Shim, Woo H; Suh, Ji-Yeon; Kim, Jeong K; Jeong, Jaeseung; Kim, Young R
2016-01-01
Neurological recovery after stroke has been extensively investigated to provide better understanding of neurobiological mechanism, therapy, and patient management. Recent advances in neuroimaging techniques, particularly functional MRI (fMRI), have widely contributed to unravel the relationship between the altered neural function and stroke-affected brain areas. As results of previous investigations, the plastic reorganization and/or gradual restoration of the hemodynamic fMRI responses to neural stimuli have been suggested as relevant mechanisms underlying the stroke recovery process. However, divergent study results and modality-dependent outcomes have clouded the proper interpretation of variable fMRI signals. Here, we performed both evoked and resting state fMRI (rs-fMRI) to clarify the link between the fMRI phenotypes and post-stroke functional recovery. The experiments were designed to examine the altered neural activity within the contra-lesional hemisphere and other undamaged brain regions using rat models with large unilateral stroke, which despite the severe injury, exhibited nearly full recovery at ∼6 months after stroke. Surprisingly, both blood oxygenation level-dependent and blood volume-weighted (CBVw) fMRI activities elicited by electrical stimulation of the stroke-affected forelimb were completely absent, failing to reveal the neural origin of the behavioral recovery. In contrast, the functional connectivity maps showed highly robust rs-fMRI activity concentrated in the contra-lesional ventromedial nucleus of thalamus (VM). The negative finding in the stimuli-induced fMRI study using the popular rat middle cerebral artery model denotes weak association between the fMRI hemodynamic responses and neurological improvement. The results strongly caution the indiscreet interpretation of stroke-affected fMRI signals and demonstrate rs-fMRI as a complementary tool for efficiently characterizing stroke recovery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Changlian; Department of Pediatrics, The Third Affiliated Hospital, Zhengzhou University; Gao, Jianfeng
2011-01-07
Research highlights: {yields} The effect of MRI on the developing brain is a matter of debate. {yields} Repeated exposure to MRI did not affect neurogenesis. {yields} Memory function was not affected by repeated MRI during development. {yields} Neither late gestation nor young postnatal brains were affected by MRI. {yields} Repeated MRI did not cause cell death in the neurogenic region of the hippocampus. -- Abstract: The effect of magnetic fields on the brain is a matter of debate. The objective of this study was to investigate whether repeated exposure to strong magnetic fields, such as during magnetic resonance imaging (MRI),more » could elicit changes in the developing rat brain. Embryonic day 15 (E15) and postnatal day 14 (P14) rats were exposed to MRI using a 7.05 T MR system. The animals were anesthetized and exposed for 35 min per day for 4 successive days. Control animals were anesthetized but no MRI was performed. Body temperature was maintained at 37 {sup o}C. BrdU was injected after each session (50 mg/kg). One month later, cell proliferation, neurogenesis and astrogenesis in the dentate gyrus were evaluated, revealing no effects of MRI, neither in the E15, nor in the P14 group. DNA damage in the dentate gyrus in the P14 group was evaluated on P18, 1 day after the last session, using TUNEL staining. There was no difference in the number of TUNEL-positive cells after MRI compared with controls, neither in mature neurons, nor in newborn progenitors (BrdU/TUNEL double-labeled cells). Novel object recognition was performed to assess memory function 1 month after MRI. There was no difference in the recognition index observed after MRI compared with the control rats, neither for the E15, nor for the P14 group. In conclusion, repeated exposure to MRI did not appear to affect neurogenesis, cell death or memory function in rats, neither in late gestation (E15-E18) nor in young postnatal (P14-P17) rats.« less
Kempton, Matthew J; Haldane, Morgan; Jogia, Jigar; Christodoulou, Tessa; Powell, John; Collier, David; Williams, Steven C R; Frangou, Sophia
2009-04-01
The functional catechol-O-methyltransferase (COMT Val108/158Met) polymorphism has been shown to have an impact on tasks of executive function, memory and attention and recently, tasks with an affective component. As oestrogen reduces COMT activity, we focused on the interaction between gender and COMT genotype on brain activations during an affective processing task. We used functional MRI (fMRI) to record brain activations from 74 healthy subjects who engaged in a facial affect recognition task; subjects viewed and identified fearful compared to neutral faces. There was no main effect of the COMT polymorphism, gender or genotypexgender interaction on task performance. We found a significant effect of gender on brain activations in the left amygdala and right temporal pole, where females demonstrated increased activations over males. Within these regions, Val/Val carriers showed greater signal magnitude compared to Met/Met carriers, particularly in females. The COMT Val108/158Met polymorphism impacts on gender-related patterns of activation in limbic and paralimbic regions but the functional significance of any oestrogen-related COMT inhibition appears modest.
Zhou, Long-Jiang; Wang, Wei; Zhao, Yi; Liu, Chun-Feng; Zhang, Xin-Jiang; Liu, Zhen-Sheng; Li, Hua-Dong
2017-11-01
This study aimed to investigate the correlation between the functional magnetic resonance imaging (fMRI) pattern and the motor function recovery of an affected limb during the passive movement of the affected limb at an early stage of the striatocapsular infarction (SCI). A total of 17 patients with an acute stage of SCI and 3 healthy volunteers as controls were included in this study. fMRI scans of passive movement were performed on the affected limbs of stroke patients within 1 week of onset. Follow-ups were carried out for the motor functions of the affected limbs (before fMRI scan, 1 month, and 3 months after the scan). The control group showed that the activation was mainly located in the contralateral sensorimotor cortex (SMC) and the bilateral supplementary motor area (SMA). The fMRI scan region of interest for stroke patients can be divided into 3 types: type I includes mainly the affected side, bilateral SMC, and SMA with activation; type II includes SMC on the affected side and SMA with activation; type III includes only SMC on the affected side or M1 with activation. The recovery of type I patients was better and faster, while the recovery of type II patients was better but slower, but recovery of type III patients was poorer and slower. Multiple cortical activation patterns were noted during the passive movement of the affected limbs at an early stage of SCI, and a correlation was found between the different activation patterns and the clinical prognosis of patients. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Jacob, Shawna N; Shear, Paula K; Norris, Matthew; Smith, Matthew; Osterhage, Jeff; Strakowski, Stephen M; Cerullo, Michael; Fleck, David E; Lee, Jing-Huei; Eliassen, James C
2015-01-01
Previous research has shown that performance on cognitive tasks administered in the scanner can be altered by the scanner environment. There are no previous studies that have investigated the impact of scanner noise using a well-validated measure of affective change. The goal of this study was to determine whether performance on an affective attentional task or emotional response to the task would change in the presence of distracting acoustic noise, such as that encountered in a magnetic resonance imaging (MRI) environment. Thirty-four young adults with no self-reported history of neurologic disorder or mental illness completed three blocks of the affective Posner task outside of the scanner. The task was meant to induce frustration through monetary contingencies and rigged feedback. Participants completed a Self-Assessment Manikin at the end of each block to rate their mood, arousal level, and sense of dominance. During the task, half of the participants heard noise (recorded from a 4T MRI system), and half heard no noise. The affective Posner task led to significant reductions in mood and increases in arousal in healthy participants. The presence of scanner noise did not impact task performance; however, individuals in the noise group did report significantly poorer mood throughout the task. The results of the present study suggest that the acoustic qualities of MRI enhance frustration effects on an affective attentional task and that scanner noise may influence mood during similar functional magnetic resonance imaging (fMRI) tasks.
The power of using functional fMRI on small rodents to study brain pharmacology and disease
Jonckers, Elisabeth; Shah, Disha; Hamaide, Julie; Verhoye, Marleen; Van der Linden, Annemie
2015-01-01
Functional magnetic resonance imaging (fMRI) is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD) fMRI techniques, including resting state (rsfMRI), stimulus-evoked (st-fMRI), and pharmacological MRI (phMRI). Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sensory stimulation and/or a pharmacological challenge. The first part of this review describes the physiological basis of BOLD fMRI and the hemodynamic response on which the MRI contrast is based. Specific emphasis goes to possible effects of anesthesia and the animal’s physiological conditions on neural activity and the hemodynamic response. The second part of this review describes applications of the aforementioned techniques in pharmacologically induced, as well as in traumatic and transgenic disease models and illustrates how multiple fMRI methods can be applied successfully to evaluate different aspects of a specific disorder. For example, fMRI techniques can be used to pinpoint the neural substrate of a disease beyond previously defined hypothesis-driven regions-of-interest. In addition, fMRI techniques allow one to dissect how specific modifications (e.g., treatment, lesion etc.) modulate the functioning of specific brain areas (st-fMRI, phMRI) and how functional connectivity (rsfMRI) between several brain regions is affected, both in acute and extended time frames. Furthermore, fMRI techniques can be used to assess/explore the efficacy of novel treatments in depth, both in fundamental research as well as in preclinical settings. In conclusion, by describing several exemplary studies, we aim to highlight the advantages of functional MRI in exploring the acute and long-term effects of pharmacological substances and/or pathology on brain functioning along with several methodological considerations. PMID:26539115
Neurofunctional changes after a single mirror therapy intervention in chronic ischemic stroke.
Novaes, Morgana M; Palhano-Fontes, Fernanda; Peres, Andre; Mazzetto-Betti, Kelley; Pelicioni, Maristela; Andrade, Kátia C; Dos Santos, Antonio Carlos; Pontes-Neto, Octavio; Araujo, Draulio
2018-03-20
Mirror therapy (MT) is becoming an alternative rehabilitation strategy for various conditions, including stroke. Although recent studies suggest the positive benefit of MT in chronic stroke motor recovery, little is known about its neural mechanisms. To identify functional brain changes induced by a single MT intervention in ischemic stroke survivors, assessed by both transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI). TMS and fMRI were used to investigate 15 stroke survivors immediately before and after a single 30-min MT session. We found statistically significant increase in post-MT motor evoked potential (MEP) amplitude (increased excitability) from the affected primary motor cortex (M1), when compared to pre-MT MEP. Post-MT fMRI maps were associated with a more organized and constrained pattern, with a more focal M1 activity within the affected hemisphere after MT, limited to the cortical area of hand representation. Furthermore, we find a change in the balance of M1 activity toward the affected hemisphere. In addition, significant correlation was found between decreased fMRI β-values and increased MEP amplitude post-MT, in the affected hemisphere. Our study suggests that a single MT intervention in stroke survivors is related to increased MEP of the affected limb, and a more constrained activity of the affected M1, as if activity had become more constrained and limited to the affected hemisphere.
ERIC Educational Resources Information Center
Tivarus, Madalina E.; Hillier, Ashleigh; Schmalbrock, Petra; Beversdorf, David Q.
2008-01-01
We describe an fMRI experiment examining the functional connectivity (FC) between regions of the brain associated with semantic and phonological processing. We wished to explore whether L-Dopa administration affects the interaction between language network components in semantic and phonological categorization tasks, as revealed by FC. We…
Reward-Related Decision-Making in Pediatric Major Depressive Disorder: An fMRI Study
ERIC Educational Resources Information Center
Forbes, Erika E.; Christopher May, J.; Siegle, Greg J.; Ladouceur, Cecile D.; Ryan, Neal D.; Carter, Cameron S.; Birmaher, Boris; Axelson, David A.; Dahl, Ronald E.
2006-01-01
Background: Although reward processing is considered an important part of affective functioning, few studies have investigated reward-related decisions or responses in young people with affective disorders. Depression is postulated to involve decreased activity in reward-related affective systems. Methods: Using functional magnetic resonance…
Heller, Aaron S.; Greischar, Lawrence L; Honor, Ann; Anderle, Michael J; Davidson, Richard J.
2011-01-01
The development of functional neuroimaging of emotion holds the promise to enhance our understanding of the biological bases of affect and improve our knowledge of psychiatric diseases. However, up to this point, researchers have been unable to objectively, continuously and unobtrusively measure the intensity and dynamics of affect concurrently with functional magnetic resonance imaging (fMRI). This has hindered the development and generalizability of our field. Facial electromyography (EMG) is an objective, reliable, valid, sensitive, and unobtrusive measure of emotion. Here, we report the successful development of a method for simultaneously acquiring fMRI and facial EMG. The ability to simultaneously acquire brain activity and facial physiology will allow affective neuroscientists to address theoretical, psychiatric, and individual difference questions in a more rigorous and generalizable way. PMID:21742043
Efficacy of EMG-triggered electrical arm stimulation in chronic hemiparetic stroke patients.
von Lewinski, Friederike; Hofer, Sabine; Kaus, Jürgen; Merboldt, Klaus-Dietmar; Rothkegel, Holger; Schweizer, Renate; Liebetanz, David; Frahm, Jens; Paulus, Walter
2009-01-01
EMG-triggered electrostimulation (EMG-ES) may improve the motor performance of affected limbs of hemiparetic stroke patients even in the chronic stage. This study was designed to characterize cortical activation changes following intensified EMG-ES in chronic stroke patients and to identify predictors for successful rehabilitation depending on disease severity. We studied 9 patients with severe residual hemiparesis, who underwent 8 weeks of daily task-orientated multi-channel EMG-ES of the paretic arm. Before and after treatment, arm function was evaluated clinically and cortical activation patterns were assessed with functional MRI (fMRI) and/or transcranial magnetic stimulation (TMS). As response to therapy, arm function improved in a subset of patients with more capacity in less affected subjects, but there was no significant gain for those with Box & Block test values below 4 at inception. The clinical improvement, if any, was accompanied by an ipsilesional increase in the sensorimotor cortex (SMC) activation area in fMRI and enhanced intracortical facilitation (ICF) as revealed by paired TMS. The SMC activation change in fMRI was predicted by the presence or absence of motor-evoked potentials (MEPs) on the affected side. The present findings support the notion that intensified EMG-ES may improve the arm function in individual chronic hemiparetic stroke patients but not in more severely impaired individuals. Functional improvements are paralleled by increased ipsilesional SMC activation and enhanced ICF supporting neuroplasticity as contributor to rehabilitation. The clinical score at inception and the presence of MEPs have the best predictive potential.
Imaging drugs with and without clinical analgesic efficacy.
Upadhyay, Jaymin; Anderson, Julie; Schwarz, Adam J; Coimbra, Alexandre; Baumgartner, Richard; Pendse, G; George, Edward; Nutile, Lauren; Wallin, Diana; Bishop, James; Neni, Saujanya; Maier, Gary; Iyengar, Smriti; Evelhoch, Jeffery L; Bleakman, David; Hargreaves, Richard; Becerra, Lino; Borsook, David
2011-12-01
The behavioral response to pain is driven by sensory and affective components, each of which is mediated by the CNS. Subjective pain ratings are used as readouts when appraising potential analgesics; however, pain ratings alone cannot enable a characterization of CNS pain circuitry during pain processing or how this circuitry is modulated pharmacologically. Having a more objective readout of potential analgesic effects may allow improved understanding and detection of pharmacological efficacy for pain. The pharmacological/functional magnetic resonance imaging (phMRI/fMRI) methodology can be used to objectively evaluate drug action on the CNS. In this context, we aimed to evaluate two drugs that had been developed as analgesics: one that is efficacious for pain (buprenorphine (BUP)) and one that failed as an analgesic in clinical trials aprepitant (APREP). Using phMRI, we observed that activation induced solely by BUP was present in regions with μ-opioid receptors, whereas APREP-induced activation was seen in regions expressing NK(1) receptors. However, significant pharmacological modulation of functional connectivity in pain-processing pathways was only observed following BUP administration. By implementing an evoked pain fMRI paradigm, these drugs could also be differentiated by comparing the respective fMRI signals in CNS circuits mediating sensory and affective components of pain. We report a correlation of functional connectivity and evoked pain fMRI measures with pain ratings as well as peak drug concentration. This investigation demonstrates how CNS-acting drugs can be compared, and how the phMRI/fMRI methodology may be used with conventional measures to better evaluate candidate analgesics in small subject cohorts.
Imaging Drugs with and without Clinical Analgesic Efficacy
Upadhyay, Jaymin; Anderson, Julie; Schwarz, Adam J; Coimbra, Alexandre; Baumgartner, Richard; Pendse, G; George, Edward; Nutile, Lauren; Wallin, Diana; Bishop, James; Neni, Saujanya; Maier, Gary; Iyengar, Smriti; Evelhoch, Jeffery L; Bleakman, David; Hargreaves, Richard; Becerra, Lino; Borsook, David
2011-01-01
The behavioral response to pain is driven by sensory and affective components, each of which is mediated by the CNS. Subjective pain ratings are used as readouts when appraising potential analgesics; however, pain ratings alone cannot enable a characterization of CNS pain circuitry during pain processing or how this circuitry is modulated pharmacologically. Having a more objective readout of potential analgesic effects may allow improved understanding and detection of pharmacological efficacy for pain. The pharmacological/functional magnetic resonance imaging (phMRI/fMRI) methodology can be used to objectively evaluate drug action on the CNS. In this context, we aimed to evaluate two drugs that had been developed as analgesics: one that is efficacious for pain (buprenorphine (BUP)) and one that failed as an analgesic in clinical trials aprepitant (APREP). Using phMRI, we observed that activation induced solely by BUP was present in regions with μ-opioid receptors, whereas APREP-induced activation was seen in regions expressing NK1 receptors. However, significant pharmacological modulation of functional connectivity in pain-processing pathways was only observed following BUP administration. By implementing an evoked pain fMRI paradigm, these drugs could also be differentiated by comparing the respective fMRI signals in CNS circuits mediating sensory and affective components of pain. We report a correlation of functional connectivity and evoked pain fMRI measures with pain ratings as well as peak drug concentration. This investigation demonstrates how CNS-acting drugs can be compared, and how the phMRI/fMRI methodology may be used with conventional measures to better evaluate candidate analgesics in small subject cohorts. PMID:21849979
DISC1 gene and affective psychopathology: a combined structural and functional MRI study.
Opmeer, Esther M; van Tol, Marie-José; Kortekaas, Rudie; van der Wee, Nic J A; Woudstra, Saskia; van Buchem, Mark A; Penninx, Brenda W; Veltman, Dick J; Aleman, André
2015-02-01
The gene Disrupted-In-Schizophrenia-1 (DISC1) has been indicated as a determinant of psychopathology, including affective disorders, and shown to influence prefrontal cortex (PFC) and hippocampus functioning, regions of major interest for affective disorders. We aimed to investigate whether DISC1 differentially modulates brain function during executive and memory processing, and morphology in regions relevant for depression and anxiety disorders (affective disorders). 128 participants, with (n = 103) and without (controls; n = 25) affective disorders underwent genotyping for Ser704Cys (with Cys-allele considered as risk-allele) and structural and functional (f) Magnetic Resonance Imaging (MRI) during visuospatial planning and emotional episodic memory tasks. For both voxel-based morphometry and fMRI analyses, we investigated the effect of genotype in controls and explored genotypeXdiagnosis interactions. Results are reported at p < 0.05 FWE small volume corrected. In controls, Cys-carriers showed smaller bilateral (para)hippocampal volumes compared with Ser-homozygotes, and lower activation in the anterior cingulate cortex (ACC) and dorsolateral PFC during visuospatial planning. In anxiety patients, Cys-carriers showed larger (para)hippocampal volumes and more ACC activation during visuospatial planning. In depressive patients, no effect of genotype was observed and overall, no effect of genotype on episodic memory processing was detected. We demonstrated that Ser704Cys-genotype influences (para)hippocampal structure and functioning the dorsal PFC during executive planning, most prominently in unaffected controls. Results suggest that presence of psychopathology moderates Ser704Cys effects. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rosazza, Cristina; Deleo, Francesco; D'Incerti, Ludovico; Antelmi, Luigi; Tringali, Giovanni; Didato, Giuseppe; Bruzzone, Maria G.; Villani, Flavio; Ghielmetti, Francesco
2018-01-01
Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery. Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST) from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI) tasks of arm and leg movement and Diffusion Tensor Imaging (DTI) before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA) color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients. Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery. Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative areas, the greater the chances were of maintaining elementary motor functions after adult surgery. In particular, DTI-tractography and quantification of FA-maps were useful to assess the lateralization of motor network. In these cases reorganization of motor connectivity continued for long time periods after surgery. PMID:29922216
Rosazza, Cristina; Deleo, Francesco; D'Incerti, Ludovico; Antelmi, Luigi; Tringali, Giovanni; Didato, Giuseppe; Bruzzone, Maria G; Villani, Flavio; Ghielmetti, Francesco
2018-01-01
Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery. Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST) from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI) tasks of arm and leg movement and Diffusion Tensor Imaging (DTI) before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA) color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients. Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery. Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative areas, the greater the chances were of maintaining elementary motor functions after adult surgery. In particular, DTI-tractography and quantification of FA-maps were useful to assess the lateralization of motor network. In these cases reorganization of motor connectivity continued for long time periods after surgery.
Ille, Sebastian; Sollmann, Nico; Hauck, Theresa; Maurer, Stefanie; Tanigawa, Noriko; Obermueller, Thomas; Negwer, Chiara; Droese, Doris; Boeckh-Behrens, Tobias; Meyer, Bernhard; Ringel, Florian; Krieg, Sandro M
2015-08-01
Language mapping by repetitive navigated transcranial magnetic stimulation (rTMS) is increasingly used and has already replaced functional MRI (fMRI) in some institutions for preoperative mapping of neurosurgical patients. Yet some factors affect the concordance of both methods with direct cortical stimulation (DCS), most likely by lesions affecting cortical oxygenation levels. Therefore, the impairment of the accuracy of rTMS and fMRI was analyzed and compared with DCS during awake surgery in patients with intraparenchymal lesions. Language mapping was performed by DCS, rTMS, and fMRI using an object-naming task in 27 patients with left-sided perisylvian lesions, and the induced language errors of each method were assigned to the cortical parcellation system. Subsequently, the receiver operating characteristics were calculated for rTMS and fMRI and compared with DCS as ground truth for regions with (w/) and without (w/o) the lesion in the mapped regions. The w/ subgroup revealed a sensitivity of 100% (w/o 100%), a specificity of 8% (w/o 5%), a positive predictive value of 34% (w/o: 53%), and a negative predictive value (NPV) of 100% (w/o: 100%) for the comparison of rTMS versus DCS. Findings for the comparison of fMRI versus DCS within the w/ subgroup revealed a sensitivity of 32% (w/o: 62%), a specificity of 88% (w/o: 60%), a positive predictive value of 56% (w/o: 62%), and a NPV of 73% (w/o: 60%). Although strengths and weaknesses exist for both rTMS and fMRI, the results show that rTMS is less affected by a brain lesion than fMRI, especially when performing mapping of language-negative cortical regions based on sensitivity and NPV.
Zhang, Wenhai; Li, Hong; Pan, Xiaohong
2015-02-01
Recent resting-state functional magnetic resonance imaging (fMRI) studies using graph theory metrics have revealed that the functional network of the human brain possesses small-world characteristics and comprises several functional hub regions. However, it is unclear how the affective functional network is organized in the brain during the processing of affective information. In this study, the fMRI data were collected from 25 healthy college students as they viewed a total of 81 positive, neutral, and negative pictures. The results indicated that affective functional networks exhibit weaker small-worldness properties with higher local efficiency, implying that local connections increase during viewing affective pictures. Moreover, positive and negative emotional processing exhibit dissociable functional hubs, emerging mainly in task-positive regions. These functional hubs, which are the centers of information processing, have nodal betweenness centrality values that are at least 1.5 times larger than the average betweenness centrality of the network. Positive affect scores correlated with the betweenness values of the right orbital frontal cortex (OFC) and the right putamen in the positive emotional network; negative affect scores correlated with the betweenness values of the left OFC and the left amygdala in the negative emotional network. The local efficiencies in the left superior and inferior parietal lobe correlated with subsequent arousal ratings of positive and negative pictures, respectively. These observations provide important evidence for the organizational principles of the human brain functional connectome during the processing of affective information. © 2014 Wiley Periodicals, Inc.
Parasuraman, Raja; Jiang, Yang
2012-01-01
We describe the use of behavioral, neuroimaging, and genetic methods to examine individual differences in cognition and affect, guided by three criteria: (1) relevance to human performance in work and everyday settings; (2) interactions between working memory, decision-making, and affective processing; and (3) examination of individual differences. The results of behavioral, functional MRI (fMRI), event-related potential (ERP), and molecular genetic studies show that analyses at the group level often mask important findings associated with sub-groups of individuals. Dopaminergic/noradrenergic genes influencing prefrontal cortex activity contribute to inter-individual variation in working memory and decision behavior, including performance in complex simulations of military decision-making. The interactive influences of individual differences in anxiety, sensation seeking, and boredom susceptibility on evaluative decision-making can be systematically described using ERP and fMRI methods. We conclude that a multi-modal neuroergonomic approach to examining brain function (using both neuroimaging and molecular genetics) can be usefully applied to understanding individual differences in cognition and affect and has implications for human performance at work. PMID:21569853
Pak, Rebecca W; Hadjiabadi, Darian H; Senarathna, Janaka; Agarwal, Shruti; Thakor, Nitish V; Pillai, Jay J; Pathak, Arvind P
2017-11-01
Functional magnetic resonance imaging (fMRI) serves as a critical tool for presurgical mapping of eloquent cortex and changes in neurological function in patients diagnosed with brain tumors. However, the blood-oxygen-level-dependent (BOLD) contrast mechanism underlying fMRI assumes that neurovascular coupling remains intact during brain tumor progression, and that measured changes in cerebral blood flow (CBF) are correlated with neuronal function. Recent preclinical and clinical studies have demonstrated that even low-grade brain tumors can exhibit neurovascular uncoupling (NVU), which can confound interpretation of fMRI data. Therefore, to avoid neurosurgical complications, it is crucial to understand the biophysical basis of NVU and its impact on fMRI. Here we review the physiology of the neurovascular unit, how it is remodeled, and functionally altered by brain cancer cells. We first discuss the latest findings about the components of the neurovascular unit. Next, we synthesize results from preclinical and clinical studies to illustrate how brain tumor induced NVU affects fMRI data interpretation. We examine advances in functional imaging methods that permit the clinical evaluation of brain tumors with NVU. Finally, we discuss how the suppression of anomalous tumor blood vessel formation with antiangiogenic therapies can "normalize" the brain tumor vasculature, and potentially restore neurovascular coupling.
Pituitary gland imaging and outcome.
Di Iorgi, Natascia; Morana, Giovanni; Gallizia, Anna Lisa; Maghnie, Mohamad
2012-01-01
Magnetic resonance imaging (MRI) allows a detailed and precise anatomical study of the pituitary gland by differentiating between the anterior and posterior pituitary lobes. The identification of posterior pituitary hyperintensity, now considered a marker of neurohypophyseal functional integrity, has been the most striking advance for the diagnosis and understanding of anterior and posterior pituitary diseases. The advent of MRI has in fact led to a significant improvement in the understanding of the pathogenesis of disorders that affect the hypothalamo-pituitary area. Today, there is convincing evidence to support the hypothesis that marked MRI differences in pituitary morphology indicate a diverse range of disorders which affect the organogenesis and function of the anterior pituitary gland with different prognoses. Furthermore, the association of extrapituitary malformations accurately defined by MRI has supported a better definition of several conditions linked to pituitary hormone deficiencies and midline defects. MRI is a very informative procedure that should be used to support a diagnosis of hypopituitarism. It is useful in clinical management, because it helps endocrinologists determine which patients to target for further molecular studies and genetic counselling, which ones to screen for additional hormone deficits, and which ones may need growth hormone replacement into adult life. Copyright © 2012 S. Karger AG, Basel.
State of the art MRI in head and neck cancer.
Dai, Y L; King, A D
2018-01-01
Head and neck cancer affects more than 11,000 new patients per year in the UK 1 and imaging has an important role in the diagnosis, treatment planning, and assessment, and post-treatment surveillance of these patients. The anatomical detail produced by magnetic resonance imaging (MRI) is ideally suited to staging and follow-up of primary tumours and cervical nodal metastases in the head and neck; however, anatomical images have limitations in cancer imaging and so increasingly functional-based MRI techniques, which provide molecular, metabolic, and physiological information, are being incorporated into MRI protocols. This article reviews the state of the art of these functional MRI techniques with emphasis on those that are most relevant to the current management of patients with head and neck cancer. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Engen, Haakon G; Bernhardt, Boris C; Skottnik, Leon; Ricard, Matthieu; Singer, Tania
2017-08-31
Our goal was to assess the effects of long-term mental training in socio-affective skills on structural brain networks. We studied a group of long-term meditation practitioners (LTMs) who have focused on cultivating socio-affective skills using loving-kindness and compassion meditation for an average of 40k h, comparing these to meditation-naïve controls. To maximize homogeneity of prior practice, LTMs were included only if they had undergone extensive full-time meditation retreats in the same center. MRI-based cortical thickness analysis revealed increased thickness in the LTM cohort relative to meditation-native controls in fronto-insular cortices. To identify functional networks relevant for the generation of socio-affective states, structural imaging analysis were complemented by fMRI analysis in LTMs, showing amplitude increases during a loving-kindness meditation session relative to non-meditative rest in multiple prefrontal and insular regions bilaterally. Importantly, functional findings partially overlapped with regions of cortical thickness increases in the left ventrolateral prefrontal cortex and anterior insula, suggesting that these regions may play a central role in the generation of emotional states relevant for the meditative practice. Our multi-modal MRI approach revealed structural changes in LTMs who have cultivated loving-kindness and compassion for a significant period of their life in functional networks activated by these practices. These preliminary cross-sectional findings motivate future longitudinal work studying brain plasticity following the regular practice of skills aiming at enhancing human altruism and prosocial motivation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Letzen, Janelle E.; Robinson, Michael E.
2016-01-01
The default mode network (DMN) has been proposed as a biomarker for several chronic pain conditions. DMN functional connectivity (fcMRI) is typically examined during resting-state fMRI, in which participants are instructed to let thoughts wander. However, factors at the time of data collection (e.g., negative mood) that might systematically impact pain perception and its brain activity, influencing the application of the DMN as a pain biomarker, are rarely reported. The present study measured whether positive and negative moods altered DMN fcMRI patterns in chronic low back pain (CLBP) patients, specifically focusing on negative mood due to its clinical-relevance. Thirty-three participants (CLBP = 17) underwent resting-state fMRI scanning before and after sad and happy mood inductions, and rated levels of mood and pain intensity at the time of scanning. Two-way repeated measures ANOVAs were conducted on resting-state functional connectivity data. Significant group (CLBP > HC) X condition (sadness > baseline) interaction effects were identified in clusters spanning parietal operculum/postcentral gyrus, insular cortices, anterior cingulate cortex, frontal pole, and a portion of the cerebellum (pFDR < .05). However, only one significant cluster covering a portion of the cerebellum was identified examining a two-way repeated measures ANOVA for happiness > baseline (pFDR < .05). Overall, these findings suggest that DMN fcMRI is affected by negative mood in individuals with and without CLBP. It is possible that DMN fcMRI seen in chronic pain patients is related to an affective dimension of pain, which is important to consider in future neuroimaging biomarker development and implementation. PMID:27583568
Using fMRI to study reward processing in humans: past, present, and future
Wang, Kainan S.; Smith, David V.
2016-01-01
Functional magnetic resonance imaging (fMRI) is a noninvasive tool used to probe cognitive and affective processes. Although fMRI provides indirect measures of neural activity, the advent of fMRI has allowed for 1) the corroboration of significant animal findings in the human brain, and 2) the expansion of models to include more common human attributes that inform behavior. In this review, we briefly consider the neural basis of the blood oxygenation level dependent signal to set up a discussion of how fMRI studies have applied it in examining cognitive models in humans and the promise of using fMRI to advance such models. Specifically, we illustrate the contribution that fMRI has made to the study of reward processing, focusing on the role of the striatum in encoding reward-related learning signals that drive anticipatory and consummatory behaviors. For instance, we discuss how fMRI can be used to link neural signals (e.g., striatal responses to rewards) to individual differences in behavior and traits. While this functional segregation approach has been constructive to our understanding of reward-related functions, many fMRI studies have also benefitted from a functional integration approach that takes into account how interconnected regions (e.g., corticostriatal circuits) contribute to reward processing. We contend that future work using fMRI will profit from using a multimodal approach, such as combining fMRI with noninvasive brain stimulation tools (e.g., transcranial electrical stimulation), that can identify causal mechanisms underlying reward processing. Consequently, advancements in implementing fMRI will promise new translational opportunities to inform our understanding of psychopathologies. PMID:26740530
Chen, Gang; den Braber, Anouk; van ‘t Ent, Dennis; Boomsma, Dorret I.; Mansvelder, Huibert D.; de Geus, Eco; Van Someren, Eus J. W.; Linkenkaer-Hansen, Klaus
2015-01-01
Resting-state functional magnetic resonance imaging (rs-fMRI) is widely used to investigate the functional architecture of the healthy human brain and how it is affected by learning, lifelong development, brain disorders or pharmacological intervention. Non-sensory experiences are prevalent during rest and must arise from ongoing brain activity, yet little is known about this relationship. Here, we used two runs of rs-fMRI both immediately followed by the Amsterdam Resting-State Questionnaire (ARSQ) to investigate the relationship between functional connectivity within ten large-scale functional brain networks and ten dimensions of thoughts and feelings experienced during the scan in 106 healthy participants. We identified 11 positive associations between brain-network functional connectivity and ARSQ dimensions. ‘Sleepiness’ exhibited significant associations with functional connectivity within Visual, Sensorimotor and Default Mode networks. Similar associations were observed for ‘Visual Thought’ and ‘Discontinuity of Mind’, which may relate to variation in imagery and thought control mediated by arousal fluctuations. Our findings show that self-reports of thoughts and feelings experienced during a rs-fMRI scan help understand the functional significance of variations in functional connectivity, which should be of special relevance to clinical studies. PMID:26540239
Preti, Maria Giulia; Makris, Nikos; Papadimitriou, George; Laganà, Maria Marcella; Griffanti, Ludovica; Clerici, Mario; Nemni, Raffaello; Westin, Carl-Fredrik; Baselli, Giuseppe; Baglio, Francesca
2014-01-01
Guiding diffusion tract-based anatomy by functional magnetic resonance imaging (fMRI), we aim to investigate the relationship between structural connectivity and functional activity in the human brain. To this purpose, we introduced a novel groupwise fMRI-guided tractographic approach, that was applied on a population ranging between prodromic and moderate stages of Alzheimer's disease (AD). The study comprised of 15 subjects affected by amnestic mild cognitive impairment (aMCI), 14 diagnosed with AD and 14 elderly healthy adults who were used as controls. By creating representative (ensemble) functionally guided tracts within each group of participants, our methodology highlighted the white matter fiber connections involved in verbal fluency functions for a specific population, and hypothesized on brain compensation mechanisms that potentially counteract or reduce cognitive impairment symptoms in prodromic AD. Our hope is that this fMRI-guided tractographic approach could have potential impact in various clinical studies, while investigating white/gray matter connectivity, in both health and disease. PMID:24637718
Piesnack, Susann; Frame, Mairi E; Oechtering, Gerhard; Ludewig, Eberhard
2013-01-01
The ability to read patient identification microchips relies on the use of radiofrequency pulses. Since radiofrequency pulses also form an integral part of the magnetic resonance imaging (MRI) process, the possibility of loss of microchip function during MRI scanning is of concern. Previous clinical trials have shown microchip function to be unaffected by MR imaging using a field strength of 1 Tesla and 1.5. As veterinary MRI scanners range widely in field strength, this study was devised to determine whether exposure to lower or higher field strengths than 1 Tesla would affect the function of different types of microchip. In a phantom study, a total of 300 International Standards Organisation (ISO)-approved microchips (100 each of three different types: ISO FDX-B 1.4 × 9 mm, ISO FDX-B 2.12 × 12 mm, ISO HDX 3.8 × 23 mm) were tested in a low field (0.5) and a high field scanner (3.0 Tesla). A total of 50 microchips of each type were tested in each scanner. The phantom was composed of a fluid-filled freezer pack onto which a plastic pillow and a cardboard strip with affixed microchips were positioned. Following an MRI scan protocol simulating a head study, all of the microchips were accurately readable. Neither 0.5 nor 3 Tesla imaging affected microchip function in this study. © 2013 Veterinary Radiology & Ultrasound.
Langs, Georg; Sweet, Andrew; Lashkari, Danial; Tie, Yanmei; Rigolo, Laura; Golby, Alexandra J; Golland, Polina
2014-12-01
In this paper we construct an atlas that summarizes functional connectivity characteristics of a cognitive process from a population of individuals. The atlas encodes functional connectivity structure in a low-dimensional embedding space that is derived from a diffusion process on a graph that represents correlations of fMRI time courses. The functional atlas is decoupled from the anatomical space, and thus can represent functional networks with variable spatial distribution in a population. In practice the atlas is represented by a common prior distribution for the embedded fMRI signals of all subjects. We derive an algorithm for fitting this generative model to the observed data in a population. Our results in a language fMRI study demonstrate that the method identifies coherent and functionally equivalent regions across subjects. The method also successfully maps functional networks from a healthy population used as a training set to individuals whose language networks are affected by tumors. Copyright © 2014. Published by Elsevier Inc.
Chrzanowski, Stephen M; Baligand, Celine; Willcocks, Rebecca J; Deol, Jasjit; Schmalfuss, Ilona; Lott, Donovan J; Daniels, Michael J; Senesac, Claudia; Walter, Glenn A; Vandenborne, Krista
2017-09-01
Duchenne muscular dystrophy (DMD) causes progressive pathologic changes to muscle secondary to a cascade of inflammation, lipid deposition, and fibrosis. Clinically, this manifests as progressive weakness, functional loss, and premature mortality. Though insult to whole muscle groups is well established, less is known about the relationship between intramuscular pathology and function. Differences of intramuscular heterogeneity across muscle length were assessed using an ordinal MRI grading scale in lower leg muscles of boys with DMD and correlated to patient's functional status. Cross sectional T 1 weighted MRI images with fat suppression were obtained from ambulatory boys with DMD. Six muscles (tibialis anterior, extensor digitorum longus, peroneus, soleus, medial and lateral gastrocnemii) were graded using an ordinal grading scale over 5 slice sections along the lower leg length. The scores from each slice were combined and results were compared to global motor function and age. Statistically greater differences of involvement were observed at the proximal ends of muscle compared to the midbellies. Multi-slice assessment correlated significantly to age and the Vignos functional scale, whereas single-slice assessment correlated to the Vignos functional scale only. Lastly, differential disease involvement of whole muscle groups and intramuscular heterogeneity were observed amongst similar age subjects. A multi-slice ordinal MRI grading scale revealed that muscles are not uniformly affected, with more advanced disease visible near the tendons in a primarily ambulatory population with DMD. A geographically comprehensive evaluation of the heterogeneously affected muscle in boys with DMD may more accurately assess disease involvement.
Fu, Cynthia H Y; Williams, Steven C R; Cleare, Anthony J; Brammer, Michael J; Walsh, Nicholas D; Kim, Jieun; Andrew, Chris M; Pich, Emilio Merlo; Williams, Pauline M; Reed, Laurence J; Mitterschiffthaler, Martina T; Suckling, John; Bullmore, Edward T
2004-09-01
Depression is associated with interpersonal difficulties related to abnormalities in affective facial processing. To map brain systems activated by sad facial affect processing in patients with depression and to identify brain functional correlates of antidepressant treatment and symptomatic response. Two groups underwent scanning twice using functional magnetic resonance imaging (fMRI) during an 8-week period. The event-related fMRI paradigm entailed incidental affect recognition of facial stimuli morphed to express discriminable intensities of sadness. Participants were recruited by advertisement from the local population; depressed subjects were treated as outpatients. We matched 19 medication-free, acutely symptomatic patients satisfying DSM-IV criteria for unipolar major depressive disorder by age, sex, and IQ with 19 healthy volunteers. Intervention After the baseline assessment, patients received fluoxetine hydrochloride, 20 mg/d, for 8 weeks. Average activation (capacity) and differential response to variable affective intensity (dynamic range) were estimated in each fMRI time series. We used analysis of variance to identify brain regions that demonstrated a main effect of group (depressed vs healthy subjects) and a group x time interaction (attributable to antidepressant treatment). Change in brain activation associated with reduction of depressive symptoms in the patient group was identified by means of regression analysis. Permutation tests were used for inference. Over time, depressed subjects showed reduced capacity for activation in the left amygdala, ventral striatum, and frontoparietal cortex and a negatively correlated increase of dynamic range in the prefrontal cortex. Symptomatic improvement was associated with reduction of dynamic range in the pregenual cingulate cortex, ventral striatum, and cerebellum. Antidepressant treatment reduces left limbic, subcortical, and neocortical capacity for activation in depressed subjects and increases the dynamic range of the left prefrontal cortex. Changes in anterior cingulate function associated with symptomatic improvement indicate that fMRI may be a useful surrogate marker of antidepressant treatment response.
NASA Astrophysics Data System (ADS)
Retico, A.
2018-02-01
Diagnostic imaging based on the Nuclear Magnetic Resonance phenomenon has increasingly spread in the recent few decades, mainly owing to its exquisite capability in depicting a contrast between soft tissues, to its generally non-invasive nature, and to the priceless advantage of using non-ionizing radiation. Magnetic Resonance (MR)-based acquisition techniques allow gathering information on the structure (through Magnetic Resonance Imaging— MRI), the metabolic composition (through Magnetic Resonance Spectroscopy—MRS), and the functioning (through functional MRI —fMRI) of the human body. MR investigations are the methods of choice for studying the brain in vivo, including anatomy, structural wiring and functional connectivity, in healthy and pathological conditions. Alongside the efforts of the clinical research community in extending the acquisition protocols to allow the exploration of a large variety of pathologies affecting diverse body regions, some relevant technological improvements are on the way to maximize the impact of MR in medical diagnostic. The development of MR scanners operating at ultra-high magnetic field (UHF) strength (>= 7 tesla), is pushing forward the spatial resolution of MRI and the spectral resolution of MRS, and it is increasing the specificity of fMRI to grey matter signal. UHF MR systems are currently in use for research purposes only; nevertheless, UHF technological advances are positively affecting MR investigations at clinical field strengths. To overcome the current major limitation of MRI, which is mostly based on contrast between tissues rather than on absolute measurements of physical quantities, a new acquisition modality is under development, which is referred as Magnetic Resonance Fingerprinting technique. Finally, as neuroimaging data acquired worldwide are reaching the typical size of Big Data, dedicated technical solutions are required to mine large amount of information and to identify specific biomarkers of pathological conditions.
Fu, Yue; Zhang, Quan; Zhang, Jing; Zhang, Yun Ting
2015-01-01
To compare the effects of active and passive movements on brain activation in patients with cerebral infarction using fMRI. Twenty-four hemiplegic patients with cerebral infarction were evaluated using fMRI. All patients performed active and passive finger opposition movements. Patients were instructed to perform the finger opposition movement for the active movement task. For the passive movement task, the subject's fingers were moved by the examiner to perform the finger opposition movement. Statistical parametric mapping software was used for statistical analyses and to process all data. In the affected hemisphere, sensorimotor cortex (SMC) activation intensity and range were significantly stronger during the passive movement of the affected fingers compared to the active movement of the affected fingers (p < 0.05). However, there were no significant differences between active and passive movements of unaffected fingers in SMC activation intensity and range in the unaffected hemisphere (p > 0.05). In addition, the passive movement activated many other regions of the brain. The brain regions activated by passive movements of the affected fingers tended to center toward the contralateral SMC. Our findings suggest that passive movements induce cortical reorganization in patients with cerebral infarction. Therefore, passive movement is likely beneficial for motor function recovery in patients with cerebral infarction.
Kallioniemi, Elisa; Pitkänen, Minna; Könönen, Mervi; Vanninen, Ritva; Julkunen, Petro
2016-11-01
Although the relationship between neuronavigated transcranial magnetic stimulation (nTMS) and functional magnetic resonance imaging (fMRI) has been widely studied in motor mapping, it is unknown how the motor response type or the choice of motor task affect this relationship. Centers of gravity (CoGs) and response maxima were measured with blood-oxygen-level dependent (BOLD) and arterial spin labeling (ASL) fMRI during motor tasks against nTMS CoGs and response maxima, which were mapped with motor evoked potentials (MEPs) and silent periods (SPs). No differences in motor representations (CoGs and response maxima) were observed in lateral-medial direction (p=0.265). fMRI methods localized the motor representation more posterior than nTMS (p<0.001). This was not affected by the BOLD fMRI motor task (p>0.999) nor nTMS response type (p>0.999). ASL fMRI maxima did not differ from the nTMS nor BOLD fMRI CoGs (p≥0.070), but the ASL CoG was deeper in comparison to other methods (p≤0.042). The BOLD fMRI motor task did not influence the depth of the motor representation (p≥0.745). The median Euclidean distances between the nTMS and fMRI motor representations varied between 7.7mm and 14.5mm and did not differ between the methods (F≤1.23, p≥0.318). The relationship between fMRI and nTMS mapped excitatory (MEP) and inhibitory (SP) responses, and whether the choice of motor task affects this relationship, have not been studied before. The congruence between fMRI and nTMS is good. The choice of nTMS motor response type nor BOLD fMRI motor task had no effect on this relationship. Copyright © 2016 Elsevier B.V. All rights reserved.
Tsukiura, Takashi
2012-01-01
In our daily lives, we form some impressions of other people. Although those impressions are affected by many factors, face-based affective signals such as facial expression, facial attractiveness, or trustworthiness are important. Previous psychological studies have demonstrated the impact of facial impressions on remembering other people, but little is known about the neural mechanisms underlying this psychological process. The purpose of this article is to review recent functional MRI (fMRI) studies to investigate the effects of face-based affective signals including facial expression, facial attractiveness, and trustworthiness on memory for faces, and to propose a tentative concept for understanding this affective-cognitive interaction. On the basis of the aforementioned research, three brain regions are potentially involved in the processing of face-based affective signals. The first candidate is the amygdala, where activity is generally modulated by both affectively positive and negative signals from faces. Activity in the orbitofrontal cortex (OFC), as the second candidate, increases as a function of perceived positive signals from faces; whereas activity in the insular cortex, as the third candidate, reflects a function of face-based negative signals. In addition, neuroscientific studies have reported that the three regions are functionally connected to the memory-related hippocampal regions. These findings suggest that the effects of face-based affective signals on memory for faces could be modulated by interactions between the regions associated with the processing of face-based affective signals and the hippocampus as a memory-related region. PMID:22837740
Functional magnetic resonance imaging in chronic ischaemic stroke.
Lake, Evelyn M R; Bazzigaluppi, Paolo; Stefanovic, Bojana
2016-10-05
Ischaemic stroke is the leading cause of adult disability worldwide. Effective rehabilitation is hindered by uncertainty surrounding the underlying mechanisms that govern long-term ischaemic injury progression. Despite its potential as a sensitive non-invasive in vivo marker of brain function that may aid in the development of new treatments, blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has found limited application in the clinical research on chronic stage stroke progression. Stroke affects each of the physiological parameters underlying the BOLD contrast, markedly complicating the interpretation of BOLD fMRI data. This review summarizes current progress on application of BOLD fMRI in the chronic stage of ischaemic injury progression and discusses means by which more information may be gained from such BOLD fMRI measurements. Concomitant measurements of vascular reactivity, neuronal activity and metabolism in preclinical models of stroke are reviewed along with illustrative examples of post-ischaemic evolution in neuronal, glial and vascular function. The realization of the BOLD fMRI potential to propel stroke research is predicated on the carefully designed preclinical research establishing an ischaemia-specific quantitative model of BOLD signal contrast to provide the framework for interpretation of fMRI findings in clinical populations.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. © 2016 The Author(s).
Causes, effects and connectivity changes in MS-related cognitive decline.
Rimkus, Carolina de Medeiros; Steenwijk, Martijn D; Barkhof, Frederik
2016-01-01
Cognitive decline is a frequent but undervalued aspect of multiple sclerosis (MS). Currently, it remains unclear what the strongest determinants of cognitive dysfunction are, with grey matter damage most directly related to cognitive impairment. Multi-parametric studies seem to indicate that individual factors of MS-pathology are highly interdependent causes of grey matter atrophy and permanent brain damage. They are associated with intermediate functional effects (e.g. in functional MRI) representing a balance between disconnection and (mal) adaptive connectivity changes. Therefore, a more comprehensive MRI approach is warranted, aiming to link structural changes with functional brain organization. To better understand the disconnection syndromes and cognitive decline in MS, this paper reviews the associations between MRI metrics and cognitive performance, by discussing the interactions between multiple facets of MS pathology as determinants of brain damage and how they affect network efficiency.
Grolez, G; Moreau, C; Danel-Brunaud, V; Delmaire, C; Lopes, R; Pradat, P F; El Mendili, M M; Defebvre, L; Devos, D
2016-08-27
Amyotrophic lateral sclerosis (ALS) is a fatal, rapidly progressive neurodegenerative disease that mainly affects the motor system. A number of potentially neuroprotective and neurorestorative disease-modifying drugs are currently in clinical development. At present, the evaluation of a drug's clinical efficacy in ALS is based on the ALS Functional Rating Scale Revised, motor tests and survival. However, these endpoints are general, variable and late-stage measures of the ALS disease process and thus require the long-term assessment of large cohorts. Hence, there is a need for more sensitive radiological biomarkers. Various sequences for magnetic resonance imaging (MRI) of the brain and spinal cord have may have value as surrogate biomarkers for use in future clinical trials. Here, we review the MRI findings in ALS, their clinical correlations, and their limitations and potential role as biomarkers. The PubMed database was screened to identify studies using MRI in ALS. We included general MRI studies with a control group and an ALS group and longitudinal studies even if a control group was lacking. A total of 116 studies were analysed with MRI data and clinical correlations. The most disease-sensitive MRI patterns are in motor regions but the brain is more broadly affected. Despite the existing MRI biomarkers, there is a need for large cohorts with long term MRI and clinical follow-up. MRI assessment could be improved by standardized MRI protocols with multicentre studies.
Gd-doped BNNTs as T2-weighted MRI contrast agents
NASA Astrophysics Data System (ADS)
Ciofani, Gianni; Boni, Adriano; Calucci, Lucia; Forte, Claudia; Gozzi, Alessandro; Mazzolai, Barbara; Mattoli, Virgilio
2013-08-01
This work describes, for the first time, doping of boron nitride nanotubes (BNNTs) with gadolinium (Gd@BNNTs), a stable functionalization that permits non-invasive BNNT tracking via magnetic resonance imaging (MRI). We report the structure, Gd loading, and relaxometric properties in water suspension at 7 T of Gd@BNNTs, and show the behaviour of these nanostructures as promising T2-weighted contrast agents. Finally, we demonstrate their complete biocompatibility in vitro on human neuroblastoma cells, together with their ability to effectively label and affect contrast in MRI images at 7 T.
Agarwal, Shruti; Lu, Hanzhang; Pillai, Jay J
2017-08-01
The aim of this study was to explore whether the phenomenon of brain tumor-related neurovascular uncoupling (NVU) in resting-state blood oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI) (rsfMRI) may also affect the resting-state fMRI (rsfMRI) frequency domain metrics the amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF). Twelve de novo brain tumor patients, who underwent clinical fMRI examinations, including task-based fMRI (tbfMRI) and rsfMRI, were included in this Institutional Review Board-approved study. Each patient displayed decreased/absent tbfMRI activation in the primary ipsilesional (IL) sensorimotor cortex in the absence of a corresponding motor deficit or suboptimal task performance, consistent with NVU. Z-score maps for the motor tasks were obtained from general linear model analysis (reflecting motor activation vs. rest). Seed-based correlation analysis (SCA) maps of sensorimotor network, ALFF, and fALFF were calculated from rsfMRI data. Precentral and postcentral gyri in contralesional (CL) and IL hemispheres were parcellated using an automated anatomical labeling template for each patient. Region of interest (ROI) analysis was performed on four maps: tbfMRI, SCA, ALFF, and fALFF. Voxel values in the CL and IL ROIs of each map were divided by the corresponding global mean of ALFF and fALFF in the cortical brain tissue. Group analysis revealed significantly decreased IL ALFF (p = 0.02) and fALFF (p = 0.03) metrics compared with CL ROIs, consistent with similar findings of significantly decreased IL BOLD signal for tbfMRI (p = 0.0005) and SCA maps (p = 0.0004). The frequency domain metrics ALFF and fALFF may be markers of lesion-induced NVU in rsfMRI similar to previously reported alterations in tbfMRI activation and SCA-derived resting-state functional connectivity maps.
Function in the Human Connectome: Task-fMRI and Individual Differences in Behavior
Barch, Deanna M.; Burgess, Gregory C.; Harms, Michael P.; Petersen, Steven E.; Schlaggar, Bradley L.; Corbetta, Maurizio; Glasser, Matthew F.; Curtiss, Sandra; Dixit, Sachin; Feldt, Cindy; Nolan, Dan; Bryant, Edward; Hartley, Tucker; Footer, Owen; Bjork, James M.; Poldrack, Russ; Smith, Steve; Johansen-Berg, Heidi; Snyder, Abraham Z.; Van Essen, David C.
2014-01-01
The primary goal of the Human Connectome Project (HCP) is to delineate the typical patterns of structural and functional connectivity in the healthy adult human brain. However, we know that there are important individual differences in such patterns of connectivity, with evidence that this variability is associated with alterations in important cognitive and behavioral variables that affect real world function. The HCP data will be a critical stepping-off point for future studies that will examine how variation in human structural and functional connectivity play a role in adult and pediatric neurological and psychiatric disorders that account for a huge amount of public health resources. Thus, the HCP is collecting behavioral measures of a range of motor, sensory, cognitive and emotional processes that will delineate a core set of functions relevant to understanding the relationship between brain connectivity and human behavior. In addition, the HCP is using task-fMRI (tfMRI) to help delineate the relationships between individual differences in the neurobiological substrates of mental processing and both functional and structural connectivity, as well as to help characterize and validate the connectivity analyses to be conducted on the structural and functional connectivity data. This paper describes the logic and rationale behind the development of the behavioral, individual difference, and tfMRI batteries and provides preliminary data on the patterns of activation associated with each of the fMRI tasks, at both a group and individual level. PMID:23684877
Linke, Annika C; Wild, Conor; Zubiaurre-Elorza, Leire; Herzmann, Charlotte; Duffy, Hester; Han, Victor K; Lee, David S C; Cusack, Rhodri
2018-01-01
Functional connectivity magnetic resonance imaging (fcMRI) of neonates with perinatal brain injury could improve prediction of motor impairment before symptoms manifest, and establish how early brain organization relates to subsequent development. This cohort study is the first to describe and quantitatively assess functional brain networks and their relation to later motor skills in neonates with a diverse range of perinatal brain injuries. Infants ( n = 65, included in final analyses: n = 53) were recruited from the neonatal intensive care unit (NICU) and were stratified based on their age at birth (premature vs. term), and on whether neuropathology was diagnosed from structural MRI. Functional brain networks and a measure of disruption to functional connectivity were obtained from 14 min of fcMRI acquired during natural sleep at term-equivalent age. Disruption to connectivity of the somatomotor and frontoparietal executive networks predicted motor impairment at 4 and 8 months. This disruption in functional connectivity was not found to be driven by differences between clinical groups, or by any of the specific measures we captured to describe the clinical course. fcMRI was predictive over and above other clinical measures available at discharge from the NICU, including structural MRI. Motor learning was affected by disruption to somatomotor networks, but also frontoparietal executive networks, which supports the functional importance of these networks in early development. Disruption to these two networks might be best addressed by distinct intervention strategies.
Singh, Sadhana; Modi, Shilpi; Goyal, Satnam; Kaur, Prabhjot; Singh, Namita; Bhatia, Triptish; Deshpande, Smita N; Khushu, Subash
2016-01-01
Empathy deficit is a core feature of schizophrenia which may lead to social dysfunction. The present study was carried out to investigate functional and structural abnormalities associated with empathy in patients with schizophrenia using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 schizophrenia patients and 14 healthy control subjects matched for age, sex and education were examined with structural high-resolution T1-weighted MRI; fMRI images were obtained during empathy task in the same session. The analysis was carried out using SPM8 software. On behavioural assessment, schizophrenic patients (83.00±29.04) showed less scores for sadness compared to healthy controls (128.70±22.26) (p<0.001). fMRI results also showed reduced clusters of activation in the bilateral fusiform gyrus, left lingual gyrus, left middle and inferior occipital gyrus in schizophrenic subjects as compared to controls during empathy task. In the same brain areas, VBM results also showed reduced grey and white matter volumes. The present study provides an evidence for an association between structural alterations and disturbed functional brain activation during empathy task in persons affected with schizophrenia. These findings suggest a biological basis for social cognition deficits in schizophrenics. PMID:25963262
Singh, Sadhana; Modi, Shilpi; Goyal, Satnam; Kaur, Prabhjot; Singh, Namita; Bhatia, Triptish; Deshpande, Smita N; Khushu, Subash
2015-06-01
Empathy deficit is a core feature of schizophrenia which may lead to social dysfunction. The present study was carried out to investigate functional and structural abnormalities associated with empathy in patients with schizophrenia using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 schizophrenia patients and 14 healthy control subjects matched for age, sex and education were examined with structural highresolution T1-weighted MRI; fMRI images were obtained during empathy task in the same session. The analysis was carried out using SPM8 software. On behavioural assessment, schizophrenic patients (83.00+-29.04) showed less scores for sadness compared to healthy controls (128.70+-22.26) (p less than 0.001). fMRI results also showed reduced clusters of activation in the bilateral fusiform gyrus, left lingual gyrus, left middle and inferior occipital gyrus in schizophrenic subjects as compared to controls during empathy task. In the same brain areas, VBM results also showed reduced grey and white matter volumes. The present study provides an evidence for an association between structural alterations and disturbed functional brain activation during empathy task in persons affected with schizophrenia. These findings suggest a biological basis for social cognition deficits in schizophrenics.
Henry, Michael E; Lauriat, Tara L; Lowen, Steven B; Churchill, Jeffrey H; Hodgkinson, Colin A; Goldman, David; Renshaw, Perry F
2013-09-30
This study was designed to assess whether functional magnetic resonance imaging (fMRI) following antidepressant administration (pharmaco-fMRI) is sufficiently sensitive to detect differences in patterns of activation between enantiomers of the same compound. Healthy adult males (n=11) participated in a randomized, double-blind, cross-over trial with three medication periods during which they received citalopram (racemic mixture), escitalopram (S-citalopram alone), or placebo for 2 weeks. All participants had high expression serotonin transporter genotypes. An fMRI scan that included passive viewing of overt and covert affective faces and affective words was performed after each medication period. Activation in response to overt faces was greater following escitalopram than following citalopram in the right insula, thalamus, and putamen when the faces were compared with a fixation stimulus. For the rapid covert presentation, a greater response was observed in the left middle temporal gyrus in the happy versus fearful contrast following escitalopram than following citalopram. Thus, the combination of genomics and fMRI was successful in discriminating between two very similar drugs. However, the pattern of activation observed suggests that further studies are indicated to understand how to optimally combine the two techniques. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Henry, Michael E.; Lauriat, Tara L.; Lowen, Steven B.; Churchill, Jeffrey H.; Hodgkinson, Colin A.; Goldman, David; Renshaw, Perry F.
2015-01-01
This study was designed to assess whether functional magnetic resonance imaging (fMRI) following antidepressant administration (pharmaco-fMRI) is sufficiently sensitive to detect differences in patterns of activation between enantiomers of the same compound. Healthy adult males (n = 11) participated in a randomized, double-blind, cross-over trial with three medication periods during which they received citalopram (racemic mixture), escitalopram (S-citalopram alone), or placebo for 2 weeks. All participants had high expression serotonin transporter genotypes. An fMRI scan that included passive viewing of overt and covert affective faces and affective words was performed after each medication period. Activation in response to overt faces was greater following escitalopram than following citalopram in the right insula, thalamus, and putamen when the faces were compared with a fixation stimulus. For the rapid covert presentation, a greater response was observed in the left middle temporal gyrus in the happy versus fearful contrast following escitalopram than following citalopram. Thus, the combination of genomics and fMRI was successful in discriminating between two very similar drugs. However, the pattern of activation observed suggests that further studies are indicated to understand how to optimally combine the two techniques. PMID:23845563
Li, Zhengjun; Vidorreta, Marta; Katchmar, Natalie; Alsop, David C; Wolf, Daniel H; Detre, John A
2018-06-01
Resting state fMRI (rs-fMRI) provides imaging biomarkers of task-independent brain function that can be associated with clinical variables or modulated by interventions such as behavioral training or pharmacological manipulations. These biomarkers include time-averaged regional brain function as manifested by regional cerebral blood flow (CBF) measured using arterial spin labeled (ASL) perfusion MRI and correlated temporal fluctuations of function across brain networks with either ASL or blood oxygenation level dependent (BOLD) fMRI. Resting-state studies are typically carried out using just one of several prescribed state conditions such as eyes closed (EC), eyes open (EO), or visual fixation on a cross-hair (FIX), which may affect the reliability and specificity of rs-fMRI. In this study, we collected test-retest ASL MRI data during 4 resting-state task conditions: EC, EO, FIX and PVT (low-frequency psychomotor vigilance task), and examined the effects of these task conditions on reliability and reproducibility as well as trait specificity of regional brain function. We also acquired resting-state BOLD fMRI under FIX and compared the network connectivity reliabilities between the four ASL conditions and the BOLD FIX condition. For resting-state ASL data, EC provided the highest CBF reliability, reproducibility, trait specificity, and network connectivity reliability, followed by EO, while FIX was lowest on all of these measures. PVT demonstrated lower CBF reliability, reproducibility and trait specificity than EO and EC. Overall network connectivity reliability was comparable between ASL and BOLD. Our findings confirm ASL CBF as a reliable, stable, and consistent measure of resting-state regional brain function and support the use of EC or EO over FIX and PVT as the resting-state condition. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Control of nucleus accumbens activity with neurofeedback
Greer, Stephanie M.; Trujillo, Andrew J.; Glover, Gary H.; Knutson, Brian
2014-01-01
The nucleus accumbens (NAcc) plays critical roles in healthy motivation and learning, as well as in psychiatric disorders (including schizophrenia and attention deficit hyperactivity disorder). Thus, techniques that confer control of NAcc activity might inspire new therapeutic interventions. By providing second-to-second temporal resolution of activity in small subcortical regions, functional magnetic resonance imaging (fMRI) can resolve online changes in NAcc activity, which can then be presented as “neurofeedback.” In an fMRI-based neurofeedback experiment designed to elicit NAcc activity, we found that subjects could increase their own NAcc activity, and that display of neurofeedback significantly enhanced their ability to do so. Subjects were not as capable of decreasing their NAcc activity, however, and enhanced control did not persist after subsequent removal of neurofeedback. Further analyses suggested that individuals who recruited positive arousal affect were better able to increase NAcc activity in response to neurofeedback, and that NAcc neurofeedback also elicited functionally correlated activity in the medial prefrontal cortex. Together, these findings suggest that humans can modulate their own NAcc activity and that fMRI-based neurofeedback may augment their efforts. The observed association between positive arousal and effective NAcc control further supports an anticipatory affect account of NAcc function. PMID:24705203
Functional magnetic resonance imaging of internet addiction in young adults.
Sepede, Gianna; Tavino, Margherita; Santacroce, Rita; Fiori, Federica; Salerno, Rosa Maria; Di Giannantonio, Massimo
2016-02-28
To report the results of functional magnetic resonance imaging (fMRI) studies pertaining internet addiction disorder (IAD) in young adults. We conducted a systematic review on PubMed, focusing our attention on fMRI studies involving adult IAD patients, free from any comorbid psychiatric condition. The following search words were used, both alone and in combination: fMRI, internet addiction, internet dependence, functional neuroimaging. The search was conducted on April 20(th), 2015 and yielded 58 records. Inclusion criteria were the following: Articles written in English, patients' age ≥ 18 years, patients affected by IAD, studies providing fMRI results during resting state or cognitive/emotional paradigms. Structural MRI studies, functional imaging techniques other than fMRI, studies involving adolescents, patients with comorbid psychiatric, neurological or medical conditions were excluded. By reading titles and abstracts, we excluded 30 records. By reading the full texts of the 28 remaining articles, we identified 18 papers meeting our inclusion criteria and therefore included in the qualitative synthesis. We found 18 studies fulfilling our inclusion criteria, 17 of them conducted in Asia, and including a total number of 666 tested subjects. The included studies reported data acquired during resting state or different paradigms, such as cue-reactivity, guessing or cognitive control tasks. The enrolled patients were usually males (95.4%) and very young (21-25 years). The most represented IAD subtype, reported in more than 85% of patients, was the internet gaming disorder, or videogame addiction. In the resting state studies, the more relevant abnormalities were localized in the superior temporal gyrus, limbic, medial frontal and parietal regions. When analyzing the task related fmri studies, we found that less than half of the papers reported behavioral differences between patients and normal controls, but all of them found significant differences in cortical and subcortical brain regions involved in cognitive control and reward processing: Orbitofrontal cortex, insula, anterior and posterior cingulate cortex, temporal and parietal regions, brain stem and caudate nucleus. IAD may seriously affect young adults' brain functions. It needs to be studied more in depth to provide a clear diagnosis and an adequate treatment.
Functional magnetic resonance imaging of internet addiction in young adults
Sepede, Gianna; Tavino, Margherita; Santacroce, Rita; Fiori, Federica; Salerno, Rosa Maria; Di Giannantonio, Massimo
2016-01-01
AIM: To report the results of functional magnetic resonance imaging (fMRI) studies pertaining internet addiction disorder (IAD) in young adults. METHODS: We conducted a systematic review on PubMed, focusing our attention on fMRI studies involving adult IAD patients, free from any comorbid psychiatric condition. The following search words were used, both alone and in combination: fMRI, internet addiction, internet dependence, functional neuroimaging. The search was conducted on April 20th, 2015 and yielded 58 records. Inclusion criteria were the following: Articles written in English, patients’ age ≥ 18 years, patients affected by IAD, studies providing fMRI results during resting state or cognitive/emotional paradigms. Structural MRI studies, functional imaging techniques other than fMRI, studies involving adolescents, patients with comorbid psychiatric, neurological or medical conditions were excluded. By reading titles and abstracts, we excluded 30 records. By reading the full texts of the 28 remaining articles, we identified 18 papers meeting our inclusion criteria and therefore included in the qualitative synthesis. RESULTS: We found 18 studies fulfilling our inclusion criteria, 17 of them conducted in Asia, and including a total number of 666 tested subjects. The included studies reported data acquired during resting state or different paradigms, such as cue-reactivity, guessing or cognitive control tasks. The enrolled patients were usually males (95.4%) and very young (21-25 years). The most represented IAD subtype, reported in more than 85% of patients, was the internet gaming disorder, or videogame addiction. In the resting state studies, the more relevant abnormalities were localized in the superior temporal gyrus, limbic, medial frontal and parietal regions. When analyzing the task related fmri studies, we found that less than half of the papers reported behavioral differences between patients and normal controls, but all of them found significant differences in cortical and subcortical brain regions involved in cognitive control and reward processing: Orbitofrontal cortex, insula, anterior and posterior cingulate cortex, temporal and parietal regions, brain stem and caudate nucleus. CONCLUSION: IAD may seriously affect young adults’ brain functions. It needs to be studied more in depth to provide a clear diagnosis and an adequate treatment. PMID:26981230
Optimized Design and Analysis of Sparse-Sampling fMRI Experiments
Perrachione, Tyler K.; Ghosh, Satrajit S.
2013-01-01
Sparse-sampling is an important methodological advance in functional magnetic resonance imaging (fMRI), in which silent delays are introduced between MR volume acquisitions, allowing for the presentation of auditory stimuli without contamination by acoustic scanner noise and for overt vocal responses without motion-induced artifacts in the functional time series. As such, the sparse-sampling technique has become a mainstay of principled fMRI research into the cognitive and systems neuroscience of speech, language, hearing, and music. Despite being in use for over a decade, there has been little systematic investigation of the acquisition parameters, experimental design considerations, and statistical analysis approaches that bear on the results and interpretation of sparse-sampling fMRI experiments. In this report, we examined how design and analysis choices related to the duration of repetition time (TR) delay (an acquisition parameter), stimulation rate (an experimental design parameter), and model basis function (an analysis parameter) act independently and interactively to affect the neural activation profiles observed in fMRI. First, we conducted a series of computational simulations to explore the parameter space of sparse design and analysis with respect to these variables; second, we validated the results of these simulations in a series of sparse-sampling fMRI experiments. Overall, these experiments suggest the employment of three methodological approaches that can, in many situations, substantially improve the detection of neurophysiological response in sparse fMRI: (1) Sparse analyses should utilize a physiologically informed model that incorporates hemodynamic response convolution to reduce model error. (2) The design of sparse fMRI experiments should maintain a high rate of stimulus presentation to maximize effect size. (3) TR delays of short to intermediate length can be used between acquisitions of sparse-sampled functional image volumes to increase the number of samples and improve statistical power. PMID:23616742
Neural Correlates of Affect Processing and Aggression in Methamphetamine Dependence
Payer, Doris E.; Lieberman, Matthew D.; London, Edythe D.
2012-01-01
Context Methamphetamine abuse is associated with high rates of aggression, but few studies have addressed the contributing neurobiological factors. Objective To quantify aggression, investigate function of the amygdala and prefrontal cortex, and assess relationships between brain function and behavior in methamphetamine-dependent individuals. Design In a case-control study, aggression and brain activation were compared between methamphetamine-dependent and control participants. Setting Participants were recruited from the general community to an academic research center. Participants Thirty-nine methamphetamine-dependent volunteers (16 women) who were abstinent for 7 to 10 days and 37 drug-free control volunteers (18 women) participated in the study; subsets completed self-report and behavioral measures. Functional magnetic resonance imaging (fMRI) was performed on 25 methamphetamine-dependent and 23 control participants. Main outcome measures We measured self-reported and perpetrated aggression, and self-reported alexithymia. Brain activation was assessed using fMRI during visual processing of facial affect (affect matching), and symbolic processing (affect labeling), the latter representing an incidental form of emotion regulation. Results Methamphetamine-dependent participants self-reported more aggression and alexithymia than control participants and escalated perpetrated aggression more following provocation. Alexithymia scores correlated with measures of aggression. During affect matching, fMRI showed no differences between groups in amygdala activation, but found lower activation in methamphetamine-dependent than control participants in bilateral ventral inferior frontal gyrus. During affect labeling, participants recruited dorsal inferior frontal gyrus and exhibited decreased amygdala activity, consistent with successful emotion regulation; there was no group difference in this effect. The magnitude of decrease in amygdala activity during affect labeling correlated inversely with self-reported aggression in control participants, and perpetrated aggression in all participants. Ventral inferior frontal gyrus activation correlated inversely with alexithymia in control participants. Conclusions Contrary to the hypotheses, methamphetamine-dependent individuals may successfully regulate emotions through incidental means (affect labeling). Instead, low ventral inferior frontal gyrus activity may contribute to heightened aggression by limiting emotional insight. PMID:21041607
The heritability of the functional connectome is robust to common nonlinear registration methods
NASA Astrophysics Data System (ADS)
Hafzalla, George W.; Prasad, Gautam; Baboyan, Vatche G.; Faskowitz, Joshua; Jahanshad, Neda; McMahon, Katie L.; de Zubicaray, Greig I.; Wright, Margaret J.; Braskie, Meredith N.; Thompson, Paul M.
2016-03-01
Nonlinear registration algorithms are routinely used in brain imaging, to align data for inter-subject and group comparisons, and for voxelwise statistical analyses. To understand how the choice of registration method affects maps of functional brain connectivity in a sample of 611 twins, we evaluated three popular nonlinear registration methods: Advanced Normalization Tools (ANTs), Automatic Registration Toolbox (ART), and FMRIB's Nonlinear Image Registration Tool (FNIRT). Using both structural and functional MRI, we used each of the three methods to align the MNI152 brain template, and 80 regions of interest (ROIs), to each subject's T1-weighted (T1w) anatomical image. We then transformed each subject's ROIs onto the associated resting state functional MRI (rs-fMRI) scans and computed a connectivity network or functional connectome for each subject. Given the different degrees of genetic similarity between pairs of monozygotic (MZ) and same-sex dizygotic (DZ) twins, we used structural equation modeling to estimate the additive genetic influences on the elements of the function networks, or their heritability. The functional connectome and derived statistics were relatively robust to nonlinear registration effects.
Strigel, Roberta M; Moritz, Chad H; Haughton, Victor M; Badie, Behnam; Field, Aaron; Wood, David; Hartman, Michael; Rowley, Howard A
2005-03-01
The purpose of this study was to determine the incidence of susceptibility artifacts on functional MR imaging (fMRI) studies and their effect on fMRI readings. We hypothesized that the availability of the signal intensity maps (SIMs) changes the interpretation of fMRI studies in which susceptibility artifacts affected eloquent brain regions. We reviewed 152 consecutive clinical fMRI studies performed with a SIM. The SIM consisted of the initial echo-planar images (EPI) in each section thresholded to eliminate signal intensity from outside the brain and then overlaid on anatomic images. The cause of the artifact was then determined by examining the images. Cases with a susceptibility artifact in eloquent brain were included in a blinded study read by four readers, first without and then with the SIM. For each reader, the number of times the interpretation changed on viewing the SIM was counted. Of 152 patients, 44% had signal intensity loss involving cerebral cortex and 18% involving an eloquent brain region. Causes of the artifacts were: surgical site artifact, blood products, dental devices, calcium, basal ganglia calcifications, ICP monitors, embolization materials, and air. When provided with the SIM, readers changed interpretations in 8-38% of patient cases, depending on reader experience and size and location of susceptibility artifact. Patients referred for clinical fMRI have a high incidence of susceptibility artifacts, whose presence and size can be determined by inspection of the SIM but not anatomic images. The availability of the SIM may affect interpretation of the fMRI.
Heany, Sarah J; van Honk, Jack; Stein, Dan J; Brooks, Samantha J
2016-02-01
Social and affective research in humans is increasingly using functional and structural neuroimaging techniques to aid the understanding of how hormones, such as testosterone, modulate a wide range of psychological processes. We conducted a meta-analysis of functional magnetic resonance imaging (fMRI) studies of testosterone administration, and of fMRI studies that measured endogenous levels of the hormone, in relation to social and affective stimuli. Furthermore, we conducted a review of structural MRI i.e. voxel based morphometry (VBM) studies which considered brain volume in relation to testosterone levels in adults and in children. In the included testosterone administration fMRI studies, which consisted of female samples only, bilateral amygdala/parahippocampal regions as well as the right caudate were significantly activated by social-affective stimuli in the testosterone condition. In the studies considering endogenous levels of testosterone, stimuli-invoked activations relating to testosterone levels were noted in the bilateral amygdala/parahippocampal regions and the brainstem. When the endogenous testosterone studies were split by sex, the significant activation of the brain stem was seen in the female samples only. Significant stimuli-invoked deactivations relating to endogenous testosterone levels were also seen in the right and left amygdala/parahippocampal regions studies. The findings of the VBM studies were less consistent. In adults larger volumes in the limbic and temporal regions were associated with higher endogenous testosterone. In children, boys showed a positive correlation between testosterone and brain volume in many regions, including the amygdala, as well as global grey matter volume, while girls showed a neutral or negative association between testosterone levels and many brain volumes. In conclusion, amygdalar and parahippocampal regions appear to be key target regions for the acute actions of testosterone in response to social and affective stimuli, while neurodevelopmentally the volumes of a broader network of brain structures are associated with testosterone levels in a sexually dimorphic manner.
Emotional processing and brain activity in youth at high risk for alcoholism.
Cservenka, Anita; Fair, Damien A; Nagel, Bonnie J
2014-07-01
Even in the absence of heavy alcohol use, youth with familial alcoholism (family history positive [FHP]) exhibit atypical brain functioning and behavior. Although emotional and cognitive systems are affected in alcohol use disorders (AUDs), little attention has focused on whether brain and behavior phenotypes related to the interplay between affective and executive functioning may be a premorbid risk factor for the development of AUDs in FHP youth. Twenty-four FHP and 22 family history negative (FHN) 12- to 16-year-old adolescents completed study procedures. After exclusion of participants with clinically significant depressive symptoms and those who did not meet performance criteria during an Emotional Go-NoGo task, 19 FHP and 17 FHN youth were included in functional magnetic resonance imaging (fMRI) analyses. Resting state functional connectivity MRI, using amygdalar seed regions, was analyzed in 16 FHP and 18 FHN youth, after exclusion of participants with excessive head movement. fMRI showed that brain activity in FHP youth, compared with FHN peers, was reduced during emotional processing in the superior temporal cortex, as well as during cognitive control within emotional contexts in frontal and striatal regions. Group differences in resting state amygdalar connectivity were seen bilaterally between FHP and FHN youth. In FHP youth, reduced resting state synchrony between the left amygdala and left superior frontal gyrus was related to poorer response inhibition, as measured during the fMRI task. To our knowledge, this is the first study to examine emotion-cognition interactions and resting state functional connectivity in FHP youth. Findings from this research provide insight into neural and behavioral phenotypes associated with emotional processing in familial alcoholism, which may relate to increased risk of developing AUDs. Copyright © 2014 by the Research Society on Alcoholism.
Ren, Ping; Heffner, Kathi L; Jacobs, Alanna; Lin, Feng
2017-11-01
Poor quality of life (QoL) is a major concern among older adults with amnestic mild cognitive impairment (MCI). Maladaptive affective regulation and its relevant frontal dysfunction that are often observed in older adults with MCI may provide an insight into the understanding of their QoL. In this case-controlled study, participants (MCI patients, N = 18; healthy comparisons [HC], N = 21) completed cognitive tasks, and underwent resting-state functional magnetic resonance imaging (rs-fMRI) immediately before and after the tasks. The amplitude of low-frequency fluctuations (ALFF) of rs-fMRI signals was calculated to examine the brain's spontaneous activity. The change in valence from the Self-Assessment Manikin indexed affective reactivity. QoL was assessed using Quality of Life-AD measure. Multiple mediator model was used to examine the mediating effect of frontal regions' ALFF reactivity between the affective reactivity and QoL. The MCI group had significantly worse QoL and more negative affective reactivity than HC group. Less negative affective reactivity was significantly associated with better QoL in MCI not HC. ALFF in the anterior cingulate cortex, medial prefrontal cortex (MPFC), and superior frontal gyrus (SFG) increased significantly less after cognitive tasks in MCI than HC. For the entire sample, greater increases of ALFF in MPFC and SFG were significantly associated with better QoL, and SFG alone significantly mediated the association between affective reactivity and QoL. Enhancing SFG activation, especially among those with MCI, may provide a therapeutic target for addressing the negative impact of maladaptive affective regulation on QoL. Copyright © 2017 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.
Investigating the neural basis for functional and effective connectivity. Application to fMRI
Horwitz, Barry; Warner, Brent; Fitzer, Julie; Tagamets, M.-A; Husain, Fatima T; Long, Theresa W
2005-01-01
Viewing cognitive functions as mediated by networks has begun to play a central role in interpreting neuroscientific data, and studies evaluating interregional functional and effective connectivity have become staples of the neuroimaging literature. The neurobiological substrates of functional and effective connectivity are, however, uncertain. We have constructed neurobiologically realistic models for visual and auditory object processing with multiple interconnected brain regions that perform delayed match-to-sample (DMS) tasks. We used these models to investigate how neurobiological parameters affect the interregional functional connectivity between functional magnetic resonance imaging (fMRI) time-series. Variability is included in the models as subject-to-subject differences in the strengths of anatomical connections, scan-to-scan changes in the level of attention, and trial-to-trial interactions with non-specific neurons processing noise stimuli. We find that time-series correlations between integrated synaptic activities between the anterior temporal and the prefrontal cortex were larger during the DMS task than during a control task. These results were less clear when the integrated synaptic activity was haemodynamically convolved to generate simulated fMRI activity. As the strength of the model anatomical connectivity between temporal and frontal cortex was weakened, so too was the strength of the corresponding functional connectivity. These results provide a partial validation for using fMRI functional connectivity to assess brain interregional relations. PMID:16087450
Liu, Zhi; Deng, Xiaofeng; Cao, Yong; Zhao, Yuanli; Zhao, Jizong; Wang, Shuo
2017-01-01
For cerebral arteriovenous malformations (AVMs) involving language areas, right-sided language lateralization on functional magnetic resonance imaging (fMRI) has been reported, which is regarded as language cortex reorganization. The authors attempted to study if this right-sided language lateralization affects postoperative language outcome. Clinical and imaging data of 43 right-handed AVM patients who underwent preoperative fMRI were retrospectively reviewed. All lesions involved the language cortex, with the Broca area involved in 13 patients and the Wernicke area involved in 30 patients. Lateralization indices (LI) of BOLD signal activations were calculated to determine language lateralization. All patients underwent craniotomy and total resection. Western aphasia battery (WAB) was used to evaluate language functions preoperatively, 1-2 weeks after surgery and 6-30 months after surgery. On preoperative fMRI, right-sided lateralization was observed in 18 patients (41.9%, R Group), including 3 with rightsided lateralization in the Broca area alone, 14 in the Wernicke area alone, and 1 in both areas. The other 25 patients were non-rightsided lateralized (NR Group). One week after surgery, 7 patients in the R Group (38.9%) and 11 patients in the NR Group (44.0%) had language function deterioration, and no significant difference was found (p=0.983). At long-term follow-up, 3 patients in the R Group (16.7%) and 4 patients in the NR Group (16.0%) still had aphasia, and no significant difference was observed (p=1.000). Although right-sided lateralization on fMRI might suggest language cortex reorganization, it is not a factor predicting better postoperative language outcome for AVM patients.
Assessing Effects of Prenatal Alcohol Exposure Using Group-wise Sparse Representation of FMRI Data
Lv, Jinglei; Jiang, Xi; Li, Xiang; Zhu, Dajiang; Zhao, Shijie; Zhang, Tuo; Hu, Xintao; Han, Junwei; Guo, Lei; Li, Zhihao; Coles, Claire; Hu, Xiaoping; Liu, Tianming
2015-01-01
Task-based fMRI activation mapping has been widely used in clinical neuroscience in order to assess different functional activity patterns in conditions such as prenatal alcohol exposure (PAE) affected brains and healthy controls. In this paper, we propose a novel, alternative approach of group-wise sparse representation of the fMRI data of multiple groups of subjects (healthy control, exposed non-dysmorphic PAE and exposed dysmorphic PAE) and assess the systematic functional activity differences among these three populations. Specifically, a common time series signal dictionary is learned from the aggregated fMRI signals of all three groups of subjects, and then the weight coefficient matrices (named statistical coefficient map (SCM)) associated with each common dictionary were statistically assessed for each group separately. Through inter-group comparisons based on the correspondence established by the common dictionary, our experimental results have demonstrated that the group-wise sparse coding strategy and the SCM can effectively reveal a collection of brain networks/regions that were affected by different levels of severity of PAE. PMID:26195294
Lying about the valence of affective pictures: an fMRI study.
Lee, Tatia M C; Lee, Tiffany M Y; Raine, Adrian; Chan, Chetwyn C H
2010-08-25
The neural correlates of lying about affective information were studied using a functional magnetic resonance imaging (fMRI) methodology. Specifically, 13 healthy right-handed Chinese men were instructed to lie about the valence, positive or negative, of pictures selected from the International Affective Picture System (IAPS) while their brain activity was scanned by a 3T Philip Achieva scanner. The key finding is that the neural activity associated with deception is valence-related. Comparing to telling the truth, deception about the valence of the affectively positive pictures was associated with activity in the inferior frontal, cingulate, inferior parietal, precuneus, and middle temporal regions. Lying about the valence of the affectively negative pictures, on the other hand, was associated with activity in the orbital and medial frontal regions. While a clear valence-related effect on deception was observed, common neural regions were also recruited for the process of deception about the valence of the affective pictures. These regions included the lateral prefrontal and inferior parietal regions. Activity in these regions has been widely reported in fMRI studies on deception using affectively-neutral stimuli. The findings of this study reveal the effect of valence on the neural activity associated with deception. Furthermore, the data also help to illustrate the complexity of the neural mechanisms underlying deception.
Guo, Hao; Liu, Lei; Chen, Junjie; Xu, Yong; Jie, Xiang
2017-01-01
Functional magnetic resonance imaging (fMRI) is one of the most useful methods to generate functional connectivity networks of the brain. However, conventional network generation methods ignore dynamic changes of functional connectivity between brain regions. Previous studies proposed constructing high-order functional connectivity networks that consider the time-varying characteristics of functional connectivity, and a clustering method was performed to decrease computational cost. However, random selection of the initial clustering centers and the number of clusters negatively affected classification accuracy, and the network lost neurological interpretability. Here we propose a novel method that introduces the minimum spanning tree method to high-order functional connectivity networks. As an unbiased method, the minimum spanning tree simplifies high-order network structure while preserving its core framework. The dynamic characteristics of time series are not lost with this approach, and the neurological interpretation of the network is guaranteed. Simultaneously, we propose a multi-parameter optimization framework that involves extracting discriminative features from the minimum spanning tree high-order functional connectivity networks. Compared with the conventional methods, our resting-state fMRI classification method based on minimum spanning tree high-order functional connectivity networks greatly improved the diagnostic accuracy for Alzheimer's disease. PMID:29249926
Numb rats walk - a behavioural and fMRI comparison of mild and moderate spinal cord injury.
Hofstetter, Christoph P; Schweinhardt, Petra; Klason, Tomas; Olson, Lars; Spenger, Christian
2003-12-01
Assessment of sensory function serves as a sensitive measure for predicting the functional outcome following spinal cord injury in patients. However, little is known about loss and recovery of sensory function in rodent spinal cord injury models as most tests of sensory functions rely on behaviour and thus motor function. We used functional magnetic resonance imaging (fMRI) to investigate cortical and thalamic BOLD-signal changes in response to limb stimulation following mild or moderate thoracic spinal cord weight drop injury in Sprague-Dawley rats. While there was recovery of close to normal hindlimb motor function as determined by open field locomotor testing following both degrees of injury, recovery of hindlimb sensory function as determined by fMRI and hot plate testing was only seen following mild injury and not following moderate injury. Thus, moderate injury can lead to near normal hindlimb motor function in animals with major sensory deficits. Recovered fMRI signals following mild injury had a partly altered cortical distribution engaging also ipsilateral somatosensory cortex and the cingulate gyrus. Importantly, thoracic spinal cord injury also affected sensory representation of the upper nonaffected limbs. Thus, cortical and thalamic activation in response to forelimb stimulation was significantly increased 16 weeks after spinal cord injury compared to control animals. We conclude that both forelimb and hindlimb cortical sensory representation is altered following thoracic spinal cord injury. Furthermore tests of sensory function that are independent of motor behaviour are needed in rodent spinal cord injury research.
Improving the Test-Retest Reliability of Resting State fMRI by Removing the Impact of Sleep.
Wang, Jiahui; Han, Junwei; Nguyen, Vinh T; Guo, Lei; Guo, Christine C
2017-01-01
Resting state functional magnetic resonance imaging (rs-fMRI) provides a powerful tool to examine large-scale neural networks in the human brain and their disturbances in neuropsychiatric disorders. Thanks to its low demand and high tolerance, resting state paradigms can be easily acquired from clinical population. However, due to the unconstrained nature, resting state paradigm is associated with excessive head movement and proneness to sleep. Consequently, the test-retest reliability of rs-fMRI measures is moderate at best, falling short of widespread use in the clinic. Here, we characterized the effect of sleep on the test-retest reliability of rs-fMRI. Using measures of heart rate variability (HRV) derived from simultaneous electrocardiogram (ECG) recording, we identified portions of fMRI data when subjects were more alert or sleepy, and examined their effects on the test-retest reliability of functional connectivity measures. When volumes of sleep were excluded, the reliability of rs-fMRI is significantly improved, and the improvement appears to be general across brain networks. The amount of improvement is robust with the removal of as much as 60% volumes of sleepiness. Therefore, test-retest reliability of rs-fMRI is affected by sleep and could be improved by excluding volumes of sleepiness as indexed by HRV. Our results suggest a novel and practical method to improve test-retest reliability of rs-fMRI measures.
Optimized design and analysis of sparse-sampling FMRI experiments.
Perrachione, Tyler K; Ghosh, Satrajit S
2013-01-01
Sparse-sampling is an important methodological advance in functional magnetic resonance imaging (fMRI), in which silent delays are introduced between MR volume acquisitions, allowing for the presentation of auditory stimuli without contamination by acoustic scanner noise and for overt vocal responses without motion-induced artifacts in the functional time series. As such, the sparse-sampling technique has become a mainstay of principled fMRI research into the cognitive and systems neuroscience of speech, language, hearing, and music. Despite being in use for over a decade, there has been little systematic investigation of the acquisition parameters, experimental design considerations, and statistical analysis approaches that bear on the results and interpretation of sparse-sampling fMRI experiments. In this report, we examined how design and analysis choices related to the duration of repetition time (TR) delay (an acquisition parameter), stimulation rate (an experimental design parameter), and model basis function (an analysis parameter) act independently and interactively to affect the neural activation profiles observed in fMRI. First, we conducted a series of computational simulations to explore the parameter space of sparse design and analysis with respect to these variables; second, we validated the results of these simulations in a series of sparse-sampling fMRI experiments. Overall, these experiments suggest the employment of three methodological approaches that can, in many situations, substantially improve the detection of neurophysiological response in sparse fMRI: (1) Sparse analyses should utilize a physiologically informed model that incorporates hemodynamic response convolution to reduce model error. (2) The design of sparse fMRI experiments should maintain a high rate of stimulus presentation to maximize effect size. (3) TR delays of short to intermediate length can be used between acquisitions of sparse-sampled functional image volumes to increase the number of samples and improve statistical power.
Jung, Kwan-Jin; Prasad, Parikshit; Qin, Yulin; Anderson, John R.
