Sample records for mri comparative study

  1. Health economic assessment of Gd-EOB-DTPA MRI versus ECCM-MRI and multi-detector CT for diagnosis of hepatocellular carcinoma in China

    PubMed Central

    He, Xiaoning; Holtorf, Anke-Peggy; Rinde, Harald; Xie, Shuangshuang; Shen, Wen; Hou, Jiancun; Li, Xuehua; Li, Ziping; Lai, Jiaming; Wang, Yuting; Zhang, Lin; Wang, Jian; Li, Xuesong; Ma, Kuansheng; Ye, Feng; Ouyang, Han; Zhao, Hong

    2018-01-01

    Limited data exists in China on the comparative cost of gadolinium ethoxybenzyl diethylenetriamine magnetic resonance imaging (Gd-EOB-DTPA-MRI) with other imaging techniques. This study compared the total cost of Gd-EOB-DTPA-MRI with multidetector computed tomography (MDCT) and extracellular contrast media–enhanced MRI (ECCM-MRI) as initial imaging procedures in patients with suspected hepatocellular carcinoma (HCC). We developed a decision-tree model on the basis of the Chinese clinical guidelines for HCC, which was validated by clinical experts from China. The model compared the diagnostic accuracy and costs of alternative initial imaging procedures. Compared with MDCT and ECCM-MRI, Gd-EOB-DTPA-MRI imaging was associated with higher rates of diagnostic accuracy, i.e. higher proportions of true positives (TP) and true negatives (TN) with lower false positives (FP). Total diagnosis and treatment cost per patient after the initial Gd-EOB-DTPA-MRI evaluation was similar to MDCT (¥30,360 vs. ¥30,803) and lower than that reported with ECCM-MRI (¥30,360 vs. ¥31,465). Lower treatment cost after initial Gd-EOB-DTPA-MRI was driven by reduced utilization of confirmatory diagnostic procedures and unnecessary treatments. The findings reported that Gd-EOB-DTPA-MRI offered higher diagnostic accuracy compared with MDCT and ECCM-MRI at a comparable cost, which indicates Gd-EOB-DTPA-MRI could be the preferred initial imaging procedure for the diagnosis of HCC in China. PMID:29324837

  2. Comparison of onboard low-field magnetic resonance imaging versus onboard computed tomography for anatomy visualization in radiotherapy.

    PubMed

    Noel, Camille E; Parikh, Parag J; Spencer, Christopher R; Green, Olga L; Hu, Yanle; Mutic, Sasa; Olsen, Jeffrey R

    2015-01-01

    Onboard magnetic resonance imaging (OB-MRI) for daily localization and adaptive radiotherapy has been under development by several groups. However, no clinical studies have evaluated whether OB-MRI improves visualization of the target and organs at risk (OARs) compared to standard onboard computed tomography (OB-CT). This study compared visualization of patient anatomy on images acquired on the MRI-(60)Co ViewRay system to those acquired with OB-CT. Fourteen patients enrolled on a protocol approved by the Institutional Review Board (IRB) and undergoing image-guided radiotherapy for cancer in the thorax (n = 2), pelvis (n = 6), abdomen (n = 3) or head and neck (n = 3) were imaged with OB-MRI and OB-CT. For each of the 14 patients, the OB-MRI and OB-CT datasets were displayed side-by-side and independently reviewed by three radiation oncologists. Each physician was asked to evaluate which dataset offered better visualization of the target and OARs. A quantitative contouring study was performed on two abdominal patients to assess if OB-MRI could offer improved inter-observer segmentation agreement for adaptive planning. In total 221 OARs and 10 targets were compared for visualization on OB-MRI and OB-CT by each of the three physicians. The majority of physicians (two or more) evaluated visualization on MRI as better for 71% of structures, worse for 10% of structures, and equivalent for 14% of structures. 5% of structures were not visible on either. Physicians agreed unanimously for 74% and in majority for > 99% of structures. Targets were better visualized on MRI in 4/10 cases, and never on OB-CT. Low-field MR provides better anatomic visualization of many radiotherapy targets and most OARs as compared to OB-CT. Further studies with OB-MRI should be pursued.

  3. Quantitative comparison of high-resolution MRI and myelin-stained histology of the human cerebral cortex.

    PubMed

    Osechinskiy, Sergey; Kruggel, Frithjof

    2009-01-01

    The architectonic analysis of the human cerebral cortex is presently based on the examination of stained tissue sections. Recent progress in high-resolution magnetic resonance imaging (MRI) promotes the feasibility of an in vivo architectonic analysis. Since the exact relationship between the laminar fine-structure of a cortical MRI signal and histological cyto-and myeloarchitectonic staining patterns is not known, a quantitative study comparing high-resolution MRI to histological ground truth images is necessary for validating a future MRI based architectonic analysis. This communication describes an ongoing study comparing post mortem MR images to a myelin-stained histology of the brain cortex. After establishing a close spatial correspondence between histological sections and MRI using a slice-to-volume nonrigid registration algorithm, transcortical intensity profiles, extracted from both imaging modalities along curved trajectories of a Laplacian vector field, are compared via a cross-correlational analysis.

  4. Role of Magnetic Resonance Imaging in Prostate Cancer Screening: A Pilot Study Within the Göteborg Randomised Screening Trial

    PubMed Central

    Bergdahl, Anna Grenabo; Wilderäng, Ulrica; Aus, Gunnar; Carlsson, Sigrid; Damber, Jan-Erik; Frånlund, Maria; Geterud, Kjell; Khatami, Ali; Socratous, Andreas; Stranne, Johan; Hellström, Mikael; Hugosson, Jonas

    2016-01-01

    Background Magnetic resonance imaging (MRI) and targeted biopsies (TB) have shown potential to more accurately detect significant prostate cancer (PC) compared to prostate-specific antigen (PSA) and systematic biopsies (SB). Objective To compare sequential screening (PSA + MRI) with conventional PSA screening. Design, Setting and Participants Of 384 attendees in the 10th screening round of the Göteborg randomised screening trial, 124 men, median age 69.5, had a PSA of ≥1.8 ng/ml and underwent a prebiopsy MRI. Men with suspicious lesions on MRI and/or PSA ≥3.0 ng/ml were referred for biopsy. SB was performed blinded to MRI results and TB was performed in men with tumour-suspicious findings on MRI. Three screening strategies were compared (PSA≥3.0+SB; PSA≥3.0+MRI+TB and PSA≥1.8+MRI+TB). Outcome Measurements and Statistical Analysis Cancer detection rates, sensitivity and specificity were calculated per screening strategy and compared using McNemar´s test. Results and Limitations In total, 28 PC were detected, of which 20 were diagnosed in biopsy-naïve men. Both PSA≥3.0+MRI and PSA≥1.8+MRI significantly increased specificity compared with PSA≥3.0+SB (0.92 and 0.79 vs. 0.52; p<0.002 for both), while sensitivity was significantly higher for PSA≥1.8+MRI compared with PSA>=3.0+MRI (0.73 vs. 0.46, p=0.008). The detection rate of significant cancer was higher with PSA≥1.8+MRI compared to PSA≥3.0+SB (5.9 vs. 4.0%), while the detection rate of insignificant cancer was lowered by PSA≥3.0+MRI (0.3 vs. 1.2%). The primary limitation of this study is the small sample of men. Conclusion A screening strategy with a lowered PSA cut-off followed by TB in MRI-positive men seems to increase the detection of significant cancers while improving specificity. If replicated, these results may contribute to a paradigm shift in future screening. Patient Summary Major concerns in prostate-specific antigen screening are overdiagnosis and underdiagnosis. We evaluated whether prostate magnetic resonance imaging could improve the balance of benefits to harm in prostate cancer screening, and we found promising potential of using magnetic resonance imaging in addition to prostate-specific antigen. PMID:26724840

  5. MRI evaluation of the levator ani muscle: anatomic correlations and practical applications.

    PubMed

    Plattner, V; Leborgne, J; Heloury, Y; Cohen, J Y; Rogez, J M; Lehur, P A; Robert, R

    1991-01-01

    A comparative study of serial anatomic sections in the transverse, frontal and sagittal planes with corresponding MRI sections of the pelvis allowed the authors to define the most suitable sectional planes and MRI modes for a morphologic study of the levator ani muscle. This study shows the value of MRI examination in the assessment of anorectal malformations.

  6. Assessment of CF lung disease using motion corrected PROPELLER MRI: a comparison with CT.

    PubMed

    Ciet, Pierluigi; Serra, Goffredo; Bertolo, Silvia; Spronk, Sandra; Ros, Mirco; Fraioli, Francesco; Quattrucci, Serena; Assael, M Baroukh; Catalano, Carlo; Pomerri, Fabio; Tiddens, Harm A W M; Morana, Giovanni

    2016-03-01

    To date, PROPELLER MRI, a breathing-motion-insensitive technique, has not been assessed for cystic fibrosis (CF) lung disease. We compared this technique to CT for assessing CF lung disease in children and adults. Thirty-eight stable CF patients (median 21 years, range 6-51 years, 22 female) underwent MRI and CT on the same day. Study protocol included respiratory-triggered PROPELLER MRI and volumetric CT end-inspiratory and -expiratory acquisitions. Two observers scored the images using the CF-MRI and CF-CT systems. Scores were compared with intra-class correlation coefficient (ICC) and Bland-Altman plots. The sensitivity and specificity of MRI versus CT were calculated. MRI sensitivity for detecting severe CF bronchiectasis was 0.33 (CI 0.09-0.57), while specificity was 100% (CI 0.88-1). ICCs for bronchiectasis and trapped air were as follows: MRI-bronchiectasis (0.79); CT-bronchiectasis (0.85); MRI-trapped air (0.51); CT-trapped air (0.87). Bland-Altman plots showed an MRI tendency to overestimate the severity of bronchiectasis in mild CF disease and underestimate bronchiectasis in severe disease. Motion correction in PROPELLER MRI does not improve assessment of CF lung disease compared to CT. However, the good inter- and intra-observer agreement and the high specificity suggest that MRI might play a role in the short-term follow-up of CF lung disease (i.e. pulmonary exacerbations). PROPELLER MRI does not match CT sensitivity to assess CF lung disease. PROPELLER MRI has lower sensitivity than CT to detect severe bronchiectasis. PROPELLER MRI has good to very good intra- and inter-observer variability. PROPELLER MRI can be used for short-term follow-up studies in CF.

  7. Limitations of ultrasonography for diagnosing white matter damage in preterm infants.

    PubMed

    Debillon, T; N'Guyen, S; Muet, A; Quere, M P; Moussaly, F; Roze, J C

    2003-07-01

    To compare the accuracy of ultrasonography (US) and magnetic resonance imaging (MRI) in diagnosing white matter abnormalities in preterm infants and to determine the specific indications for MRI. Prospective cohort study. A neonatal intensive care unit in France. All preterm infants (

  8. Limitations of ultrasonography for diagnosing white matter damage in preterm infants

    PubMed Central

    Debillon, T; N'Guyen, S; Muet, A; Quere, M; Moussaly, F; Roze, J

    2003-01-01

    Objectives: To compare the accuracy of ultrasonography (US) and magnetic resonance imaging (MRI) in diagnosing white matter abnormalities in preterm infants and to determine the specific indications for MRI. Design: Prospective cohort study. Setting: A neonatal intensive care unit in France. Patients: All preterm infants (≤ 33 weeks gestation) without severe respiratory distress syndrome precluding MRI. Main outcome measures: US and MRI performed contemporaneously during the third postnatal week were analysed by an independent observer. The findings were compared with those of a term MRI scan, the results of which were taken as the final diagnosis. Statistical analysis was performed to determine which early imaging study best predicted the term MRI findings. Results: The early US and MRI findings (79 infants) correlated closely for severe lesions (cystic periventricular leucomalacia and parenchymal infarction; κ coefficient = 0.86) but not for moderate lesions (non-cystic leucomalacia and parenchymal punctate haemorrhages; κ = 0.62). Overall, early MRI findings predicted late MRI findings in 98% of patients (95% confidence interval (CI) 89.5 to 99.9) compared with only 68% for early US (95% CI 52.1 to 79.2). Conclusions: US is highly effective in detecting severe lesions of the white matter in preterm infants, but MRI seems to be necessary for the diagnosis of less severe damage. MRI performed at about the third week of life is highly predictive of the final diagnosis at term. PMID:12819157

  9. Validation of cone-beam computed tomography and magnetic resonance imaging of the porcine spine: a comparative study with multidetector computed tomography and anatomical specimens.

    PubMed

    de Freitas, Ricardo Miguel Costa; Andrade, Celi Santos; Caldas, José Guilherme Mendes Pereira; Kanas, Alexandre Fligelman; Cabral, Richard Halti; Tsunemi, Miriam Harumi; Rodríguez, Hernán Joel Cervantes; Rabbani, Said Rahnamaye

    2015-05-01

    New spinal interventions or implants have been tested on ex vivo or in vivo porcine spines, as they are readily available and have been accepted as a comparable model to human cadaver spines. Imaging-guided interventional procedures of the spine are mostly based on fluoroscopy or, still, on multidetector computed tomography (MDCT). Cone-beam computed tomography (CBCT) and magnetic resonance imaging (MRI) are also available methods to guide interventional procedures. Although some MDCT data from porcine spines are available in the literature, validation of the measurements on CBCT and MRI is lacking. To describe and compare the anatomical measurements accomplished with MDCT, CBCT, and MRI of lumbar porcine spines to determine if CBCT and MRI are also useful methods for experimental studies. An experimental descriptive-comparative study. Sixteen anatomical measurements of an individual vertebra from six lumbar porcine spines (n=36 vertebrae) were compared with their MDCT, CBCT, and MRI equivalents. Comparisons were made for the absolute values of the parameters. Similarities were found in all imaging methods. Significant correlation (p<.05) was observed with all variables except those that included cartilaginous tissue from the end plates when the anatomical study was compared with the imaging methods. The CBCT and MRI provided imaging measurements of the lumbar porcine spines that were similar to the anatomical and MDCT data, and they can be useful for specific experimental research studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Diagnostic Accuracy of MRI Versus CT for the Evaluation of Acute Appendicitis in Children and Young Adults.

    PubMed

    Kinner, Sonja; Pickhardt, Perry J; Riedesel, Erica L; Gill, Kara G; Robbins, Jessica B; Kitchin, Douglas R; Ziemlewicz, Timothy J; Harringa, John B; Reeder, Scott B; Repplinger, Michael D

    2017-10-01

    Appendicitis is frequently diagnosed in the emergency department, most commonly using CT. The purpose of this study was to compare the diagnostic accuracy of contrast-enhanced MRI with that of contrast-enhanced CT for the diagnosis of appendicitis in adolescents when interpreted by abdominal radiologists and pediatric radiologists. Our study included a prospectively enrolled cohort of 48 patients (12-20 years old) with nontraumatic abdominal pain who underwent CT and MRI. Fellowship-trained abdominal and pediatric radiologists reviewed all CT and MRI studies in randomized order, blinded to patient outcome. Likelihood for appendicitis was rated on a 5-point scale (1, definitely not appendicitis; 5, definitely appendicitis) for CT, the unenhanced portion of the MRI, and the entire contrast-enhanced MRI study. ROC curves were generated and AUC compared for each scan type for all six readers and then stratified by radiologist type. Image test characteristics, interrater reliability, and reading times were compared. Sensitivity and specificity were 85.9% (95% CI, 76.2-92.7%) and 93.8% (95% CI, 89.7-96.7%) for unenhanced MRI, 93.6% (95% CI, 85.6-97.9%) and 94.3% (95% CI, 90.2-97%) for contrast-enhanced MRI, and 93.6% (95% CI, 85.6-97.9%) and 94.3% (95% CI, 90.2-97%) for CT. No difference was found in the diagnostic accuracy or interpretation time when comparing abdominal radiologists to pediatric radiologists (CT, 3.0 min vs 2.8 min; contrast-enhanced MRI, 2.4 min vs 1.8 min; unenhanced MRI, 1.5 min vs 2.3 min). Substantial agreement between abdominal and pediatric radiologists was seen for all methods (κ = 0.72-0.83). The diagnostic accuracy of MRI to diagnose appendicitis was very similar to CT. No statistically significant difference in accuracy was observed between imaging modality or radiologist subspecialty.

  11. MRI breast screening in high-risk women: cancer detection and survival analysis.

    PubMed

    Evans, D Gareth; Gareth, Evans D; Kesavan, Nisha; Nisha, Kesavan; Lim, Yit; Yit, Lim; Gadde, Soujanye; Soujanye, Gadde; Hurley, Emma; Emma, Hurley; Massat, Nathalie J; Maxwell, Anthony J; Ingham, Sarah; Sarah, Ingham; Eeles, Rosalind; Rosalind, Eeles; Leach, Martin O; Howell, Anthony; Anthony, Howell; Duffy, Stephen W; Stephen, Duffy

    2014-06-01

    Women with a genetic predisposition to breast cancer tend to develop the disease at a younger age with denser breasts making mammography screening less effective. The introduction of magnetic resonance imaging (MRI) for familial breast cancer screening programs in recent years was intended to improve outcomes in these women. We aimed to assess whether introduction of MRI surveillance improves 5- and 10-year survival of high-risk women and determine the accuracy of MRI breast cancer detection compared with mammography-only or no enhanced surveillance and compare size and pathology of cancers detected in women screened with MRI + mammography and mammography only. We used data from two prospective studies where asymptomatic women with a very high breast cancer risk were screened by either mammography alone or with MRI also compared with BRCA1/2 carriers with no intensive surveillance. 63 cancers were detected in women receiving MRI + mammography and 76 in women receiving mammography only. Sensitivity of MRI + mammography was 93 % with 63 % specificity. Fewer cancers detected on MRI were lymph node positive compared to mammography/no additional screening. There were no differences in 10-year survival between the MRI + mammography and mammography-only groups, but survival was significantly higher in the MRI-screened group (95.3 %) compared to no intensive screening (73.7 %; p = 0.002). There were no deaths among the 21 BRCA2 carriers receiving MRI. There appears to be benefit from screening with MRI, particularly in BRCA2 carriers. Extended follow-up of larger numbers of high-risk women is required to assess long-term survival.

  12. 18F-Fluorodeoxyglucose PET/CT and dynamic contrast-enhanced MRI as imaging biomarkers in malignant pleural mesothelioma.

    PubMed

    Hall, David O; Hooper, Clare E; Searle, Julie; Darby, Michael; White, Paul; Harvey, John E; Braybrooke, Jeremy P; Maskell, Nick A; Masani, Vidan; Lyburn, Iain D

    2018-02-01

    The purpose of this study was to compare the use of fluorine-18-fluorodeoxyglucose (F-FDG) PET with computed tomography (CT) and dynamic contrast-enhanced (DCE) MRI to predict prognosis and monitor treatment in malignant pleural mesothelioma. F-FDG PET/CT and DCE-MRI studies carried out as part of the South West Area Mesothelioma Pemetrexed trial were used. F-FDG PET/CT and DCE-MRI studies were carried out before treatment, and after two cycles of chemotherapy, on patients treated with pemetrexed and cisplatin. A total of 73 patients were recruited, of whom 65 had PET/CT and DCE-MRI scans. Baseline measurements from F-FDG PET/CT (maximum standardized uptake value, metabolic tumour volume and total lesion glycolysis) and DCE-MRI (integrated area under the first 90s of the curve and washout slope) were compared with overall survival (OS) using Kaplan-Meier and Cox regression analyses, and changes in imaging measurements were compared with disease progression. PET/CT and DCE-MRI measurements were not correlated with each other. Maximum standardized uptake value, metabolic tumour volume and total lesion glycolysis were significantly related to OS with Cox regression analysis and Kaplan-Meir analysis, and DCE-MRI washout curve shape was significantly related to OS. DCE-MRI curve shape can be combined with F-FDG PET/CT to give additional prognostic information. Changes in measurements were not related to progression-free survival. F-FDG PET/CT and DCE-MRI give prognostic information in malignant pleural mesothelioma. Neither PET/CT nor DCE-MRI is useful for monitoring disease progression.

  13. MRI-Based Nonrigid Motion Correction in Simultaneous PET/MRI

    PubMed Central

    Chun, Se Young; Reese, Timothy G.; Ouyang, Jinsong; Guerin, Bastien; Catana, Ciprian; Zhu, Xuping; Alpert, Nathaniel M.; El Fakhri, Georges

    2014-01-01

    Respiratory and cardiac motion is the most serious limitation to whole-body PET, resulting in spatial resolution close to 1 cm. Furthermore, motion-induced inconsistencies in the attenuation measurements often lead to significant artifacts in the reconstructed images. Gating can remove motion artifacts at the cost of increased noise. This paper presents an approach to respiratory motion correction using simultaneous PET/MRI to demonstrate initial results in phantoms, rabbits, and nonhuman primates and discusses the prospects for clinical application. Methods Studies with a deformable phantom, a free-breathing primate, and rabbits implanted with radioactive beads were performed with simultaneous PET/MRI. Motion fields were estimated from concurrently acquired tagged MR images using 2 B-spline nonrigid image registration methods and incorporated into a PET list-mode ordered-subsets expectation maximization algorithm. Using the measured motion fields to transform both the emission data and the attenuation data, we could use all the coincidence data to reconstruct any phase of the respiratory cycle. We compared the resulting SNR and the channelized Hotelling observer (CHO) detection signal-to-noise ratio (SNR) in the motion-corrected reconstruction with the results obtained from standard gating and uncorrected studies. Results Motion correction virtually eliminated motion blur without reducing SNR, yielding images with SNR comparable to those obtained by gating with 5–8 times longer acquisitions in all studies. The CHO study in dynamic phantoms demonstrated a significant improvement (166%–276%) in lesion detection SNR with MRI-based motion correction as compared with gating (P < 0.001). This improvement was 43%–92% for large motion compared with lesion detection without motion correction (P < 0.001). CHO SNR in the rabbit studies confirmed these results. Conclusion Tagged MRI motion correction in simultaneous PET/MRI significantly improves lesion detection compared with respiratory gating and no motion correction while reducing radiation dose. In vivo primate and rabbit studies confirmed the improvement in PET image quality and provide the rationale for evaluation in simultaneous whole-body PET/MRI clinical studies. PMID:22743250

  14. Correlation of probability scores of placenta accreta on magnetic resonance imaging with hemorrhagic morbidity.

    PubMed

    Lim, Grace; Horowitz, Jeanne M; Berggruen, Senta; Ernst, Linda M; Linn, Rebecca L; Hewlett, Bradley; Kim, Jennifer; Chalifoux, Laurie A; McCarthy, Robert J

    2016-11-01

    To evaluate the hypothesis that assigning grades to magnetic resonance imaging (MRI) findings of suspected placenta accreta will correlate with hemorrhagic outcomes. We chose a single-center, retrospective, observational design. Nulliparous or multiparous women who had antenatal placental MRI performed at a tertiary level academic hospital were included. Cases with antenatal placental MRI were included and compared with cases without MRI performed. Two radiologists assigned a probability score for accreta to each study. Estimated blood loss and transfusion requirements were compared among groups by the Kruskal-Wallis H test. Thirty-five cases had placental MRI performed. MRI performance was associated with higher blood loss compared with the non-MRI group (2600 [1400-4500]mL vs 900[600-1500]mL, P<.001). There was no difference in estimated blood loss (P=.31) or transfusion (P=.57) among the MRI probability groups. In cases of suspected placenta accreta, probability scores for antenatal placental MRI may not be associated with increasing degrees of hemorrhage. Continued research is warranted to determine the effectiveness of assigning probability scores for antenatal accreta imaging studies, combined with clinical indices of suspicion, in assisting with antenatal multidisciplinary team planning for operative management of this morbid condition. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Comparison between breast MRI and contrast-enhanced spectral mammography.

    PubMed

    Łuczyńska, Elżbieta; Heinze-Paluchowska, Sylwia; Hendrick, Edward; Dyczek, Sonia; Ryś, Janusz; Herman, Krzysztof; Blecharz, Paweł; Jakubowicz, Jerzy

    2015-05-12

    The main goal of this study was to compare contrast-enhanced spectral mammography (CESM) and breast magnetic resonance imaging (MRI) with histopathological results and to compare the sensitivity, accuracy, and positive and negative predictive values for both imaging modalities. After ethics approval, CESM and MRI examinations were performed in 102 patients who had suspicious lesions described in conventional mammography. All visible lesions were evaluated independently by 2 experienced radiologists using BI-RADS classifications (scale 1-5). Dimensions of lesions measured with each modality were compared to postoperative histopathology results. There were 102 patients entered into CESM/MRI studies and 118 lesions were identified by the combination of CESM and breast MRI. Histopathology confirmed that 81 of 118 lesions were malignant and 37 were benign. Of the 81 malignant lesions, 72 were invasive cancers and 9 were in situ cancers. Sensitivity was 100% with CESM and 93% with breast MRI. Accuracy was 79% with CESM and 73% with breast MRI. ROC curve areas based on BI-RADS were 0.83 for CESM and 0.84 for breast MRI. Lesion size estimates on CESM and breast MRI were similar, both slightly larger than those from histopathology. Our results indicate that CESM has the potential to be a valuable diagnostic method that enables accurate detection of malignant breast lesions, has high negative predictive value, and a false-positive rate similar to that of breast MRI.

  16. Variability comparison of simultaneous brain near-infrared spectroscopy (NIRS) and functional MRI (fMRI) during visual stimulation

    PubMed Central

    Minati, Ludovico; Visani, Elisa; Dowell, Nick G; Medford, Nick; Critchley, Hugo D

    2011-01-01

    Brain near-infrared spectroscopy (NIRS) is emerging as a potential alternative to functional MRI (fMRI). To date, no study has explicitly compared the two techniques in terms of measurement variability, a key parameter dictating attainable statistical power. Here, NIRS and fMRI were simultaneously recorded during event-related visual stimulation. Inter-subject coefficients of variation (CVs) for peak response amplitude were considerably larger for NIRS than fMRI, but inter-subject CVs for response latency and intra-subject CVs for response amplitude were overall comparable. Our results may represent an optimistic estimate of the CVs of NIRS measurements, as optode positioning was guided by structural MRI, which is normally unavailable. We conclude that fMRI may be preferable to NIRS for group comparisons, but NIRS is equally powerful when comparing conditions within participants. The discrepancy between inter- and intra-subject CVs is likely related to variability in head anatomy and tissue properties which may be better accounted for by emerging NIRS technology. PMID:21780948

  17. Comparative study of the detection of joint injury in early-stage rheumatoid arthritis by magnetic resonance imaging of the wrist and finger joints and physical examination.

    PubMed

    Tamai, Mami; Kawakami, Atsushi; Iwamoto, Naoki; Kawashiri, Shin-Ya; Fujikawa, Keita; Aramaki, Toshiyuki; Kita, Junko; Okada, Akitomo; Koga, Tomohiro; Arima, Kazuhiko; Kamachi, Makoto; Yamasaki, Satoshi; Nakamura, Hideki; Ida, Hiroaki; Origuchi, Tomoki; Takao, Shoichiro; Aoyagi, Kiyoshi; Uetani, Masataka; Eguchi, Katsumi

    2011-03-01

    To verify whether magnetic resonance imaging (MRI)-proven joint injury is sensitive as compared with joint injury determined by physical examination. MRI of the wrist and finger joints of both hands was examined in 51 early-stage rheumatoid arthritis (RA) patients by both plain and gadolinium diethylenetriaminepentaacetic acid-enhanced MRI. Synovitis, bone edema, and bone erosion (the latter two included as bone lesions at the wrist joints); metacarpophalangeal joints; and proximal interphalangeal joints were considered as MRI-proven joint injury. Japan College of Rheumatology-certified rheumatologists had given a physical examination just before the MRI study. The presence of tender and/or swollen joints in the same fields as MRI was considered as joint injury on physical examination. The association of MRI-proven joint injury with physical examination-proven joint injury was examined. A total of 1,110 sites were available to be examined. MRI-proven joint injury was found in 521 sites, whereas the other 589 sites were normal. Physical examination-proven joint injury was found in 305 sites, which was significantly low as compared with MRI-proven joint injury (P = 1.1 × 10(-12) versus MRI). Joint injury on physical examination was not found in 81.5% of the sites where MRI findings were normal. Furthermore, an association of the severity of MRI-proven joint injury with that of joint injury on physical examination was clearly demonstrated (P = 1.6 × 10(-15), r(s) = 0.469). Our present data suggest that MRI is not only sensitive but accurately reflects the joint injury in patients with early-stage RA. Copyright © 2011 by the American College of Rheumatology.

  18. Multimodal endocavitary ultrasound versus MRI and clinical findings in pre- and post-treatment advanced cervical cancer. Preliminary report.

    PubMed

    Csutak, Csaba; Badea, Radu; Bolboaca, Sorana D; Ordeanu, Claudia; Nagy, Viorica M; Fekete, Zsolt; Chiorean, Liliana; Dudea, Sorin M

    2016-03-01

    The aim of this study was to evaluate the use of pre and post-therapy transrectal and transvaginal ultrasonography (TRUS, TVUS) with contrast enhancement and strain elastography compared with clinical examination and magnetic resonance imaging (MRI) in the assessment of advanced stage cervical cancer. This was a prospective study, carried out over a period of nine months on subjects with advanced-stage cervical cancer (stage >/= IIB). All included patients were examined clinically and underwent abdomino-pelvic contrast enhanced MRI and multimodal US examinations (TRUS with strain elastography and contrast enhanced TVUS) at the time of diagnosis and after radiochemotherapy. Tumor size and staging at TRUS and TVUS was compared with the same data obtained by clinical examination and MRI. Pathology was the golden standard. Eight patients accomplished the inclusion criteria. In five cases the tumor stage was identical on clinical and MRI examinations. In all cases parametrial infiltration was diagnosed by all pre-treatment examinations. No significant differences were observed in tumor size between clinical, US and MRI exams either at baseline or post-therapy, in native or post-contrast examinations. The size of the tumor evaluated pre-treatment proved to be significantly smaller post-contrast in both US and MRI examinations compared with the native images. Post-therapy, no significant differences were observed on US measured tumor dimensions when comparing native with post-contrast images. Oppositely, significant smaller dimensions were observed on post-contrast MRI compared with native scans. TRUS is accurate in the estimation of pre-therapy cervical cancer dimension. The post therapy tumor evaluation is better performed with MRI. The use of intravenous contrast agents on both examinations did not improved the accuracy of tumor evaluation pre or post-therapy.

  19. Contrast-enhanced spectral mammography vs. mammography and MRI - clinical performance in a multi-reader evaluation.

    PubMed

    Fallenberg, Eva M; Schmitzberger, Florian F; Amer, Heba; Ingold-Heppner, Barbara; Balleyguier, Corinne; Diekmann, Felix; Engelken, Florian; Mann, Ritse M; Renz, Diane M; Bick, Ulrich; Hamm, Bernd; Dromain, Clarisse

    2017-07-01

    To compare the diagnostic performance of contrast-enhanced spectral mammography (CESM) to digital mammography (MG) and magnetic resonance imaging (MRI) in a prospective two-centre, multi-reader study. One hundred seventy-eight women (mean age 53 years) with invasive breast cancer and/or DCIS were included after ethics board approval. MG, CESM and CESM + MG were evaluated by three blinded radiologists based on amended ACR BI-RADS criteria. MRI was assessed by another group of three readers. Receiver-operating characteristic (ROC) curves were compared. Size measurements for the 70 lesions detected by all readers in each modality were correlated with pathology. Reading results for 604 lesions were available (273 malignant, 4 high-risk, 327 benign). The area under the ROC curve was significantly larger for CESM alone (0.84) and CESM + MG (0.83) compared to MG (0.76) (largest advantage in dense breasts) while it was not significantly different from MRI (0.85). Pearson correlation coefficients for size comparison were 0.61 for MG, 0.69 for CESM, 0.70 for CESM + MG and 0.79 for MRI. This study showed that CESM, alone and in combination with MG, is as accurate as MRI but is superior to MG for lesion detection. Patients with dense breasts benefitted most from CESM with the smallest additional dose compared to MG. • CESM has comparable diagnostic performance (ROC-AUC) to MRI for breast cancer diagnostics. • CESM in combination with MG does not improve diagnostic performance. • CESM has lower sensitivity but higher specificity than MRI. • Sensitivity differences are more pronounced in dense and not significant in non-dense breasts. • CESM and MRI are significantly superior to MG, particularly in dense breasts.

  20. A comparison between EEG source localization and fMRI during the processing of emotional visual stimuli

    NASA Astrophysics Data System (ADS)

    Hu, Jin; Tian, Jie; Pan, Xiaohong; Liu, Jiangang

    2007-03-01

    The purpose of this paper is to compare between EEG source localization and fMRI during emotional processing. 108 pictures for EEG (categorized as positive, negative and neutral) and 72 pictures for fMRI were presented to 24 healthy, right-handed subjects. The fMRI data were analyzed using statistical parametric mapping with SPM2. LORETA was applied to grand averaged ERP data to localize intracranial sources. Statistical analysis was implemented to compare spatiotemporal activation of fMRI and EEG. The fMRI results are in accordance with EEG source localization to some extent, while part of mismatch in localization between the two methods was also observed. In the future we should apply the method for simultaneous recording of EEG and fMRI to our study.

  1. Comparison between Breast MRI and Contrast-Enhanced Spectral Mammography

    PubMed Central

    Łuczyńska, Elżbieta; Heinze-Paluchowska, Sylwia; Hendrick, Edward; Dyczek, Sonia; Ryś, Janusz; Herman, Krzysztof; Blecharz, Paweł; Jakubowicz, Jerzy

    2015-01-01

    Background The main goal of this study was to compare contrast-enhanced spectral mammography (CESM) and breast magnetic resonance imaging (MRI) with histopathological results and to compare the sensitivity, accuracy, and positive and negative predictive values for both imaging modalities. Material/Methods After ethics approval, CESM and MRI examinations were performed in 102 patients who had suspicious lesions described in conventional mammography. All visible lesions were evaluated independently by 2 experienced radiologists using BI-RADS classifications (scale 1–5). Dimensions of lesions measured with each modality were compared to postoperative histopathology results. Results There were 102 patients entered into CESM/MRI studies and 118 lesions were identified by the combination of CESM and breast MRI. Histopathology confirmed that 81 of 118 lesions were malignant and 37 were benign. Of the 81 malignant lesions, 72 were invasive cancers and 9 were in situ cancers. Sensitivity was 100% with CESM and 93% with breast MRI. Accuracy was 79% with CESM and 73% with breast MRI. ROC curve areas based on BI-RADS were 0.83 for CESM and 0.84 for breast MRI. Lesion size estimates on CESM and breast MRI were similar, both slightly larger than those from histopathology. Conclusions Our results indicate that CESM has the potential to be a valuable diagnostic method that enables accurate detection of malignant breast lesions, has high negative predictive value, and a false-positive rate similar to that of breast MRI. PMID:25963880

  2. Functional Cardiac Magnetic Resonance Imaging (MRI) in the Assessment of Myocardial Viability and Perfusion

    PubMed Central

    2003-01-01

    Executive Summary Objective The objective of this health technology policy assessment was to determine the effectiveness safety and cost-effectiveness of using functional cardiac magnetic resonance imaging (MRI) for the assessment of myocardial viability and perfusion in patients with coronary artery disease and left ventricular dysfunction. Results Functional MRI has become increasingly investigated as a noninvasive method for assessing myocardial viability and perfusion. Most patients in the published literature have mild to moderate impaired LV function. It is possible that the severity of LV dysfunction may be an important factor that can alter the diagnostic accuracy of imaging techniques. There is some evidence of comparable or better performance of functional cardiac MRI for the assessment of myocardial viability and perfusion compared with other imaging techniques. However limitations to most of the studies included: Functional cardiac MRI studies that assess myocardial viability and perfusion have had small sample sizes. Some studies assessed myocardial viability/perfusion in patients who had already undergone revascularization, or excluded patients with a prior MI (Schwitter et al., 2001). Lack of explicit detail of patient recruitment. Patients with LVEF >35%. Interstudy variability in post MI imaging time(including acute or chronic MI), when patients with a prior MI were included. Poor interobserver agreement (kappa statistic) in the interpretation of the results. Traditionally, 0.80 is considered “good”. Cardiac MRI measurement of myocardial perfusion to as an adjunct tool to help diagnose CAD (prior to a definitive coronary angiography) has also been examined in some studies, with methodological limitations, yielding comparable results. Many studies examining myocardial viability and perfusion report on the accuracy of imaging methods with limited data on long-term patient outcome and management. Kim et al. (2000) revealed that the transmural extent of hyperenhancement was significantly related to the likelihood of improvement in contractility after revascularization. However, the LVEF in the patient population was 43% prior to revascularization. It is important to know whether the technique has the same degree of accuracy in patients who have more severe LV dysfunction and who would most benefit from an assessment of myocardial viability. “Substantial” viability used as a measure of a patient’s ability to recover after revascularization has not been definitively reported (how much viability is enough?). Patients with severe LV dysfunction are more likely to have mixtures of surviving myocardium, including normal, infarcted, stunned and hibernating myocardium (Cowley et al., 1999). This may lead to a lack of homogeneity of response to testing and to revascularization and contribute to inter- and intra-study differences. There is a need for a large prospective study with adequate follow-up time for patients with CAD and LV dysfunction (LVEF<35%) comparing MRI and an alternate imaging technique. There is some evidence that MRI has comparable sensitivity, specificity and accuracy to PET for determining myocardial viability. However, there is a lack of evidence comparing the accuracy of these two techniques to predict LV function recovery. In addition, some studies refer to PET as the gold standard for the assessment of myocardial viability. Therefore, PET may be an ideal noninvasive imaging comparator to MRI for a prospective study with follow-up. To date, there is a lack of cost-effectiveness analyses (or any economic analyses) of functional cardiac MRI versus an alternate noninvasive imaging method for the assessment of myocardial viability/perfusion. Conclusion There is some evidence that the accuracy of functional cardiac MRI compares favourably with alternate imaging techniques for the assessment of myocardial viability and perfusion. There is insufficient evidence whether functional cardiac MRI can better select which patients [who have CAD and severe LV dysfunction (LVEF <35%)] may benefit from revascularization compared with an alternate noninvasive imaging technology. There is insufficient evidence whether functional cardiac MRI can better select which patients should proceed to invasive coronary angiography for the definitive diagnosis of CAD, compared with an alternate noninvasive imaging technology. There is a need for a large prospective (potentially multicentre) study with adequate follow-up time for patients with CAD and LV dysfunction (LVEF<35%) comparing MRI and PET. Since longer follow-up time may be associated with restenosis or graft occlusion, it has been suggested to have serial measurements after revascularization (Cowley et al., 1999). PMID:23074446

  3. The detection of the capsular tear at the undersurface of the extensor carpi radialis brevis tendon in chronic tennis elbow: the value of magnetic resonance imaging and computed tomography arthrography.

    PubMed

    Sasaki, Koichi; Tamakawa, Mitsuharu; Onda, Kazunori; Iba, Kosuke; Sonoda, Tomoko; Yamashita, Toshihiko; Wada, Takuro

    2011-04-01

    This study compared the diagnostic efficacy of magnetic resonance imaging (MRI) and computed tomography arthrography (CTA) in the assessment of capsular tears at the undersurface of the extensor carpi radials brevis tendon in chronic tennis elbow using arthroscopy as a gold standard. Because of the higher spatial resolution of CT, we hypothesized that CTA is superior to MRI for assessing capsular tears. We retrospectively reviewed 19 consecutive patients with chronic tennis elbow with preoperative MRI and CTA studies who underwent arthroscopic surgery. Three observers with different levels of training and experience (musculoskeletal radiologist, experienced elbow surgeon, and hand fellow) evaluated the capsular tear by MRI and CTA in a blinded manner. The results of the MRI and CTA were compared and the agreement among the 3 observers was determined using an intraclass correlation coefficient (ICC). Then, the results of the MRI and CTA examinations were compared with the intraoperative findings of the arthroscopic examination. The sensitivity, specificity, and κ value were calculated. The ICC of CTA (0.855) was superior to MRI (0.645). The sensitivity, specificity, and κ value of CTA were superior to those of MRI in each of the 3 observers. The κ value was 0.79, 0.89, and 0.79 for CTA, and 0.48, 0.48, and 0.27 for MRI for the radiologist, surgeon, and fellow, respectively. CTA was a reliable and accurate diagnostic modality compared with MRI to detect the capsular tear in patients with chronic tennis elbow. CTA was less influenced by the observer's experience. Copyright © 2011 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  4. Comparison of pelvic phased-array versus endorectal coil magnetic resonance imaging at 3 Tesla for local staging of prostate cancer.

    PubMed

    Kim, Bum Soo; Kim, Tae-Hwan; Kwon, Tae Gyun; Yoo, Eun Sang

    2012-05-01

    Several studies have demonstrated the superiority of endorectal coil magnetic resonance imaging (MRI) over pelvic phased-array coil MRI at 1.5 Tesla for local staging of prostate cancer. However, few have studied which evaluation is more accurate at 3 Tesla MRI. In this study, we compared the accuracy of local staging of prostate cancer using pelvic phased-array coil or endorectal coil MRI at 3 Tesla. Between January 2005 and May 2010, 151 patients underwent radical prostatectomy. All patients were evaluated with either pelvic phased-array coil or endorectal coil prostate MRI prior to surgery (63 endorectal coils and 88 pelvic phased-array coils). Tumor stage based on MRI was compared with pathologic stage. We calculated the specificity, sensitivity and accuracy of each group in the evaluation of extracapsular extension and seminal vesicle invasion. Both endorectal coil and pelvic phased-array coil MRI achieved high specificity, low sensitivity and moderate accuracy for the detection of extracapsular extension and seminal vesicle invasion. There were statistically no differences in specificity, sensitivity and accuracy between the two groups. Overall staging accuracy, sensitivity and specificity were not significantly different between endorectal coil and pelvic phased-array coil MRI.

  5. MRI-based score helps in assessing the severity and in follow-up of pediatric patients with perianal Crohn disease.

    PubMed

    Kulkarni, Sakil; Gomara, Roberto; Reeves-Garcia, Jesse; Hernandez, Erick; Restrepo, Ricardo

    2014-02-01

    The radiologic healing of perianal fistulizing Crohn disease (PfCD) lags behind the clinical healing. Contrast-enhanced pelvic magnetic resonance imaging (MRI) is the radiologic study of choice used to diagnose PfCD in children. The aim was to study whether the various MRI-based radiologic parameters and score can help in staging and follow-up of patients with PfCD. We performed a retrospective chart review of children with PfCD who underwent contrast-enhanced MRI of the pelvis. The demographic profile, clinical status, and laboratory data of the patients at the time of each MRI examination were noted. Based on the clinical status of the patient at the time of MRI examinations, the MRIs were classified into 3 groups: severe disease, mild-to-moderate disease, and asymptomatic. Each MRI examination was reviewed by a radiologist, who was blinded to the clinical status of the patient. Of the radiologic parameters, the number of fistulas, the complexity of fistulas, and the number of abscesses were significantly lower in the asymptomatic group compared with the mild-to-moderate and severe disease groups. The Van Assche MRI-based score was significantly lower in the asymptomatic group compared with the mild-to-moderate disease (P = 0.01) and the severe disease group (P = 0.002). The percentage increase in fistula activity after gadolinium administration was significantly lower in the asymptomatic group compared with the mild-to-moderate disease (P = 0.026) and severe disease (P = 0.019) groups. The MRI-based scores were significantly higher in the MRI examinations performed at diagnosis compared with those that were performed while the patients were receiving the treatment (P = 0.017). The Van Assche MRI score and the percentage increase in fistula activity after gadolinium administration help in assessing the severity perianal Crohn disease. The Van Assche MRI score may be helpful in documenting healing during therapy of perianal Crohn disease.

  6. MO-FG-CAMPUS-JeP2-02: Audiovisual Biofeedback Guided Respiratory-Gated MRI: An Investigation of Tumor Definition and Scan Time for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, D; Pollock, S; Keall, P

    Purpose: Breathing consistency variations can cause respiratory-related motion blurring and artifacts and increase in MRI scan time due to inadequate respiratory-gating and discarding of breathing cycles. In a previous study the concept of audiovisual biofeedback (AV) guided respiratory-gated MRI was tested with healthy volunteers and it demonstrated image quality improvement on anatomical structures and scan time reduction. This study tests the applicability of AV-guided respiratorygated MRI for lung cancer in a prospective patient study. Methods: Image quality and scan time were investigated in thirteen lung cancer patients who underwent two 3T MRI sessions. In the first MRI session (pre-treatment), respiratory-gatedmore » MR images with free breathing (FB) and AV were acquired at inhalation and exhalation. An RF navigator placed on the liver dome was employed for the respiratory-gated MRI. This was repeated in the second MRI session (mid-treatment). Lung tumors were delineated on each dataset. FB and AV were compared in terms of (1) tumor definition assessed by lung tumor contours and (2) intra-patient scan time variation using the total image acquisition time of inhalation and exhalation datasets from the first and second MRI sessions across 13 lung cancer patients. Results: Compared to FB AV-guided respiratory-gated MRI improved image quality for contouring tumors with sharper boundaries and less blurring resulted in the improvement of tumor definition. Compared to FB the variation of intra-patient scan time with AV was reduced by 48% (p<0.001) from 54 s to 28 s. Conclusion: This study demonstrated that AV-guided respiratorygated MRI improved the quality of tumor images and fixed tumor definition for lung cancer. These results suggest that audiovisual biofeedback breathing guidance has the potential to control breathing for adequate respiratory-gating for lung cancer imaging and radiotherapy.« less

  7. Diagnostic accuracy of MRI in the measurement of glenoid bone loss.

    PubMed

    Gyftopoulos, Soterios; Hasan, Saqib; Bencardino, Jenny; Mayo, Jason; Nayyar, Samir; Babb, James; Jazrawi, Laith

    2012-10-01

    The purpose of this study is to assess the accuracy of MRI quantification of glenoid bone loss and to compare the diagnostic accuracy of MRI to CT in the measurement of glenoid bone loss. MRI, CT, and 3D CT examinations of 18 cadaveric glenoids were obtained after the creation of defects along the anterior and anteroinferior glenoid. The defects were measured by three readers separately and blindly using the circle method. These measurements were compared with measurements made on digital photographic images of the cadaveric glenoids. Paired sample Student t tests were used to compare the imaging modalities. Concordance correlation coefficients were also calculated to measure interobserver agreement. Our data show that MRI could be used to accurately measure glenoid bone loss with a small margin of error (mean, 3.44%; range, 2.06-5.94%) in estimated percentage loss. MRI accuracy was similar to that of both CT and 3D CT for glenoid loss measurements in our study for the readers familiar with the circle method, with 1.3% as the maximum expected difference in accuracy of the percentage bone loss between the different modalities (95% confidence). Glenoid bone loss can be accurately measured on MRI using the circle method. The MRI quantification of glenoid bone loss compares favorably to measurements obtained using 3D CT and CT. The accuracy of the measurements correlates with the level of training, and a learning curve is expected before mastering this technique.

  8. Performance of an Automated Versus a Manual Whole-Body Magnetic Resonance Imaging Workflow.

    PubMed

    Stocker, Daniel; Finkenstaedt, Tim; Kuehn, Bernd; Nanz, Daniel; Klarhoefer, Markus; Guggenberger, Roman; Andreisek, Gustav; Kiefer, Berthold; Reiner, Caecilia S

    2018-04-24

    The aim of this study was to evaluate the performance of an automated workflow for whole-body magnetic resonance imaging (WB-MRI), which reduces user interaction compared with the manual WB-MRI workflow. This prospective study was approved by the local ethics committee. Twenty patients underwent WB-MRI for myopathy evaluation on a 3 T MRI scanner. Ten patients (7 women; age, 52 ± 13 years; body weight, 69.9 ± 13.3 kg; height, 173 ± 9.3 cm; body mass index, 23.2 ± 3.0) were examined with a prototypical automated WB-MRI workflow, which automatically segments the whole body, and 10 patients (6 women; age, 35.9 ± 12.4 years; body weight, 72 ± 21 kg; height, 169.2 ± 10.4 cm; body mass index, 24.9 ± 5.6) with a manual scan. Overall image quality (IQ; 5-point scale: 5, excellent; 1, poor) and coverage of the study volume were assessed by 2 readers for each sequence (coronal T2-weighted turbo inversion recovery magnitude [TIRM] and axial contrast-enhanced T1-weighted [ce-T1w] gradient dual-echo sequence). Interreader agreement was evaluated with intraclass correlation coefficients. Examination time, number of user interactions, and MR technicians' acceptance rating (1, highest; 10, lowest) was compared between both groups. Total examination time was significantly shorter for automated WB-MRI workflow versus manual WB-MRI workflow (30.0 ± 4.2 vs 41.5 ± 3.4 minutes, P < 0.0001) with significantly shorter planning time (2.5 ± 0.8 vs 14.0 ± 7.0 minutes, P < 0.0001). Planning took 8% of the total examination time with automated versus 34% with manual WB-MRI workflow (P < 0.0001). The number of user interactions with automated WB-MRI workflow was significantly lower compared with manual WB-MRI workflow (10.2 ± 4.4 vs 48.2 ± 17.2, P < 0.0001). Planning efforts were rated significantly lower by the MR technicians for the automated WB-MRI workflow than for the manual WB-MRI workflow (2.20 ± 0.92 vs 4.80 ± 2.39, respectively; P = 0.005). Overall IQ was similar between automated and manual WB-MRI workflow (TIRM: 4.00 ± 0.94 vs 3.45 ± 1.19, P = 0.264; ce-T1w: 4.20 ± 0.88 vs 4.55 ± .55, P = 0.423). Interreader agreement for overall IQ was excellent for TIRM and ce-T1w with an intraclass correlation coefficient of 0.95 (95% confidence interval, 0.86-0.98) and 0.88 (95% confidence interval, 0.70-0.95). Incomplete coverage of the thoracic compartment in the ce-T1w sequence occurred more often in the automated WB-MRI workflow (P = 0.008) for reader 2. No other significant differences in the study volume coverage were found. In conclusion, the automated WB-MRI scanner workflow showed a significant reduction of the examination time and the user interaction compared with the manual WB-MRI workflow. Image quality and the coverage of the study volume were comparable in both groups.

  9. 1.5 versus 3 versus 7 Tesla in abdominal MRI: A comparative study.

    PubMed

    Laader, Anja; Beiderwellen, Karsten; Kraff, Oliver; Maderwald, Stefan; Wrede, Karsten; Ladd, Mark E; Lauenstein, Thomas C; Forsting, Michael; Quick, Harald H; Nassenstein, Kai; Umutlu, Lale

    2017-01-01

    The aim of this study was to investigate and compare the feasibility as well as potential impact of altered magnetic field properties on image quality and potential artifacts of 1.5 Tesla, 3 Tesla and 7 Tesla non-enhanced abdominal MRI. Magnetic Resonance (MR) imaging of the upper abdomen was performed in 10 healthy volunteers on a 1.5 Tesla, a 3 Tesla and a 7 Tesla MR system. The study protocol comprised a (1) T1-weighted fat-saturated spoiled gradient-echo sequence (2D FLASH), (2) T1-weighted fat-saturated volumetric interpolated breath hold examination sequence (3D VIBE), (3) T1-weighted 2D in and opposed phase sequence, (4) True fast imaging with steady-state precession sequence (TrueFISP) and (5) T2-weighted turbo spin-echo (TSE) sequence. For comparison reasons field of view and acquisition times were kept comparable for each correlating sequence at all three field strengths, while trying to achieve the highest possible spatial resolution. Qualitative and quantitative analyses were tested for significant differences. While 1.5 and 3 Tesla MRI revealed comparable results in all assessed features and sequences, 7 Tesla MRI yielded considerable differences in T1 and T2 weighted imaging. Benefits of 7 Tesla MRI encompassed an increased higher spatial resolution and a non-enhanced hyperintense vessel signal at 7 Tesla, potentially offering a more accurate diagnosis of abdominal parenchymatous and vasculature disease. 7 Tesla MRI was also shown to be more impaired by artifacts, including residual B1 inhomogeneities, susceptibility and chemical shift artifacts, resulting in reduced overall image quality and overall image impairment ratings. While 1.5 and 3 Tesla T2w imaging showed equivalently high image quality, 7 Tesla revealed strong impairments in its diagnostic value. Our results demonstrate the feasibility and overall comparable imaging ability of T1-weighted 7 Tesla abdominal MRI towards 3 Tesla and 1.5 Tesla MRI, yielding a promising diagnostic potential for non-enhanced Magnetic Resonance Angiography (MRA). 1.5 Tesla and 3 Tesla offer comparably high-quality T2w imaging, showing superior diagnostic quality over 7 Tesla MRI.

  10. 1.5 versus 3 versus 7 Tesla in abdominal MRI: A comparative study

    PubMed Central

    Beiderwellen, Karsten; Kraff, Oliver; Maderwald, Stefan; Wrede, Karsten; Ladd, Mark E.; Lauenstein, Thomas C.; Forsting, Michael; Quick, Harald H.; Nassenstein, Kai; Umutlu, Lale

    2017-01-01

    Objectives The aim of this study was to investigate and compare the feasibility as well as potential impact of altered magnetic field properties on image quality and potential artifacts of 1.5 Tesla, 3 Tesla and 7 Tesla non-enhanced abdominal MRI. Materials and methods Magnetic Resonance (MR) imaging of the upper abdomen was performed in 10 healthy volunteers on a 1.5 Tesla, a 3 Tesla and a 7 Tesla MR system. The study protocol comprised a (1) T1-weighted fat-saturated spoiled gradient-echo sequence (2D FLASH), (2) T1-weighted fat-saturated volumetric interpolated breath hold examination sequence (3D VIBE), (3) T1-weighted 2D in and opposed phase sequence, (4) True fast imaging with steady-state precession sequence (TrueFISP) and (5) T2-weighted turbo spin-echo (TSE) sequence. For comparison reasons field of view and acquisition times were kept comparable for each correlating sequence at all three field strengths, while trying to achieve the highest possible spatial resolution. Qualitative and quantitative analyses were tested for significant differences. Results While 1.5 and 3 Tesla MRI revealed comparable results in all assessed features and sequences, 7 Tesla MRI yielded considerable differences in T1 and T2 weighted imaging. Benefits of 7 Tesla MRI encompassed an increased higher spatial resolution and a non-enhanced hyperintense vessel signal at 7 Tesla, potentially offering a more accurate diagnosis of abdominal parenchymatous and vasculature disease. 7 Tesla MRI was also shown to be more impaired by artifacts, including residual B1 inhomogeneities, susceptibility and chemical shift artifacts, resulting in reduced overall image quality and overall image impairment ratings. While 1.5 and 3 Tesla T2w imaging showed equivalently high image quality, 7 Tesla revealed strong impairments in its diagnostic value. Conclusions Our results demonstrate the feasibility and overall comparable imaging ability of T1-weighted 7 Tesla abdominal MRI towards 3 Tesla and 1.5 Tesla MRI, yielding a promising diagnostic potential for non-enhanced Magnetic Resonance Angiography (MRA). 1.5 Tesla and 3 Tesla offer comparably high-quality T2w imaging, showing superior diagnostic quality over 7 Tesla MRI. PMID:29125850

  11. Accuracy of integrated total pelvic floor ultrasound compared to defaecatory MRI in females with pelvic floor defaecatory dysfunction

    PubMed Central

    Pilkington, Sophie A; Grierson, Catherine; Rutherford, Elizabeth; Schizas, Alexis M P; Nugent, Karen P; Williams, Andrew B

    2016-01-01

    Objective: Defaecatory MRI allows multicompartmental assessment of defaecatory dysfunction but is often inaccessible. Integrated total pelvic floor ultrasound (transperineal, transvaginal, endoanal) may provide a cheap, portable alternative. The accuracy of total pelvic floor ultrasound for anatomical abnormalities when compared with defaecatory MRI was assessed. Methods: The dynamic images from 68 females who had undergone integrated total pelvic floor ultrasound and defaecatory MRI between 2009 and 2015 were blindly reviewed. The following were recorded: rectocoele, enterocoele, intussusception and cystocoele. Results: There were 26 rectocoeles on MRI (49 rectocoeles on ultrasound), 24 rectocoeles with intussusception on MRI (19 rectocoeles on ultrasound), 23 enterocoeles on MRI (24 enterocoeles on ultrasound) and 49 cystocoeles on MRI (35 cystocoeles on ultrasound). Sensitivity and specificity of total pelvic floor ultrasound were 81% and 33% for rectocoele, 60% and 91% for intussusception, 65% and 80% for enterocoele and 65% and 84% for cystocoele when compared with defaecatory MRI. This gave a negative-predictive value and positive-predictive value of 74% and 43% for rectocoele, 80% and 79% for intussusception, 82% and 63% for enterocoele and 48% and 91% for cystocoele. Conclusion: Integrated total pelvic floor ultrasound may serve as a screening tool for pelvic floor defaecatory dysfunction; when normal, defaecatory MRI can be avoided, as rectocoele, intussusception and enterocoele are unlikely to be present. Advances in knowledge: This is the first study to compare integrated total pelvic floor ultrasound with defaecatory MRI. The results support the use of integrated total pelvic floor ultrasound as a screening tool for defaecatory dysfunction. PMID:27730818

  12. A comparative study of brain perfusion single-photon emission computed tomography and magnetic resonance imaging in patients with post-traumatic anosmia.

