at the MPP synapses. At atmospheric pressure, high [Ca(2+)](o) (4-6 mM) saturated single MPP field EPSP (fEPSP) and increased FDD in response to short trains at 50 Hz. High pressure (HP; 10.1 MPa) depressed single fEPSPs by 50%. Increasing [Ca(2+)](o) to 4 mM at HP saturated synaptic response at a subnormal level (only 20% recovery of single fEPSPs), but generated a FDD similar to atmospheric pressure. Mathematical model analysis of the fractions of synaptic resources used by each fEPSP during trains (normalized to their maximum) and the total fraction utilized within a train indicate that HP depresses synaptic activity also by reducing synaptic resources. This data suggest that MPP synapses may be modulated, in addition to depression of single events, by reduction of synaptic resources and then may have the ability to conserve their dynamic properties under different conditions.

  2. Enduring Medial Perforant Path Short-Term Synaptic Depression at High Pressure

    PubMed Central

    Talpalar, Adolfo E.; Giugliano, Michele; Grossman, Yoram

    2010-01-01

    The high pressure neurological syndrome develops during deep-diving (>1.1 MPa) involving impairment of cognitive functions, alteration of synaptic transmission and increased excitability in cortico-hippocampal areas. The medial perforant path (MPP), connecting entorhinal cortex with the hippocampal formation, displays synaptic frequency-dependent-depression (FDD) under normal conditions. Synaptic FDD is essential for specific functions of various neuronal networks. We used rat cortico-hippocampal slices and computer simulations for studying the effects of pressure and its interaction with extracellular Ca2+ ([Ca2+]o) on FDD at the MPP synapses. At atmospheric pressure, high [Ca2+]o (4–6 mM) saturated single MPP field EPSP (fEPSP) and increased FDD in response to short trains at 50 Hz. High pressure (HP; 10.1 MPa) depressed single fEPSPs by 50%. Increasing [Ca2+]o to 4 mM at HP saturated synaptic response at a subnormal level (only 20% recovery of single fEPSPs), but generated a FDD similar to atmospheric pressure. Mathematical model analysis of the fractions of synaptic resources used by each fEPSP during trains (normalized to their maximum) and the total fraction utilized within a train indicate that HP depresses synaptic activity also by reducing synaptic resources. This data suggest that MPP synapses may be modulated, in addition to depression of single events, by reduction of synaptic resources and then may have the ability to conserve their dynamic properties under different conditions. PMID:21048901

  3. Fault-controlled development of shallow hydrothermal systems: Structural and mineralogical insights from the Southern Andes

    NASA Astrophysics Data System (ADS)

    Roquer, T.; Arancibia, G.; Rowland, J. V.; Iturrieta, P. C.; Morata, D.; Cembrano, J. M.

    2017-12-01

    Paleofluid-transporting systems can be recognized as meshes of fracture-filled veins in eroded zones of extinct hydrothermal systems. Here we conducted meso-microstructural analysis and mechanical modeling from two exhumed exposures of the faults governing regional tectonics of the Southern Andes: the Liquiñe-Ofqui Fault System (LOFS) and the Andean Transverse Faults (ATF). A total of 107 fractures in both exposures were analyzed. The ATF specific segment shows two tectonic solutions that can be modeled as Andersonian and non-Andersonian tectonic regimes: (1) shear (mode II/III) failure occurs at differential stresses > 28 MPa and fluid pressures < 40-80% lithostatic in the Andersonian regime; and (2) sporadic hybrid extensional + shear (modes I + II/III) failure occurs at differential stresses < 20 MPa and anomalously high fluid pressures > 85-98% lithostatic in the non-Andersonian regime. Additionally, the LOFS exposure cyclically fails in extension (mode I) or extension + shear (modes I + II/III) in the Andersonian regime, at differential stresses < 28 MPa and fluid pressures > 40-80% lithostatic. In areas of spatial interaction between ATF and LOFS, these conditions might favor: (1) the storage of overpressured fluids in hydrothermal systems associated with the ATF faults, and (2) continuous fluid flow through vertical conduits in the LOFS faults. These observations suggest that such intersections are highly probable locations for concentrated hydrothermal activity, which must be taken into consideration for further geothermal exploration. ACKNOWLEDGEMENTS. PhD CONICYT grants, Centro de Excelencia en Geotermia de los Andes (CEGA-FONDAP/CONICYT Project #15090013), FONDECYT Project #1130030 and Project CONICYT REDES #140036.

  4. Pressure in isochoric systems containing aqueous solutions at subzero Centigrade temperatures

    PubMed Central

    Șerban, Alexandru; Rubinsky, Boris

    2017-01-01

    Objective Preservation of biological materials at subzero Centigrade temperatures, cryopreservation, is important for the field of tissue engineering and organ transplantation. Our group is studying the use of isochoric (constant volume) systems of aqueous solution for cryopreservation. Previous studies measured the pressure-temperature relations in aqueous isochoric systems in the temperature range from 0°C to – 20°C. The goal of this study is to expand the pressure-temperature measurement beyond the range reported in previous publications. Materials and methods To expand the pressure-temperature measurements beyond the previous range, we have developed a new isochoric device capable of withstanding liquid nitrogen temperatures and pressures of up to 413 MPa. The device is instrumented with a pressure transducer than can monitor and record the pressures in the isochoric chamber in real time. Measurements were made in a temperature range from – 5°C to liquid nitrogen temperatures for various solutions of pure water and Me2SO (a chemical additive used for protection of biological materials in a frozen state and for vitrification (glass formation) of biological matter). Undissolved gaseous are is carefully removed from the system. Results Temperature-pressure data from – 5°C to liquid nitrogen temperature for pure water and other solutions are presented in this study. Following are examples of some, temperature-pressure values, that were measured in an isochoric system containing pure water: (- 20°C, 187 MPa); (-25°C, 216 MPa); (- 30°C, 242.3 MPa); (-180°C, 124 MPa). The data is consistent with the literature, which reports that the pressure and temperature at the triple point, between ice I, ice III and water is, - 21.993°C and 209.9 MPa, respectively. It was surprising to find that the pressure in the isochoric system increases at temperatures below the triple point and remains high to liquid nitrogen temperatures. Measurements of pressure-temperature relations in solutions of pure water and Me2SO in different concentrations show that, for concentrations in which vitrification is predicted, no increase in pressure was measured during rapid cooling to liquid nitrogen temperatures. However, ice formation either during cooling or warming to and from liquid nitrogen temperatures produced an increase in pressure. Conclusions The data obtained in this study can be used to aid in the design of isochoric cryopreservation protocols. The results suggest that the pressure measurement is important in the design of “constant volume” systems and can provide a simple means to gain information on the occurrence of vitrification and devitrification during cryopreservation processes of aqueous solutions in an isochoric system. PMID:28817681

  5. Maintenance of breast milk Immunoglobulin A after high-pressure processing.

    PubMed

    Permanyer, M; Castellote, C; Ramírez-Santana, C; Audí, C; Pérez-Cano, F J; Castell, M; López-Sabater, M C; Franch, A

    2010-03-01

    Human milk is considered the optimal nutritional source for infants. Banked human milk is processed using low-temperature, long-time pasteurization, which assures microbial safety but involves heat denaturation of some desirable milk components such as IgA. High-pressure processing technology, the subject of the current research, has shown minimal destruction of food macromolecules. The objective of this study was to investigate the influence of pressure treatments on IgA content. Moreover, bacterial load was evaluated after pressure treatments. The effects of high-pressure processing on milk IgA content were compared with those of low-temperature, long-time pasteurization. Mature human milk samples were heat treated at 62.5 degrees C for 30min or pressure processed at 400, 500, or 600MPa for 5min at 12 degrees C. An indirect ELISA was used to measure IgA in human milk whey obtained after centrifugation at 800xg for 10min at 4 degrees C. All 3 high-pressure treatments were as effective as low-temperature, long-time pasteurization in reducing the bacterial population of the human milk samples studied. After human milk pressure processing at 400MPa, 100% of IgA content was preserved in milk whey, whereas only 72% was retained in pasteurized milk whey. The higher pressure conditions of 500 and 600MPa produced IgA retention of 87.9 and 69.3%, respectively. These results indicate that high-pressure processing at 400MPa for 5min at 12 degrees C maintains the immunological protective capacity associated with IgA antibodies. This preliminary study suggests that high-pressure processing may be a promising alternative to pasteurization in human milk banking.

  6. Effect of moderate pressure treatments on microstructure, texture, and sensory properties of stirred-curd cheddar shreds.

    PubMed

    Serrano, J; Velazquez, G; Lopetcharat, K; Ramírez, J A; Torres, J A

    2004-10-01

    A moderate high-pressure processing (HPP) treatment is proposed to accelerate the shredability of Cheddar cheese. High pressure processing (345 and 483 MPa for 3 and 7 min) applied to unripened (1 d old) stirred-curd Cheddar cheese yielded microstructure changes that differed with pressure level and processing time. Untreated and pressure-treated cheese shredded at d 27 and 1, respectively, shared similar visual and tactile sensory properties. The moderate (345 MPa) and the higher (483 MPa) pressure treatments reduced the presence of crumbles, increased mean shred particle length, improved length uniformity, and enhanced surface smoothness in shreds produced from unripened cheese. High-pressure processing treatments did not affect the mechanical properties of ripened cheese or the proteolytic susceptibility of milk protein. It was concluded that a moderate HPP treatment could allow processors to shred Cheddar cheese immediately after block cooling, reducing refrigerated storage costs, with expected savings of over 15 US dollars/1000 lb cheese, and allowing fewer steps in the handling of cheese blocks produced for shredding.

  7. Effects of high hydrostatic pressure and temperature increase on Escherichia coli spp. and pectin methyl esterase inactivation in orange juice.

    PubMed

    Torres, E F; González-M, G; Klotz, B; Rodrigo, D

    2016-03-01

    The aim of this study was to evaluate the effect of high hydrostatic pressure treatment combined with moderate processing temperatures (25 ℃-50 ℃) on the inactivation of Escherichia coli O157: H7 (ATCC 700728), E. coli K12 (ATCC 23716), and pectin methyl esterase in orange juice, using pressures of 250 to 500 MPa with times ranging between 1 and 30 min. Loss of viability of E. coli O157:H7 increased significantly as pressure and treatment time increased, achieving a 6.5 log cycle reduction at 400 MPa for 3 min at 25 ℃ of treatment. With regard to the inactivation of pectin methyl esterase, the greatest reduction obtained was 90.05 ± 0.01% at 50 ℃ and 500 MPa of pressure for 15 min; therefore, the pectin methyl esterase enzyme was highly resistant to the treatments by high hydrostatic pressure. The results obtained in this study showed a synergistic effect between the high pressure and moderate temperatures in inactivating E. coli cells. © The Author(s) 2016.

  8. Extraction of ginsenosides from fresh ginseng roots (Panax ginseng C.A. Meyer) using commercial enzymes and high hydrostatic pressure.

    PubMed

    Sunwoo, Hoon H; Kim, Chong-Tai; Kim, Do-Yeon; Maeng, Jin-Soo; Cho, Chang-Won; Lee, Soo-Jeong

    2013-07-01

    A combination of high hydrostatic pressure (HHP) and enzymatic hydrolysis (HHP-EH) was applied for the extraction of ginsenosides from fresh ginseng roots (Panax ginseng C.A. Myer). The highest yield of ginsenosides was obtained by using a mixture of three enzymes (Celluclast + Termamyl + Viscozyme) along with HHP (100 MPa, at 50 °C for 12 h) in comparison to control samples (no enzymes, atmosphere pressure, P < 0.05). Total ginsenosides increased by 184% while Rg1 + Rb1 increased by 273%. Application of these conditions significantly increased total ginsenosides by 49% and Rg1 + Rb1 by 103% compared to HHP treatment alone (P < 0.05). The effect of HHP on increased yield of ginsenosides is likely due in part, to acceleration of enzyme activity. Thus HHP-EH significantly improves the extraction of ginsenosides from fresh ginseng roots.

  9. Predicting S-wave velocities for unconsolidated sediments at low effective pressure

    USGS Publications Warehouse

    Lee, Myung W.

    2010-01-01

    Accurate S-wave velocities for shallow sediments are important in performing a reliable elastic inversion for gas hydrate-bearing sediments and in evaluating velocity models for predicting S-wave velocities, but few S-wave velocities are measured at low effective pressure. Predicting S-wave velocities by using conventional methods based on the Biot-Gassmann theory appears to be inaccurate for laboratory-measured velocities at effective pressures less than about 4-5 megapascals (MPa). Measured laboratory and well log velocities show two distinct trends for S-wave velocities with respect to P-wave velocity: one for the S-wave velocity less than about 0.6 kilometer per second (km/s) which approximately corresponds to effective pressure of about 4-5 MPa, and the other for S-wave velocities greater than 0.6 km/s. To accurately predict S-wave velocities at low effective pressure less than about 4-5 MPa, a pressure-dependent parameter that relates the consolidation parameter to shear modulus of the sediments at low effective pressure is proposed. The proposed method in predicting S-wave velocity at low effective pressure worked well for velocities of water-saturated sands measured in the laboratory. However, this method underestimates the well-log S-wave velocities measured in the Gulf of Mexico, whereas the conventional method performs well for the well log velocities. The P-wave velocity dispersion due to fluid in the pore spaces, which is more pronounced at high frequency with low effective pressures less than about 4 MPa, is probably a cause for this discrepancy.

  10. Temperature Compensation Fiber Bragg Grating Pressure Sensor Based on Plane Diaphragm

    NASA Astrophysics Data System (ADS)

    Liang, Minfu; Fang, Xinqiu; Ning, Yaosheng

    2018-06-01

    Pressure sensors are the essential equipments in the field of pressure measurement. In this work, we propose a temperature compensation fiber Bragg grating (FBG) pressure sensor based on the plane diaphragm. The plane diaphragm and pressure sensitivity FBG (PS FBG) are used as the pressure sensitive components, and the temperature compensation FBG (TC FBG) is used to improve the temperature cross-sensitivity. Mechanical deformation model and deformation characteristics simulation analysis of the diaphragm are presented. The measurement principle and theoretical analysis of the mathematical relationship between the FBG central wavelength shift and pressure of the sensor are introduced. The sensitivity and measure range can be adjusted by utilizing the different materials and sizes of the diaphragm to accommodate different measure environments. The performance experiments are carried out, and the results indicate that the pressure sensitivity of the sensor is 35.7 pm/MPa in a range from 0 MPa to 50 MPa and has good linearity with a linear fitting correlation coefficient of 99.95%. In addition, the sensor has the advantages of low frequency chirp and high stability, which can be used to measure pressure in mining engineering, civil engineering, or other complex environment.

  11. Performance Analysis of Abrasive Waterjet Machining Process at Low Pressure

    NASA Astrophysics Data System (ADS)

    Murugan, M.; Gebremariam, MA; Hamedon, Z.; Azhari, A.

    2018-03-01

    Normally, a commercial waterjet cutting machine can generate water pressure up to 600 MPa. This range of pressure is used to machine a wide variety of materials. Hence, the price of waterjet cutting machine is expensive. Therefore, there is a need to develop a low cost waterjet machine in order to make the technology more accessible for the masses. Due to its low cost, such machines may only be able to generate water pressure at a much reduced rate. The present study attempts to investigate the performance of abrasive water jet machining process at low cutting pressure using self-developed low cost waterjet machine. It aims to study the feasibility of machining various materials at low pressure which later can aid in further development of an effective low cost water jet machine. A total of three different materials were machined at a low pressure of 34 MPa. The materials are mild steel, aluminium alloy 6061 and plastics Delrin®. Furthermore, a traverse rate was varied between 1 to 3 mm/min. The study on cutting performance at low pressure for different materials was conducted in terms of depth penetration, kerf taper ratio and surface roughness. It was found that all samples were able to be machined at low cutting pressure with varied qualities. Also, the depth of penetration decreases with an increase in the traverse rate. Meanwhile, the surface roughness and kerf taper ratio increase with an increase in the traverse rate. It can be concluded that a low cost waterjet machine with a much reduced rate of water pressure can be successfully used for machining certain materials with acceptable qualities.

  12. Damping, amplitude, aging tests of stacked transducers for shock wave generation.

    PubMed

    Sferruzza, Jean-Pierre; Birer, Alain; Chavrier, Françoise; Cathignol, Dominique

    2002-10-01

    New clinical concepts in lithotripsy demand small shock heads. Reducing the size of piezoelectric shock heads will be possible only if the pressure generated at the surface of each transducer can be increased so that the total pressure at the focus remains the same. To solve this problem, different solutions were proposed. For example, it has been demonstrated that piezocomposite material, as opposed to piezoceramic material, allows the generation of a higher surface pressure before breaking, mainly because radial modes are dramatically reduced. In addition, in a previous paper, we showed the feasibility of generating high-pressure pulse waves without increasing the transducer voltage by using sandwiched transducers, which are a stack of two or more transducers. Some discrepancies appeared, however, between the pressure measured at the surface of the front transducer and the arithmetic sum of the pressures generated by each transducer constituting the stack. In fact, development of such stacked transducers capable of generating surface pressures in the range of 2 to 5 MPa is very complex, which may explain why no aging tests have been reported in the literature thus far. In the first part of this paper, we theoretically determine the importance of the electroacoustical coupling between the two transducers on the generated surface pressure. We show that pressure losses due to these electroacoustical couplings are less than 5%. Experimental measurements done on a stacked transducer assembled and tightened in a castor oil-filled tank are in excellent accordance with the theoretical measurements. Using this assembly technique, it was possible to obtain, on average, out of four elements, a pressure of 7.5 MPa for the duration of 4 million shocks, which would allow the treatment of approximately 1000 patients.

  13. Bonding of composite resins to PEEK: the influence of adhesive systems and air-abrasion parameters.

    PubMed

    Stawarczyk, Bogna; Taufall, Simon; Roos, Malgorzata; Schmidlin, Patrick R; Lümkemann, Nina

    2018-03-01

    The objective of the study was to investigate the tensile bond strength (TBS) to polyaryletheretherketone (PEEK) after different pretreatment and conditioning methods. Four hundred PEEK specimens were fabricated and allocated to the following air-abrasion methods (n 1  = 80/pretreatment): (i) 50 μm Al 2 O 3 (0.05 MPa); (ii) 50 μm Al 2 O 3 (0.35 MPa); (iii) 110 μm Al 2 O 3 (0.05 MPa); (iv) 110 μm Al 2 O 3 (0.35 MPa); and (v) Rocatec 110 μm (0.28 MPa). These pretreatments were combined with the following conditioning methods (n 2  = 20/pretreatment/conditioning): (a) visio.link (VL); (b) Monobond Plus/Heliobond (MH); (c) Scotchbond Universal (SU); and (d) dialog bonding fluid (DB). After veneering of all specimens with dialog occlusal and aging (28 days H 2 O, 37 °C + 20,000 thermal cycles, 5/55 °C), TBS was measured. Data was analysed using Kaplan-Meier survival analysis with Breslow-Gehan test and Cox-regressions. The major impact on TBS showed the conditioning, followed by the air-abrasion-pressure, while the grain size of the air-abrasion powder did not show any effect. Specimens air-abraded at 0.35 MPa showed the highest survival rates. However, within VL groups, this observation was not statistically significant. Within MH groups, pretreatment using 110 μm Al 2 O 3 and 0.05 MPa resulted in higher survival rates compared to groups treated with 50 and 110 μm Al 2 O 3 using a pressure of 0.35 MPa. The use of VL showed the highest survival rates between the adhesive systems and the TBS values higher than 25 MPa independent of the pretreatment method. As an exception, only VL showed significantly higher survival rates when compared to MH. The adequate choice of the adhesive system and higher pressures improved the TBS between PEEK and veneering resin composite. The particle size had no major impact. According to this study, best veneering of PEEK with dialog occlusal can be achieved by conditioning with visio.link in combination with the pretreatment of airborne particle abrasion at a pressure of 0.35 MPa.

  14. High pressure treatment changes spoilage characteristics and shelf life of Pacific oysters ( Crassostrea gigas) during refrigerated storage

    NASA Astrophysics Data System (ADS)

    Cao, Rong; Zhao, Ling; Liu, Qi

    2017-04-01

    The effects of high pressure (HP) treatment on spoilage characteristic and shelf life extension of Pacific oysters ( Crassostrea gigas) during refrigerated storage were studied. Results showed that HP treatment of 275 MPa for 3 min or 300 MPa for 2 min could achieve 100% full release of oyster adductor muscle, pressures higher than 350 MPa caused excessive release as the shells of oysters were broken, thus use of higher pressures should be cautious in oyster processing industry because of its adverse impact on the appearance of shells. HP treatment (300 MPa, 2 min) was proper for the shucking of Pacific oyster ( Crassostrea gigas) in China. This treatment caused no organoleptic disadvantage. Moreover, HP treatment resulted in obvious differences in biochemical spoilage indicators (pH, TVB-N and TBARS) changes and volatile compounds profile determined by electronic nose during storage. HP treatment (300 MPa, 2 min) also led to a reduction of aerobic bacterial count (APC) by 1.27 log cycles. Furthermore, the APC values of oysters treated by HP were always lower than those of the control samples during storage. Based on the organoleptic, biochemical and microbiological indicators, shelf life of 6-8 d for control and 12 d for HP-treated oysters could be expected. HP treatment showed great potential in oyster processing and preservation.

  15. Burn rates of TiH2/KClO4/Viton and output testing of NASA SKD26100098-301 pressure cartridges

    NASA Technical Reports Server (NTRS)

    Holy, John A.

    1993-01-01

    The burn rates of the pyrotechnic TiH2/KClO4/Viton with a mass ratio of 30/65/5 have been measured as a function of pressure in nitrogen up to 312 MPa(45 Kpsi). The burn rates were fit to R = a pn, with a = 2.055 cm/sec/MPan and n = 0.472 between 0.15 MPa (22 psi) and 21.6 MPa (3.13 Kpsi) and a = 4.38 cm/sec/MPan and n = 0.266 between 70 MPa (10.15 Kpsi) and 312 MPa (45.25 Kpsi). The decrease in slope at the higher pressures is attributed to a diffusion limited reaction. No acoustically driven flame instabilities or large conductive-to-convective burn transitions were observed. Solid reaction products were analyzed by x-ray diffraction and scanning electron microscopy (SEM). X-ray diffraction detected only TiO2 and KC1. SEM showed that the particle size of the reaction products increased as the nitrogen pressure increased. There were no anomalous characteristics of the burn of this pyrotechnic that could be interpreted as a cause of the o-ring blow-by problem in the forward shear bolt assembly. Three NASA SKD26100098-301 pressure cartridges were fired into a fixed volume vessel that was sealed with an O-ring. A maximum pressure of 181.7 MPa(26,350 psi) was reached in around 100 ,mu sec for two shots fired into a volume of 16.3 cm3(0.996 in3). A maximum pressure of 33,460 psi was reached for one shot fired into a volume of 9.55 cm3(0.583 in3). The O-ring burned through on one shot in the larger volume and leaked on the other two thereby simulating the effects of an O-ring leak. The results imply that the piston in the shear bolt assembly would receive a large impulse even if there was a leak in an O-ring seal.

  16. Changes in protein structures to improve the rheology and texture of reduced-fat sausages using high pressure processing.

    PubMed

    Yang, Huijuan; Khan, Muhammad Ammar; Yu, Xiaobo; Zheng, Haibo; Han, Minyi; Xu, Xinglian; Zhou, Guanghong

    2016-11-01

    This study investigated the role of high-pressure processing (HPP) for improving the functional properties of meat batters and the textural properties of reduced-fat sausages. Application of 200MPa pressure at 10°C for 2min to pork batters containing various fat contents (0-30%) affected their rheological properties, cooking losses, color, textual properties and their protein imaging. The results revealed that both application of 200MPa and increasing fat content decreased cooking loss, as well as improved the textural and rheological properties. Cooking losses, texture and sensory evaluation of 200MPa treated sausages having 20% fat were similar to those of the 0.1MPa treated sausages having 30% fat. Principal component analysis revealed that certain quality attributes were affected differently by the levels of fat addition and by HPP. These findings indicated the potential of HPP for improving yield and texture of emulsion-type sausages having reduced fat contents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effects of Hydrostatic Pressure on Growth and Luminescence of a Moderately-Piezophilic Luminous Bacteria Photobacterium phosphoreum ANT-2200

    PubMed Central

    Martini, Séverine; Al Ali, Badr; Garel, Marc; Nerini, David; Grossi, Vincent; Pacton, Muriel; Casalot, Laurence; Cuny, Philippe; Tamburini, Christian

    2013-01-01

    Bacterial bioluminescence is commonly found in the deep sea and depends on environmental conditions. Photobacterium phosphoreum ANT-2200 has been isolated from the NW Mediterranean Sea at 2200-m depth (in situ temperature of 13°C) close to the ANTARES neutrino telescope. The effects of hydrostatic pressure on its growth and luminescence have been investigated under controlled laboratory conditions, using a specifically developed high-pressure bioluminescence system. The growth rate and the maximum population density of the strain were determined at different temperatures (from 4 to 37°C) and pressures (from 0.1 to 40 MPa), using the logistic model to define these two growth parameters. Indeed, using the growth rate only, no optimal temperature and pressure could be determined. However, when both growth rate and maximum population density were jointly taken into account, a cross coefficient was calculated. By this way, the optimum growth conditions for P. phosphoreum ANT-2200 were found to be 30°C and, 10 MPa defining this strain as mesophile and moderately piezophile. Moreover, the ratio of unsaturated vs. saturated cellular fatty acids was found higher at 22 MPa, in agreement with previously described piezophile strains. P. phosphoreum ANT-2200 also appeared to respond to high pressure by forming cell aggregates. Its maximum population density was 1.2 times higher, with a similar growth rate, than at 0.1 MPa. Strain ANT-2200 grown at 22 MPa produced 3 times more bioluminescence. The proposed approach, mimicking, as close as possible, the in situ conditions, could help studying deep-sea bacterial bioluminescence and validating hypotheses concerning its role into the carbon cycle in the deep ocean. PMID:23818946

  18. Dynamics of Cavitation Clouds within a High-Intensity Focused Ultrasonic Beam

    DTIC Science & Technology

    2012-03-01

    the cloud size. I. INTRODUCTION High-intensity focused ultrasound ( HIFU ), along with the associated cavitation, is used in a variety of fields. The...this experimental study, we generate a 500 kHz high-intensity focused ultrasonic ( HIFU ) beam, with pressure amplitude in the focal zone of up to 1.9 MPa... focused ultrasonic ( HIFU ) beam, with pressure amplitude in the focal zone of up to 1.9 MPa, in initially quiescent water. The resulting pressure field

  19. High-pressure Gas Activation for Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistors at 100 °C

    PubMed Central

    Kim, Won-Gi; Tak, Young Jun; Du Ahn, Byung; Jung, Tae Soo; Chung, Kwun-Bum; Kim, Hyun Jae

    2016-01-01

    We investigated the use of high-pressure gases as an activation energy source for amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistors (TFTs). High-pressure annealing (HPA) in nitrogen (N2) and oxygen (O2) gases was applied to activate a-IGZO TFTs at 100 °C at pressures in the range from 0.5 to 4 MPa. Activation of the a-IGZO TFTs during HPA is attributed to the effect of the high-pressure environment, so that the activation energy is supplied from the kinetic energy of the gas molecules. We reduced the activation temperature from 300 °C to 100 °C via the use of HPA. The electrical characteristics of a-IGZO TFTs annealed in O2 at 2 MPa were superior to those annealed in N2 at 4 MPa, despite the lower pressure. For O2 HPA under 2 MPa at 100 °C, the field effect mobility and the threshold voltage shift under positive bias stress were improved by 9.00 to 10.58 cm2/V.s and 3.89 to 2.64 V, respectively. This is attributed to not only the effects of the pressurizing effect but also the metal-oxide construction effect which assists to facilitate the formation of channel layer and reduces oxygen vacancies, served as electron trap sites. PMID:26972476

  20. High-pressure Gas Activation for Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistors at 100 °C.

    PubMed

    Kim, Won-Gi; Tak, Young Jun; Du Ahn, Byung; Jung, Tae Soo; Chung, Kwun-Bum; Kim, Hyun Jae

    2016-03-14

    We investigated the use of high-pressure gases as an activation energy source for amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistors (TFTs). High-pressure annealing (HPA) in nitrogen (N2) and oxygen (O2) gases was applied to activate a-IGZO TFTs at 100 °C at pressures in the range from 0.5 to 4 MPa. Activation of the a-IGZO TFTs during HPA is attributed to the effect of the high-pressure environment, so that the activation energy is supplied from the kinetic energy of the gas molecules. We reduced the activation temperature from 300 °C to 100 °C via the use of HPA. The electrical characteristics of a-IGZO TFTs annealed in O2 at 2 MPa were superior to those annealed in N2 at 4 MPa, despite the lower pressure. For O2 HPA under 2 MPa at 100 °C, the field effect mobility and the threshold voltage shift under positive bias stress were improved by 9.00 to 10.58 cm(2)/V.s and 3.89 to 2.64 V, respectively. This is attributed to not only the effects of the pressurizing effect but also the metal-oxide construction effect which assists to facilitate the formation of channel layer and reduces oxygen vacancies, served as electron trap sites.

  1. The isobaric heat capacity of liquid water at low temperatures and high pressures

    NASA Astrophysics Data System (ADS)

    Troncoso, Jacobo

    2017-08-01

    Isobaric heat capacity for water shows a rather strong anomalous behavior, especially at low temperature. However, almost all experimental studies supporting this statement have been carried out at low pressure; very few experimental data were reported above 100 MPa. In order to explore the behavior of this magnitude for water up to 500 MPa, a new heat flux calorimeter was developed. With the aim of testing the experimental methodology and comparing with water results, isobaric heat capacity was also measured for methanol and hexane. Good agreement with indirect heat capacity estimations from the literature was obtained for the three liquids. Experimental results show large anomalies in water heat capacity. This is especially true as regards its temperature dependence, qualitatively different from that observed for other liquids. Heat capacity versus temperature curves show minima for most studied isobars, whose location decreases with the pressure up to around 100 MPa but increases at higher pressures.

  2. Reference Correlation for the Viscosity of Ammonia from the Triple Point to 725 K and up to 50 MPa

    NASA Astrophysics Data System (ADS)

    Monogenidou, S. A.; Assael, M. J.; Huber, M. L.

    2018-06-01

    This paper presents a new wide-ranging correlation for the viscosity of ammonia based on critically evaluated experimental data. The correlation is designed to be used with a recently developed equation of state, and it is valid from the triple point to 725 K at pressures up to 50 MPa. The estimated uncertainty varies depending on the temperature and pressure, from 0.6% to 5%. The correlation behaves in a physically reasonable manner when extrapolated to 100 MPa; however, care should be taken when using the correlation outside of the validated range.

  3. Thermophysical properties of Helium-4 from 0.8 to 1500 K with pressures to 2000 MPa

    NASA Technical Reports Server (NTRS)

    Arp, Vincent D.; Mccarty, Robert D.

    1989-01-01

    Tabular summary data of the thermophysical properties of fluid helium are given for temperatures from 0.8 to 1500 K, with pressures to 2000 MPa between 75 and 300 K, or to 100 MPa outside of this temperature band. Properties include density, specific heats, enthalpy, entropy, internal energy, sound velocity, expansivity, compressibility, thermal conductivity, and viscosity. The data are calculated from a computer program which is available from the National Institute of Standards and Technology. The computer program is based on carefully fitted state equations for both normal and superfluid helium.

  4. Physical and chemical properties of Nam Prig Noom, a Thai green-chili paste, following ultra-high pressure and thermal processes

    NASA Astrophysics Data System (ADS)

    Apichartsrangkoon, Arunee; Srisajjalertwaja, Siriwan; Chaikham, Pittaya; Hirun, Sathira

    2013-03-01

    A study of processing green-chili pastes (Nam Prig Noom) by pressurization (100-600 MPa/30-50°C/20 min), pasteurization (90°C/3-5 min) or sterilization (121°C/4 min), subsequently, their physical, biochemical and microbiological qualities as well as the sensory acceptance were assessed. It was found that pressure at low levels (100-300 MPa) could improve activities of enzyme peroxidase (POD), polyphenoloxidase (PPO) and lypoxygenase (LOX) in the chili paste by more than 100%, while pressures above 500 or 300 MPa combined with heat would significantly inactivate these enzyme activities. Both color parameters and enzyme activities illustrated that though some enzymatic browning occurred with the pressurized products indicated by b* (yellowish) parameter, the magnitude of these browning was still milder than those thermally treated products indicated by-a* (greenness) and L (lightness) parameters, presumably as a consequence of the Maillard reaction. Moreover, the sensory scores were found in accordance with color parameters, firmness and capsaicin contents.

  5. Kinetics and mechanism of the pressure-induced lamellar order/disorder transition in phosphatidylethanolamine: a time-resolved X-ray diffraction study.

    PubMed

    Mencke, A P; Caffrey, M

    1991-03-05

    By using synchrotron radiation, a movie was made of the X-ray scattering pattern from a biological liquid crystal undergoing a phase transition induced by a pressure jump. The system studied includes the fully hydrated phospholipid dihexadecylphosphatidylethanolamine in the lamellar gel (L beta') phase at a temperature of 68 degrees C and a pressure of 9.7 MPa (1400 psig). Following the rapid release of pressure to atmospheric the L beta' phase transforms slowly into the lamellar liquid crystal (L alpha) phase. The pressure perturbation is applied with the intention of producing a sudden phase disequilibrium followed by monitoring the system as it relaxes to its new equilibrium condition. Remarkably, the proportion of sample in the L alpha phase grows linearly with time, taking 37 s to totally consume the L beta' phase. The time dependencies of radius, peak intensity, and width of the powder diffraction ring of the low-angle (001) lamellar reflections were obtained from the movie by image processing. The concept of an "effective pressure" is introduced to account for the temperature variations that accompany the phase transition and to establish that the observed large transit time is indeed intrinsic to the sample and not due to heat exchange with the environment. The reverse transformation, L alpha to L beta', induced by a sudden jump from atmospheric pressure to 9.7 MPa, is complete in less than 13 s. These measurements represent a new approach for studying the kinetics of lipid phase transitions and for gaining insights into the mechanism of the lamellar order/disorder transition.

  6. Estimation of pulmonary artery pressure in patients with primary pulmonary hypertension by quantitative analysis of magnetic resonance images.

    PubMed

    Murray, T I; Boxt, L M; Katz, J; Reagan, K; Barst, R J

    1994-01-01

    The use of magnetic resonance (MR) images for estimating mean pulmonary artery pressure (PAP) was tested by comparing main pulmonary artery (MPA) and middescending thoracic aorta (AO) caliber in 12 patients with primary pulmonary hypertension (PPH) with measurements made in eight other patients who were observed for diseases other than heart disease (controls). The ratio MPA/AO and the ratios of vessel caliber normalized to body surface area (MPAI and AOI, respectively) were computed. The PAP was obtained in all PPH patients and compared with caliber measurements. The PPH MPA (3.6 +/- 0.8 cm) was significantly larger than the control MPA (2.9 +/- 0.3 cm, p = 0.02); the PPH MPAI (2.8 +/- 0.7 cm/M2) was significantly greater than the control MPA (1.7 +/- 0.2 cm/M2, p < 0.0001). Control AO (2.2 +/- 0.3 cm) was significantly greater than PPH AO (1.6 +/- 0.4 cm, p < 0.0001); there was no significant difference between control AOI (1.3 +/- 0.2 cm/M2) and PPH AOI (1.2 +/- 0.2 cm/M2, p = 0.25). The PPH MPA/AO (2.3 +/- 0.6) was significantly greater than the control MPA/AO (1.3 +/- 0.1, p < 0.0001); overlap between MPA in the two groups was eliminated by indexing values to AO caliber (MPA/AO). Among PPH patients there was strong correlation between PAP and MPA/AO (PAP = 24 x MPA/AO + 3.7, r = 0.7, p < 0.01). Increased MPA/AO denotes the presence of pulmonary hypertension and may be used to estimate PAP.

  7. The application of high-pressure treatment in the reduction of phosphate levels in breakfast sausages.

    PubMed

    O'Flynn, C C; Cruz-Romero, M C; Troy, D J; Mullen, A M; Kerry, J P

    2014-01-01

    This study investigated effects of high pressure (HP) treatment of pork meat at 150 or 300 MPa for 5 min before manufacturing sausages on the reduction of phosphate levels and compared to sausages manufactured with untreated pork meat (control sausages). Improvement in perceived saltiness, juiciness and overall flavour was observed in sausages manufactured using HP-treated meat at 150 MPa and 0% phosphate, compared to control sausages. Sausages manufactured using meat HP-treated at 150 MPa and 0.25% phosphate (P<0.05) improved hardness of sausages. HP-treated meat at 300 MPa and 0% phosphate decreased juiciness and adhesiveness, while at 0.25% phosphate, adversely affected emulsion stability and sensory attributes. HP treatment did not affect significantly the lightness of the sausages; however, elimination of phosphate reduced (P<0.05) the yellowness, while HP treatment at 150 MPa with 0.25 or 0.5% phosphate increased (P<0.05) redness. HP reatment at 150 MPa has potential for reducing phosphate levels in sausages without significant changes in their functionality and improved acceptability. © 2013.

  8. Apparatus for accurate density measurements of fluids based on a magnetic suspension balance

    NASA Astrophysics Data System (ADS)

    Gong, Maoqiong; Li, Huiya; Guo, Hao; Dong, Xueqiang; Wu, J. F.

    2012-06-01

    A new apparatus for accurate pressure, density and temperature (p, ρ, T) measurements over wide ranges of (p, ρ, T) (90 K to 290 K; 0 MPa to 3 MPa; 0 kg/m3 to 2000 kg/m3) is described. This apparatus is based on a magnetic suspension balance which applies the Archimedes' buoyancy principle. In order to verify the new apparatus, comprehensive (p, ρ, T) measurements on pure nitrogen were carried out. The maximum relative standard uncertainty is 0.09% in density. The maximum standard uncertainty in temperature is 5 mK, and that in pressure is 250 Pa for 1.5 MPa and 390 Pa for 3MPa full scale range respectively. The experimental data were compared with selected literature data and good agreements were found.

  9. Anatomic double-bundle anterior cruciate ligament reconstruction restores patellofemoral contact areas and pressures more closely than nonanatomic single-bundle reconstruction.

    PubMed

    Tajima, Goro; Iriuchishima, Takanori; Ingham, Sheila J M; Shen, Wei; van Houten, Albert H; Aerts, Maarten M; Shimamura, Tadashi; Smolinski, Patrick; Fu, Freddie H

    2010-10-01

    To investigate the effects of anterior cruciate ligament (ACL) deficiency and nonanatomic single-bundle (SB) and anatomic double-bundle (DB) ACL reconstruction on the contact characteristics of the patellofemoral (PF) joint. By use of a materials testing system, 7 fresh-frozen human cadaveric knees were tested. The following states were tested: ACL-intact knee, nonanatomic SB ACL reconstruction, anatomic DB ACL reconstruction, and ACL-deficient knee. Hamstring autografts were used. PF contact pressures and areas were measured with pressure-sensitive film at 30°, 60°, and 90° of knee flexion with a constant 100-N load on the quadriceps tendon. The total contact area of ACL-deficient and nonanatomic SB ACL-reconstructed knees (123.8 ± 63.9 and 149.6 ± 79.3 mm(2), respectively) significantly decreased when compared with those of the intact knee (206.1 ± 83.6 mm(2)) at 30° of knee flexion. The lateral-facet peak pressure of ACL-deficient and nonanatomic SB ACL-reconstructed knees (1.12 ± 0.52 and 1.22 ± 0.54 MPa, respectively) significantly decreased when compared with those of the intact knee (0.68 ± 0.38 MPa) at 90° of knee flexion. Anatomic DB ACL reconstruction restored the contact pressures and areas to values similar to those of the intact knee (no significant difference). ACL deficiency resulted in a significant decrease in the total and medial PF contact areas and in an increase in the lateral PF contact pressure. Anatomic DB ACL reconstruction more closely restored normal PF contact area and pressure than did nonanatomic SB ACL reconstruction. Our findings suggest that the changes in the PF contact area and pressures in ACL deficiency and after nonanatomic SB ACL reconstruction may be one of the causes of PF osteoarthritis or other related PF problems found at long-term follow-up. Anatomic DB ACL reconstruction may reduce the incidence of PF problems by closely restoring the contact area and pressure. Copyright © 2010 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  10. Production and Dietary Uptake of PUFA by Piezophilic Bacteria, Implications for Marine Biogeochemistry

    NASA Astrophysics Data System (ADS)

    Fang, J.; Chan, O.; Agarkar, N.; Kato, C.; Sato, T.

    2003-12-01

    Polyunsaturated fatty acids (PUFAs) have been used extensively as proxies for determining the source and preservation of organic matter in marine sediments. However, the origin of polyunsaturated fatty acids in deep-sea sediments is not well understood; the ultimate source of PUFAs is only partially constrained. At issue is whether PUFAs in deep-sea sediments are derived from the primary production of the photic zone or from the in situ piezophilic bacterial production in the deep-sea, or both. In this study, we tested three deep-sea piezophilic strains, Shewanella violacea DSS12, Shewanella benthica DB21MT-2, Moritella yayanosii DB21MT-5, in biosynthesis and dietary uptake of PUFAs. These piezophilic bacteria were characterized by high abundance of unsaturated fatty acids (62-73% of total fatty acids). In particularly, polyunsaturated fatty acids (PUFA) were detected in all piezophiles examined, ranging from 8 to 27% of total fatty acids. M. japonica DSK1 produced 22:6n-3 (cis-4,7,10,13,16,19-docosahexaenoic acid, DHA), whereas the three Shewanella strains produced 20:5n-3 (cis-5,8,11,14,17-eicosapentaenoic acid, EPA) with trace amounts of DHA. The total concentrations of PLFA were higher in strains grown at low pressure (DSK1, 10 Megapascal or MPa, 26,983μ g/g dry wt cells; DSS12, 50 MPa, 23,986 μ g/g), and lower in strains grown at high pressure (DB6705, 85 MPa, 1,901μ g/g; DB21MT-2, 100 MPa, 3,014 μ g/g). When growth media were supplemented with arachidonic acid (AA; C20:4n-6), there was active uptake and cellular incorporation of AA in the hyperpiezophilic bacteria DB21MT-2 (14.7%) and DB21MT-5 (1.4%). No uptake was observed in DSS12. When cells were treated with antibiotic cerulenin, all three strains incorporated AA into cell membranes (13 to 19%). These results suggest that piezophilic bacteria can be an important contributor in producing and reworking of PUFAs in the deep sea, and that that caution must be exercised in using PUFAs in deducing sources of organic matter in the marine sediments.

  11. Inactivation of Staphylococcus aureus and Salmonella enteritidis in tryptic soy broth and caviar samples by high pressure processing.

    PubMed

    Fioretto, F; Cruz, C; Largeteau, A; Sarli, T A; Demazeau, G; El Moueffak, A

    2005-08-01

    We studied the action of high pressure processing on the inactivation of two foodborne pathogens, Staphylococcus aureus ATCC 6538 and Salmonella enteritidis ATCC 13076, suspended in a culture medium and inoculated into caviar samples. The baroresistance of the two pathogens in a tryptic soy broth suspension at a concentration of 10(8)-10(9) colony-forming units/ml was tested for continuous and cycled pressurization in the 150- to 550-MPa range and for 15-min treatments at room temperature. The increase of cycle number permitted the reduction of the pressure level able to totally inactivate both microorganisms in the tryptic soy broth suspension, whereas the effect of different procedure times on complete inactivation of the microorganisms inoculated into caviar was similar.

  12. Critical Temperature Differences of a Standing Wave Thermoacoustic Prime Mover with Various Helium-Based Binary Mixture Working Gases

    NASA Astrophysics Data System (ADS)

    Setiawan, Ikhsan; Nohtomi, Makoto; Katsuta, Masafumi

    2015-06-01

    Thermoacoustic prime movers are energy conversion devices which convert thermal energy into acoustic work. The devices are environmentally friendly because they do not produce any exhaust gases. In addition, they can utilize clean energy such as solar-thermal energy or waste heat from internal combustion engines as the heat sources. The output mechanical work of thermoacoustic prime movers are usually used to drive a thermoacoustic refrigerator or to generate electricity. A thermoacoustic prime mover with low critical temperature difference is desired when we intend to utilize low quality of heat sources such as waste heat and sun light. The critical temperature difference can be significantly influenced by the kinds of working gases inside the resonator and stack's channels of the device. Generally, helium gas is preferred as the working gas due to its high sound speed which together with high mean pressure will yield high acoustic power per unit volume of the device. Moreover, adding a small amount of a heavy gas to helium gas may improve the efficiency of thermoacoustic devices. This paper presents numerical study and estimation of the critical temperature differences of a standing wave thermoacoustic prime mover with various helium-based binary-mixture working gases. It is found that mixing helium (He) gas with other common gases, namely argon (Ar), nitrogen (N2), oxygen (O2), and carbon dioxide (CO2), at appropriate pressures and molar compositions, reduce the critical temperature differences to lower than those of the individual components of the gas mixtures. In addition, the optimum mole fractions of Hegas which give the minimum critical temperature differences are shifted to larger values as the pressure increases, and tends to be constant at around 0.7 when the pressure increases more than 2 MPa. However, the minimum critical temperature differences slightly increase as the pressure increases to higher than 1.5 MPa. Furthermore, we found that the lowest critical temperature difference for He-Armixture gas is around 66 °C which is achieved in pressure range of 1.5 MPa - 2.0 MPa and mole fractions of helium of 0.55 - 0.65. The He-N2 and He-O2 mixture gases demonstrate almost the same performances, both have the lowest critical temperature difference around 59 °C atpressures of 1.0 MPa - 1.5 MPa and helium's mole fractions of 0.35 - 0.55. For all tested gases, the lowest critical temperature difference of around 51 °C is provided by He-CO2 mixture gas at pressures of 0.5 MPa - 1.0 MPa with helium's mole fractions of 0.15 - 0.40.

  13. [Effect of sandblasting particle sizes on bonding strength between porcelain and titanium fabricated by rapid laser forming].

    PubMed

    Zhang, Li-jun; Wang, Zhong-yi; Gao, Bo; Gao, Yang; Zhang, Chun-bao

    2009-11-01

    To evaluate the effect of sandblasting particle sizes of Al2O3 on the bonding strength between porcelain and titanium fabricated by laser rapid forming (LRF). The thermal expansion coefficient, roughness (Ra), contact angle, surface morphology of titanium surface and the bonding strength between titanium and porcelain were evaluated after the titanium surface being sandblasted using different sizes of Al2O3 (50 microm, 120 microm, 250 microm) at a pressure of 0.5 MPa. The cast titanium specimens were used as control, and were sandblasted with 50 microm Al2O3 at the same pressure. The thermal expansion coefficient of cast titanium [(9.84 +/- 0.42) x 10(-6)/ degrees C] and LRF Ti [(9.79 +/- 0.31) x 10(-6)/ degrees C) matched that of Noritake Ti-22 dentin porcelain [(8.93 +/- 0.36) x 10(-6)/ degrees C). When larger size of Al2O3 was used, the value of Ra and contact angle increased as well. There was no significant difference in bonding strength between the LRF Ti-50 microm [(25.91 +/- 1.02) MPa] and cast titanium [(26.42 +/- 1.65) MPa]. Significantly lower bonding strength was found in LRF Ti-120 microm [(21.86 +/- 1.64) MPa] and LRF Ti-250 microm [(19.96 +/- 1.03) MPa]. The bond strength between LRF Ti and Noritake Ti-22 dentin porcelain was above the lower limit value in the ISO 9693 (25 MPa) after using 50 microm Al2O3 sandblasting in 0.5MPa air pressure.