2013-01-01
A method to extract the subject's overt verbal response from the obscuring acoustic noise in an fMRI scan is developed by applying active noise cancellation with a conventional MRI microphone. Since the EPI scanning and its accompanying acoustic noise in fMRI are repetitive, the acoustic noise in one time segment was used as a reference noise in suppressing the acoustic noise in subsequent segments. However, the acoustic noise from the scanner was affected by the subject's movements, so the reference noise was adaptively adjusted as the scanner's acoustic properties varied in time. This method was successfully applied to a cognitive fMRI experiment with overt verbal responses. PMID:15723385
Agostini, A; Ballotta, D; Righi, S; Moretti, M; Bertani, A; Scarcelli, A; Sartini, A; Ercolani, M; Nichelli, P; Campieri, M; Benuzzi, F
2017-10-01
In Crohn's disease (CD) patients, stress is believed to influence symptoms generation. Stress may act via central nervous system pathways to affect visceral sensitivity and motility thus exacerbating gastrointestinal symptoms. The neural substrate underpinning these mechanisms needs to be investigated in CD. We conducted an explorative functional magnetic resonance imaging (fMRI) study in order to investigate potential differences in the brain stress response in CD patients compared to controls. 17 CD patients and 17 healthy controls underwent a fMRI scan while performing a stressful task consisting in a Stroop color-word interference task designed to induce mental stress in the fMRI environment. Compared to controls, in CD patients the stress task elicited greater blood oxygen level dependent (BOLD) signals in the midcingulate cortex (MCC). The MCC integrate "high" emotional processes with afferent sensory information ascending from the gut. In light of these integrative functions, the stress-evoked MCC hyperactivity in CD patients might represent a plausible neural substrate for the association between stress and symptomatic disease. The MCC dysfunction might be involved in mechanisms of central disinhibition of nociceptive inputs leading to amplify the visceral sensitivity. Finally, the stress-evoked MCC hyperactivity might affect the regulation of intestinal motility resulting in exacerbation of disease symptoms and the autonomic and neuroendocrine regulation of inflammation resulting in enhanced inflammatory activity. © 2017 John Wiley & Sons Ltd.
Neurofeedback and networks of depression
Linden, David E. J.
2014-01-01
Recent advances in imaging technology and in the understanding of neural circuits relevant to emotion, motivation, and depression have boosted interest and experimental work in neuromodulation for affective disorders. Real-time functional magnetic resonance imaging (fMRI) can be used to train patients in the self regulation of these circuits, and thus complement existing neurofeedback technologies based on electroencephalography (EEG). EEG neurofeedback for depression has mainly been based on models of altered hemispheric asymmetry. fMRI-based neurofeedback (fMRI-NF) can utilize functional localizer scans that allow the dynamic adjustment of the target areas or networks for self-regulation training to individual patterns of emotion processing. An initial application of fMRI-NF in depression has produced promising clinical results, and further clinical trials are under way. Challenges lie in the design of appropriate control conditions for rigorous clinical trials, and in the transfer of neurofeedback protocols from the laboratory to mobile devices to enhance the sustainability of any clinical benefits. PMID:24733975
Bleyenheuft, Yannick; Dricot, Laurence; Gilis, Nathalie; Kuo, Hsing-Ching; Grandin, Cécile; Bleyenheuft, Corinne; Gordon, Andrew M.; Friel, Kathleen M.
2016-01-01
Intensive rehabilitation interventions have been shown to be efficacious in improving upper extremity function in children with unilateral spastic cerebral palsy (USCP). These interventions are based on motor learning principles and engage children in skillful movements. Improvements in upper extremity function are believed to be associated with neuroplastic changes. However, these neuroplastic changes have not been well-described in children with cerebral palsy, likely due to challenges in defining and implementing the optimal tools and tests in children. Here we documented the implementation of three different neurological assessments (diffusion tensor imaging-DTI, transcranial magnetic stimulation-TMS and functional magnetic resonance imaging-fMRI) before and after a bimanual intensive treatment (HABIT-ILE) in two children with USCP presenting differential corticospinal developmental reorganization (ipsilateral and contralateral). The aim of the study was to capture neurophysiological changes and to document the complementary relationship between these measures, the potential measurable changes and the feasibility of applying these techniques in children with USCP. Independent of cortical reorganization, both children showed increases in activation and size of the motor areas controlling the affected hand, quantified with different techniques. In addition, fMRI provided additional unexpected changes in the reward circuit while using the affected hand. PMID:26183338
St. Jacques, Peggy L.; Botzung, Anne; Miles, Amanda; Rubin, David C.
2010-01-01
Post-traumatic stress disorder (PTSD) affects regions that support autobiographical memory (AM) retrieval, such as the hippocampus, amygdala and ventral medial prefrontal cortex (PFC). However, it is not well understood how PTSD may impact the neural mechanisms of memory retrieval for the personal past. We used a generic cue method combined with parametric modulation analysis and functional MRI (fMRI) to investigate the neural mechanisms affected by PTSD symptoms during the retrieval of a large sample of emotionally intense AMs. There were three main results. First, the PTSD group showed greater recruitment of the amygdala/hippocampus during the construction of negative versus positive emotionally intense AMs, when compared to controls. Second, across both the construction and elaboration phases of retrieval the PTSD group showed greater recruitment of the ventral medial PFC for negatively intense memories, but less recruitment for positively intense memories. Third, the PTSD group showed greater functional coupling between the ventral medial PFC and the amygdala for negatively intense memories, but less coupling for positively intense memories. In sum, the fMRI data suggest that there was greater recruitment and coupling of emotional brain regions during the retrieval of negatively intense AMs in the PTSD group when compared to controls. PMID:21109253
Control of nucleus accumbens activity with neurofeedback.
Greer, Stephanie M; Trujillo, Andrew J; Glover, Gary H; Knutson, Brian
2014-08-01
The nucleus accumbens (NAcc) plays critical roles in healthy motivation and learning, as well as in psychiatric disorders (including schizophrenia and attention deficit hyperactivity disorder). Thus, techniques that confer control of NAcc activity might inspire new therapeutic interventions. By providing second-to-second temporal resolution of activity in small subcortical regions, functional magnetic resonance imaging (fMRI) can resolve online changes in NAcc activity, which can then be presented as "neurofeedback." In an fMRI-based neurofeedback experiment designed to elicit NAcc activity, we found that subjects could increase their own NAcc activity, and that display of neurofeedback significantly enhanced their ability to do so. Subjects were not as capable of decreasing their NAcc activity, however, and enhanced control did not persist after subsequent removal of neurofeedback. Further analyses suggested that individuals who recruited positive aroused affect were better able to increase NAcc activity in response to neurofeedback, and that NAcc neurofeedback also elicited functionally correlated activity in the medial prefrontal cortex. Together, these findings suggest that humans can modulate their own NAcc activity and that fMRI-based neurofeedback may augment their efforts. The observed association between positive arousal and effective NAcc control further supports an anticipatory affect account of NAcc function. Copyright © 2014 Elsevier Inc. All rights reserved.
Nunthayanon, Kulthida; Honda, Ei-ichi; Shimazaki, Kazuo; Ohmori, Hiroko; Inoue-Arai, Maristela Sayuri; Kurabayashi, Tohru; Ono, Takashi
2015-01-01
Different bony structures can affect the function of the velopharyngeal muscles. Asian populations differ morphologically, including the morphologies of their bony structures. The purpose of this study was to compare the velopharyngeal structures during speech in two Asian populations: Japanese and Thai. Ten healthy Japanese and Thai females (five each) were evaluated with a 3-Tesla (3 T) magnetic resonance imaging (MRI) scanner while they produced vowel-consonant-vowel syllable (/asa/). A gradient-echo sequence, fast low-angle shot with segmented cine and parallel imaging technique was used to obtain sagittal images of the velopharyngeal structures. MRI was carried out in real time during speech production, allowing investigations of the time-to-time changes in the velopharyngeal structures. Thai subjects had a significantly longer hard palate and produced shorter consonant than Japanese subjects. The velum of the Thai participants showed significant thickening during consonant production and their retroglossal space was significantly wider at rest, whereas the dimensional change during task performance was similar in the two populations. The 3 T MRI movie method can be used to investigate velopharyngeal function and diagnose velopharyngeal insufficiency. The racial differences may include differences in skeletal patterns and soft-tissue morphology that result in functional differences for the affected structures.
Functional subdivision of group-ICA results of fMRI data collected during cinema viewing.
Pamilo, Siina; Malinen, Sanna; Hlushchuk, Yevhen; Seppä, Mika; Tikka, Pia; Hari, Riitta
2012-01-01
Independent component analysis (ICA) can unravel functional brain networks from functional magnetic resonance imaging (fMRI) data. The number of the estimated components affects both the spatial pattern of the identified networks and their time-course estimates. Here group-ICA was applied at four dimensionalities (10, 20, 40, and 58 components) to fMRI data collected from 15 subjects who viewed a 15-min silent film ("At land" by Maya Deren). We focused on the dorsal attention network, the default-mode network, and the sensorimotor network. The lowest dimensionalities demonstrated most prominent activity within the dorsal attention network, combined with the visual areas, and in the default-mode network; the sensorimotor network only appeared with ICA comprising at least 20 components. The results suggest that even very low-dimensional ICA can unravel the most prominent functionally-connected brain networks. However, increasing the number of components gives a more detailed picture and functionally feasible subdivision of the major networks. These results improve our understanding of the hierarchical subdivision of brain networks during viewing of a movie that provides continuous stimulation embedded in an attention-directing narrative.
ERIC Educational Resources Information Center
Liu, Hongyan; Hu, Zhiguo; Peng, Danling; Yang, Yanhui; Li, Kuncheng
2010-01-01
The brain activity associated with automatic semantic priming has been extensively studied. Thus far there has been no prior study that directly contrasts the neural mechanisms of semantic and affective priming. The present study employed event-related fMRI to examine the common and distinct neural bases underlying conceptual and affective priming…
Moriguchi, Yoshiya; Negreira, Alyson; Weierich, Mariann; Dautoff, Rebecca; Dickerson, Bradford C.; Wright, Christopher I.; Barrett, Lisa Feldman
2011-01-01
Emerging evidence indicates that stimulus novelty is affectively potent and reliably engages the amygdala and other portions of the affective workspace in the brain. Using fMRI, we examined whether novel stimuli remain affectively salient across the lifespan, and therefore, whether novelty processing—a potentially survival-relevant function—is preserved with aging. Nineteen young and 22 older healthy adults were scanned during observing novel and familiar affective pictures while estimating their own subjectively experienced aroused levels. We investigated age-related difference of magnitude of activation, hemodynamic time course, and functional connectivity of BOLD responses in the amygdala. Although there were no age-related differences in the peak response of the amygdala to novelty, older individuals showed a narrower, sharper (i.e., “peakier”) hemodynamic time course in response to novel stimuli, as well as decreased connectivity between the left amygdala and the affective areas including orbito-frontal regions. These findings have relevance for understanding age-related differences in memory and affect regulation. PMID:20521849
MRI evaluation and functional assessment of brain injury after hypoxic ischemia in neonatal mice.
Adén, Ulrika; Dahlberg, Viktoria; Fredholm, Bertil B; Lai, Li-Ju; Chen, Zhengguan; Bjelke, Börje
2002-05-01
Severe perinatal asphyxia is an important cause of brain injury in the newborn infant. We examined early events after hypoxic ischemia (HI) in the 7-day-old mouse brain by MRI and related them to long-term functional effects and histopathology in the same animals at 4 to 5 weeks of age. HI was induced in 7-day-old CD1 mice by exposure to 8% oxygen for 30 minutes after occlusion of the left common carotid artery. The resulting unilateral focal lesion was evaluated in vivo by MRI (T2 maps and apparent diffusion coefficient maps) at 3, 6, and 24 hours and 5 days after hypoxia. Locomotion and sensorimotor function were analyzed after 3 weeks. Four weeks after HI, the mice were killed, and cresyl violet-stained brain sections were examined morphologically. A decrease in apparent diffusion coefficient values in cortex on the affected side was found at 3 hours after HI. T2 values were significantly increased after 6 hours and remained so for 5 days. Maximal size of the lesion was attained at 3 to 6 hours after HI and declined thereafter. Animals with MRI-detected lesions had decreased forward locomotion, performed worse than controls in the beam-walking test, and showed a unilateral hypotrophy in the cresyl violet-stained brain sections 4 weeks later. The temporal progression of the damage after HI in 7-day-old mice differs from that of the adult brain as judged by MRI. The early lesions detected by MRI were related to functional impairments for these mice in near-adult life.
R6/2 Huntington's disease mice develop early and progressive abnormal brain metabolism and seizures.
Cepeda-Prado, Efrain; Popp, Susanna; Khan, Usman; Stefanov, Dimitre; Rodríguez, Jorge; Menalled, Liliana B; Dow-Edwards, Diana; Small, Scott A; Moreno, Herman
2012-05-09
A hallmark feature of Huntington's disease pathology is the atrophy of brain regions including, but not limited to, the striatum. Though MRI studies have identified structural CNS changes in several Huntington's disease (HD) mouse models, the functional consequences of HD pathology during the progression of the disease have yet to be investigated using in vivo functional MRI (fMRI). To address this issue, we first established the structural and functional MRI phenotype of juvenile HD mouse model R6/2 at early and advanced stages of disease. Significantly higher fMRI signals [relative cerebral blood volumes (rCBVs)] and atrophy were observed in both age groups in specific brain regions. Next, fMRI results were correlated with electrophysiological analysis, which showed abnormal increases in neuronal activity in affected brain regions, thus identifying a mechanism accounting for the abnormal fMRI findings. [(14)C] 2-deoxyglucose maps to investigate patterns of glucose utilization were also generated. An interesting mismatch between increases in rCBV and decreases in glucose uptake was observed. Finally, we evaluated the sensitivity of this mouse line to audiogenic seizures early in the disease course. We found that R6/2 mice had an increased susceptibility to develop seizures. Together, these findings identified seizure activity in R6/2 mice and show that neuroimaging measures sensitive to oxygen metabolism can be used as in vivo biomarkers, preceding the onset of an overt behavioral phenotype. Since fMRI-rCBV can also be obtained in patients, we propose that it may serve as a translational tool to evaluate therapeutic responses in humans and HD mouse models.
Optimizing Within-Subject Experimental Designs for jICA of Multi-Channel ERP and fMRI
Mangalathu-Arumana, Jain; Liebenthal, Einat; Beardsley, Scott A.
2018-01-01
Joint independent component analysis (jICA) can be applied within subject for fusion of multi-channel event-related potentials (ERP) and functional magnetic resonance imaging (fMRI), to measure brain function at high spatiotemporal resolution (Mangalathu-Arumana et al., 2012). However, the impact of experimental design choices on jICA performance has not been systematically studied. Here, the sensitivity of jICA for recovering neural sources in individual data was evaluated as a function of imaging SNR, number of independent representations of the ERP/fMRI data, relationship between instantiations of the joint ERP/fMRI activity (linear, non-linear, uncoupled), and type of sources (varying parametrically and non-parametrically across representations of the data), using computer simulations. Neural sources were simulated with spatiotemporal and noise attributes derived from experimental data. The best performance, maximizing both cross-modal data fusion and the separation of brain sources, occurred with a moderate number of representations of the ERP/fMRI data (10–30), as in a mixed block/event related experimental design. Importantly, the type of relationship between instantiations of the ERP/fMRI activity, whether linear, non-linear or uncoupled, did not in itself impact jICA performance, and was accurately recovered in the common profiles (i.e., mixing coefficients). Thus, jICA provides an unbiased way to characterize the relationship between ERP and fMRI activity across brain regions, in individual data, rendering it potentially useful for characterizing pathological conditions in which neurovascular coupling is adversely affected. PMID:29410611
Genetic and Diagnostic Biomarker Development in ASD Toddlers Using Resting State Functional MRI
2015-09-01
8217 resting state networks in autism spectrum conditions. Soc Cogn Affect Neurosci . 2013;8(6):694- 701. 32. Washington SD, Gordon EM, Brar J, et al...plan of actions needed to achieve goals and milestones and we trained a new Neuroscience graduate student, Megan Kirchgessner, in my lab on fMRI...and milestone successfully as seen in the Report above. In addition, Dr. Courchesne recruited a Neuroscience graduate student, Megan Kirchgessner, to
Rey, Gwladys; Desseilles, Martin; Favre, Sophie; Dayer, Alexandre; Piguet, Camille; Aubry, Jean-Michel; Vuilleumier, Patrik
2014-08-30
We used functional magnetic resonance imaging (fMRI) to examine affective control longitudinally in a group of patients with bipolar disorder (BD). Participants comprised 12 BD patients who underwent repeated fMRI scans in euthymic (n=11), depressed (n=9), or hypomanic (n=9) states, and were compared with 12 age-matched healthy controls. During fMRI, participants performed an emotional face-word interference task with either low or high attentional demands. Relative to healthy controls, patients showed decreased activation of the cognitive control network normally associated with conflict processing, more severely during hypomania than during depression, but regardless of level of task demand in both cases. During euthymia, a decreased response to conflict was observed only during the high load condition. Additionally, unlike healthy participants, patients exhibited deactivation in several key areas in response to emotion-conflict trials - including the rostral anterior cingulate cortex during euthymia, the hippocampus during depression, and the posterior cingulate cortex during hypomania. Our results indicate that the ability of BD patients to recruit control networks when processing affective conflict, and the abnormal suppression of activity in distinct components of the default mode network, may depend on their current clinical state and attentional demand. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Cai, Rong-Lin; Shen, Guo-Ming; Wang, Hao; Guan, Yuan-Yuan
2018-01-01
Functional magnetic resonance imaging (fMRI) is a novel method for studying the changes of brain networks due to acupuncture treatment. In recent years, more and more studies have focused on the brain functional connectivity network of acupuncture stimulation. To offer an overview of the different influences of acupuncture on the brain functional connectivity network from studies using resting-state fMRI. The authors performed a systematic search according to PRISMA guidelines. The database PubMed was searched from January 1, 2006 to December 31, 2016 with restriction to human studies in English language. Electronic searches were conducted in PubMed using the keywords "acupuncture" and "neuroimaging" or "resting-state fMRI" or "functional connectivity". Selection of included articles, data extraction and methodological quality assessments were respectively conducted by two review authors. Forty-four resting-state fMRI studies were included in this systematic review according to inclusion criteria. Thirteen studies applied manual acupuncture vs. sham, four studies applied electro-acupuncture vs. sham, two studies also compared transcutaneous electrical acupoint stimulation vs. sham, and nine applied sham acupoint as control. Nineteen studies with a total number of 574 healthy subjects selected to perform fMRI only considered healthy adult volunteers. The brain functional connectivity of the patients had varying degrees of change. Compared with sham acupuncture, verum acupuncture could increase default mode network and sensorimotor network connectivity with pain-, affective- and memory-related brain areas. It has significantly greater connectivity of genuine acupuncture between the periaqueductal gray, anterior cingulate cortex, left posterior cingulate cortex, right anterior insula, limbic/paralimbic and precuneus compared with sham acupuncture. Some research had also shown that acupuncture could adjust the limbic-paralimbic-neocortical network, brainstem, cerebellum, subcortical and hippocampus brain areas. It can be presumed that the functional connectivity network is closely related to the mechanism of acupuncture, and central integration plays a critical role in the acupuncture mechanism. Copyright © 2017 Shanghai Changhai Hospital. Published by Elsevier B.V. All rights reserved.
Jafri, Nazia F; Newitt, David C; Kornak, John; Esserman, Laura J; Joe, Bonnie N; Hylton, Nola M
2014-08-01
To evaluate optimal contrast kinetics thresholds for measuring functional tumor volume (FTV) by breast magnetic resonance imaging (MRI) for assessment of recurrence-free survival (RFS). In this Institutional Review Board (IRB)-approved retrospective study of 64 patients (ages 29-72, median age of 48.6) undergoing neoadjuvant chemotherapy (NACT) for breast cancer, all patients underwent pre-MRI1 and postchemotherapy MRI4 of the breast. Tumor was defined as voxels meeting thresholds for early percent enhancement (PEthresh) and early-to-late signal enhancement ratio (SERthresh); and FTV (PEthresh, SERthresh) by summing all voxels meeting threshold criteria and minimum connectivity requirements. Ranges of PEthresh from 50% to 220% and SERthresh from 0.0 to 2.0 were evaluated. A Cox proportional hazard model determined associations between change in FTV over treatment and RFS at different PE and SER thresholds. The plot of hazard ratios for change in FTV from MRI1 to MRI4 showed a broad peak with the maximum hazard ratio and highest significance occurring at PE threshold of 70% and SER threshold of 1.0 (hazard ratio = 8.71, 95% confidence interval 2.86-25.5, P < 0.00015), indicating optimal model fit. Enhancement thresholds affect the ability of MRI tumor volume to predict RFS. The value is robust over a wide range of thresholds, supporting the use of FTV as a biomarker. © 2013 Wiley Periodicals, Inc.
Li, Geng; Jack, Clifford R; Yang, Edward S
2006-11-01
To assess differences in brain responses between stroke patients and controls to tactile and electrical acupuncture stimulation using functional MRI (fMRI). A total of 12 male, clinically stable stroke patients with left side somatosensory deficits, and 12 age-matched male control subjects were studied. fMRI was performed with two different paradigms; namely, tactile stimuli and electrical stimulation at acupuncture points LI4 and LI11 on the affected side of the body. fMRI data were analyzed using SPM99. Tactile stimulation in both patients and controls produced significant activation in primary and secondary sensory and motor cortical areas and cerebellum. Greater activation was present in patients than controls in the somatosensory cortex with both the tactile task and the acupuncture point (acupoint) stimulation. Activation was greater during the tactile task than the acupuncture stimulation in patients and normal controls. Differences observed between patients and controls on both tasks may indicate compensatory over recruitment of neocortical areas involved in somatosensory perception in the stroke patients. The observed differences between patients and controls on the acupoint stimulation task may also indicate that stimulation of acupoints used therapeutically to enhance recovery from stroke, selectively activates areas thought to be involved in mediating recovery from stroke via functional plasticity. fMRI of acupoint stimulation may illustrate the functional substrate of the therapeutically beneficial effect of acupuncture in stroke rehabilitation. Copyright (c) 2006 Wiley-Liss, Inc.
Fersten, Ewa; Jakuciński, Maciej; Kuliński, Radosław; Koziara, Henryk; Mroziak, Barbara; Nauman, Paweł
2011-01-01
Due to the complex and extended cerebral organization of language functions, the brain regions crucial for speech and language, i.e. eloquent areas, have to be affected by neurooncological surgery. One of the techniques that may be helpful in pre-operative planning of the extent of tumour removal and estimating possible complications seems to be functional magnetic resonance imaging (fMRI). The aim of the study was to develop valid procedures for neuropsychological assessment of various language functions visualisable by fMRI in healthy individuals. In this fMRI study, 10 healthy (with no CNS pathology), right-handed volunteers aged 25-35 were examined using four tasks designed to measure different language functions, and one for short-term memory assessment. A 1.5-T MRI scanner performing ultrafast functional (EPI) sequences with 4-mm slice thickness and 1-mm interslice gap was used to detect the BOLD response to stimuli present-ed in a block design (30-second alternating blocks of activity and rest). The analyses used the SPM software running in a MATLAB environment, and the obtained data were interpreted by means of colour-coded maps superimposed on structural brain scans. For each of the tasks developed for particular language functions, a different area of increased neuronal activity was found. The differential localization of function-related neuronal activity seems interesting and the research worth continuing, since verbal communication failure may result from impairment of any of various language functions, and studies reported in the literature seem to focus on verbal expression only.
Maggioni, Eleonora; Tana, Maria Gabriella; Arrigoni, Filippo; Zucca, Claudio; Bianchi, Anna Maria
2014-05-15
Functional Magnetic Resonance Imaging (fMRI) is used for exploring brain functionality, and recently it was applied for mapping the brain connection patterns. To give a meaningful neurobiological interpretation to the connectivity network, it is fundamental to properly define the network framework. In particular, the choice of the network nodes may affect the final connectivity results and the consequent interpretation. We introduce a novel method for the intra subject topological characterization of the nodes of fMRI brain networks, based on a whole brain parcellation scheme. The proposed whole brain parcellation algorithm divides the brain into clusters that are homogeneous from the anatomical and functional point of view, each of which constitutes a node. The functional parcellation described is based on the Tononi's cluster index, which measures instantaneous correlation in terms of intrinsic and extrinsic statistical dependencies. The method performance and reliability were first tested on simulated data, then on a real fMRI dataset acquired on healthy subjects during visual stimulation. Finally, the proposed algorithm was applied to epileptic patients' fMRI data recorded during seizures, to verify its usefulness as preparatory step for effective connectivity analysis. For each patient, the nodes of the network involved in ictal activity were defined according to the proposed parcellation scheme and Granger Causality Analysis (GCA) was applied to infer effective connectivity. We showed that the algorithm 1) performed well on simulated data, 2) was able to produce reliable inter subjects results and 3) led to a detailed definition of the effective connectivity pattern. Copyright © 2014 Elsevier B.V. All rights reserved.
Satterthwaite, Theodore D.; Elliott, Mark A.; Gerraty, Raphael T.; Ruparel, Kosha; Loughead, James; Calkins, Monica E.; Eickhoff, Simon B.; Hakonarson, Hakon; Gur, Ruben C.; Gur, Raquel E.; Wolf, Daniel H.
2013-01-01
Several recent reports in large, independent samples have demonstrated the influence of motion artifact on resting-state functional connectivity MRI (rsfc-MRI). Standard rsfc-MRI preprocessing typically includes regression of confounding signals and band-pass filtering. However, substantial heterogeneity exists in how these techniques are implemented across studies, and no prior study has examined the effect of differing approaches for the control of motion-induced artifacts. To better understand how in-scanner head motion affects rsfc-MRI data, we describe the spatial, temporal, and spectral characteristics of motion artifacts in a sample of 348 adolescents. Analyses utilize a novel approach for describing head motion on a voxelwise basis. Next, we systematically evaluate the efficacy of a range of confound regression and filtering techniques for the control of motion-induced artifacts. Results reveal that the effectiveness of preprocessing procedures on the control of motion is heterogeneous, and that improved preprocessing provides a substantial benefit beyond typical procedures. These results demonstrate that the effect of motion on rsfc-MRI can be substantially attenuated through improved preprocessing procedures, but not completely removed. PMID:22926292
Magnetic resonance in studies of glaucoma
Fiedorowicz, Michał; Dyda, Wojciech; Rejdak, Robert; Grieb, Paweł
2011-01-01
Summary Glaucoma is the second leading cause of blindness. It affects retinal ganglion cells and the optic nerve. However, there is emerging evidence that glaucoma also affects other components of the visual pathway and visual cortex. There is a need to employ new methods of in vivo brain evaluation to characterize these changes. Magnetic resonance (MR) techniques are well suited for this purpose. We review data on the MR evaluation of the visual pathway and the use of MR techniques in the study of glaucoma, both in humans and in animal models. These studies demonstrated decreases in optic nerve diameter, localized white matter loss and decrease in visual cortex density. Studies on rats employing manganese-enhanced MRI showed that axonal transport in the optic nerve is affected. Diffusion tensor MRI revealed signs of degeneration of the optic pathway. Functional MRI showed decreased response of the visual cortex after stimulation of the glaucomatous eye. Magnetic resonance spectroscopy demonstrated changes in metabolite levels in the visual cortex in a rat model of glaucoma, although not in glaucoma patients. Further applications of MR techniques in studies of glaucomatous brains are indicated. PMID:21959626
4D MRI of polycystic kidneys from rapamycin-treated Glis3-deficient mice
Xie, Luke; Qi, Yi; Subashi, Ergys; Liao, Grace; Miller DeGraff, Laura; Jetten, Anton M.; Johnson, G. Allan
2015-01-01
Polycystic kidney disease (PKD) is a life-threatening disease that leads to a grotesque enlargement of the kidney and significant lose of function. Several imaging studies with MRI have demonstrated that cyst size in polycystic kidneys can determine disease severity and progression. In the present study, we found that while kidney volume and cyst volume decreased with drug treatment, renal function did not improve with treatment. Here, we applied dynamic contrast-enhanced MRI to study PKD in a Glis3-deficient mouse model. Cysts from this model have a wide range of sizes and develop at an early age. To capture this crucial stage and assess cysts in detail, we imaged during early development (3 to 17 weeks) and applied high spatiotemporal resolution MRI (125×125×125 cubic microns every 7.7 seconds). A drug treatment with rapamycin (also known as sirolimus) was applied to determine whether disease progression could be halted. The effect and synergy (interaction) of aging and treatment were evaluated using an analysis of variance (ANOVA). Structural measurements including kidney volume, cyst volume, and cyst-kidney volume ratio changed significantly with age. Drug treatment significantly decreased these metrics. Functional measurements of time-to-peak (TTP) mean and TTP variance were determined. TTP mean did not change with age, while TTP variance increased with age. The treatment of rapamycin generally did not affect these functional metrics. Synergistic effects of treatment and age were not found for any measurements. Together, the size and volume ratio of cysts decreased with drug treatment, while renal function remained the same. Quantifying renal structure and function with MRI can comprehensively assess the pathophysiology of PKD and response to treatment. PMID:25810360
Niesters, Marieke; Sitsen, Elske; Oudejans, Linda; Vuyk, Jaap; Aarts, Leon P H J; Rombouts, Serge A R B; de Rover, Mischa; Khalili-Mahani, Najmeh; Dahan, Albert
2014-08-01
Patients may perceive paradoxical heat sensation during spinal anesthesia. This could be due to deafferentation-related functional changes at cortical, subcortical, or spinal levels. In the current study, the effect of spinal deafferentation on sensory (pain) sensitivity was studied and linked to whole-brain functional connectivity as assessed by resting-state functional magnetic resonance imaging (RS-fMRI) imaging. Deafferentation was induced by sham or spinal anesthesia (15 mg bupivacaine injected at L3-4) in 12 male volunteers. RS-fMRI brain connectivity was determined in relation to eight predefined and seven thalamic resting-state networks (RSNs) and measured before, and 1 and 2 h after spinal/sham injection. To measure the effect of deafferentation on pain sensitivity, responses to heat pain were measured at 15-min intervals on nondeafferented skin and correlated to RS-fMRI connectivity data. Spinal anesthesia altered functional brain connectivity within brain regions involved in the sensory discriminative (i.e., pain intensity related) and affective dimensions of pain perception in relation to somatosensory and thalamic RSNs. A significant enhancement of pain sensitivity on nondeafferented skin was observed after spinal anesthesia compared to sham (area-under-the-curve [mean (SEM)]: 190.4 [33.8] versus 13.7 [7.2]; p<0.001), which significantly correlated to functional connectivity changes observed within the thalamus in relation to the thalamo-prefrontal network, and in the anterior cingulate cortex and insula in relation to the thalamo-parietal network. Enhanced pain sensitivity from spinal deafferentation correlated with functional connectivity changes within brain regions involved in affective and sensory pain processing and areas involved in descending control of pain.
Real-time motion analytics during brain MRI improve data quality and reduce costs.
Dosenbach, Nico U F; Koller, Jonathan M; Earl, Eric A; Miranda-Dominguez, Oscar; Klein, Rachel L; Van, Andrew N; Snyder, Abraham Z; Nagel, Bonnie J; Nigg, Joel T; Nguyen, Annie L; Wesevich, Victoria; Greene, Deanna J; Fair, Damien A
2017-11-01
Head motion systematically distorts clinical and research MRI data. Motion artifacts have biased findings from many structural and functional brain MRI studies. An effective way to remove motion artifacts is to exclude MRI data frames affected by head motion. However, such post-hoc frame censoring can lead to data loss rates of 50% or more in our pediatric patient cohorts. Hence, many scanner operators collect additional 'buffer data', an expensive practice that, by itself, does not guarantee sufficient high-quality MRI data for a given participant. Therefore, we developed an easy-to-setup, easy-to-use Framewise Integrated Real-time MRI Monitoring (FIRMM) software suite that provides scanner operators with head motion analytics in real-time, allowing them to scan each subject until the desired amount of low-movement data has been collected. Our analyses show that using FIRMM to identify the ideal scan time for each person can reduce total brain MRI scan times and associated costs by 50% or more. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Hargreaves, Brian
2012-01-01
Gradient echo sequences are widely used in magnetic resonance imaging (MRI) for numerous applications ranging from angiography to perfusion to functional MRI. Compared with spin-echo techniques, the very short repetition times of gradient-echo methods enable very rapid 2D and 3D imaging, but also lead to complicated “steady states.” Signal and contrast behavior can be described graphically and mathematically, and depends strongly on the type of spoiling: fully balanced (no spoiling), gradient spoiling, or RF-spoiling. These spoiling options trade off between high signal and pure T1 contrast while the flip angle also affects image contrast in all cases, both of which can be demonstrated theoretically and in image examples. As with spin-echo sequences, magnetization preparation can be added to gradient-echo sequences to alter image contrast. Gradient echo sequences are widely used for numerous applications such as 3D perfusion imaging, functional MRI, cardiac imaging and MR angiography. PMID:23097185
De Martin, Elena; Duran, Dunja; Ghielmetti, Francesco; Visani, Elisa; Aquino, Domenico; Marchetti, Marcello; Sebastiano, Davide Rossi; Cusumano, Davide; Bruzzone, Maria Grazia; Panzica, Ferruccio; Fariselli, Laura
2017-12-01
Magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) provide noninvasive localization of eloquent brain areas for presurgical planning. The aim of this study is the integration of MEG and fMRI maps into a CyberKnife (CK) system to optimize dose planning. Four patients with brain metastases in the motor area underwent functional imaging study of the hand motor cortex before radiosurgery. MEG data were acquired during a visually cued hand motor task. Motor activations were identified also using an fMRI block-designed paradigm. MEG and fMRI maps were then integrated into a CK system and contoured as organs at risk for treatment planning optimization. The integration of fMRI data into the CK system was achieved for all patients by means of a standardized protocol. We also implemented an ad hoc pipeline to convert the MEG signal into a DICOM standard, to make sure that it was readable by our CK treatment planning system. Inclusion of the activation areas into the optimization plan allowed the creation of treatment plans that reduced the irradiation of the motor cortex yet not affecting the brain peripheral dose. The availability of advanced neuroimaging techniques is playing an increasingly important role in radiosurgical planning strategy. We successfully imported MEG and fMRI activations into a CK system. This additional information can improve dose sparing of eloquent areas, allowing a more comprehensive investigation of the related dose-volume constraints that in theory could translate into a gain in tumor local control, and a reduction of neurological complications. Copyright © 2017 Elsevier Inc. All rights reserved.
Johnson, Sterling C; Ries, Michele L; Hess, Timothy M; Carlsson, Cynthia M; Gleason, Carey E; Alexander, Andrew L; Rowley, Howard A; Asthana, Sanjay; Sager, Mark A
2007-10-01
Asymptomatic middle-aged adult children of patients with Alzheimer disease (AD) recently were found to exhibit functional magnetic resonance imaging (fMRI) deficits in the mesial temporal lobe during an encoding task. Whether this effect will be observed on other fMRI tasks is yet unknown. This study examines the neural substrates of self-appraisal (SA) in persons at risk for AD. Accurate appraisal of deficits is a problem for many patients with AD, and prior fMRI studies of healthy young adults indicate that brain areas vulnerable to AD such as the anterior mesial temporal lobe and posterior cingulate are involved during SA tasks. To determine whether parental family history of AD (hereafter referred to as FH) or presence of the epsilon4 allele of the apolipoprotein E gene (APOE4) exerts independent effects on brain function during SA. Cross-sectional factorial design in which APOE4 status (present vs absent) was one factor and FH was the other. All participants received cognitive testing, genotyping, and an fMRI task that required subjective SA decisions regarding trait adjective words in comparison with semantic decisions about the same words. An academic medical center with a research-dedicated 3.0-T MR imaging facility. Cognitively normal middle-aged adults (n = 110), 51 with an FH and 59 without an FH. Blood oxygen-dependent contrast measured using T2*-weighted echo-planar imaging. Parental family history of AD and APOE4 status interacted in the posterior cingulate and left superior and medial frontal regions. There were main effects of FH (FH negative > FH positive) in the left hippocampus and ventral posterior cingulate. There were no main effects of APOE genotype. Our results suggest that FH may affect brain function during subjective SA in regions commonly affected by AD. Although the participants in this study were asymptomatic and middle-aged, the findings suggest that there may be subtle alterations in brain function attributable to AD risk factors.
2010-10-01
facial trustworthiness; facial displays of anger) presented subliminally . Furthermore, the responsiveness of these regions to subliminal stimulation ...develop, or program the computerized stimulation paradigms for use during functional neuroimaging (i.e., MJT; BMAT; EFAT). These paradigms will be...programming began on the computerized functional MRI stimulation paradigms using e-prime software. • Quarter #2: Programming of all computerized functional
Sudre, Gustavo; Szekely, Eszter; Sharp, Wendy; Kasparek, Steven; Shaw, Philip
2017-10-31
We have a limited understanding of why many children with attention deficit hyperactivity disorder do not outgrow the disorder by adulthood. Around 20-30% retain the full syndrome as young adults, and about 50% show partial, rather than complete, remission. Here, to delineate the neurobiology of this variable outcome, we ask if the persistence of childhood symptoms into adulthood impacts on the brain's functional connectivity. We studied 205 participants followed clinically since childhood. In early adulthood, participants underwent magnetoencephalography (MEG) to measure neuronal activity directly and functional MRI (fMRI) to measure hemodynamic activity during a task-free period (the "resting state"). We found that symptoms of inattention persisting into adulthood were associated with disrupted patterns of typical functional connectivity in both MEG and fMRI. Specifically, those with persistent inattention lost the typical balance of connections within the default mode network (DMN; prominent during introspective thought) and connections between this network and those supporting attention and cognitive control. By contrast, adults whose childhood inattentive symptoms had resolved did not differ significantly from their never-affected peers, both hemodynamically and electrophysiologically. The anomalies in functional connectivity tied to clinically significant inattention centered on midline regions of the DMN in both MEG and fMRI, boosting confidence in a possible pathophysiological role. The findings suggest that the clinical course of this common childhood onset disorder impacts the functional connectivity of the adult brain. Published under the PNAS license.
James, G. Andrew; Lu, Zhong-Lin; VanMeter, John W.; Sathian, K.; Hu, Xiaoping P.; Butler, Andrew J.
2013-01-01
Background A promising paradigm in human neuroimaging is the study of slow (<0.1 Hz) spontaneous fluctuations in the hemodynamic response measured by functional magnetic resonance imaging (fMRI). Spontaneous activity (i.e., resting state) refers to activity that cannot be attributed to specific inputs or outputs, that is, activity intrinsically generated by the brain. Method This article presents pilot data examining neural connectivity in patients with poststroke hemiparesis before and after 3 weeks of upper extremity rehabilitation in the Accelerated Skill Acquisition Program (ASAP). Resting-state fMRI data acquired pre and post therapy were analyzed using an exploratory adaptation of structural equation modeling (SEM) to evaluate therapy-related changes in motor network effective connectivity. Results Each ASAP patient showed behavioral improvement. ASAP patients also showed increased influence of the affected hemisphere premotor cortex (a-PM) upon the unaffected hemisphere premotor cortex (u-PM) following therapy. The influence of a-PM on affected hemisphere primary motor cortex (a-M1) also increased with therapy for 3 of 5 patients, including those with greatest behavioral improvement. Conclusions Our findings suggest that network analyses of resting-state fMRI constitute promising tools for functional characterization of functional brain disorders, for intergroup comparisons, and potentially for assessing effective connectivity within single subjects; all of which have important implications for stroke rehabilitation. PMID:19740732
Bleyenheuft, Yannick; Dricot, Laurence; Gilis, Nathalie; Kuo, Hsing-Ching; Grandin, Cécile; Bleyenheuft, Corinne; Gordon, Andrew M; Friel, Kathleen M
2015-01-01
Intensive rehabilitation interventions have been shown to be efficacious in improving upper extremity function in children with unilateral spastic cerebral palsy (USCP). These interventions are based on motor learning principles and engage children in skillful movements. Improvements in upper extremity function are believed to be associated with neuroplastic changes. However, these neuroplastic changes have not been well-described in children with cerebral palsy, likely due to challenges in defining and implementing the optimal tools and tests in children. Here we documented the implementation of three different neurological assessments (diffusion tensor imaging-DTI, transcranial magnetic stimulation-TMS and functional magnetic resonance imaging-fMRI) before and after a bimanual intensive treatment (HABIT-ILE) in two children with USCP presenting differential corticospinal developmental reorganization (ipsilateral and contralateral). The aim of the study was to capture neurophysiological changes and to document the complementary relationship between these measures, the potential measurable changes and the feasibility of applying these techniques in children with USCP. Independent of cortical reorganization, both children showed increases in activation and size of the motor areas controlling the affected hand, quantified with different techniques. In addition, fMRI provided additional unexpected changes in the reward circuit while using the affected hand. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Park, Si-Woon; Butler, Andrew J.; Cavalheiro, Vanessa; Alberts, Jay L.; Wolf, Steven L.
2013-01-01
The authors examined serial changes in optical topography in a stroke patient performing a functional task, as well as clinical and physiologic measures while undergoing constraint-induced therapy (CIT). A 73-year-old right hemiparetic patient, who had a subcortical stroke 4 months previously, received 2 weeks of CIT. During the therapy, daily optical topography imaging using near-infrared light was measured serially while the participant performed a functional key-turning task. Clinical outcome measures included the Wolf Motor Function Test (WMFT), Motor Activity Log (MAL), and functional key grip test. Transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) were also used to map cortical areas and hemodynamic brain responses, respectively. Optical topography measurement showed an overall decrease in oxy-hemoglobin concentration in both hemispheres as therapy progressed and the laterality index increased toward the contralateral hemisphere. An increased TMS motor map area was observed in the contralateral cortex following treatment. Posttreatment fMRI showed bilateral primary motor cortex activation, although slightly greater in the contralateral hemisphere, during affected hand movement. Clinical scores revealed marked improvement in functional activities. In one patient who suffered a stroke, 2 weeks of CIT led to improved function and cortical reorganization in the hemisphere contralateral to the affected hand. PMID:15228805
Functional Subdivision of Group-ICA Results of fMRI Data Collected during Cinema Viewing
Pamilo, Siina; Malinen, Sanna; Hlushchuk, Yevhen; Seppä, Mika; Tikka, Pia; Hari, Riitta
2012-01-01
Independent component analysis (ICA) can unravel functional brain networks from functional magnetic resonance imaging (fMRI) data. The number of the estimated components affects both the spatial pattern of the identified networks and their time-course estimates. Here group-ICA was applied at four dimensionalities (10, 20, 40, and 58 components) to fMRI data collected from 15 subjects who viewed a 15-min silent film (“At land” by Maya Deren). We focused on the dorsal attention network, the default-mode network, and the sensorimotor network. The lowest dimensionalities demonstrated most prominent activity within the dorsal attention network, combined with the visual areas, and in the default-mode network; the sensorimotor network only appeared with ICA comprising at least 20 components. The results suggest that even very low-dimensional ICA can unravel the most prominent functionally-connected brain networks. However, increasing the number of components gives a more detailed picture and functionally feasible subdivision of the major networks. These results improve our understanding of the hierarchical subdivision of brain networks during viewing of a movie that provides continuous stimulation embedded in an attention-directing narrative. PMID:22860044
Neumann, Dawn; McDonald, Brenna C; West, John; Keiski, Michelle A; Wang, Yang
2016-06-01
The neurobiological mechanisms that underlie facial affect recognition deficits after traumatic brain injury (TBI) have not yet been identified. Using functional magnetic resonance imaging (fMRI), study aims were to 1) determine if there are differences in brain activation during facial affect processing in people with TBI who have facial affect recognition impairments (TBI-I) relative to people with TBI and healthy controls who do not have facial affect recognition impairments (TBI-N and HC, respectively); and 2) identify relationships between neural activity and facial affect recognition performance. A facial affect recognition screening task performed outside the scanner was used to determine group classification; TBI patients who performed greater than one standard deviation below normal performance scores were classified as TBI-I, while TBI patients with normal scores were classified as TBI-N. An fMRI facial recognition paradigm was then performed within the 3T environment. Results from 35 participants are reported (TBI-I = 11, TBI-N = 12, and HC = 12). For the fMRI task, TBI-I and TBI-N groups scored significantly lower than the HC group. Blood oxygenation level-dependent (BOLD) signals for facial affect recognition compared to a baseline condition of viewing a scrambled face, revealed lower neural activation in the right fusiform gyrus (FG) in the TBI-I group than the HC group. Right fusiform gyrus activity correlated with accuracy on the facial affect recognition tasks (both within and outside the scanner). Decreased FG activity suggests facial affect recognition deficits after TBI may be the result of impaired holistic face processing. Future directions and clinical implications are discussed.
Forbes, Erika E; Ryan, Neal D; Phillips, Mary L; Manuck, Stephen B; Worthman, Carol M; Moyles, Donna L; Tarr, Jill A; Sciarrillo, Samantha R; Dahl, Ronald E
2010-02-01
Changes in reward-related behavior are an important component of normal adolescent affective development. Understanding the neural underpinnings of these normative changes creates a foundation for investigating adolescence as a period of vulnerability to affective disorders, substance use disorders, and health problems. Studies of reward-related brain function have revealed conflicting findings regarding developmental change in the reactivity of the striatum and medial prefrontal cortex (mPFC) and have not considered puberty. The current study focused on puberty-specific changes in brain function and their association with mood. A sample of 77 healthy adolescents (26 pre-/early pubertal, 51 mid-/late pubertal) recruited in a narrow age range (mean = 11.94 years, SD = 0.75) were assessed for sexual maturation and circulating testosterone, completed a functional magnetic resonance imaging (fMRI) guessing task with monetary reward, and underwent experience sampling of mood in natural environments. For comparison, 19 healthy adults completed the fMRI assessment. Adolescents with more advanced pubertal maturation exhibited less striatal and more mPFC reactivity during reward outcome than similarly aged adolescents with less advanced maturation. Testosterone was positively correlated with striatal reactivity in boys during reward anticipation and negatively correlated with striatal reactivity in girls and boys during reward outcome. Striatal reactivity was positively correlated with real-world subjective positive affect and negatively correlated with depressive symptoms. mPFC reactivity was positively correlated with depressive symptoms. Reward-related brain function changes with puberty and is associated with adolescents' positive affect and depressive symptoms. Increased reward-seeking behavior at this developmental point could serve to compensate for these changes.
The effects of alcohol on the nonhuman primate brain: a network science approach to neuroimaging.
Telesford, Qawi K; Laurienti, Paul J; Friedman, David P; Kraft, Robert A; Daunais, James B
2013-11-01
Animal studies have long been an important tool for basic research as they offer a degree of control often lacking in clinical studies. Of particular value is the use of nonhuman primates (NHPs) for neuroimaging studies. Currently, studies have been published using functional magnetic resonance imaging (fMRI) to understand the default-mode network in the NHP brain. Network science provides an alternative approach to neuroimaging allowing for evaluation of whole-brain connectivity. In this study, we used network science to build NHP brain networks from fMRI data to understand the basic functional organization of the NHP brain. We also explored how the brain network is affected following an acute ethanol (EtOH) pharmacological challenge. Baseline resting-state fMRI was acquired in an adult male rhesus macaque (n = 1) and a cohort of vervet monkeys (n = 10). A follow-up scan was conducted in the rhesus macaque to assess network variability and to assess the effects of an acute EtOH challenge on the brain network. The most connected regions in the resting-state networks were similar across species and matched regions identified as the default-mode network in previous NHP fMRI studies. Under an acute EtOH challenge, the functional organization of the brain was significantly impacted. Network science offers a great opportunity to understand the brain as a complex system and how pharmacological conditions can affect the system globally. These models are sensitive to changes in the brain and may prove to be a valuable tool in long-term studies on alcohol exposure. Copyright © 2013 by the Research Society on Alcoholism.
Naito, Shokichi; Tazaki, Hiromi; Okamoto, Tomoko; Takeuchi, Kazuhiro; Kan, Shinichi; Takeuchi, Yasuo; Kamata, Kouju
2017-01-01
Although gadolinium (Gd)-based contrast media have been found to be nephrotoxic, their nephrotoxicity, and the dependence of nephrotoxicity on chelate types, have not been assessed in patients with normal or mildly diminished renal failure. This prospective, randomized study compared the nephrotoxicity of low doses of the nonionic Gd-based contrast medium gadodiamide (Omniscan®) and the ionic Gd-based contrast medium gadopentetate (Magnevist®) in patients with serum creatinine < 1.6 mg/dL. Patients aged 20 to 80 years, weighing 45 to 70 kg and with normal or < 1.6 mg/dL Serum-creatinine in the 3 months prior to undergoing magnetic resonance imaging (MRI) of brain, were enrolled. Patients were randomized to receive 0.1 mol/kg gadodiamide or gadopentetate. Serum-creatinine, serum cystatin-C, estimated glomerular filtration rate (eGFR) using the Modification of Diet in Renal Disease (MDRD) formula, and estimated creatinine clearance rate (eCCr) using the Cockcroft-Gault formula were measured just before and 16-80 hr after MRI. Groups were compared statistically by Mann-Whitney U-tests and Wilcoxon signed-rank tests. There were no significant differences in clinical characteristics between the gadodiamide (n = 43) and gadopentetate (n = 59) groups. Serum-creatinine, eGFR and eCCr before and 16-80 hr after MRI did not differ significantly within either group or between the two groups. Serum cystatin-C was significantly higher 16-80 hr after than before MRI only in the gadodiamide group (0.79 ± 0.21 vs. 0.74 ± 0.14 mg/L, p = 0.028). The ionic contrast medium, gadopentetate, did not affect renal function during MRI, whereas the nonionic contrast medium, gadodiamide, affected renal function transiently.
Affective brain areas and sleep disordered breathing
Harper, Ronald M.; Kumar, Rajesh; Macey, Paul M.; Woo, Mary A.; Ogren, Jennifer A.
2014-01-01
The neural damage accompanying the hypoxia, reduced perfusion, and other consequences of sleep-disordered breathing found in obstructive sleep apnea, heart failure (HF), and congenital central hypoventilation syndrome (CCHS), appears in areas that serve multiple functions, including emotional drives to breathe, and involve systems that serve affective, cardiovascular, and breathing roles. The damage, assessed with structural magnetic resonance imaging (MRI) procedures, shows tissue loss or water content and diffusion changes indicative of injury, and impaired axonal integrity between structures; damage is preferentially unilateral. Functional MRI responses in affected areas also are time- or amplitude- distorted to ventilatory or autonomic challenges. Among the structures injured are the insular, cingulate, and ventral medial prefrontal cortices, as well as cerebellar deep nuclei and cortex, anterior hypothalamus, raphé, ventrolateral medulla, basal ganglia and, in CCHS, the locus coeruleus. Raphé and locus coeruleus injury may modify serotonergic and adrenergic modulation of upper airway and arousal characteristics. Since both axons and gray matter show injury, the consequences to function, especially to autonomic, cognitive, and mood regulation, are major. Several affected rostral sites, including the insular and cingulate cortices and hippocampus, mediate aspects of dyspnea, especially in CCHS, while others, including the anterior cingulate and thalamus, participate in initiation of inspiration after central breathing pauses, and the medullary injury can impair baroreflex and breathing control. The ancillary injury associated with sleep-disordered breathing to central structures can elicit multiple other distortions in cardiovascular, cognitive, and emotional functions in addition to effects on breathing regulation. PMID:24746053
Characteristics of Men Who Report Persistent Sexual Symptoms After Finasteride Use for Hair Loss.
Basaria, Shehzad; Jasuja, Ravi; Huang, Grace; Wharton, Whitney; Pan, Hong; Pencina, Karol; Li, Zhuoying; Travison, Thomas G; Bhawan, Jag; Gonthier, Renaud; Labrie, Fernand; Dury, Alain Y; Serra, Carlo; Papazian, Allen; O'Leary, Michael; Amr, Sami; Storer, Thomas W; Stern, Emily; Bhasin, Shalender
2016-12-01
Some men who use finasteride for hair loss report persistent sexual and other symptoms after discontinuing finasteride therapy. To determine whether these persistent symptoms after discontinuation of finasteride use are due to androgen deficiency, decreased peripheral androgen action, or persistent inhibition of steroid 5α-reductase (SRD5A) enzymes. Finasteride users, who reported persistent sexual symptoms after discontinuing finasteride (group 1); age-matched finasteride users who did not report sexual symptoms (group 2); and healthy men who had never used finasteride (group 3). Sexual function, mood, affect, cognition, hormone levels, body composition, functional magnetic resonance imaging (fMRI) response to sexually and affectively valenced stimuli, nucleotide sequences of androgen receptor (AR), SRD5A1, and SRD5A2; expression levels of androgen-dependent genes in skin. Academic medical center. Symptomatic finasteride users were similar in body composition, strength, and nucleotide sequences of AR, SRD5A1, and SRD5A2 genes to asymptomatic finasteride users and nonusers. Symptomatic finasteride users had impaired sexual function, higher depression scores, a more negative affectivity balance, and more cognitive complaints than men in groups 2 and 3 but had normal objectively assessed cognitive function. Testosterone, dihydrotestosterone, 5α-androstane-3α,17β-diol-glucuronide, testosterone to dihydrotestosterone and androsterone glucuronide to etiocholanolone glucuronide ratios, and markers of peripheral androgen action and expression levels of AR-dependent genes in skin did not differ among groups. fMRI blood oxygen level-dependent responses to erotic and nonerotic stimuli revealed abnormal function in brain circuitry linked to sexual arousal and major depression. We found no evidence of androgen deficiency, decreased peripheral androgen action, or persistent peripheral inhibition of SRD5A in men with persistent sexual symptoms after finasteride use. Symptomatic finasteride users revealed depressed mood and fMRI findings consistent with those observed in depression.
Characteristics of Men Who Report Persistent Sexual Symptoms After Finasteride Use for Hair Loss
Basaria, Shehzad; Jasuja, Ravi; Huang, Grace; Wharton, Whitney; Pan, Hong; Pencina, Karol; Li, Zhuoying; Travison, Thomas G.; Bhawan, Jag; Gonthier, Renaud; Labrie, Fernand; Dury, Alain Y.; Serra, Carlo; Papazian, Allen; O'Leary, Michael; Amr, Sami; Storer, Thomas W.; Stern, Emily
2016-01-01
Context: Some men who use finasteride for hair loss report persistent sexual and other symptoms after discontinuing finasteride therapy. Objective: To determine whether these persistent symptoms after discontinuation of finasteride use are due to androgen deficiency, decreased peripheral androgen action, or persistent inhibition of steroid 5α-reductase (SRD5A) enzymes. Participants: Finasteride users, who reported persistent sexual symptoms after discontinuing finasteride (group 1); age-matched finasteride users who did not report sexual symptoms (group 2); and healthy men who had never used finasteride (group 3). Outcomes: Sexual function, mood, affect, cognition, hormone levels, body composition, functional magnetic resonance imaging (fMRI) response to sexually and affectively valenced stimuli, nucleotide sequences of androgen receptor (AR), SRD5A1, and SRD5A2; expression levels of androgen-dependent genes in skin. Setting: Academic medical center. Results: Symptomatic finasteride users were similar in body composition, strength, and nucleotide sequences of AR, SRD5A1, and SRD5A2 genes to asymptomatic finasteride users and nonusers. Symptomatic finasteride users had impaired sexual function, higher depression scores, a more negative affectivity balance, and more cognitive complaints than men in groups 2 and 3 but had normal objectively assessed cognitive function. Testosterone, dihydrotestosterone, 5α-androstane-3α,17β-diol-glucuronide, testosterone to dihydrotestosterone and androsterone glucuronide to etiocholanolone glucuronide ratios, and markers of peripheral androgen action and expression levels of AR-dependent genes in skin did not differ among groups. fMRI blood oxygen level-dependent responses to erotic and nonerotic stimuli revealed abnormal function in brain circuitry linked to sexual arousal and major depression. Conclusions: We found no evidence of androgen deficiency, decreased peripheral androgen action, or persistent peripheral inhibition of SRD5A in men with persistent sexual symptoms after finasteride use. Symptomatic finasteride users revealed depressed mood and fMRI findings consistent with those observed in depression. PMID:27662439
Evaluation of the factors influencing brain language laterality in presurgical planning.
Batouli, Seyed Amir Hossein; Hasani, Nafiseh; Gheisari, Sara; Behzad, Ebrahim; Oghabian, Mohammad Ali
2016-10-01
Brain lesions cause functional deficits, and one treatment for this condition is lesion resection. In most cases, presurgical planning (PSP) and the information from laterality indices are necessary for maximum preservation of the critical functions after surgery. Language laterality index (LI) is reliably estimated using functional magnetic resonance imaging (fMRI); however, this measure is under the influence of some external factors. In this study, we investigated the influence of a number of factors on language LI, using data from 120 patients (mean age=35.65 (±13.4) years) who underwent fMRI for PSP. Using two proposed language tasks from our previous works, brain left hemisphere was showed to be dominant for the language function, although a higher LI was obtained using the "Word Generation" task, compared to the "Reverse Word Reading". In addition, decline of LIs with age, and lower LI when the lesion invaded brain language area were observed. Meanwhile, gender, lesion side (affected hemisphere), LI calculation strategy, and fMRI analysis Z-values did not statistically show any influences on the LIs. Although fMRI is widely used to estimate language LI, it is shown here that in order to present a reliable language LI and to correctly select the dominant hemisphere of the brain, the influence of external factors should be carefully considered. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Liu, Chao; Abu-Jamous, Basel; Brattico, Elvira; Nandi, Asoke K
2017-03-01
In the past decades, neuroimaging of humans has gained a position of status within neuroscience, and data-driven approaches and functional connectivity analyses of functional magnetic resonance imaging (fMRI) data are increasingly favored to depict the complex architecture of human brains. However, the reliability of these findings is jeopardized by too many analysis methods and sometimes too few samples used, which leads to discord among researchers. We propose a tunable consensus clustering paradigm that aims at overcoming the clustering methods selection problem as well as reliability issues in neuroimaging by means of first applying several analysis methods (three in this study) on multiple datasets and then integrating the clustering results. To validate the method, we applied it to a complex fMRI experiment involving affective processing of hundreds of music clips. We found that brain structures related to visual, reward, and auditory processing have intrinsic spatial patterns of coherent neuroactivity during affective processing. The comparisons between the results obtained from our method and those from each individual clustering algorithm demonstrate that our paradigm has notable advantages over traditional single clustering algorithms in being able to evidence robust connectivity patterns even with complex neuroimaging data involving a variety of stimuli and affective evaluations of them. The consensus clustering method is implemented in the R package "UNCLES" available on http://cran.r-project.org/web/packages/UNCLES/index.html .
Ageing differentially affects neural processing of different conflict types-an fMRI study.
Korsch, Margarethe; Frühholz, Sascha; Herrmann, Manfred
2014-01-01
Interference control and conflict resolution is affected by ageing. There is increasing evidence that ageing does not compromise interference control in general but rather shows distinctive effects on different components of interference control. Different conflict types, [e.g., stimulus-stimulus (S-S) or stimulus-response (S-R) conflicts] trigger different cognitive processes and thus activate different neural networks. In the present functional magnetic resonance imaging (fMRI) study, we used a combined Flanker and Stimulus Response Conflict (SRC) task to investigate the effect of ageing on S-S and S-R conflicts. Behavioral data analysis revealed larger SRC effects in elderly. fMRI Results show that both age groups recruited similar regions [caudate nucleus, cingulate gyrus and middle occipital gyrus (MOG)] during Flanker conflict processing. Furthermore, elderly show an additional activation pattern in parietal and frontal areas. In contrast, no common activation of both age groups was found in response to the SRC. These data suggest that ageing has distinctive effects on S-S and S-R conflicts.
Fink, Corby; Gaudet, Jeffrey M; Fox, Matthew S; Bhatt, Shashank; Viswanathan, Sowmya; Smith, Michael; Chin, Joseph; Foster, Paula J; Dekaban, Gregory A
2018-01-12
A 19 Fluorine ( 19 F) perfluorocarbon cell labeling agent, when employed with an appropriate cellular MRI protocol, allows for in vivo cell tracking. 19 F cellular MRI can be used to non-invasively assess the location and persistence of cell-based cancer vaccines and other cell-based therapies. This study was designed to determine the feasibility of labeling and tracking peripheral blood mononuclear cells (PBMC), a heterogeneous cell population. Under GMP-compliant conditions human PBMC were labeled with a 19 F-based MRI cell-labeling agent in a manner safe for autologous re-injection. Greater than 99% of PBMC labeled with the 19 F cell-labeling agent without affecting functionality or affecting viability. The 19 F-labeled PBMC were detected in vivo in a mouse model at the injection site and in a draining lymph node. A clinical cellular MR protocol was optimized for the detection of PBMC injected both at the surface of a porcine shank and at a depth of 1.2 cm, equivalent to depth of a human lymph node, using a dual 1 H/ 19 F dual switchable surface radio frequency coil. This study demonstrates it is feasible to label and track 19 F-labeled PBMC using clinical MRI protocols. Thus, 19 F cellular MRI represents a non-invasive imaging technique suitable to assess the effectiveness of cell-based cancer vaccines.
Grey matter abnormalities in methcathinone abusers with a Parkinsonian syndrome.
Juurmaa, Julius; Menke, Ricarda A L; Vila, Pierre; Müürsepp, Andreas; Tomberg, Tiiu; Ilves, Pilvi; Nigul, Mait; Johansen-Berg, Heidi; Donaghy, Michael; Stagg, Charlotte J; Stepens, Ainārs; Taba, Pille
2016-11-01
A permanent Parkinsonian syndrome occurs in intravenous abusers of the designer psychostimulant methcathinone (ephedrone). It is attributed to deposition of contaminant manganese, as reflected by characteristic globus pallidus hyperintensity on T1-weighted MRI. We have investigated brain structure and function in methcathinone abusers ( n = 12) compared to matched control subjects ( n = 12) using T1-weighted structural and resting-state functional MRI. Segmentation analysis revealed significant ( p < .05) subcortical grey matter atrophy in methcathinone abusers within putamen and thalamus bilaterally, and the left caudate nucleus. The volume of the caudate nuclei correlated inversely with duration of methcathinone abuse. Voxel-based morphometry showed patients to have significant grey matter loss ( p < .05) bilaterally in the putamina and caudate nucleus. Surface-based analysis demonstrated nine clusters of cerebral cortical thinning in methcathinone abusers, with relative sparing of prefrontal, parieto-occipital, and temporal regions. Resting-state functional MRI analysis showed increased functional connectivity within the motor network of patients ( p < .05), particularly within the right primary motor cortex. Taken together, these results suggest that the manganese exposure associated with prolonged methcathinone abuse results in widespread structural and functional changes affecting both subcortical and cortical grey matter and their connections. Underlying the distinctive movement disorder caused by methcathinone abuse, there is a more widespread pattern of brain involvement than is evident from the hyperintensity restricted to the basal ganglia as shown by T1-weighted structural MRI.
Fourie, Melike M; Thomas, Kevin G F; Amodio, David M; Warton, Christopher M R; Meintjes, Ernesta M
2014-01-01
Guilt, shame, and embarrassment are quintessential moral emotions with important regulatory functions for the individual and society. Moral emotions are, however, difficult to study with neuroimaging methods because their elicitation is more intricate than that of basic emotions. Here, using functional MRI (fMRI), we employed a novel social prejudice paradigm to examine specific brain regions associated with real-time moral emotion, focusing on guilt and related moral-negative emotions. The paradigm induced intense moral-negative emotion (primarily guilt) in 22 low-prejudice individuals through preprogrammed feedback indicating implicit prejudice against Black and disabled people. fMRI data indicated that this experience of moral-negative emotion was associated with increased activity in anterior paralimbic structures, including the anterior cingulate cortex (ACC) and anterior insula, in addition to areas associated with mentalizing, including the dorsomedial prefrontal cortex, posterior cingulate cortex, and precuneus. Of significance was prominent conflict-related activity in the supragenual ACC, which is consistent with theories proposing an association between acute guilt and behavioral inhibition. Finally, a significant negative association between self-reported guilt and neural activity in the pregenual ACC suggested a role of self-regulatory processes in response to moral-negative affect. These findings are consistent with the multifaceted self-regulatory functions of moral-negative emotions in social behavior.
An fMRI study of working memory in first-degree unaffected relatives of schizophrenia patients.
Meda, Shashwath A; Bhattarai, Manish; Morris, Nicholas A; Astur, Robert S; Calhoun, Vince D; Mathalon, Daniel H; Kiehl, Kent A; Pearlson, Godfrey D
2008-09-01
Identifying intermediate phenotypes of genetically complex psychiatric illnesses such as schizophrenia is important. First-degree relatives of persons with schizophrenia have increased genetic risk for the disorder and tend to show deficits on working memory (WM) tasks. An open question is the relationship between such behavioral endophenotypes and the corresponding brain activation patterns revealed during functional imaging. We measured task performance during a Sternberg WM task and used functional magnetic resonance imaging (fMRI) to assess whether 23 non-affected first-degree relatives showed altered performance and functional activation compared to 43 matched healthy controls. We predicted that a significant proportion of unaffected first-degree relatives would show either aberrant task performance and/or abnormal related fMRI blood oxygen level dependent (BOLD) patterns. While task performance in the relatives was not different than that of controls they were significantly slower in responding to probes., Schizophrenia relatives displayed reduced activation, most markedly in bilateral dorsolateral/ventrolateral (DLPFC/VLPFC) prefrontal and posterior parietal cortex when encoding stimuli and in bilateral DLPFC and parietal areas during response selection. Additionally, fMRI differences in both conditions were modulated by load, with a parametric increase in between-group differences with load in several key regions during encoding and an opposite effect during response selection.
Feldstein Ewing, Sarah W.; Sakhardande, Ashok; Blakemore, Sarah-Jayne
2014-01-01
Background A large proportion of adolescents drink alcohol, with many engaging in high-risk patterns of consumption, including binge drinking. Here, we systematically review and synthesize the existing empirical literature on how consuming alcohol affects the developing human brain in alcohol-using (AU) youth. Methods For this systematic review, we began by conducting a literature search using the PubMED database to identify all available peer-reviewed magnetic resonance imaging (MRI) and functional magnetic resonance imaging (fMRI) studies of AU adolescents (aged 19 and under). All studies were screened against a strict set of criteria designed to constrain the impact of confounding factors, such as co-occurring psychiatric conditions. Results Twenty-one studies (10 MRI and 11 fMRI) met the criteria for inclusion. A synthesis of the MRI studies suggested that overall, AU youth showed regional differences in brain structure as compared with non-AU youth, with smaller grey matter volumes and lower white matter integrity in relevant brain areas. In terms of fMRI outcomes, despite equivalent task performance between AU and non-AU youth, AU youth showed a broad pattern of lower task-relevant activation, and greater task-irrelevant activation. In addition, a pattern of gender differences was observed for brain structure and function, with particularly striking effects among AU females. Conclusions Alcohol consumption during adolescence was associated with significant differences in structure and function in the developing human brain. However, this is a nascent field, with several limiting factors (including small sample sizes, cross-sectional designs, presence of confounding factors) within many of the reviewed studies, meaning that results should be interpreted in light of the preliminary state of the field. Future longitudinal and large-scale studies are critical to replicate the existing findings, and to provide a more comprehensive and conclusive picture of the effect of alcohol consumption on the developing brain. PMID:26958467
Ewing, Sarah W Feldstein; Sakhardande, Ashok; Blakemore, Sarah-Jayne
2014-01-01
A large proportion of adolescents drink alcohol, with many engaging in high-risk patterns of consumption, including binge drinking. Here, we systematically review and synthesize the existing empirical literature on how consuming alcohol affects the developing human brain in alcohol-using (AU) youth. For this systematic review, we began by conducting a literature search using the PubMED database to identify all available peer-reviewed magnetic resonance imaging (MRI) and functional magnetic resonance imaging (fMRI) studies of AU adolescents (aged 19 and under). All studies were screened against a strict set of criteria designed to constrain the impact of confounding factors, such as co-occurring psychiatric conditions. Twenty-one studies (10 MRI and 11 fMRI) met the criteria for inclusion. A synthesis of the MRI studies suggested that overall, AU youth showed regional differences in brain structure as compared with non-AU youth, with smaller grey matter volumes and lower white matter integrity in relevant brain areas. In terms of fMRI outcomes, despite equivalent task performance between AU and non-AU youth, AU youth showed a broad pattern of lower task-relevant activation, and greater task-irrelevant activation. In addition, a pattern of gender differences was observed for brain structure and function, with particularly striking effects among AU females. Alcohol consumption during adolescence was associated with significant differences in structure and function in the developing human brain. However, this is a nascent field, with several limiting factors (including small sample sizes, cross-sectional designs, presence of confounding factors) within many of the reviewed studies, meaning that results should be interpreted in light of the preliminary state of the field. Future longitudinal and large-scale studies are critical to replicate the existing findings, and to provide a more comprehensive and conclusive picture of the effect of alcohol consumption on the developing brain.
Functional Connectivity of the Amygdala in Early Childhood Onset Depression
Luking, Katherine R.; Repovs, Grega; Belden, Andy C.; Gaffrey, Michael S.; Botteron, Kelly N.; Luby, Joan L.; Barch, Deanna M.
2011-01-01
Objective Adult major depressive disorder (MDD) is associated with reduced cortico-limbic functional connectivity thought to indicate decreased top-down control of emotion. However, it is unclear whether such connectivity alterations are also present in early childhood onset MDD. Method Fifty-one children ages 7–11 years, prospectively studied since preschool age, completed resting state fMRI and were assigned to four groups: 1) C-MDD (N=13) personal history of early childhood onset MDD; 2) M-MDD (N=11) a maternal history of affective disorders; 3) CM-MDD (N=13) both maternal and early childhood onset MDD or 4) CON (N=14) without either a personal or maternal history. We used seed-based resting state functional connectivity (rsfcMRI) analysis in an independent sample of adults to identify networks showing both positive (e.g., limbic regions) and negative (e.g., dorsal frontal/parietal regions) connectivity with the amygdala. These regions were then used in ROI based analyses of our child sample. Results We found a significant interaction between maternal affective disorder history and the child's MDD history for both positive and negative rsfcMRI networks. Specifically, when copared to CON, we found reduced connectivity between the amygdala and the “Negative Network” in children with C-MDD, M-MDD and CM-MDD. Children with either C-MDD or a maternal history of MDD (but not CM-MDD) displayed reduced connectivity between the amygdala and the “Positive Network”. Conclusions Our finding of an attenuated relationship between the amygdala, a region affected in MDD and involved in emotion processing, and cognitive control regions is consistent with a hypothesis of altered regulation of emotional processing in C-MDD suggesting developmental continuity of this alteration into early childhood. PMID:21961777
Behavior, neuropsychology and fMRI.
Bennett, Maxwell R; Hatton, Sean; Hermens, Daniel F; Lagopoulos, Jim
Cognitive neuroscientists in the late 20th century began the task of identifying the part(s) of the brain concerned with normal behavior as manifest in the psychological capacities as affective powers, reasoning, behaving purposively and the pursuit of goals, following introduction of the 'functional magnetic resonance imaging' (fMRI) method for identifying brain activity. For this research program to be successful two questions require satisfactory answers. First, as the fMRI method can currently only be used on stationary subjects, to what extent can neuropsychological tests applicable to such stationary subjects be correlated with normal behavior. Second, to what extent can correlations between the various neuropsychological tests on the one hand, and sites of brain activity determined with fMRI on the other, be regarded as established. The extent to which these questions have yet received satisfactory answers is reviewed, and suggestions made both for improving correlations of neuropsychological tests with behavior as well as with the results of fMRI-based observations. Copyright © 2016. Published by Elsevier Ltd.
Computer-Aided Detection of Prostate Cancer with MRI: Technology and Applications
Liu, Lizhi; Tian, Zhiqiang; Zhang, Zhenfeng; Fei, Baowei
2016-01-01
One in six men will develop prostate cancer in his life time. Early detection and accurate diagnosis of the disease can improve cancer survival and reduce treatment costs. Recently, imaging of prostate cancer has greatly advanced since the introduction of multi-parametric magnetic resonance imaging (mp-MRI). Mp-MRI consists of T2-weighted sequences combined with functional sequences including dynamic contrast-enhanced MRI, diffusion-weighted MRI, and MR spectroscopy imaging. Due to the big data and variations in imaging sequences, detection can be affected by multiple factors such as observer variability and visibility and complexity of the lesions. In order to improve quantitative assessment of the disease, various computer-aided detection systems have been designed to help radiologists in their clinical practice. This review paper presents an overview of literatures on computer-aided detection of prostate cancer with mp-MRI, which include the technology and its applications. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application. PMID:27133005
Zhang, Luduan; Butler, Andrew J.; Sun, Chang-Kai; Sahgal, Vinod; Wittenberg, George F.; Yue, Guang H.
2008-01-01
Little is known about the association between brain white matter (WM) structure and motor function in humans. This study investigated complexity of brain WM interior shape as determined by magnetic resonance imaging (MRI) and its relationship with upper-extremity (UE) motor function in patients post stroke. We hypothesized that (1) the WM complexity would decrease following stroke, and (2) higher WM complexity in non-affected cortical areas would be related to greater UE motor function. Thirty-eight stroke patients (16 with left-hemisphere lesions) underwent MRI anatomical brain scans. Fractal dimension (FD), a quantitative shape metric, was applied onto skeletonized brain WM images to evaluate WM internal structural complexity. Wolf Motor Function Test (WMFT) and Fugl-Meyer Motor Assessment (FM) scores were measured to assess motor function of the affected limb. The WM complexity was lower in the stroke-affected hemisphere. The FD was associated with better motor function in two subgroups: with left-subcortical lesions, FD values of the lesion-free areas of the left hemisphere were associated with better FM scores; with right-cortical lesions, FD values of lesion-free regions were robustly associated with better WMFT scores. These findings suggest that greater residual WM complexity is associated with less impaired UE motor function, which is more robust in patients with right-hemisphere lesions. No correlations were found between lesion volume and WMFT or FM scores. This study addressed WM complexity in stroke patients and its relationship with UE motor function. Measurement of brain WM reorganization may be a sensitive correlate of UE function in people recovering from stroke. PMID:18590710
Zhang, Qiushi; Zhang, Gaoyan; Yao, Li; Zhao, Xiaojie
2015-01-01
Working memory (WM) refers to the temporary holding and manipulation of information during the performance of a range of cognitive tasks, and WM training is a promising method for improving an individual's cognitive functions. Our previous work demonstrated that WM performance can be improved through self-regulation of dorsal lateral prefrontal cortex (PFC) activation using real-time functional magnetic resonance imaging (rtfMRI), which enables individuals to control local brain activities volitionally according to the neurofeedback. Furthermore, research concerning large-scale brain networks has demonstrated that WM training requires the engagement of several networks, including the central executive network (CEN), the default mode network (DMN) and the salience network (SN), and functional connectivity within the CEN and DMN can be changed by WM training. Although a switching role of the SN between the CEN and DMN has been demonstrated, it remains unclear whether WM training can affect the interactions between the three networks and whether a similar mechanism also exists during the training process. In this study, we investigated the dynamic functional connectivity between the three networks during the rtfMRI feedback training using independent component analysis (ICA) and correlation analysis. The results indicated that functional connectivity within and between the three networks were significantly enhanced by feedback training, and most of the changes were associated with the insula and correlated with behavioral improvements. These findings suggest that the insula plays a critical role in the reorganization of functional connectivity among the three networks induced by rtfMRI training and in WM performance, thus providing new insights into the mechanisms of high-level functions and the clinical treatment of related functional impairments.
Huang, Huiyuan; Wang, Junjing; Seger, Carol; Lu, Min; Deng, Feng; Wu, Xiaoyan; He, Yuan; Niu, Chen; Wang, Jun; Huang, Ruiwang
2018-01-01
Long-term intensive gymnastic training can induce brain structural and functional reorganization. Previous studies have identified structural and functional network differences between world class gymnasts (WCGs) and non-athletes at the whole-brain level. However, it is still unclear how interactions within and between functional networks are affected by long-term intensive gymnastic training. We examined both intra- and inter-network functional connectivity of gymnasts relative to non-athletes using resting-state fMRI (R-fMRI). R-fMRI data were acquired from 13 WCGs and 14 non-athlete controls. Group-independent component analysis (ICA) was adopted to decompose the R-fMRI data into spatial independent components and associated time courses. An automatic component identification method was used to identify components of interest associated with resting-state networks (RSNs). We identified nine RSNs, the basal ganglia network (BG), sensorimotor network (SMN), cerebellum (CB), anterior and posterior default mode networks (aDMN/pDMN), left and right fronto-parietal networks (lFPN/rFPN), primary visual network (PVN), and extrastriate visual network (EVN). Statistical analyses revealed that the intra-network functional connectivity was significantly decreased within the BG, aDMN, lFPN, and rFPN, but increased within the EVN in the WCGs compared to the controls. In addition, the WCGs showed uniformly decreased inter-network functional connectivity between SMN and BG, CB, and PVN, BG and PVN, and pDMN and rFPN compared to the controls. We interpret this generally weaker intra- and inter-network functional connectivity in WCGs during the resting state as a result of greater efficiency in the WCGs' brain associated with long-term motor skill training.
Spinal Cord Injury Disrupts Resting-State Networks in the Human Brain.
Hawasli, Ammar H; Rutlin, Jerrel; Roland, Jarod L; Murphy, Rory K J; Song, Sheng-Kwei; Leuthardt, Eric C; Shimony, Joshua S; Ray, Wilson Z
2018-03-15
Despite 253,000 spinal cord injury (SCI) patients in the United States, little is known about how SCI affects brain networks. Spinal MRI provides only structural information with no insight into functional connectivity. Resting-state functional MRI (RS-fMRI) quantifies network connectivity through the identification of resting-state networks (RSNs) and allows detection of functionally relevant changes during disease. Given the robust network of spinal cord afferents to the brain, we hypothesized that SCI produces meaningful changes in brain RSNs. RS-fMRIs and functional assessments were performed on 10 SCI subjects. Blood oxygen-dependent RS-fMRI sequences were acquired. Seed-based correlation mapping was performed using five RSNs: default-mode (DMN), dorsal-attention (DAN), salience (SAL), control (CON), and somatomotor (SMN). RSNs were compared with normal control subjects using false-discovery rate-corrected two way t tests. SCI reduced brain network connectivity within the SAL, SMN, and DMN and disrupted anti-correlated connectivity between CON and SMN. When divided into separate cohorts, complete but not incomplete SCI disrupted connectivity within SAL, DAN, SMN and DMN and between CON and SMN. Finally, connectivity changed over time after SCI: the primary motor cortex decreased connectivity with the primary somatosensory cortex, the visual cortex decreased connectivity with the primary motor cortex, and the visual cortex decreased connectivity with the sensory parietal cortex. These unique findings demonstrate the functional network plasticity that occurs in the brain as a result of injury to the spinal cord. Connectivity changes after SCI may serve as biomarkers to predict functional recovery following an SCI and guide future therapy.
A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
James, George Andrew; Hazaroglu, Onder; Bush, Keith A
2016-02-01
The growth of functional MRI has led to development of human brain atlases derived by parcellating resting-state connectivity patterns into functionally independent regions of interest (ROIs). All functional atlases to date have been derived from resting-state fMRI data. But given that functional connectivity between regions varies with task, we hypothesized that an atlas incorporating both resting-state and task-based fMRI data would produce an atlas with finer characterization of task-relevant regions than an atlas derived from resting-state alone. To test this hypothesis, we derived parcellation atlases from twenty-nine healthy adult participants enrolled in the Cognitive Connectome project, an initiative to improve functional MRI's translation into clinical decision-making by mapping normative variance in brain-behavior relationships. Participants underwent resting-state and task-based fMRI spanning nine cognitive domains: motor, visuospatial, attention, language, memory, affective processing, decision-making, working memory, and executive function. Spatially constrained n-cut parcellation derived brain atlases using (1) all participants' functional data (Task) or (2) a single resting-state scan (Rest). An atlas was also derived from random parcellation for comparison purposes (Random). Two methods were compared: (1) a parcellation applied to the group's mean edge weights (mean), and (2) a two-stage approach with parcellation of individual edge weights followed by parcellation of mean binarized edges (two-stage). The resulting Task and Rest atlases had significantly greater similarity with each other (mean Jaccard indices JI=0.72-0.85) than with the Random atlases (JI=0.59-0.63; all p<0.001 after Bonferroni correction). Task and Rest atlas similarity was greatest for the two-stage method (JI=0.85), which has been shown as more robust than the mean method; these atlases also better reproduced voxelwise seed maps of the left dorsolateral prefrontal cortex during rest and performing the n-back working memory task (r=0.75-0.80) than the Random atlases (r=0.64-0.72), further validating their utility. We expected regions governing higher-order cognition (such as frontal and anterior temporal lobes) to show greatest difference between Task and Rest atlases; contrary to expectations, these areas had greatest similarity between atlases. Our findings indicate that atlases derived from parcellation of task-based and resting-state fMRI data are highly comparable, and existing resting-state atlases are suitable for task-based analyses. We introduce an anatomically labeled fMRI-derived whole-brain human atlas for future Cognitive Connectome analyses. Copyright © 2015 Elsevier Inc. All rights reserved.
Rinne, Teemu; Muers, Ross S; Salo, Emma; Slater, Heather; Petkov, Christopher I
2017-06-01
The cross-species correspondences and differences in how attention modulates brain responses in humans and animal models are poorly understood. We trained 2 monkeys to perform an audio-visual selective attention task during functional magnetic resonance imaging (fMRI), rewarding them to attend to stimuli in one modality while ignoring those in the other. Monkey fMRI identified regions strongly modulated by auditory or visual attention. Surprisingly, auditory attention-related modulations were much more restricted in monkeys than humans performing the same tasks during fMRI. Further analyses ruled out trivial explanations, suggesting that labile selective-attention performance was associated with inhomogeneous modulations in wide cortical regions in the monkeys. The findings provide initial insights into how audio-visual selective attention modulates the primate brain, identify sources for "lost" attention effects in monkeys, and carry implications for modeling the neurobiology of human cognition with nonhuman animals. © The Author 2017. Published by Oxford University Press.
Muers, Ross S.; Salo, Emma; Slater, Heather; Petkov, Christopher I.
2017-01-01
Abstract The cross-species correspondences and differences in how attention modulates brain responses in humans and animal models are poorly understood. We trained 2 monkeys to perform an audio–visual selective attention task during functional magnetic resonance imaging (fMRI), rewarding them to attend to stimuli in one modality while ignoring those in the other. Monkey fMRI identified regions strongly modulated by auditory or visual attention. Surprisingly, auditory attention-related modulations were much more restricted in monkeys than humans performing the same tasks during fMRI. Further analyses ruled out trivial explanations, suggesting that labile selective-attention performance was associated with inhomogeneous modulations in wide cortical regions in the monkeys. The findings provide initial insights into how audio–visual selective attention modulates the primate brain, identify sources for “lost” attention effects in monkeys, and carry implications for modeling the neurobiology of human cognition with nonhuman animals. PMID:28419201
Parent, Maxime; Li, Ying; Santhakumar, Vijayalakshmi; Hyder, Fahmeed; Sanganahalli, Basavaraju G; Kannurpatti, Sridhar
2018-06-01
TBI is a leading cause of morbidity in children. To investigate outcome of early developmental TBI during adolescence, a rat model of fluid percussion injury was developed, where previous work reported deficits in sensorimotor behavior and cortical blood flow at adolescence. 1 Based on the non-localized outcome, we hypothesized that multiple neurophysiological components of brain function, namely neuronal connectivity, synapse/axonal microstructural integrity and neurovascular function are altered and magnetic resonance imaging (MRI) methods could be used to determine regional alterations. Adolescent outcomes of developmental TBI were studied 2-months after injury, using functional MRI (fMRI) and Diffusion Tensor Imaging (DTI). fMRI based resting state functional connectivity (RSFC), representing neural connectivity, was significantly altered between sham and TBI. RSFC strength decreased in the cortex, hippocampus and thalamus accompanied by decrease in the spatial extent of their corresponding RSFC networks and inter-hemispheric asymmetry. Cerebrovascular reactivity to arterial CO2 changes diminished after TBI across both hemispheres, with a more pronounced decrease in the ipsilateral hippocampus, thalamus and motor cortex. DTI measures of fractional anisotropy (FA) and apparent diffusion coefficient (ADC), reporting on axonal and microstructural integrity of the brain, indicated similar inter-hemispheric asymmetry, with highest change in the ipsilateral hippocampus and regions adjoining the ipsilateral thalamus, hypothalamus and amygdala. TBI-induced corpus callosal microstructural alterations indicated measurable changes in inter-hemispheric structural connectivity. Hippocampus, thalamus and select cortical regions were most consistently affected in multiple imaging markers. The multi-modal MRI results demonstrate cortical and subcortical alterations in neural connectivity, cerebrovascular resistance and parenchymal microstructure in the adolescent brain, indicating the highly diffuse and persistent nature of the lateral fluid percussion TBI early in development.
Nasrallah, Fatima A; Lew, Si Kang; Low, Amanda Si-Min; Chuang, Kai-Hsiang
2014-01-01
Correlative fluctuations in functional MRI (fMRI) signals across the brain at rest have been taken as a measure of functional connectivity, but the neural basis of this resting-state MRI (rsMRI) signal is not clear. Previously, we found that the α2 adrenergic agonist, medetomidine, suppressed the rsMRI correlation dose-dependently but not the stimulus evoked activation. To understand the underlying electrophysiology and neurovascular coupling, which might be altered due to the vasoconstrictive nature of medetomidine, somatosensory evoked potential (SEP) and resting electroencephalography (EEG) were measured and correlated with corresponding BOLD signals in rat brains under three dosages of medetomidine. The SEP elicited by electrical stimulation to both forepaws was unchanged regardless of medetomidine dosage, which was consistent with the BOLD activation. Identical relationship between the SEP and BOLD signal under different medetomidine dosages indicates that the neurovascular coupling was not affected. Under resting state, EEG power was the same but a depression of inter-hemispheric EEG coherence in the gamma band was observed at higher medetomidine dosage. Different from medetomidine, both resting EEG power and BOLD power and coherence were significantly suppressed with increased isoflurane level. Such reduction was likely due to suppressed neural activity as shown by diminished SEP and BOLD activation under isoflurane, suggesting different mechanisms of losing synchrony at resting-state. Even though, similarity between electrophysiology and BOLD under stimulation and resting-state implicates a tight neurovascular coupling in both medetomidine and isoflurane. Our results confirm that medetomidine does not suppress neural activity but dissociates connectivity in the somatosensory cortex. The differential effect of medetomidine and its receptor specific action supports the neuronal origin of functional connectivity and implicates the mechanism of its sedative effect. © 2013. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Junghoe; Lee, Jong-Hwan
2014-03-01
A functional connectivity (FC) analysis from resting-state functional MRI (rsfMRI) is gaining its popularity toward the clinical application such as diagnosis of neuropsychiatric disease. To delineate the brain networks from rsfMRI data, non-neuronal components including head motions and physiological artifacts mainly observed in cerebrospinal fluid (CSF), white matter (WM) along with a global brain signal have been regarded as nuisance variables in calculating the FC level. However, it is still unclear how the non-neuronal components can affect the performance toward diagnosis of neuropsychiatric disease. In this study, a systematic comparison of classification performance of schizophrenia patients was provided employing the partial correlation coefficients (CCs) as feature elements. Pair-wise partial CCs were calculated between brain regions, in which six combinatorial sets of nuisance variables were considered. The partial CCs were used as candidate feature elements followed by feature selection based on the statistical significance test between two groups in the training set. Once a linear support vector machine was trained using the selected features from the training set, the classification performance was evaluated using the features from the test set (i.e. leaveone- out cross validation scheme). From the results, the error rate using all non-neuronal components as nuisance variables (12.4%) was significantly lower than those using remaining combination of non-neuronal components as nuisance variables (13.8 ~ 20.0%). In conclusion, the non-neuronal components substantially degraded the automated diagnosis performance, which supports our hypothesis that the non-neuronal components are crucial in controlling the automated diagnosis performance of the neuropsychiatric disease using an fMRI modality.
Diffusion fMRI detects white-matter dysfunction in mice with acute optic neuritis
Lin, Tsen-Hsuan; Spees, William M.; Chiang, Chia-Wen; Trinkaus, Kathryn; Cross, Anne H.; Song, Sheng-Kwei
2014-01-01
Optic neuritis is a frequent and early symptom of multiple sclerosis (MS). Conventional magnetic resonance (MR) techniques provide means to assess multiple MS-related pathologies, including axonal injury, demyelination, and inflammation. A method to directly and non-invasively probe white-matter function could further elucidate the interplay of underlying pathologies and functional impairments. Previously, we demonstrated a significant 27% activation-associated decrease in the apparent diffusion coefficient of water perpendicular to the axonal fibers (ADC⊥) in normal C57BL/6 mouse optic nerve with visual stimulation using diffusion fMRI. Here we apply this approach to explore the relationship between visual acuity, optic nerve pathology, and diffusion fMRI in the experimental autoimmune encephalomyelitis (EAE) mouse model of optic neuritis. Visual stimulation produced a significant 25% (vs. baseline) ADC⊥ decrease in sham EAE optic nerves, while only a 7% (vs. baseline) ADC⊥ decrease was seen in EAE mice with acute optic neuritis. The reduced activation-associated ADC⊥ response correlated with post-MRI immunohistochemistry determined pathologies (including inflammation, demyelination, and axonal injury). The negative correlation between activation-associated ADC⊥ response and visual acuity was also found when pooling EAE-affected and sham groups under our experimental criteria. Results suggest that reduction in diffusion fMRI directly reflects impaired axonal-activation in EAE mice with optic neuritis. Diffusion fMRI holds promise for directly gauging in vivo white-matter dysfunction or therapeutic responses in MS patients. PMID:24632420
In vivo longitudinal MRI and behavioral studies in experimental spinal cord injury.
Sundberg, Laura M; Herrera, Juan J; Narayana, Ponnada A
2010-10-01
Comprehensive in vivo longitudinal studies that include multi-modal magnetic resonance imaging (MRI) and a battery of behavioral assays to assess functional outcome were performed at multiple time points up to 56 days post-traumatic spinal cord injury (SCI) in rodents. The MRI studies included high-resolution structural imaging for lesion volumetry, and diffusion tensor imaging (DTI) for probing the white matter integrity. The behavioral assays included open-field locomotion, grid walking, inclined plane, computerized activity box performance, and von Frey filament tests. Additionally, end-point histology was assessed for correlation with both the MRI and behavioral data. The temporal patterns of the lesions were documented on structural MRI. DTI studies showed significant changes in white matter that is proximal to the injury epicenter and persisted to day 56. White matter in regions up to 1 cm away from the injury epicenter that appeared normal on conventional MRI also exhibited changes that were indicative of tissue damage, suggesting that DTI is a more sensitive measure of the evolving injury. Correlations between DTI and histology after SCI could not be firmly established, suggesting that injury causes complex pathological changes in multiple tissue components that affect the DTI measures. Histological evidence confirmed a significant decrease in myelin and oligodendrocyte presence 56 days post-SCI. Multiple assays to evaluate aspects of functional recovery correlated with histology and DTI measures, suggesting that damage to specific white matter tracts can be assessed and tracked longitudinally after SCI.
Somatosensory cortical plasticity in carpal tunnel syndrome--a cross-sectional fMRI evaluation.