    PubMed

    Atighechi, Saeid; Salari, Hadi; Baradarantar, Mohammad Hossein; Jafari, Rozita; Karimi, Ghasem; Mirjali, Mehdi

    2009-01-01

    Loss of smell is a problem that can occur in up to 30% of patients with head trauma. The olfactory function investigation methods so far in use have mostly relied on subjective responses given by patients. Recently, some studies have used magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT) to evaluate patients with post-traumatic anosmia. The present study seeks to detect post-traumatic anosmia and the areas in the brain that are related to olfactory impairment by using SPECT and MRI as imaging techniques. The study was conducted on 21 patients suffering from head injury and consequently anosmia as defined by an olfactory identification test. Two control groups (traumatic normosmic and nontraumatic healthy individuals) were selected. Brain MRI, qualitative and semiquantitative SPECT with 99mtc-ethyl-cysteinate-dimer were taken from all the patients. Then the brain SPECT and MRI were compared with each other. Semi-quantitative assessment of the brain perfusion SPECT revealed frontal, left parietal, and left temporal hypoperfusion as compared with the two control groups. Eighty-five percent of the anosmic patients had abnormal brain MRI. Regarding the MRI, the main abnormality proved to be in the anterior inferior region of the frontal lobes and olfactory bulbs. The findings of this study suggest that damage to the frontal lobes and olfactory bulbs as shown in the brain MRI and hypoperfusion in the frontal, left parietal, and left temporal lobes in the semiquantitative SPECT corresponds to post-traumatic anosmia. Further neurophysiological and imaging studies are definitely needed to set the idea completely.

  13. Cost-effectiveness of MRI to assess for posttraumatic ligamentous cervical spine injury.

    PubMed

    Murphy, Joshua M; Park, Paul; Patel, Rakesh D

    2014-02-01

    Magnetic resonance imaging (MRI) has been shown to be sensitive in identifying ligamentous injury to the cervical spine. The major drawbacks to its routine use are cost and availability. The purpose of this study was to compare the cost of using MRI to rule out ligamentous injury of the cervical spine with the cost of immobilization in a cervical collar and outpatient follow-up. Neurologically intact and nonobtunded patients with neck pain and normal findings on radiographs evaluated for ligamentous injury of the cervical spine were studied. Patients were either evaluated with MRI or immobilized in a cervical collar and followed up for repeat clinical and radiographic evaluation as outpatients. The authors gathered year 2011 fees from their institution and 2011 Medicare reimbursement data and compared the costs of MRI with the costs of cervical collar and outpatient follow-up. In addition, the median income of the local community was used to estimate opportunity costs associated with cervical collar immobilization. After 7 days of lost wages at the median local income, MRI became a less costly option when comparing hospital fees. Alternatively, when considering Medicare reimbursement, MRI became less costly after only 2 days of lost wages at the median local income. On the basis of these findings, MRI of the cervical spine is less costly than other current management strategies when opportunity costs are considered. Copyright 2014, SLACK Incorporated.

  14. Clinical utility of magnetic resonance imaging and ultrasonography for diagnosis of polycystic ovary syndrome in adolescent girls.

    PubMed

    Kenigsberg, Lisa E; Agarwal, Chhavi; Sin, Sanghun; Shifteh, Keivan; Isasi, Carmen R; Crespi, Rebecca; Ivanova, Janeta; Coupey, Susan M; Heptulla, Rubina A; Arens, Raanan

    2015-11-01

    To evaluate ovarian morphology using three-dimensional magnetic resonance imaging (MRI) in adolescent girls with and without polycystic ovary syndrome (PCOS). Also compare the utility of MRI versus ultrasonography (US) for diagnosis of PCOS. Cross-sectional study. Urban academic tertiary-care children's hospital. Thirty-nine adolescent girls with untreated PCOS and 22 age/body mass index (BMI)-matched controls. Magnetic resonance imaging and/or transvaginal/transabdominal US. Ovarian volume (OV); follicle number per section (FNPS); correlation between OV on MRI and US; proportion of subjects with features of polycystic ovaries (PCOs) on MRI and US. Magnetic resonance imaging demonstrated larger OV and higher FNPS in subjects with PCOS compared with controls. Within the PCOS group, median OV was 11.9 (7.7) cm(3) by MRI compared with 8.8 (7.8) cm(3) by US. Correlation coefficient between OV by MRI and US was 0.701. Due to poor resolution, FNPS could not be determined by US or compared with MRI. The receiver operating characteristic curve analysis for MRI demonstrated that increasing volume cutoffs for PCOs from 10-14 cm(3) increased specificity from 77%-95%. For FNPS on MRI, specificity increased from 82%-98% by increasing cutoffs from ≥ 12 to ≥ 17. Using Rotterdam cutoffs, 91% of subjects with PCOS met PCO criteria on MRI, whereas only 52% met criteria by US. Ultrasonography measures smaller OV than MRI, cannot accurately detect follicle number, and is a poor imaging modality for characterizing PCOs in adolescents with suspected PCOS. For adolescents in whom diagnosis of PCOS remains uncertain after clinical and laboratory evaluation, MRI should be considered as a diagnostic imaging modality. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  15. Comparison of Pelvic Phased-Array versus Endorectal Coil Magnetic Resonance Imaging at 3 Tesla for Local Staging of Prostate Cancer

    PubMed Central

    Kim, Bum Soo; Kim, Tae-Hwan; Kwon, Tae Gyun

    2012-01-01

    Purpose Several studies have demonstrated the superiority of endorectal coil magnetic resonance imaging (MRI) over pelvic phased-array coil MRI at 1.5 Tesla for local staging of prostate cancer. However, few have studied which evaluation is more accurate at 3 Tesla MRI. In this study, we compared the accuracy of local staging of prostate cancer using pelvic phased-array coil or endorectal coil MRI at 3 Tesla. Materials and Methods Between January 2005 and May 2010, 151 patients underwent radical prostatectomy. All patients were evaluated with either pelvic phased-array coil or endorectal coil prostate MRI prior to surgery (63 endorectal coils and 88 pelvic phased-array coils). Tumor stage based on MRI was compared with pathologic stage. We calculated the specificity, sensitivity and accuracy of each group in the evaluation of extracapsular extension and seminal vesicle invasion. Results Both endorectal coil and pelvic phased-array coil MRI achieved high specificity, low sensitivity and moderate accuracy for the detection of extracapsular extension and seminal vesicle invasion. There were statistically no differences in specificity, sensitivity and accuracy between the two groups. Conclusion Overall staging accuracy, sensitivity and specificity were not significantly different between endorectal coil and pelvic phased-array coil MRI. PMID:22476999

  16. Physical examination, magnetic resonance image, and electrodiagnostic study in patients with lumbosacral disc herniation or spinal stenosis.

    PubMed

    Lee, Jung Hwan; Lee, Sang-Ho

    2012-10-01

    To compare the clinical implications of electro-diagnostic study with those of magnetic resonance imaging in patients with lumbosacral intervertebral herniated disc or spinal stenosis. Retrospective study of clinical data. Patients with lumbosacral intervertebral herniated disc or spinal stenosis, diagnosed by clinical assessment and magnetic resonance imaging (MRI), were selected. A total of 753 patients (437 with lumbosacral intervertebral herniated disc and 316 with spinal stenosis) were included in the study. Clinical data for electrodiagnostic study (EDX)and MRI were compared and the sensitivity and specificity of these studies were evaluated. Among all subjects, 267 had radiculopathy on EDX (EDX (+)) and 486 no radiculopathy (EDX(-)). Furthermore, 391 had root compression on MRI (MRI (+)) and 362 no root compression on MRI (MRI (-)). Patients with radioculopathy on EDX (+) showed a significantly higher visual analogue scale score for radiating pain and a higher Oswestry Disability Index than those with negative findings by EDX (-) in the total subjects group and the lumbosacral intervertebral herniated disc subgroup, and there was a trend toward higher Oswestry Disability Index in the spinal stenosis subgroup. Although patients with radioculopathy on root compression on MRI (+) also had a higher visual analogue scale for radiating pain than patients with negative findings by MRI (-) in the total subjects group and the lumbosacral intervertebral herniated disc subgroup, no significant difference was seen in the Oswestry Disability Index. EDX revealed a significant correlation with muscle weakness in the total subjects group and the lumbosacral intervertebral herniated disc subgroup, and trends toward muscle weakness in the spinal stenosis subgroup, whereas there was no such significant correlation for MRI findings in any group. Electrodiagnostic study had a higher specificity in terms of physical examination data than MRI, in spite of its lower sensitivity. Electrodiagnostic study was significantly more correlated with clinical data, especially leg muscle weakness and functional status, and showed a higher specificity than MRI in patients with lumbosacral intervertebral herniated disc or spinal stenosis.

  17. A Prospective, Blinded, Multicenter Clinical Trial to Compare the Efficacy, Accuracy, and Safety of In-Office Diagnostic Arthroscopy With Magnetic Resonance Imaging and Surgical Diagnostic Arthroscopy.

    PubMed

    Gill, Thomas J; Safran, Marc; Mandelbaum, Bert; Huber, Bryan; Gambardella, Ralph; Xerogeanes, John

    2018-05-24

    The purpose of this study was to compare the efficacy, accuracy, and safety of in-office diagnostic arthroscopy with magnetic resonance imaging (MRI) and surgical diagnostic arthroscopy. A prospective, blinded, multicenter, clinical trial was performed on 110 patients, ages 18 to 75 years, who presented with knee pain. The study period was April 2012 to April 2013. Each patient underwent a physical examination, an MRI, in-office diagnostic imaging, and a diagnostic arthroscopic examination in the operating room. The attending physician completed clinical report forms comparing the in-office arthroscopic examination and surgical diagnostic arthroscopy findings on each patient. Two blinded experts, unaffiliated with the clinical care of the study's subjects, reviewed the in-office arthroscopic images and MRI images using the surgical diagnostic arthroscopy images as the "control" group comparison. Patients were consecutive, and no patients were excluded from the study. In this study, the accuracy, sensitivity, and specificity of in-office arthroscopy was equivalent to surgical diagnostic arthroscopy and more accurate than MRI. When comparing in-office arthroscopy with surgical diagnostic arthroscopy, all kappa statistics were between 0.766 and 0.902. For MRI compared with surgical diagnostic arthroscopy, kappa values ranged from a low of 0.130 (considered "slight" agreement) to a high of 0.535 (considered "moderate" agreement). The comparison of MRI to in-office arthroscopy showed very similar results as the comparison of MRI with surgical diagnostic arthroscopy, ranging from a low kappa of 0.112 (slight agreement) to a high of 0.546 (moderate agreement). There were no patient-related or device-related complications related to the use of in-office arthroscopy. Needle-based diagnostic imaging that can be used in the office setting is statistically equivalent to surgical diagnostic arthroscopy with regard to the diagnosis of intra-articular, nonligamentous knee joint pathology. In-office diagnostic imaging can provide a more detailed and accurate diagnostic assessment of intra-articular knee pathology than MRI. Based on the study results, in-office diagnostic imaging provides a safe, accurate, real-time, minimally invasive diagnostic modality to evaluate intra-articular pathology without the need for surgical diagnostic arthroscopy or high-cost imaging. Level II, comparative prospective trial. Copyright © 2018 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  18. MRI signal intensity of anterior cruciate ligament graft after transtibial versus anteromedial portal technique (TRANSIG): design of a randomized controlled clinical trial.

    PubMed

    Ruiter, Simeon J S; Brouwer, Reinoud W; Meys, Tim W G M; Slump, Cornelis H; van Raay, Jos J A M

    2016-08-10

    There are two primary surgical techniques to reconstruct the anterior cruciate ligament (ACL), transtibial (TT) technique and anteromedial portal (AMP) technique. Currently, there is no consensus which surgical technique elicits the best clinical and functional outcomes. MRI-derived measures of the signal intensity (SI) of the ACL graft have been described as an independent predictor of graft properties. The purpose of this study is to compare the MRI derived SI measurements of the ACL graft one year after ACL reconstruction, in order to compare the outcomes of both the AMP and TT ACL reconstruction technique. Thirty-six patients will be included in a randomized controlled trial. Patients who are admitted for primary unilateral ACL reconstruction will be included in the study. Exclusion criteria are a history of previous surgery on the ipsilateral knee, re-rupture of the ipsilateral ACL graft, associated ligamentous injuries or meniscal tear of the ipsilateral knee, unhealthy contralateral knee, contra-indications for MRI and a preference for one of the two surgical techniques and/or orthopaedic surgeon. Primary outcome is MRI Signal intensity ratio (SIR) of the ACL graft. Secondary outcome measures are the International Knee Documentation Committee (IKDC) Knee Examination Form,the Knee injury and Osteoarthritis Outcome Scores (KOOS) and the Anterior Cruciate Ligament OsteoArthritis Score (ACLOAS). Differences between MRI SIR assessment with the current MRI protocol (proton density weighted imaging protocol) and the additional T2*-weighted gradient-echo protocol will be assessed. There is no consensus regarding the TT or AMP ACL reconstruction technique. SI measurements with MRI have been used in other clinical studies for evaluation of the ACL graft and maturation after ACL reconstruction compared to clinical and functional outcomes. This randomized controlled trial has been designed to compare the TT technique with the AMP technique with the use of MRI SI of the graft after ACL reconstruction. Netherlands Trial Registry NTR5410 (registered on August 24, 2015).

  19. fMRI Validation of fNIRS Measurements During a Naturalistic Task

    PubMed Central

    Noah, J. Adam; Ono, Yumie; Nomoto, Yasunori; Shimada, Sotaro; Tachibana, Atsumichi; Zhang, Xian; Bronner, Shaw; Hirsch, Joy

    2015-01-01

    We present a method to compare brain activity recorded with near-infrared spectroscopy (fNIRS) in a dance video game task to that recorded in a reduced version of the task using fMRI (functional magnetic resonance imaging). Recently, it has been shown that fNIRS can accurately record functional brain activities equivalent to those concurrently recorded with functional magnetic resonance imaging for classic psychophysical tasks and simple finger tapping paradigms. However, an often quoted benefit of fNIRS is that the technique allows for studying neural mechanisms of complex, naturalistic behaviors that are not possible using the constrained environment of fMRI. Our goal was to extend the findings of previous studies that have shown high correlation between concurrently recorded fNIRS and fMRI signals to compare neural recordings obtained in fMRI procedures to those separately obtained in naturalistic fNIRS experiments. Specifically, we developed a modified version of the dance video game Dance Dance Revolution (DDR) to be compatible with both fMRI and fNIRS imaging procedures. In this methodology we explain the modifications to the software and hardware for compatibility with each technique as well as the scanning and calibration procedures used to obtain representative results. The results of the study show a task-related increase in oxyhemoglobin in both modalities and demonstrate that it is possible to replicate the findings of fMRI using fNIRS in a naturalistic task. This technique represents a methodology to compare fMRI imaging paradigms which utilize a reduced-world environment to fNIRS in closer approximation to naturalistic, full-body activities and behaviors. Further development of this technique may apply to neurodegenerative diseases, such as Parkinson’s disease, late states of dementia, or those with magnetic susceptibility which are contraindicated for fMRI scanning. PMID:26132365

  20. Design, synthesis, and evaluation of VEGFR-targeted macromolecular MRI contrast agent based on biotin-avidin-specific binding.

    PubMed

    Liu, Yongjun; Wu, Xiaoyun; Sun, Xiaohe; Wang, Dan; Zhong, Ying; Jiang, Dandan; Wang, Tianqi; Yu, Dexin; Zhang, Na

    2017-01-01

    Developing magnetic resonance imaging (MRI) contrast agents with high relaxivity and specificity was essential to increase MRI diagnostic sensitivity and accuracy. In this study, the MRI contrast agent, vascular endothelial growth factor receptor (VEGFR)-targeted poly (l-lysine) (PLL)-diethylene triamine pentacetate acid (DTPA)-gadolinium (Gd) (VEGFR-targeted PLL-DTPA-Gd, VPDG), was designed and prepared to enhance the MRI diagnosis capacity of tumor. Biotin-PLL-DTPA-Gd was synthesized first, then, VEGFR antibody was linked to biotin-PLL-DTPA-Gd using biotin-avidin reaction. In vitro cytotoxicity study results showed that VPDG had low toxicity to MCF-7 cells and HepG2 cells at experimental concentrations. In cell uptake experiments, VPDG could significantly increase the internalization rates (61.75%±5.22%) in VEGFR-positive HepG2 cells compared to PLL-DTPA-Gd (PDG) (25.16%±4.71%, P <0.05). In MRI studies in vitro, significantly higher T1 relaxivity (14.184 mM -1 s -1 ) was observed compared to Magnevist ® (4.9 mM -1 s -1 ; P <0.01). Furthermore, in vivo MRI study results showed that VPDG could significantly enhance the tumor signal intensity and prolong the diagnostic time (from <1 h to 2.5 h). These results indicated that macromolecular VPDG was a promising MRI contrast agent and held great potential for molecular diagnosis of tumor.

  1. Design, synthesis, and evaluation of VEGFR-targeted macromolecular MRI contrast agent based on biotin–avidin-specific binding

    PubMed Central

    Liu, Yongjun; Wu, Xiaoyun; Sun, Xiaohe; Wang, Dan; Zhong, Ying; Jiang, Dandan; Wang, Tianqi; Yu, Dexin; Zhang, Na

    2017-01-01

    Developing magnetic resonance imaging (MRI) contrast agents with high relaxivity and specificity was essential to increase MRI diagnostic sensitivity and accuracy. In this study, the MRI contrast agent, vascular endothelial growth factor receptor (VEGFR)-targeted poly (l-lysine) (PLL)-diethylene triamine pentacetate acid (DTPA)-gadolinium (Gd) (VEGFR-targeted PLL-DTPA-Gd, VPDG), was designed and prepared to enhance the MRI diagnosis capacity of tumor. Biotin-PLL-DTPA-Gd was synthesized first, then, VEGFR antibody was linked to biotin-PLL-DTPA-Gd using biotin–avidin reaction. In vitro cytotoxicity study results showed that VPDG had low toxicity to MCF-7 cells and HepG2 cells at experimental concentrations. In cell uptake experiments, VPDG could significantly increase the internalization rates (61.75%±5.22%) in VEGFR-positive HepG2 cells compared to PLL-DTPA-Gd (PDG) (25.16%±4.71%, P<0.05). In MRI studies in vitro, significantly higher T1 relaxivity (14.184 mM−1 s−1) was observed compared to Magnevist® (4.9 mM−1 s−1; P<0.01). Furthermore, in vivo MRI study results showed that VPDG could significantly enhance the tumor signal intensity and prolong the diagnostic time (from <1 h to 2.5 h). These results indicated that macromolecular VPDG was a promising MRI contrast agent and held great potential for molecular diagnosis of tumor. PMID:28765707

  2. Neural Correlates of Feigned Memory Impairment are Distinguishable from Answering Randomly and Answering Incorrectly: An fMRI and Behavioral Study

    ERIC Educational Resources Information Center

    Liang, Chun-Yu; Xu, Zhi-Yuan; Mei, Wei; Wang, Li-Li; Xue, Li; Lu, De Jian; Zhao, Hu

    2012-01-01

    Previous functional magnetic resonance imaging (fMRI) studies have identified activation in the prefrontal-parietal-sub-cortical circuit during feigned memory impairment when comparing with truthful telling. Here, we used fMRI to determine whether neural activity can differentiate between answering correctly, answering randomly, answering…

  3. Comparison of BOLD, diffusion-weighted fMRI and ADC-fMRI for stimulation of the primary visual system with a block paradigm.

    PubMed

    Nicolas, R; Gros-Dagnac, H; Aubry, F; Celsis, P

    2017-06-01

    The blood oxygen level-dependent (BOLD) effect is extensively used for functional MRI (fMRI) but presents some limitations. Diffusion-weighted fMRI (DfMRI) has been proposed as a method more tightly linked to neuronal activity. This work proposes a protocol of DfMRI acquired for several b-values and diffusion directions that is compared to gradient-echo BOLD (GE-BOLD) and to repeated spin-echo BOLD (SE-BOLD, acquisitions performed with b=0s/mm 2 ), which was also used to ensure the reproducibility of the response. A block stimulation paradigm of the primary visual system (V1) was performed in 12 healthy subjects with checkerboard alternations (2Hz frequency). DfMRI was performed at 3T with 5 b-values (b=1500, 1000, 500, 250, 0s/mm 2 ) with TR/TE=1004/93ms, Δ/δ=45.4ms/30ms, and 6 spatial directions for diffusion measures. GE-BOLD was performed with a similar block stimulation design timing. Apparent Diffusion Coefficient (ADC)-fMRI was computed with all b-values used. An identical Z-score level was used for all fMRI modalities for the comparison of volumes of activation. ADC-fMRI and SE-BOLD fMRI activation locations were compared in a voxel-based analysis to a cytoarchitectural probability map of V1. SE-BOLD activation volumes represented only 55% of the GE-BOLD activation volumes (P<0.0001). DfMRI activation volumes averaged for all b-values acquired represented only 12% of GE-BOLD (P<0.0001) and only 22% of SE-BOLD activation volumes (P<0.005). Compared to SE-BOLD-fMRI, ADC-fMRI activations showed fewer pixels outside of V1 and a higher average probability of belonging to V1. DfMRI and ADC-fMRI acquisition at 3T could be easily post-processed with common neuro-imaging software. DfMRI and ADC-fMRI activation volumes were significantly smaller than those obtained with SE-BOLD. ADC-fMRI activations were more precisely localized in V1 than those of SE-BOLD-fMRI. This validated the increased capability of ADC-fMRI compared to BOLD to enhance the precision of localizing an fMRI activation in the cyto-architectural zone V1, thereby justifying the use of ADC-fMRI for neuro-scientific studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Selective magnetic resonance imaging (MRI) in invasive lobular breast cancer based on mammographic density: does it lead to an appropriate change in surgical treatment?

    PubMed

    Bansal, Gaurav J; Santosh, Divya; Davies, Eleri L

    2016-01-01

    The purpose of this study was to evaluate whether high mammographic density can be used as one of the selection criteria for MRI in invasive lobular breast cancer (ILC). In our institute, high breast density has been used as one of the indications for performing MRI scan in patients with ILC. We divided the patients in two groups, one with MRI performed pre-operatively and other without MRI. We compared their surgical procedures and analyzed whether surgical plan was altered after MRI. In case of alteration of plan, we analyzed whether the change was adequate by comparing post-operative histological findings. Between 2011 and 2015, there were a total of 1601 breast cancers with 97 lobular cancers, out of which 36 had pre-operative MRI and 61 had no MRI scan. 12 (33.3%) had mastectomy following MRI, out of which 9 (25%) had change in surgical plan from conservation to mastectomy following MRI. There were no unnecessary mastectomies in the MRI group. However, utilization of MRI in this cohort of patients did not reduce reoperation rate (19.3%). Lobular carcinoma in situ (LCIS) was identified in 60% of reoperations on post-surgical histology. Patients in the "No MRI" group had higher mastectomy rate 26 (42.6%), which was again appropriate. High mammographic density is a useful risk stratification criterion for selective MRI in ILC within a multidisciplinary team meeting setting. Provided additional lesions identified on MRI are confirmed with biopsy, pre-operative MRI does not cause unnecessary mastectomies. Used in this selective manner, reoperation rates were not eliminated, albeit reduced when compared to literature. High mammographic breast density can be used as one of the selection criteria for pre-operative MRI in ILC without an increase in inappropriate mastectomies with potential time and cost savings. In this cohort, re-excisions were not reduced markedly with pre-operative MRI.

  5. Comparison of the diagnostic efficacy between ultrasound elastography and magnetic resonance imaging for breast masses

    PubMed Central

    Cheng, Rong; Li, Jing; Ji, Li; Liu, Huining; Zhu, Limin

    2018-01-01

    The present study compared the efficacy of ultrasound elastography (UE), magnetic resonance imaging (MRI) and the combination of the two methods (UE+MRI) in the differential diagnosis of benign and malignant breast tumors. In total, 86 patients with breast masses were recruited and evaluated by UE, MRI and UE+MRI. Strain ratios of UE were calculated for the breast mass and adjacent normal tissues. In addition, the receiver operating characteristic (ROC) curve was obtained, while the sensitivity and specificity were calculated to determine the optimal cut-off point for the differential diagnosis. The area under the ROC curve (AUC) was also calculated to evaluate the diagnostic performance of these methods. The results indicated that the diagnostic accuracy of UE+MRI was significantly higher compared with the UE or MRI methods in the differential diagnosis of invasive ductal, invasive lobular, intraductal papillary, medullary and mucinous carcinomas (all P<0.05). The optimal cut-off points of ROC curve of the Strain Ratio in the diagnosis of breast lesions were 2.81, 3.76 and 3.42 for UE, MRI and UE+MRI, respectively. Furthermore, the AUC values were 86.7, 79.2 and 91.4%, while the diagnostic accuracy rates were 82.5, 75.5 and 95.3%, for UE, MRI and UE+MRI, respectively. Accuracy rate differences between UE and MRI or between UE and UE+MRI were statistically significant (P<0.05), whereas no significant difference existed between MRI and UE+MRI (P>0.05). Finally, the diagnostic consistency of the UE+MRI method with the pathological diagnosis was higher compared with UE or MRI alone. In conclusion, the combination of UE and MRI is superior to the use of UE or MRI alone in the differential diagnosis of benign and malignant breast masses. PMID:29456656

  6. Novel MRI tests of orocecal transit time and whole gut transit time: studies in normal subjects

    PubMed Central

    Chaddock, G; Lam, C; Hoad, C L; Costigan, C; Cox, E F; Placidi, E; Thexton, I; Wright, J; Blackshaw, P E; Perkins, A C; Marciani, L; Gowland, P A; Spiller, R C

    2014-01-01

    Background Colonic transit tests are used to manage patients with Functional Gastrointestinal Disorders. Some tests used expose patients to ionizing radiation. The aim of this study was to compare novel magnetic resonance imaging (MRI) tests for measuring orocecal transit time (OCTT) and whole gut transit time (WGT), which also provide data on colonic volumes. Methods 21 healthy volunteers participated. Study 1: OCTT was determined from the arrival of the head of a meal into the cecum using MRI and the Lactose Ureide breath test (LUBT), performed concurrently. Study 2: WGT was assessed using novel MRI marker capsules and radio-opaque markers (ROMs), taken on the same morning. Studies were repeated 1 week later. Key Results OCTT measured using MRI and LUBT was 225 min (IQR 180–270) and 225 min (IQR 165–278), respectively, correlation rs = 0.28 (ns). WGT measured using MRI marker capsules and ROMs was 28 h (IQR 4–50) and 31 h ± 3 (SEM), respectively, correlation rs = 0.85 (p < 0.0001). Repeatability assessed using the intraclass correlation coefficient (ICC) was 0.45 (p = 0.017) and 0.35 (p = 0.058) for MRI and LUBT OCTT tests. Better repeatability was observed for the WGT tests, ICC being 0.61 for the MRI marker capsules (p = 0.001) and 0.69 for the ROM method (p < 0.001) respectively. Conclusions & Inferences The MRI WGT method is simple, convenient, does not use X-ray and compares well with the widely used ROM method. Both OCTT measurements showed modest reproducibility and the MRI method showed modest inter-observer agreement. PMID:24165044

  7. Free-breathing quantification of hepatic fat in healthy children and children with nonalcoholic fatty liver disease using a multi-echo 3-D stack-of-radial MRI technique.

    PubMed

    Armstrong, Tess; Ly, Karrie V; Murthy, Smruthi; Ghahremani, Shahnaz; Kim, Grace Hyun J; Calkins, Kara L; Wu, Holden H

    2018-05-04

    In adults, noninvasive chemical shift encoded Cartesian magnetic resonance imaging (MRI) and single-voxel magnetic resonance (MR) spectroscopy (SVS) accurately quantify hepatic steatosis but require breath-holding. In children, especially young and sick children, breath-holding is often limited or not feasible. Sedation can facilitate breath-holding but is highly undesirable. For these reasons, there is a need to develop free-breathing MRI technology that accurately quantifies steatosis in all children. This study aimed to compare non-sedated free-breathing multi-echo 3-D stack-of-radial (radial) MRI versus standard breath-holding MRI and SVS techniques in a group of children for fat quantification with respect to image quality, accuracy and repeatability. Healthy children (n=10, median age [±interquartile range]: 10.9 [±3.3] years) and overweight children with nonalcoholic fatty liver disease (NAFLD) (n=9, median age: 15.2 [±3.2] years) were imaged at 3 Tesla using free-breathing radial MRI, breath-holding Cartesian MRI and breath-holding SVS. Acquisitions were performed twice to assess repeatability (within-subject mean difference, MD within ). Images and hepatic proton-density fat fraction (PDFF) maps were scored for image quality. Free-breathing and breath-holding PDFF were compared using linear regression (correlation coefficient, r and concordance correlation coefficient, ρ c ) and Bland-Altman analysis (mean difference). P<0.05 was considered significant. In patients with NAFLD, free-breathing radial MRI demonstrated significantly less motion artifacts compared to breath-holding Cartesian (P<0.05). Free-breathing radial PDFF demonstrated a linear relationship (P<0.001) versus breath-holding SVS PDFF and breath-holding Cartesian PDFF with r=0.996 and ρ c =0.994, and r=0.997 and ρ c =0.995, respectively. The mean difference in PDFF between free-breathing radial MRI, breath-holding Cartesian MRI and breath-holding SVS was <0.7%. Repeated free-breathing radial MRI had MD within =0.25% for PDFF. In this pediatric study, non-sedated free-breathing radial MRI provided accurate and repeatable hepatic PDFF measurements and improved image quality, compared to standard breath-holding MR techniques.

  8. Mapping (and modeling) physiological movements during EEG-fMRI recordings: the added value of the video acquired simultaneously.

    PubMed

    Ruggieri, Andrea; Vaudano, Anna Elisabetta; Benuzzi, Francesca; Serafini, Marco; Gessaroli, Giuliana; Farinelli, Valentina; Nichelli, Paolo Frigio; Meletti, Stefano

    2015-01-15

    During resting-state EEG-fMRI studies in epilepsy, patients' spontaneous head-face movements occur frequently. We tested the usefulness of synchronous video recording to identify and model the fMRI changes associated with non-epileptic movements to improve sensitivity and specificity of fMRI maps related to interictal epileptiform discharges (IED). Categorization of different facial/cranial movements during EEG-fMRI was obtained for 38 patients [with benign epilepsy with centro-temporal spikes (BECTS, n=16); with idiopathic generalized epilepsy (IGE, n=17); focal symptomatic/cryptogenic epilepsy (n=5)]. We compared at single subject- and at group-level the IED-related fMRI maps obtained with and without additional regressors related to spontaneous movements. As secondary aim, we considered facial movements as events of interest to test the usefulness of video information to obtain fMRI maps of the following face movements: swallowing, mouth-tongue movements, and blinking. Video information substantially improved the identification and classification of the artifacts with respect to the EEG observation alone (mean gain of 28 events per exam). Inclusion of physiological activities as additional regressors in the GLM model demonstrated an increased Z-score and number of voxels of the global maxima and/or new BOLD clusters in around three quarters of the patients. Video-related fMRI maps for swallowing, mouth-tongue movements, and blinking were comparable to the ones obtained in previous task-based fMRI studies. Video acquisition during EEG-fMRI is a useful source of information. Modeling physiological movements in EEG-fMRI studies for epilepsy will lead to more informative IED-related fMRI maps in different epileptic conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. [Magnetic resonance imaging (MRI) in children and adolescents – study design of a feasibility study concerning examination related emotions].

    PubMed

    Jaite, Charlotte; Bachmann, Christian; Dewey, Marc; Weschke, Bernhard; Spors, Birgit; von Moers, Arpad; Napp, Adriane; Lehmkuhl, Ulrike; Kappel, Viola

    2013-11-01

    Numerous research centres apply magnetic resonance imaging (MRI) for research purposes in children. In view of this practical research, ethical concerns regarding the strains the study participants are exposed to during the MRI examination are discussed. The study evaluates whether an MRI examination induces negative emotions in children and adolescents which are more intense than the ones caused by electroencephalography (EEG), an examination method currently classified as causing "minimal stress." Furthermore, the emotional stress induced by the MRI examination in children and adolescents is compared with that induced in adults. The study gathers data on examination-related emotions in children (age 8-17;11, male and female) who undergo an MRI examination of the cerebrum with a medical indication. The comparison group is a sample of children and adolescents examined with EEG (age 8-17;11, male and female) as well as a sample of adults (age 18-65, male and female) examined with MRI. At present, the study is in the stage of data collection. This article presents the study design of the MRI research project.

  10. Small-bowel MRI in children and young adults with Crohn disease: retrospective head-to-head comparison of contrast-enhanced and diffusion-weighted MRI.

    PubMed

    Neubauer, Henning; Pabst, Thomas; Dick, Anke; Machann, Wolfram; Evangelista, Laura; Wirth, Clemens; Köstler, Herbert; Hahn, Dietbert; Beer, Meinrad

    2013-01-01

    Small-bowel MRI based on contrast-enhanced T1-weighted sequences has been challenged by diffusion-weighted imaging (DWI) for detection of inflammatory bowel lesions and complications in patients with Crohn disease. To evaluate free-breathing DWI, as compared to contrast-enhanced MRI, in children, adolescents and young adults with Crohn disease. This retrospective study included 33 children and young adults with Crohn disease ages 17 ± 3 years (mean ± standard deviation) and 27 matched controls who underwent small-bowel MRI with contrast-enhanced T1-weighted sequences and DWI at 1.5 T. The detectability of Crohn manifestations was determined. Concurrent colonoscopy as reference was available in two-thirds of the children with Crohn disease. DWI and contrast-enhanced MRI correctly identified 32 and 31 patients, respectively. All 22 small-bowel lesions and all Crohn complications were detected. False-positive findings (two on DWI, one on contrast-enhanced MRI), compared to colonoscopy, were a result of large-bowel lumen collapse. Inflammatory wall thickening was comparable on DWI and contrast-enhanced MRI. DWI was superior to contrast-enhanced MRI for detection of lesions in 27% of the assessed bowel segments and equal to contrast-enhanced MRI in 71% of segments. DWI facilitates fast, accurate and comprehensive workup in Crohn disease without the need for intravenous administration of contrast medium. Contrast-enhanced MRI is superior in terms of spatial resolution and multiplanar acquisition.

  11. Myocardial perfusion quantification using simultaneously acquired 13 NH3 -ammonia PET and dynamic contrast-enhanced MRI in patients at rest and stress.

    PubMed

    Kunze, Karl P; Nekolla, Stephan G; Rischpler, Christoph; Zhang, Shelley HuaLei; Hayes, Carmel; Langwieser, Nicolas; Ibrahim, Tareq; Laugwitz, Karl-Ludwig; Schwaiger, Markus

    2018-04-19

    Systematic differences with respect to myocardial perfusion quantification exist between DCE-MRI and PET. Using the potential of integrated PET/MRI, this study was conceived to compare perfusion quantification on the basis of simultaneously acquired 13 NH 3 -ammonia PET and DCE-MRI data in patients at rest and stress. Twenty-nine patients were examined on a 3T PET/MRI scanner. DCE-MRI was implemented in dual-sequence design and additional T 1 mapping for signal normalization. Four different deconvolution methods including a modified version of the Fermi technique were compared against 13 NH 3 -ammonia results. Cohort-average flow comparison yielded higher resting flows for DCE-MRI than for PET and, therefore, significantly lower DCE-MRI perfusion ratios under the common assumption of equal arterial and tissue hematocrit. Absolute flow values were strongly correlated in both slice-average (R 2  = 0.82) and regional (R 2  = 0.7) evaluations. Different DCE-MRI deconvolution methods yielded similar flow result with exception of an unconstrained Fermi method exhibiting outliers at high flows when compared with PET. Thresholds for Ischemia classification may not be directly tradable between PET and MRI flow values. Differences in perfusion ratios between PET and DCE-MRI may be lifted by using stress/rest-specific hematocrit conversion. Proper physiological constraints are advised in model-constrained deconvolution. © 2018 International Society for Magnetic Resonance in Medicine.

  12. Proposed biopsy performance benchmarks for MRI based on an audit of a large academic center.

    PubMed

    Sedora Román, Neda I; Mehta, Tejas S; Sharpe, Richard E; Slanetz, Priscilla J; Venkataraman, Shambhavi; Fein-Zachary, Valerie; Dialani, Vandana

    2018-05-01

    Performance benchmarks exist for mammography (MG); however, performance benchmarks for magnetic resonance imaging (MRI) are not yet fully developed. The purpose of our study was to perform an MRI audit based on established MG and screening MRI benchmarks and to review whether these benchmarks can be applied to an MRI practice. An IRB approved retrospective review of breast MRIs was performed at our center from 1/1/2011 through 12/31/13. For patients with biopsy recommendation, core biopsy and surgical pathology results were reviewed. The data were used to derive mean performance parameter values, including abnormal interpretation rate (AIR), positive predictive value (PPV), cancer detection rate (CDR), percentage of minimal cancers and axillary node negative cancers and compared with MG and screening MRI benchmarks. MRIs were also divided by screening and diagnostic indications to assess for differences in performance benchmarks amongst these two groups. Of the 2455 MRIs performed over 3-years, 1563 were performed for screening indications and 892 for diagnostic indications. With the exception of PPV2 for screening breast MRIs from 2011 to 2013, PPVs were met for our screening and diagnostic populations when compared to the MRI screening benchmarks established by the Breast Imaging Reporting and Data System (BI-RADS) 5 Atlas ® . AIR and CDR were lower for screening indications as compared to diagnostic indications. New MRI screening benchmarks can be used for screening MRI audits while the American College of Radiology (ACR) desirable goals for diagnostic MG can be used for diagnostic MRI audits. Our study corroborates established findings regarding differences in AIR and CDR amongst screening versus diagnostic indications. © 2017 Wiley Periodicals, Inc.

  13. Evaluation of biliary ductal anatomy in potential living liver donors: comparison between MRCP and Gd-EOB-DTPA-enhanced MRI.

    PubMed

    Santosh, D; Goel, A; Birchall, I W; Kumar, A; Lee, K H; Patel, V H; Low, G

    2017-10-01

    To compare magnetic resonance cholangiopancreatography (MRCP) and Gd-EOB-DTPA-enhanced MRI in the evaluation of the biliary anatomy in potential living liver donors (LLDs). A retrospective study was conducted in a tertiary care liver transplant center after obtaining ethics and institutional approvals. A total of 42 potential LLD MRI examinations were performed between November 2013 and March 2016. All patients underwent a standard MRI protocol which included MRCP and Gd-EOB-DTPA-enhanced MRI sequences in a single session. Three abdominal MR radiologists independently reviewed the studies and completed a customized data collection sheet for each MR sequence. The readers subjectively scored the bile duct visualization on each MR sequence on a Likert scale and classified the biliary anatomic configuration. Statistical analysis was performed using intraclass correlation coefficient and the McNemar Chi-square (χ 2 ) test. The 42 potential LLDs included 22 males and 20 females with an age range of 18-60 years. There was 'good' or 'excellent' inter-reader agreement on either MRI examination for the visualization of the first- and second-order ducts and the majority of third-order ducts. 'Good' inter-reader agreement on Gd-EOB-DTPA-enhanced MRI and 'fair' inter-reader agreement on MRCP was noted for the left third-order medial duct. There was significantly better visualization of the cystic duct, left hepatic duct, and right second-order ducts on Gd-EOB-DTPA-enhanced MRI compared with MRCP. A 12.6% improvement in classifying the biliary branch pattern was also observed on Gd-EOB-DTPA-enhanced MRI compared with MRCP (P = 0.03). Gd-EOB-DTPA-enhanced MRI provides additional diagnostic confidence over MRCP in the evaluation of the biliary ductal anatomy in potential LLDs.

  14. MRI in ocular drug delivery

    PubMed Central

    Li, S. Kevin; Lizak, Martin J.; Jeong, Eun-Kee

    2008-01-01

    Conventional pharmacokinetic methods for studying ocular drug delivery are invasive and cannot be conveniently applied to humans. The advancement of MRI technology has provided new opportunities in ocular drug-delivery research. MRI provides a means to non-invasively and continuously monitor ocular drug-delivery systems with a contrast agent or compound labeled with a contrast agent. It is a useful technique in pharmacokinetic studies, evaluation of drug-delivery methods, and drug-delivery device testing. Although the current status of the technology presents some major challenges to pharmaceutical research using MRI, it has a lot of potential. In the past decade, MRI has been used to examine ocular drug delivery via the subconjunctival route, intravitreal injection, intrascleral injection to the suprachoroidal space, episcleral and intravitreal implants, periocular injections, and ocular iontophoresis. In this review, the advantages and limitations of MRI in the study of ocular drug delivery are discussed. Different MR contrast agents and MRI techniques for ocular drug-delivery research are compared. Ocular drug-delivery studies using MRI are reviewed. PMID:18186077

  15. Quantitative MR Imaging of Hepatic Steatosis: Validation in Ex Vivo Human Livers

    PubMed Central

    Bannas, Peter; Kramer, Harald; Hernando, Diego; Agni, Rashmi; Cunningham, Ashley M.; Mandal, Rakesh; Motosugi, Utaroh; Sharma, Samir D.; del Rio, Alejandro Munoz; Fernandez, Luis; Reeder, Scott B.

    2015-01-01

    Emerging magnetic resonance imaging (MRI) biomarkers of hepatic steatosis have demonstrated tremendous promise for accurate quantification of hepatic triglyceride concentration. These methods quantify the “proton density fat-fraction” (PDFF), which reflects the concentration of triglycerides in tissue. Previous in vivo studies have compared MRI-PDFF with histologic steatosis grading for assessment of hepatic steatosis. However, the correlation of MRI-PDFF with the underlying hepatic triglyceride content remained unknown. The aim of this ex vivo study was to validate the accuracy of MRI-PDFF as an imaging biomarker of hepatic steatosis. Using ex vivo human livers, we compared MRI-PDFF with magnetic resonance spectroscopy-PDFF (MRS-PDFF), biochemical triglyceride extraction and histology as three independent reference standards. A secondary aim was to compare the precision of MRI-PDFF relative to biopsy for the quantification of hepatic steatosis. MRI-PDFF was prospectively performed at 1.5T in 13 explanted human livers. We performed co-localized paired evaluation of liver fat content in all nine Couinaud segments using single-voxel MRS-PDFF (n=117), tissue wedges for biochemical triglyceride extraction (n=117), and five core biopsies performed in each segment for histologic grading (n=585). Accuracy of MRI-PDFF was assessed through linear regression with MRS-PDFF, triglyceride extraction and histology. Intra-observer agreement, inter-observer agreement and repeatability of MRI-PDFF and histologic grading were assessed through Bland-Altman analyses. MRI-PDFF showed an excellent correlation with MRS-PDFF (r=0.984; CI: 0.978–0.989) and strong correlation with histology (r=0.850; CI: 0.791–0.894) and triglyceride extraction (r=0.871; CI: 0.818–0.909). Intra-observer agreement, inter-observer agreement and repeatability showed a significantly smaller variance for MRI-PDFF than for histologic steatosis grading (all p<0.001). Conclusion MRI-PDFF is an accurate, precise and reader-independent non-invasive imaging biomarker of liver triglyceride content, capable of steatosis quantification over the entire liver. PMID:26224591

  16. The role of intraoperative MRI in resective epilepsy surgery for peri-eloquent cortex cortical dysplasias and heterotopias in pediatric patients.

    PubMed

    Sacino, Matthew F; Ho, Cheng-Ying; Murnick, Jonathan; Keating, Robert F; Gaillard, William D; Oluigbo, Chima O

    2016-03-01

    Previous studies have demonstrated that an important factor in seizure freedom following surgery for lesional epilepsy in the peri-eloquent cortex is completeness of resection. However, aggressive resection of epileptic tissue localized to this region must be balanced with the competing objective of retaining postoperative neurological functioning. The objective of this study was to investigate the role of intraoperative MRI (iMRI) as a complement to existing epilepsy protocol techniques and to compare rates of seizure freedom and neurological deficit in pediatric patients undergoing resection of perieloquent lesions. The authors retrospectively reviewed the medical records of pediatric patients who underwent resection of focal cortical dysplasia (FCD) or heterotopia localized to eloquent cortex regions at the Children's National Health System between March 2005 and August 2015. Patients were grouped into two categories depending on whether they underwent conventional resection (n = 18) or iMRI-assisted resection (n = 11). Patient records were reviewed for factors including demographics, length of hospitalization, postoperative seizure freedom, postoperative neurological deficit, and need for reoperation. Postsurgical seizure outcome was assessed at the last postoperative follow-up evaluation using the Engel Epilepsy Surgery Outcome Scale. At the time of the last postoperative follow-up examination, 9 (82%) of the 11 patients in the iMRI resection group were seizure free (Engel Class I), compared with 7 (39%) of the 18 patients in the control resection group (p = 0.05). Ten (91%) of the 11 patients in the iMRI cohort achieved gross-total resection (GTR), compared with 8 (44%) of 18 patients in the conventional resection cohort (p = 0.02). One patient in the iMRI-assisted resection group underwent successful reoperation at a later date for residual dysplasia, compared with 7 patients in the conventional resection cohort (with 2/7 achieving complete resection). Four (36%) of the patients in the iMRI cohort developed postoperative neurological deficits, compared with 15 patients (83%) in the conventional resection cohort (p = 0.02). These results suggest that in comparison with a conventional surgical protocol and technique for resection of epileptic lesions in peri-eloquent cortex, the incorporation of iMRI led to elevated rates of GTR and postoperative seizure freedom. Furthermore, this study suggests that iMRI-assisted surgeries are associated with a reduction in neurological deficits due to intraoperative damage of eloquent cortex.

  17. The Effect of Study Design Biases on the Diagnostic Accuracy of Magnetic Resonance Imaging to Detect Silicone Breast Implant Ruptures: A Meta-Analysis

    PubMed Central

    Song, Jae W.; Kim, Hyungjin Myra; Bellfi, Lillian T.; Chung, Kevin C.

    2010-01-01

    Background All silicone breast implant recipients are recommended by the US Food and Drug Administration to undergo serial screening to detect implant rupture with magnetic resonance imaging (MRI). We performed a systematic review of the literature to assess the quality of diagnostic accuracy studies utilizing MRI or ultrasound to detect silicone breast implant rupture and conducted a meta-analysis to examine the effect of study design biases on the estimation of MRI diagnostic accuracy measures. Method Studies investigating the diagnostic accuracy of MRI and ultrasound in evaluating ruptured silicone breast implants were identified using MEDLINE, EMBASE, ISI Web of Science, and Cochrane library databases. Two reviewers independently screened potential studies for inclusion and extracted data. Study design biases were assessed using the QUADAS tool and the STARDS checklist. Meta-analyses estimated the influence of biases on diagnostic odds ratios. Results Among 1175 identified articles, 21 met the inclusion criteria. Most studies using MRI (n= 10 of 16) and ultrasound (n=10 of 13) examined symptomatic subjects. Meta-analyses revealed that MRI studies evaluating symptomatic subjects had 14-fold higher diagnostic accuracy estimates compared to studies using an asymptomatic sample (RDOR 13.8; 95% CI 1.83–104.6) and 2-fold higher diagnostic accuracy estimates compared to studies using a screening sample (RDOR 1.89; 95% CI 0.05–75.7). Conclusion Many of the published studies utilizing MRI or ultrasound to detect silicone breast implant rupture are flawed with methodological biases. These methodological shortcomings may result in overestimated MRI diagnostic accuracy measures and should be interpreted with caution when applying the data to a screening population. PMID:21364405

  18. Comparison of dual-energy X-ray absorptiometry and magnetic resonance imaging-measured adipose tissue depots in HIV-infected and control subjects.

    PubMed

    Scherzer, Rebecca; Shen, Wei; Bacchetti, Peter; Kotler, Donald; Lewis, Cora E; Shlipak, Michael G; Punyanitya, Mark; Heymsfield, Steven B; Grunfeld, Carl

    2008-10-01

    Studies in persons without HIV infection have compared adipose tissue measured by dual-energy X-ray absorptiometry (DXA) and magnetic resonance imaging (MRI), but no such study has been conducted in HIV-infected (HIV+) subjects, who have a high prevalence of regional fat loss. We compared DXA- with MRI-measured trunk, leg, arm, and total fat in HIV+ and control subjects. A cross-sectional analysis was conducted in 877 HIV+ subjects and 260 control subjects in FRAM (Study of Fat Redistribution and Metabolic Change in HIV Infection), stratified by sex and HIV status. Univariate associations of DXA with MRI were strongest for total and trunk fat (r > or = 0.92) and slightly weaker for leg (r > or = 0.87) and arm (r > or = 0.71) fat. The average estimated limb fat was substantially greater for DXA than for MRI for HIV+ and control men and women (all P < 0.0001). Less of a difference was observed in trunk fat measured by DXA and MRI, but the difference was still statistically significant (P < 0.0001). Bland-Altman plots showed increasing differences and variability. Greater average limb fat in control and HIV+ subjects (both P < 0.0001) was associated with greater differences between DXA and MRI measurements. Because the control subjects had more limb fat than did the HIV+ subjects, greater amounts of fat were measured by DXA than by MRI when control subjects were compared with HIV+ subjects. More HIV+ subjects had leg fat in the bottom decile of the control subjects by DXA than by MRI (P < 0.0001). Although DXA- and MRI-measured adipose tissue depots correlate strongly in HIV+ and control subjects, differences increase as average fat increases, particularly for limb fat. DXA may estimate a higher prevalence of peripheral lipoatrophy than does MRI in HIV+ subjects.

  19. The accuracy of ultrashort echo time MRI sequences for medical additive manufacturing.

    PubMed

    van Eijnatten, Maureen; Rijkhorst, Erik-Jan; Hofman, Mark; Forouzanfar, Tymour; Wolff, Jan

    2016-01-01

    Additively manufactured bone models, implants and drill guides are becoming increasingly popular amongst maxillofacial surgeons and dentists. To date, such constructs are commonly manufactured using CT technology that induces ionizing radiation. Recently, ultrashort echo time (UTE) MRI sequences have been developed that allow radiation-free imaging of facial bones. The aim of the present study was to assess the feasibility of UTE MRI sequences for medical additive manufacturing (AM). Three morphologically different dry human mandibles were scanned using a CT and MRI scanner. Additionally, optical scans of all three mandibles were made to acquire a "gold standard". All CT and MRI scans were converted into Standard Tessellation Language (STL) models and geometrically compared with the gold standard. To quantify the accuracy of the AM process, the CT, MRI and gold-standard STL models of one of the mandibles were additively manufactured, optically scanned and compared with the original gold-standard STL model. Geometric differences between all three CT-derived STL models and the gold standard were <1.0 mm. All three MRI-derived STL models generally presented deviations <1.5 mm in the symphyseal and mandibular area. The AM process introduced minor deviations of <0.5 mm. This study demonstrates that MRI using UTE sequences is a feasible alternative to CT in generating STL models of the mandible and would therefore be suitable for surgical planning and AM. Further in vivo studies are necessary to assess the usability of UTE MRI sequences in clinical settings.

  20. First Application of 7-T Magnetic Resonance Imaging in Endoscopic Endonasal Surgery of Skull Base Tumors.

    PubMed

    Barrett, Thomas F; Dyvorne, Hadrien A; Padormo, Francesco; Pawha, Puneet S; Delman, Bradley N; Shrivastava, Raj K; Balchandani, Priti

    2017-07-01

    Successful endoscopic endonasal surgery for the resection of skull base tumors is reliant on preoperative imaging to delineate pathology from the surrounding anatomy. The increased signal-to-noise ratio afforded by 7-T MRI can be used to increase spatial and contrast resolution, which may lend itself to improved imaging of the skull base. In this study, we apply a 7-T imaging protocol to patients with skull base tumors and compare the images with clinical standard of care. Images were acquired at 7 T on 11 patients with skull base lesions. Two neuroradiologists evaluated clinical 1.5-, 3-, and 7-T scans for detection of intracavernous cranial nerves and internal carotid artery (ICA) branches. Detection rates were compared. Images were used for surgical planning and uploaded to a neuronavigation platform and used to guide surgery. Image analysis yielded improved detection rates of cranial nerves and ICA branches at 7 T. The 7-T images were successfully incorporated into preoperative planning and intraoperative neuronavigation. Our study represents the first application of 7-T MRI to the full neurosurgical workflow for endoscopic endonasal surgery. We detected higher rates of cranial nerves and ICA branches at 7-T MRI compared with 3- and 1.5-T MRI, and found that integration of 7 T into surgical planning and guidance was feasible. These results suggest a potential for 7-T MRI to reduce surgical complications. Future studies comparing standardized 7-, 3-, and 1.5-T MRI protocols in a larger number of patients are warranted to determine the relative benefit of 7-T MRI for endonasal endoscopic surgical efficacy. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Impact of MRI on high grade Ductal Carcinoma Insitu (HG DCIS) management, are we using the full scope of MRI?