  14. Inactivation of Vibrio parahaemolyticus and Vibrio vulnificus in oysters by high-hydrostatic pressure and mild heat.

    PubMed

    Ye, Mu; Huang, Yaoxin; Chen, Haiqiang

    2012-10-01

    Several recent outbreaks associated with oysters have heightened safety concerns of raw shellfish consumptions, with the majority being attributed to Vibrio spp. The objective of this study was to determine the effect of high-hydrostatic pressure (HHP) followed by mild heating on the inactivation of Vibrio parahaemolyticus and Vibrio vulnificus in live oysters. Inoculated oysters were randomly subjected to: a) pressurization at 200-300 MPa for 2 min at 21 °C, b) mild heat treatment at 40, 45 or 50 °C for up to 20 min and c) pressure treatment of 200-300 MPa for 2 min at 21 °C followed by heat treatment at 40-50 °C. Counts of V. parahaemolyticus and V. vulnificus were then determined using the most probable number (MPN) method. Pressurization at 200-300 MPa for 2 min resulted in various degrees of inactivation, from 1.2 to >7 log MPN/g reductions. Heat treatment at 40 and 45 °C for 20 min only reduced V. parahaemolyticus and V. vulnificus by 0.7-2.5 log MPN/g while at 50 °C for 15 min achieved >7 log MPN/g reduction. HHP and mild heat had synergistic effects. Combinations such as HHP at 250 MPa for 2 min followed by heat treatment at 45 °C for 15 min and HHP at 200 MPa for 2 min followed by heat treatment at 50 °C for 5 min reduced both V. parahaemolyticus and V. vulnificus to non-detectable levels by the MPN method (<3 MPN/g). HHP at ≥275 MPa for 2 min followed by heat treatment at 45 °C for 20 min and HHP at ≥200 MPa for 2 min followed by heat treatment at 50 °C for 15 min completely eliminated both pathogens in oysters (negative enrichment results). This study demonstrated the efficiency of HHP followed by mild heat treatments on inactivation of V. parahaemolyticus and V. vulnificus and could help the industry to establish parameters for processing oysters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Effect of single- and two-cycle high hydrostatic pressure treatments on water properties, physicochemical and microbial qualities of minimally processed squids (todarodes pacificus).

    PubMed

    Zhang, Yifeng; Jiao, Shunshan; Lian, Zixuan; Deng, Yun; Zhao, Yanyun

    2015-05-01

    This study investigated the effect of single- and two-cycle high hydrostatic pressure (HHP) treatments on water properties, physicochemical, and microbial qualities of squids (Todarodes pacificus) during 4 °C storage for up to 10 d. Single-cycle treatments were applied at 200, 400, or 600 MPa for 20 min (S-200, S-400, and S-600), and two-cycle treatments consisted of two 10 min cycles at 200, 400, or 600 MPa, respectively (T-200, T-400, and T-600). HHP-treated samples had higher (P < 0.05) content of P2b (immobilized water) and P21 (myofibril water), but lower P22 (free water) than those of control. The single- and two-cycle HHP treatments at the same pressure level caused no significant difference in water state of squids. The two-cycle HHP treatment was more effective in controlling total volatile basic nitrogen, pH, and total plate counts (TPC) of squids during storage, in which TPC of S-600 and T-600 was 2.9 and 1.8 log CFU/g at 10 d, respectively, compared with 7.5 log CFU/g in control. HHP treatments delayed browning discoloration of the squids during storage, and the higher pressure level and two-cycle HHP were more effective. Water properties highly corresponded with color and texture indices of squids. This study demonstrated that the two-cycle HHP treatment was more effective in controlling microbial growth and quality deterioration while having similar impact on the physicochemical and water properties of squids in comparison with the single-cycle treatment, thus more desirable for extending shelf-life of fresh squids. © 2015 Institute of Food Technologists®

  16. Prediction of contact mechanics in metal-on-metal Total Hip Replacement for parametrically comprehensive designs and loads.

    PubMed

    Donaldson, Finn E; Nyman, Edward; Coburn, James C

    2015-07-16

    Manufacturers and investigators of Total Hip Replacement (THR) bearings require tools to predict the contact mechanics resulting from diverse design and loading parameters. This study provides contact mechanics solutions for metal-on-metal (MoM) bearings that encompass the current design space and could aid pre-clinical design optimization and evaluation. Stochastic finite element (FE) simulation was used to calculate the head-on-cup contact mechanics for five thousand combinations of design and loading parameters. FE results were used to train a Random Forest (RF) surrogate model to rapidly predict the contact patch dimensions, contact area, pressures and plastic deformations for arbitrary designs and loading. In addition to widely observed polar and edge contact, FE results included ring-polar, asymmetric-polar, and transitional categories which have previously received limited attention. Combinations of design and load parameters associated with each contact category were identified. Polar contact pressures were predicted in the range of 0-200 MPa with no permanent deformation. Edge loading (with subluxation) was associated with pressures greater than 500 MPa and induced permanent deformation in 83% of cases. Transitional-edge contact (with little subluxation) was associated with intermediate pressures and permanent deformation in most cases, indicating that, even with ideal anatomical alignment, bearings may face extreme wear challenges. Surrogate models were able to accurately predict contact mechanics 18,000 times faster than FE analyses. The developed surrogate models enable rapid prediction of MoM bearing contact mechanics across the most comprehensive range of loading and designs to date, and may be useful to those performing bearing design optimization or evaluation. Published by Elsevier Ltd.

  17. Combined effects of high hydrostatic pressure and sodium nitrite on color, water holding capacity and texture of frankfurter

    NASA Astrophysics Data System (ADS)

    Jonas, G.; Csehi, B.; Palotas, P.; Toth, A.; Kenesei, Gy; Pasztor-Huszar, K.; Friedrich, L.

    2017-10-01

    The aim of this study was to investigate the effect of sodium nitrite and high hydrostatic pressure on the color, water holding capacity (WHC) and texture characteristics of frankfurter. Three hundred, 450 and 600 MPa (5 minutes; 20 °C) and 50, 75, 100 and 125 ppm (calculated on weight of meat) sodium nitrite were applied. Parameters were measured right after the pressure treatment. Data were evaluated with two-way analysis of variance (p 0.05) with pressure levels and sodium nitrite amounts as factors. Nitrite reduction significantly increased lightness (L*) and resulted in decreased redness (a*) value. The pressure treatments decreased the lightness at all nitrite concentrations and did not significantly affect the red color of frankfurters. Fifty and 75 ppm nitrite and pressurization at 300 or 450 MPa improved the water holding property of frankfurter. The pressure treatment did not significantly affect the WHC but changing the nitrite amount had significant effect on it. Interactive effect occurred between pressure levels and nitrite concentrations for hardness. The pressure treatment increased and the nitrite reduction decreased hardness. Significant changes were found in cohesiveness at 450 and 600 MPa in frankfurters containing 50 and 75 ppm nitrite: pressure treatment at higher levels and nitrite reduction decreased the value of cohesiveness.

  18. Hazards and Safeguards of High Pressure Hydraulic Fatigue Testing

    DTIC Science & Technology

    1990-07-01

    rew e I&64aN neem mde tliF by block mumber) The creation and transfer of hydraulic pressure at the 690-MPa (100,000-psi) level is in itself hazardous...our hydraulic test systems using fluids capable of flow up to the test pressure. Up to 690 MPa (100,000 psi), synthetic oils especially formulated for...HANDLING Our most frequent injury problem has been in handling the large tubular specimens. These are inherently smooth, round, oil -coated, and heavy. For

  19. The Effect of Pressure and Deviatoric Stress on Rock Magnetism

    DTIC Science & Technology

    1988-10-31

    34 I 0 z 0.6 I 0.5 0 50 100 150 200 PRESSURE, MPaI 1.0 UNIAXIAL STRESS H0.9 z U 0.8 Lw 0.7 I 0 .6 I Z 0.5 .. m 0.4 ’ ’ ’ 0 50 100 150 200 m STRESS...DIFFERENCE, MPaI Figure 2-1. Normalized TRM is shown as a function of pressure or stress difference for the first loading cycle on diabase specimens. The

  20. Theoretical and Experimental Study of Deep-Based Structures in Intact and Jointed Rock.

    DTIC Science & Technology

    1979-09-01

    PRESSURE, PV ksi (X 6.9 = MpaI FIGURE A.65 CROWN-INVERT TUNNEL CLOSURE VERSUS VERTICAL PRESSURE - TEST LSUJX-21 231 QO2 wd 0 -J0 z -2 S-4 510 15 2 VERTICAL...J "A’ %V-FW ’-’X 2530I • 10- - - - - - -0, I 8 C- uj C,, (4 z 0 1 2 VERTICAL PRESSURE, Pv - ksi (X 6.9 = MPaI MA-5762-200 FIGURE A.91 LATERAL

  1. Deciphering the adaptation strategies of Desulfovibrio piezophilus to hydrostatic pressure through metabolic and transcriptional analyses.

    PubMed

    Amrani, Amira; van Helden, Jacques; Bergon, Aurélie; Aouane, Aicha; Ben Hania, Wajdi; Tamburini, Christian; Loriod, Béatrice; Imbert, Jean; Ollivier, Bernard; Pradel, Nathalie; Dolla, Alain

    2016-08-01

    Desulfovibrio piezophilus strain C1TLV30(T) is a mesophilic piezophilic sulfate-reducer isolated from Wood Falls at 1700 m depth in the Mediterranean Sea. In this study, we analysed the effect of the hydrostatic pressure on this deep-sea living bacterium at the physiologic and transcriptomic levels. Our results showed that lactate oxidation and energy metabolism were affected by the hydrostatic pressure. Especially, acetyl-CoA oxidation pathway and energy conservation through hydrogen and formate recycling would be more important when the hydrostatic pressure is above (26 MPa) than below (0.1 MPa) the optimal one (10 MPa). This work underlines also the role of the amino acid glutamate as a piezolyte for the Desulfovibrio genus. The transcriptomic analysis revealed 146 differentially expressed genes emphasizing energy production and conversion, amino acid transport and metabolism and cell motility and signal transduction mechanisms as hydrostatic pressure responding processes. This dataset allowed us to identify a sequence motif upstream of a subset of differentially expressed genes as putative pressure-dependent regulatory element. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Thermal and high pressure inactivation kinetics of blueberry peroxidase.

    PubMed

    Terefe, Netsanet Shiferaw; Delon, Antoine; Versteeg, Cornelis

    2017-10-01

    This study for the first time investigated the stability and inactivation kinetics of blueberry peroxidase in model systems (McIlvaine buffer, pH=3.6, the typical pH of blueberry juice) during thermal (40-80°C) and combined high pressure-thermal processing (0.1-690MPa, 30-90°C). At 70-80°C, the thermal inactivation kinetics was best described by a biphasic model with ∼61% labile and ∼39% stable fractions at temperature between 70 and 75°C. High pressure inhibited the inactivation of the enzyme with no inactivation at pressures as high as 690MPa and temperatures less than 50°C. The inactivation kinetics of the enzyme at 60-70°C, and pressures higher than 500MPa was best described by a first order biphasic model with ∼25% labile fraction and 75% stable fraction. The activation energy values at atmospheric pressure were 548.6kJ/mol and 324.5kJ/mol respectively for the stable and the labile fractions. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  3. Investigation on the relationship between overpressure and sub-harmonic response from encapsulated microbubbles

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Fan, Ting-Bo; Xu, Di; Zhang, Dong

    2014-10-01

    Sub-harmonic component generated from microbubbles is proven to be potentially used in noninvasive blood pressure measurement. Both theoretical and experimental studies are performed in the present work to investigate the dependence of the sub-harmonic generation on the overpressure with different excitation pressure amplitudes and pulse lengths. With 4-MHz ultrasound excitation at an applied acoustic pressure amplitude of 0.24 MPa, the measured sub-harmonic amplitude exhibits a decreasing change as overpressure increases; while non-monotonic change is observed for the applied acoustic pressures of 0.36 MPa and 0.48 MPa, and the peak position in the curve of the sub-harmonic response versus the overpressure shifts toward higher overpressure as the excitation pressure amplitude increases. Furthermore, the exciting pulse with long duration could lead to a better sensitivity of the sub-harmonic response to overpressure. The measured results are explained by the numerical simulations based on the Marmottant model. The numerical simulations qualitatively accord with the measured results. This work might provide a preliminary proof for the optimization of the noninvasive blood pressure measurement through using sub-harmonic generation from microbubbles.

  4. Effect of confining pressure on diffusion coefficients in clay-rich, low-permeability sedimentary rocks.

    PubMed

    Xiang, Y; Al, T; Mazurek, M

    2016-12-01

    The effect of confining pressure (CP) on the diffusion of tritiated-water (HTO) and iodide (I - ) tracers through Ordovician rocks from the Michigan Basin, southwestern Ontario, Canada, and Opalinus Clay from Schlattingen, Switzerland was investigated in laboratory experiments. Four samples representing different formations and lithologies in the Michigan Basin were studied: Queenston Formation shale, Georgian Bay Formation shale, Cobourg Formation limestone and Cobourg Formation argillaceous limestone. Estimated in situ vertical stresses at the depths from which the samples were retrieved range from 12.0 to 17.4MPa (Michigan Basin) and from 21 to 23MPa (Opalinus Clay). Effective diffusion coefficients (D e ) were determined in through-diffusion experiments. With HTO tracer, applying CP resulted in decreases in D e of 12.5% for the Queenston Formation shale (CP max =12MPa), 30% for the Georgian Bay Formation shale (15MPa), 34% for the Cobourg Formation limestone (17.4MPa), 31% for the Cobourg Formation argillaceous limestone (17.4MPa) and 43-46% for the Opalinus Clay (15MPa). Decreases in D e were larger for the I - tracer: 13.8% for the Queenston shale, 42% for the Georgian Bay shale, 50% for the Cobourg Formation limestone, 55% for the Cobourg Formation argillaceous limestone and 63-68% for the Opalinus Clay. The tracer-specific nature of the response is attributed to an increasing influence of anion exclusion as the pore size decreases at higher CP. Results from the shales (including Opalinus Clay) indicate that the pressure effect on D e can be represented by a linear relationship between D e and ln(CP), which provides valuable predictive capability. The nonlinearity results in a relatively small change in D e at high CP, suggesting that it is not necessary to apply the exact in situ pressure conditions in order to obtain a good estimate of the in situ diffusion coefficient. Most importantly, the CP effect on shale is reversible (±12%) suggesting that, for argillaceous rocks, it is possible to obtain D e values that are representative of the in-situ condition by conducting measurements on re-pressurized samples that were obtained with standard drilling practices. This may not be the case for brittle rock samples as the results from limestone suggest that irreversible damage occurred during the pressure cycling. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Frequency-Dependent Evaluation of the Role of Definity in Producing Sonoporation of Chinese Hamster Ovary Cells

    PubMed Central

    Forbes, Monica M.; Steinberg, Ryan L.; O'Brien, William D.

    2011-01-01

    Objectives Sonoporation uses ultrasound (US) and ultrasound contrast agents (UCAs) to enhance cell permeabilization, thereby allowing delivery of therapeutic compounds non-invasively into specific target cells. The objective of this study was to elucidate the biophysical mechanism of sonoporation, specifically the role of UCAs as well as exposure frequency. The inertial cavitation (IC) thresholds of the lipid-shelled octafluoropropane UCA were directly compared to the levels of generated sonoporation to determine the involvement of UCAs in producing sonoporation. Methods Chinese hamster ovary cells were exposed as a monolayer in a solution of the UCA, 500,000-Da fluorescein isothiocyanate-dextran, and phosphate-buffered saline to 30 seconds of pulsed US (pulse duration, 5 cycles; pulse repetition frequency, 10 Hz) at 3 frequencies (0.92, 3.2, and 5.6 MHz). The peak rarefactional pressure (Pr) was varied over a range from 4 kPa to 4.1 MPa, and 5 to 7 independent replicates were performed at each pressure. Results The experimental observations demonstrated that IC was likely not the physical mechanism for sonoporation. Sonoporation activity was observed at pressure levels below the threshold for IC of the UCA (1.27 ± 0.32 MPa at 0.92 MHz, 0.84 ± 0.19 MPa at 3.2 MHz, and 2.57 ± 0.26 MPa at 5.6 MHz) for all 3 frequencies examined. The Pr values at which the peak sonoporation activity occurred were 1.4 MPa at 0.92 MHz, 0.25 MPa at 3.2 MHz, and 2.3 MPa at 5.6 MHz. The UCA collapse thresholds followed a similar trend. A 1-way analysis of variance test confirmed that sonoporation activity differed among the 3 frequencies examined (P = 10−8). Conclusions These results thus suggest that sonoporation is related to linear and/or nonlinear oscillation of the UCA occurring at pressure levels below the IC threshold. PMID:21193706

  6. Experimental Study of Hybrid Fractures and the Transition From Joints to Faults

    NASA Astrophysics Data System (ADS)

    Ramsey, J. M.; Chester, F. M.

    2003-12-01

    Joints and faults are end members of a continuous spectrum of brittle fractures including the hybrid fractures, hypothesized to form under mixed compressive and tensile stress. However, unequivocal evidence for the existence of hybrid fractures has not been presented. To investigate this transition, we have conducted triaxial extension experiments on dog-bone shaped cylindrical samples of Carrara marble at room temperature, an axial extension rate of 2x10-2 mm s-1, and confining pressures between 7.5 and 170 MPa. Two parallel suites of experiments were completed, one using very weak, latex jacketing to obtain accurate failure strength, and another using copper foil jacketing to preserve fracture surfaces. The combined data set provides strong evidence for the existence of hybrid fractures on the basis of the progressive change in failure strength, fracture orientation, and fracture surface morphology from joints to faults. At the lowest confining pressures (7.5 to 60 MPa), fractures are oriented approximately parallel to the maximum principal compressive stress, form at a tensile axial stress of approximately -7.75 MPa (i.e. the uniaxial tensile strength), and display fracture surfaces characterized by many reflective grain-scale cleavage faces, consistent with jointing. At the highest confining pressures (130 to 170 MPa), fractures are oriented from 13.4 to 21.6 degrees to the maximum principal compressive stress, form under completely compressive stress states where the axial stress is between 0 and 4.3 MPa, and are characterized by short slip lineations and powdery, finely comminuted grains consistent with faulting. At intermediate confining pressures (70 to 120 MPa), fractures are oriented from 3.7 to 12.4 degrees to the maximum principal compressive stress, form under mixed stress conditions with the axial stress ranging from -10.6 to -3.0 MPa, and display both reflective cleavage faces and short slip lineations with comminuted grains, consistent with hybrid fracturing.

  7. Mechanoregulation of human articular chondrocyte aggrecan and type II collagen expression by intermittent hydrostatic pressure in vitro.

    PubMed

    Ikenoue, Takashi; Trindade, Michael C D; Lee, Mel S; Lin, Eric Y; Schurman, David J; Goodman, Stuart B; Smith, R Lane

    2003-01-01

    This study addressed the hypothesis that duration and magnitude of applied intermittent hydrostatic pressure (IHP) are critical parameters in regulation of normal human articular chondrocyte aggrecan and type II collagen expression. Articular chondrocytes were isolated from knee cartilage and maintained as primary, high-density monolayer cultures. IHP was applied at magnitudes of 1, 5 and 10 MPa at 1 Hz for durations of either 4 h per day for one day (4 x 1) or 4 h per day for four days (4 x 4). Total cellular RNA was isolated and analyzed for aggrecan and type II collagen mRNA signal levels using specific primers and reverse transcription polymerase chain reaction (RT-PCR) nested with beta-actin primers as internal controls. With a 4x1 loading regimen, aggrecan mRNA signal levels increased 1.3- and 1.5-fold at 5 and 10 MPa, respectively, relative to beta-actin mRNA when compared to unloaded cultures. Changing the duration of loading to a 4x4 regimen increased aggrecan mRNA signal levels by 1.4-, 1.8- and 1.9-fold at loads of 1, 5 and 10 MPa, respectively. In contrast to the effects of IHP on aggrecan, type II collagen mRNA signal levels were only upregulated at loads of 5 and 10 MPa with the 4x4 loading regimen. Analysis of cell-associated protein by western blotting confirmed that IHP increased aggrecan and type II collagen in chondrocyte extracts. These data demonstrate that duration and magnitude of applied IHP differentially alter chondrocyte matrix protein expression. The results show that IHP provides an important stimulus for increasing cartilage matrix anabolism and may contribute to repair and regeneration of damaged or diseased cartilage.

  8. Separation of major catechins from green tea by ultrahigh pressure extraction.

    PubMed

    Jun, Xi; Shuo, Zhao; Bingbing, Lu; Rui, Zhang; Ye, Li; Deji, Shen; Guofeng, Zhou

    2010-02-15

    This study presents a novel extraction technique, ultrahigh pressure extraction, to obtain major catechins from green tea leaves. The effects of various high pressure level (100, 200, 300, 400, 500, 600 MPa) on the extract are examined. HPLC chromatographic analyses determine the concentration of four major catechins and caffeine. The extraction yields of active ingredients with ultrahigh pressure extraction (400 MPa pressure) for only 15 min were given the same as those of organic solvent extraction for 2h. These excellent results for the ultrahigh pressure extraction are promising for the future separation of active ingredients from traditional Chinese herbal medicine. Copyright 2009 Elsevier B.V. All rights reserved.

  9. Pre-compression volume on flow ripple reduction of a piston pump

    NASA Astrophysics Data System (ADS)

    Xu, Bing; Song, Yuechao; Yang, Huayong

    2013-11-01

    Axial piston pump with pre-compression volume(PCV) has lower flow ripple in large scale of operating condition than the traditional one. However, there is lack of precise simulation model of the axial piston pump with PCV, so the parameters of PCV are difficult to be determined. A finite element simulation model for piston pump with PCV is built by considering the piston movement, the fluid characteristic(including fluid compressibility and viscosity) and the leakage flow rate. Then a test of the pump flow ripple called the secondary source method is implemented to validate the simulation model. Thirdly, by comparing results among the simulation results, test results and results from other publications at the same operating condition, the simulation model is validated and used in optimizing the axial piston pump with PCV. According to the pump flow ripples obtained by the simulation model with different PCV parameters, the flow ripple is the smallest when the PCV angle is 13°, the PCV volume is 1.3×10-4 m3 at such operating condition that the pump suction pressure is 2 MPa, the pump delivery pressure 15 MPa, the pump speed 1 000 r/min, the swash plate angle 13°. At the same time, the flow ripple can be reduced when the pump suction pressure is 2 MPa, the pump delivery pressure is 5 MPa,15 MPa, 22 MPa, pump speed is 400 r/min, 1 000 r/min, 1 500 r/min, the swash plate angle is 11°, 13°, 15° and 17°, respectively. The finite element simulation model proposed provides a method for optimizing the PCV structure and guiding for designing a quieter axial piston pump.

  10. Geotechnical Feasibility Analysis of Compressed Air Energy Storage (CAES) in Bedded Salt Formations: a Case Study in Huai'an City, China

    NASA Astrophysics Data System (ADS)

    Zhang, Guimin; Li, Yinping; Daemen, Jaak J. K.; Yang, Chunhe; Wu, Yu; Zhang, Kai; Chen, Yanlong

    2015-09-01

    The lower reaches of the Yangtze River is one of the most developed regions in China. It is desirable to build compressed air energy storage (CAES) power plants in this area to ensure the safety, stability, and economic operation of the power network. Geotechnical feasibility analysis was carried out for CAES in impure bedded salt formations in Huai'an City, China, located in this region. First, geological investigation revealed that the salt groups in the Zhangxing Block meet the basic geological conditions for CAES storage, even though the possible unfavorable characteristics of the salt formations include bedding and different percentages of impurities. Second, mechanical tests were carried out to determine the mechanical characteristics of the bedded salt formations. It is encouraging that the samples did not fail even when they had undergone large creep deformation. Finally, numerical simulation was performed to evaluate the stability and volume shrinkage of the CAES under the following conditions: the shape of a single cavern is that of a pear; the width of the pillar is adopted as two times the largest diameter; three regular operating patterns were adopted for two operating caverns (internal pressure 9-10.5 MPa, 10-11.5 MPa, and 11-12.5 MPa), while the other two were kept at high pressure (internal pressure 10.5, 11.5, and 12.5 MPa) as backups; an emergency operating pattern in which two operating caverns were kept at atmospheric pressure (0.1 MPa) for emergency while the backups were under operation (9-10.5 MPa), simulated for 12 months at the beginning of the 5th year. The results of the analysis for the plastic zone, displacement, and volume shrinkage support the feasibility of the construction of an underground CAES power station.

  11. Effects of High Hydrostatic Pressure on Bacterial Growth on Human Ossicles Explanted from Cholesteatoma Patients

    PubMed Central

    Ostwald, Jürgen; Lindner, Tobias; Zautner, Andreas Erich; Arndt, Kathleen; Pau, Hans Wilhelm; Podbielski, Andreas

    2012-01-01

    Background High hydrostatic pressure (HHP) treatment can eliminate cholesteatoma cells from explanted human ossicles prior to re-insertion. We analyzed the effects of HHP treatment on the microbial flora on ossicles and on the planktonic and biofilm states of selected isolates. Methodology Twenty-six ossicles were explanted from cholesteatoma patients. Five ossicles were directly analyzed for microbial growth without further treatment. Fifteen ossicles were cut into two pieces. One piece was exposed to HHP of 350 MPa for 10 minutes. Both the treated and untreated (control) pieces were then assessed semi-quantitatively. Three ossicles were cut into two pieces and exposed to identical pressure conditions with or without the addition of one of two different combinations of antibiotics to the medium. Differential effects of 10-minute in vitro exposure of planktonic and biofilm bacteria to pressures of 100 MPa, 250 MPa, 400 MPa and 540 MPa in isotonic and hypotonic media were analyzed using two patient isolates of Staphylococcus epidermidis and Neisseria subflava. Bacterial cell inactivation and biofilm destruction were assessed by colony counting and electron microscopy. Principal Findings A variety of microorganisms were isolated from the ossicles. Irrespective of the medium, HHP treatment at 350 MPa for 10 minutes led to satisfying but incomplete inactivation especially of Gram-negative bacteria. The addition of antibiotics increased the efficacy of elimination. A comparison of HHP treatment of planktonic and biofilm cells showed that the effects of HPP were reduced by about one decadic logarithmic unit when HPP was applied to biofilms. High hydrostatic pressure conditions that are suitable to inactivate cholesteatoma cells fail to completely sterilize ossicles even if antibiotics are added. As a result of the reduced microbial load and the viability loss of surviving bacteria, however, there is a lower risk of re-infection after re-insertion. PMID:22291908

  12. An electrothermal plasma model considering polyethylene and copper ablation based on ignition experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Jiangbo; Li, Xingwen; Hang, Yuhua; Yang, Weihong

    2018-06-01

    In order to study the characteristics of electrothermal plasma interaction with energetic materials, especially the ignition ability, a novel model considering polyethylene and copper ablation is developed, and an ignition experiment system is set up. The parameters of the plasma and the surface conditions of the energetic materials are measured in the testing. The results show the measured first peak pressure to be ~2.2 MPa, the second peak pressure to be ~3.9 MPa, and the visible flame velocity to be ~2000 m s‑1. Circular pits of the order of microns and nanometers in size are observed on the surface of the energetic materials. Further, the parameters of the plasma, including static pressure, total pressure, density, temperature, velocity, copper concentration and PE concentration, are calculated and analyzed by the established model, under discharge currents of 9 kA. The simulation is similar to those of experimental results. A shock wave is observed in the experiment and is presented in the calculations; it plays an important role in the performance of the plasma in the nozzle region, where the parameters of the plasma variation trends are very complex. With the aim of obtaining the overall performance of the plasma, the coupling characteristics of multiple parameters must be taken into account, in accordance with the developed electrothermal plasma model.

  13. Differences in inactivation of Escherichia coli O157:H7 strains in ground beef following repeated high pressure processing treatments and cold storage.

    PubMed

    Zhou, Yijing; Karwe, Mukund V; Matthews, Karl R

    2016-09-01

    High pressure processing (HPP) is a safe non-thermal processing method to effectively improve food safety. In this study, HPP treatment followed by cold storage was investigated to reduce Escherichia coli O157:H7 in ground beef. Experiments were conducted using ground beef contaminated with six E. coli O157:H7 strains one at a time or as a cocktail. Control and inoculated ground beef samples were HPP at 25 °C, 35 °C, and 45 °C, at 400 MPa and pre-determined number of pressure cycles totaling a holding time of 15 min. Optimum HPP parameters were 25 °C, 400 MPa at five pressure cycles of 3 min each which achieved a 5-log reduction of E. coli O157:H7 in ground beef. Storing HPP processed ground beef at 4 °C or -20 °C further decreased (P < 0.05) the E. coli O157:H7 population. An effective HPP treatment (5-log reduction) was developed that could be used post-processing to reduce the risk associated with E. coli O157:H7 contamination in ground beef. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The effect of high-pressure processing on colour, bioactive compounds, and antioxidant activity in smoothies during refrigerated storage.

    PubMed

    Andrés, Víctor; Villanueva, María J; Tenorio, María D

    2016-02-01

    The effects of high-pressure processing--HPP--(450 and 600 MPa/3 min/20 °C) on the colour, carotenoids, ascorbic acid, polyphenols and antioxidant activity (FRAP and DPPH) of a smoothie were compared to thermal processing (80 °C/3 min). Stability during 45 days at 4 °C was also evaluated. HPP samples showed slight differences (p < 0.05) in colour compared to untreated smoothies. Both HPP significantly increased the extractability of lycopene, β-carotene and polyphenols compared to untreated samples. After HPP, ascorbic acid was retained by more than 92% of the initial content. The best results for antioxidant activity were obtained when HPP was applied at 600 MPa. FRAP and DPPH showed a high correlation with ascorbic acid (R(2) = 0.7135 and 0.8107, respectively) and polyphenolic compounds (R(2) = 0.6819 and 0.6935, respectively), but not with total carotenoids. Changes in bioactive compounds during the storage period were lower in the HPP smoothie than in the thermal-treated sample. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Isochoric p-{rho}-T measurements on 1,1-difluoroethane (R152a) from 158 to 400 K and 1,1,1-trifluoroethane (R143a) from 166 to 400 K at pressures to 35 MPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magee, J.W.

    1998-09-01

    The p-{rho}-T relationships have been measured for 1,1-difluoroethane (R152a) and 1,1,1-trifluoroethane (R143a) by an isochoric method with gravimetric determinations of the amount of substance. Temperatures ranged from 158 to 400K for R152a and from 166 to 400 K for R143a, while pressures were up to 35 MPa. Measurements were conducted on compressed liquid samples. Determinations of saturated liquid densities were made by extrapolating each isochore to the vapor pressure, and determining the temperature and density at the intersection. Published p-{rho}-T data are in good agreement with this study. For the p-{rho}-T apparatus, the uncertainty of the temperature is {+-}0.03 K,more » and for pressure it is {+-}0.01% at p > 3 MPa and {+-}0.05% at p > 3 MPa and {+-}0.05% at p < 3MPa. The principal source of uncertainty is the cell volume ({approximately}28.5 cm{sup 3}), which has a standard uncertainty of {+-}0.003 cm{sup 3}. When all components of experimental uncertainty are considered, the expanded relative uncertainty (with a coverage factor k = 2 and thus a two-standard deviation estimate) of the density measurement is estimated to be {+-}0.05%.« less

  16. Experimental study of catalytic hydrogenation by using an in-situ hydrogen measuring technique. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, S.H.; Klinzing, G.E.; Cheng, Y.S.

    1984-12-01

    An in-situ technique for measuring hydrogen concentration (partial pressure) had been previously used to measure static properties (hydrogen solubilities, vapor pressures of hydrocarbons, etc.). Because of its good precision (2% relative error) and relatively short respond time (9.7 to 2.0 seconds at 589 to 728K), the technique was successfully applied to a dynamic study of hydrogenation reactions in this work. Furthermore, the technique is to be tested for industrial uses. Hydrogen/1-methylnaphthalene system was experimentally investigated in a one-liter autoclave equipped with a magnetically driven stirrer and temperature controlling devices. Catalytic hydrogenation of 1-methylnaphthalene was studied in the presence of sulfidedmore » Co-Mo-Al2O3 catalyst. In addition, the vapor/liquid equilibrium relationship was determined by using this technique. Hydrogenation reaction runs were performed at temperatures of 644.1, 658.0 and 672.0K and pressures up to 9.0 MPa. The ring hydrogenation, resulting in 1- and 5-methyltetralin, was found to be the dominant reaction. This is in agreement with cited literature. Effects of hydrogen partial pressure, operating temperature, as well as presulfided catalyst are also investigated and discussed in this work. The vapor pressure of 1-methylnaphthalene was measured over a temperature range of 555.2 to 672.0K. The results are in good agreement with literature data. Measurements for hydrogen solubility in 1-methylnaphthalene were conducted over temperature and pressure range of 598 to 670K and 5.2 to 8.8 MPa, respectively. Similar to previously reported results, the hydrogen solubility increases with increasing temperature when total pressure is held constant. A linear relation is found between the hydrogen solubility and hydrogen partial pressure. 21 refs., 13 figs., 10 tabs.« less

  17. Bonding resin thixotropy and viscosity influence on dentine bond strength.

    PubMed

    Niem, Thomas; Schmidt, Alexander; Wöstmann, Bernd

    2016-08-01

    To investigate the influence of bonding resin thixotropy and viscosity on dentine tubule penetration, blister formation and consequently on dentine bond strength as a function of air-blowing pressure (air-bp) intensity. Two HEMA-free, acetone-based, one-bottle self-etch adhesives with similar composition except disparate silica filler contents and different bonding resin viscosities were investigated. The high-filler-containing adhesive (G-Bond) featured a lower viscous bonding resin with inherent thixotropic resin (TR) properties compared to the low-filler-containing adhesive (iBond) exhibiting a higher viscous bonding resin with non-thixotropic resin (NTR) properties. Shear bond strength tests for each adhesive with low (1.5bar; 0.15MPa; n=16) and high (3.0bar; 0.30MPa; n=16) air-bp application were performed after specimen storage in distilled water (24h; 37.0±1.0°C). Results were analysed using a Student's t-test to identify statistically significant differences (p<0.05). Fracture surfaces of TR adhesive specimens were morphologically characterised by SEM. Statistically significant bond strength differences were obtained for the thixotropic resin adhesive (high-pressure: 24.6MPa, low-pressure: 9.6MPa). While high air-bp specimens provided SEM images revealing resin-plugged dentine tubules, resin tags and only marginally blister structures, low air-bp left copious droplets and open dentine tubules. In contrast, the non-thixotropic resin adhesive showed no significant bond strength differences (high-pressure: 9.3MPa, low-pressure: 7.6MPa). A pressure-dependent distinct influence of bonding resin thixotropy and viscosity on dentine bond strength has been demonstrated. Stronger adhesion with high air-bp application is explained by improved resin fluidity and facilitated resin penetration into dentine tubules. Filler particles used in adhesive systems may induce thixotropic effects in bonding resin layers, accounting for improved free-flowing resin properties. In combination with high air-bp this effect allows an easy plugging of dentine tubules and elimination of blister structures, both resulting in superior dentine bond strength. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A limited sampling model for estimation of total and unbound mycophenolic acid (MPA) area under the curve (AUC) in hematopoietic cell transplantation (HCT).

    PubMed

    Ng, Juki; Rogosheske, John; Barker, Juliet; Weisdorf, Daniel; Jacobson, Pamala A

    2006-06-01

    Renal transplant patients with suboptimal mycophenolic acid (MPA) areas under the curves (AUCs) are at greater risk of acute rejection. In hematopoietic cell transplantation, a low MPA AUC is also associated with a higher incidence of acute graft versus host disease. Therefore, a limited sampling model was developed and validated to simultaneously estimate total and unbound MPA AUC0-12 in hematopoietic cell transplantation patients. Intensive pharmacokinetic sampling was performed at steady state between days 3 to 7 posttransplant in 73 adult subjects while receiving prophylactic mycophenolate mofetil 1 g per 12 hours orally or intravenously plus cyclosporine. Total and unbound MPA plasma concentrations were measured, and total and unbound AUC0-12 was determined using noncompartmental analysis. Regression analysis was then performed to build IV and PO, total and unbound AUC0-12 models from the first 34 subjects. The predictive performance of these models was tested in the next 39 subjects. Trough concentrations poorly estimate observed total and unbound AUC0-12 (r<0.48). A model with 3 concentrations (2-, 4-, and 6-hour post start of infusion) best estimated observed total and unbound AUC0-12 after IV dosing (r>0.99). Oral total and unbound AUC0-12 was more difficult to estimate and required at least 4 concentrations (0-, 1-, 2-, and 6-hour post dose) in the model (r>0.85). The predictive performance of the final models was good. Eighty-three percent of IV and 70% of PO AUC0-12 predictions fell within +/-20% of the observed values without significant bias. Trough MPA concentrations do not accurately describe MPA AUC0-12. Three intravenous (2-, 4-, 6-hour post start of infusion) or 4 oral (0-, 1-, 2-, and 6-hour post dose) MPA plasma concentrations measured over a 12-hour dosing interval will estimate the total and unbound AUC0-12 nearly as well as intensive pharmacokinetic sampling with good precision and low bias. This approach simplifies AUC0-12 targeting of MPA post hematopoietic cell transplantation.

  19. Enhanced performance of ferroelectric materials under hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Chauhan, Aditya; Patel, Satyanarayan; Wang, Shuai; Novak, Nikola; Xu, Bai-Xiang; Lv, Peng; Vaish, Rahul; Lynch, Christopher S.

    2017-12-01

    Mechanical confinement or restricted degrees of freedom have been explored for its potential to enhance the performance of ferroelectric devices. It presents an easy and reversible method to tune the response for specific applications. However, such studies have been mainly limited to uni- or bi-axial stress. This study investigates the effect of hydrostatic pressure on the ferroelectric behavior of bulk polycrystalline Pb0.99Nb0.02(Zr0.95Ti0.05)0.98O3. Polarization versus electric field hysteresis plots were generated as a function of hydrostatic pressure for a range of operating temperatures (298-398 K). The application of hydrostatic pressure was observed to induce anti-ferroelectric like double hysteresis loops. This in turn enhances the piezoelectric, energy storage, energy harvesting, and electrocaloric effects. The hydrostatic piezoelectric coefficient (dh) was increased from 50 pCN-1 (0 MPa) to ˜900 pC N-1 (265 MPa) and ˜3200 pCN-1 (330 MPa) at 298 K. Energy storage density was observed to improve by more than 4 times under pressure, in the whole temperature range. The relative change in entropy was also observed to shift from ˜0 to 4.8 J kg-1 K-1 under an applied pressure of 325 MPa. This behavior can be attributed to the evolution of pinched hysteresis loops that have been explained using a phenomenological model. All values represent an improvement of several hundred percent compared to unbiased performance, indicating the potential benefits of the proposed methodology.

  20. Pressure threshold for shock wave induced renal hemorrhage.

    PubMed

    Mayer, R; Schenk, E; Child, S; Norton, S; Cox, C; Hartman, C; Cox, C; Carstensen, E

    1990-12-01

    Studies were performed with an interest in determining a pressure threshold for extracorporeal shock wave induced renal damage. Histological evidence of intraparenchymal hemorrhage was used as an indicator of tissue trauma. Depilated C3H mice were anesthetized and placed on a special frame to enhance visualization and treatment of the kidneys in situ. A Wolf electrohydraulic generator and 9 French probe designed for endoscopic use were utilized to expose the kidneys to 10 double spherically divergent shock waves. Measurements of the shock waves revealed two positive pressure peaks of similar magnitude for each spark discharge. The kidneys were exposed to different peak pressures by choice of distance from the spark source and were removed immediately after treatment for histologic processing. A dose response was noted with severe corticomedullary damage apparent following 15 to 20 MPa shocks. Hemorrhage was more apparent in the medulla where evidence of damage could be seen following pressures as low as three to five MPa. When a latex membrane was interposed to prevent possible collapse of the initial bubble from the spark source against the skin surface, histological evaluation revealed substantial reduction of severe tissue damage associated with the highest pressures tested, 20 MPa. However, the threshold level for evidence of hemorrhage remained about three to five MPa. Hydrophonic measurements indicated that the membrane allowed transmission of the acoustic shock waves and suggested that collapse of the bubble generated by electrohydraulic probes may have local effects due to a cavitation-like mechanism.

  1. Energy Evolution Mechanism and Confining Pressure Effect of Granite under Triaxial Loading-Unloading Cycles

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Miao, Sheng-jun

    2018-05-01

    Rock mass undergoes some deformational failure under the action of external loads, a process known to be associated with energy dissipation and release. A triaxial loading-unloading cycle test was conducted on granite in order to investigate the energy evolution pattern of rock mass under the action of external loads. The study results demonstrated: (1) The stress peaks increased by 50% and 22% respectively and the pre-peak weakening became more apparent in the ascending process of the confining pressure from 10MPa to 30MPa; the area enclosed by the hysteresis loop corresponding to 30MPa diminished by nearly 60% than that corresponding to 10MPa, indicating a higher confining pressure prohibits rock mass from plastic deformation and shifts strain toward elastic deformation. (2) In the vicinity of the strength limit, the slope of dissipation energy increased to 1.6 from the original 0.7 and the dissipation energy grew at an accelerating rate, demonstrating stronger propagation and convergence of internal cracks. (3) At a pressure of 70% of the stress peak, the elastic energy of the granite accounted for 88% of its peak value, suggesting the rock mechanical energy from the outside mostly changes into the elastic energy inside the rock, with little energy loss.(4) Prior to test specimen failure, the axial bearing capacity dropped with a decreasing confining pressure in an essentially linear way, and the existence of confirming pressure played a role in stabilizing the axial bearing capacity.

  2. Microstructure, Pitting Corrosion Resistance and Impact Toughness of Duplex Stainless Steel Underwater Dry Hyperbaric Flux-Cored Arc Welds

    PubMed Central

    Hu, Yu; Shen, Xiao-Qin; Wang, Zhong-Min

    2017-01-01

    Duplex stainless steel multi-pass welds were made at 0.15 MPa, 0.45 MPa, and 0.75 MPa pressure, simulating underwater dry hyperbaric welding by the flux-cored arc welding (FCAW) method, with welds of normal pressure as a benchmark. The purpose of this work was to estimate the effect of ambient pressure on the microstructure, pitting corrosion resistance and impact toughness of the weld metal. The microstructure measurement revealed that the ferrite content in the weld metal made at 0.45 MPa is the lowest, followed by that of 0.75 MPa and 0.15 MPa. The analysis of potentiodynamic polarization tests at 30 °C and 50 °C demonstrated that the pitting corrosion resistance depends on the phases of the lower pitting resistance equivalent numbers (PREN), secondary austenite and ferrite. The weld metal made at 0.45 MPa had the best resistance to pitting corrosion at 30 °C and 50 °C with the highest PRENs of secondary austenite and ferrite. The weld metal made at 0.15 MPa displayed the lowest pitting corrosion resistance at 30 °C with the lowest PREN of secondary austenite, while the weld metal made at 0.75 MPa was the most seriously eroded after being tested at 50 °C for the lowest PREN of ferrite, with large cluster pits seen in ferrite at 50 °C. The impact tests displayed a typical ductile-brittle transition because of the body-centered cubic (BCC) structure of the ferrite when the test temperature was lowered. All the weld metals met the required value of 34 J at −40 °C according to the ASTM A923. The highest ferrite content corresponded to the worst impact toughness, but the highest toughness value did not correspond to the greatest austenite content. With the decreasing of the test temperature, the drop value of absorbed energy was correlated to the ferrite content. Additionally, in this work, the weld metal made at 0.45 MPa had the best combined properties of pitting resistance and impact toughness. PMID:29258262

  3. Microstructure, Pitting Corrosion Resistance and Impact Toughness of Duplex Stainless Steel Underwater Dry Hyperbaric Flux-Cored Arc Welds.

    PubMed

    Hu, Yu; Shi, Yong-Hua; Shen, Xiao-Qin; Wang, Zhong-Min

    2017-12-18

    Duplex stainless steel multi-pass welds were made at 0.15 MPa, 0.45 MPa, and 0.75 MPa pressure, simulating underwater dry hyperbaric welding by the flux-cored arc welding (FCAW) method, with welds of normal pressure as a benchmark. The purpose of this work was to estimate the effect of ambient pressure on the microstructure, pitting corrosion resistance and impact toughness of the weld metal. The microstructure measurement revealed that the ferrite content in the weld metal made at 0.45 MPa is the lowest, followed by that of 0.75 MPa and 0.15 MPa. The analysis of potentiodynamic polarization tests at 30 °C and 50 °C demonstrated that the pitting corrosion resistance depends on the phases of the lower pitting resistance equivalent numbers (PREN), secondary austenite and ferrite. The weld metal made at 0.45 MPa had the best resistance to pitting corrosion at 30 °C and 50 °C with the highest PRENs of secondary austenite and ferrite. The weld metal made at 0.15 MPa displayed the lowest pitting corrosion resistance at 30 °C with the lowest PREN of secondary austenite, while the weld metal made at 0.75 MPa was the most seriously eroded after being tested at 50 °C for the lowest PREN of ferrite, with large cluster pits seen in ferrite at 50 °C. The impact tests displayed a typical ductile-brittle transition because of the body-centered cubic (BCC) structure of the ferrite when the test temperature was lowered. All the weld metals met the required value of 34 J at -40 °C according to the ASTM A923. The highest ferrite content corresponded to the worst impact toughness, but the highest toughness value did not correspond to the greatest austenite content. With the decreasing of the test temperature, the drop value of absorbed energy was correlated to the ferrite content. Additionally, in this work, the weld metal made at 0.45 MPa had the best combined properties of pitting resistance and impact toughness.

  4. High-pressure destruction kinetics of Clostridium sporogenes spores in ground beef at elevated temperatures.

    PubMed

    Zhu, Songming; Naim, Fadia; Marcotte, Michèle; Ramaswamy, Hosahalli; Shao, Yanwen

    2008-08-15

    High pressure (HP) is an alternative technique for thermal sterilization of foods with minimum quality loss. HP destruction kinetics of bacterial spores is essential to establishing sterilization process, but knowledge in this field is still very limited. In this study, destruction kinetics was investigated using Clostridium sporogenes PA 3679 (ATCC7955) spores in extra-lean ground beef (5 g each sealed in a sterile plastic bag). Duplicated samples were subjected to HP treatments at 700, 800 and 900 MPa in a HP system equipped with a Polyoxymethylene insulator to maintain constant temperatures at 80, 90 and 100 degrees C during pressure-holding time. The kinetic parameters of the spores (D- and Z-values) were evaluated at these pressures and temperatures. For the pressure from 700 to 900 MPa, D-values ranged from 15.8 to 7.0 and 1.5 to 0.63 min at 80 and 100 degrees C, respectively. The pressure resistance of Z(T)(P) value was 520-563 MPa at 80-100 degrees C. The temperature resistance of Z(P)(T) value was 19.1-19.7 degrees C at 700-900 MPa, much higher than that at atmospheric condition (12.4 degrees C). A regression model was generated which can be used to predict D-value or the death time of a minimum process under given pressure and temperature conditions. HP treatment with elevated temperatures can destroy bacterial spores with a shorter time or lower temperature than conventional thermal processing. This study provides useful information for the achievement of a safe HP sterilization process.