Napadow, Vitaly; Kettner, Norman; Ryan, Angela; Kwong, Kenneth K; Audette, Joseph; Hui, Kathleen K S
2006-06-01
Carpal tunnel syndrome (CTS) is a common entrapment neuropathy of the median nerve characterized by paresthesias and pain in the first, second, and third digits. We hypothesize that aberrant afferent input in CTS will lead to cortical plasticity. Functional MRI (fMRI) and neurophysiological testing were performed on CTS patients and healthy adults. Median nerve innervated digit 2 (D2), and digit 3 (D3) and ulnar nerve innervated digit 5 (D5) were stimulated during fMRI. Surface-based and ROI-based analyses consistently demonstrated more extensive and stronger contralateral sensorimotor cortical representations of D2 and D3 for CTS patients as compared to healthy adults (P < 0.05). Differences were less profound for D5. Moreover, D3 fMRI activation in both the contralateral SI and motor cortex correlated positively with the D3 sensory conduction latency. Analysis of somatotopy suggested that contralateral SI representations for D2 and D3 were less separated for CTS patients (3.8 +/- 1.0 mm) than for healthy adults (7.5 +/- 1.2 mm). Furthermore, the D3/D2 separation distance correlated negatively with D2 sensory conduction latency-the greater the latency, the closer the D2/D3 cortical representations (r = -0.79, P < 0.05). Coupled with a greater extent of SI representation for these CTS affected digits, the closer cortical representations can be interpreted as a blurred somatotopic arrangement for CTS affected digits. These findings provide further evidence that CTS is not manifest in the periphery alone. Our results are consistent with Hebbian plasticity mechanisms, as our cohort of CTS patients had predominant paresthesias, which produce more temporally coherent afferent signaling from affected digits.
Functional Geometry Alignment and Localization of Brain Areas.
Langs, Georg; Golland, Polina; Tie, Yanmei; Rigolo, Laura; Golby, Alexandra J
2010-01-01
Matching functional brain regions across individuals is a challenging task, largely due to the variability in their location and extent. It is particularly difficult, but highly relevant, for patients with pathologies such as brain tumors, which can cause substantial reorganization of functional systems. In such cases spatial registration based on anatomical data is only of limited value if the goal is to establish correspondences of functional areas among different individuals, or to localize potentially displaced active regions. Rather than rely on spatial alignment, we propose to perform registration in an alternative space whose geometry is governed by the functional interaction patterns in the brain. We first embed each brain into a functional map that reflects connectivity patterns during a fMRI experiment. The resulting functional maps are then registered, and the obtained correspondences are propagated back to the two brains. In application to a language fMRI experiment, our preliminary results suggest that the proposed method yields improved functional correspondences across subjects. This advantage is pronounced for subjects with tumors that affect the language areas and thus cause spatial reorganization of the functional regions.
Connectivity in Autism: A review of MRI connectivity studies
Rane, Pallavi; Cochran, David; Hodge, Steven M.; Haselgrove, Christian; Kennedy, David; Frazier, Jean A.
2016-01-01
Autism Spectrum Disorder (ASD) affects 1 in 50 children between the ages of 6–17 years as per a 2012 CDC survey of parents. The etiology of ASD is not precisely known. ASD is an umbrella term, which includes low (IQ<70) to high functioning (IQ>70) individuals. A better understanding of the disorder, and how it manifests in an individual subject can lead to more effective intervention plans to fulfill the individual’s treatment needs. Magnetic resonance imaging (MRI) is a non-invasive investigational tool that can help study the ways in which the brain develops and/or deviates from the typical developmental trajectory. MRI offers insights into the structure, function, and metabolism of the brain. In this article, we review published studies on brain connectivity changes in ASD using either resting state functional MRI or diffusion tensor imaging. The general findings of decreases in white matter integrity and long-range neural coherence are prevalent in ASD literature. However, there is somewhat less of a consensus in the detailed localization of these findings. There are even fewer studies linking these connectivity alterations with the behavioral phenotype of the disorder. Nevertheless, with the help of data sharing and large-scale analytic efforts, the field is advancing towards several convergent themes. These include reduced functional coherence of long-range intra-hemispheric cortico-cortical default mode circuitry, impaired inter-hemispheric regulation, and an associated, perhaps compensatory, increase in local and short-range cortico-subcortical coherence. PMID:26146755
Adaptation of a haptic robot in a 3T fMRI.
Snider, Joseph; Plank, Markus; May, Larry; Liu, Thomas T; Poizner, Howard
2011-10-04
Functional magnetic resonance imaging (fMRI) provides excellent functional brain imaging via the BOLD signal with advantages including non-ionizing radiation, millimeter spatial accuracy of anatomical and functional data, and nearly real-time analyses. Haptic robots provide precise measurement and control of position and force of a cursor in a reasonably confined space. Here we combine these two technologies to allow precision experiments involving motor control with haptic/tactile environment interaction such as reaching or grasping. The basic idea is to attach an 8 foot end effecter supported in the center to the robot allowing the subject to use the robot, but shielding it and keeping it out of the most extreme part of the magnetic field from the fMRI machine (Figure 1). The Phantom Premium 3.0, 6DoF, high-force robot (SensAble Technologies, Inc.) is an excellent choice for providing force-feedback in virtual reality experiments, but it is inherently non-MR safe, introduces significant noise to the sensitive fMRI equipment, and its electric motors may be affected by the fMRI's strongly varying magnetic field. We have constructed a table and shielding system that allows the robot to be safely introduced into the fMRI environment and limits both the degradation of the fMRI signal by the electrically noisy motors and the degradation of the electric motor performance by the strongly varying magnetic field of the fMRI. With the shield, the signal to noise ratio (SNR: mean signal/noise standard deviation) of the fMRI goes from a baseline of ~380 to ~330, and ~250 without the shielding. The remaining noise appears to be uncorrelated and does not add artifacts to the fMRI of a test sphere (Figure 2). The long, stiff handle allows placement of the robot out of range of the most strongly varying parts of the magnetic field so there is no significant effect of the fMRI on the robot. The effect of the handle on the robot's kinematics is minimal since it is lightweight (~2.6 lbs) but extremely stiff 3/4" graphite and well balanced on the 3DoF joint in the middle. The end result is an fMRI compatible, haptic system with about 1 cubic foot of working space, and, when combined with virtual reality, it allows for a new set of experiments to be performed in the fMRI environment including naturalistic reaching, passive displacement of the limb and haptic perception, adaptation learning in varying force fields, or texture identification.
Wang, Liang; Day, Jonathan; Roe, Catherine M; Brier, Matthew R; Thomas, Jewell B; Benzinger, Tammie L; Morris, John C; Ances, Beau M
2014-01-01
This work is to determine whether apolipoprotein E (APOE) genotype modulates the effect of cholinesterase inhibitor (ChEI) treatment on resting state functional connectivity magnetic resonance imaging (rs-fcMRI) in patients with Alzheimer disease (AD). We retrospectively studied very mild and mild AD participants who were treated (N=25) or untreated (N=19) with ChEIs with respect to rs-fcMRI measure of 5 resting state networks (RSNs): default mode, dorsal attention (DAN), control (CON), salience (SAL), and sensory motor. For each network, a composite score was computed as the mean of Pearson correlations between pairwise time courses extracted from areas comprising this network. The composite scores were analyzed as a function of ChEI treatment and APOE ε4 allele. Across all participants, significant interactions between ChEI treatment and APOE ε4 allele were observed for all 5 RSNs. Within APOE ε4 carriers, significantly greater composite scores were observed in the DAN, CON, and SAL for treated compared with untreated participants. Within APOE ε4 noncarriers, treated and untreated participants did not have significantly different composite scores for all RSNs. These data suggest that APOE genotype affects the response to ChEI using rs-fcMRI. Rs-fcMRI may be useful for assessing the therapeutic effect of medications in AD clinical trials.
The Complex Minds of Teenagers: Neuroanatomy of Personality Differs between Sexes
ERIC Educational Resources Information Center
Blankstein, Udi; Chen, Jerry Y. W.; Mincic, Adina M.; McGrath, Patricia A.; Davis, Karen D.
2009-01-01
Extraversion and neuroticism influence behaviour and mood. Extreme expressions of these personality traits may predispose individuals to developing chronic functional pains and mood disorders that predominantly affect women. We acquired anatomical MRI scans and personality scores from healthy male and female adolescents and measured gray matter…
ERIC Educational Resources Information Center
Gurian, Michael; Stevens, Kathy
2004-01-01
New positron emission tomography (PET) and MRI technologies, which allow looking inside the brains, show that the brains of boys and girls differ both structurally and functionally that profoundly affect the human learning. These gender differences in the brain are corroborated in males and females throughout the world and do not differ…
Cholinergic Enhancement of Frontal Lobe Activity in Mild Cognitive Impairment
ERIC Educational Resources Information Center
Saykin, Andrew J.; Wishart, Heather A.; Rabin, Laura A.; Flashman, Laura A.; McHugh, Tara L.; Mamourian, Alexander C.; Santulli, Robert B.
2004-01-01
Cholinesterase inhibitors positively affect cognition in Alzheimer's disease (AD) and other conditions, but no controlled functional MRI studies have examined where their effects occur in the brain. We examined the effects of donepezil hydrochloride (Aricept[Registered sign]) on cognition and brain activity in patients with amnestic mild cognitive…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendler, J. J., E-mail: johann.wendler@med.ovgu.de; Porsch, M.; Huehne, S.
Irreversible electroporation (IRE) is a novel nonthermal tissue ablation technique by high current application leading to apoptosis without affecting extracellular matrix. Previous results of renal IRE shall be supplemented by functional MRI and differentiated histological analysis of renal parenchyma in a chronic treatment setting. Three swine were treated with two to three multifocal percutaneous IRE of the right kidney. MRI was performed before, 30 min (immediate-term), 7 days (short-term), and 28 days (mid-term) after IRE. A statistical analysis of the lesion surrounded renal parenchyma intensities was made to analyze functional differences depending on renal part, side and posttreatment time. Histologicalmore » follow-up of cortex and medulla was performed after 28 days. A total of eight ablations were created. MRI showed no collateral damage of surrounded tissue. The highest visual contrast between lesions and normal parenchyma was obtained by T2-HR-SPIR-TSE-w sequence of DCE-MRI. Ablation zones showed inhomogeneous necroses with small perifocal edema in the short-term and sharp delimitable scars in the mid-term. MRI showed no significant differences between adjoined renal parenchyma around ablations and parenchyma of untreated kidney. Histological analysis demonstrated complete destruction of cortical glomeruli and tubules, while collecting ducts, renal calyxes, and pelvis of medulla were preserved. Adjoined kidney parenchyma around IRE lesions showed no qualitative differences to normal parenchyma of untreated kidney. This porcine IRE study reveals a multifocal renal ablation, while protecting surrounded renal parenchyma and collecting system over a mid-term period. That offers prevention of renal function ablating centrally located or multifocal renal masses.« less
Nicotine withdrawal modulates frontal brain function during an affective Stroop task
Modlin, Leslie; Wang, Lihong; Kozink, Rachel V.; McClernon, F. Joseph
2013-01-01
Background Among nicotine-dependent smokers, smoking abstinence disrupts multiple cognitive and affective processes including conflict resolution and emotional information processing (EIP). However, the neurobiological basis of abstinence effects on resolving emotional interference on cognition remains largely uncharacterized. In this study, functional magnetic resonance imaging (fMRI) was used to investigate smoking abstinence effects on emotion–cognition interactions. Methods Smokers (n=17) underwent fMRI while performing an affective Stroop task (aST) over two sessions: once following 24-h abstinence and once following smoking as usual. The aST includes trials that serially present incongruent or congruent numerical grids bracketed by neutral or negative emotional distractors and view-only emotional image trials. Statistical analyses were conducted using a statistical threshold of p<0.05 cluster corrected. Results Smoking abstinence increased Stroop blood-oxygenation-level-dependent response in the right middle frontal and rostral anterior cingulate gyri. Moreover, withdrawal-induced negative affect was associated with less activation in frontoparietal regions during negative emotional information processing; whereas, during Stroop trials, negative affect predicted greater activation in frontal regions during negative, but not neutral emotional distractor trials. Conclusion Hyperactivation in the frontal executive control network during smoking abstinence may represent a need to recruit additional executive resources to meet task demands. Moreover, abstinence-induced negative affect may disrupt cognitive control neural circuitry during EIP and place additional demands on frontal executive neural resources during cognitive demands when presented with emotionally distracting stimuli. PMID:21989805
Chu, Shu-Hsien; Parhi, Keshab K; Lenglet, Christophe
2018-03-16
A joint structural-functional brain network model is presented, which enables the discovery of function-specific brain circuits, and recovers structural connections that are under-estimated by diffusion MRI (dMRI). Incorporating information from functional MRI (fMRI) into diffusion MRI to estimate brain circuits is a challenging task. Usually, seed regions for tractography are selected from fMRI activation maps to extract the white matter pathways of interest. The proposed method jointly analyzes whole brain dMRI and fMRI data, allowing the estimation of complete function-specific structural networks instead of interactively investigating the connectivity of individual cortical/sub-cortical areas. Additionally, tractography techniques are prone to limitations, which can result in erroneous pathways. The proposed framework explicitly models the interactions between structural and functional connectivity measures thereby improving anatomical circuit estimation. Results on Human Connectome Project (HCP) data demonstrate the benefits of the approach by successfully identifying function-specific anatomical circuits, such as the language and resting-state networks. In contrast to correlation-based or independent component analysis (ICA) functional connectivity mapping, detailed anatomical connectivity patterns are revealed for each functional module. Results on a phantom (Fibercup) also indicate improvements in structural connectivity mapping by rejecting false-positive connections with insufficient support from fMRI, and enhancing under-estimated connectivity with strong functional correlation.
Drey, Florian; Choi, Yeong-Hoon; Neef, Klaus; Ewert, Birgit; Tenbrock, Arne; Treskes, Philipp; Bovenschulte, Henning; Liakopoulos, Oliver J; Brenkmann, Meike; Stamm, Christof; Wittwer, Thorsten; Wahlers, Thorsten
2013-01-01
Cardiac cell therapy with mesenchymal stem cells (MSCs) represents a promising treatment approach for end-stage heart failure. However, little is known about the underlying mechanisms and the fate of the transplanted cells. The objective of the presented work is to determine the feasibility of magnetic resonance imaging (MRI) and in vivo monitoring after transplantation into infarcted mouse hearts using a clinical 3.0 T MRI device. The labeling procedure of bone marrow-derived MSCs with micron-sized paramagnetic iron oxide particles (MPIOs) did not affect the viability of the cells and their cell type-defining properties when compared to unlabeled cells. Using a clinical 3.0 T MRI scanner equipped with a dedicated small animal solenoid coil, 10(5) labeled MSCs could be detected and localized in the mouse hearts for up to 4 weeks after intramyocardial transplantation. Weekly ECG-gated scans using T1-weighted sequences were performed, and left ventricular function was assessed. Histological analysis of hearts confirmed the survival of labeled MSCs in the target area up to 4 weeks after transplantation. In conclusion, in vivo tracking of labeled MSCs using a clinical 3.0 T MRI scanner is feasible. In combination with assessment of heart function, this technology allows the monitoring of the therapeutic efficacy of regenerative therapies in a small animal model.
Bamberg, Fabian; Hetterich, Holger; Rospleszcz, Susanne; Lorbeer, Roberto; Auweter, Sigrid D; Schlett, Christopher L; Schafnitzel, Anina; Bayerl, Christian; Schindler, Andreas; Saam, Tobias; Müller-Peltzer, Katharina; Sommer, Wieland; Zitzelsberger, Tanja; Machann, Jürgen; Ingrisch, Michael; Selder, Sonja; Rathmann, Wolfgang; Heier, Margit; Linkohr, Birgit; Meisinger, Christa; Weber, Christian; Ertl-Wagner, Birgit; Massberg, Steffen; Reiser, Maximilian F; Peters, Annette
2017-01-01
Detailed pathophysiological manifestations of early disease in the context of prediabetes are poorly understood. This study aimed to evaluate the extent of early signs of metabolic and cardio-cerebrovascular complications affecting multiple organs in individuals with prediabetes. Subjects without a history of stroke, coronary artery disease, or peripheral artery disease were enrolled in a case-control study nested within the Cooperative Health Research in the Region of Augsburg (KORA) FF4 cohort and underwent comprehensive MRI assessment to characterize cerebral parameters (white matter lesions, microbleeds), cardiovascular parameters (carotid plaque, left ventricular function, and myocardial late gadolinium enhancement [LGE]), and metabolic parameters (hepatic proton-density fat fraction [PDFF] and subcutaneous and visceral abdominal fat). Among 400 subjects who underwent MRI, 103 subjects had prediabetes and 54 had established diabetes. Subjects with prediabetes had an increased risk for carotid plaque and adverse functional cardiac parameters, including reduced early diastolic filling rates as well as a higher prevalence of LGE compared with healthy control subjects. In addition, people with prediabetes had significantly elevated levels of PDFF and total and visceral fat. Thus, subjects with prediabetes show early signs of subclinical disease that include vascular, cardiac, and metabolic changes, as measured by whole-body MRI after adjusting for cardiometabolic risk factors. © 2017 by the American Diabetes Association.
Characterization of task-free and task-performance brain states via functional connectome patterns.
Zhang, Xin; Guo, Lei; Li, Xiang; Zhang, Tuo; Zhu, Dajiang; Li, Kaiming; Chen, Hanbo; Lv, Jinglei; Jin, Changfeng; Zhao, Qun; Li, Lingjiang; Liu, Tianming
2013-12-01
Both resting state fMRI (R-fMRI) and task-based fMRI (T-fMRI) have been widely used to study the functional activities of the human brain during task-free and task-performance periods, respectively. However, due to the difficulty in strictly controlling the participating subject's mental status and their cognitive behaviors during R-fMRI/T-fMRI scans, it has been challenging to ascertain whether or not an R-fMRI/T-fMRI scan truly reflects the participant's functional brain states during task-free/task-performance periods. This paper presents a novel computational approach to characterizing and differentiating the brain's functional status into task-free or task-performance states, by which the functional brain activities can be effectively understood and differentiated. Briefly, the brain's functional state is represented by a whole-brain quasi-stable connectome pattern (WQCP) of R-fMRI or T-fMRI data based on 358 consistent cortical landmarks across individuals, and then an effective sparse representation method was applied to learn the atomic connectome patterns (ACPs) of both task-free and task-performance states. Experimental results demonstrated that the learned ACPs for R-fMRI and T-fMRI datasets are substantially different, as expected. A certain portion of ACPs from R-fMRI and T-fMRI data were overlapped, suggesting some subjects with overlapping ACPs were not in the expected task-free/task-performance brain states. Besides, potential outliers in the T-fMRI dataset were further investigated via functional activation detections in different groups, and our results revealed unexpected task-performances of some subjects. This work offers novel insights into the functional architectures of the brain. Copyright © 2013 Elsevier B.V. All rights reserved.
Characterization of Task-free and Task-performance Brain States via Functional Connectome Patterns
Zhang, Xin; Guo, Lei; Li, Xiang; Zhang, Tuo; Zhu, Dajiang; Li, Kaiming; Chen, Hanbo; Lv, Jinglei; Jin, Changfeng; Zhao, Qun; Li, Lingjiang; Liu, Tianming
2014-01-01
Both resting state fMRI (R-fMRI) and task-based fMRI (T-fMRI) have been widely used to study the functional activities of the human brain during task-free and task-performance periods, respectively. However, due to the difficulty in strictly controlling the participating subject's mental status and their cognitive behaviors during R-fMRI/T-fMRI scans, it has been challenging to ascertain whether or not an R-fMRI/T-fMRI scan truly reflects the participant's functional brain states during task-free/task-performance periods. This paper presents a novel computational approach to characterizing and differentiating the brain's functional status into task-free or task-performance states, by which the functional brain activities can be effectively understood and differentiated. Briefly, the brain's functional state is represented by a whole-brain quasi-stable connectome pattern (WQCP) of R-fMRI or T-fMRI data based on 358 consistent cortical landmarks across individuals, and then an effective sparse representation method was applied to learn the atomic connectome patterns (ACP) of both task-free and task-performance states. Experimental results demonstrated that the learned ACPs for R-fMRI and T-fMRI datasets are substantially different, as expected. A certain portion of ACPs from R-fMRI and T-fMRI data were overlapped, suggesting some subjects with overlapping ACPs were not in the expected task-free/task-performance brain states. Besides, potential outliers in the T-fMRI dataset were further investigated via functional activation detections in different groups, and our results revealed unexpected task-performances of some subjects. This work offers novel insights into the functional architectures of the brain. PMID:23938590
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stancanello, Joseph; Cavedon, Carlo; Francescon, Paolo
Functional magnetic resonance imaging (fMRI) is used to distinguish areas of the brain responsible for different tasks and functions. It is possible, for example, by using fMRI images, to identify particular regions in the brain which can be considered as 'functional organs at risk' (fOARs), i.e., regions which would cause significant patient morbidity if compromised. The aim of this study is to propose and validate a method to exploit functional information for the identification of fOARs in CyberKnife (Accuray, Inc., Sunnyvale, CA) radiosurgery treatment planning; in particular, given the high spatial accuracy offered by the CyberKnife system, local nonrigid registrationmore » is used to reach accurate image matching. Five patients affected by arteriovenous malformations (AVMs) and scheduled to undergo radiosurgery were scanned prior to treatment using computed tomography (CT), three-dimensional (3D) rotational angiography (3DRA), T2 weighted and blood oxygenation level dependent echo planar imaging MRI. Tasks were chosen on the basis of lesion location by considering those areas which could be potentially close to treatment targets. Functional data were superimposed on 3DRA and CT used for treatment planning. The procedure for the localization of fMRI areas was validated by direct cortical stimulation on 38 AVM and tumor patients undergoing conventional surgery. Treatment plans studied with and without considering fOARs were significantly different, in particular with respect to both maximum dose and dose volume histograms; consideration of the fOARs allowed quality indices of treatment plans to remain almost constant or to improve in four out of five cases compared to plans with no consideration of fOARs. In conclusion, the presented method provides an accurate tool for the integration of functional information into AVM radiosurgery, which might help to minimize undesirable side effects and to make radiosurgery less invasive.« less
Metzger, C. D.; Eckert, U.; Steiner, J.; Sartorius, A.; Buchmann, J. E.; Stadler, J.; Tempelmann, C.; Speck, O.; Bogerts, B.; Abler, B.; Walter, M.
2010-01-01
Thalamocortical loops, connecting functionally segregated, higher order cortical regions, and basal ganglia, have been proposed not only for well described motor and sensory regions, but also for limbic and prefrontal areas relevant for affective and cognitive processes. These functions are, however, more specific to humans, rendering most invasive neuroanatomical approaches impossible and interspecies translations difficult. In contrast, non-invasive imaging of functional neuroanatomy using fMRI allows for the development of elaborate task paradigms capable of testing the specific functionalities proposed for these circuits. Until recently, spatial resolution largely limited the anatomical definition of functional clusters at the level of distinct thalamic nuclei. Since their anatomical distinction seems crucial not only for the segregation of cognitive and limbic loops but also for the detection of their functional interaction during cognitive–emotional integration, we applied high resolution fMRI on 7 Tesla. Using an event-related design, we could isolate thalamic effects for preceding attention as well as experience of erotic stimuli. We could demonstrate specific thalamic effects of general emotional arousal in mediodorsal nucleus and effects specific to preceding attention and expectancy in intralaminar centromedian/parafascicular complex. These thalamic effects were paralleled by specific coactivations in the head of caudate nucleus as well as segregated portions of rostral or caudal cingulate cortex and anterior insula supporting distinct thalamo–striato–cortical loops. In addition to predescribed effects of sexual arousal in hypothalamus and ventral striatum, high resolution fMRI could extent this network to paraventricular thalamus encompassing laterodorsal and parataenial nuclei. We could lend evidence to segregated subcortical loops which integrate cognitive and emotional aspects of basic human behavior such as sexual processing. PMID:21088699
Mori, Yasuo; Miyata, Jun; Isobe, Masanori; Son, Shuraku; Yoshihara, Yujiro; Aso, Toshihiko; Kouchiyama, Takanori; Murai, Toshiya; Takahashi, Hidehiko
2018-05-17
Echo-planar imaging is a common technique used in functional magnetic resonance imaging (fMRI), however it suffers from image distortion and signal loss because of large susceptibility effects that are related to the phase-encoding direction of the scan. Despite this relationship, the majority of neuroimaging studies have not considered the influence of phase-encoding direction. Here, we aimed to clarify how phase-encoding direction can affect the outcome of an fMRI connectivity study of schizophrenia. Resting-state fMRI using anterior to posterior (A-P) and posterior to anterior (P-A) directions was used to examine 25 patients with schizophrenia (SC) and 37 matched healthy controls (HC). We conducted a functional connectivity analysis using independent component analysis and performed three group comparisons: A-P vs. P-A (all participants), SC vs. HC for the A-P and P-A datasets, and the interaction between phase-encoding direction and participant group. The estimated functional connectivity differed between the two phase-encoding directions in areas that were more extensive than those where signal loss has been reported. Although functional connectivity in the SC group was lower than that in the HC group for both directions, the A-P and P-A conditions did not exhibit the same specific pattern of differences. Further, we observed an interaction between participant group and the phase-encoding direction in the left temporo-parietal junction and left fusiform gyrus. Phase-encoding direction can influence the results of functional connectivity studies. Thus, appropriate selection and documentation of phase-encoding direction will be important in future resting-state fMRI studies. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Riva, Nilo; Riva, Nilo; Morana, Paolo; Cerri, Federica; Gerevini, Simonetta; Amadio, Stefano; Formaglio, Fabio; Comi, Giancarlo; Comola, Mauro; Del Carro, Ubaldo
2009-01-01
We report a patient who developed acute myelopathy after intranasal insufflation of amphetamines and heroin. The functional prognosis was very poor; after 4 months, she remained paraplegic. MRI imaging showed selective T2 hyperintensity and intense enhancement confined to the spinal anterior horns and lumbar nerve roots and plexus. This unique MRI pattern, together with neurophysiological data, suggests that the pathological process at the first primary affected spinal anterior horns (SAH), conditioning motoneuron cell death, and then nerve roots and lumbar plexus as a consequence of wallerian degeneration PMID:21686691
Computer-aided Detection of Prostate Cancer with MRI: Technology and Applications.
Liu, Lizhi; Tian, Zhiqiang; Zhang, Zhenfeng; Fei, Baowei
2016-08-01
One in six men will develop prostate cancer in his lifetime. Early detection and accurate diagnosis of the disease can improve cancer survival and reduce treatment costs. Recently, imaging of prostate cancer has greatly advanced since the introduction of multiparametric magnetic resonance imaging (mp-MRI). Mp-MRI consists of T2-weighted sequences combined with functional sequences including dynamic contrast-enhanced MRI, diffusion-weighted MRI, and magnetic resonance spectroscopy imaging. Because of the big data and variations in imaging sequences, detection can be affected by multiple factors such as observer variability and visibility and complexity of the lesions. To improve quantitative assessment of the disease, various computer-aided detection systems have been designed to help radiologists in their clinical practice. This review paper presents an overview of literatures on computer-aided detection of prostate cancer with mp-MRI, which include the technology and its applications. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Richter, Anni; Richter, Sylvia; Barman, Adriana; Soch, Joram; Klein, Marieke; Assmann, Anne; Libeau, Catherine; Behnisch, Gusalija; Wüstenberg, Torsten; Seidenbecher, Constanze I.; Schott, Björn H.
2013-01-01
Dopamine has been implicated in the fine-tuning of complex cognitive and motor function and also in the anticipation of future rewards. This dual function of dopamine suggests that dopamine might be involved in the generation of active motivated behavior. The DRD2 TaqIA polymorphism of the dopamine D2 receptor gene (rs1800497) has previously been suggested to affect striatal function with carriers of the less common A1 allele exhibiting reduced striatal D2 receptor density and increased risk for addiction. Here we aimed to investigate the influences of DRD2 TaqIA genotype on the modulation of interference processing by reward and punishment. Forty-six young, healthy volunteers participated in a behavioral experiment, and 32 underwent functional magnetic resonance imaging (fMRI). Participants performed a flanker task with a motivation manipulation (monetary reward, monetary loss, neither, or both). Reaction times (RTs) were shorter in motivated flanker trials, irrespective of congruency. In the fMRI experiment motivation was associated with reduced prefrontal activation during incongruent vs. congruent flanker trials, possibly reflecting increased processing efficiency. DRD2 TaqIA genotype did not affect overall RTs, but interacted with motivation on the congruency-related RT differences, with A1 carriers showing smaller interference effects to reward alone and A2 homozygotes exhibiting a specific interference reduction during combined reward (REW) and punishment trials (PUN). In fMRI, anterior cingulate activity showed a similar pattern of genotype-related modulation. Additionally, A1 carriers showed increased anterior insula activation relative to A2 homozygotes. Our results point to a role for genetic variations of the dopaminergic system in individual differences of cognition-motivation interaction. PMID:23760450
Multiparametric imaging of brain hemodynamics and function using gas-inhalation MRI.
Liu, Peiying; Welch, Babu G; Li, Yang; Gu, Hong; King, Darlene; Yang, Yihong; Pinho, Marco; Lu, Hanzhang
2017-02-01
Diagnosis and treatment monitoring of cerebrovascular diseases routinely require hemodynamic imaging of the brain. Current methods either only provide part of the desired information or require the injection of multiple exogenous agents. In this study, we developed a multiparametric imaging scheme for the imaging of brain hemodynamics and function using gas-inhalation MRI. The proposed technique uses a single MRI scan to provide simultaneous measurements of baseline venous cerebral blood volume (vCBV), cerebrovascular reactivity (CVR), bolus arrival time (BAT), and resting-state functional connectivity (fcMRI). This was achieved with a novel, concomitant O 2 and CO 2 gas inhalation paradigm, rapid MRI image acquisition with a 9.3min BOLD sequence, and an advanced algorithm to extract multiple hemodynamic information from the same dataset. In healthy subjects, CVR and vCBV values were 0.23±0.03%/mmHg and 0.0056±0.0006%/mmHg, respectively, with a strong correlation (r=0.96 for CVR and r=0.91 for vCBV) with more conventional, separate acquisitions that take twice the scan time. In patients with Moyamoya syndrome, CVR in the stenosis-affected flow territories (typically anterior-cerebral-artery, ACA, and middle-cerebral-artery, MCA, territories) was significantly lower than that in posterior-cerebral-artery (PCA), which typically has minimal stenosis, flow territories (0.12±0.06%/mmHg vs. 0.21±0.05%/mmHg, p<0.001). BAT of the gas bolus was significantly longer (p=0.008) in ACA/MCA territories, compared to PCA, and the maps were consistent with the conventional contrast-enhanced CT perfusion method. FcMRI networks were robustly identified from the gas-inhalation MRI data after factoring out the influence of CO 2 and O 2 on the signal time course. The spatial correspondence between the gas-data-derived fcMRI maps and those using a separate, conventional fcMRI scan was excellent, showing a spatial correlation of 0.58±0.17 and 0.64±0.20 for default mode network and primary visual network, respectively. These findings suggest that advanced gas-inhalation MRI provides reliable measurements of multiple hemodynamic parameters within a clinically acceptable imaging time and is suitable for patient examinations. Copyright © 2016 Elsevier Inc. All rights reserved.
Multiparametric imaging of brain hemodynamics and function using gas-inhalation MRI
Liu, Peiying; Welch, Babu G.; Li, Yang; Gu, Hong; King, Darlene; Yang, Yihong; Pinho, Marco; Lu, Hanzhang
2016-01-01
Diagnosis and treatment monitoring of cerebrovascular diseases routinely require hemodynamic imaging of the brain. Current methods either only provide part of the desired information or require the injection of multiple exogenous agents. In this study, we developed a multiparametric imaging scheme for the imaging of brain hemodynamics and function using gas-inhalation MRI. The proposed technique uses a single MRI scan to provide simultaneous measurements of baseline venous cerebral blood volume (vCBV), cerebrovascular reactivity (CVR), bolus arrival time (BAT), and resting-state functional connectivity (fcMRI). This was achieved with a novel, concomitant O2 and CO2 gas inhalation paradigm, rapid MRI image acquisition with a 9.3 min BOLD sequence, and an advanced algorithm to extract multiple hemodynamic information from the same dataset. In healthy subjects, CVR and vCBV values were 0.23±0.03 %/mmHg and 0.0056±0.0006 %/mmHg, respectively, with a strong correlation (r=0.96 for CVR and r=0.91 for vCBV) with more conventional, separate acquisitions that take twice the scan time. In patients with Moyamoya syndrome, CVR in the stenosis-affected flow territories (typically anterior-cerebral-artery, ACA, and middle-cerebral-artery, MCA, territories) was significantly lower than that in posterior-cerebral-artery (PCA), which typically has minimal stenosis, flow territories (0.12±0.06 %/mmHg vs. 0.21±0.05 %/mmHg, p<0.001). BAT of the gas bolus was significantly longer (p=0.008) in ACA/MCA territories, compared to PCA, and the maps were consistent with the conventional contrast-enhanced CT perfusion method. FcMRI networks were robustly identified from the gas-inhalation MRI data after factoring out the influence of CO2 and O2 on the signal time course. The spatial correspondence between the gas-data-derived fcMRI maps and those using a separate, conventional fcMRI scan was excellent, showing a spatial correlation of 0.58±0.17 and 0.64±0.20 for default mode network and primary visual network, respectively. These findings suggest that advanced gas-inhalation MRI provides reliable measurements of multiple hemodynamic parameters within a clinically acceptable imaging time and is suitable for patient examinations. PMID:27693197
Altamura, Claudia; Torquati, Kahtya; Zappasodi, Filippo; Ferretti, Antonio; Pizzella, Vittorio; Tibuzzi, Francesco; Vernieri, Fabrizio; Pasqualetti, Patrizio; Landi, Doriana; Del Gratta, Cosimo; Romani, Gian-Luca; Maria Rossini, Paolo; Tecchio, Franca
2007-04-01
Growing evidence emphasizes a positive role of brain ipsilesional (IL) reorganization in stroke patients with partial recovery. Ten patients affected by a monohemispheric stroke in the middle cerebral artery territory underwent functional magnetic resonance (fMRI) and magnetoencephalography (MEG) evaluation of the primary sensory (S1) activation via the same paradigm (median nerve galvanic stimulation). Four patients did not present S1 fMRI activation [Rossini, P.M., Altamura, C., Ferretti, A., Vernieri, F., Zappasodi, F., Caulo, M., Pizzella, V., Del Gratta, C., Romani, G.L., Tecchio, F., 2004. Does cerebrovascular disease affect the coupling between neuronal activity and local haemodynamics? Brain 127, 99-110], although inclusion criteria required bilateral identifiable MEG responses. Mean Euclidean distance between fMRI and MEG S1 activation Talairach coordinates was 10.1+/-2.9 mm, with a 3D intra-class correlation (ICC) coefficient of 0.986. Interhemispheric asymmetries, evaluated by an MEG procedure independent of Talairach transformation, were outside or at the boundaries of reference ranges in 6 patients. In 3 of them, the IL activation presented medial or lateral shift with respect to the omega-shaped post-rolandic area while in the other 3, IL areas were outside the peri-rolandic region. In conclusion, despite dissociated intensity, the MEG and fMRI activations displayed good spatial consistency in stroke patients, thus confirming excessive interhemispheric asymmetries as a suitable indicator of unusual recruitments in the ipsilesional hemisphere, within or outside the peri-rolandic region.
NASA Technical Reports Server (NTRS)
Fotedar, L. K.; Marshburn, T.; Quast, M. J.; Feeback, D. L.
1999-01-01
Forearm muscle fatigue is one of the major limiting factors affecting endurance during performance of deep-space extravehicular activity (EVA) by crew members. Magnetic resonance (MR) provides in vivo noninvasive analysis of tissue level metabolism and fluid exchange dynamics in exercised forearm muscles through the monitoring of proton magnetic resonance imaging (MRI) and phosphorus magnetic resonance spectroscopy (P-31-MRS) parameter variations. Using a space glove box and EVA simulation protocols, we conducted a preliminary MRS/MRI study in a small group of human test subjects during submaximal exercise and recovery and following exhaustive exercise. In assessing simulated EVA-related muscle fatigue and function, this pilot study revealed substantial changes in the MR image longitudinal relaxation times (T2) as an indicator of specific muscle activation and proton flux as well as changes in spectral phosphocreatine-to-phosphate (PCr/Pi) levels as a function of tissue bioenergetic potential.
A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data
James, G. Andrew; Hazaroglu, Onder; Bush, Keith A.
2015-01-01
The growth of functional MRI has led to development of human brain atlases derived by parcellating resting-state connectivity patterns into functionally independent regions of interest (ROIs). All functional atlases to date have been derived from resting-state fMRI data. But given that functional connectivity between regions varies with task, we hypothesized that an atlas incorporating both resting-state and task-based fMRI data would produce an atlas with finer characterization of task-relevant regions than an atlas derived from resting-state alone. To test this hypothesis, we derived parcellation atlases from twenty-nine healthy adult participants enrolled in the Cognitive Connectome project, an initiative to improve functional MRI’s translation into clinical decision-making by mapping normative variance in brain-behavior relationships. Participants underwent resting-state and task-based fMRI spanning nine cognitive domains: motor, visuospatial, attention, language, memory, affective processing, decision-making, working memory, and executive function. Spatially constrained n-cut parcellation derived brain atlases using (1) all participants’ functional data (Task) or (2) a single resting-state scan (Rest). An atlas was also derived from random parcellation for comparison purposes (Random). Two methods were compared: (1) a parcellation applied to the group’s mean edge weights (mean), and (2) a two-stage approach with parcellation of individual edge weights followed by parcellation of mean binarized edges (two-stage). The resulting Task and Rest atlases had significantly greater similarity with each other (mean Jaccard indices JI= 0.72–0.85) than with the Random atlases (JI=0.59–0.63; all p<0.001 after Bonferroni correction). Task and Rest atlas similarity was greatest for the two-stage method (JI=0.85), which has been shown as more robust than the mean method; these atlases also better reproduced voxelwise seed maps of the left dorsolateral prefrontal cortex during rest and performing the n-back working memory task (r=0.75–0.80) than the Random atlases (r=0.64–0.72), further validating their utility. We expected regions governing higher-order cognition (such as frontal and anterior temporal lobes) to show greatest difference between Task and Rest atlases; contrary to expectations, these areas had greatest similarity between atlases. Our findings indicate that atlases derived from parcellation of task-based and resting-state fMRI data are highly comparable, and existing resting-state atlases are suitable for task-based analyses. We introduce an anatomically labeled fMRI-derived whole-brain human atlas for future Cognitive Connectome analyses. PMID:26523655
Aleem Bhatti, Atta Ul; Jakhrani, Nasir Khan; Parekh, Maria Adnan
2018-01-01
The past few years have seen increasing support for gross total resection in the management of low-grade gliomas (LGGs), with a greater extent of resection correlated with better overall survival, progression-free survival, and time to malignant transformation. There is consistent evidence in literature supporting extent of safe resection as a good prognostic indicator as well as positively affecting seizure control, symptomatic relief in pressure symptoms, and longer progression-free and total survival. The operative goal in most LGG cases is to maximize the extent of resection for these benefits while avoiding postoperative neurologic deficits. Several advanced invasive and noninvasive surgical techniques such as intraoperative magnetic resonance imaging (MRI), fluorescence-guided surgery, intraoperative functional pathway mapping, and neuronavigation have been developed in an attempt to better achieve maximal safe resection. We present a case of LGG in a young patient with a 5-year history of refractory seizures and gradual onset walking difficulty. Serial MRI brain scans revealed a progressive increase in right frontal tumor size with substantial edema and parafalcine herniation. Noninvasive brain mapping by functional MRI (fMRI) and sleep-awake-sleep type of anesthesia with endotracheal tube insertion was utilized during an awake craniotomy. Histopathology confirmed a Grade II oligodendroglioma, and genetic analysis revealed no codeletion at 1p/19q. Neurological improvement was remarkable in terms of immediate motor improvement, and the patient remained completely seizure free on a single antiepileptic drug. There is no radiologic or clinical evidence of recurrence 6 months postoperatively. This is the first published report of an awake craniotomy for LGG in Pakistan. The contemporary concept of supratotal resection in LGGs advocates generous functional resection even beyond MRI findings rather than mere excision of oncological boundaries. This relatively aggressive approach is only possible with an awake craniotomy, which ensures preservation of functional status and thus less postoperative morbidity and better outcomes. Noninvasive mapping for intracranial space-occupying lesions, including fMRI and blood-oxygen-level dependent (BOLD) imaging modality, is an essential tool in a resource-limited setting such as Pakistan.
Changes of Visual Pathway and Brain Connectivity in Glaucoma: A Systematic Review
Nuzzi, Raffaele; Dallorto, Laura; Rolle, Teresa
2018-01-01
Background: Glaucoma is a leading cause of irreversible blindness worldwide. The increasing interest in the involvement of the cortical visual pathway in glaucomatous patients is due to the implications in recent therapies, such as neuroprotection and neuroregeneration. Objective: In this review, we outline the current understanding of brain structural, functional, and metabolic changes detected with the modern techniques of neuroimaging in glaucomatous subjects. Methods: We screened MEDLINE, EMBASE, CINAHL, CENTRAL, LILACS, Trip Database, and NICE for original contributions published until 31 October 2017. Studies with at least six patients affected by any type of glaucoma were considered. We included studies using the following neuroimaging techniques: functional Magnetic Resonance Imaging (fMRI), resting-state fMRI (rs-fMRI), magnetic resonance spectroscopy (MRS), voxel- based Morphometry (VBM), surface-based Morphometry (SBM), diffusion tensor MRI (DTI). Results: Over a total of 1,901 studies, 56 case series with a total of 2,381 patients were included. Evidence of neurodegenerative process in glaucomatous patients was found both within and beyond the visual system. Structural alterations in visual cortex (mainly reduced cortex thickness and volume) have been demonstrated with SBM and VBM; these changes were not limited to primary visual cortex but also involved association visual areas. Other brain regions, associated with visual function, demonstrated a certain grade of increased or decreased gray matter volume. Functional and metabolic abnormalities resulted within primary visual cortex in all studies with fMRI and MRS. Studies with rs-fMRI found disrupted connectivity between the primary and higher visual cortex and between visual cortex and associative visual areas in the task-free state of glaucomatous patients. Conclusions: This review contributes to the better understanding of brain abnormalities in glaucoma. It may stimulate further speculation about brain plasticity at a later age and therapeutic strategies, such as the prevention of cortical degeneration in patients with glaucoma. Structural, functional, and metabolic neuroimaging methods provided evidence of changes throughout the visual pathway in glaucomatous patients. Other brain areas, not directly involved in the processing of visual information, also showed alterations. PMID:29896087
Demirakca, Traute; Cardinale, Vita; Dehn, Sven; Ruf, Matthias; Ende, Gabriele
2016-01-01
This study investigated the impact of “life kinetik” training on brain plasticity in terms of an increased functional connectivity during resting-state functional magnetic resonance imaging (rs-fMRI). The training is an integrated multimodal training that combines motor and cognitive aspects and challenges the brain by introducing new and unfamiliar coordinative tasks. Twenty-one subjects completed at least 11 one-hour-per-week “life kinetik” training sessions in 13 weeks as well as before and after rs-fMRI scans. Additionally, 11 control subjects with 2 rs-fMRI scans were included. The CONN toolbox was used to conduct several seed-to-voxel analyses. We searched for functional connectivity increases between brain regions expected to be involved in the exercises. Connections to brain regions representing parts of the default mode network, such as medial frontal cortex and posterior cingulate cortex, did not change. Significant connectivity alterations occurred between the visual cortex and parts of the superior parietal area (BA7). Premotor area and cingulate gyrus were also affected. We can conclude that the constant challenge of unfamiliar combinations of coordination tasks, combined with visual perception and working memory demands, seems to induce brain plasticity expressed in enhanced connectivity strength of brain regions due to coactivation. PMID:26819776
ALE Meta-Analysis of Schizophrenics Performing the N-Back Task
NASA Astrophysics Data System (ADS)
Harrell, Zachary
2010-10-01
MRI/fMRI has already proven itself as a valuable tool in the diagnosis and treatment of many illnesses of the brain, including cognitive problems. By exploiting the differences in magnetic susceptibility between oxygenated and deoxygenated hemoglobin, fMRI can measure blood flow in various regions of interest within the brain. This can determine the level of brain activity in relation to motor or cognitive functions and provide a metric for tissue damage or illness symptoms. Structural imaging techniques have shown lesions or deficiencies in tissue volumes in schizophrenics corresponding to areas primarily in the frontal and temporal lobes. These areas are currently known to be involved in working memory and attention, which many schizophrenics have trouble with. The ALE (Activation Likelihood Estimation) Meta-Analysis is able to statistically determine the significance of brain area activations based on the post-hoc combination of multiple studies. This process is useful for giving a general model of brain function in relation to a particular task designed to engage the affected areas (such as working memory for the n-back task). The advantages of the ALE Meta-Analysis include elimination of single subject anomalies, elimination of false/extremely weak activations, and verification of function/location hypotheses.
An Automated, Adaptive Framework for Optimizing Preprocessing Pipelines in Task-Based Functional MRI
Churchill, Nathan W.; Spring, Robyn; Afshin-Pour, Babak; Dong, Fan; Strother, Stephen C.
2015-01-01
BOLD fMRI is sensitive to blood-oxygenation changes correlated with brain function; however, it is limited by relatively weak signal and significant noise confounds. Many preprocessing algorithms have been developed to control noise and improve signal detection in fMRI. Although the chosen set of preprocessing and analysis steps (the “pipeline”) significantly affects signal detection, pipelines are rarely quantitatively validated in the neuroimaging literature, due to complex preprocessing interactions. This paper outlines and validates an adaptive resampling framework for evaluating and optimizing preprocessing choices by optimizing data-driven metrics of task prediction and spatial reproducibility. Compared to standard “fixed” preprocessing pipelines, this optimization approach significantly improves independent validation measures of within-subject test-retest, and between-subject activation overlap, and behavioural prediction accuracy. We demonstrate that preprocessing choices function as implicit model regularizers, and that improvements due to pipeline optimization generalize across a range of simple to complex experimental tasks and analysis models. Results are shown for brief scanning sessions (<3 minutes each), demonstrating that with pipeline optimization, it is possible to obtain reliable results and brain-behaviour correlations in relatively small datasets. PMID:26161667
Topiramate and its effect on fMRI of language in patients with right or left temporal lobe epilepsy.
Szaflarski, Jerzy P; Allendorfer, Jane B
2012-05-01
Topiramate (TPM) is well recognized for its negative effects on cognition, language performance and lateralization results on the intracarotid amobarbital procedure (IAP). But, the effects of TPM on functional MRI (fMRI) of language and the fMRI signals are less clear. Functional MRI is increasingly used for presurgical evaluation of epilepsy patients in place of IAP for language lateralization. Thus, the goal of this study was to assess the effects of TPM on fMRI signals. In this study, we included 8 patients with right temporal lobe epilepsy (RTLE) and 8 with left temporal lobe epilepsy (LTLE) taking TPM (+TPM). Matched to them for age, handedness and side of seizure onset were 8 patients with RTLE and 8 with LTLE not taking TPM (-TPM). Matched for age and handedness to the patients with TLE were 32 healthy controls. The fMRI paradigm involved semantic decision/tone decision task (in-scanner behavioral data were collected). All epilepsy patients received a standard neuropsychological language battery. One sample t-tests were performed within each group to assess task-specific activations. Functional MRI data random-effects analysis was performed to determine significant group activation differences and to assess the effect of TPM dose on task activation. Direct group comparisons of fMRI, language and demographic data between patients with R/L TLE +TPM vs. -TPM and the analysis of the effects of TPM on blood oxygenation level-dependent (BOLD) signal were performed. Groups were matched for age, handedness and, within the R/L TLE groups, for the age of epilepsy onset/duration and the number of AEDs/TPM dose. The in-scanner language performance of patients was worse when compared to healthy controls - all p<0.044. While all groups showed fMRI activation typical for this task, regression analyses comparing L/R TLE +TPM vs. -TPM showed significant fMRI signal differences between groups (increases in left cingulate gyrus and decreases in left superior temporal gyrus in the patients with LTLE +TPM; increases in the right BA 10 and left visual cortex and decreases in the left BA 47 in +TPM RTLE). Further, TPM dose showed positive relationship with activation in the basal ganglia and negative associations with activation in anterior cingulate and posterior visual cortex. Thus, TPM appears to have a different effect on fMRI language distribution in patients with R/L TLE and a dose-dependent effect on fMRI signals. These findings may, in part, explain the negative effects of TPM on cognition and language performance and support the notion that TPM may affect the results of language fMRI lateralization/localization. Copyright © 2012 Elsevier Inc. All rights reserved.
Simultaneous in vivo positron emission tomography and magnetic resonance imaging.
Catana, Ciprian; Procissi, Daniel; Wu, Yibao; Judenhofer, Martin S; Qi, Jinyi; Pichler, Bernd J; Jacobs, Russell E; Cherry, Simon R
2008-03-11
Positron emission tomography (PET) and magnetic resonance imaging (MRI) are widely used in vivo imaging technologies with both clinical and biomedical research applications. The strengths of MRI include high-resolution, high-contrast morphologic imaging of soft tissues; the ability to image physiologic parameters such as diffusion and changes in oxygenation level resulting from neuronal stimulation; and the measurement of metabolites using chemical shift imaging. PET images the distribution of biologically targeted radiotracers with high sensitivity, but images generally lack anatomic context and are of lower spatial resolution. Integration of these technologies permits the acquisition of temporally correlated data showing the distribution of PET radiotracers and MRI contrast agents or MR-detectable metabolites, with registration to the underlying anatomy. An MRI-compatible PET scanner has been built for biomedical research applications that allows data from both modalities to be acquired simultaneously. Experiments demonstrate no effect of the MRI system on the spatial resolution of the PET system and <10% reduction in the fraction of radioactive decay events detected by the PET scanner inside the MRI. The signal-to-noise ratio and uniformity of the MR images, with the exception of one particular pulse sequence, were little affected by the presence of the PET scanner. In vivo simultaneous PET and MRI studies were performed in mice. Proof-of-principle in vivo MR spectroscopy and functional MRI experiments were also demonstrated with the combined scanner.
Liu, Yong; Yu, Chunshui; Zhang, Xinqing; Liu, Jieqiong; Duan, Yunyun; Alexander-Bloch, Aaron F.; Liu, Bing; Jiang, Tianzi; Bullmore, Ed
2014-01-01
Alzheimer's disease (AD) is increasingly recognized as a disconnection syndrome, which leads to cognitive impairment due to the disruption of functional activity across large networks or systems of interconnected brain regions. We explored abnormal functional magnetic resonance imaging (fMRI) resting-state dynamics, functional connectivity, and weighted functional networks, in a sample of patients with severe AD (N = 18) and age-matched healthy volunteers (N = 21). We found that patients had reduced amplitude and regional homogeneity of low-frequency fMRI oscillations, and reduced the strength of functional connectivity, in several regions previously described as components of the default mode network, for example, medial posterior parietal cortex and dorsal medial prefrontal cortex. In patients with severe AD, functional connectivity was particularly attenuated between regions that were separated by a greater physical distance; and loss of long distance connectivity was associated with less efficient global and nodal network topology. This profile of functional abnormality in severe AD was consistent with the results of a comparable analysis of data on 2 additional groups of patients with mild AD (N = 17) and amnestic mild cognitive impairment (MCI; N = 18). A greater degree of cognitive impairment, measured by the mini-mental state examination across all patient groups, was correlated with greater attenuation of functional connectivity, particularly over long connection distances, for example, between anterior and posterior components of the default mode network, and greater reduction of global and nodal network efficiency. These results indicate that neurodegenerative disruption of fMRI oscillations and connectivity in AD affects long-distance connections to hub nodes, with the consequent loss of network efficiency. This profile was evident also to a lesser degree in the patients with less severe cognitive impairment, indicating that the potential of resting-state fMRI measures as biomarkers or predictors of disease progression in AD. PMID:23314940
fMRI-Compatible Electromagnetic Haptic Interface.
Riener, R; Villgrattner, T; Kleiser, R; Nef, T; Kollias, S
2005-01-01
A new haptic interface device is suggested, which can be used for functional magnetic resonance imaging (fMRI) studies. The basic component of this 1 DOF haptic device are two coils that produce a Lorentz force induced by the large static magnetic field of the MR scanner. A MR-compatible optical angular encoder and a optical force sensor enable the implementation of different control architectures for haptic interactions. The challenge was to provide a large torque, and not to affect image quality by the currents applied in the device. The haptic device was tested in a 3T MR scanner. With a current of up to 1A and a distance of 1m to the focal point of the MR-scanner it was possible to generate torques of up to 4 Nm. Within these boundaries image quality was not affected.
The potential of multiparametric MRI of the breast
Pinker, Katja; Helbich, Thomas H
2017-01-01
MRI is an essential tool in breast imaging, with multiple established indications. Dynamic contrast-enhanced MRI (DCE-MRI) is the backbone of any breast MRI protocol and has an excellent sensitivity and good specificity for breast cancer diagnosis. DCE-MRI provides high-resolution morphological information, as well as some functional information about neoangiogenesis as a tumour-specific feature. To overcome limitations in specificity, several other functional MRI parameters have been investigated and the application of these combined parameters is defined as multiparametric MRI (mpMRI) of the breast. MpMRI of the breast can be performed at different field strengths (1.5–7 T) and includes both established (diffusion-weighted imaging, MR spectroscopic imaging) and novel MRI parameters (sodium imaging, chemical exchange saturation transfer imaging, blood oxygen level-dependent MRI), as well as hybrid imaging with positron emission tomography (PET)/MRI and different radiotracers. Available data suggest that multiparametric imaging using different functional MRI and PET parameters can provide detailed information about the underlying oncogenic processes of cancer development and progression and can provide additional specificity. This article will review the current and emerging functional parameters for mpMRI of the breast for improved diagnostic accuracy in breast cancer. PMID:27805423
Zvyagintsev, M; Klasen, M; Weber, R; Sarkheil, P; Esposito, F; Mathiak, K A; Schwenzer, M; Mathiak, K
2016-04-21
In violent video games, players engage in virtual aggressive behaviors. Exposure to virtual aggressive behavior induces short-term changes in players' behavior. In a previous study, a violence-related version of the racing game "Carmageddon TDR2000" increased aggressive affects, cognitions, and behaviors compared to its non-violence-related version. This study investigates the differences in neural network activity during the playing of both versions of the video game. Functional magnetic resonance imaging (fMRI) recorded ongoing brain activity of 18 young men playing the violence-related and the non-violence-related version of the video game Carmageddon. Image time series were decomposed into functional connectivity (FC) patterns using independent component analysis (ICA) and template-matching yielded a mapping to established functional brain networks. The FC patterns revealed a decrease in connectivity within 6 brain networks during the violence-related compared to the non-violence-related condition: three sensory-motor networks, the reward network, the default mode network (DMN), and the right-lateralized frontoparietal network. Playing violent racing games may change functional brain connectivity, in particular and even after controlling for event frequency, in the reward network and the DMN. These changes may underlie the short-term increase of aggressive affects, cognitions, and behaviors as observed after playing violent video games. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Duarte, João V; Pereira, João M S; Quendera, Bruno; Raimundo, Miguel; Moreno, Carolina; Gomes, Leonor; Carrilho, Francisco; Castelo-Branco, Miguel
2015-10-01
Type 2 diabetes (T2DM) patients develop vascular complications and have increased risk for neurophysiological impairment. Vascular pathophysiology may alter the blood flow regulation in cerebral microvasculature, affecting neurovascular coupling. Reduced fMRI signal can result from decreased neuronal activation or disrupted neurovascular coupling. The uncertainty about pathophysiological mechanisms (neurodegenerative, vascular, or both) underlying brain function impairments remains. In this cross-sectional study, we investigated if the hemodynamic response function (HRF) in lesion-free brains of patients is altered by measuring BOLD (Blood Oxygenation Level-Dependent) response to visual motion stimuli. We used a standard block design to examine the BOLD response and an event-related deconvolution approach. Importantly, the latter allowed for the first time to directly extract the true shape of HRF without any assumption and probe neurovascular coupling, using performance-matched stimuli. We discovered a change in HRF in early stages of diabetes. T2DM patients show significantly different fMRI response profiles. Our visual paradigm therefore demonstrated impaired neurovascular coupling in intact brain tissue. This implies that functional studies in T2DM require the definition of HRF, only achievable with deconvolution in event-related experiments. Further investigation of the mechanisms underlying impaired neurovascular coupling is needed to understand and potentially prevent the progression of brain function decrements in diabetes.
Wolf, R C; Sambataro, F; Vasic, N; Depping, M S; Thomann, P A; Landwehrmeyer, G B; Süssmuth, S D; Orth, M
2014-11-01
Functional magnetic resonance imaging (fMRI) of multiple neural networks during the brain's 'resting state' could facilitate biomarker development in patients with Huntington's disease (HD) and may provide new insights into the relationship between neural dysfunction and clinical symptoms. To date, however, very few studies have examined the functional integrity of multiple resting state networks (RSNs) in manifest HD, and even less is known about whether concomitant brain atrophy affects neural activity in patients. Using MRI, we investigated brain structure and RSN function in patients with early HD (n = 20) and healthy controls (n = 20). For resting-state fMRI data a group-independent component analysis identified spatiotemporally distinct patterns of motor and prefrontal RSNs of interest. We used voxel-based morphometry to assess regional brain atrophy, and 'biological parametric mapping' analyses to investigate the impact of atrophy on neural activity. Compared with controls, patients showed connectivity changes within distinct neural systems including lateral prefrontal, supplementary motor, thalamic, cingulate, temporal and parietal regions. In patients, supplementary motor area and cingulate cortex connectivity indices were associated with measures of motor function, whereas lateral prefrontal connectivity was associated with cognition. This study provides evidence for aberrant connectivity of RSNs associated with motor function and cognition in early manifest HD when controlling for brain atrophy. This suggests clinically relevant changes of RSN activity in the presence of HD-associated cortical and subcortical structural abnormalities.
Knight, Emily J.; Testini, Paola; Min, Hoon-Ki; Gibson, William S.; Gorny, Krzysztof R.; Favazza, Christopher P.; Felmlee, Joel P.; Kim, Inyong; Welker, Kirk M.; Clayton, Daniel A.; Klassen, Bryan T.; Chang, Su-youne; Lee, Kendall H.
2015-01-01
Objective To test the hypothesis suggested by previous studies that subthalamic nucleus (STN) deep brain stimulation (DBS) in patients with PD would affect the activity of both motor and non-motor networks, we applied intraoperative fMRI to patients receiving DBS. Patients and Methods Ten patients receiving STN DBS for PD underwent intraoperative 1.5T fMRI during high frequency stimulation delivered via an external pulse generator. The study was conducted between the dates of January 1, 2013 and September 30, 2014. Results We observed blood oxygen level dependent (BOLD) signal changes (FDR<.001) in the motor circuitry, including primary motor, premotor, and supplementary motor cortices, thalamus, pedunculopontine nucleus (PPN), and cerebellum, as well as in the limbic circuitry, including cingulate and insular cortices. Activation of the motor network was observed also after applying a Bonferroni correction (p<.001) to our dataset, suggesting that, across subjects, BOLD changes in the motor circuitry are more consistent compared to those occurring in the non-motor network. Conclusions These findings support the modulatory role of STN DBS on the activity of motor and non-motor networks, and suggest complex mechanisms at the basis of the efficacy of this treatment modality. Furthermore, these results suggest that, across subjects, BOLD changes in the motor circuitry are more consistent compared to those occurring in the non-motor network. With further studies combining the use of real time intraoperative fMRI with clinical outcomes in patients treated with DBS, functional imaging techniques have the potential not only to elucidate the mechanisms of DBS functioning, but also to guide and assist in the surgical treatment of patients affected by movement and neuropsychiatric disorders. PMID:26046412
ERIC Educational Resources Information Center
Parsons, Michael W.; Haut, Marc W.; Lemieux, Susan K.; Moran, Maria T.; Leach, Sharon G.
2006-01-01
The existence of a rostrocaudal gradient of medial temporal lobe (MTL) activation during memory encoding has historically received support from positron emission tomography studies, but less so from functional MRI (FMRI) studies. More recently, FMRI studies have demonstrated that characteristics of the stimuli can affect the location of activation…
Application of calibrated fMRI in Alzheimer's disease.
Lajoie, Isabelle; Nugent, Scott; Debacker, Clément; Dyson, Kenneth; Tancredi, Felipe B; Badhwar, AmanPreet; Belleville, Sylvie; Deschaintre, Yan; Bellec, Pierre; Doyon, Julien; Bocti, Christian; Gauthier, Serge; Arnold, Douglas; Kergoat, Marie-Jeanne; Chertkow, Howard; Monchi, Oury; Hoge, Richard D
2017-01-01
Calibrated fMRI based on arterial spin-labeling (ASL) and blood oxygen-dependent contrast (BOLD), combined with periods of hypercapnia and hyperoxia, can provide information on cerebrovascular reactivity (CVR), resting blood flow (CBF), oxygen extraction fraction (OEF), and resting oxidative metabolism (CMRO 2 ). Vascular and metabolic integrity are believed to be affected in Alzheimer's disease (AD), thus, the use of calibrated fMRI in AD may help understand the disease and monitor therapeutic responses in future clinical trials. In the present work, we applied a calibrated fMRI approach referred to as Quantitative O2 (QUO2) in a cohort of probable AD dementia and age-matched control participants. The resulting CBF, OEF and CMRO 2 values fell within the range from previous studies using positron emission tomography (PET) with 15 O labeling. Moreover, the typical parietotemporal pattern of hypoperfusion and hypometabolism in AD was observed, especially in the precuneus, a particularly vulnerable region. We detected no deficit in frontal CBF, nor in whole grey matter CVR, which supports the hypothesis that the effects observed were associated specifically with AD rather than generalized vascular disease. Some key pitfalls affecting both ASL and BOLD methods were encountered, such as prolonged arterial transit times (particularly in the occipital lobe), the presence of susceptibility artifacts obscuring medial temporal regions, and the challenges associated with the hypercapnic manipulation in AD patients and elderly participants. The present results are encouraging and demonstrate the promise of calibrated fMRI measurements as potential biomarkers in AD. Although CMRO 2 can be imaged with 15 O PET, the QUO2 method uses more widely available imaging infrastructure, avoids exposure to ionizing radiation, and integrates with other MRI-based measures of brain structure and function.
Novel Neuroimaging Methods to Understand How HIV Affects the Brain
Thompson, Paul
2015-01-01
In much of the developed world, the HIV epidemic has largely been controlled by anti-retroviral treatment. Even so, there is growing concern that HIV-infected individuals may be at risk for accelerated brain aging, and a range of cognitive impairments. What promotes or resists these changes is largely unknown. There is also interest in discovering factors that promote resilience to HIV, and combat its adverse effects in children. Here we review recent developments in brain imaging that reveal how the virus affects the brain. We relate these brain changes to changes in blood markers, cognitive function, and other patient outcomes or symptoms, such as apathy or neuropathic pain. We focus on new and emerging techniques, including new variants of brain MRI. Diffusion tensor imaging, for example, can map the brain’s structural connections while fMRI can uncover functional connections. Finally, we suggest how large-scale global research alliances, such as ENIGMA, may resolve controversies over effects where evidence is now lacking. These efforts pool scans from tens of thousands of individuals, and offer a source of power not previously imaginable for brain imaging studies. PMID:25902966
Chengyang, Li; Daqing, Huang; Jianlin, Qi; Haisheng, Chang; Qingqing, Meng; Jin, Wang; Jiajia, Liu; Enmao, Ye; Yongcong, Shao; Xi, Zhang
2017-08-01
Acute sleep restriction heavily influences cognitive function, affecting executive processes such as attention, response inhibition, and memory. Previous neuroimaging studies have suggested a link between hippocampal activity and short-term memory function. However, the specific contribution of the hippocampus to the decline of short-term memory following sleep restriction has yet to be established. In the current study, we utilized resting-state functional magnetic resonance imaging (fMRI) to examine the association between hippocampal functional connectivity (FC) and the decline of short-term memory following total sleep deprivation (TSD). Twenty healthy adult males aged 20.9 ± 2.3 years (age range, 18-24 years) were enrolled in a within-subject crossover study. Short-term memory and FC were assessed using a Delay-matching short-term memory test and a resting-state fMRI scan before and after TSD. Seed-based correlation analysis was performed using fMRI data for the left and right hippocampus to identify differences in hippocampal FC following TSD. Subjects demonstrated reduced alertness and a decline in short-term memory performance following TSD. Moreover, fMRI analysis identified reduced hippocampal FC with the superior frontal gyrus (SFG), temporal regions, and supplementary motor area. In addition, an increase in FC between the hippocampus and bilateral thalamus was observed, the extent of which correlated with short-term memory performance following TSD. Our findings indicate that the disruption of hippocampal-cortical connectivity is linked to the decline in short-term memory observed after acute sleep restriction. Such results provide further evidence that support the cognitive impairment model of sleep deprivation.
Tsvetanov, Kamen A.; Cam‐CAN; Henson, Richard N.
2017-01-01
Abstract Many studies report individual differences in functional connectivity, such as those related to age. However, estimates of connectivity from fMRI are confounded by other factors, such as vascular health, head motion and changes in the location of functional regions. Here, we investigate the impact of these confounds, and pre‐processing strategies that can mitigate them, using data from the Cambridge Centre for Ageing & Neuroscience (www.cam-can.com). This dataset contained two sessions of resting‐state fMRI from 214 adults aged 18–88. Functional connectivity between all regions was strongly related to vascular health, most likely reflecting respiratory and cardiac signals. These variations in mean connectivity limit the validity of between‐participant comparisons of connectivity estimates, and were best mitigated by regression of mean connectivity over participants. We also showed that high‐pass filtering, instead of band‐pass filtering, produced stronger and more reliable age‐effects. Head motion was correlated with gray‐matter volume in selected brain regions, and with various cognitive measures, suggesting that it has a biological (trait) component, and warning against regressing out motion over participants. Finally, we showed that the location of functional regions was more variable in older adults, which was alleviated by smoothing the data, or using a multivariate measure of connectivity. These results demonstrate that analysis choices have a dramatic impact on connectivity differences between individuals, ultimately affecting the associations found between connectivity and cognition. It is important that fMRI connectivity studies address these issues, and we suggest a number of ways to optimize analysis choices. Hum Brain Mapp 38:4125–4156, 2017. © 2017 Wiley Periodicals, Inc. PMID:28544076
Tumor Vessel Compression Hinders Perfusion of Ultrasonographic Contrast Agents1
Galiè, Mirco; D'Onofrio, Mirko; Montani, Maura; Amici, Augusto; Calderan, Laura; Marzola, Pasquina; Benati, Donatella; Merigo, Flavia; Marchini, Cristina; Sbarbati, Andrea
2005-01-01
Abstract Contrast-enhanced ultrasound (CEUS) is an advanced approach to in vivo assessment of tumor vascularity and is being increasingly adopted in clinical oncology. It is based on 1- to 10 µm-sized gas microbubbles, which can cross the capillary beds of the lungs and are effective echo enhancers. It is known that high cell density, high transendothelial fluid exchange, and poorly functioning lymphatic circulation all provoke solid stress, which compresses vessels and drastically reduces tumor blood flow. Given their size, we supposed that the perfusion of microbubbles is affected by anatomic features of tumor vessels more than are contrast agents traditionally used in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Here, we compared dynamic information obtained from CEUS and DCE-MRI on two experimental tumor models exhibiting notable differences in vessel anatomy. We found that tumors with small, flattened vessels show a much higher resistance to microbubble perfusion than to MRI contrast agents, and appear scarcely vascularized at CEUS examination, despite vessel volume adequate for normal function. Thus, whereas CEUS alone could induce incorrect diagnosis when tumors have small or collapsed vessels, integrated analysis using CEUS and DCE-MRI allows in vivo identification of tumors with a vascular profile frequently associated with malignant phenotypes. PMID:15967105
EEG, PET, SPET and MRI in intractable childhood epilepsies: possible surgical correlations.
Fois, A; Farnetani, M A; Balestri, P; Buoni, S; Di Cosmo, G; Vattimo, A; Guazzelli, M; Guzzardi, R; Salvadori, P A
1995-12-01
Magnetic resonance imaging (MRI), single photon emission tomography (SPET), and positron emission tomography (PET) using [18F]fluorodeoxyglucose were used in combination with scalp and scalp-video EEGs in a group of 30 pediatric patients with drug resistant epilepsy (DRE) in order to identify patients who could benefit from neurosurgical approach. Seizures were classified according to the consensus criteria of The International League Against Epilepsy. In three patients infantile spasms (IS) were diagnosed; 13 subjects were affected by different types of generalized seizures, associated with complex partial seizures (CPS) in three. In the other 14 patients partial seizures, either simple (SPS) or complex, were present. A localized abnormality was demonstrated in one patient with IS and in three patients with generalized seizures. Of the group of 14 subjects with CPS, MRI and CT were normal in 7, but SPET or PET indicated focal hypoperfusion or hypometabolism concordant with the localization of the EEG abnormalities. In 5 of the other 7 patients anatomical and functional imaging and EEG findings were concordant for a localized abnormality. It can be concluded that functional imaging combined with scalp EEGs appears to be superior to the use of only CT and MRI for selecting children with epilepsy in whom a surgical approach can be considered, in particular when CPS resistant to therapy are present.
Wiemerslage, Lyle; Zhou, Wei; Olivo, Gaia; Stark, Julia; Hogenkamp, Pleunie S; Larsson, Elna-Marie; Sundbom, Magnus; Schiöth, Helgi B
2017-02-01
Past studies utilizing resting-state functional MRI (rsfMRI), have shown that obese humans exhibit altered activity in brain areas related to reward compared to normal-weight controls. However, to what extent bariatric surgery-induced weight loss alters resting-state brain activity in obese humans is less well-studied. Thus, we measured the fractional amplitude of low-frequency fluctuations from eyes-closed, rsfMRI in obese females (n = 11, mean age = 42 years, mean BMI = 41 kg/m 2 ) in both a pre- and postprandial state at two time points: four weeks before, and four weeks after bariatric surgery. Several brain areas showed altered resting-state activity following bariatric surgery, including the putamen, insula, cingulate, thalamus and frontal regions. Activity augmented by surgery was also dependent on prandial state. For example, in the fasted state, activity in the middle frontal and pre- and postcentral gyri was found to be decreased after surgery. In the sated state, activity within the insula was increased before, but not after surgery. Collectively, our results suggest that resting-state neural functions are rapidly affected following bariatric surgery and the associated weight loss and change in diet. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Muscle MRI findings in facioscapulohumeral muscular dystrophy.
Gerevini, Simonetta; Scarlato, Marina; Maggi, Lorenzo; Cava, Mariangela; Caliendo, Giandomenico; Pasanisi, Barbara; Falini, Andrea; Previtali, Stefano Carlo; Morandi, Lucia
2016-03-01
Facioscapulohumeral muscular dystrophy (FSHD) is characterized by extremely variable degrees of facial, scapular and lower limb muscle involvement. Clinical and genetic determination can be difficult, as molecular analysis is not always definitive, and other similar muscle disorders may have overlapping clinical manifestations. Whole-body muscle MRI examination for fat infiltration, atrophy and oedema was performed to identify specific patterns of muscle involvement in FSHD patients (30 subjects), and compared to a group of control patients (23) affected by other myopathies (NFSHD). In FSHD patients, we detected a specific pattern of muscle fatty replacement and atrophy, particularly in upper girdle muscles. The most frequently affected muscles, including paucisymptomatic and severely affected FSHD patients, were trapezius, teres major and serratus anterior. Moreover, asymmetric muscle involvement was significantly higher in FSHD as compared to NFSHD patients. In conclusion, muscle MRI is very sensitive for identifying a specific pattern of involvement in FSHD patients and in detecting selective muscle involvement of non-clinically testable muscles. Muscle MRI constitutes a reliable tool for differentiating FSHD from other muscular dystrophies to direct diagnostic molecular analysis, as well as to investigate FSHD natural history and follow-up of the disease. Muscle MRI identifies a specific pattern of muscle involvement in FSHD patients. Muscle MRI may predict FSHD in asymptomatic and severely affected patients. Muscle MRI of upper girdle better predicts FSHD. Muscle MRI may differentiate FSHD from other forms of muscular dystrophy. Muscle MRI may show the involvement of non-clinical testable muscles.
The informativity of sound modulates crossmodal facilitation of visual discrimination: a fMRI study.
Li, Qi; Yu, Hongtao; Li, Xiujun; Sun, Hongzan; Yang, Jingjing; Li, Chunlin
2017-01-18
Many studies have investigated behavioral crossmodal facilitation when a visual stimulus is accompanied by a concurrent task-irrelevant sound. Lippert and colleagues reported that a concurrent task-irrelevant sound reduced the uncertainty of the timing of the visual display and improved perceptional responses (informative sound). However, the neural mechanism by which the informativity of sound affected crossmodal facilitation of visual discrimination remained unclear. In this study, we used event-related functional MRI to investigate the neural mechanisms underlying the role of informativity of sound in crossmodal facilitation of visual discrimination. Significantly faster reaction times were observed when there was an informative relationship between auditory and visual stimuli. The functional MRI results showed sound informativity-induced activation enhancement including the left fusiform gyrus and the right lateral occipital complex. Further correlation analysis showed that the right lateral occipital complex was significantly correlated with the behavioral benefit in reaction times. This suggests that this region was modulated by the informative relationship within audiovisual stimuli that was learnt during the experiment, resulting in late-stage multisensory integration and enhanced behavioral responses.
Diaz-Manera, Jordi; Fernandez-Torron, Roberto; LLauger, Jaume; James, Meredith K; Mayhew, Anna; Smith, Fiona E; Moore, Ursula R; Blamire, Andrew M; Carlier, Pierre G; Rufibach, Laura; Mittal, Plavi; Eagle, Michelle; Jacobs, Marni; Hodgson, Tim; Wallace, Dorothy; Ward, Louise; Smith, Mark; Stramare, Roberto; Rampado, Alessandro; Sato, Noriko; Tamaru, Takeshi; Harwick, Bruce; Rico Gala, Susana; Turk, Suna; Coppenrath, Eva M; Foster, Glenn; Bendahan, David; Le Fur, Yann; Fricke, Stanley T; Otero, Hansel; Foster, Sheryl L; Peduto, Anthony; Sawyer, Anne Marie; Hilsden, Heather; Lochmuller, Hanns; Grieben, Ulrike; Spuler, Simone; Tesi Rocha, Carolina; Day, John W; Jones, Kristi J; Bharucha-Goebel, Diana X; Salort-Campana, Emmanuelle; Harms, Matthew; Pestronk, Alan; Krause, Sabine; Schreiber-Katz, Olivia; Walter, Maggie C; Paradas, Carmen; Hogrel, Jean-Yves; Stojkovic, Tanya; Takeda, Shin'ichi; Mori-Yoshimura, Madoka; Bravver, Elena; Sparks, Susan; Bello, Luca; Semplicini, Claudio; Pegoraro, Elena; Mendell, Jerry R; Bushby, Kate; Straub, Volker
2018-05-07
Dysferlinopathies are a group of muscle disorders caused by mutations in the DYSF gene. Previous muscle imaging studies describe a selective pattern of muscle involvement in smaller patient cohorts, but a large imaging study across the entire spectrum of the dysferlinopathies had not been performed and previous imaging findings were not correlated with functional tests. We present cross-sectional T1-weighted muscle MRI data from 182 patients with genetically confirmed dysferlinopathies. We have analysed the pattern of muscles involved in the disease using hierarchical analysis and presented it as heatmaps. Results of the MRI scans have been correlated with relevant functional tests for each region of the body analysed. In 181 of the 182 patients scanned, we observed muscle pathology on T1-weighted images, with the gastrocnemius medialis and the soleus being the most commonly affected muscles. A similar pattern of involvement was identified in most patients regardless of their clinical presentation. Increased muscle pathology on MRI correlated positively with disease duration and functional impairment. The information generated by this study is of high diagnostic value and important for clinical trial development. We have been able to describe a pattern that can be considered as characteristic of dysferlinopathy. We have defined the natural history of the disease from a radiological point of view. These results enabled the identification of the most relevant regions of interest for quantitative MRI in longitudinal studies, such as clinical trials. NCT01676077. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Andronache, Adrian; Rosazza, Cristina; Sattin, Davide; Leonardi, Matilde; D'Incerti, Ludovico; Minati, Ludovico
2013-01-01
An emerging application of resting-state functional MRI (rs-fMRI) is the study of patients with disorders of consciousness (DoC), where integrity of default-mode network (DMN) activity is associated to the clinical level of preservation of consciousness. Due to the inherent inability to follow verbal instructions, arousal induced by scanning noise and postural pain, these patients tend to exhibit substantial levels of movement. This results in spurious, non-neural fluctuations of the rs-fMRI signal, which impair the evaluation of residual functional connectivity. Here, the effect of data preprocessing choices on the detectability of the DMN was systematically evaluated in a representative cohort of 30 clinically and etiologically heterogeneous DoC patients and 33 healthy controls. Starting from a standard preprocessing pipeline, additional steps were gradually inserted, namely band-pass filtering (BPF), removal of co-variance with the movement vectors, removal of co-variance with the global brain parenchyma signal, rejection of realignment outlier volumes and ventricle masking. Both independent-component analysis (ICA) and seed-based analysis (SBA) were performed, and DMN detectability was assessed quantitatively as well as visually. The results of the present study strongly show that the detection of DMN activity in the sub-optimal fMRI series acquired on DoC patients is contingent on the use of adequate filtering steps. ICA and SBA are differently affected but give convergent findings for high-grade preprocessing. We propose that future studies in this area should adopt the described preprocessing procedures as a minimum standard to reduce the probability of wrongly inferring that DMN activity is absent.
Distinct neural correlates of emotional and cognitive empathy in older adults
Moore, Raeanne C.; Dev, Sheena I.; Jeste, Dilip V.; Dziobek, Isabel; Eyler, Lisa T.
2014-01-01
Empathy is thought to be a mechanism underlying prosocial behavior across the lifespan, yet little is known about how levels of empathy relate to individual differences in brain functioning among older adults. In this exploratory study, we examined the neural correlates of affective and cognitive empathy in older adults. Thirty older adults (M=79 years) underwent fMRI scanning and neuropsychological testing and completed a test of affective and cognitive empathy. Brain response during processing of cognitive and emotional stimuli was measured by fMRI in a priori and task-related regions and was correlated with levels of empathy. Older adults with higher levels of affective empathy showed more deactivation in the amygdala and insula during a working memory task, whereas those with higher cognitive empathy showed greater insula activation during a response inhibition task. Our preliminary findings suggest that brain systems linked to emotional and social processing respond differently among older adults with more or less affective and cognitive empathy. That these relationships can be seen both during affective and non-emotional tasks of “cold” cognitive abilities suggests that empathy may impact social behavior through both emotional and cognitive mechanisms. PMID:25770039
Lindquist, Kristen A.; Satpute, Ajay B.; Wager, Tor D.; Weber, Jochen; Barrett, Lisa Feldman
2016-01-01
The ability to experience pleasant or unpleasant feelings or to represent objects as “positive” or “negative” is known as representing hedonic “valence.” Although scientists overwhelmingly agree that valence is a basic psychological phenomenon, debate continues about how to best conceptualize it scientifically. We used a meta-analysis of 397 functional magnetic resonance imaging (fMRI) and positron emission tomography studies (containing 914 experimental contrasts and 6827 participants) to test 3 competing hypotheses about the brain basis of valence: the bipolarity hypothesis that positive and negative affect are supported by a brain system that monotonically increases and/or decreases along the valence dimension, the bivalent hypothesis that positive and negative affect are supported by independent brain systems, and the affective workspace hypothesis that positive and negative affect are supported by a flexible set of valence-general regions. We found little evidence for the bipolar or bivalent hypotheses. Findings instead supported the hypothesis that, at the level of brain activity measurable by fMRI, valence is flexibly implemented across instances by a set of valence-general limbic and paralimbic brain regions. PMID:25631056
Distinct neural correlates of emotional and cognitive empathy in older adults.
Moore, Raeanne C; Dev, Sheena I; Jeste, Dilip V; Dziobek, Isabel; Eyler, Lisa T
2015-04-30
Empathy is thought to be a mechanism underlying prosocial behavior across the lifespan, yet little is known about how levels of empathy relate to individual differences in brain functioning among older adults. In this exploratory study, we examined the neural correlates of affective and cognitive empathy in older adults. Thirty older adults (M=79 years) underwent fMRI scanning and neuropsychological testing and completed a test of affective and cognitive empathy. Brain response during processing of cognitive and emotional stimuli was measured by fMRI in a priori and task-related regions and was correlated with levels of empathy. Older adults with higher levels of affective empathy showed more deactivation in the amygdala and insula during a working memory task, whereas those with higher cognitive empathy showed greater insula activation during a response inhibition task. Our preliminary findings suggest that brain systems linked to emotional and social processing respond differently among older adults with more or less affective and cognitive empathy. That these relationships can be seen both during affective and non-emotional tasks of "cold" cognitive abilities suggests that empathy may impact social behavior through both emotional and cognitive mechanisms. Published by Elsevier Ireland Ltd.
Lv, Kun; Fan, Yi-Hong; Xu, Li; Xu, Mao-Sheng
2017-05-28
Crohn's disease (CD) is a chronic, non-specific granulomatous inflammatory disorder that commonly affects the small intestine and is a phenotype of inflammatory bowel disease (IBD). CD is prone to relapse, and its incidence displays a persistent increase in developing countries. However, the pathogenesis of CD is poorly understood, with some studies emphasizing the link between CD and the intestinal microbiota. Specifically, studies point to the brain-gut-enteric microbiota axis as a key player in the occurrence and development of CD. Furthermore, investigations have shown white-matter lesions and neurologic deficits in patients with IBD. Based on these findings, brain activity changes in CD patients have been detected by blood oxygenation level dependent functional magnetic resonance imaging (BOLD-fMRI). BOLD-fMRI functions by detecting a local increase in relative blood oxygenation that results from neurotransmitter activity and thus reflects local neuronal firing rates. Therefore, biochemical concentrations of neurotransmitters or metabolites may change in corresponding brain regions of CD patients. To further study this phenomenon, brain changes of CD patients can be detected non-invasively, effectively and accurately by BOLD-fMRI combined with magnetic resonance spectroscopy (MRS). This approach can further shed light on the mechanisms of the occurrence and development of neurological CD. Overall, this paper reviews the current status and prospects on fMRI and MRS for evaluation of patients with CD based on the brain-gut-enteric microbiota axis.
A Set of Functional Brain Networks for the Comprehensive Evaluation of Human Characteristics.
Sung, Yul-Wan; Kawachi, Yousuke; Choi, Uk-Su; Kang, Daehun; Abe, Chihiro; Otomo, Yuki; Ogawa, Seiji
2018-01-01
Many human characteristics must be evaluated to comprehensively understand an individual, and measurements of the corresponding cognition/behavior are required. Brain imaging by functional MRI (fMRI) has been widely used to examine brain function related to human cognition/behavior. However, few aspects of cognition/behavior of individuals or experimental groups can be examined through task-based fMRI. Recently, resting state fMRI (rs-fMRI) signals have been shown to represent functional infrastructure in the brain that is highly involved in processing information related to cognition/behavior. Using rs-fMRI may allow diverse information about the brain through a single MRI scan to be obtained, as rs-fMRI does not require stimulus tasks. In this study, we attempted to identify a set of functional networks representing cognition/behavior that are related to a wide variety of human characteristics and to evaluate these characteristics using rs-fMRI data. If possible, these findings would support the potential of rs-fMRI to provide diverse information about the brain. We used resting-state fMRI and a set of 130 psychometric parameters that cover most human characteristics, including those related to intelligence and emotional quotients and social ability/skill. We identified 163 brain regions by VBM analysis using regression analysis with 130 psychometric parameters. Next, using a 163 × 163 correlation matrix, we identified functional networks related to 111 of the 130 psychometric parameters. Finally, we made an 8-class support vector machine classifiers corresponding to these 111 functional networks. Our results demonstrate that rs-fMRI signals contain intrinsic information about brain function related to cognition/behaviors and that this set of 111 networks/classifiers can be used to comprehensively evaluate human characteristics.
Pinter, Daniela; Pegritz, Sandra; Pargfrieder, Christa; Reiter, Gudrun; Wurm, Walter; Gattringer, Thomas; Linderl-Madrutter, Regina; Neuper, Claudia; Fazekas, Franz; Grieshofer, Peter; Enzinger, Christian
2013-01-01
The brain mechanisms underlying successful recovery of hand fuenction after stroke are still not fully understood, although functional MRI (fMRI) studies underline the importance of neuronal plasticity. We explored potential changes in brain activity in 7 patients with subacute to chronic stroke (69 ± 8 years) with moderate- to high-grade distal paresis of the upper limb (Motricity Index: 59.4) after standardized robotic finger-hand rehabilitation training, in addition to conventional rehabilitation therapy for 3 weeks. Behavioral and fMRI assessments were carried out before and after training to characterize changes in brain activity and behavior. The Motricity Index (pre: 59.4, post: 67.2, P < .05) and grip force (pre: 7.26, post: 11.87, P < .05) of the paretic hand increased significantly after rehabilitation. On fMRI, active movement of the affected (left) hand resulted in contralesional (ie, ipsilateral) activation of the primary sensorimotor cortex prior to rehabilitation. After rehabilitation, activation appeared "normalized," including the ipsilesional primary sensorimotor cortex and supplementary motor area (SMA). No changes and no abnormalities of activation maps were seen during movement of the unaffected hand. Subsequent region-of-interest analyses showed no significant ipsilesional activation increases after rehabilitation. Despite behavioral improvements, we failed to identify consistent patterns of functional reorganization in our sample. This warrants caution in the use of fMRI as a tool to explore neural plasticity in heterogeneous samples lacking sufficient statistical power.
NASA Astrophysics Data System (ADS)
Mazzetti, S.; Giannini, V.; Russo, F.; Regge, D.
2018-05-01
Computer-aided diagnosis (CAD) systems are increasingly being used in clinical settings to report multi-parametric magnetic resonance imaging (mp-MRI) of the prostate. Usually, CAD systems automatically highlight cancer-suspicious regions to the radiologist, reducing reader variability and interpretation errors. Nevertheless, implementing this software requires the selection of which mp-MRI parameters can best discriminate between malignant and non-malignant regions. To exploit functional information, some parameters are derived from dynamic contrast-enhanced (DCE) acquisitions. In particular, much CAD software employs pharmacokinetic features, such as K trans and k ep, derived from the Tofts model, to estimate a likelihood map of malignancy. However, non-pharmacokinetic models can be also used to describe DCE-MRI curves, without any requirement for prior knowledge or measurement of the arterial input function, which could potentially lead to large errors in parameter estimation. In this work, we implemented an empirical function derived from the phenomenological universalities (PUN) class to fit DCE-MRI. The parameters of the PUN model are used in combination with T2-weighted and diffusion-weighted acquisitions to feed a support vector machine classifier to produce a voxel-wise malignancy likelihood map of the prostate. The results were all compared to those for a CAD system based on Tofts pharmacokinetic features to describe DCE-MRI curves, using different quality aspects of image segmentation, while also evaluating the number and size of false positive (FP) candidate regions. This study included 61 patients with 70 biopsy-proven prostate cancers (PCa). The metrics used to evaluate segmentation quality between the two CAD systems were not statistically different, although the PUN-based CAD reported a lower number of FP, with reduced size compared to the Tofts-based CAD. In conclusion, the CAD software based on PUN parameters is a feasible means with which to detect PCa, without affecting segmentation quality, and hence it could be successfully applied in clinical settings, improving the automated diagnosis process and reducing computational complexity.
Functional MRI of facial emotion processing in left temporal lobe epilepsy.
Szaflarski, Jerzy P; Allendorfer, Jane B; Heyse, Heidi; Mendoza, Lucy; Szaflarski, Basia A; Cohen, Nancy
2014-03-01
Temporal lobe epilepsy (TLE) may negatively affect the ability to recognize emotions. This study aimed to determine the cortical correlates of facial emotion processing (happy, sad, fearful, and neutral) in patients with well-characterized left TLE (LTLE) and to examine the effect of seizure control on emotion processing. We enrolled 34 consecutive patients with LTLE and 30 matched healthy control (HC) subjects. Participants underwent functional MRI (fMRI) with an event-related facial emotion recognition task. The seizures of seventeen patients were controlled (no seizure in at least 3months; LTLE-sz), and 17 continued to experience frequent seizures (LTLE+sz). Mood was assessed with the Beck Depression Inventory (BDI) and the Profile of Mood States (POMS). There were no differences in demographic characteristics and measures of mood between HC subjects and patients with LTLE. In patients with LTLE, fMRI showed decreased blood oxygenation level dependent (BOLD) signal in the hippocampus/parahippocampus and cerebellum in processing of happy faces and increased BOLD signal in occipital regions in response to fearful faces. Comparison of groups with LTLE+sz and LTLE-sz showed worse BDI and POMS scores in LTLE+sz (all p<0.05) except for POMS tension/anxiety (p=0.067). Functional MRI revealed increased BOLD signal in patients with LTLE+sz in the left precuneus and left parahippocampus for "fearful" faces and in the left periarcheocortex for "neutral" faces. There was a correlation between the fMRI and Total Mood Disturbance in the left precuneus in LTLE-sz (p=0.019) and in LTLE+sz (p=0.018). Overall, LTLE appears to have a relatively minor effect on the cortical underpinnings of facial emotion processing, while the effect of seizure state (controlled vs. not controlled) is more pronounced, indicating a significant relationship between seizure control and emotion processing. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Vitanovski, Dime; Tsymbal, Alexey; Ionasec, Razvan; Georgescu, Bogdan; Zhou, Shaohua K.; Hornegger, Joachim; Comaniciu, Dorin
2011-03-01
Congenital heart defect (CHD) is the most common birth defect and a frequent cause of death for children. Tetralogy of Fallot (ToF) is the most often occurring CHD which affects in particular the pulmonary valve and trunk. Emerging interventional methods enable percutaneous pulmonary valve implantation, which constitute an alternative to open heart surgery. While minimal invasive methods become common practice, imaging and non-invasive assessment tools become crucial components in the clinical setting. Cardiac computed tomography (CT) and cardiac magnetic resonance imaging (cMRI) are techniques with complementary properties and ability to acquire multiple non-invasive and accurate scans required for advance evaluation and therapy planning. In contrary to CT which covers the full 4D information over the cardiac cycle, cMRI often acquires partial information, for example only one 3D scan of the whole heart in the end-diastolic phase and two 2D planes (long and short axes) over the whole cardiac cycle. The data acquired in this way is called sparse cMRI. In this paper, we propose a regression-based approach for the reconstruction of the full 4D pulmonary trunk model from sparse MRI. The reconstruction approach is based on learning a distance function between the sparse MRI which needs to be completed and the 4D CT data with the full information used as the training set. The distance is based on the intrinsic Random Forest similarity which is learnt for the corresponding regression problem of predicting coordinates of unseen mesh points. Extensive experiments performed on 80 cardiac CT and MR sequences demonstrated the average speed of 10 seconds and accuracy of 0.1053mm mean absolute error for the proposed approach. Using the case retrieval workflow and local nearest neighbour regression with the learnt distance function appears to be competitive with respect to "black box" regression with immediate prediction of coordinates, while providing transparency to the predictions made.