    PubMed

    Hajaj, Mohamad; Karim, Ahmed; Pascaline, Sana; Noor, Lubna; Patel, Shivali; Dakka, Mahmoud

    2017-10-01

    Preoperative assessment of pure Ductal Carcinoma Insitu (DCIS) is essential in the surgical planning. The role of Magnetic resonance imaging (MRI) has long been debated. The impact of MRI on the management of High Grade (HG) DCIS was assessed, whether it accurately captures the true size of this entity in comparison to conventional imaging, and, if MRI use would reduce the number of re-excision surgery. Ninety-one consecutive patients with HG DCIS, who were identified from a prospectively collected data at Kettering General Hospital between April 2011 and December 2015. All patients had preoperative MRI scan in addition to the standard breast imaging. This was compared to a control group of consecutive patients (n=52) which was obtained from a period just before 2011. Impact on surgical planning and number of surgeries for each patient was compared. The size of HG DCIS estimated by MRI was compared to the final histological size. Secondary outcomes included change of initial surgical plan and detection of occult contralateral breast cancer. MRI group had 91 patients with median age of 63. Seventy percent of which presented through the screening program. The overall sensitivity of MRI to detect HG DCIS was 77% (70/91) with a false negative rate FNR of 23% (21/91). Therefore, 70 patients only were included in the data analysis. The control group included 52 screening patients with comparable baseline characteristics. Re-excision (or completion mastectomy) rates were higher in the control group 26% compared to 8% in the MRI group (P-value 0.012). MRI use correctly converted the initial plan of breast conservation to mastectomy in 9 patients (13%). Five patients had additional ipsilateral malignant features (7%).Occult contra lateral disease, was diagnosed in 2 patients (3%). This study suggests that MRI could be an important tool in reducing the re-excision rates in the surgical management of HG DCIS. Although still controversial, selective MRI imaging can be useful in the preoperative diagnosis and evaluation of HG DCIS. Case by case discussion at MDT is crucial. Wider adaptation of MRI when indicated in the assessment of breast lesions with proper correlation to histology postoperatively is a key in improving our MRI interpretation skills, helping us to exploit the full scope of this useful tool. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Posterior Eye Shape Measurement With Retinal OCT Compared to MRI

    PubMed Central

    Kuo, Anthony N.; Verkicharla, Pavan K.; McNabb, Ryan P.; Cheung, Carol Y.; Hilal, Saima; Farsiu, Sina; Chen, Christopher; Wong, Tien Y.; Ikram, M. Kamran; Cheng, Ching Y.; Young, Terri L.; Saw, Seang M.; Izatt, Joseph A.

    2016-01-01

    Purpose Posterior eye shape assessment by magnetic resonance imaging (MRI) is used to study myopia. We tested the hypothesis that optical coherence tomography (OCT), as an alternative, could measure posterior eye shape similarly to MRI. Methods Macular spectral-domain OCT and brain MRI images previously acquired as part of the Singapore Epidemiology of Eye Diseases study were analyzed. The right eye in the MRI and OCT images was automatically segmented. Optical coherence tomography segmentations were corrected for optical and display distortions requiring biometry data. The segmentations were fitted to spheres and ellipsoids to obtain the posterior eye radius of curvature (Rc) and asphericity (Qxz). The differences in Rc and Qxz measured by MRI and OCT were tested using paired t-tests. Categorical assignments of prolateness or oblateness using Qxz were compared. Results Fifty-two subjects (67.8 ± 5.6 years old) with spherical equivalent refraction from +0.50 to −5.38 were included. The mean paired difference between MRI and original OCT posterior eye Rc was 24.03 ± 46.49 mm (P = 0.0005). For corrected OCT images, the difference in Rc decreased to −0.23 ± 2.47 mm (P = 0.51). The difference between MRI and OCT asphericity, Qxz, was −0.052 ± 0.343 (P = 0.28). However, categorical agreement was only moderate (κ = 0.50). Conclusions Distortion-corrected OCT measurements of Rc and Qxz were not statistically significantly different from MRI, although the moderate categorical agreement suggests that individual differences remained. This study provides evidence that with distortion correction, noninvasive office-based OCT could potentially be used instead of MRI for the study of posterior eye shape. PMID:27409473

  3. Pilot study for supervised target detection applied to spatially registered multiparametric MRI in order to non-invasively score prostate cancer.

    PubMed

    Mayer, Rulon; Simone, Charles B; Skinner, William; Turkbey, Baris; Choykey, Peter

    2018-03-01

    Gleason Score (GS) is a validated predictor of prostate cancer (PCa) disease progression and outcomes. GS from invasive needle biopsies suffers from significant inter-observer variability and possible sampling error, leading to underestimating disease severity ("underscoring") and can result in possible complications. A robust non-invasive image-based approach is, therefore, needed. Use spatially registered multi-parametric MRI (MP-MRI), signatures, and supervised target detection algorithms (STDA) to non-invasively GS PCa at the voxel level. This study retrospectively analyzed 26 MP-MRI from The Cancer Imaging Archive. The MP-MRI (T2, Diffusion Weighted, Dynamic Contrast Enhanced) were spatially registered to each other, combined into stacks, and stitched together to form hypercubes. Multi-parametric (or multi-spectral) signatures derived from a training set of registered MP-MRI were transformed using statistics-based Whitening-Dewhitening (WD). Transformed signatures were inserted into STDA (having conical decision surfaces) applied to registered MP-MRI determined the tumor GS. The MRI-derived GS was quantitatively compared to the pathologist's assessment of the histology of sectioned whole mount prostates from patients who underwent radical prostatectomy. In addition, a meta-analysis of 17 studies of needle biopsy determined GS with confusion matrices and was compared to the MRI-determined GS. STDA and histology determined GS are highly correlated (R = 0.86, p < 0.02). STDA more accurately determined GS and reduced GS underscoring of PCa relative to needle biopsy as summarized by meta-analysis (p < 0.05). This pilot study found registered MP-MRI, STDA, and WD transforms of signatures shows promise in non-invasively GS PCa and reducing underscoring with high spatial resolution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Using iron oxide nanoparticles to diagnose CNS inflammatory diseases and PCNSL.

    PubMed

    Farrell, Brian T; Hamilton, Bronwyn E; Dósa, Edit; Rimely, Endre; Nasseri, Morad; Gahramanov, Seymur; Lacy, Cynthia A; Frenkel, Eugene P; Doolittle, Nancy D; Jacobs, Paula M; Neuwelt, Edward A

    2013-07-16

    The study goal was to assess the benefits and potential limitations in the use of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles in the MRI diagnosis of CNS inflammatory diseases and primary CNS lymphoma. Twenty patients with presumptive or known CNS lesions underwent MRI study. Eighteen patients received both gadolinium-based contrast agents (GBCAs) and 1 of 2 USPIO contrast agents (ferumoxytol and ferumoxtran-10) 24 hours apart, which allowed direct comparative analysis. The remaining 2 patients had only USPIO-enhanced MRI because of a renal contraindication to GBCA. Conventional T1- and T2-weighted MRI were acquired before and after contrast administration in all patients, and perfusion MRI for relative cerebral blood volume (rCBV) assessment was obtained in all 9 patients receiving ferumoxytol. USPIO-enhanced MRI showed an equal number of enhancing brain lesions in 9 of 18 patients (50%), more enhancing lesions in 2 of 18 patients (11%), and fewer enhancing lesions in 3 of 18 patients (17%) compared with GBCA-enhanced MRI. Four of 18 patients (22%) showed no MRI enhancement. Dynamic susceptibility-weighted contrast-enhanced perfusion MRI using ferumoxytol showed low rCBV (ratio <1.0) in 3 cases of demyelination or inflammation, modestly elevated rCBV in 5 cases of CNS lymphoma or lymphoproliferative disorder (range: 1.3-4.1), and no measurable disease in one case. This study showed that USPIO-enhanced brain MRI can be useful in the diagnosis of CNS inflammatory disorders and lymphoma, and is also useful for patients with renal compromise at risk of nephrogenic systemic fibrosis who are unable to receive GBCA.

  5. Beneficial impact of high-field intraoperative magnetic resonance imaging on the efficacy of pediatric low-grade glioma surgery.

    PubMed

    Roder, Constantin; Breitkopf, Martin; Ms; Bisdas, Sotirios; Freitas, Rousinelle da Silva; Dimostheni, Artemisia; Ebinger, Martin; Wolff, Markus; Tatagiba, Marcos; Schuhmann, Martin U

    2016-03-01

    Intraoperative MRI (iMRI) is assumed to safely improve the extent of resection (EOR) in patients with gliomas. This study focuses on advantages of this imaging technology in elective low-grade glioma (LGG) surgery in pediatric patients. The surgical results of conventional and 1.5-T iMRI-guided elective LGG surgery in pediatric patients were retrospectively compared. Tumor volumes, general clinical data, EOR according to reference radiology assessment, and progression-free survival (PFS) were analyzed. Sixty-five patients were included in the study, of whom 34 had undergone conventional surgery before the iMRI unit opened (pre-iMRI period) and 31 had undergone surgery with iMRI guidance (iMRI period). Perioperative data were comparable between the 2 cohorts, apart from larger preoperative tumor volumes in the pre-iMRI period, a difference without statistical significance, and (as expected) significantly longer surgeries in the iMRI group. According to 3-month postoperative MRI studies, an intended complete resection (CR) was achieved in 41% (12 of 29) of the patients in the pre-iMRI period and in 71% (17 of 24) of those in the iMRI period (p = 0.05). Of those cases in which the surgeon was postoperatively convinced that he had successfully achieved CR, this proved to be true in only 50% of cases in the pre-iMRI period but in 81% of cases in the iMRI period (p = 0.055). Residual tumor volumes on 3-month postoperative MRI were significantly smaller in the iMRI cohort (p < 0.03). By continuing the resection of residual tumor after the intraoperative scan (when the surgeon assumed that he had achieved CR), the rate of CR was increased from 30% at the time of the scan to 85% at the 3-month postoperative MRI. The mean follow-up for the entire study cohort was 36.9 months (3-79 months). Progression-free survival after surgery was noticeably better for the entire iMRI cohort and in iMRI patients with postoperatively assumed CR, but did not quite reach statistical significance. Moreover, PFS was highly significantly better in patients with CRs than in those with incomplete resections (p < 0.001). Significantly better surgical results (CR) and PFS were achieved after using iMRI in patients in whom total resections were intended. Therefore, the use of high-field iMRI is strongly recommended for electively planned LGG resections in pediatric patients.

  6. Magnetic resonance imaging in patients with obsessive-compulsive disorder with good versus poor insight.

    PubMed

    Aigner, Martin; Zitterl, Werner; Prayer, Daniela; Demal, Ulrike; Bach, Michael; Prayer, Lucas; Stompe, Thomas; Lenz, Gerhard

    2005-11-30

    The DSM-IV provides two subtypes of obsessive-compulsive disorder (OCD), labelled as OCD with insight and OCD with poor insight. For the latter, patients generally fail to recognize that the obsessions or compulsions are excessive or unreasonable. Several studies have shown significant brain abnormalities in OCD patients. However, at present, it remains unclear whether a specific pattern of structural brain abnormalities is related to poor insight in OCD. In the present study, magnetic resonance imaging (MRI) findings were compared in OCD patients with insight versus those with poor insight. Outpatients with diagnoses of OCD according to DSM-IV (300.30) and ICD-10 (F42) (n = 84; mean age 38+/-13; 35 females, 49 males) were dichotomized into the two subtypes. All subjects underwent an MRI examination. MRI findings were rated as "MRI abnormality" and "normal MRI." In our sample, 48% of the patients had MRI abnormalities. There was a highly significant difference between the two groups according to frequencies of MRI abnormalities, with 83% of the patients with poor insight showing MRI abnormalities compared with only 21% of the patients with insight. The specifier "poor insight" helps to identify a subgroup of OCD with a higher frequency of brain abnormalities of various types. This distinction should be taken into account in future studies concerning the course and therapeutic outcome of OCD.

  7. Comparative ergonomic workflow and user experience analysis of MRI versus fluoroscopy-guided vascular interventions: an iliac angioplasty exemplar case study.

    PubMed

    Fernández-Gutiérrez, Fabiola; Martínez, Santiago; Rube, Martin A; Cox, Benjamin F; Fatahi, Mahsa; Scott-Brown, Kenneth C; Houston, J Graeme; McLeod, Helen; White, Richard D; French, Karen; Gueorguieva, Mariana; Immel, Erwin; Melzer, Andreas

    2015-10-01

    A methodological framework is introduced to assess and compare a conventional fluoroscopy protocol for peripheral angioplasty with a new magnetic resonant imaging (MRI)-guided protocol. Different scenarios were considered during interventions on a perfused arterial phantom with regard to time-based and cognitive task analysis, user experience and ergonomics. Three clinicians with different expertise performed a total of 43 simulated common iliac angioplasties (9 fluoroscopic, 34 MRI-guided) in two blocks of sessions. Six different configurations for MRI guidance were tested in the first block. Four of them were evaluated in the second block and compared to the fluoroscopy protocol. Relevant stages' durations were collected, and interventions were audio-visually recorded from different perspectives. A cued retrospective protocol analysis (CRPA) was undertaken, including personal interviews. In addition, ergonomic constraints in the MRI suite were evaluated. Significant differences were found when comparing the performance between MRI configurations versus fluoroscopy. Two configurations [with times of 8.56 (0.64) and 9.48 (1.13) min] led to reduce procedure time for MRI guidance, comparable to fluoroscopy [8.49 (0.75) min]. The CRPA pointed out the main influential factors for clinical procedure performance. The ergonomic analysis quantified musculoskeletal risks for interventional radiologists when utilising MRI. Several alternatives were suggested to prevent potential low-back injuries. This work presents a step towards the implementation of efficient operational protocols for MRI-guided procedures based on an integral and multidisciplinary framework, applicable to the assessment of current vascular protocols. The use of first-user perspective raises the possibility of establishing new forms of clinical training and education.

  8. Influence of low back pain and prognostic value of MRI in sciatica patients in relation to back pain.

    PubMed

    el Barzouhi, Abdelilah; Vleggeert-Lankamp, Carmen L A M; Lycklama à Nijeholt, Geert J; Van der Kallen, Bas F; van den Hout, Wilbert B; Koes, Bart W; Peul, Wilco C

    2014-01-01

    Patients with sciatica frequently complain about associated back pain. It is not known whether there are prognostic relevant differences in Magnetic Resonance Imaging (MRI) findings between sciatica patients with and without disabling back pain. The study population contained patients with sciatica who underwent a baseline MRI to assess eligibility for a randomized trial designed to compare the efficacy of early surgery with prolonged conservative care for sciatica. Two neuroradiologists and one neurosurgeon independently evaluated all MR images. The MRI readers were blinded to symptom status. The MRI findings were compared between sciatica patients with and without disabling back pain. The presence of disabling back pain at baseline was correlated with perceived recovery at one year. Of 379 included sciatica patients, 158 (42%) had disabling back pain. Of the patients with both sciatica and disabling back pain 68% did reveal a herniated disc with nerve root compression on MRI, compared to 88% of patients with predominantly sciatica (P<0.001). The existence of disabling back pain in sciatica at baseline was negatively associated with perceived recovery at one year (Odds ratio [OR] 0.32, 95% Confidence Interval 0.18-0.56, P<0.001). Sciatica patients with disabling back pain in absence of nerve root compression on MRI at baseline reported less perceived recovery at one year compared to those with predominantly sciatica and nerve root compression on MRI (50% vs 91%, P<0.001). Sciatica patients with disabling low back pain reported an unfavorable outcome at one-year follow-up compared to those with predominantly sciatica. If additionally a clear herniated disc with nerve root compression on MRI was absent, the results were even worse.

  9. Influence of Low Back Pain and Prognostic Value of MRI in Sciatica Patients in Relation to Back Pain

    PubMed Central

    el Barzouhi, Abdelilah; Vleggeert-Lankamp, Carmen L. A. M.; Lycklama à Nijeholt, Geert J.; Van der Kallen, Bas F.; van den Hout, Wilbert B.; Koes, Bart W.; Peul, Wilco C.

    2014-01-01

    Background Patients with sciatica frequently complain about associated back pain. It is not known whether there are prognostic relevant differences in Magnetic Resonance Imaging (MRI) findings between sciatica patients with and without disabling back pain. Methods The study population contained patients with sciatica who underwent a baseline MRI to assess eligibility for a randomized trial designed to compare the efficacy of early surgery with prolonged conservative care for sciatica. Two neuroradiologists and one neurosurgeon independently evaluated all MR images. The MRI readers were blinded to symptom status. The MRI findings were compared between sciatica patients with and without disabling back pain. The presence of disabling back pain at baseline was correlated with perceived recovery at one year. Results Of 379 included sciatica patients, 158 (42%) had disabling back pain. Of the patients with both sciatica and disabling back pain 68% did reveal a herniated disc with nerve root compression on MRI, compared to 88% of patients with predominantly sciatica (P<0.001). The existence of disabling back pain in sciatica at baseline was negatively associated with perceived recovery at one year (Odds ratio [OR] 0.32, 95% Confidence Interval 0.18–0.56, P<0.001). Sciatica patients with disabling back pain in absence of nerve root compression on MRI at baseline reported less perceived recovery at one year compared to those with predominantly sciatica and nerve root compression on MRI (50% vs 91%, P<0.001). Conclusion Sciatica patients with disabling low back pain reported an unfavorable outcome at one-year follow-up compared to those with predominantly sciatica. If additionally a clear herniated disc with nerve root compression on MRI was absent, the results were even worse. PMID:24637890

  10. Breast MRI: patterns of utilization and impact on patient management in the community hospital setting.

    PubMed

    Lobrano, Mary Beth; Stolier, Alan; L'Hoste, Robert; Luttrell, Carol Anne

    2012-01-01

    The objective of our study was to investigate the indications for breast magnetic resonance imaging, or MRI, in our community hospital, determine how many probably benign MRI findings were malignant at follow-up, determine how many cancers were identified by MRI in screening patients, and evaluate the utility of MRI for surgical planning and problem-solving. Five hundred twenty-eight contrast-enhanced MRI's of the breast in 434 patients were retrospectively reviewed. MRI images/reports were compared to surgical pathology reports and the results of follow-up studies. Screening was the most common indication for breast MRI in our patient population. Five percent of findings termed "probably benign" on MRI proved to be malignant at follow-up. Eight malignancies were detected in six of 202 screened patients. Ten malignancies were diagnosed in 66 patients referred to MRI for problem-solving. In two of 74 patients with known breast cancer, an unsuspected ipsilateral cancer was identified on MRI. MRI proved useful in the community hospital setting for screening high-risk patients and problem-solving. The rate of malignancy in probably benign MRI findings was higher than the corresponding rate in mammography. The detection of additional ipsilateral and contralateral cancers in pre-operative patients with known breast cancer was not as high as expected, based on prior studies.

  11. Intraoperative magnetic resonance imaging assessment of non-functioning pituitary adenomas during transsphenoidal surgery.

    PubMed

    Patel, Kunal S; Yao, Yong; Wang, Renzhi; Carter, Bob S; Chen, Clark C

    2016-04-01

    To review the utility of intraoperative imaging in facilitating maximal resection of non-functioning pituitary adenomas (NFAs). We performed an exhaustive MEDLINE search, which yielded 5598 articles. Upon careful review of these studies, 31 were pertinent to the issue of interest. Nine studies examined whether intraoperative MRI (iMRI) findings correlated with the presence of residual tumor on MRI taken 3 months after surgical resection. All studies using iMRI of >0.15T showed a ≥90% concordance between iMRI and 3-month post-operative MRI findings. 24 studies (22 iMRI and 2 intraoperative CT) examined whether intraoperative imaging improved the surgeon's ability to achieve a more complete resection. The resections were carried out under microscopic magnification in 17 studies and under endoscopic visualization in 7 studies. All studies support the value of intraoperative imaging in this regard, with improved resection in 15-83% of patients. Two studies examined whether iMRI (≥0.3T) improved visualization of residual NFA when compared to endoscopic visualization. Both studies demonstrated the value of iMRI in this regard, particularly when the tumor is located lateral of the sella, in the cavernous sinus, and in the suprasellar space. The currently available literature supports the utility of intraoperative imaging in facilitating increased NFA resection, without compromising safety.

  12. Three-dimensional ultrasonography of the breast; An adequate replacement for MRI in neoadjuvant chemotherapy tumour response evaluation? - RESPONDER trial.

    PubMed

    van Egdom, L S E; Lagendijk, M; Heijkoop, E H M; Koning, A H J; van Deurzen, C H M; Jager, A; van Lankeren, W; Koppert, L B

    2018-07-01

    Accurate measurement of tumour response during and after neoadjuvant chemotherapy (NAC) is important and may influence treatment decisions in invasive breast cancer patients. Breast MRI forms the gold standard but is more burdensome, time consuming and costly. In this study response measurement was done with 3-D ultrasound by Automated Breast Volume Scanner (ABVS) and compared to breast MRI. Moreover, patient satisfaction with both techniques was compared. A single-institution, prospective observational pilot study evaluating tumour response by ABVS in addition to breast MRI (standard care) was performed in 25 invasive breast cancer patients receiving NAC. Tumour response was evaluated comparing longest tumour diameters as well as tumour volumes at predefined time points using Bland-Altman analysis. Volume measurements for breast MRI were obtained using a fully immersive virtual reality system (a Barco I-Space) and V-Scope software. Same software was used to obtain ABVS volume measurements using an in-house developed desktop VR system. Inter- and intra-observer agreement was evaluated by Intraclass Correlation Coefficient (ICC). Twenty-five patients were eligible for baseline measurement, 20 for a mid-NAC response evaluation, and five for a post-NAC response evaluation. MRI and ABVS showed absolute concordance in 73% of patients for the mid-NAC evaluation, with a 'good' correlation for the difference in longest diameter measurement (ICC 0.73, p < 0.01) as compared to baseline assessment. Concerning difference in volume measurement in the mid-NAC response evaluation showed a 'fair' correlation (ICC 0.52, p < 0.01) and in the post-NAC response evaluation an 'excellent' correlation (ICC 0.98, p < 0.01). 'Excellent' inter- and intra-observer agreement was found (ICC 0.88, p < 0.01) with comparable limits of agreement (LOA) for observer 1 and 2 in both diameter and volume measurement. Patient satisfaction was higher for ABVS compared to breast MRI, 93% versus 12% respectively. ABVS showed 'good' correlation with MRI tumour response evaluation in breast cancer patients during NAC with 'excellent' inter- and intra-observer agreement. ABVS has patients' preference over breast MRI and could be considered as alternative to breast MRI, in case results on an on-going prospective trial confirm these results (NTR6799). Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Safety evaluation of a leadless transcatheter pacemaker for magnetic resonance imaging use.

    PubMed

    Soejima, Kyoko; Edmonson, Jonathan; Ellingson, Michael L; Herberg, Ben; Wiklund, Craig; Zhao, Jing

    2016-10-01

    Increased magnetic resonance imaging (MRI) adoption and demand are driving the need for device patients to have safe access to MRI. The aim of this study was to address the interactions of MRI with the Micra transcatheter pacemaker system. A strategy was developed to evaluate potential MRI risks including device heating, unintended cardiac stimulation, force, torque, vibration, and device malfunction. Assessment of MRI-induced device heating was conducted using a phantom containing gelled saline, and Monte Carlo simulations incorporating these results were conducted to simulate numerous combinations of human body models, position locations in the MRI scanner bore, and a variety of coil designs. Lastly, a patient with a Micra pacemaker who underwent a clinically indicated MRI scan is presented. Compared to traditional MRI conditional pacemakers, the overall risk with Micra was greatly reduced because of the small size of the device and the absence of a lead. The modeling results predicted that the nonperfused temperature rise of the device would be less than 0.4°C at 1.5 T and 0.5°C at 3 T and that the risk of device heating with multiple device implants was not increased as compared with a single device. The clinical case study revealed no MRI-related complications. The MRI safety assessment tests conducted for the Micra pacemaker demonstrate that patients with a single device or multiple devices can safely undergo MRI scans in both 1.5- and 3-T MRI scanners. No MRI-related complications were observed in a patient implanted with a Micra pacemaker undergoing a clinically indicated scan. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  14. PROSPECTIVE COMPARISON OF TUMOR STAGING USING COMPUTED TOMOGRAPHY VERSUS MAGNETIC RESONANCE IMAGING FINDINGS IN DOGS WITH NASAL NEOPLASIA: A PILOT STUDY.

    PubMed

    Lux, Cassie N; Culp, William T N; Johnson, Lynelle R; Kent, Michael; Mayhew, Philipp; Daniaux, Lise A; Carr, Alaina; Puchalski, Sarah

    2017-05-01

    Identification of nasal neoplasia extension and tumor staging in dogs is most commonly performed using computed tomography (CT), however magnetic resonance imaging (MRI) is routinely used in human medicine. A prospective pilot study enrolling six dogs with nasal neoplasia was performed with CT and MRI studies acquired under the same anesthetic episode. Interobserver comparison and comparison between the two imaging modalities with regard to bidimensional measurements of the nasal tumors, tumor staging using historical schemes, and assignment of an ordinal scale of tumor margin clarity at the tumor-soft tissue interface were performed. The hypotheses included that MRI would have greater tumor measurements, result in higher tumor staging, and more clearly define the tumor soft tissue interface when compared to CT. Evaluation of bone involvement of the nasal cavity and head showed a high level of agreement between CT and MRI. Estimation of tumor volume using bidimensional measurements was higher on MRI imaging in 5/6 dogs, and resulted in a median tumor volume which was 18.4% higher than CT imaging. Disagreement between CT and MRI was noted with meningeal enhancement, in which two dogs were positive for meningeal enhancement on MRI and negative on CT. One of six dogs had a higher tumor stage on MRI compared to CT, while the remaining five agreed. Magnetic resonance imaging resulted in larger bidimensional measurements and tumor volume estimates, along with a higher likelihood of identifying meningeal enhancement when compared to CT imaging. Magnetic resonance imaging may provide integral information for tumor staging, prognosis, and treatment planning. © 2017 American College of Veterinary Radiology.

  15. Comparison of sevoflurane administered through a face mask versus rectal thiopental sodium in children undergoing magnetic resonance imaging.

    PubMed

    Gómez-Ríos, Manuel Ángel; Freire-Vila, Enrique; Kuczkowski, Krzysztof M; Pensado-Castiñeiras, Alberto

    2017-02-01

    Sevoflurane (S) and thiopental sodium (T) are commonly used to produce sedation for routine MRI procedures. However, to date there have been no comparative studies evaluating both techniques. We herein present the firt study comparing S and T techniques for pediatric sedation in MRI procedures. 21 children, aged from 3 months to 6 years, scheduled for MRI were randomly assigned to either S or T group. Sedation performed under spontaneous respiration was induced with inspired 1-8% S in oxigen by face mask connected to a Mapleson C circuit or T (25 mg/kg) administered in distal rectum by cannula. The observed parameters included: time for induction, MRI time, first movement activity postprocedure and recovery time; MRI pauses from patient movement; technique failure, quality of the study, emergence agitation, critical events; and parental and radiologist satisfaction. S compared with T showed significantly shorter anesthesia induction time (1.93 ± 0.7 versus 13.5 ± 2.6 min), first movement time (3.38 ± 1.2 versus 5.9 ± 2.1 min), recovery time (6.8 ± 1.6 versus 10.14 ± 3.3 min), and discharge MRI time (27.83 ± 5.1 versus 47.5 ± 8.7 min). There were fewer pauses during MRI from patient movement in S versus T (0 versus 3). The radiologists reported good quality and satisfaction scores in both groups. There were less behavioral disturbances in T group compared with S group (1 versus 3). There were no critical events in either group. There were no differences in parental satisfaction in both groups. Sevoflurane shortens the induction and recovery time, enabling earlier discharge. Sevoflurane and rectal thiopental sodium protocols are safe and effective, providing adequate conditions for MRI in pediatric outpatients, although rectal thiopental is more unpredictable.

  16. Contrast-Enhanced Spectral Mammography is Comparable to MRI in the Assessment of Residual Breast Cancer Following Neoadjuvant Systemic Therapy.

    PubMed

    Patel, Bhavika K; Hilal, Talal; Covington, Matthew; Zhang, Nan; Kosiorek, Heidi E; Lobbes, Marc; Northfelt, Donald W; Pockaj, Barbara A

    2018-05-01

    To evaluate the performance of contrast-enhanced spectral mammography (CESM) compared to MRI in the assessment of tumor response in breast cancer patients undergoing neoadjuvant systemic therapy (NST). The institutional review board approved this study. From September 2014 to June 2017, we identified patients with pathologically confirmed invasive breast cancer who underwent NST. All patients had both CESM and MRI performed pre- and post-NST with pathological assessment after surgical management. Size of residual malignancy on post-NST CESM and MRI was compared with surgical pathology. Lin concordance and Pearson correlation coefficient were used to assess agreement. Bland-Altman plots were used to visualize the differences between tumor size on imaging and pathology. Sixty-five patients were identified. Mean age was 52.7 (range 30-76) years. Type of NST included chemotherapy in 53 (82%) and endocrine therapy in 12 (18%). Mean tumor size after NST was 14.6 (range 0-105) mm for CESM and 14.2 mm (range 0-75 mm) for MRI compared with 19.6 (range 0-100) mm on final surgical pathology. Equivalence tests demonstrated that mean tumor size measured by CESM (p = 0.009) or by MRI (p = 0.01) was equivalent to the mean tumor size measured by pathology within - 1 and 1-cm range. Comparing CESM versus MRI for assessment of complete response, the sensitivity was 95% versus 95%, specificity 66.7% versus 68.9%, positive predictive value 55.9% versus 57.6%, and negative predictive value 96.7% versus 96.9% respectively. CESM was comparable to MRI in assessing residual malignancy after completion of NST.

  17. Compact Intraoperative MRI: Stereotactic Accuracy and Future Directions.

    PubMed

    Markowitz, Daniel; Lin, Dishen; Salas, Sussan; Kohn, Nina; Schulder, Michael

    2017-01-01

    Intraoperative imaging must supply data that can be used for accurate stereotactic navigation. This information should be at least as accurate as that acquired from diagnostic imagers. The aim of this study was to compare the stereotactic accuracy of an updated compact intraoperative MRI (iMRI) device based on a 0.15-T magnet to standard surgical navigation on a 1.5-T diagnostic scan MRI and to navigation with an earlier model of the same system. The accuracy of each system was assessed using a water-filled phantom model of the brain. Data collected with the new system were compared to those obtained in a previous study assessing the older system. The accuracy of the new iMRI was measured against standard surgical navigation on a 1.5-T MRI using T1-weighted (W) images. The mean error with the iMRI using T1W images was lower than that based on images from the 1.5-T scan (1.24 vs. 2.43 mm). T2W images from the newer iMRI yielded a lower navigation error than those acquired with the prior model (1.28 vs. 3.15 mm). Improvements in magnet design can yield progressive increases in accuracy, validating the concept of compact, low-field iMRI. Avoiding the need for registration between image and surgical space increases navigation accuracy. © 2017 S. Karger AG, Basel.

  18. No effects of MRI scan on male reproduction hormones.

    PubMed

    Møllerløkken, Ole J; Moen, Bente E; Baste, Valborg; Magerøy, Nils; Oftedal, Gunnhild; Neto, Emanuel; Ersland, Lars; Bjørge, Line; Torjesen, Peter A; Mild, Kjell Hansson

    2012-08-01

    Magnetic resonance imaging (MRI) is increasing around the world and the possible adverse effects on reproductive health of electromagnetic fields (EMFs) in MRI are not previously studied. A prospective randomized balanced cross-over study using a head scan in real MRI with whole-body transmitting coil and sham MRI among 24 healthy male volunteers was conducted. Serum-blood samples of inhibin B, testosterone, prolactine, thyreotropine, luteinizing hormone, follicle stimulating hormone, sex-hormone binding globuline and estradiol were taken before and after the different scans. Neither immediately after, nor after 11 days were there seen any differences in the hormone levels comparing real and sham MRI. The lack of effects of EMF on male reproductive hormones should be reassuring to the public and especially for men examined in MRI. Adverse effects on other endpoints than male reproduction or possible chronic effect of multiple MRI scans have not been investigated in this study. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Do MRI findings identify patients with low back pain or sciatica who respond better to particular interventions? A systematic review.

    PubMed

    Steffens, Daniel; Hancock, Mark J; Pereira, Leani S M; Kent, Peter M; Latimer, Jane; Maher, Chris G

    2016-04-01

    Magnetic resonance imaging (MRI) can reveal a range of degenerative findings and anatomical abnormalities; however, the clinical importance of these remains uncertain and controversial. We aimed to investigate if the presence of MRI findings identifies patients with low back pain (LBP) or sciatica who respond better to particular interventions. MEDLINE, EMBASE and CENTRAL databases were searched. We included RCTs investigating MRI findings as treatment effect modifiers for patients with LBP or sciatica. We excluded studies with specific diseases as the cause of LBP. Risk of bias was assessed using the criteria of the Cochrane Back Review Group. Each MRI finding was examined for its individual capacity for effect modification. Eight published trials met the inclusion criteria. The methodological quality of trials was inconsistent. Substantial variability in MRI findings, treatments and outcomes across the eight trials prevented pooling of data. Patients with Modic type 1 when compared with patients with Modic type 2 had greater improvements in function when treated by Diprospan (steroid) injection, compared with saline. Patients with central disc herniation when compared with patients without central disc herniation had greater improvements in pain when treated by surgery, compared with rehabilitation. Although individual trials suggested that some MRI findings might be effect modifiers for specific interventions, none of these interactions were investigated in more than a single trial. High quality, adequately powered trials investigating MRI findings as effect modifiers are essential to determine the clinical importance of MRI findings in LBP and sciatica ( CRD42013006571).

  20. MRI target delineation may reduce long-term toxicity after prostate radiotherapy.

    PubMed

    Sander, Lotte; Langkilde, Niels Christian; Holmberg, Mats; Carl, Jesper

    2014-06-01

    Aiming for minimal toxicity after radical prostate cancer (PC) radiotherapy (RT), magnetic resonance imaging (MRI) target delineation could be a possible benefit knowing that clinical target volumes (CTV) are up to 30% smaller, when CTV delineation on MRI is compared to standard computed tomography (CT). This study compares long-term toxicity using CT or MRI delineation before PC RT. Urinary and rectal toxicity assessments 36 months after image-guided RT (78 Gy) using CTC-AE scores in two groups of PC patients. Peak symptom score values were registered. One group of patients (n=72) had standard CT target delineation and gold markers as fiducials. Another group of patients (n=73) had MRI target delineation and a nickel-titanium stent as fiducial. At 36 months no difference in overall survival (92% in both groups, p=0.29) or in PSA-relapse free survival was found between the groups (MRI=89% and CT=94%, p=0.67). A significantly smaller CTV was found in the MRI group (p=0.02). Urinary retention and frequency were significantly reduced in the MRI group (p=0.03 in the matter of both). The overall urinary and rectal toxicity did not differ between the two groups. MRI delineation leads to a significantly reduced CTV. Significantly lower urinary frequency and urinary retention toxicity scores were observed following MRI delineation. The study did not find significant differences in overall urinary or rectal toxicity between the two groups. PSA-relapse survival did not differ between the two groups at 36 months.

  1. Brain perfusion alterations in tick-borne encephalitis-preliminary report.

    PubMed

    Tyrakowska-Dadełło, Zuzanna; Tarasów, Eugeniusz; Janusek, Dariusz; Moniuszko-Malinowska, Anna; Zajkowska, Joanna; Pancewicz, Sławomir

    2018-03-01

    Magnetic resonance imaging (MRI) changes in tick-borne encephalitis (TBE) are non-specific and the pathophysiological mechanisms leading to their formation remain unclear. This study investigated brain perfusion in TBE patients using dynamic susceptibility-weighted contrast-enhanced magnetic resonance perfusion imaging (DSC-MRI perfusion). MRI scans were performed for 12 patients in the acute phase, 3-5days after the diagnosis of TBE. Conventional MRI and DSC-MRI perfusion studies were performed. Cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and time to peak (TTP) parametric maps were created. The bilateral frontal, parietal, and temporal subcortical regions and thalamus were selected as regions of interest. Perfusion parameters of TBE patients were compared to those of a control group. There was a slight increase in CBF and CBV, with significant prolongation of TTP in subcortical areas in the study subjects, while MTT values were comparable to those of the control group. A significant increase in thalamic CBF (p<0.001) and increased CBV (p<0.05) were observed. Increased TTP and a slight reduction in MTT were also observed within this area. The DSC-MRI perfusion study showed that TBE patients had brain perfusion disturbances, expressed mainly in the thalami. These results suggest that DSC-MRI perfusion may provide important information regarding the areas affected in TBE patients. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Magnetic resonance imaging, ultrasonography and histology of the suspensory ligament origin: a comparative study of normal anatomy of warmblood horses.

    PubMed

    Bischofberger, A S; Konar, M; Ohlerth, S; Geyer, H; Lang, J; Ueltschi, G; Lischer, C J

    2006-11-01

    The diagnosis of lameness caused by proximal metacarpal and metatarsal pain can be challenging. Magnetic resonance imaging (MRI) offers the possibility for further diagnosis but there have been no studies on the normal MRI appearance of the origin of the suspensory ligament (OSL) in conjunction with ultrasonography and histology. To describe the MRI appearance of the OSL in fore- and hindlimbs of sound horses and compare it to the ultrasonographic and histological appearance. The findings can be used as reference values to recognise pathology in the OSL. The OSL in the fore- and hindlimbs of 6 sound horses was examined by ultrasonography prior to death, and MRI and histology post mortem. Qualitative evaluation and morphometry of the OSL were performed and results of all modalities compared. Muscular tissue, artefacts, variable SL size and shape complicated ultrasonographic interpretation. In MRI and histology the forelimb OSL consisted of 2 portions, the lateral being significantly thicker than medial. The hindlimb SL had a single large area of origin. In fore- and hindlimbs, the amount of muscular tissue was significantly larger laterally than medially. Overall SL measurements using MRI were significantly higher than using histology and ultrasonography and histological higher than ultrasonographic measurements. Morphologically, there was a good correlation between MRI and histology. MRI provides more detailed information than ultrasonography regarding muscle fibre detection and OSL dimension and correlates morphologically well with histology. Therefore, ultrasonographic results should be regarded with caution. MRI may be a diagnostic aid when other modalities fail to identify clearly the cause of proximal metacarpal and metatarsal pain; and may improve selection of adequate therapy and prognosis for injuries in this region.

  3. A comparative study of volumetric breast density estimation in digital mammography and magnetic resonance imaging: results from a high-risk population

    NASA Astrophysics Data System (ADS)

    Kontos, Despina; Xing, Ye; Bakic, Predrag R.; Conant, Emily F.; Maidment, Andrew D. A.

    2010-03-01

    We performed a study to compare methods for volumetric breast density estimation in digital mammography (DM) and magnetic resonance imaging (MRI) for a high-risk population of women. DM and MRI images of the unaffected breast from 32 women with recently detected abnormalities and/or previously diagnosed breast cancer (age range 31-78 yrs, mean 50.3 yrs) were retrospectively analyzed. DM images were analyzed using QuantraTM (Hologic Inc). The MRI images were analyzed using a fuzzy-C-means segmentation algorithm on the T1 map. Both methods were compared to Cumulus (Univ. Toronto). Volumetric breast density estimates from DM and MRI are highly correlated (r=0.90, p<=0.001). The correlation between the volumetric and the area-based density measures is lower and depends on the training background of the Cumulus software user (r=0.73-84, p<=0.001). In terms of absolute values, MRI provides the lowest volumetric estimates (mean=14.63%), followed by the DM volumetric (mean=22.72%) and area-based measures (mean=29.35%). The MRI estimates of the fibroglandular volume are statistically significantly lower than the DM estimates for women with very low-density breasts (p<=0.001). We attribute these differences to potential partial volume effects in MRI and differences in the computational aspects of the image analysis methods in MRI and DM. The good correlation between the volumetric and the area-based measures, shown to correlate with breast cancer risk, suggests that both DM and MRI volumetric breast density measures can aid in breast cancer risk assessment. Further work is underway to fully-investigate the association between volumetric breast density measures and breast cancer risk.

  4. Contrast-enhanced MRI compared with the physical examination in the evaluation of disease activity in juvenile idiopathic arthritis.

    PubMed

    Hemke, Robert; Maas, Mario; van Veenendaal, Mira; Dolman, Koert M; van Rossum, Marion A J; van den Berg, J Merlijn; Kuijpers, Taco W

    2014-02-01

    To assess the value of magnetic resonance imaging (MRI) in discriminating between active and inactive juvenile idiopathic arthritis (JIA) patients and to compare physical examination outcomes with MRI outcomes in the assessment of disease status in JIA patients. Consecutive JIA patients with knee involvement were prospectively studied using an open-bore MRI. Imaging findings from 146 JIA patients were analysed (59.6% female; mean age, 12.9 years). Patients were classified as clinically active or inactive. MRI features were evaluated using the JAMRIS system, comprising validated scores for synovial hypertrophy, bone marrow oedema, cartilage lesions and bone erosions. Inter-reader reliability was good for all MRI features (intra-class correlation coefficient [ICC] = 0.87-0.94). No differences were found between the two groups regarding MRI scores of bone marrow oedema, cartilage lesions or bone erosions. Synovial hypertrophy scores differed significantly between groups (P = 0.016). Nonetheless, synovial hypertrophy was also present in 14 JIA patients (35.9%) with clinically inactive disease. Of JIA patients considered clinically active, 48.6% showed no signs of MRI-based synovitis. MRI can discriminate between clinically active and inactive JIA patients. However, physical examination is neither very sensitive nor specific in evaluating JIA disease activity compared with MRI. Subclinical synovitis was present in >35% of presumed clinically inactive patients. • MRI is sensitive for evaluating juvenile idiopathic arthritis (JIA) disease activity. • Contrast-enhanced MRI can distinguish clinically active and inactive JIA patients. • Subclinical synovitis is present in 35.9 % of presumed clinically inactive patients. • Physical examination is neither sensitive nor specific in evaluating JIA disease activity.

  5. The relevance of MRI for patient modeling in head and neck hyperthermia treatment planning: a comparison of CT and CT-MRI based tissue segmentation on simulated temperature.

    PubMed

    Verhaart, René F; Fortunati, Valerio; Verduijn, Gerda M; van der Lugt, Aad; van Walsum, Theo; Veenland, Jifke F; Paulides, Margarethus M

    2014-12-01

    In current clinical practice, head and neck (H&N) hyperthermia treatment planning (HTP) is solely based on computed tomography (CT) images. Magnetic resonance imaging (MRI) provides superior soft-tissue contrast over CT. The purpose of the authors' study is to investigate the relevance of using MRI in addition to CT for patient modeling in H&N HTP. CT and MRI scans were acquired for 11 patients in an immobilization mask. Three observers manually segmented on CT, MRI T1 weighted (MRI-T1w), and MRI T2 weighted (MRI-T2w) images the following thermo-sensitive tissues: cerebrum, cerebellum, brainstem, myelum, sclera, lens, vitreous humor, and the optical nerve. For these tissues that are used for patient modeling in H&N HTP, the interobserver variation of manual tissue segmentation in CT and MRI was quantified with the mean surface distance (MSD). Next, the authors compared the impact of CT and CT and MRI based patient models on the predicted temperatures. For each tissue, the modality was selected that led to the lowest observer variation and inserted this in the combined CT and MRI based patient model (CT and MRI), after a deformable image registration. In addition, a patient model with a detailed segmentation of brain tissues (including white matter, gray matter, and cerebrospinal fluid) was created (CT and MRIdb). To quantify the relevance of MRI based segmentation for H&N HTP, the authors compared the predicted maximum temperatures in the segmented tissues (Tmax) and the corresponding specific absorption rate (SAR) of the patient models based on (1) CT, (2) CT and MRI, and (3) CT and MRIdb. In MRI, a similar or reduced interobserver variation was found compared to CT (maximum of median MSD in CT: 0.93 mm, MRI-T1w: 0.72 mm, MRI-T2w: 0.66 mm). Only for the optical nerve the interobserver variation is significantly lower in CT compared to MRI (median MSD in CT: 0.58 mm, MRI-T1w: 1.27 mm, MRI-T2w: 1.40 mm). Patient models based on CT (Tmax: 38.0 °C) and CT and MRI (Tmax: 38.1 °C) result in similar simulated temperatures, while CT and MRIdb (Tmax: 38.5 °C) resulted in significantly higher temperatures. The SAR corresponding to these temperatures did not differ significantly. Although MR imaging reduces the interobserver variation in most tissues, it does not affect simulated local tissue temperatures. However, the improved soft-tissue contrast provided by MRI allows generating a detailed brain segmentation, which has a strong impact on the predicted local temperatures and hence may improve simulation guided hyperthermia.

  6. Experimental study of sector and linear array ultrasound accuracy and the influence of navigated 3D-reconstruction as compared to MRI in a brain tumor model.

    PubMed

    Siekmann, Max; Lothes, Thomas; König, Ralph; Wirtz, Christian Rainer; Coburger, Jan

    2018-03-01

    Currently, intraoperative ultrasound in brain tumor surgery is a rapidly propagating option in imaging technology. We examined the accuracy and resolution limits of different ultrasound probes and the influence of 3D-reconstruction in a phantom and compared these results to MRI in an intraoperative setting (iMRI). An agarose gel phantom with predefined gel targets was examined with iMRI, a sector (SUS) and a linear (LUS) array probe with two-dimensional images. Additionally, 3D-reconstructed sweeps in perpendicular directions were made of every target with both probes, resulting in 392 measurements. Statistical calculations were performed, and comparative boxplots were generated. Every measurement of iMRI and LUS was more precise than SUS, while there was no apparent difference in height of iMRI and 3D-reconstructed LUS. Measurements with 3D-reconstructed LUS were always more accurate than in 2D-LUS, while 3D-reconstruction of SUS showed nearly no differences to 2D-SUS in some measurements. We found correlations of 3D-reconstructed SUS and LUS length and width measurements with 2D results in the same image orientation. LUS provides an accuracy and resolution comparable to iMRI, while SUS is less exact than LUS and iMRI. 3D-reconstruction showed the potential to distinctly improve accuracy and resolution of ultrasound images, although there is a strong correlation with the sweep direction during data acquisition.

  7. Comparison of 7T and 3T MRI in patients with moyamoya disease.

    PubMed

    Oh, Byeong Ho; Moon, Hyeong Cheol; Baek, Hyeon Man; Lee, Youn Joo; Kim, Sang Woo; Jeon, Young Jai; Lee, Gun Seok; Kim, Hong Rae; Choi, Jai Ho; Min, Kyung Soo; Lee, Mou Seop; Kim, Young Gyu; Kim, Dong Ho; Kim, Won Seop; Park, Young Seok

    2017-04-01

    Magnetic resonance imaging and magnetic resonance angiography (MRI/MRA) are widely used for evaluating the moyamoya disease (MMD). This study compared the diagnostic accuracy of 7Tesla (T) and 3T MRI/MRA in MMD. In this case control study, 12 patients [median age: 34years; range (10-66years)] with MMD and 12 healthy controls [median age: 25years; range (22-59years)] underwent both 7T and 3T MRI/MRA. To evaluate the accuracy of MRI/MRA in MMD, five criteria were compared between imaging systems of 7T and 3T: Suzuki grading system, internal carotid artery (ICA) diameter, ivy sign, flow void of the basal ganglia on T2-weighted images, and high signal intensity areas of the basal ganglia on time-of-flight (TOF) source images. No difference was observed between 7T and 3T MRI/MRA in Suzuki stage, ICA diameter, and ivy sign score; while, 7T MRI/MRA showed a higher detection rate in the flow void on T2-weighted images and TOF source images (p<0.001). Receiver operating characteristic curves of both T2 and TOF criteria showed that 7T MRI/MRA had higher sensitivity and specificity than 3T MRI/MRA. Our findings indicate that 7T MRI/MRA is superior to 3T MRI/MRA for the diagnosis of MMD in point of detecting the flow void in basal ganglia by T2-weighted and TOF images. Copyright © 2016. Published by Elsevier Inc.

  8. Respiratory motion-resolved, self-gated 4D-MRI using Rotating Cartesian K-space (ROCK): Initial clinical experience on an MRI-guided radiotherapy system.

    PubMed

    Han, Fei; Zhou, Ziwu; Du, Dongsu; Gao, Yu; Rashid, Shams; Cao, Minsong; Shaverdian, Narek; Hegde, John V; Steinberg, Michael; Lee, Percy; Raldow, Ann; Low, Daniel A; Sheng, Ke; Yang, Yingli; Hu, Peng

    2018-06-01

    To optimize and evaluate the respiratory motion-resolved, self-gated 4D-MRI using Rotating Cartesian K-space (ROCK-4D-MRI) method in a 0.35 T MRI-guided radiotherapy (MRgRT) system. The study included seven patients with abdominal tumors treated on the MRgRT system. ROCK-4D-MRI and 2D-CINE, was performed immediately after one of the treatment fractions. Motion quantification based on 4D-MRI was compared with those based on 2D-CINE. The image quality of 4D-MRI was evaluated against 4D-CT. The gross tumor volumes (GTV) were defined based on individual respiratory phases of both 4D-MRI and 4D-CT and compared for their variability over the respiratory cycle. The motion measurements based on 4D-MRI matched well with 2D-CINE, with differences of 1.04 ± 0.52 mm in the superior-inferior and 0.54 ± 0.21 mm in the anterior-posterior directions. The image quality scores of 4D-MRI were significantly higher than 4D-CT, with better tumor contrast (3.29 ± 0.76 vs. 1.86 ± 0.90) and less motion artifacts (3.57 ± 0.53 vs. 2.29 ± 0.95). The GTVs were more consistent in 4D-MRI than in 4D-CT, with significantly smaller GTV variability (9.31 ± 4.58% vs. 34.27 ± 23.33%). Our study demonstrated the clinical feasibility of using the ROCK-4D-MRI to acquire high quality, respiratory motion-resolved 4D-MRI in a low-field MRgRT system. The 4D-MRI image could provide accurate dynamic information for radiotherapy treatment planning. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. The role of early magnetic resonance imaging in predicting survival on bevacizumab for recurrent glioblastoma: Results from a prospective clinical trial (CABARET).

    PubMed

    Field, Kathryn M; Phal, Pramit M; Fitt, Greg; Goh, Christine; Nowak, Anna K; Rosenthal, Mark A; Simes, John; Barnes, Elizabeth H; Sawkins, Kate; Cher, Lawrence M; Hovey, Elizabeth J; Wheeler, Helen

    2017-09-15

    Bevacizumab has been associated with prolonged progression-free survival for patients with recurrent glioblastoma; however, not all derive a benefit. An early indicator of efficacy or futility may allow early discontinuation for nonresponders. This study prospectively assessed the role of early magnetic resonance imaging (eMRI) and its correlation with subsequent routine magnetic resonance imaging (MRI) results and survival. Patients were part of a randomized phase 2 clinical trial (CABARET) comparing bevacizumab with bevacizumab plus carboplatin for recurrent glioblastoma. eMRI was conducted after 4 weeks in the trial (after 2 treatments with bevacizumab [10 mg/kg every 2 weeks]). The results were compared with the results of the subsequent 8-week MRI standard. For 119 of 122 patients, eMRI was available, and 111 had subsequent MRI for comparison. Thirty-six (30%) had an early radiological response, and 17 (14%) had progressive disease. The concordance between eMRI and 8-week MRI was moderate (κ = 0.56), with most providing the same result (n = 79 [71%]). There was strong evidence that progression-free survival and overall survival were predicted by the eMRI response (both P values < .001). The median survival was 8.6 months for an eMRI response, 6.6 months for stable disease, and 3.7 months for progressive disease; the hazard ratio (progressive disease vs stable disease) was 3.4 (95% confidence interval, 1.9-6.0). Landmark analyses showed that eMRI progression was a strong predictor of mortality independent of other potential baseline predictors. In this study, early progression on MRI appears to be a robust marker of a poor prognosis for patients on bevacizumab. Cancer 2017;123:3576-82. © 2017 American Cancer Society. © 2017 American Cancer Society.

  10. Longitudinal Changes of Resting-State Functional Connectivity during Motor Recovery after Stroke

    PubMed Central

    Park, Chang-hyun; Chang, Won Hyuk; Ohn, Suk Hoon; Kim, Sung Tae; Bang, Oh Young; Pascual-Leone, Alvaro; Kim, Yun-Hee

    2013-01-01

    Background and Purpose Functional magnetic resonance imaging (fMRI) studies could provide crucial information on the neural mechanisms of motor recovery in stroke patients. Resting-state fMRI is applicable to stroke patients who are not capable of proper performance of the motor task. In this study, we explored neural correlates of motor recovery in stroke patients by investigating longitudinal changes in resting-state functional connectivity of the ipsilesional primary motor cortex (M1). Methods A longitudinal observational study using repeated fMRI experiments was conducted in 12 patients with stroke. Resting-state fMRI data were acquired four times over a period of 6 months. Patients participated in the first session of fMRI shortly after onset, and thereafter in subsequent sessions at 1, 3, and 6 months after onset. Resting-state functional connectivity of the ipsilesional M1 was assessed and compared with that of healthy subjects. Results Compared with healthy subjects, patients demonstrated higher functional connectivity with the ipsilesional frontal and parietal cortices, bilateral thalamus, and cerebellum. Instead, functional connectivity with the contralesional M1 and occipital cortex were decreased in stroke patients. Functional connectivity between the ipsilesional and contralesional M1 showed the most asymmetry at 1 month after onset to the ipsilesional side. Functional connectivity of the ipsilesional M1 with the contralesional thalamus, supplementary motor area, and middle frontal gyrus at onset was positively correlated with motor recovery at 6 months after stroke. Conclusions Resting-state fMRI elicited distinctive but comparable results with previous task-based fMRI, presenting complementary and practical values for use in the study of stroke patients. PMID:21441147

  11. The relevance of MRI for patient modeling in head and neck hyperthermia treatment planning: A comparison of CT and CT-MRI based tissue segmentation on simulated temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verhaart, René F., E-mail: r.f.verhaart@erasmusmc.nl; Paulides, Margarethus M.; Fortunati, Valerio

    Purpose: In current clinical practice, head and neck (H and N) hyperthermia treatment planning (HTP) is solely based on computed tomography (CT) images. Magnetic resonance imaging (MRI) provides superior soft-tissue contrast over CT. The purpose of the authors’ study is to investigate the relevance of using MRI in addition to CT for patient modeling in H and N HTP. Methods: CT and MRI scans were acquired for 11 patients in an immobilization mask. Three observers manually segmented on CT, MRI T1 weighted (MRI-T1w), and MRI T2 weighted (MRI-T2w) images the following thermo-sensitive tissues: cerebrum, cerebellum, brainstem, myelum, sclera, lens, vitreousmore » humor, and the optical nerve. For these tissues that are used for patient modeling in H and N HTP, the interobserver variation of manual tissue segmentation in CT and MRI was quantified with the mean surface distance (MSD). Next, the authors compared the impact of CT and CT and MRI based patient models on the predicted temperatures. For each tissue, the modality was selected that led to the lowest observer variation and inserted this in the combined CT and MRI based patient model (CT and MRI), after a deformable image registration. In addition, a patient model with a detailed segmentation of brain tissues (including white matter, gray matter, and cerebrospinal fluid) was created (CT and MRI{sub db}). To quantify the relevance of MRI based segmentation for H and N HTP, the authors compared the predicted maximum temperatures in the segmented tissues (T{sub max}) and the corresponding specific absorption rate (SAR) of the patient models based on (1) CT, (2) CT and MRI, and (3) CT and MRI{sub db}. Results: In MRI, a similar or reduced interobserver variation was found compared to CT (maximum of median MSD in CT: 0.93 mm, MRI-T1w: 0.72 mm, MRI-T2w: 0.66 mm). Only for the optical nerve the interobserver variation is significantly lower in CT compared to MRI (median MSD in CT: 0.58 mm, MRI-T1w: 1.27 mm, MRI-T2w: 1.40 mm). Patient models based on CT (T{sub max}: 38.0 °C) and CT and MRI (T{sub max}: 38.1 °C) result in similar simulated temperatures, while CT and MRI{sub db} (T{sub max}: 38.5 °C) resulted in significantly higher temperatures. The SAR corresponding to these temperatures did not differ significantly. Conclusions: Although MR imaging reduces the interobserver variation in most tissues, it does not affect simulated local tissue temperatures. However, the improved soft-tissue contrast provided by MRI allows generating a detailed brain segmentation, which has a strong impact on the predicted local temperatures and hence may improve simulation guided hyperthermia.« less

  12. Single-trial EEG-informed fMRI analysis of emotional decision problems in hot executive function.

    PubMed

    Guo, Qian; Zhou, Tiantong; Li, Wenjie; Dong, Li; Wang, Suhong; Zou, Ling

    2017-07-01

    Executive function refers to conscious control in psychological process which relates to thinking and action. Emotional decision is a part of hot executive function and contains emotion and logic elements. As a kind of important social adaptation ability, more and more attention has been paid in recent years. Gambling task can be well performed in the study of emotional decision. As fMRI researches focused on gambling task show not completely consistent brain activation regions, this study adopted EEG-fMRI fusion technology to reveal brain neural activity related with feedback stimuli. In this study, an EEG-informed fMRI analysis was applied to process simultaneous EEG-fMRI data. First, relative power-spectrum analysis and K-means clustering method were performed separately to extract EEG-fMRI features. Then, Generalized linear models were structured using fMRI data and using different EEG features as regressors. The results showed that in the win versus loss stimuli, the activated regions almost covered the caudate, the ventral striatum (VS), the orbital frontal cortex (OFC), and the cingulate. Wide activation areas associated with reward and punishment were revealed by the EEG-fMRI integration analysis than the conventional fMRI results, such as the posterior cingulate and the OFC. The VS and the medial prefrontal cortex (mPFC) were found when EEG power features were performed as regressors of GLM compared with results entering the amplitudes of feedback-related negativity (FRN) as regressors. Furthermore, the brain region activation intensity was the strongest when theta-band power was used as a regressor compared with the other two fusion results. The EEG-based fMRI analysis can more accurately depict the whole-brain activation map and analyze emotional decision problems.