  5. Equation of State for Supercooled Water at Pressures up to 400 MPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holten, Vincent; Sengers, Jan V.; Anisimov, Mikhail A., E-mail: anisimov@umd.edu

    2014-12-01

    An equation of state is presented for the thermodynamic properties of cold and supercooled water. It is valid for temperatures from the homogeneous ice nucleation temperature up to 300 K and for pressures up to 400 MPa, and can be extrapolated up to 1000 MPa. The equation of state is compared with experimental data for the density, expansion coefficient, isothermal compressibility, speed of sound, and heat capacity. Estimates for the accuracy of the equation are given. The melting curve of ice I is calculated from the phase-equilibrium condition between the proposed equation and an existing equation of state for icemore » I.« less

  6. Tritium, deuterium, and helium permeation through EPDM O-rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swansiger, W.A.

    1992-03-01

    This paper discusses tritium permeabilities determined at room temperature, 1.0 MPa (150 psia) tritium for three 23.4 cm diameter EPDM (ethylene-propylene-diene monomer) O-rings using a full-scale mock-up of the Al-SX shipping container seal geometry. The AL-SX container is being developed by Sandia National Laboratories for shipping tritium reservoirs. To determine the tritium permeation rate as a function of temperature, a 50.8 mm diameter EPDM O-ring was tested from room temperature to 150{degrees}C at a pressure of 1.0 MPa. Additional permeation measurements were made under the following test conditions: deuterium and helium-4 at room temperature and a pressure of 1.0 MPamore » using the full-scale AL-SX fixture, tritium from 0.1 MPa to 1.0 MPa at 142{degrees}C using the 50.8 mm fixture, and deuterium form room temperature to 150{degrees}C at a pressure of 1.0 MPa using the three full-scale O-rings showed the average room temperature, 1.0 MPa steady state tritium permeation rate to be about 1 {times} 10{sup {minus}2} Pa-liter/sec (7.6 {times} 10{sup {minus}5} torr-liter/sec or 1 {times} 10{sup {minus}4} std cc/sec), well within the allowable limit of 7.1 {times} 10{sup {minus}2} Pa-liter/sec for tritium release form the AL-SX container.« less

  7. The Bulging Behavior of Thick-Walled 6063 Aluminum Alloy Tubes Under Double-Sided Pressures

    NASA Astrophysics Data System (ADS)

    Cui, Xiao-Lei; Wang, Xiao-Song; Yuan, Shi-Jian

    2015-05-01

    To make further exploration on the deformation behavior of tube under double-sided pressures, the thick-walled 6063 aluminum alloy tubes with an outer diameter of 65 mm and an average thickness of 7.86 mm have been used to be bulged under the combined action of internal and external pressures. In the experiment, two ends of the thick-walled tubes were fixed using the tooth and groove match. Three levels of external pressure (0 MPa, 40 MPa, and 80 MPa), in conjunction with the internal pressure, were applied on the tube outside and inside simultaneously. The effect of external pressure on the bulging behavior of the thick-walled tubes, such as the limiting expansion ratio, the bulging zone profile, and the thickness distribution, has been investigated. It is shown that the limiting expansion ratio, the bulging zone profile, and the thickness distribution in the homogeneous bulging area are all insensitive to the external pressure. However, the external pressure can make the thick-walled tube achieve a thinner wall at the fracture area. It reveals that the external pressure can only improve the fracture limit of the thick-walled 6063 tubes, but it has very little effect on their homogeneous bulging behavior. It might be because the external pressure can only increase the magnitude of the hydrostatic pressure for the tube but has no effect on the Lode parameter.

  8. High Pressure Burn Rate Measurements on an Ammonium Perchlorate Propellant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glascoe, E A; Tan, N

    2010-04-21

    High pressure deflagration rate measurements of a unique ammonium perchlorate (AP) based propellant are required to design the base burn motor for a Raytheon weapon system. The results of these deflagration rate measurements will be key in assessing safety and performance of the system. In particular, the system may experience transient pressures on the order of 100's of MPa (10's kPSI). Previous studies on similar AP based materials demonstrate that low pressure (e.g. P < 10 MPa or 1500 PSI) burn rates can be quite different than the elevated pressure deflagration rate measurements (see References and HPP results discussed herein),more » hence elevated pressure measurements are necessary in order understand the deflagration behavior under relevant conditions. Previous work on explosives have shown that at 100's of MPa some explosives will transition from a laminar burn mechanism to a convective burn mechanism in a process termed deconsolidative burning. The resulting burn rates that are orders-of-magnitude faster than the laminar burn rates. Materials that transition to the deconsolidative-convective burn mechanism at elevated pressures have been shown to be considerably more violent in confined heating experiments (i.e. cook-off scenarios). The mechanisms of propellant and explosive deflagration are extremely complex and include both chemical, and mechanical processes, hence predicting the behavior and rate of a novel material or formulation is difficult if not impossible. In this work, the AP/HTPB based material, TAL-1503 (B-2049), was burned in a constant volume apparatus in argon up to 300 MPa (ca. 44 kPSI). The burn rate and pressure were measured in-situ and used to calculate a pressure dependent burn rate. In general, the material appears to burn in a laminar fashion at these elevated pressures. The experiment was reproduced multiple times and the burn rate law using the best data is B = (0.6 {+-} 0.1) x P{sup (1.05{+-}0.02)} where B is the burn rate in mm/s and P is the pressure in units of MPa. Details of the experimental method, results and data analysis are discussed herein and briefly compared to other AP based materials that have been measured in this apparatus.« less

  9. Evaluation of an experimental electrohydraulic discharge device for extracorporeal shock wave lithotripsy: Pressure field of sparker array.

    PubMed

    Li, Guangyan; Connors, Bret A; Schaefer, Ray B; Gallagher, John J; Evan, Andrew P

    2017-11-01

    In this paper, an extracorporeal shock wave source composed of small ellipsoidal sparker units is described. The sparker units were arranged in an array designed to produce a coherent shock wave of sufficient strength to fracture kidney stones. The objective of this paper was to measure the acoustical output of this array of 18 individual sparker units and compare this array to commercial lithotripters. Representative waveforms acquired with a fiber-optic probe hydrophone at the geometric focus of the sparker array indicated that the sparker array produces a shock wave (P + ∼40-47 MPa, P - ∼2.5-5.0 MPa) similar to shock waves produced by a Dornier HM-3 or Dornier Compact S. The sparker array's pressure field map also appeared similar to the measurements from a HM-3 and Compact S. Compared to the HM-3, the electrohydraulic technology of the sparker array produced a more consistent SW pulse (shot-to-shot positive pressure value standard deviation of ±4.7 MPa vs ±3.3 MPa).

  10. Focused Ultrasound-Induced Neurogenesis Requires an Increase in Blood-Brain Barrier Permeability.

    PubMed

    Mooney, Skyler J; Shah, Kairavi; Yeung, Sharon; Burgess, Alison; Aubert, Isabelle; Hynynen, Kullervo

    2016-01-01

    Transcranial focused ultrasound technology used to transiently open the blood-brain barrier, is capable of stimulating hippocampal neurogenesis; however, it is not yet known what aspects of the treatment are necessary for enhanced neurogenesis to occur. The present study set out to determine whether the opening of blood-brain barrier, the specific pressure amplitudes of focused ultrasound, and/or the intravenous administration of microbubbles (phospholipid microspheres) are necessary for the enhancement of neurogenesis. Specifically, mice were exposed to burst (10ms, 1Hz burst repetition frequency) focused ultrasound at the frequency of 1.68MHz and with 0.39, 0.78, 1.56 and 3.0MPa pressure amplitudes. These treatments were also conducted with or without microbubbles, at 0.39 + 0.78MPa or 1.56 + 3.0MPa, respectively. Only focused ultrasound at the ~0.78 MPa pressure amplitude with microbubbles promoted hippocampal neurogenesis and was associated with an increase in blood-brain barrier permeability. These results suggest that focused ultrasound -mediated neurogenesis is dependent upon the opening of the blood-brain barrier.

  11. Experimental verification of the vaporization's contribution to the shock waves generated by underwater electrical wire explosion under micro-second timescale pulsed discharge

    NASA Astrophysics Data System (ADS)

    Han, Ruoyu; Zhou, Haibin; Wu, Jiawei; Clayson, Thomas; Ren, Hang; Wu, Jian; Zhang, Yongmin; Qiu, Aici

    2017-06-01

    This paper studies pressure waves generated by exploding a copper wire in a water medium, demonstrating the significant contribution of the vaporization process to the formation of shock waves. A test platform including a pulsed current source, wire load, chamber, and diagnostic system was developed to study the shock wave and optical emission characteristics during the explosion process. In the experiment, a total of 500 J was discharged through a copper wire load 0.2 mm in diameter and 4 cm in length. A water gap was installed adjacent to the load so that the current was diverted away from the load after breakdown occurred across the water gap. This allows the electrical energy injection into the load to be interrupted at different times and at different stages of the wire explosion process. Experimental results indicate that when the load was bypassed before the beginning of the vaporization phase, the measured peak pressure was less than 2.5 MPa. By contrast, the peak pressure increased significantly to over 6.5 MPa when the water gap broke down after the beginning of the vaporization phase. It was also found that when bypassing the load after the voltage peak, similar shock waves were produced to those from a non-bypassed load. However, the total optical emission of these bypassed loads was at least an order of magnitude smaller. These results clearly demonstrate that the vaporization process is vital to the formation of shock waves and the energy deposited after the voltage collapse may only have a limited effect.

  12. Volume-translated cubic EoS and PC-SAFT density models and a free volume-based viscosity model for hydrocarbons at extreme temperature and pressure conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess, Ward A.; Tapriyal, Deepak; Morreale, Bryan D.

    2013-12-01

    This research focuses on providing the petroleum reservoir engineering community with robust models of hydrocarbon density and viscosity at the extreme temperature and pressure conditions (up to 533 K and 276 MPa, respectively) characteristic of ultra-deep reservoirs, such as those associated with the deepwater wells in the Gulf of Mexico. Our strategy is to base the volume-translated (VT) Peng–Robinson (PR) and Soave–Redlich–Kwong (SRK) cubic equations of state (EoSs) and perturbed-chain, statistical associating fluid theory (PC-SAFT) on an extensive data base of high temperature (278–533 K), high pressure (6.9–276 MPa) density rather than fitting the models to low pressure saturated liquidmore » density data. This high-temperature, high-pressure (HTHP) data base consists of literature data for hydrocarbons ranging from methane to C{sub 40}. The three new models developed in this work, HTHP VT-PR EoS, HTHP VT-SRK EoS, and hybrid PC-SAFT, yield mean absolute percent deviation values (MAPD) for HTHP hydrocarbon density of ~2.0%, ~1.5%, and <1.0%, respectively. An effort was also made to provide accurate hydrocarbon viscosity models based on literature data. Viscosity values are estimated with the frictional theory (f-theory) and free volume (FV) theory of viscosity. The best results were obtained when the PC-SAFT equation was used to obtain both the attractive and repulsive pressure inputs to f-theory, and the density input to FV theory. Both viscosity models provide accurate results at pressures to 100 MPa but experimental and model results can deviate by more than 25% at pressures above 200 MPa.« less

  13. Assessment of changes in crystallization properties of pressurized milk fat.

    PubMed

    Staniewski, Bogusław; Smoczyński, Michał; Staniewska, Katarzyna; Baranowska, Maria; Kiełczewska, Katarzyna; Zulewska, Justyna

    2015-04-01

    The aim of the study was to demonstrate the use of fractal image analysis as a possible tool to monitor the effect of pressurization on the crystallization pattern of anhydrous milk fat. This approach can be useful when developing new products based on milk fat. The samples were subjected to different hydrostatic pressure (100, 200, 300, and 400 MPa) and temperature (10 and 40 °C) treatments. The crystallization microphotographs were taken with a scanning electron microscope. The image analysis of scanning electron microscope photographs was done to determine a fractal dimension. Milk-fat pressurization under the applied parameters resulted in slight, but statistically significant, changes in the course of crystallization curves, related to the triacylglycerol fraction crystallizing in the lowest temperature (I exothermic effect). These changes were dependent on the value of pressure but not dependent on the temperatures applied during the process of pressurization (at either 10 or 40 °C). In turn, significant differences were observed in crystallization images of milk-fat samples subjected to this process compared with the control sample. The results of additional fractal analysis additionally demonstrated the highest degree of irregularity of the surface of the crystalline form for the nonpressurized sample and the samples pressurized at 200 and 300 MPa at 10 °C. The lowest value of fractal dimension-indicative of the least irregularity-was achieved for the fat samples pressurized at 400 MPa, 10 °C and at 100 MPa, 40 °C. The possibilities of wider application of the fractal analysis for the evaluation of effects of parameters of various technological processes on crystallization properties of milk fat require further extensive investigations. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Stress-dependent permeability and wave dispersion in tight cracked rocks: Experimental validation of simple effective medium models

    NASA Astrophysics Data System (ADS)

    Sarout, Joel; Cazes, Emilie; Delle Piane, Claudio; Arena, Alessio; Esteban, Lionel

    2017-08-01

    We experimentally assess the impact of microstructure, pore fluid, and frequency on wave velocity, wave dispersion, and permeability in thermally cracked Carrara marble under effective pressure up to 50 MPa. The cracked rock is isotropic, and we observe that (1) P and S wave velocities at 500 kHz and the low-strain (<10-5) mechanical moduli at 0.01 Hz are pressure-dependent, (2) permeability decreases asymptotically toward a small value with increasing pressure, (3) wave dispersion between 0.01 Hz and 500 MHz in the water-saturated rock reaches a maximum of 26% for S waves and 9% for P waves at 1 MPa, and (4) wave dispersion virtually vanishes above 30 MPa. Assuming no interactions between the cracks, effective medium theory is used to model the rock's elastic response and its permeability. P and S wave velocity data are jointly inverted to recover the crack density and effective aspect ratio. The permeability data are inverted to recover the cracks' effective radius. These parameters lead to a good agreement between predicted and measured wave velocities, dispersion and permeability up to 50 MPa, and up to a crack density of 0.5. The evolution of the crack parameters suggests that three deformation regimes exist: (1) contact between cracks' surface asperities up to 10 MPa, (2) progressive crack closure between 10 and 30 MPa, and (3) crack closure effectively complete above 30 MPa. The derived crack parameters differ significantly from those obtained by analysis of 2-D electron microscope images of thin sections or 3-D X-ray microtomographic images of millimeter-size specimens.

  15. Effect of surface treatment on bond strength between an indirect composite material and a zirconia framework.

    PubMed

    Komine, Futoshi; Fushiki, Ryosuke; Koizuka, Mai; Taguchi, Kohei; Kamio, Shingo; Matsumura, Hideo

    2012-03-01

    The present study evaluated the effect of various surface treatments for zirconia ceramics on shear bond strength between an indirect composite material and zirconia ceramics. In addition, we investigated the durability of shear bond strength by using artificial aging (20,000 thermocycles). A total of 176 Katana zirconia disks were randomly divided into eight groups according to surface treatment, as follows: group CON (as-milled); group GRD (wet-ground with 600-grit silicon carbide abrasive paper); groups 0.05, 0.1, 0.2, 0.4, and 0.6 MPa (airborne-particle abrasion at 0.05, 0.1, 0.2, 0.4, and 0.6 MPa, respectively); and group HF (9.5% hydrofluoric acid etching). Shear bond strength was measured at 0 thermocycles in half the specimens after 24-h immersion. The remaining specimens were subjected to 20,000 thermocycles before shear bond strength testing. Among the eight groups, the 0.1, 0.2, 0.4, and 0.6 MPa airborne-particle abraded groups had significantly higher bond strengths before and after thermocycling. The Mann-Whitney U-test revealed no significant difference in shear bond strength between 0 and 20,000 thermocycles, except in the 0.2 MPa group (P = 0.013). From the results of this study, use of airborne-particle abrasion at a pressure of 0.1 MPa or higher increases initial and durable bond strength between an indirect composite material and zirconia ceramics.

  16. The Effect of Hydrostatic Pressure on Enrichments of Hydrocarbon Degrading Microbes From the Gulf of Mexico Following the Deepwater Horizon Oil Spill

    PubMed Central

    Marietou, Angeliki; Chastain, Roger; Beulig, Felix; Scoma, Alberto; Hazen, Terry C.; Bartlett, Douglas H.

    2018-01-01

    The Deepwater Horizon oil spill was one of the largest and deepest oil spills recorded. The wellhead was located at approximately 1500 m below the sea where low temperature and high pressure are key environmental characteristics. Using cells collected 4 months following the Deepwater Horizon oil spill at the Gulf of Mexico, we set up Macondo crude oil enrichments at wellhead temperature and different pressures to determine the effect of increasing depth/pressure to the in situ microbial community and their ability to degrade oil. We observed oil degradation under all pressure conditions tested [0.1, 15, and 30 megapascals (MPa)], although oil degradation profiles, cell numbers, and hydrocarbon degradation gene abundances indicated greatest activity at atmospheric pressure. Under all incubations the growth of psychrophilic bacteria was promoted. Bacteria closely related to Oleispira antarctica RB-8 dominated the communities at all pressures. At 30 MPa we observed a shift toward Photobacterium, a genus that includes piezophiles. Alphaproteobacterial members of the Sulfitobacter, previously associated with oil-degradation, were also highly abundant at 0.1 MPa. Our results suggest that pressure acts synergistically with low temperature to slow microbial growth and thus oil degradation in deep-sea environments. PMID:29755436

  17. The Effect of Hydrostatic Pressure on Enrichments of Hydrocarbon Degrading Microbes From the Gulf of Mexico Following the Deepwater Horizon Oil Spill.

    PubMed

    Marietou, Angeliki; Chastain, Roger; Beulig, Felix; Scoma, Alberto; Hazen, Terry C; Bartlett, Douglas H

    2018-01-01

    The Deepwater Horizon oil spill was one of the largest and deepest oil spills recorded. The wellhead was located at approximately 1500 m below the sea where low temperature and high pressure are key environmental characteristics. Using cells collected 4 months following the Deepwater Horizon oil spill at the Gulf of Mexico, we set up Macondo crude oil enrichments at wellhead temperature and different pressures to determine the effect of increasing depth/pressure to the in situ microbial community and their ability to degrade oil. We observed oil degradation under all pressure conditions tested [0.1, 15, and 30 megapascals (MPa)], although oil degradation profiles, cell numbers, and hydrocarbon degradation gene abundances indicated greatest activity at atmospheric pressure. Under all incubations the growth of psychrophilic bacteria was promoted. Bacteria closely related to Oleispira antarctica RB-8 dominated the communities at all pressures. At 30 MPa we observed a shift toward Photobacterium , a genus that includes piezophiles. Alphaproteobacterial members of the Sulfitobacter , previously associated with oil-degradation, were also highly abundant at 0.1 MPa. Our results suggest that pressure acts synergistically with low temperature to slow microbial growth and thus oil degradation in deep-sea environments.

  18. Enhancement of yield strength in zirconium metal through high-pressure induced structural phase transition

    NASA Astrophysics Data System (ADS)

    Zhao, Yusheng; Zhang, Jianzhong

    2007-11-01

    We report here a high-pressure phase-transition induced strengthening in ultrapure zirconium metal. The determined yield strength shows more than sixfold abrupt increase at the transition pressure of Pc=6GPa, from σyα≈180MPa in the low-pressure phase of α-Zr to σyω≈1180MPa in the high-pressure phase of ω-Zr. The observed enhancement provides an alternate route for material strengthening and is the most significant among the known strengthening techniques for metals. Our findings support the theoretical simulations of the substantial covalent bonding and "rougher" corrugation of slip planes for dislocations in the ω-phase of zirconium.

  19. Evaluation of quality changes of beetroot juice after high hydrostatic pressure processing

    NASA Astrophysics Data System (ADS)

    Sokołowska, Barbara; Woźniak, Łukasz; Skąpska, Sylwia; Porębska, Izabela; Nasiłowska, Justyna; Rzoska, Sylwester J.

    2017-04-01

    Freshly squeezed commercially available beetroot juice, a popular beverage in Poland, is a good source of betalains, but as a root vegetable can contain undesirable microflora from the soil. The objective of this study was to investigate the effect of new preservation technique, high hydrostatic pressure, on the beetroot juice quality. Samples of beetroot juice were treated with pressure 300, 400 and 500 MPa/20°C/up to 10 min. Reduction in the total count of spoilage microorganisms reached 3.8, 4.1 and 4.5 log cfu/mL, depending on the pressure. After this treatment beetroot juice showed a 11.3-12.2% decrease in betacyanins content and 7.7-8.9% in betaxanthins content. A significant reduction of the number of spoilage microorganisms with a slight degradation of pigments indicates the possibility of industrial application of high pressure to the preservation of beetroot juice.

  20. The Influence of Phenocrysts on Magma Degassing in Rhyolitic Systems

    NASA Astrophysics Data System (ADS)

    deGraffenried, R.; Larsen, J. F.; Lindoo, A. N.

    2016-12-01

    The kinetics of volatile exsolution and magma degassing control volcanic eruption styles, but the role of phenocrysts in the degassing process is poorly understood. The focus of this study is two series of decompression experiments examining how phenocrysts may or may not influence vesicle structures leading to permeability development and degassing in magmas with rhyolitic matrix melts. Powdered rhyolite obsidian (75 SiO2 wt. %; Mono Craters, CA) was seeded with 20 and 40 vol. % euhedral corundum crystals (350 μm) to approximate phenocrysts. Experiments were run using TZM (Ti-Zr-Mo alloy) vessels fitted with a water-cooled rapid quench top in a vertical Deltech furnace. Each run was held at 110 MPa and 900OC for 24 hours then decompressed continuously at a rate of 0.25 MPa/s to a final pressure (Pf) between 75 and 15 MPa. Permeability was measured using a bench-top permeameter constructed for the small experimental samples. Porosity was obtained from reflected light images using NIH Image J. The porosity of the samples increased from 11.0±1.7 to 73.3±3.1 vol % at Pf of 75 to 15 MPa for crystal free samples, 30.1±6.9 to 62.2±2.6 vol % at Pf of of 75 to 25 MPa for 20 vol % crystal samples, and 13.3±2.5 to 41.2±9.6 vol % at Pf of 75 to 50 MPa for 40 vol % crystal samples. The 20 vol % samples are impermeable up to at least 50 MPa Pf. The 40 vol % samples are impermeable up to 25 MPa Pf, with one sample having a measured Darcian permeability of -13.93±0.05 m2 at 25 MPa Pf. Comparatively, the crystal free samples were mostly impermeable up to 15 MPa, with one sample having a measured Darcian permeability of -14.41±0.04 m2 at 15 MPa Pf and 73.3 vol % porosity. Although preliminary, our permeable 40 vol % experiment suggests the phenocrysts help the samples develop permeability at a higher ending pressure and potentially lower porosity. Differences in the porosity curve as a function of pressure between the 20 and 40 vol % series indicate phenocrysts influence the vesicle structures in ascending magmas.

  1. Fourier analysis for hydrostatic pressure sensing in a polarization-maintaining photonic crystal fiber.

    PubMed

    Childs, Paul; Wong, Allan C L; Fu, H Y; Liao, Yanbiao; Tam, Hwayaw; Lu, Chao; Wai, P K A

    2010-12-20

    We measured the hydrostatic pressure dependence of the birefringence and birefringent dispersion of a Sagnac interferometric sensor incorporating a length of highly birefringent photonic crystal fiber using Fourier analysis. Sensitivity of both the phase and chirp spectra to hydrostatic pressure is demonstrated. Using this analysis, phase-based measurements showed a good linearity with an effective sensitivity of 9.45 nm/MPa and an accuracy of ±7.8 kPa using wavelength-encoded data and an effective sensitivity of -55.7 cm(-1)/MPa and an accuracy of ±4.4 kPa using wavenumber-encoded data. Chirp-based measurements, though nonlinear in response, showed an improvement in accuracy at certain pressure ranges with an accuracy of ±5.5 kPa for the full range of measured pressures using wavelength-encoded data and dropping to within ±2.5 kPa in the range of 0.17 to 0.4 MPa using wavenumber-encoded data. Improvements of the accuracy demonstrated the usefulness of implementing chirp-based analysis for sensing purposes.

  2. Polymorphism of paracetamol: relative stabilities of the monoclinic and orthorhombic phases inferred from topological pressure-temperature and temperature-volume phase diagrams.

    PubMed

    Espeau, Philippe; Céolin, René; Tamarit, Josep-Lluis; Perrin, Marc-Antoine; Gauchi, Jean-Pierre; Leveiller, Franck

    2005-03-01

    The thermodynamic relationships between the two known polymorphs of paracetamol have been investigated, and the subsequent pressure-temperature and temperature-volume phase diagrams were constructed using data from crystallographic and calorimetric measurements as a function of the temperature. Irrespective of temperature, monoclinic Form I and orthorhombic Form II are stable phases at ordinary and high pressures, respectively. The I and II phase regions in the pressure-temperature diagram are bordered by the I-II equilibrium curve, for which a negative slope (dp/dT approximately -0.3 MPa x K(-1)) was determined although it was not observed experimentally. This curve goes through the I-II-liquid triple point whose coordinates (p approximately 234 MPa, T approximately 505 K) correspond to the crossing point of the melting curves, for which dp/dT values of +3.75 MPa x K(-1) (I) and +3.14 MPa x K(-1) (II) were calculated from enthalpy and volume changes upon fusion. More generally, this case exemplifies how the stability hierarchy of polymorphs may be inferred from the difference in their sublimation curves, as topologically positioned with respect to each other, using the phase rule and simple inferences resorting to Gibbs equilibrium thermodynamics. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association.

  3. Continious production of exfoliated graphite composite compositions and flow field plates

    DOEpatents

    Shi, Jinjun; Zhamu, Aruna; Jang, Bor Z.

    2010-07-20

    A process of continuously producing a more isotropic, electrically conductive composite composition is provided. The process comprises: (a) continuously supplying a compressible mixture comprising exfoliated graphite worms and a binder or matrix material, wherein the binder or matrix material is in an amount of between 3% and 60% by weight based on the total weight of the mixture; (b) continuously compressing the compressible mixture at a pressure within the range of from about 5 psi or 0.035 MPa to about 50,000 psi or 350 MPa in at least a first direction into a cohered graphite composite compact; and (c) continuously compressing the composite compact in a second direction, different from the first direction, to form the composite composition in a sheet or plate form. The process leads to composite plates with exceptionally high thickness-direction electrical conductivity.

  4. The effect of high pressure on the functional properties of pork myofibrillar proteins.

    PubMed

    Grossi, Alberto; Olsen, Karsten; Bolumar, Tomas; Rinnan, Åsmund; Øgendal, Lars H; Orlien, Vibeke

    2016-04-01

    Complementary methodologies were used to analyse the pressure-induced modification and functionality of myofibrillar proteins from pork meat pressurised at 200, 400, 600, or 800 MPa (10 min, 5 or 20 °C). Pressure at 400 MPa was found to be the threshold for loss of solubility, and the structural proteins, myosin and actin, lost their native solubility due to aggregation. The results from the extraction of proteins with different reagents targeting the disruption of specific molecular interactions suggested that pressure-induced aggregation was caused mainly by hydrogen bonding during pressurisation and not hydrophobic interactions nor disulphide cross-links. Furthermore, the soluble proteins were exposed to remarkable structural changes already at 200 MPa and lost their native functionality. The modification of the proteins in pressurised meat affected the water binding sites of the myofibrillar proteins and, thereby, the interactions between proteins and water molecules, and distribution between myofibrillar and extra-myofibrillar compartments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Correlations for the Viscosity of 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf) and trans-1,3,3,3-Tetrafluoropropene (R1234ze(E))†

    PubMed Central

    Huber, Marcia L.; Assael, Marc J.

    2016-01-01

    Due to concerns about global warming, there is interest in 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf) and trans-1,3,3,3-Tetrafluoropropene (R1234ze(E)) as potential replacements for refrigerants with high global warming potential (GWP). In this manuscript we survey available data and provide viscosity correlations that cover the entire fluid range including vapor, liquid, and supercritical regions. The correlation for R1234yf is valid from the triple point (220 K) to 410 K at pressures up to 30 MPa, and the correlation for R1234ze(E) is valid from the triple point (169 K) to 420 K at pressures up to 100 MPa. The estimated uncertainty for both correlations at a 95 % confidence level is 2 % for the liquid phase over the temperature range 243 K to 363 K at pressures to 30 MPa, and 3 % for the gas phase at atmospheric pressure. PMID:27840461

  6. A Liquid Density Standard Over Wide Ranges of Temperature and Pressure Based on Toluene

    PubMed Central

    McLinden, Mark O.; Splett, Jolene D.

    2008-01-01

    The density of liquid toluene has been measured over the temperature range −60 °C to 200 °C with pressures up to 35 MPa. A two-sinker hydrostatic-balance densimeter utilizing a magnetic suspension coupling provided an absolute determination of the density with low uncertainties. These data are the basis of NIST Standard Reference Material® 211d for liquid density over the temperature range −50 °C to 150 °C and pressure range 0.1 MPa to 30 MPa. A thorough uncertainty analysis is presented; this includes effects resulting from the experimental density determination, possible degradation of the sample due to time and exposure to high temperatures, dissolved air, uncertainties in the empirical density model, and the sample-to-sample variations in the SRM vials. Also considered is the effect of uncertainty in the temperature and pressure measurements. This SRM is intended for the calibration of industrial densimeters. PMID:27096111

  7. Removable polytetrafluoroethylene template based epitaxy of ferroelectric copolymer thin films

    NASA Astrophysics Data System (ADS)

    Xia, Wei; Chen, Qiusong; Zhang, Jian; Wang, Hui; Cheng, Qian; Jiang, Yulong; Zhu, Guodong

    2018-04-01

    In recent years ferroelectric polymers have shown their great potentials in organic and flexible electronics. To meet the requirements of high-performance and low energy consumption of novel electronic devices and systems, structural and electrical properties of ferroelectric polymer thin films are expected to be further optimized. One possible way is to realize epitaxial growth of ferroelectric thin films via removable high-ordered polytetrafluoroethylene (PTFE) templates. Here two key parameters in epitaxy process, annealing temperature and applied pressure, are systematically studied and thus optimized through structural and electrical measurements of ferroelectric copolymer thin films. Experimental results indicate that controlled epitaxial growth is realized via suitable combination of both parameters. Annealing temperature above the melting point of ferroelectric copolymer films is required, and simultaneously moderate pressure (around 2.0 MPa here) should be applied. Over-low pressure (around 1.0 MPa here) usually results in the failure of epitaxy process, while over-high pressure (around 3.0 MPa here) often results in residual of PTFE templates on ferroelectric thin films.

  8. Corrosion of Candidate High Temperature Alloys in Supercritical Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Parks, Curtis J.

    The corrosion resistance of three candidate alloys is tested in supercritical carbon dioxide (S-CO2) at different levels of temperature and pressure for up to 3000 hours. The purpose of the testing is to evaluate the compatibility of different engineering alloys in S-CO2 for use in a S-CO 2 Brayton cycle. The three alloys used are austenitic stainless steel 316, iron-nickel-base superalloy 718, and nickel-base superalloy 738. Each alloy is exposed to four combinations of temperature and pressure, consisting of either 550°C or 700°C at either 15 or 25 MPa for up to 1500 hours. At each temperature, an additional sample set is tested for 3000 hours and experienced an increase in pressure from 15 MPa to 25 MPa after 1500 hours of testing. All three alloys are successful in producing a protective oxide layer at the lower temperature of 550°C based on the logarithmic weight gain trends. At the higher temperature of 700°C, 316SS exhibits unfavourable linear weight gain trends at both pressures of 15 and 25 MPa. In comparison, IN-718 and IN-738 performs similarly in producing a protective oxide layer illustrated through a power weight gain relation. The effect of pressure is most pronounced at the operating temperature of 700°C, where the higher pressure of 25 MPa results in an increased rate of oxide formation. SEM analysis exposes a thin film oxide for both IN-718 and IN-738 but severe intergranular corrosion is exhibited by IN-738. Based on the testing conducted, both alloys show favourable characteristics for use in S-CO 2 conditions up to 700°C, but further testing is required to characterize the effect of the intergranular corrosion on the stability of oxide in IN-738. 316SS provided favourable results for use in temperatures of 550°C, but the protective oxide deteriorated at an operating temperature of 700°C.

  9. Hydraulic properties of samples retrieved from the Wenchuan earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1) and the surface rupture zone: Implications for coseismic slip weakening and fault healing

    NASA Astrophysics Data System (ADS)

    Chen, Jianye; Yang, Xiaosong; Ma, Shengli; Yang, Tao; Niemeijer, André

    2016-07-01

    In this study, we report the hydraulic properties of samples recovered from the first borehole of the Wenchuan earthquake Fault Scientific Drilling and from outcrops associated with the surface rupture zone of the 2008 Wenchuan earthquake. Compositional and microstructural analyses have also been performed on selected samples. Using the pore pressure oscillation method, the permeability measurements show that (1) fault gouge samples have low permeabilities, decreasing from 2 × 10-18 m2 at an effective pressure (Pe) of 10 MPa (equivalent to an in situ depth of 600 m) to 9 × 10-21 m2 at 155 MPa. (2) Intact and cemented samples are impermeable with permeabilities less than 2 × 10-20 m2 at 10 MPa. (3) Fractured samples have variable permeabilities, ranging from 3 × 10-15 to 1 × 10-20 m2 at 10 MPa, and are most insensitive to changes in the effective pressure. (4) Granitic cataclasites have a moderate permeability at low pressure (i.e., 10-16 to 10-17 m2 at 10 MPa); which decreases rapidly with increasing Pe. Hydraulic conduction of the fault is believed to be influenced by the permeability of the fractures developed, which is controlled by the density, aperture, and/or connectivity of the fractures. Microstructural and compositional analyses of the samples indicate that the fault zone heals through chemically mediated fracture closure related to mineral precipitation, possibly assisted by pressure solution of stressed fracture asperities. Although other weakening mechanisms remain possible, our laboratory measurements combined with numerical modeling reveal that thermal/thermochemical pressurization, perhaps leading to gouge fluidization, played an important role in the dynamic weakening of the Wenchuan earthquake, at least in the study area.

  10. Method to synthesize bulk iron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monson, Todd; Lavernia, Enrique J.; Zheng, Baolong

    Bulk iron nitride can be synthesized from iron nitride powder by spark plasma sintering. The iron nitride can be spark plasma sintered at a temperature of less than 600°C. and a pressure of less than 600 MPa, with 400 MPa or less most often being sufficient. High pressure SPS can consolidate dense iron nitrides at a lower temperature to avoid decomposition. The higher pressure and lower temperature of spark discharge sintering avoids decomposition and limits grain growth, enabling enhanced magnetic properties. The method can further comprise synthesis of nanocrystalline iron nitride powders using two-step reactive milling prior to high-pressure sparkmore » discharge sintering.« less

  11. The transformation of nitrogen during pressurized entrained-flow pyrolysis of Chlorella vulgaris.

    PubMed

    Maliutina, Kristina; Tahmasebi, Arash; Yu, Jianglong

    2018-08-01

    The transformation of nitrogen in microalgae during entrained-flow pyrolysis of Chlorella vulgaris was systematically investigated at the temperatures of 600-900 °C and pressures of 0.1-4.0 MPa. It was found that pressure had a profound impact on the transformation of nitrogen during pyrolysis. The nitrogen retention in bio-char and its content in bio-oil reached a maximum value at 1.0 MPa. The highest conversion of nitrogen (50.25 wt%) into bio-oil was achieved at 1.0 MPa and 800 °C, which was about 7 wt% higher than that at atmospheric pressure. Higher pressures promoted the formation of pyrrolic-N (N-5) and quaternary-N (N-Q) compounds in bio-oil at the expense of nitrile-N and pyridinic-N (N-6) compounds. The X-Ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) results on bio-chars clearly evidenced the transformation of N-5 structures into N-6 and N-Q structures at elevated pressures. The nitrogen transformation pathways during pyrolysis of microalgae were proposed and discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. High-velocity frictional experiments on dolerite and quartzite under controlled pore pressure

    NASA Astrophysics Data System (ADS)

    Togo, T.; Shimamoto, T.; Ma, S.

    2013-12-01

    High-velocity friction experiments on rocks with or without gouge have been conducted mostly under dry conditions and demonstrated dramatic weakening of faults at high velocities (e.g., Di Toro et al., 2011, Nature). Recent experiments under wet conditions (e.g., Ujiie and Tsutsumi, 2010, GRL; Faulkner et al., 2011, GRL) revealed very different behaviors from those of dry faults, but those experiments were done under drained conditions. Experiments with controlled pore pressure Pp are definitely needed to determine mechanical properties of faults under fluid-rich environments such as those in subduction zones. Thus we have developed a pressure vessel that can be attached to our rotary-shear low to high-velocity friction apparatus (Marui Co Ltd., MIS-233-1-76). With a current specimen holder, friction experiments can be done on hollow-cylindrical specimens of 15 and 40 mm in inner and outer diameters, respectively, at controlled Pp to 35 MPa, at effective normal stresses of 3~9 MPa, and at slip rates of 60 mm/year to 2 m/s. An effective normal stress can be applied with a 100 kN hydraulic actuator. We report an outline of the experimental system and preliminary high-velocity experiments on Shanxi dolerite and a quartzite from China that are composed of pyroxene and plagioclase and of almost pure quartz, respectively. High-velocity friction experiments were performed on hollow-cylindrical specimens of Shanxi dolerite at effective normal stresses of 0.13~1.07 MPa and at slip rates of 1, 10, 100 and 1000 mm/sec. All experiments were conducted first with the nitrogen gas filling the pressure vessel (dry tests) and then with a controlled pore-water pressure (wet tests). In the dry tests an axial force was kept at 1 kN and the nitrogen gas pressure was increased in steps to 5 MPa to change an effective normal stress. In the wet tests the specimens were soaked in distilled water in the vessel and Pp was applied by nitrogen gas in a similar manner as in the dry tests. Nitrogen gas acted as buffer to prevent an abrupt changes in the pore-water pressure during experiments. The steady-state friction coefficient (μss) of dry dolerite increased from 0.3~0.35 at 10 mm/s to 0.55~0.8 at 100 mm/s and then decreased down to 0.2~0.6 at 1000 mm/s. The results are quite similar to those of dry granite tested under similar conditions (Reches and Lockner, 2010, Nature). However, the μss of dolerite under a pore-water pressure decreased monotonically from 0.4~0.8 at 1 mm/s to 0.3~0.5 at 1000 mm/s, and the strengthening from 10 to 100 mm/s disappeared with a pore-water pressure. Two experiments were conducted on solid-cylindrical specimens of quartzite at effective normal stresses of 1.39 MPa (a dry test with CO2 gas pressure of 6.22 MPa) and of 0.99 MPa (a wet test with pore-water pressure of 6.1 MPa, also applied with pressurized CO2 gas). In dry and wet tests, the friction coefficient decreases nearly exponentially from about 0.35 at the peak friction to around 0.05 (dry) and 0.03 (wet) at the steady state. A notable difference was that wet quartzite exhibit much more rapid slip weakening with the slip weakening distance Dc of several meters than the dry specimen with Dc of about 15 m. We plan to conduct more experiments with controlled pore-water pressure and to do textural and material analysis of specimens to gain insight on the weakening mechanisms.

  13. Pulsed pressure treatment for inactivation of escherichia coli and listeria innocua in whole milk

    NASA Astrophysics Data System (ADS)

    Buzrul, S.; Largeteau, A.; Alpas, H.; Demazeau, G.

    2008-07-01

    E. coli and L. innocua in whole milk were subjected to continuous pressure treatments (300, 350, 400, 450, 500, 550 and 600 MPa) at ambient temperature for 5, 10, 15 and 20 min. These treatments underlined that at moderate pressure values (300, 350 and 400 MPa), increasing the pressurization time from 5 to 20 min did not improve cell death to a great extent. Therefore, pulsed pressure treatments (at 300, 350 and 400 MPa) for 5 min (2.5 min × 2 pulses, 1 min × 5 pulses and 0.5 min × 10 pulses), 10 min (5 min × 2 pulses, 2 min × 5 pulses and 1 min × 10 pulses), 15 min (5 min × 3 pulses, 3 min × 5 pulses and 1.5 min × 10 pulses) and 20 min (10 min × 2 pulses, 5 min × 4 pulses, 4 min × 5 pulses and 2 min × 10 pulses) were applied. As already observed in continuous pressure experiments, in pulsed pressure treatments the inactivation level is improved with increasing pressure level and in addition with the number of applied pulses; however, the effect of pulse number is not additive. Results obtained in this study indicated that pulsed pressure treatments could be used to pasteurize the whole milk at lower pressure values than the continuous pressure treatments. Nevertheless, an optimization appears definetely necessary between the number of pulses and pressure levels to reach the desirable number of log-reduction of microorganisms.

  14. Survival and growth of Yersinia enterocolitica strains inoculated in skimmed milk treated with high hydrostatic pressure.

    PubMed

    De Lamo-Castellví, Sílvia; Roig-Sagués, Artur X; Capellas, Marta; Hernández-Herrero, Manuela; Guamis, Buenaventura

    2005-07-25

    Four human pathogenic strains of Yersinia enterocolitica (serotypes O:1, O:3, O:8, and O:9) were inoculated (7-8 log CFU/ml) in UHT skimmed milk and treated at 300, 400, and 500 MPa for 10 min at 20 degrees C, and then kept at 8 degrees C to assess their evolution for 15 days. Treatments at 400 and 500 MPa caused the highest lethality, generally reaching counts below detection level (1 CFU/ml) in the culture media. At 300 MPa, the most baroresistant serotypes were O:3 and O:8. After 15 days of storage at 8 degrees C, Y. enterocolitica showed growth over 8 log (CFU/ml) in all treatments. Kinetic study of microbial inactivation in skimmed milk was performed with serotype O:8 at 300 MPa, showing a tailing after 35 min of pressure treatment.

  15. Frictional Properties of the Nankai Trough Accretionary Mud Samples Collected from 1000-3000 mbsf at IODP Site C0002

    NASA Astrophysics Data System (ADS)

    Kanagawa, K.; Hoshino, K.; Abe, K.; Sawai, M.

    2016-12-01

    We conducted triaxial friction experiments on the Nankai Trough accretionary mud samples collected from 1000-3000 mbsf (meters below seafloor) at IODP Site C0002 off Kii Peninsula, at confining pressures of 44-83 MPa, pore water pressures of 32-50 MPa and temperatures of 51-98°C equivalent to their in situ conditions, and at axial displacement rates changed stepwise among 0.1, 1 and 10 µm/s, in order to investigate their frictional properties changing with depth. XRD analyses of tested mud samples revealed that the content of total clay minerals tends to increase with depth from 30 to 60 wt%, while the smectite fraction in total clay minerals decreases with depth from 0.75 to 0.3. Because the temperature at 3000 mbsf reaches 100°C, this decrease in smectite fraction with depth is likely due to the progress of smectite dehydration with increasing temperature. Friction experiments on tested mud samples revealed that the steady-state friction coefficient at an axial displacement rate of 1 µm/s tends to decrease with depth from 0.5 to 0.3, according to the increasing content of total clay minerals with depth. Velocity dependence of steady-state friction also tends to decrease with depth, likely reflecting a decrease in smectite fraction in total clay minerals. Although velocity dependence of steady-state friction is mostly positive at depths down to 3000 mbsf, it is locally neutral or negative at depths deeper than 2000 mbsf, implying that faulting at these depths is conditionally stable and possibly accompanied by slow slip events.

  16. HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefano Orsino

    As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two seriesmore » of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical reaction mechanism for the NBFZ tests.« less

  17. Microstructure, microbial profile and quality characteristics of high-pressure-treated chicken nuggets.

    PubMed

    Devatkal, Suresh; Anurag, Rahul; Jaganath, Bindu; Rao, Srinivasa

    2015-10-01

    High-pressure processing (300 MPa for 5 min) as a non-thermal post-processing intervention was employed to improve the shelf life and qualities of cooked refrigerated chicken nuggets. Pomegranate peel extract (1%) was also used as a source of natural antioxidant and antimicrobial in chicken nuggets. Microstructure, microbial profile, instrumental colour, texture profile and lipid oxidation were evaluated. High-pressure treatment and pomegranate peel extract did not influence significantly the colour and textural properties of cooked chicken nuggets. Thiobarbituric acid reactive substance values significantly (p < 0.05) increased in pressure-treated nuggets. Microstructural studies revealed shrinkage in the structure and loosening of the dense network of meat emulsion due to high-pressure treatment. Pressure treatment resulted in a reduction of 2-3.0 log10 cfu/g in total plate count and Enterobacteriaceae count. Molecular characterization studies revealed that Enterobacter amnigenus and Enterobacter sp. in control and Bacillus licheniformis, Enterococcus gallinarum and Acinetobacter baumannii in high-pressure-treated chicken nuggets were the major spoilage bacteria. © The Author(s) 2014.

  18. High-pressure autoclave for multipurpose nuclear magnetic resonance measurements up to 10 MPa

    NASA Astrophysics Data System (ADS)

    Behr, W.; Haase, A.; Reichenauer, G.; Fricke, J.

    1999-05-01

    High-pressure nuclear magnetic resonance (NMR) is an established method in NMR spectroscopy: on-line coupling of high-performance liquid chromatography with NMR, for example, reveals structural information which cannot be obtained with any other method. However, applications has been focused solely on high-pressure NMR spectroscopy, even though high-pressure NMR imaging allows in situ studies of processes such as the fluid exchange in porous media. A versatile high-pressure autoclave for NMR imaging is described in this article. The autoclave allows measurements in any horizontal NMR imager using magnetic field coil systems with an inside diameter of more than 70 mm. Any sample with a diameter up to 28 mm and a length of about 200 mm can be investigated. The autoclave is constructed for operating pressures up to 10 MPa and is temperature controlled between 10 and 60 °C. The materials of the high-pressure cell which are the thermoplastic polyetheretherketon (PEEK) for the pressure tube and brass (63% Cu, 37% Zn) for the caps also permit investigations with aggressive fluids such as supercritical carbon dioxide. Inlet and outlet valves allow replacement of fluids and pressure variations in the autoclave during the NMR measurement. FLASH NMR images of the fluid exchange of methanol for liquid carbon dioxide in silica alcogels at 6.5 MPa are presented in order to demonstrate possible applications.

  19. Efficacy of low-temperature high hydrostatic pressure processing in inactivating Vibrio parahaemolyticus in culture suspension and oyster homogenate.