Jung, Wi Hoon; Jang, Joon Hwan; Park, Jin Woo; Kim, Euitae; Goo, Eun-Hoe; Im, Oh-Soo; Kwon, Jun Soo
2014-01-01
As the main input hub of the basal ganglia, the striatum receives projections from the cerebral cortex. Many studies have provided evidence for multiple parallel corticostriatal loops based on the structural and functional connectivity profiles of the human striatum. A recent resting-state fMRI study revealed the topography of striatum by assigning each voxel in the striatum to its most strongly correlated cortical network among the cognitive, affective, and motor networks. However, it remains unclear what patterns of striatal parcellation would result from performing the clustering without subsequent assignment to cortical networks. Thus, we applied unsupervised clustering algorithms to parcellate the human striatum based on its functional connectivity patterns to other brain regions without any anatomically or functionally defined cortical targets. Functional connectivity maps of striatal subdivisions, identified through clustering analyses, were also computed. Our findings were consistent with recent accounts of the functional distinctions of the striatum as well as with recent studies about its functional and anatomical connectivity. For example, we found functional connections between dorsal and ventral striatal clusters and the areas involved in cognitive and affective processes, respectively, and between rostral and caudal putamen clusters and the areas involved in cognitive and motor processes, respectively. This study confirms prior findings, showing similar striatal parcellation patterns between the present and prior studies. Given such striking similarity, it is suggested that striatal subregions are functionally linked to cortical networks involving specific functions rather than discrete portions of cortical regions. Our findings also demonstrate that the clustering of functional connectivity patterns is a reliable feature in parcellating the striatum into anatomically and functionally meaningful subdivisions. The striatal subdivisions identified here may have important implications for understanding the relationship between corticostriatal dysfunction and various neurodegenerative and psychiatric disorders. PMID:25203441
Voluntary Enhancement of Neural Signatures of Affiliative Emotion Using fMRI Neurofeedback
Moll, Jorge; Weingartner, Julie H.; Bado, Patricia; Basilio, Rodrigo; Sato, João R.; Melo, Bruno R.; Bramati, Ivanei E.; de Oliveira-Souza, Ricardo; Zahn, Roland
2014-01-01
In Ridley Scott’s film “Blade Runner”, empathy-detection devices are employed to measure affiliative emotions. Despite recent neurocomputational advances, it is unknown whether brain signatures of affiliative emotions, such as tenderness/affection, can be decoded and voluntarily modulated. Here, we employed multivariate voxel pattern analysis and real-time fMRI to address this question. We found that participants were able to use visual feedback based on decoded fMRI patterns as a neurofeedback signal to increase brain activation characteristic of tenderness/affection relative to pride, an equally complex control emotion. Such improvement was not observed in a control group performing the same fMRI task without neurofeedback. Furthermore, the neurofeedback-driven enhancement of tenderness/affection-related distributed patterns was associated with local fMRI responses in the septohypothalamic area and frontopolar cortex, regions previously implicated in affiliative emotion. This demonstrates that humans can voluntarily enhance brain signatures of tenderness/affection, unlocking new possibilities for promoting prosocial emotions and countering antisocial behavior. PMID:24847819
Bayesian switching factor analysis for estimating time-varying functional connectivity in fMRI.
Taghia, Jalil; Ryali, Srikanth; Chen, Tianwen; Supekar, Kaustubh; Cai, Weidong; Menon, Vinod
2017-07-15
There is growing interest in understanding the dynamical properties of functional interactions between distributed brain regions. However, robust estimation of temporal dynamics from functional magnetic resonance imaging (fMRI) data remains challenging due to limitations in extant multivariate methods for modeling time-varying functional interactions between multiple brain areas. Here, we develop a Bayesian generative model for fMRI time-series within the framework of hidden Markov models (HMMs). The model is a dynamic variant of the static factor analysis model (Ghahramani and Beal, 2000). We refer to this model as Bayesian switching factor analysis (BSFA) as it integrates factor analysis into a generative HMM in a unified Bayesian framework. In BSFA, brain dynamic functional networks are represented by latent states which are learnt from the data. Crucially, BSFA is a generative model which estimates the temporal evolution of brain states and transition probabilities between states as a function of time. An attractive feature of BSFA is the automatic determination of the number of latent states via Bayesian model selection arising from penalization of excessively complex models. Key features of BSFA are validated using extensive simulations on carefully designed synthetic data. We further validate BSFA using fingerprint analysis of multisession resting-state fMRI data from the Human Connectome Project (HCP). Our results show that modeling temporal dependencies in the generative model of BSFA results in improved fingerprinting of individual participants. Finally, we apply BSFA to elucidate the dynamic functional organization of the salience, central-executive, and default mode networks-three core neurocognitive systems with central role in cognitive and affective information processing (Menon, 2011). Across two HCP sessions, we demonstrate a high level of dynamic interactions between these networks and determine that the salience network has the highest temporal flexibility among the three networks. Our proposed methods provide a novel and powerful generative model for investigating dynamic brain connectivity. Copyright © 2017 Elsevier Inc. All rights reserved.
Sisto, Dario; Trojano, Maria; Vetrugno, Michele; Trabucco, Tiziana; Iliceto, Giovanni; Sborgia, Carlo
2005-04-01
To evaluate the effectiveness of visual evoked potentials (VEPs), frequency-doubling perimetry (FDP), standard achromatic perimetry (SAP), contrast sensitivity (CS) test, and magnetic resonance imaging (MRI), isolated or in combination, in detecting subclinical impairment of visual function in multiple sclerosis (MS). Twenty-two eyes of 11 patients affected by clinically definite MS, without a history of optic neuritis and asymptomatic for visual disturbances, underwent full ophthalmic examination and, in addition, VEPs, FDP, SAP, CS, and MRI. Abnormal results were taken to be as follows: for VEPs, a P100 latency >115 ms; for FDP, abnormal mean deviation (MD) or pattern SD (PSD); for SAP, abnormal MD or PSD; for CS, abnormal CS at one spatial frequency, at least; and for MRI, evidence of at least one demyelinating plaque along the visual pathway. VEPs showed abnormal results in 12 eyes (54.4%), FDP in 11 (50%), SAP in 14 (63.6%), CS in 17 (77.1%), and MRI in 16 (72.7%). In only two (9.1%) eyes of the same patient was no abnormality found. No single test detected all the abnormal eyes. Four (18.2%) eyes had pure optic nerve involvement and the remaining 16 (72.7%) had both pre- and postchiasmal involvement. In patients affected by clinically definite MS without history of optic neuritis and no visual symptoms, there is a large prevalence of visual pathway involvement that can be diagnosed only by performing multiple tests. The comparison of the tests is also useful to detect the presence of multiple lesions in the same patient.
ERIC Educational Resources Information Center
Decety, Jean; Michalska, Kalina J.
2010-01-01
Empathy and sympathy play crucial roles in much of human social interaction and are necessary components for healthy coexistence. Sympathy is thought to be a proxy for motivating prosocial behavior and providing the affective and motivational base for moral development. The purpose of the present study was to use functional MRI to characterize…
Distinct Brain Systems Underlie the Processing of Valence and Arousal of Affective Pictures
ERIC Educational Resources Information Center
Nielen, M. M. A.; Heslenfeld, D. J.; Heinen, K.; Van Strien, J. W.; Witter, M. P.; Jonker, C.; Veltman, D. J.
2009-01-01
Valence and arousal are thought to be the primary dimensions of human emotion. However, the degree to which valence and arousal interact in determining brain responses to emotional pictures is still elusive. This functional MRI study aimed to delineate neural systems responding to valence and arousal, and their interaction. We measured neural…
Multimodal frontostriatal connectivity underlies individual differences in self-esteem
Heatherton, Todd F.
2015-01-01
A heightened sense of self-esteem is associated with a reduced risk for several types of affective and psychiatric disorders, including depression, anxiety and eating disorders. However, little is known about how brain systems integrate self-referential processing and positive evaluation to give rise to these feelings. To address this, we combined diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) to test how frontostriatal connectivity reflects long-term trait and short-term state aspects of self-esteem. Using DTI, we found individual variability in white matter structural integrity between the medial prefrontal cortex and the ventral striatum was related to trait measures of self-esteem, reflecting long-term stability of self-esteem maintenance. Using fMRI, we found that functional connectivity of these regions during positive self-evaluation was related to current feelings of self-esteem, reflecting short-term state self-esteem. These results provide convergent anatomical and functional evidence that self-esteem is related to the connectivity of frontostriatal circuits and suggest that feelings of self-worth may emerge from neural systems integrating information about the self with positive affect and reward. This information could potentially inform the etiology of diminished self-esteem underlying multiple psychiatric conditions and inform future studies of evaluative self-referential processing. PMID:24795440
Negative words enhance recognition in nonclinical high dissociators: An fMRI study.
de Ruiter, Michiel B; Veltman, Dick J; Phaf, R Hans; van Dyck, Richard
2007-08-01
Memory encoding and retrieval were studied in a nonclinical sample of participants that differed in the amount of reported dissociative experiences (trait dissociation). Behavioral as well as functional imaging (fMRI) indices were used as convergent measures of memory functioning. In a deep vs. shallow encoding paradigm, the influence of dissociative style on elaborative and avoidant encoding was studied, respectively. Furthermore, affectively neutral and negative words were presented, to test whether the effects of dissociative tendencies on memory functioning depended on the affective valence of the stimulus material. Results showed that (a) deep encoding of negative vs. neutral stimuli was associated with higher levels of semantic elaboration in high than in low dissociators, as indicated by increased levels of activity in hippocampus and prefrontal cortex during encoding and higher memory performance during recognition, (b) high dissociators were generally characterized by higher levels of conscious recollection as indicated by increased activity of the hippocampus and posterior parietal areas during recognition, (c) nonclinical high dissociators were not characterized by an avoidant encoding style. These results support the notion that trait dissociation in healthy individuals is associated with high levels of elaborative encoding, resulting in high levels of conscious recollection. These abilities, in addition, seem to depend on the salience of the presented stimulus material.
Neuroimaging findings in disruptive behavior disorders.
Baker, Rosalind H; Clanton, Roberta L; Rogers, Jack C; De Brito, Stéphane A
2015-08-01
Decades of research have shown that youths with disruptive behavior disorders (DBD) are a heterogeneous population. Over the past 20 years, researchers have distinguished youths with DBD as those displaying high (DBD/HCU) versus low (DBD/LCU) callous-unemotional (CU) traits. These traits include flat affect and reduced empathy and remorse, and are associated with more severe, varied, and persistent patterns of antisocial behavior and aggression. Conduct problems in youths with HCU and LCU are thought to reflect distinct causal vulnerabilities, with antisocial behavior in youths with DBD/HCU reflecting a predominantly genetic etiology, while antisocial behavior in youths with DBD/LCU is associated primarily with environmental influences. Here we selectively review recent functional (fMRI) and structural (sMRI) magnetic resonance imaging research on DBD, focusing particularly on the role of CU traits. First, fMRI studies examining the neural correlates of affective stimuli, emotional face processing, empathy, theory of mind, morality, and decision-making in DBD are discussed. This is followed by a review of the studies investigating brain structure and structural connectivity in DBD. Next, we highlight the need to further investigate females and the role of sex differences in this population. We conclude the review by identifying potential clinical implications of this research.
NASA Technical Reports Server (NTRS)
Spirka, T. A.; Myers, J. G.; Setser, R. M.; Halliburton, S. S.; White, R. D.; Chatzimavroudis, G. P.
2005-01-01
A priority of NASA is to identify and study possible risks to astronauts health during prolonged space missions [l]. The goal is to develop a procedure for a preflight evaluation of the cardiovascular system of an astronaut and to forecast how it will be affected during the mission. To predict these changes, a computational cardiovascular model must be constructed. Although physiology data can be used to make a general model, a more desirable subject-specific model requires anatomical, functional, and flow data from the specific astronaut. MRI has the unique advantage of providing images with all of the above information, including three-directional velocity data which can be used as boundary conditions in a computational fluid dynamics (CFD) program [2,3]. MRI-based CFD is very promising for reproduction of the flow patterns of a specific subject and prediction of changes in the absence of gravity. The aim of this study was to test the feasibility of this approach by reconstructing the geometry of MRI-scanned arterial models and reproducing the MRI-measured velocities using CFD simulations on these geometries.
Cordes, Dietmar; Nandy, Rajesh R.; Schafer, Scott; Wager, Tor D.
2014-01-01
It has recently been shown that both high-frequency and low-frequency cardiac and respiratory noise sources exist throughout the entire brain and can cause significant signal changes in fMRI data. It is also known that the brainstem, basal forebrain and spinal cord area are problematic for fMRI because of the magnitude of cardiac-induced pulsations at these locations. In this study, the physiological noise contributions in the lower brain areas (covering the brainstem and adjacent regions) are investigated and a novel method is presented for computing both low-frequency and high-frequency physiological regressors accurately for each subject. In particular, using a novel optimization algorithm that penalizes curvature (i.e. the second derivative) of the physiological hemodynamic response functions, the cardiac -and respiratory-related response functions are computed. The physiological noise variance is determined for each voxel and the frequency-aliasing property of the high-frequency cardiac waveform as a function of the repetition time (TR) is investigated. It is shown that for the brainstem and other brain areas associated with large pulsations of the cardiac rate, the temporal SNR associated with the low-frequency range of the BOLD response has maxima at subject-specific TRs. At these values, the high-frequency aliased cardiac rate can be eliminated by digital filtering without affecting the BOLD-related signal. PMID:24355483
Delvecchio, G; Altamura, A C; Soares, J C; Brambilla, P
2017-08-15
The function of the hypothalamo-pituitary-adrenal axis (HPA) has been widely investigated in mood disorders based on its role in regulating stress response. Particularly, Magnetic Resonance Imaging (MRI) reports have explored pituitary gland (PG) in both bipolar disorder (BD) and major depressive disorder (MDD). In this context, the present review summarizes the results from MRI studies with the final aim of commenting on the presence of common or distinct PG structural alterations between these two disabling illnesses. A bibliographic search on PUBMED of all MRI studies exploring PG volumes in BD and MDD as well as first-degree relatives (RELs) from 2000 up to October 2016 was performed. Following the screening process of the available literature it can be said that a) PG enlargement has been found in both BD and MDD, therefore potentially representing a common neurobiological marker characterizing mood disorders, and b) PG volumes are moderated by age and sex in both illnesses, although the direction and the extent of this moderation are still not fully clear. Few MRI studies with heterogeneous results. These hypotheses must be taken with caution especially because the heterogeneity of the results of the studies reviewed does not allow for a definite answer about the role of PG in affective disorders. Therefore, larger longitudinal studies investigating PG volumes in BD and MDD patients at the early phases of the illness, by considering females and males separately, are needed to further corroborate these findings. Copyright © 2017 Elsevier B.V. All rights reserved.
Self-regulation of the anterior insula: Reinforcement learning using real-time fMRI neurofeedback.
Lawrence, Emma J; Su, Li; Barker, Gareth J; Medford, Nick; Dalton, Jeffrey; Williams, Steve C R; Birbaumer, Niels; Veit, Ralf; Ranganatha, Sitaram; Bodurka, Jerzy; Brammer, Michael; Giampietro, Vincent; David, Anthony S
2014-03-01
The anterior insula (AI) plays a key role in affective processing, and insular dysfunction has been noted in several clinical conditions. Real-time functional MRI neurofeedback (rtfMRI-NF) provides a means of helping people learn to self-regulate activation in this brain region. Using the Blood Oxygenated Level Dependant (BOLD) signal from the right AI (RAI) as neurofeedback, we trained participants to increase RAI activation. In contrast, another group of participants was shown 'control' feedback from another brain area. Pre- and post-training affective probes were shown, with subjective ratings and skin conductance response (SCR) measured. We also investigated a reward-related reinforcement learning model of rtfMRI-NF. In contrast to the controls, we hypothesised a positive linear increase in RAI activation in participants shown feedback from this region, alongside increases in valence ratings and SCR to affective probes. Hypothesis-driven analyses showed a significant interaction between the RAI/control neurofeedback groups and the effect of self-regulation. Whole-brain analyses revealed a significant linear increase in RAI activation across four training runs in the group who received feedback from RAI. Increased activation was also observed in the caudate body and thalamus, likely representing feedback-related learning. No positive linear trend was observed in the RAI in the group receiving control feedback, suggesting that these data are not a general effect of cognitive strategy or control feedback. The control group did, however, show diffuse activation across the putamen, caudate and posterior insula which may indicate the representation of false feedback. No significant training-related behavioural differences were observed for valence ratings, or SCR. In addition, correlational analyses based on a reinforcement learning model showed that the dorsal anterior cingulate cortex underpinned learning in both groups. In summary, these data demonstrate that it is possible to regulate the RAI using rtfMRI-NF within one scanning session, and that such reward-related learning is mediated by the dorsal anterior cingulate. Copyright © 2013 Elsevier Inc. All rights reserved.
Mutschler, Isabella; Wieckhorst, Birgit; Meyer, Andrea H; Schweizer, Tina; Klarhöfer, Markus; Wilhelm, Frank H; Seifritz, Erich; Ball, Tonio
2014-11-07
Experiments using functional magnetic resonance imaging (fMRI) play a fundamental role in affective neuroscience. When placed in an MR scanner, some volunteers feel safe and relaxed in this situation, while others experience uneasiness and fear. Little is known about the basis and consequences of such inter-individually different responses to the general experimental fMRI setting. In this study emotional stimuli were presented during fMRI and subjects' state-anxiety was assessed at the onset and end of the experiment while they were within the scanner. We show that Val/Val but neither Met/Met nor Val/Met carriers of the catechol-O-methyltransferase (COMT) Val(158)Met polymorphism-a prime candidate for anxiety vulnerability-became significantly more anxious during the fMRI experiment (N=97 females: 24 Val/Val, 51 Val/Met, and 22 Met/Met). Met carriers demonstrated brain responses with increased stability over time in the right parietal cortex and significantly better cognitive performances likely mediated by lower levels of anxiety. Val/Val, Val/Met and Met/Met did not significantly differ in state-anxiety at the beginning of the experiment. The exposure of a control group (N=56 females) to the same experiment outside the scanner did not cause a significant increase in state-anxiety, suggesting that the increase we observe in the fMRI experiment may be specific to the fMRI setting. Our findings reveal that genetics may play an important role in shaping inter-individual different emotional, cognitive and neuronal responses during fMRI experiments. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Gandolla, Marta; Ferrante, Simona; Casellato, Claudia; Ferrigno, Giancarlo; Molteni, Franco; Martegani, Alberto; Frattini, Tiziano; Pedrocchi, Alessandra
2011-10-01
Functional Electrical Stimulation (FES) is a well known clinical rehabilitation procedure, however the neural mechanisms that underlie this treatment at Central Nervous System (CNS) level are still not completely understood. Functional magnetic resonance imaging (fMRI) is a suitable tool to investigate effects of rehabilitative treatments on brain plasticity. Moreover, monitoring the effective executed movement is needed to correctly interpret activation maps, most of all in neurological patients where required motor tasks could be only partially accomplished. The proposed experimental set-up includes a 1.5 T fMRI scanner, a motion capture system to acquire kinematic data, and an electro-stimulation device. The introduction of metallic devices and of stimulation current in the MRI room could affect fMRI acquisitions so as to prevent a reliable activation maps analysis. What we are interested in is that the Blood Oxygenation Level Dependent (BOLD) signal, marker of neural activity, could be detected within a given experimental condition and set-up. In this paper we assess temporal Signal to Noise Ratio (SNR) as image quality index. BOLD signal change is about 1-2% as revealed by a 1.5 T scanner. This work demonstrates that, with this innovative set-up, in the main cortical sensorimotor regions 1% BOLD signal change can be detected at least in the 93% of the sub-volumes, and almost 100% of the sub-volumes are suitable for 2% signal change detection. The integrated experimental set-up will therefore allows to detect FES induced movements fMRI maps simultaneously with kinematic acquisitions so as to investigate FES-based rehabilitation treatments contribution at CNS level. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
Ghassemi, Rezwan; Brown, Robert; Narayanan, Sridar; Banwell, Brenda; Nakamura, Kunio; Arnold, Douglas L
2015-01-01
Intensity variation between magnetic resonance images (MRI) hinders comparison of tissue intensity distributions in multicenter MRI studies of brain diseases. The available intensity normalization techniques generally work well in healthy subjects but not in the presence of pathologies that affect tissue intensity. One such disease is multiple sclerosis (MS), which is associated with lesions that prominently affect white matter (WM). To develop a T1-weighted (T1w) image intensity normalization method that is independent of WM intensity, and to quantitatively evaluate its performance. We calculated median intensity of grey matter and intraconal orbital fat on T1w images. Using these two reference tissue intensities we calculated a linear normalization function and applied this to the T1w images to produce normalized T1w (NT1) images. We assessed performance of our normalization method for interscanner, interprotocol, and longitudinal normalization variability, and calculated the utility of the normalization method for lesion analyses in clinical trials. Statistical modeling showed marked decreases in T1w intensity differences after normalization (P < .0001). We developed a WM-independent T1w MRI normalization method and tested its performance. This method is suitable for longitudinal multicenter clinical studies for the assessment of the recovery or progression of disease affecting WM. Copyright © 2014 by the American Society of Neuroimaging.
Specialization along the left superior temporal sulcus for auditory categorization.
Liebenthal, Einat; Desai, Rutvik; Ellingson, Michael M; Ramachandran, Brinda; Desai, Anjali; Binder, Jeffrey R
2010-12-01
The affinity and temporal course of functional fields in middle and posterior superior temporal cortex for the categorization of complex sounds was examined using functional magnetic resonance imaging (fMRI) and event-related potentials (ERPs) recorded simultaneously. Data were compared before and after subjects were trained to categorize a continuum of unfamiliar nonphonemic auditory patterns with speech-like properties (NP) and a continuum of familiar phonemic patterns (P). fMRI activation for NP increased after training in left posterior superior temporal sulcus (pSTS). The ERP P2 response to NP also increased with training, and its scalp topography was consistent with left posterior superior temporal generators. In contrast, the left middle superior temporal sulcus (mSTS) showed fMRI activation only for P, and this response was not affected by training. The P2 response to P was also independent of training, and its estimated source was more anterior in left superior temporal cortex. Results are consistent with a role for left pSTS in short-term representation of relevant sound features that provide the basis for identifying newly acquired sound categories. Categorization of highly familiar phonemic patterns is mediated by long-term representations in left mSTS. Results provide new insight regarding the function of ventral and dorsal auditory streams.
Pavuluri, Mani N; Passarotti, Alessandra M; Parnes, Stephanie A; Fitzgerald, Jacklynn M; Sweeney, John A
2010-10-01
This functional magnetic resonance imaging (fMRI) study investigated the effects of pharmacotherapy on brain function underlying affect dysregulation and cognitive function in pediatric bipolar disorder (PBD). Healthy controls (HC) (n=14; mean age =14.1 ± 2.4 years) and unmedicated PBD patients with manic or hypomanic episodes (n=17; mean age =14.3 ± 1.1 years) were matched on intelligence quotient (IQ) and demographic factors. The fMRI studies were performed at baseline and after 14 weeks, during which PBD patients were treated initially with second-generation antipsychotics (SGAs) followed by lamotrigine monotherapy. The pediatric affective color-matching task was used where subjects matched the color of a positive, negative, or neutral word with one of the two colored circles below in each of the trials. There were five blocks of each emotional word type, with 10 trials per block. Behavioral data showed that the PBD group was modestly slower and less accurate than the HC, regardless of condition or treatment status. The blood oxygen level-dependent (BOLD) signal activity was reduced with treatment in the PBD group relative to the HC group during the negative versus neutral condition in bilateral dorsolateral prefrontal cortex (DLPFC), right posterior cingulate gyrus, parahippocampal gyrus, and inferior parietal lobule, but increased in left ventromedial prefrontal cortex (VMPFC). Similarly, during the positive versus neutral condition, the PBD group, relative to HC, showed reduced activity in right DLPFC, precuneus, and inferior parietal lobule and increased activity in the right VMPFC. However, within the PBD group, there was treatment related decrease in VMPFC and DLPFC. Improvement on Young Mania Rating Scale (YMRS) score significantly correlated with the decreased activity in VMPFC within the patient group. Pharmacotherapy in PBD patients led to differential effort with persistently increased activity in the affective regions and decreased activity in the cognitive regions relative to HC, demonstrating altered mechanisms of affective and cognitive systems of brain function, regardless of symptom response.
Ohno, Yoshiharu; Nishio, Mizuho; Koyama, Hisanobu; Yoshikawa, Takeshi; Matsumoto, Sumiaki; Seki, Shinichiro; Obara, Makoto; van Cauteren, Marc; Takahashi, Masaya; Sugimura, Kazuro
2014-04-01
To assess the influence of ultrashort TE (UTE) intervals on pulmonary magnetic resonance imaging (MRI) with UTEs (UTE-MRI) for pulmonary functional loss assessment and clinical stage classification of smokers. A total 60 consecutive smokers (43 men and 17 women; mean age 70 years) with and without COPD underwent thin-section multidetector row computed tomography (MDCT), UTE-MRI, and pulmonary functional measurements. For each smoker, UTE-MRI was performed with three different UTE intervals (UTE-MRI A: 0.5 msec, UTE-MRI B: 1.0 msec, UTE-MRI C: 1.5 msec). By using the GOLD guidelines, the subjects were classified as: "smokers without COPD," "mild COPD," "moderate COPD," and "severe or very severe COPD." Then the mean T2* value from each UTE-MRI and CT-based functional lung volume (FLV) were correlated with pulmonary function test. Finally, Fisher's PLSD test was used to evaluate differences in each index among the four clinical stages. Each index correlated significantly with pulmonary function test results (P < 0.05). CT-based FLV and mean T2* values obtained from UTE-MRI A and B showed significant differences among all groups except between "smokers without COPD" and "mild COPD" groups (P < 0.05). UTE-MRI has a potential for management of smokers and the UTE interval is suggested as an important parameter in this setting. Copyright © 2013 Wiley Periodicals, Inc.
Exploring connectivity with large-scale Granger causality on resting-state functional MRI.
DSouza, Adora M; Abidin, Anas Z; Leistritz, Lutz; Wismüller, Axel
2017-08-01
Large-scale Granger causality (lsGC) is a recently developed, resting-state functional MRI (fMRI) connectivity analysis approach that estimates multivariate voxel-resolution connectivity. Unlike most commonly used multivariate approaches, which establish coarse-resolution connectivity by aggregating voxel time-series avoiding an underdetermined problem, lsGC estimates voxel-resolution, fine-grained connectivity by incorporating an embedded dimension reduction. We investigate application of lsGC on realistic fMRI simulations, modeling smoothing of neuronal activity by the hemodynamic response function and repetition time (TR), and empirical resting-state fMRI data. Subsequently, functional subnetworks are extracted from lsGC connectivity measures for both datasets and validated quantitatively. We also provide guidelines to select lsGC free parameters. Results indicate that lsGC reliably recovers underlying network structure with area under receiver operator characteristic curve (AUC) of 0.93 at TR=1.5s for a 10-min session of fMRI simulations. Furthermore, subnetworks of closely interacting modules are recovered from the aforementioned lsGC networks. Results on empirical resting-state fMRI data demonstrate recovery of visual and motor cortex in close agreement with spatial maps obtained from (i) visuo-motor fMRI stimulation task-sequence (Accuracy=0.76) and (ii) independent component analysis (ICA) of resting-state fMRI (Accuracy=0.86). Compared with conventional Granger causality approach (AUC=0.75), lsGC produces better network recovery on fMRI simulations. Furthermore, it cannot recover functional subnetworks from empirical fMRI data, since quantifying voxel-resolution connectivity is not possible as consequence of encountering an underdetermined problem. Functional network recovery from fMRI data suggests that lsGC gives useful insight into connectivity patterns from resting-state fMRI at a multivariate voxel-resolution. Copyright © 2017 Elsevier B.V. All rights reserved.
Evangelisti, Maria A; Deiana, Roberta; Melosu, Valentino; Burrai, Giovanni P; Ballocco, Isabella; Varcasia, Antonio; Scala, Antonio; Manunta, Maria L
2018-05-01
Diagnosing high intracranial pressure by clinical and diagnostic imaging is particularly challenging for chronic or slow-growing lesions. The aim of this prospective case-control study is to determine whether the neuroscore and brain magnetic resonance imaging (MRI) are related to the direct measurement of intracranial pressure in sheep affected by intracranial slow-growing lesions due to chronic cerebral coenurosis (Coenurus cerebralis). Seventeen affected and 10 control sheep were included. All animals underwent a neurological examination, MRI of the brain, and direct measurement of intracranial pressure. The severity of clinical signs and MRI findings were scored. Data were statistically analyzed. The invasive intracranial pressure value was higher in affected animals. A severely altered neuroscore is related to an increased intracranial pressure beyond the normal threshold (P < 0.05). The volume of the calvarium was larger in affected animals than in control animals (P = 0.0001) and was positively influenced by the presence and volume of the parasitic cyst (r = 0.7881, P < 0.01). Several degrees of deviation and deformation of both the ventricular system and brain parenchyma were detected by MRI. Subjective MRI findings were not associated with intracranial hypertension. In conclusion, this study shows that in sheep affected by slow-growing lesions, severe alterations in the neuroscore and the results of objective MRI are related to an increased intracranial pressure beyond the normal threshold. © 2017 American College of Veterinary Radiology.
Milot, Marie-Hélène; Spencer, Steven J.; Chan, Vicky; Allington, James P.; Klein, Julius; Chou, Cathy; Pearson-Fuhrhop, Kristin; Bobrow, James E.; Reinkensmeyer, David J.; Cramer, Steven C.
2014-01-01
Background Robotic training can help improve function of a paretic limb following a stroke, but individuals respond differently to the training. A predictor of functional gains might improve the ability to select those individuals more likely to benefit from robot based therapy. Studies evaluating predictors of functional improvement after a robotic training are scarce. One study has found that white matter tract integrity predicts functional gains following a robotic training of the hand and wrist. Objective Determine the predictive ability of behavioral and brain measures to improve selection of individuals for robotic training. Methods Twenty subjects with chronic stroke participated in an 8-week course of robotic exoskeletal training for the arm. Before training, a clinical evaluation, fMRI, diffusion tensor imaging, and transcranial magnetic stimulation (TMS) were each measured as predictors. Final functional gain was defined as change in the Box and Block Test (BBT). Measures significant in bivariate analysis were fed into a multivariate linear regression model. Results Training was associated with an average gain of 6±5 blocks on the BBT (p<0.0001). Bivariate analysis revealed that lower baseline motor evoked potential (MEP) amplitude on TMS, and lower laterality M1 index on fMRI each significantly correlated with greater BBT change. In the multivariate linear regression analysis, baseline MEP magnitude was the only measure that remained significant. Conclusion Subjects with lower baseline MEP magnitude benefited the most from robotic training of the affected arm. These subjects might have reserve remaining for the training to boost corticospinal excitability, translating into functional gains. PMID:24642382
Transcortical Sensory Aphasia after Left Frontal Lobe Infarction: Loss of Functional Connectivity.
Kwon, Miseon; Shim, Woo Hyun; Kim, Sang-Joon; Kim, Jong S
2017-01-01
The underlying mechanism of transcortical sensory aphasia (TSA) caused by lesions occurring in the left frontal lobe remains unclear. We attempted to investigate the mechanism with the use of functional MRI (fMRI). We studied 2 patients with TSA after a left frontal infarction identified by diffusion-weighted MRI. As control subjects, a patient with transcortical motor aphasia and a healthy normal adult were chosen. The Korean version of Western Aphasia Battery was performed initially and at 3 months post stroke. We performed fMRI using verb generation and sentence completion tasks. Resting-state fMRI (rs-fMRI) was also obtained for network-level analysis initially and at 3 months post stroke. The results of diffusion- and perfusion-weighted MRI revealed no diffusion-perfusion mismatch. Initial fMRI in patients with TSA showed no reversed inter-/intrahemispheric activation patterns. rs-fMRI showed significantly decreased resting-state functional connectivity in the language network in patients with TSA compared with the control subjects. Follow-up rs-fMRI studies showed improvement in functional connectivity along with the recovery of patients' language function. Our data showed that the auditory comprehension deficits in patients with frontal lobe infarcts is attributed to difficulty accessing the posterior language area due to functional disconnection between language centers in the acute stage of stroke. © 2017 S. Karger AG, Basel.
Uğurbil, Kamil; Xu, Junqian; Auerbach, Edward J.; Moeller, Steen; Vu, An; Duarte-Carvajalino, Julio M.; Lenglet, Christophe; Wu, Xiaoping; Schmitter, Sebastian; Van de Moortele, Pierre Francois; Strupp, John; Sapiro, Guillermo; De Martino, Federico; Wang, Dingxin; Harel, Noam; Garwood, Michael; Chen, Liyong; Feinberg, David A.; Smith, Stephen M.; Miller, Karla L.; Sotiropoulos, Stamatios N; Jbabdi, Saad; Andersson, Jesper L; Behrens, Timothy EJ; Glasser, Matthew F.; Van Essen, David; Yacoub, Essa
2013-01-01
The human connectome project (HCP) relies primarily on three complementary magnetic resonance (MR) methods. These are: 1) resting state functional MR imaging (rfMRI) which uses correlations in the temporal fluctuations in an fMRI time series to deduce ‘functional connectivity’; 2) diffusion imaging (dMRI), which provides the input for tractography algorithms used for the reconstruction of the complex axonal fiber architecture; and 3) task based fMRI (tfMRI), which is employed to identify functional parcellation in the human brain in order to assist analyses of data obtained with the first two methods. We describe technical improvements and optimization of these methods as well as instrumental choices that impact speed of acquisition of fMRI and dMRI images at 3 Tesla, leading to whole brain coverage with 2 mm isotropic resolution in 0.7 second for fMRI, and 1.25 mm isotropic resolution dMRI data for tractography analysis with three-fold reduction in total data acquisition time. Ongoing technical developments and optimization for acquisition of similar data at 7 Tesla magnetic field are also presented, targeting higher resolution, specificity of functional imaging signals, mitigation of the inhomogeneous radio frequency (RF) fields and power deposition. Results demonstrate that overall, these approaches represent a significant advance in MR imaging of the human brain to investigate brain function and structure. PMID:23702417
MRI based on iron oxide nanoparticles contrast agents: effect of oxidation state and architecture
NASA Astrophysics Data System (ADS)
Javed, Yasir; Akhtar, Kanwal; Anwar, Hafeez; Jamil, Yasir
2017-11-01
Iron oxide nanoparticles (IONPs) extensively employed beyond regenerative medicines to imaging disciplines because of their great constituents for magneto-responsive nano-systems. The unique superparamagnetic behavior makes IONPs very suitable for hyperthermia and imaging applications. From the last decade, versatile functionalization with surface capabilities, efficient contrast properties and biocompatibilities make IONPs an essential imaging contrast agent for magnetic resonance imaging (MRI). IONPs have shown signals for both longitudinal relaxation and transverse relaxation; therefore, negative contrast as well as dual contrast can be used for imaging in MRI. In the current review, we have focused on different oxidation state of iron oxides, i.e., magnetite, maghemite and hematite for their T1 and T2 contrast enhancement properties. We have also discussed different factors (synthesis protocols, biocompatibility, toxicity, architecture, etc.) that can affect the contrast properties of the IONPs. [Figure not available: see fulltext.
Lu, Jun-Feng; Zhang, Han; Wu, Jin-Song; Yao, Cheng-Jun; Zhuang, Dong-Xiao; Qiu, Tian-Ming; Jia, Wen-Bin; Mao, Ying; Zhou, Liang-Fu
2012-01-01
As a promising noninvasive imaging technique, functional MRI (fMRI) has been extensively adopted as a functional localization procedure for surgical planning. However, the information provided by preoperative fMRI (pre-fMRI) is hampered by the brain deformation that is secondary to surgical procedures. Therefore, intraoperative fMRI (i-fMRI) becomes a potential alternative that can compensate for brain shifts by updating the functional localization information during craniotomy. However, previous i-fMRI studies required that patients be under general anesthesia, preventing the wider application of such a technique as the patients cannot perform tasks unless they are awake. In this study, we propose a new technique that combines awake surgery and i-fMRI, named “awake” i-fMRI (ai-fMRI). We introduced ai-fMRI to the real-time localization of sensorimotor areas during awake craniotomy in seven patients. The results showed that ai-fMRI could successfully detect activations in the bilateral primary sensorimotor areas and supplementary motor areas for all patients, indicating the feasibility of this technique in eloquent area localization. The reliability of ai-fMRI was further validated using intraoperative stimulation mapping (ISM) in two of the seven patients. Comparisons between the pre-fMRI-derived localization result and the ai-fMRI derived result showed that the former was subject to a heavy brain shift and led to incorrect localization, while the latter solved that problem. Additionally, the approaches for the acquisition and processing of the ai-fMRI data were fully illustrated and described. Some practical issues on employing ai-fMRI in awake craniotomy were systemically discussed, and guidelines were provided. PMID:24179766
Lin, Hsiang-Yuan
2016-01-01
Background: Although atomoxetine demonstrates efficacy in individuals with attention-deficit hyperactivity disorder, its treatment effects on brain resting-state functional connectivity remain unknown. Therefore, we aimed to investigate major brain functional networks in medication-naïve adults with attention-deficit hyperactivity disorder and the efficacy of atomoxetine treatment on resting-state functional connectivity. Methods: After collecting baseline resting-state functional MRI scans from 24 adults with attention-deficit hyperactivity disorder (aged 18–52 years) and 24 healthy controls (matched in demographic characteristics), the participants with attention-deficit hyperactivity disorder were randomly assigned to atomoxetine (n=12) and placebo (n=12) arms in an 8-week, double-blind, placebo-controlled trial. The primary outcome was functional connectivity assessed by a resting-state functional MRI. Seed-based functional connectivity was calculated and compared for the affective, attention, default, and cognitive control networks. Results: At baseline, we found atypical cross talk between the default, cognitive control, and dorsal attention networks and hypoconnectivity within the dorsal attention and default networks in adults with attention-deficit hyperactivity disorder. Our first-ever placebo-controlled clinical trial incorporating resting-state functional MRI showed that treatment with atomoxetine strengthened an anticorrelated relationship between the default and task-positive networks and modulated all major brain networks. The strengthened anticorrelations were associated with improving clinical symptoms in the atomoxetine-treated adults. Conclusions: Our results support the idea that atypical default mode network task-positive network interaction plays an important role in the pathophysiology of adult attention-deficit hyperactivity disorder. Strengthening this atypical relationship following atomoxetine treatment suggests an important pathway to treat attention-deficit hyperactivity disorder. PMID:26377368
Lin, Hsiang-Yuan; Gau, Susan Shur-Fen
2015-09-16
Although atomoxetine demonstrates efficacy in individuals with attention-deficit hyperactivity disorder, its treatment effects on brain resting-state functional connectivity remain unknown. Therefore, we aimed to investigate major brain functional networks in medication-naïve adults with attention-deficit hyperactivity disorder and the efficacy of atomoxetine treatment on resting-state functional connectivity. After collecting baseline resting-state functional MRI scans from 24 adults with attention-deficit hyperactivity disorder (aged 18-52 years) and 24 healthy controls (matched in demographic characteristics), the participants with attention-deficit hyperactivity disorder were randomly assigned to atomoxetine (n=12) and placebo (n=12) arms in an 8-week, double-blind, placebo-controlled trial. The primary outcome was functional connectivity assessed by a resting-state functional MRI. Seed-based functional connectivity was calculated and compared for the affective, attention, default, and cognitive control networks. At baseline, we found atypical cross talk between the default, cognitive control, and dorsal attention networks and hypoconnectivity within the dorsal attention and default networks in adults with attention-deficit hyperactivity disorder. Our first-ever placebo-controlled clinical trial incorporating resting-state functional MRI showed that treatment with atomoxetine strengthened an anticorrelated relationship between the default and task-positive networks and modulated all major brain networks. The strengthened anticorrelations were associated with improving clinical symptoms in the atomoxetine-treated adults. Our results support the idea that atypical default mode network task-positive network interaction plays an important role in the pathophysiology of adult attention-deficit hyperactivity disorder. Strengthening this atypical relationship following atomoxetine treatment suggests an important pathway to treat attention-deficit hyperactivity disorder. © The Author 2015. Published by Oxford University Press on behalf of CINP.
Roach, David J.; Crémillieux, Yannick; Fleck, Robert J.; Brody, Alan S.; Serai, Suraj D.; Szczesniak, Rhonda D.; Kerlakian, Stephanie; Clancy, John P.
2016-01-01
Rationale: Recent advancements that have been made in magnetic resonance imaging (MRI) improve our ability to assess pulmonary structure and function in patients with cystic fibrosis (CF). A nonionizing imaging modality that can be used as a serial monitoring tool throughout life can positively affect patient care and outcomes. Objectives: To compare an ultrashort echo-time MRI method with computed tomography (CT) as a biomarker of lung structure abnormalities in young children with early CF lung disease. Methods: Eleven patients with CF (mean age, 31.8 ± 5.7 mo; median age, 33 mo; 7 male and 4 female) were imaged via CT and ultrashort echo-time MRI. Eleven healthy age-matched patients (mean age, 22.5 ± 10.2 mo; median age, 23 mo; 5 male and 6 female) were imaged via ultrashort echo-time MRI. CT scans of 13 additional patients obtained for clinical indications not affecting the heart or lungs and interpreted as normal provided a CT control group (mean age, 24.1 ± 11.7 mo; median age, 24 mo; 6 male and 7 female). Studies were scored by two experienced radiologists using a well-validated CF-specific scoring system for CF lung disease. Measurements and Main Results: Correlations between CT and ultrashort echo-time MRI scores of patients with CF were very strong, with P values ≤0.001 for bronchiectasis (r = 0.96) and overall score (r = 0.90), and moderately strong for bronchial wall thickening (r = 0.62, P = 0.043). MRI easily differentiated CF and control groups via a reader CF-specific scoring system. Conclusions: Ultrashort echo-time MRI detected structural lung disease in very young patients with CF and provided imaging data that correlated well with CT. By quantifying early CF lung disease without using ionizing radiation, ultrashort echo-time MRI appears well suited for pediatric patients requiring longitudinal imaging for clinical care or research studies. Clinical Trial registered with www.clinicaltrials.gov (NCT01832519). PMID:27551814
Complementary aspects of diffusion imaging and fMRI; I: structure and function.
Mulkern, Robert V; Davis, Peter E; Haker, Steven J; Estepar, Raul San Jose; Panych, Lawrence P; Maier, Stephan E; Rivkin, Michael J
2006-05-01
Studying the intersection of brain structure and function is an important aspect of modern neuroscience. The development of magnetic resonance imaging (MRI) over the last 25 years has provided new and powerful tools for the study of brain structure and function. Two tools in particular, diffusion imaging and functional MRI (fMRI), are playing increasingly important roles in elucidating the complementary aspects of brain structure and function. In this work, we review basic technical features of diffusion imaging and fMRI for studying the integrity of white matter structural components and for determining the location and extent of cortical activation in gray matter, respectively. We then review a growing body of literature in which the complementary aspects of diffusion imaging and fMRI, applied as separate examinations but analyzed in tandem, have been exploited to enhance our knowledge of brain structure and function.
Hybrid imaging in foot and ankle disorders.
García Jiménez, R; García-Gómez, F J; Noriega Álvarez, E; Calvo Morón, C; Martín-Marcuartu, J J
Disorders of the foot and ankle are some of the most frequent ones affecting the musculoskeletal system and have a great impact on patients' quality of life. Accurate diagnosis is an important clinical challenge because of the complex anatomy and function of the foot, that make it difficult to locate the source of the pain by routine clinical examination. In the study of foot pathology, anatomical imaging (radiography, magnetic resonance imaging [MRI], ultrasound and computed tomography [CT]) and functional imaging (bone scan, positron emission tomography [PET] and MRI) techniques have been used. Hybrid imaging combines the advantages of morphological and functional studies in a synergistic way, helping the clinician manage complex problems. In this article we delve into the anatomy and biomechanics of the foot and ankle and describe the potential indications for the current hybrid techniques available for the study of foot and ankle disease. Copyright © 2017 Elsevier España, S.L.U. y SEMNIM. All rights reserved.
Kundu, Bornali; Penwarden, Amy; Wood, Joel M; Gallagher, Thomas A; Andreoli, Matthew J; Voss, Jed; Meier, Timothy; Nair, Veena A; Kuo, John S; Field, Aaron S; Moritz, Chad; Meyerand, M Elizabeth; Prabhakaran, Vivek
2013-04-01
Functional MRI (fMRI) has the potential to be a useful presurgical planning tool to treat patients with primary brain tumor. In this study the authors retrospectively explored relationships between language-related postoperative outcomes in such patients and multiple factors, including measures estimated from task fMRI maps (proximity of lesion to functional activation area, or lesion-to-activation distance [LAD], and activation-based language lateralization, or lateralization index [LI]) used in the clinical setting for presurgical planning, as well as other factors such as patient age, patient sex, tumor grade, and tumor volume. Patient information was drawn from a database of patients with brain tumors who had undergone preoperative fMRI-based language mapping of the Broca and Wernicke areas. Patients had performed a battery of tasks, including word-generation tasks and a text-versus-symbols reading task, as part of a clinical fMRI protocol. Individually thresholded task fMRI activation maps had been provided for use in the clinical setting. These clinical imaging maps were used to retrospectively estimate LAD and LI for the Broca and Wernicke areas. There was a relationship between postoperative language deficits and the proximity between tumor and Broca area activation (the LAD estimate), where shorter LADs were related to the presence of postoperative aphasia. Stratification by tumor location further showed that for posterior tumors within the temporal and parietal lobes, more bilaterally oriented Broca area activation (LI estimate close to 0) and a shorter Wernicke area LAD were associated with increased postoperative aphasia. Furthermore, decreasing LAD was related to decreasing LI for both Broca and Wernicke areas. Preoperative deficits were related to increasing patient age and a shorter Wernicke area LAD. Overall, LAD and LI, as determined using fMRI in the context of these paradigms, may be useful indicators of postsurgical outcomes. Whereas tumor location may influence postoperative deficits, the results indicated that tumor proximity to an activation area might also interact with how the language network is affected as a whole by the lesion. Although the derivation of LI must be further validated in individual patients by using spatially specific statistical methods, the current results indicated that fMRI is a useful tool for predicting postoperative outcomes in patients with a single brain tumor.
Illa, Miriam; Eixarch, Elisenda; Batalle, Dafnis; Arbat-Plana, Ariadna; Muñoz-Moreno, Emma; Figueras, Francesc; Gratacos, Eduard
2013-01-01
Background Intrauterine growth restriction (IUGR) affects 5–10% of all newborns and is associated with increased risk of memory, attention and anxiety problems in late childhood and adolescence. The neurostructural correlates of long-term abnormal neurodevelopment associated with IUGR are unknown. Thus, the aim of this study was to provide a comprehensive description of the long-term functional and neurostructural correlates of abnormal neurodevelopment associated with IUGR in a near-term rabbit model (delivered at 30 days of gestation) and evaluate the development of quantitative imaging biomarkers of abnormal neurodevelopment based on diffusion magnetic resonance imaging (MRI) parameters and connectivity. Methodology At +70 postnatal days, 10 cases and 11 controls were functionally evaluated with the Open Field Behavioral Test which evaluates anxiety and attention and the Object Recognition Task that evaluates short-term memory and attention. Subsequently, brains were collected, fixed and a high resolution MRI was performed. Differences in diffusion parameters were analyzed by means of voxel-based and connectivity analysis measuring the number of fibers reconstructed within anxiety, attention and short-term memory networks over the total fibers. Principal Findings The results of the neurobehavioral and cognitive assessment showed a significant higher degree of anxiety, attention and memory problems in cases compared to controls in most of the variables explored. Voxel-based analysis (VBA) revealed significant differences between groups in multiple brain regions mainly in grey matter structures, whereas connectivity analysis demonstrated lower ratios of fibers within the networks in cases, reaching the statistical significance only in the left hemisphere for both networks. Finally, VBA and connectivity results were also correlated with functional outcome. Conclusions The rabbit model used reproduced long-term functional impairments and their neurostructural correlates of abnormal neurodevelopment associated with IUGR. The description of the pattern of microstructural changes underlying functional defects may help to develop biomarkers based in diffusion MRI and connectivity analysis. PMID:24143189
Illa, Miriam; Eixarch, Elisenda; Batalle, Dafnis; Arbat-Plana, Ariadna; Muñoz-Moreno, Emma; Figueras, Francesc; Gratacos, Eduard
2013-01-01
Intrauterine growth restriction (IUGR) affects 5-10% of all newborns and is associated with increased risk of memory, attention and anxiety problems in late childhood and adolescence. The neurostructural correlates of long-term abnormal neurodevelopment associated with IUGR are unknown. Thus, the aim of this study was to provide a comprehensive description of the long-term functional and neurostructural correlates of abnormal neurodevelopment associated with IUGR in a near-term rabbit model (delivered at 30 days of gestation) and evaluate the development of quantitative imaging biomarkers of abnormal neurodevelopment based on diffusion magnetic resonance imaging (MRI) parameters and connectivity. At +70 postnatal days, 10 cases and 11 controls were functionally evaluated with the Open Field Behavioral Test which evaluates anxiety and attention and the Object Recognition Task that evaluates short-term memory and attention. Subsequently, brains were collected, fixed and a high resolution MRI was performed. Differences in diffusion parameters were analyzed by means of voxel-based and connectivity analysis measuring the number of fibers reconstructed within anxiety, attention and short-term memory networks over the total fibers. The results of the neurobehavioral and cognitive assessment showed a significant higher degree of anxiety, attention and memory problems in cases compared to controls in most of the variables explored. Voxel-based analysis (VBA) revealed significant differences between groups in multiple brain regions mainly in grey matter structures, whereas connectivity analysis demonstrated lower ratios of fibers within the networks in cases, reaching the statistical significance only in the left hemisphere for both networks. Finally, VBA and connectivity results were also correlated with functional outcome. The rabbit model used reproduced long-term functional impairments and their neurostructural correlates of abnormal neurodevelopment associated with IUGR. The description of the pattern of microstructural changes underlying functional defects may help to develop biomarkers based in diffusion MRI and connectivity analysis.
Al-Wakeel, Nadya; O h-Ici, Darach; Schmitt, Katharina R; Messroghli, Daniel R; Riesenkampff, Eugénie; Berger, Felix; Kuehne, Titus; Peters, Bjoern
2016-02-01
In patients with CHD, cardiac MRI is often indicated for functional and anatomical assessment. With the recent introduction of MRI-conditional pacemaker systems, cardiac MRI has become accessible for patients with pacemakers. The present clinical study aims to evaluate safety, susceptibility artefacts, and image reading of cardiac MRI in patients with CHD and MRI-conditional pacemaker systems. Material and methods CHD patients with MRI-conditional pacemaker systems and a clinical need for cardiac MRI were examined with a 1.5-T MRI system. Lead function was tested before and after MRI. Artefacts and image readings were evaluated using a four-point grading scale. A total of nine patients with CHD (mean age 34.0 years, range 19.5-53.6 years) received a total of 11 cardiac MRI examinations. Owing to clinical indications, seven patients had previously been converted from conventional to MRI-conditional pacemaker systems. All MRI examinations were completed without adverse effects. Device testing immediately after MRI and at follow-up showed no alteration of pacemaker device and lead function. Clinical questions could be addressed and answered in all patients. Cardiac MRI can be performed safely with high certainty of diagnosis in CHD patients with MRI-conditional pacemaker systems. In case of clinically indicated lead and box changing, CHD patients with non-MRI-conditional pacemaker systems should be considered for complete conversion to MRI-conditional systems.
Li, Kaiming; Guo, Lei; Zhu, Dajiang; Hu, Xintao; Han, Junwei; Liu, Tianming
2013-01-01
Studying connectivities among functional brain regions and the functional dynamics on brain networks has drawn increasing interest. A fundamental issue that affects functional connectivity and dynamics studies is how to determine the best possible functional brain regions or ROIs (regions of interest) for a group of individuals, since the connectivity measurements are heavily dependent on ROI locations. Essentially, identification of accurate, reliable and consistent corresponding ROIs is challenging due to the unclear boundaries between brain regions, variability across individuals, and nonlinearity of the ROIs. In response to these challenges, this paper presents a novel methodology to computationally optimize ROIs locations derived from task-based fMRI data for individuals so that the optimized ROIs are more consistent, reproducible and predictable across brains. Our computational strategy is to formulate the individual ROI location optimization as a group variance minimization problem, in which group-wise consistencies in functional/structural connectivity patterns and anatomic profiles are defined as optimization constraints. Our experimental results from multimodal fMRI and DTI data show that the optimized ROIs have significantly improved consistency in structural and functional profiles across individuals. These improved functional ROIs with better consistency could contribute to further study of functional interaction and dynamics in the human brain. PMID:22281931
Vogelbacher, Christoph; Möbius, Thomas W D; Sommer, Jens; Schuster, Verena; Dannlowski, Udo; Kircher, Tilo; Dempfle, Astrid; Jansen, Andreas; Bopp, Miriam H A
2018-05-15
Large, longitudinal, multi-center MR neuroimaging studies require comprehensive quality assurance (QA) protocols for assessing the general quality of the compiled data, indicating potential malfunctions in the scanning equipment, and evaluating inter-site differences that need to be accounted for in subsequent analyses. We describe the implementation of a QA protocol for functional magnet resonance imaging (fMRI) data based on the regular measurement of an MRI phantom and an extensive variety of currently published QA statistics. The protocol is implemented in the MACS (Marburg-Münster Affective Disorders Cohort Study, http://for2107.de/), a two-center research consortium studying the neurobiological foundations of affective disorders. Between February 2015 and October 2016, 1214 phantom measurements have been acquired using a standard fMRI protocol. Using 444 healthy control subjects which have been measured between 2014 and 2016 in the cohort, we investigate the extent of between-site differences in contrast to the dependence on subject-specific covariates (age and sex) for structural MRI, fMRI, and diffusion tensor imaging (DTI) data. We show that most of the presented QA statistics differ severely not only between the two scanners used for the cohort but also between experimental settings (e.g. hardware and software changes), demonstrate that some of these statistics depend on external variables (e.g. time of day, temperature), highlight their strong dependence on proper handling of the MRI phantom, and show how the use of a phantom holder may balance this dependence. Site effects, however, do not only exist for the phantom data, but also for human MRI data. Using T1-weighted structural images, we show that total intracranial (TIV), grey matter (GMV), and white matter (WMV) volumes significantly differ between the MR scanners, showing large effect sizes. Voxel-based morphometry (VBM) analyses show that these structural differences observed between scanners are most pronounced in the bilateral basal ganglia, thalamus, and posterior regions. Using DTI data, we also show that fractional anisotropy (FA) differs between sites in almost all regions assessed. When pooling data from multiple centers, our data show that it is a necessity to account not only for inter-site differences but also for hardware and software changes of the scanning equipment. Also, the strong dependence of the QA statistics on the reliable placement of the MRI phantom shows that the use of a phantom holder is recommended to reduce the variance of the QA statistics and thus to increase the probability of detecting potential scanner malfunctions. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Choi, Jinhyeok; Kim, Hyeonjin
2016-12-01
To improve the efficacy of undersampled MRI, a method of designing adaptive sampling functions is proposed that is simple to implement on an MR scanner and yet effectively improves the performance of the sampling functions. An approximation of the energy distribution of an image (E-map) is estimated from highly undersampled k-space data acquired in a prescan and efficiently recycled in the main scan. An adaptive probability density function (PDF) is generated by combining the E-map with a modeled PDF. A set of candidate sampling functions are then prepared from the adaptive PDF, among which the one with maximum energy is selected as the final sampling function. To validate its computational efficiency, the proposed method was implemented on an MR scanner, and its robust performance in Fourier-transform (FT) MRI and compressed sensing (CS) MRI was tested by simulations and in a cherry tomato. The proposed method consistently outperforms the conventional modeled PDF approach for undersampling ratios of 0.2 or higher in both FT-MRI and CS-MRI. To fully benefit from undersampled MRI, it is preferable that the design of adaptive sampling functions be performed online immediately before the main scan. In this way, the proposed method may further improve the efficacy of the undersampled MRI.
Febo, Marcelo; Foster, Thomas C.
2016-01-01
Neuroimaging provides for non-invasive evaluation of brain structure and activity and has been employed to suggest possible mechanisms for cognitive aging in humans. However, these imaging procedures have limits in terms of defining cellular and molecular mechanisms. In contrast, investigations of cognitive aging in animal models have mostly utilized techniques that have offered insight on synaptic, cellular, genetic, and epigenetic mechanisms affecting memory. Studies employing magnetic resonance imaging and spectroscopy (MRI and MRS, respectively) in animal models have emerged as an integrative set of techniques bridging localized cellular/molecular phenomenon and broader in vivo neural network alterations. MRI methods are remarkably suited to longitudinal tracking of cognitive function over extended periods permitting examination of the trajectory of structural or activity related changes. Combined with molecular and electrophysiological tools to selectively drive activity within specific brain regions, recent studies have begun to unlock the meaning of fMRI signals in terms of the role of neural plasticity and types of neural activity that generate the signals. The techniques provide a unique opportunity to causally determine how memory-relevant synaptic activity is processed and how memories may be distributed or reconsolidated over time. The present review summarizes research employing animal MRI and MRS in the study of brain function, structure, and biochemistry, with a particular focus on age-related cognitive decline. PMID:27468264
Normalization of T2W-MRI prostate images using Rician a priori
NASA Astrophysics Data System (ADS)
Lemaître, Guillaume; Rastgoo, Mojdeh; Massich, Joan; Vilanova, Joan C.; Walker, Paul M.; Freixenet, Jordi; Meyer-Baese, Anke; Mériaudeau, Fabrice; Martí, Robert
2016-03-01
Prostate cancer is reported to be the second most frequently diagnosed cancer of men in the world. In practise, diagnosis can be affected by multiple factors which reduces the chance to detect the potential lesions. In the last decades, new imaging techniques mainly based on MRI are developed in conjunction with Computer-Aided Diagnosis (CAD) systems to help radiologists for such diagnosis. CAD systems are usually designed as a sequential process consisting of four stages: pre-processing, segmentation, registration and classification. As a pre-processing, image normalization is a critical and important step of the chain in order to design a robust classifier and overcome the inter-patients intensity variations. However, little attention has been dedicated to the normalization of T2W-Magnetic Resonance Imaging (MRI) prostate images. In this paper, we propose two methods to normalize T2W-MRI prostate images: (i) based on a Rician a priori and (ii) based on a Square-Root Slope Function (SRSF) representation which does not make any assumption regarding the Probability Density Function (PDF) of the data. A comparison with the state-of-the-art methods is also provided. The normalization of the data is assessed by comparing the alignment of the patient PDFs in both qualitative and quantitative manners. In both evaluation, the normalization using Rician a priori outperforms the other state-of-the-art methods.
Bonhomme, Gabrielle R; Liu, Grant T; Miki, Atsushi; Francis, Ellie; Dobre, M-C; Modestino, Edward J; Aleman, David O; Haselgrove, John C
2006-12-01
Motion perception abnormalities and extrastriate abnormalities have been suggested in amblyopia. Functional MRI (fMRI) and motion stimuli were used to study whether interocular differences in activation are detectable in motion-sensitive cortical areas in patients with anisometropic amblyopia. We performed fMRI at 1.5 T 4 control subjects (20/20 OU), 1 with monocular suppression (20/25), and 2 with anisometropic amblyopia (20/60, 20/800). Monocular suppression was thought to be form fruste of amblyopia. The experimental stimulus consisted of expanding and contracting concentric rings, whereas the control condition consisted of stationary concentric rings. Activation was determined by contrasting the 2 conditions for each eye. Significant fMRI activation and comparable right and left eye activation was found in V3a and V5 in all control subjects (Average z-values in L vs R contrast 0.42, 0.43) and in the subject with monocular suppression (z = 0.19). The anisometropes exhibited decreased extrastriate activation in their amblyopic eyes compared with the fellow eyes (zs = 2.12, 2.76). Our data suggest motion-sensitive cortical structures may be less active when anisometropic amblyopic eyes are stimulated with moving rings. These results support the hypothesis that extrastriate cortex is affected in anisometropic amblyopia. Although suggestive of a magnocellular defect, the exact mechanism is unclear.
Shi, Zhenhao; Han, Shihui
2018-06-01
Behavioral research suggests that reminding both mortality and negative affect influences self-related thoughts. Using functional magnetic resonance imaging (MRI), we tested the hypothesis that reminders of mortality and physical pain decrease brain activity underlying self-related thoughts. Three groups of adults underwent priming procedures during which they answered questions pertaining to mortality, physical pain, or leisure time, respectively. Before and after priming, participants performed personality trait judgments on oneself or a celebrity, identified the font of words, or passively viewed a fixation. The default-mode activity and neural activity underlying self-reflection were identified by contrasting viewing a fixation vs. font judgment and trait judgments on oneself vs. a celebrity, respectively. The analyses of the pre-priming functional MRI (fMRI) data identified the default-mode activity in the posterior cingulate cortex (PCC), ventral medial prefrontal cortex (MPFC), and parahippocampal gyrus, and the activity underlying instructed self-reflection in both the ventral and dorsal regions of the MPFC. The analyses of the post-priming fMRI data revealed that, relative to leisure time priming, reminding mortality significantly reduced the default-mode PCC activity, and reminding physical pain significantly decreased the dorsal MPFC activity during instructed self-reflection. Our findings suggest distinct neural underpinnings of the effect of reminding morality and aversive emotion on default-mode and instructed self-reflection.
Fiori, Simona; Guzzetta, Andrea; Pannek, Kerstin; Ware, Robert S; Rossi, Giuseppe; Klingels, Katrijn; Feys, Hilde; Coulthard, Alan; Cioni, Giovanni; Rose, Stephen; Boyd, Roslyn N
2015-01-01
To provide first evidence of construct validity of a semi-quantitative scale for brain structural MRI (sqMRI scale) in children with unilateral cerebral palsy (UCP) secondary to periventricular white matter (PWM) lesions, by examining the relationship with hand sensorimotor function and whole brain structural connectivity. Cross-sectional study of 50 children with UCP due to PWM lesions using 3 T (MRI), diffusion MRI and assessment of hand sensorimotor function. We explored the relationship of lobar, hemispheric and global scores on the sqMRI scale, with fractional anisotropy (FA), as a measure of brain white matter microstructure, and with hand sensorimotor measures (Assisting Hand Assessment, AHA; Jebsen-Taylor Test for Hand Function, JTTHF; Melbourne Assessment of Unilateral Upper Limb Function, MUUL; stereognosis; 2-point discrimination). Lobar and hemispheric scores on the sqMRI scale contralateral to the clinical side of hemiplegia correlated with sensorimotor paretic hand function measures and FA of a number of brain structural connections, including connections of brain areas involved in motor control (postcentral, precentral and paracentral gyri in the parietal lobe). More severe lesions correlated with lower sensorimotor performance, with the posterior limb of internal capsule score being the strongest contributor to impaired hand function. The sqMRI scale demonstrates first evidence of construct validity against impaired motor and sensory function measures and brain structural connectivity in a cohort of children with UCP due to PWM lesions. More severe lesions correlated with poorer paretic hand sensorimotor function and impaired structural connectivity in the hemisphere contralateral to the clinical side of hemiplegia. The quantitative structural MRI scoring may be a useful clinical tool for studying brain structure-function relationships but requires further validation in other populations of CP.
Schöning, S; Engelien, A; Kugel, H; Schäfer, S; Schiffbauer, H; Zwitserlood, P; Pletziger, E; Beizai, P; Kersting, A; Ohrmann, P; Greb, R R; Lehmann, W; Heindel, W; Arolt, V; Konrad, C
2007-11-05
Recent observations indicate that sex and level of steroid hormones may influence cortical networks associated with specific cognitive functions, in particular visuo-spatial abilities. The present study probed the influence of sex, menstrual cycle, and sex steroid hormones on 3D mental rotation and brain function using 3-T fMRI. Twelve healthy women and 12 men were investigated. Menstrual cycle and hormone levels were assessed. The early follicular and midluteal phase of the menstrual cycle were chosen to examine short-term cyclical changes. Parietal and frontal areas were activated during mental rotation in both sexes. Significant differences between men and women were revealed in both phases of menstrual cycle. In men we observed a significant correlation of activation levels with testosterone levels in the left parietal lobe (BA 40). In women, a cycle-dependent correlation pattern was observed for testosterone: brain activation correlated with this male hormone only during the early follicular phase. In both cycle phases females' brain activation was significantly correlated with estradiol in frontal and parietal areas. Our study provides evidence that fMRI-related activity during performance of cognitive tasks varies across sex and phases of the menstrual cycle. The variation might be partly explained by better task performance in men, but our results indicate that further explanations like basic neuronal or neurovascular effects modulated by steroid hormones must be considered. Both estradiol and testosterone levels may influence fMRI signals of cognitive tasks, which should affect selection of subjects for future fMRI studies.
Methodological challenges and solutions in auditory functional magnetic resonance imaging
Peelle, Jonathan E.
2014-01-01
Functional magnetic resonance imaging (fMRI) studies involve substantial acoustic noise. This review covers the difficulties posed by such noise for auditory neuroscience, as well as a number of possible solutions that have emerged. Acoustic noise can affect the processing of auditory stimuli by making them inaudible or unintelligible, and can result in reduced sensitivity to auditory activation in auditory cortex. Equally importantly, acoustic noise may also lead to increased listening effort, meaning that even when auditory stimuli are perceived, neural processing may differ from when the same stimuli are presented in quiet. These and other challenges have motivated a number of approaches for collecting auditory fMRI data. Although using a continuous echoplanar imaging (EPI) sequence provides high quality imaging data, these data may also be contaminated by background acoustic noise. Traditional sparse imaging has the advantage of avoiding acoustic noise during stimulus presentation, but at a cost of reduced temporal resolution. Recently, three classes of techniques have been developed to circumvent these limitations. The first is Interleaved Silent Steady State (ISSS) imaging, a variation of sparse imaging that involves collecting multiple volumes following a silent period while maintaining steady-state longitudinal magnetization. The second involves active noise control to limit the impact of acoustic scanner noise. Finally, novel MRI sequences that reduce the amount of acoustic noise produced during fMRI make the use of continuous scanning a more practical option. Together these advances provide unprecedented opportunities for researchers to collect high-quality data of hemodynamic responses to auditory stimuli using fMRI. PMID:25191218
Neuroimaging social emotional processing in women: fMRI study of script-driven imagery
Dozois, David J. A.; Neufeld, Richard W. J.; Densmore, Maria; Stevens, Todd K.; Lanius, Ruth A.
2011-01-01
Emotion theory emphasizes the distinction between social vs non-social emotional-processing (E-P) although few functional neuroimaging studies have examined whether the neural systems that mediate social vs non-social E-P are similar or distinct. The present fMRI study of script-driven imagery in 20 women demonstrates that social E-P, independent of valence, more strongly recruits brain regions involved in social- and self-referential processing, specifically the dorsomedial prefrontal cortex, posterior cingulate/precuneus, bilateral temporal poles, bilateral temporoparietal junction and right amygdala. Functional response within brain regions involved in E-P was also significantly more pronounced during negatively relative to positively valenced E-P. Finally, the effect for social E-P was increased for positive relative to negative stimuli in many of these same regions. Future research directions for social and affective neuroscience are discussed. PMID:20525743
Realistic simulated MRI and SPECT databases. Application to SPECT/MRI registration evaluation.
Aubert-Broche, Berengere; Grova, Christophe; Reilhac, Anthonin; Evans, Alan C; Collins, D Louis
2006-01-01
This paper describes the construction of simulated SPECT and MRI databases that account for realistic anatomical and functional variability. The data is used as a gold-standard to evaluate four SPECT/MRI similarity-based registration methods. Simulation realism was accounted for using accurate physical models of data generation and acquisition. MRI and SPECT simulations were generated from three subjects to take into account inter-subject anatomical variability. Functional SPECT data were computed from six functional models of brain perfusion. Previous models of normal perfusion and ictal perfusion observed in Mesial Temporal Lobe Epilepsy (MTLE) were considered to generate functional variability. We studied the impact noise and intensity non-uniformity in MRI simulations and SPECT scatter correction may have on registration accuracy. We quantified the amount of registration error caused by anatomical and functional variability. Registration involving ictal data was less accurate than registration involving normal data. MR intensity nonuniformity was the main factor decreasing registration accuracy. The proposed simulated database is promising to evaluate many functional neuroimaging methods, involving MRI and SPECT data.
Changes in interhemispheric motor connectivity after muscle fatigue
NASA Astrophysics Data System (ADS)
Peltier, Scott; LaConte, Stephen M.; Niyazov, Dmitriy; Liu, Jing; Sahgal, Vinod; Yue, Guang; Hu, Xiaoping
2005-04-01
Synchronized oscillations in resting state timecourses have been detected in recent fMRI studies. These oscillations are low frequency in nature (< 0.08 Hz), and seem to be a property of symmetric cortices. These fluctuations are important as a potential signal of interest, which could indicate connectivity between functionally related areas of the brain. It has also been shown that the synchronized oscillations decrease in some spontaneous pathological states. Thus, detection of these functional connectivity patterns may help to serve as a gauge of normal brain activity. The cognitive effects of muscle fatigue are not well characterized. Sustained fatigue has the potential to dynamically alter activity in brain networks. In this work, we examined the interhemispheric correlations in the left and right primary motor cortices and how they change with muscle fatigue. Resting-state functional MRI imaging was done before and after a repetitive unilateral fatigue task. We find that the number of significant correlations in the bilateral motor network decreases with fatigue. These results suggest that resting-state interhemispheric motor cortex functional connectivity is affected by muscle fatigue.
Anderson, Ian M; Juhasz, Gabriella; Thomas, Emma; Downey, Darragh; McKie, Shane; Deakin, J F William; Elliott, Rebecca
2011-01-01
Both reduced serotonergic (5-HT) function and negative emotional biases have been associated with vulnerability to depression. In order to investigate whether these might be related we examined 5-HT modulation of affective processing in 14 remitted depressed subjects compared with 12 never depressed controls matched for age and sex. Participants underwent function magnetic resonance imaging (fMRI) during a covert face emotion task with and without intravenous citalopram (7.5mg) pretreatment. Compared with viewing neutral faces, and irrespective of group, citalopram enhanced left anterior cingulate blood oxygen level dependent (BOLD) response to happy faces, right posterior insula and right lateral orbitofrontal responses to sad faces, and reduced amygdala responses bilaterally to fearful faces. In controls, relative to remitted depressed subjects, citalopram increased bilateral hippocampal responses to happy faces and increased right anterior insula response to sad faces. These findings were not accounted for by changes in BOLD responses to viewing neutral faces. These results are consistent with previous findings showing 5-HT modulation of affective processing; differences found in previously depressed participants compared with controls may contribute to emotional processing biases underlying vulnerability to depressive relapse. Copyright © 2010 Elsevier B.V. and ECNP. All rights reserved.
Kim, Dong-Youl; Yoo, Seung-Schik; Tegethoff, Marion; Meinlschmidt, Gunther; Lee, Jong-Hwan
2015-08-01
Real-time fMRI (rtfMRI) neurofeedback (NF) facilitates volitional control over brain activity and the modulation of associated mental functions. The NF signals of traditional rtfMRI-NF studies predominantly reflect neuronal activity within ROIs. In this study, we describe a novel rtfMRI-NF approach that includes a functional connectivity (FC) component in the NF signal (FC-added rtfMRI-NF). We estimated the efficacy of the FC-added rtfMRI-NF method by applying it to nicotine-dependent heavy smokers in an effort to reduce cigarette craving. ACC and medial pFC as well as the posterior cingulate cortex and precuneus are associated with cigarette craving and were chosen as ROIs. Fourteen heavy smokers were randomly assigned to receive one of two types of NF: traditional activity-based rtfMRI-NF or FC-added rtfMRI-NF. Participants received rtfMRI-NF training during two separate visits after overnight smoking cessation, and cigarette craving score was assessed. The FC-added rtfMRI-NF resulted in greater neuronal activity and increased FC between the targeted ROIs than the traditional activity-based rtfMRI-NF and resulted in lower craving score. In the FC-added rtfMRI-NF condition, the average of neuronal activity and FC was tightly associated with craving score (Bonferroni-corrected p = .028). However, in the activity-based rtfMRI-NF condition, no association was detected (uncorrected p > .081). Non-rtfMRI data analysis also showed enhanced neuronal activity and FC with FC-added NF than with activity-based NF. These results demonstrate that FC-added rtfMRI-NF facilitates greater volitional control over brain activity and connectivity and greater modulation of mental function than activity-based rtfMRI-NF.
Knight, Emily J; Testini, Paola; Min, Hoon-Ki; Gibson, William S; Gorny, Krzysztof R; Favazza, Christopher P; Felmlee, Joel P; Kim, Inyong; Welker, Kirk M; Clayton, Daniel A; Klassen, Bryan T; Chang, Su-youne; Lee, Kendall H
2015-06-01
To test the hypothesis suggested by previous studies that subthalamic nucleus (STN) deep brain stimulation (DBS) in patients with Parkinson disease would affect the activity of motor and nonmotor networks, we applied intraoperative functional magnetic resonance imaging (fMRI) to patients receiving DBS. Ten patients receiving STN DBS for Parkinson disease underwent intraoperative 1.5-T fMRI during high-frequency stimulation delivered via an external pulse generator. The study was conducted between January 1, 2013, and September 30, 2014. We observed blood oxygen level-dependent (BOLD) signal changes (false discovery rate <0.001) in the motor circuitry (including the primary motor, premotor, and supplementary motor cortices; thalamus; pedunculopontine nucleus; and cerebellum) and in the limbic circuitry (including the cingulate and insular cortices). Activation of the motor network was observed also after applying a Bonferroni correction (P<.001) to the data set, suggesting that across patients, BOLD changes in the motor circuitry are more consistent compared with those occurring in the nonmotor network. These findings support the modulatory role of STN DBS on the activity of motor and nonmotor networks and suggest complex mechanisms as the basis of the efficacy of this treatment modality. Furthermore, these results suggest that across patients, BOLD changes in the motor circuitry are more consistent than those in the nonmotor network. With further studies combining the use of real-time intraoperative fMRI with clinical outcomes in patients treated with DBS, functional imaging techniques have the potential not only to elucidate the mechanisms of DBS functioning but also to guide and assist in the surgical treatment of patients affected by movement and neuropsychiatric disorders. clinicaltrials.gov Identifier: NCT01809613. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
Dynamic physiological modeling for functional diffuse optical tomography
Diamond, Solomon Gilbert; Huppert, Theodore J.; Kolehmainen, Ville; Franceschini, Maria Angela; Kaipio, Jari P.; Arridge, Simon R.; Boas, David A.
2009-01-01
Diffuse optical tomography (DOT) is a noninvasive imaging technology that is sensitive to local concentration changes in oxy- and deoxyhemoglobin. When applied to functional neuroimaging, DOT measures hemodynamics in the scalp and brain that reflect competing metabolic demands and cardiovascular dynamics. The diffuse nature of near-infrared photon migration in tissue and the multitude of physiological systems that affect hemodynamics motivate the use of anatomical and physiological models to improve estimates of the functional hemodynamic response. In this paper, we present a linear state-space model for DOT analysis that models the physiological fluctuations present in the data with either static or dynamic estimation. We demonstrate the approach by using auxiliary measurements of blood pressure variability and heart rate variability as inputs to model the background physiology in DOT data. We evaluate the improvements accorded by modeling this physiology on ten human subjects with simulated functional hemodynamic responses added to the baseline physiology. Adding physiological modeling with a static estimator significantly improved estimates of the simulated functional response, and further significant improvements were achieved with a dynamic Kalman filter estimator (paired t tests, n = 10, P < 0.05). These results suggest that physiological modeling can improve DOT analysis. The further improvement with the Kalman filter encourages continued research into dynamic linear modeling of the physiology present in DOT. Cardiovascular dynamics also affect the blood-oxygen-dependent (BOLD) signal in functional magnetic resonance imaging (fMRI). This state-space approach to DOT analysis could be extended to BOLD fMRI analysis, multimodal studies and real-time analysis. PMID:16242967
Laminar fMRI and computational theories of brain function.
Stephan, K E; Petzschner, F H; Kasper, L; Bayer, J; Wellstein, K V; Stefanics, G; Pruessmann, K P; Heinzle, J
2017-11-02
Recently developed methods for functional MRI at the resolution of cortical layers (laminar fMRI) offer a novel window into neurophysiological mechanisms of cortical activity. Beyond physiology, laminar fMRI also offers an unprecedented opportunity to test influential theories of brain function. Specifically, hierarchical Bayesian theories of brain function, such as predictive coding, assign specific computational roles to different cortical layers. Combined with computational models, laminar fMRI offers a unique opportunity to test these proposals noninvasively in humans. This review provides a brief overview of predictive coding and related hierarchical Bayesian theories, summarises their predictions with regard to layered cortical computations, examines how these predictions could be tested by laminar fMRI, and considers methodological challenges. We conclude by discussing the potential of laminar fMRI for clinically useful computational assays of layer-specific information processing. Copyright © 2017 Elsevier Inc. All rights reserved.
Lindquist, Kristen A; Satpute, Ajay B; Wager, Tor D; Weber, Jochen; Barrett, Lisa Feldman
2016-05-01
The ability to experience pleasant or unpleasant feelings or to represent objects as "positive" or "negative" is known as representing hedonic "valence." Although scientists overwhelmingly agree that valence is a basic psychological phenomenon, debate continues about how to best conceptualize it scientifically. We used a meta-analysis of 397 functional magnetic resonance imaging (fMRI) and positron emission tomography studies (containing 914 experimental contrasts and 6827 participants) to test 3 competing hypotheses about the brain basis of valence: the bipolarity hypothesis that positive and negative affect are supported by a brain system that monotonically increases and/or decreases along the valence dimension, the bivalent hypothesis that positive and negative affect are supported by independent brain systems, and the affective workspace hypothesis that positive and negative affect are supported by a flexible set of valence-general regions. We found little evidence for the bipolar or bivalent hypotheses. Findings instead supported the hypothesis that, at the level of brain activity measurable by fMRI, valence is flexibly implemented across instances by a set of valence-general limbic and paralimbic brain regions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
[Rupture of lateral ligaments of the ankle joint: MR imaging before and after functional therapy].
Grebe, P; Kreitner, K F; Roeder, W; Kersjes, W; Hennes, R; Runkel, M
1995-09-01
Documentation via MRI of the healing of ruptured lateral collateral ankle ligaments after functional therapy. 35 patients with ankle sprain were examined by MRI and stress radiographs, 13 were operated afterwards, 22 patients underwent a functional conservative therapy and were examined by MRI and stress radiographs and second time after three months. MRI reports were correct in 12 of 13 operated cases. After conservative therapy we did not find any disrupted ankle ligament. MRI showed intact ligaments thickened by scar. MRI is able to show injuries of the lateral collateral ankle ligaments and demonstrates the healing by scar after conservative therapy.
Milot, Marie-Hélène; Spencer, Steven J; Chan, Vicky; Allington, James P; Klein, Julius; Chou, Cathy; Pearson-Fuhrhop, Kristin; Bobrow, James E; Reinkensmeyer, David J; Cramer, Steven C
2014-01-01
Robotic training can help improve function of a paretic limb following a stroke, but individuals respond differently to the training. A predictor of functional gains might improve the ability to select those individuals more likely to benefit from robot-based therapy. Studies evaluating predictors of functional improvement after a robotic training are scarce. One study has found that white matter tract integrity predicts functional gains following a robotic training of the hand and wrist. Objective. To determine the predictive ability of behavioral and brain measures in order to improve selection of individuals for robotic training. Twenty subjects with chronic stroke participated in an 8-week course of robotic exoskeletal training for the arm. Before training, a clinical evaluation, functional magnetic resonance imaging (fMRI), diffusion tensor imaging, and transcranial magnetic stimulation (TMS) were each measured as predictors. Final functional gain was defined as change in the Box and Block Test (BBT). Measures significant in bivariate analysis were fed into a multivariate linear regression model. Training was associated with an average gain of 6 ± 5 blocks on the BBT (P < .0001). Bivariate analysis revealed that lower baseline motor-evoked potential (MEP) amplitude on TMS, and lower laterality M1 index on fMRI each significantly correlated with greater BBT change. In the multivariate linear regression analysis, baseline MEP magnitude was the only measure that remained significant. Subjects with lower baseline MEP magnitude benefited the most from robotic training of the affected arm. These subjects might have reserve remaining for the training to boost corticospinal excitability, translating into functional gains. © The Author(s) 2014.
Giménez, Mónica; Pujol, Jesús; Ali, Zahid; López-Solà, Marina; Contreras-Rodríguez, Oren; Deus, Joan; Ortiz, Héctor; Soriano-Mas, Carles; Llorente-Onaindia, Jone; Monfort, Jordi
2014-11-01
The aim of our study was to investigate the effects of naproxen, an antiinflammatory analgesic drug, on brain response to painful stimulation on the affected knee in chronic osteoarthritis (OA) using functional magnetic resonance imaging (fMRI) in a double-blind, placebo-controlled study. A sample of 25 patients with knee OA received naproxen (500 mg), placebo, or no treatment in 3 separate sessions in a randomized manner. Pressure stimulation was applied to the medial articular interline of the knee during the fMRI pain sequence. We evaluated subjective pain ratings at every session and their association with brain responses to pain. An fMRI control paradigm was included to discard global brain vascular effects of naproxen. We found brain activation reductions under naproxen compared to no treatment in different cortical and subcortical core pain processing regions (p≤0.001). Compared to placebo, naproxen triggered an attenuation of amygdala activation (p=0.001). Placebo extended its attenuation effects beyond the classical pain processing network (p≤0.001). Subjective pain scores during the fMRI painful task differed between naproxen and no treatment (p=0.037). Activation attenuation under naproxen in different regions (i.e., ventral brain, cingulate gyrus) was accompanied by an improvement in the subjective pain complaints (p≤0.002). Naproxen effectively reduces pain-related brain responses involving different regions and the attenuation is related to subjective pain changes. Our current work yields further support to the utility of fMRI to objectify the acute analgesic effects of a single naproxen dose in patients affected by knee OA. The trial was registered at the EuropeanClinicalTrials Database, "EudraCT Number 2008-004501-33".
NASA Astrophysics Data System (ADS)
Gill, Andrew B.; Black, Richard T.; Bowden, David J.; Priest, Andrew N.; Graves, Martin J.; Lomas, David J.
2014-06-01
This study investigated the effect of temporal resolution on the dual-input pharmacokinetic (PK) modelling of dynamic contrast-enhanced MRI (DCE-MRI) data from normal volunteer livers and from patients with hepatocellular carcinoma. Eleven volunteers and five patients were examined at 3 T. Two sections, one optimized for the vascular input functions (VIF) and one for the tissue, were imaged within a single heart-beat (HB) using a saturation-recovery fast gradient echo sequence. The data was analysed using a dual-input single-compartment PK model. The VIFs and/or uptake curves were then temporally sub-sampled (at interval ▵t = [2-20] s) before being subject to the same PK analysis. Statistical comparisons of tumour and normal tissue PK parameter values using a 5% significance level gave rise to the same study results when temporally sub-sampling the VIFs to HB < ▵t <4 s. However, sub-sampling to ▵t > 4 s did adversely affect the statistical comparisons. Temporal sub-sampling of just the liver/tumour tissue uptake curves at ▵t ≤ 20 s, whilst using high temporal resolution VIFs, did not substantially affect PK parameter statistical comparisons. In conclusion, there is no practical advantage to be gained from acquiring very high temporal resolution hepatic DCE-MRI data. Instead the high temporal resolution could be usefully traded for increased spatial resolution or SNR.
Vargas, Cristian; Pineda, Julián; Calvo, Víctor; López-Jaramillo, Carlos
2014-01-01
As there are still doubts about brain connectivity in type I bipolar disorder (BID), resting-state functional magnetic resonance imaging (RS-fMRI) studies are necessary during euthymia for a better control of confounding factors. To evaluate the differences in brain activation between euthymic BID patients and control subjects using resting state- functional-magnetic resonance imaging (RS-fMRI), and to identify the lithium effect in these activations. A cross-sectional study was conducted on 21 BID patients (10 receiving lithium only, and 11 non-medicated) and 12 healthy control subjects, using RS fMRI and independent component analysis (ICA). Increased activation was found in the right hippocampus (P=.049) and posterior cingulate (P=.040) within the Default Mode Network (DMN) when BID and control group were compared. No statistically significant differences were identified between BID on lithium only therapy and non-medicated BID patients. The results suggest that there are changes in brain activation and connectivity in BID even during euthymic phase and mainly within the DMN network, which could be relevant in affect regulation. Copyright © 2013 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.
Identification of emotional intonation evaluated by fMRI.
Wildgruber, D; Riecker, A; Hertrich, I; Erb, M; Grodd, W; Ethofer, T; Ackermann, H
2005-02-15
During acoustic communication among human beings, emotional information can be expressed both by the propositional content of verbal utterances and by the modulation of speech melody (affective prosody). It is well established that linguistic processing is bound predominantly to the left hemisphere of the brain. By contrast, the encoding of emotional intonation has been assumed to depend specifically upon right-sided cerebral structures. However, prior clinical and functional imaging studies yielded discrepant data with respect to interhemispheric lateralization and intrahemispheric localization of brain regions contributing to processing of affective prosody. In order to delineate the cerebral network engaged in the perception of emotional tone, functional magnetic resonance imaging (fMRI) was performed during recognition of prosodic expressions of five different basic emotions (happy, sad, angry, fearful, and disgusted) and during phonetic monitoring of the same stimuli. As compared to baseline at rest, both tasks yielded widespread bilateral hemodynamic responses within frontal, temporal, and parietal areas, the thalamus, and the cerebellum. A comparison of the respective activation maps, however, revealed comprehension of affective prosody to be bound to a distinct right-hemisphere pattern of activation, encompassing posterior superior temporal sulcus (Brodmann Area [BA] 22), dorsolateral (BA 44/45), and orbitobasal (BA 47) frontal areas. Activation within left-sided speech areas, in contrast, was observed during the phonetic task. These findings indicate that partially distinct cerebral networks subserve processing of phonetic and intonational information during speech perception.
[MRI methods for pulmonary ventilation and perfusion imaging].
Sommer, G; Bauman, G
2016-02-01
Separate assessment of respiratory mechanics, gas exchange and pulmonary circulation is essential for the diagnosis and therapy of pulmonary diseases. Due to the global character of the information obtained clinical lung function tests are often not sufficiently specific in the differential diagnosis or have a limited sensitivity in the detection of early pathological changes. The standard procedures of pulmonary imaging are computed tomography (CT) for depiction of the morphology as well as perfusion/ventilation scintigraphy and single photon emission computed tomography (SPECT) for functional assessment. Magnetic resonance imaging (MRI) with hyperpolarized gases, O2-enhanced MRI, MRI with fluorinated gases and Fourier decomposition MRI (FD-MRI) are available for assessment of pulmonary ventilation. For assessment of pulmonary perfusion dynamic contrast-enhanced MRI (DCE-MRI), arterial spin labeling (ASL) and FD-MRI can be used. Imaging provides a more precise insight into the pathophysiology of pulmonary function on a regional level. The advantages of MRI are a lack of ionizing radiation, which allows a protective acquisition of dynamic data as well as the high number of available contrasts and therefore accessible lung function parameters. Sufficient clinical data exist only for certain applications of DCE-MRI. For the other techniques, only feasibility studies and case series of different sizes are available. The clinical applicability of hyperpolarized gases is limited for technical reasons. The clinical application of the techniques described, except for DCE-MRI, should be restricted to scientific studies.
Kozák, Lajos R; van Graan, Louis André; Chaudhary, Umair J; Szabó, Ádám György; Lemieux, Louis
2017-12-01
Generally, the interpretation of functional MRI (fMRI) activation maps continues to rely on assessing their relationship to anatomical structures, mostly in a qualitative and often subjective way. Recently, the existence of persistent and stable brain networks of functional nature has been revealed; in particular these so-called intrinsic connectivity networks (ICNs) appear to link patterns of resting state and task-related state connectivity. These networks provide an opportunity of functionally-derived description and interpretation of fMRI maps, that may be especially important in cases where the maps are predominantly task-unrelated, such as studies of spontaneous brain activity e.g. in the case of seizure-related fMRI maps in epilepsy patients or sleep states. Here we present a new toolbox (ICN_Atlas) aimed at facilitating the interpretation of fMRI data in the context of ICN. More specifically, the new methodology was designed to describe fMRI maps in function-oriented, objective and quantitative way using a set of 15 metrics conceived to quantify the degree of 'engagement' of ICNs for any given fMRI-derived statistical map of interest. We demonstrate that the proposed framework provides a highly reliable quantification of fMRI activation maps using a publicly available longitudinal (test-retest) resting-state fMRI dataset. The utility of the ICN_Atlas is also illustrated on a parametric task-modulation fMRI dataset, and on a dataset of a patient who had repeated seizures during resting-state fMRI, confirmed on simultaneously recorded EEG. The proposed ICN_Atlas toolbox is freely available for download at http://icnatlas.com and at http://www.nitrc.org for researchers to use in their fMRI investigations. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Maziero, Danilo; Velasco, Tonicarlo R; Hunt, Nigel; Payne, Edwin; Lemieux, Louis; Salmon, Carlos E G; Carmichael, David W
2016-09-01
The simultaneous acquisition of electroencephalography and functional magnetic resonance imaging (EEG-fMRI) is a multimodal technique extensively applied for mapping the human brain. However, the quality of EEG data obtained within the MRI environment is strongly affected by subject motion due to the induction of voltages in addition to artefacts caused by the scanning gradients and the heartbeat. This has limited its application in populations such as paediatric patients or to study epileptic seizure onset. Recent work has used a Moiré-phase grating and a MR-compatible camera to prospectively update image acquisition and improve fMRI quality (prospective motion correction: PMC). In this study, we use this technology to retrospectively reduce the spurious voltages induced by motion in the EEG data acquired inside the MRI scanner, with and without fMRI acquisitions. This was achieved by modelling induced voltages from the tracking system motion parameters; position and angles, their first derivative (velocities) and the velocity squared. This model was used to remove the voltages related to the detected motion via a linear regression. Since EEG quality during fMRI relies on a temporally stable gradient artefact (GA) template (calculated from averaging EEG epochs matched to scan volume or slice acquisition), this was evaluated in sessions both with and without motion contamination, and with and without PMC. We demonstrate that our approach is capable of significantly reducing motion-related artefact with a magnitude of up to 10mm of translation, 6° of rotation and velocities of 50mm/s, while preserving physiological information. We also demonstrate that the EEG-GA variance is not increased by the gradient direction changes associated with PMC. Provided a scan slice-based GA template is used (rather than a scan volume GA template) we demonstrate that EEG variance during motion can be supressed towards levels found when subjects are still. In summary, we show that PMC can be used to dramatically improve EEG quality during large amplitude movements, while benefiting from previously reported improvements in fMRI quality, and does not affect EEG data quality in the absence of large amplitude movements. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
[Magnetic resonance imaging in facial injuries and digital fusion CT/MRI].