  13. Ultrasound-based logistic regression model LR2 versus magnetic resonance imaging for discriminating between benign and malignant adnexal masses: a prospective study.

    PubMed

    Shimada, Kanane; Matsumoto, Koji; Mimura, Takashi; Ishikawa, Tetsuya; Munechika, Jiro; Ohgiya, Yoshimitsu; Kushima, Miki; Hirose, Yusuke; Asami, Yuka; Iitsuka, Chiaki; Miyamoto, Shingo; Onuki, Mamiko; Tsunoda, Hajime; Matsuoka, Ryu; Ichizuka, Kiyotake; Sekizawa, Akihiko

    2018-06-01

    The diagnostic performances of the International Ovarian Tumor Analysis (IOTA) ultrasound-based logistic regression model (LR2) and magnetic resonance imaging (MRI) in discriminating between benign and malignant adnexal masses have not been directly compared in a single study. Using the IOTA LR2 model and subjective interpretation of MRI findings by experienced radiologists, 265 consecutive patients with adnexal masses were preoperatively evaluated in two hospitals between February 2014 and December 2015. Definitive histological diagnosis of excised tissues was used as a gold standard. From the 265 study subjects, 54 (20.4%) tumors were histologically diagnosed as malignant (including 11 borderline and 3 metastatic tumors). Preoperative diagnoses of malignant tumors showed 91.7% total agreement between IOTA LR2 and MRI, with a kappa value of 0.77 [95% confidence interval (CI), 0.68-0.86]. Sensitivity of IOTA LR2 (0.94, 95% CI, 0.85-0.98) for predicting malignant tumors was similar to that of MRI (0.96, 95% CI, 0.87-0.99; P = 0.99), whereas specificity of IOTA LR2 (0.98, 95% CI, 0.95-0.99) was significantly higher than that of MRI (0.91, 95% CI, 0.87-0.95; P = 0.002). Combined IOTA LR2 and MRI results gave the greatest sensitivity (1.00, 95% CI, 0.93-1.00) and had similar specificity (0.91, 95% CI, 0.86-0.94) to MRI. The IOTA LR2 model had a similar sensitivity to MRI for discriminating between benign and malignant tumors and a higher specificity compared with MRI. Our findings suggest that the IOTA LR2 model, either alone or in conjunction with MRI, should be included in preoperative evaluation of adnexal masses.

  14. The accuracy of ultrashort echo time MRI sequences for medical additive manufacturing

    PubMed Central

    Rijkhorst, Erik-Jan; Hofman, Mark; Forouzanfar, Tymour; Wolff, Jan

    2016-01-01

    Objectives: Additively manufactured bone models, implants and drill guides are becoming increasingly popular amongst maxillofacial surgeons and dentists. To date, such constructs are commonly manufactured using CT technology that induces ionizing radiation. Recently, ultrashort echo time (UTE) MRI sequences have been developed that allow radiation-free imaging of facial bones. The aim of the present study was to assess the feasibility of UTE MRI sequences for medical additive manufacturing (AM). Methods: Three morphologically different dry human mandibles were scanned using a CT and MRI scanner. Additionally, optical scans of all three mandibles were made to acquire a “gold standard”. All CT and MRI scans were converted into Standard Tessellation Language (STL) models and geometrically compared with the gold standard. To quantify the accuracy of the AM process, the CT, MRI and gold-standard STL models of one of the mandibles were additively manufactured, optically scanned and compared with the original gold-standard STL model. Results: Geometric differences between all three CT-derived STL models and the gold standard were <1.0 mm. All three MRI-derived STL models generally presented deviations <1.5 mm in the symphyseal and mandibular area. The AM process introduced minor deviations of <0.5 mm. Conclusions: This study demonstrates that MRI using UTE sequences is a feasible alternative to CT in generating STL models of the mandible and would therefore be suitable for surgical planning and AM. Further in vivo studies are necessary to assess the usability of UTE MRI sequences in clinical settings. PMID:26943179

  15. Comparative characteristics of quantitative indexes for 18F-FDG uptake and metabolic volume in sequentially obtained PET/MRI and PET/CT.

    PubMed

    Lee, Soo Jin; Paeng, Jin Chul; Goo, Jin Mo; Lee, Jeong Min; Cheon, Gi Jeong; Lee, Dong Soo; Chung, June-Key; Kang, Keon Wook

    2017-04-01

    The purpose of this study was to compare quantitative indexes for fluorine-18 fluorodeoxyglucose uptake and metabolic volume between PET/MRI and PET/CT. Sixty-six patients with solid tumors (32 with lung cancer and 34 with pancreatic cancer) who underwent sequential fluorine-18 fluorodeoxyglucose PET/MRI and PET/CT were retrospectively enrolled. On PET images, maximum and peak standardized uptake values (SUVmax and SUVpeak, respectively), and maximum tumor-to-liver ratio (TLRmax) were measured. Metabolic tumor volume (MTV) and total-lesion glycolysis (TLG) with margin thresholds of 50% SUVmax and SUV 2.5 (MTV50%, MTV2.5; TLG50%, TLG2.5, respectively) were compared between PET/MRI and PET/CT, with patients classified into two groups using imaging protocol (the PET/MRI-first and PET/CT-first groups). There were significant correlations of all tested indexes between PET/MRI and PET/CT (r=0.867-0.987, P<0.001). SUVmax and SUVpeak were lower on PET/MRI regardless of imaging protocol (P<0.001 in the PET/MRI-first group). In contrast, TLRmax exhibited reverse results between the PET/MRI-first and PET/CT-first groups. MTV50% and TLG values varied between PET/MRI and PET/CT, as well as between the PET/MRI-first and PET/CT-first groups. However, MTV2.5 was relatively robust against imaging protocol and modality. There are significant correlations of the quantitative indexes between PET/MRI and PET/CT. However, uptake indexes of SUVmax and SUVpeak are lower on PET/MRI than on PET/CT, and volumetric indexes of MTV50% and TLG values also exhibited significant differences. It may be suggested that TLRmax and MTV2.5 are relatively more appropriate indexes than others when PET/MRI and PET/CT are used interchangeably.

  16. Effect of Prostate Magnetic Resonance Imaging/Ultrasound Fusion-guided Biopsy on Radiation Treatment Recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, Aaron; Valle, Luca F.; Shankavaram, Uma

    Purpose: Targeted magnetic resonance imaging (MRI)/ultrasound fusion prostate biopsy (MRI-Bx) has recently been compared with the standard of care extended sextant ultrasound-guided prostate biopsy (SOC-Bx), with the former associated with an increased rate of detection of clinically significant prostate cancer. The present study sought to determine the influence of MRI-Bx on radiation therapy and androgen deprivation therapy (ADT) recommendations. Methods and Materials: All patients who had received radiation treatment and had undergone SOC-Bx and MRI-Bx at our institution were included. Using the clinical T stage, pretreatment prostate-specific antigen, and Gleason score, patients were categorized into National Comprehensive Cancer Network riskmore » groups and radiation treatment or ADT recommendations assigned. Intensification of the recommended treatment after multiparametric MRI, SOC-Bx, and MRI-Bx was evaluated. Results: From January 2008 to January 2016, 73 patients received radiation therapy at our institution after undergoing a simultaneous SOC-Bx and MRI-Bx (n=47 with previous SOC-Bx). Repeat SOC-Bx and MRI-Bx resulted in frequent upgrading compared with previous SOC-Bx (Gleason score 7, 6.7% vs 44.6%; P<.001; Gleason score 8-10, 2.1% vs 38%; P<.001). MRI-Bx increased the proportion of patients classified as very high risk from 24.7% to 41.1% (P=.027). Compared with SOC-Bx alone, including the MRI-Bx findings resulted in a greater percentage of pathologically positive cores (mean 37% vs 44%). Incorporation of multiparametric MRI and MRI-Bx results increased the recommended use and duration of ADT (duration increased in 28 of 73 patients and ADT was added for 8 of 73 patients). Conclusions: In patients referred for radiation treatment, MRI-Bx resulted in an increase in the percentage of positive cores, Gleason score, and risk grouping. The benefit of treatment intensification in accordance with the MRI-Bx findings is unknown.« less

  17. OdorMapComparer: an application for quantitative analyses and comparisons of fMRI brain odor maps.

    PubMed

    Liu, Nian; Xu, Fuqiang; Miller, Perry L; Shepherd, Gordon M

    2007-01-01

    Brain odor maps are reconstructed flat images that describe the spatial activity patterns in the glomerular layer of the olfactory bulbs in animals exposed to different odor stimuli. We have developed a software application, OdorMapComparer, to carry out quantitative analyses and comparisons of the fMRI odor maps. This application is an open-source window program that first loads two odor map images being compared. It allows image transformations including scaling, flipping, rotating, and warping so that the two images can be appropriately aligned to each other. It performs simple subtraction, addition, and average of signals in the two images. It also provides comparative statistics including the normalized correlation (NC) and spatial correlation coefficient. Experimental studies showed that the rodent fMRI odor maps for aliphatic aldehydes displayed spatial activity patterns that are similar in gross outlines but somewhat different in specific subregions. Analyses with OdorMapComparer indicate that the similarity between odor maps decreases with increasing difference in the length of carbon chains. For example, the map of butanal is more closely related to that of pentanal (with a NC = 0.617) than to that of octanal (NC = 0.082), which is consistent with animal behavioral studies. The study also indicates that fMRI odor maps are statistically odor-specific and repeatable across both the intra- and intersubject trials. OdorMapComparer thus provides a tool for quantitative, statistical analyses and comparisons of fMRI odor maps in a fashion that is integrated with the overall odor mapping techniques.

  18. Visual brain activity patterns classification with simultaneous EEG-fMRI: A multimodal approach.

    PubMed

    Ahmad, Rana Fayyaz; Malik, Aamir Saeed; Kamel, Nidal; Reza, Faruque; Amin, Hafeez Ullah; Hussain, Muhammad

    2017-01-01

    Classification of the visual information from the brain activity data is a challenging task. Many studies reported in the literature are based on the brain activity patterns using either fMRI or EEG/MEG only. EEG and fMRI considered as two complementary neuroimaging modalities in terms of their temporal and spatial resolution to map the brain activity. For getting a high spatial and temporal resolution of the brain at the same time, simultaneous EEG-fMRI seems to be fruitful. In this article, we propose a new method based on simultaneous EEG-fMRI data and machine learning approach to classify the visual brain activity patterns. We acquired EEG-fMRI data simultaneously on the ten healthy human participants by showing them visual stimuli. Data fusion approach is used to merge EEG and fMRI data. Machine learning classifier is used for the classification purposes. Results showed that superior classification performance has been achieved with simultaneous EEG-fMRI data as compared to the EEG and fMRI data standalone. This shows that multimodal approach improved the classification accuracy results as compared with other approaches reported in the literature. The proposed simultaneous EEG-fMRI approach for classifying the brain activity patterns can be helpful to predict or fully decode the brain activity patterns.

  19. Contrast enhanced Gd-DTPA magnetic resonance imaging in the evaluation of rheumatoid arthritis during a clinical trial with DMARDs. A prospective two-year follow-up study on hand joints in 31 patients.

    PubMed

    Jevtic, V; Watt, I; Rozman, B; Kos-Golja, M; Praprotnik, S; Logar, D; Presetnik, M; Demsar, F; Jarh, O; Campion, G; Musikic, P

    1997-01-01

    The aim of this prospective 24-month follow-up study was to compare clinical features with radiological and magnetic resonance imaging (MRI) findings in evaluating synovial proliferation in the hand joints of 31 patients with rheumatoid arthritis (RA). A single joint was used for the follow-up of each patient. Thirty-one small hand joints were examined by conventional radiography and MRI before and after 24 months of treatment. MRI assessment of disease progression (volume and/or signal intensity of the synovial proliferation on T1 weighted precontrast, T1 weighted postcontrast and T2 weighted images) was compared with a clinical assessment of the chosen joints, and with a plain x-ray film evaluation (Larsen's score). Of 26 joints which clinically improved (14 markedly and 14 slightly) during the study, on MRI 16 showed improvement, 8 showed no change, and 2 showed deterioration. Four clinically unchanged joints appeared improved on MRI. One joint deteriorated clinically and on MRI. Overall, there was a 58% congruence between clinical and MRI findings. On x-ray 23 joints showed no change; nine of these were also unchanged on MRI, while 13 showed improvement and one deterioration. Only in 2 out of 8 joints showing deterioration on x-ray were the MRI findings in accordance. In the remaining six joints MRI showed improvement. The congruence between x-ray and MRI was therefore 36%. The long-term follow-up of rheumatoid synovial proliferation of the small joints in the hand using contrast enhanced MRI is feasible and may provide additional information regarding disease activity. Important advantages over conventional radiography methods are its ability to demonstrate qualitative differences of synovial proliferation within bone erosions, and demonstrate not only deterioration, but also the improvement of inflammatory disease.

  20. Contrast-enhanced spectral mammography in neoadjuvant chemotherapy monitoring: a comparison with breast magnetic resonance imaging.

    PubMed

    Iotti, Valentina; Ravaioli, Sara; Vacondio, Rita; Coriani, Chiara; Caffarri, Sabrina; Sghedoni, Roberto; Nitrosi, Andrea; Ragazzi, Moira; Gasparini, Elisa; Masini, Cristina; Bisagni, Giancarlo; Falco, Giuseppe; Ferrari, Guglielmo; Braglia, Luca; Del Prato, Alberto; Malavolti, Ivana; Ginocchi, Vladimiro; Pattacini, Pierpaolo

    2017-09-11

    Neoadjuvant-chemotherapy (NAC) is considered the standard treatment for locally advanced breast carcinomas. Accurate assessment of disease response is fundamental to increase the chances of successful breast-conserving surgery and to avoid local recurrence. The purpose of this study was to compare contrast-enhanced spectral mammography (CESM) and contrast-enhanced-MRI (MRI) in the evaluation of tumor response to NAC. This prospective study was approved by the institutional review board and written informed consent was obtained. Fifty-four consenting women with breast cancer and indication of NAC were consecutively enrolled between October 2012 and December 2014. Patients underwent both CESM and MRI before, during and after NAC. MRI was performed first, followed by CESM within 3 days. Response to therapy was evaluated for each patient, comparing the size of the residual lesion measured on CESM and MRI performed after NAC to the pathological response on surgical specimens (gold standard), independently of and blinded to the results of the other test. The agreement between measurements was evaluated using Lin's coefficient. The agreement between measurements using CESM and MRI was tested at each step of the study, before, during and after NAC. And last of all, the variation in the largest dimension of the tumor on CESM and MRI was assessed according to the parameters set in RECIST 1.1 criteria, focusing on pathological complete response (pCR). A total of 46 patients (85%) completed the study. CESM predicted pCR better than MRI (Lin's coefficient 0.81 and 0.59, respectively). Both methods tend to underestimate the real extent of residual tumor (mean 4.1mm in CESM, 7.5mm in MRI). The agreement between measurements using CESM and MRI was 0.96, 0.94 and 0.76 before, during and after NAC respectively. The distinction between responders and non-responders with CESM and MRI was identical for 45/46 patients. In the assessment of CR, sensitivity and specificity were 100% and 84%, respectively, for CESM, and 87% and 60% for MRI. CESM and MRI lesion size measurements were highly correlated. CESM seems at least as reliable as MRI in assessing the response to NAC, and may be an alternative if MRI is contraindicated or its availability is limited.

  1. How restful is it with all that noise? Comparison of Interleaved silent steady state (ISSS) and conventional imaging in resting-state fMRI.

    PubMed

    Andoh, J; Ferreira, M; Leppert, I R; Matsushita, R; Pike, B; Zatorre, R J

    2017-02-15

    Resting-state fMRI studies have become very important in cognitive neuroscience because they are able to identify BOLD fluctuations in brain circuits involved in motor, cognitive, or perceptual processes without the use of an explicit task. Such approaches have been fruitful when applied to various disordered populations, or to children or the elderly. However, insufficient attention has been paid to the consequences of the loud acoustic scanner noise associated with conventional fMRI acquisition, which could be an important confounding factor affecting auditory and/or cognitive networks in resting-state fMRI. Several approaches have been developed to mitigate the effects of acoustic noise on fMRI signals, including sparse sampling protocols and interleaved silent steady state (ISSS) acquisition methods, the latter being used only for task-based fMRI. Here, we developed an ISSS protocol for resting-state fMRI (rs-ISSS) consisting of rapid acquisition of a set of echo planar imaging volumes following each silent period, during which the steady state longitudinal magnetization was maintained with a train of relatively silent slice-selective excitation pulses. We evaluated the test-retest reliability of intensity and spatial extent of connectivity networks of fMRI BOLD signal across three different days for rs-ISSS and compared it with a standard resting-state fMRI (rs-STD). We also compared the strength and distribution of connectivity networks between rs-ISSS and rs-STD. We found that both rs-ISSS and rs-STD showed high reproducibility of fMRI signal across days. In addition, rs-ISSS showed a more robust pattern of functional connectivity within the somatosensory and motor networks, as well as an auditory network compared with rs-STD. An increased connectivity between the default mode network and the language network and with the anterior cingulate cortex (ACC) network was also found for rs-ISSS compared with rs-STD. Finally, region of interest analysis showed higher interhemispheric connectivity in Heschl's gyri in rs-ISSS compared with rs-STD, with lower variability across days. The present findings suggest that rs-ISSS may be advantageous for detecting network connectivity in a less noisy environment, and that resting-state studies carried out with standard scanning protocols should consider the potential effects of loud noise on the measured networks. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. White versus gray matter: fMRI hemodynamic responses show similar characteristics, but differ in peak amplitude

    PubMed Central

    2012-01-01

    Background There is growing evidence for the idea of fMRI activation in white matter. In the current study, we compared hemodynamic response functions (HRF) in white matter and gray matter using 4 T fMRI. White matter fMRI activation was elicited in the isthmus of the corpus callosum at both the group and individual levels (using an established interhemispheric transfer task). Callosal HRFs were compared to HRFs from cingulate and parietal activation. Results Examination of the raw HRF revealed similar overall response characteristics. Finite impulse response modeling confirmed that the WM HRF characteristics were comparable to those of the GM HRF, but had significantly decreased peak response amplitudes. Conclusions Overall, the results matched a priori expectations of smaller HRF responses in white matter due to the relative drop in cerebral blood flow (CBF) and cerebral blood volume (CBV). Importantly, the findings demonstrate that despite lower CBF and CBV, white matter fMRI activation remained within detectable ranges at 4 T. PMID:22852798

  3. Comparative study of microelectrode recording-based STN location and MRI-based STN location in low to ultra-high field (7.0 T) T2-weighted MRI images

    NASA Astrophysics Data System (ADS)

    Verhagen, Rens; Schuurman, P. Richard; van den Munckhof, Pepijn; Fiorella Contarino, M.; de Bie, Rob M. A.; Bour, Lo J.

    2016-12-01

    Objective. The correspondence between the anatomical STN and the STN observed in T2-weighted MRI images used for deep brain stimulation (DBS) targeting remains unclear. Using a new method, we compared the STN borders seen on MRI images with those estimated by intraoperative microelectrode recordings (MER). Approach. We developed a method to automatically generate a detailed estimation of STN shape and the location of its borders, based on multiple-channel MER measurements. In 33 STNs of 19 Parkinson patients, we quantitatively compared the dorsal and lateral borders of this MER-based STN model with the STN borders visualized by 1.5 T (n = 14), 3.0 T (n = 10) and 7.0 T (n = 9) T2-weighted MRI. Main results. The dorsal border was identified more dorsally on coronal T2 MRI than by the MER-based STN model, with a significant difference in the 3.0 T (range 0.97-1.19 mm) and 7.0 T (range 1.23-1.25 mm) groups. The lateral border was significantly more medial on 1.5 T (mean: 1.97 mm) and 3.0 T (mean: 2.49 mm) MRI than in the MER-based STN; a difference that was not found in the 7.0 T group. Significance. The STN extends further in the dorsal direction on coronal T2 MRI images than is measured by MER. Increasing MRI field strength to 3.0 T or 7.0 T yields similar discrepancies between MER and MRI at the dorsal STN border. In contrast, increasing MRI field strength to 7.0 T may be useful for identification of the lateral STN border and thereby improve DBS targeting.

  4. Impact of magnetic resonance imaging on ventricular tachyarrhythmia sensing: Results of the Evera MRI Study.

    PubMed

    Gold, Michael R; Sommer, Torsten; Schwitter, Juerg; Kanal, Emanuel; Bernabei, Matthew A; Love, Charles J; Surber, Ralf; Ramza, Brian; Cerkvenik, Jeffrey; Merkely, Béla

    2016-08-01

    Studies have shown that magnetic resonance imaging (MRI) conditional pacemakers experience no significant effect from MRI on device function, sensing, or pacing. More recently, similar safety outcomes were demonstrated with MRI conditional defibrillators (implantable cardioverter-defibrillator [ICD]), but the impact on ventricular arrhythmias has not been assessed. The purpose of this study was to assess the effect of MRI on ICD sensing and treatment of ventricular tachyarrhythmias. The Evera MRI Study was a worldwide trial of 156 patients implanted with an ICD designed to be MRI conditional. Device-detected spontaneous and induced ventricular tachycardia/ventricular fibrillation (VT/VF) episodes occurring before and after whole body MRI were evaluated by a blinded episode review committee. Detection delay was computed as the sum of RR intervals of undersensed beats. A ≥5-second delay in detection due to undersensing was prospectively defined as clinically significant. Post-MRI, there were 22 polymorphic VT/VF episodes in 21 patients, with 16 of these patients having 17 VT/VF episodes pre-MRI. Therapy was successful for all episodes, with no failures to treat or terminate arrhythmias. The mean detection delay due to undersensing pre- and post-MRI was 0.60 ± 0.59 and 0.33 ± 0.63 seconds, respectively (P = .17). The maximum detection delay was 2.19 seconds pre-MRI and 2.87 seconds post-MRI. Of the 17 pre-MRI episodes, 14 (82%) had some detection delay as compared with 11 of 22 (50%) post-MRI episodes (P = .03); no detection delay was clinically significant. Detection and treatment of VT/VF was excellent, with no detection delays or significant impact of MRI observed. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  5. Diagnostic accuracy of magnetic resonance imaging, transvaginal, and transrectal ultrasonography in deep infiltrating endometriosis

    PubMed Central

    Alborzi, Saeed; Rasekhi, Alireza; Shomali, Zahra; Madadi, Gooya; Alborzi, Mahshid; Kazemi, Mahboobeh; Hosseini Nohandani, Azam

    2018-01-01

    Abstract To determine the diagnostic accuracy of pelvic magnetic resonance imaging (MRI), transvaginal sonography (TVS), and transrectal sonography (TRS) in diagnosis of deep infiltrating endometriosis (DIE). This diagnostic accuracy study was conducted during a 2-year period including a total number of 317 patients with signs and symptoms of endometriosis. All the patients were evaluated by pelvic MRI, TVS, and TRS in the same center. The criterion standard was considered to be the laparoscopy and histopathologic examination. Of 317 patients being included in the present study, 252 tested positive for DIE. The sensitivity, specificity, positive predictive value, and negative predictive value of TVS was found to be 83.3%, 46.1%, 85.7%, and 41.6%, respectively. These variables were 80.5%, 18.6%, 79.3%, and 19.7% for TRS and 90.4%, 66.1%, 91.2%, and 64.1% for MRI, respectively. MRI had the highest accuracy (85.4%) when compared to TVS (75.7%) and TRS (67.8%). The sensitivity of TRS, TVS, and MRI in uterosacral ligament DIE was 82.8%, 70.9%, and 63.6%, respectively. On the contrary, specificity had a reverse trend, favoring MRI (93.9%, 92.8%, and 89.8% for TVS and TRS, respectively). The results of the present study demonstrated that TVS and TRS have appropriate diagnostic accuracy in diagnosis of DIE comparable to MRI. PMID:29465552

  6. Spurious group differences due to head motion in a diffusion MRI study

    PubMed Central

    Yendiki, Anastasia; Koldewyn, Kami; Kakunoori, Sita; Kanwisher, Nancy; Fischl, Bruce

    2014-01-01

    Diffusion-weighted MRI (DW-MRI) has become a popular imaging modality for probing the microstructural properties of white matter and comparing them between populations in vivo. However, the contrast in DW-MRI arises from the microscopic random motion of water molecules in brain tissues, which makes it particularly sensitive to macroscopic head motion. Although this has been known since the introduction of DW-MRI, most studies that use this modality for group comparisons do not report measures of head motion for each group and rely on registration-based correction methods that cannot eliminate the full effects of head motion on the DW-MRI contrast. In this work we use data from children with autism and typically developing children to investigate the effects of head motion on differences in anisotropy and diffusivity measures between groups. We show that group differences in head motion can induce group differences in DW-MRI measures, and that this is the case even when comparing groups that include control subjects only, where no anisotropy or diffusivity differences are expected. We also show that such effects can be more prominent in some white-matter pathways than others, and that they can be ameliorated by including motion as a nuisance regressor in the analyses. Our results demonstrate the importance of taking head motion into account in any population study where one group might exhibit more head motion than the other. PMID:24269273

  7. Magnetic resonance and computed tomography image fusion technology in patients with Parkinson's disease after deep brain stimulation.

    PubMed

    Xia, Jun; He, Pin; Cai, Xiaodong; Zhang, Doudou; Xie, Ni

    2017-10-15

    Electrode position after deep brain stimulation (DBS) for Parkinson's disease (PD) needs to be confirmed, but there are concerns about the risk of postoperative magnetic resonance imaging (MRI) after DBS. These issues could be avoided by fusion images obtained from preoperative MRI and postoperative computed tomography (CT). This study aimed to investigate image fusion technology for displaying the position of the electrodes compared with postoperative MRI. This was a retrospective study of 32 patients with PD treated with bilateral subthalamic nucleus (STN) DBS between April 2015 and March 2016. The postoperative (same day) CT and preoperative MRI were fused using the Elekta Leksell 10.1 planning workstation (Elekta Instruments, Stockholm, Sweden). The position of the electrodes was compared between the fusion images and postoperative 1-2-week MRI. The position of the electrodes was highly correlated between the fusion and postoperative MRI (all r between 0.865 and 0.996; all P<0.001). The differences of the left electrode position in the lateral and vertical planes was significantly different between the two methods (0.30 and 0.24mm, respectively, both P<0.05), but there were no significant differences for the other electrode and planes (all P>0.05). The position of the electrodes was highly correlated between the fusion and postoperative MRI. The CT-MRI fusion images could be used to avoid the potential risks of MRI after DBS in patients with PD. Copyright © 2017. Published by Elsevier B.V.

  8. Diagnostic role of magnetic resonance imaging in assessing orofacial pain and paresthesia.

    PubMed

    Ohba, Seigo; Yoshimura, Hitoshi; Matsuda, Shinpei; Kobayashi, Junichi; Kimura, Takashi; Aiki, Minako; Sano, Kazuo

    2014-09-01

    The aim of this study was to compare the efficacy of CT and MRI in evaluating orofacial pain and paresthesia. A total of 96 patients with orofacial pain and/or paresthesia were included in this study. The patients who underwent CT and/or MRI examinations were assessed, and the efficacy of CT and/or MRI examinations in detecting the causative disease of the orofacial pain and paresthesia was evaluated. Seventy (72.9%) of 96 patients underwent CT and/or MRI examinations. Whereas CT examinations detected 2 diseases (4.5%) in 44 tests, 13 diseases (37.1%) were detected in 35 MRI examinations. Seven (53.8%) of 13 diseases, which were detected by MRI, were found in elderly patients. A high percentage of patients, who claimed orofacial pain and paresthesia, have other diseases in their brain, especially in elderly patients, and MRI is more useful than CT for evaluating these patients.

  9. Added Value of Breast MRI for Preoperative Diagnosis of Ductal Carcinoma In Situ: Diagnostic Performance on 362 Patients.

    PubMed

    Petrillo, Antonella; Fusco, Roberta; Petrillo, Mario; Triunfo, Flavia; Filice, Salvatore; Vallone, Paolo; Setola, Sergio Venanzio; Rubulotta, Mariarosaria; Di Bonito, Maurizio; Rinaldo, Massimo; D'Aiuto, Massimiliano; Brunetti, Arturo

    2017-06-01

    The purpose of this study was to evaluate the added value of breast magnetic resonance imaging (MRI) in preoperative diagnosis of ductal carcinoma in situ (DCIS). We reviewed our institution database of 3499 consecutive patients treated for breast cancer. A total of 362 patients with histologically proven DCIS were selected from the institutional database. Of these, 245 (67.7%) preoperatively underwent conventional imaging (CI) (mammography/ultrasonography) (CI group), and 117 (32.3%) underwent CI and dynamic MRI (CI + MRI group). The pathology of surgical specimens served as a reference standard. The Mann-Whitney U, χ 2 test, and Spearman correlation coefficient were performed. The CI + MRI group showed a sensitivity of 98.5% with an increase of 10.1% compared with the CI group to detect pure DCIS. Dynamic MRI identified 19.7% (n = 13) additional pure DCIS compared with CI. In the CI + MRI group, a single (1.5%) false negative was reported, whereas in the CI group, 11 (11.6%) false negatives were reported. Moreover, the CI + MRI group showed a sensitivity of 98.0% to detect DCIS + small invasive component. In this group, dynamic MRI identified 21.6% (n = 11) additional DCIS and a single (2.0%) false negative compared with the CI group, whereas in the CI group, 7 (4.7%) false negatives were reported. MRI and histopathologically measured lesion sizes, Breast Imaging Reporting and Data System MRI assessment categories, and enhancement signal intensity curve types showed a significant correlation. The MRI detection rate of DCIS increased significantly with increasing nuclear grade. Preoperative breast MRI showed a better accuracy then CI in preoperative diagnosis for both pure DCIS and DCIS + small invasive component with a precise assessment of lesion size. This can provide a more appropriate management of DCIS patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Differentiating between bipolar and unipolar depression in functional and structural MRI studies.

    PubMed

    Han, Kyu-Man; De Berardis, Domenico; Fornaro, Michele; Kim, Yong-Ku

    2018-03-28

    Distinguishing depression in bipolar disorder (BD) from unipolar depression (UD) solely based on clinical clues is difficult, which has led to the exploration of promising neural markers in neuroimaging measures for discriminating between BD depression and UD. In this article, we review structural and functional magnetic resonance imaging (MRI) studies that directly compare UD and BD depression based on neuroimaging modalities including functional MRI studies on regional brain activation or functional connectivity, structural MRI on gray or white matter morphology, and pattern classification analyses using a machine learning approach. Numerous studies have reported distinct functional and structural alterations in emotion- or reward-processing neural circuits between BD depression and UD. Different activation patterns in neural networks including the amygdala, anterior cingulate cortex (ACC), prefrontal cortex (PFC), and striatum during emotion-, reward-, or cognition-related tasks have been reported between BD and UD. A stronger functional connectivity pattern in BD was pronounced in default mode and in frontoparietal networks and brain regions including the PFC, ACC, parietal and temporal regions, and thalamus compared to UD. Gray matter volume differences in the ACC, hippocampus, amygdala, and dorsolateral prefrontal cortex (DLPFC) have been reported between BD and UD, along with a thinner DLPFC in BD compared to UD. BD showed reduced integrity in the anterior part of the corpus callosum and posterior cingulum compared to UD. Several studies performed pattern classification analysis using structural and functional MRI data to distinguish between UD and BD depression using a supervised machine learning approach, which yielded a moderate level of accuracy in classification. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Utility of ultrasound and magnetic resonance imaging in prenatal diagnosis of placenta accreta: A prospective study.

    PubMed

    Satija, Bhawna; Kumar, Sanyal; Wadhwa, Leena; Gupta, Taru; Kohli, Supreethi; Chandoke, Rajkumar; Gupta, Pratibha

    2015-01-01

    Placenta accreta is the abnormal adherence of the placenta to the uterine wall and the most common cause for emergency postpartum hysterectomy. Accurate prenatal diagnosis of affected pregnancies allows optimal obstetric management. To summarize our experience in the antenatal diagnosis of placenta accreta on imaging in a tertiary care setup. To compare the accuracy of ultrasound (USG) with color Doppler (CDUS) and magnetic resonance imaging (MRI) in prenatal diagnosis of placenta accreta. Prospective study in a tertiary care setup. A prospective study was conducted on pregnant females with high clinical risk of placenta accreta. Antenatal diagnosis was established based on CDUS and MRI. The imaging findings were compared with final diagnosis at the time of delivery and/or pathologic examination. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated for both CDUS and MRI. The sensitivity and specificity values of USG and MRI were compared by the McNemar test. Thirty patients at risk of placenta accreta underwent both CDUS and MRI. Eight cases of placenta accreta were identified (3 vera, 4 increta, and 1 percreta). All patients had history of previous cesarean section. Placenta previa was present in seven out of eight patients. USG correctly identified the presence of placenta accreta in seven out of eight patients (87.5% sensitivity) and the absence of placenta accreta in 19 out of 22 patients (86.4% specificity). MRI correctly identified the presence of placenta accreta in 6 out of 8 patients (75.0% sensitivity) and absence of placenta accreta in 17 out of 22 patients (77.3% specificity). There were no statistical differences in sensitivity (P = 1.00) and specificity (P = 0.687) between USG and MRI. Both USG and MRI have fairly good sensitivity for prenatal diagnosis of placenta accreta; however, specificity does not appear to be as good as reported in other studies. Both modalities have complimentary role and in cases of inconclusive findings with one imaging modality, the other modality may be useful for obtaining the diagnosis. CDUS remains the first primary modality for antenatal diagnosis of placenta accreta, with MRI reserved for cases where USG is inconclusive.

  12. Tumour auto-contouring on 2d cine MRI for locally advanced lung cancer: A comparative study.

    PubMed

    Fast, Martin F; Eiben, Björn; Menten, Martin J; Wetscherek, Andreas; Hawkes, David J; McClelland, Jamie R; Oelfke, Uwe

    2017-12-01

    Radiotherapy guidance based on magnetic resonance imaging (MRI) is currently becoming a clinical reality. Fast 2d cine MRI sequences are expected to increase the precision of radiation delivery by facilitating tumour delineation during treatment. This study compares four auto-contouring algorithms for the task of delineating the primary tumour in six locally advanced (LA) lung cancer patients. Twenty-two cine MRI sequences were acquired using either a balanced steady-state free precession or a spoiled gradient echo imaging technique. Contours derived by the auto-contouring algorithms were compared against manual reference contours. A selection of eight image data sets was also used to assess the inter-observer delineation uncertainty. Algorithmically derived contours agreed well with the manual reference contours (median Dice similarity index: ⩾0.91). Multi-template matching and deformable image registration performed significantly better than feature-driven registration and the pulse-coupled neural network (PCNN). Neither MRI sequence nor image orientation was a conclusive predictor for algorithmic performance. Motion significantly degraded the performance of the PCNN. The inter-observer variability was of the same order of magnitude as the algorithmic performance. Auto-contouring of tumours on cine MRI is feasible in LA lung cancer patients. Despite large variations in implementation complexity, the different algorithms all have relatively similar performance. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  13. How Does Brain Activation Differ in Children with Unilateral Cerebral Palsy Compared to Typically Developing Children, during Active and Passive Movements, and Tactile Stimulation? An fMRI Study

    ERIC Educational Resources Information Center

    Van de Winckel, Ann; Klingels, Katrijn; Bruyninckx, Frans; Wenderoth, Nici; Peeters, Ron; Sunaert, Stefan; Van Hecke, Wim; De Cock, Paul; Eyssen, Maria; De Weerdt, Willy; Feys, Hilde

    2013-01-01

    The aim of the functional magnetic resonance imaging (fMRI) study was to investigate brain activation associated with active and passive movements, and tactile stimulation in 17 children with right-sided unilateral cerebral palsy (CP), compared to 19 typically developing children (TD). The active movements consisted of repetitive opening and…

  14. Can imaging criteria distinguish enchondroma from grade 1 chondrosarcoma?

    PubMed

    Crim, Julia; Schmidt, Robert; Layfield, Lester; Hanrahan, Christopher; Manaster, Betty Jean

    2015-11-01

    To minimize systematic bias and optimize agreement on imaging criteria in order to better define the accuracy of imaging criteria in the diagnosis of grade 1 chondrosarcoma. Study was IRB-approved and HIPAA compliant; informed consent was waived. Records were reviewed and disclosed 53 cases (38 women, 15 men ages 21-76) which were diagnosed as enchondroma or grade 1 chondrosarcoma and had available radiographs, contrast-enhanced MRI, and definitive diagnosis by histology or 5-year follow-up. 2 MSK radiologists read the studies independently after a session where they agreed on criteria for malignancy. Interobserver variability was determined as raw variability and with the kappa statistic. Accuracy was determined compared to final diagnosis. Reliability of imaging features of chondrosarcoma was determined using regression analysis. The correct diagnosis of enchondroma was made on radiographs in 43 (67.2%) of readings, and on MRI in 37/64 (57.8%). The correct diagnosis of chondrosarcoma was made on radiographs in 5/24 (20.8%) of readings, and on MRI in 14/24 (57.8%). A diagnosis of borderline lesion was made in 19/64 (29.7%) of enchondromas on radiographs and 18/64 (28.1%) on MRI. The false positive rate of radiographs for chondrosarcoma was 2/64 (3.1%) and the false positive rate of MRI was 9/64 (14.1%). There was substantial interobserver variability. Cortical thickening and bone expansion were rare but specific signs of chondrosarcoma. Both radiographs and MRI have limitations in the evaluation of low-grade cartilage lesions. MRI has an increased rate of both true-positive and false-positive diagnosis compared to radiographs. Differences in the findings of this study compared to previous literature may reflect the influence of systematic biases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. The effectiveness and cost-effectiveness of intraoperative imaging in high-grade glioma resection; a comparative review of intraoperative ALA, fluorescein, ultrasound and MRI.

    PubMed

    Eljamel, M Sam; Mahboob, Syed Osama

    2016-12-01

    Surgical resection of high-grade gliomas (HGG) is standard therapy because it imparts significant progression free (PFS) and overall survival (OS). However, HGG-tumor margins are indistinguishable from normal brain during surgery. Hence intraoperative technology such as fluorescence (ALA, fluorescein) and intraoperative ultrasound (IoUS) and MRI (IoMRI) has been deployed. This study compares the effectiveness and cost-effectiveness of these technologies. Critical literature review and meta-analyses, using MEDLINE/PubMed service. The list of references in each article was double-checked for any missing references. We included all studies that reported the use of ALA, fluorescein (FLCN), IoUS or IoMRI to guide HGG-surgery. The meta-analyses were conducted according to statistical heterogeneity between studies. If there was no heterogeneity, fixed effects model was used; otherwise, a random effects model was used. Statistical heterogeneity was explored by χ 2 and inconsistency (I 2 ) statistics. To assess cost-effectiveness, we calculated the incremental cost per quality-adjusted life-year (QALY). Gross total resection (GTR) after ALA, FLCN, IoUS and IoMRI was 69.1%, 84.4%, 73.4% and 70% respectively. The differences were not statistically significant. All four techniques led to significant prolongation of PFS and tended to prolong OS. However none of these technologies led to significant prolongation of OS compared to controls. The cost/QALY was $16,218, $3181, $6049 and $32,954 for ALA, FLCN, IoUS and IoMRI respectively. ALA, FLCN, IoUS and IoMRI significantly improve GTR and PFS of HGG. Their incremental cost was below the threshold for cost-effectiveness of HGG-therapy, denoting that each intraoperative technology was cost-effective on its own. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Defining the learning curve for multiparametric magnetic resonance imaging (MRI) of the prostate using MRI-transrectal ultrasonography (TRUS) fusion-guided transperineal prostate biopsies as a validation tool.

    PubMed

    Gaziev, Gabriele; Wadhwa, Karan; Barrett, Tristan; Koo, Brendan C; Gallagher, Ferdia A; Serrao, Eva; Frey, Julia; Seidenader, Jonas; Carmona, Lina; Warren, Anne; Gnanapragasam, Vincent; Doble, Andrew; Kastner, Christof

    2016-01-01

    To determine the accuracy of multiparametric magnetic resonance imaging (mpMRI) during the learning curve of radiologists using MRI targeted, transrectal ultrasonography (TRUS) guided transperineal fusion biopsy (MTTP) for validation. Prospective data on 340 men who underwent mpMRI (T2-weighted and diffusion-weighted MRI) followed by MTTP prostate biopsy, was collected according to Ginsburg Study Group and Standards for Reporting of Diagnostic Accuracy standards. MRI data were reported by two experienced radiologists and scored on a Likert scale. Biopsies were performed by consultant urologists not 'blinded' to the MRI result and men had both targeted and systematic sector biopsies, which were reviewed by a dedicated uropathologist. The cohorts were divided into groups representing five consecutive time intervals in the study. Sensitivity and specificity of positive MRI reports, prostate cancer detection by positive MRI, distribution of significant Gleason score and negative MRI with false negative for prostate cancer were calculated. Data were sequentially analysed and the learning curve was determined by comparing the first and last group. We detected a positive mpMRI in 64 patients from Group A (91%) and 52 patients from Group E (74%). The prostate cancer detection rate on mpMRI increased from 42% (27/64) in Group A to 81% (42/52) in Group E (P < 0.001). The prostate cancer detection rate by targeted biopsy increased from 27% (17/64) in Group A to 63% (33/52) in Group E (P < 0.001). The negative predictive value of MRI for significant cancer (>Gleason 3+3) was 88.9% in Group E compared with 66.6% in Group A. We demonstrate an improvement in detection of prostate cancer for MRI reporting over time, suggesting a learning curve for the technique. With an improved negative predictive value for significant cancer, decision for biopsy should be based on patient/surgeon factors and risk attributes alongside the MRI findings. © 2014 The Authors BJU International © 2014 BJU International Published by John Wiley & Sons Ltd.

  17. First Application of 7T Magnetic Resonance Imaging in Endoscopic Endonasal Surgery of Skull Base Tumors

    PubMed Central

    Barrett, Thomas F; Dyvorne, Hadrien A; Padormo, Francesco; Pawha, Puneet S; Delman, Bradley N; Shrivastava, Raj K; Balchandani, Priti

    2018-01-01

    Background Successful endoscopic endonasal surgery for the resection of skull base tumors is reliant on preoperative imaging to delineate pathology from the surrounding anatomy. The increased signal-to-noise ratio afforded by 7T MRI can be used to increase spatial and contrast resolution, which may lend itself to improved imaging of skull base. In this study, we apply a 7T imaging protocol to patients with skull base tumors and compare the images to clinical standard of care. Methods Images were acquired at 7T on 11 patients with skull base lesions. Two neuroradiologists evaluated clinical 1.5T, 3T, and 7T scans for detection of intracavernous cranial nerves and ICA branches. Detection rates were compared. Images were utilized for surgical planning and uploaded to a neuronavigation platform and used to guide surgery. Results Image analysis yielded improved detection rates of cranial nerves and ICA branches at 7T. 7T images were successfully incorporated into preoperative planning and intraoperative neuronavigation. Conclusion Our study represents the first application of 7T MRI to the full neurosurgical workflow for endoscopic endonasal surgery. We detected higher rates of cranial nerves and ICA branches at 7T MRI compared to 3T and 1.5 T, and found that integration of 7T into surgical planning and guidance was feasible. These results suggest a potential for 7T MRI to reduce surgical complications. Future studies comparing standardized 7T, 3T, and 1.5 T MRI protocols in a larger number of patients are warranted to determine the relative benefit of 7T MRI for endonasal endoscopic surgical efficacy. PMID:28359922

  18. Bone and Gallium Single-Photon Emission Computed Tomography-Computed Tomography is Equivalent to Magnetic Resonance Imaging in the Diagnosis of Infectious Spondylodiscitis: A Retrospective Study.

    PubMed

    Tamm, Alexander S; Abele, Jonathan T

    2017-02-01

    Spondylodiscitis has historically been a difficult clinical diagnosis. Two imaging techniques that address this problem are magnetic resonance imaging (MRI) and combined bone ( 99m Tc-methylene diphosphonate) and gallium-67 single-photon emission computed tomography-computed tomography (SPECT-CT). Their accuracies have not been adequately compared. The purpose of this study is to compare the sensitivities and specificities of bone and gallium SPECT-CT and MRI in infectious spondylodiscitis. This retrospective study assessed all patients who underwent a bone or gallium SPECT-CT of the spine to assess for infectious spondylodiscitis from January 1, 2010, to May 2, 2012, at a single tertiary care centre. Thirty-four patients (23 men; average 62 ± 14 years of age) were included. The results of the bone or gallium SPECT-CT were compared against MRI for all patients in the cohort who underwent an MRI within 12 weeks of the SPECT-CT. A diagnosis of spondylodiscitis in the discharge summary was considered the reference standard, and was based on a combination of clinical scenario, response to therapy, imaging, or microbiology. Spondylodiscitis was diagnosed in 18 patients and excluded in 16. Bone or gallium SPECT-CT and MRI had similar (P > .05; κ = 0.74) sensitivities (0.94 vs 0.94), specificities (1.00 vs 1.00), positive predictive values (1.00 vs 1.00), negative predictive values (0.94 vs 0.80), and accuracies (0.97 vs 0.95) when compared to the reference standard. Although MRI remains the initial modality of choice in diagnosing spondylodiscitis, bone and gallium SPECT-CT appears diagnostically equivalent and should be considered a viable supplementary or alternative imaging modality particularly if there is contraindication or inaccessibility to MRI. Copyright © 2016 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  19. Preoperative magnetic resonance imaging assessment of circumferential resection margin predicts disease-free survival and local recurrence: 5-year follow-up results of the MERCURY study.

    PubMed

    Taylor, Fiona G M; Quirke, Philip; Heald, Richard J; Moran, Brendan J; Blomqvist, Lennart; Swift, Ian R; Sebag-Montefiore, David; Tekkis, Paris; Brown, Gina

    2014-01-01

    The prognostic relevance of preoperative high-resolution magnetic resonance imaging (MRI) assessment of circumferential resection margin (CRM) involvement is unknown. This follow-up study of 374 patients with rectal cancer reports the relationship between preoperative MRI assessment of CRM staging, American Joint Committee on Cancer (AJCC) TNM stage, and clinical variables with overall survival (OS), disease-free survival (DFS), and time to local recurrence (LR). Patients underwent protocol high-resolution pelvic MRI. Tumor distance to the mesorectal fascia of ≤ 1 mm was recorded as an MRI-involved CRM. A Cox proportional hazards model was used in multivariate analysis to determine the relationship of MRI assessment of CRM to survivorship after adjusting for preoperative covariates. Surviving patients were followed for a median of 62 months. The 5-year OS was 62.2% in patients with MRI-clear CRM compared with 42.2% in patients with MRI-involved CRM with a hazard ratio (HR) of 1.97 (95% CI, 1.27 to 3.04; P < .01). The 5-year DFS was 67.2% (95% CI, 61.4% to 73%) for MRI-clear CRM compared with 47.3% (95% CI, 33.7% to 60.9%) for MRI-involved CRM with an HR of 1.65 (95% CI, 1.01 to 2.69; P < .05). Local recurrence HR for MRI-involved CRM was 3.50 (95% CI, 1.53 to 8.00; P < .05). MRI-involved CRM was the only preoperative staging parameter that remained significant for OS, DFS, and LR on multivariate analysis. High-resolution MRI preoperative assessment of CRM status is superior to AJCC TNM-based criteria for assessing risk of LR, DFS, and OS. Furthermore, MRI CRM involvement is significantly associated with distant metastatic disease; therefore, colorectal cancer teams could intensify treatment and follow-up accordingly to improve survival outcomes.

  20. Patterns of Breast Magnetic Resonance Imaging Use in Community Practice

    PubMed Central

    Wernli, Karen J.; DeMartini, Wendy B.; Ichikawa, Laura; Lehman, Constance D.; Onega, Tracy; Kerlikowske, Karla; Henderson, Louise M.; Geller, Berta M.; Hofmann, Mike; Yankaskas, Bonnie C.

    2014-01-01

    Importance Breast magnetic resonance imaging (MRI) is increasingly used for breast cancer screening, diagnostic evaluation, and surveillance However, we lack data on national patterns of breast MRI use in community practice. Objective To describe 2005–2009 patterns of breast magnetic resonance imaging (MRI) use in U.S. community practice. Design Observational cohort study Setting Data collected from 2005–2009 on breast MRI and mammography from five national Breast Cancer Surveillance Consortium registries. Participants Data included 8931 breast MRI examinations and 1,288,924 screening mammograms from women aged 18–79 years. Main measures We calculated the rate of breast MRI examinations per 1000 women with breast imaging within the same year and described the clinical indications for the breast MRI examinations by year and age. We compared women screened with breast MRI to women screened with mammography alone for patient characteristics and lifetime breast cancer risk. Results The overall rate of breast MRI from 2005 through 2009 nearly tripled from 4.2 to 11.5 examinations per 1000 women with the most rapid rise from 2005–2007 (p=0.02). The most common clinical indication was diagnostic evaluation (40.3%), followed by screening (31.7%). Compared to women who received screening mammography alone, women who underwent screening breast MRI were more likely to be <50 years, white non-Hispanic, nulliparous, and have extremely dense breast tissue, a family history of breast cancer, and a personal history of breast cancer. The proportion of women screened by breast MRI at high lifetime risk for breast cancer (>20%) increased during the study period from 9% in 2005 to 29% in 2009. Conclusions and relevance Use of breast MRI for screening in high-risk women is increasing. However, our findings suggest there is a need to improve appropriate utilization, including among women who may benefit from screening breast MRI. PMID:24247555

  1. Improve definition of titanium tandems in MR-guided high dose rate brachytherapy for cervical cancer using proton density weighted MRI

    PubMed Central

    2013-01-01

    Background For cervical cancer patients treated with MR-guided high dose rate brachytherapy, the accuracy of radiation delivery depends on accurate localization of both tumors and the applicator, e.g. tandem and ovoid. Standard T2-weighted (T2W) MRI has good tumor-tissue contrast. However, it suffers from poor uterus-tandem contrast, which makes the tandem delineation very challenging. In this study, we evaluated the possibility of using proton density weighted (PDW) MRI to improve the definition of titanium tandems. Methods Both T2W and PDW MRI images were obtained from each cervical cancer patient. Imaging parameters were kept the same between the T2W and PDW sequences for each patient except the echo time (90 ms for T2W and 5.5 ms for PDW) and the slice thickness (0.5 cm for T2W and 0.25 cm for PDW). Uterus-tandem contrast was calculated by the equation C = (Su-St)/Su, where Su and St represented the average signal in the uterus and the tandem, respectively. The diameter of the tandem was measured 1.5 cm away from the tip of the tandem. The tandem was segmented by the histogram thresholding technique. Results PDW MRI could significantly improve the uterus-tandem contrast compared to T2W MRI (0.42±0.24 for T2W MRI, 0.77±0.14 for PDW MRI, p=0.0002). The average difference between the measured and physical diameters of the tandem was reduced from 0.20±0.15 cm by using T2W MRI to 0.10±0.11 cm by using PDW MRI (p=0.0003). The tandem segmented from the PDW image looked more uniform and complete compared to that from the T2W image. Conclusions Compared to the standard T2W MRI, PDW MRI has better uterus-tandem contrast. The information provided by PDW MRI is complementary to those provided by T2W MRI. Therefore, we recommend adding PDW MRI to the simulation protocol to assist tandem delineation process for cervical cancer patients. PMID:23327682

  2. Implementations of clinical functional magnetic resonance imaging using character-based paradigms for the prediction of Chinese language dominance.

    PubMed

    Liu, Ho-Ling; Wu, Chien-Te; Chen, Jian-Chuan; Hsu, Yuan-Yu; Wai, Yau-Yau; Wan, Yung-Liang

    2003-01-01

    Recently, functional MRI (fMRI) using word generation (WG) tasks has been shown to be effective for mapping the Chinese language-related brain areas. In clinical applications, however, patients' performance cannot be easily monitored during WG tasks. In this study, we evaluated the feasibility of a word choice (WC) paradigm in the clinical setting and compared the results with those from WG tasks. Intrasubject comparisons of fMRI with both WG and WC paradigms were performed on six normal human subjects and two tumor patients. Subject responses in the WC paradigm, based on semantic judgments, were recorded. Activation strength, extent, and laterality were evaluated and compared. Our results showed that fMRI with the WC paradigm evoked weaker neuronal activation than that with the WG paradigm in Chinese language-related brain areas. It was sufficient to reveal language laterality for clinical use, however. In addition, it resulted in less nonlanguage-specific brain activation. Results from the patient data demonstrated strong evidence for the necessity of incorporating response monitoring during fMRI studies, which suggested that fMRI with the WC paradigm is more appropriate to be implemented for the prediction of Chinese language dominance in clinical environments.

  3. A Novel Marker Based Method to Teeth Alignment in MRI

    NASA Astrophysics Data System (ADS)

    Luukinen, Jean-Marc; Aalto, Daniel; Malinen, Jarmo; Niikuni, Naoko; Saunavaara, Jani; Jääsaari, Päivi; Ojalammi, Antti; Parkkola, Riitta; Soukka, Tero; Happonen, Risto-Pekka

    2018-04-01

    Magnetic resonance imaging (MRI) can precisely capture the anatomy of the vocal tract. However, the crowns of teeth are not visible in standard MRI scans. In this study, a marker-based teeth alignment method is presented and evaluated. Ten patients undergoing orthognathic surgery were enrolled. Supraglottal airways were imaged preoperatively using structural MRI. MRI visible markers were developed, and they were attached to maxillary teeth and corresponding locations on the dental casts. Repeated measurements of intermarker distances in MRI and in a replica model was compared using linear regression analysis. Dental cast MRI and corresponding caliper measurements did not differ significantly. In contrast, the marker locations in vivo differed somewhat from the dental cast measurements likely due to marker placement inaccuracies. The markers were clearly visible in MRI and allowed for dental models to be aligned to head and neck MRI scans.