    PubMed

    Phuvasate, Sureerat; Su, Yi-Cheng

    2015-03-02

    Culture suspensions of five clinical and five environmental Vibrio parahaemolyticus strains in 2% NaCl solution were subjected to high pressure processing (HPP) under various conditions (200-300MPa for 5 and 10 min at 1.5-20°C) to study differences in pressure resistance among the strains. The most pressure-resistant and pressure-sensitive strains were selected to investigate the effects of low temperatures (15, 5 and 1.5°C) on HPP (200 or 250MPa for 5 min) to inactivate V. parahaemolyticus in sterile oyster homogenates. Inactivation of V. parahaemolyticus cells in culture suspensions and oyster homogenates was greatly enhanced by lowering the processing temperature from 15 to 5 or 1.5°C. A treatment of oyster homogenates at 250MPa for 5 min at 5°C decreased the populations of V. parahaemolyticus by 6.2logCFU/g for strains 10290 and 100311Y11 and by >7.4logCFU/g for strain 10292. Decreasing the processing temperature of the same treatment to 1.5°C reduced all the V. parahaemolyticus strains inoculated to oyster homogenates to non-detectable (<10CFU/g) levels. Factors including pressure level, processing temperature and time all need to be considered for developing effective HPP for eliminating pathogens from foods. Further studies are needed to validate the efficacy of the HPP (250MPa for 5 min at 1.5°C) in inactivating V. parahaemolyticus cells in whole oysters. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. 3D magnetohydrodynamic modelling of a dc low-current plasma arc batch reactor at very high pressure in helium

    NASA Astrophysics Data System (ADS)

    Lebouvier, A.; Iwarere, S. A.; Ramjugernath, D.; Fulcheri, L.

    2013-04-01

    This paper deals with a three-dimensional (3D) time-dependent magnetohydrodynamic (MHD) model under peculiar conditions of very high pressures (from 2 MPa up to 10 MPa) and low currents (<1 A). Studies on plasma arc working under these unusual conditions remain almost unexplored because of the technical and technological challenges to develop a reactor able to sustain a plasma at very high pressures. The combined effect of plasma reactivity and high pressure would probably open the way towards new promising applications in various fields: chemistry, lightning, materials or nanomaterial synthesis. A MHD model helps one to understand the complex and coupled phenomena surrounding the plasma which cannot be understood by simply experimentation. The model also provides data which are difficult to directly determine experimentally. The model simulates an experimental-based batch reactor working with helium. The particular reactor in question was used to investigate the Fischer-Tropsch application, fluorocarbon production and CO2 retro-conversion. However, as a first approach in terms of MHD, the model considers the case for helium as a non-reactive working gas. After a detailed presentation of the model, a reference case has been fully analysed (P = 8 MPa, I = 0.35 A) in terms of physical properties. The results show a bending of the arc and displacement of the anodic arc root towards the top of the reactor, due to the combined effects of convection, gravity and electromagnetic forces. A parametric study on the pressure (2-10 MPa) and current (0.25-0.4 A) was then investigated. The operating pressure does not show an influence on the contraction of the arc but higher pressures involve a higher natural convection in the reactor, driven by the density gradients between the cold and hot gas.

  1. Effect of high pressure on the microbiological quality of cooked chicken during storage at normal and abuse refrigeration temperatures.

    PubMed

    Patterson, Margaret F; McKay, Alan M; Connolly, Malachy; Linton, Mark

    2010-04-01

    Vacuum-packaged cooked poultry meat was treated at a range of pressures (400-600 MPa) and hold times (1, 2 and 10 min), followed by storage at 4 degrees , 8 degrees or 12 degrees C for up to 35 days. Weissella viridescens was found to be the dominant microorganism in the pressure-treated meat, constituting 100% of the microflora identified at 500 and 600 MPa. None of the pressure-treated samples had obvious signs of spoilage during the 35 day storage period, even when the Weissella count was >7 log(10) cfu/g. Studies on a typical W. viridescens isolate showed it to be relatively pressure-resistant in poultry meat, with <1 log reduction in numbers after a treatment of 2 min at 600 MPa. Agar diffusion assays showed that the isolate also caused the inhibition of a number of Gram-positive and Gram-negative pathogens, including strains of Clostridium botulinum, Listeria monocytogenes, Bacillus cereus and Escherichia coli. The selection of a pressure-resistant organism, such as this Weissella sp. could be advantageous in extending the shelf-life, and also microbiological safety, of the cooked meat, as it could give protection in addition to the pressure treatment itself.

  2. Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure.

    PubMed

    Ran, Zengling; Liu, Shan; Liu, Qin; Huang, Ya; Bao, Haihong; Wang, Yanjun; Luo, Shucheng; Yang, Huiqin; Rao, Yunjiang

    2014-08-07

    Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  3. Release of dissolved nitrogen from water during depressurization

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.

    1978-01-01

    Experiments were run to study depressurization of water containing various concentrations of dissolved nitrogen gas, the primary case being room temperature water saturated with nitrogen at 4 MPa. In a static depressurization experiment, water with very high nitrogen content was depressurized at rates from 0.09 to 0.50 MPa per second and photographed with high speed movies. The pictures showed that the bubble population at a given pressure increased strongly with decreasing depressurization rate. Flow experiments were performed in an axisymmetric converging-diverging nozzle and in a two-dimensional converging nozzle with glass sidewalls. Depressurization gradients were roughly 500 to 1200 MPa per second. Both nozzles exhibited choked flow behavior even at nitrogen concentration levels as low as 4 percent of saturated. The flow rates were independent of concentration level and could be computed as incompressible water flow based on the difference between stagnation and throat pressures; however, the throat pressures were significantly different between the two nozzles.

  4. Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa. II. Rotational Raman line widths

    NASA Astrophysics Data System (ADS)

    Afzelius, M.; Bengtsson, P.-E.; Bood, J.; Bonamy, J.; Chaussard, F.; Berger, H.; Dreier, T.

    Rotational coherent anti-Stokes Raman spectroscopy (CARS) is a well-established spectroscopic technique for thermometry at pre-combustion temperatures and atmospheric pressure. However, at pressures of several MPa, a previous investigation revealed large discrepancies between experimental data and the theoretical model. A re-evaluation has been made of these data (at room temperature and in the range 1.5-9 MPa) with two improvements to the spectral code. The first is the inclusion of an inter-branch interference effect, which is described in detail in Paper I. The second is the use of experimental S1-branch Raman line widths measured at 295 K, with a temperature dependence extracted from semi-classical calculations following the Robert-Bonamy formalism. It is shown that these two modifications significantly improve the theoretical model, since both the spectral fits and the accuracy of the evaluated temperatures are considerably improved.

  5. Sorbitol counteracts high hydrostatic pressure-induced denaturation of inulin fructotransferase.

    PubMed

    Li, Yungao; Miao, Ming; Liu, Miao; Jiang, Bo; Zhang, Tao; Chen, Xiangyin

    2014-09-01

    Inulin fructotransferase (IFTase), a novel hydrolase for inulin, was exposed to high hydrostatic pressure (HHP) at 400 and 600 MPa for 15 min in the presence or absence of sorbitol. Sorbitol protected the enzyme against HHP-induced activity loss. The relative residual activity increased nearly 3.1- and 3.8-fold in the presence of 3 mol/L sorbitol under 400 MPa and 600 MPa for 15 min, respectively. Circular dichroism results indicated that the original chaotic unfolding conformation of the enzyme under HHP shifted toward more ordered and impact with 3 mol/L sorbitol. Fluorescence and UV spectra results suggested that sorbitol prevented partially the unfolding of the enzyme and stabilized the conformation under high pressure. These results might be attributed to the binding of sorbitol on the surface of IFTase to rearrange and strengthen intra- and intermolecular hydrogen bonds. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Exposure–effect relationship of mycophenolic acid and prednisolone in adult patients with lupus nephritis

    PubMed Central

    Abd Rahman, Azrin N; Tett, Susan E; Abdul Gafor, Halim A; McWhinney, Brett C; Staatz, Christine E

    2015-01-01

    Aims The aim was to examine relationships between total and unbound mycophenolic acid (MPA) and prednisolone exposure and clinical outcomes in patients with lupus nephritis. Methods Six blood samples were drawn pre- and at 1, 2, 4, 6 and 8 h post-dose and total and unbound MPA and prednisolone pre-dose (C0), maximum concentration (Cmax) and area under the concentration–time curve (AUC) were determined using non-compartmental analysis in 25 patients. The analyses evaluated drug exposures in relation to treatment response since starting MPA and drug-related adverse events. Results Dose-normalized AUC varied 10-, 8-, 7- and 19-fold for total MPA, unbound MPA, total prednisolone and unbound prednisolone, respectively. Median values (95% CI) of total MPA AUC(0,8 h) (21.5 [15.0, 42.0] vs. 11.2 [4.8, 30.0] mg l–1 h, P= 0.048) and Cmax (11.9 [6.7, 26.3] vs. 6.1 [1.6, 9.2] mg l–1, P = 0.016) were significantly higher in responders than non-responders. Anaemia was significantly associated with higher total (37.8 [14.1, 77.5] vs. 18.5 [11.7, 32.7] mg l–1 h, P = 0.038) and unbound MPA AUC(0,12 h) (751 [214, 830] vs. 227 [151, 389] mg l–1 h, P = 0.004). Unbound prednisolone AUC(0,24 h) was significantly higher in patients with Cushingoid appearance (unbound: 1372 [1242, 1774] vs. 846 [528, 1049] nmol l–1 h, P = 0.019) than in those without. Poorer treatment response was observed in patients with lowest tertile exposure to both total MPA and prednisolone as compared with patients with middle and higher tertile exposure (17% vs. 74%, P = 0.023). Conclusions This study suggests a potential role for therapeutic drug monitoring in individualizing immunosuppressant therapy in patients with lupus nephritis. PMID:25959850

  7. Exposure-effect relationship of mycophenolic acid and prednisolone in adult patients with lupus nephritis.

    PubMed

    Abd Rahman, Azrin N; Tett, Susan E; Abdul Gafor, Halim A; McWhinney, Brett C; Staatz, Christine E

    2015-11-01

    The aim was to examine relationships between total and unbound mycophenolic acid (MPA) and prednisolone exposure and clinical outcomes in patients with lupus nephritis. Six blood samples were drawn pre- and at 1, 2, 4, 6 and 8 h post-dose and total and unbound MPA and prednisolone pre-dose (C0 ), maximum concentration (Cmax ) and area under the concentration-time curve (AUC) were determined using non-compartmental analysis in 25 patients. The analyses evaluated drug exposures in relation to treatment response since starting MPA and drug-related adverse events. Dose-normalized AUC varied 10-, 8-, 7- and 19-fold for total MPA, unbound MPA, total prednisolone and unbound prednisolone, respectively. Median values (95% CI) of total MPA AUC(0,8 h) (21.5 [15.0, 42.0] vs. 11.2 [4.8, 30.0] mg l(-1) h, P= 0.048) and Cmax (11.9 [6.7, 26.3] vs. 6.1 [1.6, 9.2] mg l(-1) , P = 0.016) were significantly higher in responders than non-responders. Anaemia was significantly associated with higher total (37.8 [14.1, 77.5] vs. 18.5 [11.7, 32.7] mg l(-1) h, P = 0.038) and unbound MPA AUC(0,12 h) (751 [214, 830] vs. 227 [151, 389] mg l(-1) h, P = 0.004). Unbound prednisolone AUC(0,24 h) was significantly higher in patients with Cushingoid appearance (unbound: 1372 [1242, 1774] vs. 846 [528, 1049] nmol l(-1) h, P = 0.019) than in those without. Poorer treatment response was observed in patients with lowest tertile exposure to both total MPA and prednisolone as compared with patients with middle and higher tertile exposure (17% vs. 74%, P = 0.023). This study suggests a potential role for therapeutic drug monitoring in individualizing immunosuppressant therapy in patients with lupus nephritis. © 2015 The British Pharmacological Society.

  8. Precooling treatments induce resistance of Anastrepha ludens eggs to quarantine treatments of high-pressure processing combined with cold.

    PubMed

    Castañón-Rodríguez, J F; Velazquez, G; Montoya, P; Vázquez, M; Ramírez, J A

    2014-04-01

    High-pressure processing (HPP) combined with heat or cold has been proposed as an alternative quarantine process for Mexican fruit fly Anastrepha ludens Loew (Diptera: Tephritidae). HPP conditions at levels higher than 100 MPa applied to destroy eggs and larvae can also affect the postharvest physiology of the fruits. HPP at pressure levels in the range of 50-100 MPa is recommended. Eggs have been reported as being more resistant to HPP than larvae. Therefore, the objective of this study was to assess the effect of a precooling treatment on the biological viability of A. ludens eggs treated by HPP at 0 degrees C. The capability of nondestroyed eggs to develop and reproduce was also evaluated. One-, 2-, 3-, and 4-d-old eggs were precooled in ice water for 0 (control) 3, 6, 12, or 24 h and then pressurized at 50, 70, or 90 MPa for 0, 3, 6, or 9 min at 0 degrees C. The hatching capability of pressurized eggs was evaluated. The most lethal effect of HPP on nonprecooled eggs (0 h) was obtained at 90 MPa for 9 min, destroying all eggs except for the 3-d-old ones, which showed an 11.8% hatch rate. Precooling treatment improved the hatch rate of eggs ranging from 4 to 50% depending on precooling conditions. The main effect was observed after 6 h. These results suggest that precooling modified the biochemistry and physiology of eggs, improving their resistance to HPP treatments.

  9. Influence of high-pressure processing on the generation of γ-aminobutyric acid and microbiological safety in coffee beans.

    PubMed

    Chen, Bang-Yuan; Huang, Hsiao-Wen; Cheng, Ming-Ching; Wang, Chung-Yi

    2018-04-27

    The aim of this study was to investigate the influence of high-pressure processing (HPP) on γ-aminobutyric acid (GABA) content, glutamic acid (Glu) content, glutamate decarboxylase (GAD) activity, growth of Aspergillus fresenii, and accumulated ochratoxin A (OTA) content in coffee beans. The results indicated that coffee beans subjected to HPP at pressures ≥50 MPa for 5 min increased GAD activity and promoted the conversion of Glu to GABA, and showed a significantly doubling of GABA content compared with unprocessed coffee beans. Additionally, investigation of the influence of HPP on A. fresenii growth on coffee beans showed that application ≥400 MPa reduced A. fresenii concentrations to <1 log. Furthermore, during a 50-day storage period, we observed that a processing pressure of 600 MPa completely inhibited A. fresenii growth, and on day 50 the OTA content of coffee beans subjected to processing pressures of 600 MPa was 0.0066 μg g -1 , which was significantly lower than the OTA content of 0.1143 μg g -1 in the control group. This study shows that HPP treatment can simultaneously increase GABA content and inhibit the growth of A. fresenii, thereby effectively reducing the production and accumulation of OTA and maintaining the microbiological safety of coffee beans. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  10. Pressure-Accelerated Dissociation of Amyloid Fibrils in Wild-Type Hen Lysozyme

    PubMed Central

    Shah, Buddha R.; Maeno, Akihiro; Matsuo, Hiroshi; Tachibana, Hideki; Akasaka, Kazuyuki

    2012-01-01

    The dynamics of amyloid fibrils, including their formation and dissociation, could be of vital importance in life. We studied the kinetics of dissociation of the amyloid fibrils from wild-type hen lysozyme at 25°C in vitro as a function of pressure using Trp fluorescence as a probe. Upon 100-fold dilution of 8 mg ml−1 fibril solution in 80 mM NaCl, pH 2.2, no immediate change occurred in Trp fluorescence, but at pressures of 50–450 MPa the fluorescence intensity decreased rapidly with time (kobs = 0.00193 min−1 at 0.1 MPa, 0.0348 min−1 at 400 MPa). This phenomenon is attributable to the pressure-accelerated dissociation of amyloid fibrils into monomeric hen lysozyme. From the pressure dependence of the rates, which reaches a plateau at ∼450 MPa, we determined the activation volume ΔV0‡ = −32.9 ± 1.7 ml mol(monomer)−1 and the activation compressibility Δκ‡ = −0.0075 ± 0.0006 ml mol(monomer)−1 bar−1 for the dissociation reaction. The negative ΔV0‡ and Δκ‡ values are consistent with the notion that the amyloid fibril from wild-type hen lysozyme is in a high-volume and high-compressibility state, and the transition state for dissociation is coupled with a partial hydration of the fibril. PMID:22225805

  11. Transient porosity pulses and microfracturing during a stress-generating retrograde metamorphic reaction

    NASA Astrophysics Data System (ADS)

    Renard, F.; Zheng, X.; Cordonnier, B.; Zhu, W.; Jamtveit, B.

    2017-12-01

    Several geological processes involve mineral transformations where nominally dry rocks transform into hydrated ones when left in contact with water (i.e. eclogitization, serpentinization). In these systems, the transformation induces stress if the rock is confined, and the new minerals create a so-called force of crystallization. Here, we study a model retrograde metamorphic reaction, the hydration of periclase, MgO, into brucite, Mg(OH)2, to quantify the coupling between reaction, stress generation, porosity evolution and fracturing. This hydration reaction generates a volume increase of 110%, and a density decrease of 33.8% of the solid. Samples of a microporous MgO ceramics were reacted at 170-211°C, 5-80 MPa confining pressure, 6-95 MPa differential stress and 5 MPa pore fluid pressure. They were installed into an X-ray transparent triaxial deformation rig, called Hades, and mounted on a synchrotron microtomography stage. Each experiment lasted between 2 and 5 hours, during which between 35 and 130 three-dimensional images were acquired, allowing to follow the chemical transformation and the deformation of the sample. Below 30 MPa mean pressure, the hydration reaction was coupled to fracturing of the MgO ceramics, and the transformation rate followed a sigmoidal kinetics curve with a slow initiation, a fast reaction coupled to fracturing and the generation of a transient porosity pulse, and a slow-down until an almost complete transformation of periclase into brucite.. Conversely, above 30 MPa, the reaction kinetics was very slow, without fracturing over the time scale of the experiment. When considering the driving force of the hydration reaction, stress generation should be several hundreds MPa, whereas the present experiments show that fracturing occurred only below 30 MPa. This indicates that the potential energy due to phase transformation generates much lower stress than what is estimated from non-equilibrium thermodynamics. A possible interpretation of this observation is that the stress created by the reaction may overcome the disjoining pressure at the grain-grain interface, expelling the water film trapped there and reducing the kinetics of reaction. As a consequence, only a fraction of the available potential driving force was used to accelerate the reaction by microfracturing.

  12. Generation of runaway electrons beams during the breakdown of high-pressure gases

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Burachenko, A. G.; Baksht, E. Kh

    2017-11-01

    Generation of run-away electrons in SF6, CO2, argon and nitrogen at high and super high pressures is studied. Super-short avalanches electron beams (SAEB) was obtained and measured with a collector at pressures up to 0.3, 0.7, 1.0 and 1.2 MPa in SF6, CO2, argon and nitrogen, respectively. The SAEB duration was shown to be ∼60 ps (FWHM) and gas composition has only minor effect on the duration. It was found that in a gap of 4 mm in SF6, CO2, argon and nitrogen at pressure up to 0.3, 0.7, 1.0 и 1.2 MPa the voltage pulse duration (FWHM) and amplitude increase with pressure.

  13. KEY COMPARISON: Results of the APMP Pressure key comparison APMP.M.P-K1c in gas media and gauge mode from 0.4 MPa to 4.0 MPa

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, A. K.; Woo, Sam Yong; Fitzgerald, Mark; Man, John; Ooiwa, Akira; Jescheck, M.; Jian, Wu; Fatt, Chen Soo; Chan, T. K.; Moore, Ken; El-Tawil, Alaaeldin A. E.

    2003-01-01

    This report summarizes the results of a regional key comparison (APMP-IC-2-97) under the aegis of the Asia Pacific Metrology Program (APMP) for pressure measurements in gas media and in gauge mode from 0.4 MPa to 4.0 MPa. The transfer standard was a pressure-balance with a piston-cylinder assembly with nominal effective area 8.4 mm2 (V-407) and was supplied by the National Metrology Institute of Japan [NMIJ]. Ten standard laboratories from the APMP region with one specially invited laboratory from the EUROMET region, namely Physikalisch-Technische Bundesanstalt (PTB), Germany, participated in this comparison. The comparison started in October 1998 and was completed in May 2001. The pilot laboratory prepared the calibration procedure [1] as per the guidelines of APMP and the International Bureau of Weights and Measures (BIPM) [2-4]. Detailed instructions for performing this key comparison were provided in the calibration protocol [1] and the required data were described in: (1) Annex 3 - characteristics of the laboratory standards, (2) Annex 4 - the effective area (A'p'/mm2) (the prime indicates values based on measured quantities) at 23°C of the travelling standard as a function of nominal pressure (p'/MPa) (five cycles both increasing and decreasing pressures at ten pre-determined pressure points) and (3) Annex 5 - the average effective area at 23°C (A'p'/mm2) obtained for each pressure p'/MPa with all uncertainty statements. The pilot laboratory processed the information and the data provided by the participants for these three annexes, starting with the information about the standards as provided in Annex 3. Based on this information, the participating laboratories are classified into two categories: (I) laboratories that are maintaining primary standards, and (II) laboratories that are maintaining standards loosely classified as secondary standards with a clear traceability as per norm of the BIPM. It is observed that out of these eleven laboratories, six laboratories have primary standards [Category (I)], the remaining five laboratories are placed in Category (II). The obtained data were compiled and processed under the same program as per the Consultative Committee for Mass and Related Quantities (CCM)/BIPM guidelines. From the data of Category (I), we evaluated the APMP reference value as a function of p'/MPa. Then, we estimated the relative difference of the A'p' values with reference to the APMP reference value for all participating laboratories and we observed that they agree well within their expanded uncertainties. We further estimated the effective area at null pressure and at 23°C (A'0/mm2) and the pressure distortion coefficient (lambda'/MPa-1) of the transfer standard for all the participating laboratories. We then estimated the relative deviation of the A'0/mm2 from the reference value for all eleven laboratories and compared this with their estimated expanded uncertainties. The result is once again extremely encouraging and all these eleven laboratories are agreeing within their estimated maximum expanded uncertainties. We also estimated the degree of equivalence between any two participating laboratories following a matrix mechanism. This once again agrees extremely well within the estimated relative standard uncertainty, which is derived for the two participating laboratories. Finally, a new method has been introduced to evaluate these results and establish a link to CCM.P-K1c and EUROMET.M.P-K2 at two nominal pressures, near 1 MPa and 4 MPa. Again the results show an agreement of all participating laboratories in the present comparison to within the estimated expanded uncertainties using a coverage factor k = 2. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the APMP, according to the provisions of the Mutual Recognition Arrangement (MRA).

  14. Effect of Pressures on the Corrosion Behaviours of Materials at 625°C

    NASA Astrophysics Data System (ADS)

    Li, W.; Huang, X.; Li, J.; Woo, O. T.; Sanchez, R.; Bibby, C. D.

    2017-02-01

    The corrosion behaviors of austenitic stainless steels (SS) 310, 304 and Ni- and Fe-based A-286 exposed to 0.1 MPa, 8 MPa and 29 MPa at 625°C for 1000 h were investigated. These represent exposure to superheated steam, subcritical and supercritical water (SCW) at 625°C, respectively. As SS 310 showed the smallest weight change, the oxide cross-sections made from 310 samples were examined by transmission electron microscopy. The results revealed a single-layer oxide at 0.1 MPa and dual-layer oxides at 8 MPa and 29 MPa, followed by a Cr-depleted region into the austenite substrate. The compositions of the inner oxides at 8 MPa and 29 MPa are Cr-rich and largely similar to those of the single-layer oxides at 0.1 MPa exposure. These results suggest that corrosion testing in superheated steam may be a suitable surrogate for scoping tests of materials under SCW conditions at >650°C.

  15. Permeability Evolution With Shearing of Simulated Faults in Unconventional Shale Reservoirs

    NASA Astrophysics Data System (ADS)

    Wu, W.; Gensterblum, Y.; Reece, J. S.; Zoback, M. D.

    2016-12-01

    Horizontal drilling and multi-stage hydraulic fracturing can lead to fault reactivation, a process thought to influence production from extremely low-permeability unconventional reservoir. A fundamental understanding of permeability changes with shear could be helpful for optimizing reservoir stimulation strategies. We examined the effects of confining pressure and frictional sliding on fault permeability in Eagle Ford shale samples. We performed shear-flow experiments in a triaxial apparatus on four shale samples: (1) clay-rich sample with sawcut fault, (2) calcite-rich sample with sawcut fault, (3) clay-rich sample with natural fault, and (4) calcite-rich sample with natural fault. We used pressure pulse-decay and steady-state flow techniques to measure fault permeability. Initial pore and confining pressures are set to 2.5 MPa and 5.0 MPa, respectively. To investigate the influence of confining pressure on fault permeability, we incrementally raised and lowered the confining pressure and measure permeability at different effective stresses. To examine the effect of frictional sliding on fault permeability, we slide the samples four times at a constant shear displacement rate of 0.043 mm/min for 10 minutes each and measure fault permeability before and after frictional sliding. We used a 3D Laser Scanner to image fault surface topography before and after the experiment. Our results show that frictional sliding can enhance fault permeability at low confining pressures (e.g., ≥5.0 MPa) and reduce fault permeability at high confining pressures (e.g., ≥7.5 MPa). The permeability of sawcut faults almost fully recovers when confining pressure returns to the initial value, and increases with sliding due to asperity damage and subsequent dilation at low confining pressures. In contrast, the permeability of natural faults does not fully recover. It initially increases with sliding, but then decreases with further sliding most likely due to fault gouge blocking fluid pathways.

  16. Tibiofemoral contact pressures in radial tears of the meniscus treated with all-inside repair, inside-out repair and partial meniscectomy.

    PubMed

    Zhang, Alan L; Miller, Stephanie L; Coughlin, Dezba G; Lotz, Jeffrey C; Feeley, Brian T

    2015-10-01

    To test contact pressures in the knee after treatment of a radial meniscus tear with an all-inside meniscal repair technique and compare the results with inside-out repair and partial meniscectomy. Six non-paired cadaveric knees were analyzed with intra-compartment pressures measured at loads of 250 N, 500 N and 1000 N at 0°, eight degrees, 15°, and 30° of knee flexion. Compartmental contact pressures were measured for the intact medial meniscus, radial tear in the posterior horn, all-inside repair using the NovoStitch suture passer device (Ceterix Orthopaedics Inc., Menlo Park, CA), inside-out repair method, and partial meniscectomy. One-way ANOVA was used for statistical analysis. The greatest differences in peak pressures between treatments were observed under 1000 N load at 30° flexion (0.8± (SD) 0.1 MPa (intact meniscus), 0.8± (SD) 0.1 MPa (all-inside), 0.9± (SD) 0.1 MPa (inside-out) and 1.6± (SD) 0.2 MPa (partial meniscectomy)). Treatment with partial meniscectomy resulted in the highest peak pressures compared to all other states (p<0.0001 at each angle). Repair of the radial tear using the all-inside technique as well as the inside-out technique resulted in significantly decreased compartment pressures compared to partial meniscectomies (p<0.0001 at each angle). There were no significant differences between peak pressures in the intact state and after repair with the all-inside or inside-out techniques. An all-inside repair technique using the NovoStitch suture passer can decrease contact pressures for a radial meniscus tear similarly to the inside-out repair technique when compared to partial meniscectomy. This novel arthroscopic suture passer warrants further analysis in the clinical setting as it may be a reliable method for repair of radial meniscal tears through an arthroscopic all-inside technique. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Some low homogenization pressures improve certain probiotic characteristics of yogurt culture bacteria and Lactobacillus acidophilus LA-K.

    PubMed

    Muramalla, T; Aryana, K J

    2011-08-01

    Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus salivarius ssp. thermophilus, and Lactobacillus acidophilus are dairy cultures widely used in the manufacture of cultured dairy products. Commonly used homogenization pressures in the dairy industry are 13.80 MPa or less. It is not known whether low homogenization pressures can stimulate bacteria to improve their probiotic characteristics. Objectives were to determine the effect of homogenization at 0, 3.45, 6.90, 10.34, and 13.80 MPa on acid tolerance, bile tolerance, protease activity, and growth of L. delbrueckii ssp. bulgaricus LB-12, S. salivarius ssp. thermophilus ST-M5, and L. acidophilus LA-K. The cultures were individually inoculated in cool autoclaved skim milk (4°C) and homogenized for 5 continuous passes. Growth and bile tolerance of samples were determined hourly for 10h of incubation. Acid tolerance was determined every 20 min for 120 min of incubation. Protease activity was determined at 0, 12, and 24h of incubation. All homogenization pressures studied improved acid tolerance of L. delbrueckii ssp. bulgaricus LB-12 but had no beneficial effect on protease activity and had negative effects on growth and bile tolerance. A pressure of 6.90 MPa improved acid tolerance, bile tolerance, and protease activity of S. salivarius ssp. thermophilus ST-M5, but none of the homogenization pressures studied had an effect on its growth. Homogenization pressures of 13.80 and 6.90 MPa improved acid tolerance and bile tolerance, respectively, of L. acidophilus LA-K but had no effect on protease activity and its growth. Some low homogenization pressures positively influenced some characteristics of yogurt culture bacteria and L. acidophilus LA-K. Culture pretreatment with some low homogenization pressures can be recommended for improvement of certain probiotic characteristics. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Dynamic culturing of cartilage tissue: the significance of hydrostatic pressure.

    PubMed

    Correia, Cristina; Pereira, Ana L; Duarte, Ana R C; Frias, Ana M; Pedro, Adriano J; Oliveira, João T; Sousa, Rui A; Reis, Rui L

    2012-10-01

    Human articular cartilage functions under a wide range of mechanical loads in synovial joints, where hydrostatic pressure (HP) is the prevalent actuating force. We hypothesized that the formation of engineered cartilage can be augmented by applying such physiologic stimuli to chondrogenic cells or stem cells, cultured in hydrogels, using custom-designed HP bioreactors. To test this hypothesis, we investigated the effects of distinct HP regimens on cartilage formation in vitro by either human nasal chondrocytes (HNCs) or human adipose stem cells (hASCs) encapsulated in gellan gum (GG) hydrogels. To this end, we varied the frequency of low HP, by applying pulsatile hydrostatic pressure or a steady hydrostatic pressure load to HNC-GG constructs over a period of 3 weeks, and evaluated their effects on cartilage tissue-engineering outcomes. HNCs (10×10(6) cells/mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens for 3 weeks: (1) 0.4 MPa Pulsatile HP; (2) 0.4 MPa Steady HP; and (3) Static. Subsequently, we applied the pulsatile regimen to hASC-GG constructs and varied the amplitude of loading, by generating both low (0.4 MPa) and physiologic (5 MPa) HP levels. hASCs (10×10(6) cells/mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens for 4 weeks: (1) 0.4 MPa Pulsatile HP; (2) 5 MPa Pulsatile HP; and (3) Static. In the HNC study, the best tissue development was achieved by the pulsatile HP regimen, whereas in the hASC study, greater chondrogenic differentiation and matrix deposition were obtained for physiologic loading, as evidenced by gene expression of aggrecan, collagen type II, and sox-9; metachromatic staining of cartilage extracellular matrix; and immunolocalization of collagens. We thus propose that both HNCs and hASCs detect and respond to physical forces, thus resembling joint loading, by enhancing cartilage tissue development in a frequency- and amplitude-dependant manner.

  19. The biomechanical effects of polytetrafluoroethylene suture augmentations in lateral-row rotator cuff repairs in an ovine model.

    PubMed

    Beimers, Lijkele; Lam, Patrick H; Murrell, George A C

    2014-10-01

    This study investigated the biomechanical effects of expanded polytetrafluoroethylene (ePTFE) suture augmentation patches in rotator cuff repair constructs. The infraspinatus tendon in 24 cadaveric ovine shoulders was repaired using an inverted horizontal mattress suture with 2 knotless bone anchors (ArthroCare, Austin, TX, USA) in a lateral-row configuration. Four different repair groups (6 per group) were created: (1) standard repair using inverted horizontal mattress sutures, (2) repair with ePTFE suture augmentations on the bursal side of the tendon, (3) repair with ePTFE suture augmentations on the articular side, and, (4) repair with ePTFE suture augmentations on both sides of the tendon. Footprint contact pressure, stiffness, and the load to failure of the repair constructs were measured. Repairs with ePTFE suture augmentations on the bursal side exerted significantly more footprint contact pressure (0.40 ± 0.01 MPa) than those on the articular side (0.34 ± 0.02 MPa, P = .04) and those on both sides (0.33 ± 0.02 MPa, P = .01). At 15 degrees of abduction, ePTFE-augmented repairs on the bursal side had higher footprint contact pressure (0.26 ± 0.03 MPa) compared with standard repairs (0.15 ± 0.02 MPa, P = .01) and with ePTFE-augmented repairs on the articular side (0.18 ± 0.02 MPa, P = .03). The ePTFE-augmented repairs on the bursal side demonstrated significantly higher failure loads (178 ± 18 N) than standard repairs (120 ± 17 N, P = .04). Inverted horizontal mattress sutures augmented with ePTFE patches on the bursal side of the tendon enhanced footprint contact pressures and the ultimate load to failure of lateral-row rotator cuff repairs in an ovine model. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  20. Design of a high-pressure circulating pump for viscous liquids.

    PubMed

    Seifried, Bernhard; Temelli, Feral

    2009-07-01

    The design of a reciprocating dual action piston pump capable of circulating viscous fluids at pressures of up to 34 MPa (5000 psi) and temperatures up to 80 degrees C is described. The piston of this pump is driven by a pair of solenoids energized alternatively by a 12 V direct current power supply controlled by an electronic controller facilitating continuously adjustable flow rates. The body of this seal-less pump is constructed using off-the-shelf parts eliminating the need for custom made parts. Both the electronic controller and the pump can be assembled relatively easily. Pump performance has been evaluated at room temperature (22 degrees C) and atmospheric pressure using liquids with low and moderately high viscosities, such as ethanol and corn oil, respectively. At ambient conditions, the pump delivered continuous flow of ethanol and corn oil at a flow rate of up to 170 and 17 cm3/min, respectively. For pumping viscous fluids comparable to corn oil, an optimum reciprocation frequency was ascertained to maximize flow rate. For low viscosity liquids such as ethanol, a linear relationship between the flow rate and reciprocation frequency was determined up to the maximum reciprocation frequency of the pump. Since its fabrication, the pump has been used in our laboratory for circulating triglycerides in contact with supercritical carbon dioxide at pressures of up to 25 MPa (3600 psi) and temperatures up to 70 degrees C on a daily basis for a total of more than 1500 h of operation functioning trouble free.

  1. Physicochemical properties of natural actomyosin from threadfin bream (Nemipterus spp.) induced by high hydrostatic pressure.

    PubMed

    Zhou, Aimei; Lin, Liying; Liang, Yan; Benjakul, Soottawat; Shi, Xiaoling; Liu, Xin

    2014-08-01

    Changes of physicochemical properties in natural actomyosin (NAM) from threadfin bream (Nemipterus spp.) induced by high hydrostatic pressure (200, 400, 600MPa for 10, 30, 50min) were studied. The increase in turbidity of NAM was coincidental with the decrease in protein solubility with increasing pressure and time, suggesting the formation of protein aggregates. SDS-PAGE showed that polymerisation and degradation of myosin heavy chain were induced by high pressure. Ca(2+)-ATPase activity of NAM treated by high pressure was lost, suggesting the denaturation of myosin and the dissociation of actomyosin complex. Surface hydrophobicity of NAM increased when the pressure and pressurization time increased, indicating that the exposed hydrophobic residues increased upon application of high pressure. Decrease in total sulfhydryl content and increase in surface-reactive sulfhydryl content of NAM samples were observed with the extension of pressurizing time, indicating the formation of disulphide bonds through oxidation of SH groups or disulphide interchanges. The above changes of physicochemical properties suggested conformational changes of NAM from muscle of threadfin bream induced by high hydrostatic pressure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Sorption J-T refrigeration utilizing manganese nitride chemisorption

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Lund, Alan

    1990-01-01

    The equilibrium pressures and compositions have been measured for a system of finely powdered manganese nitride and nitrogen gas at 650, 700, 800, and 850 C for various nitrogen loadings. Pressures ranged from less than 0.02 MPa at 650 C to 6.38 MPa at 850 C. Analysis of the test results has shown that under certain conditions Mn(x)N(y) could potentially be used in a triple regenerative sorption compressor refrigeration system, but the potential power savings are small compared to the increased complexity and reliability problems associated with very high temperature (above 950 C) pressurized systems.

  3. Miniature Piezoelectric Compressor for Joule-Thomson Cryocoolers

    NASA Astrophysics Data System (ADS)

    Sobol, Sergey; Tzabar, Nir; Grossman, Gershon

    Joule-Thomson (JT) cryocoolers operate with a continuous flow of the working fluid that enters the cooler at a high pressure and leaves it at a lower pressure. Ideally, the temperature of the outgoing fluid equals the temperature of the entering fluid. JT cryocoolers that operate with pure refrigerants require high pressure of a few tens of MPa where the low pressure is usually around 0.1 MPa. Circulation of the working fluid in such cases requires high pressure ratio compressors that evidently have large dimensions. JT cryocoolers can operate with much lower pressure ratios by using mixed-refrigerants. Cooling from 300 K to about 80 K in a single stage cryocooler normally requires a pressure ratio of about 1:25. In the present research a miniature compressor driven by piezoelectric elements is developed in collaboration between Rafael and the Technion. This type of compressor has the advantage of improved long life compared to other mechanical compressors, very low vibrations, and silent operation. In the current case, the design goal of the intake and discharge pressures has been 0.1 and 2.5 MPa, respectively, with a flow rate of 0.06 g/s. The compressor has two compression stages; 1:5 and 5:25. Several configurations have been considered, fabricated, and tested. The performance of the last configuration approaches the desired specification and is presented in the current paper together with the design concept.

  4. DNB heat flux on inner side of a vertical pipe in forced flow of liquid hydrogen and liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Shirai, Yasuyuki; Tatsumoto, Hideki; Shiotsu, Masahiro; Hata, Koichi; Kobayashi, Hiroaki; Naruo, Yoshihiro; Inatani, Yoshifumi

    2018-06-01

    Heat transfer from inner side of a heated vertical pipe to liquid hydrogen flowing upward was measured at the pressures of 0.4, 0.7 and 1.1 MPa for wide ranges of flow rate and liquid temperature. Nine test heaters with different inner diameters of 3, 4, 6 and 9 mm and the lengths of 50, 100, 150, 200, 250 and 300 mm were used. The DNB (departure from nucleate boiling) heat fluxes in forced flow of liquid hydrogen were measured for various subcoolings and flow velocities at pressures of 0.4, 0.7 and 1.1 MPa. Effect of L/d (ratio of heater length to diameter) was clarified for the range of L / d ⩽ 50 . A new correlation of DNB heat flux was presented based on a simple model and the experimental data. Similar experiments were performed for liquid nitrogen at pressures of 0.5 MPa and 1.0 MPa by using the same experimental system and some of the test heaters. It was confirmed that the new correlation can describe not only the hydrogen data, but also the data of liquid nitrogen.

  5. Mitigating Stress Waves Using Nanofoams and Nanohoneycombs

    DTIC Science & Technology

    2014-04-16

    In the following sections, we present our work in chronological order. 3 1. TWO-PARAMETER STUDY ON SILICA NANOFOAMS 1.1 Preparation...and Characterization of Silica Nanofoams Following the work in the last period of performance, we performed a systematic study on silica nanofoam...12.98MPa Peak value of transmission pulse: 5.32MPa Normalized peak value: 0.410 Pressure reduction: 0.02 MPa 19 2. SINGLE-PARAMETER STUDY ON

  6. Deflagration rates of secondary explosives under static MPa - GPa pressure

    NASA Astrophysics Data System (ADS)

    Zaug, Joseph; Young, Christopher; Glascoe, Elizabeth; Maienschein, Jon; Hart, Elaine; Long, Gregory; Black, Collin; Sykora, Gregory; Wardell, Jeffrey

    2009-06-01

    We discuss our measurements of the chemical reaction propagation rate (RPR) as a function of pressure using diamond anvil cell (DAC) and strand burner technologies. Materials investigated include HMX and RDX crystalline powders, LX-04 (85% HMX and 15% Viton A), and Comp B (63% RDX, 36% TNT, 1% wax). The anomalous correspondence between crystal structure, including in some instances isostructural phase transitions, on pressure dependant RPRs of TATB, HMX, Nitromethane, and Viton are elucidated using micro -IR and -Raman spectroscopies. The contrast between DAC GPa and strand burner MPa regime measurements yields insight into explosive material burn phenomena. Here we highlight pressure dependent physicochemical mechanisms that appear to affect the deflagration rate of precompressed energetic materials.

  7. Mediolateral femoral component position in TKA significantly alters patella shift and femoral roll-back.

    PubMed

    Steinbrück, Arnd; Schröder, Christian; Woiczinski, Matthias; Schmidutz, Florian; Müller, Peter E; Jansson, Volkmar; Fottner, Andreas

    2017-11-01

    Increased retropatellar pressure and altered kinematics are associated with anterior knee pain and unsatisfied patients after total knee arthroplasty (TKA). Since malposition of the implant is believed to contribute to postoperative pain, we performed this in vitro study to evaluate the influence of mediolateral femoral component position on retropatellar pressure as well as tibio-femoral and patella kinematics. For the test, a fixed-bearing TKA was implanted in eight fresh frozen cadaver specimens. To determine the impact of mediolateral (ML) position, three variants of femoral components (3-mm medialization, neutral position and 3-mm lateralization) were produced using rapid prototyping replicas. In a knee rig, a loaded squat from 20° to 120° of flexion was applied. Retropatellar pressure distribution was measured with a pressure-sensitive film. Additionally, an ultrasonic-based three-dimensional motion analysis system was used to register patello- and tibio-femoral kinematics. ML translation of the femoral component by 3 mm did not lead to a significant alteration in retropatellar peak pressure (medial 6.5 ± 2.5 MPa vs. lateral 6.0 ± 2.4 MPa). Following the ML translation of the femoral component, the patella was significantly shifted and tilted in the same directions. Varying the ML femoral component position also led to a significant alteration in femoral roll-back. In day-by-day use, ML position should be chosen with care since there is a significant influence on patella shift and femoral roll-back. Retropatellar pressure is not significantly altered, so there is no clear evidence of an impact on anterior knee pain.

  8. Experimental Study of Nonassociated Flow and Instability of Frictional Materials. Attachment No. 1

    DTIC Science & Technology

    1993-04-01

    pressure range of 0.25 to 68.9 MPa. One-dimensional compression tests up to 900 MPa axial stress level were also performed. U Strain localization was studied... range of confining pressures. Vesic and Clough (1968) performed a series of drained, triaxial compression tests on Chattahoochee River sand at confining...realization resulted in many investigators developing cubical triaxial testing apparatus, in which the full range of the effect of the intermediate I principal

  9. Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria?

    PubMed Central

    Scoma, Alberto; Barbato, Marta; Hernandez-Sanabria, Emma; Mapelli, Francesca; Daffonchio, Daniele; Borin, Sara; Boon, Nico

    2016-01-01

    Oil spills represent an overwhelming carbon input to the marine environment that immediately impacts the sea surface ecosystem. Microbial communities degrading the oil fraction that eventually sinks to the seafloor must also deal with hydrostatic pressure, which linearly increases with depth. Piezosensitive hydrocarbonoclastic bacteria are ideal candidates to elucidate impaired pathways following oil spills at low depth. In the present paper, we tested two strains of the ubiquitous Alcanivorax genus, namely A. jadensis KS_339 and A. dieselolei KS_293, which is known to rapidly grow after oil spills. Strains were subjected to atmospheric and mild pressure (0.1, 5 and 10 MPa, corresponding to a depth of 0, 500 and 1000 m, respectively) providing n-dodecane as sole carbon source. Pressures equal to 5 and 10 MPa significantly lowered growth yields of both strains. However, in strain KS_293 grown at 10 MPa CO2 production per cell was not affected, cell integrity was preserved and PO43− uptake increased. Analysis of its transcriptome revealed that 95% of its genes were downregulated. Increased transcription involved protein synthesis, energy generation and respiration pathways. Interplay between these factors may play a key role in shaping the structure of microbial communities developed after oil spills at low depth and limit their bioremediation potential. PMID:27020120

  10. Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria?

    NASA Astrophysics Data System (ADS)

    Scoma, Alberto; Barbato, Marta; Hernandez-Sanabria, Emma; Mapelli, Francesca; Daffonchio, Daniele; Borin, Sara; Boon, Nico

    2016-03-01

    Oil spills represent an overwhelming carbon input to the marine environment that immediately impacts the sea surface ecosystem. Microbial communities degrading the oil fraction that eventually sinks to the seafloor must also deal with hydrostatic pressure, which linearly increases with depth. Piezosensitive hydrocarbonoclastic bacteria are ideal candidates to elucidate impaired pathways following oil spills at low depth. In the present paper, we tested two strains of the ubiquitous Alcanivorax genus, namely A. jadensis KS_339 and A. dieselolei KS_293, which is known to rapidly grow after oil spills. Strains were subjected to atmospheric and mild pressure (0.1, 5 and 10 MPa, corresponding to a depth of 0, 500 and 1000 m, respectively) providing n-dodecane as sole carbon source. Pressures equal to 5 and 10 MPa significantly lowered growth yields of both strains. However, in strain KS_293 grown at 10 MPa CO2 production per cell was not affected, cell integrity was preserved and PO43- uptake increased. Analysis of its transcriptome revealed that 95% of its genes were downregulated. Increased transcription involved protein synthesis, energy generation and respiration pathways. Interplay between these factors may play a key role in shaping the structure of microbial communities developed after oil spills at low depth and limit their bioremediation potential.

  11. High pressure treatments combined with sodium lactate to inactivate Escherichia coli O157:H7 and spoilage microbiota in cured beef carpaccio.

    PubMed

    Masana, Marcelo Oscar; Barrio, Yanina Ximena; Palladino, Pablo Martín; Sancho, Ana Maria; Vaudagna, Sergio Ramón

    2015-04-01

    High-pressure treatments (400 and 600 MPa) combined with the addition of sodium lactate (1 and 3%) were tested to reduce Escherichia coli O157:H7 (STEC O157) and spoilage microbiota contamination in a manufactured cured beef carpaccio in fresh or frozen conditions. Counts of spoilage microorganisms and STEC O157 were also examined during the curing step to prepare the carpaccio. STEC O157 counts remained almost unchanged through the curing process performed at 1 ± 1 °C for 12 days, with a small decrease in samples with 3% of sodium lactate. High-pressure treatments at 600 MPa for 5 min achieved an immediate reduction of up to 2 logarithmic units of STEC O157 in frozen carpaccio, and up to 1.19 log in fresh condition. Counts of spoilage bacteria diminished below detection limits in fresh or frozen carpaccio added with sodium lactate by the application of 400 and 600 MPa. Maximum injury on STEC O157 cells was observed at 600 MPa in carpaccio in fresh condition without added sodium lactate. Lethality of high-pressure treatments on STEC O157 was enhanced in frozen carpaccio, while the addition of sodium lactate at 3% reduced the lethality on STEC O157 in frozen samples, and the degree of injury in fresh carpaccio. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Effect of high-pressure treatment on the structural and rheological properties of resistant corn starch/locust bean gum mixtures.