Kozakiewicz, Marcin; Olszycki, Marek; Arkuszewski, Piotr; Stefańczyk, Ludomir
2006-01-01
Magnetic resonance images [MRI] and their digital fusion with computed tomography [CT] data, observed in patients affected with facial injuries, are presented in this study. The MR imaging of 12 posttraumatic patients was performed in the same plains as their previous CT scans. Evaluation focused on quality of the facial soft tissues depicting, which was unsatisfactory in CT. Using the own "Dental Studio" programme the digital fusion of the both modalities was performed. Pathologic dislocations and injures of facial soft tissues are visualized better in MRI than in CT examination. Especially MRI properly reveals disturbances in intraorbital soft structures. MRI-based assessment is valuable in patients affected with facial soft tissues injuries, especially in case of orbita/sinuses hernia. Fusion CT/MRI scans allows to evaluate simultaneously bone structure and soft tissues of the same region.
Imaging features of colovesical fistulae on MRI.
Tang, Y Z; Booth, T C; Swallow, D; Shahabuddin, K; Thomas, M; Hanbury, D; Chang, S; King, C
2012-10-01
MRI is routinely used in the investigation of colovesical fistulae at our institute. Several papers have alluded to its usefulness in achieving the diagnosis; however, there is a paucity of literature on its imaging findings. Our objective was to quantify the MRI characteristics of these fistulae. We selected all cases over a 4-year period with a final clinical diagnosis of colovesical fistula which had been investigated with MRI. The MRI scans were reviewed in a consensus fashion by two consultant uroradiologists. Their MRI features were quantified. There were 40 cases of colovesical fistulae. On MRI, the fistula morphology consistently fell into three patterns. The most common pattern (71%) demonstrated an intervening abscess between the bowel wall and bladder wall. The second pattern (15%) had a visible track between the affected bowel and bladder. The third pattern (13%) was a complete loss of fat plane between the affected bladder and bowel wall. MRI correctly determined the underlying aetiology in 63% of cases. MRI is a useful imaging modality in the diagnosis of colovesical fistulae. The fistulae appear to have three characteristic morphological patterns that may aid future diagnoses of colovesical fistulae. To the authors' knowledge, this is the first publication of the MRI findings in colovesical fistulae.
Venkataraman, Archana; Duncan, James S.; Yang, Daniel Y.-J.; Pelphrey, Kevin A.
2015-01-01
Resting-state functional magnetic resonance imaging (rsfMRI) studies reveal a complex pattern of hyper- and hypo-connectivity in children with autism spectrum disorder (ASD). Whereas rsfMRI findings tend to implicate the default mode network and subcortical areas in ASD, task fMRI and behavioral experiments point to social dysfunction as a unifying impairment of the disorder. Here, we leverage a novel Bayesian framework for whole-brain functional connectomics that aggregates population differences in connectivity to localize a subset of foci that are most affected by ASD. Our approach is entirely data-driven and does not impose spatial constraints on the region foci or dictate the trajectory of altered functional pathways. We apply our method to data from the openly shared Autism Brain Imaging Data Exchange (ABIDE) and pinpoint two intrinsic functional networks that distinguish ASD patients from typically developing controls. One network involves foci in the right temporal pole, left posterior cingulate cortex, left supramarginal gyrus, and left middle temporal gyrus. Automated decoding of this network by the Neurosynth meta-analytic database suggests high-level concepts of “language” and “comprehension” as the likely functional correlates. The second network consists of the left banks of the superior temporal sulcus, right posterior superior temporal sulcus extending into temporo-parietal junction, and right middle temporal gyrus. Associated functionality of these regions includes “social” and “person”. The abnormal pathways emanating from the above foci indicate that ASD patients simultaneously exhibit reduced long-range or inter-hemispheric connectivity and increased short-range or intra-hemispheric connectivity. Our findings reveal new insights into ASD and highlight possible neural mechanisms of the disorder. PMID:26106561
Executive-affective connectivity in smokers viewing anti-smoking images: an fMRI study.
Dinh-Williams, Laurence; Mendrek, Adrianna; Dumais, Alexandre; Bourque, Josiane; Potvin, Stéphane
2014-12-30
Despite knowledge of the harmful consequences of smoking on health, tobacco users continue to smoke. Neuroimaging studies have begun to provide insight into the mechanisms underlying this response. Regions involved in executive control and affective processing/persuasion are activated when viewing the negative value of smoking, but these systems can interact in ways that promote or hinder its impact on behavior. The goal of this functional magnetic resonance imaging (fMRI) study was to examine the dynamics between these systems during the processing of images designed to elicit a negative emotional response regarding tobacco smoking in a group of current smokers. Thirty chronic smokers passively viewed aversive smoking-related, aversive nonsmoking-related and neutral images presented in a block design while being scanned. Functional connectivity analyses showed that the left inferior frontal gyrus (IFG) is negatively associated to activity in medial frontal, cingulate, limbic, subcortical and parietal regions in chronic smokers during the processing of aversive smoking-related material, a pattern that was significantly greater when stimuli were drug-related compared with when they were nondrug-related. Our results suggest that individuals with tobacco dependence present different patterns of functional connectivity depending on whether the aversive stimuli are smoking- or nonsmoking-related. Activity in the left inferior frontal gyrus may act to down-regulate corresponding activity in regions key to an affective and persuasive response during the processing of anti-smoking material. This mechanism may reduce the extent to which "feeling bad" brings about a change in behavior. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Esteso Orduña, Borja; Seijas Gómez, Raquel; García Esparza, Elena; Briceño, Emily M; Melero Llorente, Javier; Fournier Del Castillo, María de la Concepción
2018-02-01
Congenital central hypoventilation syndrome (CCHS) is a rare genetic disorder due to paired-like homeobox gene (PHOX2B) mutations. CCHS patients suffer from dysregulation of the autonomic nervous system characterized by the absence of or extremely reduced response to hypercapnia and hypoxia, with neuropsychological deficits. The aim of this exploratory study is to describe the longitudinal neuropsychological profile and its correlations with magnetic resonance imaging (MRI) of a child with CCHS with a PHOX2B mutation. A comprehensive neuropsychological evaluation was conducted serially at age 7 years 4 months and 10 years 3 months, including assessment of intellectual functioning (IQ), motor functioning, perception, attention, executive functions, language, memory, social cognition, academic skills, and psychopathology. Reliable change index (RCI) scores were used to assess changes between assessments. We collected spin lattice relaxation time (T1)-weighted, fluid-attenuated inversion recovery (FLAIR), and spin spin lattice relaxation time (T2)-weighted images from the child at age 10 years 3 months using a 1.5-tesla MRI scanner. IQ, processing speed index (PSI), social cognition (theory of mind and facial emotion recognition), selective attention, naming, academic skills (reading/comprehension), and manual speed with right hand declined in the second evaluation relative to the initial evaluation, while visuoconstructional praxis, receptive vocabulary, working memory, and arithmetic skill improved. The patient showed a remarkable global deterioration in executive functions (planning, task flexibility, behavioral regulation, and metacognition) as revealed by parental report and clinical evaluation. MRI revealed gliosis from the head to tail of the hippocampus and thinning of parahippocampal gyri. In a clinical case of CCHS, serial evaluation revealed deterioration of executive functions and social cognition over a 3-year interval. These changes corresponded to hippocampal damage as revealed in MRI, which may have affected social cognition through its role in the default mode network. Serial neuropsychological assessment is clinically useful in managing the needs of these patients.
Functional connectomics from resting-state fMRI
Smith, Stephen M; Vidaurre, Diego; Beckmann, Christian F; Glasser, Matthew F; Jenkinson, Mark; Miller, Karla L; Nichols, Thomas E; Robinson, Emma; Salimi-Khorshidi, Gholamreza; Woolrich, Mark W; Barch, Deanna M; Uğurbil, Kamil; Van Essen, David C
2014-01-01
Spontaneous fluctuations in activity in different parts of the brain can be used to study functional brain networks. We review the use of resting-state functional MRI for the purpose of mapping the macroscopic functional connectome. After describing MRI acquisition and image processing methods commonly used to generate data in a form amenable to connectomics network analysis, we discuss different approaches for estimating network structure from that data. Finally, we describe new possibilities resulting from the high-quality rfMRI data being generated by the Human Connectome Project, and highlight some upcoming challenges in functional connectomics. PMID:24238796
Willcocks, RJ; Triplett, WT; Forbes, SC; Arora, H; Senesac, CR; Lott, DJ; Nicholson, TR; Rooney, WD; Walter, GA; Vandenborne, K
2016-01-01
There is a pressing need for biomarkers and outcomes that can be used across disease stages in Duchenne muscular dystrophy (DMD), to facilitate the inclusion of a wider range of participants in clinical trials and to improve our understanding of the natural history of DMD. Quantitative magnetic resonance imaging (qMRI) and spectroscopy (MRS) biomarkers show considerable promise in both the legs and forearms of individuals with DMD, but have not yet been examined in functionally important proximal upper extremity muscles such as the biceps brachii and deltoid. The primary objective of this study was to examine the feasibility of implementing qMRI and MRS biomarkers in the proximal upper extremity musculature, and the secondary objective was to examine the relationship between MR measures of arm muscle pathology and upper extremity functional endpoints. Biomarkers included MRS and MRI measures of fat fraction and transverse relaxation time (T2). The MR exam was well tolerated in both ambulatory and nonambulatory boys. qMR biomarkers differentiated affected and unaffected participants and correlated strongly with upper extremity function (r=0.91 for biceps brachii T2 versus Performance of Upper Limb score). These qMR outcome measures could be highly beneficial to the neuromuscular disease community, allowing measurement of the quality of functionally important muscles across disease stages to understand the natural history of DMD and particularly to broaden the opportunity for clinical trial participation. PMID:27778157
Zhang, Long Jiang; Wu, Shengyong; Ren, Jiaqian; Lu, Guang Ming
2014-09-01
Hepatic encephalopathy (HE) is a neuropsychiatric syndrome which develops in patients with severe liver diseases and/or portal-systemic shunting. Minimal HE, the earliest manifestation of HE, has drawn increasing attention in the last decade. Minimal HE is associated with a series of brain functional changes, such as attention, working memory, and so on. Blood oxygen level dependent (BOLD) functional MRI (fMRI), especially resting-state fMRI has been used to explore the brain functional changes of HE, yielding important insights for understanding pathophysiological mechanisms and functional reorganization of HE. This paper briefly reviews the principles of BOLD fMRI, potential applications of resting-state fMRI with advanced post-processing algorithms such as regional homogeneity, amplitude of low frequency fluctuation, functional connectivity and future research perspective in this field.
HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).
Makkie, Milad; Zhao, Shijie; Jiang, Xi; Lv, Jinglei; Zhao, Yu; Ge, Bao; Li, Xiang; Han, Junwei; Liu, Tianming
Tremendous efforts have thus been devoted on the establishment of functional MRI informatics systems that recruit a comprehensive collection of statistical/computational approaches for fMRI data analysis. However, the state-of-the-art fMRI informatics systems are especially designed for specific fMRI sessions or studies of which the data size is not really big, and thus has difficulty in handling fMRI 'big data.' Given the size of fMRI data are growing explosively recently due to the advancement of neuroimaging technologies, an effective and efficient fMRI informatics system which can process and analyze fMRI big data is much needed. To address this challenge, in this work, we introduce our newly developed informatics platform, namely, 'HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).' HELPNI implements our recently developed computational framework of sparse representation of whole-brain fMRI signals which is called holistic atlases of functional networks and interactions (HAFNI) for fMRI data analysis. HELPNI provides integrated solutions to archive and process large-scale fMRI data automatically and structurally, to extract and visualize meaningful results information from raw fMRI data, and to share open-access processed and raw data with other collaborators through web. We tested the proposed HELPNI platform using publicly available 1000 Functional Connectomes dataset including over 1200 subjects. We identified consistent and meaningful functional brain networks across individuals and populations based on resting state fMRI (rsfMRI) big data. Using efficient sampling module, the experimental results demonstrate that our HELPNI system has superior performance than other systems for large-scale fMRI data in terms of processing and storing the data and associated results much faster.
HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).
Makkie, Milad; Zhao, Shijie; Jiang, Xi; Lv, Jinglei; Zhao, Yu; Ge, Bao; Li, Xiang; Han, Junwei; Liu, Tianming
2015-12-01
Tremendous efforts have thus been devoted on the establishment of functional MRI informatics systems that recruit a comprehensive collection of statistical/computational approaches for fMRI data analysis. However, the state-of-the-art fMRI informatics systems are especially designed for specific fMRI sessions or studies of which the data size is not really big, and thus has difficulty in handling fMRI 'big data.' Given the size of fMRI data are growing explosively recently due to the advancement of neuroimaging technologies, an effective and efficient fMRI informatics system which can process and analyze fMRI big data is much needed. To address this challenge, in this work, we introduce our newly developed informatics platform, namely, 'HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).' HELPNI implements our recently developed computational framework of sparse representation of whole-brain fMRI signals which is called holistic atlases of functional networks and interactions (HAFNI) for fMRI data analysis. HELPNI provides integrated solutions to archive and process large-scale fMRI data automatically and structurally, to extract and visualize meaningful results information from raw fMRI data, and to share open-access processed and raw data with other collaborators through web. We tested the proposed HELPNI platform using publicly available 1000 Functional Connectomes dataset including over 1200 subjects. We identified consistent and meaningful functional brain networks across individuals and populations based on resting state fMRI (rsfMRI) big data. Using efficient sampling module, the experimental results demonstrate that our HELPNI system has superior performance than other systems for large-scale fMRI data in terms of processing and storing the data and associated results much faster.
Schertz, Mitchell; Shiran, Shelly I; Myers, Vicki; Weinstein, Maya; Fattal-Valevski, Aviva; Artzi, Moran; Ben Bashat, Dafna; Gordon, Andrew M; Green, Dido
2016-08-01
Background Motor-learning interventions may improve hand function in children with unilateral cerebral palsy (UCP) but with inconsistent outcomes across participants. Objective To examine if pre-intervention brain imaging predicts benefit from bimanual intervention. Method Twenty children with UCP with Manual Ability Classification System levels I to III, aged 7-16 years, participated in an intensive bimanual intervention. Assessments included the Assisting Hand Assessment (AHA), Jebsen Taylor Test of Hand Function (JTTHF) and Children's Hand Experience Questionnaire (CHEQ) at baseline (T1), completion (T2) and 8-10 weeks post-intervention (T3). Imaging at baseline included conventional structural (radiological score), functional (fMRI) and diffusion tensor imaging (DTI). Results Improvements were seen across assessments; AHA (P = 0.04), JTTHF (P < .001) and CHEQ (P < 0.001). Radiological score significantly correlated with improvement at T2; AHA (r = .475) and CHEQ (r = .632), but negatively with improvement on unimanual measures at T3 (JTTFH r = -.514). fMRI showed negative correlations between contralesional brain activation when moving the affected hand and AHA improvements (T2: r = -.562, T3: r = -0.479). Fractional Anisotropy in the affected posterior limb of the internal capsule correlated negatively with increased bimanual use on CHEQ at T2 (r = -547) and AHA at T3 (r = -.656). Conclusions Children with greater structural, functional and connective brain damage showed enhanced responses to bimanual intervention. Baseline imaging may identify parameters predicting response to intervention in children with UCP. © The Author(s) 2015.
Latif-Hernandez, Amira; Shah, Disha; Ahmed, Tariq; Lo, Adrian C.; Callaerts-Vegh, Zsuzsanna; Van der Linden, Annemie; Balschun, Detlef; D’Hooge, Rudi
2016-01-01
Intracerebral injection of the excitotoxic, endogenous tryptophan metabolite, quinolinic acid (QA), constitutes a chemical model of neurodegenerative brain disease. Complementary techniques were combined to examine the consequences of QA injection into medial prefrontal cortex (mPFC) of C57BL6 mice. In accordance with the NMDAR-mediated synapto- and neurotoxic action of QA, we found an initial increase in excitability and an augmentation of hippocampal long-term potentiation, converting within two weeks into a reduction and impairment, respectively, of these processes. QA-induced mPFC excitotoxicity impaired behavioral flexibility in a reversal variant of the hidden-platform Morris water maze (MWM), whereas regular, extended MWM training was unaffected. QA-induced mPFC damage specifically affected the spatial-cognitive strategies that mice use to locate the platform during reversal learning. These behavioral and cognitive defects coincided with changes in cortical functional connectivity (FC) and hippocampal neuroplasticity. FC between various cortical regions was assessed by resting-state fMRI (rsfMRI) methodology, and mice that had received QA injection into mPFC showed increased FC between various cortical regions. mPFC and hippocampus (HC) are anatomically as well as functionally linked as part of a cortical network that controls higher-order cognitive functions. Together, these observations demonstrate the central functional importance of rodent mPFC as well as the validity of QA-induced mPFC damage as a preclinical rodent model of the early stages of neurodegeneration. PMID:27819338
Growth and development of the brain and impact on cognitive outcomes.
Hüppi, Petra S
2010-01-01
Understanding human brain development from the fetal life to adulthood is of great clinical importance as many neurological and neurobehavioral disorders have their origin in early structural and functional cerebral maturation. The developing brain is particularly prone to being affected by endogenous and exogenous events through the fetal and early postnatal life. The concept of 'developmental plasticity or disruption of the developmental program' summarizes these events. Increases in white matter, which speed up communication between brain cells, growing complexity of neuronal networks suggested by gray and white matter changes, and environmentally sensitive plasticity are all essential aspects in a child's ability to mentalize and maintain the adaptive flexibility necessary for achieving high sociocognitive functioning. Advancement in neuroimaging has opened up new ways for examining the developing human brain in vivo, the study of the effects of early antenatal, perinatal and neonatal events on later structural and functional brain development resulting in developmental disabilities or developmental resilience. In this review, methods of quantitative assessment of human brain development, such as 3D-MRI with image segmentation, diffusion tensor imaging to assess connectivity and functional MRI to visualize brain function will be presented. Copyright (c) 2010 S. Karger AG, Basel.
Detection of Brain Reorganization in Pediatric Multiple Sclerosis Using Functional MRI
2015-10-01
accomplish this, we apply comparative assessments of fMRI mappings of language, memory , and motor function, and performance on clinical neurocognitive...community at a target rate of 13 volunteers per quarter period; acquire fMRI data for language, memory , and visual-motor functions (months 3-12). c...consensus fMRI activation maps for language, memory , and visual-motor tasks (months 8-12). f) Subtask 1f. Prepare publication to disseminate our
Multimodal frontostriatal connectivity underlies individual differences in self-esteem.
Chavez, Robert S; Heatherton, Todd F
2015-03-01
A heightened sense of self-esteem is associated with a reduced risk for several types of affective and psychiatric disorders, including depression, anxiety and eating disorders. However, little is known about how brain systems integrate self-referential processing and positive evaluation to give rise to these feelings. To address this, we combined diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) to test how frontostriatal connectivity reflects long-term trait and short-term state aspects of self-esteem. Using DTI, we found individual variability in white matter structural integrity between the medial prefrontal cortex and the ventral striatum was related to trait measures of self-esteem, reflecting long-term stability of self-esteem maintenance. Using fMRI, we found that functional connectivity of these regions during positive self-evaluation was related to current feelings of self-esteem, reflecting short-term state self-esteem. These results provide convergent anatomical and functional evidence that self-esteem is related to the connectivity of frontostriatal circuits and suggest that feelings of self-worth may emerge from neural systems integrating information about the self with positive affect and reward. This information could potentially inform the etiology of diminished self-esteem underlying multiple psychiatric conditions and inform future studies of evaluative self-referential processing. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Cetin, Mustafa S.; Houck, Jon M.; Rashid, Barnaly; Agacoglu, Oktay; Stephen, Julia M.; Sui, Jing; Canive, Jose; Mayer, Andy; Aine, Cheryl; Bustillo, Juan R.; Calhoun, Vince D.
2016-01-01
Mental disorders like schizophrenia are currently diagnosed by physicians/psychiatrists through clinical assessment and their evaluation of patient's self-reported experiences as the illness emerges. There is great interest in identifying biological markers of prognosis at the onset of illness, rather than relying on the evolution of symptoms across time. Functional network connectivity, which indicates a subject's overall level of “synchronicity” of activity between brain regions, demonstrates promise in providing individual subject predictive power. Many previous studies reported functional connectivity changes during resting-state using only functional magnetic resonance imaging (fMRI). Nevertheless, exclusive reliance on fMRI to generate such networks may limit the inference of the underlying dysfunctional connectivity, which is hypothesized to be a factor in patient symptoms, as fMRI measures connectivity via hemodynamics. Therefore, combination of connectivity assessments using fMRI and magnetoencephalography (MEG), which more directly measures neuronal activity, may provide improved classification of schizophrenia than either modality alone. Moreover, recent evidence indicates that metrics of dynamic connectivity may also be critical for understanding pathology in schizophrenia. In this work, we propose a new framework for extraction of important disease related features and classification of patients with schizophrenia based on using both fMRI and MEG to investigate functional network components in the resting state. Results of this study show that the integration of fMRI and MEG provides important information that captures fundamental characteristics of functional network connectivity in schizophrenia and is helpful for prediction of schizophrenia patient group membership. Combined fMRI/MEG methods, using static functional network connectivity analyses, improved classification accuracy relative to use of fMRI or MEG methods alone (by 15 and 12.45%, respectively), while combined fMRI/MEG methods using dynamic functional network connectivity analyses improved classification up to 5.12% relative to use of fMRI alone and up to 17.21% relative to use of MEG alone. PMID:27807403
Borri, Marco; Schmidt, Maria A; Powell, Ceri; Koh, Dow-Mu; Riddell, Angela M; Partridge, Mike; Bhide, Shreerang A; Nutting, Christopher M; Harrington, Kevin J; Newbold, Katie L; Leach, Martin O
2015-01-01
To describe a methodology, based on cluster analysis, to partition multi-parametric functional imaging data into groups (or clusters) of similar functional characteristics, with the aim of characterizing functional heterogeneity within head and neck tumour volumes. To evaluate the performance of the proposed approach on a set of longitudinal MRI data, analysing the evolution of the obtained sub-sets with treatment. The cluster analysis workflow was applied to a combination of dynamic contrast-enhanced and diffusion-weighted imaging MRI data from a cohort of squamous cell carcinoma of the head and neck patients. Cumulative distributions of voxels, containing pre and post-treatment data and including both primary tumours and lymph nodes, were partitioned into k clusters (k = 2, 3 or 4). Principal component analysis and cluster validation were employed to investigate data composition and to independently determine the optimal number of clusters. The evolution of the resulting sub-regions with induction chemotherapy treatment was assessed relative to the number of clusters. The clustering algorithm was able to separate clusters which significantly reduced in voxel number following induction chemotherapy from clusters with a non-significant reduction. Partitioning with the optimal number of clusters (k = 4), determined with cluster validation, produced the best separation between reducing and non-reducing clusters. The proposed methodology was able to identify tumour sub-regions with distinct functional properties, independently separating clusters which were affected differently by treatment. This work demonstrates that unsupervised cluster analysis, with no prior knowledge of the data, can be employed to provide a multi-parametric characterization of functional heterogeneity within tumour volumes.
Disentangling reward anticipation with simultaneous pupillometry / fMRI.
Schneider, Max; Leuchs, Laura; Czisch, Michael; Sämann, Philipp G; Spoormaker, Victor I
2018-05-05
The reward system may provide an interesting intermediate phenotype for anhedonia in affective disorders. Reward anticipation is characterized by an increase in arousal, and previous studies have linked the anterior cingulate cortex (ACC) to arousal responses such as dilation of the pupil. Here, we examined pupil dynamics during a reward anticipation task in forty-six healthy human subjects and evaluated its neural correlates using functional magnetic resonance imaging (fMRI). Pupil size showed a strong increase during monetary reward anticipation, a moderate increase during verbal reward anticipation and a decrease during control trials. For fMRI analyses, average pupil size and pupil change were computed in 1-s time bins during the anticipation phase. Activity in the ventral striatum was inversely related to the pupil size time course, indicating an early onset of activation and a role in reward prediction processing. Pupil dilations were linked to increased activity in the salience network (dorsal ACC and bilateral insula), which likely triggers an increase in arousal to enhance task performance. Finally, increased pupil size preceding the required motor response was associated with activity in the ventral attention network. In sum, pupillometry provides an effective tool for disentangling different phases of reward anticipation, with relevance for affective symptomatology. Copyright © 2018 Elsevier Inc. All rights reserved.
Cross-classification of musical and vocal emotions in the auditory cortex.
Paquette, Sébastien; Takerkart, Sylvain; Saget, Shinji; Peretz, Isabelle; Belin, Pascal
2018-05-09
Whether emotions carried by voice and music are processed by the brain using similar mechanisms has long been investigated. Yet neuroimaging studies do not provide a clear picture, mainly due to lack of control over stimuli. Here, we report a functional magnetic resonance imaging (fMRI) study using comparable stimulus material in the voice and music domains-the Montreal Affective Voices and the Musical Emotional Bursts-which include nonverbal short bursts of happiness, fear, sadness, and neutral expressions. We use a multivariate emotion-classification fMRI analysis involving cross-timbre classification as a means of comparing the neural mechanisms involved in processing emotional information in the two domains. We find, for affective stimuli in the violin, clarinet, or voice timbres, that local fMRI patterns in the bilateral auditory cortex and upper premotor regions support above-chance emotion classification when training and testing sets are performed within the same timbre category. More importantly, classifier performance generalized well across timbre in cross-classifying schemes, albeit with a slight accuracy drop when crossing the voice-music boundary, providing evidence for a shared neural code for processing musical and vocal emotions, with possibly a cost for the voice due to its evolutionary significance. © 2018 New York Academy of Sciences.
Plasticity of language-related brain function during recovery from stroke.
Thulborn, K R; Carpenter, P A; Just, M A
1999-04-01
This study was undertaken to correlate functional recovery from aphasia after acute stroke with the temporal evolution of the anatomic, physiological, and functional changes as measured by MRI. Blood oxygenation level-dependent contrast and echo-planar MRI were used to map language comprehension in 6 normal adults and in 2 adult patients during recovery from acute stroke presenting with aphasia. Perfusion, diffusion, sodium, and conventional anatomic MRI were used to follow physiological and structural changes. The normal activation pattern for language comprehension showed activation predominately in left-sided Wernicke's and Broca's areas, with laterality ratios of 0.8 and 0.3, respectively. Recovery of the patient confirmed as having a completed stroke affecting Broca's area occurred rapidly with a shift of activation to the homologous region in the right hemisphere within 3 days, with continued rightward lateralization over 6 months. In the second patient, in whom mapping was performed fortuitously before stroke, recovery of a Wernicke's aphasia showed a similar increasing rightward shift in activation recruitment over 9 months after the event. Recovery of aphasia in adults can occur rapidly and is concomitant with an activation pattern that changes from left to a homologous right hemispheric pattern. Such recovery occurs even when the stroke evolves to completion. Such plasticity must be considered when evaluating stroke interventions based on behavioral and neurological measurements.
Sladky, Ronald; Spies, Marie; Hoffmann, Andre; Kranz, Georg; Hummer, Allan; Gryglewski, Gregor; Lanzenberger, Rupert; Windischberger, Christian; Kasper, Siegfried
2015-03-01
Citalopram and Escitalopram are gold standard pharmaceutical treatment options for affective, anxiety, and other psychiatric disorders. However, their neurophysiologic function on cortico-limbic circuits is incompletely characterized. Here we studied the neuropharmacological influence of Citalopram and Escitalopram on cortico-limbic regulatory processes by assessing the effective connectivity between orbitofrontal cortex (OFC) and amygdala using dynamic causal modeling (DCM) applied to functional MRI data. We investigated a cohort of 15 healthy subjects in a randomized, crossover, double-blind design after 10days of Escitalopram (10mg/d (S)-citalopram), Citalopram (10mg/d (S)-citalopram and 10mg/d (R)-citalopram), or placebo. Subjects performed an emotional face discrimination task, while undergoing functional magnetic resonance imaging (fMRI) scanning at 3 Tesla. As hypothesized, the OFC, in the context of the emotional face discrimination task, exhibited a down-regulatory effect on amygdala activation. This modulatory effect was significantly increased by (S)-citalopram, but not (R)-citalopram. For the first time, this study shows that (1) the differential effects of the two enantiomers (S)- and (R)-citalopram on cortico-limbic connections can be demonstrated by modeling effective connectivity methods, and (2) one of their mechanisms can be linked to an increased inhibition of amygdala activation by the orbitofrontal cortex. Copyright © 2014 Elsevier Inc. All rights reserved.
Chen, Li; Luo, Tianyou; Lv, Fajin; Shi, Dandan; Qiu, Jiang; Li, Qi; Fang, Weidong; Peng, Juan; Li, Yongmei; Zhang, Zhiwei; Li, Yang
2016-09-01
Clinical studies have shown that thalamus infarction (TI) affects memory function. The thalamic nucleus is directly or indirectly connected to the hippocampal system in animal models. However, this connection has not been investigated using structural magnetic resonance imaging (MRI) in humans. From the pathological perspective, TI patients may serve as valid models for revealing the interaction between the thalamus and hippocampus in memory function. In this study, we aim to assess different hippocampal subfield volumes in TI patients and control subjects using MRI and test their associations with memory function. A total of 37 TI patients (TI group), 38 matched healthy control subjects (HC group), and 22 control patients with other stroke location (SC group) underwent 3.0-T MRI scans and clinical memory examinations. Hippocampal subfield volumes were measured and compared by using FreeSurfer software. We examined the correlation between hippocampal subfield volumes and memory scores. Smaller ipsilesional presubiculum and subiculum volumes were observed, and former was related to graphics recall in both left and right TI patients. The left subiculum volume was correlated with short-delayed recall in left TI patients. The right presubiculum volume was correlated with short- and long-delayed recall in right TI patients. TI was found to result in hippocampal abnormality and memory deficits, and its neural mechanisms might be related with and interaction between the thalamus and hippocampus.
Heggdal, Peder O Laugen; Brännström, Jonas; Aarstad, Hans Jørgen; Vassbotn, Flemming S; Specht, Karsten
2016-02-01
This paper aims to provide a review of studies using neuroimaging to measure functional-structural reorganisation of the neuronal network for auditory perception after unilateral hearing loss. A literature search was performed in PubMed. Search criterions were peer reviewed original research papers in English completed by the 11th of March 2015. Twelve studies were found to use neuroimaging in subjects with unilateral hearing loss. An additional five papers not identified by the literature search were provided by a reviewer. Thus, a total of 17 studies were included in the review. Four different neuroimaging methods were used in these studies: Functional magnetic resonance imaging (fMRI) (n = 11), diffusion tensor imaging (DTI) (n = 4), T1/T2 volumetric images (n = 2), magnetic resonance spectroscopy (MRS) (n = 1). One study utilized two imaging methods (fMRI and T1 volumetric images). Neuroimaging techniques could provide valuable information regarding the effects of unilateral hearing loss on both auditory and non-auditory performance. fMRI-studies showing a bilateral BOLD-response in patients with unilateral hearing loss have not yet been followed by DTI studies confirming their microstructural correlates. In addition, the review shows that an auditory modality-specific deficit could affect multi-modal brain regions and their connections. Copyright © 2015 Elsevier B.V. All rights reserved.
Prolonged fasting impairs neural reactivity to visual stimulation.
Kohn, N; Wassenberg, A; Toygar, T; Kellermann, T; Weidenfeld, C; Berthold-Losleben, M; Chechko, N; Orfanos, S; Vocke, S; Laoutidis, Z G; Schneider, F; Karges, W; Habel, U
2016-01-01
Previous literature has shown that hypoglycemia influences the intensity of the BOLD signal. A similar but smaller effect may also be elicited by low normal blood glucose levels in healthy individuals. This may not only confound the BOLD signal measured in fMRI, but also more generally interact with cognitive processing, and thus indirectly influence fMRI results. Here we show in a placebo-controlled, crossover, double-blind study on 40 healthy subjects, that overnight fasting and low normal levels of glucose contrasted to an activated, elevated glucose condition have an impact on brain activation during basal visual stimulation. Additionally, functional connectivity of the visual cortex shows a strengthened association with higher-order attention-related brain areas in an elevated blood glucose condition compared to the fasting condition. In a fasting state visual brain areas show stronger coupling to the inferior temporal gyrus. Results demonstrate that prolonged overnight fasting leads to a diminished BOLD signal in higher-order occipital processing areas when compared to an elevated blood glucose condition. Additionally, functional connectivity patterns underscore the modulatory influence of fasting on visual brain networks. Patterns of brain activation and functional connectivity associated with a broad range of attentional processes are affected by maturation and aging and associated with psychiatric disease and intoxication. Thus, we conclude that prolonged fasting may decrease fMRI design sensitivity in any task involving attentional processes when fasting status or blood glucose is not controlled.
Winfield, Jessica M.; Payne, Geoffrey S.; Weller, Alex; deSouza, Nandita M.
2016-01-01
Abstract Multi-parametric magnetic resonance imaging (mpMRI) offers a unique insight into tumor biology by combining functional MRI techniques that inform on cellularity (diffusion-weighted MRI), vascular properties (dynamic contrast-enhanced MRI), and metabolites (magnetic resonance spectroscopy) and has scope to provide valuable information for prognostication and response assessment. Challenges in the application of mpMRI in the clinic include the technical considerations in acquiring good quality functional MRI data, development of robust techniques for analysis, and clinical interpretation of the results. This article summarizes the technical challenges in acquisition and analysis of multi-parametric MRI data before reviewing the key applications of multi-parametric MRI in clinical research and practice. PMID:27748710
ERIC Educational Resources Information Center
Powers, Sara J.; Wang, Yingying; Beach, Sara D.; Sideridis, Georgios D.; Gaab, Nadine
2016-01-01
Developmental dyslexia is a language-based learning disability characterized by persistent difficulty in learning to read. While an understanding of genetic contributions is emerging, the ways the environment affects brain functioning in children with developmental dyslexia are poorly understood. A relationship between the home literacy…
Chen, Xiao-lei; Xu, Bai-nan; Wang, Fei; Meng, Xiang-hui; Zhang, Jun; Jiang, Jin-li; Yu, Xin-guang; Zhou, Ding-biao
2011-08-01
To explore the clinical value of functional neuro-navigation and high-field-strength intraoperative magnetic resonance imaging (iMRI) for the resection of intracerebral gliomas involving eloquent language structures. From April 2009 to April 2010, 48 patients with intracerebral gliomas involving eloquent language structures, were operated with functional neuro-navigation and iMRI. Blood oxygen level dependent functional MRI (BOLD-fMRI) was used to depict both Broca and Wernicke cortex, while diffusion tensor imaging (DTI) based fiber tracking was used to delineate arcuate fasciculus. The reconstructed language structures were integrated into a navigation system, so that intra-operative microscopic-based functional neuro-navigation could be achieved. iMRI was used to update the images for both language structures and residual tumors. All patients were evaluated for language function pre-operatively and post-operatively upon short-term and long-term follow-up. In all patients, functional neuro-navigation and iMRI were successfully achieved. In 38 cases (79.2%), gross total resection was accomplished, while in the rest 10 cases (20.8%), subtotal resection was achieved. Only 1 case (2.1%) developed long-term (more than 3 months) new language function deficits at post-operative follow-up. No peri-operative mortality was recorded. With functional neuro-navigation and iMRI, the eloquent structures for language can be precisely located, while the resection size can be accurately evaluated intra-operatively. This technique is safe and helpful for preservation of language function.
Bajaj, Sahil; Housley, Stephen N.; Wu, David; Dhamala, Mukesh; James, G. A.; Butler, Andrew J.
2016-01-01
Balance of motor network activity between the two brain hemispheres after stroke is crucial for functional recovery. Several studies have extensively studied the role of the affected brain hemisphere to better understand changes in motor network activity following stroke. Very few studies have examined the role of the unaffected brain hemisphere and confirmed the test–retest reliability of connectivity measures on unaffected hemisphere. We recorded blood oxygenation level dependent functional magnetic resonance imaging (fMRI) signals from nine stroke survivors with hemiparesis of the left or right hand. Participants performed a motor execution task with affected hand, unaffected hand, and both hands simultaneously. Participants returned for a repeat fMRI scan 1 week later. Using dynamic causal modeling (DCM), we evaluated effective connectivity among three motor areas: the primary motor area (M1), the premotor cortex (PMC) and the supplementary motor area for the affected and unaffected hemispheres separately. Five participants’ manual motor ability was assessed by Fugl-Meyer Motor Assessment scores and root-mean square error of participants’ tracking ability during a robot-assisted game. We found (i) that the task performance with the affected hand resulted in strengthening of the connectivity pattern for unaffected hemisphere, (ii) an identical network of the unaffected hemisphere when participants performed the task with their unaffected hand, and (iii) the pattern of directional connectivity observed in the affected hemisphere was identical for tasks using the affected hand only or both hands. Furthermore, paired t-test comparison found no significant differences in connectivity strength for any path when compared with one-week follow-up. Brain-behavior linear correlation analysis showed that the connectivity patterns in the unaffected hemisphere more accurately reflected the behavioral conditions than the connectivity patterns in the affected hemisphere. Above findings enrich our knowledge of unaffected brain hemisphere following stroke, which further strengthens our neurobiological understanding of stroke-affected brain and can help to effectively identify and apply stroke-treatments. PMID:28082882
Cortical Plasticity Following Motor Skill Learning During Mental Practice in Stroke1
Page, Stephen J.; Szaflarski, Jerzy P.; Eliassen, James C.; Pan, Hai; Cramer, Steven C
2012-01-01
Background and Purpose Mental practice (MP), which involves cognitive rehearsal of physical movements, is a non-invasive, inexpensive method of enabling repetitive, task specific practice (RTP). Recent, randomized controlled data suggest that MP, when combined with a RTP therapy program, increases affected arm use and function significantly more than RTP only. As a next step, this 10-subject case series examined the possibility that cortical plasticity is a mechanism underlying the treatment effect of MP when combined with RTP. Method 10 chronic stroke patients (mean = 36.7 months) exhibiting stable, moderate motor deficits received ½ hour therapy sessions for their affected arms, occurring 3 days/week for 10 weeks, and emphasizing valued activities of daily living (ADLs). Directly after therapy, subjects received 30-minute MP sessions, which required MP of the ADLs performed during therapy. Behavioral outcomes were blindly evaluated using the Action Research Arm Test (ARAT) and the Fugl-Meyer Assessment (FM). Functional magnetic resonance imaging (fMRI) was administered before and after intervention to assess cortical changes. Results Before intervention, subjects exhibited stable motor deficits. After intervention, subjects exhibited marked ARAT and FM score increases (+ 5.3 and + 4.2, respectively), and clinically significant, new abilities to perform valued ADLs. Post-intervention fMRI revealed significant increases in activation to wrist flexion and extension of the affected hand in the premotor area and primary motor cortex ipsi- and contralaterally to the affected hand, and superior parietal cortex ipsilateral to the affected hand. Decreased activations were noted in parietal cortex of the hemisphere ipsilateral to the affected hand. These changes correlated with anatomical regions in which behavioral changes were observed via the ARAT and FM. Conclusions MP is an easy to use, cost effective strategy that was again shown to improve affected arm outcomes after stroke. This is the first study suggesting alteration in the cortical map as a possible MP mechanism for the affected arm. PMID:19155350
Aberrant functional network connectivity in psychopathy from a large (N = 985) forensic sample.
Espinoza, Flor A; Vergara, Victor M; Reyes, Daisy; Anderson, Nathaniel E; Harenski, Carla L; Decety, Jean; Rachakonda, Srinivas; Damaraju, Eswar; Rashid, Barnaly; Miller, Robyn L; Koenigs, Michael; Kosson, David S; Harenski, Keith; Kiehl, Kent A; Calhoun, Vince D
2018-06-01
Psychopathy is a personality disorder characterized by antisocial behavior, lack of remorse and empathy, and impaired decision making. The disproportionate amount of crime committed by psychopaths has severe emotional and economic impacts on society. Here we examine the neural correlates associated with psychopathy to improve early assessment and perhaps inform treatments for this condition. Previous resting-state functional magnetic resonance imaging (fMRI) studies in psychopathy have primarily focused on regions of interest. This study examines whole-brain functional connectivity and its association to psychopathic traits. Psychopathy was hypothesized to be characterized by aberrant functional network connectivity (FNC) in several limbic/paralimbic networks. Group-independent component and regression analyses were applied to a data set of resting-state fMRI from 985 incarcerated adult males. We identified resting-state networks (RSNs), estimated FNC between RSNs, and tested their association to psychopathy factors and total summary scores (Factor 1, interpersonal/affective; Factor 2, lifestyle/antisocial). Factor 1 scores showed both increased and reduced functional connectivity between RSNs from seven brain domains (sensorimotor, cerebellar, visual, salience, default mode, executive control, and attentional). Consistent with hypotheses, RSNs from the paralimbic system-insula, anterior and posterior cingulate cortex, amygdala, orbital frontal cortex, and superior temporal gyrus-were related to Factor 1 scores. No significant FNC associations were found with Factor 2 and total PCL-R scores. In summary, results suggest that the affective and interpersonal symptoms of psychopathy (Factor 1) are associated with aberrant connectivity in multiple brain networks, including paralimbic regions. © 2018 Wiley Periodicals, Inc.
Brain functional BOLD perturbation modelling for forward fMRI and inverse mapping
Robinson, Jennifer; Calhoun, Vince
2018-01-01
Purpose To computationally separate dynamic brain functional BOLD responses from static background in a brain functional activity for forward fMRI signal analysis and inverse mapping. Methods A brain functional activity is represented in terms of magnetic source by a perturbation model: χ = χ0 +δχ, with δχ for BOLD magnetic perturbations and χ0 for background. A brain fMRI experiment produces a timeseries of complex-valued images (T2* images), whereby we extract the BOLD phase signals (denoted by δP) by a complex division. By solving an inverse problem, we reconstruct the BOLD δχ dataset from the δP dataset, and the brain χ distribution from a (unwrapped) T2* phase image. Given a 4D dataset of task BOLD fMRI, we implement brain functional mapping by temporal correlation analysis. Results Through a high-field (7T) and high-resolution (0.5mm in plane) task fMRI experiment, we demonstrated in detail the BOLD perturbation model for fMRI phase signal separation (P + δP) and reconstructing intrinsic brain magnetic source (χ and δχ). We also provided to a low-field (3T) and low-resolution (2mm) task fMRI experiment in support of single-subject fMRI study. Our experiments show that the δχ-depicted functional map reveals bidirectional BOLD χ perturbations during the task performance. Conclusions The BOLD perturbation model allows us to separate fMRI phase signal (by complex division) and to perform inverse mapping for pure BOLD δχ reconstruction for intrinsic functional χ mapping. The full brain χ reconstruction (from unwrapped fMRI phase) provides a new brain tissue image that allows to scrutinize the brain tissue idiosyncrasy for the pure BOLD δχ response through an automatic function/structure co-localization. PMID:29351339
Fiori, Simona; Guzzetta, Andrea; Pannek, Kerstin; Ware, Robert S.; Rossi, Giuseppe; Klingels, Katrijn; Feys, Hilde; Coulthard, Alan; Cioni, Giovanni; Rose, Stephen; Boyd, Roslyn N.
2015-01-01
Aim To provide first evidence of construct validity of a semi-quantitative scale for brain structural MRI (sqMRI scale) in children with unilateral cerebral palsy (UCP) secondary to periventricular white matter (PWM) lesions, by examining the relationship with hand sensorimotor function and whole brain structural connectivity. Methods Cross-sectional study of 50 children with UCP due to PWM lesions using 3 T (MRI), diffusion MRI and assessment of hand sensorimotor function. We explored the relationship of lobar, hemispheric and global scores on the sqMRI scale, with fractional anisotropy (FA), as a measure of brain white matter microstructure, and with hand sensorimotor measures (Assisting Hand Assessment, AHA; Jebsen–Taylor Test for Hand Function, JTTHF; Melbourne Assessment of Unilateral Upper Limb Function, MUUL; stereognosis; 2-point discrimination). Results Lobar and hemispheric scores on the sqMRI scale contralateral to the clinical side of hemiplegia correlated with sensorimotor paretic hand function measures and FA of a number of brain structural connections, including connections of brain areas involved in motor control (postcentral, precentral and paracentral gyri in the parietal lobe). More severe lesions correlated with lower sensorimotor performance, with the posterior limb of internal capsule score being the strongest contributor to impaired hand function. Conclusion The sqMRI scale demonstrates first evidence of construct validity against impaired motor and sensory function measures and brain structural connectivity in a cohort of children with UCP due to PWM lesions. More severe lesions correlated with poorer paretic hand sensorimotor function and impaired structural connectivity in the hemisphere contralateral to the clinical side of hemiplegia. The quantitative structural MRI scoring may be a useful clinical tool for studying brain structure–function relationships but requires further validation in other populations of CP. PMID:26106533
Schulte, Tilman; Oberlin, Brandon G; Kareken, David A; Marinkovic, Ksenija; Müller-Oehring, Eva M; Meyerhoff, Dieter J; Tapert, Susan
2012-12-01
Multimodal imaging combining 2 or more techniques is becoming increasingly important because no single imaging approach has the capacity to elucidate all clinically relevant characteristics of a network. This review highlights recent advances in multimodal neuroimaging (i.e., combined use and interpretation of data collected through magnetic resonance imaging [MRI], functional MRI, diffusion tensor imaging, positron emission tomography, magnetoencephalography, MR perfusion, and MR spectroscopy methods) that leads to a more comprehensive understanding of how acute and chronic alcohol consumption affect neural networks underlying cognition, emotion, reward processing, and drinking behavior. Several innovative investigators have started utilizing multiple imaging approaches within the same individual to better understand how alcohol influences brain systems, both during intoxication and after years of chronic heavy use. Their findings can help identify mechanism-based therapeutic and pharmacological treatment options, and they may increase the efficacy and cost effectiveness of such treatments by predicting those at greatest risk for relapse. Copyright © 2012 by the Research Society on Alcoholism.
From Blame to Punishment: Disrupting Prefrontal Cortex Activity Reveals Norm Enforcement Mechanisms.
Buckholtz, Joshua W; Martin, Justin W; Treadway, Michael T; Jan, Katherine; Zald, David H; Jones, Owen; Marois, René
2015-09-23
The social welfare provided by cooperation depends on the enforcement of social norms. Determining blameworthiness and assigning a deserved punishment are two cognitive cornerstones of norm enforcement. Although prior work has implicated the dorsolateral prefrontal cortex (DLPFC) in norm-based judgments, the relative contribution of this region to blameworthiness and punishment decisions remains poorly understood. Here, we used repetitive transcranial magnetic stimulation (rTMS) and fMRI to determine the specific role of DLPFC function in norm-enforcement behavior. DLPFC rTMS reduced punishment for wrongful acts without affecting blameworthiness ratings, and fMRI revealed punishment-selective DLPFC recruitment, suggesting that these two facets of norm-based decision making are neurobiologically dissociable. Finally, we show that DLPFC rTMS affects punishment decision making by altering the integration of information about culpability and harm. Together, these findings reveal a selective, causal role for DLPFC in norm enforcement: representational integration of the distinct information streams used to make punishment decisions. Copyright © 2015 Elsevier Inc. All rights reserved.
On the feasibility of concurrent human TMS-EEG-fMRI measurements
Reithler, Joel; Schuhmann, Teresa; de Graaf, Tom; Uludağ, Kâmil; Goebel, Rainer; Sack, Alexander T.
2013-01-01
Simultaneously combining the complementary assets of EEG, functional MRI (fMRI), and transcranial magnetic stimulation (TMS) within one experimental session provides synergetic results, offering insights into brain function that go beyond the scope of each method when used in isolation. The steady increase of concurrent EEG-fMRI, TMS-EEG, and TMS-fMRI studies further underlines the added value of such multimodal imaging approaches. Whereas concurrent EEG-fMRI enables monitoring of brain-wide network dynamics with high temporal and spatial resolution, the combination with TMS provides insights in causal interactions within these networks. Thus the simultaneous use of all three methods would allow studying fast, spatially accurate, and distributed causal interactions in the perturbed system and its functional relevance for intact behavior. Concurrent EEG-fMRI, TMS-EEG, and TMS-fMRI experiments are already technically challenging, and the three-way combination of TMS-EEG-fMRI might yield additional difficulties in terms of hardware strain or signal quality. The present study explored the feasibility of concurrent TMS-EEG-fMRI studies by performing safety and quality assurance tests based on phantom and human data combining existing commercially available hardware. Results revealed that combined TMS-EEG-fMRI measurements were technically feasible, safe in terms of induced temperature changes, allowed functional MRI acquisition with comparable image quality as during concurrent EEG-fMRI or TMS-fMRI, and provided artifact-free EEG before and from 300 ms after TMS pulse application. Based on these empirical findings, we discuss the conceptual benefits of this novel complementary approach to investigate the working human brain and list a number of precautions and caveats to be heeded when setting up such multimodal imaging facilities with current hardware. PMID:23221407
Vaphiades, Michael S.; Visscher, Kristina; Rucker, Janet C.; Vattoth, Surjith; Roberson, Glenn H.
2015-01-01
ABSTRACT An 18-year-old woman underwent an uneventful ascending aortic aneurysm repair then developed progressive supranuclear palsy-like syndrome. Extensive neuroimaging including contrasted fat-suppressed cranial and orbital magnetic resonance imaging (MRI), MRI tractography, and functional MRI (fMRI) revealed no clear radiographic involvement except for a single tiny hypoechoic midbrain dot on the T2*-weighted gradient-echo imaging, which is not considered sufficient to account for the patient’s deficits. This case attests to the occult nature of this rare and devastating syndrome. PMID:27928334
The interobserver-validated relevance of intervertebral spacer materials in MRI artifacting
Heidrich, G.; Bruening, T.; Krefft, S.; Buchhorn, G.; Klinger, H.M.
2006-01-01
Intervertebral spacers for anterior spine fusion are made of different materials, such as titanium, carbon or cobalt-chrome, which can affect the post-fusion MRI scans. Implant-related susceptibility artifacts can decrease the quality of MRI scans, thwarting proper evaluation. This cadaver study aimed to demonstrate the extent that implant-related MRI artifacting affects the post-fusion evaluation of intervertebral spacers. In a cadaveric porcine spine, we evaluated the post-implantation MRI scans of three intervertebral spacers that differed in shape, material, surface qualities and implantation technique. A spacer made of human cortical bone was used as a control. The median sagittal MRI slice was divided into 12 regions of interest (ROI). No significant differences were found on 15 different MRI sequences read independently by an interobserver-validated team of specialists (P>0.05). Artifact-affected image quality was rated on a score of 0-1-2. A maximum score of 24 points (100%) was possible. Turbo spin echo sequences produced the best scores for all spacers and the control. Only the control achieved a score of 100%. The carbon, titanium and cobalt-chrome spacers scored 83.3, 62.5 and 50%, respectively. Our scoring system allowed us to create an implant-related ranking of MRI scan quality in reference to the control that was independent of artifact dimensions. The carbon spacer had the lowest percentage of susceptibility artifacts. Even with turbo spin echo sequences, the susceptibility artifacts produced by the metallic spacers showed a high degree of variability. Despite optimum sequencing, implant design and material are relevant factors in MRI artifacting. PMID:16463200
Huang, Kuo-Yuan; Lin, Ruey-Mo; Lee, Yung-Ling; Li, Jenq-Daw
2009-12-01
Few studies have investigated the factors related to the disability and physical function in degenerative lumbar spondylolisthesis using axially loaded magnetic resonance imaging (MRI). Therefore, we aimed to investigate the effect of axial loading on the morphology of the spine and the spinal canal in patients with degenerative spondylolisthesis of L4-5 and to correlate morphologic changes to their disability and physical functions. From March 2003 to January 2004, 32 consecutive cases (26 females, 6 males) with degenerative L4-5 spondylolisthesis, grade 1-2, intermittent claudication, and low back pain without sciatica were included in this study. All patients underwent unloaded and axially loaded MRI of the lumbo-sacral spine in supine position to elucidate the morphological findings and to measure the parameters of MRI, including disc height (DH), sagittal translation (ST), segmental angulation (SA), dural sac cross-sectional area (DCSA) at L4-5, and lumbar lordotic angles (LLA) at L1-5 between the unloaded and axially loaded condition. Each patient's disability was evaluated by the Oswestry Disability Index (ODI) questionnaire, and physical functioning (PF) was evaluated by the Physical Function scale proposed by Stucki et al. (Spine 21:796-803, 1996). Three patients were excluded due to the presence of neurologic symptoms found with the axially loaded MRI. Finally, a total of 29 (5 males, 24 females) consecutive patients were included in this study. Comparisons and correlations were done to determine which parameters were critical to the patient's disability and PF. The morphologies of the lumbar spine changed after axially loaded MRI. In six of our patients, we observed adjacent segment degeneration (4 L3-L4 and 2 L5-S1) coexisting with degenerative spondylolisthesis of L4-L5 under axially loaded MRI. The mean values of the SA under pre-load and post-load were 7.14 degrees and 5.90 degrees at L4-L5 (listhetic level), respectively. The mean values of the LLA under pre-load and post-load were 37.03 degrees and 39.28 degrees , respectively. There were significant correlations only between the ODI, PF, and the difference of SA, and between PF and the post-loaded LLA. The changes in SA (L4-L5) during axial loading were well correlated to the ODI and PF scores. In addition, the LLA (L1-L5) under axial loading was well correlated to the PF of patients with degenerative L4-L5 spondylolisthesis. We suggest that the angular instability of the intervertebral disc may play a more important role than neurological compression in the pathogenesis of disability in degenerative lumbar spondylolisthesis.
Functional Brain Activation Differences in Stuttering Identified with a Rapid fMRI Sequence
ERIC Educational Resources Information Center
Loucks, Torrey; Kraft, Shelly Jo; Choo, Ai Leen; Sharma, Harish; Ambrose, Nicoline G.
2011-01-01
The purpose of this study was to investigate whether brain activity related to the presence of stuttering can be identified with rapid functional MRI (fMRI) sequences that involved overt and covert speech processing tasks. The long-term goal is to develop sensitive fMRI approaches with developmentally appropriate tasks to identify deviant speech…
Deogaonkar, Milind; Sharma, Mayur; Oluigbo, Chima; Nielson, Dylan M; Yang, Xiangyu; Vera-Portocarrero, Louis; Molnar, Gregory F; Abduljalil, Amir; Sederberg, Per B; Knopp, Michael; Rezai, Ali R
2016-02-01
The neurophysiological basis of pain relief due to spinal cord stimulation (SCS) and the related cortical processing of sensory information are not completely understood. The aim of this study was to use resting state functional magnetic resonance imaging (rs-fMRI) to detect changes in cortical networks and cortical processing related to the stimulator-induced pain relief. Ten patients with complex regional pain syndrome (CRPS) or neuropathic leg pain underwent thoracic epidural spinal cord stimulator implantation. Stimulation parameters associated with "optimal" pain reduction were evaluated prior to imaging studies. Rs-fMRI was obtained on a 3 Tesla, Philips Achieva MRI. Rs-fMRI was performed with stimulator off (300TRs) and stimulator at optimum (Opt, 300 TRs) pain relief settings. Seed-based analysis of the resting state functional connectivity was conducted using seeds in regions established as participating in pain networks or in the default mode network (DMN) in addition to the network analysis. NCUT (normalized cut) parcellation was used to generate 98 cortical and subcortical regions of interest in order to expand our analysis of changes in functional connections to the entire brain. We corrected for multiple comparisons by limiting the false discovery rate to 5%. Significant differences in resting state connectivity between SCS off and optimal state were seen between several regions related to pain perception, including the left frontal insula, right primary and secondary somatosensory cortices, as well as in regions involved in the DMN, such as the precuneus. In examining changes in connectivity across the entire brain, we found decreased connection strength between somatosensory and limbic areas and increased connection strength between somatosensory and DMN with optimal SCS resulting in pain relief. This suggests that pain relief from SCS may be reducing negative emotional processing associated with pain, allowing somatosensory areas to become more integrated into default mode activity. SCS reduces the affective component of pain resulting in optimal pain relief. Study shows a decreased connectivity between somatosensory and limbic areas associated with optimal pain relief due to SCS. © 2015 International Neuromodulation Society.
Lewis, Melissa J.; Cohen, Eli B.; Olby, Natasha J.
2017-01-01
Study Design Retrospective case series Objectives Describe the magnetic resonance imaging (MRI) features of dogs chronically impaired after severe spinal cord injury (SCI) and investigate associations between imaging variables and residual motor function. Setting United States of America Methods Thoracolumbar MRI from dogs with incomplete recovery months to years after clinically complete (paralysis with loss of pain perception) thoracolumbar SCI were reviewed. Lesion features were described and quantified. Gait was quantified using an ordinal, open field scale (OFS). Associations between imaging features and gait scores, duration of injury (DOI) or SCI treatment were determined. Results 35 dogs were included. Median OFS was 2 (0–6), median DOI was 13 months (3–83) and intervertebral disc herniation was the most common diagnosis (n=27). Myelomalacia was the most common qualitative feature followed by cystic change; syringomyelia and fibrosis were uncommon. Lesion length corrected to L2 length (LL:L2) was variable (median LL:L2=3.5 (1.34–11.54)). Twenty-nine dogs had 100% maximum cross-sectional spinal cord compromise (MSCC) at the lesion epicenter and the length of 100% compromised area varied widely (median length 100% MSCC:L2=1.29 (0.39–7.64). Length 100% MSCC:L2 was associated with OFS (p=0.012). OFS was not associated with any qualitative features. DOI or treatment type were not associated with imaging features or lesion quantification. Conclusions Lesion characteristics on MRI in dogs with incomplete recovery after severe SCI were established. Length of 100% MSCC was associated with hind limb motor function. Findings demonstrate a spectrum of injury severity on MRI amongst severely affected dogs which is related to functional status. PMID:29057987
Rive, Maria M; Redlich, Ronny; Schmaal, Lianne; Marquand, André F; Dannlowski, Udo; Grotegerd, Dominik; Veltman, Dick J; Schene, Aart H; Ruhé, Henricus G
2016-11-01
Recent studies have indicated that pattern recognition techniques of functional magnetic resonance imaging (fMRI) data for individual classification may be valuable for distinguishing between major depressive disorder (MDD) and bipolar disorder (BD). Importantly, medication may have affected previous classification results as subjects with MDD and BD use different classes of medication. Furthermore, almost all studies have investigated only depressed subjects. Therefore, we focused on medication-free subjects. We additionally investigated whether classification would be mood state independent by including depressed and remitted subjects alike. We applied Gaussian process classifiers to investigate the discriminatory power of structural MRI (gray matter volumes of emotion regulation areas) and resting-state fMRI (resting-state networks implicated in mood disorders: default mode network [DMN], salience network [SN], and lateralized frontoparietal networks [FPNs]) in depressed (n=42) and remitted (n=49) medication-free subjects with MDD and BD. Depressed subjects with MDD and BD could be classified based on the gray matter volumes of emotion regulation areas as well as DMN functional connectivity with 69.1% prediction accuracy. Prediction accuracy using the FPNs and SN did not exceed chance level. It was not possible to discriminate between remitted subjects with MDD and BD. For the first time, we showed that medication-free subjects with MDD and BD can be differentiated based on structural MRI as well as resting-state functional connectivity. Importantly, the results indicated that research concerning diagnostic neuroimaging tools distinguishing between MDD and BD should consider mood state as only depressed subjects with MDD and BD could be correctly classified. Future studies, in larger samples are needed to investigate whether the results can be generalized to medication-naïve or first-episode subjects. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Daily iTBS worsens hand motor training--a combined TMS, fMRI and mirror training study.
Läppchen, C H; Ringer, T; Blessin, J; Schulz, K; Seidel, G; Lange, R; Hamzei, F
2015-02-15
Repetitive transcranial magnetic stimulation (rTMS) is used to increase regional excitability to improve motor function in combination with training after neurological diseases or events such as stroke. We investigated whether a daily application of intermittent theta burst stimulation (iTBS; a short-duration rTMS that increases regional excitability) improves the training effect compared with sham stimulation in association with a four-day hand training program using a mirror (mirror training, MT). The right dorsal premotor cortex (dPMC right) was chosen as the target region for iTBS because this region has recently been emphasized as a node within a network related to MT. Healthy subjects were randomized into the iTBS group or sham group (control group CG). In the iTBS group, iTBS was applied daily over dPMC right, which was functionally determined in an initial fMRI session prior to starting MT. MT involved 20 min of hand training daily in a mirror over four days. The hand tests, the intracortical excitability and fMRI were evaluated prior to and at the end of MT. The results of the hand training tests of the iTBS group were surprisingly significantly poorer compared with those from the CG group. Both groups showed a different course of excitability in both M1 and a different course of fMRI activation within the supplementary motor area and M1 left. We suggest the inter-regional functional balance was affected by daily iTBS over dPMC right. Maybe an inter-regional connectivity within a network is differentially balanced. An excitability increase within an inhibitory-balanced network would therefore disturb the underlying network. Copyright © 2014 Elsevier Inc. All rights reserved.
Accuracy of automated classification of major depressive disorder as a function of symptom severity.
Ramasubbu, Rajamannar; Brown, Matthew R G; Cortese, Filmeno; Gaxiola, Ismael; Goodyear, Bradley; Greenshaw, Andrew J; Dursun, Serdar M; Greiner, Russell
2016-01-01
Growing evidence documents the potential of machine learning for developing brain based diagnostic methods for major depressive disorder (MDD). As symptom severity may influence brain activity, we investigated whether the severity of MDD affected the accuracies of machine learned MDD-vs-Control diagnostic classifiers. Forty-five medication-free patients with DSM-IV defined MDD and 19 healthy controls participated in the study. Based on depression severity as determined by the Hamilton Rating Scale for Depression (HRSD), MDD patients were sorted into three groups: mild to moderate depression (HRSD 14-19), severe depression (HRSD 20-23), and very severe depression (HRSD ≥ 24). We collected functional magnetic resonance imaging (fMRI) data during both resting-state and an emotional-face matching task. Patients in each of the three severity groups were compared against controls in separate analyses, using either the resting-state or task-based fMRI data. We use each of these six datasets with linear support vector machine (SVM) binary classifiers for identifying individuals as patients or controls. The resting-state fMRI data showed statistically significant classification accuracy only for the very severe depression group (accuracy 66%, p = 0.012 corrected), while mild to moderate (accuracy 58%, p = 1.0 corrected) and severe depression (accuracy 52%, p = 1.0 corrected) were only at chance. With task-based fMRI data, the automated classifier performed at chance in all three severity groups. Binary linear SVM classifiers achieved significant classification of very severe depression with resting-state fMRI, but the contribution of brain measurements may have limited potential in differentiating patients with less severe depression from healthy controls.
D'Andrea, Giancarlo; Familiari, Pietro; Di Lauro, Antonio; Angelini, Albina; Sessa, Giovanni
2016-03-01
Language dysfunction, visual deficit, numeracy impairment, and Gerstmann syndrome often occur in the cortical area; furthermore, the subcortical white matter is the inviolable limit of "functional neurosurgery." Preoperative functional magnetic resonance imaging (fMRI) and tractography are capable of providing the data required for safe "surgical planning" at both the cortical and subcortical levels. We report our experience regarding high-grade gliomas affecting the dominant angular gyrus (AG), supramarginal gyrus (SMG), intraparietal sulcus (IPS), and their respective subcortical areas using intraoperative MRI and diffusion tensor imaging (DTI). Retrospectively, we reviewed a consecutive series of 27 patients operated in a BrainSuite for high-grade intraparenchymal tumors of the left posterior temporoparietal junction. We included tumors involving the dominant AG, SMG, and/or IPS and the subcortical course of arcuate fasciculus (AF) and all the patients who underwent preoperative fMRI and DTI to localize the AF and the eloquent cortical areas. Just after craniotomy, new volumetric MRI and DTI verified and corrected possible brain shift. After the gross total resection was carried out, and before approaching the residual mass close to the white matter tract, an intraoperative MRI was again performed. We operated on 27 patients, 15 males and 12 females, whose diagnosis was always high-grade glioma. During the preoperative neurologic examination, 6 patients were asymptomatic; 3 presented a Gerstmann syndrome; 16 showed dysphasic disturbances, 6 of which were associated with visual field deficits; and 2 showed weakness of the right limb. Our results suggest that this approach is completely safe and effective as an alternative to awake surgery. Copyright © 2016 Elsevier Inc. All rights reserved.
Segmentation of the Thalamus Based on BOLD Frequencies Affected in Temporal Lobe Epilepsy
Morgan, Victoria L.; Rogers, Baxter P.; Abou-Khalil, Bassel
2015-01-01
Objective Temporal lobe epilepsy is associated with functional changes throughout the brain, particularly including a putative seizure propagation network involving the hippocampus, insula and thalamus. We identified a specified frequency range where functional connectivity in this network was related to duration of disease. Then, to identify specific thalamic nuclei involved in seizure propagation, we determined the subregions of the thalamus that have increased resting functional oscillations in this frequency range. Methods Resting-state functional MRI (fMRI) was acquired from twenty unilateral TLE (14 right, 6 left) patients and twenty healthy controls who were each age and gender matched to a specific patient. Wavelet based functional MRI connectivity mapping across the network was computed at each frequency to determine those frequencies where connectivity significantly decreases with duration of disease consistent with impairment due to repeated seizures. The voxel-wise power of the spontaneous blood oxygenation fluctuations of this frequency band was computed in the thalamus of each subject. Results Functional connectivity was impaired in the proposed seizure propagation network over a specific range (0.0067–0.013 Hz and 0.024–0.032 Hz) of blood oxygenation oscillations. Increased power in this frequency band (<0.032 Hz) was detected bilaterally in the pulvinar and anterior nucleus of the thalamus of healthy controls, and was increased over the ipsilateral thalamus compared to the contralateral thalamus in TLE. Significance This study identified frequencies of impaired connectivity in a TLE seizure propagation network and used them to localize the anterior nucleus and pulvinar of the thalamus as subregions most susceptible to TLE seizures. Further examinations of these frequencies in healthy and TLE subjects may provide unique information relating to the mechanism of seizure propagation and potential treatment using electrical stimulation. PMID:26360535
Cho, Zang-Hee; Kim, Nambeom; Bae, Sungbong; Chi, Je-Geun; Park, Chan-Woong; Ogawa, Seiji; Kim, Young-Bo
2014-10-01
The two basic scripts of the Korean writing system, Hanja (the logography of the traditional Korean character) and Hangul (the more newer Korean alphabet), have been used together since the 14th century. While Hanja character has its own morphemic base, Hangul being purely phonemic without morphemic base. These two, therefore, have substantially different outcomes as a language as well as different neural responses. Based on these linguistic differences between Hanja and Hangul, we have launched two studies; first was to find differences in cortical activation when it is stimulated by Hanja and Hangul reading to support the much discussed dual-route hypothesis of logographic and phonological routes in the brain by fMRI (Experiment 1). The second objective was to evaluate how Hanja and Hangul affect comprehension, therefore, recognition memory, specifically the effects of semantic transparency and morphemic clarity on memory consolidation and then related cortical activations, using functional magnetic resonance imaging (fMRI) (Experiment 2). The first fMRI experiment indicated relatively large areas of the brain are activated by Hanja reading compared to Hangul reading. The second experiment, the recognition memory study, revealed two findings, that is there is only a small difference in recognition memory for semantic transparency, while for the morphemic clarity was much larger between Hanja and Hangul. That is the morphemic clarity has significantly more effect than semantic transparency on recognition memory when studies by fMRI in correlation with behavioral study.
A Digital Preclinical PET/MRI Insert and Initial Results.
Weissler, Bjoern; Gebhardt, Pierre; Dueppenbecker, Peter M; Wehner, Jakob; Schug, David; Lerche, Christoph W; Goldschmidt, Benjamin; Salomon, Andre; Verel, Iris; Heijman, Edwin; Perkuhn, Michael; Heberling, Dirk; Botnar, Rene M; Kiessling, Fabian; Schulz, Volkmar
2015-11-01
Combining Positron Emission Tomography (PET) with Magnetic Resonance Imaging (MRI) results in a promising hybrid molecular imaging modality as it unifies the high sensitivity of PET for molecular and cellular processes with the functional and anatomical information from MRI. Digital Silicon Photomultipliers (dSiPMs) are the digital evolution in scintillation light detector technology and promise high PET SNR. DSiPMs from Philips Digital Photon Counting (PDPC) were used to develop a preclinical PET/RF gantry with 1-mm scintillation crystal pitch as an insert for clinical MRI scanners. With three exchangeable RF coils, the hybrid field of view has a maximum size of 160 mm × 96.6 mm (transaxial × axial). 0.1 ppm volume-root-mean-square B 0-homogeneity is kept within a spherical diameter of 96 mm (automatic volume shimming). Depending on the coil, MRI SNR is decreased by 13% or 5% by the PET system. PET count rates, energy resolution of 12.6% FWHM, and spatial resolution of 0.73 mm (3) (isometric volume resolution at isocenter) are not affected by applied MRI sequences. PET time resolution of 565 ps (FWHM) degraded by 6 ps during an EPI sequence. Timing-optimized settings yielded 260 ps time resolution. PET and MR images of a hot-rod phantom show no visible differences when the other modality was in operation and both resolve 0.8-mm rods. Versatility of the insert is shown by successfully combining multi-nuclei MRI ((1)H/(19)F) with simultaneously measured PET ((18)F-FDG). A longitudinal study of a tumor-bearing mouse verifies the operability, stability, and in vivo capabilities of the system. Cardiac- and respiratory-gated PET/MRI motion-capturing (CINE) images of the mouse heart demonstrate the advantage of simultaneous acquisition for temporal and spatial image registration.
Regula, J U; Jestaedt, L; Jende, F; Bartsch, A; Meinck, H-M; Weber, M-A
2016-12-01
The objective of this study was to evaluate the clinical usefulness of whole-body magnetic resonance imaging (MRI) in facio-scapulo-humeral muscular dystrophy (FSHD). In 20 patients with genetically proven FSHD1, we prospectively assessed muscular involvement and correlated the results of semi-quantitative manual muscle testing and other parameters such as disease duration, creatine kinase (CK) levels and repeat length of the D4Z4 locus with whole-body MRI. Clinical muscle testing revealed the trapezius, pectoralis and infraspinatus as the most severely affected muscles in the shoulder, and the knee flexors and gluteus medius in the hip girdle. MRI revealed the trapezius and serratus anterior muscles in the shoulder, and the hamstrings and adductor muscles in the hip girdle, as the most severely affected muscle groups. Overall, degrees of fatty degeneration on MRI scans correlated significantly with clinical weakness. Moreover, we could detect clear affection of the trunk muscles. Corresponding to earlier reports, asymmetric involvement was frequent in both clinical examination and MRI scoring. Moreover, MRI revealed inhomogeneous muscle degeneration in a considerable proportion of both, muscles and patients. Both clinical and MRI scores significantly correlated to disease duration, but not to fragment size or CK levels. Fatty degeneration in whole-body MRI correlates well to clinical muscle testing of the extremities but gives more information on deeper or trunk muscles. It shows structural changes in muscular disorders and may become an excellent tool for assessment of muscle involvement and follow-up studies.
Utility of functional MRI in pediatric neurology.
Freilich, Emily R; Gaillard, William D
2010-01-01
Functional MRI (fMRI), a tool increasingly used to study cognitive function, is also an important tool for understanding not only normal development in healthy children, but also abnormal development, as seen in children with epilepsy, attention-deficit/hyperactivity disorder, and autism. Since its inception almost 15 years ago, fMRI has seen an explosion in its use and applications in the adult literature. However, only recently has it found a home in pediatric neurology. New adaptations in study design and technologic advances, especially the study of resting state functional connectivity as well as the use of passive task design in sedated children, have increased the utility of functional imaging in pediatrics to help us gain understanding into the developing brain at work. This article reviews the background of fMRI in pediatrics and highlights the most recent literature and clinical applications.
Guimaraes, Julio Brandao; Zanoteli, Edmar; Link, Thomas M; de Camargo, Leonardo V; Facchetti, Luca; Nardo, Lorenzo; Fernandes, Artur da Rocha Correa
2017-12-01
The purpose of this prospective study is to assess MRI findings in patients with sporadic inclusion body myositis (IBM) and correlate them with clinical and functional parameters. This study included 12 patients with biopsy-proven sporadic IBM. All patients underwent MRI of the bilateral upper and lower extremities. The images were scored for muscle atrophy, fatty infiltration, and edema pattern. Clinical data included onset and duration of disease. Muscle strength was measured using the Medical Research Council (MRC) scale, and functional status was assessed using the Modified Rankin Scale. Correlation between MRI and different clinical and functional parameters was calculated using the Spearman rank test and Pearson correlation. All patients showed MRI abnormalities, which were more severe within the lower limbs and the distal segments. The most prevalent MRI finding was fat infiltration. There was a statistically significant correlation between disease duration and number of muscles infiltrated by fat (r = 0.65; p = 0.04). The number of muscles with fat infiltration correlated with the sum of the scores of MRC (r = -0.60; p = 0.04) and with the Modified Rankin Scale (r = 0.48; p = 0.03). Our findings suggest that most patients with biopsy-proven sporadic IBM present with a typical pattern of muscle involvement at MRI, more extensively in the lower extremities. Moreover, MRI findings strongly correlated with clinical and functional parameters, because both the extent and severity of muscle involvement assessed by MRI and clinical and functional parameters are associated with the early onset of the disease and its duration.
Paasonen, Jaakko; Salo, Raimo A; Huttunen, Joanna K; Gröhn, Olli
2017-09-01
Anesthesia is a major confounding factor in functional MRI (fMRI) experiments attributed to its effects on brain function. Recent evidence suggests that parameters obtained with resting-state fMRI (rs-fMRI) are coupled with anesthetic depth. Therefore, we investigated whether parameters obtained with rs-fMRI, such as functional connectivity (FC), are also directly related to blood-oxygen-level-dependent (BOLD) responses. A simple rs-fMRI protocol was implemented in a pharmacological fMRI study to evaluate the coupling between hemodynamic responses and FC under five anesthetics (α-chloralose, isoflurane, medetomidine, thiobutabarbital, and urethane). Temporal change in the FC was evaluated at 1-hour interval. Supplementary forepaw stimulation experiments were also conducted. Under thiobutabarbital anesthesia, FC was clearly coupled with nicotine-induced BOLD responses. Good correlation values were also obtained under isoflurane and medetomidine anesthesia. The observations in the thiobutabarbital group were supported by forepaw stimulation experiments. Additionally, the rs-fMRI protocol revealed significant temporal changes in the FC in the α-chloralose, thiobutabarbital, and urethane groups. Our results suggest that FC can be used to estimate brain hemodynamic responsiveness to stimuli and evaluate the level and temporal changes of anesthesia. Therefore, analysis of the fMRI baseline signal may be highly valuable tool for controlling the outcome of preclinical fMRI experiments. Magn Reson Med 78:1136-1146, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Martin-Vaquero, Paula; da Costa, Ronaldo C.
2014-01-01
Objective To characterize and compare the MRI morphological features of the cervical vertebral column of Great Danes with and without clinical signs of cervical spondylomyelopathy (CSM). Design Prospective cohort study. Animals 30 Great Danes (15 clinically normal and 15 CSM-affected). Procedures All dogs underwent MRI of the cervical vertebral column (C2–3 through T1–2). Features evaluated included sites of subarachnoid space compression, spinal cord compression, or both; degree, cause, and direction of compression; MRI signal changes of the spinal cord; articular process (facet) joint characteristics; internal vertebral venous plexus visibility; and presence of extradural synovial cysts as well as presence and degree of intervertebral disk degeneration and foraminal stenosis. Results Clinically normal and CSM-affected dogs had 11 and 61 compressive sites, respectively, detected with MRI. All CSM-affected dogs had ≥ 1 site of spinal cord compression. No signal changes were observed in spinal cords of normal dogs, whereas 14 sites of hyperintensity were found in 9 CSM-affected dogs. Foraminal stenosis was present in 11 clinically normal and all CSM-affected dogs. The number of stenotic foraminal sites was significantly greater in the CSM-affected group, and severe stenosis appeared to be more common in this group than in the clinically normal group. Significant differences were identified between clinically normal and CSM-affected dogs with regard to amount of synovial fluid evident, regularity of articular surfaces, degree of articular process joint proliferation, and internal vertebral venous plexus visibility. Conclusions and Clinical Relevance Abnormalities were detected with MRI in several clinically normal Great Danes. Severe spinal cord compression, number of stenotic foraminal sites, and signal changes within the spinal cord distinguished CSM-affected from clinically normal Great Danes. PMID:25075822
Martin-Vaquero, Paula; da Costa, Ronaldo C
2014-08-15
To characterize and compare the MRI morphological features of the cervical vertebral column of Great Danes with and without clinical signs of cervical spondylomyelopathy (CSM). Prospective cohort study. 30 Great Danes (15 clinically normal and 15 CSM-affected). All dogs underwent MRI of the cervical vertebral column (C2-3 through T1-2). Features evaluated included sites of subarachnoid space compression, spinal cord compression, or both; degree, cause, and direction of compression; MRI signal changes of the spinal cord; articular process (facet) joint characteristics; internal vertebral venous plexus visibility; and presence of extradural synovial cysts as well as presence and degree of intervertebral disk degeneration and foraminal stenosis. Clinically normal and CSM-affected dogs had 11 and 61 compressive sites, respectively, detected with MRI. All CSM-affected dogs had ≥ 1 site of spinal cord compression. No signal changes were observed in spinal cords of normal dogs, whereas 14 sites of hyperintensity were found in 9 CSM-affected dogs. Foraminal stenosis was present in 11 clinically normal and all CSM-affected dogs. The number of stenotic foraminal sites was significantly greater in the CSM-affected group, and severe stenosis appeared to be more common in this group than in the clinically normal group. Significant differences were identified between clinically normal and CSM-affected dogs with regard to amount of synovial fluid evident, regularity of articular surfaces, degree of articular process joint proliferation, and internal vertebral venous plexus visibility. Abnormalities were detected with MRI in several clinically normal Great Danes. Severe spinal cord compression, number of stenotic foraminal sites, and signal changes within the spinal cord distinguished CSM-affected from clinically normal Great Danes.
Evaluation of central nervous system in patients with glycogen storage disease type 1a.
Aydemir, Yusuf; Gürakan, Figen; Saltık Temizel, İnci Nur; Demir, Hülya; Oğuz, Kader Karlı; Yalnızoğlu, Dilek; Topçu, Meral; Özen, Hasan; Yüce, Aysel
2016-01-01
We aimed to evaluate structure and functions of central nervous system (CNS) in children with glycogen storage disease (GSD) type 1a. Neurological examination, psychometric tests, electroencephalography (EEG), magnetic resonance imaging (MRI), visual evoked potentials (VEP) and brainstem auditory evoked potentials (BAEP) were performed. The results were compared between patients with good and poor metabolic control and healthy children. Twenty-three patients with GSD type 1a were studied. Twelve patients were in poor metabolic control group and 11 patients in good metabolic control group. Five patients had intellectual disability, 10 had EEG abnormalities, seven had abnormal VEP and two had abnormal BAEP results. MRI was abnormal in five patients. There was significant correlation between the number of hypoglycemic attacks and MRI abnormalities. Central nervous system may be affected in GSD type 1a even in patients with normal neurologic examination. Accumulation of abnormal results in patients with poor metabolic control supports the importance of metabolic control in GSD type 1a.
Hanada, Hiroaki; Akiyoshi, Jotaro; Kanehisa, Masayuki; Ishitobi, Yoshinobu; Tsuru, Jusen; Tanaka, Yoshihiro; Shimomura, Tsuyoshi; Kawano, Yoshihisa
2013-01-01
Antidepressant discontinuation syndrome (ADS) occurs after abrupt discontinuation of an antidepressant medication. A 23-year-old man with right hippocampal agenesis demonstrated sexual crime (hypersexuality) since the age of eight and had been successfully treated with carbamazepine since the age of 13. He had required increased doses of paroxetine and carbamazepine owing to the development of an unstable affect after quitting his job. He abruptly stopped taking his medication for 3 days and his criminal behaviors re-emerged. We examined changes in brain structure and activity before and after medication cessation, using MRI and functional MRI (fMRI). The image of a girl in a swimsuit increased activity in the thalamus only after medication discontinuation. The alteration in thalamic activity might induce hypersexuality. We conclude that a primary hypersexuality had been suppressed with carbamazepine and paroxetine treatment, and the discontinuation of the medication caused the hypersexuality. © 2012 American Academy of Forensic Sciences.
fMRI responses to pictures of mutilation and contamination.
Schienle, Anne; Schäfer, Axel; Hermann, Andrea; Walter, Bertram; Stark, Rudolf; Vaitl, Dieter
2006-01-30
Findings from several functional magnetic resonance imaging (fMRI) studies implicate the existence of a distinct neural disgust substrate, whereas others support the idea of distributed and integrative brain systems involved in emotional processing. In the present fMRI experiment 12 healthy females viewed pictures from four emotion categories. Two categories were disgust-relevant and depicted contamination or mutilation. The other scenes showed attacks (fear) or were affectively neutral. The two types of disgust elicitors received comparable ratings for disgust, fear and arousal. Both were associated with activation of the occipitotemporal cortex, the amygdala, and the orbitofrontal cortex; insula activity was nonsignificant in the two disgust conditions. Mutilation scenes induced greater inferior parietal activity than contamination scenes, which might mirror their greater capacity to capture attention. Our results are in disagreement with the idea of selective disgust processing at the insula. They point to a network of brain regions involved in the decoding of stimulus salience and the regulation of attention.
Role of fMRI in the decision-making process: epilepsy surgery for children.
Liégeois, Frédérique; Cross, J Helen; Gadian, David G; Connelly, Alan
2006-06-01
Functional MRI (fMRI) is increasingly being used to evaluate children and adolescents who are candidates for surgical treatment of intractable epilepsy. It has the advantage of being noninvasive and well tolerated by young people. By identifying important functional regions within the brain, including unpredictable patterns of functional reorganization, it can aid in surgical decision-making. Here we illustrate this using a number of case studies from the pediatric epilepsy surgery program at our institution. We describe how fMRI, used in conjunction with conventional investigative methods such as neuropsychological assessment, MRI, and electrophysiology, can 1) help to improve functional outcome by enabling resective surgery that spares functional cortex, 2) guide surgical intervention by revealing when reorganization of function has occurred, and 3) show when abnormal cortex is also functionally active, and hence that surgery may not be the best option. Altogether, these roles have reduced the need for invasive procedures that can be both risky and distressing for young people with epilepsy. In our experience, fMRI has significantly contributed to the decision-making process, and improved the counseling and management of young people with intractable epilepsy. Copyright 2006 Wiley-Liss, Inc.
Pizarro, Ricardo; Nair, Veena; Meier, Timothy; Holdsworth, Ryan; Tunnell, Evelyn; Rutecki, Paul; Sillay, Karl; Meyerand, Mary E; Prabhakaran, Vivek
2016-08-01
Seizure localization includes neuroimaging like electroencephalogram, and magnetic resonance imaging (MRI) with limited ability to characterize the epileptogenic network. Temporal clustering analysis (TCA) characterizes epileptogenic network congruent with interictal epileptiform discharges by clustering together voxels with transient signals. We generated epileptogenic areas for 12 of 13 epilepsy patients with TCA, congruent with different areas of seizure onset. Resting functional MRI (fMRI) scans are noninvasive, and can be acquired quickly, in patients with different levels of severity and function. Analyzing resting fMRI data using TCA is quick and can complement clinical methods to characterize the epileptogenic network.
Magnetic resonance imaging traits in siblings discordant for Alzheimer disease.
Cuenco, Karen T; Green, Robert C; Zhang, J; Lunetta, Kathryn; Erlich, Porat M; Cupples, L Adrienne; Farrer, Lindsay A; DeCarli, Charles
2008-07-01
Magnetic resonance imaging (MRI) can aid clinical assessment of brain changes potentially correlated with Alzheimer disease (AD). MRI traits may improve our ability to identify genes associated with AD-outcomes. We evaluated semi-quantitative MRI measures as endophenotypes for genetic studies by assessing their association with AD in families from the Multi-Institutional Research in Alzheimer Genetic Epidemiology (MIRAGE) Study. Discordant siblings from multiple ethnicities were ascertained through a single affected proband. Semi-quantitative MRI measures were obtained for each individual. The association between continuous/ordinal MRI traits and AD were analyzed using generalized estimating equations. Medical history and Apolipoprotein E (APOE)epsilon4 status were evaluated as potential confounders. Comparisons of 214 affected and 234 unaffected subjects from 229 sibships revealed that general cerebral atrophy, white matter hyperintensities (WMH), and mediotemporal atrophy differed significantly between groups (each at P < .0001) and varied by ethnicity. Age at MRI and duration of AD confounded all associations between AD and MRI traits. Among unaffected sibs, the presence of at least one APOEepsilon4 allele and MRI infarction was associated with more WMH after adjusting for age at MRI. The strong association between MRI traits and AD suggests that MRI traits may be informative endophenotypes for basic and clinical studies of AD. In particular, WMH may be a marker of vascular disease that contributes to AD pathogenesis.
Affective learning modulates spatial competition during low-load attentional conditions.
Lim, Seung-Lark; Padmala, Srikanth; Pessoa, Luiz
2008-04-01
It has been hypothesized that the amygdala mediates the processing advantage of emotional items. In the present study, we employed functional magnetic resonance imaging (fMRI) to investigate how fear conditioning affected the visual processing of task-irrelevant faces. We hypothesized that faces previously paired with shock (threat faces) would more effectively vie for processing resources during conditions involving spatial competition. To investigate this question, following conditioning, participants performed a letter-detection task on an array of letters that was superimposed on task-irrelevant faces. Attentional resources were manipulated by having participants perform an easy or a difficult search task. Our findings revealed that threat fearful faces evoked stronger responses in the amygdala and fusiform gyrus relative to safe fearful faces during low-load attentional conditions, but not during high-load conditions. Consistent with the increased processing of shock-paired stimuli during the low-load condition, such stimuli exhibited increased behavioral priming and fMRI repetition effects relative to unpaired faces during a subsequent implicit-memory task. Overall, our results suggest a competition model in which affective significance signals from the amygdala may constitute a key modulatory factor determining the neural fate of visual stimuli. In addition, it appears that such competitive advantage is only evident when sufficient processing resources are available to process the affective stimulus.
Cunnington, Ross; Boyd, Roslyn N.; Rose, Stephen E.
2016-01-01
Diffusion MRI (dMRI) tractography analyses are difficult to perform in the presence of brain pathology. Automated methods that rely on cortical parcellation for structural connectivity studies often fail, while manually defining regions is extremely time consuming and can introduce human error. Both methods also make assumptions about structure-function relationships that may not hold after cortical reorganisation. Seeding tractography with functional-MRI (fMRI) activation is an emerging method that reduces these confounds, but inherent smoothing of fMRI signal may result in the inclusion of irrelevant pathways. This paper describes a novel fMRI-seeded dMRI-analysis pipeline based on surface-meshes that reduces these issues and utilises machine-learning to generate task specific white matter pathways, minimising the requirement for manually-drawn ROIs. We directly compared this new strategy to a standard voxelwise fMRI-dMRI approach, by investigating correlations between clinical scores and dMRI metrics of thalamocortical and corticomotor tracts in 31 children with unilateral cerebral palsy. The surface-based approach successfully processed more participants (87%) than the voxel-based approach (65%), and provided significantly more-coherent tractography. Significant correlations between dMRI metrics and five clinical scores of function were found for the more superior regions of these tracts. These significant correlations were stronger and more frequently found with the surface-based method (15/20 investigated were significant; R2 = 0.43–0.73) than the voxelwise analysis (2 sig. correlations; 0.38 & 0.49). More restricted fMRI signal, better-constrained tractography, and the novel track-classification method all appeared to contribute toward these differences. PMID:27487011
Peck, Kyung K; Bradbury, Michelle; Petrovich, Nicole; Hou, Bob L; Ishill, Nicole; Brennan, Cameron; Tabar, Viviane; Holodny, Andrei I
2009-04-01
Functional magnetic resonance imaging (fMRI) is used to assess language laterality in preoperative brain tumor patients. In postsurgical patients, susceptibility artifacts can potentially alter ipsilateral fMRI activation volumes and the assessment of language laterality. The purpose of this study was to investigate the ability of fMRI to correctly measure language dominance in brain tumor patients with previous surgery because this patient cohort is vulnerable to type II statistical errors and subsequent misjudgment of laterality. Twenty-six right-handed patients with left-hemisphere gliomas (16 with and 10 without previous surgery) underwent preoperative language fMRI. Language laterality was measured using hemispheric and Broca's area regions of interest (ROIs). Hemisphere dominance, as established by laterality measurements, was compared with that determined by intraoperative electrocorticography and behavioral assessments. Localization of primary language cortices was achieved in 24 of 26 patients studied. The hemisphere dominance evaluated by fMRI was verified by intraoperative corticography in only 14 patients (10 with and 4 without previous surgery), and only 12 of them had complete neuropsychological testing. Complete concordance of the laterality with intraoperative electrocorticography and behavioral assessments was found in patients without previous surgery. In patients with previous surgery, concordance was 75% using Broca's area ROI and 88% using hemispheric ROI, notwithstanding susceptibility artifacts. Differences in laterality between pre- and postsurgical patients, based on either hemispheric (P = 0.81) or Broca's area (P = 0.19) ROI measurements were not statistically significant. However, hemispheric ROI analyses were found to be less affected by postsurgical artifacts and may be more suitable for establishing hemisphere dominance. fMRI mapping of eloquent language cortices in brain tumor patients after surgery is feasible and can serve as a useful baseline evaluation for preoperative neurosurgical planning. However, findings should be interpreted with caution in the presence of postsurgical artifacts.