  4. PET/MRI: Where Might It Replace PET/CT?

    PubMed Central

    Ehman, Eric C.; Johnson, Geoffrey B.; Villanueva-Meyer, Javier E.; Cha, Soonmee; Leynes, Andrew Palmera; Larson, Peder Eric Zufall; Hope, Thomas A.

    2017-01-01

    Simultaneous positron emission tomography and MRI (PET/MRI) is a technology that combines the anatomic and quantitative strengths of MR imaging with physiologic information obtained from PET. PET and computed tomography (PET/ CT) performed in a single scanning session is an established technology already in widespread and accepted use worldwide. Given the higher cost and complexity of operating and interpreting the studies obtained on a PET/MRI system, there has been question as to which patients would benefit most from imaging with PET/MRI versus PET/CT. In this article, we compare PET/MRI with PET/CT, detail the applications for which PET/MRI has shown promise and discuss impediments to future adoption. It is our hope that future work will prove the benefit of PET/MRI to specific groups of patients, initially those in which PET/CT and MRI are already performed, leveraging simultaneity and allowing for greater degrees of multiparametric evaluation. PMID:28370695

  5. SU-E-J-220: Assessment of MRI Geometric Distortion in Head and Neck Cancer Patients Scanned in Immobilized Radiation Treatment Position

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, C; Mohamed, A; Weygand, J

    2015-06-15

    Purpose: Uncertainties about geometric distortion have somewhat hindered MRI simulation in radiation therapy. Most of the geometric distortion studies were performed with phantom measurements but another major aspect of MR distortion is patient related. We studied the geometric distortion in patient images by comparing their MRI scans with the corresponding CT, using CT as the non-distorted gold standard. Methods: Ten H&N cancer patients were imaged with MRI as part of a prospective IRB approved study. All patients had their treatment planning CT done on the same day or within one week of the MRI. MR Images were acquired with amore » T2 SE sequence (1×1×2.5mm voxel size) in the same immobilization position as in the CT scans. MRI to CT rigid registration was then done and geometric distortion comparison was done by measuring the corresponding anatomical landmarks on both the MRI and the CT images by two observers. Several skin to skin (9 landmarks), bone to bone (8 landmarks), and soft tissue (3 landmarks) were measured at specific levels in horizontal and vertical planes of both scans. Results: The mean distortion for all landmark measurements in all scans was 1.8±1.9mm. For each patient 11 measurements were done in the horizontal plane while 9 were done in the vertical plane. The measured geometric distortion were significantly lower in the horizontal axis compared to the vertical axis (1.3±0.16 mm vs 2.2±0.19 mm, respectively, P=0.003*). The magnitude of distortion was lower in the bone to bone landmarks compared to the combined soft tissue and skin to skin landmarks (1.2±0.19 mm vs 2.3±0.17 mm, P=0.0006*). The mean distortion measured by observer one was not significantly different compared toobserver 2 (2.3 vs 2.4 mm, P=0.4). Conclusion: MRI geometric distortions were quantified in H&N patients with mean error of less than 2 mm. JW received a corporate sponsored research grant from Elekta.« less

  6. Prenatal Diagnosis of Placenta Accreta: Sonography or Magnetic Resonance Imaging?

    PubMed Central

    Dwyer, Bonnie K.; Belogolovkin, Victoria; Tran, Lan; Rao, Anjali; Carroll, Ian; Barth, Richard; Chitkara, Usha

    2009-01-01

    Objective The purpose of this study was to compare the accuracy of transabdominal sonography and magnetic resonance imaging (MRI) for prenatal diagnosis of placenta accreta. Methods A historical cohort study was undertaken at 3 institutions identifying women at risk for placenta accreta who had undergone both sonography and MRI prenatally. Sonographic and MRI findings were compared with the final diagnosis as determined at delivery and by pathologic examination. Results Thirty-two patients who had both sonography and MRI prenatally to evaluate for placenta accreta were identified. Of these, 15 had confirmation of placenta accreta at delivery. Sonography correctly identified the presence of placenta accreta in 14 of 15 patients (93% sensitivity; 95% confidence interval [CI], 80%–100%) and the absence of placenta accreta in 12 of 17 patients (71% specificity; 95% CI, 49%–93%). Magnetic resonance imaging correctly identified the presence of placenta accreta in 12 of 15 patients (80% sensitivity; 95% CI, 60%–100%) and the absence of placenta accreta in 11 of 17 patients (65% specificity; 95% CI, 42%–88%). In 7 of 32 cases, sonography and MRI had discordant diagnoses: sonography was correct in 5 cases, and MRI was correct in 2. There was no statistical difference in sensitivity (P = .25) or specificity (P = .5) between sonography and MRI. Conclusions Both sonography and MRI have fairly good sensitivity for prenatal diagnosis of placenta accreta; however, specificity does not appear to be as good as reported in other studies. In the case of inconclusive findings with one imaging modality, the other modality may be useful for clarifying the diagnosis. PMID:18716136

  7. Functional magnetic resonance imaging (FMRI) with auditory stimulation in songbirds.

    PubMed

    Van Ruijssevelt, Lisbeth; De Groof, Geert; Van der Kant, Anne; Poirier, Colline; Van Audekerke, Johan; Verhoye, Marleen; Van der Linden, Annemie

    2013-06-03

    The neurobiology of birdsong, as a model for human speech, is a pronounced area of research in behavioral neuroscience. Whereas electrophysiology and molecular approaches allow the investigation of either different stimuli on few neurons, or one stimulus in large parts of the brain, blood oxygenation level dependent (BOLD) functional Magnetic Resonance Imaging (fMRI) allows combining both advantages, i.e. compare the neural activation induced by different stimuli in the entire brain at once. fMRI in songbirds is challenging because of the small size of their brains and because their bones and especially their skull comprise numerous air cavities, inducing important susceptibility artifacts. Gradient-echo (GE) BOLD fMRI has been successfully applied to songbirds (1-5) (for a review, see (6)). These studies focused on the primary and secondary auditory brain areas, which are regions free of susceptibility artifacts. However, because processes of interest may occur beyond these regions, whole brain BOLD fMRI is required using an MRI sequence less susceptible to these artifacts. This can be achieved by using spin-echo (SE) BOLD fMRI (7,8) . In this article, we describe how to use this technique in zebra finches (Taeniopygia guttata), which are small songbirds with a bodyweight of 15-25 g extensively studied in behavioral neurosciences of birdsong. The main topic of fMRI studies on songbirds is song perception and song learning. The auditory nature of the stimuli combined with the weak BOLD sensitivity of SE (compared to GE) based fMRI sequences makes the implementation of this technique very challenging.

  8. PET/MRI in Oncological Imaging: State of the Art

    PubMed Central

    Bashir, Usman; Mallia, Andrew; Stirling, James; Joemon, John; MacKewn, Jane; Charles-Edwards, Geoff; Goh, Vicky; Cook, Gary J.

    2015-01-01

    Positron emission tomography (PET) combined with magnetic resonance imaging (MRI) is a hybrid technology which has recently gained interest as a potential cancer imaging tool. Compared with CT, MRI is advantageous due to its lack of ionizing radiation, superior soft-tissue contrast resolution, and wider range of acquisition sequences. Several studies have shown PET/MRI to be equivalent to PET/CT in most oncological applications, possibly superior in certain body parts, e.g., head and neck, pelvis, and in certain situations, e.g., cancer recurrence. This review will update the readers on recent advances in PET/MRI technology and review key literature, while highlighting the strengths and weaknesses of PET/MRI in cancer imaging. PMID:26854157

  9. Multiparametric Magnetic Resonance Imaging of the Prostate for Tumour Detection and Local Staging: Imaging in 1.5T and Histopathologic Correlation.

    PubMed

    Loggitsi, Dimitra; Gyftopoulos, Anastasios; Economopoulos, Nikolaos; Apostolaki, Aikaterini; Kalogeropoulos, Theodoros; Thanos, Anastasios; Alexopoulou, Efthimia; Kelekis, Nikolaos L

    2017-11-01

    The study sought to prospectively evaluate which technique among T2-weighted images, dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI), diffusion-weighted (DW) MRI, or a combination of the 2, is best suited for prostate cancer detection and local staging. Twenty-seven consecutive patients with biopsy-proven adenocarcinoma of the prostate underwent MRI on a 1.5T scanner with a surface phased-array coil prior radical prostatectomy. Combined anatomical and functional imaging was performed with the use of T2-weighted sequences, DCE MRI, and DW MRI. We compared the imaging results with whole mount histopathology. For the multiparametric approach, significantly higher sensitivity values, that is, 53% (95% confidence interval [CI]: 41.0-64.1) were obtained as compared with each modality alone or any combination of the 3 modalities (P < .05). The specificity for this multiparametric approach, being 90.3% (95% CI: 86.3-93.3) was not significantly higher (P < .05) as compared with the values of the combination of T2+DCE MRI, DW+DCE MRI, or DCE MRI alone. Among the 3 techniques, DCE had the best performance for tumour detection in both the peripheral and the transition zone. High negative predictive value rates (>86%) were obtained for both tumour detection and local staging. The combination of T2-weighted sequences, DCE MRI, and DW MRI yields higher diagnostic performance for tumour detection and local staging than can any of these techniques alone or even any combination of them. Copyright © 2017 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  10. Lung structure and function similarities between primary ciliary dyskinesia and mild cystic fibrosis: a pilot study.

    PubMed

    Maglione, Marco; Montella, Silvia; Mollica, Carmine; Carnovale, Vincenzo; Iacotucci, Paola; De Gregorio, Fabiola; Tosco, Antonella; Cervasio, Mariarosaria; Raia, Valeria; Santamaria, Francesca

    2017-04-12

    Primary ciliary dyskinesia (PCD) and cystic fibrosis (CF) are increasingly compared. There are no chest magnetic resonance imaging (MRI) comparative studies of PCD and CF. We assessed clinical, functional, microbiological and MRI findings in PCD and mild CF patients in order to evaluate different expression of lung disease. Twenty PCD (15.1 years) and 20 CF subjects with mild respiratory impairment (16 years, 70% with pancreatic insufficiency) underwent MRI, spirometry, and sputum cultures when clinically stable. MRI was scored using the modified Helbich system. PCD was diagnosed later than CF (9.9 versus 0.6 years, p = 0.03), despite earlier symptoms (0.1 versus 0.6 years, p = 0.02). In the year preceding the study, patients from both groups underwent two systemic antibiotic courses (p = 0.48). MRI total scores were 11.6 ± 0.7 and 9.1 ± 1 in PCD and CF, respectively. FEV 1 and FVC Z-scores were -1.75 (range, -4.6-0.7) and -0.6 (-3.9-1.8) in PCD, and -0.9 (range, -5.4-2.3) and -0.3 (-3.4-2.5) in CF, respectively. No difference was found between lung function or structure, despite a higher MRI subscore of collapse/consolidation in PCD versus CF (1.6 ± 0.1 and 0.6 ± 0.2, p < 0.001). These findings were confirmed after data-control for diagnostic delay. Pseudomonas aeruginosa and Staphylococcus aureus were more frequent in CF than in PCD (p = 0.05 and p = 0.003, respectively). MRI is a valuable radiation-free tool for comparative PCD and CF lung disease assessment. Patients with PCD may exhibit similar MRI and lung function changes as CF subjects with mild pulmonary disease. Delay in PCD diagnosis is unlikely the only determinant of similarities.

  11. The value of ultrasound and magnetic resonance imaging in diagnostics and prediction of morbidity in cases of placenta previa with abnormal placentation.

    PubMed

    Algebally, Ahmed M; Yousef, Reda Ramadan Hussein; Badr, Sanaa Sayed Hussein; Al Obeidly, Amal; Szmigielski, Wojciech; Al Ibrahim, Abdullah A

    2014-01-01

    The purpose of the study was to evaluate the role of ultrasound (US) and magnetic resonance imaging (MRI) in the diagnostics and management of abnormal placentation in women with placenta previa and to compare the morbidity associated with that to placenta previa alone. The study includes 100 pregnant women with placenta previa with and without abnormal placentation. The results of MRI and US in abnormal placentation were compared with post-operative data. The patients' files were reviewed for assessment of operative and post-operative morbidity. The results of our statistical analysis were compared with data from the literature. US and MRI showed no significant difference in sensitivity and specificity in diagnosing abnormal placentation (97-100% and 94-100%, respectively). MRI was more sensitive than US for the detection of myometrial invasion and the type of abnormal placentation (73.5% and 47%, respectively). The difference between pre- and post-operative hemoglobin values and estimated blood loss were the most significant risk factors for abnormal placentation, added to risk factors known for placenta previa. Post-partum surgical complications and prolonged hospital stay were more common in the cases of placenta previa with abnormal placentation, however statistically insignificant. US and MRI are accurate imaging modalities for diagnosing abnormal placentation. MRI was more sensitive for the detection of the degree of placental invasion. The patient's morbidity increased in cases with abnormal placentation. There was no significant difference in post operative-complications and hospitalization time due to pre-operative planning when the diagnosis was established with US and MRI.

  12. On the feasibility of concurrent human TMS-EEG-fMRI measurements

    PubMed Central

    Reithler, Joel; Schuhmann, Teresa; de Graaf, Tom; Uludağ, Kâmil; Goebel, Rainer; Sack, Alexander T.

    2013-01-01

    Simultaneously combining the complementary assets of EEG, functional MRI (fMRI), and transcranial magnetic stimulation (TMS) within one experimental session provides synergetic results, offering insights into brain function that go beyond the scope of each method when used in isolation. The steady increase of concurrent EEG-fMRI, TMS-EEG, and TMS-fMRI studies further underlines the added value of such multimodal imaging approaches. Whereas concurrent EEG-fMRI enables monitoring of brain-wide network dynamics with high temporal and spatial resolution, the combination with TMS provides insights in causal interactions within these networks. Thus the simultaneous use of all three methods would allow studying fast, spatially accurate, and distributed causal interactions in the perturbed system and its functional relevance for intact behavior. Concurrent EEG-fMRI, TMS-EEG, and TMS-fMRI experiments are already technically challenging, and the three-way combination of TMS-EEG-fMRI might yield additional difficulties in terms of hardware strain or signal quality. The present study explored the feasibility of concurrent TMS-EEG-fMRI studies by performing safety and quality assurance tests based on phantom and human data combining existing commercially available hardware. Results revealed that combined TMS-EEG-fMRI measurements were technically feasible, safe in terms of induced temperature changes, allowed functional MRI acquisition with comparable image quality as during concurrent EEG-fMRI or TMS-fMRI, and provided artifact-free EEG before and from 300 ms after TMS pulse application. Based on these empirical findings, we discuss the conceptual benefits of this novel complementary approach to investigate the working human brain and list a number of precautions and caveats to be heeded when setting up such multimodal imaging facilities with current hardware. PMID:23221407

  13. Magnetic resonance imaging of the normal bovine digit.

    PubMed

    Raji, A R; Sardari, K; Mirmahmoob, P

    2009-08-01

    The purpose of this study was defining the normal structures of the digits and hoof in Holstein dairy cattle using Magnetic Resonance Image (MRI). Transverse, Sagital and Dorsoplantar MRI images of three isolated cattle cadaver digits were obtained using Gyroscan T5-NT a magnet of 0.5 Tesla and T1 Weighted sequence. The MRI images were compared to corresponding frozen cross-sections and dissect specimens of the cadaver digits. Relevant anatomical structures were identified and labeled at each level. The MRI images provided anatomical detail of the digits and hoof in Holstein dairy cattle. Transversal images provided excellent depiction of anatomical structures when compared to corresponding frozen cross-sections. The information presented in this paper would serve as an initial reference to the evaluation of MRI images of the digits and hoof in Holstein dairy cattle, that can be used by radiologist, clinicians, surgeon or for research propose in bovine lameness.

  14. Brain functional connectivity network studies of acupuncture: a systematic review on resting-state fMRI.

    PubMed

    Cai, Rong-Lin; Shen, Guo-Ming; Wang, Hao; Guan, Yuan-Yuan

    2018-01-01

    Functional magnetic resonance imaging (fMRI) is a novel method for studying the changes of brain networks due to acupuncture treatment. In recent years, more and more studies have focused on the brain functional connectivity network of acupuncture stimulation. To offer an overview of the different influences of acupuncture on the brain functional connectivity network from studies using resting-state fMRI. The authors performed a systematic search according to PRISMA guidelines. The database PubMed was searched from January 1, 2006 to December 31, 2016 with restriction to human studies in English language. Electronic searches were conducted in PubMed using the keywords "acupuncture" and "neuroimaging" or "resting-state fMRI" or "functional connectivity". Selection of included articles, data extraction and methodological quality assessments were respectively conducted by two review authors. Forty-four resting-state fMRI studies were included in this systematic review according to inclusion criteria. Thirteen studies applied manual acupuncture vs. sham, four studies applied electro-acupuncture vs. sham, two studies also compared transcutaneous electrical acupoint stimulation vs. sham, and nine applied sham acupoint as control. Nineteen studies with a total number of 574 healthy subjects selected to perform fMRI only considered healthy adult volunteers. The brain functional connectivity of the patients had varying degrees of change. Compared with sham acupuncture, verum acupuncture could increase default mode network and sensorimotor network connectivity with pain-, affective- and memory-related brain areas. It has significantly greater connectivity of genuine acupuncture between the periaqueductal gray, anterior cingulate cortex, left posterior cingulate cortex, right anterior insula, limbic/paralimbic and precuneus compared with sham acupuncture. Some research had also shown that acupuncture could adjust the limbic-paralimbic-neocortical network, brainstem, cerebellum, subcortical and hippocampus brain areas. It can be presumed that the functional connectivity network is closely related to the mechanism of acupuncture, and central integration plays a critical role in the acupuncture mechanism. Copyright © 2017 Shanghai Changhai Hospital. Published by Elsevier B.V. All rights reserved.

  15. SU-E-QI-19: Evaluation of a Clinical 1.5T MRI for Prostate Cancer MRS Imaging Using a In Vivo Tumor Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, X; Chen, L; Hensley, H

    2014-06-15

    Purpose: Magnetic resonance spectroscopic (MRS) imaging may provide important bio-markers to distinguish normal/cancerous prostate tissue. While MRS imaging requires a high uniform magnetic field, the ability of a clinical 1.5T MRI to achieve a comparable MRS signal is of interest for radiation treatment planning/assessment. This study is to evaluate the MRS imaging of a 1.5T clinical MRI for prostate cancers by comparing with a small animal 7T MRS scanner. Methods: A tumor model was developed by implanting LNCaP tumor cells in nude mice prostates. Tumor was monitored 3 weeks after implantation using MRI, and MRS imaging was performed on themore » tumor area when the tumor reached around 1cm in diameter. The 1.5T GE clinical MR scanner and the 7T Bruker small animal MR scanner were used for each mouse. MR spectrums acquired with these scanners were analyzed and compared. The signals of Choline and Citrate were considered. Results: The prostate tumor MR spectrum under the 1.5T clinical MRI showed a similar spectrum pattern to that acquired using the 7T animal MRI. The Choline signal (3.2ppm) is clear and there is no clear peak for Citrate (2.6ppm). However, the signal magnitude for Choline is not dominant compared to the background signal under 1.5T MRI. Typical cancerous prostate tissue MR spectrum with an increased Choline signal and a reduced Citrate signal was observed. In addition, signal variation is noticeable between repeated spectrum scans. The average of these scans showed a comparable and consistent spectrum to those under 7T MRI. Conclusion: The clinical 1.5T MRI is able to acquire a MR spectrum for prostate cancer comparable to those acquired using a dedicated 7T MRS scanner. However, to achieve a consistent and reliable spectrum, multiple repeated scans were necessary to get a statistical result and reduce the noise-induced artifact. This work was supported in part by the National Cancer Institute Grant R21 CA131979 and R01CA172638.« less

  16. Magnetic resonance imaging of the hand and wrist in a randomized, double-blind, multicenter, placebo-controlled trial of infliximab for rheumatoid arthritis: Comparison of dynamic contrast enhanced assessments with semi-quantitative scoring

    PubMed Central

    Baumgartner, Richard; Peterfy, Charles; Balanescu, Andra; Mirea, Gavrila; Harabagiu, Alexandru; Popa, Serghei; Cheng, Amy; Feng, Dai; Ashton, Edward; DiCarlo, Julie; Vallee, Marie-Helene; Dardzinski, Bernard J.

    2017-01-01

    The objective of this study was to compare the scope and the discriminative power of Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) to those of semi-quantitative MRI scoring for evaluating treatments for rheumatoid arthritis (RA) in multicenter randomized clinical trials (RCTs). Sixty-one patients with active RA participated in a double-blind, parallel group, randomized, multicenter methodology study receiving infliximab or placebo through 14 weeks. The most symptomatic wrist and metacarpophalangeal joints (MCPs) were imaged using MRI. In addition to clinical assessments with DAS28(CRP), the severity of inflammation was measured as synovial leak of gadolinium based contrast agent (GBCA) using DCE-MRI (Ktrans, primary endpoint) at weeks 0, 2, 4, and 14. Two radiologists independently scored synovitis, osteitis and erosion using RA MRI Score (RAMRIS) and cartilage loss using a 9-point MRI scale (CARLOS). Infliximab showed greater decrease from baseline in DAS28(CRP), DCE-MRI Ktrans of wrist and MCP synovium, and RAMRIS synovitis and osteitis at all visits compared with placebo (p<0.001). Treatment effect sizes of infliximab therapy were similar for DAS28(CRP) (1.08; 90% CI (0.63–1.53)) and MRI inflammation endpoints: wrist Ktrans (1.00 (0.55–1.45)), RAMRIS synovitis (0.85 (0.38–1.28)) and RAMRIS osteitis (0.99 (0.52–1.43)). Damage measures of bone erosion (RAMRIS) and cartilage loss (CARLOS) were reduced with infliximab compared to with placebo at 14 weeks (p≤0.025). DCE-MRI and RAMRIS were equally sensitive and responsive to the anti-inflammatory effects of infliximab. RAMRIS and CARLOS showed suppression of erosion and cartilage loss, respectively, at 14 weeks. (ClinicalTrials.gov registration: NCT01313520) PMID:29236711

  17. Magnetic resonance imaging of the hand and wrist in a randomized, double-blind, multicenter, placebo-controlled trial of infliximab for rheumatoid arthritis: Comparison of dynamic contrast enhanced assessments with semi-quantitative scoring.

    PubMed

    Beals, Chan; Baumgartner, Richard; Peterfy, Charles; Balanescu, Andra; Mirea, Gavrila; Harabagiu, Alexandru; Popa, Serghei; Cheng, Amy; Feng, Dai; Ashton, Edward; DiCarlo, Julie; Vallee, Marie-Helene; Dardzinski, Bernard J

    2017-01-01

    The objective of this study was to compare the scope and the discriminative power of Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) to those of semi-quantitative MRI scoring for evaluating treatments for rheumatoid arthritis (RA) in multicenter randomized clinical trials (RCTs). Sixty-one patients with active RA participated in a double-blind, parallel group, randomized, multicenter methodology study receiving infliximab or placebo through 14 weeks. The most symptomatic wrist and metacarpophalangeal joints (MCPs) were imaged using MRI. In addition to clinical assessments with DAS28(CRP), the severity of inflammation was measured as synovial leak of gadolinium based contrast agent (GBCA) using DCE-MRI (Ktrans, primary endpoint) at weeks 0, 2, 4, and 14. Two radiologists independently scored synovitis, osteitis and erosion using RA MRI Score (RAMRIS) and cartilage loss using a 9-point MRI scale (CARLOS). Infliximab showed greater decrease from baseline in DAS28(CRP), DCE-MRI Ktrans of wrist and MCP synovium, and RAMRIS synovitis and osteitis at all visits compared with placebo (p<0.001). Treatment effect sizes of infliximab therapy were similar for DAS28(CRP) (1.08; 90% CI (0.63-1.53)) and MRI inflammation endpoints: wrist Ktrans (1.00 (0.55-1.45)), RAMRIS synovitis (0.85 (0.38-1.28)) and RAMRIS osteitis (0.99 (0.52-1.43)). Damage measures of bone erosion (RAMRIS) and cartilage loss (CARLOS) were reduced with infliximab compared to with placebo at 14 weeks (p≤0.025). DCE-MRI and RAMRIS were equally sensitive and responsive to the anti-inflammatory effects of infliximab. RAMRIS and CARLOS showed suppression of erosion and cartilage loss, respectively, at 14 weeks. (ClinicalTrials.gov registration: NCT01313520).

  18. Discrepancy in fetal head biometry between ultrasound and MRI in suspected microcephalic fetuses.

    PubMed

    Yaniv, Gal; Katorza, Eldad; Tsehmaister Abitbol, Vered; Eisenkraft, Arik; Bercovitz, Ronen; Bader, Salim; Hoffmann, Chen

    2017-12-01

    Background Microcephaly is one of the most common fetal structural abnormalities, and prenatal microcephaly is considered a group I malformation of cortical development diagnosed according to ultrasound (US) skull measurements. Purpose To evaluate the agreement between fetal head US and magnetic resonance imaging (MRI) biometric measurements of suspected microcephalic fetuses. Material and Methods This institutional review board-approved retrospective study with waived informed consent included 180 pregnant women and was conducted at our medical center from March 2011 to April 2013. Biparietal diameter (BPD) and occipitofrontal diameter (OFD) results of fetal head US normograms were compared to normograms for MRI. We used Pearson and Spearman rho non-parametric correlation coefficients to assess the association between two quantitative variables, paired t-test for paired quantitative variables, and McNemar test for paired qualitative variables. Results The average BPD but not the average OFD percentiles in fetal head US differed significantly from the MRI results ( P < 0.0001). When looking at the accepted microcephaly threshold, both BPD and OFD percentiles differed significantly from MRI ( P < 0.0001 and P < 0.004, respectively). There was no correlation between US-measured skull biometry and MRI-measured brain biometry. Estimated cerebrospinal fluid volumes were significantly lower in the study group compared to 120 fetuses with normal findings in prenatal head US and MRI. Also, we have created a MRI-based normogram of fetal head circumference and gestational age. Conclusion The diagnosis of microcephaly by US alone may be insufficient and ideally should be validated by MRI before a final diagnosis is established.

  19. Altered spontaneous brain activity in MRI-negative refractory temporal lobe epilepsy patients with major depressive disorder: A resting-state fMRI study.

    PubMed

    Zhu, Xi; He, Zhongqiong; Luo, Cheng; Qiu, Xiangmiao; He, Shixu; Peng, Anjiao; Zhang, Lin; Chen, Lei

    2018-03-15

    To investigate alterations in spontaneous brain activity in MRI-negative refractory temporal lobe epilepsy patients with major depressive disorder using resting-state functional magnetic resonance imaging (RS-fMRI). Eighteen MRI-negative refractory temporal lobe epilepsy patients with major depressive disorder (PDD), 17 MRI-negative refractory temporal lobe epilepsy patients without major depressive disorder (nPDD), and 21 matched healthy controls (HC) were recruited from West China Hospital of SiChuan University from April 2016 to June 2017. The Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) and 17-item Hamilton Depression Rating Scale were employed to confirm the diagnosis of major depressive disorder and assess the severity of depression. All participants underwent RS-fMRI scans using a 3.0T MRI system. MRI data were compared and analyzed using the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) to measure spontaneous brain activity. These two methods were both used to evaluate spontaneous cerebral activity. The PDD group showed significantly altered spontaneous brain activity in the bilateral mesial prefrontal cortex, precuneus, angular gyrus, right parahippocampal gyrus, and right temporal pole. Meanwhile, compared with HC, the nPDD group demonstrated altered spontaneous brain activity in the temporal neocortex but no changes in mesial temporal structures. The PDD group showed regional brain activity alterations in the prefrontal-limbic system and dysfunction of the default mode network. The underlying pathophysiology of PDD may be provided for further studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Hypercapnic evaluation of vascular reactivity in healthy aging and acute stroke via functional MRI.

    PubMed

    Raut, Ryan V; Nair, Veena A; Sattin, Justin A; Prabhakaran, Vivek

    2016-01-01

    Functional MRI (fMRI) is well-established for the study of brain function in healthy populations, although its clinical application has proven more challenging. Specifically, cerebrovascular reactivity (CVR), which allows the assessment of the vascular response that serves as the basis for fMRI, has been shown to be reduced in healthy aging as well as in a range of diseases, including chronic stroke. However, the timing of when this occurs relative to the stroke event is unclear. We used a breath-hold fMRI task to evaluate CVR across gray matter in a group of acute stroke patients (< 10 days from stroke; N = 22) to address this question. These estimates were compared with those from both age-matched (N = 22) and younger (N = 22) healthy controls. As expected, young controls had the greatest mean CVR, as indicated by magnitude and extent of fMRI activation; however, stroke patients did not differ from age-matched controls. Moreover, the ipsilesional and contralesional hemispheres of stroke patients did not differ with respect to any of these measures. These findings suggest that fMRI remains a valid tool within the first few days of a stroke, particularly for group fMRI studies in which findings are compared with healthy subjects of similar age. However, given the relatively high variability in CVR observed in our stroke sample, caution is warranted when interpreting fMRI data from individual patients or a small cohort. We conclude that a breath-hold task can be a useful addition to functional imaging protocols for stroke patients.

  1. Diagnostic evaluations of ultrasound and magnetic resonance imaging in mammary duct ectasia and breast cancer

    PubMed Central

    Song, Lei; Li, Liang; Liu, Bin; Yu, Dexin; Sun, Fengguo; Guo, Mingming; Ruan, Zhengmin; Zhang, Feixue

    2018-01-01

    The objective of the present study was to evaluate the diagnostic efficiency of ultrasound (US) and magnetic resonance imaging (MRI) in the diagnosis and differential diagnosis of mammary duct ectasia (MDE) and breast cancer. This retrospective study was performed on 35 patients with MDE and 105 patients with breast cancer using US and MRI. Imaging features, semi-quantitative and quantitative parameters were analyzed to determine their diagnostic value for MDE and breast cancer. The average age of patients with breast cancer was increased compared with that of patients with MDE. There were no significant differences in local packages with or without tenderness ratio (P=0.259) and grade of color Doppler flow imaging (P=0.273) between the two groups. However, the morphological changes were significantly increased in breast cancer compared with MDE. In addition, there were significant diagnostic differences in US and MRI between breast cancer and MDE, including resistance index, US elastography, time-signal intensity curve, apparent diffusion coefficient, early-stage enhancement ratio, peak-of-enhancement ratio and Tpeak (P<0.05). However, there were no observable significant diagnostic differences between US, MRI and US with MRI for MDE and breast cancer (P=0.103, P=0.263 and P=0.403 respectively). Diagnosis of MDE and breast cancer requires full evaluation of multiple parameters and morphological changes of US and MRI to increase the diagnostic efficiency. US, MRI and US with MRI were all of diagnostic value for MDE and breast cancer, while US with MRI had the highest efficacy. PMID:29434865

  2. A PET/CT-Based Strategy Is a Stronger Predictor of Survival Than a Standard Imaging Strategy in Patients with Head and Neck Squamous Cell Carcinoma.

    PubMed

    Rohde, Max; Nielsen, Anne L; Pareek, Manan; Johansen, Jørgen; Sørensen, Jens A; Diaz, Anabel; Nielsen, Mie K; Christiansen, Janus M; Asmussen, Jon T; Nguyen, Nina; Gerke, Oke; Thomassen, Anders; Alavi, Abass; Høilund-Carlsen, Poul Flemming; Godballe, Christian

    2018-04-01

    Our purpose was to examine whether staging of head and neck squamous cell carcinoma (HNSCC) by upfront 18 F-FDG PET/CT (i.e., on the day of biopsy and before the biopsy) discriminates survival better than the traditional imaging strategies based on chest x-ray plus head and neck MRI (CXR/MRI) or chest CT plus head and neck MRI (CCT/MRI). Methods: We performed a masked prospective cohort study based on paired data. Consecutive patients with histologically verified primary HNSCC were recruited from Odense University Hospital from September 2013 to March 2016. All patients underwent CXR/MRI, CCT/MRI, and PET/CT on the same day. Tumors were categorized as localized (stages I and II), locally advanced (stages III and IVB), or metastatic (stage IVC). Discriminative ability for each imaging modality with respect to HNSCC staging were compared using Kaplan-Meier analysis, Cox proportional hazards regression with the Harrell C-index, and net reclassification improvement. Results: In total, 307 patients with histologically verified HNSCC were included. Use of PET/CT significantly altered the stratification of tumor stage when compared with either CXR/MRI or CCT/MRI (χ 2 , P < 0.001 for both). Cancer stages based on PET/CT, but not CXR/MRI or CCT/MRI, were associated with significant differences in mortality risk on Kaplan-Meier analyses ( P ≤ 0.002 for all PET/CT-based comparisons). Furthermore, overall discriminative ability was significantly greater for PET/CT (C-index, 0.712) than for CXR/MRI (C-index, 0.675; P = 0.04) or CCT/MRI (C-index, 0.657; P = 0.02). Finally, PET/CT was significantly associated with a positive net reclassification improvement when compared with CXR/MRI (0.184, P = 0.03) but not CCT/MRI (0.094%, P = 0.31). Conclusion: Tumor stages determined by PET/CT were associated with more distinct prognostic properties in terms of survival than those determined by standard imaging strategies. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  3. Use of Magnetic Resonance Imaging for N-Staging in Patients with Non-Small Cell Lung Cancer. A Systematic Review.

    PubMed

    Brea, Tara Pereiro; Raviña, Alberto Ruano; Villamor, José Martín Carreira; Gómez, Antonio Golpe; de Alegría, Anxo Martínez; Valdés, Luís

    2018-05-23

    The aim of this study is to assess the diagnostic value of the magnetic resonance imaging (MRI) in differentiating metastasic from non-metastatic lymph nodes in NSCLC patients compared with computed tomography (CT) and fluorodeoxyglucose (FDG) - positron emission tomography (PET) or both combined. Twenty-three studies (19 studies and 4 meta-analysis) with sample size ranging between 22 and 250 patients were included in this analysis. MRI, regardless of the sequence obtained, where used for the evaluation of N-staging of NSCLC. Histopathology results and clinical or imaging follow-up were used as the reference standard. Studies were excluded if the sample size was less than 20 cases, if less than 10 lymph nodes assessment were presented or studies where standard reference was not used. Papers not reporting sufficient data were also excluded. As compared to CT and PET, MRI demonstrated a higher sensitivity, specificity and diagnostic accuracy in the diagnosis of metastatic or non-metastatic lymph nodes in N-staging in NSCLC patients. No study considered MRI inferior than conventional techniques (CT, PET or PET/CT). Other outstanding results of this review are fewer false positives with MRI in comparison with PET, their superiority over PET/CT to detect non-resectable lung cancer, to diagnosing infiltration of adjacent structures or brain metastasis and detecting small nodules. MRI has shown at least similar or better results in diagnostic accuracy to differentiate metastatic from non-metastatic mediastinal lymph nodes. This suggests that MRI could play a significant role in mediastinal NSCLC staging. Copyright © 2018 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Sensitivity and specificity of linear array intraoperative ultrasound in glioblastoma surgery: a comparative study with high field intraoperative MRI and conventional sector array ultrasound.

    PubMed

    Coburger, Jan; Scheuerle, Angelika; Kapapa, Thomas; Engelke, Jens; Thal, Dietmar Rudolf; Wirtz, Christian R; König, Ralph

    2015-07-01

    Linear array intraoperative ultrasound (lioUS) is an emerging technology for intracranial use. We evaluated sensitivity and specificity of lioUS to detect residual tumor in patients harboring a glioblastoma. After near total resection in 20 patients, residual tumor detection using lioUS, conventional intraoperative ultrasound (cioUS), and gadopentetic-diethylenetriamine penta-acetic acid (Gd-DTPA)-enhanced intraoperative MRI (iMRI) were compared. Sensitivity and specificity were calculated based on 68 navigated biopsies. Receiver operator characteristic (ROC) curves and correlation with histopathological findings of each imaging modality were calculated. Additionally, results were evaluated in the subgroup of recurrent disease (23 biopsies in 8 patients). Sensitivity of lioUS (76 %) was significantly higher compared with iMRI (55 %) and cioUS (24 %). Specificity of lioUS (58 %) was significantly lower than in cioUS (96 %), while there was no significant difference to iMRI (74 %). All imaging modalities correlated significantly with histopathological findings. In the subgroup of recurrent disease, sensitivity and specificity decreased in all modalities. However, cioUS showed significant lower values than iMRI and lioUS. In ROC curves, lioUS showed a higher area und the curve (AUC) in comparison with iMRI and cioUS. We found similar results in the subgroup of recurrent disease. Tumor detection using a lioUS is significantly superior to cioUS. Overall test performance in lioUS is comparable with results of iMRI. While, the latter has a higher specificity and a significantly lower sensitivity in comparison with lioUS.

  5. Gadolinium Ethoxybenzyl Diethylenetriamine Pentaacetic Acid (Gd-EOB-DTPA)-Enhanced Magnetic Resonance Imaging and Multidetector-Row Computed Tomography for the Diagnosis of Hepatocellular Carcinoma: A Systematic Review and Meta-analysis.

    PubMed

    Ye, Feng; Liu, Jun; Ouyang, Han

    2015-08-01

    The purpose of this meta-analysis was to compare the diagnostic accuracy of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) and multidetector-row computed tomography (MDCT) for hepatocellular carcinoma (HCC).Medline, Cochrane, EMBASE, and Google Scholar databases were searched until July 4, 2014, using combinations of the following terms: gadoxetic acid disodium, Gd-EOB-DTPA, multidetector CT, contrast-enhanced computed tomography, and magnetic resonance imaging. Inclusion criteria were as follows: confirmed diagnosis of primary HCC by histopathological examination of a biopsy specimen; comparative study of MRI using Gd-EOB-DTPA and MDCT for diagnosis of HCC; and studies that provided quantitative outcome data. The pooled sensitivity and specificity of the 2 methods were compared, and diagnostic accuracy was assessed with alternative-free response receiver-operating characteristic analysis.Nine studies were included in the meta-analysis, and a total of 1439 lesions were examined. The pooled sensitivity and specificity for 1.5T MRI were 0.95 and 0.96, respectively, for 3.0T MRI were 0.91 and 0.96, respectively, and for MDCT were 0.74 and 0.93, respectively. The pooled diagnostic odds ratio for 1.5T and 3.0T MRI was 242.96, respectively, and that of MDCT was 33.47. To summarize, Gd-EOB-DTPA-enhanced MRI (1.5T and 3.0T) has better diagnostic accuracy for HCC than MDCT.

  6. Three-dimensional volume rendering of the ankle based on magnetic resonance images enables the generation of images comparable to real anatomy.

    PubMed

    Anastasi, Giuseppe; Cutroneo, Giuseppina; Bruschetta, Daniele; Trimarchi, Fabio; Ielitro, Giuseppe; Cammaroto, Simona; Duca, Antonio; Bramanti, Placido; Favaloro, Angelo; Vaccarino, Gianluigi; Milardi, Demetrio

    2009-11-01

    We have applied high-quality medical imaging techniques to study the structure of the human ankle. Direct volume rendering, using specific algorithms, transforms conventional two-dimensional (2D) magnetic resonance image (MRI) series into 3D volume datasets. This tool allows high-definition visualization of single or multiple structures for diagnostic, research, and teaching purposes. No other image reformatting technique so accurately highlights each anatomic relationship and preserves soft tissue definition. Here, we used this method to study the structure of the human ankle to analyze tendon-bone-muscle relationships. We compared ankle MRI and computerized tomography (CT) images from 17 healthy volunteers, aged 18-30 years (mean 23 years). An additional subject had a partial rupture of the Achilles tendon. The MRI images demonstrated superiority in overall quality of detail compared to the CT images. The MRI series accurately rendered soft tissue and bone in simultaneous image acquisition, whereas CT required several window-reformatting algorithms, with loss of image data quality. We obtained high-quality digital images of the human ankle that were sufficiently accurate for surgical and clinical intervention planning, as well as for teaching human anatomy. Our approach demonstrates that complex anatomical structures such as the ankle, which is rich in articular facets and ligaments, can be easily studied non-invasively using MRI data.

  7. Three-dimensional volume rendering of the ankle based on magnetic resonance images enables the generation of images comparable to real anatomy

    PubMed Central

    Anastasi, Giuseppe; Cutroneo, Giuseppina; Bruschetta, Daniele; Trimarchi, Fabio; Ielitro, Giuseppe; Cammaroto, Simona; Duca, Antonio; Bramanti, Placido; Favaloro, Angelo; Vaccarino, Gianluigi; Milardi, Demetrio

    2009-01-01

    We have applied high-quality medical imaging techniques to study the structure of the human ankle. Direct volume rendering, using specific algorithms, transforms conventional two-dimensional (2D) magnetic resonance image (MRI) series into 3D volume datasets. This tool allows high-definition visualization of single or multiple structures for diagnostic, research, and teaching purposes. No other image reformatting technique so accurately highlights each anatomic relationship and preserves soft tissue definition. Here, we used this method to study the structure of the human ankle to analyze tendon–bone–muscle relationships. We compared ankle MRI and computerized tomography (CT) images from 17 healthy volunteers, aged 18–30 years (mean 23 years). An additional subject had a partial rupture of the Achilles tendon. The MRI images demonstrated superiority in overall quality of detail compared to the CT images. The MRI series accurately rendered soft tissue and bone in simultaneous image acquisition, whereas CT required several window-reformatting algorithms, with loss of image data quality. We obtained high-quality digital images of the human ankle that were sufficiently accurate for surgical and clinical intervention planning, as well as for teaching human anatomy. Our approach demonstrates that complex anatomical structures such as the ankle, which is rich in articular facets and ligaments, can be easily studied non-invasively using MRI data. PMID:19678857

  8. Combining diffusion-weighted MRI with Gd-EOB-DTPA-enhanced MRI improves the detection of colorectal liver metastases.

    PubMed

    Koh, D-M; Collins, D J; Wallace, T; Chau, I; Riddell, A M

    2012-07-01

    To compare the diagnostic accuracy of gadolinium-ethoxybenzyl-diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)-enhanced MRI, diffusion-weighted MRI (DW-MRI) and a combination of both techniques for the detection of colorectal hepatic metastases. 72 patients with suspected colorectal liver metastases underwent Gd-EOB-DTPA MRI and DW-MRI. Images were retrospectively reviewed with unenhanced T(1) and T(2) weighted images as Gd-EOB-DTPA image set, DW-MRI image set and combined image set by two independent radiologists. Each lesion detected was scored for size, location and likelihood of metastasis, and compared with surgery and follow-up imaging. Diagnostic accuracy was compared using receiver operating characteristics and interobserver agreement by kappa statistics. 417 lesions (310 metastases, 107 benign) were found in 72 patients. For both readers, diagnostic accuracy using the combined image set was higher [area under the curve (Az)=0.96, 0.97] than Gd-EOB-DTPA image set (Az=0.86, 0.89) or DW-MRI image set (Az=0.93, 0.92). Using combined image set improved identification of liver metastases compared with Gd-EOB-DTPA image set (p<0.001) or DW-MRI image set (p<0.001). There was very good interobserver agreement for lesion classification (κ=0.81-0.88). Combining DW-MRI with Gd-EOB-DTPA-enhanced T(1) weighted MRI significantly improved the detection of colorectal liver metastases.

  9. MRI versus breast-specific gamma imaging (BSGI) in newly diagnosed ductal cell carcinoma-in-situ: a prospective head-to-head trial.

    PubMed

    Keto, Jessica L; Kirstein, Laurie; Sanchez, Diana P; Fulop, Tamara; McPartland, Laura; Cohen, Ilona; Boolbol, Susan K

    2012-01-01

    Mammography remains the standard imaging technique for the diagnosis of ductal carcinoma-in-situ (DCIS). Functional breast imaging, including breast magnetic resonance imaging (MRI), has known limitations in evaluating DCIS. To date, there are limited data on the utility of breast-specific gamma imaging (BSGI) in DCIS. We sought to prospectively compare the sensitivity of BSGI to MRI in newly diagnosed DCIS patients. Patients with newly diagnosed DCIS from June 1, 2009, through May 31, 2010, underwent a protocol with both breast MRI and BSGI. Each imaging study was read by a separate dedicated breast radiologist. Patients were excluded if excisional biopsy was performed for diagnosis, if their MRI was performed at an outside facility, or if final pathology revealed invasive carcinoma. There were 18 patients enrolled onto the study that had both MRI and BSGI for newly diagnosed DCIS. The sensitivity for MRI was 94% and for BSGI was 89% (P > 0.5, NS). There was one index tumor not seen on either MRI or BSGI, and one index tumor seen on MRI but not visualized on BSGI. Although BSGI has previously been shown to be as sensitive as MRI for detecting known invasive breast carcinoma, this study shows that BSGI is equally as sensitive as MRI at detecting newly diagnosed DCIS. As a result of the limited number of patients enrolled onto the study, larger prospective studies need to be performed to determine the true sensitivity and specificity of BSGI.

  10. Positron emission mammography in breast cancer presurgical planning: comparisons with magnetic resonance imaging

    PubMed Central

    Narayanan, Deepa; Kalinyak, Judith E.; The, Juliette; Velasquez, Maria Victoria; Kahn, Simone; Saady, Matthew; Mahal, Ravinder; Chrystal, Larraine

    2010-01-01

    Purpose The objective of this study was to compare the performance characteristics of 18F-fluorodeoxyglucose (FDG) positron emission mammography (PEM) with breast magnetic resonance imaging (MRI) as a presurgical imaging and planning option for index and ipsilateral lesions in patients with newly diagnosed, biopsy-proven breast cancer. Methods Two hundred and eight women >25 years of age (median age = 59.7 ± 14.1 years) with biopsy-proven primary breast cancer enrolled in this prospective, single-site study. MRI, PEM, and whole-body positron emission tomography (WBPET) were conducted on each patient within 7 business days. PEM and WBPET images were acquired on the same day after intravenous administration of 370 MBq of FDG (median = 432.9 MBq). PEM and MRI images were blindly evaluated, compared with final surgical histopathology, and the sensitivity determined. Substudy analysis compared the sensitivity of PEM versus MRI in patients with different menopausal status, breast density, and use of hormone replacement therapy (HRT) as well as determination of performance characteristics for additional ipsilateral lesion detection. Results Two hundred and eight patients enrolled in the study of which 87% (182/208) were analyzable. Of these analyzable patients, 26.4% (48/182), 7.1% (13/182), and 64.2% (120/182) were pre-, peri-, and postmenopausal, respectively, and 48.4% (88/182) had extremely or heterogeneously dense breast tissue, while 33.5% (61/182) had a history of HRT use. Ninety-two percent (167/182) underwent core biopsy for index lesion diagnosis. Invasive cancer was found in 77.5% (141/182), while ductal carcinoma in situ (DCIS) and/or Paget’s disease were found in 22.5% (41/182) of patients. Both PEM and MRI had index lesion depiction sensitivity of 92.8% and both were significantly better than WBPET (67.9%, p < 0.001, McNemar’s test). For index lesions, PEM and MRI had equivalent sensitivity of various tumors, categorized by tumor stage as well as similar invasive tumor size predictions with Spearman's correlation coefficient of 0.61 for both PEM and MRI compared to surgical pathology. Menopausal status, breast density, and HRT did not influence the sensitivity of PEM or MRI. For 67 additional unsuspected ipsilateral lesions or multifocal lesions, PEM had sensitivity of 85% (34/40) and specificity of 74%, (20/27) compared to MRI's sensitivity of 98% (39/40) and specificity of 48% (13/27) [p = 0.074, for sensitivity; p = 0.096 for specificity] Conclusion PEM is a good alternative to MRI as a presurgical breast imaging option and its performance characteristics are not affected by patient menopausal/hormonal status or breast density. PMID:20871992

  11. Positron emission mammography in breast cancer presurgical planning: comparisons with magnetic resonance imaging.

    PubMed

    Schilling, Kathy; Narayanan, Deepa; Kalinyak, Judith E; The, Juliette; Velasquez, Maria Victoria; Kahn, Simone; Saady, Matthew; Mahal, Ravinder; Chrystal, Larraine

    2011-01-01

    The objective of this study was to compare the performance characteristics of (18)F-fluorodeoxyglucose (FDG) positron emission mammography (PEM) with breast magnetic resonance imaging (MRI) as a presurgical imaging and planning option for index and ipsilateral lesions in patients with newly diagnosed, biopsy-proven breast cancer. Two hundred and eight women >25 years of age (median age = 59.7 ± 14.1 years) with biopsy-proven primary breast cancer enrolled in this prospective, single-site study. MRI, PEM, and whole-body positron emission tomography (WBPET) were conducted on each patient within 7 business days. PEM and WBPET images were acquired on the same day after intravenous administration of 370 MBq of FDG (median = 432.9 MBq). PEM and MRI images were blindly evaluated, compared with final surgical histopathology, and the sensitivity determined. Substudy analysis compared the sensitivity of PEM versus MRI in patients with different menopausal status, breast density, and use of hormone replacement therapy (HRT) as well as determination of performance characteristics for additional ipsilateral lesion detection. Two hundred and eight patients enrolled in the study of which 87% (182/208) were analyzable. Of these analyzable patients, 26.4% (48/182), 7.1% (13/182), and 64.2% (120/182) were pre-, peri-, and postmenopausal, respectively, and 48.4% (88/182) had extremely or heterogeneously dense breast tissue, while 33.5% (61/182) had a history of HRT use. Ninety-two percent (167/182) underwent core biopsy for index lesion diagnosis. Invasive cancer was found in 77.5% (141/182), while ductal carcinoma in situ (DCIS) and/or Paget's disease were found in 22.5% (41/182) of patients. Both PEM and MRI had index lesion depiction sensitivity of 92.8% and both were significantly better than WBPET (67.9%, p < 0.001, McNemar's test). For index lesions, PEM and MRI had equivalent sensitivity of various tumors, categorized by tumor stage as well as similar invasive tumor size predictions with Spearman's correlation coefficient of 0.61 for both PEM and MRI compared to surgical pathology. Menopausal status, breast density, and HRT did not influence the sensitivity of PEM or MRI. For 67 additional unsuspected ipsilateral lesions or multifocal lesions, PEM had sensitivity of 85% (34/40) and specificity of 74%, (20/27) compared to MRI's sensitivity of 98% (39/40) and specificity of 48% (13/27) [p = 0.074, for sensitivity; p = 0.096 for specificity] PEM is a good alternative to MRI as a presurgical breast imaging option and its performance characteristics are not affected by patient menopausal/hormonal status or breast density.

  12. MRI Correlates of Disability in African-Americans with Multiple Sclerosis

    PubMed Central

    Howard, Jonathan; Battaglini, Marco; Babb, James Scott; Arienzo, Donatello; Holst, Brigitte; Omari, Mirza; De Stefano, Nicola; Herbert, Joseph; Inglese, Matilde

    2012-01-01

    Objectives Multiple sclerosis (MS) in African-Americans (AAs) is characterized by more rapid disease progression and poorer response to treatment than in Caucasian-Americans (CAs). MRI provides useful and non-invasive tools to investigate the pathological substrate of clinical progression. The aim of our study was to compare MRI measures of brain damage between AAs and CAs with MS. Methods Retrospective analysis of 97 AAs and 97 CAs with MS matched for age, gender, disease duration and age at MRI examination. Results AA patients had significantly greater T2- (p = 0.001) and T1-weighted (p = 0.0003) lesion volumes compared to CA patients. In contrast, measurements of global and regional brain volume did not significantly differ between the two ethnic groups (p>0.1). Conclusions By studying a quite large sample of well demographically and clinically matched CA and AA patients with a homogeneous MRI protocol we showed that higher lesion accumulation, rather than pronounced brain volume decrease might explain the early progress to ambulatory assistance of AAs with MS. PMID:22900088

  13. Primate Brain Anatomy: New Volumetric MRI Measurements for Neuroanatomical Studies.

    PubMed

    Navarrete, Ana F; Blezer, Erwin L A; Pagnotta, Murillo; de Viet, Elizabeth S M; Todorov, Orlin S; Lindenfors, Patrik; Laland, Kevin N; Reader, Simon M

    2018-06-12

    Since the publication of the primate brain volumetric dataset of Stephan and colleagues in the early 1980s, no major new comparative datasets covering multiple brain regions and a large number of primate species have become available. However, technological and other advances in the last two decades, particularly magnetic resonance imaging (MRI) and the creation of institutions devoted to the collection and preservation of rare brain specimens, provide opportunities to rectify this situation. Here, we present a new dataset including brain region volumetric measurements of 39 species, including 20 species not previously available in the literature, with measurements of 16 brain areas. These volumes were extracted from MRI of 46 brains of 38 species from the Netherlands Institute of Neuroscience Primate Brain Bank, scanned at high resolution with a 9.4-T scanner, plus a further 7 donated MRI of 4 primate species. Partial measurements were made on an additional 8 brains of 5 species. We make the dataset and MRI scans available online in the hope that they will be of value to researchers conducting comparative studies of primate evolution. © 2018 S. Karger AG, Basel.

  14. Brain Regions Involved in the Retrieval of Spatial and Episodic Details Associated with a Familiar Environment: An fMRI Study

    ERIC Educational Resources Information Center

    Hirshhorn, Marnie; Grady, Cheryl; Rosenbaum, R. Shayna; Winocur, Gordon; Moscovitch, Morris

    2012-01-01

    Functional magnetic resonance imaging (fMRI) was used to compare brain activity during the retrieval of coarse- and fine-grained spatial details and episodic details associated with a familiar environment. Long-time Toronto residents compared pairs of landmarks based on their absolute geographic locations (requiring either coarse or fine…

  15. Magnetic resonance imaging in evaluating workers' compensation patients.

    PubMed

    Babbel, Daniel; Rayan, Ghazi

    2012-04-01

    We studied the utility of magnetic resonance imaging (MRI) studies for workers' compensation patients with hand conditions in which the referring doctor obtained the images. We compared the MRI findings with the eventual clinical findings. We also investigated the approximate cost of these MRI studies. We retrospectively reviewed the charts of all workers' compensation patients seen in a hand and upper extremity practice over the course of 3 years. We selected patients who had MRI studies of the affected upper extremities before referral to the senior author (G.R.). We reviewed the charts for information regarding demographics, referral diagnoses, MRI diagnoses made by the radiologist, the area of the upper extremity studied, and eventual clinical diagnoses by the senior author. We made a determination as to whether a hand surgeon could have adequately diagnosed and treated the patients' conditions without the imaging studies. We also investigated the cost associated with these MRIs. We included 62 patients with a total of 67 MRI scans in this study. The MRI studies did not contribute to clinically diagnosing the patients' conditions in any of the cases we reviewed. The hand surgeon's clinical diagnosis disagreed with the radiologist's MRI diagnosis in 63% of patients. The MRI was unnecessary to arrive at the clinical diagnosis and did not influence the treatment offered for any of the 62 patients. The total cost for the 67 non-contrast MRI studies was approximately $53,000. Costly imaging studies are frequently done to determine the validity of a patient's reported problems; unfortunately, these tests are frequently unnecessary and waste resources. Magnetic resonance imaging scans may not be the standard for accurate diagnosis and can misdirect care. Therapeutic III. Copyright © 2012 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  16. Patch-based generation of a pseudo CT from conventional MRI sequences for MRI-only radiotherapy of the brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreasen, Daniel, E-mail: dana@dtu.dk; Van Leemput, Koen; Hansen, Rasmus H.