    PubMed

    Hussain, Raza; Vatankhah, Hamed; Singh, Ajaypal; Ramaswamy, Hosahalli S

    2016-10-05

    In this study, effects of a 30min high pressure (HP) treatment (200-600MPa) at room temperature on the rheological, thermal and morphological properties of resistant corn starch (RS) (5% w/w) and locust bean gum (LBG) (0.25, 0.50 and 1.0% w/v) dispersions were evaluated. Results showed that the storage modulus (G'), loss modulus (G''), and apparent viscosity values of starch/gum (RS/LBG) mixtures were enhanced with an increase pressure level, and demonstrated a bi-phasic behavior. HP treated RS/LBG samples were predominantly either solid like (G'>G'') or viscous (G''>G'), depending on the pressure level and LBG concentrations. Differential scanning calorimetry (DSC) analysis of the pressurized mixtures showed a major effect on gelatinization temperatures (To, Tp,), and it was observed that RS/LBG mixtures gelatinized completely at ≥400MPa with a 30min holding time. Confocal laser scanning microscopy (CLSM) images confirmed that at 600MPa, RS/LBG mixtures retained granular structures and their complete disintegration was not observed even at the endpoint of the gelatinization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. High pressure homogenization to improve the stability of casein - hydroxypropyl cellulose aqueous systems.

    PubMed

    Ye, Ran; Harte, Federico

    2014-03-01

    The effect of high pressure homogenization on the improvement of the stability hydroxypropyl cellulose (HPC) and micellar casein was investigated. HPC with two molecular weights (80 and 1150 kDa) and micellar casein were mixed in water to a concentration leading to phase separation (0.45% w/v HPC and 3% w/v casein) and immediately subjected to high pressure homogenization ranging from 0 to 300 MPa, in 100 MPa increments. The various dispersions were evaluated for stability, particle size, turbidity, protein content, and viscosity over a period of two weeks and Scanning Transmission Electron Microscopy (STEM) at the end of the storage period. The stability of casein-HPC complexes was enhanced with the increasing homogenization pressure, especially for the complex containing high molecular weight HPC. The apparent particle size of complexes was reduced from ~200nm to ~130nm when using 300 MPa, corresponding to the sharp decrease of absorbance when compared to the non-homogenized controls. High pressure homogenization reduced the viscosity of HPC-casein complexes regardless of the molecular weight of HPC and STEM imagines revealed aggregates consistent with nano-scale protein polysaccharide interactions.

  14. High pressure homogenization to improve the stability of casein - hydroxypropyl cellulose aqueous systems

    PubMed Central

    Ye, Ran; Harte, Federico

    2013-01-01

    The effect of high pressure homogenization on the improvement of the stability hydroxypropyl cellulose (HPC) and micellar casein was investigated. HPC with two molecular weights (80 and 1150 kDa) and micellar casein were mixed in water to a concentration leading to phase separation (0.45% w/v HPC and 3% w/v casein) and immediately subjected to high pressure homogenization ranging from 0 to 300 MPa, in 100 MPa increments. The various dispersions were evaluated for stability, particle size, turbidity, protein content, and viscosity over a period of two weeks and Scanning Transmission Electron Microscopy (STEM) at the end of the storage period. The stability of casein-HPC complexes was enhanced with the increasing homogenization pressure, especially for the complex containing high molecular weight HPC. The apparent particle size of complexes was reduced from ~200nm to ~130nm when using 300 MPa, corresponding to the sharp decrease of absorbance when compared to the non-homogenized controls. High pressure homogenization reduced the viscosity of HPC-casein complexes regardless of the molecular weight of HPC and STEM imagines revealed aggregates consistent with nano-scale protein polysaccharide interactions. PMID:24159250

  15. Ultrahigh hydrostatic pressure extraction of flavonoids from Epimedium koreanum Nakai

    NASA Astrophysics Data System (ADS)

    Hou, Lili; Zhang, Shouqin; Dou, Jianpeng; Zhu, Junjie; Liang, Qing

    2011-02-01

    Herba Epimedii is one of the most famous Chinese herbal medicines listed in the Pharmacopoeia of the People's Republic of China, as one of the representatives of traditional Chinese herb, it has been widely applied in the field of invigorate the kidney and strengthen 'Yang'. The attention to Epimedium extract has more and more increased in recent years. In this work, a novel extraction technique, ultra-high hydrostatic pressure extraction (UPE) technology was applied to extract the total flavonoids of E. koreanum. Three factors (pressure, ethanol concentration and extraction time) were chosen as the variables of extraction experiments, and the optimum UPE conditions were pressure 350 MPa; ethanol concentration 50% (v/v); extraction time 5 min. Compared with Supercritical CO2 extraction, Reflux extraction and Ultrasonic-assisted extraction, UPE has excellent advantages (shorter extraction time, higher yield, better antioxidant activity, lower energy consumption and eco-friendly).

  16. A Gas Pressure Scale Based on Primary Standard Piston Gauges

    PubMed Central

    Olson, Douglas A.; Driver, R. Greg; Bowers, Walter J.

    2010-01-01

    The National Institute of Standards and Technology (NIST) has redefined its gas pressure scale, up to 17 MPa, based on two primary standard piston gauges. The primary standard piston gauges are 35.8 mm in diameter and operate from 20 kPa to 1 MPa. Ten secondary standard piston gauges, two each of five series of the Ruska 2465 type, with successively smaller diameters form the scale extending up to 17 MPa. Six of the piston gauges were directly compared to the primary standards to determine their effective area and expanded (k = 2) uncertainty. Two piston gauges operating to 7 MPa were compared to the 1.4 MPa gauges, and two piston gauges operating to 17 MPa were compared to the 7 MPa gauges. Distortion in the 7 MPa piston gauges was determined by comparing those gauges to a DH Instruments PG7601 type piston gauge, whose distortion was calculated using elasticity theory. The relative standard uncertainties achieved by the primary standards range from 3.0 × 10−6 to 3.2 × 10−6. The relative standard uncertainty of the secondary standards is as low as 4.2 × 10−6 at 300 kPa. The effective areas and uncertainties were validated by comparison to standards of other National Metrology Institutes (NMIs). Results show agreement in all cases to better than the expanded (k = 2) uncertainty of the difference between NIST and the other NMIs, and in most cases to better than the standard (k = 1) uncertainty of the difference. PMID:27134793

  17. ERK activation is required for hydrostatic pressure-induced tensile changes in engineered articular cartilage.

    PubMed

    DuRaine, G D; Athanasiou, K A

    2015-04-01

    The objective of this study was to identify ERK 1/2 involvement in the changes in compressive and tensile mechanical properties associated with hydrostatic pressure treatment of self-assembled cartilage constructs. In study 1, ERK 1/2 phosphorylation was detected by immunoblot, following application of hydrostatic pressure (1 h of static 10 MPa) applied at days 10-14 of self-assembly culture. In study 2, ERK 1/2 activation was blocked during hydrostatic pressure application on days 10-14. With pharmacological inhibition of the ERK pathway by the MEK1/ERK inhibitor U0126 during hydrostatic pressure application on days 10-14, the increase in Young's modulus induced by hydrostatic pressure was blocked. Furthermore, this reduction in Young's modulus with U0126 treatment during hydrostatic pressure application corresponded to a decrease in total collagen expression. However, U0126 did not inhibit the increase in aggregate modulus or GAG induced by hydrostatic pressure. These findings demonstrate a link between hydrostatic pressure application, ERK signalling and changes in the biomechanical properties of a tissue-engineered construct. Copyright © 2012 John Wiley & Sons, Ltd.

  18. ERK activation is required for hydrostatic pressure induced-tensile changes in engineered articular cartilage

    PubMed Central

    DuRaine, G D; Athanasiou, K A

    2015-01-01

    The objective of this study was to identify the ERK 1/2 involvement in the changes in compressive and tensile mechanical properties associated with hydrostatic pressure treatment of self-assembled cartilage constructs. In study 1, ERK 1/2 phosphorylation was detected by immunoblot following application of hydrostatic pressure (1 hour of static 10MPa) applied at day 10-14 of self-assembly culture. In study 2, ERK 1/2 activation was blocked during hydrostatic pressure application on days 10-14. With pharmacological inhibition of the ERK pathway by the MEK1/ERK inhibitor U0126 during hydrostatic pressure application on days 10-14, the increase in Young’s modulus induced by hydrostatic pressure was blocked. Furthermore, this reduction in Young’s modulus with U0126 treatment during hydrostatic pressure application corresponded with a decrease in total collagen expression. However, U0126 did not inhibit the increase in aggregate modulus or GAG induced by hydrostatic pressure. These findings demonstrate a link between hydrostatic pressure application, ERK signaling, and changes in biomechanical properties of a tissue engineered construct. PMID:23255524

  19. Fructooligosaccharides integrity after atmospheric cold plasma and high-pressure processing of a functional orange juice.

    PubMed

    Almeida, Francisca Diva Lima; Gomes, Wesley Faria; Cavalcante, Rosane Souza; Tiwari, Brijesh K; Cullen, Patrick J; Frias, Jesus Maria; Bourke, Paula; Fernandes, Fabiano A N; Rodrigues, Sueli

    2017-12-01

    In this study, the effect of atmospheric pressure cold plasma and high-pressure processing on the prebiotic orange juice was evaluated. Orange juice containing 7g/100g of commercial fructooligosaccharides (FOS) was directly and indirectly exposed to a plasma discharge at 70kV with processing times of 15, 30, 45 and 60s. For high-pressure processing, the juice containing the same concentration of FOS was treated at 450MPa for 5min at 11.5°C in an industrial equipment (Hyperbaric, model: 300). After the treatments, the fructooligosaccharides were qualified and quantified by thin layer chromatography. The organic acids and color analysis were also evaluated. The maximal overall fructooligosaccharides degradation was found after high-pressure processing. The total color difference was <3.0 for high-pressure and plasma processing. citric and ascorbic acid (Vitamin C) showed increased content after plasma and high-pressure treatment. Thus, atmospheric pressure cold plasma and high-pressure processing can be used as non-thermal alternatives to process prebiotic orange juice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Influence of ultra-high pressure homogenisation on antioxidant capacity, polyphenol and vitamin content of clear apple juice.

    PubMed

    Suárez-Jacobo, Angela; Rüfer, Corinna E; Gervilla, Ramón; Guamis, Buenaventura; Roig-Sagués, Artur X; Saldo, Jordi

    2011-07-15

    Ultra-high pressure homogenisation (UHPH) is a recently developed technology and is still under study to evaluate its effect on different aspects of its application to food products. The aim of this research work was to evaluate the effect of UHPH treatments on quality characteristics of apple juice such as antioxidant capacity, polyphenol composition, vitamin C and provitamin A contents, in comparison with raw (R) and pasteurised (PA) apple juice. Several UHPH treatments that include combinations of pressure (100, 200 and 300MPa) and inlet temperatures (4 and 20°C) were assayed. Apple juice was pasteurised at 90°C for 4min. Antioxidant capacity was analysed using the oxygen radical antioxidant capacity (ORAC), 2,2-diphenyl-1-picrylhydrazyl (DPPH), trolox equivalent antioxidant capacity (TEAC), ferric reducing antioxidant power (FRAP) assay while total phenolic content was determined by the Folin-Ciocalteau assay. According to the FRAP and DPPH assays, UHPH processing did not change apple juice antioxidant capacity. However, significant differences were detected between samples analysed by TEAC and ORAC assays. In spite of these differences, high correlation values were found between the four antioxidant capacity assays, and also with total polyphenol content. The analysis and quantification of individual phenols by HPLC/DAD analytical technique reflects that UHPH-treatment prevented degradation of these compounds. Vitamin C concentrations did not change in UHPH treated samples, retaining the same value as in raw juice. However, significant losses were observed for provitamin A content, but lower than in PA samples. UHPH-treatments at 300MPa can be an alternative to thermal treatment in order to preserve apple juice quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. High isostatic pressure and thermal processing of açaí fruit (Euterpe oleracea Martius): Effect on pulp color and inactivation of peroxidase and polyphenol oxidase.

    PubMed

    Jesus, Ana Laura Tibério de; Leite, Thiago Soares; Cristianini, Marcelo

    2018-03-01

    The present study evaluated the effect of high isostatic pressure (HIP) on the activity of peroxidase (POD) and polyphenol oxidase (PPO) from açaí. Açaí pulp was submitted to several combinations of pressure (400, 500, 600MPa), temperature (25 and 65°C) for 5 and 15min. The combined effect of HIP technology and high temperatures (690MPa by 2 and 5min at 80°C) was also investigated and compared to the conventional thermal treatment (85°C/1min). POD and PPO enzyme activity and instrumental color were examined after processing and after 24h of refrigerated storage. Results showed stability of POD for all pressures at 25°C, which proved to be heat-resistant and baro-resistant at 65°C. For PPO, the inactivation at 65°C was 71.7% for 600MPa after 15min. In general, the increase in temperature from 25°C to 65°C reduced the PPO relative activity with no changes in color. Although the thermal treatment and the HIP (690MPa) along with high temperature (80°C) reduced the PPO relative activity, and relevant darkening was observed in the processed samples. Thus, it can be concluded that POD is more baro-resistant than PPO in açaí pulp subjected to the same HIP processing conditions and processing at 600MPa/65°C for 5min may be an effective alternative for thermal pasteurization treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Optical fiber pressure sensor based on fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Song, Dongcao

    In oil field, it is important to measure the high pressure and temperature for down-hole oil exploration and well-logging, the available traditional electronic sensor is challenged due to the harsh, flammable environment. Recently, applications based on fiber Bragg grating (FBG) sensor in the oil industry have become a popular research because of its distinguishing advantages such as electrically passive operation, immunity to electromagnetic interference, high resolution, insensitivity to optical power fluctuation etc. This thesis is divided into two main sections. In the first section, the design of high pressure sensor based on FBG is described. Several sensing elements based on FBG for high pressure measurements have been proposed, for example bulk-modulus or free elastic modulus. But the structure of bulk-modulus and free elastic modulus is relatively complex and not easy to fabricate. In addition, the pressure sensitivity is not high and the repeatability of the structure has not been investigated. In this thesis, a novel host material of carbon fiber laminated composite (CFLC) for high pressure sensing is proposed. The mechanical characteristics including principal moduli in three directions and the shape repeatability are investigated. Because of it's Young's modulus in one direction and anisotropic characteristics, the pressure sensor made by CFLC has excellent sensitivity. This said structure can be used in very high pressure measurement due to carbon fiber composite's excellent shape repetition even under high pressure. The experimental results show high pressure sensitivity of 0.101nm/MPa and high pressure measurement up to 70MPa. A pressure sensor based on CFLC and FBG with temperature compensation has been designed. In the second section, the design of low pressure sensor based on FBG is demonstrated. Due to the trade off between measurement range and sensitivity, a sensor for lower pressure range needs more sensitivity. A novel material of carbon fiber ribbon-wound composite cylindrical shell is proposed. The mechanical characteristics are analyzed. Due to the smaller longitudinal Young's modulus of this novel material, the sensitivity is improved to 0.452nm/MPa and the measurement range can reach 8MPa. The experimental results indicated excellent repeatability of the material and a good linearity between Bragg wavelength shift and the applied pressure. The sensor has the potential to find many industrial low pressure applications.

  3. A Continuous Culture System for Assessing Microbial Activities in the Piezosphere

    PubMed Central

    Pérez-Rodríguez, Ileana

    2015-01-01

    Continuous culture under elevated pressures is an important technique for expanding the exploration of microbial growth and survival in extreme environments associated with the deep biosphere. Here we present a benchtop stirred continuous culture bioreactor capable of withstanding temperatures ranging from 25 to 120°C and pressures as high as 69 MPa. The system is configured to allow the employment of media enriched in dissolved gases, under oxic or anoxic conditions, while permitting periodic sampling of the incubated organisms with minimal physical/chemical disturbance inside the reactor. In a pilot experiment, the fermentative growth of the thermopiezophilic bacterium Marinitoga piezophila was investigated continuously for 382 h at 65°C and at pressures ranging from 0.1 to 40 MPa while the medium flow rate was varied from 2 to 0.025 ml/min. The enhanced growth observed at 30 and 40 MPa and 0.025 ml/min supports the pressure preferences of M. piezophila when grown fermentatively. This assay successfully demonstrates the capabilities of the bioreactor for continuous culturing at a variety of dilution rates, pressures, and temperatures. We anticipate that this technology will accelerate our understanding of the physiological and metabolic status of microorganisms under temperature, pressure, and energy regimes resembling those of the Earth's piezosphere. PMID:26209666

  4. The effect of nozzle diameter, injection pressure and ambient temperature on spray characteristics in diesel engine

    NASA Astrophysics Data System (ADS)

    Rhaodah Andsaler, Adiba; Khalid, Amir; Sharifhatul Adila Abdullah, Nor; Sapit, Azwan; Jaat, Norrizam

    2017-04-01

    Mixture formation of the ignition process is a key element in the diesel combustion as it influences the combustion process and exhaust emission. Aim of this study is to elucidate the effects of nozzle diameter, injection pressure and ambient temperature to the formation of spray. This study investigated diesel formation spray using Computational Fluid Dynamics. Multiphase volume of fluid (VOF) behaviour in the chamber are determined by means of transient simulation, Eulerian of two phases is used for implementation of mixing fuel and air. The detail behaviour of spray droplet diameter, spray penetration and spray breakup length was visualised using the ANSYS 16.1. This simulation was done in different nozzle diameter 0.12 mm and 0.2 mm performed at the ambient temperature 500 K and 700 K with different injection pressure 40 MPa, 70 MPa and 140 MPa. Results show that high pressure influence droplet diameter become smaller and the penetration length longer with the high injection pressure apply. Smaller nozzle diameter gives a shorter length of the breakup. It is necessary for nozzle diameter and ambient temperature condition to improve the formation of spray. High injection pressure is most effective in improvement of formation spray under higher ambient temperature and smaller nozzle diameter.

  5. Normalized fluctuations, H2O vs n-hexane: Site-correlated percolation

    NASA Astrophysics Data System (ADS)

    Koga, Yoshikata; Westh, Peter; Sawamura, Seiji; Taniguchi, Yoshihiro

    1996-08-01

    Entropy, volume and the cross fluctuations were normalized to the average volume of a coarse grain with a fixed number of molecules, within which the local and instantaneous value of interest is evaluated. Comparisons were made between liquid H2O and n-hexane in the range from -10 °C to 120 °C and from 0.1 MPa to 500 MPa. The difference between H2O and n-hexane in temperature and pressure dependencies of these normalized fluctuations was explained in terms of the site-correlated percolation theory for H2O. In particular, the temperature increase was confirmed to reduce the hydrogen bond probability, while the pressure appeared to have little effect on the hydrogen bond probability. According to the Le Chatelier principle, however, the putative formation of ``ice-like'' patches at low temperatures due to the site-correlated percolation requirement is retarded by pressure increases. Thus, only in the limited region of low pressure (<300 MPa) and temperature (<60 °C), the fluctuating ice-like patches are considered to persist.

  6. Effect of microfluidization on casein micelle size of bovine milk

    NASA Astrophysics Data System (ADS)

    Sinaga, H.; Deeth, H.; Bhandari, B.

    2018-02-01

    The properties of milk are likely to be dependent on the casein micelle size, and various processing technologies produce particular change in the average size of casein micelles. The main objective of this study was to manipulate casein micelle size by subjecting milk to microfluidizer. The experiment was performed as a complete block randomised design with three replications. The sample was passed through the microfluidizer at the set pressure of 83, 97, 112 and 126 MPa for one, two, three, four, five and six cycles, except for the 112 MPa. The results showed that microfluidized milk has smaller size by 3% with pressure up to 126 MPa. However, at each pressure, no further reduction was observed after increasing the passed up to 6 cycles. Although the average casein micelle size was similar, elevating pressure resulted in narrower size distribution. In contrast, increasing the number of cycles had little effect on casein micelle distribution. The finding from this study can be applied for future work to characterize the fundamental and functional properties of the treated milk.

  7. High pressure effects on myrosinase activity and glucosinolate preservation in seedlings of Brussels sprouts.

    PubMed

    Wang, Jia; Barba, Francisco J; Sørensen, Jens C; Frandsen, Heidi B; Sørensen, Susanne; Olsen, Karsten; Orlien, Vibeke

    2018-04-15

    Combinations of pressure, temperature and time (100-600 MPa, 30-60 °C, 3-10 min) influence enzyme activity of the myrosinase-glucosinolate system. Seedlings of Brussels sprouts were used as a model, which constitutes a well-defined and homogenous sample matrix with simple cell structures. A response surface methodology approach was used to determine the combined effect of pressure level, temperature and time on glucosinolate concentration and myrosinase activity in Brussels sprouts seedlings. The effects on residual myrosinase activity and intact glucosinolate concentration differed according to combinations of pressure, time and temperature. The results showed that maximum inactivation of myrosinase and preservation of glucosinolate (85% of the untreated level) was obtained after HP treatment at 600 MPa, 60 °C, 10 min. The highest preservation of myrosinase activity compared to untreated seedlings was after HP at 100 MPa, 30 °C, 3 min and 10 min with low degree of cell permeabilization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Physical and structural changes induced by high pressure on corn starch, rice flour and waxy rice flour.

    PubMed

    Cappa, Carola; Lucisano, Mara; Barbosa-Cánovas, Gustavo V; Mariotti, Manuela

    2016-07-01

    The impact of high pressure (HP) processing on corn starch, rice flour and waxy rice flour was investigated as a function of pressure level (400MPa; 600MPa), pressure holding time (5min; 10min), and temperature (20°C; 40°C). Samples were pre-conditioned (final moisture level: 40g/100g) before HP treatments. Both the HP treated and the untreated raw materials were evaluated for pasting properties and solvent retention capacity, and investigated by differential scanning calorimetry, X-ray diffractometry and environmental scanning electron microscopy. Different pasting behaviors and solvent retention capacities were evidenced according to the applied pressure. Corn starch presented a slower gelatinization trend when treated at 600MPa. Corn starch and rice flour treated at 600MPa showed a higher retention capacity of carbonate and lactic acid solvents, respectively. Differential scanning calorimetry and environmental scanning electron microscopy investigations highlighted that HP affected the starch structure of rice flour and corn starch. Few variations were evidenced in waxy rice flour. These results can assist in advancing the HP processing knowledge, as the possibility to successfully process raw samples in a very high sample-to-water concentration level was evidenced. This work investigates the effect of high pressure as a potential technique to modify the processing characteristics of starchy materials without using high temperature. In this case the starches were processed in the powder form - and not as a slurry as in previously reported studies - showing the flexibility of the HP treatment. The relevance for industrial application is the possibility to change the structure of flour starches, and thus modifying the processability of the mentioned products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effects of High-Hydrostatic Pressure on Inactivation of Human Norovirus and Physical and Sensory Characteristics of Oysters.

    PubMed

    Ye, Mu; Lingham, Talaysha; Huang, Yaoxin; Ozbay, Gulnihal; Ji, Lin; Karwe, Mukund; Chen, Haiqiang

    2015-06-01

    The purpose of the study was to determine the effect of high-hydrostatic pressure (HHP) on inactivation of human norovirus (HuNoV) in oysters and to evaluate organoleptic characteristics of oysters treated at pressure levels required for HuNoV inactivation. Genogroup I.1 (GI.1) or Genogroup II.4 (GII.4) HuNoV was inoculated into oysters and treated at 300 to 600 MPa at 25 and 0 °C for 2 min. After HHP, viral particles were extracted by porcine gastric mucin-conjugated magnetic beads (PGM-MBs) and viral RNA was quantified by real-time RT-PCR. Lower initial temperature (0 °C) significantly enhanced HHP inactivation of HuNoV compared to ambient temperature (25 °C; P < 0.05). HHP at 350 and 500 MPa at 0 °C could achieve more than 4 log10 reduction of GII.4 and GI.1 HuNoV in oysters, respectively. HHP treatments did not significantly change color or texture of oyster tissue. A 1- to 5-scale hedonic sensory evaluation on appearance, aroma, color, and overall acceptability showed that pressure-treated oysters received significantly higher quality scores than the untreated control (P < 0.05). Elevated pressure levels at 450 and 500 MPa did not significantly affect scores compared to 300 MPa at 0 °C, indicating increasing pressure level did not affect sensory acceptability of oysters. Oysters treated at 0 °C had slightly lower acceptability than the group treated at room temperature on day 1 (P < 0.05), but after 1 wk storage, no significant difference in sensory attributes and consumer desirability was observed (P > 0.05). © 2015 Institute of Food Technologists®

  10. Erythrocyte aggregation under high pressure studied by laser photometry and mathematical analysis.

    PubMed

    Toyama, Yoshiharu; Yoshida, Hisashi; Yamamoto, Takao; Dobashi, Toshiaki

    2016-04-01

    The effects of hydrostatic pressure on erythrocyte aggregation have been studied by laser photometry and analysis based on a phenomenological theory. Samples were prepared by suspending swine erythrocytes in their own plasma. A high-pressure vessel consisting of a stainless-steel block with a hole to hold a sample cell and two sapphire windows to allows the passage of a He-Ne laser beam was used in the experimental setup. The suspension was stirred at 1500 rpm to disperse the erythrocytes homogeneously. Immediately after reducing the stirring rate from 1500 rpm to 300 rpm, the transmitted light intensity (I) was recorded every 10 ms under a high pressure of 40-200 MPa. The value of I increased with time (t) owing to erythrocyte aggregation. From the phenomenological theory, the equation ΔI(t)=ΔIeq[1-e(-Kt)/(1-B(1-e(-Kt)))] was derived for the change in the transmitted light intensity (ΔI) due to erythrocyte aggregation, where ΔIeq is the transmitted light intensity in the steady state, K is a time constant and B is a constant that represents the ratio of the number of interaction sites on erythrocyte aggregates at time t to that in the steady state. The observed time courses of ΔI obtained at all pressures could be closely fitted to the theoretical equation. ΔIeq roughly increased with increasing pressure. On the other hand, K and B abruptly decreased above 120 MPa. The growth rate of aggregates decreased above 120 MPa. These results suggest a change in the mechanism of erythrocyte aggregation at approximately 120 MPa. We discuss the physical meaning of the parameters. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Transport properties of nonelectrolyte liquid mixtures—VII. Viscosity coefficients for isooctane and for equimolar mixtures of isooctane + n-octane and isooctane + n-dodecane from 25 to 100°C at pressures up to 500 MPa or to the freezing pressure

    NASA Astrophysics Data System (ADS)

    Dymond, J. H.; Glen, N. F.; Isdale, J. D.

    1985-05-01

    Changes in the high-pressure self-centering falling-body viscometer system, and the new automated data logging system, are described. Viscosity coefficient measurements made with an estimated accuracy of ± 2 % are reported for isooctane and for equimolar mixtures of isooctane + n-octane and isooctane + n-dodecane at 25, 50, 75, and 100°C at pressures up to 500 MPa or to the freezing pressure. The pressure dependence of the results is found to be represented equally well by the recent equation of Makita and by a free-volume form of equation. The Grunberg and Nissan equation gives a good fit to the mixture viscosity coefficient data.

  12. Strategy to inactivate Clostridium perfringens spores in meat products.

    PubMed

    Akhtar, Saeed; Paredes-Sabja, Daniel; Torres, J Antonio; Sarker, Mahfuzur R

    2009-05-01

    The current study aimed to develop an inactivation strategy for Clostridium perfringens spores in meat through a combination of spore activation at low pressure (100-200 MPa, 7 min) and elevated temperature (80 degrees C, 10 min); spore germination at high temperatures (55, 60 or 65 degrees C); and inactivation of germinated spores with elevated temperatures (80 and 90 degrees C, 10 and 20 min) and high pressure (586 MPa, at 23 and 73 degrees C, 10 min). Low pressures (100-200 MPa) were insufficient to efficiently activate C. perfringens spores for germination. However, C. perfringens spores were efficiently activated with elevated temperature (80 degrees C, 10 min), and germinated at temperatures lethal for vegetative cells (>or= 55 degrees C) when incubated for 60 min with a mixture of L-asparagine and KCl (AK) in phosphate buffer (pH 7) and in poultry meat. Inactivation of spores (approximately 4 decimal reduction) in meat by elevated temperatures (80-90 degrees C for 20 min) required a long germination period (55 degrees C for 60 min). However, similar inactivation level was reached with shorter germination period (55 degrees C for 15 min) when spore contaminated-meat was treated with pressure-assisted thermal processing (568 MPa, 73 degrees C, 10 min). Therefore, the most efficient strategy to inactivate C. perfringens spores in poultry meat containing 50 mM AK consisted: (i) a primary heat treatment (80 degrees C, 10 min) to pasteurize and denature the meat proteins and to activate C. perfringens spores for germination; (ii) cooling of the product to 55 degrees C in about 20 min and further incubation at 55 degrees C for about 15 min for spore germination; and (iii) inactivation of germinated spores by pressure-assisted thermal processing (586 MPa at 73 degrees C for 10 min). Collectively, this study demonstrates the feasibility of an alternative and novel strategy to inactivate C. perfringens spores in meat products formulated with germinants specific for C. perfringens.

  13. Magmatic conditions and processes in the storage zone of the 2004-2006 Mount St. Helens dacite: Chapter 31 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Rutherford, Malcom J.; Devine, Joseph D.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    O2 values of NNO +1 log unit. Magnetite compositions suggest that the 2004-6 magma was formed by mingling of magmas less than 5-8 weeks before eruption and that the magma last equilibrated within this temperature range. The amphibole phenocryst zoning involves approximately equal amounts of a pressure-sensitive Al-Tschermak molecular substitution and a temperature-sensitive edenite substitution in one cycle of growth. Hydrothermal experiments done on the natural dacite show that crystallization of the Fe- and Al-rich amphibole end member requires pressures of 200-300 MPa at temperatures of 900°C, conditions approaching the upper temperature limit of amphibole stability. The dacitic magma crystallizes the An68 plagioclase when the pressure drops to 200 MPa at 900°C. The magma must cool at this depth to produce a complete An68-An40 plagioclase zone and a Mg-rich layer on the amphiboles before the magma is cycled back to a high pressure, when a new layer of Fe-rich amphibole is acquired. The amphibole crystallizing in the dacite experiments at less than 200 MPa is lower in aluminum than any compositions in the natural cyclically zoned phenocrysts. The outer rim on some 2004-6 amphibole phenocrysts appears to have formed in the 100-200 MPa range, as do some phenocrysts in the May 1980 dacite pumice. Plagioclase rims of An35 in the 2004-6 magmas indicate that phenocryst growth continued until the pressure decreased to 130 MPa and that ascent was slow until this depth. Magma then entered the conduit for a relatively rapid ascent to the surface as indicated by the very thin (less than 5 μm) decompression-induced rims on the amphibole phenocrysts.

  14. Bent paths of a positive streamer and a cathode-directed spark leader in diffuse discharges preionized by runaway electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Cheng; Shao, Tao, E-mail: st@mail.iee.ac.cn; Wang, Ruixue

    2015-03-15

    Diffuse discharges preionized by runaway electrons can produce large-area homogeneous discharges at elevated pressures, which is an intriguing phenomenon in the physics of pulsed discharges. In this paper, runaway-electron-preionized diffuse discharge (REP DD) was obtained in a wide pressure range (0.05–0.25 MPa), and under certain conditions a positive streamer and a cathode-directed spark leader could be observed to propagate at some angles to the applied (background) electric field lines. For a 16-mm gap at an air pressure of 0.08–0.1 MPa, the percentage of pulses in which such propagation is observed is about 5%–50% of their total number, and in the other pulsesmore » such bent paths could not be observed because there is even no streamer or cathode-directed spark leader in diffuse discharges. In our opinion, such propagation of the positive streamer and the cathode-directed spark leader at some angle to the background electric field lines owes to different increase rates of the electron density in different regions of the discharge volume under REP DD conditions. Therefore, during the formation of a REP DD, the increase of the electron density is inhomogeneous and nonsimultaneous, resulting in an electron density gradient at the ionization wave front.« less

  15. Short communication: Inactivation of microbial contaminants in raw milk La Serena cheese by high-pressure treatments.

    PubMed

    Arqués, J L; Garde, S; Gaya, P; Medina, M; Nuñez, M

    2006-03-01

    La Serena cheese, a Spanish variety made from Merino ewes' raw milk, has a high pH value, low salt content, and high moisture, conditions that are all favorable for growth and survival of contaminating microorganisms, including pathogens. To improve its microbiological quality and safety, high-pressure treatments at 300 or 400 MPa for 10 min at 10 degrees C were applied to 2 batches of La Serena cheese on d 2 or 50 of ripening. Cheese treated on d 2 at 300 MPa showed viable aerobic counts that were 0.99 log units lower than those for control cheese on d 3 and showed counts of enterococci, coagulase-positive staphylococci, gram-negative bacteria, and coliforms that were 2.05, 0.49, 3.14, and 4.13 log units lower, respectively, than control cheese. For cheese treated on d 2 at 400 MPa, the respective reductions in counts were 2.02, 2.68, 1.45, 3.96, and 5.50 log units. On d 60, viable aerobic counts in cheese treated on d 50 at 300 MPa were 0.50 log units lower than those in control cheese, and counts of enterococci, gram-negative bacteria, and coliforms were 1.37, 2.30, and 4.85 log units lower, respectively. For cheese treated on d 50 at 400 MPa, the respective reductions in counts were 1.29, 1.98, 4.47, and > 5 log units. High-pressure treatments at 300 or 400 MPa on d 2 or 50 reduced significantly the counts of undesirable microorganisms, improving the microbiological quality and safety of La Serena cheese immediately after treatment and at the end of the ripening period.

  16. Dependencies of pore pressure on elastic wave velocities and Vp/Vs ratio for thermally cracked gabbro

    NASA Astrophysics Data System (ADS)

    Nishimura, K.; Uehara, S. I.; Mizoguchi, K.

    2015-12-01

    Marine seismic refraction have found that there are high Vp/Vs ratio regions in oceanic crusts at subducting oceanic plates (e.g, Cascadia subduction zone (2.0-2.8) (Audet et al., 2009)). Previous studies based on laboratory measurements indicated that Vp/Vs ratio is high when porosity and/or pore pressure is high (Christensen, 1984; Peacock et al., 2011). Although several studies have investigated the relationships between fracture distributions and Vp, Vs (e.g., Wang et al., 2012; Blake et al., 2013), the relationships for rocks (e.g., gabbro and basalt) composing oceanic crust are still unclear. This study reports the results of laboratory measurements of Vp, Vs (transmission method) at controlled confining and pore pressure and estimation of Vp/Vs ratio for thermally cracked gabbro which mimic highly fractured rocks in the high Vp/Vs ratio zone, in order to declare the dependence of fracture distributions on Vp/Vs. For the measurements, we prepared three type specimens; a non-heated intact specimen, specimens heated up to 500 °C and 700 °C for 24 hours. Porosities of intact, 500 °C and 700 °C specimens measured under the atmospheric pressure are 0.5, 3.4 and 3.5%, respectively. Measurements were conducted at a constant confining pressure of 50 MPa, with decreasing pore pressure from 49 to 0.1 MPa and then increasing to 49 MPa. While Vp/Vs for the intact specimen is almost constant at elevated pore pressure, the Vp/Vs values for the thermally cracked ones were 2.0~2.2 when pore pressure was larger than 30 MPa. In future, we will reveal the relationship between the measured elastic wave velocities and the characteristics of the microfracture distribution. This work was supported by JSPS Grant-in-Aid for Scientific Research (Grant Number 26400492).

  17. Shock tube studies of thermal radiation of diesel-spray combustion under a range of spray conditions

    NASA Astrophysics Data System (ADS)

    Tsuboi, T.; Kurihara, Y.; Takasaki, M.; Katoh, R.; Ishii, K.

    2007-05-01

    A tailored interface shock tube and an over-tailored interface shock tube were used to measure the thermal energy radiated during diesel-spray combustion of light oil, α-methylnaphthalene and cetane by changing the injection pressure. The ignition delay of methanol and the thermal radiation were also measured. Experiments were performed in a steel shock tube with a 7 m low-pressure section filled with air and a 6 m high-pressure section. Pre-compressed fuel was injected through a throttle nozzle into air behind a reflected shock wave. Monochromatic emissive power and the power emitted across all infrared wavelengths were measured with IR-detectors set along the central axis of the tube. Time-dependent radii where soot particles radiated were also determined, and the results were as follows. For diesel spray combustion with high injection pressures (from 10 to 80 MPa), the thermal radiation energy of light oil per injection increased with injection pressure from 10 to 30 MPa. The energy was about 2% of the heat of combustion of light oil at P inj = about 30 MPa. At injection pressure above 30 MPa the thermal radiation decreased with increasing injection pressure. This profile agreed well with the combustion duration, the flame length, the maximum amount of soot in the flame, the time-integrated soot volume and the time-integrated flame volume. The ignition delay of light oil was observed to decrease monotonically with increasing fuel injection pressure. For diesel spray combustion of methanol, the thermal radiation including that due to the gas phase was 1% of the combustion heat at maximum, and usually lower than 1%. The thermal radiation due to soot was lower than 0.05% of the combustion heat. The ignition delays were larger (about 50%) than those of light oil. However, these differences were within experimental error.

  18. The compressibility and the capacitance coefficient of helium-oxygen atmospheres.

    PubMed

    Imbert, G; Dejours, P; Hildwein, G

    1982-12-01

    The capacitance coefficient beta of an ideal gas mixture depends only on its temperature T, and its value is derived from the ideal gas law (i.e., beta = 1/RT, R being the ideal gas constant). But real gases behave as ideal gases only at low pressures, and this would not be the case in deep diving. High pressures of helium-oxygen are used in human and animal experimental dives (up to 7 or 12 MPa or more, respectively). At such pressures deviations from the ideal gas law cannot be neglected in hyperbaric atmospheres with respect to current accuracy of measuring instruments. As shown both theoretically and experimentally by this study, the non-ideal nature of helium-oxygen has a significant effect on the capacitance coefficient of hyperbaric atmospheres. The theoretical study is based on interaction energy in either homogeneous (He-He and O2-O2) or heterogeneous (He-O2) molecular pairs, and on the virial equation of state for gas mixtures. The experimental study is based on weight determination of samples of known volume of binary helium-oxygen mixtures, which are prepared in well-controlled pressure and temperature conditions. Our experimental results are in good agreement with theoretical predictions. 1) The helium compressibility factor ZHe increases linearly with pressure [ZHe = 1 + 0.0045 P (in MPa) at 30 degrees C]; and 2) in same temperature and pressure conditions (T = 303 K and P = 0.1 to 15 MPa), the same value for Z is valid for a helium-oxygen binary mixture and for pure helium. As derived from the equation of state of real gases, the capacitance coefficient is inversely related to Z (beta = 1/ZRT); therefore, for helium-oxygen mixtures, this coefficient would decrease with increasing pressure. A table is given for theoretical values of helium-oxygen capacitance coefficient, at pressures ranging from 0.1 to 15.0 MPa and at temperatures ranging from 25 degrees C to 37 degrees C.

  19. Inactivation of Staphylococcus aureus and native microflora in human milk by high pressure processing

    NASA Astrophysics Data System (ADS)

    Windyga, Bożena; Rutkowska, Małgorzata; Sokołowska, Barbara; Skąpska, Sylwia; Wesołowska, Aleksandra; Wilińska, Maria; Fonberg-Broczek, Monika; Rzoska, Sylwester J.

    2015-04-01

    The storage of unpreserved food, including breast milk, is associated with the growth of microorganisms, including pathogenic bacteria. It is therefore necessary to use suitable processes to eliminate pathogenic microorganisms and reduce the total microbial count in order to ensure product safety for consumers. In the present study, samples of milk obtained from volunteers donating to the human milk bank were artificially contaminated with Staphylococcus aureus ATCC 6538. This bacteria was the model microorganism of choice, being relatively resistant to high pressure as well as posing the most serious risk to infant health. The results obtained show that high pressure processing can reduce the count of S. aureus by about 5 log units at 4°C and about 8 log units at 50°C, and totally eliminate Enterobacteriaceae after 5 min of treatment, and result in a total microbial count reduction after 10 min treatment at 500 MPa at 20°C and 50°C. This suggests the possibility of this technology being applied to ensure the adequate safety and quality of human breast milk in human milk banks. This paper was presented at the LIIth European High Pressure Research Group (EHPRG 52) Meeting in Lyon (France), 7-12 September 2014.

  20. Influence of nitromethane concentration on ignition energy and explosion parameters in gaseous nitromethane/air mixtures.

    PubMed

    Zhang, Qi; Li, Wei; Lin, Da-Chao; He, Ning; Duan, Yun

    2011-01-30

    The aim of this paper is to provide new experimental data of the minimum ignition energy (MIE) of gaseous nitromethane/air mixtures to discuss the explosion pressure and the flame temperature as a function of nitromethane concentration. Observations on the influence of nitromethane concentration on combustion pressure and temperature through the pressure and temperature measure system show that peak temperature (the peak of combustion temperature wave) is always behind peak pressure (the peak of the combustion pressure wave) in arrival time, the peak combustion pressure of nitromethane increases in the range of its volume fraction 10-40% as the concentration of nitromethane increases, and it slightly decreases in the range of 40-50%. The maximum peak pressure is equal to 0.94 MPa and the minimum peak pressure 0.58 MPa. Somewhat similar to the peak pressure, the peak combustion temperature increases with the volume fraction of nitromethane in the range of 10-40%, and slightly decreases in 40-50%. The maximum peak temperature is 1340 °C and the minimum 860 °C. The combustion temperature rise rate increases with the concentration of nitromethane in 10-30%, while decreases in 30-50% and its maximum value of combustion temperature rise rate in 10-50% is 4200 °C/s at the volume fraction of 30%. Influence of the concentration of nitromethane on the combustion pressure rise rate is relatively complicated, and the maximum value of rise rate of combustion pressure wave in 10-50% is 11 MPa/s at the concentration 20%. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Assessment of Pulmonary Artery Stiffness of Repaired Congenital Heart Disease Patients

    NASA Astrophysics Data System (ADS)

    Lee, Namheon; Banerjee, Rajit; Taylor, Michael; Hor, Kan

    2012-10-01

    Surgical correction or palliation of congenital heart disease (CHD) often requires augmenting the main pulmonary artery (MPA) with non-native material or placing a cylindrical graft. The degree to which this intervention affects PA compliance is largely unknown. In this study, the MPA stiffness characteristics were assessed by its compliance, distensibility, and pressure-strain modulus. Coregistered velocity encoded phase-contrast MRI and cardiac catheterization data were available for a cohort of repaired CHD patients (n=8) and controls (n=3). All patients were repaired with either an RV-PA conduit or a RV outflow tract patch. We measured the MPA area change by MRI and MPA pressure during the cath. The measurements were taken through or just distal to the conduit. The MPA compliance and distensibility for the patients were significantly lower than the controls: compliance (9.8±10.8 vs 28.3±7.7mm^2/mmHg, p<0.05), distensibility (2.2±1.5 vs 6.6±2.1%Area change/mmHg, p=0.05). The patients had a significantly higher pressure-strain modulus (152.3±116.4mmHg, p<0.05) than the controls (35.8±10.6mmHg). The abnormally elevated PA stiffness due to the rigidity of the conduit or patch material may cause a compliance mismatch resulting in high stress levels contributing to the observed progressive PA dilatation. This may be a factor in the progressive RV dilatation seen in this cohort of repaired CHD patients.

  2. Affinity of microbial transglutaminase to αs1-, β-, and acid casein under atmospheric and high pressure conditions.

    PubMed

    Menéndez, Orquídea; Schwarzenbolz, Uwe; Partschefeld, Claudia; Henle, Thomas

    2009-05-27

    Kinetics for the reaction of microbial transglutaminase (MTG) with individual caseins in a TRIS-acetate buffer at pH 6.0 was evaluated under atmospheric pressure (0.1 MPa) and high pressure (400 MPa) at 40 °C. The reaction was monitored under the following limitations: The kinetics from the initial velocities was obtained from nonprogressive enzymatic reactions assuming that the individual catalytic constants of reactive glutamine residues are represented by the reaction between MTG and casein monomers. Enzyme reaction kinetics carried out at 0.1 MPa at 40 °C showed Henri-Michaelis-Menten behavior with maximal velocities of 2.7 ± 0.02 × 10(-3), 0.8 ± 0.01 × 10(-3), and 1.3 ± 0.30 × 10(-3) mmol/L · min and K(m) values of 59 ± 2 × 10(-3), 64 ± 3 × 10(-3), and 50 ± 2 × 10(-3) mmol/L for β-, α(s1)-, and acid casein, respectively. Enzyme reaction kinetics of β-casein carried out at 400 MPa and 40 °C also showed a Henri-Michaelis-Menten behavior with a similar maximal velocity of 2.5 ± 0.33 × 10(-3) mmol/L · min, but, comparable to a competitive inhibition, the K(m) value increased to 144 ± 34 × 10(-3) mmol/L. The reaction of MTG with α(s1)-casein under high pressure did not fit in to Henri-Michaelis-Menten kinetics, indicating the complex influence of pressure on protein-enzyme interactions.