Interactions between different EEG frequency bands and their effect on alpha-fMRI correlations.
de Munck, J C; Gonçalves, S I; Mammoliti, R; Heethaar, R M; Lopes da Silva, F H
2009-08-01
In EEG/fMRI correlation studies it is common to consider the fMRI BOLD as filtered version of the EEG alpha power. Here the question is addressed whether other EEG frequency components may affect the correlation between alpha and BOLD. This was done comparing the statistical parametric maps (SPMs) of three different filter models wherein either the free or the standard hemodynamic response functions (HRF) were used in combination with the full spectral bandwidth of the EEG. EEG and fMRI were co-registered in a 30 min resting state condition in 15 healthy young subjects. Power variations in the delta, theta, alpha, beta and gamma bands were extracted from the EEG and used as regressors in a general linear model. Statistical parametric maps (SPMs) were computed using three different filter models, wherein either the free or the standard hemodynamic response functions (HRF) were used in combination with the full spectral bandwidth of the EEG. Results show that the SPMs of different EEG frequency bands, when significant, are very similar to that of the alpha rhythm. This is true in particular for the beta band, despite the fact that the alpha harmonics were discarded. It is shown that inclusion of EEG frequency bands as confounder in the fMRI-alpha correlation model has a large effect on the resulting SPM, in particular when for each frequency band the HRF is extracted from the data. We conclude that power fluctuations of different EEG frequency bands are mutually highly correlated, and that a multi frequency model is required to extract the SPM of the frequency of interest from EEG/fMRI data. When no constraints are put on the shapes of the HRFs of the nuisance frequencies, the correlation model looses so much statistical power that no correlations can be detected.
Lateral OFC activity predicts decision bias due to first impressions during ultimatum games.
Kim, Hackjin; Choi, Min-Jo; Jang, In-Ji
2012-02-01
Despite the prevalence and potentially harmful consequences of first impression bias during social decision-making, its precise neural underpinnings remain unclear. Here, on the basis of the fMRI study using ultimatum games, the authors show that the responders' decisions to accept or reject offers were significantly affected by facial trustworthiness of proposers. Analysis using a model-based fMRI method revealed that activity in the right lateral OFC (lOFC) of responders increased as a function of negative decision bias, indicating a greater likelihood of rejecting otherwise fair offers, possibly because of the facial trustworthiness of proposers. In addition, lOFC showed changes in functional connectivity strength with amygdala and insula as a function of decision bias, and individual differences in the strengths of connectivities between lOFC and bilateral insula were also found to predict the likelihood of responders to reject offers from untrustworthy-looking proposers. The present findings emphasize that the lOFC plays a pivotal role in integrating signals related to facial impression and creating signal biasing decisions during social interactions.
Bonhomme, V; Boveroux, P; Brichant, J F; Laureys, S; Boly, M
2012-01-01
This paper reviews the current knowledge about the mechanisms of anesthesia-induced alteration of consciousness. It is now evident that hypnotic anesthetic agents have specific brain targets whose function is hierarchically altered in a dose-dependent manner. Higher order networks, thought to be involved in mental content generation, as well as sub-cortical networks involved in thalamic activity regulation seems to be affected first by increasing concentrations of hypnotic agents that enhance inhibitory neurotransmission. Lower order sensory networks are preserved, including thalamo-cortical connectivity into those networks, even at concentrations that suppress responsiveness, but cross-modal sensory interactions are inhibited. Thalamo-cortical connectivity into the consciousness networks decreases with increasing concentrations of those agents, and is transformed into an anti-correlated activity between the thalamus and the cortex for the deepest levels of sedation, when the subject is non responsive. Future will tell us whether these brain function alterations are also observed with hypnotic agents that mainly inhibit excitatory neurotransmission. The link between the observations made using fMRI and the identified biochemical targets of hypnotic anesthetic agents still remains to be identified.
Synchronized delta oscillations correlate with the resting-state functional MRI signal
Lu, Hanbing; Zuo, Yantao; Gu, Hong; Waltz, James A.; Zhan, Wang; Scholl, Clara A.; Rea, William; Yang, Yihong; Stein, Elliot A.
2007-01-01
Synchronized low-frequency spontaneous fluctuations of the functional MRI (fMRI) signal have recently been applied to investigate large-scale neuronal networks of the brain in the absence of specific task instructions. However, the underlying neural mechanisms of these fluctuations remain largely unknown. To this end, electrophysiological recordings and resting-state fMRI measurements were conducted in α-chloralose-anesthetized rats. Using a seed-voxel analysis strategy, region-specific, anesthetic dose-dependent fMRI resting-state functional connectivity was detected in bilateral primary somatosensory cortex (S1FL) of the resting brain. Cortical electroencephalographic signals were also recorded from bilateral S1FL; a visual cortex locus served as a control site. Results demonstrate that, unlike the evoked fMRI response that correlates with power changes in the γ bands, the resting-state fMRI signal correlates with the power coherence in low-frequency bands, particularly the δ band. These data indicate that hemodynamic fMRI signal differentially registers specific electrical oscillatory frequency band activity, suggesting that fMRI may be able to distinguish the ongoing from the evoked activity of the brain. PMID:17991778
Filippi, Massimo; Agosta, Federica
2011-01-01
Patients with Alzheimer’s disease (AD) experience a brain network breakdown, reflecting disconnection at both the structural and functional system level. Resting-state (RS) functional MRI (fMRI) studies demonstrated that the regional coherence of the fMRI signal is significantly altered in patients with AD and amnestic mild cognitive impairment. Diffusion tensor (DT) MRI has made it possible to track fiber bundle projections across the brain, revealing a substantially abnormal interplay of “critical” white matter tracts in these conditions. The observed agreement between the results of RS fMRI and DT MRI tractography studies in healthy individuals is encouraging and offers interesting hypotheses to be tested in patients with AD, a MCI, and other dementias in order to improve our understanding of their pathobiology in vivo. In this review,we describe the major findings obtained in AD using RS fMRI and DT MRI tractography, and discuss how the relationship between structure and function of the brain networks in AD may be better understood through the application of MR-based technology. This research endeavor holds a great promise in clarifying the mechanisms of cognitive decline in complex chronic neurodegenerative disorders.
Williams, Rebecca J; Reutens, David C; Hocking, Julia
2015-11-01
Decreased water displacement following increased neural activity has been observed using diffusion-weighted functional MRI (DfMRI) at high b-values. The physiological mechanisms underlying the diffusion signal change may be unique from the standard blood oxygenation level-dependent (BOLD) contrast and closer to the source of neural activity. Whether DfMRI reflects neural activity more directly than BOLD outside the primary cerebral regions remains unclear. Colored and achromatic Mondrian visual stimuli were statistically contrasted to functionally localize the human color center Area V4 in neurologically intact adults. Spatial and temporal properties of DfMRI and BOLD activation were examined across regions of the visual cortex. At the individual level, DfMRI activation patterns showed greater spatial specificity to V4 than BOLD. The BOLD activation patterns were more prominent in the primary visual cortex than DfMRI, where activation was localized to the ventral temporal lobe. Temporally, the diffusion signal change in V4 and V1 both preceded the corresponding hemodynamic response, however the early diffusion signal change was more evident in V1. DfMRI may be of use in imaging applications implementing cognitive subtraction paradigms, and where highly precise individual functional localization is required.
Hermans, Kees; Ossenblok, Pauly; van Houdt, Petra; Geerts, Liesbeth; Verdaasdonk, Rudolf; Boon, Paul; Colon, Albert; de Munck, Jan C.
2015-01-01
Anti-epileptic drugs (AEDs) have a global effect on the neurophysiology of the brain which is most likely reflected in functional brain activity recorded with EEG and fMRI. These effects may cause substantial inter-subject variability in studies where EEG correlated functional MRI (EEG–fMRI) is used to determine the epileptogenic zone in patients who are candidate for epilepsy surgery. In the present study the effects on resting state fMRI are quantified in conditions with AED administration and after withdrawal of AEDs. EEG–fMRI data were obtained from 10 patients in the condition that the patient was on the steady-state maintenance doses of AEDs as prescribed (condition A) and after withdrawal of AEDs (condition B), at the end of a clinically standard pre-surgical long term video-EEG monitoring session. Resting state networks (RSN) were extracted from fMRI. The epileptic component (ICE) was identified by selecting the RSN component with the largest overlap with the EEG–fMRI correlation pattern. Changes in RSN functional connectivity between conditions A and B were quantified. EEG–fMRI correlation analysis was successful in 30% and 100% of the cases in conditions A and B, respectively. Spatial patterns of ICEs are comparable in conditions A and B, except for one patient for whom it was not possible to identify the ICE in condition A. However, the resting state functional connectivity is significantly increased in the condition after withdrawal of AEDs (condition B), which makes resting state fMRI potentially a new tool to study AED effects. The difference in sensitivity of EEG–fMRI in conditions A and B, which is not related to the number of epileptic EEG events occurring during scanning, could be related to the increased functional connectivity in condition B. PMID:26137444
Flodin, Pär; Martinsen, Sofia; Altawil, Reem; Waldheim, Eva; Lampa, Jon; Kosek, Eva; Fransson, Peter
2016-01-01
Background: Rheumatoid arthritis (RA) is commonly accompanied by pain that is discordant with the degree of peripheral pathology. Very little is known about the cerebral processes involved in pain processing in RA. Here we investigated resting-state brain connectivity associated with prolonged pain in RA. Methods: 24 RA subjects and 19 matched controls were compared with regard to both behavioral measures of pain perception and resting-resting state fMRI data acquired subsequently to fMRI sessions involving pain stimuli. The resting-state fMRI brain connectivity was investigated using 159 seed regions located in cardinal pain processing brain regions. Additional principal component based multivariate pattern analysis of the whole brain connectivity pattern was carried out in a data driven analysis to localize group differences in functional connectivity. Results: When RA patients were compared to controls, we observed significantly lower pain resilience for pressure on the affected finger joints (i.e., P50-joint) and an overall heightened level of perceived global pain in RA patients. Relative to controls, RA patients displayed increased brain connectivity predominately for the supplementary motor areas, mid-cingulate cortex, and the primary sensorimotor cortex. Additionally, we observed an increase in brain connectivity between the insula and prefrontal cortex as well as between anterior cingulate cortex and occipital areas for RA patients. None of the group differences in brain connectivity were significantly correlated with behavioral parameters. Conclusion: Our study provides experimental evidence of increased connectivity between frontal midline regions that are implicated in affective pain processing and bilateral sensorimotor regions in RA patients. PMID:27014038
Niyazov, D M; Butler, A J; Kadah, Y M; Epstein, C M; Hu, X P
2005-07-01
To compare fMRI activations during movement and motor imagery to corresponding motor evoked potential (MEP) maps obtained with the TMS coil in three different orientations. fMRI activations during executed (EM) and imagined (IM) movements of the index finger were compared to MEP maps of the first dorsal interosseus (FDI) muscle obtained with the TMS coil in anterior, posterior and lateral handle positions. To ensure spatial registration of fMRI and MEP maps, a special grid was used in both experiments. No statistically significant difference was found between the TMS centers of gravity (TMS CoG) obtained with the three coil orientations. There was a significant difference between fMRI centers of gravity during IMs (IM CoG) and EMs (EM CoG), with IM CoGs localized on average 10.3mm anterior to those of EMs in the precentral gyrus. Most importantly, the IM CoGs closely matched cortical projections of the TMS CoGs while the EM CoGs were on average 9.5mm posterior to the projected TMS CoGs. TMS motor maps are more congruent with fMRI activations during motor imagery than those during EMs. These findings are not significantly affected by changing orientation of the TMS coil. Our results suggest that the discrepancy between fMRI and TMS motor maps may be largely due to involvement of the somatosensory component in the EM task.
The association between cortisol and the BOLD response in male adolescents undergoing fMRI.
Keulers, Esther H H; Stiers, Peter; Nicolson, Nancy A; Jolles, Jelle
2015-02-19
MRI participation has been shown to induce subjective and neuroendocrine stress reactions. A recent aging study showed that cortisol levels during fMRI have an age-dependent effect on cognitive performance and brain functioning. The present study examined whether this age-specific influence of cortisol on behavioral and brain activation levels also applies to adolescence. Salivary cortisol as well as subjective experienced anxiety were assessed during the practice session, at home, and before, during and after the fMRI session in young versus old male adolescents. Cortisol levels were enhanced pre-imaging relative to during and post-imaging in both age groups, suggesting anticipatory stress and anxiety. Overall, a negative correlation was found between cortisol output during the fMRI experiment and brain activation magnitude during performance of a gambling task. In young but not in old adolescents, higher cortisol output was related to stronger deactivation of clusters in the anterior and posterior cingulate cortex. In old but not in young adolescents, a negative correlation was found between cortisol and activation in the inferior parietal and in the superior frontal cortex. In sum, cortisol increased the deactivation of several brain areas, although the location of the affected areas in the brain was age-dependent. The present findings suggest that cortisol output during fMRI should be considered as confounder and integrated in analyzing developmental changes in brain activation during adolescence. Copyright © 2014 Elsevier B.V. All rights reserved.
Wong, N M L; Liu, H-L; Lin, C; Huang, C-M; Wai, Y-Y; Lee, S-H; Lee, T M C
2016-09-01
Late-life depression (LLD) in the elderly was reported to present with emotion dysregulation accompanied by high perceived loneliness. Previous research has suggested that LLD is a disorder of connectivity and is associated with aberrant network properties. On the other hand, perceived loneliness is found to adversely affect the brain, but little is known about its neurobiological basis in LLD. The current study investigated the relationships between the structural connectivity, functional connectivity during affective processing, and perceived loneliness in LLD. The current study included 54 participants aged >60 years of whom 31 were diagnosed with LLD. Diffusion tensor imaging (DTI) data and task-based functional magnetic resonance imaging (fMRI) data of an affective processing task were collected. Network-based statistics and graph theory techniques were applied, and the participants' perceived loneliness and depression level were measured. The affective processing task included viewing affective stimuli. Structurally, a loneliness-related sub-network was identified across all subjects. Functionally, perceived loneliness was related to connectivity differently in LLD than that in controls when they were processing negative stimuli, with aberrant networking in subcortical area. Perceived loneliness was identified to have a unique role in relation to the negative affective processing in LLD at the functional brain connectional and network levels. The findings increas our understanding of LLD and provide initial evidence of the neurobiological mechanisms of loneliness in LLD. Loneliness might be a potential intervention target in depressive patients.
Feng, Jun-Tao; Liu, Han-Qiu; Hua, Xu-Yun; Gu, Yu-Dong; Xu, Jian-Guang; Xu, Wen-Dong
2016-12-01
Brachial plexus injury (BPI) is a type of severe peripheral nerve trauma that leads to central remodeling in the brain, as revealed by functional MRI analysis. However, previously reported remodeling is mostly restricted to sensorimotor areas of the brain. Whether this disturbance in the sensorimotor network leads to larger-scale functional remodeling remains unknown. We sought to explore the higher-level brain functional abnormality pattern of BPI patients from a large-scale network function connectivity dimension in 15 right-handed BPI patients. Resting-state functional MRI data were collected and analyzed using independent component analysis methods. Five components of interest were recognized and compared between patients and healthy subjects. Patients showed significantly altered brain local functional activities in the bilateral fronto-parietal network (FPN), sensorimotor network (SMN), and executive-control network (ECN) compared with healthy subjects. Moreover, functional connectivity between SMN and ECN were significantly less in patients compared with healthy subjects, and connectivity strength between ECN and SMN was negatively correlated with patients' residual function of the affected limb. Functional connectivity between SMN and right FPN were also significantly less than in controls, although connectivity between ECN and default mode network (DMN) was greater than in controls. These data suggested that brain functional disturbance in BPI patients extends beyond the sensorimotor network and cascades serial remodeling in the brain, which significantly correlates with residual hand function of the paralyzed limb. Furthermore, functional remodeling in these higher-level functional networks may lead to cognitive alterations in complex tasks.
fMRI during natural sleep as a method to study brain function during early childhood.
Redcay, Elizabeth; Kennedy, Daniel P; Courchesne, Eric
2007-12-01
Many techniques to study early functional brain development lack the whole-brain spatial resolution that is available with fMRI. We utilized a relatively novel method in which fMRI data were collected from children during natural sleep. Stimulus-evoked responses to auditory and visual stimuli as well as stimulus-independent functional networks were examined in typically developing 2-4-year-old children. Reliable fMRI data were collected from 13 children during presentation of auditory stimuli (tones, vocal sounds, and nonvocal sounds) in a block design. Twelve children were presented with visual flashing lights at 2.5 Hz. When analyses combined all three types of auditory stimulus conditions as compared to rest, activation included bilateral superior temporal gyri/sulci (STG/S) and right cerebellum. Direct comparisons between conditions revealed significantly greater responses to nonvocal sounds and tones than to vocal sounds in a number of brain regions including superior temporal gyrus/sulcus, medial frontal cortex and right lateral cerebellum. The response to visual stimuli was localized to occipital cortex. Furthermore, stimulus-independent functional connectivity MRI analyses (fcMRI) revealed functional connectivity between STG and other temporal regions (including contralateral STG) and medial and lateral prefrontal regions. Functional connectivity with an occipital seed was localized to occipital and parietal cortex. In sum, 2-4 year olds showed a differential fMRI response both between stimulus modalities and between stimuli in the auditory modality. Furthermore, superior temporal regions showed functional connectivity with numerous higher-order regions during sleep. We conclude that the use of sleep fMRI may be a valuable tool for examining functional brain organization in young children.
Kim, Min Jung; Kim, Eun-Kyung; Park, Seho; Moon, Hee Jung; Kim, Seung Il; Park, Byeong-Woo
2015-09-01
Triple-negative breast cancer (TNBC) which expresses neither hormonal receptors nor HER-2 is associated with poor prognosis and shorter survival. Several studies have suggested that TNBC patients attaining pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) show a longer survival than those without pCR. To assess the accuracy of 3.0-T breast magnetic resonance imaging (MRI) in predicting pCR and to evaluate the clinicoradiologic factors affecting the diagnostic accuracy of 3.0-T breast MRI in TNBC patients treated with anthracycline and taxane (ACD). This retrospective study was approved by the institutional review board; patient consent was not required. Between 2009 and 2012, 35 TNBC patients with 3.0-T breast MRI prior to (n = 26) or after (n = 35) NAC were included. MRI findings were reviewed according to pCR to chemotherapy. The diagnostic accuracy of 3.0-T breast MRI for predicting pCR and the clinicoradiological factors affecting MRI accuracy and response to NAC were analyzed. 3.0-T MRI following NAC with ACD accurately predicted pCR in 91.4% of TNBC patients. The residual tumor size between pathology and 3.0-T MRI in non-pCR cases showed a higher correlation in the Ki-67-positive TNBC group (r = 0.947) than in the Ki-67 negative group (r = 0.375) with statistical trends (P = 0.069). Pre-treatment MRI in the non-pCR group compared to the pCR group showed a larger tumor size (P = 0.030) and non-mass presentation (P = 0.015). 3.0-T MRI in TNBC patients following NAC with ACD showed a high accuracy for predicting pCR to NAC. Ki-67 can affect the diagnostic accuracy of 3.0-T MRI for pCR to NAC with ACD in TNBC patients. © The Foundation Acta Radiologica 2014.
Is there a core neural network in empathy? An fMRI based quantitative meta-analysis.
Fan, Yan; Duncan, Niall W; de Greck, Moritz; Northoff, Georg
2011-01-01
Whilst recent neuroimaging studies have identified a series of different brain regions as being involved in empathy, it remains unclear concerning the activation consistence of these brain regions and their specific functional roles. Using MKDA, a whole-brain based quantitative meta-analysis of recent fMRI studies of empathy was performed. This analysis identified the dACC-aMCC-SMA and bilateral anterior insula as being consistently activated in empathy. Hypothesizing that what are here termed affective-perceptual and cognitive-evaluative forms of empathy might be characterized by different activity patterns, the neural activations in these forms of empathy were compared. The dorsal aMCC was demonstrated to be recruited more frequently in the cognitive-evaluative form of empathy, whilst the right anterior insula was found to be involved in the affective-perceptual form of empathy only. The left anterior insula was active in both forms of empathy. It was concluded that the dACC-aMCC-SMA and bilateral insula can be considered as forming a core network in empathy, and that cognitive-evaluative and affective-perceptual empathy can be distinguished at the level of regional activation. Copyright © 2010 Elsevier Ltd. All rights reserved.
Detecting Brain State Changes via Fiber-Centered Functional Connectivity Analysis
Li, Xiang; Lim, Chulwoo; Li, Kaiming; Guo, Lei; Liu, Tianming
2013-01-01
Diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) have been widely used to study structural and functional brain connectivity in recent years. A common assumption used in many previous functional brain connectivity studies is the temporal stationarity. However, accumulating literature evidence has suggested that functional brain connectivity is under temporal dynamic changes in different time scales. In this paper, a novel and intuitive approach is proposed to model and detect dynamic changes of functional brain states based on multimodal fMRI/DTI data. The basic idea is that functional connectivity patterns of all fiber-connected cortical voxels are concatenated into a descriptive functional feature vector to represent the brain’s state, and the temporal change points of brain states are decided by detecting the abrupt changes of the functional vector patterns via the sliding window approach. Our extensive experimental results have shown that meaningful brain state change points can be detected in task-based fMRI/DTI, resting state fMRI/DTI, and natural stimulus fMRI/DTI data sets. Particularly, the detected change points of functional brain states in task-based fMRI corresponded well to the external stimulus paradigm administered to the participating subjects, thus partially validating the proposed brain state change detection approach. The work in this paper provides novel perspective on the dynamic behaviors of functional brain connectivity and offers a starting point for future elucidation of the complex patterns of functional brain interactions and dynamics. PMID:22941508
Liu, Zhi-dan; He, Jiang-bo; Guo, Si-si; Yang, Zhi-xin; Shen, Jun; Li, Xiao-yan; Liang, Wei; Shen, Wei-dong
2015-08-25
Although many patients with facial paralysis have obtained benefits or completely recovered after acupuncture or electroacupuncture therapy, it is still difficult to list intuitive evidence besides evaluation using neurological function scales and a few electrophysiologic data. Hence, the aim of this study is to use more intuitive and reliable detection techniques such as facial nerve magnetic resonance imaging (MRI), nerve electromyography, and F waves to observe changes in the anatomic morphology of facial nerves and nerve conduction before and after applying acupuncture or electroacupuncture, and to verify their effectiveness by combining neurological function scales. A total of 132 patients with Bell's palsy (grades III and IV in the House-Brackmann [HB] Facial Nerve Grading System) will be randomly divided into electroacupuncture, manual acupuncture, non-acupuncture, and medicine control groups. All the patients will be given electroacupuncture treatment after the acute period, except for patients in the medicine control group. The acupuncture or electroacupuncture treatments will be performed every 2 days until the patients recover or withdraw from the study. The primary outcome is analysis based on facial nerve functional scales (HB scale and Sunnybrook facial grading system), and the secondary outcome is analysis based on MRI, nerve electromyography and F-wave detection. All the patients will undergo MRI within 3 days after Bell's palsy onset for observation of the signal intensity and facial nerve swelling of the unaffected and affected sides. They will also undergo facial nerve electromyography and F-wave detection within 1 week after onset of Bell's palsy. Nerve function will be evaluated using the HB scale and Sunnybrook facial grading system at each hospital visit for treatment until the end of the study. The MRI, nerve electromyography, and F-wave detection will be performed again at 1 month after the onset of Bell's palsy. Chinese Clinical Trials Register identifier: ChiCTR-IPR-14005730. Registered on 23 December 2014.
Parker, H L; Tucker, E; Hoad, C L; Pal, A; Costigan, C; Hudders, N; Perkins, A; Blackshaw, E; Gowland, P; Marciani, L; Fox, M R
2016-04-01
Current investigations of stomach function are based on small test meals that do not reliably induce symptoms and analysis techniques that rarely detect clinically relevant dysfunction. This study introduces the large 'Nottingham Test Meal' (NTM) for assessment of gastric motor and sensory function by non-invasive imaging. NTM comprises 400 mL liquid nutrient (0.75 kcal/mL) and 12 solid agar-beads (0 kcal) with known breaking strength. Gastric fullness and dyspeptic sensations were documented by 100 mm visual analogue scale (VAS). Gastric emptying (GE) were measured in 24 healthy volunteers (HVs) by gastric scintigraphy (GS) and magnetic resonance imaging (MRI). The contribution of secretion to gastric volume was assessed. Parameters that describe GE were calculated from validated models. Inter-observer agreement and reproducibility were assessed. NTM produced moderate fullness (VAS ≥30) but no more than mild dyspeptic symptoms (VAS <30) in 24 HVs. Stable binding of meal components to labels in gastric conditions was confirmed. Distinct early and late-phase GE were detected by both modalities. Liquid GE half-time was median 49 (95% CI: 36-62) min and 68 (57-71) min for GS and MRI, respectively. Differences between GS and MRI measurements were explained by the contribution of gastric secretion. Breaking strength for agar-beads was 0.8 N/m(2) such that median 25 (8-50) % intact agar-beads and 65 (47-74) % solid material remained at 120 min on MRI and GS, respectively. Good reproducibility for liquid GE parameters was present and GE was not altered by agar-beads. The NTM provided an objective assessment of gastric motor and sensory function. The results were reproducible and liquid emptying was not affected by non-nutrient agar-beads. The method is potentially suitable for clinical practice. © 2016 John Wiley & Sons Ltd.
Miyazaki, Keiko; Jerome, Neil P; Collins, David J; Orton, Matthew R; d'Arcy, James A; Wallace, Toni; Moreno, Lucas; Pearson, Andrew D J; Marshall, Lynley V; Carceller, Fernando; Leach, Martin O; Zacharoulis, Stergios; Koh, Dow-Mu
2015-09-01
The objectives are to examine the reproducibility of functional MR imaging in children with solid tumours using quantitative parameters derived from diffusion-weighted (DW-) and dynamic contrast enhanced (DCE-) MRI. Patients under 16-years-of age with confirmed diagnosis of solid tumours (n = 17) underwent free-breathing DW-MRI and DCE-MRI on a 1.5 T system, repeated 24 hours later. DW-MRI (6 b-values, 0-1000 sec/mm(2)) enabled monoexponential apparent diffusion coefficient estimation using all (ADC0-1000) and only ≥100 sec/mm(2) (ADC100-1000) b-values. DCE-MRI was used to derive the transfer constant (K(trans)), the efflux constant (kep), the extracellular extravascular volume (ve), and the plasma fraction (vp), using a study cohort arterial input function (AIF) and the extended Tofts model. Initial area under the gadolinium enhancement curve and pre-contrast T1 were also calculated. Percentage coefficients of variation (CV) of all parameters were calculated. The most reproducible cohort parameters were ADC100-1000 (CV = 3.26%), pre-contrast T1 (CV = 6.21%), and K(trans) (CV = 15.23%). The ADC100-1000 was more reproducible than ADC0-1000, especially extracranially (CV = 2.40% vs. 2.78%). The AIF (n = 9) derived from this paediatric population exhibited sharper and earlier first-pass and recirculation peaks compared with the literature's adult population average. Free-breathing functional imaging protocols including DW-MRI and DCE-MRI are well-tolerated in children aged 6 - 15 with good to moderate measurement reproducibility. • Diffusion MRI protocol is feasible and well-tolerated in a paediatric oncology population. • DCE-MRI for pharmacokinetic evaluation is feasible and well tolerated in a paediatric oncology population. • Paediatric arterial input function (AIF) shows systematic differences from the adult population-average AIF. • Variation of quantitative parameters from paired functional MRI measurements were within 20%.
Individual differences in posterior cortical volume correlate with proneness to pride and gratitude
Zahn, Roland; Garrido, Griselda; Moll, Jorge
2014-01-01
Proneness to specific moral sentiments (e.g. pride, gratitude, guilt, indignation) has been linked with individual variations in functional MRI (fMRI) response within anterior brain regions whose lesion leads to inappropriate behaviour. However, the role of structural anatomical differences in rendering individuals prone to particular moral sentiments relative to others is unknown. Here, we investigated grey matter volumes (VBM8) and proneness to specific moral sentiments on a well-controlled experimental task in healthy individuals. Individuals with smaller cuneus, and precuneus volumes were more pride-prone, whereas those with larger right inferior temporal volumes experienced gratitude more readily. Although the primary analysis detected no associations with guilt- or indignation-proneness, subgenual cingulate fMRI responses to guilt were negatively correlated with grey matter volumes in the left superior temporal sulcus and anterior dorsolateral prefrontal cortices (right >left). This shows that individual variations in functional activations within critical areas for moral sentiments were not due to grey matter volume differences in the same areas. Grey matter volume differences between healthy individuals may nevertheless play an important role by affecting posterior cortical brain systems that are non-critical but supportive for the experience of specific moral sentiments. This may be of particular relevance when their experience depends on visuo-spatial elaboration. PMID:24106333
Residual fMRI sensitivity for identity changes in acquired prosopagnosia.
Fox, Christopher J; Iaria, Giuseppe; Duchaine, Bradley C; Barton, Jason J S
2013-01-01
While a network of cortical regions contribute to face processing, the lesions in acquired prosopagnosia are highly variable, and likely result in different combinations of spared and affected regions of this network. To assess the residual functional sensitivities of spared regions in prosopagnosia, we designed a rapid event-related functional magnetic resonance imaging (fMRI) experiment that included pairs of faces with same or different identities and same or different expressions. By measuring the release from adaptation to these facial changes we determined the residual sensitivity of face-selective regions-of-interest. We tested three patients with acquired prosopagnosia, and all three of these patients demonstrated residual sensitivity for facial identity changes in surviving fusiform and occipital face areas of either the right or left hemisphere, but not in the right posterior superior temporal sulcus. The patients also showed some residual capabilities for facial discrimination with normal performance on the Benton Facial Recognition Test, but impaired performance on more complex tasks of facial discrimination. We conclude that fMRI can demonstrate residual processing of facial identity in acquired prosopagnosia, that this adaptation can occur in the same structures that show similar processing in healthy subjects, and further, that this adaptation may be related to behavioral indices of face perception.
Rojo, Nuria; Amengual, Julian; Juncadella, Montserrat; Rubio, Francisco; Camara, Estela; Marco-Pallares, Josep; Schneider, Sabine; Veciana, Misericordia; Montero, Jordi; Mohammadi, Bahram; Altenmüller, Eckart; Grau, Carles; Münte, Thomas F; Rodriguez-Fornells, Antoni
2011-01-01
Music-Supported Therapy (MST) has been developed recently in order to improve the use of the affected upper extremity after stroke. This study investigated the neuroplastic mechanisms underlying effectiveness in a patient with chronic stroke. MST uses musical instruments, a midi piano and an electronic drum set emitting piano sounds, to retrain fine and gross movements of the paretic upper extremity. Data are presented from a patient with a chronic stroke (20 months post-stroke) with residual right-sided hemiparesis who took part in 20 MST sessions over the course of 4 weeks. Post-therapy, a marked improvement of movement quality, assessed by 3D movement analysis, was observed. Moreover, functional magnetic resonance imaging (fMRI) of a sequential hand movement revealed distinct therapy-related changes in the form of a reduction of excess contralateral and ipsilateral activations. This was accompanied by changes in cortical excitability evidenced by transcranial magnetic stimulation (TMS). Functional MRI in a music listening task suggests that one of the effects of MST is the task-dependent coupling of auditory and motor cortical areas. The MST appears to be a useful neurorehabilitation tool in patients with chronic stroke and leads to neural reorganization in the sensorimotor cortex.
Residual fMRI sensitivity for identity changes in acquired prosopagnosia
Fox, Christopher J.; Iaria, Giuseppe; Duchaine, Bradley C.; Barton, Jason J. S.
2013-01-01
While a network of cortical regions contribute to face processing, the lesions in acquired prosopagnosia are highly variable, and likely result in different combinations of spared and affected regions of this network. To assess the residual functional sensitivities of spared regions in prosopagnosia, we designed a rapid event-related functional magnetic resonance imaging (fMRI) experiment that included pairs of faces with same or different identities and same or different expressions. By measuring the release from adaptation to these facial changes we determined the residual sensitivity of face-selective regions-of-interest. We tested three patients with acquired prosopagnosia, and all three of these patients demonstrated residual sensitivity for facial identity changes in surviving fusiform and occipital face areas of either the right or left hemisphere, but not in the right posterior superior temporal sulcus. The patients also showed some residual capabilities for facial discrimination with normal performance on the Benton Facial Recognition Test, but impaired performance on more complex tasks of facial discrimination. We conclude that fMRI can demonstrate residual processing of facial identity in acquired prosopagnosia, that this adaptation can occur in the same structures that show similar processing in healthy subjects, and further, that this adaptation may be related to behavioral indices of face perception. PMID:24151479
The Effects of Music Intervention on Functional Connectivity Strength of the Brain in Schizophrenia.
Yang, Mi; He, Hui; Duan, Mingjun; Chen, Xi; Chang, Xin; Lai, Yongxiu; Li, Jianfu; Liu, Tiejun; Luo, Cheng; Yao, Dezhong
2018-01-01
Schizophrenia is often associated with behavior abnormality in the cognitive and affective domain. Music intervention is used as a complementary treatment for improving symptoms in patients with schizophrenia. However, the neurophysiological correlates of these remissions remain poorly understood. Here, we investigated the effects of music intervention in neural circuits through functional magnetic resonance imaging (fMRI) study in schizophrenic subjects. Under the standard care, patients were randomly assigned to music and non-music interventions (MTSZ, UMTSZ) for 1 month. Resting-state fMRI were acquired over three time points (baseline, 1 month, and 6 months later) in patients and analyzed using functional connectivity strength (FCS) and seed-based functional connection (FC) approaches. At baseline, compared with healthy controls, decreased FCS in the right middle temporal gyrus (MTG) was observed in patients. However, after music intervention, the functional circuitry of the right MTG, which was related with the function of emotion and sensorimotor, was improved in MTSZ. Furthermore, the FC increments were significantly correlated with the improvement of symptoms, while vanishing 6 months later. Together, these findings provided evidence that music intervention might positively modulate the functional connectivity of MTG in patients with schizophrenia; such changes might be associated with the observed therapeutic effects of music intervention on neurocognitive function. This trial is registered with ChiCTR-OPC-14005339.
Parenting behavior at 2 years predicts school-age performance at 7 years in very preterm children.
Treyvaud, Karli; Doyle, Lex W; Lee, Katherine J; Ure, Alexandra; Inder, Terrie E; Hunt, Rod W; Anderson, Peter J
2016-07-01
Parenting influences child development, but it is unclear whether early parenting behavior can influence school-age outcomes in very preterm (VPT) children, and/or if certain groups of VPT children may be more affected by early parenting behavior. These research questions were examined. Participants were 147 children born <30 weeks' gestation or birth weight <1250 g and their primary caregiver. At term corrected age (CA), magnetic resonance imaging (MRI) was used to determine presence and severity of brain abnormality and medical data collected. High medical risk was defined as the presence of at least one of sepsis, necrotizing enterocolitis, bronchopulmonary dysplasia, moderate to severe white matter abnormality on MRI, or postnatal corticosteroids. At 2 years CA, parent-child interaction was assessed, and at 7 years CA, general intelligence (IQ), language, executive function, academic skills, and social-emotional functioning were assessed. Higher levels of parent-child synchrony, and parent facilitation, sensitivity and positive affect at 2 years were associated with better child outcomes at 7 years, while higher levels of intrusiveness and negative affect were associated with poorer outcomes. Many of these relationships remained after controlling for early child cognitive development. Interactions between child medical risk (higher/lower) and parenting were limited to child reading, math, and executive functioning outcomes, with stronger relationships for lower medical risk children. The contribution of early parenting to VPT children's school-age performance is significant, with stronger effects for lower medical risk children in some outcomes. These findings support the premise that parenting strategies should be included in the NICU and early interventions programs for VPT infants. © 2015 Association for Child and Adolescent Mental Health.
Tak, Sungho; Polimeni, Jonathan R; Wang, Danny J J; Yan, Lirong; Chen, J Jean
2015-04-01
There has been tremendous interest in applying functional magnetic resonance imaging-based resting-state functional connectivity (rs-fcMRI) measurements to the study of brain function. However, a lack of understanding of the physiological mechanisms of rs-fcMRI limits their ability to interpret rs-fcMRI findings. In this work, the authors examine the regional associations between rs-fcMRI estimates and dynamic coupling between the blood oxygenation level-dependent (BOLD) and cerebral blood flow (CBF), as well as resting macrovascular volume. Resting-state BOLD and CBF data were simultaneously acquired using a dual-echo pseudocontinuous arterial spin labeling (pCASL) technique, whereas macrovascular volume fraction was estimated using time-of-flight MR angiography. Functional connectivity within well-known functional networks—including the default mode, frontoparietal, and primary sensory-motor networks—was calculated using a conventional seed-based correlation approach. They found the functional connectivity strength to be significantly correlated with the regional increase in CBF-BOLD coupling strength and inversely proportional to macrovascular volume fraction. These relationships were consistently observed within all functional networks considered. Their findings suggest that highly connected networks observed using rs-fcMRI are not likely to be mediated by common vascular drainage linking distal cortical areas. Instead, high BOLD functional connectivity is more likely to reflect tighter neurovascular connections, attributable to neuronal pathways.
Zhang, Jia-Shu; Qu, Ling; Wang, Qun; Jin, Wei; Hou, Yuan-Zheng; Sun, Guo-Chen; Li, Fang-Ye; Yu, Xin-Guang; Xu, Ban-Nan; Chen, Xiao-Lei
2017-12-20
For stereotactic brain biopsy involving motor eloquent regions, the surgical objective is to enhance diagnostic yield and preserve neurological function. To achieve this aim, we implemented functional neuro-navigation and intraoperative magnetic resonance imaging (iMRI) into the biopsy procedure. The impact of this integrated technique on the surgical outcome and postoperative neurological function was investigated and evaluated. Thirty nine patients with lesions involving motor eloquent structures underwent frameless stereotactic biopsy assisted by functional neuro-navigation and iMRI. Intraoperative visualisation was realised by integrating anatomical and functional information into a navigation framework to improve biopsy trajectories and preserve eloquent structures. iMRI was conducted to guarantee the biopsy accuracy and detect intraoperative complications. The perioperative change of motor function and biopsy error before and after iMRI were recorded, and the role of functional information in trajectory selection and the relationship between the distance from sampling site to nearby eloquent structures and the neurological deterioration were further analyzed. Functional neuro-navigation helped modify the original trajectories and sampling sites in 35.90% (16/39) of cases to avoid the damage of eloquent structures. Even though all the lesions were high-risk of causing neurological deficits, no significant difference was found between preoperative and postoperative muscle strength. After data analysis, 3mm was supposed to be the safe distance for avoiding transient neurological deterioration. During surgery, the use of iMRI significantly reduced the biopsy errors (p = 0.042) and potentially increased the diagnostic yield from 84.62% (33/39) to 94.87% (37/39). Moreover, iMRI detected intraoperative haemorrhage in 5.13% (2/39) of patients, all of them benefited from the intraoperative strategies based on iMRI findings. Intraoperative visualisation of functional structures could be a feasible, safe and effective technique. Combined with intraoperative high-field MRI, it contributed to enhance the biopsy accuracy and lower neurological complications in stereotactic brain biopsy involving motor eloquent areas.
Alteration of functional connectivity during real-time fMRI regulation of PCC
NASA Astrophysics Data System (ADS)
Zhang, Gaoyan; Yao, Li; Long, Zhiying
2012-03-01
Real-time functional magnetic resonance imaging (rtfMRI) can be used to train the subjects to selectively control activity of specific brain area so as to affect the activation in the target region and even to improve cognition and behavior. So far, whether brain activity in posterior cingulate cortex (PCC) can be regulated by rtfMRI has not been reported. In the present study, we aimed at investigating whether real-time regulation of activity in PCC can change the functional connectivity between PCC and other brain regions. A total of 12 subjects underwent two training runs, each lasts 782s. During the training, subjects were instructed to down regulate activity in PCC by imagining right hand finger movement with the sequence of 4-2-3-1-3-4-2 during task and relax as possible as they can during rest. To control for any effects induced by repeated practice, another 12 subjects in the control group received the same experiment procedure and instruction except with no feedback during training. Experiment results show that increased functional connectivity of PCC with medial frontal cortex (MFC) was observed in both groups during the two training runs. However, PCC of the experimental group is correlated with larger areas in MFC than the control group. Because the positive correlation between task performance and MFC to PCC connectivity has been demonstrated previously, we infer that the stronger connectivity between PCC and MFC in the experimental group may suggest that the experimental group with neurofeedback can more efficiently regulate PCC than the control group without neurofeedback.
Neural Markers and Rehabilitation of Executive Functioning in Veterans with TBI and PTSD
2015-10-01
functioning. Functional magnetic resonance imaging ( fMRI ) will be used to evaluate changes in cortical function in frontostriate and frontoparietal circuits...EEG and fMRI will be conducted and then transport Veterans back to our laboratory. We will assure transportation is running efficiently and without...delays before study commencement. Transportation to the EEG and fMRI was arranged through the UNC-Chapel Hill School of Medicine at month 9
Yamada, Takashi; Hashimoto, Ryu-Ichiro; Yahata, Noriaki; Ichikawa, Naho; Yoshihara, Yujiro; Okamoto, Yasumasa; Kato, Nobumasa; Takahashi, Hidehiko; Kawato, Mitsuo
2017-10-01
Psychiatric research has been hampered by an explanatory gap between psychiatric symptoms and their neural underpinnings, which has resulted in poor treatment outcomes. This situation has prompted us to shift from symptom-based diagnosis to data-driven diagnosis, aiming to redefine psychiatric disorders as disorders of neural circuitry. Promising candidates for data-driven diagnosis include resting-state functional connectivity MRI (rs-fcMRI)-based biomarkers. Although biomarkers have been developed with the aim of diagnosing patients and predicting the efficacy of therapy, the focus has shifted to the identification of biomarkers that represent therapeutic targets, which would allow for more personalized treatment approaches. This type of biomarker (i.e., "theranostic biomarker") is expected to elucidate the disease mechanism of psychiatric conditions and to offer an individualized neural circuit-based therapeutic target based on the neural cause of a condition. To this end, researchers have developed rs-fcMRI-based biomarkers and investigated a causal relationship between potential biomarkers and disease-specific behavior using functional MRI (fMRI)-based neurofeedback on functional connectivity. In this review, we introduce a recent approach for creating a theranostic biomarker, which consists mainly of 2 parts: (1) developing an rs-fcMRI-based biomarker that can predict diagnosis and/or symptoms with high accuracy, and (2) the introduction of a proof-of-concept study investigating the relationship between normalizing the biomarker and symptom changes using fMRI-based neurofeedback. In parallel with the introduction of recent studies, we review rs-fcMRI-based biomarker and fMRI-based neurofeedback, focusing on the technological improvements and limitations associated with clinical use. © The Author 2017. Published by Oxford University Press on behalf of CINP.
Yamada, Takashi; Hashimoto, Ryu-ichiro; Yahata, Noriaki; Ichikawa, Naho; Yoshihara, Yujiro; Okamoto, Yasumasa; Kato, Nobumasa; Takahashi, Hidehiko
2017-01-01
Abstract Psychiatric research has been hampered by an explanatory gap between psychiatric symptoms and their neural underpinnings, which has resulted in poor treatment outcomes. This situation has prompted us to shift from symptom-based diagnosis to data-driven diagnosis, aiming to redefine psychiatric disorders as disorders of neural circuitry. Promising candidates for data-driven diagnosis include resting-state functional connectivity MRI (rs-fcMRI)-based biomarkers. Although biomarkers have been developed with the aim of diagnosing patients and predicting the efficacy of therapy, the focus has shifted to the identification of biomarkers that represent therapeutic targets, which would allow for more personalized treatment approaches. This type of biomarker (i.e., “theranostic biomarker”) is expected to elucidate the disease mechanism of psychiatric conditions and to offer an individualized neural circuit-based therapeutic target based on the neural cause of a condition. To this end, researchers have developed rs-fcMRI-based biomarkers and investigated a causal relationship between potential biomarkers and disease-specific behavior using functional MRI (fMRI)-based neurofeedback on functional connectivity. In this review, we introduce a recent approach for creating a theranostic biomarker, which consists mainly of 2 parts: (1) developing an rs-fcMRI-based biomarker that can predict diagnosis and/or symptoms with high accuracy, and (2) the introduction of a proof-of-concept study investigating the relationship between normalizing the biomarker and symptom changes using fMRI-based neurofeedback. In parallel with the introduction of recent studies, we review rs-fcMRI-based biomarker and fMRI-based neurofeedback, focusing on the technological improvements and limitations associated with clinical use. PMID:28977523
Smitha, K A; Arun, K M; Rajesh, P G; Thomas, B; Kesavadas, C
2017-06-01
Language is a cardinal function that makes human unique. Preservation of language function poses a great challenge for surgeons during resection. The aim of the study was to assess the efficacy of resting-state fMRI in the lateralization of language function in healthy subjects to permit its further testing in patients who are unable to perform task-based fMRI. Eighteen healthy right-handed volunteers were prospectively evaluated with resting-state fMRI and task-based fMRI to assess language networks. The laterality indices of Broca and Wernicke areas were calculated by using task-based fMRI via a voxel-value approach. We adopted seed-based resting-state fMRI connectivity analysis together with parameters such as amplitude of low-frequency fluctuation and fractional amplitude of low-frequency fluctuation (fALFF). Resting-state fMRI connectivity maps for language networks were obtained from Broca and Wernicke areas in both hemispheres. We performed correlation analysis between the laterality index and the z scores of functional connectivity, amplitude of low-frequency fluctuation, and fALFF. Pearson correlation analysis between signals obtained from the z score of fALFF and the laterality index yielded a correlation coefficient of 0.849 ( P < .05). Regression analysis of the fALFF with the laterality index yielded an R 2 value of 0.721, indicating that 72.1% of the variance in the laterality index of task-based fMRI could be predicted from the fALFF of resting-state fMRI. The present study demonstrates that fALFF can be used as an alternative to task-based fMRI for assessing language laterality. There was a strong positive correlation between the fALFF of the Broca area of resting-state fMRI with the laterality index of task-based fMRI. Furthermore, we demonstrated the efficacy of fALFF for predicting the laterality of task-based fMRI. © 2017 by American Journal of Neuroradiology.
Eyes on MEGDEL: distinctive basal ganglia involvement in dystonia deafness syndrome.
Wortmann, Saskia B; van Hasselt, Peter M; Barić, Ivo; Burlina, Alberto; Darin, Niklas; Hörster, Friederike; Coker, Mahmut; Ucar, Sema Kalkan; Krumina, Zita; Naess, Karin; Ngu, Lock H; Pronicka, Ewa; Riordan, Gilian; Santer, Rene; Wassmer, Evangeline; Zschocke, Johannes; Schiff, Manuel; de Meirleir, Linda; Alowain, Mohammed A; Smeitink, Jan A M; Morava, Eva; Kozicz, Tamas; Wevers, Ron A; Wolf, Nicole I; Willemsen, Michel A
2015-04-01
Pediatric movement disorders are still a diagnostic challenge, as many patients remain without a (genetic) diagnosis. Magnetic resonance imaging (MRI) pattern recognition can lead to the diagnosis. MEGDEL syndrome (3-MethylGlutaconic aciduria, Deafness, Encephalopathy, Leigh-like syndrome MIM #614739) is a clinically and biochemically highly distinctive dystonia deafness syndrome accompanied by 3-methylglutaconic aciduria, severe developmental delay, and progressive spasticity. Mutations are found in SERAC1, encoding a phosphatidylglycerol remodeling enzyme essential for both mitochondrial function and intracellular cholesterol trafficking. Based on the homogenous phenotype, we hypothesized an accordingly characteristic MRI pattern. A total of 43 complete MRI studies of 30 patients were systematically reevaluated. All patients presented a distinctive brain MRI pattern with five characteristic disease stages affecting the basal ganglia, especially the putamen. In stage 1, T2 signal changes of the pallidum are present. In stage 2, swelling of the putamen and caudate nucleus is seen. The dorsal putamen contains an "eye" that shows no signal alteration and (thus) seems to be spared during this stage of the disease. It later increases, reflecting progressive putaminal involvement. This "eye" was found in all patients with MEGDEL syndrome during a specific age range, and has not been reported in other disorders, making it pathognomonic for MEDGEL and allowing diagnosis based on MRI findings. Georg Thieme Verlag KG Stuttgart · New York.
Borri, Marco; Schmidt, Maria A.; Powell, Ceri; Koh, Dow-Mu; Riddell, Angela M.; Partridge, Mike; Bhide, Shreerang A.; Nutting, Christopher M.; Harrington, Kevin J.; Newbold, Katie L.; Leach, Martin O.
2015-01-01
Purpose To describe a methodology, based on cluster analysis, to partition multi-parametric functional imaging data into groups (or clusters) of similar functional characteristics, with the aim of characterizing functional heterogeneity within head and neck tumour volumes. To evaluate the performance of the proposed approach on a set of longitudinal MRI data, analysing the evolution of the obtained sub-sets with treatment. Material and Methods The cluster analysis workflow was applied to a combination of dynamic contrast-enhanced and diffusion-weighted imaging MRI data from a cohort of squamous cell carcinoma of the head and neck patients. Cumulative distributions of voxels, containing pre and post-treatment data and including both primary tumours and lymph nodes, were partitioned into k clusters (k = 2, 3 or 4). Principal component analysis and cluster validation were employed to investigate data composition and to independently determine the optimal number of clusters. The evolution of the resulting sub-regions with induction chemotherapy treatment was assessed relative to the number of clusters. Results The clustering algorithm was able to separate clusters which significantly reduced in voxel number following induction chemotherapy from clusters with a non-significant reduction. Partitioning with the optimal number of clusters (k = 4), determined with cluster validation, produced the best separation between reducing and non-reducing clusters. Conclusion The proposed methodology was able to identify tumour sub-regions with distinct functional properties, independently separating clusters which were affected differently by treatment. This work demonstrates that unsupervised cluster analysis, with no prior knowledge of the data, can be employed to provide a multi-parametric characterization of functional heterogeneity within tumour volumes. PMID:26398888
The reorganization of functional architecture in the early-stages of Parkinson's disease.
Tuovinen, Noora; Seppi, Klaus; de Pasquale, Francesco; Müller, Christoph; Nocker, Michael; Schocke, Michael; Gizewski, Elke R; Kremser, Christian; Wenning, Gregor K; Poewe, Werner; Djamshidian, Atbin; Scherfler, Christoph; Seki, Morinobu
2018-05-01
The study aim was to identify longitudinal abnormalities of functional connectivity and its relation with motor disability in early to moderately advanced stages of Parkinson's disease patients. 3.0T structural and resting-state functional MRI was performed in healthy subjects (n = 16) and Parkinson's disease patients (n = 16) with mean disease duration of 2.2 ± 1.2 years at baseline with a clinical follow-up of 1.5 ± 0.3 years. Resting-state fMRI analysis included region-to-region connectivity in correlation with UPDRS-III scores and computation of Global Efficiency and Degree Centrality. At baseline, patients' connectivity increased between the cerebellum and somatomotor network, and decreased between motor regions (Rolandic operculum, precentral gyrus, supplementary motor area, postcentral gyrus) and cingulate connectivity. At 1.5 years follow-up, connectivity remained altered in the same regions identified at baseline. The cerebellum showed additional hyperconnectivity within itself and to the caudate nucleus, thalamus and amygdala compared to controls. These differences correlated with UPDRS-III scores. Seed-based connectivity revealed increased involvement of the default mode network with precentral gyrus in patients at follow-up investigation. Resting-state fMRI identified marked disturbances of the overall architecture of connectivity in Parkinson's disease. The noted alterations in cortical motor areas were associated with cerebellar hyperconnectivity in early to moderately advanced stages of Parkinson's disease suggesting ongoing attempts of recovery and compensatory mechanism for affected functions. The potential to identify connectivity alterations in regions related to both motor and attentional functions requires further evaluation as an objective marker to monitor disease progression, and medical, as well as surgical interventions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Occupational solvent exposure and brain function: an fMRI study.
Tang, Cheuk Ying; Carpenter, David M; Eaves, Emily L; Ng, Johnny; Ganeshalingam, Nimalya; Weisel, Clifford; Qian, Hua; Lange, Gudrun; Fiedler, Nancy L
2011-07-01
Deficits in cognitive function have been demonstrated among workers chronically exposed to solvents, but the neural basis for these deficits has not been shown. We used functional magnetic resonance imaging (fMRI) to compare pathophysiological changes in brain function between solvent-exposed and control workers. Painters, drywall tapers, and carpenters were recruited from the International Union of Painters and Allied Trades, District Council 9 in New York City and District Council 21 in Philadelphia, Pennsylvania, and from the Carpenters Union in New Jersey. Twenty-seven solvent-exposed and 27 control subjects of similar age, education, and occupational status completed the N-Back working memory test during fMRI. After controlling for confounders (age; lifetime marijuana, cocaine, and alcohol use; blood lead; symptoms of depression; verbal intelligence), voxelwise group analysis and regional activation levels were compared and then correlated with an index of lifetime solvent exposure. Solvent-exposed workers' performance on the N-Back was significantly worse than that of controls. Activation of the anterior cingulate, prefrontal, and parietal cortices--areas serving working memory function and attention--was also significantly lower for solvent-exposed workers relative to controls. After controlling for confounders, we observed a negative correlation between lifetime solvent exposure and activation in these same regions among the solvent-exposed workers. This study is one of the few to document neural structures affected by exposure to solvents. Our findings provide a biological mechanism for the neurobehavioral deficits in working memory and attention that have previously been reported by other groups studying the effects of chronic exposure to solvents. These imaging markers, which are consistent with the neurobehavioral measures in our subject population, are consistent with altered brain pathology caused by prolonged exposure to solvent mixtures during construction work.
Occupational Solvent Exposure and Brain Function: An fMRI Study
Carpenter, David M.; Eaves, Emily L.; Ng, Johnny; Ganeshalingam, Nimalya; Weisel, Clifford; Qian, Hua; Lange, Gudrun; Fiedler, Nancy L.
2011-01-01
Background: Deficits in cognitive function have been demonstrated among workers chronically exposed to solvents, but the neural basis for these deficits has not been shown. Objectives: We used functional magnetic resonance imaging (fMRI) to compare pathophysiological changes in brain function between solvent-exposed and control workers. Methods: Painters, drywall tapers, and carpenters were recruited from the International Union of Painters and Allied Trades, District Council 9 in New York City and District Council 21 in Philadelphia, Pennsylvania, and from the Carpenters Union in New Jersey. Twenty-seven solvent-exposed and 27 control subjects of similar age, education, and occupational status completed the N-Back working memory test during fMRI. After controlling for confounders (age; lifetime marijuana, cocaine, and alcohol use; blood lead; symptoms of depression; verbal intelligence), voxelwise group analysis and regional activation levels were compared and then correlated with an index of lifetime solvent exposure. Results: Solvent-exposed workers’ performance on the N-Back was significantly worse than that of controls. Activation of the anterior cingulate, prefrontal, and parietal cortices—areas serving working memory function and attention—was also significantly lower for solvent-exposed workers relative to controls. After controlling for confounders, we observed a negative correlation between lifetime solvent exposure and activation in these same regions among the solvent-exposed workers. Conclusions: This study is one of the few to document neural structures affected by exposure to solvents. Our findings provide a biological mechanism for the neurobehavioral deficits in working memory and attention that have previously been reported by other groups studying the effects of chronic exposure to solvents. These imaging markers, which are consistent with the neurobehavioral measures in our subject population, are consistent with altered brain pathology caused by prolonged exposure to solvent mixtures during construction work. PMID:21296712
Lopes, Renaud; Moeller, Friederike; Besson, Pierre; Ogez, François; Szurhaj, William; Leclerc, Xavier; Siniatchkin, Michael; Chipaux, Mathilde; Derambure, Philippe; Tyvaert, Louise
2014-01-01
Simultaneous recording of electroencephalogram and functional MRI (EEG-fMRI) is a powerful tool for localizing epileptic networks via the detection of hemodynamic changes correlated with interictal epileptic discharges (IEDs). fMRI can be used to study the long-lasting effect of epileptic activity by assessing stationary functional connectivity during the resting-state period [especially, the connectivity of the default mode network (DMN)]. Temporal lobe epilepsy (TLE) and idiopathic generalized epilepsy (IGE) are associated with low responsiveness and disruption of DMN activity. A dynamic functional connectivity approach might enable us to determine the effect of IEDs on DMN connectivity and to better understand the correlation between DMN connectivity changes and altered consciousness. We studied dynamic changes in DMN intrinsic connectivity and their relation to IEDs. Six IGE patients (with generalized spike and slow-waves) and 6 TLE patients (with unilateral left temporal spikes) were included. Functional connectivity before, during, and after IEDs was estimated using a sliding window approach and compared with the baseline period. No dependence on window size was observed. The baseline DMN connectivity was decreased in the left hemisphere (ipsilateral to the epileptic focus) in TLEs and was less strong but remained bilateral in IGEs. We observed an overall increase in DMN intrinsic connectivity prior to the onset of IEDs in both IGEs and TLEs. After IEDs in TLEs, we found that DMN connectivity increased before it returned to baseline values. Most of the DMN regions with increased connectivity before and after IEDs were lateralized to the left hemisphere in TLE (i.e., ipsilateral to the epileptic focus). RESULTS suggest that DMN connectivity may facilitate IED generation and may be affected at the time of the IED. However, these results need to be confirmed in a larger independent cohort.
Large, I.; Bridge, H.; Ahmed, B.; Clare, S.; Kolasinski, J.; Lam, W. W.; Miller, K. L.; Dyrby, T. B.; Parker, A. J.; Smith, J. E. T.; Daubney, G.; Sallet, J.; Bell, A. H.; Krug, K.
2016-01-01
Extrastriate visual area V5/MT in primates is defined both structurally by myeloarchitecture and functionally by distinct responses to visual motion. Myelination is directly identifiable from postmortem histology but also indirectly by image contrast with structural magnetic resonance imaging (sMRI). First, we compared the identification of V5/MT using both sMRI and histology in Rhesus macaques. A section-by-section comparison of histological slices with in vivo and postmortem sMRI for the same block of cortical tissue showed precise correspondence in localizing heavy myelination for V5/MT and neighboring MST. Thus, sMRI in macaques accurately locates histologically defined myelin within areas known to be motion selective. Second, we investigated the functionally homologous human motion complex (hMT+) using high-resolution in vivo imaging. Humans showed considerable intersubject variability in hMT+ location, when defined with myelin-weighted sMRI signals to reveal structure. When comparing sMRI markers to functional MRI in response to moving stimuli, a region of high myelin signal was generally located within the hMT+ complex. However, there were considerable differences in the alignment of structural and functional markers between individuals. Our results suggest that variation in area identification for hMT+ based on structural and functional markers reflects individual differences in human regional brain architecture. PMID:27371764
Westlund Schreiner, Melinda; Klimes-Dougan, Bonnie; Mueller, Bryon A; Eberly, Lynn E; Reigstad, Kristina M; Carstedt, Patricia A; Thomas, Kathleen M; Hunt, Ruskin H; Lim, Kelvin O; Cullen, Kathryn R
2017-10-15
Non-suicidal self-injury (NSSI) is a significant mental health problem among adolescents. Research is needed to clarify the neurobiology of NSSI and identify candidate neurobiological targets for interventions. Based on prior research implicating heightened negative affect and amygdala hyperactivity in NSSI, we pursued a systems approach to characterize amygdala functional connectivity networks during rest (resting-state functional connectivity [RSFC)]) and a task (task functional connectivity [TFC]) in adolescents with NSSI. We examined amygdala networks in female adolescents with NSSI and healthy controls (n = 45) using resting-state fMRI and a negative emotion face-matching fMRI task designed to activate the amygdala. Connectivity analyses included amygdala RSFC, amygdala TFC, and psychophysiological interactions (PPI) between amygdala connectivity and task conditions. Compared to healthy controls, adolescents with NSSI showed atypical amygdala-frontal connectivity during rest and task; greater amygdala RSFC in supplementary motor area (SMA) and dorsal anterior cingulate; and differential amygdala-occipital connectivity between rest and task. After correcting for depression symptoms, amygdala-SMA RSFC abnormalities, among others, remained significant. This study's limitations include its cross-sectional design and its absence of a psychiatric control group. Using a multi-modal approach, we identified widespread amygdala circuitry anomalies in adolescents with NSSI. While deficits in amygdala-frontal connectivity (driven by depression symptoms) replicates prior work in depression, hyperconnectivity between amygdala and SMA (independent of depression symptoms) has not been previously reported. This circuit may represent an important mechanism underlying the link between negative affect and habitual behaviors. These abnormalities may represent intervention targets for adolescents with NSSI. Copyright © 2017 Elsevier B.V. All rights reserved.
Abnormal GABAergic function and face processing in schizophrenia: A pharmacologic-fMRI study.
Tso, Ivy F; Fang, Yu; Phan, K Luan; Welsh, Robert C; Taylor, Stephan F
2015-10-01
The involvement of the gamma-aminobutyric acid (GABA) system in schizophrenia is suggested by postmortem studies and the common use of GABA receptor-potentiating agents in treatment. In a recent study, we used a benzodiazepine challenge to demonstrate abnormal GABAergic function during processing of negative visual stimuli in schizophrenia. This study extended this investigation by mapping GABAergic mechanisms associated with face processing and social appraisal in schizophrenia using a benzodiazepine challenge. Fourteen stable, medicated schizophrenia/schizoaffective patients (SZ) and 13 healthy controls (HC) underwent functional MRI using the blood oxygenation level-dependent (BOLD) technique while they performed the Socio-emotional Preference Task (SePT) on emotional face stimuli ("Do you like this face?"). Participants received single-blinded intravenous saline and lorazepam (LRZ) in two separate sessions separated by 1-3weeks. Both SZ and HC recruited medial prefrontal cortex/anterior cingulate during the SePT, relative to gender identification. A significant drug by group interaction was observed in the medial occipital cortex, such that SZ showed increased BOLD signal to LRZ challenge, while HC showed an expected decrease of signal; the interaction did not vary by task. The altered BOLD response to LRZ challenge in SZ was significantly correlated with increased negative affect across multiple measures. The altered response to LRZ challenge suggests that abnormal face processing and negative affect in SZ are associated with altered GABAergic function in the visual cortex, underscoring the role of impaired visual processing in socio-emotional deficits in schizophrenia. Copyright © 2015 Elsevier B.V. All rights reserved.
A feature-based approach to combine functional MRI, structural MRI and EEG brain imaging data.
Calhoun, V; Adali, T; Liu, J
2006-01-01
The acquisition of multiple brain imaging types for a given study is a very common practice. However these data are typically examined in separate analyses, rather than in a combined model. We propose a novel methodology to perform joint independent component analysis across image modalities, including structural MRI data, functional MRI activation data and EEG data, and to visualize the results via a joint histogram visualization technique. Evaluation of which combination of fused data is most useful is determined by using the Kullback-Leibler divergence. We demonstrate our method on a data set composed of functional MRI data from two tasks, structural MRI data, and EEG data collected on patients with schizophrenia and healthy controls. We show that combining data types can improve our ability to distinguish differences between groups.
Prediction of individual brain maturity using fMRI.
Dosenbach, Nico U F; Nardos, Binyam; Cohen, Alexander L; Fair, Damien A; Power, Jonathan D; Church, Jessica A; Nelson, Steven M; Wig, Gagan S; Vogel, Alecia C; Lessov-Schlaggar, Christina N; Barnes, Kelly Anne; Dubis, Joseph W; Feczko, Eric; Coalson, Rebecca S; Pruett, John R; Barch, Deanna M; Petersen, Steven E; Schlaggar, Bradley L
2010-09-10
Group functional connectivity magnetic resonance imaging (fcMRI) studies have documented reliable changes in human functional brain maturity over development. Here we show that support vector machine-based multivariate pattern analysis extracts sufficient information from fcMRI data to make accurate predictions about individuals' brain maturity across development. The use of only 5 minutes of resting-state fcMRI data from 238 scans of typically developing volunteers (ages 7 to 30 years) allowed prediction of individual brain maturity as a functional connectivity maturation index. The resultant functional maturation curve accounted for 55% of the sample variance and followed a nonlinear asymptotic growth curve shape. The greatest relative contribution to predicting individual brain maturity was made by the weakening of short-range functional connections between the adult brain's major functional networks.
Glover, Gary H.; Mueller, Bryon A.; Turner, Jessica A.; van Erp, Theo G.M.; Liu, Thomas T.; Greve, Douglas N.; Voyvodic, James T.; Rasmussen, Jerod; Brown, Gregory G.; Keator, David B.; Calhoun, Vince D.; Lee, Hyo Jong; Ford, Judith M.; Mathalon, Daniel H.; Diaz, Michele; O’Leary, Daniel S.; Gadde, Syam; Preda, Adrian; Lim, Kelvin O.; Wible, Cynthia G.; Stern, Hal S.; Belger, Aysenil; McCarthy, Gregory; Ozyurt, Burak; Potkin, Steven G.
2011-01-01
This report provides practical recommendations for the design and execution of Multi-Center functional Magnetic Resonance Imaging (MC-fMRI) studies based on the collective experience of the Function Biomedical Informatics Research Network (FBIRN). The paper was inspired by many requests from the fMRI community to FBIRN group members for advice on how to conduct MC-fMRI studies. The introduction briefly discusses the advantages and complexities of MC-fMRI studies. Prerequisites for MC-fMRI studies are addressed before delving into the practical aspects of carefully and efficiently setting up a MC-fMRI study. Practical multi-site aspects include: (1) establishing and verifying scan parameters including scanner types and magnetic fields, (2) establishing and monitoring of a scanner quality program, (3) developing task paradigms and scan session documentation, (4) establishing clinical and scanner training to ensure consistency over time, (5) developing means for uploading, storing, and monitoring of imaging and other data, (6) the use of a traveling fMRI expert and (7) collectively analyzing imaging data and disseminating results. We conclude that when MC-fMRI studies are organized well with careful attention to unification of hardware, software and procedural aspects, the process can be a highly effective means for accessing a desired participant demographics while accelerating scientific discovery. PMID:22314879
Functional magnetic resonance imaging.
Buchbinder, Bradley R
2016-01-01
Functional magnetic resonance imaging (fMRI) maps the spatiotemporal distribution of neural activity in the brain under varying cognitive conditions. Since its inception in 1991, blood oxygen level-dependent (BOLD) fMRI has rapidly become a vital methodology in basic and applied neuroscience research. In the clinical realm, it has become an established tool for presurgical functional brain mapping. This chapter has three principal aims. First, we review key physiologic, biophysical, and methodologic principles that underlie BOLD fMRI, regardless of its particular area of application. These principles inform a nuanced interpretation of the BOLD fMRI signal, along with its neurophysiologic significance and pitfalls. Second, we illustrate the clinical application of task-based fMRI to presurgical motor, language, and memory mapping in patients with lesions near eloquent brain areas. Integration of BOLD fMRI and diffusion tensor white-matter tractography provides a road map for presurgical planning and intraoperative navigation that helps to maximize the extent of lesion resection while minimizing the risk of postoperative neurologic deficits. Finally, we highlight several basic principles of resting-state fMRI and its emerging translational clinical applications. Resting-state fMRI represents an important paradigm shift, focusing attention on functional connectivity within intrinsic cognitive networks. © 2016 Elsevier B.V. All rights reserved.
O'Connell, Caitlin; Ho, Leon C; Murphy, Matthew C; Conner, Ian P; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C
2016-11-09
Human visual performance has been observed to show superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine whether the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI, respectively, in 15 healthy individuals at 3 T. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In diffusion kurtosis MRI, the brain regions mapping to the lower visual field showed higher mean kurtosis, but not fractional anisotropy or mean diffusivity compared with the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing.
Comparison of block and event-related experimental designs in diffusion-weighted functional MRI.
Williams, Rebecca J; McMahon, Katie L; Hocking, Julia; Reutens, David C
2014-08-01
To compare diffusion-weighted functional magnetic resonance imaging (DfMRI), a novel alternative to the blood oxygenation level-dependent (BOLD) contrast, in a functional MRI experiment. Nine participants viewed contrast reversing (7.5 Hz) black-and-white checkerboard stimuli using block and event-related paradigms. DfMRI (b = 1800 mm/s(2)) and BOLD sequences were acquired. Four parameters describing the observed signal were assessed: percent signal change, spatial extent of the activation, the Euclidean distance between peak voxel locations, and the time-to-peak of the best fitting impulse response for different paradigms and sequences. The BOLD conditions showed a higher percent signal change relative to DfMRI; however, event-related DfMRI showed the strongest group activation (t = 21.23, P < 0.0005). Activation was more diffuse and spatially closer to the BOLD response for DfMRI when the block design was used. DfMRIevent showed the shortest TTP (4.4 ± 0.88 sec). The hemodynamic contribution to DfMRI may increase with the use of block designs. © 2013 Wiley Periodicals, Inc.
Functional interactions of HIV-infection and methamphetamine dependence during motor programming.
Archibald, Sarah L; Jacobson, Mark W; Fennema-Notestine, Christine; Ogasawara, Miki; Woods, Steven P; Letendre, Scott; Grant, Igor; Jernigan, Terry L
2012-04-30
Methamphetamine (METH) dependence is frequently comorbid with HIV infection and both have been linked to alterations of brain structure and function. In a previous study, we showed that the brain volume loss characteristic of HIV infection contrasts with METH-related volume increases in striatum and parietal cortex, suggesting distinct neurobiological responses to HIV and METH (Jernigan et al., 2005). Functional magnetic resonance imaging (fMRI) has the potential to reveal functional interactions between the effects of HIV and METH. In the present study, 50 participants were studied in four groups: an HIV+ group, a recently METH-dependent group, a dually affected group, and a group of unaffected community comparison subjects. An fMRI paradigm consisting of motor sequencing tasks of varying levels of complexity was administered to examine blood oxygenation level dependent (BOLD) changes. Within all groups, activity increased significantly with increasing task complexity in large clusters within sensorimotor and parietal cortex, basal ganglia, cerebellum, and cingulate. The task complexity effect was regressed on HIV status, METH status, and the HIV×METH interaction term in a simultaneous multiple regression. HIV was associated with less complexity-related activation in striatum, whereas METH was associated with less complexity-related activation in parietal regions. Significant interaction effects were observed in both cortical and subcortical regions; and, contrary to expectations, the complexity-related activation was less aberrant in dually affected than in single risk participants, in spite of comparable levels of neurocognitive impairment among the clinical groups. Thus, HIV and METH dependence, perhaps through their effects on dopaminergic systems, may have opposing functional effects on neural circuits involved in motor programming. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Lichtner, Gregor; Auksztulewicz, Ryszard; Kirilina, Evgeniya; Velten, Helena; Mavrodis, Dionysios; Scheel, Michael; Blankenburg, Felix; von Dincklage, Falk
2018-05-15
Drug-induced unconsciousness is an essential component of general anesthesia, commonly attributed to attenuation of higher-order processing of external stimuli and a resulting loss of information integration capabilities of the brain. In this study, we investigated how the hypnotic drug propofol at doses comparable to those in clinical practice influences the processing of somatosensory stimuli in the spinal cord and in primary and higher-order cortices. Using nociceptive reflexes, somatosensory evoked potentials and functional magnet resonance imaging (fMRI), we found that propofol abolishes the processing of innocuous and moderate noxious stimuli at low to medium concentration levels, but that intense noxious stimuli evoked spinal and cerebral responses even during deep propofol anesthesia that caused profound electroencephalogram (EEG) burst suppression. While nociceptive reflexes and somatosensory potentials were affected only in a minor way by further increasing doses of propofol after the loss of consciousness, fMRI showed that increasing propofol concentration abolished processing of intense noxious stimuli in the insula and secondary somatosensory cortex and vastly increased processing in the frontal cortex. As the fMRI functional connectivity showed congruent changes with increasing doses of propofol - namely the temporal brain areas decreasing their connectivity with the bilateral pre-/postcentral gyri and the supplementary motor area, while connectivity of the latter with frontal areas is increased - we conclude that the changes in processing of noxious stimuli during propofol anesthesia might be related to changes in functional connectivity. Copyright © 2018 Elsevier Inc. All rights reserved.
Ibinson, James W; Vogt, Keith M; Taylor, Kevin B; Dua, Shiv B; Becker, Christopher J; Loggia, Marco; Wasan, Ajay D
2015-12-01
The insula is uniquely located between the temporal and parietal cortices, making it anatomically well-positioned to act as an integrating center between the sensory and affective domains for the processing of painful stimulation. This can be studied through resting-state functional connectivity (fcMRI) imaging; however, the lack of a clear methodology for the analysis of fcMRI complicates the interpretation of these data during acute pain. Detected connectivity changes may reflect actual alterations in low-frequency synchronous neuronal activity related to pain, may be due to changes in global cerebral blood flow or the superimposed task-induced neuronal activity. The primary goal of this study was to investigate the effects of global signal regression (GSR) and task paradigm regression (TPR) on the changes in functional connectivity of the left (contralateral) insula in healthy subjects at rest and during acute painful electric nerve stimulation of the right hand. The use of GSR reduced the size and statistical significance of connectivity clusters and created negative correlation coefficients for some connectivity clusters. TPR with cyclic stimulation gave task versus rest connectivity differences similar to those with a constant task, suggesting that analysis which includes TPR is more accurately reflective of low-frequency neuronal activity. Both GSR and TPR have been inconsistently applied to fcMRI analysis. Based on these results, investigators need to consider the impact GSR and TPR have on connectivity during task performance when attempting to synthesize the literature.
Mapping the Alzheimer’s Brain with Connectomics
Xie, Teng; He, Yong
2012-01-01
Alzheimer’s disease (AD) is the most common form of dementia. As an incurable, progressive, and neurodegenerative disease, it causes cognitive and memory deficits. However, the biological mechanisms underlying the disease are not thoroughly understood. In recent years, non-invasive neuroimaging and neurophysiological techniques [e.g., structural magnetic resonance imaging (MRI), diffusion MRI, functional MRI, and EEG/MEG] and graph theory based network analysis have provided a new perspective on structural and functional connectivity patterns of the human brain (i.e., the human connectome) in health and disease. Using these powerful approaches, several recent studies of patients with AD exhibited abnormal topological organization in both global and regional properties of neuronal networks, indicating that AD not only affects specific brain regions, but also alters the structural and functional associations between distinct brain regions. Specifically, disruptive organization in the whole-brain networks in AD is involved in the loss of small-world characters and the re-organization of hub distributions. These aberrant neuronal connectivity patterns were associated with cognitive deficits in patients with AD, even with genetic factors in healthy aging. These studies provide empirical evidence to support the existence of an aberrant connectome of AD. In this review we will summarize recent advances discovered in large-scale brain network studies of AD, mainly focusing on graph theoretical analysis of brain connectivity abnormalities. These studies provide novel insights into the pathophysiological mechanisms of AD and could be helpful in developing imaging biomarkers for disease diagnosis and monitoring. PMID:22291664
Recovery of directed intracortical connectivity from fMRI data
NASA Astrophysics Data System (ADS)
Gilson, Matthieu; Ritter, Petra; Deco, Gustavo
2016-06-01
The brain exhibits complex spatio-temporal patterns of activity. In particular, its baseline activity at rest has a specific structure: imaging techniques (e.g., fMRI, EEG and MEG) show that cortical areas experience correlated fluctuations, which is referred to as functional connectivity (FC). The present study relies on our recently developed model in which intracortical white-matter connections shape noise-driven fluctuations to reproduce FC observed in experimental data (here fMRI BOLD signal). Here noise has a functional role and represents the variability of neural activity. The model also incorporates anatomical information obtained using diffusion tensor imaging (DTI), which estimates the density of white-matter fibers (structural connectivity, SC). After optimization to match empirical FC, the model provides an estimation of the efficacies of these fibers, which we call effective connectivity (EC). EC differs from SC, as EC not only accounts for the density of neural fibers, but also the concentration of synapses formed at their end, the type of neurotransmitters associated and the excitability of target neural populations. In summary, the model combines anatomical SC and activity FC to evaluate what drives the neural dynamics, embodied in EC. EC can then be analyzed using graph theory to understand how it generates FC and to seek for functional communities among cortical areas (parcellation of 68 areas). We find that intracortical connections are not symmetric, which affects the dynamic range of cortical activity (i.e., variety of states it can exhibit).
Laible, Mona; Grieshammer, Steven; Seidel, Gundula; Rijntjes, Michel; Weiller, Cornelius; Hamzei, Farsin
2012-09-01
Previous studies demonstrated a posterior shift of activation toward the primary sensory cortex (S1) following stroke; however, any relationship between this posterior shift and clinical outcome measures for the affected hand function were unclear. The authors investigated the possible role of S1 in motor recovery. Assuming that previous studies examined inhomogeneous groups of patients, the authors selected participants with chronic stroke who had moderate hand paresis, normal sensory examination and somatosensory-evoked potentials, and no lesion within the S1, thalamus, or brain stem. Constraint-induced movement therapy (CIMT) was used to train the impaired hand. To relate fMRI (functional MRI) activation changes from baseline to post-CIMT, a correlation analysis was performed with changes of the Wolf Motor Function Test (WMFT) as a test for the hand function. A close relationship was found between increases in hand function and peak changes in activation within the ipsilesional S1. With a better outcome, greater increases in activation within the S1 were evident (P < .03; r = 0.73). In selected patients, the sensory network influences training-induced motor gains. This predictive knowledge of plasticity when applying CIMT may suggest strategies to enhance the effect of therapy, such as the addition of electrical stimulation to enhance S1 excitability.
Zuo, Xi-Nian; Xu, Ting; Jiang, Lili; Yang, Zhi; Cao, Xiao-Yan; He, Yong; Zang, Yu-Feng; Castellanos, F. Xavier; Milham, Michael P.
2013-01-01
While researchers have extensively characterized functional connectivity between brain regions, the characterization of functional homogeneity within a region of the brain connectome is in early stages of development. Several functional homogeneity measures were proposed previously, among which regional homogeneity (ReHo) was most widely used as a measure to characterize functional homogeneity of resting state fMRI (R-fMRI) signals within a small region (Zang et al., 2004). Despite a burgeoning literature on ReHo in the field of neuroimaging brain disorders, its test–retest (TRT) reliability remains unestablished. Using two sets of public R-fMRI TRT data, we systematically evaluated the ReHo’s TRT reliability and further investigated the various factors influencing its reliability and found: 1) nuisance (head motion, white matter, and cerebrospinal fluid) correction of R-fMRI time series can significantly improve the TRT reliability of ReHo while additional removal of global brain signal reduces its reliability, 2) spatial smoothing of R-fMRI time series artificially enhances ReHo intensity and influences its reliability, 3) surface-based R-fMRI computation largely improves the TRT reliability of ReHo, 4) a scan duration of 5 min can achieve reliable estimates of ReHo, and 5) fast sampling rates of R-fMRI dramatically increase the reliability of ReHo. Inspired by these findings and seeking a highly reliable approach to exploratory analysis of the human functional connectome, we established an R-fMRI pipeline to conduct ReHo computations in both 3-dimensions (volume) and 2-dimensions (surface). PMID:23085497
Functional Magnetic Resonance Imaging (fMRI) Neurofeedback: Implementations and Applications
DEWIPUTRI, Wan Ilma; AUER, Tibor
2013-01-01
Neurofeedback (NFB) allows subjects to learn how to volitionally influence the neuronal activation in the brain by employing real-time neural activity as feedback. NFB has already been performed with electroencephalography (EEG) since the 1970s. Functional MRI (fMRI), offering a higher spatial resolution, has further increased the spatial specificity. In this paper, we briefly outline the general principles behind NFB, the implementation of fMRI-NFB studies, the feasibility of fMRI-NFB, and the application of NFB as a supplementary therapy tool. PMID:24643368
Direct skin-to-skin vs. indirect touch modulates neural responses to stroking vs. tapping
Kress, Inge U; Minati, Ludovico; Ferraro, Stefania; Critchley, Hugo D
2011-01-01
It remains unclear whether direct inter-personal contact is processed differently from similar soft touch applied through inanimate objects. We performed a functional MRI (fMRI) experiment in healthy volunteers, whereby activity during gentle stroking or tapping was compared between stimuli delivered using the experimenter’s hand or a velvet stick. Stroking with a hand elicited larger responses than the other three conditions in the contralateral primary and secondary somatosensory areas and posterior insula. The observed effects likely originate from a combination of perceptual differences and cognitive and emotional correlates of contact with another person. This empirical observation indicates that to ensure ecological validity studies of affective touch processing should be performed with stimuli delivered with direct inter-personal contact rather than inanimate objects. PMID:21817928
Shucard, Janet Louise; Cox, Jennifer; Shucard, David William; Fetter, Holly; Chung, Charles; Ramasamy, Deepa; Violanti, John
2012-10-30
Traumatic experiences and subsequent symptoms of posttraumatic stress disorder (PTSD) have been shown to affect brain structure and function. Although police officers are routinely exposed to traumatic events, the neurobehavioral effects of trauma in this population have rarely been studied. In this study, police officers with exposure to trauma-related stressors underwent structural magnetic resonance imaging (MRI). They also provided valence and arousal ratings of neutral and negative (trauma-related) picture stimuli. Relationships were examined among PTSD symptom scores (avoidance, reexperiencing, and hyperarousal), picture ratings, structural MRI measures, and number of trauma exposures. We hypothesized that greater PTSD symptomatology would be related to higher valence and arousal ratings of trauma-related stimuli and to decreased volume of limbic and Basal ganglia structures. Results revealed that officers with higher reexperiencing scores tended to have higher arousal ratings of negative pictures and reduced amygdala, thalamus, and globus pallidus volumes. There was a trend toward higher reexperiencing and reduced hippocampal volume. The frequency of traumatic exposures was also related to MRI measures of atrophy and to increased PTSD symptomatology. These findings suggest that chronic reexperiencing of traumatic events may result in volumetric reductions in brain structures associated with autonomic arousal and the acquisition of conditioned fear. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Safety and tolerability of MRI-guided infusion of AAV2-hAADC into the mid-brain of nonhuman primate
Sebastian, Waldy San; Kells, Adrian P; Bringas, John; Samaranch, Lluis; Hadaczek, Piotr; Ciesielska, Agnieszka; Macayan, Michael J; Pivirotto, Phillip J; Forsayeth, John; Osborne, Sheryl; Wright, J Fraser; Green, Foad; Heller, Gregory; Bankiewicz, Krystof S
2014-01-01
Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare, autosomal-recessive neurological disorder caused by mutations in the DDC gene that leads to an inability to synthesize catecholamines and serotonin. As a result, patients suffer compromised development, particularly in motor function. A recent gene replacement clinical trial explored putaminal delivery of recombinant adeno-associated virus serotype 2 vector encoding human AADC (AAV2-hAADC) in AADC-deficient children. Unfortunately, patients presented only modest amelioration of motor symptoms, which authors acknowledged could be due to insufficient transduction of putamen. We hypothesize that, with the development of a highly accurate MRI-guided cannula placement technology, a more effective approach might be to target the affected mid-brain neurons directly. Transduction of AADC-deficient dopaminergic neurons in the substantia nigra and ventral tegmental area with locally infused AAV2-hAADC would be expected to lead to restoration of normal dopamine levels in affected children. The objective of this study was to assess the long-term safety and tolerability of bilateral AAV2-hAADC MRI-guided pressurized infusion into the mid-brain of nonhuman primates. Animals received either vehicle, low or high AAV2-hAADC vector dose and were euthanized 1, 3, or 9 months after surgery. Our data indicate that effective mid-brain transduction was achieved without untoward effects. PMID:25541617
Soleman, Remi S; Kreukels, Baudewijntje P C; Veltman, Dick J; Cohen-Kettenis, Peggy T; Hompes, Peter G A; Drent, Madeleine L; Lambalk, Cornelis B
2016-05-01
To study effects of overexposure to androgens and subsequent antiandrogenic treatment on brain activity during working memory processes in women with polycystic ovary syndrome (PCOS). In this longitudinal study, working memory function was evaluated with the use of functional magnetic resonance imaging (MRI) in women with PCOS before and after antiandrogenic treatment. Department of reproductive medicine, university medical center. Fourteen women with PCOS and with hyperandrogenism and 20 healthy control women without any features of PCOS or other hormonal disorders. Antiandrogenic hormone treatment. Functional MRI response during a working memory task. At baseline women with PCOS showed more activation than the control group within the right superior parietal lobe and the inferior parietal lobe during task (all memory conditions). Task performance (speed and accuracy) did not differ between the groups. After antiandrogenic treatment the difference in overall brain activity between the groups disappeared and accuracy in the high memory load condition of the working memory task increased in women with PCOS. Women with PCOS may need additional neural resources during a working memory task compared with women without PCOS, suggesting less efficient executive functioning. This inefficiency may have effects on daily life functioning of women with PCOS. Antiandrogenic treatment appears to have a beneficial effect on this area of cognitive functioning. NTR2493. Copyright © 2016. Published by Elsevier Inc.
Automatic EEG-assisted retrospective motion correction for fMRI (aE-REMCOR).
Wong, Chung-Ki; Zotev, Vadim; Misaki, Masaya; Phillips, Raquel; Luo, Qingfei; Bodurka, Jerzy
2016-04-01
Head motions during functional magnetic resonance imaging (fMRI) impair fMRI data quality and introduce systematic artifacts that can affect interpretation of fMRI results. Electroencephalography (EEG) recordings performed simultaneously with fMRI provide high-temporal-resolution information about ongoing brain activity as well as head movements. Recently, an EEG-assisted retrospective motion correction (E-REMCOR) method was introduced. E-REMCOR utilizes EEG motion artifacts to correct the effects of head movements in simultaneously acquired fMRI data on a slice-by-slice basis. While E-REMCOR is an efficient motion correction approach, it involves an independent component analysis (ICA) of the EEG data and identification of motion-related ICs. Here we report an automated implementation of E-REMCOR, referred to as aE-REMCOR, which we developed to facilitate the application of E-REMCOR in large-scale EEG-fMRI studies. The aE-REMCOR algorithm, implemented in MATLAB, enables an automated preprocessing of the EEG data, an ICA decomposition, and, importantly, an automatic identification of motion-related ICs. aE-REMCOR has been used to perform retrospective motion correction for 305 fMRI datasets from 16 subjects, who participated in EEG-fMRI experiments conducted on a 3T MRI scanner. Performance of aE-REMCOR has been evaluated based on improvement in temporal signal-to-noise ratio (TSNR) of the fMRI data, as well as correction efficiency defined in terms of spike reduction in fMRI motion parameters. The results show that aE-REMCOR is capable of substantially reducing head motion artifacts in fMRI data. In particular, when there are significant rapid head movements during the scan, a large TSNR improvement and high correction efficiency can be achieved. Depending on a subject's motion, an average TSNR improvement over the brain upon the application of aE-REMCOR can be as high as 27%, with top ten percent of the TSNR improvement values exceeding 55%. The average correction efficiency over the 305 fMRI scans is 18% and the largest achieved efficiency is 71%. The utility of aE-REMCOR on the resting state fMRI connectivity of the default mode network is also examined. The motion-induced position-dependent error in the DMN connectivity analysis is shown to be reduced when aE-REMCOR is utilized. These results demonstrate that aE-REMCOR can be conveniently and efficiently used to improve fMRI motion correction in large clinical EEG-fMRI studies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Decoding Lifespan Changes of the Human Brain Using Resting-State Functional Connectivity MRI
Wang, Lubin; Su, Longfei; Shen, Hui; Hu, Dewen
2012-01-01
The development of large-scale functional brain networks is a complex, lifelong process that can be investigated using resting-state functional connectivity MRI (rs-fcMRI). In this study, we aimed to decode the developmental dynamics of the whole-brain functional network in seven decades (8–79 years) of the human lifespan. We first used parametric curve fitting to examine linear and nonlinear age effect on the resting human brain, and then combined manifold learning and support vector machine methods to predict individuals' “brain ages” from rs-fcMRI data. We found that age-related changes in interregional functional connectivity exhibited spatially and temporally specific patterns. During brain development from childhood to senescence, functional connections tended to linearly increase in the emotion system and decrease in the sensorimotor system; while quadratic trajectories were observed in functional connections related to higher-order cognitive functions. The complex patterns of age effect on the whole-brain functional network could be effectively represented by a low-dimensional, nonlinear manifold embedded in the functional connectivity space, which uncovered the inherent structure of brain maturation and aging. Regression of manifold coordinates with age further showed that the manifold representation extracted sufficient information from rs-fcMRI data to make prediction about individual brains' functional development levels. Our study not only gives insights into the neural substrates that underlie behavioral and cognitive changes over age, but also provides a possible way to quantitatively describe the typical and atypical developmental progression of human brain function using rs-fcMRI. PMID:22952990
Decoding lifespan changes of the human brain using resting-state functional connectivity MRI.
Wang, Lubin; Su, Longfei; Shen, Hui; Hu, Dewen
2012-01-01
The development of large-scale functional brain networks is a complex, lifelong process that can be investigated using resting-state functional connectivity MRI (rs-fcMRI). In this study, we aimed to decode the developmental dynamics of the whole-brain functional network in seven decades (8-79 years) of the human lifespan. We first used parametric curve fitting to examine linear and nonlinear age effect on the resting human brain, and then combined manifold learning and support vector machine methods to predict individuals' "brain ages" from rs-fcMRI data. We found that age-related changes in interregional functional connectivity exhibited spatially and temporally specific patterns. During brain development from childhood to senescence, functional connections tended to linearly increase in the emotion system and decrease in the sensorimotor system; while quadratic trajectories were observed in functional connections related to higher-order cognitive functions. The complex patterns of age effect on the whole-brain functional network could be effectively represented by a low-dimensional, nonlinear manifold embedded in the functional connectivity space, which uncovered the inherent structure of brain maturation and aging. Regression of manifold coordinates with age further showed that the manifold representation extracted sufficient information from rs-fcMRI data to make prediction about individual brains' functional development levels. Our study not only gives insights into the neural substrates that underlie behavioral and cognitive changes over age, but also provides a possible way to quantitatively describe the typical and atypical developmental progression of human brain function using rs-fcMRI.
Radiation-induced changes in hepatocyte-specific Gd-EOB-DTPA enhanced MRI: potential mechanism.