    Purpose: In radiotherapy (RT) based on magnetic resonance imaging (MRI) as the only modality, the information on electron density must be derived from the MRI scan by creating a so-called pseudo computed tomography (pCT). This is a nontrivial task, since the voxel-intensities in an MRI scan are not uniquely related to electron density. To solve the task, voxel-based or atlas-based models have typically been used. The voxel-based models require a specialized dual ultrashort echo time MRI sequence for bone visualization and the atlas-based models require deformable registrations of conventional MRI scans. In this study, we investigate the potential of amore » patch-based method for creating a pCT based on conventional T{sub 1}-weighted MRI scans without using deformable registrations. We compare this method against two state-of-the-art methods within the voxel-based and atlas-based categories. Methods: The data consisted of CT and MRI scans of five cranial RT patients. To compare the performance of the different methods, a nested cross validation was done to find optimal model parameters for all the methods. Voxel-wise and geometric evaluations of the pCTs were done. Furthermore, a radiologic evaluation based on water equivalent path lengths was carried out, comparing the upper hemisphere of the head in the pCT and the real CT. Finally, the dosimetric accuracy was tested and compared for a photon treatment plan. Results: The pCTs produced with the patch-based method had the best voxel-wise, geometric, and radiologic agreement with the real CT, closely followed by the atlas-based method. In terms of the dosimetric accuracy, the patch-based method had average deviations of less than 0.5% in measures related to target coverage. Conclusions: We showed that a patch-based method could generate an accurate pCT based on conventional T{sub 1}-weighted MRI sequences and without deformable registrations. In our evaluations, the method performed better than existing voxel-based and atlas-based methods and showed a promising potential for RT of the brain based only on MRI.« less

  17. Comparative silicone breast implant evaluation using mammography, sonography, and magnetic resonance imaging: experience with 59 implants.

    PubMed

    Ahn, C Y; DeBruhl, N D; Gorczyca, D P; Shaw, W W; Bassett, L W

    1994-10-01

    With the current controversy regarding the safety of silicone implants, the detection and evaluation of implant rupture are causing concern for both plastic surgeons and patients. Our study obtained comparative value analysis of mammography, sonography, and magnetic resonance imaging (MRI) in the detection of silicone implant rupture. Twenty-nine symptomatic patients (total of 59 silicone implants) were entered into the study. Intraoperative findings revealed 21 ruptured implants (36 percent). During physical examination, a positive "squeeze test" was highly suggestive of implant rupture. Mammograms were obtained of 51 implants (sensitivity 11 percent, specificity 89 percent). Sonography was performed on 57 implants (sensitivity 70 percent, specificity 92 percent). MRI was performed on 55 implants (sensitivity 81 percent, specificity 92 percent). Sonographically, implant rupture is demonstrated by the "stepladder sign." Double-lumen implants may appear as false-positive results for rupture on sonography. On MRI, the "linguine sign" represents disrupted fragments of a ruptured implant. The most reliable imaging modality for implant rupture detection is MRI, followed by sonogram. Mammogram is the least reliable. Our study supports the clinical indication and diagnostic value of sonogram and MRI in the evaluation of symptomatic breast implant patients.

  18. Susceptibility-weighted imaging at 7 T: Improved diagnosis of cerebral cavernous malformations and associated developmental venous anomalies☆☆☆

    PubMed Central

    Frischer, Josa M.; Göd, Sabine; Gruber, Andreas; Saringer, Walter; Grabner, Günther; Gatterbauer, Brigitte; Kitz, Klaus; Holzer, Sabrina; Kronnerwetter, Claudia; Hainfellner, Johannes A.; Knosp, Engelbert; Trattnig, Siegfried

    2012-01-01

    Background and aim In the diagnosis of cerebral cavernous malformations (CCMs) magnetic resonance imaging is established as the gold standard. Conventional MRI techniques have their drawbacks in the diagnosis of CCMs and associated venous malformations (DVAs). The aim of our study was to evaluate susceptibility weighted imaging SWI for the detection of CCM and associated DVAs at 7 T in comparison with 3 T. Patients and methods 24 patients (14 female, 10 male; median age: 38.3 y (21.1 y–69.1 y) were included in the study. Patients enrolled in the study received a 3 T and a 7 T MRI on the same day. The following sequences were applied on both field strengths: a T1 weighted 3D GRE sequence (MP-RAGE) and a SWI sequence. After obtaining the study MRIs, eleven patients underwent surgery and 13 patients were followed conservatively or were treated radio-surgically. Results Patients initially presented with haemorrhage (n = 4, 16.7%), seizures (n = 2, 8.3%) or other neurology (n = 18, 75.0%). For surgical resected lesions histopathological findings verified the diagnosis of CCMs. A significantly higher number of CCMs was diagnosed at 7 T SWI sequences compared with 3 T SWI (p < 0.05). Additionally diagnosed lesions on 7 T MRI were significantly smaller compared to the initial lesions on 3 T MRIs (p < 0.001). Further, more associated DVAs were diagnosed at 7 T MRI compared to 3 T MRI. Conclusion SWI sequences at ultra-high-field MRI improve the diagnosis of CCMs and associated DVAs and therefore add important pre-operative information. PMID:24179744

  19. Change in brain and lesion volumes after CEE therapies: the WHIMS-MRI studies.

    PubMed

    Coker, Laura H; Espeland, Mark A; Hogan, Patricia E; Resnick, Susan M; Bryan, R Nick; Robinson, Jennifer G; Goveas, Joseph S; Davatzikos, Christos; Kuller, Lewis H; Williamson, Jeff D; Bushnell, Cheryl D; Shumaker, Sally A

    2014-02-04

    To determine whether smaller brain volumes in older women who had completed Women's Health Initiative (WHI)-assigned conjugated equine estrogen-based hormone therapy (HT), reported by WHI Memory Study (WHIMS)-MRI, correspond to a continuing increased rate of atrophy an average of 6.1 to 7.7 years later in WHIMS-MRI2. A total of 1,230 WHI participants were contacted: 797 (64.8%) consented, and 729 (59%) were rescanned an average of 4.7 years after the initial MRI scan. Mean annual rates of change in total brain volume, the primary outcome, and rates of change in ischemic lesion volumes, the secondary outcome, were compared between treatment groups using mixed-effect models with adjustment for trial, clinical site, age, intracranial volumes, and time between MRI measures. Total brain volume decreased an average of 3.22 cm(3)/y in the active arm and 3.07 cm(3)/y in the placebo arm (p = 0.53). Total ischemic lesion volumes increased in both arms at a rate of 0.12 cm(3)/y (p = 0.88). Conjugated equine estrogen-based postmenopausal HT, previously assigned at WHI baseline, did not affect rates of decline in brain volumes or increases in brain lesion volumes during the 4.7 years between the initial and follow-up WHIMS-MRI studies. Smaller frontal lobe volumes were observed as persistent group differences among women assigned to active HT compared with placebo. Women with a history of cardiovascular disease treated with active HT, compared with placebo, had higher rates of accumulation in white matter lesion volume and total brain lesion volume. Further study may elucidate mechanisms that explain these findings.

  20. Wideband late gadolinium enhanced magnetic resonance imaging for imaging myocardial scar without image artefacts induced by implantable cardioverter-defibrillator: a feasibility study at 3 T

    PubMed Central

    Ranjan, Ravi; McGann, Christopher J.; Jeong, Eun-Kee; Hong, KyungPyo; Kholmovski, Eugene G.; Blauer, Josh; Wilson, Brent D.; Marrouche, Nassir F.; Kim, Daniel

    2015-01-01

    Aim Late gadolinium enhanced (LGE) magnetic resonance imaging (MRI) is a useful tool for facilitating ventricular tachycardia (VT) ablation. Unfortunately, most VT ablation candidates often have prophylactic implantable cardioverter-defibrillator (ICD) and do not undergo cardiac MRI largely due to image artefacts generated by ICD. A prior study has reported success of ‘wideband’ LGE MRI for imaging myocardial scar without image artefacts induced by ICD at 1.5T. The purpose of this study was to widen the availability of wideband LGE MRI to 3T, since it has the potential to achieve higher spatial resolution than 1.5T. Methods and results We compared the performance of standard and wideband LGE MRI pulse sequences in phantoms and canines with myocardial lesions created by radiofrequency ablation. Standard LGE MRI produced image artefacts induced by ICD and 49% accuracy in detecting 97 myocardial scars examined in this study, whereas wideband LGE MRI produced artefact-free images and 94% accuracy in detecting scars. The mean image quality score (1 = nondiagnostic, 2 = poor, 3 = adequate, 4 = good, 5 = excellent) was significantly (P < 0.001) higher for wideband (3.7 ± 0.8) than for standard LGE MRI (2.1 ± 0.7). The mean artefact level score (1 = minimal, 2 = mild, 3 = moderate, 4 = severe, 5 = nondiagnostic) was significantly (P < 0.001) lower for wideband (2.1 ± 0.8) than for standard LGE MRI (4.0 ± 0.6). Wideband LGE MRI agreed better with gross pathology than standard LGE MRI. Conclusion This study demonstrates the feasibility of wideband LGE MRI for suppression of image artefacts induced by ICD at 3T. PMID:25336666

  1. Transvaginal ultrasound versus magnetic resonance imaging for preoperative assessment of myometrial infiltration in patients with endometrial cancer: a systematic review and meta-analysis.

    PubMed

    Alcázar, Juan Luis; Gastón, Begoña; Navarro, Beatriz; Salas, Rocío; Aranda, Juana; Guerriero, Stefano

    2017-11-01

    To compare the diagnostic accuracy of transvaginal ultrasound (TVS) and magnetic resonance imaging (MRI) for detecting myometrial infiltration (MI) in endometrial carcinoma. An extensive search of papers comparing TVS and MRI in assessing MI in endometrial cancer was performed in MEDLINE (PubMed), Web of Science, and Cochrane Database from January 1989 to January 2017. Quality was assessed using Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool. Our extended search identified 747 citations but after exclusions we finally included in the meta-analysis 8 articles. The risk of bias for most studies was low for most 4 domains assessed in QUADAS-2. Overall, pooled estimated sensitivity and specificity for diagnosing deep MI were 75% (95% confidence interval [CI]=67%-82%) and 82% (95% CI=75%-93%) for TVS, and 83% (95% CI=76%-89%) and 82% (95% CI=72%-89%) for MRI, respectively. No statistical differences were found when comparing both methods (p=0.314). Heterogeneity was low for sensitivity and high for specificity for TVS and MRI. MRI showed a better sensitivity than TVS for detecting deep MI in women with endometrial cancer. However, the difference observed was not statistically significant. Copyright © 2017. Asian Society of Gynecologic Oncology, Korean Society of Gynecologic Oncology

  2. Transvaginal ultrasound versus magnetic resonance imaging for preoperative assessment of myometrial infiltration in patients with endometrial cancer: a systematic review and meta-analysis

    PubMed Central

    2017-01-01

    Objective To compare the diagnostic accuracy of transvaginal ultrasound (TVS) and magnetic resonance imaging (MRI) for detecting myometrial infiltration (MI) in endometrial carcinoma. Methods An extensive search of papers comparing TVS and MRI in assessing MI in endometrial cancer was performed in MEDLINE (PubMed), Web of Science, and Cochrane Database from January 1989 to January 2017. Quality was assessed using Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool. Results Our extended search identified 747 citations but after exclusions we finally included in the meta-analysis 8 articles. The risk of bias for most studies was low for most 4 domains assessed in QUADAS-2. Overall, pooled estimated sensitivity and specificity for diagnosing deep MI were 75% (95% confidence interval [CI]=67%–82%) and 82% (95% CI=75%–93%) for TVS, and 83% (95% CI=76%–89%) and 82% (95% CI=72%–89%) for MRI, respectively. No statistical differences were found when comparing both methods (p=0.314). Heterogeneity was low for sensitivity and high for specificity for TVS and MRI. Conclusion MRI showed a better sensitivity than TVS for detecting deep MI in women with endometrial cancer. However, the difference observed was not statistically significant. PMID:29027404

  3. Study of tonotopic brain changes with functional MRI and FDG-PET in a patient with unilateral objective cochlear tinnitus.

    PubMed

    Guinchard, A-C; Ghazaleh, Naghmeh; Saenz, M; Fornari, E; Prior, J O; Maeder, P; Adib, S; Maire, R

    2016-11-01

    We studied possible brain changes with functional MRI (fMRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) in a patient with a rare, high-intensity "objective tinnitus" (high-level SOAEs) in the left ear of 10 years duration, with no associated hearing loss. This is the first case of objective cochlear tinnitus to be investigated with functional neuroimaging. The objective cochlear tinnitus was measured by Spontaneous Otoacoustic Emissions (SOAE) equipment (frequency 9689 Hz, intensity 57 dB SPL) and is clearly audible to anyone standing near the patient. Functional modifications in primary auditory areas and other brain regions were evaluated using 3T and 7T fMRI and FDG-PET. In the fMRI evaluations, a saturation of the auditory cortex at the tinnitus frequency was observed, but the global cortical tonotopic organization remained intact when compared to the results of fMRI of healthy subjects. The FDG-PET showed no evidence of an increase or decrease of activity in the auditory cortices or in the limbic system as compared to normal subjects. In this patient with high-intensity objective cochlear tinnitus, fMRI and FDG-PET showed no significant brain reorganization in auditory areas and/or in the limbic system, as reported in the literature in patients with chronic subjective tinnitus. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Cerebellar Gray Matter Density in Females with ADHD Combined Type: A Cross-Sectional Voxel-Based Morphometry Study

    ERIC Educational Resources Information Center

    Almeida Montes, Luis Guillermo; Ricardo-Garcell, Josefina; De la Torre, Lazaro Barajas; Prado Alcantara, Hugo; Martinez Garcia, Reyna Beatriz; Avila Acosta, David; Fernandez Bouzas, Antonio

    2011-01-01

    Background: MRI studies have shown a decreased cerebellum volume in individuals with ADHD. However, most of these studies were conducted with male children, many of whom were medicated with stimulants. As such, unmedicated, non-White girls are underrepresented in such MRI studies. Objective: The aim of the present study was to compare the density…

  5. Relationship Between Clinical and Immunological Features with Magnetic Resonance Imaging Abnormalities in Female Patients with Neuropsychiatric Systemic Lupus Erythematosus

    PubMed Central

    Wang, Hai-Peng; Wang, Cui-Yan; Pan, Zheng-Lun; Zhao, Jun-Yu; Zhao, Bin

    2016-01-01

    Background: Conventional magnetic resonance imaging (MRI) is the preferred neuroimaging method in the evaluation of neuropsychiatric systemic lupus erythematosus (NPSLE). The purpose of this study was to investigate the association between clinical and immunological features with MRI abnormalities in female patients with NPSLE, to screen for the value of conventional MRI in NPSLE. Methods: A total of 59 female NPSLE patients with conventional MRI examinations were enrolled in this retrospective study. All patients were classified into different groups according to MRI abnormalities. Both clinical and immunological features were compared between MRI abnormal and normal groups. One-way analysis of variance was used to compare the systemic lupus erythematosus disease activity index (SLEDAI) score for MRI abnormalities. Multivariate logistic regression analysis investigated the correlation between immunological features, neuropsychiatric manifestations, and MRI abnormalities. Results: Thirty-six NPSLE patients (61%) showed a variety of MRI abnormalities. There were statistically significant differences in SLEDAI scores (P < 0.001), incidence of neurologic disorders (P = 0.001), levels of 24-h proteinuria (P = 0.001) and immunoglobulin M (P = 0.004), and incidence of acute confusional state (P = 0.002), cerebrovascular disease (P = 0.004), and seizure disorder (P = 0.028) between MRI abnormal and normal groups. In the MRI abnormal group, SLEDAI scores for cerebral atrophy (CA), cortex involvement, and restricted diffusion (RD) were much higher than in the MRI normal group (P < 0.001, P = 0.002, P = 0.038, respectively). Statistically significant positive correlations between seizure disorder and cortex involvement (odds ratio [OR] = 14.90; 95% confidence interval [CI], 1.50–151.70; P = 0.023) and cerebrovascular disease and infratentorial involvement (OR = 10.00; 95% CI, 1.70–60.00; P = 0.012) were found. Conclusions: MRI abnormalities in NPSLE, especially CA, cortex involvement, and RD might be markers of high systemic lupus erythematosus activity. Some MRI abnormalities might correspond to neuropsychiatric manifestations and might be helpful in understanding the pathophysiology of NPSLE. PMID:26904988

  6. A general probabilistic model for group independent component analysis and its estimation methods

    PubMed Central

    Guo, Ying

    2012-01-01

    SUMMARY Independent component analysis (ICA) has become an important tool for analyzing data from functional magnetic resonance imaging (fMRI) studies. ICA has been successfully applied to single-subject fMRI data. The extension of ICA to group inferences in neuroimaging studies, however, is challenging due to the unavailability of a pre-specified group design matrix and the uncertainty in between-subjects variability in fMRI data. We present a general probabilistic ICA (PICA) model that can accommodate varying group structures of multi-subject spatio-temporal processes. An advantage of the proposed model is that it can flexibly model various types of group structures in different underlying neural source signals and under different experimental conditions in fMRI studies. A maximum likelihood method is used for estimating this general group ICA model. We propose two EM algorithms to obtain the ML estimates. The first method is an exact EM algorithm which provides an exact E-step and an explicit noniterative M-step. The second method is an variational approximation EM algorithm which is computationally more efficient than the exact EM. In simulation studies, we first compare the performance of the proposed general group PICA model and the existing probabilistic group ICA approach. We then compare the two proposed EM algorithms and show the variational approximation EM achieves comparable accuracy to the exact EM with significantly less computation time. An fMRI data example is used to illustrate application of the proposed methods. PMID:21517789

  7. Cervical soft tissue imaging using a mobile CBCT scanner with a flat panel detector in comparison with corresponding CT and MRI data sets.

    PubMed

    Heiland, Max; Pohlenz, Philipp; Blessmann, Marco; Habermann, Christian R; Oesterhelweg, Lars; Begemann, Philipp C; Schmidgunst, Christian; Blake, Felix A S; Püschel, Klaus; Schmelzle, Rainer; Schulze, Dirk

    2007-12-01

    The aim of this study was to evaluate soft tissue image quality of a mobile cone-beam computed tomography (CBCT) scanner with an integrated flat-panel detector. Eight fresh human cadavers were used in this study. For evaluation of soft tissue visualization, CBCT data sets and corresponding computed tomography (CT) and magnetic resonance imaging (MRI) data sets were acquired. Evaluation was performed with the help of 10 defined cervical anatomical structures. The statistical analysis of the scoring results of 3 examiners revealed the CBCT images to be of inferior quality regarding the visualization of most of the predefined structures. Visualization without a significant difference was found regarding the demarcation of the vertebral bodies and the pyramidal cartilages, the arteriosclerosis of the carotids (compared with CT), and the laryngeal skeleton (compared with MRI). Regarding arteriosclerosis of the carotids compared with MRI, CBCT proved to be superior. The integration of a flat-panel detector improves soft tissue visualization using a mobile CBCT scanner.

  8. Idiopathic granulomatous mastitis: magnetic resonance imaging findings with diffusion MRI.

    PubMed

    Aslan, Hulya; Pourbagher, Aysin; Colakoglu, Tamer

    2016-07-01

    Idiopathic granulomatous mastitis (IGM) is a rare benign breast disease with unknown etiology which can mimic breast carcinoma, both clinically and radiologically. Magnetic resonance imaging (MRI) findings of IGM have been previously described; however there is no study evaluating diffusion-weighted MRI findings of IGM. To analyze conventional, dynamic contrast-enhanced, and diffusion-weighted MRI signal characteristics of IGM by comparing it with the contralateral normal breast parenchyma. A total of 39 patients were included in the study. On dynamic contrast-enhanced MRI, the distribution and enhancement patterns of the lesions were evaluated. We also detected the frequencies of involving quadrants, retroareolar involvement, accompanying abscess, and skin edema. T2-weighted (T2W) and STIR signal intensities and both mean and minimum apparent diffusion coefficient (ADC) values were compared with the contralateral normal parenchyma. IGM showed significantly lower mean and minimum ADC values when compared with the normal parenchyma. Signal intensities on T2W and STIR sequences of the lesion were significantly higher than the normal parenchyma. On dynamic contrast-enhanced MRI, 7.7% of the patients had mass-like contrast enhancement, 92.3% of the patients had non-mass-like contrast enhancement. Abscess was positive in 33.3% of the patients. As a result, IGM showed commonly non-mass-like lesions with restricted diffusion. Although it is a benign pathology, it may show clustered ring-like enhancement like malignant lesions. © The Foundation Acta Radiologica 2015.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Kenji; Fuma, Kazuya; Tabata, Kaori

    Magnetic resonance imaging (MRI) is a minimally invasive way to provide high spatial resolution tomograms. However, MRI has been considered to be useless for gene expression imaging compared to optical imaging. In this study, we used a ferritin reporter, binding with biogenic iron, to make it a powerful tool for gene expression imaging in MRI studies. GL261 mouse glioma cells were over-expressed with dual-reporter ferritin-DsRed under {beta}-actin promoter, then gene expression was observed by optical imaging and MRI in a brain tumor model. GL261 cells expressing ferritin-DsRed fusion protein showed enhanced visualizing effect by reducing T2-weighted signal intensity for inmore » vitro and in vivo MRI studies, as well as DsRed fluorescence for optical imaging. Furthermore, a higher contrast was achieved on T2-weighted images when permeating the plasma membrane of ferritin-DsRed-expressing GL261. Thus, a ferritin expression vector can be used as an MRI reporter to monitor in vivo gene expression.« less

  10. Feasibility study using MRI and two optical CT scanners for readout of polymer gel and PresageTM

    NASA Astrophysics Data System (ADS)

    Svensson, H.; Skyt, P. S.; Ceberg, S.; Doran, S.; Muren, L. P.; Balling, P.; Petersen, J. B. B.; Bäck, S. Å. J.

    2013-06-01

    The aim of this study was to compare the conventional combination of three-dimensional dosimeter (nPAG gel) and readout method (MRI) with other combinations of three-dimensional dosimeters (nPAG gel/PresageTM) and readout methods (optical CT scanners). In the first experiment, the dose readout of a gel irradiated with a four field-box technique was performed with both an Octopus IQ scanner and MRI. It was seen that the MRI readout agreed slightly better to the TPS. In another experiment, a gel and a PresageTM sample were irradiated with a VMAT field and read out using MRI and a fast laser scanner, respectively. A comparison between the TPS and the volumes revealed that the MRI/gel readout had closer resemblance to the TPS than the optical CT/PresageTM readout. There are clearly potential in the evaluated optical CT scanners, but more time has to be invested in the particular scanning scenario than was possible in this study.

  11. Clinical Utility of Magnetic Resonance Imaging (MRI) and Ultrasonography (US) for Diagnosis of Polycystic Ovary Syndrome (PCOS) in Adolescent Girls

    PubMed Central

    Kenigsberg, Lisa E; Agarwal, Chhavi; Sin, Sanghun; Shifteh, Keivan; Isasi, Carmen R; Crespi, Rebecca; Ivanova, Janeta; Coupey, Susan M; Heptulla, Rubina A; Arens, Raanan

    2015-01-01

    Objectives Evaluate ovarian morphology using 3-dimensional MRI in adolescent girls with and without PCOS. Compare the utility of MRI versus ultrasonography (US) for diagnosis of PCOS Design Cross-sectional Setting Urban academic tertiary-care children’s hospital Patients Thirty-nine adolescent girls with untreated PCOS and 22 age/BMI-matched controls. Intervention MRI and/or transvaginal/transabdominal US Main Outcome Measure Ovarian volume (OV); follicle number per section (FNPS); correlation between OV on MRI and US; proportion of subjects with features of polycystic ovaries on MRI and US. Results MRI demonstrated larger OV and higher FNPS in subjects with PCOS compared to controls. Within the PCOS group, median OV was 11.9 (7.7) cm3 by MRI, compared with 8.8 (7.8) cm3 by US. Correlation coefficient between OV by MRI and US was 0.701. Due to poor resolution, FNPS could not be determined by US or compared with MRI. ROC curve analysis for MRI demonstrated that increasing volume cut-offs for polycystic ovaries from 10cm3 to 14cm3, increased specificity from 77% to 95%. For FNPS on MRI, specificity increased from 82% to 98% by increasing cut-offs from ≥12 to ≥17. Using Rotterdam cut-offs, 91% of subjects with PCOS met polycystic ovary criteria on MRI, while only 52% met criteria by US. Conclusions US measures smaller OV than MRI, cannot accurately detect follicle number, and is a poor imaging modality for characterizing polycystic ovaries in adolescents with suspected PCOS. For adolescents in whom diagnosis of PCOS remains uncertain after clinical and laboratory evaluation, MRI should be considered as a diagnostic imaging modality. PMID:26354095

  12. In Vivo Performance of a Novel Fluorinated Magnetic Resonance Imaging Agent for Functional Analysis of Bile Acid Transport

    PubMed Central

    2015-01-01

    A novel trifluorinated cholic acid derivative, CA-lys-TFA, was designed and synthesized for use as a tool to measure bile acid transport noninvasively using magnetic resonance imaging (MRI). In the present study, the in vivo performance of CA-lys-TFA for measuring bile acid transport by MRI was investigated in mice. Gallbladder CA-lys-TFA content was quantified using MRI and liquid chromatography/tandem mass spectrometry. Results in wild-type (WT) C57BL/6J mice were compared to those in mice lacking expression of Asbt, the ileal bile acid transporter. 19F signals emanating from the gallbladders of WT mice 7 h after oral gavage with 150 mg/kg CA-lys-TFA were reproducibly detected by MRI. Asbt-deficient mice administered the same dose had undetectable 19F signals by MRI, and gallbladder bile CA-lys-TFA levels were 30-fold lower compared to WT animals. To our knowledge, this represents the first report of in vivo imaging of an orally absorbed drug using 19F MRI. Fluorinated bile acid analogues have potential as tools to measure and detect abnormal bile acid transport by MRI. PMID:24708306

  13. Staging performance of whole-body DWI, PET/CT and PET/MRI in invasive ductal carcinoma of the breast.

    PubMed

    Catalano, Onofrio Antonio; Daye, Dania; Signore, Alberto; Iannace, Carlo; Vangel, Mark; Luongo, Angelo; Catalano, Marco; Filomena, Mazzeo; Mansi, Luigi; Soricelli, Andrea; Salvatore, Marco; Fuin, Niccolo; Catana, Ciprian; Mahmood, Umar; Rosen, Bruce Robert

    2017-07-01

    The aim of the present study was to evaluate the performance of whole-body diffusion-weighted imaging (WB-DWI), whole-body positron emission tomography with computed tomography (WB-PET/CT), and whole-body positron emission tomography with magnetic resonance imaging (WB-PET/MRI) in staging patients with untreated invasive ductal carcinoma of the breast. Fifty-one women with newly diagnosed invasive ductal carcinoma of the breast underwent WB-DWI, WB-PET/CT and WB-PET/MRI before treatment. A radiologist and a nuclear medicine physician reviewed in consensus the images from the three modalities and searched for occurrence, number and location of metastases. Final staging, according to each technique, was compared. Pathology and imaging follow-up were used as the reference. WB-DWI, WB-PET/CT and WB-PET/MRI correctly and concordantly staged 33/51 patients: stage IIA in 7 patients, stage IIB in 8 patients, stage IIIC in 4 patients and stage IV in 14 patients. WB-DWI, WB-PET/CT and WB-PET/MRI incorrectly and concordantly staged 1/51 patient as stage IV instead of IIIA. Discordant staging was reported in 17/51 patients. WB-PET/MRI resulted in improved staging when compared to WB-PET/CT (50 correctly staged on WB-PET/MRI vs. 38 correctly staged on WB-PET/CT; McNemar's test; p<0.01). Comparing the performance of WB-PET/MRI and WB-DWI (43 correct) did not reveal a statistically significant difference (McNemar test, p=0.14). WB-PET/MRI is more accurate in the initial staging of breast cancer than WB-DWI and WB-PET/CT, however, the discrepancies between WB-PET/MRI and WB-DWI were not statistically significant. When available, WB-PET/MRI should be considered for staging patient with invasive ductal breast carcinoma.

  14. The usefulness of (18)F-FDG PET/MRI fusion image in diagnosing pancreatic tumor: comparison with (18)F-FDG PET/CT.

    PubMed

    Nagamachi, Shigeki; Nishii, Ryuichi; Wakamatsu, Hideyuki; Mizutani, Youichi; Kiyohara, Shogo; Fujita, Seigo; Futami, Shigemi; Sakae, Tatefumi; Furukoji, Eiji; Tamura, Shozo; Arita, Hideo; Chijiiwa, Kazuo; Kawai, Keiichi

    2013-07-01

    This study aimed at demonstrating the feasibility of retrospectively fused (18)F FDG-PET and MRI (PET/MRI fusion image) in diagnosing pancreatic tumor, in particular differentiating malignant tumor from benign lesions. In addition, we evaluated additional findings characterizing pancreatic lesions by FDG-PET/MRI fusion image. We analyzed retrospectively 119 patients: 96 cancers and 23 benign lesions. FDG-PET/MRI fusion images (PET/T1 WI or PET/T2WI) were made by dedicated software using 1.5 Tesla (T) MRI image and FDG-PET images. These images were interpreted by two well-trained radiologists without knowledge of clinical information and compared with FDG-PET/CT images. We compared the differential diagnostic capability between PET/CT and FDG-PET/MRI fusion image. In addition, we evaluated additional findings such as tumor structure and tumor invasion. FDG-PET/MRI fusion image significantly improved accuracy compared with that of PET/CT (96.6 vs. 86.6 %). As additional finding, dilatation of main pancreatic duct was noted in 65.9 % of solid types and in 22.6 % of cystic types, on PET/MRI-T2 fusion image. Similarly, encasement of adjacent vessels was noted in 43.1 % of solid types and in 6.5 % of cystic types. Particularly in cystic types, intra-tumor structures such as mural nodule (35.4 %) or intra-cystic septum (74.2 %) were detected additionally. Besides, PET/MRI-T2 fusion image could detect extra benign cystic lesions (9.1 % in solid type and 9.7 % in cystic type) that were not noted by PET/CT. In diagnosing pancreatic lesions, FDG-PET/MRI fusion image was useful in differentiating pancreatic cancer from benign lesions. Furthermore, it was helpful in evaluating relationship between lesions and surrounding tissues as well as in detecting extra benign cysts.

  15. SU-F-P-26: Study of Radiation Dose Evaluation for Organs at Risk Using MRI in Intensity Modulated Radiation Therapy for Nasopharyngeal Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, G; Guo, Y; Yin, Y

    Purpose: To study the contour and dosimetric feature of organs at risk (OARs) applying magnetic resonance imaging (MRI) images in intensity modulated radiation therapy (IMRT) of nasopharyngeal carcinoma (NPC) compared to computed tomography (CT) images. Methods: 35 NPC patients was selected into this trail. CT simulation with non-contrast and contrast enhanced scan, MRI simulation with non-contrast and contrast enhanced T1, T2 and diffusion weighted imaging were achieved sequentially. And the OARs were contoured on the CT and MRI images after rigid registration respectively. 9 beams IMRT plan with equal division angle were designed for every patients, and the prescription dosemore » for tumor target was set as 72Gy (2.4Gy/ fration). The boundary display, volume and dose-volume indices of each organ were compared between on MRI and CT images. Results: Compared to CT, MRI showed clearer boundary of brainstem, spinal cord, the deep lobe of Parotid gland and the optical nerve in canal. MRI images increase the volume of lens, optical nerve, while reducing the volume of eye slightly, and the maximum dose of lens, the mean dose of eyes and optical raised in different percentage, while there was no statistical differences were found. The left and right parotid volume on MRI increased by 7.07%, 8.13%, and the mean dose raised by 14.95% (4.01Gy), 18.76% (4.95Gy) with statistical significant difference (p<0.05). The brainstem volume reduced by 9.33% (p<0.05), and the dose of 0.1cm3 volume (D0.1cm3) reduced by mean 8.46% (4.32Gy), and D0.1cm3 of spinal cord increased by 1.5Gy on MRI. Conclusion: It is credible to evaluate the radiation dose of lens, eye and the spinal cord, while it should be necessary to evaluate the dose of brainstem, parotid and the optical nerve applying MRI images sometime, it will be more meaningful for these organs with high risk of radiation injury.« less

  16. Dynamic contrast-enhanced magnetic resonance imaging parameters correlate with advanced revised-ISS and angiopoietin-1/angiopoietin-2 ratio in patients with multiple myeloma.

    PubMed

    Terpos, Evangelos; Matsaridis, Dimitris; Koutoulidis, Vassilis; Zagouri, Flora; Christoulas, Dimitrios; Fontara, Sophia; Panourgias, Evangelia; Gavriatopoulou, Maria; Kastritis, Efstathios; Dimopoulos, Meletios A; Moulopoulos, Lia A

    2017-10-01

    The aim of the study was to assess the value of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in patients with newly diagnosed multiple myeloma (MM) who were treated with novel anti-myeloma agents. We studied 60 previously untreated MM patients at diagnosis, 14 with smoldering MM (SMM) and 5 with MGUS. All patients underwent MRI of the thoracolumbar spine and pelvis before the administration of any kind of therapy, and DCE-MRI was performed. The MRI perfusion parameters evaluated were wash-in (WIN), washout (WOUT), time-to-peak (TTPK), time-to-maximum slope (TMSP), and the WIN/TMSP ratio. The following serum levels of angiogenic cytokines were measured on the day of MRI: VEGF, angiogenin (Ang), angiopoietin-1 (Angp-1), and -2 (Angp-2). Symptomatic MM patients had increased WIN compared to SMM (p < 0.05) and MGUS patients (p = 0.001). TTPK was decreased, and WIN/TMSP was increased in both symptomatic and SMM patients compared to MGUS patients (p < 0.05). Symptomatic MM patients had decreased TMSP compared to MGUS patients. The Angp-1/Angp-2 ratio was reduced in symptomatic MM compared to SMM (p = 0.017) and MGUS patients (p < 0.001). TTPK correlated with Angp-1/Angp-2 ratio and importantly with R-ISS. Patients with R-ISS-3 had lower TTPK median value (23 s, range 18-29 s) compared to patients with R-ISS-2 (48 s, range 27-68 s) and patients with R-ISS-1 MM (54 s, range 42-76 s; p ANOVA = 0.01). A subset of patients with low TTPK (lower quartile) had shorter time to progression compared to all other patients. These data suggest that certain DCE-MRI parameters correlate with R-ISS and adverse prognostic features of angiogenesis, such as the ratio of Angp-1/Angp-2.

  17. A prospective study on MRI findings and prognostic factors in athletes with MTSS.

    PubMed

    Moen, M H; Schmikli, S L; Weir, A; Steeneken, V; Stapper, G; de Slegte, R; Tol, J L; Backx, F J G

    2014-02-01

    In medial tibial stress syndrome (MTSS) bone marrow and periosteal edema of the tibia on the magnetic resonance imaging (MRI) is frequently reported. The relationship between these MRI findings and recovery has not been previously studied. This prospective study describes MRI findings of 52 athletes with MTSS. Baseline characteristics were recorded and recovery was related to these parameters and MRI findings to examine for prognostic factors. Results showed that 43.5% of the symptomatic legs showed bone marrow or periosteal edema. Absence of periosteal and bone marrow edema on MRI was associated with longer recovery (P = 0.033 and P = 0.013). A clinical scoring system for sports activity (SARS score) was significantly higher in the presence of bone marrow edema (P = 0.027). When clinical scoring systems (SARS score and the Lower Extremity Functional Scale) were combined in a model, time to recovery could be predicted substantially (explaining 54% of variance, P = 0.006). In conclusion, in athletes with MTSS, bone marrow or periosteal edema is seen on MRI in 43,5% of the symptomatic legs. Furthermore, periosteal and bone marrow edema on MRI and clinical scoring systems are prognostic factors. Future studies should focus on MRI findings in symptomatic MTSS and compare these with a matched control group. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Ischemic Stroke Patients Demonstrate Increased Carotid Plaque Microvasculature Compared to (Ocular) Transient Ischemic Attack Patients

    PubMed Central

    van Hoof, Raf H.M.; Schreuder, Floris H.B.M.; Nelemans, Patty; Truijman, Martine T.B.; van Orshoven, Narender P.; Schreuder, Tobien H.; Mess, Werner H.; Heeneman, Sylvia; van Oostenbrugge, Robert J.; Wildberger, Joachim E.; Kooi, M. Eline

    2017-01-01

    Background Patients with a recent ischemic stroke have a higher risk of recurrent stroke compared to (ocular) transient ischemic attack (TIA) patients. Plaque microvasculature is considered as a feature of plaque vulnerability and can be quantified with carotid dynamic contrast-enhanced MRI (DCE-MRI). The purpose of this cross-sectional study was to explore the association between plaque microvasculature and the type of recent cerebrovascular events in symptomatic patients with mild-to-moderate carotid stenosis. Methods A total of 87 symptomatic patients with a recent stroke (n = 35) or (ocular) TIA (n = 52) underwent carotid DCE-MRI examination. Plaque microvasculature was studied in the vessel wall and adventitia using DCE-MRI and the pharmacokinetic modeling parameter Ktrans. Statistical analysis was performed with logistic regression, correcting for associated clinical risk factors. Results The 75th percentile adventitial (OR 1.97, 95% CI 1.18–3.29) Ktrans was significantly associated with a recent ischemic stroke compared to (ocular) TIA in multivariate analysis, while clinical risk factors were not significantly associated with the type of event. Conclusions This study indicates a positive association of leaky plaque microvasculature with a recent ischemic stroke compared to (ocular) TIA. Prospective longitudinal studies are needed to investigate whether Ktrans or other plaque characteristics may serve as an imaging marker for predicting (the type of) future cerebrovascular events. PMID:28946147

  19. Lean body mass correction of standardized uptake value in simultaneous whole-body positron emission tomography and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Jochimsen, Thies H.; Schulz, Jessica; Busse, Harald; Werner, Peter; Schaudinn, Alexander; Zeisig, Vilia; Kurch, Lars; Seese, Anita; Barthel, Henryk; Sattler, Bernhard; Sabri, Osama

    2015-06-01

    This study explores the possibility of using simultaneous positron emission tomography—magnetic resonance imaging (PET-MRI) to estimate the lean body mass (LBM) in order to obtain a standardized uptake value (SUV) which is less dependent on the patients' adiposity. This approach is compared to (1) the commonly-used method based on a predictive equation for LBM, and (2) to using an LBM derived from PET-CT data. It is hypothesized that an MRI-based correction of SUV provides a robust method due to the high soft-tissue contrast of MRI. A straightforward approach to calculate an MRI-derived LBM is presented. It is based on the fat and water images computed from the two-point Dixon MRI primarily used for attenuation correction in PET-MRI. From these images, a water fraction was obtained for each voxel. Averaging over the whole body yielded the weight-normalized LBM. Performance of the new approach in terms of reducing variations of 18F-Fludeoxyglucose SUVs in brain and liver across 19 subjects was compared with results using predictive methods and PET-CT data to estimate the LBM. The MRI-based method reduced the coefficient of variation of SUVs in the brain by 41  ± 10% which is comparable to the reduction by the PET-CT method (35  ± 10%). The reduction of the predictive LBM method was 29  ± 8%. In the liver, the reduction was less clear, presumably due to other sources of variation. In conclusion, employing the Dixon data in simultaneous PET-MRI for calculation of lean body mass provides a brain SUV which is less dependent on patient adiposity. The reduced dependency is comparable to that obtained by CT and predictive equations. Therefore, it is more comparable across patients. The technique does not impose an overhead in measurement time and is straightforward to implement.

  20. Lean body mass correction of standardized uptake value in simultaneous whole-body positron emission tomography and magnetic resonance imaging.

    PubMed

    Jochimsen, Thies H; Schulz, Jessica; Busse, Harald; Werner, Peter; Schaudinn, Alexander; Zeisig, Vilia; Kurch, Lars; Seese, Anita; Barthel, Henryk; Sattler, Bernhard; Sabri, Osama

    2015-06-21

    This study explores the possibility of using simultaneous positron emission tomography--magnetic resonance imaging (PET-MRI) to estimate the lean body mass (LBM) in order to obtain a standardized uptake value (SUV) which is less dependent on the patients' adiposity. This approach is compared to (1) the commonly-used method based on a predictive equation for LBM, and (2) to using an LBM derived from PET-CT data. It is hypothesized that an MRI-based correction of SUV provides a robust method due to the high soft-tissue contrast of MRI. A straightforward approach to calculate an MRI-derived LBM is presented. It is based on the fat and water images computed from the two-point Dixon MRI primarily used for attenuation correction in PET-MRI. From these images, a water fraction was obtained for each voxel. Averaging over the whole body yielded the weight-normalized LBM. Performance of the new approach in terms of reducing variations of (18)F-Fludeoxyglucose SUVs in brain and liver across 19 subjects was compared with results using predictive methods and PET-CT data to estimate the LBM. The MRI-based method reduced the coefficient of variation of SUVs in the brain by 41 ± 10% which is comparable to the reduction by the PET-CT method (35 ± 10%). The reduction of the predictive LBM method was 29 ± 8%. In the liver, the reduction was less clear, presumably due to other sources of variation. In conclusion, employing the Dixon data in simultaneous PET-MRI for calculation of lean body mass provides a brain SUV which is less dependent on patient adiposity. The reduced dependency is comparable to that obtained by CT and predictive equations. Therefore, it is more comparable across patients. The technique does not impose an overhead in measurement time and is straightforward to implement.

  1. A comparison of the diagnostic accuracy of MARS MRI and ultrasound of the painful metal-on-metal hip arthroplasty.

    PubMed

    Siddiqui, Imran A; Sabah, Shiraz A; Satchithananda, Keshthra; Lim, Adrian K; Cro, Suzie; Henckel, Johann; Skinner, John A; Hart, Alister J

    2014-08-01

    Metal artifact reduction sequence (MARS) MRI and ultrasound scanning (USS) can both be used to detect pseudotumors, abductor muscle atrophy, and tendinous pathology in patients with painful metal-on-metal (MOM) hip arthroplasty. We wanted to determine the diagnostic test characteristics of USS using MARS MRI as a reference for detection of pseudotumors and muscle atrophy. PatienTS AND METHODS: We performed a prospective cohort study to compare MARS MRI and USS findings in 19 consecutive patients with unilateral MOM hips. Protocolized USS was performed by consultant musculoskeletal radiologists who were blinded regarding clinical details. Reports were independently compared with MARS MRI, the imaging gold standard, to calculate predictive values. The prevalence of pseudotumors on MARS MRI was 68% (95% CI: 43-87) and on USS it was 53% (CI: 29-76). The sensitivity of USS in detecting pseudotumors was 69% (CI 39-91) and the specificity was 83% (CI: 36-97). The sensitivity of detection of abductor muscle atrophy was 47% (CI: 24-71). In addition, joint effusion was detected in 10 cases by USS and none were seen by MARS MRI. We found a poor agreement between USS and MARS MRI. USS was inferior to MARS MRI for detection of pseudotumors and muscle atrophy, but it was superior for detection of joint effusion and tendinous pathologies. MARS MRI is more advantageous than USS for practical reasons, including preoperative planning and longitudinal comparison.

  2. Sensitivity of MRI of the spine compared with CT myelography in orthostatic headache with CSF leak.

    PubMed

    Starling, Amaal; Hernandez, Fatima; Hoxworth, Joseph M; Trentman, Terrence; Halker, Rashmi; Vargas, Bert B; Hastriter, Eric; Dodick, David

    2013-11-12

    To investigate the sensitivity of MRI of the spine compared with CT myelography (CTM) in detecting CSF leaks. Between July 1998 and October 2010, 12 patients with orthostatic headache and a CTM-confirmed spinal CSF leak underwent an MRI of the spine with and without contrast. Using CTM as the gold standard, we retrospectively investigated the sensitivity of spinal MRI in detecting a CSF leak. Eleven of 12 patients with a CSF leak documented by CTM also had extradural fluid collections on spinal MRI (sensitivity 91.7%). Six patients with extradural fluid collections on spinal MRI also had spinal dural enhancement. When compared with the gold standard of CTM, MRI of the spine appears to be a sensitive and less invasive imaging modality for detecting a spinal CSF leak, suggesting that MRI of the spine should be the imaging modality of first choice for the detection of spinal CSF leaks.

  3. Depiction of lower limb venous anatomy in patients undergoing interventional deep venous reconstruction-the role of balanced steady state free precession MRI.

    PubMed

    Helyar, Vincent G; Gupta, Yuri; Blakeway, Lyndall; Charles-Edwards, Geoff; Katsanos, Konstantinos; Karunanithy, Narayan

    2018-02-01

    This study evaluates the use of balanced steady-state free precession MRI (bSSFP-MRI) in the diagnostic work-up of patients undergoing interventional deep venous reconstruction (I-DVR). Intravenous digital subtraction angiography (IVDSA) was used as the gold-standard for comparison to assess disease extent and severity. A retrospective comparison of bSSFP-MRI to IVDSA was performed in all patients undergoing both examinations for treatment planning prior to I-DVR. The severity of disease in each venous segment was graded by two board-certified radiologists working independently, according to a predetermined classification system. In total, 44 patients (225 venous segments) fulfilled the inclusion criteria. A total of 156 abnormal venous segments were diagnosed using bSSFP-MRI compared with 151 using IVDSA. The prevalence of disease was higher in the iliac and femoral segments (range, 79.6-88.6%). Overall sensitivity, specificity, positive likelihood ratio, negative likelihood ratio and the diagnostic ratio for bSSFP-MRI were 99.3%, 91.9%, 12.3, 0.007 and 1700, respectively. This study supports the use of non-contrast balanced SSFP-MRI in the assessment of the deep veins of the lower limb prior to I-DVR. The technique offers an accurate, fast and non-invasive alternative to IVDSA. Advances in Knowledge: Although balanced SSFP-MRI is commonly used in cardiac imaging, its use elsewhere is limited and its use in evaluating the deep veins prior to interventional reconstruction is not described. Our study demonstrates the usefulness of this technique in the work-up of patients awaiting interventional venous reconstruction compared with the current gold standard.

  4. Forensic age estimation based on magnetic resonance imaging of third molars: converting 2D staging into 3D staging.

    PubMed

    De Tobel, Jannick; Hillewig, Elke; Verstraete, Koenraad

    2017-03-01

    Established methods to stage development of third molars for forensic age estimation are based on the evaluation of radiographs, which show a 2D projection. It has not been investigated whether these methods require any adjustments in order to apply them to stage third molars on magnetic resonance imaging (MRI), which shows 3D information. To prospectively study root stage assessment of third molars in age estimation using 3 Tesla MRI and to compare this with panoramic radiographs, in order to provide considerations for converting 2D staging into 3D staging and to determine the decisive root. All third molars were evaluated in 52 healthy participants aged 14-26 years using MRI in three planes. Three staging methods were investigated by two observers. In sixteen of the participants, MRI findings were compared with findings on panoramic radiographs. Decisive roots were palatal in upper third molars and distal in lower third molars. Fifty-seven per cent of upper third molars were not assessable on the radiograph, while 96.9% were on MRI. Upper third molars were more difficult to evaluate on radiographs than on MRI (p < .001). Lower third molars were equally assessable on both imaging techniques (93.8% MRI, 98.4% radiograph), with no difference in level of difficulty (p = .375). Inter- and intra-observer agreement for evaluation was higher in MRI than in radiographs. In both imaging techniques lower third molars showed greater inter- and intra-observer agreement compared to upper third molars. MR images in the sagittal plane proved to be essential for staging. In age estimation, 3T MRI of third molars could be valuable. Some considerations are, however, necessary to transfer known staging methods to this 3D technique.

  5. The Value of Ultrasound and Magnetic Resonance Imaging in Diagnostics and Prediction of Morbidity in Cases of Placenta Previa with Abnormal Placentation

    PubMed Central

    Algebally, Ahmed M.; Yousef, Reda Ramadan Hussein; Badr, Sanaa Sayed Hussein; Al Obeidly, Amal; Szmigielski, Wojciech; Al Ibrahim, Abdullah A.

    2014-01-01

    Summary Background The purpose of the study was to evaluate the role of ultrasound (US) and magnetic resonance imaging (MRI) in the diagnostics and management of abnormal placentation in women with placenta previa and to compare the morbidity associated with that to placenta previa alone. Material/Methods The study includes 100 pregnant women with placenta previa with and without abnormal placentation. The results of MRI and US in abnormal placentation were compared with post-operative data. The patients’ files were reviewed for assessment of operative and post-operative morbidity. The results of our statistical analysis were compared with data from the literature. Results US and MRI showed no significant difference in sensitivity and specificity in diagnosing abnormal placentation (97–100% and 94–100%, respectively). MRI was more sensitive than US for the detection of myometrial invasion and the type of abnormal placentation (73.5% and 47%, respectively). The difference between pre- and post-operative hemoglobin values and estimated blood loss were the most significant risk factors for abnormal placentation, added to risk factors known for placenta previa. Post-partum surgical complications and prolonged hospital stay were more common in the cases of placenta previa with abnormal placentation, however statistically insignificant. Conclusions US and MRI are accurate imaging modalities for diagnosing abnormal placentation. MRI was more sensitive for the detection of the degree of placental invasion. The patient’s morbidity increased in cases with abnormal placentation. There was no significant difference in post operative-complications and hospitalization time due to pre-operative planning when the diagnosis was established with US and MRI. PMID:25411586

  6. Utility of ultrasound and magnetic resonance imaging in prenatal diagnosis of placenta accreta: A prospective study

    PubMed Central

    Satija, Bhawna; Kumar, Sanyal; Wadhwa, Leena; Gupta, Taru; Kohli, Supreethi; Chandoke, Rajkumar; Gupta, Pratibha

    2015-01-01

    Context: Placenta accreta is the abnormal adherence of the placenta to the uterine wall and the most common cause for emergency postpartum hysterectomy. Accurate prenatal diagnosis of affected pregnancies allows optimal obstetric management. Aims: To summarize our experience in the antenatal diagnosis of placenta accreta on imaging in a tertiary care setup. To compare the accuracy of ultrasound (USG) with color Doppler (CDUS) and magnetic resonance imaging (MRI) in prenatal diagnosis of placenta accreta. Settings and Design: Prospective study in a tertiary care setup. Materials and Methods: A prospective study was conducted on pregnant females with high clinical risk of placenta accreta. Antenatal diagnosis was established based on CDUS and MRI. The imaging findings were compared with final diagnosis at the time of delivery and/or pathologic examination. Statistical Analysis Used: The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated for both CDUS and MRI. The sensitivity and specificity values of USG and MRI were compared by the McNemar test. Results: Thirty patients at risk of placenta accreta underwent both CDUS and MRI. Eight cases of placenta accreta were identified (3 vera, 4 increta, and 1 percreta). All patients had history of previous cesarean section. Placenta previa was present in seven out of eight patients. USG correctly identified the presence of placenta accreta in seven out of eight patients (87.5% sensitivity) and the absence of placenta accreta in 19 out of 22 patients (86.4% specificity). MRI correctly identified the presence of placenta accreta in 6 out of 8 patients (75.0% sensitivity) and absence of placenta accreta in 17 out of 22 patients (77.3% specificity). There were no statistical differences in sensitivity (P = 1.00) and specificity (P = 0.687) between USG and MRI. Conclusions: Both USG and MRI have fairly good sensitivity for prenatal diagnosis of placenta accreta; however, specificity does not appear to be as good as reported in other studies. Both modalities have complimentary role and in cases of inconclusive findings with one imaging modality, the other modality may be useful for obtaining the diagnosis. CDUS remains the first primary modality for antenatal diagnosis of placenta accreta, with MRI reserved for cases where USG is inconclusive. PMID:26752827

  7. The Perception of Dynamic and Static Facial Expressions of Happiness and Disgust Investigated by ERPs and fMRI Constrained Source Analysis

    PubMed Central

    Trautmann-Lengsfeld, Sina Alexa; Domínguez-Borràs, Judith; Escera, Carles; Herrmann, Manfred; Fehr, Thorsten

    2013-01-01

    A recent functional magnetic resonance imaging (fMRI) study by our group demonstrated that dynamic emotional faces are more accurately recognized and evoked more widespread patterns of hemodynamic brain responses than static emotional faces. Based on this experimental design, the present study aimed at investigating the spatio-temporal processing of static and dynamic emotional facial expressions in 19 healthy women by means of multi-channel electroencephalography (EEG), event-related potentials (ERP) and fMRI-constrained regional source analyses. ERP analysis showed an increased amplitude of the LPP (late posterior positivity) over centro-parietal regions for static facial expressions of disgust compared to neutral faces. In addition, the LPP was more widespread and temporally prolonged for dynamic compared to static faces of disgust and happiness. fMRI constrained source analysis on static emotional face stimuli indicated the spatio-temporal modulation of predominantly posterior regional brain activation related to the visual processing stream for both emotional valences when compared to the neutral condition in the fusiform gyrus. The spatio-temporal processing of dynamic stimuli yielded enhanced source activity for emotional compared to neutral conditions in temporal (e.g., fusiform gyrus), and frontal regions (e.g., ventromedial prefrontal cortex, medial and inferior frontal cortex) in early and again in later time windows. The present data support the view that dynamic facial displays trigger more information reflected in complex neural networks, in particular because of their changing features potentially triggering sustained activation related to a continuing evaluation of those faces. A combined fMRI and EEG approach thus provides an advanced insight to the spatio-temporal characteristics of emotional face processing, by also revealing additional neural generators, not identifiable by the only use of an fMRI approach. PMID:23818974

  8. Cost-Effectiveness Comparison of Imaging-Guided Prostate Biopsy Techniques: Systematic Transrectal Ultrasound, Direct In-Bore MRI, and Image Fusion.

    PubMed

    Venderink, Wulphert; Govers, Tim M; de Rooij, Maarten; Fütterer, Jurgen J; Sedelaar, J P Michiel

    2017-05-01

    Three commonly used prostate biopsy approaches are systematic transrectal ultrasound guided, direct in-bore MRI guided, and image fusion guided. The aim of this study was to calculate which strategy is most cost-effective. A decision tree and Markov model were developed to compare cost-effectiveness. Literature review and expert opinion were used as input. A strategy was deemed cost-effective if the costs of gaining one quality-adjusted life year (incremental cost-effectiveness ratio) did not exceed the willingness-to-pay threshold of €80,000 (≈$85,000 in January 2017). A base case analysis was performed to compare systematic transrectal ultrasound- and image fusion-guided biopsies. Because of a lack of appropriate literature regarding the accuracy of direct in-bore MRI-guided biopsy, a threshold analysis was performed. The incremental cost-effectiveness ratio for fusion-guided biopsy compared with systematic transrectal ultrasound-guided biopsy was €1386 ($1470) per quality-adjusted life year gained, which was below the willingness-to-pay threshold and thus assumed cost-effective. If MRI findings are normal in a patient with clinically significant prostate cancer, the sensitivity of direct in-bore MRI-guided biopsy has to be at least 88.8%. If that is the case, the incremental cost-effectiveness ratio is €80,000 per quality-adjusted life year gained and thus cost-effective. Fusion-guided biopsy seems to be cost-effective compared with systematic transrectal ultrasound-guided biopsy. Future research is needed to determine whether direct in-bore MRI-guided biopsy is the best pathway; in this study a threshold was calculated at which it would be cost-effective.

  9. The Value of Diffusion-Weighted Imaging in Combination With Conventional Magnetic Resonance Imaging for Improving Tumor Detection for Early Cervical Carcinoma Treated With Fertility-Sparing Surgery.