  3. Ultrasound coupled with supercritical carbon dioxide for exfoliation of graphene: Simulation and experiment.

    PubMed

    Gai, Yanzhe; Wang, Wucong; Xiao, Ding; Zhao, Yaping

    2018-03-01

    Ultrasound coupled with supercritical CO 2 has become an important method for exfoliation of graphene, but behind which a peeling mechanism is unclear. In this work, CFD simulation and experiment were both investigated to elucidate the mechanism and the effects of the process parameters on the exfoliation yield. The experiments and the CFD simulation were conducted under pressure ranging from 8MPa to 16MPa, the ultrasonic power ranging from 12W to 240W and the frequency of 20kHz. The numerical analysis of fluid flow patterns and pressure distributions revealed that the fluid shear stress and the periodical pressure fluctuation generated by ultrasound were primary factors in exfoliating graphene. The distribution of the fluid shear stress decided the effective exfoliation area, which, in turn, affected the yield. The effective area increased from 5.339cm 3 to 8.074cm 3 with increasing ultrasonic power from 12W to 240W, corresponding to the yield increasing from 5.2% to 21.5%. The pressure fluctuation would cause the expansion of the interlayers of graphite. The degree of the expansion increased with the increase of the operating pressure but decreased beyond 12MPa. Thus, the maximum yield was obtained at 12MPa. The cavitation might be generated by ultrasound in supercritical CO 2 . But it is too weak to exfoliate graphite into graphene. These results provide a strategy in optimizing and scaling up the ultrasound-assisted supercritical CO 2 technique for producing graphene. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Drug Delivery to the Brain by Focused Ultrasound Induced Blood-Brain Barrier Disruption: Quantitative Evaluation of Enhanced Permeability of Cerebral Vasculature Using Two-Photon Microscopy

    PubMed Central

    Nhan, Tam; Burgess, Alison; Cho, Eunice E.; Stefanovic, Bojana; Lilge, Lothar; Hynynen, Kullervo

    2013-01-01

    Reversible and localized blood-brain barrier disruption (BBBD) using focused ultrasound (FUS) in combination with intravascularly administered microbubbles (MBs) has been established as a non-invasive method for drug delivery to the brain. Using two-photon fluorescence microscopy (2PFM), we imaged the cerebral vasculature during BBBD and observed the extravasation of fluorescent dye in real-time in vivo. We measured the enhanced permeability upon BBBD for both 10kDa and 70kDa dextran conjugated Texas Red (TR) at the acoustic pressure range of 0.2-0.8 MPa and found permeability constants of TR10kDa and TR70kDa vary from 0.0006 to 0.0359 min−1 and 0.0003 to 0.0231 min−1, respectively. For both substances, a linear regression was applied on the permeability constant against the acoustic pressure and the slope from best-fit was found to be 0.039±0.005 min−1/MPa and 0.018±0.005 min−1/MPa, respectively. In addition, the pressure threshold for successfully induced BBBD was confirmed to be 0.4-0.6 MPa. Finally, we identified two types of leakage kinetics (fast and slow) that exhibit distinct permeability constants and temporal disruption onsets, as well as demonstrated their correlations with the applied acoustic pressure and vessel diameter. Direct assessment of vascular permeability and insights on its dependency on acoustic pressure, vessel size and leakage kinetics are important for treatment strategies of BBBD-based drug delivery. PMID:24008151

  5. Inactivation of Bacillus subtilis spores by high pressure CO2 with high temperature.

    PubMed

    Rao, Lei; Xu, Zhenzhen; Wang, Yongtao; Zhao, Feng; Hu, Xiaosong; Liao, Xiaojun

    2015-07-16

    The objective of this study was to investigate the inactivation of the Bacillus subtilis spores by high pressure CO2 combined with high temperature (HPCD+HT) and to analyze the clumping effect of the spores on their HPCD+HT resistance. The spores of B. subtilis were subjected to heat at 0.1 MPa and HPCD at 6.5-25 MPa, and 82 °C, 86 °C, and 91 °C for 0-120 min. The spores were effectively inactivated by HPCD+HT, but a protective effect on the spores was also found, which was closely correlated to the pressure, temperature and time. The spores treated by HPCD+HT at 6.5 and 10 MPa exhibited a two-stage inactivation curve of shoulder and log-linear regions whereas the spores at 15-25 MPa exhibited a three-stage inactivation curve of shoulder, log-linear and tailing regions, and these curves were well fitted to the Geeraerd model. Approximately 90% of pyridine-2,6-dicarboxylic acid (DPA) was released after HPCD+HT and the 90% DPA release time depend on the pressure and temperature. Moreover, the spore clumping in suspensions was examined by dynamic light scattering. The particle size of the spore suspensions increased with the increase of pressure, temperature and time, indicating the spore clumping. 0.1% Tween 80 as a surfactant inhibited the spore clumping and increased the inactivation ratio of the spores by HPCD+HT. These results indicated that the spore clumping enhanced the spores' resistance to HPCD+HT and induced a protective effect. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Finite-Element Modeling of 3C-SiC Membranes

    NASA Technical Reports Server (NTRS)

    DeAnna, R. G.; Mitchell, J.; Zorman, C. A.; Mehregany, M.

    2000-01-01

    Finite-element modeling (FEM) of 3C-SiC thin-film membranes on Si substrates was used to determine the residual stress and center deflection with applied pressure. The anisotropic, three-dimensional model includes the entire 3C-SiC membrane and Si substrate with appropriate material properties and boundary conditions. Residual stress due to the thermal-expansion-coefficient mismatch between the3C-SiC film and Si substrate was included in the model. Both before-and after-etching, residual stresses were calculated. In-plane membrane stress and normal deflection with applied pressure were also calculated. FEM results predict a tensile residual stress fo 259 MPa in the 3C-SiC membrane before etching. This decreases to 247 MPa after etching the substrate below the membrane. The residual stress experimentally measured on sample made at Case Western Reserve University was 280 MPa on post-etched membranes. This is excellent agreement when an additional 30-40 MPa of residual stress to account for lattice mismatch is added to the FEM results.

  7. In Situ Measurements of the Post-Spinel and Post-Garnet Phase Boundaries in Pyrolite at 17-32 GPa and 1500-2400 K

    NASA Astrophysics Data System (ADS)

    Ye, Y.; Gu, C.; Shim, S. H.; Prakapenka, V.; Meng, Y.

    2014-12-01

    Recent seismic studies have revealed complex structures near 660-km depth. In order to understand the effects of composition and temperature, we measured the depth and Clapeyron slope of the post-spinel and post-garnet boundaries at the pressure-temperature conditions of 600-700 km depths in pyrolitic compositions: (1) MgO-Al2O3-SiO2 (MAS) and (2) CaO-MgO-Al2O3-SiO2-FeO (CMASF). Glass starting materials were mixed with either gold or platinum powder (10 wt%) for laser coupling and internal pressure scale. Cold compressed foils of the mixtures were loaded in the diamond-anvil cell together with Ar or KCl for thermal insulation and pressure transmission. X-ray diffraction patterns were measured for the samples in the diamond-anvil cell at in situ high pressure and high temperature combined with double side laser heating at beamlines 13-IDD (GSECARS) and 16-IDB (HPCAT) in the Advanced Photon Source. Within 5 to 8 minutes of heating, stable crystalline phase assemblages were formed and persisted with further heating for 20 to 30 minutes. A total of 160 heating cycles were conducted at different pressures and temperatures, providing tight constrains on the phase boundaries. Our data show that the post-spinel transition occurs at 23.6-24.5 GPa and 1850 K with a Clapeyron slope of -2.5(4) MPa/K if the Pt pressure scales are used, consistent with the seismic observation of the 660 discontinuity. The post-garnet boundary occurs at 24.2-27.5 GPa and 1900 - 2450 K. We found that the Clapeyron slope of the post-garnet transition increases with Fe: from 2.4 MPa/K for MAS to 6.2 MPa/K for CMASF. Below 1900 K, garnet disappears near the post-spinel boundary within the resolution of our measurements. Our new data supports the notion that the 660 discontinuity is dominated by the post-spinel phase transition below 1900 K while dominated by the post-garnet phase transition above 1900 K. However, our data indicate much larger Clapeyron slope of the post-garnet transition, suggesting much more significant impact of the transition for the seismically observed topography of the 660 discontinuity and dynamics of the mantle plumes.

  8. The influence of total suction on the brittle failure characteristics of clay shales

    NASA Astrophysics Data System (ADS)

    Amann, F.; Linda, W.; Zimmer, S.; Thoeny, R.

    2013-12-01

    Clay shale testing is challenging and the results obtained from standard laboratory tests may not always reflect the strength of the clay shale in-situ. This is to a certain extend associated with the sensitivity of these rock types to desaturation processes during drilling, sample storage, and sample preparation. In this study the relationship between total suction, uniaxial compressive strength and Brazilian tensile (BTS) strength of cylindrical samples of Opalinus Clay was established in a systematic manner. Unconfined uniaxial compression and BTS tests were performed utilizing a servo-controlled testing procedure. Total suctions in the specimens was generated in air tight desiccators using supersaturated saline solutions which establish a relative humidity ranging from 20% to 99%. For unconfined compressive strength tests loading of the specimens occurred parallel to bedding. For BTS tests loading was either oriented normal or perpendicular to bedding. Both, the crack initiation and volumetric strain reversal threshold values were determined using volumetric and radial stress-strain methods. The results of BTS tests show that the tensile strength normal and perpendicular to bedding increases by a factor of approximately 3 when total suction is increased from 0 to 90 MPa (i.e. saturation decreases from 1.0 to 0.7) . Beyond 90 MPa total suction no further increase in tensile strength was observed, most probably due to shrinkage cracks which alter the tensile strength of the clay shale. Results obtained from UCS tests suggest that higher total suctions result in higher UCS values. Between total suctions of 0 to 90 MPa, the strength increase is almost linear (i.e. the UCS increases by a factor of 1.5 MPa). Beyond 90 MPa total suction no further strength increase was observed. A similar trend can be observed for crack initiation and crack damage values. In the same range of total suction the crack initiation stress increases by a factor of 5 (from 2 MPa to 10 MPa), and the crack damage stress increases by a factor of 2 (from 6 to 12 MPa). In addition to UCS tests, the water retention curve of intact and disturbed specimens was established. Here, results indicate that the drying path remains nearly unaffected by mechanical damage. However, the wetting path is considerably affected by mechanical damage.

  9. Partial melting of metagreywackes, Part II. Compositions of minerals and melts

    NASA Astrophysics Data System (ADS)

    Montel, Jean-Marc; Vielzeuf, Daniel

    A series of experiments on the fluid-absent melting of a quartz-rich aluminous metagreywacke has been carried out. In this paper, we report the chemical composition of the phases present in the experimental charges as determined by electron microprobe. This analytical work includes biotite, plagioclase, orthopyroxene, garnet, cordierite, hercynite, staurolite, gedrite, oxide, and glass, over the range 100-1000MPa, 780-1025°C. Biotites are Na- and Mg-rich, with Ti contents increasing with temperature. The compositions of plagioclase range from An17 to An35, with a significant orthoclase component, and are always different from the starting minerals. At high temperature, plagioclase crystals correspond to ternary feldspars with Or contents in the range 11-20 mol%. Garnets are almandine pyrope grossular spessartine solid solutions, with a regular and significant increase of the grossular content with pressure. All glasses are silicic (SiO2=67.6-74.4 wt%), peraluminous, and leucocratic (FeO+MgO=0.9-2.9 wt%), with a bulk composition close to that of peraluminous leucogranites, even for degrees of melting as high as 60 vol.%. With increasing pressure, SiO2 contents decrease while K2O increases. At any pressure, the melt compositions are more potassic than the water-saturated granitic minima. The H2O contents estimated by mass balance are in the range 2.5-5.6 wt%. These values are higher than those predicted by thermodynamic models. Modal compositions were estimated by mass balance calculations and by image processing of the SEM photographs. The positions of the 20 to 70% isotects (curves of equal proportion of melt) have been located in the pressure-temperature space between 100MPa and 1000MPa. With increasing pressure, the isotects shift toward lower temperature between 100 and 200MPa, then bend back toward higher temperature. The melting interval increases with pressure; the difference in temperature between the 20% and the 70% isotects is 40°C at 100MPa, and 150°C at 800MPa. The position of the isotects is interpreted in terms of both the solubility of water in the melt and the nature of the reactions involved in the melting process. A comparison with other partial melting experiments suggests that pelites are the most fertile source rocks above 800MPa. The difference in fertility between pelites and greywackes decreases with decreasing pressure. A review of the glass compositions obtained in experimental studies demonstrates that partial melting of fertile rock types in the crust (greywackes, pelites, or orthogneisses) produces only peraluminous leucogranites. More mafic granitic compositions such as the various types of calk-alkaline rocks, or mafic S-type rocks, have never been obtained during partial melting experiments. Thus, only peraluminous leucogranites may correspond to liquids directly formed by partial melting of metasediments. Other types of granites involve other components or processes, such as restite unmixing from the source region, and/or interaction with mafic mantle-derived materials.

  10. New Laboratory Observations of Thermal Pressurization Weakening

    NASA Astrophysics Data System (ADS)

    Badt, N.; Tullis, T. E.; Hirth, G.

    2017-12-01

    Dynamic frictional weakening due to pore fluid thermal pressurization has been studied under elevated confining pressure in the laboratory, using a rotary-shear apparatus having a sample with independent pore pressure and confining pressure systems. Thermal pressurization is directly controlled by the permeability of the rocks, not only for the initiation of high-speed frictional weakening but also for a subsequent sequence of high-speed sliding events. First, the permeability is evaluated at different effective pressures using a method where the pore pressure drop and the flow-through rate are compared using Darcy's Law as well as a pore fluid oscillation method, the latter method also permitting measurement of the storage capacity. Then, the samples undergo a series of high-speed frictional sliding segments at a velocity of 2.5 mm/s, under an applied confining pressure and normal stress of 45 MPa and 50 MPa, respectively, and an initial pore pressure of 25 MPa. Finally the rock permeability and storage capacity are measured again to assess the evolution of the rock's pore fluid properties. For samples with a permeability of 10-20 m2 thermal pressurization promotes a 40% decrease in strength. However, after a sequence of three high-speed sliding events, the magnitude of weakening diminishes progressively from 40% to 15%. The weakening events coincide with dilation of the sliding interface. Moreover, the decrease in the weakening degree with progressive fast-slip events suggest that the hydraulic diffusivity may increase locally near the sliding interface during thermal pressurization-enhanced slip. This could result from stress- or thermally-induced damage to the host rock, which would perhaps increase both permeability and storage capacity, and so possibly decrease the susceptibility of dynamic weakening due to thermal pressurization in subsequent high-speed sliding events.

  11. Transport properties of nonelectrolyte mixtures. IX. Viscosity coefficients for acetonitrile and for three mixtures of toluene+acetonitrile from 25 to 100°c at pressures up to 500 MPa

    NASA Astrophysics Data System (ADS)

    Dymond, J. H.; Awan, M. A.; Glen, N. F.; Isdale, J. D.

    1991-05-01

    A two-coil self-centering falling-body viscometer has been used to measure viscosity coefficients for acetonitrile and three binary mixtures of toluene+ acetonitrile at 25, 50, 75, and 100°C and pressures up to 500 MPa. The results for acetonitrile can be interpreted by an approach based on hard-sphere theory, with a roughness factor of 1.46. The binary-mixture data are well represented by the Grunberg and Nissan equation with a mixing parameter which is pressure and temperature dependent but composition independent.

  12. Effect of temperature and high pressure on the activity and mode of action of fungal pectin methyl esterase.

    PubMed

    Duvetter, Thomas; Fraeye, Ilse; Sila, Daniel N; Verlent, Isabel; Smout, Chantal; Clynen, Elke; Schoofs, Liliane; Schols, Henk; Hendrickx, Marc; Van Loey, Ann

    2006-01-01

    Pectin was de-esterified with purified recombinant Aspergillus aculeatus pectin methyl esterase (PME) during isothermal-isobaric treatments. By measuring the release of methanol as a function of treatment time, the rate of enzymatic pectin conversion was determined. Elevated temperature and pressure were found to stimulate PME activity. The highest rate of PME-catalyzed pectin de-esterification was obtained when combining pressures in the range 200-300 MPa with temperatures in the range 50-55 degrees C. The mode of pectin de-esterification was investigated by characterizing the pectin reaction products by enzymatic fingerprinting. No significant effect of increasing pressure (300 MPa) and/or temperature (50 degrees C) on the mode of pectin conversion was detected.

  13. Transport properties of nonelectrolyte liquid mixtures. VIII. Viscosity coefficients for toluene and for three mixtures of toluene + hexane from 25 to 100°C at pressures up to 500 MPa

    NASA Astrophysics Data System (ADS)

    Dymond, J. H.; Awan, M. A.; Glen, N. F.; Isdale, J. D.

    1991-03-01

    Viscosity coefficients measured using a two-coil self-centering falling-body viscometer are reported for toluene and three binary mixtures of toluene + n-hexane at 25, 50, 75, and 100°C at pressures up to 500 MPa. The data for a given composition at different temperatures and pressures are correlated very satisfactorily by a plot of reduced viscosity η * versus log V', where V'= V· V 0(TR)/V0(T) and V 0 represents a characteristic volume. The binary mixture data are well represented by the Grunberg and Nissan equation with a mixing parameter which is pressure dependent but composition and temperature independent.

  14. Development of a novel test-setup for identifying the frictional characteristics of carbon fibre reinforced polymer composites at high surface pressure

    NASA Astrophysics Data System (ADS)

    Saxena, Prateek; Schinzel, Marie; Andrich, Manuela; Modler, Niels

    2016-09-01

    Carbon fibre reinforced polymer composites are extensively used in industrial applications. They are light in weight and have excellent load bearing properties. To understand this material's behaviour when carrying loads at high pressure, a tensile-friction test device was developed that can apply a contact surface pressure between composite and counterpart of 50-300 MPa. A tribological investigation of carbon fibre reinforced epoxy composites was carried out, in which the influence of the surface morphology was investigated by using grinding and sandblasting techniques. The friction coefficient of the polymer composite was measured at 100 MPa surface pressure against uncoated and Diamond-Like Carbon coated stainless steel counterparts.

  15. How does yeast respond to pressure?

    PubMed

    Fernandes, P M B

    2005-08-01

    The brewing and baking yeast Saccharomyces cerevisiae has been used as a model for stress response studies of eukaryotic cells. In this review we focus on the effect of high hydrostatic pressure (HHP) on S. cerevisiae. HHP exerts a broad effect on yeast cells characteristic of common stresses, mainly associated with protein alteration and lipid bilayer phase transition. Like most stresses, pressure induces cell cycle arrest. Below 50 MPa (500 atm) yeast cell morphology is unaffected whereas above 220 MPa wild-type cells are killed. S. cerevisiae cells can acquire barotolerance if they are pretreated with a sublethal stress due to temperature, ethanol, hydrogen peroxide, or pressure. Nevertheless, pressure only leads to protection against severe stress if, after pressure pretreatment, the cells are also re-incubated at room pressure. We attribute this effect to the inhibition of the protein synthesis apparatus under HHP. The global genome expression analysis of S. cerevisiae cells submitted to HHP revealed a stress response profile. The majority of the up-regulated genes are involved in stress defense and carbohydrate metabolism while most repressed genes belong to the cell cycle progression and protein synthesis categories. However, the signaling pathway involved in the pressure response is still to be elucidated. Nitric oxide, a signaling molecule involved in the regulation of a large number of cellular functions, confers baroprotection. Furthermore, S. cerevisiae cells in the early exponential phase submitted to 50-MPa pressure show induction of the expression level of the nitric oxide synthase inducible isoform. As pressure becomes an important biotechnological tool, studies concerning this kind of stress in microorganisms are imperative.

  16. Micromechanics of pressure-induced grain crushing in porous rocks

    NASA Astrophysics Data System (ADS)

    Davis, Daniel M.

    1990-01-01

    The hydrostatic compaction behavior of a suite of porous sandstones was investigated at confining pressures up to 600 MPa and constant pore pressures ranging up to 50 MPa. These five sandstones (Boise, Kayenta, St. Peter, Berea, and Weber) were selected because of their wide range of porosity (5-35%) and grain size (60-460 μm). We tested the law of effective stress for the porosity change as a function of pressure. Except for Weber sandstone (which has the lowest porosity and smallest grain size), the hydrostat of each sandstone shows an inflection point corresponding to a critical effective pressure beyond which an accelerated, irrecoverable compaction occurs. Our microstructural observations show that brittle grain crushing initiates at this critical pressure. We also observed distributed cleavage cracking in calcite and intensive kinking in mica. The critical pressures for grain crushing in our sandstones range from 75 to 380 MPa. In general, a sandstone with higher porosity and larger grain size has a critical pressure which is lower than that of a sandstone with lower porosity and smaller grain size. We formulate a Hertzian fracture model to analyze the micromechanics of grain crushing. Assuming that the solid grains have preexisting microcracks with dimensions which scale with grain size, we derive an expression for the critical pressure which depends on the porosity, grain size, and fracture toughness of the solid matrix. The theoretical prediction is in reasonable agreement with our experimental data as well as other data from soil and rock mechanics studies for which the critical pressures range over 3 orders of magnitude.

  17. Effect of high hydrostatic pressure on Aeromonas hydrophila AH 191 growth in milk.

    PubMed

    Durães-Carvalho, Ricardo; Souza, Ancelmo R; Martins, Luciano M; Sprogis, Adriane C S; Bispo, Jose A C; Bonafe, Carlos F S; Yano, Tomomasa

    2012-08-01

    Exposure to high pressure is an efficient method of bacterial inactivation that is particularly important for reducing the microbial load present in foods. In this study, we examined the high pressure inactivation of Aeromonas hydrophila AH 191, a virulent strain that produces aerolysin, a cytotoxic, enterotoxic, and hemolytic toxin. High pressure treatment (250 MPa for 30 min at 25 °C in 0.1 M PBS, pH 7.4) of A. hydrophila grown in milk reduced bacterial viability by at least 9 orders of magnitude. Under these conditions, the enterotoxic, hemolytic, and cytotoxic activities of A. hydrophila culture supernatants were unaltered. These results indicate the need for caution in the use of high pressure for food processing since although truly toxigenic bacteria may be inactivated, their toxins may not be, thus posing a risk to human health. At higher pressure (350 MPa) the inactivation of bacteria was much more effective. Scanning electron microscopy showed a significant decrease in the number of bacteria after higher pressurization (350 MPa for 1 h) and transmission electron microscopy showed irregular shaped bacteria, suggestive of important cell wall and membrane damage, and cytoplasm condensation. High pressure inactivates Aeromonas hydrophila efficiently but is enhanced when combined with moderate temperature (40 °C). The biological activities of toxins from this bacterium are unaltered under these conditions. Journal of Food Science © 2012 Institute of Food Technologists® No claim to original US government works.

  18. Quantitative measurements of acoustic emissions from cavitation at the surface of a stone in response to a lithotripter shock wave.

    PubMed

    Chitnis, Parag V; Cleveland, Robin O

    2006-04-01

    Measurements are presented of acoustic emissions from cavitation collapses on the surface of a synthetic kidney stone in response to shock waves (SWs) from an electrohydraulic lithotripter. A fiber optic probe hydrophone was used for pressure measurements, and passive cavitation detection was used to identify acoustic emissions from bubble collapse. At a lithotripter charging voltage of 20 kV, the focused SW incident on the stone surface resulted in a peak pressure of 43 +/- 6 MPa compared to 23 +/- 4 MPa in the free field. The focused SW incident upon the stone appeared to be enhanced due to the acoustic emissions from the forced cavitation collapse of the preexisting bubbles. The peak pressure of the acoustic emission from a bubble collapse was 34 +/- 15 MPa, that is, the same magnitude as the SWs incident on the stone. These data indicate that stresses induced by focused SWs and cavitation collapses are similar in magnitude thus likely play a similar role in stone fragmentation.

  19. Reference Correlation of the Thermal Conductivity of Carbon Dioxide from the Triple Point to 1100 K and up to 200 MPa

    PubMed Central

    Huber, M. L.; Sykioti, E. A.; Assael, M. J.; Perkins, R. A.

    2016-01-01

    This paper contains new, representative reference equations for the thermal conductivity of carbon dioxide. The equations are based in part upon a body of experimental data that has been critically assessed for internal consistency and for agreement with theory whenever possible. In the case of the dilute-gas thermal conductivity, we incorporated recent theoretical calculations to extend the temperature range of the experimental data. Moreover, in the critical region, the experimentally observed enhancement of the thermal conductivity is well represented by theoretically based equations containing just one adjustable parameter. The correlations are applicable for the temperature range from the triple point to 1100 K and pressures up to 200 MPa. The overall uncertainty (at the 95% confidence level) of the proposed correlation varies depending on the state point from a low of 1% at very low pressures below 0.1 MPa between 300 K and 700 K, to 5% at the higher pressures of the range of validity. PMID:27064300

  20. Effects of high hydrostatic pressure on the structure and potential allergenicity of the major allergen bovine β-lactoglobulin.

    PubMed

    Meng, Xuanyi; Bai, Yuxin; Gao, Jinyan; Li, Xin; Chen, Hongbing

    2017-03-15

    Bovine β-lactoglobulin (β-Lg) is recognized as a significant milk allergen in several countries. In this study, β-Lg was isolated and treated with high hydrostatic pressure (HHP) at 100, 200, 300, 400, and 500MPa. The allergenic properties of the HHP-treated β-Lg were characterized by indirect competitive enzyme-linked immunosorbent assay with anti-β-Lg rabbit antibody and the sera of patients allergic to cows' milk. The conformation of the HHP-treated β-Lg was examined with ultraviolet absorption spectroscopy, endogenous fluorescence spectroscopy, exogenous fluorescence spectroscopy, and circular dichroism spectroscopy analyses. The results indicated that IgG binding increased with treatment pressure, and IgE binding was lowest at 200MPa and highest at 400MPa. The tertiary structure of β-Lg changed significantly after HHP, whereas the primary and secondary structures remained stable. Overall, this study suggests that the conformational changes in HHP-treated β-Lg contribute to its altered allergenicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. [Optimization for supercritical CO2 extraction with response surface methodology and component analysis of Sapindus mukorossi oil].

    PubMed

    Wu, Yan; Xiao, Xin-yu; Ge, Fa-huan

    2012-02-01

    To study the extraction conditions of Sapindus mukorossi oil by Supercritical CO2 Extraction and identify its components. Optimized SFE-CO2 Extraction by response surface methodology and used GC-MS to analysie Sapindus mukorossi oil compounds. Established the model of an equation for the extraction rate of Sapindus mukorossi oil by Supercritical CO2 Extraction, and the optimal parameters for the Supercritical CO2 Extraction determined by the equation were: the extraction pressure was 30 MPa, temperature was 40 degrees C; The separation I pressure was 14 MPa, temperature was 45 degrees C; The separation II pressure was 6 MPa, temperature was 40 degrees C; The extraction time was 60 min and the extraction rate of Sapindus mukorossi oil of 17.58%. 22 main compounds of Sapindus mukorossi oil extracted by supercritical CO2 were identified by GC-MS, unsaturated fatty acids were 86.59%. This process is reliable, safe and with simple operation, and can be used for the extraction of Sapindus mukorossi oil.

  2. Effect of high pressure on rheological and thermal properties of quinoa and maize starches.

    PubMed

    Li, Guantian; Zhu, Fan

    2018-02-15

    Quinoa starch has small granules with relatively low gelatinization temperatures and amylose content. High hydrostatic pressure (HHP) is a non-thermal technique for food processing. In this study, effects of HHP up to 600MPa on physical properties of quinoa starch were studied and compared with those of a normal maize starch. Both starches gelatinized at 500 and 600MPa. The pressure of 600MPa completely gelatinized quinoa starch as revealed by thermal analysis. Dynamic rheological analysis showed that HHP improved the gel stability of both starches during cooling. HHP had little effects on amylopectin recrystallization and gel textural properties of starch. Overall, quinoa starch was more susceptible to HHP than maize starch. The effects of HHP on some rheological properties such as frequency dependence were different between these two types of starches. The differences could be attributed to the different composition, granular and chemical structures of starch, and the presence of granule remnants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Investigation of Shallow Undex in Littoral Ocean Domain

    DTIC Science & Technology

    2014-06-01

    pPos Units=Pa #Units: psi, ksi, Pa, MPa, bar or scaling factor # Var=pNeg Units=Pa #Units: psi, ksi, Pa, MPa...net) # i = Impulse intensity (time in sec) # ppos = Element pressure on "positive" side (normal points toward "eye") of coupling interface

  4. Experimental Investigation on Poro-Elasto-Plastic Behavior of the Inner Accretionary Wedge Sediments at the Nankai Subduction Zone

    NASA Astrophysics Data System (ADS)

    Kuo, S. T.; Kitamura, M.; Kitajima, H.

    2017-12-01

    The Integrated Ocean Drilling Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) have installed borehole observatories to monitor the evolution of physical and hydrological properties caused by crustal deformation at various strain rates within earthquake cycles. The observatories have been installed at the base of a forearc basin above the megathrust fault (Site C0002) and near the shallow tip of the megasplay fault (Site C0010), and will be installed near the frontal thrust (Site C0006) next year. The observatory pore pressure data have shown the dynamic and post-seismic responses and are used to estimate volumetric strain (deformation) with poroelastic parameters (e.g., Wallace et al. 2016). The parameters of submarine sediments are often computed theoretically from the porosity, compressibilities of matrix, solid, and pore fluid; however, few direct constraints on core samples have been made. To investigate the poro-elasto-plastic behavior of submarine sediments, triaxial experiments with stress relaxation were conducted on the claystone cores (20% porosity) from 2185 meters below sea floor at Site C0002. Triaxial tests were conducted by applying an axial load at a constant displacement rate of 5×10-9m/s, while keeping confining pressure (Pc) at 42, 48, or 78 MPa and pore pressure (Pp) at 20 MPa. Stress relaxation tests were conducted periodically, in which neither axial displacement nor pore volume change was allowed. At lower effective pressure (Pe=Pc-Pp) of 22 and 28 MPa, the samples deform in a brittle manner, with a peak strength of 50 and 55 MPa and a residual strength of 36 and 46 MPa, respectively. At higher Pe of 58 MPa, the sample exhibits strain hardening. The relaxation tests at Pe = 22 MPa show an increase in Pp before yield and a decrease in Pp after yield, suggesting a transition from compaction to dilation. All of the relaxation tests at Pe = 58 MPa show an increase in Pp, suggesting compaction throughout the deformation. The ratio of Pp to volumetric strain determined from the relaxation tests ranges 0.4 - 2.0 kPa/μstrain and is lower than the value of 8.7 kPa/μstrain for sediments with 20% porosity computed based on the poroelasticity theory (Davis et al., 2009), implying that the volumetric strain during our relaxation tests is mainly due to plastic deformation.

  5. Solubility of small-chain carboxylic acids in supercritical carbon dioxide

    DOE PAGES

    Sparks, Darrell L.; Estevez, L. Antonio; Hernandez, Rafael; ...

    2010-07-08

    The solubility of heptanoic acid and octanoic acid in supercritical carbon dioxide has been determined at temperatures of (313.15, 323.15, and 333.15) K over a pressure range of (8.5 to 30.0) MPa, depending upon the solute. The solubility of heptanoic acid ranged from a solute concentration of (0.08 ± 0.03) kg • m -3 (T = 323.15 K, p = 8.5 MPa) to (147 ± 0.2) kg • m -3 (T = 323.15 K, p = 20.0 MPa). The lowest octanoic acid solubility obtained was a solute concentration of (0.40 ± 0.1) kg • m -3 (T = 333.15 K,more » p = 10.0 MPa), while the highest solute concentration was (151 ± 2) kg • m -3 (T = 333.15 K, p = 26.7 MPa). In addition, solubility experiments were performed for nonanoic acid in supercritical carbon dioxide at 323.15 K and pressures of (10.0 to 30.0) MPa to add to the solubility data previously published by the authors. In general, carboxylic acid solubility increased with increasing solvent density. The results also showed that the solubility of the solutes decreased with increasing molar mass at constant supercritical-fluid density. Additionally, the efficacy of Chrastil's equation and other density-based models was evaluated for each fatty acid.« less

  6. Pore pressure development beneath the décollement at the Nankai subduction zone: Implications for plate boundary fault strength and sediment dewatering

    NASA Astrophysics Data System (ADS)

    Skarbek, Robert M.; Saffer, Demian M.

    2009-07-01

    Despite its importance for plate boundary fault processes, quantitative constraints on pore pressure are rare, especially within fault zones. Here, we combine laboratory permeability measurements from core samples with a model of loading and pore pressure diffusion to investigate pore fluid pressure evolution within underthrust sediment at the Nankai subduction zone. Independent estimates of pore pressure to ˜20 km from the trench, combined with permeability measurements conducted over a wide range of effective stresses and porosities, allow us to reliably simulate pore pressure development to greater depths than in previous studies and to directly quantify pore pressure within the plate boundary fault zone itself, which acts as the upper boundary of the underthrusting section. Our results suggest that the time-averaged excess pore pressure (P*) along the décollement ranges from 1.7-2.1 MPa at the trench to 30.2-35.9 MPa by 40 km landward, corresponding to pore pressure ratios of λb = 0.68-0.77. For friction coefficients of 0.30-0.40, the resulting shear strength along the décollement remains <12 MPa over this region. When noncohesive critical taper theory is applied using these values, the required pore pressure ratios within the wedge are near hydrostatic (λw = 0.41-0.59), implying either that pore pressure throughout the wedge is low or that the fault slips only during transient pulses of elevated pore pressure. In addition, simulated downward migration of minima in effective stress during drainage provides a quantitative explanation for down stepping of the décollement that is consistent with observations at Nankai.

  7. Demodulation of an optical fiber MEMS pressure sensor based on single bandpass microwave photonic filter.

    PubMed

    Wang, Yiping; Ni, Xiaoqi; Wang, Ming; Cui, Yifeng; Shi, Qingyun

    2017-01-23

    In this paper, a demodulation method for optic fiber micro-electromechanical systems (MEMS) extrinsic Fabry-Perot interferometer (EFPI) pressure sensor exploiting microwave photonics filter technique is firstly proposed and experimentally demonstrated. A single bandpass microwave photonic filter (MPF) which mainly consists of a spectrum-sliced light source, a pressurized optical fiber MEMS EFPI, a phase modulator (PM) and a length of dispersion compensating fiber (DCF) is demonstrated. The frequency response of the filter with respect to the pressure is studied. By detecting the resonance frequency shifts of the MPF, the pressure can be determined. The theoretical and experimental results show that the proposed EFPI pressure demodulation method has a higher resolution and higher speed than traditional methods based on optical spectrum analysis. The sensitivity of the sensor is measured to be as high as 86 MHz/MPa in the range of 0-4Mpa. Moreover, the sensitivity can be easily adjusted.

  8. Enhancement of anaerobic sludge digestion by high-pressure homogenization.

    PubMed

    Zhang, Sheng; Zhang, Panyue; Zhang, Guangming; Fan, Jie; Zhang, Yuxuan

    2012-08-01

    To improve anaerobic sludge digestion efficiency, the effects of high-pressure homogenization (HPH) conditions on the anaerobic sludge digestion were investigated. The VS and TCOD were significantly removed with the anaerobic digestion, and the VS removal and TCOD removal increased with increasing the homogenization pressure and homogenization cycle number; correspondingly, the accumulative biogas production also increased with increasing the homogenization pressure and homogenization cycle number. The optimal homogenization pressure was 50 MPa for one homogenization cycle and 40 MPa for two homogenization cycles. The SCOD of the sludge supernatant significantly increased with increasing the homogenization pressure and homogenization cycle number due to the sludge disintegration. The relationship between the biogas production and the sludge disintegration showed that the accumulative biogas and methane production were mainly enhanced by the sludge disintegration, which accelerated the anaerobic digestion process and improved the methane content in the biogas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Cement/caprock fracture healing experiments to assess the integrity of CO2 injection wells

    NASA Astrophysics Data System (ADS)

    Du Frane, W. L.; Mason, H. E.; Walsh, S. D.; Ruddle, D. G.; Carroll, S.

    2012-12-01

    It has been speculated that fractures along wellbore cement/caprock interfaces may provide a path for release of carbon from both long-term sequestration-sites and CO2-based enhanced oil recovery operations. The goal of this study is to evaluate the potential for fracture growth and healing in the wellbore environment, and its impact on wellbore permeability. A series of flow-through experiments was conducted, in which sample cores containing a planar fracture between impermeable caprock (compacted quartz, from 13,927' depth in Kern County) and cement (Portland G cured by ATSM standards) were reacted with brine containing variable amounts of carbonic acid (pCO2 between 0 and 3 MPa). The initial fracture geometry was controlled by grinding the caprock and cement pieces flat, and then bead blasting topography into the cement surfaces. Runs lasted 4-8 days with cores and brine maintained at constant temperature (60 °C). Constant confining pressure (24.8 MPa) was applied to cores, while brine was flowed with constant rates (0.05-0.10 mL/min) and pore pressure (12.4 MPa). Geomechanical and geochemical responses of the fractures were monitored by in situ measurements of differential pressure, and by periodically sampling output brine to analyze compositional changes. In every experiment the total permeability of samples cores decreased substantially. For runs using brine with pCO2 = 3 MPa, sample permeability continually decreased by over a factor of 200. Sample permeability also decreased by a factor of 50 having stabilized after ~3 days in a run using brine without CO2 (pCO2 = 0 MPa). These reductions in permeability appear to be the result of chemically-induced changes to the mechanical properties of the cement surface. Prior to reaction, the cement-caprock samples had high strength and elastic response to changes in stress during loading. After the experiments, the samples were weaker, and showed inelastic response to changes in stress during unloading. All cement surfaces exposed to CO2-rich brine were heavily reacted, as evidenced by coatings of rust-colored amorphous material. X-ray micro-tomography images revealed a series of reaction zones consistent with the results of related experiments by other researchers [e.g. Kutchko et al. 2007]. The mechanical properties of the individual reaction zones were evaluated by nano-indentation. Sampling during runs indicated that brine with pCO2 = 3 MPa became substantially enriched in Ca, Si, and Al, whereas composition of output brine with pCO2 = 0 MPa had little change over the run duration. The enrichment of Al in the brine with pCO2 = 3 MPa indicates that both Al -bearing minerals and amorphous calcium-silicate-hydrate (CSH) dissolved from the cement. Geochemical reaction pathways were further characterized in the reacted zones with the cement by scanning electron microscope, x-ray diffraction, and solid state NMR spectroscopy. These results suggest that the evolution of fractures in our experiments are determined by 3 competing factors: 1) swelling of CSH through hydration from the brine, 2) dissolution of cement into brine containing CO2, and 3) mechanical weakening of cement by chemical reaction with CO2. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-Eng-48 and Contract DE-AC52-07NA27344.

  10. Burning mechanism and regression rate of RX-35-AU and RX-35-AV as a function of HMX particle size measured by the hybrid closed bomb-strand burner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, W.C.; Costantino, M.S.; Ornellas, D.L.

    1990-04-01

    In this study, the average surface regression rate of two HMX-based cast explosives, RX-35-AU and RX-35-AV, is measured to pressures above 750 MPa using a hybrid closed bomb-strand burner. The hybrid design allows the simultaneous measurement of pressure and regression rate over a large range of pressures in each experiment. Nitroglycerin/Triacetin (75/25) and polyethylene glycol (PEG) are used as the energetic plasticizer and polymeric binder, respectively, in both formulations. The HMX solids loading in each formulation is 50 wt %, consisting of a narrow particle size distribution of 6--8 {mu}m for RX-35-AU and 150--177 {mu}m for RX-35-AV. Of special interestmore » are the regression rate and burning mechanism as a function of the initial particle size distribution and the mechanical properties fo the cast explosives. In general, the regression rate for the larger particle size formulation, RX-35-AV, is two to three times faster compared to that for RX-35-AU. Up to 750 MPa and independent of the initial confinement pressure, RX-35-AU exhibits a planar burning mechanism with the regression rate obeying the classical aP{sup n} formalism. For RX-35-AV, however, the burning behavior is erratic for samples ignited at 200 MPa confinement pressure. At confinement pressures above 400 MPa, the regression exhibits more of a planar burning mechanism. The unstable combustion behavior for RX-35-AV at lower confinement pressures is related to several mechanisms: (1) an abrupt increase in surface area due to particle fracture and subsequent translation and rotation, resulting in debonding and creating porosity, (2) thixotropic'' separation of the binder and nitramine, causing the significantly greater fracture damage to the nitramine during the loading cycle, (3) microscopic damage to the nitramine crystals that increase its intrinsic burning rate. 12 refs., 8 figs., 2 tabs.« less

  11. High hydrostatic pressure treatments enhance volatile components of pre-germinated brown rice revealed by aromatic fingerprinting based on HS-SPME/GC-MS and chemometric methods.

    PubMed

    Xia, Qiang; Mei, Jun; Yu, Wenjuan; Li, Yunfei

    2017-01-01

    Germination favors to significantly enhance functional components and health attributes of whole-grain brown rice (BR), but the production of germinated BR (GBR) compromises the typical rice flavor perception due to soaking process. Simultaneously, high hydrostatic pressure (HHP) is considered as an effective processing technique to enhance micronutrients utilization efficiency of GBR and improve products flavor, but no information about the effects of HHP treatments on volatile fingerprinting of GBR has been reported. Therefore, the objective of this work was to apply HHP to improve the flavor and odor of GBR grains by exploring HHP-induced changes in aroma compounds. GBR grains were obtained by incubating at 37°C for 36h, and subsequently subjected to HHP treatments at pressures 100, 300 and 500MPa for 15min, using 0.1MPa as control. Headspace solid-phase micro extraction coupled to gas chromatography mass spectrometry was used to characterize process-induced shifts of volatile organic compounds fingerprinting, followed by multivariate analysis. Our results confirmed the significant reduction of total volatile fractions derived from germination process. Contrarily, the following HHP treatments greatly enhanced the flavor components of GBR, particularly characteristic odorants including aldehydes, ketones, and alcohols. Principal component analysis further indicated the different influence of germination and high pressure on the changes in volatile components. Partial least square-discrimination analysis suggested that 4-vinylguaiacol was closely linked to germination, whereas E,E-2,4-decadienal, E-2-hexenal, E,E-2,4-heptadienal and benzyl alcohol could be considered as volatile biomarkers of high pressure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Roughness characterization of the galling of metals

    NASA Astrophysics Data System (ADS)

    Hubert, C.; Marteau, J.; Deltombe, R.; Chen, Y. M.; Bigerelle, M.

    2014-09-01

    Several kinds of tests exist to characterize the galling of metals, such as that specified in ASTM Standard G98. While the testing procedure is accurate and robust, the analysis of the specimen's surfaces (area=1.2 cm) for the determination of the critical pressure of galling remains subject to operator judgment. Based on the surface's topography analyses, we propose a methodology to express the probability of galling according to the macroscopic pressure load. After performing galling tests on 304L stainless steel, a two-step segmentation of the S q parameter (root mean square of surface amplitude) computed from local roughness maps (100 μ m× 100 μ m) enables us to distinguish two tribological processes. The first step represents the abrasive wear (erosion) and the second one the adhesive wear (galling). The total areas of both regions are highly relevant to quantify galling and erosion processes. Then, a one-parameter phenomenological model is proposed to objectively determine the evolution of non-galled relative area A e versus the pressure load P, with high accuracy ({{A}e}=100/(1+a{{P}2}) with a={{0.54}+/- 0.07}× {{10}-3} M P{{a}-2} and with {{R}2}=0.98). From this model, the critical pressure of galling is found to be equal to 43MPa. The {{S}5 V} roughness parameter (the five deepest valleys in the galled region's surface) is the most relevant roughness parameter for the quantification of damages in the ‘galling region’. The significant valleys’ depths increase from 10 μm-250 μm when the pressure increases from 11-350 MPa, according to a power law ({{S}5 V}=4.2{{P}0.75}, with {{R}2}=0.93).

  13. A feasible method to eliminate nanoleakage in dentin hybrid layers.

    PubMed

    Chen, Ji-Hua; Liu, Yan; Niu, Li-Na; Lu, Shuai; Tay, Franklin R; Gao, Yu

    2014-10-01

    To determine whether high-pressure air blowing during adhesive application affects the infiltration of resin comonomers and nanoleakage manifestation in the resin/dentin interface under simulated pulpal pressure. Thirty mid-coronal dentin surfaces were bonded with an etch-and-rinse adhesive (Adper Single Bond 2) under simulated pulpal pressure. In the control group, the adhesive was thinned by ordinary air blowing with a pressure of 0.2 MPa, while in the experimental group, a high-pressure air blowing technique (pressure: 0.4 MPa) was used. All other procedures followed the manufacturer's instructions. Resin tag formation and nanoleakage in the bonding interface were evaluated with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). When adhesive was thinned with high pressure air blowing, longer and more homogeneous resin tags were formed. The bonding interface demonstrated good overall morphology and integrity. Almost perfect infiltration of resin and no obvious nanoleakage were observed. Thinning of adhesive with high-pressure air blowing provides a clinically feasible adjunctive procedure for better resin infiltration.

  14. Effect of Gas Pressure on Polarization of SOFC Cathode Prepared by Plasma Spray

    NASA Astrophysics Data System (ADS)

    Li, Cheng-Xin; Wang, Zhun-Zhun; Liu, Shuai; Li, Chang-Jiu

    2013-06-01

    A cermet-supported tubular SOFC was fabricated using thermal spray. The cell performance was investigated at temperatures from 750 to 900 °C and pressures from 0.1 to 0.5 MPa to examine the effect of operating gas pressure on the cell performance. The influence of gas pressure on the cathodic polarization was studied through the electrochemical impedance approach to examine the controlling electrochemical processes during cell operation. Results show that increasing the operating gas pressure improves the power output performance significantly. When the gas pressure is increased from 0.1 to 0.3 MPa, the maximum power density is increased by a factor of 32% at a temperature of 800 °C. The cathode polarization decreases significantly with the increase of the gas pressure. The electrochemical analysis shows that the main control processes of the cathode reaction are the oxygen species transfer at the three-phase boundary and oxygen diffusion on the surface or in the bulk of the cathode, which are enhanced with increasing gas pressure.

  15. Novel high-pressure windows made of glass-like carbon for x-ray analysis.

    PubMed

    Testemale, Denis; Prat, Alain; Lahera, Eric; Hazemann, Jean-Louis

    2016-07-01

    Original high-pressure glass-like carbon windows developed for x-ray spectroscopy applications are presented. The scientific and technological background of this new technical development is exposed, in particular the limitations of our existing beryllium windows in the context of x-ray absorption spectroscopy (XAS) measurements of solutions with very low solute concentrations at hydrothermal conditions (0.1-200 MPa, 30-600 °C). The benefits of glass-like carbon are exposed, notably its non-crystalline character, the absence of impurities which has been verified by micro-fluorescence laboratory measurements, and its non-toxicity which makes its machining safer. Finite elements mechanical calculations and experimental pressure tests were conducted to determine the pressure limits of windows with two different geometries: cylindrical (thickness 0.5 mm) and inversed-dome shape (thickness 0.5 mm at the tip of the dome). The former break at 150 MPa and the latter show no sign of rupture at 400 MPa. Recent XAS measurements conducted with the new dome shaped windows are presented to show the advantages of the design that allow for the detection of very low concentrations in the transmission mode (down to 30 ppm) and the acquisition of fluorescence XAS spectra in diluted solutions at high pressure. Eventually the perspectives of this original development are discussed.

  16. The biodegradation of crude oil in the deep ocean.

    PubMed

    Prince, Roger C; Nash, Gordon W; Hill, Stephen J

    2016-10-15

    Oil biodegradation at a simulated depth of 1500m was studied in a high-pressure apparatus at 5°C, using natural seawater with its indigenous microbes, and 3ppm of an oil with dispersant added at a dispersant:oil ratio of 1:15. Biodegradation of the detectable hydrocarbons was prompt and extensive (>70% in 35days), although slower by about a third than under otherwise identical conditions equivalent to the surface. The apparent half-life of biodegradation of the total detectable hydrocarbons at 15MPa was 16days (compared to 13days at atmospheric pressure), although some compounds, such as the four-ring aromatic chrysene, were degraded rather more slowly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Experimental evaluation of two premixing-prevaporizing fuel injection concepts for a gas turbine catalytic combustor

    NASA Technical Reports Server (NTRS)

    Tacina, R.

    1976-01-01

    A premixing-prevaporizing fuel system for a gas turbine catalytic combustor has been developed and evaluated. Spatial fuel distribution and degree of vaporization were measured at inlet temperatures up to 800 K and fuel-air ratios of 0.01 and 0.025. The test pressure was 0.5 MPa; velocity was 20 m/sec. Both a multiple-jet cross-stream injector and a splash-groove injector with a 30 deg air swirler exhibited a uniform fuel distribution and a high degree of vaporization with little total pressure drop. Fuel oxidation reactions were observed at the 800 K inlet air temperature, indicating that a different design concept is necessary for application with an automotive gas turbine.

  18. Gene expression profiles in chondrosarcoma cells subjected to cyclic stretching and hydrostatic pressure. A cDNA array study.