Richter, Christian; Seco, Joao; Hong, Ted S; Duda, Dan G; Bortfeld, Thomas
2014-10-01
Liver irradiation leads to a decreased uptake of a hepatobiliary directed MRI contrast agent (Gd-EOB-DTPA) as shown in studies performed 1-6 months after proton therapy, stereotactic ablative body radiation therapy and brachytherapy. Therefore, Gd-EOB-DTPA enhanced MRI could potentially be used for in vivo verification of the delivered dose distribution. Achieving this would be highly desirable, especially for particle therapy, where the accuracy and precision of the spatial dose deposition is affected by uncertainties of the range of particles in patients. However, the empirically detected effect needs to be understood before it can be used as a surrogate imaging biomarker for in vivo treatment verification or even liver functionality. Here, we propose a model of the underlying molecular mechanism of this phenomenon and discuss its implications for radiation therapy. We model the multi-step process starting from the immediate response after liver irradiation to the delayed/subsequent signal decrease in Gd-EOB-DTPA enhanced MRI. The model is based on both: (a) Evidence from different previously published reports and (b) a detailed evaluation of intra-hepatic signaling using a pathway analysis to identify potential pathways that are critical in this process. The proposed model provides mechanistic understanding of the reduced signal intensity in Gd-EOB-DTPA enhanced MRI occurring in irradiated liver. We think that establishing this comprehensive model will be of great interest for the field of radiation oncology and can trigger further research. For example, measuring the expression of involved cytokines and specific transport proteins in blood samples and biopsy derived tissue samples and correlating the results with MRI imaging could give important information and may even explain inter-patient variations in MRI signal decrease. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Luk, Alex T.; Lin, Yuting; Grimmond, Brian; Sood, Anup; Uzgiris, Egidijus E.; Nalcioglu, Orhan; Gulsen, Gultekin
2013-03-01
Since diffuse optical tomography (DOT) is a low spatial resolution modality, it is desirable to validate its quantitative accuracy with another well-established imaging modality, such as magnetic resonance imaging (MRI). In this work, we have used a polymer based bi-functional MRI-optical contrast agent (Gd-DTPA-polylysine-IR800) in collaboration with GE Global Research. This multi-modality contrast agent provided not only co-localization but also the same kinetics, to cross-validate two imaging modalities. Bi-functional agents are injected to the rats and pharmacokinetics at the bladder are recovered using both optical and MR imaging. DOT results are validated using MRI results as "gold standard"
High-field fMRI unveils orientation columns in humans.
Yacoub, Essa; Harel, Noam; Ugurbil, Kâmil
2008-07-29
Functional (f)MRI has revolutionized the field of human brain research. fMRI can noninvasively map the spatial architecture of brain function via localized increases in blood flow after sensory or cognitive stimulation. Recent advances in fMRI have led to enhanced sensitivity and spatial accuracy of the measured signals, indicating the possibility of detecting small neuronal ensembles that constitute fundamental computational units in the brain, such as cortical columns. Orientation columns in visual cortex are perhaps the best known example of such a functional organization in the brain. They cannot be discerned via anatomical characteristics, as with ocular dominance columns. Instead, the elucidation of their organization requires functional imaging methods. However, because of insufficient sensitivity, spatial accuracy, and image resolution of the available mapping techniques, thus far, they have not been detected in humans. Here, we demonstrate, by using high-field (7-T) fMRI, the existence and spatial features of orientation- selective columns in humans. Striking similarities were found with the known spatial features of these columns in monkeys. In addition, we found that a larger number of orientation columns are devoted to processing orientations around 90 degrees (vertical stimuli with horizontal motion), whereas relatively similar fMRI signal changes were observed across any given active column. With the current proliferation of high-field MRI systems and constant evolution of fMRI techniques, this study heralds the exciting prospect of exploring unmapped and/or unknown columnar level functional organizations in the human brain.
Comparison of post-surgical MRI presentation of the pituitary gland and its hormonal function.
Bladowska, Joanna; Sokolska, Violetta; Sozański, Tomasz; Bednarek-Tupikowska, Grażyna; Sąsiadek, Marek
2010-01-01
Post-surgical evaluation of the pituitary gland in MRI is difficult because of a change of anatomical conditions. It depends also on numerous other factors, including: size and expansion of a tumour before surgery, type of surgical access, quality and volume of filling material used and time of its resorption.The aim of the study was to compare MR image of the pituitary gland after surgery with clinical findings and to establish a correlation between MRI presentation of spared pituitary and its hormonal function. 124 patients after resection of pituitary adenomas - 409 MRI results in total - were studied. With a 1.5-T unit, T1-weighted sagittal and coronal, enhanced and unenhanced images were obtained. The pituitary gland seemed to be normal in MRI in 11 patients, 8 of them had completely regular pituitary function but in 3 of them we noticed a partial hypopituitarism. In 99 patients only a part of the pituitary gland was recognised, 53 of them had hypopituitarism but 46 of them were endocrinologically healthy. 14 patients seemed to have no persistent pituitary gland in MRI, in comparison to hormonal studies: there was panhypopituitarism in 6 and hypopituitarism in 8 cases. MRI presentation of post - surgical pituitary gland doesn't necessarily correlate with its hormonal function - there was a significant statistical difference. Some patients with partial pituitary seems normal hormonal function. In some cases the pituitary seem normal in MRI but these patients have hormonal disorders and need substitution therapy.
Valk, Sofie L; Bernhardt, Boris C; Trautwein, Fynn-Mathis; Böckler, Anne; Kanske, Philipp; Guizard, Nicolas; Collins, D Louis; Singer, Tania
2017-10-01
Although neuroscientific research has revealed experience-dependent brain changes across the life span in sensory, motor, and cognitive domains, plasticity relating to social capacities remains largely unknown. To investigate whether the targeted mental training of different cognitive and social skills can induce specific changes in brain morphology, we collected longitudinal magnetic resonance imaging (MRI) data throughout a 9-month mental training intervention from a large sample of adults between 20 and 55 years of age. By means of various daily mental exercises and weekly instructed group sessions, training protocols specifically addressed three functional domains: (i) mindfulness-based attention and interoception, (ii) socio-affective skills (compassion, dealing with difficult emotions, and prosocial motivation), and (iii) socio-cognitive skills (cognitive perspective-taking on self and others and metacognition). MRI-based cortical thickness analyses, contrasting the different training modules against each other, indicated spatially diverging changes in cortical morphology. Training of present-moment focused attention mostly led to increases in cortical thickness in prefrontal regions, socio-affective training induced plasticity in frontoinsular regions, and socio-cognitive training included change in inferior frontal and lateral temporal cortices. Module-specific structural brain changes correlated with training-induced behavioral improvements in the same individuals in domain-specific measures of attention, compassion, and cognitive perspective-taking, respectively, and overlapped with task-relevant functional networks. Our longitudinal findings indicate structural plasticity in well-known socio-affective and socio-cognitive brain networks in healthy adults based on targeted short daily mental practices. These findings could promote the development of evidence-based mental training interventions in clinical, educational, and corporate settings aimed at cultivating social intelligence, prosocial motivation, and cooperation.
Valk, Sofie L.; Bernhardt, Boris C.; Trautwein, Fynn-Mathis; Böckler, Anne; Kanske, Philipp; Guizard, Nicolas; Collins, D. Louis; Singer, Tania
2017-01-01
Although neuroscientific research has revealed experience-dependent brain changes across the life span in sensory, motor, and cognitive domains, plasticity relating to social capacities remains largely unknown. To investigate whether the targeted mental training of different cognitive and social skills can induce specific changes in brain morphology, we collected longitudinal magnetic resonance imaging (MRI) data throughout a 9-month mental training intervention from a large sample of adults between 20 and 55 years of age. By means of various daily mental exercises and weekly instructed group sessions, training protocols specifically addressed three functional domains: (i) mindfulness-based attention and interoception, (ii) socio-affective skills (compassion, dealing with difficult emotions, and prosocial motivation), and (iii) socio-cognitive skills (cognitive perspective-taking on self and others and metacognition). MRI-based cortical thickness analyses, contrasting the different training modules against each other, indicated spatially diverging changes in cortical morphology. Training of present-moment focused attention mostly led to increases in cortical thickness in prefrontal regions, socio-affective training induced plasticity in frontoinsular regions, and socio-cognitive training included change in inferior frontal and lateral temporal cortices. Module-specific structural brain changes correlated with training-induced behavioral improvements in the same individuals in domain-specific measures of attention, compassion, and cognitive perspective-taking, respectively, and overlapped with task-relevant functional networks. Our longitudinal findings indicate structural plasticity in well-known socio-affective and socio-cognitive brain networks in healthy adults based on targeted short daily mental practices. These findings could promote the development of evidence-based mental training interventions in clinical, educational, and corporate settings aimed at cultivating social intelligence, prosocial motivation, and cooperation. PMID:28983507
Fuzzy cluster analysis of high-field functional MRI data.
Windischberger, Christian; Barth, Markus; Lamm, Claus; Schroeder, Lee; Bauer, Herbert; Gur, Ruben C; Moser, Ewald
2003-11-01
Functional magnetic resonance imaging (fMRI) based on blood-oxygen level dependent (BOLD) contrast today is an established brain research method and quickly gains acceptance for complementary clinical diagnosis. However, neither the basic mechanisms like coupling between neuronal activation and haemodynamic response are known exactly, nor can the various artifacts be predicted or controlled. Thus, modeling functional signal changes is non-trivial and exploratory data analysis (EDA) may be rather useful. In particular, identification and separation of artifacts as well as quantification of expected, i.e. stimulus correlated, and novel information on brain activity is important for both, new insights in neuroscience and future developments in functional MRI of the human brain. After an introduction on fuzzy clustering and very high-field fMRI we present several examples where fuzzy cluster analysis (FCA) of fMRI time series helps to identify and locally separate various artifacts. We also present and discuss applications and limitations of fuzzy cluster analysis in very high-field functional MRI: differentiate temporal patterns in MRI using (a) a test object with static and dynamic parts, (b) artifacts due to gross head motion artifacts. Using a synthetic fMRI data set we quantitatively examine the influences of relevant FCA parameters on clustering results in terms of receiver-operator characteristics (ROC) and compare them with a commonly used model-based correlation analysis (CA) approach. The application of FCA in analyzing in vivo fMRI data is shown for (a) a motor paradigm, (b) data from multi-echo imaging, and (c) a fMRI study using mental rotation of three-dimensional cubes. We found that differentiation of true "neural" from false "vascular" activation is possible based on echo time dependence and specific activation levels, as well as based on their signal time-course. Exploratory data analysis methods in general and fuzzy cluster analysis in particular may help to identify artifacts and add novel and unexpected information valuable for interpretation, classification and characterization of functional MRI data which can be used to design new data acquisition schemes, stimulus presentations, neuro(physio)logical paradigms, as well as to improve quantitative biophysical models.
Benoit, Roland G.; Szpunar, Karl K.; Schacter, Daniel L.
2014-01-01
Although the future often seems intangible, we can make it more concrete by imagining prospective events. Here, using functional MRI, we demonstrate a mechanism by which the ventromedial prefrontal cortex supports such episodic simulations, and thereby contributes to affective foresight: This region supports processes that (i) integrate knowledge related to the elements that constitute an episode and (ii) represent the episode’s emergent affective quality. The ventromedial prefrontal cortex achieves such integration via interactions with distributed cortical regions that process the individual elements. Its activation then signals the affective quality of the ensuing episode, which goes beyond the combined affective quality of its constituting elements. The integrative process further augments long-term retention of the episode, making it available at later time points. This mechanism thus renders the future tangible, providing a basis for farsighted behavior. PMID:25368170
Benoit, Roland G; Szpunar, Karl K; Schacter, Daniel L
2014-11-18
Although the future often seems intangible, we can make it more concrete by imagining prospective events. Here, using functional MRI, we demonstrate a mechanism by which the ventromedial prefrontal cortex supports such episodic simulations, and thereby contributes to affective foresight: This region supports processes that (i) integrate knowledge related to the elements that constitute an episode and (ii) represent the episode's emergent affective quality. The ventromedial prefrontal cortex achieves such integration via interactions with distributed cortical regions that process the individual elements. Its activation then signals the affective quality of the ensuing episode, which goes beyond the combined affective quality of its constituting elements. The integrative process further augments long-term retention of the episode, making it available at later time points. This mechanism thus renders the future tangible, providing a basis for farsighted behavior.
Iancheva, Dessislava; Trenova, Anastasiya G; Terziyski, Kiril; Kandilarova, Sevdalina; Mantarova, Stefka
2018-04-03
Paced Auditory Serial Addition Test (PASAT) is used for assessment of information processing speed, attention, and working memory, which are the most frequently affected cognitive domains in multiple sclerosis (MS) patients, and may be significantly affected by fatigue. However, the effect of fatigue and mood on the PASAT performance in MS patients translationally validated by fMRI has not been studied yet. The aim of this study is to investigate the translational validity of the PASAT, using fMRI during a paced visual serial addition test (PVSAT) paradigm in patients with relapsing remitting MS (RRMS) and to assess the impact of fatigue and mood on test performance. Fourteen patients with RRMS in remission and 14 healthy controls, matched by sex, age, and educational status, were enrolled in the study. The subjects underwent a standard neurological examination, neuropsychological evaluation with the PASAT 3', fMRI scanning with a PVSAT paradigm, and Beck Depression Inventory. All patients were assessed by the Modified Fatigue Impact Scale. Paced Auditory Serial Addition Test score was lower in patients (41.4 ± 15.5 vs 51.6 ± 7.5, P = .035). A moderate negative correlation (P = -0.563, P = 0.036) was found between PASAT and MIFS scores. The fMRI scanning showed significant activations in several clusters that differed between patients and controls. The patient group presented wider cluster activation; Brodmann area (BA) 6-bilaterally; left BA7, 8, and 9; and right BA40, while controls presented with activations in left BA6 and BA44. Significant negative correlations between PASAT score and cortical activations in left BA23, right BA32, and left BA7 were observed in patients only. Our results show that poorer performance on the PASAT is associated with higher activation in areas connected with working memory, attention, and emotional processes during the fMRI assessment with PVSAT paradigm, which provides evidence for the translational validity of the PASAT in patients with RRMS. © 2018 John Wiley & Sons, Ltd.
The alcoholic brain: neural bases of impaired reward-based decision-making in alcohol use disorders.
Galandra, Caterina; Basso, Gianpaolo; Cappa, Stefano; Canessa, Nicola
2018-03-01
Neuroeconomics is providing insights into the neural bases of decision-making in normal and pathological conditions. In the neuropsychiatric domain, this discipline investigates how abnormal functioning of neural systems associated with reward processing and cognitive control promotes different disorders, and whether such evidence may inform treatments. This endeavor is crucial when studying different types of addiction, which share a core promoting mechanism in the imbalance between impulsive subcortical neural signals associated with immediate pleasurable outcomes and inhibitory signals mediated by a prefrontal reflective system. The resulting impairment in behavioral control represents a hallmark of alcohol use disorders (AUDs), a chronic relapsing disorder characterized by excessive alcohol consumption despite devastating consequences. This review aims to summarize available magnetic resonance imaging (MRI) evidence on reward-related decision-making alterations in AUDs, and to envision possible future research directions. We review functional MRI (fMRI) studies using tasks involving monetary rewards, as well as MRI studies relating decision-making parameters to neurostructural gray- or white-matter metrics. The available data suggest that excessive alcohol exposure affects neural signaling within brain networks underlying adaptive behavioral learning via the implementation of prediction errors. Namely, weaker ventromedial prefrontal cortex activity and altered connectivity between ventral striatum and dorsolateral prefrontal cortex likely underpin a shift from goal-directed to habitual actions which, in turn, might underpin compulsive alcohol consumption and relapsing episodes despite adverse consequences. Overall, these data highlight abnormal fronto-striatal connectivity as a candidate neurobiological marker of impaired choice in AUDs. Further studies are needed, however, to unveil its implications in the multiple facets of decision-making.
Mathiak, Krystyna A; Klasen, Martin; Weber, René; Ackermann, Hermann; Shergill, Sukhwinder S; Mathiak, Klaus
2011-07-12
Violent content in video games evokes many concerns but there is little research concerning its rewarding aspects. It was demonstrated that playing a video game leads to striatal dopamine release. It is unclear, however, which aspects of the game cause this reward system activation and if violent content contributes to it. We combined functional Magnetic Resonance Imaging (fMRI) with individual affect measures to address the neuronal correlates of violence in a video game. Thirteen male German volunteers played a first-person shooter game (Tactical Ops: Assault on Terror) during fMRI measurement. We defined success as eliminating opponents, and failure as being eliminated themselves. Affect was measured directly before and after game play using the Positive and Negative Affect Schedule (PANAS). Failure and success events evoked increased activity in visual cortex but only failure decreased activity in orbitofrontal cortex and caudate nucleus. A negative correlation between negative affect and responses to failure was evident in the right temporal pole (rTP). The deactivation of the caudate nucleus during failure is in accordance with its role in reward-prediction error: it occurred whenever subject missed an expected reward (being eliminated rather than eliminating the opponent). We found no indication that violence events were directly rewarding for the players. We addressed subjective evaluations of affect change due to gameplay to study the reward system. Subjects reporting greater negative affect after playing the game had less rTP activity associated with failure. The rTP may therefore be involved in evaluating the failure events in a social context, to regulate the players' mood.
Development of the brain's functional network architecture.
Vogel, Alecia C; Power, Jonathan D; Petersen, Steven E; Schlaggar, Bradley L
2010-12-01
A full understanding of the development of the brain's functional network architecture requires not only an understanding of developmental changes in neural processing in individual brain regions but also an understanding of changes in inter-regional interactions. Resting state functional connectivity MRI (rs-fcMRI) is increasingly being used to study functional interactions between brain regions in both adults and children. We briefly review methods used to study functional interactions and networks with rs-fcMRI and how these methods have been used to define developmental changes in network functional connectivity. The developmental rs-fcMRI studies to date have found two general properties. First, regional interactions change from being predominately anatomically local in children to interactions spanning longer cortical distances in young adults. Second, this developmental change in functional connectivity occurs, in general, via mechanisms of segregation of local regions and integration of distant regions into disparate subnetworks.
Development of the Brain's Functional Network Architecture
Power, Jonathan D.; Petersen, Steven E.; Schlaggar, Bradley L.
2013-01-01
A full understanding of the development of the brain's functional network architecture requires not only an understanding of developmental changes in neural processing in individual brain regions but also an understanding of changes in inter-regional interactions. Resting state functional connectivity MRI (rs-fcMRI) is increasingly being used to study functional interactions between brain regions in both adults and children. We briefly review methods used to study functional interactions and networks with rs-fcMRI and how these methods have been used to define developmental changes in network functional connectivity. The developmental rs-fcMRI studies to date have found two general properties. First, regional interactions change from being predominately anatomically local in children to interactions spanning longer cortical distances in young adults. Second, this developmental change in functional connectivity occurs, in general, via mechanisms of segregation of local regions and integration of distant regions into disparate subnetworks. PMID:20976563
Stevens, Michael C
2016-11-01
This review summarizes functional magnetic resonance imaging (fMRI) research done over the past decade that examined changes in the function and organization of brain networks across human adolescence. Its over-arching goal is to highlight how both resting state functional connectivity (rs-fcMRI) and task-based functional connectivity (t-fcMRI) have jointly contributed - albeit in different ways - to our understanding of the scope and types of network organization changes that occur from puberty until young adulthood. These two approaches generally have tested different types of hypotheses using different analysis techniques. This has hampered the convergence of findings. Although much has been learned about system-wide changes to adolescents' neural network organization, if both rs-fcMRI and t-fcMRI approaches draw upon each other's methodology and ask broader questions, it will produce a more detailed connectome-informed theory of adolescent neurodevelopment to guide physiological, clinical, and other lines of research. Copyright © 2016 Elsevier Ltd. All rights reserved.
Functional magnetic resonance imaging in clinical practice: State of the art and science.
Barras, Christen D; Asadi, Hamed; Baldeweg, Torsten; Mancini, Laura; Yousry, Tarek A; Bisdas, Sotirios
2016-11-01
Functional magnetic resonance imaging (fMRI) has become a mainstream neuroimaging modality in the assessment of patients being evaluated for brain tumour and epilepsy surgeries. Thus, it is important for doctors in primary care settings to be well acquainted with the present and potential future applications, as well as limitations, of this modality. The objective of this article is to introduce the theoretical principles and state-of-the-art clinical applications of fMRI in brain tumour and epilepsy surgery, with a focus on the implications for clinical primary care. fMRI enables non-invasive functional mapping of specific cortical tasks (eg motor, language, memory-based, visual), revealing information about functional localisation, anatomical variation in cortical function, and disease effects and adaptations, including the fascinating phenomenon of brain plasticity. fMRI is currently ordered by specialist neurologists and neurosurgeons for the purposes of pre-surgical assessment, and within the context of an experienced multidisciplinary team to prepare, conduct and interpret the scan. With an increasing number of patients undergoing fMRI, general practitioners can expect questions about the current and emerging role of fMRI in clinical care from these patients and their families.
Chu, Alan; Noll, Douglas C
2016-10-01
Simultaneous multislice (SMS) imaging is a useful way to accelerate functional magnetic resonance imaging (fMRI). As acceleration becomes more aggressive, an increasingly larger number of receive coils are required to separate the slices, which significantly increases the computational burden. We propose a coil compression method that works with concentric ring non-Cartesian SMS imaging and should work with Cartesian SMS as well. We evaluate the method on fMRI scans of several subjects and compare it to standard coil compression methods. The proposed method uses a slice-separation k-space kernel to simultaneously compress coil data into a set of virtual coils. Five subjects were scanned using both non-SMS fMRI and SMS fMRI with three simultaneous slices. The SMS fMRI scans were processed using the proposed method, along with other conventional methods. Code is available at https://github.com/alcu/sms. The proposed method maintained functional activation with a fewer number of virtual coils than standard SMS coil compression methods. Compression of non-SMS fMRI maintained activation with a slightly lower number of virtual coils than the proposed method, but does not have the acceleration advantages of SMS fMRI. The proposed method is a practical way to compress and reconstruct concentric ring SMS data and improves the preservation of functional activation over standard coil compression methods in fMRI. Magn Reson Med 76:1196-1209, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Wu, Nan; Xie, Bing; Wu, Guo-Cai; Lan, Chuan; Wang, Jian; Feng, Hua
2010-01-01
Language area-related lesion is a serious issue in neurosurgery. Removing the lesion in the language area and at the same time preserving language functions is a great challenge. In this study, we aimed to screen functional magnetic resonance imaging (fMRI) based task types suitable for activation of Broca and Wernicke areas in Chinese population, characterize lesion properties of functional area of Chinese language in brain, and assess the potential of fMRI-guided neuronavigation in clinical applications. Blood oxygen level-dependent fMRI has been used to localize language area prior to operation. We carried out extensive fMRI analyses and conducted operation on patients with lesions in speech area. fMRI tests revealed that the reciting task in Chinese can steadily activate the Broca area, and paragraph comprehension task in Chinese can effectively activate the Wernicke area. Cortical stimulation of patients when being awake during operation validated the sensitivity and accuracy of fMRI. The safe distance between language activation area and removal of the lesion in language area was determined to be about 10 mm. Further investigation suggested that navigation of fMRI combined with diffuse tensor imaging can decrease the incidence of postoperative dysfunction and increase the success rate for complete removal of lesion. Taken together, these findings may be helpful to clinical therapy for language area-related lesions.
Scarapicchia, Vanessa; Brown, Cassandra; Mayo, Chantel; Gawryluk, Jodie R.
2017-01-01
Although blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) is a widely available, non-invasive technique that offers excellent spatial resolution, it remains limited by practical constraints imposed by the scanner environment. More recently, functional near infrared spectroscopy (fNIRS) has emerged as an alternative hemodynamic-based approach that possesses a number of strengths where fMRI is limited, most notably in portability and higher tolerance for motion. To date, fNIRS has shown promise in its ability to shed light on the functioning of the human brain in populations and contexts previously inaccessible to fMRI. Notable contributions include infant neuroimaging studies and studies examining full-body behaviors, such as exercise. However, much like fMRI, fNIRS has technical constraints that have limited its application to clinical settings, including a lower spatial resolution and limited depth of recording. Thus, by combining fMRI and fNIRS in such a way that the two methods complement each other, a multimodal imaging approach may allow for more complex research paradigms than is feasible with either technique alone. In light of these issues, the purpose of the current review is to: (1) provide an overview of fMRI and fNIRS and their associated strengths and limitations; (2) review existing combined fMRI-fNIRS recording studies; and (3) discuss how their combined use in future research practices may aid in advancing modern investigations of human brain function. PMID:28867998
Evaluation of MRI issues for a new neurological implant, the Sensor Reservoir.
Shellock, Frank G; Knebel, Jörg; Prat, Angelina D
2013-09-01
A new neurological implant, the Sensor-Reservoir, was developed to provide a relative measurement of ICP, which permits a noninvasive technique to detect and localize occlusions in ventricular drainage systems and, thus, to identify mechanical damage to shunt valves. The "reservoir" of this device can be used to administer medication or a contrast agent, to extract cerebral spinal fluid (CSF), and with the possibility of directly measuring ICP. The Sensor-Reservoir was evaluated to identify possible MRI-related issues at 1.5-T/64-MHz and 3-T/128-MHz. Standard testing techniques were utilized to evaluate magnetic field interactions (i.e., translational attraction and torque), MRI-related heating, and artifacts at 3-T for the Sensor-Reservoir. In addition, 12 samples of the Sensor-Reservoir underwent testing to determine if the function of these devices was affected by exposures to various MRI conditions at 1.5-T/64-MHz and 3-T/128-MHz. Magnetic field interactions for the Sensor-Reservoir were not substantial. The heating results indicated a highest temperature rise of 1.8 °C, which poses no patient risks. Artifacts were relatively small in relation to the size and shape of the Sensor-Reservoir, but may interfere diagnostically if the area of interest is near the device. All devices were unaffected by exposures to MRI conditions at 1.5-T/64-MHz and 3-T/128-MHz. When specific guidelines are followed, the Sensor-Reservoir is "MR conditional" for patients undergoing MRI examinations at 3-T or less. Copyright © 2013 Elsevier Inc. All rights reserved.
Dong, Jian W.; Brennan, Nicole M. Petrovich; Izzo, Giana; Peck, Kyung K.; Holodny, Andrei I.
2016-01-01
Introduction Functional MRI (fMRI) can assess language lateralization in brain tumor patients; however, this can be limited if the primary language area—Broca's area (BA)—is affected by the tumor. We hypothesized that the middle frontal gyrus (MFG) can be used as a clinical indicator of hemispheric dominance for language during presurgical workup. Methods Fifty-two right-handed subjects with solitary left-hemispheric primary brain tumors were retrospectively studied. Subjects performed a verbal fluency task during fMRI. The MFG was compared to BA for fMRI voxel activation, language laterality index (LI), and the effect of tumor grade on the LI. Results Language fMRI (verbal fluency) activated more voxels in MFG than in BA (MFG = 315, BA = 216, p < 0.001). Voxel activations in the left-hemispheric MFG and BA were positively correlated (r = 0.69, p < 0.001). Mean LI in the MFG was comparable to that in BA (MFG = 0.48, BA = 0.39, p = 0.06). LIs in MFG and BA were positively correlated (r = 0.62, p < 0.001). Subjects with high-grade tumors demonstrate lower language lateralization than those with low-grade tumors in both BA and MFG (p = 0.02, p = 0.02, respectively). Conclusion MFG is comparable to BA in its ability to indicate hemispheric dominance for language using a measure of verbal fluency and may be an adjunct measure in the clinical determination of language laterality for presurgical planning. PMID:26847705
Dong, Jian W; Brennan, Nicole M Petrovich; Izzo, Giana; Peck, Kyung K; Holodny, Andrei I
2016-05-01
Functional MRI (fMRI) can assess language lateralization in brain tumor patients; however, this can be limited if the primary language area-Broca's area (BA)-is affected by the tumor. We hypothesized that the middle frontal gyrus (MFG) can be used as a clinical indicator of hemispheric dominance for language during presurgical workup. Fifty-two right-handed subjects with solitary left-hemispheric primary brain tumors were retrospectively studied. Subjects performed a verbal fluency task during fMRI. The MFG was compared to BA for fMRI voxel activation, language laterality index (LI), and the effect of tumor grade on the LI. Language fMRI (verbal fluency) activated more voxels in MFG than in BA (MFG = 315, BA = 216, p < 0.001). Voxel activations in the left-hemispheric MFG and BA were positively correlated (r = 0.69, p < 0.001). Mean LI in the MFG was comparable to that in BA (MFG = 0.48, BA = 0.39, p = 0.06). LIs in MFG and BA were positively correlated (r = 0.62, p < 0.001). Subjects with high-grade tumors demonstrate lower language lateralization than those with low-grade tumors in both BA and MFG (p = 0.02, p = 0.02, respectively). MFG is comparable to BA in its ability to indicate hemispheric dominance for language using a measure of verbal fluency and may be an adjunct measure in the clinical determination of language laterality for presurgical planning.
Bayesian Inference for Functional Dynamics Exploring in fMRI Data.
Guo, Xuan; Liu, Bing; Chen, Le; Chen, Guantao; Pan, Yi; Zhang, Jing
2016-01-01
This paper aims to review state-of-the-art Bayesian-inference-based methods applied to functional magnetic resonance imaging (fMRI) data. Particularly, we focus on one specific long-standing challenge in the computational modeling of fMRI datasets: how to effectively explore typical functional interactions from fMRI time series and the corresponding boundaries of temporal segments. Bayesian inference is a method of statistical inference which has been shown to be a powerful tool to encode dependence relationships among the variables with uncertainty. Here we provide an introduction to a group of Bayesian-inference-based methods for fMRI data analysis, which were designed to detect magnitude or functional connectivity change points and to infer their functional interaction patterns based on corresponding temporal boundaries. We also provide a comparison of three popular Bayesian models, that is, Bayesian Magnitude Change Point Model (BMCPM), Bayesian Connectivity Change Point Model (BCCPM), and Dynamic Bayesian Variable Partition Model (DBVPM), and give a summary of their applications. We envision that more delicate Bayesian inference models will be emerging and play increasingly important roles in modeling brain functions in the years to come.
Resting-state fMRI in sleeping infants more closely resembles adult sleep than adult wakefulness
Snyder, Abraham Z.; Tagliazucchi, Enzo; Laufs, Helmut; Elison, Jed; Emerson, Robert W.; Shen, Mark D.; Wolff, Jason J.; Botteron, Kelly N.; Dager, Stephen; Estes, Annette M.; Evans, Alan; Gerig, Guido; Hazlett, Heather C.; Paterson, Sarah J.; Schultz, Robert T.; Styner, Martin A.; Zwaigenbaum, Lonnie; Schlaggar, Bradley L.
2017-01-01
Resting state functional magnetic resonance imaging (rs-fMRI) in infants enables important studies of functional brain organization early in human development. However, rs-fMRI in infants has universally been obtained during sleep to reduce participant motion artifact, raising the question of whether differences in functional organization between awake adults and sleeping infants that are commonly attributed to development may instead derive, at least in part, from sleep. This question is especially important as rs-fMRI differences in adult wake vs. sleep are well documented. To investigate this question, we compared functional connectivity and BOLD signal propagation patterns in 6, 12, and 24 month old sleeping infants with patterns in adult wakefulness and non-REM sleep. We find that important functional connectivity features seen during infant sleep closely resemble those seen during adult sleep, including reduced default mode network functional connectivity. However, we also find differences between infant and adult sleep, especially in thalamic BOLD signal propagation patterns. These findings highlight the importance of considering sleep state when drawing developmental inferences in infant rs-fMRI. PMID:29149191
Resting-state fMRI in sleeping infants more closely resembles adult sleep than adult wakefulness.
Mitra, Anish; Snyder, Abraham Z; Tagliazucchi, Enzo; Laufs, Helmut; Elison, Jed; Emerson, Robert W; Shen, Mark D; Wolff, Jason J; Botteron, Kelly N; Dager, Stephen; Estes, Annette M; Evans, Alan; Gerig, Guido; Hazlett, Heather C; Paterson, Sarah J; Schultz, Robert T; Styner, Martin A; Zwaigenbaum, Lonnie; Schlaggar, Bradley L; Piven, Joseph; Pruett, John R; Raichle, Marcus
2017-01-01
Resting state functional magnetic resonance imaging (rs-fMRI) in infants enables important studies of functional brain organization early in human development. However, rs-fMRI in infants has universally been obtained during sleep to reduce participant motion artifact, raising the question of whether differences in functional organization between awake adults and sleeping infants that are commonly attributed to development may instead derive, at least in part, from sleep. This question is especially important as rs-fMRI differences in adult wake vs. sleep are well documented. To investigate this question, we compared functional connectivity and BOLD signal propagation patterns in 6, 12, and 24 month old sleeping infants with patterns in adult wakefulness and non-REM sleep. We find that important functional connectivity features seen during infant sleep closely resemble those seen during adult sleep, including reduced default mode network functional connectivity. However, we also find differences between infant and adult sleep, especially in thalamic BOLD signal propagation patterns. These findings highlight the importance of considering sleep state when drawing developmental inferences in infant rs-fMRI.
Nitkunan, Arani; Barrick, Tom R; Charlton, Rebecca A; Clark, Chris A; Markus, Hugh S
2008-07-01
Cerebral small vessel disease is the most common cause of vascular dementia. Interest in using MRI parameters as surrogate markers of disease to assess therapies is increasing. In patients with symptomatic sporadic small vessel disease, we determined which MRI parameters best correlated with cognitive function on cross-sectional analysis and which changed over a period of 1 year. Thirty-five patients with lacunar stroke and leukoaraiosis were recruited. They underwent multimodal MRI (brain volume, fluid-attenuated inversion recovery lesion load, lacunar infarct number, fractional anisotropy, and mean diffusivity from diffusion tensor imaging) and neuropsychological testing. Twenty-seven agreed to reattend for repeat MRI and neuropsychology at 1 year. An executive function score correlated most strongly with diffusion tensor imaging (fractional anisotropy histogram, r=-0.640, P=0.004) and brain volume (r=0.501, P=0.034). Associations with diffusion tensor imaging were stronger than with all other MRI parameters. On multiple regression of all imaging parameters, a model that contained brain volume and fractional anisotropy, together with age, gender, and premorbid IQ, explained 74% of the variance of the executive function score (P=0.0001). Changes in mean diffusivity and fractional anisotropy were detectable over the 1-year follow-up; in contrast, no change in other MRI parameters was detectable over this time period. A multimodal MRI model explains a large proportion of the variation in executive function in cerebral small vessel disease. In particular, diffusion tensor imaging correlates best with executive function and is the most sensitive to change. This supports the use of MRI, in particular diffusion tensor imaging, as a surrogate marker in treatment trials.
Roux, F; Boulanouar, K; Ibarrola, D; Tremoulet, M; Chollet, F; Berry, I
2000-01-01
OBJECTIVE—To support the hypothesis about the potential compensatory role of ipsilateral corticofugal pathways when the contralateral pathways are impaired by brain tumours. METHODS—Retrospective analysis was carried out on the results of functional MRI (fMRI) of a selected group of five paretic patients with Rolandic brain tumours who exhibited an abnormally high ipsilateral/contralateral ratio of activation—that is, movements of the paretic hand activated predominately the ipsilateral cortex. Brain activation was achieved with a flexion extension of the fingers. Statistical parametric activation was obtained using a t test and a threshold of p<0.001. These patients, candidates for tumour resection, also underwent cortical intraoperative stimulation that was correlated to the fMRI spatial data using three dimensional reconstructions of the brain. Three patients also had postoperative control fMRI. RESULTS—The absence of fMRI activation of the primary sensorimotor cortex normally innervating the paretic hand for the threshold chosen, was correlated with completely negative cortical responses of the cortical hand area during the operation. The preoperative fMRI activation of these patients predominantly found in the ipsilateral frontal and primary sensorimotor cortices could be related to the residual ipsilateral hand function. Postoperatively, the fMRI activation returned to more classic patterns of activation, reflecting the consequences of therapy. CONCLUSION—In paretic patients with brain tumours, ipsilateral control could be implicated in the residual hand function, when the normal primary pathways are impaired. The possibility that functional tissue still remains in the peritumorous sensorimotor cortex even when the preoperative fMRI and the cortical intraoperative stimulations are negative, should be taken into account when planning the tumour resection and during the operation. PMID:10990503
Early classification of Alzheimer's disease using hippocampal texture from structural MRI
NASA Astrophysics Data System (ADS)
Zhao, Kun; Ding, Yanhui; Wang, Pan; Dou, Xuejiao; Zhou, Bo; Yao, Hongxiang; An, Ningyu; Zhang, Yongxin; Zhang, Xi; Liu, Yong
2017-03-01
Convergent evidence has been collected to support that Alzheimer's disease (AD) is associated with reduction in hippocampal volume based on anatomical magnetic resonance imaging (MRI) and impaired functional connectivity based on functional MRI. Radiomics texture analysis has been previously successfully used to identify MRI biomarkers of several diseases, including AD, mild cognitive impairment and multiple sclerosis. In this study, our goal was to determine if MRI hippocampal textures, including the intensity, shape, texture and wavelet features, could be served as an MRI biomarker of AD. For this purpose, the texture marker was trained and evaluated from MRI data of 48 AD and 39 normal samples. The result highlights the presence of hippocampal texture abnormalities in AD, and the possibility that texture may serve as a neuroimaging biomarker for AD.
Neonatal brain resting-state functional connectivity imaging modalities.
Mohammadi-Nejad, Ali-Reza; Mahmoudzadeh, Mahdi; Hassanpour, Mahlegha S; Wallois, Fabrice; Muzik, Otto; Papadelis, Christos; Hansen, Anne; Soltanian-Zadeh, Hamid; Gelovani, Juri; Nasiriavanaki, Mohammadreza
2018-06-01
Infancy is the most critical period in human brain development. Studies demonstrate that subtle brain abnormalities during this state of life may greatly affect the developmental processes of the newborn infants. One of the rapidly developing methods for early characterization of abnormal brain development is functional connectivity of the brain at rest. While the majority of resting-state studies have been conducted using magnetic resonance imaging (MRI), there is clear evidence that resting-state functional connectivity (rs-FC) can also be evaluated using other imaging modalities. The aim of this review is to compare the advantages and limitations of different modalities used for the mapping of infants' brain functional connectivity at rest. In addition, we introduce photoacoustic tomography, a novel functional neuroimaging modality, as a complementary modality for functional mapping of infants' brain.
TH-CD-202-09: Free-Breathing Proton MRI Functional Lung Avoidance Maps to Guide Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capaldi, D; Sheikh, K; Parraga, G
Purpose: Pulmonary functional MRI using inhaled gas contrast agents was previously investigated as a way to identify well-functioning lung in patients with NSCLC who are clinical candidates for radiotherapy. Hyperpolarized noble-gas ({sup 3}He and {sup 129}Xe) MRI has also been optimized to measure functional lung information, but for a number of reasons, the clinical translation of this approach to guide radiotherapy planning has been limited. As an alternative, free-breathing pulmonary 1H MRI using clinically available MRI systems and pulse sequences provides a non-contrast-enhanced method to generate both ventilation and perfusion maps. Free-breathing {sup 1}H MRI exploits non-rigid registration and Fouriermore » decomposition of MRI signal intensity differences (Bauman et al., MRM, 2009) that may be generated during normal tidal breathing. Here, our objective was to generate free-breathing {sup 1}H MRI ventilation and lung function avoidance maps in patients with NSCLC as a way to guide radiation therapy planning. Methods: Stage IIIA/IIIB NSCLC patients (n=8, 68±9yr) provided written informed consent to a randomized controlled clinical trial ( https://clinicaltrials.gov/ct2/show/NCT02002052 ) that aimed to compare outcomes related to image-guided versus conventional radiation therapy planning. Hyperpolarized {sup 3}He/{sup 129}Xe and dynamic free tidal-breathing {sup 1}H MRI were acquired as previously described (Capaldi et al., Acad Radiol, 2015). Non-rigid registration was performed using the modality-independent-neighbourhood-descriptor (MIND) deformable approach (Heinrich et al., Med Image Anal, 2012). Ventilation-defect-percent ({sup 3}He:VDP{sub He}, {sup 129}Xe:VDP{sub Xe}, Free-breathing-{sup 1}H:VDP{sub FB}) and the corresponding ventilation maps were compared using Pearson correlation coefficients (r) and the Dice similarity coefficient (DSC). Results: VDP{sub FB} was significantly related to VDP{sub He} (r=.71; p=.04) and VDP{sub Xe} (r=.80; p=.01) and there were also strong spatial relationships (DSC{sub He}/DSC{sub Xe}=89±3%/77±11%). Conclusion: In this proof of concept study in NSCLC patients, free-breathing {sup 1}H MRI ventilation defects were quantitatively and spatially related to inhaled-noble-gas MRI ventilation defects. Free-breathing {sup 1}H MRI measures lung function/ventilation that can be used to optimize radiotherapy planning in NSCLC patients.« less
Scrascia, Federica; Quattrocchi, Carlo Cosimo; Errante, Yuri; Gangemi, Emma; Curcio, Giuseppe; Ursini, Francesca; Silvestrini, Mauro; Maggio, Paola; Beomonte Zobel, Bruno; Rossini, Paolo Maria; Pasqualetti, Patrizio; Falsetti, Lorenzo; Vernieri, Fabrizio
2016-01-01
Background and Purpose An increase in brain water diffusivity as measured using magnetic resonance imaging (MRI) has been recently reported in normal-appearing white matter (NAWM) in patients affected by cognitive impairment. However, it remains to be clarified if this reflects an overt neuronal tissue disruption that leads to degenerative or microvascular lesions. This question was addressed by comparing the regional MRI apparent diffusion coefficients (ADCs) of NAWM in patients affected by Alzheimer's disease (AD) or vascular dementia (VaD). The relationships of ADCs with the white-matter hyperintensity (WMH) burden, carotid atherosclerosis, and cognitive performance were also investigated. Methods Forty-nine AD and 31 VaD patients underwent brain MRI to assess the WMH volume and regional NAWM ADCs, neuropsychological evaluations, and carotid ultrasound to assess the plaque severity and intima-media thickness (IMT). Results Regional ADCs in NAWM did not differ between VaD and AD patients, while the WMH volume was greater in VaD than in AD patients. The ADC in the anterior corpus callosum was related to the WMH volume, while a greater carotid IMT was positively correlated with the temporal ADC and WMH volume. The memory performance was worse in patients with higher temporal ADCs. Constructional praxis scores were related to ADCs in the frontal, and occipital lobes, in the anterior and posterior corpus callosum as well as to the WMH volume. Abstract reasoning was related to frontal, parietal, and temporal ADCs. Conclusions Our data show that higher regional ADCs in NAWM are associated with microcirculatory impairment, as depicted by the WMH volume. Moreover, regional ADCs in NAWM are differently associated with the neuropsychological performances in memory, constructional praxia, and abstract reasoning domains. PMID:27074295
Epileptic Discharges Affect the Default Mode Network – fMRI and Intracerebral EEG Evidence
Fahoum, Firas; Zelmann, Rina; Tyvaert, Louise; Dubeau, François; Gotman, Jean
2013-01-01
Functional neuroimaging studies of epilepsy patients often show, at the time of epileptic activity, deactivation in default mode network (DMN) regions, which is hypothesized to reflect altered consciousness. We aimed to study the metabolic and electrophysiological correlates of these changes in the DMN regions. We studied six epilepsy patients that underwent scalp EEG-fMRI and later stereotaxic intracerebral EEG (SEEG) sampling regions of DMN (posterior cingulate cortex, Pre-cuneus, inferior parietal lobule, medial prefrontal cortex and dorsolateral frontal cortex) as well as non-DMN regions. SEEG recordings were subject to frequency analyses comparing sections with interictal epileptic discharges (IED) to IED-free baselines in the IED-generating region, DMN and non-DMN regions. EEG-fMRI and SEEG were obtained at rest. During IEDs, EEG-fMRI demonstrated deactivation in various DMN nodes in 5 of 6 patients, most frequently the pre-cuneus and inferior parietal lobule, and less frequently the other DMN nodes. SEEG analyses demonstrated decrease in gamma power (50–150 Hz), and increase in the power of lower frequencies (<30 Hz) at times of IEDs, in at least one DMN node in all patients. These changes were not apparent in the non-DMN regions. We demonstrate that, at the time of IEDs, DMN regions decrease their metabolic demand and undergo an EEG change consisting of decreased gamma and increased lower frequencies. These findings, specific to DMN regions, confirm in a pathological condition a direct relationship between DMN BOLD activity and EEG activity. They indicate that epileptic activity affects the DMN, and therefore may momentarily reduce the consciousness level and cognitive reserve. PMID:23840805
Music supported therapy promotes motor plasticity in individuals with chronic stroke.
Ripollés, P; Rojo, N; Grau-Sánchez, J; Amengual, J L; Càmara, E; Marco-Pallarés, J; Juncadella, M; Vaquero, L; Rubio, F; Duarte, E; Garrido, C; Altenmüller, E; Münte, T F; Rodríguez-Fornells, A
2016-12-01
Novel rehabilitation interventions have improved motor recovery by induction of neural plasticity in individuals with stroke. Of these, Music-supported therapy (MST) is based on music training designed to restore motor deficits. Music training requires multimodal processing, involving the integration and co-operation of visual, motor, auditory, affective and cognitive systems. The main objective of this study was to assess, in a group of 20 individuals suffering from chronic stroke, the motor, cognitive, emotional and neuroplastic effects of MST. Using functional magnetic resonance imaging (fMRI) we observed a clear restitution of both activity and connectivity among auditory-motor regions of the affected hemisphere. Importantly, no differences were observed in this functional network in a healthy control group, ruling out possible confounds such as repeated imaging testing. Moreover, this increase in activity and connectivity between auditory and motor regions was accompanied by a functional improvement of the paretic hand. The present results confirm MST as a viable intervention to improve motor function in chronic stroke individuals.
Sparse representation of whole-brain fMRI signals for identification of functional networks.
Lv, Jinglei; Jiang, Xi; Li, Xiang; Zhu, Dajiang; Chen, Hanbo; Zhang, Tuo; Zhang, Shu; Hu, Xintao; Han, Junwei; Huang, Heng; Zhang, Jing; Guo, Lei; Liu, Tianming
2015-02-01
There have been several recent studies that used sparse representation for fMRI signal analysis and activation detection based on the assumption that each voxel's fMRI signal is linearly composed of sparse components. Previous studies have employed sparse coding to model functional networks in various modalities and scales. These prior contributions inspired the exploration of whether/how sparse representation can be used to identify functional networks in a voxel-wise way and on the whole brain scale. This paper presents a novel, alternative methodology of identifying multiple functional networks via sparse representation of whole-brain task-based fMRI signals. Our basic idea is that all fMRI signals within the whole brain of one subject are aggregated into a big data matrix, which is then factorized into an over-complete dictionary basis matrix and a reference weight matrix via an effective online dictionary learning algorithm. Our extensive experimental results have shown that this novel methodology can uncover multiple functional networks that can be well characterized and interpreted in spatial, temporal and frequency domains based on current brain science knowledge. Importantly, these well-characterized functional network components are quite reproducible in different brains. In general, our methods offer a novel, effective and unified solution to multiple fMRI data analysis tasks including activation detection, de-activation detection, and functional network identification. Copyright © 2014 Elsevier B.V. All rights reserved.
Functional mapping of language networks in the normal brain using a word-association task.
Ghosh, Shantanu; Basu, Amrita; Kumaran, Senthil S; Khushu, Subash
2010-08-01
Language functions are known to be affected in diverse neurological conditions, including ischemic stroke, traumatic brain injury, and brain tumors. Because language networks are extensive, interpretation of functional data depends on the task completed during evaluation. The aim was to map the hemodynamic consequences of word association using functional magnetic resonance imaging (fMRI) in normal human subjects. Ten healthy subjects underwent fMRI scanning with a postlexical access semantic association task vs lexical processing task. The fMRI protocol involved a T2*-weighted gradient-echo echo-planar imaging (GE-EPI) sequence (TR 4523 ms, TE 64 ms, flip angle 90°) with alternate baseline and activation blocks. A total of 78 scans were taken (interscan interval = 3 s) with a total imaging time of 587 s. Functional data were processed in Statistical Parametric Mapping software (SPM2) with 8-mm Gaussian kernel by convolving the blood oxygenation level-dependent (BOLD) signal with an hemodynamic response function estimated by general linear method to generate SPM{t} and SPM{F} maps. Single subject analysis of the functional data (FWE-corrected, P≤0.001) revealed extensive activation in the frontal lobes, with overlaps among middle frontal gyrus (MFG), superior, and inferior frontal gyri. BOLD activity was also found in the medial frontal gyrus, middle occipital gyrus (MOG), anterior fusiform gyrus, superior and inferior parietal lobules, and to a smaller extent, the thalamus and right anterior cerebellum. Group analysis (FWE-corrected, P≤0.001) revealed neural recruitment of bilateral lingual gyri, left MFG, bilateral MOG, left superior occipital gyrus, left fusiform gyrus, bilateral thalami, and right cerebellar areas. Group data analysis revealed a cerebellar-occipital-fusiform-thalamic network centered around bilateral lingual gyri for word association, thereby indicating how these areas facilitate language comprehension by activating a semantic association network of words processed postlexical access. This finding is important when assessing the extent of cognitive damage and/or recovery and can be used for presurgical planning after optimization.
Xu, Tingting; Cullen, Kathryn R.; Mueller, Bryon; Schreiner, Mindy W.; Lim, Kelvin O.; Schulz, S. Charles; Parhi, Keshab K.
2016-01-01
Borderline personality disorder (BPD) is associated with symptoms such as affect dysregulation, impaired sense of self, and self-harm behaviors. Neuroimaging research on BPD has revealed structural and functional abnormalities in specific brain regions and connections. However, little is known about the topological organizations of brain networks in BPD. We collected resting-state functional magnetic resonance imaging (fMRI) data from 20 patients with BPD and 10 healthy controls, and constructed frequency-specific functional brain networks by correlating wavelet-filtered fMRI signals from 82 cortical and subcortical regions. We employed graph-theory based complex network analysis to investigate the topological properties of the brain networks, and employed network-based statistic to identify functional dysconnections in patients. In the 0.03–0.06 Hz frequency band, compared to controls, patients with BPD showed significantly larger measures of global network topology, including the size of largest connected graph component, clustering coefficient, small-worldness, and local efficiency, indicating increased local cliquishness of the functional brain network. Compared to controls, patients showed lower nodal centrality at several hub nodes but greater centrality at several non-hub nodes in the network. Furthermore, an interconnected subnetwork in 0.03–0.06 Hz frequency band was identified that showed significantly lower connectivity in patients. The links in the subnetwork were mainly long-distance connections between regions located at different lobes; and the mean connectivity of this subnetwork was negatively correlated with the increased global topology measures. Lastly, the key network measures showed high correlations with several clinical symptom scores, and classified BPD patients against healthy controls with high accuracy based on linear discriminant analysis. The abnormal topological properties and connectivity found in this study may add new knowledge to the current understanding of functional brain networks in BPD. However, due to limitation of small sample sizes, the results of the current study should be viewed as exploratory and need to be validated on large samples in future works. PMID:26977400
Xu, Tingting; Cullen, Kathryn R; Mueller, Bryon; Schreiner, Mindy W; Lim, Kelvin O; Schulz, S Charles; Parhi, Keshab K
2016-01-01
Borderline personality disorder (BPD) is associated with symptoms such as affect dysregulation, impaired sense of self, and self-harm behaviors. Neuroimaging research on BPD has revealed structural and functional abnormalities in specific brain regions and connections. However, little is known about the topological organizations of brain networks in BPD. We collected resting-state functional magnetic resonance imaging (fMRI) data from 20 patients with BPD and 10 healthy controls, and constructed frequency-specific functional brain networks by correlating wavelet-filtered fMRI signals from 82 cortical and subcortical regions. We employed graph-theory based complex network analysis to investigate the topological properties of the brain networks, and employed network-based statistic to identify functional dysconnections in patients. In the 0.03-0.06 Hz frequency band, compared to controls, patients with BPD showed significantly larger measures of global network topology, including the size of largest connected graph component, clustering coefficient, small-worldness, and local efficiency, indicating increased local cliquishness of the functional brain network. Compared to controls, patients showed lower nodal centrality at several hub nodes but greater centrality at several non-hub nodes in the network. Furthermore, an interconnected subnetwork in 0.03-0.06 Hz frequency band was identified that showed significantly lower connectivity in patients. The links in the subnetwork were mainly long-distance connections between regions located at different lobes; and the mean connectivity of this subnetwork was negatively correlated with the increased global topology measures. Lastly, the key network measures showed high correlations with several clinical symptom scores, and classified BPD patients against healthy controls with high accuracy based on linear discriminant analysis. The abnormal topological properties and connectivity found in this study may add new knowledge to the current understanding of functional brain networks in BPD. However, due to limitation of small sample sizes, the results of the current study should be viewed as exploratory and need to be validated on large samples in future works.
Longitudinal Changes of Resting-State Functional Connectivity during Motor Recovery after Stroke
Park, Chang-hyun; Chang, Won Hyuk; Ohn, Suk Hoon; Kim, Sung Tae; Bang, Oh Young; Pascual-Leone, Alvaro; Kim, Yun-Hee
2013-01-01
Background and Purpose Functional magnetic resonance imaging (fMRI) studies could provide crucial information on the neural mechanisms of motor recovery in stroke patients. Resting-state fMRI is applicable to stroke patients who are not capable of proper performance of the motor task. In this study, we explored neural correlates of motor recovery in stroke patients by investigating longitudinal changes in resting-state functional connectivity of the ipsilesional primary motor cortex (M1). Methods A longitudinal observational study using repeated fMRI experiments was conducted in 12 patients with stroke. Resting-state fMRI data were acquired four times over a period of 6 months. Patients participated in the first session of fMRI shortly after onset, and thereafter in subsequent sessions at 1, 3, and 6 months after onset. Resting-state functional connectivity of the ipsilesional M1 was assessed and compared with that of healthy subjects. Results Compared with healthy subjects, patients demonstrated higher functional connectivity with the ipsilesional frontal and parietal cortices, bilateral thalamus, and cerebellum. Instead, functional connectivity with the contralesional M1 and occipital cortex were decreased in stroke patients. Functional connectivity between the ipsilesional and contralesional M1 showed the most asymmetry at 1 month after onset to the ipsilesional side. Functional connectivity of the ipsilesional M1 with the contralesional thalamus, supplementary motor area, and middle frontal gyrus at onset was positively correlated with motor recovery at 6 months after stroke. Conclusions Resting-state fMRI elicited distinctive but comparable results with previous task-based fMRI, presenting complementary and practical values for use in the study of stroke patients. PMID:21441147
Orlov, Natasza D; Giampietro, Vincent; O'Daly, Owen; Lam, Sheut-Ling; Barker, Gareth J; Rubia, Katya; McGuire, Philip; Shergill, Sukhwinder S; Allen, Paul
2018-02-12
Neurocognitive models and previous neuroimaging work posit that auditory verbal hallucinations (AVH) arise due to increased activity in speech-sensitive regions of the left posterior superior temporal gyrus (STG). Here, we examined if patients with schizophrenia (SCZ) and AVH could be trained to down-regulate STG activity using real-time functional magnetic resonance imaging neurofeedback (rtfMRI-NF). We also examined the effects of rtfMRI-NF training on functional connectivity between the STG and other speech and language regions. Twelve patients with SCZ and treatment-refractory AVH were recruited to participate in the study and were trained to down-regulate STG activity using rtfMRI-NF, over four MRI scanner visits during a 2-week training period. STG activity and functional connectivity were compared pre- and post-training. Patients successfully learnt to down-regulate activity in their left STG over the rtfMRI-NF training. Post- training, patients showed increased functional connectivity between the left STG, the left inferior prefrontal gyrus (IFG) and the inferior parietal gyrus. The post-training increase in functional connectivity between the left STG and IFG was associated with a reduction in AVH symptoms over the training period. The speech-sensitive region of the left STG is a suitable target region for rtfMRI-NF in patients with SCZ and treatment-refractory AVH. Successful down-regulation of left STG activity can increase functional connectivity between speech motor and perception regions. These findings suggest that patients with AVH have the ability to alter activity and connectivity in speech and language regions, and raise the possibility that rtfMRI-NF training could present a novel therapeutic intervention in SCZ.
Saito, Kazuhiro; Ledsam, Joseph; Sourbron, Steven; Hashimoto, Tsuyoshi; Araki, Yoichi; Akata, Soichi; Tokuuye, Koichi
2014-01-01
To investigate if tracer kinetic modelling of low temporal resolution dynamic contrast-enhanced (DCE) MRI with Gd-EOB-DTPA could replace technetium-99 m galactosyl human serum albumin (GSA) single positron emission computed tomography (SPECT) and indocyanine green (ICG) retention for the measurement of liver functional reserve. Twenty eight patients awaiting liver resection for various cancers were included in this retrospective study that was approved by the institutional review board. The Gd-EOB-DTPA MRI sequence acquired five images: unenhanced, double arterial phase, portal phase, and 4 min after injection. Intracellular contrast uptake rate (UR) and extracellular volume (Ve) were calculated from DCE-MRI, along with the ratio of GSA radioactivity of liver to heart-plus-liver and per cent of cumulative uptake from 15-16 min (LHL15 and LU15, respectively) from GSA-scintigraphy. ICG retention at 15 min, Child-Pugh cirrhosis score (CPS) and postoperative Inuyama fibrosis criteria were also recorded. Statistical analysis was with Spearman rank correlation analysis. Comparing MRI parameters with the reference methods, significant correlations were obtained for UR and LHL15, LU15, ICG15 (all 0.4-0.6, P < 0.05); UR and CPS (-0.64, P < 0.001); Ve and Inuyama (0.44, P < 0.05). Measures of liver function obtained by routine Gd-EOB-DTPA DCE-MRI with tracer kinetic modelling may provide a suitable method for the evaluation of liver functional reserve. • Magnetic resonance imaging (MRI) provides new methods of measuring hepatic functional reserve. • DCE-MRI with Gd-EOB-DTPA offers the possibility of replacing scintigraphy. • The analysis method can be used for preoperative liver function evaluation.
Zuo, Xi-Nian; Xu, Ting; Jiang, Lili; Yang, Zhi; Cao, Xiao-Yan; He, Yong; Zang, Yu-Feng; Castellanos, F Xavier; Milham, Michael P
2013-01-15
While researchers have extensively characterized functional connectivity between brain regions, the characterization of functional homogeneity within a region of the brain connectome is in early stages of development. Several functional homogeneity measures were proposed previously, among which regional homogeneity (ReHo) was most widely used as a measure to characterize functional homogeneity of resting state fMRI (R-fMRI) signals within a small region (Zang et al., 2004). Despite a burgeoning literature on ReHo in the field of neuroimaging brain disorders, its test-retest (TRT) reliability remains unestablished. Using two sets of public R-fMRI TRT data, we systematically evaluated the ReHo's TRT reliability and further investigated the various factors influencing its reliability and found: 1) nuisance (head motion, white matter, and cerebrospinal fluid) correction of R-fMRI time series can significantly improve the TRT reliability of ReHo while additional removal of global brain signal reduces its reliability, 2) spatial smoothing of R-fMRI time series artificially enhances ReHo intensity and influences its reliability, 3) surface-based R-fMRI computation largely improves the TRT reliability of ReHo, 4) a scan duration of 5 min can achieve reliable estimates of ReHo, and 5) fast sampling rates of R-fMRI dramatically increase the reliability of ReHo. Inspired by these findings and seeking a highly reliable approach to exploratory analysis of the human functional connectome, we established an R-fMRI pipeline to conduct ReHo computations in both 3-dimensions (volume) and 2-dimensions (surface). Copyright © 2012 Elsevier Inc. All rights reserved.
A phenome-wide examination of neural and cognitive function.
Poldrack, R A; Congdon, E; Triplett, W; Gorgolewski, K J; Karlsgodt, K H; Mumford, J A; Sabb, F W; Freimer, N B; London, E D; Cannon, T D; Bilder, R M
2016-12-06
This data descriptor outlines a shared neuroimaging dataset from the UCLA Consortium for Neuropsychiatric Phenomics, which focused on understanding the dimensional structure of memory and cognitive control (response inhibition) functions in both healthy individuals (130 subjects) and individuals with neuropsychiatric disorders including schizophrenia (50 subjects), bipolar disorder (49 subjects), and attention deficit/hyperactivity disorder (43 subjects). The dataset includes an extensive set of task-based fMRI assessments, resting fMRI, structural MRI, and high angular resolution diffusion MRI. The dataset is shared through the OpenfMRI project, and is formatted according to the Brain Imaging Data Structure (BIDS) standard.
Bühler, Mira; Vollstädt-Klein, Sabine; Klemen, Jane; Smolka, Michael N
2008-07-22
Existing brain imaging studies, investigating sexual arousal via the presentation of erotic pictures or film excerpts, have mainly used blocked designs with long stimulus presentation times. To clarify how experimental functional magnetic resonance imaging (fMRI) design affects stimulus-induced brain activity, we compared brief event-related presentation of erotic vs. neutral stimuli with blocked presentation in 10 male volunteers. Brain activation differed depending on design type in only 10% of the voxels showing task related brain activity. Differences between blocked and event-related stimulus presentation were found in occipitotemporal and temporal regions (Brodmann Area (BA) 19, 37, 48), parietal areas (BA 7, 40) and areas in the frontal lobe (BA 6, 44). Our results suggest that event-related designs might be a potential alternative when the core interest is the detection of networks associated with immediate processing of erotic stimuli.Additionally, blocked, compared to event-related, stimulus presentation allows the emergence and detection of non-specific secondary processes, such as sustained attention, motor imagery and inhibition of sexual arousal.
Bühler, Mira; Vollstädt-Klein, Sabine; Klemen, Jane; Smolka, Michael N
2008-01-01
Background Existing brain imaging studies, investigating sexual arousal via the presentation of erotic pictures or film excerpts, have mainly used blocked designs with long stimulus presentation times. Methods To clarify how experimental functional magnetic resonance imaging (fMRI) design affects stimulus-induced brain activity, we compared brief event-related presentation of erotic vs. neutral stimuli with blocked presentation in 10 male volunteers. Results Brain activation differed depending on design type in only 10% of the voxels showing task related brain activity. Differences between blocked and event-related stimulus presentation were found in occipitotemporal and temporal regions (Brodmann Area (BA) 19, 37, 48), parietal areas (BA 7, 40) and areas in the frontal lobe (BA 6, 44). Conclusion Our results suggest that event-related designs might be a potential alternative when the core interest is the detection of networks associated with immediate processing of erotic stimuli. Additionally, blocked, compared to event-related, stimulus presentation allows the emergence and detection of non-specific secondary processes, such as sustained attention, motor imagery and inhibition of sexual arousal. PMID:18647397
Chan, Kevin C.; Fan, Shu-Juan; Chan, Russell W.; Cheng, Joe S.; Zhou, Iris Y.; Wu, Ed X.
2014-01-01
The rodents are an increasingly important model for understanding the mechanisms of development, plasticity, functional specialization and disease in the visual system. However, limited tools have been available for assessing the structural and functional connectivity of the visual brain network globally, in vivo and longitudinally. There are also ongoing debates on whether functional brain connectivity directly reflects structural brain connectivity. In this study, we explored the feasibility of manganese-enhanced MRI (MEMRI) via 3 different routes of Mn2+ administration for visuotopic brain mapping and understanding of physiological transport in normal and visually deprived adult rats. In addition, resting-state functional connectivity MRI (RSfcMRI) was performed to evaluate the intrinsic functional network and structural-functional relationships in the corresponding anatomical visual brain connections traced by MEMRI. Upon intravitreal, subcortical, and intracortical Mn2+ injection, different topographic and layer-specific Mn enhancement patterns could be revealed in the visual cortex and subcortical visual nuclei along retinal, callosal, cortico-subcortical, transsynaptic and intracortical horizontal connections. Loss of visual input upon monocular enucleation to adult rats appeared to reduce interhemispheric polysynaptic Mn2+ transfer but not intra- or inter-hemispheric monosynaptic Mn2+ transport after Mn2+ injection into visual cortex. In normal adults, both structural and functional connectivity by MEMRI and RSfcMRI was stronger interhemispherically between bilateral primary/secondary visual cortex (V1/V2) transition zones (TZ) than between V1/V2 TZ and other cortical nuclei. Intrahemispherically, structural and functional connectivity was stronger between visual cortex and subcortical visual nuclei than between visual cortex and other subcortical nuclei. The current results demonstrated the sensitivity of MEMRI and RSfcMRI for assessing the neuroarchitecture, neurophysiology and structural-functional relationships of the visual brains in vivo. These may possess great potentials for effective monitoring and understanding of the basic anatomical and functional connections in the visual system during development, plasticity, disease, pharmacological interventions and genetic modifications in future studies. PMID:24394694
Zhang, Xiaojun; Zhou, Jing; Chai, Xuee; Chen, Guiling; Guo, Bin; Ni, Lei; Wu, Peng
2018-04-01
The studies focusing on x-ray, computed tomography (CT), and magnetic resonance imaging (MRI) in pediatric Langerhans cell histiocytosis (LCH) patients were still rare. Therefore, we aimed to evaluate the application of x-ray, CT, and MRI in pediatric LCH patients with long bone involvement.Total 22 pediatric LCH patients were included in this study. The diagnosis of LCH was confirmed by pathological examination. All patients were followed up for 3 years. X-ray, CT, or MRI was performed and the results were recorded for further analyses.Among 22 pediatric patients, x-ray (n = 20), CT (n = 18), or MRI (n = 12) were used to scan the lesion on long bones affected by LCH. Femurs (n = 13, 38.24%), tibia (n = 11, 32.35%), humerus (n = 5, 14.71%), and radius (n = 4, 11.76%) were the most frequently affected anatomic sites. Ovoid or round radiolucent lesions, aggressive periosteal reaction, and swelling of surrounding soft tissues were characteristic image of long bones on x-ray, CT, and MRI in pediatric LCH.Femurs, tibia, humerus, and radius were the most commonly affected long bones of pediatric LCH. The application of x-ray, CT, and MRI on long bones could help with the diagnosis of pediatric LCH.
Clinical applications of the functional connectome
Castellanos, F. Xavier; Di Martino, Adriana; Craddock, R. Cameron; Mehta, Ashesh D.; Milham, Michael P.
2013-01-01
Central to the development of clinical applications of functional connectomics for neurology and psychiatry is the discovery and validation of biomarkers. Resting state fMRI (R-fMRI) is emerging as a mainstream approach for imaging-based biomarker identification, detecting variations in the functional connectome that can be attributed to clinical variables (e.g., diagnostic status). Despite growing enthusiasm, many challenges remain. Here, we assess evidence of the readiness of R-fMRI based functional connectomics to lead to clinically meaningful biomarker identification through the lens of the criteria used to evaluate clinical tests (i.e., validity, reliability, sensitivity, specificity, and applicability). We focus on current R-fMRI-based prediction efforts, and survey R-fMRI used for neurosurgical planning. We identify gaps and needs for R-fMRI-based biomarker identification, highlighting the potential of emerging conceptual, analytical and cultural innovations (e.g., the Research Domain Criteria Project (RDoC), open science initiatives, and Big Data) to address them. Additionally, we note the need to expand future efforts beyond identification of biomarkers for disease status alone to include clinical variables related to risk, expected treatment response and prognosis. PMID:23631991
DPARSF: A MATLAB Toolbox for "Pipeline" Data Analysis of Resting-State fMRI.
Chao-Gan, Yan; Yu-Feng, Zang
2010-01-01
Resting-state functional magnetic resonance imaging (fMRI) has attracted more and more attention because of its effectiveness, simplicity and non-invasiveness in exploration of the intrinsic functional architecture of the human brain. However, user-friendly toolbox for "pipeline" data analysis of resting-state fMRI is still lacking. Based on some functions in Statistical Parametric Mapping (SPM) and Resting-State fMRI Data Analysis Toolkit (REST), we have developed a MATLAB toolbox called Data Processing Assistant for Resting-State fMRI (DPARSF) for "pipeline" data analysis of resting-state fMRI. After the user arranges the Digital Imaging and Communications in Medicine (DICOM) files and click a few buttons to set parameters, DPARSF will then give all the preprocessed (slice timing, realign, normalize, smooth) data and results for functional connectivity, regional homogeneity, amplitude of low-frequency fluctuation (ALFF), and fractional ALFF. DPARSF can also create a report for excluding subjects with excessive head motion and generate a set of pictures for easily checking the effect of normalization. In addition, users can also use DPARSF to extract time courses from regions of interest.
Gulsen, Salih
2015-03-15
The first goal in neurosurgery is to protect neural function as long as it is possible. Moreover, while protecting the neural function, a neurosurgeon should extract the maximum amount of tumoral tissue from the tumour region of the brain. So neurosurgery and technological advancement go hand in hand to realize this goal. Using of CT compatible stereotaxy for removing a cranial tumour is to be commended as a cornerstone of these technological advancements. Following CT compatible stereotaxic system applications in neurosurgery, different techniques have taken place in neurosurgical practice. These techniques are magnetic resonance imaging (MRI), MRI compatible stereotaxis, frameless stereotaxy, volumetric stereotaxy, functional MRI, diffusion tensor (DT) imaging techniques (tractography of the white matter), intraoperative MRI and neuronavigation systems. However, to use all of this equipment having these technologies would be impossible because of economic reasons. However, when we correlated this technique with MRI scans of the patients with CT compatible stereotaxy scans, it is possible to provide gross total resection and protect and improve patients' neural functions.
A new vibrator to stimulate muscle proprioceptors in fMRI.
Montant, Marie; Romaiguère, Patricia; Roll, Jean-Pierre
2009-03-01
Studying cognitive brain functions by functional magnetic resonance imaging (fMRI) requires appropriate stimulation devices that do not interfere with the magnetic fields. Since the emergence of fMRI in the 90s, a number of stimulation devices have been developed for the visual and auditory modalities. Only few devices, however, have been developed for the somesthesic modality. Here, we present a vibration device for studying somesthesia that is compatible with high magnetic field environments and that can be used in fMRI machines. This device consists of a poly vinyl chloride (PVC) vibrator containing a wind turbine and of a pneumatic apparatus that controls 1-6 vibrators simultaneously. Just like classical electromagnetic vibrators, our device stimulates muscle mechanoreceptors (muscle spindles) and generates reliable illusions of movement. We provide the fMRI compatibility data (phantom test), the calibration curve (vibration frequency as a function of air flow), as well as the results of a kinesthetic test (perceived speed of the illusory movement as a function of vibration frequency). This device was used successfully in several brain imaging studies using both fMRI and magnetoencephalography.
Analyzing and Assessing Brain Structure with Graph Connectivity Measures
2014-05-09
structural brain networks, i.e. determining which regions of the brain are physically connected. Meanwhile, functional MRI ( fMRI ) yields an image of...produced by fMRI is a map of which parts are of the brain are active and which are not at a given time. In creating functional networks, regions of...the brain which often activitate together, i.e., often show up on fMRI as deoxygenated regions together, are considered connected. DTI allows the
Defining Functional Areas in Individual Human Brains using Resting Functional Connectivity MRI
Cohen, Alexander L.; Fair, Damien A.; Dosenbach, Nico U.F.; Miezin, Francis M.; Dierker, Donna; Van Essen, David C.; Schlaggar, Bradley L.; Petersen, Steven E.
2009-01-01
The cerebral cortex is anatomically organized at many physical scales starting at the level of single neurons and extending up to functional systems. Current functional magnetic resonance imaging (fMRI) studies often focus at the level of areas, networks, and systems. Except in restricted domains, (e.g. topographically-organized sensory regions), it is difficult to determine area boundaries in the human brain using fMRI. The ability to delineate functional areas non-invasively would enhance the quality of many experimental analyses allowing more accurate across-subject comparisons of independently identified functional areas. Correlations in spontaneous BOLD activity, often referred to as resting state functional connectivity (rs-fcMRI), are especially promising as a way to accurately localize differences in patterns of correlated activity across large expanses of cortex. In the current report, we applied a novel set of image analysis tools to explore the utility of rs-fcMRI for defining wide-ranging functional area boundaries. We find that rs-fcMRI patterns show sharp transitions in correlation patterns and that these putative areal boundaries can be reliably detected in individual subjects as well as in group data. Additionally, combining surface-based analysis techniques with image processing algorithms allows automated mapping of putative areal boundaries across large expanses of cortex without the need for prior information about a region’s function or topography. Our approach reliably produces maps of bounded regions appropriate in size and number for putative functional areas. These findings will hopefully stimulate further methodological refinements and validations. PMID:18367410
Hirnstein, Marco; Westerhausen, René; Korsnes, Maria S; Hugdahl, Kenneth
2013-01-01
Men are often believed to have a functionally more asymmetrical brain organization than women, but the empirical evidence for sex differences in lateralization is unclear to date. Over the years we have collected data from a vast number of participants using the same consonant-vowel dichotic listening task, a reliable marker for language lateralization. One dataset comprised behavioral data from 1782 participants (885 females, 125 non-right-handers), who were divided in four age groups (children <10 yrs, adolescents = 10-15 yrs, younger adults = 16-49 yrs, and older adults >50 yrs). In addition, we had behavioral and functional imaging (fMRI) data from another 104 younger adults (49 females, aged 18-45 yrs), who completed the same dichotic listening task in a 3T scanner. This database allowed us to comprehensively test whether there is a sex difference in functional language lateralization. Across all participants and in both datasets a right ear advantage (REA) emerged, reflecting left-hemispheric language lateralization. Accordingly, the fMRI data revealed a leftward asymmetry in superior temporal lobe language processing areas. In the N = 1782 dataset no main effect of sex but a significant sex by age interaction emerged: the REA increased with age in both sexes but as a result of an earlier onset in females the REA was stronger in female than male adolescents. In turn, male younger adults showed greater asymmetry than female younger adults (accounting for <1% of variance). There were no sex differences in children and older adults. The males in the fMRI dataset (N = 104) also had a greater REA than females (accounting for 4% of variance), but no sex difference emerged in the neuroimaging data. Handedness did not affect these findings. Taken together, our findings suggest that sex differences in language lateralization as assessed with dichotic listening exist, but they are (a) not necessarily reflected in fMRI data, (b) age-dependent and (c) relatively small. Copyright © 2012 Elsevier Ltd. All rights reserved.
Dodell-Feder, David; Delisi, Lynn E; Hooker, Christine I
2014-06-01
Unaffected first-degree relatives of individuals with schizophrenia (i.e., those at familial high-risk [FHR]), demonstrate social dysfunction qualitatively similar though less severe than that of their affected relatives. These social difficulties may be the consequence of genetically conferred disruption to aspects of the default mode network (DMN), such as the dMPFC subsystem, which overlaps with the network of brain regions recruited during social cognitive processes. In the present study, we investigate this possibility, testing DMN connectivity and its relationship to social functioning in FHR using resting-state fMRI. Twenty FHR individuals and 17 controls underwent fMRI during a resting-state scan. Hypothesis-driven functional connectivity analyses examined ROI-to-ROI correlations between the DMN's hubs, and regions of the dMPFC subsystem and MTL subsystem. Connectivity values were examined in relationship to a measure of social functioning and empathy/perspective-taking. Results demonstrate that FHR exhibit reduced connectivity specifically within the dMPFC subsystem of the DMN. Certain ROI-to-ROI correlations predicted aspects of social functioning and empathy/perspective-taking across all participants. Together, the data indicate that disruption to the dMPFC subsystem of the DMN may be associated with familial risk for schizophrenia, and that these intrinsic connections may carry measurable consequences for social functioning. Copyright © 2014 Elsevier B.V. All rights reserved.
Dodell-Feder, David; DeLisi, Lynn E.; Hooker, Christine I.
2014-01-01
Unaffected first-degree relatives of individuals with schizophrenia (i.e., those at familial high-risk [FHR]), demonstrate social dysfunction qualitatively similar though less severe than that of their affected relatives. These social difficulties may be the consequence of genetically conferred disruption to aspects of the default mode network (DMN), such as the dMPFC subsystem, which overlaps with the network of brain regions recruited during social cognitive processes. In the present study, we investigate this possibility, testing DMN connectivity and its relationship to social functioning in FHR using resting-state fMRI. Twenty FHR individuals and 17 controls underwent fMRI during a resting-state scan. Hypothesis-driven functional connectivity analyses examined ROI-to-ROI correlations between the DMN’s hubs, and regions of the dMPFC subsystem and MTL subsystem. Connectivity values were examined in relationship to a measure of social functioning and empathy/perspective-taking. Results demonstrate that FHR exhibit reduced connectivity specifically within the dMPFC subsystem of the DMN. Certain ROI-to-ROI correlations predicted aspects of social functioning and empathy/perspective-taking across all participants. Together, the data indicate that disruption to the dMPFC subsystem of the DMN may be associated with familial risk for schizophrenia, and that these intrinsic connections may carry measurable consequences for social functioning. PMID:24768131
Evaluation of MRI issues for an access port with a radiofrequency identification (RFID) tag.
Titterington, Blake; Shellock, Frank G
2013-10-01
A medical implant that contains metal, such as an RFID tag, must undergo proper MRI testing to ensure patient safety and to determine that the function of the RFID tag is not compromised by exposure to MRI conditions. Therefore, the objective of this investigation was to assess MRI issues for a new access port that incorporates an RFID tag. Samples of the access port with an RFID tag (Medcomp Power Injectable Port with CertainID; Medcomp, Harleysville, PA) were evaluated using standard protocols to assess magnetic field interactions (translational attraction and torque; 3-T), MRI-related heating (3-T), artifacts (3-T), and functional changes associated with different MRI conditions (nine samples, exposed to different MRI conditions at 1.5-T and 3-T). Magnetic field interactions were not substantial and will pose no hazards to patients. MRI-related heating was minimal (highest temperature change, 1.7°C; background temperature rise, 1.6°C). Artifacts were moderate in size in relation to the device. Exposures to MRI conditions at 1.5-T and 3-T did not alter or damage the functional aspects of the RFID tag. Based on the findings of the test, this new access port with an RFID tag is acceptable (or, MR conditional, using current MRI labeling terminology) for patients undergoing MRI examinations at 1.5-T/64-MHz and 3-T/128-MHz. Copyright © 2013 Elsevier Inc. All rights reserved.
State-space model with deep learning for functional dynamics estimation in resting-state fMRI.
Suk, Heung-Il; Wee, Chong-Yaw; Lee, Seong-Whan; Shen, Dinggang
2016-04-01
Studies on resting-state functional Magnetic Resonance Imaging (rs-fMRI) have shown that different brain regions still actively interact with each other while a subject is at rest, and such functional interaction is not stationary but changes over time. In terms of a large-scale brain network, in this paper, we focus on time-varying patterns of functional networks, i.e., functional dynamics, inherent in rs-fMRI, which is one of the emerging issues along with the network modelling. Specifically, we propose a novel methodological architecture that combines deep learning and state-space modelling, and apply it to rs-fMRI based Mild Cognitive Impairment (MCI) diagnosis. We first devise a Deep Auto-Encoder (DAE) to discover hierarchical non-linear functional relations among regions, by which we transform the regional features into an embedding space, whose bases are complex functional networks. Given the embedded functional features, we then use a Hidden Markov Model (HMM) to estimate dynamic characteristics of functional networks inherent in rs-fMRI via internal states, which are unobservable but can be inferred from observations statistically. By building a generative model with an HMM, we estimate the likelihood of the input features of rs-fMRI as belonging to the corresponding status, i.e., MCI or normal healthy control, based on which we identify the clinical label of a testing subject. In order to validate the effectiveness of the proposed method, we performed experiments on two different datasets and compared with state-of-the-art methods in the literature. We also analyzed the functional networks learned by DAE, estimated the functional connectivities by decoding hidden states in HMM, and investigated the estimated functional connectivities by means of a graph-theoretic approach. Copyright © 2016 Elsevier Inc. All rights reserved.
State-space model with deep learning for functional dynamics estimation in resting-state fMRI
Suk, Heung-Il; Wee, Chong-Yaw; Lee, Seong-Whan; Shen, Dinggang
2017-01-01
Studies on resting-state functional Magnetic Resonance Imaging (rs-fMRI) have shown that different brain regions still actively interact with each other while a subject is at rest, and such functional interaction is not stationary but changes over time. In terms of a large-scale brain network, in this paper, we focus on time-varying patterns of functional networks, i.e., functional dynamics, inherent in rs-fMRI, which is one of the emerging issues along with the network modelling. Specifically, we propose a novel methodological architecture that combines deep learning and state-space modelling, and apply it to rs-fMRI based Mild Cognitive Impairment (MCI) diagnosis. We first devise a Deep Auto-Encoder (DAE) to discover hierarchical non-linear functional relations among regions, by which we transform the regional features into an embedding space, whose bases are complex functional networks. Given the embedded functional features, we then use a Hidden Markov Model (HMM) to estimate dynamic characteristics of functional networks inherent in rs-fMRI via internal states, which are unobservable but can be inferred from observations statistically. By building a generative model with an HMM, we estimate the likelihood of the input features of rs-fMRI as belonging to the corresponding status, i.e., MCI or normal healthy control, based on which we identify the clinical label of a testing subject. In order to validate the effectiveness of the proposed method, we performed experiments on two different datasets and compared with state-of-the-art methods in the literature. We also analyzed the functional networks learned by DAE, estimated the functional connectivities by decoding hidden states in HMM, and investigated the estimated functional connectivities by means of a graph-theoretic approach. PMID:26774612
Sex differences in amygdala activation during the perception of facial affect.
Killgore, W D; Yurgelun-Todd, D A
2001-08-08
The cognitive and affective systems of the cerebral cortex are often more lateralized in males than females, but it is unclear whether these differences extend to subcortical systems. We used fMRI to examine sex differences in lateralized amygdala activity during happy and fearful face perception. Amygdala activation differed for men and women depending on the valence of the expression. Overall, males were more lateralized than females, but the direction differed between valence conditions. Happy faces produced greater right than left amygdala activation for males but not females. Both sexes showed greater left amygdala activation for fearful faces. These findings suggest that the lateralization of affective function may extend beyond the cortex to subcortical regions such as the amygdala.
Functional MRI detects perfusion impairment in renal allografts with delayed graft function.
Hueper, Katja; Gueler, Faikah; Bräsen, Jan Hinrich; Gutberlet, Marcel; Jang, Mi-Sun; Lehner, Frank; Richter, Nicolas; Hanke, Nils; Peperhove, Matti; Martirosian, Petros; Tewes, Susanne; Vo Chieu, Van Dai; Großhennig, Anika; Haller, Hermann; Wacker, Frank; Gwinner, Wilfried; Hartung, Dagmar
2015-06-15
Delayed graft function (DGF) after kidney transplantation is not uncommon, and it is associated with long-term allograft impairment. Our aim was to compare renal perfusion changes measured with noninvasive functional MRI in patients early after kidney transplantation to renal function and allograft histology in biopsy samples. Forty-six patients underwent MRI 4-11 days after transplantation. Contrast-free MRI renal perfusion images were acquired using an arterial spin labeling technique. Renal function was assessed by estimated glomerular filtration rate (eGFR), and renal biopsies were performed when indicated within 5 days of MRI. Twenty-six of 46 patients had DGF. Of these, nine patients had acute rejection (including borderline), and eight had other changes (e.g., tubular injury or glomerulosclerosis). Renal perfusion was significantly lower in the DGF group compared with the group with good allograft function (231 ± 15 vs. 331 ± 15 ml·min(-1)·100 g(-1), P < 0.001). Living donor allografts exhibited significantly higher perfusion values compared with deceased donor allografts (P < 0.001). Renal perfusion significantly correlated with eGFR (r = 0.64, P < 0.001), resistance index (r = -0.57, P < 0.001), and cold ischemia time (r = -0.48, P < 0.01). Furthermore, renal perfusion impairment early after transplantation predicted inferior renal outcome and graft loss. In conclusion, noninvasive functional MRI detects renal perfusion impairment early after kidney transplantation in patients with DGF. Copyright © 2015 the American Physiological Society.
Connectivity changes after laser ablation: Resting-state fMRI.
Boerwinkle, Varina L; Vedantam, Aditya; Lam, Sandi; Wilfong, Angus A; Curry, Daniel J
2018-05-01
Resting-state functional magnetic resonance imaging (rsfMRI) is emerging as a useful tool in the multimodal assessment of patients with epilepsy. In pediatric patients who cannot perform task-based fMRI, rsfMRI may present an adjunct and alternative. Although changes in brain activation during task-based fMRI have been described after surgery for epilepsy, there is limited data on the role of postoperative rsfMRI. In this short review, we discuss the role of postoperative rsfMRI after laser ablation of seizure foci. By establishing standardized anesthesia protocols and imaging parameters, we have been able to perform serial rsfMRI at postoperative follow-up. The development of in-house software that can merge rsfMRI images to surgical navigation systems has allowed us to enhance the clinical applications of this technique. Resting-state fMRI after laser ablation has the potential to identify changes in connectivity, localize new seizure foci, and guide antiepileptic therapy. In our experience, rsfMRI complements conventional MR imaging and task-based fMRI for the evaluation of patients with seizure recurrence after laser ablation, and represents a potential noninvasive biomarker for functional connectivity. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Efficient bias correction for magnetic resonance image denoising.
Mukherjee, Partha Sarathi; Qiu, Peihua
2013-05-30
Magnetic resonance imaging (MRI) is a popular radiology technique that is used for visualizing detailed internal structure of the body. Observed MRI images are generated by the inverse Fourier transformation from received frequency signals of a magnetic resonance scanner system. Previous research has demonstrated that random noise involved in the observed MRI images can be described adequately by the so-called Rician noise model. Under that model, the observed image intensity at a given pixel is a nonlinear function of the true image intensity and of two independent zero-mean random variables with the same normal distribution. Because of such a complicated noise structure in the observed MRI images, denoised images by conventional denoising methods are usually biased, and the bias could reduce image contrast and negatively affect subsequent image analysis. Therefore, it is important to address the bias issue properly. To this end, several bias-correction procedures have been proposed in the literature. In this paper, we study the Rician noise model and the corresponding bias-correction problem systematically and propose a new and more effective bias-correction formula based on the regression analysis and Monte Carlo simulation. Numerical studies show that our proposed method works well in various applications. Copyright © 2012 John Wiley & Sons, Ltd.
The neural component-process architecture of endogenously generated emotion
Kanske, Philipp; Singer, Tania
2017-01-01
Abstract Despite the ubiquity of endogenous emotions and their role in both resilience and pathology, the processes supporting their generation are largely unknown. We propose a neural component process model of endogenous generation of emotion (EGE) and test it in two functional magnetic resonance imaging (fMRI) experiments (N = 32/293) where participants generated and regulated positive and negative emotions based on internal representations, usin self-chosen generation methods. EGE activated nodes of salience (SN), default mode (DMN) and frontoparietal control (FPCN) networks. Component processes implemented by these networks were established by investigating their functional associations, activation dynamics and integration. SN activation correlated with subjective affect, with midbrain nodes exclusively distinguishing between positive and negative affect intensity, showing dynamics consistent generation of core affect. Dorsomedial DMN, together with ventral anterior insula, formed a pathway supporting multiple generation methods, with activation dynamics suggesting it is involved in the generation of elaborated experiential representations. SN and DMN both coupled to left frontal FPCN which in turn was associated with both subjective affect and representation formation, consistent with FPCN supporting the executive coordination of the generation process. These results provide a foundation for research into endogenous emotion in normal, pathological and optimal function. PMID:27522089
Mathew, Lindsay; Wheatley, Andrew; Castillo, Richard; Castillo, Edward; Rodrigues, George; Guerrero, Thomas; Parraga, Grace
2012-12-01
Pulmonary functional imaging using four-dimensional x-ray computed tomographic (4DCT) imaging and hyperpolarized (3)He magnetic resonance imaging (MRI) provides regional lung function estimates in patients with lung cancer in whom pulmonary function measurements are typically dominated by tumor burden. The aim of this study was to evaluate the quantitative spatial relationship between 4DCT and hyperpolarized (3)He MRI ventilation maps. Eleven patients with lung cancer provided written informed consent to 4DCT imaging and MRI performed within 11 ± 14 days. Hyperpolarized (3)He MRI was acquired in breath-hold after inhalation from functional residual capacity of 1 L hyperpolarized (3)He, whereas 4DCT imaging was acquired over a single tidal breath of room air. For hyperpolarized (3)He MRI, the percentage ventilated volume was generated using semiautomated segmentation; for 4DCT imaging, pulmonary function maps were generated using the correspondence between identical tissue elements at inspiratory and expiratory phases to generate percentage ventilated volume. After accounting for differences in image acquisition lung volumes ((3)He MRI: 1.9 ± 0.5 L ipsilateral, 2.3 ± 0.7 L contralateral; 4DCT imaging: 1.2 ± 0.3 L ipsilateral, 1.3 ± 0.4 L contralateral), there was no significant difference in percentage ventilated volume between hyperpolarized (3)He MRI (72 ± 11% ipsilateral, 79 ± 12% contralateral) and 4DCT imaging (74 ± 3% ipsilateral, 75 ± 4% contralateral). Spatial correspondence between 4DCT and (3)He MRI ventilation was evaluated using the Dice similarity coefficient index (ipsilateral, 86 ± 12%; contralateral, 88 ± 12%). Despite rather large differences in image acquisition breathing maneuvers, good spatial and significant quantitative agreement was observed for ventilation maps on hyperpolarized (3)He MRI and 4DCT imaging, suggesting that pulmonary regions with good lung function are similar between modalities in this small group of patients with lung cancer. Copyright © 2012 AUR. Published by Elsevier Inc. All rights reserved.
Rigon, A; Voss, M W; Turkstra, L S; Mutlu, B; Duff, M C
2017-01-01
Although several studies have demonstrated that facial-affect recognition impairment is common following moderate-severe traumatic brain injury (TBI), and that there are diffuse alterations in large-scale functional brain networks in TBI populations, little is known about the relationship between the two. Here, in a sample of 26 participants with TBI and 20 healthy comparison participants (HC) we measured facial-affect recognition abilities and resting-state functional connectivity (rs-FC) using fMRI. We then used network-based statistics to examine (A) the presence of rs-FC differences between individuals with TBI and HC within the facial-affect processing network, and (B) the association between inter-individual differences in emotion recognition skills and rs-FC within the facial-affect processing network. We found that participants with TBI showed significantly lower rs-FC in a component comprising homotopic and within-hemisphere, anterior-posterior connections within the facial-affect processing network. In addition, within the TBI group, participants with higher emotion-labeling skills showed stronger rs-FC within a network comprised of intra- and inter-hemispheric bilateral connections. Findings indicate that the ability to successfully recognize facial-affect after TBI is related to rs-FC within components of facial-affective networks, and provide new evidence that further our understanding of the mechanisms underlying emotion recognition impairment in TBI.