    PubMed

    Li, Xiulei; Wang, Ling; Li, Yong; Song, Peiji

    2017-10-01

    This study aimed to investigate the value of diffusion-weighted imaging (DWI) in combination with conventional magnetic resonance imaging (MRI) for improving tumor detection in young patients treated with fertility-sparing surgery because of early cervical carcinoma. Fifty-four patients with stage Ia or Ib1 cervical carcinoma were enrolled into this study. Magnetic resonance examinations were performed for these patients using conventional MRI (including T1-weighted imaging, T2-weighted imaging, and dynamic contrast-enhanced MRI) and DWI. The apparent diffusion coefficient (ADC) values of cervical carcinoma were analyzed quantitatively and compared with that of adjacent epithelium. Sensitivity, positive predictive value, and accuracy of 2 sets of MRI sequences were calculated on the basis of histologic results, and the diagnostic ability of conventional MRI/DWI combinations was compared with that of conventional MRI. The mean ADC value from cervical carcinoma (mean, 786 × 10 mm/s ± 100) was significantly lower than that from adjacent epithelium (mean, 1352 × 10 mm/s ± 147) (P = 0.01). When the threshold ADC value set as 1010 × 10 mm/s, the sensitivity and specificity for differentiating cervical carcinoma from nontumor epithelium were 78.2% and 67.2%, respectively. The sensitivity and accuracy of conventional MRI for tumor detection were 76.0% and 70.4%, whereas the sensitivity and accuracy of conventional MRI/DWI combinations were 91.7% and 90.7%, respectively. Conventional MRI/DWI combinations revealed a positive predictive value of 97.8% and only 4 false-negative findings. The addition of DWI to conventional MRI considerably improves the sensitivity and accuracy of tumor detection in young patients treated with fertility-sparing surgery, which supports the inclusion quantitative analysis of ADC value in routine MRI protocol before fertility-sparing surgery.

  10. Full Scenes Produce More Activation than Close-Up Scenes and Scene-Diagnostic Objects in Parahippocampal and Retrosplenial Cortex: An fMRI Study

    ERIC Educational Resources Information Center

    Henderson, John M.; Larson, Christine L.; Zhu, David C.

    2008-01-01

    We used fMRI to directly compare activation in two cortical regions previously identified as relevant to real-world scene processing: retrosplenial cortex and a region of posterior parahippocampal cortex functionally defined as the parahippocampal place area (PPA). We compared activation in these regions to full views of scenes from a global…

  11. Comparative Effectiveness of Frame-based, Frameless and Intraoperative MRI Guided Brain Biopsy Techniques

    PubMed Central

    Lu, Yi; Yeung, Cecil; Radmanesh, Alireza; Wiemann, Robert; Black, Peter M.; Golby, Alexandra J.

    2015-01-01

    Objective Intraoperative MRI (IoMRI) guided brain biopsy provides a real time visual feedback of the lesion that is sampled during surgery. The objective of the study is to compare the diagnostic yield and safety profiles of ioMRI needle brain biopsy with two traditional brain biopsy methods: frame-based and frameless stereotactic brain biopsies. Methods A retrospective analysis from 288 consecutive needle brain biopsies in 277 patients undergoing stereotactic brain biopsy with any of the three biopsy methods at Brigham and Women's Hospital from 2000 to 2008 was performed. Variables such as age, sex, history of radiation and previous surgery, pathology results, complications and postoperative stays were analyzed. Results Over the course of eight years, 288 brain biopsies were performed. 253 (87.8%) biopsies yielded positive diagnostic tissue. Young age (<40 years), history of brain radiation or surgery were significant negative predictors for a positive biopsy diagnostic yield. Excluding patients with prior radiation or surgeries, no significant difference in diagnostic yield was detected among the three groups, with frame-based, frameless and ioMRI guided needle biopsies yield 96.9%, 91.8% and 89.9% positive diagnostic yield, respectively. 19 biopsies (6.6%) were complicated by serious adverse events. The ioMRI-guided brain biopsy was associated with less serious adverse events and the shortest postoperative hospital stay. Conclusions Frame-based, frameless stereotactic and ioMRI guided brain needle biopsy have comparable diagnostic yield for patients with no prior treatments (either radiation or surgery). IoMRI guided brain biopsy is associated with fewer serious adverse events and shorter hospital stay. PMID:25088233

  12. Prospective trial evaluating the sensitivity and specificity of 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine (18F-DOPA) PET and MRI in patients with recurrent gliomas.

    PubMed

    Youland, Ryan S; Pafundi, Deanna H; Brinkmann, Debra H; Lowe, Val J; Morris, Jonathan M; Kemp, Bradley J; Hunt, Christopher H; Giannini, Caterina; Parney, Ian F; Laack, Nadia N

    2018-05-01

    Treatment-related changes can be difficult to differentiate from progressive glioma using MRI with contrast (CE). The purpose of this study is to compare the sensitivity and specificity of 18F-DOPA-PET and MRI in patients with recurrent glioma. Thirteen patients with MRI findings suspicious for recurrent glioma were prospectively enrolled and underwent 18F-DOPA-PET and MRI for neurosurgical planning. Stereotactic biopsies were obtained from regions of concordant and discordant PET and MRI CE, all within regions of T2/FLAIR signal hyperintensity. The sensitivity and specificity of 18F-DOPA-PET and CE were calculated based on histopathologic analysis. Receiver operating characteristic curve analysis revealed optimal tumor to normal (T/N) and SUVmax thresholds. In the 37 specimens obtained, 51% exhibited MRI contrast enhancement (M+) and 78% demonstrated 18F-DOPA-PET avidity (P+). Imaging characteristics included M-P- in 16%, M-P+ in 32%, M+P+ in 46% and M+P- in 5%. Histopathologic review of biopsies revealed grade II components in 16%, grade III in 43%, grade IV in 30% and no tumor in 11%. MRI CE sensitivity for recurrent tumor was 52% and specificity was 50%. PET sensitivity for tumor was 82% and specificity was 50%. A T/N threshold > 2.0 altered sensitivity to 76% and specificity to 100% and SUVmax > 1.36 improved sensitivity and specificity to 94 and 75%, respectively. 18F-DOPA-PET can provide increased sensitivity and specificity compared with MRI CE for visualizing the spatial distribution of recurrent gliomas. Future studies will incorporate 18F-DOPA-PET into re-irradiation target volume delineation for RT planning.

  13. Simultaneous resting-state functional MRI and electroencephalography recordings of functional connectivity in patients with schizophrenia.

    PubMed

    Kirino, Eiji; Tanaka, Shoji; Fukuta, Mayuko; Inami, Rie; Arai, Heii; Inoue, Reiichi; Aoki, Shigeki

    2017-04-01

    It remains unclear how functional connectivity (FC) may be related to specific cognitive domains in neuropsychiatric disorders. Here we used simultaneous resting-state functional magnetic resonance imaging (rsfMRI) and electroencephalography (EEG) recording in patients with schizophrenia, to evaluate FC within and outside the default mode network (DMN). Our study population included 14 patients with schizophrenia and 15 healthy control participants. From all participants, we acquired rsfMRI data, and simultaneously recorded EEG data using an MR-compatible amplifier. We analyzed the rsfMRI-EEG data, and used the CONN toolbox to calculate the FC between regions of interest. We also performed between-group comparisons of standardized low-resolution electromagnetic tomography-based intracortical lagged coherence for each EEG frequency band. FC within the DMN, as measured by rsfMRI and EEG, did not significantly differ between groups. Analysis of rsfMRI data showed that FC between the right posterior inferior temporal gyrus and medial prefrontal cortex was stronger among patients with schizophrenia compared to control participants. Analysis of FC within the DMN using rsfMRI and EEG data revealed no significant differences between patients with schizophrenia and control participants. However, rsfMRI data revealed over-modulated FC between the medial prefrontal cortex and right posterior inferior temporal gyrus in patients with schizophrenia compared to control participants, suggesting that the patients had altered FC, with higher correlations across nodes within and outside of the DMN. Further studies using simultaneous rsfMRI and EEG are required to determine whether altered FC within the DMN is associated with schizophrenia. © 2016 The Authors. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology.

  14. MRI in patients with chronic pubalgia: Is precise useful information provided to the surgeon? A case-control study.

    PubMed

    Larbi, A; Pesquer, L; Reboul, G; Omoumi, P; Perozziello, A; Abadie, P; Loriaut, P; Copin, P; Ducouret, E; Dallaudière, B

    2016-10-01

    Recent studies described that MRI is a good examination to assess damage in chronic athletic pubalgia (AP). However, to our knowledge, no studies focus on systematic correlation of precise tendon or parietal lesion in MRI with surgery and histological assessment. Therefore, we performed a case-control study to determine if MRI can precisely assess Adductor longus (AL) tendinopathy and parietal lesion, compared with surgery and histology. MRI can determine if AP comes from pubis symphysis, musculotendinous or inguinal orifice structures. Eighteen consecutive patients were enrolled from November 2011 to April 2013 for chronic AP. To constitute a control group, we also enrolled 18 asymptomatic men. All MRI were reviewed in consensus by 2 skeletal radiologists for pubic symphysis, musculotendinous, abdominal wall assessment and compared to surgery and histology findings. Regarding pubis symphysis, we found 4 symmetric bone marrow oedema (14%), 2 secondary cleft (7%) and 2 superior ligaments lesions (7%). For AL tendon, we mainly found 13 asymmetric bone marrow oedema (46%), 15 hyperaemia (54%). Regarding abdominal wall, the deep inguinal orifice size in the group of symptomatic athletes and the control group was respectively 27.3±6.4mm and 23.8±6.3mm. The correlation between MRI and surgery/histology was low: 20% for the AL tendon and 9% for the abdominal wall. If we chose the criteria "affected versus unaffected", this correlation became higher: 100% for AL tendon and 73% for the abdominal wall. MRI chronic athletic pubalgia concerns preferentially AL tendinopathy and deep inguinal canal dehiscence with high correlation to surgery/histology when only considering the item "affected versus unaffected" despite low correlation when we try to precisely grade these lesions. III: case-control study. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Integrated 68Gallium Labelled Prostate-Specific Membrane Antigen-11 Positron Emission Tomography/Magnetic Resonance Imaging Enhances Discriminatory Power of Multi-Parametric Prostate Magnetic Resonance Imaging.

    PubMed

    Al-Bayati, Mohammad; Grueneisen, Johannes; Lütje, Susanne; Sawicki, Lino M; Suntharalingam, Saravanabavaan; Tschirdewahn, Stephan; Forsting, Michael; Rübben, Herbert; Herrmann, Ken; Umutlu, Lale; Wetter, Axel

    2018-01-01

    To evaluate diagnostic accuracy of integrated 68Gallium labelled prostate-specific membrane antigen (68Ga-PSMA)-11 positron emission tomography (PET)/MRI in patients with primary prostate cancer (PCa) as compared to multi-parametric MRI. A total of 22 patients with recently diagnosed primary PCa underwent clinically indicated 68Ga-PSMA-11 PET/CT for initial staging followed by integrated 68Ga-PSMA-11 PET/MRI. Images of multi-parametric magnetic resonance imaging (mpMRI), PET and PET/MRI were evaluated separately by applying Prostate Imaging Reporting and Data System (PIRADSv2) for mpMRI and a 5-point Likert scale for PET and PET/MRI. Results were compared with pathology reports of biopsy or resection. Statistical analyses including receiver operating characteristics analysis were performed to compare the diagnostic performance of mpMRI, PET and PET/MRI. PET and integrated PET/MRI demonstrated a higher diagnostic accuracy than mpMRI (area under the curve: mpMRI: 0.679, PET and PET/MRI: 0.951). The proportion of equivocal results (PIRADS 3 and Likert 3) was considerably higher in mpMRI than in PET and PET/MRI. In a notable proportion of equivocal PIRADS results, PET led to a correct shift towards higher suspicion of malignancy and enabled correct lesion classification. Integrated 68Ga-PSMA-11 PET/MRI demonstrates higher diagnostic accuracy than mpMRI and is particularly valuable in tumours with equivocal results from PIRADS classification. © 2018 S. Karger AG, Basel.

  16. 18F-FDG PET/CT and PET/MRI Perform Equally Well in Cancer: Evidence from Studies on More Than 2,300 Patients

    PubMed Central

    Spick, Claudio; Herrmann, Ken; Czernin, Johannes

    2016-01-01

    18F-FDG PET/CT has become the reference standard in oncologic imaging against which the performance of other imaging modalities is measured. The promise of PET/MRI includes multiparametric imaging to further improve diagnosis and phenotyping of cancer. Rather than focusing on these capabilities, many investigators have examined whether 18F-FDG PET combined with mostly anatomic MRI improves cancer staging and restaging. After a description of PET/MRI scanner designs and a discussion of technical and operational issues, we review the available literature to determine whether cancer assessments are improved with PET/MRI. The available data show that PET/MRI is feasible and performs as well as PET/CT in most types of cancer. Diagnostic advantages may be achievable in prostate cancer and in bone metastases, whereas disadvantages exist in lung nodule assessments. We conclude that 18F-FDG PET/MRI and PET/CT provide comparable diagnostic information when MRI is used simply to provide the anatomic framework. Thus, PET/MRI could be used in lieu of PET/CT if this approach becomes economically viable and if reasonable workflows can be established. Future studies should explore the multiparametric potential of MRI. PMID:26742709

  17. Residual effects of cannabis use in adolescent and adult brains - A meta-analysis of fMRI studies.

    PubMed

    Blest-Hopley, Grace; Giampietro, Vincent; Bhattacharyya, Sagnik

    2018-05-01

    While numerous studies have investigated the residual effects of cannabis use on human brain function, results of these studies have been inconsistent. Using meta-analytic approaches we summarize the effects of prolonged cannabis exposure on human brain function as measured using task-based functional MRI (fMRI) across studies employing a range of cognitive activation tasks comparing regular cannabis users with non-users. Separate meta-analyses were carried out for studies investigating adult and adolescent cannabis users. Systematic literature search identified 20 manuscripts (13 adult and 7 adolescent studies) meeting study inclusion criteria. Adult analyses compared 530 cannabis users to 580 healthy controls while adolescent analyses compared 219 cannabis users to 224 healthy controls. In adult cannabis users brain activation was increased in the superior and posterior transverse temporal and inferior frontal gyri and decreased in the striate area, insula and middle temporal gyrus. In adolescent cannabis users, activation was increased in the inferior parietal gyrus and putamen compared to healthy controls. Functional alteration in these areas may reflect compensatory neuroadaptive changes in cannabis users. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Cost-effectiveness of EOB-MRI for Hepatocellular Carcinoma in Japan.

    PubMed

    Nishie, Akihiro; Goshima, Satoshi; Haradome, Hiroki; Hatano, Etsuro; Imai, Yasuharu; Kudo, Masatoshi; Matsuda, Masanori; Motosugi, Utaroh; Saitoh, Satoshi; Yoshimitsu, Kengo; Crawford, Bruce; Kruger, Eliza; Ball, Graeme; Honda, Hiroshi

    2017-04-01

    The objective of the study was to evaluate the cost-effectiveness of gadoxetic acid-enhanced magnetic resonance imaging (EOB-MRI) in the diagnosis and treatment of hepatocellular carcinoma (HCC) in Japan compared with extracellular contrast media-enhanced MRI (ECCM-MRI) and contrast media-enhanced computed tomography (CE-CT) scanning. A 6-stage Markov model was developed to estimate lifetime direct costs and clinical outcomes associated with EOB-MRI. Diagnostic sensitivity and specificity, along with clinical data on HCC survival, recurrence, treatment patterns, costs, and health state utility values, were derived from predominantly Japanese publications. Parameters unavailable from publications were estimated in a Delphi panel of Japanese clinical experts who also confirmed the structure and overall approach of the model. Sensitivity analyses, including one-way, probabilistic, and scenario analyses, were conducted to account for uncertainty in the results. Over a lifetime horizon, EOB-MRI was associated with lower direct costs (¥2,174,869) and generated a greater number of quality-adjusted life years (QALYs) (9.502) than either ECCM-MRI (¥2,365,421, 9.303 QALYs) or CE-CT (¥2,482,608, 9.215 QALYs). EOB-MRI was superior to the other diagnostic strategies considered, and this finding was robust over sensitivity and scenario analyses. A majority of the direct costs associated with HCC in Japan were found to be costs of treatment. The model results revealed the superior cost-effectiveness of the EOB-MRI diagnostic strategy compared with ECCM-MRI and CE-CT. EOB-MRI could be the first-choice imaging modality for medical care of HCC among patients with hepatitis or liver cirrhosis in Japan. Widespread implementation of EOB-MRI could reduce health care expenditures, particularly downstream treatment costs, associated with HCC. Copyright © 2017 Elsevier HS Journals, Inc. All rights reserved.

  19. An Investigation of the Relationship Between fMRI and ERP Source Localized Measurements of Brain Activity during Face Processing

    PubMed Central

    Richards, Todd; Webb, Sara Jane; Murias, Michael; Merkle, Kristen; Kleinhans, Natalia M.; Johnson, L. Clark; Poliakov, Andrew; Aylward, Elizabeth; Dawson, Geraldine

    2013-01-01

    Brain activity patterns during face processing have been extensively explored with functional magnetic resonance imaging (fMRI) and event-related potentials (ERPs). ERP source localization adds a spatial dimension to the ERP time series recordings, which allows for a more direct comparison and integration with fMRI findings. The goals for this study were (1) to compare the spatial descriptions of neuronal activity during face processing obtained with fMRI and ERP source localization using low-resolution electro-magnetic tomography (LORETA), and (2) to use the combined information from source localization and fMRI to explore how the temporal sequence of brain activity during face processing is summarized in fMRI activation maps. fMRI and high-density ERP data were acquired in separate sessions for 17 healthy adult males for a face and object processing task. LORETA statistical maps for the comparison of viewing faces and viewing houses were coregistered and compared to fMRI statistical maps for the same conditions. The spatial locations of face processing-sensitive activity measured by fMRI and LORETA were found to overlap in a number of areas including the bilateral fusiform gyri, the right superior, middle and inferior temporal gyri, and the bilateral precuneus. Both the fMRI and LORETA solutions additionally demon-strated activity in regions that did not overlap. fMRI and LORETA statistical maps of face processing-sensitive brain activity were found to converge spatially primarily at LORETA solution latencies that were within 18 ms of the N170 latency. The combination of data from these techniques suggested that electrical brain activity at the latency of the N170 is highly represented in fMRI statistical maps. PMID:19322649

  20. Positron emission tomography (PET) and magnetic resonance imaging (MRI) for the assessment of axillary lymph node metastases in early breast cancer: systematic review and economic evaluation.

    PubMed

    Cooper, K L; Meng, Y; Harnan, S; Ward, S E; Fitzgerald, P; Papaioannou, D; Wyld, L; Ingram, C; Wilkinson, I D; Lorenz, E

    2011-01-01

    Breast cancer is the most common type of cancer in women. Evaluation of axillary lymph node metastases is important for breast cancer staging and treatment planning. To evaluate the diagnostic accuracy, cost-effectiveness and effect on patient outcomes of positron emission tomography (PET), with or without computed tomography (CT), and magnetic resonance imaging (MRI) in the evaluation of axillary lymph node metastases in patients with newly diagnosed early-stage breast cancer. A systematic review of literature and an economic evaluation were carried out. Key databases (including MEDLINE, EMBASE and nine others) plus research registers and conference proceedings were searched for relevant studies up to April 2009. A decision-analytical model was developed to determine cost-effectiveness in the UK. One reviewer assessed titles and abstracts of studies identified by the search strategy, obtained the full text of relevant papers and screened them against inclusion criteria. Data from included studies were extracted by one reviewer using a standardised data extraction form and checked by a second reviewer. Discrepancies were resolved by discussion. Quality of included studies was assessed using the quality assessment of diagnostic accuracy studies (QUADAS) checklist, applied by one reviewer and checked by a second. Forty-five citations relating to 35 studies were included in the clinical effectiveness review: 26 studies of PET and nine studies of MRI. Two studies were included in the cost-effectiveness review: one of PET and one of MRI. Of the seven studies evaluating PET/CT (n = 862), the mean sensitivity was 56% [95% confidence interval (CI) 44% to 67%] and mean specificity 96% (95% CI 90% to 99%). Of the 19 studies evaluating PET only (n = 1729), the mean sensitivity was 66% (95% CI 50% to 79%) and mean specificity 93% (95% CI 89% to 96%). PET performed less well for small metastases; the mean sensitivity was 11% (95% CI 5% to 22%) for micrometastases (≤ 2 mm; five studies; n = 63), and 57% (95% CI 47% to 66%) for macrometastases (> 2 mm; four studies; n = 111). The smallest metastatic nodes detected by PET measured 3 mm, while PET failed to detect some nodes measuring > 15 mm. Studies in which all patients were clinically node negative showed a trend towards lower sensitivity of PET compared with studies with a mixed population. Across five studies evaluating ultrasmall super-paramagnetic iron oxide (USPIO)-enhanced MRI (n = 93), the mean sensitivity was 98% (95% CI 61% to 100%) and mean specificity 96% (95% CI 72% to 100%). Across three studies of gadolinium-enhanced MRI (n = 187), the mean sensitivity was 88% (95% CI 78% to 94%) and mean specificity 73% (95% CI 63% to 81%). In the single study of in vivo proton magnetic resonance spectroscopy (n = 27), the sensitivity was 65% (95% CI 38% to 86%) and specificity 100% (95% CI 69% to 100%). USPIO-enhanced MRI showed a trend towards higher sensitivity and specificity than gadolinium-enhanced MRI. Results of the decision modelling suggest that the MRI replacement strategy is the most cost-effective strategy and dominates the baseline 4-node sampling (4-NS) and sentinel lymph node biopsy (SLNB) strategies in most sensitivity analyses undertaken. The PET replacement strategy is not as robust as the MRI replacement strategy, as its cost-effectiveness is significantly affected by the utility decrement for lymphoedema and the probability of relapse for false-negative (FN) patients. No included studies directly compared PET and MRI. Studies demonstrated that PET and MRI have lower sensitivity and specificity than SLNB and 4-NS but are associated with fewer adverse events. Included studies indicated a significantly higher mean sensitivity for MRI than for PET, with USPIO-enhanced MRI providing the highest sensitivity. However, sensitivity and specificity of PET and MRI varied widely between studies, and MRI studies were relatively small and varied in their methods; therefore, results should be interpreted with caution. Decision modelling based on these results suggests that the most cost-effective strategy may be MRI rather than SLNB or 4-NS. This strategy reduces costs and increases quality-adjusted life-years (QALYs) because there are fewer adverse events for the majority of patients. However, this strategy leads to more FN cases at higher risk of cancer recurrence and more false- positive (FP) cases who would undergo unnecessary axillary lymph node dissection. Adding MRI prior to SLNB or 4-NS has little effect on QALYs, though this analysis is limited by lack of available data. Future research should include large, well-conducted studies of MRI, particularly using USPIO; data on the long-term impacts of lymphoedema on cost and patient utility; studies of the comparative effectiveness and cost-effectiveness of SLNB and 4-NS; and more robust UK cost data for 4-NS and SLNB as well as the cost of MRI and PET techniques. This study was funded by the Health Technology Assessment programme of the National Institute of Health Research.

  1. The Cascade of Medical Services and Associated Longitudinal Costs Due to Nonadherent Magnetic Resonance Imaging for Low Back Pain

    PubMed Central

    Webster, Barbara S.; Choi, YoonSun; Bauer, Ann Z.; Cifuentes, Manuel

    2014-01-01

    Study Design. Retrospective cohort study. Objective. To compare type, timing, and longitudinal medical costs incurred after adherent versus nonadherent magnetic resonance imaging (MRI) for work-related low back pain. Summary of Background Data. Guidelines advise against MRI for acute uncomplicated low back pain, but is an option for persistent radicular pain after a trial of conservative care. Yet, MRI has become frequent and often nonadherent. Few studies have documented the nature and impact of medical services (including type and timing) initiated by nonadherent MRI. Methods. A longitudinal, workers' compensation administrative data source was accessed to select low back pain claims filed between January 1, 2006 and December 31, 2006. Cases were grouped by MRI timing (early, timely, no MRI) and subgrouped by severity (“less severe,” “more severe”) (final cohort = 3022). Health care utilization for each subgroup was evaluated at 3, 6, 9, and 12 months post-MRI. Multivariate logistic regression models examined risk of receiving subsequent diagnostic studies and/or treatments, adjusting for pain indicators and demographic covariates. Results. The adjusted relative risks for MRI group cases to receive electromyography, nerve conduction testing, advanced imaging, injections, and surgery within 6 months post-MRI risks in the range from 6.5 (95% CI: 2.20–19.09) to 54.9 (95% CI: 22.12–136.21) times the rate for the referent group (no MRI less severe). The timely and early MRI less severe subgroups had similar adjusted relative risks to receive most services. The early MRI more severe subgroup cases had generally higher adjusted relative risks than timely MRI more severe subgroup cases. Medical costs for both early MRI subgroups were highest and increased the most over time. Conclusion. The impact of nonadherent MRI includes a wide variety of expensive and potentially unnecessary services, and occurs relatively soon post-MRI. Study results provide evidence to promote provider and patient conversations to help patients choose care that is based on evidence, free from harm, less costly, and truly necessary. Level of Evidence: N/A PMID:24831502

  2. Magnetic resonance imaging in prostate cancer detection and management: a systematic review.

    PubMed

    Monni, Fabio; Fontanella, Paolo; Grasso, Angelica; Wiklund, Peter; Ou, Yen-Chuan; Randazzo, Marco; Rocco, Bernardo; Montanari, Emanuele; Bianchi, Giampaolo

    2017-12-01

    The aim of our work was to evaluate the role of multi-parametric magnetic resonance imaging (mpMRI) in detection and management of prostate cancer (PC); specifically investigating the efficacy of mpMRI-based biopsy techniques in terms of diagnostic yield of significant prostate neoplasm and the improved management of patients who choose conservative treatments or active surveillance. A systematic and critical analysis through Medline, Embase, Scopus and Web of Science databases was carried out in March 2016, following the PRISMA ("Preferred Reporting Items for Systematic Reviews and Meta-Analyses") statement. The search was conducted using the following key words: "MRI/TRUS-fusion biopsy," "PIRADS," "prostate cancer," "magnetic resonance imaging (MRI)," "multiparametric MRI (mpMRI)," "systematic prostate biopsy (SB)," "targeted prostate biopsy (TPB)." English language articles were reviewed for inclusion ability. Sixty-six studies were selected in order to evaluate the characteristics and limitations of traditional sample biopsy, the role of mpMRI in detection of PC, specifically the increased degree of diagnostic accuracy of targeted prostate biopsy compared to systematic biopsy (12 cores), and to transperineal saturation biopsies with trans-rectal ultrasound (TRUS) only. MpMRI can detect index lesions in approximately 90% of cases when compared to prostatectomy specimen. The diagnostic performance of biparametric MRI (T2w + DWI) is not inferior to mpMRI, offering valid options to diminish cost- and time-consumption. Since approximately 10% of significant lesions are still MRI-invisible, systematic cores biopsy seem to still be necessary. The analysis of the different techniques shows that in-bore MRI-guided biopsy and MRI/TRUS-fusion-guided biopsy are superior in detection of significant PC compared to visual estimation alone. MpMRI proved to be very effective in active surveillance, as it prevents underdetection of significant PC and it assesses low-risk disease accurately. In higher-risk disease, presurgical MRI may change the clinically-based surgical plan in up to a third of cases. Targeted prostate biopsy, guided by mpMRI, is able to improve diagnostic accuracy and to reduce the detection of insignificant PC. Since the negative predictive value (NPV) of mpMRI is still imperfect, systematic cores biopsy should not be omitted for optimal staging of disease. A process of a progressive and periodic evolution in the detection and radiological classification of prostate lesions (such as PIRADS), is still needed in patients in active surveillance and in radical prostatectomy planning.

  3. Quantitative magnetic resonance imaging (MRI) analysis of anterior talofibular ligament in lateral chronic ankle instability ankles pre- and postoperatively.

    PubMed

    Liu, Wei; Li, Hong; Hua, Yinghui

    2017-09-12

    The aim of this study was to quantitatively evaluate and characterize the dimension and signal intensity of anterior talofibular ligament (ATFL) using 3.0 T MRI in the mechanical ankle instability group pre- and postoperatively. A total of 97 participants were recruited retrospectively in this study, including 56 with mechanical chronic ankle instability (CAI group) and 41 without ankle instability (Control group). All the subjects accepted MRI preoperatively. Among the 56 CAI patients, 25 patients, who accepted modified Broström repair of ATFL, underwent a MRI scan at follow-up. The ATFL dimension (length and width) and signal/noise ratio (SNR) were measured based on MRI images. The results of the MRI studies were then compared between groups. The CAI group had a significantly higher ATFL length (p = 0.03) or ATFL width (p < 0.001) compared with the control group. The mean SNR value of the CAI group was significantly higher than that of the control group (p = 0.006). Furthermore, the mean SNR value of the ATFL after repair surgery (8.4 ± 2.4) was significantly lower than that of the ATFL before surgery (11.2 ± 3.4) (p < 0.001). However, no significant change of ATFL length or ATFL width were observed after repair surgery. CAI ankles had a higher ATFL length or width as well as higher signal intensity compared with stable ankles. After repair surgery, the mean SNR value of the ATFL decreased, indicating the relaxed ATFL becomes tight postoperatively.

  4. Prostate cancer localization with multispectral MRI using cost-sensitive support vector machines and conditional random fields.

    PubMed

    Artan, Yusuf; Haider, Masoom A; Langer, Deanna L; van der Kwast, Theodorus H; Evans, Andrew J; Yang, Yongyi; Wernick, Miles N; Trachtenberg, John; Yetik, Imam Samil

    2010-09-01

    Prostate cancer is a leading cause of cancer death for men in the United States. Fortunately, the survival rate for early diagnosed patients is relatively high. Therefore, in vivo imaging plays an important role for the detection and treatment of the disease. Accurate prostate cancer localization with noninvasive imaging can be used to guide biopsy, radiotherapy, and surgery as well as to monitor disease progression. Magnetic resonance imaging (MRI) performed with an endorectal coil provides higher prostate cancer localization accuracy, when compared to transrectal ultrasound (TRUS). However, in general, a single type of MRI is not sufficient for reliable tumor localization. As an alternative, multispectral MRI, i.e., the use of multiple MRI-derived datasets, has emerged as a promising noninvasive imaging technique for the localization of prostate cancer; however almost all studies are with human readers. There is a significant inter and intraobserver variability for human readers, and it is substantially difficult for humans to analyze the large dataset of multispectral MRI. To solve these problems, this study presents an automated localization method using cost-sensitive support vector machines (SVMs) and shows that this method results in improved localization accuracy than classical SVM. Additionally, we develop a new segmentation method by combining conditional random fields (CRF) with a cost-sensitive framework and show that our method further improves cost-sensitive SVM results by incorporating spatial information. We test SVM, cost-sensitive SVM, and the proposed cost-sensitive CRF on multispectral MRI datasets acquired from 21 biopsy-confirmed cancer patients. Our results show that multispectral MRI helps to increase the accuracy of prostate cancer localization when compared to single MR images; and that using advanced methods such as cost-sensitive SVM as well as the proposed cost-sensitive CRF can boost the performance significantly when compared to SVM.

  5. Can fMRI safely replace the Wada test for preoperative assessment of language lateralisation? A meta-analysis and systematic review.

    PubMed

    Bauer, Prisca R; Reitsma, Johannes B; Houweling, Bernard M; Ferrier, Cyrille H; Ramsey, Nick F

    2014-05-01

    Recent studies have shown that fMRI (functional magnetic resonance imaging) may be of value for pre-surgical assessment of language lateralisation. The aim of this study was to systematically review and analyse the available literature. A systematic electronic search for studies comparing fMRI with Wada testing was conducted in the PubMed database between March 2009 and November 2011. Studies involving unilateral Wada testing, study population consisting exclusively of children younger than 12 years of age or involving five patients or fewer were excluded. 22 studies (504 patients) were included. A random effects meta-analysis was conducted to obtain pooled estimates of the positive and negative predictive values of the fMRI using the Wada test as the reference standard. The impact of several study features on the performance of fMRI was assessed. The results showed that 81% of patients were correctly classified as having left or right language dominance or mixed language representation. Techniques were discordant in 19% of patients. fMRI and Wada test agreed in 94% for typical language lateralisation and in 51% for atypical language lateralisation. Language production or language comprehension tasks and different regions of interest did not yield statistically significant different results. It can be concluded that fMRI is reliable when there is strong left-lateralised language. The Wada test is warranted when fMRI fails to show clear left-lateralisation.

  6. MRI assessment of suppression of structural damage in patients with rheumatoid arthritis receiving rituximab: results from the randomised, placebo-controlled, double-blind RA-SCORE study.

    PubMed

    Peterfy, Charles; Emery, Paul; Tak, Paul P; Østergaard, Mikkel; DiCarlo, Julie; Otsa, Kati; Navarro Sarabia, Federico; Pavelka, Karel; Bagnard, Marie-Agnes; Gylvin, Lykke Hinsch; Bernasconi, Corrado; Gabriele, Annarita

    2016-01-01

    To evaluate changes in structural damage and joint inflammation assessed by MRI following rituximab treatment in a Phase 3 study of patients with active rheumatoid arthritis (RA) despite methotrexate (MTX) who were naive to biological therapy. Patients were randomised to receive two infusions of placebo (n=63), rituximab 500 mg (n=62), or rituximab 1000 mg (n=60) intravenously on days 1 and 15. MRI scans and radiographs of the most inflamed hand and wrist were acquired at baseline, weeks 12 (MRI only), 24 and 52. The primary end point was the change in MRI erosion score from baseline at week 24. Patients treated with rituximab demonstrated significantly less progression in the mean MRI erosion score compared with those treated with placebo at weeks 24 (0.47, 0.18 and 1.60, respectively, p=0.003 and p=0.001 for the two rituximab doses vs placebo) and 52 (-0.30, 0.11 and 3.02, respectively; p<0.001 and p<0.001). Cartilage loss at 52 weeks was significantly reduced in the rituximab group compared with the placebo group. Other secondary end points of synovitis and osteitis improved significantly with rituximab compared with placebo as early as 12 weeks and improved further at weeks 24 and 52. This study demonstrated that rituximab significantly reduced erosion and cartilage loss at week 24 and week 52 in MTX-inadequate responder patients with active RA, suggesting that MRI is a valuable tool for assessing inflammatory and structural damage in patients with established RA receiving rituximab. NCT00578305. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  7. Comparison of 4D Phase-Contrast MRI Flow Measurements to Computational Fluid Dynamics Simulations of Cerebrospinal Fluid Motion in the Cervical Spine

    PubMed Central

    Yiallourou, Theresia I.; Kröger, Jan Robert; Stergiopulos, Nikolaos; Maintz, David

    2012-01-01

    Cerebrospinal fluid (CSF) dynamics in the cervical spinal subarachnoid space (SSS) have been thought to be important to help diagnose and assess craniospinal disorders such as Chiari I malformation (CM). In this study we obtained time-resolved three directional velocity encoded phase-contrast MRI (4D PC MRI) in three healthy volunteers and four CM patients and compared the 4D PC MRI measurements to subject-specific 3D computational fluid dynamics (CFD) simulations. The CFD simulations considered the geometry to be rigid-walled and did not include small anatomical structures such as nerve roots, denticulate ligaments and arachnoid trabeculae. Results were compared at nine axial planes along the cervical SSS in terms of peak CSF velocities in both the cranial and caudal direction and visual interpretation of thru-plane velocity profiles. 4D PC MRI peak CSF velocities were consistently greater than the CFD peak velocities and these differences were more pronounced in CM patients than in healthy subjects. In the upper cervical SSS of CM patients the 4D PC MRI quantified stronger fluid jets than the CFD. Visual interpretation of the 4D PC MRI thru-plane velocity profiles showed greater pulsatile movement of CSF in the anterior SSS in comparison to the posterior and reduction in local CSF velocities near nerve roots. CFD velocity profiles were relatively uniform around the spinal cord for all subjects. This study represents the first comparison of 4D PC MRI measurements to CFD of CSF flow in the cervical SSS. The results highlight the utility of 4D PC MRI for evaluation of complex CSF dynamics and the need for improvement of CFD methodology. Future studies are needed to investigate whether integration of fine anatomical structures and gross motion of the brain and/or spinal cord into the computational model will lead to a better agreement between the two techniques. PMID:23284970

  8. Coregistered whole body magnetic resonance imaging-positron emission tomography (MRI-PET) versus PET-computed tomography plus brain MRI in staging resectable lung cancer: comparisons of clinical effectiveness in a randomized trial.

    PubMed

    Yi, Chin A; Lee, Kyung Soo; Lee, Ho Yun; Kim, Seonwoo; Kwon, O Jung; Kim, Hojoong; Choi, Joon Young; Kim, Byung-Tae; Hwang, Hye Sun; Shim, Young Mog

    2013-05-15

    The objective of this study was to assess whether coregistered whole brain (WB) magnetic resonance imaging-positron emission tomography (MRI-PET) would increase the number of correctly upstaged patients compared with WB PET-computed tomography (PET-CT) plus dedicated brain MRI in patients with nonsmall cell lung cancer (NSCLC). From January 2010 through November 2011, patients with NSCLC who had resectable disease based on conventional staging were assigned randomly either to coregistered MRI-PET or WB PET-CT plus brain MRI (ClinicalTrials.gov trial NCT01065415). The primary endpoint was correct upstaging (the identification of lesions with higher tumor, lymph node, or metastasis classification, verified with biopsy or other diagnostic test) to have the advantage of avoiding unnecessary thoracotomy, to determine appropriate treatment, and to accurately predict patient prognosis. The secondary endpoints were over staging and under staging compared with pathologic staging. Lung cancer was correctly upstaged in 37 of 143 patients (25.9%) in the MRI-PET group and in 26 of 120 patients (21.7%) in the PET-CT plus brain MRI group (4.2% difference; 95% confidence interval, -6.1% to 14.5%; P = .426). Lung cancer was over staged in 26 of 143 patients (18.2%) in the MRI-PET group and in 7 of 120 patients (5.8%) in the PET-CT plus brain MRI group (12.4% difference; 95% confidence interval, 4.8%-20%; P = .003), whereas lung cancer was under staged in 18 of 143 patients (12.6%) and in 28 of 120 patients (23.3%), respectively (-10.7% difference; 95% confidence interval, -20.1% to -1.4%; P = .022). Although both staging tools allowed greater than 20% correct upstaging compared with conventional staging methods, coregistered MRI-PET did not appear to help identify significantly more correctly upstaged patients than PET-CT plus brain MRI in patients with NSCLC. Copyright © 2013 American Cancer Society.

  9. MRI simulation: end-to-end testing for prostate radiation therapy using geometric pelvic MRI phantoms

    NASA Astrophysics Data System (ADS)

    Sun, Jidi; Dowling, Jason; Pichler, Peter; Menk, Fred; Rivest-Henault, David; Lambert, Jonathan; Parker, Joel; Arm, Jameen; Best, Leah; Martin, Jarad; Denham, James W.; Greer, Peter B.

    2015-04-01

    To clinically implement MRI simulation or MRI-alone treatment planning requires comprehensive end-to-end testing to ensure an accurate process. The purpose of this study was to design and build a geometric phantom simulating a human male pelvis that is suitable for both CT and MRI scanning and use it to test geometric and dosimetric aspects of MRI simulation including treatment planning and digitally reconstructed radiograph (DRR) generation. A liquid filled pelvic shaped phantom with simulated pelvic organs was scanned in a 3T MRI simulator with dedicated radiotherapy couch-top, laser bridge and pelvic coil mounts. A second phantom with the same external shape but with an internal distortion grid was used to quantify the distortion of the MR image. Both phantoms were also CT scanned as the gold-standard for both geometry and dosimetry. Deformable image registration was used to quantify the MR distortion. Dose comparison was made using a seven-field IMRT plan developed on the CT scan with the fluences copied to the MR image and recalculated using bulk electron densities. Without correction the maximum distortion of the MR compared with the CT scan was 7.5 mm across the pelvis, while this was reduced to 2.6 and 1.7 mm by the vendor’s 2D and 3D correction algorithms, respectively. Within the locations of the internal organs of interest, the distortion was <1.5 and <1 mm with 2D and 3D correction algorithms, respectively. The dose at the prostate isocentre calculated on CT and MRI images differed by 0.01% (1.1 cGy). Positioning shifts were within 1 mm when setup was performed using MRI generated DRRs compared to setup using CT DRRs. The MRI pelvic phantom allows end-to-end testing of the MRI simulation workflow with comparison to the gold-standard CT based process. MRI simulation was found to be geometrically accurate with organ dimensions, dose distributions and DRR based setup within acceptable limits compared to CT.

  10. Whole-body MRI versus 18F-FDG PET/CT for pretherapeutic assessment and staging of lymphoma: a meta-analysis.

    PubMed

    Wang, Danyang; Huo, Yanlei; Chen, Suyun; Wang, Hui; Ding, Yingli; Zhu, Xiaochun; Ma, Chao

    2018-01-01

    18 F-fluorodeoxyglucose ( 18 F-FDG) positron emission tomography/computed tomography (PET/CT) is the reference standard in staging of 18 F-FDG-avid lymphomas; however, there is no recommended functional imaging modality for indolent lymphomas. Therefore, we aimed to compare the performance of whole-body magnetic resonance imaging (WB-MRI) with that of 18 F-FDG PET/CT for lesion detection and initial staging in patients with aggressive or indolent lymphoma. We searched the MEDLINE, EMBASE, and CENTRAL databases for studies that compared WB-MRI with 18 F-FDG PET/CT for lymphoma staging or lesion detection. The methodological quality of the studies was assessed using version 2 of the "Quality Assessment of Diagnostic Accuracy Studies" tool. The pooled staging accuracy ( μ ) of WB-MRI and 18 F-FDG PET/CT for initial staging and for assessing possible heterogeneity ( χ 2 ) across studies were calculated using commercially available software. Eight studies comprising 338 patients were included. In terms of staging, the meta-analytic staging accuracies of WB-MRI and 18 F-FDG PET/CT for Hodgkin lymphoma and aggressive non-Hodgkin lymphoma (NHL) were 98% (95% CI, 94%-100%) and 98% (95% CI, 94%-100%), respectively. The pooled staging accuracy of 18 F-FDG PET/CT dropped to 87% (95% CI, 72%-97%) for staging in patients with indolent lymphoma, whereas that of WB-MRI remained 96% (95% CI, 91%-100%). Subgroup analysis indicated an even lower staging accuracy of 18 F-FDG PET/CT for staging of less FDG-avid indolent NHLs (60%; 95% CI, 23%-92%), in contrast to the superior performance of WB-MRI (98%; 95% CI, 88%-100%). WB-MRI is a promising radiation-free imaging technique that may serve as a viable alternative to 18 F-FDG PET/CT for staging of 18 FDG-avid lymphomas, where 18 F-FDG PET/CT remains the standard of care. Additionally, WB-MRI seems a less histology-dependent functional imaging test than 18 F-FDG PET/CT and may be the imaging test of choice for staging of indolent NHLs with low 18 F-FDG avidity.

  11. Comparative diagnostic value of 18F-fluoride PET-CT versus MRI for skull-base bone invasion in nasopharyngeal carcinoma.

    PubMed

    Le, Yali; Chen, Yu; Zhou, Fan; Liu, Guangfu; Huang, Zhanwen; Chen, Yue

    2016-10-01

    This study compared the diagnostic value of F-fluoride PET-computed tomography (PET-CT) and MRI in skull-base bone erosion in nasopharyngeal carcinoma (NPC) patients. A total of 93 patients with biopsy-confirmed NPC were enrolled, including 68 men and 25 women between 23 and 74 years of age. All patients were evaluated by both F-fluoride PET-CT and MRI, and the interval between the two imaging examinations was less than 20 days. The patients received no treatment either before or between scans. The studies were interpreted by two nuclear medicine physicians or two radiologists with more than 10 years of professional experience who were blinded to both the diagnosis and the results of the other imaging studies. The reference standard was skull-base bone erosion at a 20-week follow-up imaging study. On the basis of the results of the follow-up imaging studies, 52 patients showed skull-base bone erosion. The numbers of true positives, false positives, true negatives, and false negatives with F-fluoride PET-CT were 49, 4, 37, and 3, respectively. The numbers of true positives, false positives, true negatives, and false negatives with MRI were 46, 5, 36, and 6, respectively. The sensitivity, specificity, and crude accuracy of F-fluoride PET-CT were 94.23, 90.24, and 92.47%, respectively; for MRI, these values were 88.46, 87.80, and 88.17%. Of the 52 patients, 43 showed positive findings both on F-fluoride PET-CT and on MRI. Within the patient cohort, F-fluoride PET-CT and MRI detected 178 and 135 bone lesions, respectively. Both F-fluoride PET-CT and MRI have high sensitivity, specificity, and crude accuracy for detecting skull-base bone invasion in patients with NPC. F-fluoride PET-CT detected more lesions than did MRI in the skull-base bone. This suggests that F-fluoride PET-CT has a certain advantage in evaluating the skull-base bone of NPC patients. Combining the two methods could improve the diagnostic accuracy of skull-base bone invasion for NPC.

  12. Meta-analysis of pre-operative magnetic resonance imaging (MRI) and surgical treatment for breast cancer.

    PubMed

    Houssami, Nehmat; Turner, Robin M; Morrow, Monica

    2017-09-01

    Although there is no consensus on whether pre-operative MRI in women with breast cancer (BC) benefits surgical treatment, MRI continues to be used pre-operatively in practice. This meta-analysis examines the association between pre-operative MRI and surgical outcomes in BC. A systematic review was performed to identify studies reporting quantitative data on pre-operative MRI and surgical outcomes (without restriction by type of surgery received or type of BC) and using a controlled design. Random-effects logistic regression calculated the pooled odds ratio (OR) for each surgical outcome (MRI vs. no-MRI groups), and estimated ORs stratified by study-level age. Subgroup analysis was performed for invasive lobular cancer (ILC). Nineteen studies met eligibility criteria: 3 RCTs and 16 comparative studies that included newly diagnosed BC of any type except for three studies restricted to ILC. Primary analysis (85,975 subjects) showed that pre-operative MRI was associated with increased odds of receiving mastectomy [OR 1.39 (1.23, 1.57); p < 0.001]; similar findings were shown in analyses stratified by study-level median age. Secondary analyses did not find statistical evidence of an effect of MRI on the rates of re-excision, re-operation, or positive margins; however, MRI was significantly associated with increased odds of receiving contralateral prophylactic mastectomy [OR 1.91 (1.25, 2.91); p = 0.003]. Subgroup analysis for ILC did not find any association between MRI and the odds of receiving mastectomy [OR 1.00 (0.75, 1.33); p = 0.988] or the odds of re-excision [OR 0.65 (0.35, 1.24); p = 0.192]. Pre-operative MRI is associated with increased odds of receiving ipsilateral mastectomy and contralateral prophylactic mastectomy as surgical treatment in newly diagnosed BC patients.

  13. Comparison of the accuracy rates of 3-T and 1.5-T MRI of the knee in the diagnosis of meniscal tear.

    PubMed

    Grossman, Jeffrey W; De Smet, Arthur A; Shinki, Kazuhiko

    2009-08-01

    The purpose of this study was to compare the accuracy of 3-T MRI with that of 1.5-T MRI of the knee in the diagnosis of meniscal tear and to analyze the causes of diagnostic error. We reviewed the medical records and original MRI interpretations of 100 consecutive patients who underwent 3-T MRI of the knee and of 100 consecutive patients who underwent 1.5-T MRI of the knee to determine the accuracy of diagnoses of meniscal tear. Knee arthroscopy was the reference standard. We retrospectively reviewed all MRI diagnostic errors to determine the cause of the errors. At arthroscopy, 109 medial and 77 lateral meniscal tears were identified in the 200 patients. With two abnormal MR images indicating a meniscal tear, the sensitivity and specificity for medial tear were 92.7% and 82.2% at 1.5-T MRI and 92.6% and 76.1% at 3-T MRI (p = 1.0, p = 0.61). The sensitivity and specificity for lateral tears were 68.4% and 95.2% at 1.5-T MRI and 69.2% and 91.8% at 3-T MRI (p = 1.0, p = 0.49). Of the false-positive diagnoses of medial meniscal tear, five of eight at 1.5 T and seven of 11 at 3 T were apparent peripheral longitudinal tears of the posterior horn. Fifteen of the 26 missed medial and lateral meniscal tears were not seen in retrospect even with knowledge of the tear type and location. Allowing for sample size limitations, we found comparable accuracy of 3-T and 1.5-T MRI of the knee in the diagnosis of meniscal tear. The causes of false-positive and false-negative MRI diagnoses of meniscal tear are similar for 3-T and 1.5-T MRI.

  14. Comparison of Contrast-Enhanced Ultrasound and Gadolinium-Ethoxybenzyl-Diethylenetriamine Pentaacetic Acid-Enhanced MRI for the Diagnosis of Macroscopic Type of Hepatocellular Carcinoma.

    PubMed

    Iwamoto, Takayuki; Imai, Yasuharu; Kogita, Sachiyo; Igura, Takumi; Sawai, Yoshiyuki; Fukuda, Kazuto; Yamaguchi, Yoshitaka; Matsumoto, Yasushi; Nakahara, Masanori; Morimoto, Osakuni; Seki, Yasushi; Ohashi, Hiroshi; Fujita, Norihiko; Kudo, Masatoshi; Takehara, Tetsuo

    We compared the efficacy of contrast-enhanced ultrasound sonography (CEUS) with sonazoid and gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced MRI for the assessment of macroscopic classification of nodular hepatocellular carcinoma (HCC). Seventy-seven consecutive patients with 79 surgically resected HCCs who underwent both preoperative CEUS and Gd-EOB-DTPA-enhanced MRI were enrolled in this retrospective study. Based on the macroscopic diagnosis of resected specimens, nodules were categorized into the simple nodular (SN) and non-SN type HCC. Two hepatologists independently assessed image datasets of the post-vascular phase of CEUS and hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI to compare their diagnostic performance. Gd-EOB-DTPA-enhanced MRI enabled the evaluation of macroscopic classification in a significantly larger number of nodules than CEUS (78/79 (98.7%) vs. 70/79 (88.6%), p < 0.05). Of 70 nodules that could be evaluated by both modalities, 41 and 29 nodules were pathologically categorized as SN and non-SN, respectively. The areas under the receiver operating characteristic curve (AUC) for non-SN did not differ between CEUS and Gd-EOB-DTPA-enhanced MRI (reader 1: 0.748 for CEUS, 0.808 for MRI; reader 2: 0.759 for CEUS, 0.787 for MRI). The AUC of combined CEUS and Gd-EOB-DTPA-enhanced MRI for SN HCC was 0.855 (reader 1) and 0.824 (reader 2), indicating higher AUC values for the combined modalities. The diagnostic performance for macroscopic classification of nodular HCC of CEUS was comparable with that of Gd-EOB-DTPA-enhanced MRI, although some HCCs could not be evaluated by CEUS owing to lower detectability. The combination of the 2 modalities had a more accurate diagnostic performance. © 2016 S. Karger AG, Basel.

  15. Performance Comparison of 1.5 T Endorectal Coil MRI with Non-Endorectal Coil 3.0 T MRI in Patients with Prostate Cancer

    PubMed Central

    Shah, Zarine K.; Elias, Saba N.; Abaza, Ronney; Zynger, Debra L.; DeRenne, Lawrence A.; Knopp, Michael V.; Guo, Beibei; Schurr, Ryan; Heymsfield, Steven B.; Jia, Guang

    2015-01-01

    Rationale and Objectives To compare prostate morphology, image quality, and diagnostic performance of 1.5 T endorectal coil MRI and 3.0 T non-endorectal coil MRI in patients with prostate cancer. Materials and Methods MR images obtained of 83 patients with prostate cancer using 1.5 T MRI systems with an endorectal coil were compared to images collected from 83 patients with a 3.0 T MRI system. Prostate diameters were measured and image quality was evaluated by one ABR-certified radiologist (Reader 1) and one ABR-certified diagnostic medical physicist (Reader 2). The likelihood of the peripheral zone cancer presence in each sextant and local extent were rated and compared with histopathologic findings. Results Prostate anterior-posterior diameter measured by both readers was significantly shorter with 1.5 T endorectal MRI than with 3.0 T MRI. The overall image quality score difference was significant only for Reader 1. Both readers found that the two MRI systems provided similar diagnostic accuracy in cancer localization, extraprostatic extension, and seminal vesicle involvement. Conclusion Non-endorectal coil 3.0 T MRI provides prostate images that are natural in shape and that have comparable image quality to those obtained at 1.5 T with an endorectal coil, but not superior diagnostic performance. These findings suggest an opportunity exists for improving technical aspects of 3.0 T prostate MRI. PMID:25579637

  16. Four-Dimensional Magnetic Resonance Imaging Using Axial Body Area as Respiratory Surrogate: Initial Patient Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Juan; School of Information Science and Engineering, Shandong University, Jinan, Shandong; Cai, Jing

    Purpose: To evaluate the feasibility of a retrospective binning technique for 4-dimensional magnetic resonance imaging (4D-MRI) using body area (BA) as a respiratory surrogate. Methods and Materials: Seven patients with hepatocellular carcinoma (4 of 7) or liver metastases (3 of 7) were enrolled in an institutional review board-approved prospective study. All patients were simulated with both computed tomography (CT) and MRI to acquire 3-dimensinal and 4D images for treatment planning. Multiple-slice multiple-phase cine-MR images were acquired in the axial plane for 4D-MRI reconstruction. Image acquisition time per slice was set to 10-15 seconds. Single-slice 2-dimensinal cine-MR images were also acquiredmore » across the center of the tumor in orthogonal planes. Tumor motion trajectories from 4D-MRI, cine-MRI, and 4D-CT were analyzed in the superior–inferior (SI), anterior–posterior (AP), and medial–lateral (ML) directions, respectively. Their correlation coefficients (CC) and differences in tumor motion amplitude were determined. Tumor-to-liver contrast-to-noise ratio (CNR) was measured and compared between 4D-CT, 4D-MRI, and conventional T2-weighted fast spin echo MRI. Results: The means (±standard deviations) of CC comparing 4D-MRI with cine-MRI were 0.97 ± 0.03, 0.97 ± 0.02, and 0.99 ± 0.04 in SI, AP, and ML directions, respectively. The mean differences were 0.61 ± 0.17 mm, 0.32 ± 0.17 mm, and 0.14 ± 0.06 mm in SI, AP, and ML directions, respectively. The means of CC comparing 4D-MRI and 4D-CT were 0.95 ± 0.02, 0.94 ± 0.02, and 0.96 ± 0.02 in SI, AP, and ML directions, respectively. The mean differences were 0.74 ± 0.02 mm, 0.33 ± 0.13 mm, and 0.18 ± 0.07 mm in SI, AP, and ML directions, respectively. The mean tumor-to-tissue CNRs were 2.94 ± 1.51, 19.44 ± 14.63, and 39.47 ± 20.81 in 4D-CT, 4D-MRI, and T2-weighted MRI, respectively. Conclusions: The preliminary evaluation of our 4D-MRI technique results in oncologic patients demonstrates its potential usefulness to accurately measure tumor respiratory motion with improved tumor CNR compared with 4D-CT.« less

  17. Evaluation of background parenchymal enhancement on breast MRI: a systematic review

    PubMed Central

    Signori, Alessio; Valdora, Francesca; Rossi, Federica; Calabrese, Massimo; Durando, Manuela; Mariscotto, Giovanna; Tagliafico, Alberto

    2017-01-01

    Objective: To perform a systematic review of the methods used for background parenchymal enhancement (BPE) evaluation on breast MRI. Methods: Studies dealing with BPE assessment on breast MRI were retrieved from major medical libraries independently by four reviewers up to 6 October 2015. The keywords used for database searching are “background parenchymal enhancement”, “parenchymal enhancement”, “MRI” and “breast”. The studies were included if qualitative and/or quantitative methods for BPE assessment were described. Results: Of the 420 studies identified, a total of 52 articles were included in the systematic review. 28 studies performed only a qualitative assessment of BPE, 13 studies performed only a quantitative assessment and 11 studies performed both qualitative and quantitative assessments. A wide heterogeneity was found in the MRI sequences and in the quantitative methods used for BPE assessment. Conclusion: A wide variability exists in the quantitative evaluation of BPE on breast MRI. More studies focused on a reliable and comparable method for quantitative BPE assessment are needed. Advances in knowledge: More studies focused on a quantitative BPE assessment are needed. PMID:27925480

  18. Perceiving Age and Gender in Unfamiliar Faces: An fMRI Study on Face Categorization

    ERIC Educational Resources Information Center

    Wiese, Holger; Kloth, Nadine; Gullmar, Daniel; Reichenbach, Jurgen R.; Schweinberger, Stefan R.