    PubMed

    Karjalainen, Hannu M; Sironen, Reijo K; Elo, Mika A; Kaarniranta, Kai; Takigawa, Masaharu; Helminen, Heikki J; Lammi, Mikko J

    2003-01-01

    Mechanical forces have a profound effect on cartilage tissue and chondrocyte metabolism. Strenuous loading inhibits the cellular metabolism, while optimal level of loading at correct frequency raises an anabolic response in chondrocytes. In this study, we used Atlas Human Cancer cDNA array to investigate mRNA expression profiles in human chondrosarcoma cells stretched 8% for 6 hours at a frequency of 0.5 Hz. In addition, cultures were exposed to continuous and cyclic (0.5 Hz) 5 MPa hydrostatic pressure. Cyclic stretch had a more profound effect on the gene expression profiles than 5 MPa hydrostatic pressure. Several genes involved with the regulation of cell cycle were increased in stretched cells, as well as mRNAs for PDGF-B, glucose-1-phosphate uridylyltransferase, Tiam1, cdc37 homolog, Gem, integrin alpha6, and matrix metalloproteinase-3. Among down-regulated genes were plakoglobin, TGF-alpha, retinoic acid receptor-alpha and Wnt8b. A smaller number of changes was detected after pressure treatments. Plakoglobin was increased under cyclic and continuous 5 MPa hydrostatic pressure, while mitogen-activated protein kinase-9, proliferating cell nuclear antigen, Rad6, CD9 antigen, integrins alphaE and beta8, and vimentin were decreased. Cyclic and continuous pressurization induces a number of specific changes. In conclusion, a different set of genes were affected by three different types of mechanical stimuli applied on chondrosarcoma cells.

  19. Strategies to enhance high pressure inactivation of murine norovirus in strawberry puree and on strawberries.

    PubMed

    Huang, Runze; Li, Xinhui; Huang, Yaoxin; Chen, Haiqiang

    2014-08-18

    Due to the increasing concern of viral infection related to berries, this study investigated strategies to enhance high hydrostatic pressure (HHP) inactivation of murine norovirus 1 (MNV-1), a human norovirus (HuNoV) surrogate, on strawberries and in strawberry puree. Strawberry puree was inoculated with ~10(6)PFU/g of MNV-1 and treated at 350 MPa for 2 min at initial sample temperatures of 0, 5, 10 and 20°C. MNV-1 became more sensitive to HHP as initial sample temperature decreased from 20 to 0°C. To determine the effect of pressure cycling on MNV-1 inactivation, inoculated puree samples were treated at 300 MPa and 0°C with 1, 2 and 4 cycles. Pressure cycling offered no distinct advantage over continuous HHP treatment. To determine the effect of presence of water during HHP on MNV-1 inactivation, strawberries inoculated with ~ 4 × 10(5)PFU/g of MNV-1 were either pressure-treated directly (dry state) or immersed in water during pressure treatment. MNV-1 was very resistant to pressure under the dry state condition, but became sensitive to pressure under the wet state condition. The inactivation curves of MNV-1 in strawberry puree and on strawberries were obtained at 300 and 350 MPa and initial sample temperature of 0°C. Except for the curve of strawberries treated at 350 MPa which had a concave downward shape, the other three curves were almost linear with R(2) value of 0.99. The fate of MNV-1 in the un-treated and pressure-treated strawberries and strawberry puree during frozen storage was determined. The virus was relatively stable and only reduced by <1.2 log during the 28-day frozen storage. In all, this study provides practical insights of designing strategies using HHP to inactivate HuNoV on strawberries and in strawberry puree assuming that HuNoV behaved similarly to MNV-1 when treated by HHP. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Dynamic Culturing of Cartilage Tissue: The Significance of Hydrostatic Pressure

    PubMed Central

    Pereira, Ana L.; Duarte, Ana R.C.; Frias, Ana M.; Pedro, Adriano J.; Oliveira, João T.; Sousa, Rui A.; Reis, Rui L.

    2012-01-01

    Human articular cartilage functions under a wide range of mechanical loads in synovial joints, where hydrostatic pressure (HP) is the prevalent actuating force. We hypothesized that the formation of engineered cartilage can be augmented by applying such physiologic stimuli to chondrogenic cells or stem cells, cultured in hydrogels, using custom-designed HP bioreactors. To test this hypothesis, we investigated the effects of distinct HP regimens on cartilage formation in vitro by either human nasal chondrocytes (HNCs) or human adipose stem cells (hASCs) encapsulated in gellan gum (GG) hydrogels. To this end, we varied the frequency of low HP, by applying pulsatile hydrostatic pressure or a steady hydrostatic pressure load to HNC-GG constructs over a period of 3 weeks, and evaluated their effects on cartilage tissue-engineering outcomes. HNCs (10×106 cells/mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens for 3 weeks: (1) 0.4 MPa Pulsatile HP; (2) 0.4 MPa Steady HP; and (3) Static. Subsequently, we applied the pulsatile regimen to hASC-GG constructs and varied the amplitude of loading, by generating both low (0.4 MPa) and physiologic (5 MPa) HP levels. hASCs (10×106 cells/mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens for 4 weeks: (1) 0.4 MPa Pulsatile HP; (2) 5 MPa Pulsatile HP; and (3) Static. In the HNC study, the best tissue development was achieved by the pulsatile HP regimen, whereas in the hASC study, greater chondrogenic differentiation and matrix deposition were obtained for physiologic loading, as evidenced by gene expression of aggrecan, collagen type II, and sox-9; metachromatic staining of cartilage extracellular matrix; and immunolocalization of collagens. We thus propose that both HNCs and hASCs detect and respond to physical forces, thus resembling joint loading, by enhancing cartilage tissue development in a frequency- and amplitude-dependant manner. PMID:22559784

  1. Determination of methane concentrations in water in equilibrium with sI methane hydrate in the absence of a vapor phase by in situ Raman spectroscopy

    USGS Publications Warehouse

    Lu, W.; Chou, I.-Ming; Burruss, R.C.

    2008-01-01

    Most submarine gas hydrates are located within the two-phase equilibrium region of hydrate and interstitial water with pressures (P) ranging from 8 to 60 MPa and temperatures (T) from 275 to 293 K. However, current measurements of solubilities of methane in equilibrium with hydrate in the absence of a vapor phase are limited below 20 MPa and 283.15 K, and the differences among these data are up to 30%. When these data were extrapolated to other P-T conditions, it leads to large and poorly known uncertainties. In this study, in situ Raman spectroscopy was used to measure methane concentrations in pure water in equilibrium with sI (structure one) methane hydrate, in the absence of a vapor phase, at temperatures from 276.6 to 294.6 (??0.3) K and pressures at 10, 20, 30 and 40 (??0.4%) MPa. The relationship among concentration of methane in water in equilibrium with hydrate, in mole fraction [X(CH4)], the temperature in K, and pressure in MPa was derived as: X(CH4) = exp [11.0464 + 0.023267 P - (4886.0 + 8.0158 P)/T]. Both the standard enthalpy and entropy of hydrate dissolution at the studied T-P conditions increase slightly with increasing pressure, ranging from 41.29 to 43.29 kJ/mol and from 0.1272 to 0.1330 kJ/K ?? mol, respectively. When compared with traditional sampling and analytical methods, the advantages of our method include: (1) the use of in situ Raman signals for methane concentration measurements eliminates possible uncertainty caused by sampling and ex situ analysis, (2) it is simple and efficient, and (3) high-pressure data can be obtained safely. ?? 2007 Elsevier Ltd. All rights reserved.

  2. Physical enviroment of 2-D animal cell aggregates formed in a short pathlength ultrasound standing wave trap.

    PubMed

    Bazou, Despina; Kuznetsova, Larisa A; Coakley, W Terence

    2005-03-01

    2-D mammalian cell aggregates can be formed and levitated in a 1.5 MHz single half wavelength ultrasound standing wave trap. The physical environment of cells in such a trap has been examined. Attention was paid to parameters such as temperature, acoustic streaming, cavitation and intercellular forces. The extent to which these factors might be intrusive to a neural cell aggregate levitated in the trap was evaluated. Neural cells were exposed to ultrasound at a pressure amplitude of 0.54 MPa for 30 s; a small aggregate had been formed at the center of the trap. The pressure amplitude was then decreased to 0.27 MPa for 2 min, at which level the aggregation process continued at a slower rate. The pressure amplitude was then decreased to 0.06 MPa for 1 h. Temperature measurements that were conducted in situ with a 200 microm thermocouple over a 30 min period showed that the maximum temperature rise was less than 0.5 K. Acoustic streaming was measured by the particle image velocimetry method (PIV). It was shown that the hydrodynamic stress imposed on cells by acoustic streaming is less than that imposed by gentle preparative centrifugation procedures. Acoustic spectrum analysis showed that cavitation activity does not occur in the cell suspensions sonicated at the above pressures. White noise was detected only at a pressure amplitude of 1.96 MPa. Finally, it was shown that the attractive acoustic force between ultrasonically agglomerated cells is small compared with the normal attractive van der Waals force that operates at close cell surface separations. It is concluded that the standing wave trap operates only to concentrate cells locally, as in tissue, and does not modify the in vitro expression of surface receptor interactions.

  3. A Gnotobiotic Pig Model for Determining Human Norovirus Inactivation by High-Pressure Processing

    PubMed Central

    Lou, Fangfei; Ye, Mu; Ma, Yuanmei; Li, Xinhui; DiCaprio, Erin; Chen, Haiqiang; Krakowka, Steven; Hughes, John; Kingsley, David

    2015-01-01

    Human norovirus (NoV) is responsible for over 90% of outbreaks of acute nonbacterial gastroenteritis worldwide and accounts for 60% of cases of foodborne illness in the United States. Currently, the infectivity of human NoVs is poorly understood due to the lack of a cell culture system. In this study, we determined the survival of a human NoV genogroup II, genotype 4 (GII.4) strain in seeded oyster homogenates after high-pressure processing (HPP) using a novel receptor binding assay and a gnotobiotic pig model. Pressure conditions of 350 MPa at 0°C for 2 min led to a 3.7-log10 reduction in the number of viral RNA copies in oysters, as measured by the porcine gastric mucin-conjugated magnetic bead (PGM-MB) binding assay and real-time RT-PCR, whereas pressure conditions of 350 MPa at 35°C for 2 min achieved only a 1-log10 reduction in the number of RNA copies. Newborn gnotobiotic piglets orally fed oyster homogenate treated at 350 MPa and 0°C for 2 min did not have viral RNA shedding in feces, histologic lesions, or viral replication in the small intestine. In contrast, gnotobiotic piglets fed oysters treated at 350 MPa and 35°C for 2 min had high levels of viral shedding in feces and exhibited significant histologic lesions and viral replication in the small intestine. Collectively, these data demonstrate that (i) human NoV survival estimated by an in vitro PGM-MB virus binding assay is consistent with the infectivity determined by an in vivo gnotobiotic piglet model and (ii) HPP is capable of inactivating a human NoV GII.4 strain at commercially acceptable pressure levels. PMID:26187968

  4. Impact of process conditions on the density and durability of wheat, oat, canola, and barley straw briquettes

    DOE PAGES

    Tumuluru, J. S.; Tabil, L. G.; Song, Y.; ...

    2014-10-01

    The present study is to understand the impact of process conditions on the quality attributes of wheat oat, barley, and canola straw briquettes. Analysis of variance indicated that briquette moisture content and initial density immediately after compaction and final density after 2 weeks of storage are strong functions of feedstock moisture content and compression pressure, whereas durability rating is influenced by die temperature and feedstock moisture content. Briquettes produced at a low feedstock moisture content of 9 % (w.b.) yielded maximum densities >700 kg/m3 for wheat, oat, canola, and barley straws. Lower feedstock moisture content of <10 % (w.b.) andmore » higher die temperatures >110 °C and compression pressure >10 MPa minimized the briquette moisture content and maximized densities and durability rating based on surface plots observations. Optimal process conditions indicated that a low feedstock moisture content of about 9 % (w.b.), high die temperature of 120–130 °C, medium-to-large hammer mill screen sizes of about 24 to 31.75 mm, and low to high compression pressures of 7.5 to 12.5 MPa minimized briquette moisture content to <8 % (w.b.) and maximized density to >700 kg/m3. Durability rating >90 % is achievable at higher die temperatures of >123 °C, lower to medium feedstock moisture contents of 9 to 12 % (w.b.), low to high compression pressures of 7.5 to 12.5 MPa, and large hammer mill screen size of 31.75 mm, except for canola where a lower compression pressure of 7.5 to 8.5 MPa and a smaller hammer mill screen size of 19 mm for oat maximized the durability rating values.« less

  5. Optimization of Supercritical CO2 Extraction of Fish Oil from Viscera of African Catfish (Clarias gariepinus)

    PubMed Central

    Sarker, Mohamed Zaidul Islam; Selamat, Jinap; Habib, Abu Sayem Md. Ahsan; Ferdosh, Sahena; Akanda, Mohamed Jahurul Haque; Jaffri, Juliana Mohamed

    2012-01-01

    Fish oil was extracted from the viscera of African Catfish using supercritical carbon dioxide (SC-CO2). A Central Composite Design of Response Surface methodology (RSM) was employed to optimize the SC-CO2 extraction parameters. The oil yield (Y) as response variable was executed against the four independent variables, namely pressure, temperature, flow rate and soaking time. The oil yield varied with the linear, quadratic and interaction of pressure, temperature, flow rate and soaking time. Optimum points were observed within the variables of temperature from 35 °C to 80 °C, pressure from 10 MPa to 40 MPa, flow rate from 1 mL/min to 3 mL/min and soaking time from 1 h to 4 h. However, the extraction parameters were found to be optimized at temperature 57.5 °C, pressure 40 MPa, flow rate 2.0 mL/min and soaking time 2.5 h. At this optimized condition, the highest oil yields were found to be 67.0% (g oil/100 g sample on dry basis) in the viscera of catfish which was reasonable to the yields of 78.0% extracted using the Soxhlet method. PMID:23109854

  6. Elastic wave speeds and moduli in polycrystalline ice Ih, si methane hydrate, and sll methane-ethane hydrate

    USGS Publications Warehouse

    Helgerud, M.B.; Waite, W.F.; Kirby, S.H.; Nur, A.

    2009-01-01

    We used ultrasonic pulse transmission to measure compressional, P, and shear, S, wave speeds in laboratory-formed polycrystalline ice Ih, si methane hydrate, and sll methane-ethane hydrate. From the wave speed's linear dependence on temperature and pressure and from the sample's calculated density, we derived expressions for bulk, shear, and compressional wave moduli and Poisson's ratio from -20 to 15??C and 22.4 to 32.8 MPa for ice Ih, -20 to 15??C and 30.5 to 97.7 MPa for si methane hydrate, and -20 to 10??C and 30.5 to 91.6 MPa for sll methane-ethane hydrate. All three materials had comparable P and S wave speeds and decreasing shear wave speeds with increasing applied pressure. Each material also showed evidence of rapid intergranular bonding, with a corresponding increase in wave speed, in response to pauses in sample deformation. There were also key differences. Resistance to uniaxial compaction, indicated by the pressure required to compact initially porous samples, was significantly lower for ice Ih than for either hydrate. The ice Ih shear modulus decreased with increasing pressure, in contrast to the increase measured in both hydrates ?? 2009.

  7. Modelling the impact of water activity and fat content of dry-cured ham on the reduction of Salmonella enterica by high pressure processing.

    PubMed

    Bover-Cid, S; Belletti, N; Aymerich, T; Garriga, M

    2017-01-01

    This work aimed to quantify the impact of a w and fat content of dry-cured ham on the Log reduction of Salmonella enterica by high pressure (HP). Dry-cured ham with adjusted a w (0.86-0.96) and fat content (10-50%) was inoculated with S. enterica and pressurised (347-852MPa, 5min/15°C), following a Central Composite Design. Polynomial regression indicated a significant impact of pressure and a w on S. enterica HP-lethality. By lowering a w a clear piezoprotection was observed. At low a w (0.88) the S. enterica reduction was little affected by increasing pressure (e.g. 2.3 to 3.2 Logs at 450 to 750MPa, respectively). At the highest a w the estimated inactivation ranged from 3.3 to 8.9 Logs at 450 to 750MPa, respectively. No significant piezoprotective effect on S. enterica was recorded by the fat content. The relevance of food characteristics on the HP-lethality of S. enterica indicate the need to validate the HP effectiveness on the specific product. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. High hydrostatic pressure inactivation of murine norovirus and human noroviruses on green onions and in salsa.

    PubMed

    Sido, Robert F; Huang, Runze; Liu, Chuhan; Chen, Haiqiang

    2017-02-02

    In this study, high hydrostatic pressure (HHP) was evaluated as an intervention for human noroviruses (HuNoVs) in green onions and salsa. To determine the effect of water during HHP treatment on virus inactivation, a HuNoV surrogate, murine norovirus 1 (MNV-1), was inoculated onto green onions and then HHP-treated at 350MPa with or without water at 4 or 20°C. The presence of water enhanced HHP inactivation of MNV-1 on green onions at 4°C but not at 20°C. To test the temperature effect on HHP inactivation of MNV-1, inoculated green onions were HHP-treated at 300MPa at 1, 4 and 10°C. As the temperature decreased, MNV-1 became more sensitive to HHP treatment. HHP inactivation curves of MNV-1 on green onions and salsa were obtained at 300 or 350MPa for 0.5-3min at 1°C. All three inactivation curves showed a linear relationship between log reduction of MNV-1 and time. D values of HHP inactivation of MNV-1 on green onions were 1.10 and 0.61min at 300 and 350MPa, respectively. The D value of HHP inactivation of MNV-1 in salsa at 300MPa was 0.63min. HHP inactivation of HuNoV GI.1 and GII.4 on green onions and salsa was also conducted. To achieve >3 log reduction of HuNoV GI.1, HHP treatments for 2min at 1°C should be conducted at 600MPa and 500MPa for green onions and salsa, respectively. To achieve >3 log reduction of HuNoV GII.4, HHP treatments for 2min at 1°C should be conducted at 500MPa and 300MPa for green onions and salsa, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Mechanical behavior and localized failure modes in a porous basalt from the Azores

    NASA Astrophysics Data System (ADS)

    Loaiza, S.; Fortin, J.; Schubnel, A.; Gueguen, Y.; Vinciguerra, S.; Moreira, M.

    2012-10-01

    Basaltic rocks are the main component of the oceanic upper crust, thus of potential interest for water and geothermal resources, storage of CO2 and volcanic edifice stability. In this work, we investigated experimentally the mechanical behavior and the failure modes of a porous basalt, with an initial connected porosity of 18%. Results were acquired under triaxial compression experiments at confining pressure in the range of 25-200 MPa on water saturated samples. In addition, a purely hydrostatic test was also performed to reach the pore collapse critical pressure P*. During hydrostatic loading, our results show that the permeability is highly pressure dependent, which suggests that the permeability is mainly controlled by pre-existing cracks. When the sample is deformed at pressure higher than the pore collapse pressure P*, some very small dilatancy develops due to microcracking, and an increase in permeability is observed. Under triaxial loading, two modes of deformation can be highlighted. At low confining pressure (Pc < 50 MPa), the samples are brittle and shear localization occurs. For confining pressure > 50 MPa, the stress-strain curves are characterized by strain hardening and volumetric compaction. Stress drops are also observed, suggesting that compaction may be localized. The presence of compaction bands is confirmed by our microstructure analysis. In addition, the mechanical data allows us to plot the full yield surface for this porous basalt, which follows an elliptic cap as previously observed in high porosity sandstones and limestones.

  10. Experimental strain analysis of the high pressure strain gauge pressure transducer and verification by using a finite element method

    NASA Astrophysics Data System (ADS)

    Orhan, M. H.; Dogan, Ç.; Kocabas, H.; Tepehan, G.

    2001-03-01

    The finite element method (FEM) was used in this study for the analysis of the strain distribution of a strain gauge pressure transducer for hydrostatic pressure measurements up to 150 MPa. The pressure transducer, which we investigated, on the basis of `thick-walled cylindrical vessel' theory has a free steel active element. Pressure is applied to the inside and both open ends of this active element. The symmetrical shape of the transducer and all the design parameters of the active element were selected in such a way as to ensure that a symmetrical stress and strain distribution was obtained even at the maximum working pressure of the transducer. The FEM analysis was conducted by investigating one half of the element in three dimensions. This paper presents the FEM output strain values for the area where the strain gauges were bonded. The validity of those values was established by comparing them with the results obtained from the strain gauge measurements. The relative difference between the two sets of values determined to be lower than 13% of the full scale. The two kinds of measuring elements were made of two different materials; AISI 4340 steel and Invar steel, which work in the hydraulic gauge pressure ranges of up to 150 and 100 MPa respectively. The transducers were calibrated using piston pressure balance. The metrological specifications of a total of eight specimens were evaluated. Although the scope of the study is only an application of the FEM, this evaluation also suggests that this type of transducer can be used with an estimated uncertainty of up to 0.1% of the full scale. However, this uncertainty can be improved by a small modification in design, to reduce the reproducibility and hysteresis errors of the device, which are the main parameters in the evaluation of the uncertainty. The results presented in this paper will be helpful for practical static pressure measurements as well as for the appropriate design of this kind of pressure transducer using the FEM.

  11. A method to measure the density of seawater accurately to the level of 10-6

    NASA Astrophysics Data System (ADS)

    Schmidt, Hannes; Wolf, Henning; Hassel, Egon

    2016-04-01

    A substitution method to measure seawater density relative to pure water density using vibrating tube densimeters was realized and validated. Standard uncertainties of 1 g m-3 at atmospheric pressure, 10 g m-3 up to 10 MPa, and 20 g m-3 to 65 MPa in the temperature range of 5 °C to 35 °C and for salt contents up to 35 g kg-1 were achieved. The realization was validated by comparison measurements with a hydrostatic weighing apparatus for atmospheric pressure. For high pressures, literature values of seawater compressibility were compared with substitution measurements of the realized apparatus.

  12. Addendum to High Pressure Burn Rate Measurements on an Ammonium Perchlorate Propellant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glascoe, E A; Tan, N

    2010-11-08

    As part of a small follow-on study, the burn rate of the ammonium perchlorate (AP) based material TAL-1503 was studied at a relatively mild pressure. The goal of this final experiment was to burn TAL-1503 at the lowest pressures possible using the LLNL High Pressure Strand Burner (LLNL-HPSB). The following is a description of the experiment and the results with a brief discussion of data and a comparison to the higher pressure data. This is not meant to be a stand-alone report and readers should refer to the main report for experimental details and discussion. High pressure deflagration rate measurementsmore » of a unique AP/HTPB based material (TAL-1503) were performed using the LLNL high pressure strand burner apparatus. The material burns in a well behaved, laminar fashion between 20 and 300 MPa with a burn law of B = (0.6 {+-} 0.1) x P{sup (1.05{+-}0.02)} that was calculated based on the best data available from the experiments. In the pressure range of 2 and 10 MPa the material burned laminarly with a burn law of B = (2.0 {+-} 0.2) x P{sup (0.66{+-}0.05)}. In these results, B is the burn rate in mm/s and P is the pressure in units of MPa. Comparison of the TAL-1503 results with similar propellants that contain micrometer sized aluminum indicate that the burn rates are relatively unaffected by the aluminum. However, the pressure change is significantly larger when aluminum is present, most likely due to the high temperatures achieved from burning aluminum.« less

  13. Improvement of texture and palatability of chicken breast: effect of high hydrostatic pressure and sodium hydrogen carbonate

    NASA Astrophysics Data System (ADS)

    Tabe, Kanae; Kim, Yun-Jung; Ohnuma, Shun; Ogoshi, Hiro; Suzuki, Atsushi; Nishiumi, Tadayuki

    2013-06-01

    Chicken breast is not preferred in Japan because it is not juicy. In this study, the effect of combined high pressure and sodium hydrogen carbonate (NaHCO3) treatment on the texture and palatability of chicken breast was investigated. The sample used was broiler chicken breast. Meat samples were soaked in.0-.4 M NaHCO3 solution and then pressurized at 100-400 MPa. After pressurization, the samples were heated for 30 min at 80°C and cooled down in ice-cold water. High pressure and NaHCO3 treatment of broiler chicken breast resulted in increased water content, and decreased weight reduction and rupture stress. Moreover, meat exposed to 200 MPa pressurization and.3 M NaHCO3 treatment was judged tender, juicy and of good taste by sensory evaluation. The combination of high pressure and NaHCO3 treatment can be effectively used for broiler chicken breast production.

  14. Germination and inactivation of Bacillus coagulans and Alicyclobacillus acidoterrestris spores by high hydrostatic pressure treatment in buffer and tomato sauce.

    PubMed

    Vercammen, Anne; Vivijs, Bram; Lurquin, Ine; Michiels, Chris W

    2012-01-16

    Acidothermophilic bacteria like Alicyclobacillus acidoterrestris and Bacillus coagulans can cause spoilage of heat-processed acidic foods because they form spores with very high heat resistance and can grow at low pH. The objective of this work was to study the germination and inactivation of A. acidoterrestris and B. coagulans spores by high hydrostatic pressure (HP) treatment at temperatures up to 60°C and both at low and neutral pH. In a first experiment, spores suspended in buffers at pH 4.0, 5.0 and 7.0 were processed for 10min at different pressures (100-800MPa) at 40°C. None of these treatments caused any significant inactivation, except perhaps at 800MPa in pH 4.0 buffer where close to 1 log inactivation of B. coagulans was observed. Spore germination up to about 2 log was observed for both bacteria but occurred mainly in a low pressure window (100-300MPa) for A. acidoterrestris and only in a high pressure window (600-800MPa) for B. coagulans. In addition, low pH suppressed germination in A. acidoterrestris, but stimulated it in B. coagulans. In a second series of experiments, spores were treated in tomato sauce of pH 4.2 and 5.0 at 100 - 800MPa at 25, 40 and 60°C for 10min. At 40°C, results for B. coagulans were similar as in buffer. For A. acidoterrestris, germination levels in tomato sauce were generally higher than in buffer, and showed little difference at low and high pressure. Remarkably, the pH dependence of A. acidoterrestris spore germination was reversed in tomato sauce, with more germination at the lowest pH. Furthermore, HP treatments in the pH 4.2 sauce caused between 1 and 1.5 log inactivation of A. acidoterrestris. Germination of spores in the high pressure window was strongly temperature dependent, whereas germination of A. acidoterrestris in the low pressure window showed little temperature dependence. When HP treatment was conducted at 60°C, most of the germinated spores were also inactivated. For the pH 4.2 tomato sauce, this resulted in up to 3.5 and 2.0 log inactivation for A. acidoterrestris and B. coagulans respectively. We conclude that HP treatment can induce germination and inactivation of spores from thermoacidophilic bacteria in acidic foods, and may thus be useful to reduce spoilage of such foods caused by these bacteria. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. A new pressure chamber to study the biosynthetic response of articular cartilage to mechanical loading.

    PubMed

    Steinmeyer, J; Torzilli, P A; Burton-Wurster, N; Lust, G

    1993-01-01

    A prototype chamber was used to apply a precise cyclic or static load on articular cartilage explants under sterile conditions. A variable pressure, pneumatic controller was constructed to power the chamber's air cylinder, capable of applying, with a porous load platen, loads of up to 10 MPa at cycles ranging from 0 to 10 Hz. Pig articular cartilage explants were maintained successfully in this chamber for 2 days under cyclic mechanical loading of 0.5 Hz, 0.5 MPa. Explants remained sterile, viable and metabolically active. Cartilage responded to this load with a decreased synthesis of fibronectin and a small but statistically significant elevation in proteoglycan content. Similar but less extensive effects on fibronectin synthesis were observed with the small static load (0.016 MPa) inherent in the design of the chamber.

  16. Thermocouple psychrometry

    USGS Publications Warehouse

    Andraski, Brian J.; Scanlon, Bridget R.; Dane, Jacob H.; Topp, G. Clarke

    2002-01-01

    Thermocouple psychrometry is a technique that infers the water potential of the liquid phase of a sample from measurements within the vapor phase that is in equilibrium with the sample. The theoretical relation between water potential of the liquid phase and relative humidity of the vapor phase is given by the Kelvin equation Ψ = energy/volume = (RT/Vw) ln(p/po) [3.2.3–1]where ψ is water potential (sum of matric and osmotic potential, MPa), R is the universal gas constant (8.314 × 10-6 MJ mol-1 K-1), T is temperature (K), Vw is molar volume of water (1.8 × 10-5 m3 mol-1), and p/po is relative humidity expressed as a fraction where p is actual vapor pressure of air in equilibrium with the liquid phase (MPa) and po is saturation vapor pressure (MPa) at T.

  17. Simulating the gas hydrate production test at Mallik using the pilot scale pressure reservoir LARS

    NASA Astrophysics Data System (ADS)

    Heeschen, Katja; Spangenberg, Erik; Schicks, Judith M.; Priegnitz, Mike; Giese, Ronny; Luzi-Helbing, Manja

    2014-05-01

    LARS, the LArge Reservoir Simulator, allows for one of the few pilot scale simulations of gas hydrate formation and dissociation under controlled conditions with a high resolution sensor network to enable the detection of spatial variations. It was designed and built within the German project SUGAR (submarine gas hydrate reservoirs) for sediment samples with a diameter of 0.45 m and a length of 1.3 m. During the project, LARS already served for a number of experiments simulating the production of gas from hydrate-bearing sediments using thermal stimulation and/or depressurization. The latest test simulated the methane production test from gas hydrate-bearing sediments at the Mallik test site, Canada, in 2008 (Uddin et al., 2011). Thus, the starting conditions of 11.5 MPa and 11°C and environmental parameters were set to fit the Mallik test site. The experimental gas hydrate saturation of 90% of the total pore volume (70 l) was slightly higher than volumes found in gas hydrate-bearing formations in the field (70 - 80%). However, the resulting permeability of a few millidarcy was comparable. The depressurization driven gas production at Mallik was conducted in three steps at 7.0 MPa - 5.0 MPa - 4.2 MPa all of which were used in the laboratory experiments. In the lab the pressure was controlled using a back pressure regulator while the confining pressure was stable. All but one of the 12 temperature sensors showed a rapid decrease in temperature throughout the sediment sample, which accompanied the pressure changes as a result of gas hydrate dissociation. During step 1 and 2 they continued up to the point where gas hydrate stability was regained. The pressure decreases and gas hydrate dissociation led to highly variable two phase fluid flow throughout the duration of the simulated production test. The flow rates were measured continuously (gas) and discontinuously (liquid), respectively. Next to being discussed here, both rates were used to verify a model of gas hydrate dissociation applying the foamy oil approach, a method earlier adopted to model the Mallik production test (see abstract Abendroth et al., this volume). Combined with a dense set of data from a cylindrical electrical resistance tomography (ERT) array (see abstract Priegnitz et al., this volume), very valuable information were gained on the spatial as well as temporal formation and dissociation of gas hydrates as well as changes in permeability and resulting pathways for the fluid flow. Here we present the set-up and execution of the experiment and discuss the results from temperature and flow measurements with respect to the gas hydrate dissociation and characteristics of resulting fluid flow. Uddin, M., Wright, F., and Coombe, D. 2011. Numerical Study of Gas Evolution and Transport Behaviours in Natural Gas-Hydrate Reservoirs. Journal of Canadian Petroleum Technology 50, 70-89.

  18. Pressure calibrants in the hydrothermal diamond-anvil cell

    USGS Publications Warehouse

    Chou, I.-Ming

    2007-01-01

    Based on the equation of state of water (EOSW), experimental pressure in the hydrothermal diamond-anvil cell (HDAC) using pure water or dilute aqueous solutions as a pressure medium can be accurately determined at each measured temperature. Consequently, meaningful interpretations can be obtained for observations in the HDAC, which has been widely accepted as a versatile, modern apparatus for hydrothermal experiments. However, this is not true when other pressure media were used because there is no reliable way to determine experimental pressure other than the use of in situ pressure sensors. Most of the available pressure sensors are difficult to apply because they either require expensive facilities to perform the measurements or are unable to provide the accuracy needed for the interpretation of hydrothermal experiments. The only exception is to use the interferometric method to detect the ??-?? quartz transition, although such applications are limited to temperatures above 573??C. In this study, three pressure calibrants were calibrated for applications at lower temperatures, and they were based on visual observation of the ferroelastic phase transitions in BaTiO3 (tetragonal/cubic), Pb3(PO4)2 (monoclinic/trigonal), and PbTiO3 (tetragonal/cubic). For the phase transitions in BaTiO3 and Pb3(PO4)2, the temperature at which twinning disappears during heating was taken as the transition temperature (Ttr); the phase transition pressures (Ptr) can be calculated, respectively, from Ptr (MPa; ??3%) = 0.17 - 21.25 [(Ttr) - 115.3], and Ptr (MPa; ??2%) = 1.00 - 10.62 [(Ttr) - 180.2], where Ttr is in ??C. For the phase transition in PbTiO3, the temperature at which the movement of phase front begins (or ends) on heating (or cooling) was taken as the transition temperature (Ttr,h or Ttr,c), and the phase transition pressures on heating (Ptr,h) and cooling (Ptr,c) can be calculated from Ptr,h (MPa; ??4%) = 7021.7 - 14.235 (Ttr,h), and Ptr,c (MPa; ??4%) = 6831.3 - 14.001 (Ttr,c). Phase transitions for these three pressure calibrants are easy to detect visually, and their P-T phase boundaries have negative slopes and intersect isochors of most of the geologic fluids at high angles and, therefore, are easy to apply. Copyright ?? 2007 by V. H. Winston & Son, Inc. All rights reserved.

  19. Inactivation of HAV and norovirus surrogates within raw shellfish and other foods

    USDA-ARS?s Scientific Manuscript database

    High pressure processing can inactivate hepatitis A virus, (HAV) and the human norovirus surrogates, feline calicivirus (FCV) and murine norovirus (MNV), in foods such as oysters, strawberries, and green onions. A 5-min 400-Megapascals (MPa) treatment at 5 degrees C and a 1–min 400-MPa treatment at ...

  20. Fabrication of microporous calcite block from calcium hydroxide compact under carbon dioxide atmosphere at high temperature.

    PubMed

    Otsu, Akihiro; Tsuru, Kanji; Maruta, Michito; Munar, Melvin L; Matsuya, Shigeki; Ishikawa, Kunio

    2012-01-01

    Effects of carbonation temperature and compacting pressure on basic properties of calcite block were studied using Ca(OH)2 compact made with 0.2-2.0 MPa and their carbonation at 200-800ºC for 1 h. Microporous calcite was obtained only when carbonated at 600ºC using Ca(OH)2 compact made with 0.2 MPa even though thermogravimetry analysis showed that calcite powder was stable up to 920ºC under CO2 atmosphere. CaO formed by carbonation at 700ºC and 800ºC is thought to be caused by the limited CO2 diffusion interior to the Ca(OH)2 compact. Also, unreacted Ca(OH)2 was found for Ca(OH)2 compact prepared with 0.5 MPa or higher pressure even when carbonated at 600ºC. As a result of high temperature carbonation, crystallite size of the calcite, 58.0 nm, was significantly larger when compared to that of calcite prepared at room temperature, 35.5 nm. Porosity and diametral tensile strength of the microporous calcite were 39.5% and 6.4 MPa.

  1. Compressed Liquid Densities and Helmholtz Energy Equation of State for Fluoroethane (R161)

    NASA Astrophysics Data System (ADS)

    Qi, Haiyan; Fang, Dan; Gao, Kehui; Meng, Xianyang; Wu, Jiangtao

    2016-06-01

    In this study, compressed liquid densities of Fluoroethane (R161, CAS No. 353-36-6) were measured using a high-pressure vibrating-tube densimeter over the temperature range from (283 to 363) K with pressures up to 100 MPa. A Helmholtz energy equation of state for R161 was developed from these density measurements and other experimental thermodynamic property data from the literature. The formulation is valid for temperatures from the triple point temperature of 130 K to 420 K with pressures up to 100 MPa. The approximate uncertainties of properties calculated with the new equation of state are estimated to be 0.25 % in density, 0.2 % in saturated liquid density between 230 K and 320 K, and 0.2 % in vapor pressure below 350 K. Deviations in the critical region are higher for all properties. The extrapolation behavior of the new formulation at high temperatures and high pressures is reasonable.

  2. The topological pressure-temperature phase diagram of ritonavir, an extraordinary case of crystalline dimorphism.

    PubMed

    Céolin, R; Rietveld, I B

    2015-01-01

    A topological pressure-temperature phase diagram involving the phase relationships of ritonavir forms I and II has been constructed using experimental calorimetric and volumetric data available from the literature. The triple point I-II-liquid is located at a temperature of about 407 K and a pressure as extraordinarily small as 17.5 MPa (175 bar). Thus, the less soluble solid phase (form II) will become metastable on increasing pressure. At room temperature, form I becomes stable around 100 MPa indicating that form II may turn into form I at a relatively low pressure of 1000 bar, which may occur under processing conditions such as mixing or grinding. This case is a good example for which a proper thermodynamic evaluation trumps "rules of thumb" such as the density rule. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. Quasi-adiabatic compression heating of selected foods

    NASA Astrophysics Data System (ADS)

    Landfeld, Ales; Strohalm, Jan; Halama, Radek; Houska, Milan

    2011-03-01

    The quasi-adiabatic temperature increase due to compression heating, during high-pressure (HP) processing (HPP), was studied using specially designed equipment. The temperature increase was evaluated as the difference in temperature, during compression, between atmospheric pressure and nominal pressure. The temperature was measured using a thermocouple in the center of a polyoxymethylene cup, which contained the sample. Fresh meat balls, pork meat pate, and tomato purée temperature increases were measured at three initial temperature levels between 40 and 80 °C. Nominal pressure was either 400 or 500 MPa. Results showed that the fat content had a positive effect on temperature increases. Empirical equations were developed to calculate the temperature increase during HPP at different initial temperatures for pressures of 400 and 500 MPa. This thermal effect data can be used for numerical modeling of temperature histories of foods during HP-assisted pasteurization or sterilization processes.

  4. Comparison of bioactive components in pressurized and pasteurized longan juices fortified with encapsulated Lactobacillus casei 01

    NASA Astrophysics Data System (ADS)

    Chaikham, Pittaya; Apichartsrangkoon, Arunee

    2012-06-01

    In this study, longan juice was subjected to a high pressure of 500 MPa for 30 min and compared with a juice pasteurized at 90°C/2 min. Probiotic Lactobacillus casei 01 was fortified into both juices and the shelf life of these products was studied. Their bioactive components such as ascorbic acid, gallic acid and ellagic acid were analyzed by High Performance Liquid Chromatography (HPLC). Total phenolic compounds and 2,2-Diphenyl-1-picrythydrazyl radical-scavenging activity were determined by colorimetric and spectrophotometric methods. It was found that the pressurized longan juice retained higher amounts of bioactive compounds than the pasteurized juice. In terms of storage stability, bioactive compounds in both processed juices decreased according to the increase in storage time. The survivability of probiotic L. casei 01 in both processed juices declined from 9 to 6 log CFU/mL after 4 weeks of storage.

  5. Effects of Peach Cultivar on Enzymatic Browning Following Cell Damage from High-Pressure Processing.

    PubMed

    Techakanon, Chukwan; Gradziel, Thomas M; Barrett, Diane M

    2016-10-12

    Peach cultivars contribute to unique product characteristics and may affect the degree of browning after high-pressure processing (HPP). Nine peach cultivars were subjected to HPP at 0, 100, and 400 MPa for 10 min. Proton nuclear magnetic resonance ( 1 H NMR) relaxometry, light microscopy, color, polyphenol oxidase (PPO) activity, and total phenols were evaluated. The development of enzymatic browning during refrigerated storage occurred because of damage during HPP that triggered loss of cell integrity, allowing substrates to interact with enzymes. Increasing pressure levels resulted in greater damage, as determined by shifts in transverse relaxation time (T 2 ) and by light micrographs. Discoloration was triggered by membrane decompartmentalization but limited by PPO activity, which was found to correlate to cultivar harvest time (early, mid, and late season). Outcomes from the microstructure, 1 H NMR ,and PPO activity evaluation were an effective means of determining membrane decompartmentalization and allowed for prediction of browning scenarios.

  6. Influence of Mineralogy, Pressure, Temperature and Stress on Mechanical roperties of shale Rocks

    NASA Astrophysics Data System (ADS)

    Herrmann, J.; Rybacki, E.; Sone, H.; Dresen, G. H.

    2017-12-01

    The production of hydrocarbons from unconventional reservoirs, like tight shale plays increased tremendously over the past decade. Hydraulic fracturing is a common method to increase the productivity of a well drilled in these reservoirs. Unfortunately, the production rate decreases over time presumably due to fracture healing. The healing rate induced by proppant embedment depends on pressure (p), temperature (T), stress (σ) - conditions and on shale composition. To improve understanding of the influence of these parameters on fracture healing, we conducted constant strain rate experiments (p = 50 - 100 MPa, T = 50 - 125 °C, ɛ/t = 5 * 10-4 - 5 * 10-6 s-1) on porous ( 8 %), quartz - rich ( 72 vol %) Bowland shale (UK) and on low porosity ( 3 %), clay - rich ( 33 vol %) Posidonia shale (GER), deformed perpendicular to bedding and with as-is water content. Bowland shale showed mainly brittle behaviour with predominantly elastic deformation before failure and a high strength (280 - 350 MPa). In contrast, Posidonia shale deformed semibrittle with pronounced inelastic deformation and low peak strength (165 - 220 MPa). For both shale rocks, static Young's moduli vary between 12 - 18 GPa. In addition, we performed a series of constant stress tests on both shales at p = 30 - 115 MPa, T = 75 - 150 °C and σ = 160 - 450 MPa. Samples showed transient (primary) creep with increasing strain rates for increasing temperature and stress and decreasing pressure. An empirical power law in the form of ɛ = A*tm is used to describe the observed relation between inelastic strain (ɛ) and time (t), where the constant A is mainly affected by temperature and stress and the exponent m accounts for the influence of pressure. Compared to quartz - rich, strong Bowland shale, the creep behaviour of clay - rich, weak Posidonia shale is much more sensitive to changes in pressure, temperature and stress. Electron microscopy suggests that creep was mainly accommodated by deformation of weak phases (TOC, clay, mica). Our results suggest a low fracture healing rate of Bowland shale, whereas fractures within the Posidonia formation tend to close faster.

  7. Effect of high-pressure torsion on the microstructural evolution and mechanical properties of an Fe-10Ni-7Mn (wt. %) lath martensitic steel

    NASA Astrophysics Data System (ADS)

    Kalahroudi, Faezeh Javadzadeh; Koohdar, Hamidreza; Jafarian, Hamidreza; Nili-Ahmadabadi, Mahmoud; Huang, Yi; Langdon, Terence. G.

    2018-01-01

    The high-pressure torsion (HPT) process is a severe plastic deformation (SPD) technique which imposes exceptionally high strains to produce extremely small grain sizes in bulk materials. In this paper, the HPT process was carried out on an Fe-10Ni-7Mn (wt.%) martensitic steel up to 20 revolutions at a rotation speed of 1 rpm under a pressure of 6.0 GPa at room temperature. The effects of the HPT process on the microstructure evolution and mechanical properties of the alloy were investigated by X-ray diffraction (XRD) analysis, electron backscatter diffraction (EBSD), micro-hardness measurement and conventional tensile testing. The XRD analysis revealed no changes in the detected phases after deformation. A significant refinement in grain size from 200 µm in the initial microstructure to around 230 nm after HPT was observed by EBSD. Although based on a rigid body assumption the imposed strain is linearly proportional to the distance from the center in HPT-processed disks, after 20 revolutions a uniform micro-hardness increment up to 650 Hv was achieved. Moreover, the tensile strength of the alloy increased from ˜800 MPa in the solution annealed condition to about 2300 MPa after the HPT process with a total tensile strain of 4%. Experimental results indicated that the HPT process leads to improvement of the tensile strength with a reasonable ductility due to the significant refinement of the microstructure.

  8. Hetero-catalytic hydrothermal oxidation of simulated pulping effluent: Effect of operating parameters and catalyst stability.

    PubMed

    Yadav, Bholu Ram; Garg, Anurag

    2018-01-01

    In the present study, activated carbon (AC) supported bi-metallic catalyst (3.3Cu/2.2Ce/4.4AC) was subjected to catalytic wet oxidation (CWO) of simulated pulping effluent at moderate operating conditions (temperatures = 120-190 °C and oxygen partial pressures = 0.5-1.2 MPa). The oxidation reaction was performed in a high pressure reactor (capacity = 0.7 l) with catalyst concentration of 1-5 g/l for 3 h duration. During CWO at 190 °C temperature and 0.9 MPa oxygen pressure, the chemical oxygen demand (COD), total organic carbon (TOC), lignin and color removals from the wastewater were 79%, 77%, 88% and 89%, respectively, while the wastewater biodegradability was enhanced to 0.52 from an initial value of 0.16. TOC mass balance suggested that nearly 86-97% of the degraded TOC was mineralized whereas copper and cerium leaching from the catalyst were in the range of 1-15% and 0.7-1% with respect to their initial amounts. Metal leaching was reduced with increase in the reaction temperature. Global kinetic rate model was also developed using TOC degradation data and the activation energies of two step (rapid followed by slower TOC removal) CWO reaction were determined as 34.2 kJ/mol and 28.5 kJ/mol, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Effects of Ultrasound Frequency and Tissue Stiffness on the Histotripsy Intrinsic Threshold for Cavitation

    PubMed Central

    Vlaisavljevich, Eli; Lin, Kuang-Wei; Maxwell, Adam; Warnez, Matthew; Mancia, Lauren; Singh, Rahul; Putnam, Andrew J.; Fowlkes, Brian; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2015-01-01

    Histotripsy is an ultrasound ablation method that depends on the initiation of a cavitation bubble cloud to fractionate soft tissue. Previous work has demonstrated a cavitation cloud can be formed by a single pulse with one high amplitude negative cycle, when the negative pressure amplitude directly exceeds a pressure threshold intrinsic to the medium. We hypothesize that the intrinsic threshold in water-based tissues is determined by the properties of the water inside the tissue and changes in tissue stiffness or ultrasound frequency will have a minimal impact on the histotripsy intrinsic threshold. To test this hypothesis, the histotripsy intrinsic threshold was investigated both experimentally and theoretically. The probability of cavitation was measured by subjecting tissue phantoms with adjustable mechanical properties and ex vivo tissues to a histotripsy pulse of 1–2 cycles produced by 345 kHz, 500 kHz, 1.5 MHz, and 3 MHz histotripsy transducers. Cavitation was detected and characterized by passive cavitation detection and high-speed photography, from which the probability of cavitation was measured vs. pressure amplitude. The results demonstrated that the intrinsic threshold (the negative pressure at which probability=0.5) is independent of stiffness for Young’s moduli (E) < 1 MPa with only a small increase (~2–3 MPa) in the intrinsic threshold for tendon (E=380 MPa). Additionally, results for all samples showed only a small increase of ~2–3 MPa when the frequency was increased from 345 kHz to 3 MHz. The intrinsic threshold was measured to be between 24.7–30.6 MPa for all samples and frequencies tested in this study. Overall, the results of this study indicate that the intrinsic threshold to initiate a histotripsy bubble cloud is not significantly impacted by tissue stiffness or ultrasound frequency in hundreds of kHz to MHz range. PMID:25766571

  10. Effects of ultrasound frequency and tissue stiffness on the histotripsy intrinsic threshold for cavitation.

    PubMed

    Vlaisavljevich, Eli; Lin, Kuang-Wei; Maxwell, Adam; Warnez, Matthew T; Mancia, Lauren; Singh, Rahul; Putnam, Andrew J; Fowlkes, Brian; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2015-06-01

    Histotripsy is an ultrasound ablation method that depends on the initiation of a cavitation bubble cloud to fractionate soft tissue. Previous work has indicated that a cavitation cloud can be formed by a single pulse with one high-amplitude negative cycle, when the negative pressure amplitude directly exceeds a pressure threshold intrinsic to the medium. We hypothesize that the intrinsic threshold in water-based tissues is determined by the properties of the water inside the tissue, and changes in tissue stiffness or ultrasound frequency will have a minimal impact on the histotripsy intrinsic threshold. To test this hypothesis, the histotripsy intrinsic threshold was investigated both experimentally and theoretically. The probability of cavitation was measured by subjecting tissue phantoms with adjustable mechanical properties and ex vivo tissues to a histotripsy pulse of 1-2 cycles produced by 345-kHz, 500-kHz, 1.5-MHz and 3-MHz histotripsy transducers. Cavitation was detected and characterized by passive cavitation detection and high-speed photography, from which the probability of cavitation was measured versus pressure amplitude. The results revealed that the intrinsic threshold (the negative pressure at which probability = 0.5) is independent of stiffness for Young's moduli (E) <1 MPa, with only a small increase (∼2-3 MPa) in the intrinsic threshold for tendon (E = 380 MPa). Additionally, results for all samples revealed only a small increase of ∼2-3 MPa when the frequency was increased from 345 kHz to 3 MHz. The intrinsic threshold was measured to be between 24.7 and 30.6 MPa for all samples and frequencies tested in this study. Overall, the results of this study indicate that the intrinsic threshold to initiate a histotripsy bubble cloud is not significantly affected by tissue stiffness or ultrasound frequency in the hundreds of kilohertz to megahertz range. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. The Rapid Formation of Localized Compaction Bands Under Hydrostatic Load Leading to Pore-pressure Transients in Compacting Rocks

    NASA Astrophysics Data System (ADS)

    Faulkner, D.; Leclere, H.; Bedford, J. D.; Behnsen, J.; Wheeler, J.