Characteristics of early MRI in children and adolescents with vanishing white matter.
van der Lei, Hannemieke D; Steenweg, Marjan E; Barkhof, Frederik; de Grauw, Ton; d'Hooghe, Marc; Morton, Richard; Shah, Siddharth; Wolf, Nicole; van der Knaap, Marjo S
2012-02-01
MRI in vanishing white matter typically shows diffuse abnormality of the cerebral white matter, which becomes increasingly rarefied and cystic. We investigated the MRI characteristics preceding this stage. In a retrospective observational study, we evaluated all available MRIs in our database of DNA-confirmed VWM patients and selected MRIs without diffuse cerebral white matter abnormalities and without signs of rarefaction or cystic degeneration in patients below 20 years of age. A previously established scoring list was used to evaluate the MRIs. An MRI of seven patients fulfilled the criteria. All had confluent and symmetrical abnormalities in the periventricular and bordering deep white matter. In young patients, myelination was delayed. The inner rim of the corpus callosum was affected in all patients. In early stages of VWM, MRI does not necessarily display diffuse cerebral white matter involvement and rarefaction or cystic degeneration. If the MRI abnormalities do not meet the criteria for VWM, it helps to look at the corpus callosum. If the inner rim (the callosal-septal interface) is affected, VWM should be considered. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Tracking brain arousal fluctuations with fMRI
Chang, Catie; Leopold, David A.; Schölvinck, Marieke Louise; Mandelkow, Hendrik; Picchioni, Dante; Liu, Xiao; Ye, Frank Q.; Turchi, Janita N.; Duyn, Jeff H.
2016-01-01
Changes in brain activity accompanying shifts in vigilance and arousal can interfere with the study of other intrinsic and task-evoked characteristics of brain function. However, the difficulty of tracking and modeling the arousal state during functional MRI (fMRI) typically precludes the assessment of arousal-dependent influences on fMRI signals. Here we combine fMRI, electrophysiology, and the monitoring of eyelid behavior to demonstrate an approach for tracking continuous variations in arousal level from fMRI data. We first characterize the spatial distribution of fMRI signal fluctuations that track a measure of behavioral arousal; taking this pattern as a template, and using the local field potential as a simultaneous and independent measure of cortical activity, we observe that the time-varying expression level of this template in fMRI data provides a close approximation of electrophysiological arousal. We discuss the potential benefit of these findings for increasing the sensitivity of fMRI as a cognitive and clinical biomarker. PMID:27051064
Joint brain connectivity estimation from diffusion and functional MRI data
NASA Astrophysics Data System (ADS)
Chu, Shu-Hsien; Lenglet, Christophe; Parhi, Keshab K.
2015-03-01
Estimating brain wiring patterns is critical to better understand the brain organization and function. Anatomical brain connectivity models axonal pathways, while the functional brain connectivity characterizes the statistical dependencies and correlation between the activities of various brain regions. The synchronization of brain activity can be inferred through the variation of blood-oxygen-level dependent (BOLD) signal from functional MRI (fMRI) and the neural connections can be estimated using tractography from diffusion MRI (dMRI). Functional connections between brain regions are supported by anatomical connections, and the synchronization of brain activities arises through sharing of information in the form of electro-chemical signals on axon pathways. Jointly modeling fMRI and dMRI data may improve the accuracy in constructing anatomical connectivity as well as functional connectivity. Such an approach may lead to novel multimodal biomarkers potentially able to better capture functional and anatomical connectivity variations. We present a novel brain network model which jointly models the dMRI and fMRI data to improve the anatomical connectivity estimation and extract the anatomical subnetworks associated with specific functional modes by constraining the anatomical connections as structural supports to the functional connections. The key idea is similar to a multi-commodity flow optimization problem that minimizes the cost or maximizes the efficiency for flow configuration and simultaneously fulfills the supply-demand constraint for each commodity. In the proposed network, the nodes represent the grey matter (GM) regions providing brain functionality, and the links represent white matter (WM) fiber bundles connecting those regions and delivering information. The commodities can be thought of as the information corresponding to brain activity patterns as obtained for instance by independent component analysis (ICA) of fMRI data. The concept of information flow is introduced and used to model the propagation of information between GM areas through WM fiber bundles. The link capacity, i.e., ability to transfer information, is characterized by the relative strength of fiber bundles, e.g., fiber count gathered from the tractography of dMRI data. The node information demand is considered to be proportional to the correlation between neural activity at various cortical areas involved in a particular functional mode (e.g. visual, motor, etc.). These two properties lead to the link capacity and node demand constraints in the proposed model. Moreover, the information flow of a link cannot exceed the demand from either end node. This is captured by the feasibility constraints. Two different cost functions are considered in the optimization formulation in this paper. The first cost function, the reciprocal of fiber strength represents the unit cost for information passing through the link. In the second cost function, a min-max (minimizing the maximal link load) approach is used to balance the usage of each link. Optimizing the first cost function selects the pathway with strongest fiber strength for information propagation. In the second case, the optimization procedure finds all the possible propagation pathways and allocates the flow proportionally to their strength. Additionally, a penalty term is incorporated with both the cost functions to capture the possible missing and weak anatomical connections. With this set of constraints and the proposed cost functions, solving the network optimization problem recovers missing and weak anatomical connections supported by the functional information and provides the functional-associated anatomical subnetworks. Feasibility is demonstrated using realistic diffusion and functional MRI phantom data. It is shown that the proposed model recovers the maximum number of true connections, with fewest number of false connections when compared with the connectivity derived from a joint probabilistic model using the expectation-maximization (EM) algorithm presented in a prior work. We also apply the proposed method to data provided by the Human Connectome Project (HCP).
Amygdala subnuclei resting-state functional connectivity sex and estrogen differences.
Engman, Jonas; Linnman, Clas; Van Dijk, Koene R A; Milad, Mohammed R
2016-01-01
The amygdala is a hub in emotional processing, including that of negative affect. Healthy men and women have distinct differences in amygdala responses, potentially setting the stage for the observed sex differences in the prevalence of fear, anxiety, and pain disorders. Here, we examined how amygdala subnuclei resting-state functional connectivity is affected by sex, as well as explored how the functional connectivity is related to estrogen levels. Resting-state functional connectivity was measured using functional magnetic resonance imaging (fMRI) with seeds placed in the left and right laterobasal (LB) and centromedial (CM) amygdala. Sex differences were studied in 48 healthy men and 48 healthy women, matched for age, while the association with estrogen was analyzed in a subsample of 24 women, for whom hormone levels had been assessed. For the hormone analyses, the subsample was further divided into a lower and higher estrogen levels group based on a median split. We found distinct sex differences in the LB and CM amygdala resting-state functional connectivity, as well as preliminary evidence for an association between estrogen levels and connectivity patterns. These results are potentially valuable in explaining why women are more afflicted by conditions of negative affect than are men, and could imply a mechanistic role for estrogen in modulating emotion. Copyright © 2015 Elsevier Ltd. All rights reserved.
Warren, Aaron E L; Abbott, David F; Jackson, Graeme D; Archer, John S
2017-12-01
To identify abnormal thalamocortical circuits in the severe epilepsy of Lennox-Gastaut syndrome (LGS) that may explain the shared electroclinical phenotype and provide potential treatment targets. Twenty patients with a diagnosis of LGS (mean age = 28.5 years) and 26 healthy controls (mean age = 27.6 years) were compared using task-free functional magnetic resonance imaging (MRI). The thalamus was parcellated according to functional connectivity with 10 cortical networks derived using group-level independent component analysis. For each cortical network, we assessed between-group differences in thalamic functional connectivity strength using nonparametric permutation-based tests. Anatomical locations were identified by quantifying spatial overlap with a histologically informed thalamic MRI atlas. In both groups, posterior thalamic regions showed functional connectivity with visual, auditory, and sensorimotor networks, whereas anterior, medial, and dorsal thalamic regions were connected with networks of distributed association cortex (including the default-mode, anterior-salience, and executive-control networks). Four cortical networks (left and right executive-control network; ventral and dorsal default-mode network) showed significantly enhanced thalamic functional connectivity strength in patients relative to controls. Abnormal connectivity was maximal in mediodorsal and ventrolateral thalamic nuclei. Specific thalamocortical circuits are affected in LGS. Functional connectivity is abnormally enhanced between the mediodorsal and ventrolateral thalamus and the default-mode and executive-control networks, thalamocortical circuits that normally support diverse cognitive processes. In contrast, thalamic regions connecting with primary and sensory cortical networks appear to be less affected. Our previous neuroimaging studies show that epileptic activity in LGS is expressed via the default-mode and executive-control networks. Results of the present study suggest that the mediodorsal and ventrolateral thalamus may be candidate targets for modulating abnormal network behavior underlying LGS, potentially via emerging thalamic neurostimulation therapies. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
Cobalt-55 positron emission tomography in traumatic brain injury: a pilot study.
Jansen, H M; van der Naalt, J; van Zomeren, A H; Paans, A M; Veenma-van der Duin, L; Hew, J M; Pruim, J; Minderhoud, J M; Korf, J
1996-01-01
Traumatic brain injury is usually assessed with the Glasgow coma scale (GCS), CT, or MRI. After such injury, the injured brain tissue is characterised by calcium mediated neuronal damage and inflammation. Positron emission tomography with the isotope cobalt-55 (Co-PET) as a calcium tracer enables imaging of affected tissue in traumatic brain injury. The aim was to determine whether additional information can be gained by Co-PET in the diagnosis of moderate traumatic brain injury and to assess any prognostic value of Co-PET. Five patients with recent moderately severe traumatic brain injury were studied. CT was performed on the day of admission, EEG within one week, and MRI and Co-PET within four weeks of injury. Clinical assessment included neurological examination, GCS, neuropsychological testing, and Glasgow outcome scale (GOS) after one year. Co-PET showed focal uptake that extended beyond the morphological abnormalities shown by MRI and CT, in brain regions that were actually diagnosed with EEG. Thus Co-PET is potentially useful for diagnostic localisation of both structural and functional abnormalities in moderate traumatic brain injury. Images PMID:8708661
Graded motor imagery and the impact on pain processing in a case of CRPS.
Walz, Andrea D; Usichenko, Taras; Moseley, G Lorimer; Lotze, Martin
2013-03-01
Graded motor imagery (GMI) shows promising results for patients with complex regional pain syndrome (CRPS). In a case with chronic unilateral CRPS type I, we applied GMI for 6 weeks and recorded clinical parameters and cerebral activation using functional magnetic resonance imaging (fMRI; pre-GMI, after each GMI block, and after 6 mo). Changes in fMRI activity were mapped during movement execution in areas associated with pain processing. A healthy participant served as a control for habituation effects. Pain intensity decreased over the course of GMI, and relief was maintained at follow-up. fMRI during movement execution revealed marked changes in S1 and S2 (areas of discriminative pain processing), which seemed to be associated with pain reduction, but none in the anterior insula and the anterior cingulate cortex (areas of affective pain processing). After mental rotation training, the activation intensity of the posterior parietal cortex was reduced to one third. Our case report develops a design capable of differentiating cerebral changes associated with behavioral therapy of CRPS type I study.
A highly stable l-alanine-based mono(aquated) Mn(ii) complex as a T1-weighted MRI contrast agent.
Khannam, Mahmuda; Weyhermüller, Thomas; Goswami, Upashi; Mukherjee, Chandan
2017-08-08
The synthesized lithium (S)-6,6'-(1-carboxyethylazanediyl)bis(methylene)dipicolinate (Li 3 cbda) is a new chiral, alanine-based ligand bearing two picolinate functionalities. The trianionic form of the ligand [(cbda) 3- ] constitutes a seven-coordinate, water-soluble, pentagonal bipyramidal Mn(ii) complex (1). The structural analysis reveals the presence of a water coordinating site in the complex. The complex is thermodynamically very stable, and the stability is not affected by the presence of physiological anions (HCO 3 - , PO 4 3- , and F - ). The pH of the medium exerts a small effect on the stability of the complex. The r 1 relaxivity of 3.02 mM -1 s -1 is exhibited by the complex at 1.41 T, pH ∼7.4, and 25 °C. Phantom images obtained via a clinical MRI BRIVO MR355 system established concentration-dependent signal enhancement by the complex. The cytotoxicity test confirmed complex 1 as a biocompatible potential T 1 -weighted MRI contrast agent.
Optimizing real time fMRI neurofeedback for therapeutic discovery and development
Stoeckel, L.E.; Garrison, K.A.; Ghosh, S.; Wighton, P.; Hanlon, C.A.; Gilman, J.M.; Greer, S.; Turk-Browne, N.B.; deBettencourt, M.T.; Scheinost, D.; Craddock, C.; Thompson, T.; Calderon, V.; Bauer, C.C.; George, M.; Breiter, H.C.; Whitfield-Gabrieli, S.; Gabrieli, J.D.; LaConte, S.M.; Hirshberg, L.; Brewer, J.A.; Hampson, M.; Van Der Kouwe, A.; Mackey, S.; Evins, A.E.
2014-01-01
While reducing the burden of brain disorders remains a top priority of organizations like the World Health Organization and National Institutes of Health, the development of novel, safe and effective treatments for brain disorders has been slow. In this paper, we describe the state of the science for an emerging technology, real time functional magnetic resonance imaging (rtfMRI) neurofeedback, in clinical neurotherapeutics. We review the scientific potential of rtfMRI and outline research strategies to optimize the development and application of rtfMRI neurofeedback as a next generation therapeutic tool. We propose that rtfMRI can be used to address a broad range of clinical problems by improving our understanding of brain–behavior relationships in order to develop more specific and effective interventions for individuals with brain disorders. We focus on the use of rtfMRI neurofeedback as a clinical neurotherapeutic tool to drive plasticity in brain function, cognition, and behavior. Our overall goal is for rtfMRI to advance personalized assessment and intervention approaches to enhance resilience and reduce morbidity by correcting maladaptive patterns of brain function in those with brain disorders. PMID:25161891
Estimation of gas and tissue lung volumes by MRI: functional approach of lung imaging.
Qanadli, S D; Orvoen-Frija, E; Lacombe, P; Di Paola, R; Bittoun, J; Frija, G
1999-01-01
The purpose of this work was to assess the accuracy of MRI for the determination of lung gas and tissue volumes. Fifteen healthy subjects underwent MRI of the thorax and pulmonary function tests [vital capacity (VC) and total lung capacity (TLC)] in the supine position. MR examinations were performed at inspiration and expiration. Lung volumes were measured by a previously validated technique on phantoms. Both individual and total lung volumes and capacities were calculated. MRI total vital capacity (VC(MRI)) was compared with spirometric vital capacity (VC(SP)). Capacities were correlated to lung volumes. Tissue volume (V(T)) was estimated as the difference between the total lung volume at full inspiration and the TLC. No significant difference was seen between VC(MRI) and VC(SP). Individual capacities were well correlated (r = 0.9) to static volume at full inspiration. The V(T) was estimated to be 836+/-393 ml. This preliminary study demonstrates that MRI can accurately estimate lung gas and tissue volumes. The proposed approach appears well suited for functional imaging of the lung.
Relating resting-state fMRI and EEG whole-brain connectomes across frequency bands.
Deligianni, Fani; Centeno, Maria; Carmichael, David W; Clayden, Jonathan D
2014-01-01
Whole brain functional connectomes hold promise for understanding human brain activity across a range of cognitive, developmental and pathological states. So called resting-state (rs) functional MRI studies have contributed to the brain being considered at a macroscopic scale as a set of interacting regions. Interactions are defined as correlation-based signal measurements driven by blood oxygenation level dependent (BOLD) contrast. Understanding the neurophysiological basis of these measurements is important in conveying useful information about brain function. Local coupling between BOLD fMRI and neurophysiological measurements is relatively well defined, with evidence that gamma (range) frequency EEG signals are the closest correlate of BOLD fMRI changes during cognitive processing. However, it is less clear how whole-brain network interactions relate during rest where lower frequency signals have been suggested to play a key role. Simultaneous EEG-fMRI offers the opportunity to observe brain network dynamics with high spatio-temporal resolution. We utilize these measurements to compare the connectomes derived from rs-fMRI and EEG band limited power (BLP). Merging this multi-modal information requires the development of an appropriate statistical framework. We relate the covariance matrices of the Hilbert envelope of the source localized EEG signal across bands to the covariance matrices derived from rs-fMRI with the means of statistical prediction based on sparse Canonical Correlation Analysis (sCCA). Subsequently, we identify the most prominent connections that contribute to this relationship. We compare whole-brain functional connectomes based on their geodesic distance to reliably estimate the performance of the prediction. The performance of predicting fMRI from EEG connectomes is considerably better than predicting EEG from fMRI across all bands, whereas the connectomes derived in low frequency EEG bands resemble best rs-fMRI connectivity.
Relating resting-state fMRI and EEG whole-brain connectomes across frequency bands
Deligianni, Fani; Centeno, Maria; Carmichael, David W.; Clayden, Jonathan D.
2014-01-01
Whole brain functional connectomes hold promise for understanding human brain activity across a range of cognitive, developmental and pathological states. So called resting-state (rs) functional MRI studies have contributed to the brain being considered at a macroscopic scale as a set of interacting regions. Interactions are defined as correlation-based signal measurements driven by blood oxygenation level dependent (BOLD) contrast. Understanding the neurophysiological basis of these measurements is important in conveying useful information about brain function. Local coupling between BOLD fMRI and neurophysiological measurements is relatively well defined, with evidence that gamma (range) frequency EEG signals are the closest correlate of BOLD fMRI changes during cognitive processing. However, it is less clear how whole-brain network interactions relate during rest where lower frequency signals have been suggested to play a key role. Simultaneous EEG-fMRI offers the opportunity to observe brain network dynamics with high spatio-temporal resolution. We utilize these measurements to compare the connectomes derived from rs-fMRI and EEG band limited power (BLP). Merging this multi-modal information requires the development of an appropriate statistical framework. We relate the covariance matrices of the Hilbert envelope of the source localized EEG signal across bands to the covariance matrices derived from rs-fMRI with the means of statistical prediction based on sparse Canonical Correlation Analysis (sCCA). Subsequently, we identify the most prominent connections that contribute to this relationship. We compare whole-brain functional connectomes based on their geodesic distance to reliably estimate the performance of the prediction. The performance of predicting fMRI from EEG connectomes is considerably better than predicting EEG from fMRI across all bands, whereas the connectomes derived in low frequency EEG bands resemble best rs-fMRI connectivity. PMID:25221467
MRI tools for assessment of microstructure and nephron function of the kidney.
Xie, Luke; Bennett, Kevin M; Liu, Chunlei; Johnson, G Allan; Zhang, Jeff Lei; Lee, Vivian S
2016-12-01
MRI can provide excellent detail of renal structure and function. Recently, novel MR contrast mechanisms and imaging tools have been developed to evaluate microscopic kidney structures including the tubules and glomeruli. Quantitative MRI can assess local tubular function and is able to determine the concentrating mechanism of the kidney noninvasively in real time. Measuring single nephron function is now a near possibility. In parallel to advancing imaging techniques for kidney microstructure is a need to carefully understand the relationship between the local source of MRI contrast and the underlying physiological change. The development of these imaging markers can impact the accurate diagnosis and treatment of kidney disease. This study reviews the novel tools to examine kidney microstructure and local function and demonstrates the application of these methods in renal pathophysiology. Copyright © 2016 the American Physiological Society.
Xiao, Fenglai; Caciagli, Lorenzo; Wandschneider, Britta; Sander, Josemir W; Sidhu, Meneka; Winston, Gavin; Burdett, Jane; Trimmel, Karin; Hill, Andrea; Vollmar, Christian; Vos, Sjoerd B; Ourselin, Sebastien; Thompson, Pamela J; Zhou, Dong; Duncan, John S; Koepp, Matthias J
2018-06-13
To investigate the effects of sodium channel-blocking antiepileptic drugs (AEDs) on functional magnetic resonance imaging (fMRI) language network activations in patients with focal epilepsy. In a retrospective study, we identified patients who were treated at the time of language fMRI scanning with either carbamazepine (CBZ; n = 42) or lamotrigine (LTG; n = 42), but not another sodium channel-blocking AED. We propensity-matched 42 patients taking levetiracetam (LEV) as "patient-controls" and included further 42 age- and gender-matched healthy controls. After controlling for age, age at onset of epilepsy, gender, and antiepileptic comedications, we compared verbal fluency fMRI activations between groups and out-of-scanner psychometric measures of verbal fluency. Patients on CBZ performed less well on a verbal fluency tests than those taking LTG or LEV. Compared to either LEV-treated patients or controls, patients taking CBZ showed decreased activations in left inferior frontal gyrus and patients on LTG showed abnormal deactivations in frontal and parietal default mode areas. All patient groups showed fewer activations in the putamen bilaterally compared to controls. In a post hoc analysis, out-of-scanner fluency scores correlated positively with left putamen activation. Our study provides evidence of AED effects on the functional neuroanatomy of language, which might explain subtle language deficits in patients taking otherwise well-tolerated sodium channel-blocking agents. Patients on CBZ showed dysfunctional frontal activation and more pronounced impairment of performance than patients taking LTG, which was associated only with failure to deactivate task-negative networks. As previously shown for working memory, LEV treatment did not affect functional language networks. © 2018 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.
Advanced magnetic resonance imaging of neurodegenerative diseases.
Agosta, Federica; Galantucci, Sebastiano; Filippi, Massimo
2017-01-01
Magnetic resonance imaging (MRI) is playing an increasingly important role in the study of neurodegenerative diseases, delineating the structural and functional alterations determined by these conditions. Advanced MRI techniques are of special interest for their potential to characterize the signature of each neurodegenerative condition and aid both the diagnostic process and the monitoring of disease progression. This aspect will become crucial when disease-modifying (personalized) therapies will be established. MRI techniques are very diverse and go from the visual inspection of MRI scans to more complex approaches, such as manual and automatic volume measurements, diffusion tensor MRI, and functional MRI. All these techniques allow us to investigate the different features of neurodegeneration. In this review, we summarize the most recent advances concerning the use of MRI in some of the most important neurodegenerative conditions, putting an emphasis on the advanced techniques.
Genetic and Diagnostic Biomarker Development in ASD Toddlers Using Resting State Functional MRI
2016-09-01
schizophrenia . Specifically, we used source-‐based morphometry, a multivariate...variation in the general population, and verified its relevance to schizophrenia in an independent case...it has been linked to affective disorders and schizophrenia in multiple populations. Thus,
Pénicaud, Sidonie; Klein, Denise; Zatorre, Robert J; Chen, Jen-Kai; Witcher, Pamela; Hyde, Krista; Mayberry, Rachel I
2013-02-01
Early language experience is essential for the development of a high level of linguistic proficiency in adulthood and in a recent functional Magnetic Resonance Imaging (fMRI) experiment, we showed that a delayed acquisition of a first language results in changes in the functional organization of the adult brain (Mayberry et al., 2011). The present study extends the question to explore if delayed acquisition of a first language also modulates the structural development of the brain. To this end, we carried out anatomical MRI in the same group of congenitally deaf individuals who varied in the age of acquisition of a first language, American Sign Language -ASL (Mayberry et al., 2011) and used a neuroanatomical technique, Voxel-Based Morphometry (VBM), to explore changes in gray and white matter concentrations across the brain related to the age of first language acquisition. The results show that delayed acquisition of a first language is associated with changes in tissue concentration in the occipital cortex close to the area that has been found to show functional recruitment during language processing in these deaf individuals with a late age of acquisition. These findings suggest that a lack of early language experience affects not only the functional but also the anatomical organization of the brain. Copyright © 2012 Elsevier Inc. All rights reserved.
Uncovering the Social Deficits in the Autistic Brain. A Source-Based Morphometric Study
Grecucci, Alessandro; Rubicondo, Danilo; Siugzdaite, Roma; Surian, Luca; Job, Remo
2016-01-01
Autism is a neurodevelopmental disorder that mainly affects social interaction and communication. Evidence from behavioral and functional MRI studies supports the hypothesis that dysfunctional mechanisms involving social brain structures play a major role in autistic symptomatology. However, the investigation of anatomical abnormalities in the brain of people with autism has led to inconsistent results. We investigated whether specific brain regions, known to display functional abnormalities in autism, may exhibit mutual and peculiar patterns of covariance in their gray-matter concentrations. We analyzed structural MRI images of 32 young men affected by autistic disorder (AD) and 50 healthy controls. Controls were matched for sex, age, handedness. IQ scores were also monitored to avoid confounding. A multivariate Source-Based Morphometry (SBM) was applied for the first time on AD and controls to detect maximally independent networks of gray matter. Group comparison revealed a gray-matter source that showed differences in AD compared to controls. This network includes broad temporal regions involved in social cognition and high-level visual processing, but also motor and executive areas of the frontal lobe. Notably, we found that gray matter differences, as reflected by SBM, significantly correlated with social and behavioral deficits displayed by AD individuals and encoded via the Autism Diagnostic Observation Schedule scores. These findings provide support for current hypotheses about the neural basis of atypical social and mental states information processing in autism. PMID:27630538
Posner, Jonathan; Rauh, Virginia; Gruber, Allison; Gat, Inbal; Wang, Zhishun; Peterson, Bradley S
2013-07-30
Current neurocognitive models of attention-deficit/hyperactivity disorder (ADHD) suggest that neural circuits involving both attentional and affective processing make independent contributions to the phenomenology of the disorder. However, a clear dissociation of attentional and affective circuits and their behavioral correlates has yet to be shown in medication-naïve children with ADHD. Using resting-state functional connectivity MRI (rs-fcMRI) in a cohort of medication naïve children with (N=22) and without (N=20) ADHD, we demonstrate that children with ADHD have reduced connectivity in two neural circuits: one underlying executive attention (EA) and the other emotional regulation (ER). We also demonstrate a double dissociation between these two neural circuits and their behavioral correlates such that reduced connectivity in the EA circuit correlates with executive attention deficits but not with emotional lability, while on the other hand, reduced connectivity in the ER circuit correlates with emotional lability but not with executive attention deficits. These findings suggest potential avenues for future research such as examining treatment effects on these two neural circuits as well as the potential prognostic and developmental significance of disturbances in one circuit vs the other. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Hypercapnic evaluation of vascular reactivity in healthy aging and acute stroke via functional MRI.
Raut, Ryan V; Nair, Veena A; Sattin, Justin A; Prabhakaran, Vivek
2016-01-01
Functional MRI (fMRI) is well-established for the study of brain function in healthy populations, although its clinical application has proven more challenging. Specifically, cerebrovascular reactivity (CVR), which allows the assessment of the vascular response that serves as the basis for fMRI, has been shown to be reduced in healthy aging as well as in a range of diseases, including chronic stroke. However, the timing of when this occurs relative to the stroke event is unclear. We used a breath-hold fMRI task to evaluate CVR across gray matter in a group of acute stroke patients (< 10 days from stroke; N = 22) to address this question. These estimates were compared with those from both age-matched (N = 22) and younger (N = 22) healthy controls. As expected, young controls had the greatest mean CVR, as indicated by magnitude and extent of fMRI activation; however, stroke patients did not differ from age-matched controls. Moreover, the ipsilesional and contralesional hemispheres of stroke patients did not differ with respect to any of these measures. These findings suggest that fMRI remains a valid tool within the first few days of a stroke, particularly for group fMRI studies in which findings are compared with healthy subjects of similar age. However, given the relatively high variability in CVR observed in our stroke sample, caution is warranted when interpreting fMRI data from individual patients or a small cohort. We conclude that a breath-hold task can be a useful addition to functional imaging protocols for stroke patients.
Biology and therapy of fibromyalgia. Functional magnetic resonance imaging findings in fibromyalgia
Williams, David A; Gracely, Richard H
2006-01-01
Techniques in neuroimaging such as functional magnetic resonance imaging (fMRI) have helped to provide insights into the role of supraspinal mechanisms in pain perception. This review focuses on studies that have applied fMRI in an attempt to gain a better understanding of the mechanisms involved in the processing of pain associated with fibromyalgia. This article provides an overview of the nociceptive system as it functions normally, reviews functional brain imaging methods, and integrates the existing literature utilizing fMRI to study central pain mechanisms in fibromyalgia. PMID:17254318
Evidence for Functional Networks within the Human Brain's White Matter.
Peer, Michael; Nitzan, Mor; Bick, Atira S; Levin, Netta; Arzy, Shahar
2017-07-05
Investigation of the functional macro-scale organization of the human cortex is fundamental in modern neuroscience. Although numerous studies have identified networks of interacting functional modules in the gray-matter, limited research was directed to the functional organization of the white-matter. Recent studies have demonstrated that the white-matter exhibits blood oxygen level-dependent signal fluctuations similar to those of the gray-matter. Here we used these signal fluctuations to investigate whether the white-matter is organized as functional networks by applying a clustering analysis on resting-state functional MRI (RSfMRI) data from white-matter voxels, in 176 subjects (of both sexes). This analysis indicated the existence of 12 symmetrical white-matter functional networks, corresponding to combinations of white-matter tracts identified by diffusion tensor imaging. Six of the networks included interhemispheric commissural bridges traversing the corpus callosum. Signals in white-matter networks correlated with signals from functional gray-matter networks, providing missing knowledge on how these distributed networks communicate across large distances. These findings were replicated in an independent subject group and were corroborated by seed-based analysis in small groups and individual subjects. The identified white-matter functional atlases and analysis codes are available at http://mind.huji.ac.il/white-matter.aspx Our results demonstrate that the white-matter manifests an intrinsic functional organization as interacting networks of functional modules, similarly to the gray-matter, which can be investigated using RSfMRI. The discovery of functional networks within the white-matter may open new avenues of research in cognitive neuroscience and clinical neuropsychiatry. SIGNIFICANCE STATEMENT In recent years, functional MRI (fMRI) has revolutionized all fields of neuroscience, enabling identifications of functional modules and networks in the human brain. However, most fMRI studies ignored a major part of the brain, the white-matter, discarding signals from it as arising from noise. Here we use resting-state fMRI data from 176 subjects to show that signals from the human white-matter contain meaningful information. We identify 12 functional networks composed of interacting long-distance white-matter tracts. Moreover, we show that these networks are highly correlated to resting-state gray-matter networks, highlighting their functional role. Our findings enable reinterpretation of many existing fMRI datasets, and suggest a new way to explore the white-matter role in cognition and its disturbances in neuropsychiatric disorders. Copyright © 2017 the authors 0270-6474/17/376394-14$15.00/0.
Development of sound measurement systems for auditory functional magnetic resonance imaging.
Nam, Eui-Cheol; Kim, Sam Soo; Lee, Kang Uk; Kim, Sang Sik
2008-06-01
Auditory functional magnetic resonance imaging (fMRI) requires quantification of sound stimuli in the magnetic environment and adequate isolation of background noise. We report the development of two novel sound measurement systems that accurately measure the sound intensity inside the ear, which can simultaneously provide the similar or greater amount of scanner- noise protection than ear-muffs. First, we placed a 2.6 x 2.6-mm microphone in an insert phone that was connected to a headphone [microphone-integrated, foam-tipped insert-phone with a headphone (MIHP)]. This attenuated scanner noise by 37.8+/-4.6 dB, a level better than the reference amount obtained using earmuffs. The nonmetallic optical microphone was integrated with a headphone [optical microphone in a headphone (OMHP)] and it effectively detected the change of sound intensity caused by variable compression on the cushions of the headphone. Wearing the OMHP reduced the noise by 28.5+/-5.9 dB and did not affect echoplanar magnetic resonance images. We also performed an auditory fMRI study using the MIHP system and presented increase in the auditory cortical activation following 10-dB increment in the intensity of sound stimulation. These two newly developed sound measurement systems successfully achieved the accurate quantification of sound stimuli with maintaining the similar level of noise protection of wearing earmuffs in the auditory fMRI experiment.
Individual differences in posterior cortical volume correlate with proneness to pride and gratitude.
Zahn, Roland; Garrido, Griselda; Moll, Jorge; Grafman, Jordan
2014-11-01
Proneness to specific moral sentiments (e.g. pride, gratitude, guilt, indignation) has been linked with individual variations in functional MRI (fMRI) response within anterior brain regions whose lesion leads to inappropriate behaviour. However, the role of structural anatomical differences in rendering individuals prone to particular moral sentiments relative to others is unknown. Here, we investigated grey matter volumes (VBM8) and proneness to specific moral sentiments on a well-controlled experimental task in healthy individuals. Individuals with smaller cuneus, and precuneus volumes were more pride-prone, whereas those with larger right inferior temporal volumes experienced gratitude more readily. Although the primary analysis detected no associations with guilt- or indignation-proneness, subgenual cingulate fMRI responses to guilt were negatively correlated with grey matter volumes in the left superior temporal sulcus and anterior dorsolateral prefrontal cortices (right >left). This shows that individual variations in functional activations within critical areas for moral sentiments were not due to grey matter volume differences in the same areas. Grey matter volume differences between healthy individuals may nevertheless play an important role by affecting posterior cortical brain systems that are non-critical but supportive for the experience of specific moral sentiments. This may be of particular relevance when their experience depends on visuo-spatial elaboration. Published by Oxford University Press 2013. This work is written by US Government employees and is in the public domain in the US.
Increased Default Mode Network Connectivity in Individuals at High Familial Risk for Depression
Posner, Jonathan; Cha, Jiook; Wang, Zhishun; Talati, Ardesheer; Warner, Virginia; Gerber, Andrew; Peterson, Bradley S; Weissman, Myrna
2016-01-01
Research into the pathophysiology of major depressive disorder (MDD) has focused largely on individuals already affected by MDD. Studies have thus been limited in their ability to disentangle effects that arise as a result of MDD from precursors of the disorder. By studying individuals at high familial risk for MDD, we aimed to identify potential biomarkers indexing risk for developing MDD, a critical step toward advancing prevention and early intervention. Using resting-state functional connectivity MRI (rs-fcMRI) and diffusion MRI (tractography), we examined connectivity within the default mode network (DMN) and between the DMN and the central executive network (CEN) in 111 individuals, aged 11–60 years, at high and low familial risk for depression. Study participants were part of a three-generation longitudinal, cohort study of familial depression. Based on rs-fcMRI, individuals at high vs low familial risk for depression showed increased DMN connectivity, as well as decreased DMN-CEN-negative connectivity. These findings remained significant after excluding individuals with a current or lifetime history of depression. Diffusion MRI measures based on tractography supported the findings of decreased DMN-CEN-negative connectivity. Path analyses indicated that decreased DMN-CEN-negative connectivity mediated a relationship between familial risk and a neuropsychological measure of impulsivity. Our findings suggest that DMN and DMN-CEN connectivity differ in those at high vs low risk for depression and thus suggest potential biomarkers for identifying individuals at risk for developing MDD. PMID:26593265
Increased Default Mode Network Connectivity in Individuals at High Familial Risk for Depression.
Posner, Jonathan; Cha, Jiook; Wang, Zhishun; Talati, Ardesheer; Warner, Virginia; Gerber, Andrew; Peterson, Bradley S; Weissman, Myrna
2016-06-01
Research into the pathophysiology of major depressive disorder (MDD) has focused largely on individuals already affected by MDD. Studies have thus been limited in their ability to disentangle effects that arise as a result of MDD from precursors of the disorder. By studying individuals at high familial risk for MDD, we aimed to identify potential biomarkers indexing risk for developing MDD, a critical step toward advancing prevention and early intervention. Using resting-state functional connectivity MRI (rs-fcMRI) and diffusion MRI (tractography), we examined connectivity within the default mode network (DMN) and between the DMN and the central executive network (CEN) in 111 individuals, aged 11-60 years, at high and low familial risk for depression. Study participants were part of a three-generation longitudinal, cohort study of familial depression. Based on rs-fcMRI, individuals at high vs low familial risk for depression showed increased DMN connectivity, as well as decreased DMN-CEN-negative connectivity. These findings remained significant after excluding individuals with a current or lifetime history of depression. Diffusion MRI measures based on tractography supported the findings of decreased DMN-CEN-negative connectivity. Path analyses indicated that decreased DMN-CEN-negative connectivity mediated a relationship between familial risk and a neuropsychological measure of impulsivity. Our findings suggest that DMN and DMN-CEN connectivity differ in those at high vs low risk for depression and thus suggest potential biomarkers for identifying individuals at risk for developing MDD.
NASA Astrophysics Data System (ADS)
Kinkingnehun, Serge R. J.; du Boisgueheneuc, Foucaud; Golmard, Jean-Louis; Zhang, Sandy X.; Levy, Richard; Dubois, Bruno
2004-04-01
We have developed a new technique to analyze correlations between brain anatomy and its neurological functions. The technique is based on the anatomic MRI of patients with brain lesions who are administered neuropsychological tests. Brain lesions of the MRI scans are first manually segmented. The MRI volumes are then normalized to a reference map, using the segmented area as a mask. After normalization, the brain lesions of the MRI are segmented again in order to redefine the border of the lesions in the context of the normalized brain. Once the MRI is segmented, the patient's score on the neuropsychological test is assigned to each voxel in the lesioned area, while the rest of the voxels of the image are set to 0. Subsequently, the individual patient's MRI images are superimposed, and each voxel is reassigned the average score of the patients who have a lesion at that voxel. A threshold is applied to remove regions having less than three overlaps. This process leads to an anatomo-functional map that links brain areas to functional loss. Other maps can be created to aid in analyzing the functional maps, such as one that indicates the 95% confidence interval of the averaged scores for each area. This anatomo-clinical overlapping map (AnaCOM) method was used to obtain functional maps from patients with lesions in the superior frontal gyrus. By finding particular subregions more responsible for a particular deficit, this method can generate new hypotheses to be tested by conventional group methods.
Neural Markers and Rehabilitation of Executive Functioning in Veterans with TBI and PTSD
2015-10-01
with reduced irritability/impulsivity and improved social/occupational functioning. Functional magnetic resonance imaging ( fMRI ) will be used to...transport Veterans five minutes away to the Dr. Belger’s lab at UNC Hospital where EEG and fMRI will be conducted and then transport Veterans back to... fMRI was arranged through the UNC-Chapel Hill School of Medicine at month 9. Participants may either take a shuttle from the research laboratory to
Schmidt, Simone; Hafner, Patricia; Klein, Andrea; Rubino-Nacht, Daniela; Gocheva, Vanya; Schroeder, Jonas; Naduvilekoot Devasia, Arjith; Zuesli, Stephanie; Bernert, Guenther; Laugel, Vincent; Bloetzer, Clemens; Steinlin, Maja; Capone, Andrea; Gloor, Monika; Tobler, Patrick; Haas, Tanja; Bieri, Oliver; Zumbrunn, Thomas; Fischer, Dirk; Bonati, Ulrike
2018-01-01
The development of new therapeutic agents for the treatment of Duchenne muscular dystrophy has put a focus on defining outcome measures most sensitive to capture treatment effects. This cross-sectional analysis investigates the relation between validated clinical assessments such as the 6-minute walk test, motor function measure and quantitative muscle MRI of thigh muscles in ambulant Duchenne muscular dystrophy patients, aged 6.5 to 10.8 years (mean 8.2, SD 1.1). Quantitative muscle MRI included the mean fat fraction using a 2-point Dixon technique, and transverse relaxation time (T2) measurements. All clinical assessments were highly significantly inter-correlated with p < 0.001. The strongest correlation with the motor function measure and its D1-subscore was shown by the 6-minute walk test. Clinical assessments showed no correlation with age. Importantly, quantitative muscle MRI values significantly correlated with all clinical assessments with the extensors showing the strongest correlation. In contrast to the clinical assessments, quantitative muscle MRI values were highly significantly correlated with age. In conclusion, the motor function measure and timed function tests measure disease severity in a highly comparable fashion and all tests correlated with quantitative muscle MRI values quantifying fatty muscle degeneration. Copyright © 2017 Elsevier B.V. All rights reserved.
Morphological and functional evaluation of chronic pancreatitis with magnetic resonance imaging
Hansen, Tine Maria; Nilsson, Matias; Gram, Mikkel; Frøkjær, Jens Brøndum
2013-01-01
Magnetic resonance imaging (MRI) techniques for assessment of morphology and function of the pancreas have been improved dramatically the recent years and MRI is very often used in diagnosing and follow-up of chronic pancreatitis (CP) patients. Standard MRI including fat-suppressed T1-weighted and T2-weighted imaging techniques reveal decreased signal and glandular atrophy of the pancreas in CP. In contrast-enhanced MRI of the pancreas in CP the pancreatic signal is usually reduced and delayed due to decreased perfusion as a result of chronic inflammation and fibrosis. Thus, morphological changes of the ductal system can be assessed by magnetic resonance cholangiopancreatography (MRCP). Furthermore, secretin-stimulated MRCP is a valuable technique to evaluate side branch pathology and the exocrine function of the pancreas and diffusion weighted imaging can be used to quantify both parenchymal fibrotic changes and the exocrine function of the pancreas. These standard and advanced MRI techniques are supplementary techniques to reveal morphological and functional changes of the pancreas in CP. Recently, spectroscopy has been used for assessment of metabolite concentrations in-vivo in different tissues and may have the potential to offer better tissue characterization of the pancreas. Hence, the purpose of the present review is to provide an update on standard and advanced MRI techniques of the pancreas in CP. PMID:24259954
Gorges, Martin; Roselli, Francesco; Müller, Hans-Peter; Ludolph, Albert C.; Rasche, Volker; Kassubek, Jan
2017-01-01
“Resting-state” fMRI has substantially contributed to the understanding of human and non-human functional brain organization by the analysis of correlated patterns in spontaneous activity within dedicated brain systems. Spontaneous neural activity is indirectly measured from the blood oxygenation level-dependent signal as acquired by echo planar imaging, when subjects quietly “resting” in the scanner. Animal models including disease or knockout models allow a broad spectrum of experimental manipulations not applicable in humans. The non-invasive fMRI approach provides a promising tool for cross-species comparative investigations. This review focuses on the principles of “resting-state” functional connectivity analysis and its applications to living animals. The translational aspect from in vivo animal models toward clinical applications in humans is emphasized. We introduce the fMRI-based investigation of the non-human brain’s hemodynamics, the methodological issues in the data postprocessing, and the functional data interpretation from different abstraction levels. The longer term goal of integrating fMRI connectivity data with structural connectomes obtained with tracing and optical imaging approaches is presented and will allow the interrogation of fMRI data in terms of directional flow of information and may identify the structural underpinnings of observed functional connectivity patterns. PMID:28539914
Taghon, Thomas A; Masunga, Abigail N; Small, Robert H; Kashou, Nasser H
2015-03-01
Functional magnetic resonance imaging (fMRI) has been used to evaluate the long-term consequences of early exposure to neurotoxic agents. fMRI shows that different patterns of brain activation occur in ethanol-exposed subjects performing a go/no-go response inhibition task. Pharmacologically, ethanol and general anesthetics have similar receptor-level activity in the brain. This study utilizes fMRI to examine brain activation patterns in children exposed to general anesthesia and surgery during early brain development. After obtaining Nationwide Children's Hospital IRB approval, a surgical database was utilized to identify children aged 10-17 years with a history of at least 1 h of exposure to general anesthetics and surgery when they were between 0 and 24 months of age. Age- and gender-matched children without anesthesia exposure were recruited as a control group. All subjects were scanned while being presented with a go/no-go response inhibition task. Reaction time and accuracy data were acquired, and the blood-oxygen-level-dependent (BOLD) fMRI signal was measured as a biomarker for regional neuronal activity. There were no differences in terms of performance accuracy and response time. The analysis did not reveal any significant activation differences in the primary region of interest (prefrontal cortex and caudate nucleus); however, activation differences were seen in other structures, including the cerebellum, cingulate gyrus, and paracentral lobule. Early anesthetic exposure and surgery did not affect accuracy, response time, or activation patterns in the primary region of interest during performance of the task. Intergroup differences in activation patterns in other areas of the brain were observed, and the significance of these findings is unknown. fMRI appears to be a useful tool in evaluating the long-term effects of early exposure to general anesthesia. © 2015 John Wiley & Sons Ltd.
Estimation of contrast agent bolus arrival delays for improved reproducibility of liver DCE MRI
NASA Astrophysics Data System (ADS)
Chouhan, Manil D.; Bainbridge, Alan; Atkinson, David; Punwani, Shonit; Mookerjee, Rajeshwar P.; Lythgoe, Mark F.; Taylor, Stuart A.
2016-10-01
Delays between contrast agent (CA) arrival at the site of vascular input function (VIF) sampling and the tissue of interest affect dynamic contrast enhanced (DCE) MRI pharmacokinetic modelling. We investigate effects of altering VIF CA bolus arrival delays on liver DCE MRI perfusion parameters, propose an alternative approach to estimating delays and evaluate reproducibility. Thirteen healthy volunteers (28.7 ± 1.9 years, seven males) underwent liver DCE MRI using dual-input single compartment modelling, with reproducibility (n = 9) measured at 7 days. Effects of VIF CA bolus arrival delays were assessed for arterial and portal venous input functions. Delays were pre-estimated using linear regression, with restricted free modelling around the pre-estimated delay. Perfusion parameters and 7 days reproducibility were compared using this method, freely modelled delays and no delays using one-way ANOVA. Reproducibility was assessed using Bland-Altman analysis of agreement. Maximum percent change relative to parameters obtained using zero delays, were -31% for portal venous (PV) perfusion, +43% for total liver blood flow (TLBF), +3247% for hepatic arterial (HA) fraction, +150% for mean transit time and -10% for distribution volume. Differences were demonstrated between the 3 methods for PV perfusion (p = 0.0085) and HA fraction (p < 0.0001), but not other parameters. Improved mean differences and Bland-Altman 95% Limits-of-Agreement for reproducibility of PV perfusion (9.3 ml/min/100 g, ±506.1 ml/min/100 g) and TLBF (43.8 ml/min/100 g, ±586.7 ml/min/100 g) were demonstrated using pre-estimated delays with constrained free modelling. CA bolus arrival delays cause profound differences in liver DCE MRI quantification. Pre-estimation of delays with constrained free modelling improved 7 days reproducibility of perfusion parameters in volunteers.
Functional Imaging of the Lungs with Gas Agents
Kruger, Stanley J.; Nagle, Scott K.; Couch, Marcus J.; Ohno, Yoshiharu; Albert, Mitchell; Fain, Sean B.
2015-01-01
This review focuses on the state-of-the-art of the three major classes of gas contrast agents used in magnetic resonance imaging (MRI) – hyperpolarized (HP) gas, molecular oxygen, and fluorinated gas – and their application to clinical pulmonary research. During the past several years there has been accelerated development of pulmonary MRI. This has been driven in part by concerns regarding ionizing radiation using multi-detector computed tomography (CT). However, MRI also offers capabilities for fast multi-spectral and functional imaging using gas agents that are not technically feasible with CT. Recent improvements in gradient performance and radial acquisition methods using ultra-short echo time (UTE) have contributed to advances in these functional pulmonary MRI techniques. Relative strengths and weaknesses of the main functional imaging methods and gas agents are compared and applications to measures of ventilation, diffusion, and gas exchange are presented. Functional lung MRI methods using these gas agents are improving our understanding of a wide range of chronic lung diseases, including chronic obstructive pulmonary disease (COPD), asthma, and cystic fibrosis (CF) in both adults and children. PMID:26218920
Fatahi, Mahsa; Demenescu, Liliana Ramona; Speck, Oliver
2016-06-01
To retrospectively assess perception of safety of healthy individuals working with human 7 Tesla (T) magnetic resonance imaging (MRI) scanners. A total of 66 healthy individuals with a mean age of 31 ± 7 years participated in this retrospective multicentre survey study. Nonparametric correlation analysis was conducted to evaluate the relation between self-reported perception of safety and prevalence of sensory effects while working with 7 T MRI scanners for an average 47 months. The results indicated that 98.5 % of the study participants had a neutral or positive feeling about safety aspects at 7 T MRI scanners. 45.5 % reported that they feel very safe and none of the participants stated that they feel moderately or very unsafe while working with 7 T MRI scanners. Perception of safety was not affected by the number of hours per week spent in the vicinity of the 7 T MRI scanner or the duration of experience with 7 T MRI. More than 50 % of individuals experienced vertigo and metallic taste while working with 7 T MRI scanners. However, participants' perceptions of safety were not affected by the prevalence of MR-related symptoms. The overall data indicated an average perception of a moderately safe work environment. To our knowledge, this study delineates the first attempt to assess the subjective safety perception among 7 T MRI workers and suggests further investigations are indicated.
Effect of breast magnetic resonance imaging on the clinical management of breast cancer.
Galinsky, Daliah; Kisselgoff, David; Sella, Tamar; Peretz, Tamar; Libson, Eugene; Sklair-Levy, Miri
2005-11-01
Mammography is the principal breast cancer imaging technique; however, sensitivity is reduced, especially in dense breast tissue. Magnetic resonance imaging is increasingly used in the detection and characterization of breast cancers. The high sensitivity (95-100%) of MRI is consistently observed, and in many situations, MRI is proving superior to classical forms of imaging. Assessment of its impact on management and outcome is vital if MRI is to become standard in the management of breast cancers. To establish the impact of breast MRI on women undergoing testing in our institution. We analyzed 82 cases that underwent MRI between January 2001 and April 2003. Analysis appraised the clinical impact of MRI testing in cases where medical summaries were available. Studies were categorized into five indications: a) screening in high risk women (n=7), b) search for primary disease in the presence of disease (n=5), c) monitoring of chemotherapy (n=2), d) postoperative assessment of tumor bed (n=9), and e) diagnostic/characterization of primary or recurrent breast cancer (n=59). Results were defined as negative, positive, or no impact on clinical management. MRI testing had a positive impact in 62 cases, affecting measurable change in 9 cases. Benefit was seen in screening, diagnosis and postoperative cases. In 15 cases, MRI stimulated investigations. MRI is a valuable tool in breast imaging and affects management. Further trials are necessary to clearly define the role of MRI and to ascertain whether in cases where beneficial impact on management is noted, there is ultimate impact on outcome.
Motion Correction in PROPELLER and Turboprop-MRI
Tamhane, Ashish A.; Arfanakis, Konstantinos
2009-01-01
PROPELLER and Turboprop-MRI are characterized by greatly reduced sensitivity to motion, compared to their predecessors, fast spin-echo and gradient and spin-echo, respectively. This is due to the inherent self-navigation and motion correction of PROPELLER-based techniques. However, it is unknown how various acquisition parameters that determine k-space sampling affect the accuracy of motion correction in PROPELLER and Turboprop-MRI. The goal of this work was to evaluate the accuracy of motion correction in both techniques, to identify an optimal rotation correction approach, and determine acquisition strategies for optimal motion correction. It was demonstrated that, blades with multiple lines allow more accurate estimation of motion than blades with fewer lines. Also, it was shown that Turboprop-MRI is less sensitive to motion than PROPELLER. Furthermore, it was demonstrated that the number of blades does not significantly affect motion correction. Finally, clinically appropriate acquisition strategies that optimize motion correction were discussed for PROPELLER and Turboprop-MRI. PMID:19365858
Chen, Fangfang; Lv, Xueyu; Fang, Jiliang; Yu, Shan; Sui, Jing; Fan, Lingzhong; Li, Tao; Hong, Yang; Wang, XiaoLing; Wang, Weidong; Jiang, Tianzi
2015-09-01
Meditation has been increasingly evaluated as an important complementary therapeutic tool for the treatment of depression. The present study employed resting-state functional magnetic resonance imaging (rs-fMRI) to examine the effect of body-mind relaxation meditation induction (BMRMI) on the brain activity of depressed patients and to investigate possible mechanisms of action for this complex intervention. 21 major depressive disorder patients (MDDs) and 24 age and gender-matched healthy controls (HCs) received rs-fMRI scans at baseline and after listening to a selection of audio designed to induce body-mind relaxation meditation. The rs-fMRI data were analyzed using Matlab toolbox to obtain the amplitude of low-frequency fluctuations (ALFF) of the BOLD signal for the whole brain. A mixed-design repeated measures analysis of variance (ANOVA) was performed on the whole brain to find which brain regions were affected by the BMRMI. An additional functional connectivity analysis was used to identify any atypical connection patterns after the BMRMI. After the BMRMI experience, both the MDDs and HCs showed decreased ALFF values in the bilateral frontal pole (BA10). Additionally, increased functional connectivity from the right dorsal medial prefrontal cortex (dmPFC) to the left dorsal lateral prefrontal cortex (dlPFC) and the left lateral orbitofrontal cortex (OFC) was identified only in the MDDs after the BMRMI. In order to exclude the impact of other events on the participants׳ brain activity, the Hamilton Rating Scales for Depression (HDRS) was not measured after the body-mind relaxation induction. Our findings support the hypothesis that body-mind relaxation meditation induction may regulate the activities of the prefrontal cortex and thus may have the potential to help patients construct reappraisal strategies that can modulate the brain activity in multiple emotion-processing systems. Copyright © 2015 Elsevier B.V. All rights reserved.
Avery, Ryan; Day, Kevin; Jokerst, Clinton; Kazui, Toshinobu; Krupinski, Elizabeth; Khalpey, Zain
2017-10-10
Advanced heart failure treated with a left ventricular assist device is associated with a higher risk of right heart failure. Many advanced heart failures patients are treated with an ICD, a relative contraindication to MRI, prior to assist device placement. Given this limitation, left and right ventricular function for patients with an ICD is calculated using radionuclide angiography utilizing planar multigated acquisition (MUGA) and first pass radionuclide angiography (FPRNA), respectively. Given the availability of MRI protocols that can accommodate patients with ICDs, we have correlated the findings of ventricular functional analysis using radionuclide angiography to cardiac MRI, the reference standard for ventricle function calculation, to directly correlate calculated ejection fractions between these modalities, and to also assess agreement between available echocardiographic and hemodynamic parameters of right ventricular function. A retrospective review from January 2012 through May 2014 was performed to identify advanced heart failure patients who underwent both cardiac MRI and radionuclide angiography for ventricular functional analysis. Nine heart failure patients (8 men, 1 woman; mean age of 57.0 years) were identified. The average time between the cardiac MRI and radionuclide angiography exams was 38.9 days (range: 1 - 119 days). All patients undergoing cardiac MRI were scanned using an institutionally approved protocol for ICD with no device-related complications identified. A retrospective chart review of each patient for cardiomyopathy diagnosis, clinical follow-up, and echocardiogram and right heart catheterization performed during evaluation was also performed. The 9 patients demonstrated a mean left ventricular ejection fraction (LVEF) using cardiac MRI of 20.7% (12 - 40%). Mean LVEF using MUGA was 22.6% (12 - 49%). The mean right ventricular ejection fraction (RVEF) utilizing cardiac MRI was 28.3% (16 - 43%), and the mean RVEF calculated by FPRNA was 32.6% (9 - 56%). The mean discrepancy for LVEF between cardiac MRI and MUGA was 4.1% (0 - 9%), and correlation of calculated LVEF using cardiac MRI and MUGA demonstrated an R of 0.9. The mean discrepancy for RVEF between cardiac MRI and FPRNA was 12.0% (range: 2 - 24%) with a moderate correlation (R = 0.5). The increased discrepancies for RV analysis were statistically significant using an unpaired t-test (t = 3.19, p = 0.0061). Echocardiogram parameters of RV function, including TAPSE and FAC, were for available for all 9 patients and agreement with cardiac MRI demonstrated a kappa statistic for TAPSE of 0.39 (95% CI of 0.06 - 0.72) and for FAC of 0.64 (95% of 0.21 - 1.00). Heart failure patients are increasingly requiring left ventricular assist device placement; however, definitive evaluation of biventricular function is required due to the increased mortality rate associated with right heart failure after assist device placement. Our results suggest that FPRNA only has a moderate correlation with reference standard RVEFs calculated using cardiac MRI, which was similar to calculated agreements between cardiac MRI and echocardiographic parameters of right ventricular function. Given the need for identification of patients at risk for right heart failure, further studies are warranted to determine a more accurate estimate of RVEF for heart failure patients during pre-operative ventricular assist device planning.
Functional MRI in the Investigation of Blast-Related Traumatic Brain Injury
Graner, John; Oakes, Terrence R.; French, Louis M.; Riedy, Gerard
2012-01-01
This review focuses on the application of functional magnetic resonance imaging (fMRI) to the investigation of blast-related traumatic brain injury (bTBI). Relatively little is known about the exact mechanisms of neurophysiological injury and pathological and functional sequelae of bTBI. Furthermore, in mild bTBI, standard anatomical imaging techniques (MRI and computed tomography) generally fail to show focal lesions and most of the symptoms present as subjective clinical functional deficits. Therefore, an objective test of brain functionality has great potential to aid in patient diagnosis and provide a sensitive measurement to monitor disease progression and treatment. The goal of this review is to highlight the relevant body of blast-related TBI literature and present suggestions and considerations in the development of fMRI studies for the investigation of bTBI. The review begins with a summary of recent bTBI publications followed by discussions of various elements of blast-related injury. Brief reviews of some fMRI techniques that focus on mental processes commonly disrupted by bTBI, including working memory, selective attention, and emotional processing, are presented in addition to a short review of resting state fMRI. Potential strengths and weaknesses of these approaches as regards bTBI are discussed. Finally, this review presents considerations that must be made when designing fMRI studies for bTBI populations, given the heterogeneous nature of bTBI and its high rate of comorbidity with other physical and psychological injuries. PMID:23460082
Schouten, Tijn M; Koini, Marisa; de Vos, Frank; Seiler, Stephan; van der Grond, Jeroen; Lechner, Anita; Hafkemeijer, Anne; Möller, Christiane; Schmidt, Reinhold; de Rooij, Mark; Rombouts, Serge A R B
2016-01-01
Magnetic resonance imaging (MRI) is sensitive to structural and functional changes in the brain caused by Alzheimer's disease (AD), and can therefore be used to help in diagnosing the disease. Improving classification of AD patients based on MRI scans might help to identify AD earlier in the disease's progress, which may be key in developing treatments for AD. In this study we used an elastic net classifier based on several measures derived from the MRI scans of mild to moderate AD patients (N = 77) from the prospective registry on dementia study and controls (N = 173) from the Austrian Stroke Prevention Family Study. We based our classification on measures from anatomical MRI, diffusion weighted MRI and resting state functional MRI. Our unimodal classification performance ranged from an area under the curve (AUC) of 0.760 (full correlations between functional networks) to 0.909 (grey matter density). When combining measures from multiple modalities in a stepwise manner, the classification performance improved to an AUC of 0.952. This optimal combination consisted of grey matter density, white matter density, fractional anisotropy, mean diffusivity, and sparse partial correlations between functional networks. Classification performance for mild AD as well as moderate AD also improved when using this multimodal combination. We conclude that different MRI modalities provide complementary information for classifying AD. Moreover, combining multiple modalities can substantially improve classification performance over unimodal classification.
BOLDSync: a MATLAB-based toolbox for synchronized stimulus presentation in functional MRI.
Joshi, Jitesh; Saharan, Sumiti; Mandal, Pravat K
2014-02-15
Precise and synchronized presentation of paradigm stimuli in functional magnetic resonance imaging (fMRI) is central to obtaining accurate information about brain regions involved in a specific task. In this manuscript, we present a new MATLAB-based toolbox, BOLDSync, for synchronized stimulus presentation in fMRI. BOLDSync provides a user friendly platform for design and presentation of visual, audio, as well as multimodal audio-visual (AV) stimuli in functional imaging experiments. We present simulation experiments that demonstrate the millisecond synchronization accuracy of BOLDSync, and also illustrate the functionalities of BOLDSync through application to an AV fMRI study. BOLDSync gains an advantage over other available proprietary and open-source toolboxes by offering a user friendly and accessible interface that affords both precision in stimulus presentation and versatility across various types of stimulus designs and system setups. BOLDSync is a reliable, efficient, and versatile solution for synchronized stimulus presentation in fMRI study. Copyright © 2013 Elsevier B.V. All rights reserved.
Papma, Janne M; Smits, Marion; de Groot, Marius; Mattace Raso, Francesco U; van der Lugt, Aad; Vrooman, Henri A; Niessen, Wiro J; Koudstaal, Peter J; van Swieten, John C; van der Veen, Frederik M; Prins, Niels D
2017-09-01
Diminished function of the posterior cingulate cortex (PCC) is a typical finding in early Alzheimer's disease (AD). It is hypothesized that in early stage AD, PCC functioning relates to or reflects hippocampal dysfunction or atrophy. The aim of this study was to examine the relationship between hippocampus function, volume and structural connectivity, and PCC activation during an episodic memory task-related fMRI study in mild cognitive impairment (MCI). MCI patients (n = 27) underwent episodic memory task-related fMRI, 3D-T1w MRI, 2D T2-FLAIR MRI and diffusion tensor imaging. Stepwise linear regression analysis was performed to examine the relationship between PCC activation and hippocampal activation, hippocampal volume and diffusion measures within the cingulum along the hippocampus. We found a significant relationship between PCC and hippocampus activation during successful episodic memory encoding and correct recognition in MCI patients. We found no relationship between the PCC and structural hippocampal predictors. Our results indicate a relationship between PCC and hippocampus activation during episodic memory engagement in MCI. This may suggest that during episodic memory, functional network deterioration is the most important predictor of PCC functioning in MCI. • PCC functioning during episodic memory relates to hippocampal functioning in MCI. • PCC functioning during episodic memory does not relate to hippocampal structure in MCI. • Functional network changes are an important predictor of PCC functioning in MCI.
Erberich, Stephan G; Bhandekar, Manasee; Chervenak, Ann; Kesselman, Carl; Nelson, Marvin D
2007-01-01
Functional MRI is successfully being used in clinical and research applications including preoperative planning, language mapping, and outcome monitoring. However, clinical use of fMRI is less widespread due to its complexity of imaging, image workflow, post-processing, and lack of algorithmic standards hindering result comparability. As a consequence, wide-spread adoption of fMRI as clinical tool is low contributing to the uncertainty of community physicians how to integrate fMRI into practice. In addition, training of physicians with fMRI is in its infancy and requires clinical and technical understanding. Therefore, many institutions which perform fMRI have a team of basic researchers and physicians to perform fMRI as a routine imaging tool. In order to provide fMRI as an advanced diagnostic tool to the benefit of a larger patient population, image acquisition and image post-processing must be streamlined, standardized, and available at any institution which does not have these resources available. Here we describe a software architecture, the functional imaging laboratory (funcLAB/G), which addresses (i) standardized image processing using Statistical Parametric Mapping and (ii) its extension to secure sharing and availability for the community using standards-based Grid technology (Globus Toolkit). funcLAB/G carries the potential to overcome the limitations of fMRI in clinical use and thus makes standardized fMRI available to the broader healthcare enterprise utilizing the Internet and HealthGrid Web Services technology.
Pharmacological MRI in animal models: a useful tool for 5-HT research?
Martin, Chris; Sibson, Nicola R
2008-11-01
Pharmacological magnetic resonance imaging (phMRI) offers the potential to provide novel insights into the functioning of neurotransmitter systems and drug action in the central nervous system. To date, much of the neuropharmacological research that has applied phMRI techniques has focused on the dopaminergic system with relatively few studies into serotonergic function. In this article, we discuss the current capabilities of, and future potential for phMRI to address fundamental questions in serotonergic research using animal models. Firstly we review existing literature on the application of phMRI to the serotonergic system by exploring 3 broad research themes: (i) the functional anatomy of the serotonergic system; (ii) drug-receptor targeting and distribution; and (iii) disease models and drug development. Subsequently, we discuss the interpretation of phMRI data in terms of neuropharmacological action with a focus on issues specific to neuroimaging studies of the serotonergic system. Unlike other neuroimaging approaches such as positron emission tomography, phMRI methods do not currently offer sensitivity to markers of specific pharmacological action. However, they can provide in vivo markers of the neuropharmacological modulation of neuronal activity across the whole brain with unparalleled spatial and temporal resolution. Furthermore, due to the non-invasive nature of MRI, these markers are readily translatable to human studies. Whilst there are a number of constraints and limitations to phMRI methods that necessitate careful data interpretation, we argue that phMRI could become a valuable research tool in neuropharmacological studies of the serotonergic system.
Functional MR imaging assessment of a non-responsive brain injured patient.
Moritz, C H; Rowley, H A; Haughton, V M; Swartz, K R; Jones, J; Badie, B
2001-10-01
Functional magnetic resonance imaging (fMRI) was requested to assist in the evaluation of a comatose 38-year-old woman who had sustained multiple cerebral contusions from a motor vehicle accident. Previous electrophysiologic studies suggested absence of thalamocortical processing in response to median nerve stimulation. Whole-brain fMRI was performed utilizing visual, somatosensory, and auditory stimulation paradigms. Results demonstrated intact task-correlated sensory and cognitive blood oxygen level dependent (BOLD) hemodynamic response to stimuli. Electrodiagnostic studies were repeated and evoked potentials indicated supratentorial recovery in the cerebrum. At 3-months post trauma the patient had recovered many cognitive & sensorimotor functions, accurately reflecting the prognostic fMRI evaluation. These results indicate that fMRI examinations may provide a useful evaluation for brain function in non-responsive brain trauma patients.
Clinical Applications of Resting State Functional Connectivity
Fox, Michael D.; Greicius, Michael
2010-01-01
During resting conditions the brain remains functionally and metabolically active. One manifestation of this activity that has become an important research tool is spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signal of functional magnetic resonance imaging (fMRI). The identification of correlation patterns in these spontaneous fluctuations has been termed resting state functional connectivity (fcMRI) and has the potential to greatly increase the translation of fMRI into clinical care. In this article we review the advantages of the resting state signal for clinical applications including detailed discussion of signal to noise considerations. We include guidelines for performing resting state research on clinical populations, outline the different areas for clinical application, and identify important barriers to be addressed to facilitate the translation of resting state fcMRI into the clinical realm. PMID:20592951
MRI to assess renal structure and function.
Artunc, Ferruh; Rossi, Cristina; Boss, Andreas
2011-11-01
In addition to excellent anatomical depiction, MRI techniques have expanded to study functional aspects of renal physiology, such as renal perfusion, glomerular filtration rate (GFR) or tissue oxygenation. This review will focus on current developments with an emphasis on clinical applicability. The method of GFR determination is largely heterogeneous and still has weaknesses. However, the technique of employing liver disappearance curves has been shown to be accurate in healthy persons and patients with chronic kidney disease. In potential kidney donors, complete evaluation of kidney anatomy and function can be accomplished in a single-stop investigation. Techniques without contrast media can be utilized to measure renal tissue oxygenation (blood oxygen level-dependent MRI) or perfusion (arterial spin labeling) and could aid in the diagnosis and treatment of ischemic renal diseases, such as renal artery stenosis. Diffusion imaging techniques may provide information on spatially restricted water diffusion and tumor cellularity. Functional MRI opens new horizons in studying renal physiology and pathophysiology in vivo. Although extensively utilized in research, labor-intensive postprocessing and lack of standardization currently limit the clinical applicability of functional MRI. Further studies are necessary to evaluate the clinical value of functional magnetic resonance techniques for early discovery and characterization of kidney disease.
2006-01-01
Executive Summary Objective The objective of this analysis is to review a spectrum of functional brain imaging technologies to identify whether there are any imaging modalities that are more effective than others for various brain pathology conditions. This evidence-based analysis reviews magnetoencephalography (MEG), magnetic resonance spectroscopy (MRS), positron emission tomography (PET), and functional magnetic resonance imaging (fMRI) for the diagnosis or surgical management of the following conditions: Alzheimer’s disease (AD), brain tumours, epilepsy, multiple sclerosis (MS), and Parkinson’s disease (PD). Clinical Need: Target Population and Condition Alzheimer’s disease is a progressive, degenerative, neurologic condition characterized by cognitive impairment and memory loss. The Canadian Study on Health and Aging estimated that there will be 97,000 incident cases (about 60,000 women) of dementia (including AD) in Canada in 2006. In Ontario, there will be an estimated 950 new cases and 580 deaths due to brain cancer in 2006. Treatments for brain tumours include surgery and radiation therapy. However, one of the limitations of radiation therapy is that it damages tissue though necrosis and scarring. Computed tomography (CT) and magnetic resonance imaging (MRI) may not distinguish between radiation effects and resistant tissue, creating a potential role for functional brain imaging. Epilepsy is a chronic disorder that provokes repetitive seizures. In Ontario, the rate of epilepsy is estimated to be 5 cases per 1,000 people. Most people with epilepsy are effectively managed with drug therapy; but about 50% do not respond to drug therapy. Surgical resection of the seizure foci may be considered in these patients, and functional brain imaging may play a role in localizing the seizure foci. Multiple sclerosis is a progressive, inflammatory, demyelinating disease of the central nervous system (CNS). The cause of MS is unknown; however, it is thought to be due to a combination of etiologies, including genetic and environmental components. The prevalence of MS in Canada is 240 cases per 100,000 people. Parkinson’s disease is the most prevalent movement disorder; it affects an estimated 100,000 Canadians. Currently, the standard for measuring disease progression is through the use of scales, which are subjective measures of disease progression. Functional brain imaging may provide an objective measure of disease progression, differentiation between parkinsonian syndromes, and response to therapy. The Technology Being Reviewed Functional Brain Imaging Functional brain imaging technologies measure blood flow and metabolism. The results of these tests are often used in conjunction with structural imaging (e.g., MRI or CT). Positron emission tomography and MRS identify abnormalities in brain tissues. The former measures abnormalities through uptake of radiotracers in the brain, while the latter measures chemical shifts in metabolite ratios to identify abnormalities. The potential role of functional MRI (fMRI) is to identify the areas of the brain responsible for language, sensory and motor function (sensorimotor cortex), rather than identifying abnormalities in tissues. Magnetoencephalography measures magnetic fields of the electric currents in the brain, identifying aberrant activity. Magnetoencephalography may have the potential to localize seizure foci and to identify the sensorimotor cortex, visual cortex and auditory cortex. In terms of regulatory status, MEG and PET are licensed by Health Canada. Both MRS and fMRI use a MRI platform; thus, they do not have a separate licence from Health Canada. The radiotracers used in PET scanning are not licensed by Health Canada for general use but can be used through a Clinical Trials Application. Review Strategy The literature published up to September 2006 was searched in the following databases: MEDLINE, MEDLINE In-Process & Other Non-Indexed Citations, EMBASE, Cochrane Database of Systematic Reviews, CENTRAL, and International Network of Agencies for Health Technology Assessment (INAHTA). The database search was supplemented with a search of relevant Web sites and a review of the bibliographies of selected papers. General inclusion criteria were applied to all conditions. Those criteria included the following: Full reports of systematic reviews, randomized controlled trials (RCTs), cohort-control studies, prospective cohort studies (PCS’), and retrospective studies. Sample sizes of at least 20 patients (≥ 10 with condition being reviewed). English-language studies. Human studies. Any age. Studying at least one of the following: fMRI, PET, MRS, or MEG. Functional brain imaging modality must be compared with a clearly defined reference standard. Must report at least one of the following outcomes: sensitivity, specificity, accuracy, positive predictive value (PPV), receiver operating characteristic curve, outcome measuring impact on diagnostic testing, treatment, patient health, or cost. Summary of Findings There is evidence to indicate that PET can accurately diagnose AD; however, at this time, there is no evidence to suggest that a diagnosis of AD with PET alters the clinical outcomes of patients. The addition of MRS or O-(2-18F-Fluoroethyl)-L-Tyrosine (FET)-PET to gadolinium (Gd)-enhanced MRI for distinguishing malignant from benign tumours during primary diagnosis may provide a higher specificity than Gd-enhanced MRI alone. The clinical utility of additional imaging in patients to distinguish malignant from benign tumours is unclear, because patients with a suspected brain tumour will likely undergo a biopsy despite additional imaging results. The addition of MRS, FET-PET, or MRI T2 to Gd-enhanced MRI for the differentiation of recurrence from radiation necrosis may provide a higher specificity than Gd-enhanced MRI alone. The clinical utility of additional imaging in patients with a suspected recurrence is in the monitoring of patients. Based on the evidence available, it is unclear if one of the imaging modalities (MRS, FET-PET, or MRI T2) offers significantly improved specificity over another. There may be a role for fMRI in the identification of surgical candidates for tumour resection; however, this requires further research. Based on the studies available, it is unclear if MEG has similar accuracy in localizing seizure foci to intracranial electroencephalogram (ICEEG). More high-quality research is needed to establish whether there is a difference in accuracy between MEG and ICEEG. The results of the studies comparing PET to noninvasive electroencephalogram (EEG) did not demonstrate that PET was more accurate at localizing seizure foci; however, there may be some specific conditions, such as tuberous sclerosis, where PET may be more accurate than noninvasive EEG. There may be some clinical utility for MEG or fMRI in presurgical functional mapping; however, this needs further investigation involving comparisons with other modalities. The clinical utility of MRS has yet to be established for patients with epilepsy. Positron emission tomography has high sensitivity and specificity in the diagnosis of PD and the differential diagnosis of parkinsonian syndromes; however, it is unclear at this time if the addition of PET in the diagnosis of these conditions contributes to the treatment and clinical outcomes of patients. There is limited clinical utility of functional brain imaging in the management of patients with MS at this time. Diagnosis of MS is established through clinical history, evoked potentials, and MRI. Magnetic resonance imaging can identify the multifocal white lesions and other structural characteristics of MS. PMID:23074493
Functional brain imaging: an evidence-based analysis.
2006-01-01
The objective of this analysis is to review a spectrum of functional brain imaging technologies to identify whether there are any imaging modalities that are more effective than others for various brain pathology conditions. This evidence-based analysis reviews magnetoencephalography (MEG), magnetic resonance spectroscopy (MRS), positron emission tomography (PET), and functional magnetic resonance imaging (fMRI) for the diagnosis or surgical management of the following conditions: Alzheimer's disease (AD), brain tumours, epilepsy, multiple sclerosis (MS), and Parkinson's disease (PD). TARGET POPULATION AND CONDITION Alzheimer's disease is a progressive, degenerative, neurologic condition characterized by cognitive impairment and memory loss. The Canadian Study on Health and Aging estimated that there will be 97,000 incident cases (about 60,000 women) of dementia (including AD) in Canada in 2006. In Ontario, there will be an estimated 950 new cases and 580 deaths due to brain cancer in 2006. Treatments for brain tumours include surgery and radiation therapy. However, one of the limitations of radiation therapy is that it damages tissue though necrosis and scarring. Computed tomography (CT) and magnetic resonance imaging (MRI) may not distinguish between radiation effects and resistant tissue, creating a potential role for functional brain imaging. Epilepsy is a chronic disorder that provokes repetitive seizures. In Ontario, the rate of epilepsy is estimated to be 5 cases per 1,000 people. Most people with epilepsy are effectively managed with drug therapy; but about 50% do not respond to drug therapy. Surgical resection of the seizure foci may be considered in these patients, and functional brain imaging may play a role in localizing the seizure foci. Multiple sclerosis is a progressive, inflammatory, demyelinating disease of the central nervous system (CNS). The cause of MS is unknown; however, it is thought to be due to a combination of etiologies, including genetic and environmental components. The prevalence of MS in Canada is 240 cases per 100,000 people. Parkinson's disease is the most prevalent movement disorder; it affects an estimated 100,000 Canadians. Currently, the standard for measuring disease progression is through the use of scales, which are subjective measures of disease progression. Functional brain imaging may provide an objective measure of disease progression, differentiation between parkinsonian syndromes, and response to therapy. FUNCTIONAL BRAIN IMAGING: Functional brain imaging technologies measure blood flow and metabolism. The results of these tests are often used in conjunction with structural imaging (e.g., MRI or CT). Positron emission tomography and MRS identify abnormalities in brain tissues. The former measures abnormalities through uptake of radiotracers in the brain, while the latter measures chemical shifts in metabolite ratios to identify abnormalities. The potential role of functional MRI (fMRI) is to identify the areas of the brain responsible for language, sensory and motor function (sensorimotor cortex), rather than identifying abnormalities in tissues. Magnetoencephalography measures magnetic fields of the electric currents in the brain, identifying aberrant activity. Magnetoencephalography may have the potential to localize seizure foci and to identify the sensorimotor cortex, visual cortex and auditory cortex. In terms of regulatory status, MEG and PET are licensed by Health Canada. Both MRS and fMRI use a MRI platform; thus, they do not have a separate licence from Health Canada. The radiotracers used in PET scanning are not licensed by Health Canada for general use but can be used through a Clinical Trials Application. The literature published up to September 2006 was searched in the following databases: MEDLINE, MEDLINE In-Process & Other Non-Indexed Citations, EMBASE, Cochrane Database of Systematic Reviews, CENTRAL, and International Network of Agencies for Health Technology Assessment (INAHTA). The database search was supplemented with a search of relevant Web sites and a review of the bibliographies of selected papers. General inclusion criteria were applied to all conditions. Those criteria included the following: Full reports of systematic reviews, randomized controlled trials (RCTs), cohort-control studies, prospective cohort studies (PCS'), and retrospective studies.Sample sizes of at least 20 patients (≥ 10 with condition being reviewed).English-language studies.Human studies.Any age.STUDYING AT LEAST ONE OF THE FOLLOWING: fMRI, PET, MRS, or MEG.Functional brain imaging modality must be compared with a clearly defined reference standard.MUST REPORT AT LEAST ONE OF THE FOLLOWING OUTCOMES: sensitivity, specificity, accuracy, positive predictive value (PPV), receiver operating characteristic curve, outcome measuring impact on diagnostic testing, treatment, patient health, or cost. There is evidence to indicate that PET can accurately diagnose AD; however, at this time, there is no evidence to suggest that a diagnosis of AD with PET alters the clinical outcomes of patients. The addition of MRS or O-(2-(18)F-Fluoroethyl)-L-Tyrosine (FET)-PET to gadolinium (Gd)-enhanced MRI for distinguishing malignant from benign tumours during primary diagnosis may provide a higher specificity than Gd-enhanced MRI alone. The clinical utility of additional imaging in patients to distinguish malignant from benign tumours is unclear, because patients with a suspected brain tumour will likely undergo a biopsy despite additional imaging results. The addition of MRS, FET-PET, or MRI T2 to Gd-enhanced MRI for the differentiation of recurrence from radiation necrosis may provide a higher specificity than Gd-enhanced MRI alone. The clinical utility of additional imaging in patients with a suspected recurrence is in the monitoring of patients. Based on the evidence available, it is unclear if one of the imaging modalities (MRS, FET-PET, or MRI T2) offers significantly improved specificity over another. There may be a role for fMRI in the identification of surgical candidates for tumour resection; however, this requires further research. Based on the studies available, it is unclear if MEG has similar accuracy in localizing seizure foci to intracranial electroencephalogram (ICEEG). More high-quality research is needed to establish whether there is a difference in accuracy between MEG and ICEEG. The results of the studies comparing PET to noninvasive electroencephalogram (EEG) did not demonstrate that PET was more accurate at localizing seizure foci; however, there may be some specific conditions, such as tuberous sclerosis, where PET may be more accurate than noninvasive EEG. There may be some clinical utility for MEG or fMRI in presurgical functional mapping; however, this needs further investigation involving comparisons with other modalities. The clinical utility of MRS has yet to be established for patients with epilepsy. Positron emission tomography has high sensitivity and specificity in the diagnosis of PD and the differential diagnosis of parkinsonian syndromes; however, it is unclear at this time if the addition of PET in the diagnosis of these conditions contributes to the treatment and clinical outcomes of patients. There is limited clinical utility of functional brain imaging in the management of patients with MS at this time. Diagnosis of MS is established through clinical history, evoked potentials, and MRI. Magnetic resonance imaging can identify the multifocal white lesions and other structural characteristics of MS.
Posner, Jonathan; Amira, Leora; Algaze, Antonio; Canino, Glorisa; Duarte, Cristiane S.
2016-01-01
Studies of the mesocorticolimbic reward system (MCLS) and its relationship with impulsivity and substance use disorders (SUD) have largely focused on individuals from non-minority backgrounds. This represents a significant gap in the literature particularly for minority populations who are disproportionately affected by the consequences of SUD. Using resting-state functional MRI (fMRI), we examined the coherence of neural activity, or functional connectivity, within the brain’s MCLS in 28 young adult Puerto Ricans (ages 25–27) who were part of a population-based cohort study. Half of the sample lived in San Juan, Puerto Rico; the other half lived in the South Bronx, New York. At each of the two sites, half of the sample had a history of a SUD. Relative to those without SUD, individuals with SUD had decreased connectivity between the nucleus accumbens (NAcc) and several regions within the MCLS. This finding was true irrespective of study site (i.e., San Juan or South Bronx). Reduced connectivity within the MCLS was also associated with higher self-reported levels of impulsivity. Path analysis suggested a potential mechanism linking impulsivity, the MCLS, and SUD: impulsivity, potentially by chronically promoting reward seeking behaviors, may contribute to decreased MCLS connectivity, which in turn, may confer vulnerability for SUD. Expanding upon prior studies suggesting that alterations within the MCLS underlie SUD, our findings suggest that such alterations are also related to impulsivity and are present in a high-risk young minority population. PMID:27252633
Age-dependent effects of brain stimulation on network centrality.
Antonenko, Daria; Nierhaus, Till; Meinzer, Marcus; Prehn, Kristin; Thielscher, Axel; Ittermann, Bernd; Flöel, Agnes
2018-04-18
Functional magnetic resonance imaging (fMRI) studies have suggested that advanced age may mediate the effects of transcranial direct current stimulation (tDCS) on brain function. However, studies directly comparing neural tDCS effects between young and older adults are scarce and limited to task-related imaging paradigms. Resting-state (rs-) fMRI, that is independent of age-related differences in performance, is well suited to investigate age-associated differential neural tDCS effects. Three "online" tDCS conditions (anodal, cathodal, sham) were compared in a cross-over, within-subject design, in 30 young and 30 older adults. Active stimulation targeted the left sensorimotor network (active electrode over left sensorimotor cortex with right supraorbital reference electrode). A graph-based rs-fMRI data analysis approach (eigenvector centrality mapping) and complementary seed-based analyses characterized neural tDCS effects. An interaction between anodal tDCS and age group was observed. Specifically, centrality in bilateral paracentral and posterior regions (precuneus, superior parietal cortex) was increased in young, but decreased in older adults. Seed-based analyses revealed that these opposing patterns of tDCS-induced centrality modulation originated from differential effects of tDCS on functional coupling of the stimulated left paracentral lobule. Cathodal tDCS did not show significant effects. Our study provides first evidence for differential tDCS effects on neural network organization in young and older adults. Anodal stimulation mainly affected coupling of sensorimotor with ventromedial prefrontal areas in young and decoupling with posteromedial areas in older adults. Copyright © 2018 Elsevier Inc. All rights reserved.
Update on the MRI Core of the Alzheimer's Disease Neuroimaging Initiative
Jack, Clifford R; Bernstein, Matt A; Borowski, Bret J; Gunter, Jeffrey L; Fox, Nick C; Thompson, Paul M; Schuff, Norbert; Krueger, Gunnar; Killiany, Ronald J; DeCarli, Charles S; Dale, Anders M; Weiner, Michael W
2010-01-01
Functions of the ADNI MRI core fall into three categories: (1) those of the central MRI core lab at Mayo Clinic, Rochester, Minnesota, needed to generate high quality MRI data in all subjects at each time point; (2) those of the funded ADNI MRI core imaging analysis groups responsible for analyzing the MRI data, and (3) the joint function of the entire MRI core in designing and problem solving MR image acquisition, pre-processing and analyses methods. The primary objective of ADNI was and continues to be improving methods for clinical trials in Alzheimer's disease. Our approach to the present (“ADNI-GO”) and future (“ADNI-2”, if funded) MRI protocol will be to maintain MRI methodological consistency in previously enrolled “ADNI-1” subjects who are followed longitudinally in ADNI-GO and ADNI-2. We will modernize and expand the MRI protocol for all newly enrolled ADNI-GO and ADNI-2 subjects. All newly enrolled subjects will be scanned at 3T with a core set of three sequence types: 3D T1-weighted volume, FLAIR, and a long TE gradient echo volumetric acquisition for micro hemorrhage detection. In addition to this core ADNI-GO and ADNI-2 protocol, we will perform vendor specific pilot sub-studies of arterial spin labeling perfusion, resting state functional connectivity and diffusion tensor imaging. One each of these sequences will be added to the core protocol on systems from each MRI vendor. These experimental sub-studies are designed to demonstrate the feasibility of acquiring useful data in a multi-center (but single vendor) setting for these three emerging MRI applications. PMID:20451869
Electrophysiological correlates of the BOLD signal for EEG-informed fMRI
Murta, Teresa; Leite, Marco; Carmichael, David W; Figueiredo, Patrícia; Lemieux, Louis
2015-01-01
Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are important tools in cognitive and clinical neuroscience. Combined EEG–fMRI has been shown to help to characterise brain networks involved in epileptic activity, as well as in different sensory, motor and cognitive functions. A good understanding of the electrophysiological correlates of the blood oxygen level-dependent (BOLD) signal is necessary to interpret fMRI maps, particularly when obtained in combination with EEG. We review the current understanding of electrophysiological–haemodynamic correlates, during different types of brain activity. We start by describing the basic mechanisms underlying EEG and BOLD signals and proceed by reviewing EEG-informed fMRI studies using fMRI to map specific EEG phenomena over the entire brain (EEG–fMRI mapping), or exploring a range of EEG-derived quantities to determine which best explain colocalised BOLD fluctuations (local EEG–fMRI coupling). While reviewing studies of different forms of brain activity (epileptic and nonepileptic spontaneous activity; cognitive, sensory and motor functions), a significant attention is given to epilepsy because the investigation of its haemodynamic correlates is the most common application of EEG-informed fMRI. Our review is focused on EEG-informed fMRI, an asymmetric approach of data integration. We give special attention to the invasiveness of electrophysiological measurements and the simultaneity of multimodal acquisitions because these methodological aspects determine the nature of the conclusions that can be drawn from EEG-informed fMRI studies. We emphasise the advantages of, and need for, simultaneous intracranial EEG–fMRI studies in humans, which recently became available and hold great potential to improve our understanding of the electrophysiological correlates of BOLD fluctuations. PMID:25277370
Fornito, Alex; Bullmore, Edward T
2010-05-01
Resting-state functional MRI (rs-fMRI) is an increasingly popular technique for studying brain dysfunction in psychiatric patients, and is widely assumed to measure intrinsic properties of functional brain organization. Here, we review rs-fMRI studies of psychiatric populations and consider how recent evidence concerning the neuronal basis, behavioural relevance, and the stability of rs-fMRI measures can inform and constrain interpretation of findings obtained using case-control designs. A range of rs-fMRI measures have been applied to different patient groups, although the findings have not always been consistent. The large-scale organization of rs-fMRI networks is robust and reproducible, and rs-fMRI measures show correlations with behavioural phenotypes relevant to psychiatry. However, evidence that such measures are also influenced by preceding psychological states and contexts, as well as individual variations in physiological arousal, may help to explain inconsistent findings in case-control comparisons. rs-fMRI measures show both stable and dynamic properties, the nature of which are only beginning to be uncovered. As such, interpreting significant differences between patients and controls on rs-fMRI measures as evidence for alterations in intrinsic functional brain organization should be done cautiously. Better understanding of the relationship between stable and transient aspects of spontaneous brain dynamics will be necessary to constrain interpretation of case-control studies and inform pathophysiological models.
Protein corona affects the relaxivity and MRI contrast efficiency of magnetic nanoparticles
NASA Astrophysics Data System (ADS)
Amiri, Houshang; Bordonali, Lorenzo; Lascialfari, Alessandro; Wan, Sha; Monopoli, Marco P.; Lynch, Iseult; Laurent, Sophie; Mahmoudi, Morteza
2013-08-01
Magnetic nanoparticles (NPs) are increasingly being considered for use in biomedical applications such as biosensors, imaging contrast agents and drug delivery vehicles. In a biological fluid, proteins associate in a preferential manner with NPs. The small sizes and high curvature angles of NPs influence the types and amounts of proteins present on their surfaces. This differential display of proteins bound to the surface of NPs can influence the tissue distribution, cellular uptake and biological effects of NPs. To date, the effects of adsorption of a protein corona (PC) on the magnetic properties of NPs have not been considered, despite the fact that some of their potential applications require their use in human blood. Here, to investigate the effects of a PC (using fetal bovine serum) on the MRI contrast efficiency of superparamagnetic iron oxide NPs (SPIONs), we have synthesized two series of SPIONs with variation in the thickness and functional groups (i.e. surface charges) of the dextran surface coating. We have observed that different physico-chemical characteristics of the dextran coatings on the SPIONs lead to the formation of PCs of different compositions. 1H relaxometry was used to obtain the longitudinal, r1, and transverse, r2, relaxivities of the SPIONs without and with a PC, as a function of the Larmor frequency. The transverse relaxivity, which determines the efficiency of negative contrast agents (CAs), is very much dependent on the functional group and the surface charge of the SPIONs' coating. The presence of the PC did not alter the relaxivity of plain SPIONs, while it slightly increased the relaxivity of the negatively charged SPIONs and dramatically decreased the relaxivity of the positively charged ones, which was coupled with particle agglomeration in the presence of the proteins. To confirm the effect of the PC on the MRI contrast efficiency, in vitro MRI experiments at ν = 8.5 MHz were performed using a low-field MRI scanner. The MRI contrasts, produced by different samples, were fully in agreement with the relaxometry findings.Magnetic nanoparticles (NPs) are increasingly being considered for use in biomedical applications such as biosensors, imaging contrast agents and drug delivery vehicles. In a biological fluid, proteins associate in a preferential manner with NPs. The small sizes and high curvature angles of NPs influence the types and amounts of proteins present on their surfaces. This differential display of proteins bound to the surface of NPs can influence the tissue distribution, cellular uptake and biological effects of NPs. To date, the effects of adsorption of a protein corona (PC) on the magnetic properties of NPs have not been considered, despite the fact that some of their potential applications require their use in human blood. Here, to investigate the effects of a PC (using fetal bovine serum) on the MRI contrast efficiency of superparamagnetic iron oxide NPs (SPIONs), we have synthesized two series of SPIONs with variation in the thickness and functional groups (i.e. surface charges) of the dextran surface coating. We have observed that different physico-chemical characteristics of the dextran coatings on the SPIONs lead to the formation of PCs of different compositions. 1H relaxometry was used to obtain the longitudinal, r1, and transverse, r2, relaxivities of the SPIONs without and with a PC, as a function of the Larmor frequency. The transverse relaxivity, which determines the efficiency of negative contrast agents (CAs), is very much dependent on the functional group and the surface charge of the SPIONs' coating. The presence of the PC did not alter the relaxivity of plain SPIONs, while it slightly increased the relaxivity of the negatively charged SPIONs and dramatically decreased the relaxivity of the positively charged ones, which was coupled with particle agglomeration in the presence of the proteins. To confirm the effect of the PC on the MRI contrast efficiency, in vitro MRI experiments at ν = 8.5 MHz were performed using a low-field MRI scanner. The MRI contrasts, produced by different samples, were fully in agreement with the relaxometry findings. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00345k