    2017-12-01

    Compaction of porous rocks can occur uniformly or within localized deformation bands. The formation of compaction bands and their effects on deformation behaviour are poorly understood. Porosity may be primary and compaction can occur with burial, or it can be produced by metamorphic reactions with a solid volume reduction, that can then undergo collapse. We report results from hydrostatic compaction experiments on porous bassanite (CaSO4.0.5H2O) aggregates. Gypsum (CaSO4.2H2O) is first dehydrated under low effective pressure, 4 MPa, to produce a bassanite aggregate with a porosity of 27%. Compaction is induced by increasing confining pressure at rates from 0.001 MPa/s to 0.02 MPa/s while the sample is maintained at a temperature of 115°C. At slow compaction rates, porosity collapse proceeds smoothly. At higher compaction rates, sudden increases in the pore-fluid pressure occur with a magnitude of 5 MPa. Microstructural investigations using X-ray microtomography and SEM observations show that randomly oriented localized compaction features occur in all samples, where the bulk porosity of 18% outside the band is reduced to 5% inside the band. Previous work on deformation bands has suggested that localized compactive features only form under an elevated differential stress and not under a hydrostatic stress state. The magnitude of the pore-pressure pulses can be explained by the formation of compaction bands. The results indicate that the compaction bands can form by rapid (unstable) propagation across the sample above a critical strain rate, or quasi-statically at low compaction rates without pore-fluid pressure bursts. The absence of pore-fluid pressure bursts at slow compaction rates can be explained by viscous deformation of the bassanite aggregate around the tip of a propagating compaction band, relaxing stress, and promoting stable propagation. Conversely, at higher compaction rates, viscous deformation cannot relax the stress sufficiently and unstable, brittle propagation occurs. In nature, this type of compaction behaviour might result in a mechanism to produce pulses of pore pressure within porous rocks which might have a significant effect on the deformation behaviour at depth.

  12. Combustion characteristics of nanoaluminum, liquid water, and hydrogen peroxide mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabourin, J.L.; Yetter, R.A.; Risha, G.A.

    2008-08-15

    An experimental investigation of the combustion characteristics of nanoaluminum (nAl), liquid water (H{sub 2}O{sub (l)}), and hydrogen peroxide (H{sub 2}O{sub 2}) mixtures has been conducted. Linear and mass-burning rates as functions of pressure, equivalence ratio ({phi}), and concentration of H{sub 2}O{sub 2} in H{sub 2}O{sub (l)} oxidizing solution are reported. Steady-state burning rates were obtained at room temperature using a windowed pressure vessel over an initial pressure range of 0.24 to 12.4 MPa in argon, using average nAl particle diameters of 38 nm, {phi} from 0.5 to 1.3, and H{sub 2}O{sub 2} concentrations between 0 and 32% by mass. Atmore » a nominal pressure of 3.65 MPa, under stoichiometric conditions, mass-burning rates per unit area ranged between 6.93 g/cm{sup 2} s (0% H{sub 2}O{sub 2}) and 37.04 g/cm{sup 2} s (32% H{sub 2}O{sub 2}), which corresponded to linear burning rates of 9.58 and 58.2 cm/s, respectively. Burning rate pressure exponents of 0.44 and 0.38 were found for stoichiometric mixtures at room temperature containing 10 and 25% H{sub 2}O{sub 2}, respectively, up to 5 MPa. Burning rates are reduced above {proportional_to}5 MPa due to the pressurization of interstitial spaces of the packed reactant mixture with argon gas, diluting the fuel and oxidizer mixture. Mass burning rates were not measured above {proportional_to}32% H{sub 2}O{sub 2} due to an anomalous burning phenomena, which caused overpressurization within the quartz sample holder, leading to tube rupture. High-speed imaging displayed fingering or jetting ahead of the normal flame front. Localized pressure measurements were taken along the sample length, determining that the combustion process proceeded as a normal deflagration prior to tube rupture, without significant pressure buildup within the tube. In addition to burning rates, chemical efficiencies of the combustion reaction were determined to be within approximately 10% of the theoretical maximum under all conditions studied. (author)« less

  13. Stability of fault submitted to fluid injections

    NASA Astrophysics Data System (ADS)

    Brantut, N.; Passelegue, F. X.; Mitchell, T. M.

    2017-12-01

    Elevated pore pressure can lead to slip reactivation on pre-existing fractures and faults when the coulomb failure point is reached. From a static point of view, the reactivation of fault submitted to a background stress (τ0) is a function of the peak strength of the fault, i.e. the quasi-static effective friction coefficient (µeff). However, this theory is valid only when the entire fault is affected by fluid pressure, which is not the case in nature, and during human induced-seismicity. In this study, we present new results about the influence of the injection rate on the stability of faults. Experiments were conducted on a saw-cut sample of westerly granite. The experimental fault was 8 cm length. Injections were conducted through a 2 mm diameter hole reaching the fault surface. Experiments were conducted at four different order magnitudes fluid pressure injection rates (from 1 MPa/minute to 1 GPa/minute), in a fault system submitted to 50 and 100 MPa confining pressure. Our results show that the peak fluid pressure leading to slip depends on injection rate. The faster the injection rate, the larger the peak fluid pressure leading to instability. Wave velocity surveys across the fault highlighted that decreasing the injection-rate leads to an increase of size of the fluid pressure perturbation. Our result demonstrate that the stability of the fault is not only a function of the fluid pressure requires to reach the failure criterion, but is mainly a function of the ratio between the length of the fault affected by fluid pressure and the total fault length. In addition, we show that the slip rate increases with the background effective stress and with the intensity of the fluid pressure pertubation, i.e. with the excess shear stress acting on the part of the fault pertubated by fluid injection. Our results suggest that crustal fault can be reactivated by local high fluid overpressures. These results could explain the "large" magnitude human-induced earthquakes recently observed in Oklahoma (Mw 5.6, 2016).

  14. Effect of high-pressure on pine sawdust pyrolysis: Products distribution and characteristics

    NASA Astrophysics Data System (ADS)

    Xu, Baiqing; Li, Aimin

    2017-08-01

    In this work, the pressurized pyrolysis of pine sawdust was performed with a self-made pressurized pyrolysis reactor to investigatethe influence of pyrolysis pressure in the range of 0-5 MPa on products distribution and characteristics. The combustion feature and microstructure of bio-char had analyzed by thermogravimetric (TG) and scanning electron microscopy (SEM), respectively. Elemental analyzer and Fourier transform infrared spectroscopy (FTIR) were used to confirm the identities of bio-oil. The results indicated the pressure had a notable impact on the biomass pyrolysis, which promoted the secondary cracking of bio-oil to produce more gaseous products and bio-char. The minimum bio-oil yield of 20.24% was obtained at the pressure of 5 MPa. Furthermore, the pressure improved the products characteristics. The increasing of pressure was favour to the deoxygenation and dehydrogenation reactions of bio-oil, which led to the increase of CH4, H2 and CO2 in gas. At the same time, under the influence of pressure, the surface structure and compactedness of the bio-char were obviously improved.

  15. Lymphatic Transport and Lymphocyte Targeting of a Triglyceride Mimetic Prodrug Is Enhanced in a Large Animal Model: Studies in Greyhound Dogs.

    PubMed

    Han, Sifei; Hu, Luojuan; Gracia; Quach, Tim; Simpson, Jamie S; Edwards, Glenn A; Trevaskis, Natalie L; Porter, Christopher J H

    2016-10-03

    In previous studies, a triglyceride (TG) mimetic prodrug of the model immunomodulator mycophenolic acid (MPA) was shown to significantly enhance lymphatic transport of MPA-related species in the rat. The rat gastrointestinal tract, however, is somewhat different from that in higher order species such as dogs and humans and may underestimate lymphatic transport. Here the effectiveness of the prodrug strategy has been examined in conscious greyhound dogs, the GI physiology of which is more representative of that in humans. The bioavailability and lymphatic transport of free MPA and total MPA related materials were examined following oral administration of the parent drug (MPA) and the prodrug (2-MPA-TG) to both thoracic lymph duct cannulated and intact (noncannulated) greyhound dogs. The enrichment of free MPA in lymph nodes and lymph-derived lymphocytes was also determined to examine the efficiency of drug targeting to potential sites of action within the lymph. Via biochemical integration into a series of site-specific metabolic processes, the prodrug markedly increased (288-fold) lymphatic transport of total MPA related material (present as re-esterified 2-MPA-TG) when compared to the parent MPA and the extent of lymphatic transport was significantly greater in the dog (36.4% of the dose recovered in lymph) when compared to the previous data in the rat (13.4% of the dose). Conversion from 2-MPA-TG derivatives to parent MPA occurred in vivo, resulting in a marked increase in MPA concentrations in lymph nodes (5-6-fold) and lymph lymphocytes (21-fold), when compared to animals administered the parent drug. In conclusion, the data demonstrate that the TG prodrug of MPA facilitates efficient delivery of MPA to the lymphatic system in dogs and suggest that the TG prodrug strategy may more effectively facilitate targeted delivery in large animals than in rats.

  16. A method to investigate the biomechanical alterations in Perthes' disease by hip joint contact modeling.

    PubMed

    Salmingo, Remel Alingalan; Skytte, Tina Lercke; Traberg, Marie Sand; Mikkelsen, Lars Pilgaard; Henneberg, Kaj-Åge; Wong, Christian

    2017-01-01

    Perthes' disease is a destructive hip joint disorder characterized by malformation of the femoral head in young children. While the morphological changes have been widely studied, the biomechanical effects of these changes still need to be further elucidated. The objective of this study was to develop a method to investigate the biomechanical alterations in Perthes' disease by finite element (FE) contact modeling using MRI. The MRI data of a unilateral Perthes' case was obtained to develop the three-dimensional FE model of the hip joint. The stress and contact pressure patterns in the unaffected hip were well distributed. Elevated concentrations of stress and contact pressure were found in the Perthes' hip. The highest femoral cartilage von Mises stress 3.9 MPa and contact pressure 5.3 MPa were found in the Perthes' hip, whereas 2.4 MPa and 4.9 MPa in the healthy hip, respectively. The healthy bone in the femoral head of the Perthes' hip carries additional loads as indicated by the increase of stress levels around the necrotic-healthy bone interface. Identifying the biomechanical changes, such as the location of stress and contact pressure concentrations, is a prerequisite for the preoperative planning to obtain stress relief for the highly stressed areas in the malformed hip. This single-patient study demonstrated that the biomechanical alterations in Perthes' disease can be evaluated individually by patient-specific finite element contact modeling using MRI. A multi-patient study is required to test the strength of the proposed method as a pre-surgery planning tool.

  17. Preconditioning of the YSZ-NiO Fuel Cell Anode in Hydrogenous Atmospheres Containing Water Vapor.

    PubMed

    Vasyliv, Bogdan; Podhurska, Viktoriya; Ostash, Orest

    2017-12-01

    The YSZ-NiO ceramics for solid oxide fuel cells (SOFCs) anode have been investigated. A series of specimens were singly reduced in a hydrogenous atmosphere (Ar-5 vol% H 2 mixture) at 600 °C under the pressure of 0.15 MPa or subjected to 'reduction in the mixture-oxidation in air' (redox) cycling at 600 °C. The YSZ-Ni cermets formed in both treatment conditions were then aged in 'water vapor in Ar-5 vol% H 2 mixture' atmosphere at 600 °C under the pressure of 0.15 MPa. Additionally, the behaviour of the as-received material in this atmosphere was studied. It was revealed that small amount of water vapor in Ar-5 vol% H 2 mixture (water vapor pressure below 0.03 MPa) does not affect the reduction of the nickel phase in the YSZ-NiO ceramics, but causes some changes in the YSZ-Ni cermet structure. In particular, nanopore growth in tiny Ni particles takes place. At higher concentration of water vapor in the mixture (water vapor pressure above 0.03-0.05 MPa), converse changes in the kinetics of reduction occur. The best physical and mechanical properties were revealed for the material treated by redox cycling after holding at 600 °C in water depleted gas mixture. The dual effect of water vapor on nickel-zirconia anode behaviour is discussed basing on scanning electron microscopy analysis data, material electrical conductivity, and strength.

  18. Functional analysis of embolism induced by air injection in Acer rubrum and Salix nigra

    PubMed Central

    Melcher, Peter J.; Zwieniecki, Maciej A.

    2013-01-01

    The goal of this study was to assess the effect of induced embolism with air injection treatments on the function of xylem in Acer rubrum L. and Salix nigra Marsh. Measurements made on mature trees of A. rubrum showed that pneumatic pressurization treatments that created a pressure gradient of 5.5 MPa across pit membranes (ΔPpit) had no effect on stomatal conductance or on branch-level sap flow. The same air injection treatments made on 3-year-old potted A. rubrum plants also had no effect on whole plant transpiration. A separate study made on mature A. rubrum trees showed that 3.0 and 5.5 MPa of ΔPpit values resulted in an immediate 100% loss in hydraulic conductance (PLC) in petioles. However, the observed change in PLC was short lived, and significant hydraulic recovery occurred within 5–10 min post air-pressurization treatments. Similar experiments conducted on S. nigra plants exposed to ΔPpit of 3 MPa resulted in a rapid decline in whole plant transpiration followed by leaf wilting and eventual plant death, showing that this species lacks the ability to recover from induced embolism. A survey that measured the effect of air-pressurization treatments on seven other species showed that some species are very sensitive to induction of embolism resulting in leaf wilting and branch death while others show minimal to no effect despite that in each case, the applied ΔPpit of 5.5 MPa significantly exceeded any native stress that these plants would experience naturally. PMID:24069025

  19. Functional analysis of embolism induced by air injection in Acer rubrum and Salix nigra.

    PubMed

    Melcher, Peter J; Zwieniecki, Maciej A

    2013-01-01

    The goal of this study was to assess the effect of induced embolism with air injection treatments on the function of xylem in Acer rubrum L. and Salix nigra Marsh. Measurements made on mature trees of A. rubrum showed that pneumatic pressurization treatments that created a pressure gradient of 5.5 MPa across pit membranes (ΔP pit) had no effect on stomatal conductance or on branch-level sap flow. The same air injection treatments made on 3-year-old potted A. rubrum plants also had no effect on whole plant transpiration. A separate study made on mature A. rubrum trees showed that 3.0 and 5.5 MPa of ΔP pit values resulted in an immediate 100% loss in hydraulic conductance (PLC) in petioles. However, the observed change in PLC was short lived, and significant hydraulic recovery occurred within 5-10 min post air-pressurization treatments. Similar experiments conducted on S. nigra plants exposed to ΔP pit of 3 MPa resulted in a rapid decline in whole plant transpiration followed by leaf wilting and eventual plant death, showing that this species lacks the ability to recover from induced embolism. A survey that measured the effect of air-pressurization treatments on seven other species showed that some species are very sensitive to induction of embolism resulting in leaf wilting and branch death while others show minimal to no effect despite that in each case, the applied ΔP pit of 5.5 MPa significantly exceeded any native stress that these plants would experience naturally.

  20. Welding polarity effects on weld spatters and bead geometry of hyperbaric dry GMAW

    NASA Astrophysics Data System (ADS)

    Xue, Long; Wu, Jinming; Huang, Junfen; Huang, Jiqiang; Zou, Yong; Liu, Jian

    2016-03-01

    Welding polarity has influence on welding stability to some extent, but the specific relationship between welding polarity and weld quality has not been found, especially under the hyperbaric environment. Based on a hyperbaric dry welding experiment system, gas metal arc welding(GMAW) experiments with direct current electrode positive(DCEP) and direct current electrode negative(DCEN) operations are carried out under the ambient pressures of 0.1 MPa, 0.4 MPa, 0.7 MPa and 1.0 MPa to find the influence rule of different welding polarities on welding spatters and weld bead geometry. The effects of welding polarities on the weld bead geometry such as the reinforcement, the weld width and the penetration are discussed. The experimental results show that the welding spatters gradually grow in quantity and size for GMAW with DCEP, while GMAW with DCEN can produce fewer spatters comparatively with the increase of the ambient pressure. Compared with DCEP, the welding current and arc voltage waveforms for DCEN is more stable and the distribution of welding current probability density for DCEN is more concentrated under the hyperbaric environment. When the ambient pressure is increased from 0.1 MPa to 1.0 MPa, the effects of welding polarities on the reinforcement, the weld width and the penetration are as follows: an increase of 0.8 mm for the weld reinforcement is produced by GMAW with DCEN and 1.3 mm by GMAW with DCEP, a decrease of 7.2 mm for the weld width is produced by DCEN and 6.1 mm by DCEP; and an increase of 3.9 mm for the penetration is produced by DCEN and 1.9 mm by DCEP. The proposed research indicates that the desirable stability in the welding procedure can be achieved by GMAW with DCEN operation under the hyperbaric environment.

  1. Effect of Propellant Flowrate and Purity on Carbon Deposition in LO2/Methane Gas Generators

    NASA Technical Reports Server (NTRS)

    Bossard, J. A.; Burkhardt, W. M.; Niiya, K. Y.; Braam, F.

    1989-01-01

    The generation and deposition of carbon was studied in the Carbon Deposition Program using subscale hardware with LO2/Liquid Natural Gas (LNG) and LO2/Methane propellants at low mixture ratios. The purpose of the testing was to evaluate the effect of methane purity and full scale injection density on carbon deposition. The LO2/LNG gas generator/preburner testing was performed at mixture ratios between 0.24 and 0.58 and chamber pressures from 5.8 to 9.4 MPa (840 to 1370 psia). A total of seven 200 second duration tests were performed. The LNG testing occurred at low injection densities, similar to the previous LO2/RP-1, LO2/propane, and LO2/methane testing performed on the carbon deposition program. The current LO2/methane test series occurred at an injection density factor of approximately 10 times higher than the previous testing. The high injection density LO2/methane testing was performed at mixture ratios between from 0.23 to 0.81 and chamber pressures from 6.4 to 15.2 MPa (925 to 2210 psia). A total of nine high injection density tests were performed. The testing performed demonstrated that low purity methane (LNG) did not produce any detectable change in carbon deposition when compared to pure methane. In addition, the C* performance and the combustion gas temperatures measured were similar to those obtained for pure methane. Similar results were obtained testing pure methane at higher propellant injection densities with coarse injector elements.

  2. Decomposition and Mineralization of Dimethyl Phthalate in an Aqueous Solution by Wet Oxidation

    PubMed Central

    Ji, Dar-Ren; Chang, Chia-Chi; Chen, Shih-Yun; Chiu, Chun-Yu; Tseng, Jyi-Yeong; Chang, Ching-Yuan; Chang, Chiung-Fen; Chiang, Sheng-Wei; Hung, Zang-Sie; Shie, Je-Lueng; Yuan, Min-Hao

    2015-01-01

    Dimethyl phthalate (DMP) was treated via wet oxygen oxidation process (WOP). The decomposition efficiency η DMP of DMP and mineralization efficiency η TOC of total organic carbons were measured to evaluate the effects of operation parameters on the performance of WOP. The results revealed that reaction temperature T is the most affecting factor, with a higher T offering higher η DMP and η TOC as expected. The η DMP increases as rotating speed increases from 300 to 500 rpm with stirring enhancement of gas liquid mass transfer. However, it exhibits reduction effect at 700 rpm due to purging of dissolved oxygen by overstirring. Regarding the effects of pressure P T, a higher P T provides more oxygen for the forward reaction with DMP, while overhigh P T increases the absorption of gaseous products such as CO2 and decomposes short-chain hydrocarbon fragments back into the solution thus hindering the forward reaction. For the tested P T of 2.41 to 3.45 MPa, the results indicated that 2.41 MPa is appropriate. A longer reaction time of course gives better performance. At 500 rpm, 483 K, 2.41 MPa, and 180 min, the η DMP and η TOC are 93 and 36%, respectively. PMID:26236768

  3. Delayed, disequilibrium degassing in rhyolite magma: Decompression experiments and implications for explosive volcanism

    USGS Publications Warehouse

    Mangan, M.; Sisson, T.

    2000-01-01

    Recent numerical models and analog shock tube experiments show that disequilibrium degassing during magma ascent may lead to violent vesiculation very near the surface. In this study a series of decompression experiments using crystal-free, rhyolite melt were conducted to examine the development of large supersaturations due to delayed, homogenous (spontaneous) bubble nucleation. Melts were saturated at 900??C and 200 MPa with either 5.2 wt% dissolved H2O, or with 4.2 wt% H2O and 640 ppm CO2, and isothermally decompressed at linear rates of either 0.003, 0.025, or 8.5 MPa/s to final pressures between 25 and 175 MPa. Additional isobaric saturation experiments (900??C, 200-25 MPa) using pure H2O or mixed H2O-CO2 fluids establish reference equilibrium solubility curves/values. Homogenous nucleation is triggered in both H2O-only and H2O-CO2 experiments once the supersaturation pressure (??Pss) reaches ?? 120-150 MPa and the melt contains ?? two times its equilibrium water contents. Bubble number density and nucleation rate depend on the supersaturation pressure, with values on the order of 102/cm3 and < 1/cm3/s for ??Pss~120 MPa; 106/cm3 and 103-105/cm3/s for ??Pss??~130-150 MPa; and 107/cm3 and 106/cm3/s for ??Pss??160-175 MPa. Nucleation rates are consistent with classical nucleation theory, and infer an activation energy for nucleation of 1.5 x 10-18 J/nucleus, a critical bubble radius of 2 x 10-9 m, and an effective surface tension for rhyolite at 5.2 wt% H2O and 900??C of 0.10-0.11 N/m. The long nucleation delay limits the time available for subsequent diffusion such that disequilibrium dissolved H2O and CO2 contents persist to the end of our runs. The disequilibrium degassing paths inferred from our experiments contrast markedly with the equilibrium or quasi-equilibrium paths found in other studies where bubble nucleation occurs heterogenously on crystals or other discontinuities in the melt at low ??Pss. Homogenous and heterogenous nucleation rates are comparable, however, as are bubble number densities, so that at a given decompression rate it appears that nucleation mechanism, rather than nucleation rate, determines degassing efficiency by fixing the pressure (depth) at which vesiculation commences and hence the time available for equilibration prior to eruption. Although real systems are probably never truly crystal-free, our results show that rhyolitic magmas containing up to 104 crystals/cm3, and perhaps as high as 106 crystals/cm3, are controlled by homogenous, rather than heterogenous, nucleation during ascent. ?? 2000 Elsevier Science B.V. All rights reserved.

  4. Music performance anxiety in opera singers.

    PubMed

    Spahn, Claudia; Echternach, Matthias; Zander, Mark F; Voltmer, Edgar; Richter, Bernhard

    2010-12-01

    Music performance anxiety (MPA) represents a high challenge every vocal performer has to meet. MPA can be defined on a continuum going from a low to a high level. MPA and its phenomena can be considered in terms of four levels: affect, cognition, behaviour, and physiology. A study carried out on seven opera singers and two instrumentalists during performance situations showed highly elevated values for the performers' heart rate and blood pressure. This study, as several others, yielded no clear evidence pointing to a correspondence between the level of anxiety and of physiological arousal. At the end of the article a multimodal approach to the treatment of MPA is illustrated consisting of different psychotherapeutic and body-oriented methods.

  5. Effects of heat and high-pressure treatments on the solubility and immunoreactivity of almond proteins.

    PubMed

    Zhang, Yan; Zhang, Jieqiong; Sheng, Wei; Wang, Shuo; Fu, Tong-Jen

    2016-05-15

    The effects of dry and moist heat, autoclave sterilization and high-pressure treatment on the biochemical characteristics and immunological properties of almond proteins were investigated. Changes in the solubility and immunoreactivity of almond proteins extracted from treated almond flour were evaluated using a total protein assay, indirect competitive inhibition enzyme-linked immunosorbent assay (IC-ELISA), and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Almond proteins were stable during dry-heat treatment at temperatures below 250°C. Dry heat at 400°C, boiling, autoclave sterilization and high-pressure treatment in the presence of water at ⩾ 500 MPa greatly reduced the solubility and immunoreactivity of almond proteins. SDS-PAGE revealed that the protein profiles of almond flour samples treated under these conditions also changed significantly. The synergistic effects of heat, pressure and the presence of water contributed to significant changes in solubility and immunoreactivity of almond proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Optimized ultra-high-pressure-assisted extraction of procyanidins from lychee pericarp improves the antioxidant activity of extracts.

    PubMed

    Zhang, Ruifen; Su, Dongxiao; Hou, Fangli; Liu, Lei; Huang, Fei; Dong, Lihong; Deng, Yuanyuan; Zhang, Yan; Wei, Zhencheng; Zhang, Mingwei

    2017-08-01

    To establish optimal ultra-high-pressure (UHP)-assisted extraction conditions for procyanidins from lychee pericarp, a response surface analysis method with four factors and three levels was adopted. The optimum conditions were as follows: 295 MPa pressure, 13 min pressure holding time, 16.0 mL/g liquid-to-solid ratio, and 70% ethanol concentration. Compared with conventional ethanol extraction and ultrasonic-assisted extraction methods, the yields of the total procyanidins, flavonoids, and phenolics extracted using the UHP process were significantly increased; consequently, the oxygen radical absorbance capacity and cellular antioxidant activity of UHP-assisted lychee pericarp extracts were substantially enhanced. LC-MS/MS and high-performance liquid chromatography quantification results for individual phenolic compounds revealed that the yield of procyanidin compounds, including epicatechin, procyanidin A2, and procyanidin B2, from lychee pericarp could be significantly improved by the UHP-assisted extraction process. This UHP-assisted extraction process is thus a practical method for the extraction of procyanidins from lychee pericarp.

  7. Comparison of stress on knee cartilage during kneeling and standing using finite element models.

    PubMed

    Wang, Yuxing; Fan, Yubo; Zhang, Ming

    2014-04-01

    Kneeling is a common activity required for both occupational and cultural reasons and has been shown to be associated with an increased risk of knee disorders. While excessive contact pressure is considered to be a possible aggressor, it is not clear whether and to what extent stress on the cartilage during kneeling is different from that while standing. In this study, finite element models of the knee joint for both kneeling and standing positions were constructed. The results indicated differences in high-stress regions between kneeling and standing. And both the peak von-Mises stress and contact pressure on the cartilage were larger in kneeling. During kneeling, the contact pressure reached 4.25 MPa under a 300 N compressive load. It then increased to 4.66 MPa at 600 N and 5.15 MPa at 1000 N. Changing the Poisson's ratio of the cartilage, which represents changes in compressibility caused by different loading rates, was found to have an influence on the magnitude of stress. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  8. Reference correlation of the thermal conductivity of carbon dioxide from the triple point to 1100 K and up to 200 MPa

    DOE PAGES

    Huber, M. L.; Sykioti, E. A.; Assael, M. J.; ...

    2016-02-25

    This article contains new, representative reference equations for the thermal conductivity of carbon dioxide. The equations are based in part upon a body of experimental data that has been critically assessed for internal consistency and for agreement with theory whenever possible. In the case of the dilute-gas thermal conductivity, we incorporated recent theoretical calculations to extend the temperature range of the experimental data. Moreover, in the critical region, the experimentally observed enhancement of the thermal conductivity is well represented by theoretically based equations containing just one adjustable parameter. The correlation is applicable for the temperature range from the triple pointmore » to 1100 K and pressures up to 200 MPa. Lastly, the overall uncertainty (at the 95% confidence level) of the proposed correlation varies depending on the state point from a low of 1% at very low pressures below 0.1 MPa between 300 and 700 K, to 5% at the higher pressures of the range of validity.« less

  9. Buoyancy of gas-filled bladders at great depth

    NASA Astrophysics Data System (ADS)

    Priede, Imants G.

    2018-02-01

    At high hydrostatic pressures exceeding 20 MPa or 200 bar, equivalent to depths exceeding ca.2000 m, the behaviour of gases deviates significantly from the predictions of standard equations such as Boyle's Law, the Ideal Gas Law and Van der Waals equation. The predictions of these equations are compared with experimental data for nitrogen, oxygen and air at 0 °C and 15 °C, at pressures up to 1100 bar (110 MPa) equivalent to full ocean depth of ca. 11000 m. Owing to reduced compressibility of gases at high pressures, gas-filled bladders at full ocean depth have a density of 847 kg m-3 for Oxygen, 622 kg m-3 for Nitrogen and 660 kg m-3 for air providing potentially useful buoyancy comparable with that available from man-made materials. This helps explain why some of the deepest-living fishes at ca. 7000 m depth (700 bar or 70 MPa) have gas-filled swim bladders. A table is provided of the density and buoyancy of oxygen, nitrogen and air at 0 °C and 15 °C from 100 to 1100 bar.

  10. Investigation of hydrate formation in the system H2-CH4-H2O at a pressure up to 250 MPa.

    PubMed

    Skiba, Sergei S; Larionov, Eduard G; Manakov, Andrey Y; Kolesov, Boris A; Kosyakov, Viktor I

    2007-09-27

    Phase equilibria in the system H2-CH4-H2O are investigated by means of differential thermal analysis within hydrogen concentration range 0-70 mol % and at a pressure up to 250 MPa. All the experiments were carried out under the conditions of gas excess. With an increase in hydrogen concentration in the initial gas mixture, decomposition temperature of the formed hydrates decreased. X-ray diffraction patterns and Raman spectra of the quenched hydrate samples obtained at a pressure of 20 MPA from a gas mixture containing 40 mol % hydrogen were recorded. It turned out that the hydrate has cubic structure I under these conditions. The Raman spectra showed that hydrogen molecules are not detected in the hydrate within the sensitivity of the method, that is, almost pure methane hydrate is formed. The general view of the phase diagram of the investigated system is proposed. A thermodynamic model was proposed to explain a decrease in hydrate decomposition temperature in the system with an increase in the concentration of hydrogen in the initial mixture.

  11. [Water parameters of desert xeric shrubs in west Erdos region].

    PubMed

    Li, Xiao; Wang, Ying-chun; Zheng, Rong

    2007-05-01

    By using PV technique, this paper studied the turgor pressure (psi P), cell elastic modulus (epsilon), and relative cell volume (RCV) of super xerophytes Potaninia mongolica, Reaumuria soongorica, Tetraena mongolica and Zygophyllum xanthoxylon in west Alashan, with the relationships among the parameters analyzed. The results showed that R. soongorica had the strongest ability to maintain maximum turgor pressure (a = 2.4593). The four plants maintained their turgor pressure by different ways, i.e., P. mongolica maintained it by elastic adjustment (epsilon max = 8.4005 MPa), R. soongorica by osmotic adjustment (psi pi100 = -3.1302 MPa; psi0 = -3.5074 MPa), T. mongolica by both osmotic and elastic adjustment, and Z. xanthoxylon by osmotic adjustment, which had weak adjustment ability. The cell wall of P. mongolica was soft and highly elastic, benefiting to the water absorption by root and stem and to the fast water transmission. T. mongolica also had relatively soft and high elastic cell wall, and its psi P, and epsilon changed slowly with decreasing RCV, suggesting that this plant had strong ability of holding water and resisting dehydration.

  12. Exploratory Characterization of a Perfluoropolyether Oil as a Possible Viscosity Standard at Deepwater Production Conditions of 533 K and 241 MPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baled, Hseen O.; Tapriyal, Deepak; Morreale, Bryan D.

    2013-08-29

    DuPont’s perfluoropolyether oil Krytox® GPL 102 is a promising candidate for the high-temperature, high-pressure Deepwater viscosity standard (DVS). The preferred DVS is a thermally stable liquid that exhibits a viscosity of roughly 20 mPa∙s at 533 K and 241 MPa; a viscosity value representative of light oils found in ultra-deep formations beneath the deep waters of the Gulf of Mexico. A windowed rolling-ball viscometer designed by our team is used to determine the Krytox® GPL 102 viscosity at pressures to 245 MPa and temperatures of 311 K, 372 K, and 533 K. At 533 K and 243 MPa, the Krytox®more » GPL 102 viscosity is (27.2±1.3)mPa∙s. The rolling-ball viscometer viscosity results for Krytox® GPL 102 are correlated with an empirical 10-parameter surface fitting function that yields an MAPD of 3.9 %. A Couette rheometer is also used to measure the Krytox® GPL 102 viscosity, yielding a value of (26.2±1)mPa∙s at 533 K and 241 MPa. The results of this exploratory study suggest that Krytox®GPL 102 is a promising candidate for the DVS, primarily because this fluoroether oil is thermally stable and exhibits a viscosity closer to the targeted value of 20 mPa ∙ s at 533 K and 241 MPa than any other fluid reported to date. Finally and nonetheless, further studies must be conducted by other researcher groups using various types of viscometers and rheometers on samples of Krytox GPL® 102 from the same lot to further establish the properties of Krytox GPL® 102.« less

  13. High hydrostatic pressure affects antigenic pool in tumor cells: Implication for dendritic cell-based cancer immunotherapy.

    PubMed

    Urbanova, Linda; Hradilova, Nada; Moserova, Irena; Vosahlikova, Sarka; Sadilkova, Lenka; Hensler, Michal; Spisek, Radek; Adkins, Irena

    2017-07-01

    High hydrostatic pressure (HHP) can be used to generate dendritic cell (DC)-based active immunotherapy for prostate, lung and ovarian cancer. We showed here that HHP treatment of selected human cancer cell lines leads to a degradation of tumor antigens which depends on the magnitude of HHP applied and on the cancer cell line origin. Whereas prostate or ovarian cell lines displayed little protein antigen degradation with HHP treatment up to 300MPa after 2h, tumor antigens are hardly detected in lung cancer cell line after treatment with HHP 250MPa at the same time. On the other hand, quick reduction of tumor antigen-coding mRNA was observed at HHP 200MPa immediately after treatment in all cell lines tested. To optimize the DC-based active cellular therapy protocol for HHP-sensitive cell lines the immunogenicity of HHP-treated lung cancer cells at 150, 200 and 250MPa was compared. Lung cancer cells treated with HHP 150MPa display characteristics of immunogenic cell death, however cells are not efficiently phagocytosed by DC. Despite induction of the highest number of antigen-specific CD8 + T cells, 150 MPa-treated lung cancer cells survive in high numbers. This excludes their use in DC vaccine manufacturing. HHP of 200MPa treatment of lung cancer cells ensures the optimal ratio of efficient immunogenic killing and delivery of protein antigens in DC. These results represent an important pre-clinical data for generation of immunogenic killed lung cancer cells in ongoing NSCLC Phase I/II clinical trial using DC-based active cellular immunotherapy (DCVAC/LuCa). Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  14. Implosion-driven technique to create fast shockwaves in high-density gas

    NASA Astrophysics Data System (ADS)

    Serge, Matthew; Loiseau, Jason; Huneault, Justin; Szirti, Daniel; Higgins, Andrew; Tanguay, Vincent

    2012-03-01

    Pressurized tubes surrounded by either one or two layers (separated by a secondary tube) of sensitized nitromethane and encased in a thick-walled tube (the tamper) were imploded. The distance between the detonation wave in the explosive and shock wave in the innermost tube were measured (the standoff). A simple model based on hoop stress and acoustic interactions between the tubing was developed and used to predict the standoff distance. At low initial pressures (on the order of 7MPa), results indicate that the secondary tube and two layers of explosive did not prove to significantly increase the standoff. However, at higher pressures (on the order of 10 MPa), standoff was noticeably greater when the secondary tube was inserted between the pressurized tube and the tamper. The measured values are in reasonable agreement with the predictions of the model.

  15. Effects of Salinity and Confining Pressure on Hydration-Induced Fracture Propagation and Permeability of Mancos Shale

    NASA Astrophysics Data System (ADS)

    Zhang, Shifeng; Sheng, James J.

    2017-11-01

    Low-salinity water imbibition was considered an enhanced recovery method in shale oil/gas reservoirs due to the resulting hydration-induced fractures, as observed at ambient conditions. To study the effect of confining pressure and salinity on hydration-induced fractures, time-elapsed computerized tomography (CT) was used to obtain cross-sectional images of shale cores. Based on the CT data of these cross-sectional images, cut faces parallel to the core axial in the middle of the core and 3D fracture images were also reconstructed. To study the effects of confining pressure and salinity on shale pore fluid flowing, shale permeability was measured with Nitrogen (N2), distilled water, 4% KCl solution, and 8% KCl solution. With confining pressures increased to 2 MPa or more, either in distilled water or in KCl solutions of different salinities, fractures were observed to close instead to propagate at the end of the tests. The intrinsic permeabilities of #1 and #2 Mancos shale cores were 60.0 and 7000 nD, respectively. When tested with distilled water, the permeability of #1 shale sample with 20.0 MPa confining pressure loaded, and #2 shale sample with 2.5 MPa confining pressure loaded, decreased to 0.45 and 15 nD, respectively. Using KCl can partly mitigate shale permeability degradation. Compared to 4% KCl, 8% KCl can decrease more permeability damage. From this point of view, high salinity KCl solution should be required for the water-based fracturing fluid.

  16. Focusing of shock waves induced by optical breakdown in water

    PubMed Central

    Sankin, Georgy N.; Zhou, Yufeng; Zhong, Pei

    2008-01-01

    The focusing of laser-generated shock waves by a truncated ellipsoidal reflector was experimentally and numerically investigated. Pressure waveform and distribution around the first (F1) and second foci (F2) of the ellipsoidal reflector were measured. A neodymium doped yttrium aluminum garnet laser of 1046 nm wavelength and 5 ns pulse duration was used to create an optical breakdown at F1, which generates a spherically diverging shock wave with a peak pressure of 2.1–5.9 MPa at 1.1 mm stand-off distance and a pulse width at half maximum of 36–65 ns. Upon reflection, a converging shock wave is produced which, upon arriving at F2, has a leading compressive wave with a peak pressure of 26 MPa and a zero-crossing pulse duration of 0.1 μs, followed by a trailing tensile wave of −3.3 MPa peak pressure and 0.2 μs pulse duration. The −6 dB beam size of the focused shock wave field is 1.6×0.2 mm2 along and transverse to the shock wave propagation direction. Formation of elongated plasmas at high laser energy levels limits the increase in the peak pressure at F2. General features in the waveform profile of the converging shock wave are in qualitative agreement with numerical simulations based on the Hamilton model. PMID:18537359

  17. Estimation of Surface Heat Flux and Surface Temperature during Inverse Heat Conduction under Varying Spray Parameters and Sample Initial Temperature

    PubMed Central

    Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong

    2014-01-01

    An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m2 was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa. PMID:24977219

  18. Probability of cavitation for single ultrasound pulses applied to tissues and tissue-mimicking materials

    PubMed Central

    Maxwell, Adam D.; Cain, Charles A.; Hall, Timothy L.; Fowlkes, J. Brian; Xu, Zhen

    2012-01-01

    In this article, the negative pressure values at which inertial cavitation consistently occurs in response to a single, 2-cycle, focused ultrasound pulse were measured in several media relevant to cavitation-based ultrasound therapy. The pulse was focused into a chamber containing one of the media, which included liquids, tissue-mimicking materials, and ex-vivo canine tissue. Focal waveforms were measured by two separate techniques using a fiber-optic hydrophone. Inertial cavitation was identified by high-speed photography in optically transparent media and an acoustic passive cavitation detector. The probability of cavitation (Pcav) for a single pulse as a function of peak negative pressure (p−) followed a sigmoid curve, with the probability approaching 1 when the pressure amplitude was sufficient. The statistical threshold (defined as Pcav = 0.5) was between p− = 26.0–30.0 MPa in all samples with a high water content, but varied between p− = 13.7 to > 36 MPa for other media. A model for radial cavitation bubble dynamics was employed to evaluate the behavior of cavitation nuclei at these pressure levels. A single bubble nucleus with an inertial cavitation threshold of p− = 28.2 MPa was estimated to have a 2.5 nm radius in distilled water. These data may be valuable for cavitation-based ultrasound therapy to predict the likelihood of cavitation at different pressure levels and dimensions of cavitation-induced lesions in tissue. PMID:23380152

  19. Temperature and pressure dependences of kimberlite melts viscosity (experimental-theoretical study)

    NASA Astrophysics Data System (ADS)

    Persikov, Eduard; Bykhtiyarov, Pavel; Cokol, Alexsander

    2016-04-01

    Experimental data on temperature and pressure dependences of viscosity of model kimberlite melts (silicate 82 + carbonate 18, wt. %, 100NBO/T = 313) have been obtained for the first time at 100 MPa of CO2 pressure and at the lithostatic pressures up to 7.5 GPa in the temperature range 1350 oC - 1950 oC using radiation high gas pressure apparatus and press free split-sphere multi - anvil apparatus (BARS). Experimental data obtained on temperature and pressure dependences of viscosity of model kimberlite melts at moderate and high pressures is compared with predicted data on these dependences of viscosity of basaltic melts (100NBO/T = 58) in the same T, P - range. Dependences of the viscosity of model kimberlite and basaltic melts on temperature are consistent to the exponential Arrenian equation in the T, P - range of experimental study. The correct values of activation energies of viscous flow of kimberlite melts have been obtained for the first time. The activation energies of viscous flow of model kimberlite melts exponentially increase with increasing pressure and are equal: E = 130 ± 1.3 kJ/mole at moderate pressure (P = 100 MPa) and E = 160 ± 1.6 kJ/mole at high pressure (P = 5.5 GPa). It has been established too that the viscosity of model kimberlite melts exponentially increases on about half order of magnitude with increasing pressures from 100 MPa to 7.5 GPa at the isothermal condition (1800 oC). It has been established that viscosity of model kimberlite melts at the moderate pressure (100 MPa) is lover on about one order of magnitude to compare with the viscosity of basaltic melts, but at high pressure range (5.5 - 7.5 GPa), on the contrary, is higher on about half order of magnitude at the same values of the temperatures. Here we use both a new experimental data on viscosity of kimberlite melts and our structural chemical model for calculation and prediction the viscosity of magmatic melts [1] to determine the fundamental features of viscosity of kimberlite and basaltic magmas at the T, P - parameters of the Earth's crust and upper mantle. The Russian Foundation for Basic Research (project 15-05-01318) and the Russian Science Foundation (project 14-27-00054) are acknowledged for the financial support. [1] Persikov, E.S. & Bukhtiyarov, P.G. (2009) Russian Geology & Geophysics, 50, No 12, 1079-1090.

  20. Fluid pressure and fault strength: insights from load-controlled experiments on carbonate-bearing rocks

    NASA Astrophysics Data System (ADS)

    Spagnuolo, E.; Violay, M.; Nielsen, S. B.; Di Toro, G.

    2013-12-01

    Fluid pressure Pf has been indicated as a major factor controlling natural (e.g., L'Aquila, Italy, 2009 Mw 6.3) and induced seismicity (e.g., Wilzetta, Oklahoma, 2011 Mw 5.7). The Terzaghi's principle states that the effective normal stress σeff= σn (1- α Pf ), with α the Biot coefficient and σn the normal stress, is reduced in proportion to Pf. A value of α=1 is often used by default; however, within a complex fault core of inhomogeneous permeability, α may vary in a yet poorly understood way. To shed light on this problem, we conducted experiments on carbonate-bearing rock samples (Carrara marble) in room humidity conditions and in the presence of pore fluids (drained conditions), where a pre-cut fault is loaded by shear stress τ in a rotary apparatus (SHIVA) under constant σn=15 MPa. Two types of tests were performed with fluids: (1) the fluid pressure was kept constant at Pf=5 MPa (close to hydrostatic conditions at a depth of 0.5 km) and the fault was driven to failure instability by gradually increasing τ; (2) the fluid pressure was kept at Pf=5 MPa and τ was increased until close to instability (τ = 7 MPa): at this point Pf was raised of 0.5 MPa every 10 s up to Pf =10 MPa to induce a main (failure) instability. Assuming α=1 and an effective peak strength (τp)eff=μp σeff at failure, the experiments reveal that: 1) (τp)eff is sensitive to the shear loading rate: fast loading rates (0.5 MPa every 20 s) induce higher peak shear-stress values than slow loading rates (0.5 MPa every 40 s). Such effect is not observed (minor or inexistent) in the absence of pore fluids. 2) Under fast loading rates the (τp)eff may surpass that measured in the absence of pore fluids under identical effective normal stress σeff. 3) An increase of Pf does not necessarily induce the main instability (within the time intervals studied here, i.e. up to ~10 s) even if the effective strength threshold is largely surpassed (e.g., (τp)eff=1.3 μp σeff). We interpret these results in terms of limited permeability of the fault slip zone which reduces α. Indeed result (3) may indicate that a Pf increase did not rapidly penetrate the slip zone because a seal (thin layer of wet ultrafine calcite gouge) formed during the slip preceding the main instability. On the other hand, shearing of the slip zone probably induces dilation (not measured because below resolution) in the slip zone and results in a decrease in pore pressure. Again, due to limited permeability, the drop in pore pressure within the slip zone does not have time to re-equilibrate with the imposed Pf, provided that the hold time is short (20 s) with respect to the diffusion time, but it may re-equilibrate under longer hold times (40 s). As a consequence the Biot coefficient depends on the time interval of observation, with α~0 at short time periods and α~1 at long time periods. This yields an approximate hydraulic diffusivity κ~10-8 m2 s-1 using κ=l2/td with the half length of the contact surface l=5 mm and td=30 s. Such diffusivity is compatible, for example, with a low porosity shale.

Top