    2012-01-01

    Efficient processing of unfamiliar faces typically involves their categorization (e.g., into old vs. young or male vs. female). However, age and gender categorization may pose different perceptual demands. In the present study, we employed functional magnetic resonance imaging (fMRI) to compare the activity evoked during age vs. gender…

  19. MRI for the detection of calcific features of vertebral haemangioma.

    PubMed

    Bender, Y Y; Böker, S M; Diederichs, G; Walter, T; Wagner, M; Fallenberg, E; Liebig, T; Rickert, M; Hamm, B; Makowski, M R

    2017-08-01

    To evaluate the diagnostic performance of susceptibility-weighted-magnetic-resonance imaging (SW-MRI) for the detection of vertebral haemangiomas (VHs) compared to T1/T2-weighted MRI sequences, radiographs, and computed tomography (CT). The study was approved by the local ethics review board. An SW-MRI sequence was added to the clinical spine imaging protocol. The image-based diagnosis of 56 VHs in 46 patients was established using T1/T2 MRI in combination with radiography/CT as the reference standard. VHs were assessed based on T1/T2-weighted MRI images alone and in combination with SW-MRI, while radiographs/CT images were excluded from the analysis. Fifty-one of 56 VHs could be identified on T1/T2 MRI images alone, if radiographs/CT images were excluded from analysis. In five cases (9.1%), additional radiographs/CT images were required for the imaging-based diagnosis. If T1/T2 and SW-MRI images were used in combination, all VHs could be diagnosed, without the need for radiography/CT. Size measurements revealed a close correlation between CT and SW-MRI (R 2 =0.94; p<0.05). This study demonstrates that SW-MRI enables reliable detection of the typical calcified features of VHs. This is of importance for routine MRI of the spine, as the use of additional CT/radiography can be minimized. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  20. High-Speed Real-Time Resting-State fMRI Using Multi-Slab Echo-Volumar Imaging

    PubMed Central

    Posse, Stefan; Ackley, Elena; Mutihac, Radu; Zhang, Tongsheng; Hummatov, Ruslan; Akhtari, Massoud; Chohan, Muhammad; Fisch, Bruce; Yonas, Howard

    2013-01-01

    We recently demonstrated that ultra-high-speed real-time fMRI using multi-slab echo-volumar imaging (MEVI) significantly increases sensitivity for mapping task-related activation and resting-state networks (RSNs) compared to echo-planar imaging (Posse et al., 2012). In the present study we characterize the sensitivity of MEVI for mapping RSN connectivity dynamics, comparing independent component analysis (ICA) and a novel seed-based connectivity analysis (SBCA) that combines sliding-window correlation analysis with meta-statistics. This SBCA approach is shown to minimize the effects of confounds, such as movement, and CSF and white matter signal changes, and enables real-time monitoring of RSN dynamics at time scales of tens of seconds. We demonstrate highly sensitive mapping of eloquent cortex in the vicinity of brain tumors and arterio-venous malformations, and detection of abnormal resting-state connectivity in epilepsy. In patients with motor impairment, resting-state fMRI provided focal localization of sensorimotor cortex compared with more diffuse activation in task-based fMRI. The fast acquisition speed of MEVI enabled segregation of cardiac-related signal pulsation using ICA, which revealed distinct regional differences in pulsation amplitude and waveform, elevated signal pulsation in patients with arterio-venous malformations and a trend toward reduced pulsatility in gray matter of patients compared with healthy controls. Mapping cardiac pulsation in cortical gray matter may carry important functional information that distinguishes healthy from diseased tissue vasculature. This novel fMRI methodology is particularly promising for mapping eloquent cortex in patients with neurological disease, having variable degree of cooperation in task-based fMRI. In conclusion, ultra-high-real-time speed fMRI enhances the sensitivity of mapping the dynamics of resting-state connectivity and cerebro-vascular pulsatility for clinical and neuroscience research applications. PMID:23986677

  1. Assessment of brain activity during voluntary anal sphincter contraction: Comparative study in women with and without fecal incontinence.

    PubMed

    Parés, D; Martínez-Vilalta, M; Ortiz, H; Soriano-Mas, C; Maestre-Gonzalez, Y; Pujol, J; Grande, L

    2018-04-14

    Voluntary anal sphincter function is driven by an extended network of brain structures, most of which are still unknown. Disturbances in this function may cause fecal incontinence. The aim of this study was to characterize the cerebral areas involved in voluntary contraction of the anorectal sphincter in healthy women and in a group of patients with fecal incontinence by using a standardized functional magnetic resonance imaging (fMRI) protocol. This comparative study included 12 healthy women (mean age 53.17 ± 4.93 years) and 12 women with fecal incontinence (56.25 ± 6.94 years). An MRI-compatible anal manometer was used to register voluntary external anal sphincter contraction. During brain fMRI imaging, participants were cued to perform 10-s series of self-paced anal sphincter contractions at an approximate rate of 1 Hz. Brain structures linked to anal sphincter contractions were mapped and the findings were compared between the 2 study groups. There were no differences in the evoked brain activity between the 2 groups. In healthy women, group fMRI analysis revealed significant activations in medial primary motor cortices, supplementary motor area, bilateral putamen, and cerebellum, as well as in the supramarginal gyrus and visual areas. In patients with fecal incontinence, the activation pattern involved similar regions without significant differences with healthy women. This brain fMRI-anorectal protocol was able to map the brain regions linked to voluntary anal sphincter function in healthy and women with fecal incontinence. © 2018 John Wiley & Sons Ltd.

  2. Functional and structural abnormalities associated with empathy in patients with schizophrenia: An fMRI and VBM study

    PubMed Central

    Singh, Sadhana; Modi, Shilpi; Goyal, Satnam; Kaur, Prabhjot; Singh, Namita; Bhatia, Triptish; Deshpande, Smita N; Khushu, Subash

    2016-01-01

    Empathy deficit is a core feature of schizophrenia which may lead to social dysfunction. The present study was carried out to investigate functional and structural abnormalities associated with empathy in patients with schizophrenia using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 schizophrenia patients and 14 healthy control subjects matched for age, sex and education were examined with structural high-resolution T1-weighted MRI; fMRI images were obtained during empathy task in the same session. The analysis was carried out using SPM8 software. On behavioural assessment, schizophrenic patients (83.00±29.04) showed less scores for sadness compared to healthy controls (128.70±22.26) (p<0.001). fMRI results also showed reduced clusters of activation in the bilateral fusiform gyrus, left lingual gyrus, left middle and inferior occipital gyrus in schizophrenic subjects as compared to controls during empathy task. In the same brain areas, VBM results also showed reduced grey and white matter volumes. The present study provides an evidence for an association between structural alterations and disturbed functional brain activation during empathy task in persons affected with schizophrenia. These findings suggest a biological basis for social cognition deficits in schizophrenics. PMID:25963262

  3. Functional and structural abnormalities associated with empathy in patients with schizophrenia: An fMRI and VBM study.

    PubMed

    Singh, Sadhana; Modi, Shilpi; Goyal, Satnam; Kaur, Prabhjot; Singh, Namita; Bhatia, Triptish; Deshpande, Smita N; Khushu, Subash

    2015-06-01

    Empathy deficit is a core feature of schizophrenia which may lead to social dysfunction. The present study was carried out to investigate functional and structural abnormalities associated with empathy in patients with schizophrenia using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 schizophrenia patients and 14 healthy control subjects matched for age, sex and education were examined with structural highresolution T1-weighted MRI; fMRI images were obtained during empathy task in the same session. The analysis was carried out using SPM8 software. On behavioural assessment, schizophrenic patients (83.00+-29.04) showed less scores for sadness compared to healthy controls (128.70+-22.26) (p less than 0.001). fMRI results also showed reduced clusters of activation in the bilateral fusiform gyrus, left lingual gyrus, left middle and inferior occipital gyrus in schizophrenic subjects as compared to controls during empathy task. In the same brain areas, VBM results also showed reduced grey and white matter volumes. The present study provides an evidence for an association between structural alterations and disturbed functional brain activation during empathy task in persons affected with schizophrenia. These findings suggest a biological basis for social cognition deficits in schizophrenics.

  4. Real-time sonoelastography compared to magnetic resonance imaging using four different modalities at 3.0 T in the detection of prostate cancer: strength and weaknesses.

    PubMed

    Pelzer, Alexandre E; Heinzelbecker, Julia; Weiß, Christel; Frühbauer, Dominik; Weidner, Anja M; Kirchner, Matthias; Stroebel, Philipp; Schoenberg, Stephan O; Dinter, Dietmar J

    2013-05-01

    To compare the results of RTE with four different modalities at 3.0 T using endorectal and body phased array coil in the detection of PC. Between May 2009 and July 2010, 50 patients with biopsy proven PC scheduled for radical prostatectomy (RP) were examined. All patients underwent RTE of the prostate and 3.0 T endorectal MRI. The investigators were unaware of the clinical data and of each others results. RTE detected PC in 46 (92%) and MRI in 42 (84%) of the patients. Depending on the analysis sensitivity was 44.1-58.9% for RTE and 36.7-43.1% for MRI. Specificity was 83.0-74.8% for RTE and 85.9-79.8% for MRI. Sensitivity was significantly higher for RTE (16-sectors: p=0.0348; 8-sectors: p=0.0002) and showed better results in the dorsal (RTE: 51.9%; MRT: 37.7%) and apical to middle (RTE: 66.7%-80.0%; MRI: 41.7%-60.0%) parts of the prostate. MRI showed better results in the base (MRI: 19.4%; RTE: 14.9%) and transitional zone (TZ) (MRI: 34.7%; RTE: 29.6%). Concerning capsular involvement the results were comparable with sensitivity and specificity of RTE being 79.2% and 80.0% compared to 80.8% and 70.0% of MRI. Concerning sensitivity RTE showed advantages in apical and middle parts whereas MRI may provide advantages in the glands' base and TZ. Both RTE and MRI have limitations particularly in basal and ventral parts. Most of the undetected tumours were of low tumour volume and Gleason Score. Considering capsular involvement both techniques showed comparable results. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Impact of nonrigid motion correction technique on pixel-wise pharmacokinetic analysis of free-breathing pulmonary dynamic contrast-enhanced MR imaging.

    PubMed

    Tokuda, Junichi; Mamata, Hatsuho; Gill, Ritu R; Hata, Nobuhiko; Kikinis, Ron; Padera, Robert F; Lenkinski, Robert E; Sugarbaker, David J; Hatabu, Hiroto

    2011-04-01

    To investigates the impact of nonrigid motion correction on pixel-wise pharmacokinetic analysis of free-breathing DCE-MRI in patients with solitary pulmonary nodules (SPNs). Misalignment of focal lesions due to respiratory motion in free-breathing dynamic contrast-enhanced MRI (DCE-MRI) precludes obtaining reliable time-intensity curves, which are crucial for pharmacokinetic analysis for tissue characterization. Single-slice 2D DCE-MRI was obtained in 15 patients. Misalignments of SPNs were corrected using nonrigid B-spline image registration. Pixel-wise pharmacokinetic parameters K(trans) , v(e) , and k(ep) were estimated from both original and motion-corrected DCE-MRI by fitting the two-compartment pharmacokinetic model to the time-intensity curve obtained in each pixel. The "goodness-of-fit" was tested with χ(2) -test in pixel-by-pixel basis to evaluate the reliability of the parameters. The percentages of reliable pixels within the SPNs were compared between the original and motion-corrected DCE-MRI. In addition, the parameters obtained from benign and malignant SPNs were compared. The percentage of reliable pixels in the motion-corrected DCE-MRI was significantly larger than the original DCE-MRI (P = 4 × 10(-7) ). Both K(trans) and k(ep) derived from the motion-corrected DCE-MRI showed significant differences between benign and malignant SPNs (P = 0.024, 0.015). The study demonstrated the impact of nonrigid motion correction technique on pixel-wise pharmacokinetic analysis of free-breathing DCE-MRI in SPNs. Copyright © 2011 Wiley-Liss, Inc.

  6. Canonical Correlation Analysis for Feature-Based Fusion of Biomedical Imaging Modalities and Its Application to Detection of Associative Networks in Schizophrenia.

    PubMed

    Correa, Nicolle M; Li, Yi-Ou; Adalı, Tülay; Calhoun, Vince D

    2008-12-01

    Typically data acquired through imaging techniques such as functional magnetic resonance imaging (fMRI), structural MRI (sMRI), and electroencephalography (EEG) are analyzed separately. However, fusing information from such complementary modalities promises to provide additional insight into connectivity across brain networks and changes due to disease. We propose a data fusion scheme at the feature level using canonical correlation analysis (CCA) to determine inter-subject covariations across modalities. As we show both with simulation results and application to real data, multimodal CCA (mCCA) proves to be a flexible and powerful method for discovering associations among various data types. We demonstrate the versatility of the method with application to two datasets, an fMRI and EEG, and an fMRI and sMRI dataset, both collected from patients diagnosed with schizophrenia and healthy controls. CCA results for fMRI and EEG data collected for an auditory oddball task reveal associations of the temporal and motor areas with the N2 and P3 peaks. For the application to fMRI and sMRI data collected for an auditory sensorimotor task, CCA results show an interesting joint relationship between fMRI and gray matter, with patients with schizophrenia showing more functional activity in motor areas and less activity in temporal areas associated with less gray matter as compared to healthy controls. Additionally, we compare our scheme with an independent component analysis based fusion method, joint-ICA that has proven useful for such a study and note that the two methods provide complementary perspectives on data fusion.

  7. Progression of white matter damage in progressive supranuclear palsy with predominant parkinsonism.

    PubMed

    Caso, Francesca; Agosta, Federica; Ječmenica-Lukić, Milica; Petrović, Igor; Meani, Alessandro; Kostic, Vladimir S; Filippi, Massimo

    2018-04-01

    Progressive supranuclear palsy with predominant parkinsonism (PSP-P) accounts for 14-35% of all PSP cases. A few cross-sectional MRI studies in PSP-P showed a remarkable white matter (WM) damage. Progression of brain structural damage in these patients remains unknown. Longitudinal clinical, cognitive and diffusion tensor (DT) MRI data were obtained over a mean 1.6 year follow up in 10 PSP-P patients. At study entry, patients were compared with 36 healthy controls. Voxelwise statistical analysis of white matter DT MRI data (mean, axial and radial diffusivity, and fractional anisotropy) was carried out using tract-based spatial statistics. During the 1.6 year follow up, PSP-P patients showed significant decline of motor, cognitive and mood disturbances. DT MRI analysis revealed at baseline a widespread pattern of WM alterations. Over time, PSP-P patients exhibited progression of WM damage in supratentorial tracts compared to baseline. No WM changes were detected in cerebellar WM. In PSP-P patients, WM damage significantly progressed over time. Longitudinal DT MRI measures are a potential in vivo marker of disease progression in PSP-P. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. MRI as a Translational Tool for the Study of Neonatal Stroke

    PubMed Central

    Dzietko, Mark; Wendland, Michael; Derugin, Nikita; Ferriero, Donna M.; Vexler, Zinaida S.

    2013-01-01

    More than half of neonatal stroke survivors have long-term sequelae, including seizures and neurological deficits. Although the immature brain has tremendous potential for recovery, mechanisms governing repair are essentially unexplored. We explored whether magnetic resonance imaging (MRI) early or late after transient middle cerebral arterial occlusion in 10-day-old (P10) rats can serve as an intermediate endpoint for long-term studies. Injured animals selected by diffusion-weighted MRI during middle cerebral arterial occlusion were scanned using T2-weighted MRI at P18 and P25 (injury volumes on MRI and histology were compared), or were subjected to contrast-enhanced MRI at P13 to characterize cerebral microcirculatory disturbances and blood-brain barrier leakage. Injury volume did not predict histological outcome at 2 weeks. Major reductions occurred by P18, with no further changes by P25. Cerebral perfusion was significantly reduced in the injured caudate but blood-brain barrier leakage was small. Therefore, conventional T2-weighted MRI performed during a subchronic injury phase predicts long-term histological outcome after experimental neonatal focal stroke. PMID:21670390

  9. Avascular necrosis (AVN) of the proximal fragment in scaphoid nonunion: is intravenous contrast agent necessary in MRI?

    PubMed

    Schmitt, R; Christopoulos, G; Wagner, M; Krimmer, H; Fodor, S; van Schoonhoven, J; Prommersberger, K J

    2011-02-01

    The purpose of this prospective study is to assess the diagnostic value of intravenously applied contrast agent for diagnosing osteonecrosis of the proximal fragment in scaphoid nonunion, and to compare the imaging results with intraoperative findings. In 88 patients (7 women, 81 men) suffering from symptomatic scaphoid nonunion, preoperative MRI was performed (coronal PD-w FSE fs, sagittal-oblique T1-w SE nonenhanced and T1-w SE fs contrast-enhanced, sagittal T2*-w GRE). MRI interpretation was based on the intensity of contrast enhancement: 0 = none, 1 = focal, 2 = diffuse. Intraoperatively, the osseous viability was scored by means of bleeding points on the osteotomy site of the proximal scaphoid fragment: 0=absent, 1 = moderate, 2 = good. Intraoperatively, 17 necrotic, 29 compromised, and 42 normal proximal fragments were found. In nonenhanced MRI, bone viability was judged necrotic in 1 patient, compromised in 20 patients, and unaffected in 67 patients. Contrast-enhanced MRI revealed 14 necrotic, 21 compromised, and 53 normal proximal fragments. Judging surgical findings as the standard of reference, statistical analysis for nonenhanced MRI was: sensitivity 6.3%, specificity 100%, positive PV 100%, negative PV 82.6%, and accuracy 82.9%; statistics for contrast-enhanced MRI was: sensitivity 76.5%, specificity 98.6%, positive PV 92.9%, negative PV 94.6%, and accuracy 94.3%. Sensitivity for detecting avascular proximal fragments was significantly better (p<0.001) in contrast-enhanced MRI in comparison to nonenhanced MRI. Viability of the proximal fragment in scaphoid nonunion can be significantly better assessed with the use of contrast-enhanced MRI as compared to nonenhanced MRI. Bone marrow edema is an inferior indicator of osteonecrosis. Application of intravenous gadolinium is recommended for imaging scaphoid nonunion. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  10. Polyethylene glycol and contrast-enhanced MRI of Crohn's disease in children: preliminary experience.

    PubMed

    Magnano, Gianmichele; Granata, Claudio; Barabino, Arrigo; Magnaguagno, Francesca; Rossi, Umberto; Calevo, Maria Grazia; Toma, Paolo

    2003-06-01

    To assess the ability of MRI to detect bowel abnormalities in children affected by Crohn's disease (CD). We studied 22 children (age range 8-18 years) referred to us with a known history of CD. MRI was carried out using a 1.5-T unit with a maximum gradient field strength of 16 mT and a phased-array body coil. The sequences performed were breath-hold coronal and axial T2-weighted, express fat saturation, followed by T1-weighted, spoiled gradient, fast fat saturation after IV injection of gadolinium chelate (0.3 mmol/kg) for contrast enhancement of the bowel wall. Bowel distension was achieved using oral administration of isosmotic polyethylene glycol solution. Ileo-colonoscopy was considered the gold standard for evaluation of superficial abnormalities and stenoses of the colon and terminal ileum. MRI findings of bowel-wall thickening, increased vascularisation and extramural involvement were compared with the findings using B-mode and Doppler US. Concordance between MRI and endoscopy, B-mode US and Doppler US findings was determined by the Kappa statistical method. Superficial lesions were not shown by MRI. MR enteroclysis easily detected stenoses, thickening and hyperaemia of bowel wall. Concordance of findings between MRI and endoscopy was 90% (K=0.79, substantial concordance). Concordance of findings between MRI and US concerning bowel-wall thickening and increased vascularisation was 95% (K=0.875, excellent concordance) and 80% (K=0.6, fairly good concordance), respectively. Our initial results show that MRI can detect intra- and extra-mural lesions of CD. The high concordance observed between MRI, endoscopy, US and Doppler US findings suggests that MRI is at least comparable for diagnostic capability with these techniques offering, thanks to multiplanar projections, an improved visualisation of the bowel without ionising radiation.

  11. Assessment of gunshot bullet injuries with the use of magnetic resonance imaging.

    PubMed

    Hess, U; Harms, J; Schneider, A; Schleef, M; Ganter, C; Hannig, C

    2000-10-01

    Magnetic resonance imaging (MRI) is rarely used for preoperative assessment of shotgun injuries because of concerns of displacing the possibly ferromagnetic foreign body within the surrounding tissue. A total of 56 different projectiles underwent MRI testing for ferromagnetism and imaging quality in vitro and in pig carcasses with a commercially available 1.5-MRI scan. Image quality was compared with that of computed tomographic scans. Projectiles with ferromagnetic properties can be distinguished easily from nonferromagnetic ones by pretesting the motion of an identical projectile within the MRI coil. When ferromagnetic projectiles were excluded, MRI yielded the more precise images compared with other imaging techniques. Projectile localization and associated soft tissue injuries were visualized without artifacts in all cases. When ferromagnetic foreign bodies are excluded by pretesting their properties within the MRI with a comparative projectile, MRI portends an excellent imaging procedure for assessing the extent of injury and planning the removal by surgery.

  12. In vivo estimation of normal amygdala volume from structural MRI scans with anatomical-based segmentation.

    PubMed

    Siozopoulos, Achilleas; Thomaidis, Vasilios; Prassopoulos, Panos; Fiska, Aliki

    2018-02-01

    Literature includes a number of studies using structural MRI (sMRI) to determine the volume of the amygdala, which is modified in various pathologic conditions. The reported values vary widely mainly because of different anatomical approaches to the complex. This study aims at estimating of the normal amygdala volume from sMRI scans using a recent anatomical definition described in a study based on post-mortem material. The amygdala volume has been calculated in 106 healthy subjects, using sMRI and anatomical-based segmentation. The resulting volumes have been analyzed for differences related to hemisphere, sex, and age. The mean amygdalar volume was estimated at 1.42 cm 3 . The mean right amygdala volume has been found larger than the left, but the difference for the raw values was within the limits of the method error. No intersexual differences or age-related alterations have been observed. The study provides a method for determining the boundaries of the amygdala in sMRI scans based on recent anatomical considerations and an estimation of the mean normal amygdala volume from a quite large number of scans for future use in comparative studies.

  13. Validation of a motion-robust 2D sequential technique for quantification of hepatic proton density fat fraction during free breathing.

    PubMed

    Pooler, B Dustin; Hernando, Diego; Ruby, Jeannine A; Ishii, Hiroshi; Shimakawa, Ann; Reeder, Scott B

    2018-04-17

    Current chemical-shift-encoded (CSE) MRI techniques for measuring hepatic proton density fat fraction (PDFF) are sensitive to motion artifacts. Initial validation of a motion-robust 2D-sequential CSE-MRI technique for quantification of hepatic PDFF. Phantom study and prospective in vivo cohort. Fifty adult patients (27 women, 23 men, mean age 57.2 years). 3D, 2D-interleaved, and 2D-sequential CSE-MRI acquisitions at 1.5T. Three CSE-MRI techniques (3D, 2D-interleaved, 2D-sequential) were performed in a PDFF phantom and in vivo. Reference standards were 3D CSE-MRI PDFF measurements for the phantom study and single-voxel MR spectroscopy hepatic PDFF measurements (MRS-PDFF) in vivo. In vivo hepatic MRI-PDFF measurements were performed during a single breath-hold (BH) and free breathing (FB), and were repeated by a second reader for the FB 2D-sequential sequence to assess interreader variability. Correlation plots to validate the 2D-sequential CSE-MRI against the phantom and in vivo reference standards. Bland-Altman analysis of FB versus BH CSE-MRI acquisitions to evaluate robustness to motion. Bland-Altman analysis to assess interreader variability. Phantom 2D-sequential CSE-MRI PDFF measurements demonstrated excellent agreement and correlation (R 2 > 0.99) with 3D CSE-MRI. In vivo, the mean (±SD) hepatic PDFF was 8.8 ± 8.7% (range 0.6-28.5%). Compared with BH acquisitions, FB hepatic PDFF measurements demonstrated bias of +0.15% for 2D-sequential compared with + 0.53% for 3D and +0.94% for 2D-interleaved. 95% limits of agreement (LOA) were narrower for 2D-sequential (±0.99%), compared with 3D (±3.72%) and 2D-interleaved (±3.10%). All CSE-MRI techniques had excellent correlation with MRS (R 2 > 0.97). The FB 2D-sequential acquisition demonstrated little interreader variability, with mean bias of +0.07% and 95% LOA of ± 1.53%. This motion-robust 2D-sequential CSE-MRI can accurately measure hepatic PDFF during free breathing in a patient population with a range of PDFF values of 0.6-28.5%, permitting accurate quantification of liver fat content without the need for suspended respiration. 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.

  14. Quantitative and Qualitative Assessment of Pulmonary Emphysema with T2-Weighted PROPELLER MRI in a High-Risk Population Compared to Low-Dose CT.

    PubMed

    Meier-Schroers, Michael; Sprinkart, Alois Martin; Becker, Manuel; Homsi, Rami; Thomas, Daniel

    2018-03-07

     To determine the suitability of T2-weighted PROPELLER MRI for the assessment of pulmonary emphysema.  60 participants in a lung cancer screening program (30 subjects with pulmonary emphysema, and 30 control subjects without emphysema) were included for this retrospective study. All subjects were examined with low-dose CT (LDCT) and MRI within the screening program. The use of a T2-weighted PROPELLER sequence for the assessment of emphysema was analyzed and correlated with the results of LDCT. The presence and the extent of pulmonary emphysema were first assessed qualitatively using a three-point score, and then quantitatively with a semi-automated software program to obtain emphysema indices.  All 30 cases with pulmonary emphysema were accurately detected by MRI. There were 3 cases with emphysema according to MRI without emphysematous changes on LDCT (false-positive results). The qualitative scores as well as the emphysema indices were significantly higher in the emphysema group compared to the control group for MRI and LDCT (p < 0.001). Both the scores and the indices correlated significantly between MRI and LDCT (qualitative score of severity: r = 0.912/p < 0.001 in the emphysema group and r = 0.668/p < 0.001 in the control group; emphysema index: r = 0.960/p < 0.001 in the emphysema group and r = 0.746/p < 0.001 in the control group).  The presence and the extent of pulmonary emphysema may be assessed qualitatively and quantitatively by T2-weighted PROPELLER MRI with very good correlation to LDCT.   · T2-weighted PROPELLER MRI may be suitable for the assessment of pulmonary emphysema.. · There was significant correlation between MRI and LDCT regarding qualitative scores and quantitative emphysema indices in our study with correlation coefficients for different subgroups ranging from r = 0.668 to r = 0.960.. · T2-weighted PROPELLER MRI may have the potential to be used for follow-up examinations in patients with severe emphysema to avoid radiation exposure of repeated CTs.. · Meier-Schroers M, Sprinkart AM, Becker M et al. Quantitative and Qualitative Assessment of Pulmonary Emphysema with T2-Weighted PROPELLER MRI in a High-Risk Population Compared to Low-Dose CT. Fortschr Röntgenstr 2018; DOI: 10.1055/a-0577-5619. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Pelvic magnetic resonance imaging for assessment of the efficacy of the Prolift system for pelvic organ prolapse.

    PubMed

    Kasturi, Seshadri; Lowman, Joye K; Lowman, Joye; Kelvin, Frederick M; Akisik, Fatih M; Akisik, Fateh; Terry, Colin L; Terry, Colin; Hale, Douglass S

    2010-11-01

    The purpose of this study was to compare pre- and postoperative pelvic organ prolapse-quantification (POP-Q) and magnetic resonance imaging (MRI) measurements in patients who undergo total Prolift (Ethicon, Inc, Somerville, NJ) colpopexy. Pre- and postoperative MRI and POP-Q examinations were performed on patients with stage 2 or greater prolapse who underwent the Prolift procedure. MRI measurements were taken at maximum descent. Correlations between changes in MRI and POP-Q measurements were determined. Ten subjects were enrolled. On MRI, statistically significant changes were seen with cystocele, enterocele, and apex. Statistically significant changes were seen on POP-Q measurements for Aa, Ba, C, Ap, Bp, and GH. Positive correlations were demonstrated between POP-Q and MRI changes. Minimal tissue reaction was seen on MRI. The Prolift system is effective in the surgical management of pelvic organ prolapse as measured by POP-Q and MRI. Postoperative MRIs support the inert nature of polypropylene mesh. Copyright © 2010 Mosby, Inc. All rights reserved.

  16. Magnetic resonance imaging (MRI) and prognostication in neonatal hypoxic-ischemic injury: a vignette-based study of Canadian specialty physicians.

    PubMed

    Bell, Emily; Rasmussen, Lisa Anne; Mazer, Barbara; Shevell, Michael; Miller, Steven P; Synnes, Anne; Yager, Jerome Y; Majnemer, Annette; Muhajarine, Nazeem; Chouinard, Isabelle; Racine, Eric

    2015-02-01

    Magnetic resonance imaging (MRI) could improve prognostication in neonatal brain injury; however, factors beyond technical or scientific refinement may impact its use and interpretation. We surveyed Canadian neonatologists and pediatric neurologists using general and vignette-based questions about the use of MRI for prognostication in neonates with hypoxic-ischemic injury. There was inter- and intra-vignette variability in prognosis and in ratings about the usefulness of MRI. Severity of predicted outcome correlated with certainty about the outcome. A majority of physicians endorsed using MRI results in discussing prognosis with families, and most suggested that MRI results contribute to end-of-life decisions. Participating neonatologists, when compared to participating pediatric neurologists, had significantly less confidence in the interpretation of MRI by colleagues in neurology and radiology. Further investigation is needed to understand the complexity of MRI and of its application. Potential gaps relative to our understanding of the ethical importance of these findings should be addressed. © The Author(s) 2014.

  17. A SVM-based quantitative fMRI method for resting-state functional network detection.

    PubMed

    Song, Xiaomu; Chen, Nan-kuei

    2014-09-01

    Resting-state functional magnetic resonance imaging (fMRI) aims to measure baseline neuronal connectivity independent of specific functional tasks and to capture changes in the connectivity due to neurological diseases. Most existing network detection methods rely on a fixed threshold to identify functionally connected voxels under the resting state. Due to fMRI non-stationarity, the threshold cannot adapt to variation of data characteristics across sessions and subjects, and generates unreliable mapping results. In this study, a new method is presented for resting-state fMRI data analysis. Specifically, the resting-state network mapping is formulated as an outlier detection process that is implemented using one-class support vector machine (SVM). The results are refined by using a spatial-feature domain prototype selection method and two-class SVM reclassification. The final decision on each voxel is made by comparing its probabilities of functionally connected and unconnected instead of a threshold. Multiple features for resting-state analysis were extracted and examined using an SVM-based feature selection method, and the most representative features were identified. The proposed method was evaluated using synthetic and experimental fMRI data. A comparison study was also performed with independent component analysis (ICA) and correlation analysis. The experimental results show that the proposed method can provide comparable or better network detection performance than ICA and correlation analysis. The method is potentially applicable to various resting-state quantitative fMRI studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI.

    PubMed

    Sauwen, N; Acou, M; Van Cauter, S; Sima, D M; Veraart, J; Maes, F; Himmelreich, U; Achten, E; Van Huffel, S

    2016-01-01

    Tumor segmentation is a particularly challenging task in high-grade gliomas (HGGs), as they are among the most heterogeneous tumors in oncology. An accurate delineation of the lesion and its main subcomponents contributes to optimal treatment planning, prognosis and follow-up. Conventional MRI (cMRI) is the imaging modality of choice for manual segmentation, and is also considered in the vast majority of automated segmentation studies. Advanced MRI modalities such as perfusion-weighted imaging (PWI), diffusion-weighted imaging (DWI) and magnetic resonance spectroscopic imaging (MRSI) have already shown their added value in tumor tissue characterization, hence there have been recent suggestions of combining different MRI modalities into a multi-parametric MRI (MP-MRI) approach for brain tumor segmentation. In this paper, we compare the performance of several unsupervised classification methods for HGG segmentation based on MP-MRI data including cMRI, DWI, MRSI and PWI. Two independent MP-MRI datasets with a different acquisition protocol were available from different hospitals. We demonstrate that a hierarchical non-negative matrix factorization variant which was previously introduced for MP-MRI tumor segmentation gives the best performance in terms of mean Dice-scores for the pathologic tissue classes on both datasets.

  19. MRI compatibility of robot actuation techniques--a comparative study.

    PubMed

    Fischer, Gregory S; Krieger, Axel; Iordachita, Iulian; Csoma, Csaba; Whitcomb, Louis L; Gabor, Fichtinger

    2008-01-01

    This paper reports an experimental evaluation of the following three different MRI-compatible actuators: a Shinsei ultrasonic motor a Nanomotion ultrasonic motor and a pneumatic cylinder actuator. We report the results of a study comparing the effect of these actuators on the signal to noise ratio (SNR) of MRJ images under a variety of experimental conditions. Evaluation was performed with the controller inside and outside the scanner room and with both 1.5T and 3T MRI scanners. Pneumatic cylinders function with no loss of SNR with controller both inside and outside of the scanner room. The Nanomotion motor performs with moderate loss of SNR when moving during imaging. The Shinsei is unsuitable for motion during imaging. All may be used when motion is appropriately interleaved with imaging cycles.

  20. Rotator cuff tear shape characterization: a comparison of two-dimensional imaging and three-dimensional magnetic resonance reconstructions.

    PubMed

    Gyftopoulos, Soterios; Beltran, Luis S; Gibbs, Kevin; Jazrawi, Laith; Berman, Phillip; Babb, James; Meislin, Robert

    2016-01-01

    The purpose of this study was to see if 3-dimensional (3D) magnetic resonance imaging (MRI) could improve our understanding of rotator cuff tendon tear shapes. We believed that 3D MRI would be more accurate than two-dimensional (2D) MRI for classifying tear shapes. We performed a retrospective review of MRI studies of patients with arthroscopically proven full-thickness rotator cuff tears. Two orthopedic surgeons reviewed the information for each case, including scope images, and characterized the shape of the cuff tear into crescent, longitudinal, U- or L-shaped longitudinal, and massive type. Two musculoskeletal radiologists reviewed the corresponding MRI studies independently and blind to the arthroscopic findings and characterized the shape on the basis of the tear's retraction and size using 2D MRI. The 3D reconstructions of each cuff tear were reviewed by each radiologist to characterize the shape. Statistical analysis included 95% confidence intervals and intraclass correlation coefficients. The study reviewed 34 patients. The accuracy for differentiating between crescent-shaped, longitudinal, and massive tears using measurements on 2D MRI was 70.6% for reader 1 and 67.6% for reader 2. The accuracy for tear shape characterization into crescent and longitudinal U- or L-shaped using 3D MRI was 97.1% for reader 1 and 82.4% for reader 2. When further characterizing the longitudinal tears as massive or not using 3D MRI, both readers had an accuracy of 76.9% (10 of 13). The overall accuracy of 3D MRI was 82.4% (56 of 68), significantly different (P = .021) from 2D MRI accuracy (64.7%). Our study has demonstrated that 3D MR reconstructions of the rotator cuff improve the accuracy of characterizing rotator cuff tear shapes compared with current 2D MRI-based techniques. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  1. Current whole-body MRI applications in the neurofibromatoses

    PubMed Central

    Fayad, Laura M.; Khan, Muhammad Shayan; Bredella, Miriam A.; Harris, Gordon J.; Evans, D. Gareth; Farschtschi, Said; Jacobs, Michael A.; Chhabra, Avneesh; Salamon, Johannes M.; Wenzel, Ralph; Mautner, Victor F.; Dombi, Eva; Cai, Wenli; Plotkin, Scott R.; Blakeley, Jaishri O.

    2016-01-01

    Objectives: The Response Evaluation in Neurofibromatosis and Schwannomatosis (REiNS) International Collaboration Whole-Body MRI (WB-MRI) Working Group reviewed the existing literature on WB-MRI, an emerging technology for assessing disease in patients with neurofibromatosis type 1 (NF1), neurofibromatosis type 2 (NF2), and schwannomatosis (SWN), to recommend optimal image acquisition and analysis methods to enable WB-MRI as an endpoint in NF clinical trials. Methods: A systematic process was used to review all published data about WB-MRI in NF syndromes to assess diagnostic accuracy, feasibility and reproducibility, and data about specific techniques for assessment of tumor burden, characterization of neoplasms, and response to therapy. Results: WB-MRI at 1.5T or 3.0T is feasible for image acquisition. Short tau inversion recovery (STIR) sequence is used in all investigations to date, suggesting consensus about the utility of this sequence for detection of WB tumor burden in people with NF. There are insufficient data to support a consensus statement about the optimal imaging planes (axial vs coronal) or 2D vs 3D approaches. Functional imaging, although used in some NF studies, has not been systematically applied or evaluated. There are no comparative studies between regional vs WB-MRI or evaluations of WB-MRI reproducibility. Conclusions: WB-MRI is feasible for identifying tumors using both 1.5T and 3.0T systems. The STIR sequence is a core sequence. Additional investigation is needed to define the optimal approach for volumetric analysis, the reproducibility of WB-MRI in NF, and the diagnostic performance of WB-MRI vs regional MRI. PMID:27527647

  2. Assessment of the extent of pituitary macroadenomas resection in immediate postoperative MRI.

    PubMed

    Taberner López, E; Vañó Molina, M; Calatayud Gregori, J; Jornet Sanz, M; Jornet Fayos, J; Pastor Del Campo, A; Caño Gómez, A; Mollá Olmos, E

    To evaluate if it is possible to determine the extent of pituitary macroadenomas resection in the immediate postoperative pituitary magnetic resonance imaging (MRI). MRI of patient with pituitary macroadenomas from January 2010 until October 2014 were reviewed. Those patients who had diagnostic MRI, immediate post-surgical MRI and at least one MRI control were included. We evaluate if the findings between the immediate postsurgical MRI and the subsequent MRI were concordant. Cases which didn't have evolutionary controls and those who were reoperation for recurrence were excluded. The degree of tumor resection was divided into groups: total resection, partial resection and doubtful. All MRI studies were performed on a1.5T machine following the same protocol sequences for all cases. One morphological part, a dynamic contrast iv and late contrast part. Of the 73 cases included, immediate postoperative pituitary MRI was interpreted as total resection in 38 cases and tumoral rest in 28 cases, uncertainty among rest or inflammatory changes in 7 cases. Follow- up MRI identified 41 cases total resection and tumoral rest in 32. Sensitivity and specificity of 0.78 and 0.82 and positive and negative predictive value (PPV and NPV) 0.89 and 0.89 respectively were calculated. Immediate post-surgery pituitary MRI is useful for assessing the degree of tumor resection and is a good predictor of the final degree of real resection compared with the following MRI studies. It allows us to decide the most appropriate treatment at an early stage. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Continuous EEG source imaging enhances analysis of EEG-fMRI in focal epilepsy.

    PubMed

    Vulliemoz, S; Rodionov, R; Carmichael, D W; Thornton, R; Guye, M; Lhatoo, S D; Michel, C M; Duncan, J S; Lemieux, L

    2010-02-15

    EEG-correlated fMRI (EEG-fMRI) studies can reveal haemodynamic changes associated with Interictal Epileptic Discharges (IED). Methodological improvements are needed to increase sensitivity and specificity for localising the epileptogenic zone. We investigated whether the estimated EEG source activity improved models of the BOLD changes in EEG-fMRI data, compared to conventional < event-related > designs based solely on the visual identification of IED. Ten patients with pharmaco-resistant focal epilepsy underwent EEG-fMRI. EEG Source Imaging (ESI) was performed on intra-fMRI averaged IED to identify the irritative zone. The continuous activity of this estimated IED source (cESI) over the entire recording was used for fMRI analysis (cESI model). The maps of BOLD signal changes explained by cESI were compared to results of the conventional IED-related model. ESI was concordant with non-invasive data in 13/15 different types of IED. The cESI model explained significant additional BOLD variance in regions concordant with video-EEG, structural MRI or, when available, intracranial EEG in 10/15 IED. The cESI model allowed better detection of the BOLD cluster, concordant with intracranial EEG in 4/7 IED, compared to the IED model. In 4 IED types, cESI-related BOLD signal changes were diffuse with a pattern suggestive of contamination of the source signal by artefacts, notably incompletely corrected motion and pulse artefact. In one IED type, there was no significant BOLD change with either model. Continuous EEG source imaging can improve the modelling of BOLD changes related to interictal epileptic activity and this may enhance the localisation of the irritative zone. Copyright 2009 Elsevier Inc. All rights reserved.

  4. Imaging Characteristics of Prostate Cancer Patients Who Discontinued Active Surveillance on 3-T Multiparametric Prostate MRI.

    PubMed

    Habibian, David J; Liu, Corinne C; Dao, Alex; Kosinski, Kaitlin E; Katz, Aaron E

    2017-03-01

    Early-stage prostate cancer may be followed with active surveillance to avoid overtreatment. Our institution's active surveillance regimen uses annual MRI in place of serial biopsies, and biopsies are performed only when clinically necessary. The objective of our study was to report the multiparametric MRI characteristics of prostate cancer patients who discontinued active surveillance at our institution after repeat imaging revealed possible evidence of tumor upgrading. The Department of Urology at Winthrop University Hospital prospectively maintains a database of prostate cancer patients who are monitored with active surveillance. At the time of this study, there were 200 prostate cancer patients being monitored with active surveillance. Of those patients, 114 patients had an initial multiparametric MRI study that was performed before active surveillance started and at least one follow-up multiparametric MRI study that was performed after active surveillance began. The MRI findings were evaluated and correlated with pathology results, if available. Fourteen patients discontinued active surveillance because changes on follow-up MRI suggested progression of cancer. Follow-up MRI showed an enlarged or more prominent lesion compared with the appearance on a previous MRI in three (21.4%) patients, a new lesion or lesions suspicious for cancer in two (14.3%) patients, and findings suspicious for or confirming extracapsular extension in nine (64.3%) patients. Seven of the 14 (50.0%) patients had a biopsy after follow-up multiparametric MRI, and biopsy results led to tumor upgrading in six of the 14 (42.9%) patients. The duration of active surveillance ranged from 4 to 110 months. All patients received definitive treatment. The small number of patients with follow-up multiparametric MRI findings showing worsening disease supports the role of MRI in patients with early-stage prostate cancer. Multiparametric MRI is useful in monitoring patients on active surveillance and may identify patients with clinically significant cancer amenable to definitive treatment.

  5. A Comparative Study of Average, Linked Mastoid, and REST References for ERP Components Acquired during fMRI

    PubMed Central

    Yang, Ping; Fan, Chenggui; Wang, Min; Li, Ling

    2017-01-01

    In simultaneous electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) studies, average reference (AR), and digitally linked mastoid (LM) are popular re-referencing techniques in event-related potential (ERP) analyses. However, they may introduce their own physiological signals and alter the EEG/ERP outcome. A reference electrode standardization technique (REST) that calculated a reference point at infinity was proposed to solve this problem. To confirm the advantage of REST in ERP analyses of synchronous EEG-fMRI studies, we compared the reference effect of AR, LM, and REST on task-related ERP results of a working memory task during an fMRI scan. As we hypothesized, we found that the adopted reference did not change the topography map of ERP components (N1 and P300 in the present study), but it did alter the task-related effect on ERP components. LM decreased or eliminated the visual working memory (VWM) load effect on P300, and the AR distorted the distribution of VWM location-related effect at left posterior electrodes as shown in the statistical parametric scalp mapping (SPSM) of N1. ERP cortical source estimates, which are independent of the EEG reference choice, were used as the golden standard to infer the relative utility of different references on the ERP task-related effect. By comparison, REST reference provided a more integrated and reasonable result. These results were further confirmed by the results of fMRI activations and a corresponding EEG-only study. Thus, we recommend the REST, especially with a realistic head model, as the optimal reference method for ERP data analysis in simultaneous EEG-fMRI studies. PMID:28529472

  6. A Comparative Study of Average, Linked Mastoid, and REST References for ERP Components Acquired during fMRI.

    PubMed

    Yang, Ping; Fan, Chenggui; Wang, Min; Li, Ling

    2017-01-01

    In simultaneous electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) studies, average reference (AR), and digitally linked mastoid (LM) are popular re-referencing techniques in event-related potential (ERP) analyses. However, they may introduce their own physiological signals and alter the EEG/ERP outcome. A reference electrode standardization technique (REST) that calculated a reference point at infinity was proposed to solve this problem. To confirm the advantage of REST in ERP analyses of synchronous EEG-fMRI studies, we compared the reference effect of AR, LM, and REST on task-related ERP results of a working memory task during an fMRI scan. As we hypothesized, we found that the adopted reference did not change the topography map of ERP components (N1 and P300 in the present study), but it did alter the task-related effect on ERP components. LM decreased or eliminated the visual working memory (VWM) load effect on P300, and the AR distorted the distribution of VWM location-related effect at left posterior electrodes as shown in the statistical parametric scalp mapping (SPSM) of N1. ERP cortical source estimates, which are independent of the EEG reference choice, were used as the golden standard to infer the relative utility of different references on the ERP task-related effect. By comparison, REST reference provided a more integrated and reasonable result. These results were further confirmed by the results of fMRI activations and a corresponding EEG-only study. Thus, we recommend the REST, especially with a realistic head model, as the optimal reference method for ERP data analysis in simultaneous EEG-fMRI studies.

  7. MRI measurements of Blood-Brain Barrier function in dementia: A review of recent studies.

    PubMed

    Raja, Rajikha; Rosenberg, Gary A; Caprihan, Arvind

    2018-05-15

    Blood-brain barrier (BBB) separates the systemic circulation and the brain, regulating transport of most molecules to protect the brain microenvironment. Multiple structural and functional components preserve the integrity of the BBB. Several imaging modalities are available to study disruption of the BBB. However, the subtle changes in BBB leakage that occurs in vascular cognitive impairment and Alzheimer's disease have been less well studied. Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is the most widely adopted non-invasive imaging technique for evaluating BBB breakdown. It is used as a significant marker for a wide variety of diseases with large permeability leaks, such as brain tumors and multiple sclerosis, to more subtle disruption in chronic vascular disease and dementia. DCE-MRI analysis of BBB includes both model-free parameters and quantitative parameters using pharmacokinetic modelling. We review MRI studies of BBB breakdown in dementia. The challenges in measuring subtle BBB changes and the state of the art techniques are initially examined. Subsequently, a systematic review comparing methodologies from recent in-vivo MRI studies is presented. Various factors related to subtle BBB permeability measurement such as DCE-MRI acquisition parameters, arterial input assessment, T 1 mapping and data analysis methods are reviewed with the focus on finding the optimal technique. Finally, the reported BBB permeability values in dementia are compared across different studies and across various brain regions. We conclude that reliable measurement of low-level BBB permeability across sites remains a difficult problem and a standardization of the methodology for both data acquisition and quantitative analysis is required. This article is part of the Special Issue entitled 'Cerebral Ischemia'. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Head-to-Head Comparison of Chest X-Ray/Head and Neck MRI, Chest CT/Head and Neck MRI, and 18F-FDG PET/CT for Detection of Distant Metastases and Synchronous Cancer in Oral, Pharyngeal, and Laryngeal Cancer.

    PubMed

    Rohde, Max; Nielsen, Anne L; Johansen, Jørgen; Sørensen, Jens A; Nguyen, Nina; Diaz, Anabel; Nielsen, Mie K; Asmussen, Jon T; Christiansen, Janus M; Gerke, Oke; Thomassen, Anders; Alavi, Abass; Høilund-Carlsen, Poul Flemming; Godballe, Christian

    2017-12-01

    The purpose of this study was to determine the detection rate of distant metastasis and synchronous cancer, comparing clinically used imaging strategies based on chest x-ray + head and neck MRI (CXR/MRI) and chest CT + head and neck MRI (CHCT/MRI) with 18 F-FDG PET/CT upfront in the diagnostic workup of patients with oral, pharyngeal, or laryngeal cancer. Methods: This was a prospective cohort study based on paired data. Consecutive patients with histologically verified primary head and squamous cell carcinoma at Odense University Hospital from September 2013 to March 2016 were considered for the study. Included patients underwent CXR/MRI and CHCT/MRI as well as PET/CT on the same day and before biopsy. Scans were read masked by separate teams of experienced nuclear physicians or radiologists. The true detection rate of distant metastasis and synchronous cancer was assessed for CXR/MRI, CHCT/MRI, and PET/CT. Results: A total of 307 patients were included. CXR/MRI correctly detected 3 (1%) patients with distant metastasis, CHCT/MRI detected 11 (4%) patients, and PET/CT detected 18 (6%) patients. The absolute differences of 5% and 2%, respectively, were statistically significant in favor of PET/CT. Also, PET/CT correctly detected 25 (8%) synchronous cancers, which was significantly more than CXR/MRI (3 patients, 1%) and CHCT/MRI (6 patients, 2%). The true detection rate of distant metastasis or synchronous cancer with PET/CT was 13% (40 patients), which was significantly higher than 2% (6 patients) for CXR/MRI and 6% (17 patients) for CHCT/MRI. Conclusion: A clinical imaging strategy based on PET/CT demonstrated a significantly higher detection rate of distant metastasis or synchronous cancer than strategies in current clinical imaging guidelines, of which European ones primarily recommend CXR/MRI, whereas U.S. guidelines preferably point to CHCT/MRI in patients with head and neck squamous cell carcinoma. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  9. The Clinical Utility and Diagnostic Performance of MRI for Identification of Early and Advanced Knee Osteoarthritis: A Systematic Review

    PubMed Central

    Quatman, Carmen E.; Hettrich, Carolyn M.; Schmitt, Laura C.; Spindler, Kurt P.

    2013-01-01

    Background Current diagnostic strategies for detection of structural articular cartilage abnormalities, the earliest structural signs of osteoarthritis, often do not capture the condition until it is too far advanced for the most potential benefit of non-invasive interventions. Purpose Systematically review the literature relative to the following questions: (1) Is MRI a valid, sensitive, specific, accurate and reliable instrument to identify knee articular cartilage abnormalities compared to arthroscopy? (2) Is MRI a sensitive tool that can be utilized to identify early cartilage degeneration? Study Design Systematic Review Methods A systematic search was performed in November 2010 using PubMed MEDLINE (from 1966), CINAHL (from 1982), SPORTDiscus (from 1985), and SCOPUS (from 1996) databases. Results Fourteen level I and 13 level II studies were identified that met inclusion criteria and provided information related to diagnostic performance of MRI compared to arthroscopic evaluation. The diagnostic performance of MRI demonstrated a large range of sensitivities, specificities, and accuracies. The sensitivity for identifying articular cartilage abnormalities in the knee joint was reported between 26–96%. Specificity and accuracy was reported between 50–100% and 49–94%, respectively. The sensitivity, specificity, and accuracy for identifying early osteoarthritis were reported between 0–86%, 48–95%, and 5–94%, respectively. As a result of inconsistencies between imaging techniques and methodological shortcomings of many of the studies, a meta-analysis was not performed and it was difficult to fully synthesize the information to state firm conclusions about the diagnostic performance of MRI. Conclusions There is evidence in some MRI protocols that MRI is a relatively valid, sensitive, specific, accurate, and reliable clinical tool for identifying articular cartilage degeneration. Due to heterogeneity of MRI sequences it is not possible to make definitive conclusions regarding its global clinical utility for guiding diagnosis and treatment strategies. Clinical Relevance Traumatic sports injuries to the knee may be significant precursor events to early onset of posttraumatic osteoarthritis. MRI may aid in early identification of structural injuries to articular cartilage as evidenced by articular cartilage degeneration grading. PMID:21730207

  10. Application of magnetic resonance imaging in diagnosis of Uterus Cervical Carcinoma.

    PubMed

    Peng, Jidong; Wang, Weiqiang; Zeng, Daohui

    2017-01-01

    Effective treatment of Uterus Cervical Carcinoma (UCC) rely heavily on the precise pre-surgical staging. The conventional International Federation of Gynecology and Obstetrics (FIGO) system based on clinical examination is being applied worldwide for UCC staging. Yet its performance just appears passable. Thus, this study aims to investigate the value of applying Magnetic Resonance Imaging (MRI) with clinical examination in staging of UCC. A retrospective dataset involving 164 patients diagnosed with UCC was enrolled in this study. The mean age of this study population was 46.1 years (range, 28-#x2013;75 years). All patients underwent operations and UCC types were confirmed by pathological examinations. The tumor stages were determined by two experienced Gynecologist independently based on FIGO examinations and MRI. The diagnostic results were also compared with the post-operative pathologic reports. Statistical data analysis on diagnostic performance was then done and reported. The study results showed that the overall accuracy of applying MRI in UCC staging was 82.32%, while using FIGO staging method, the staging accuracy was 59.15%. MRI is suitable to evaluate tumor extent with high accuracy, and it can offer more objective information for the diagnosis and staging of UCC. Compared with clinical examinations based on FIGO, MRI illustrated relatively high accuracy in evaluating UCC staging, and is worthwhile to be recommended in future clinical practice.

  11. Transcortical Sensory Aphasia after Left Frontal Lobe Infarction: Loss of Functional Connectivity.

    PubMed

    Kwon, Miseon; Shim, Woo Hyun; Kim, Sang-Joon; Kim, Jong S

    2017-01-01

    The underlying mechanism of transcortical sensory aphasia (TSA) caused by lesions occurring in the left frontal lobe remains unclear. We attempted to investigate the mechanism with the use of functional MRI (fMRI). We studied 2 patients with TSA after a left frontal infarction identified by diffusion-weighted MRI. As control subjects, a patient with transcortical motor aphasia and a healthy normal adult were chosen. The Korean version of Western Aphasia Battery was performed initially and at 3 months post stroke. We performed fMRI using verb generation and sentence completion tasks. Resting-state fMRI (rs-fMRI) was also obtained for network-level analysis initially and at 3 months post stroke. The results of diffusion- and perfusion-weighted MRI revealed no diffusion-perfusion mismatch. Initial fMRI in patients with TSA showed no reversed inter-/intrahemispheric activation patterns. rs-fMRI showed significantly decreased resting-state functional connectivity in the language network in patients with TSA compared with the control subjects. Follow-up rs-fMRI studies showed improvement in functional connectivity along with the recovery of patients' language function. Our data showed that the auditory comprehension deficits in patients with frontal lobe infarcts is attributed to difficulty accessing the posterior language area due to functional disconnection between language centers in the acute stage of stroke. © 2017 S. Karger AG, Basel.

  12. An MRI-compatible platform for one-dimensional motion management studies in MRI.

    PubMed

    Nofiele, Joris; Yuan, Qing; Kazem, Mohammad; Tatebe, Ken; Torres, Quinn; Sawant, Amit; Pedrosa, Ivan; Chopra, Rajiv

    2016-08-01

    Abdominal MRI remains challenging because of respiratory motion. Motion compensation strategies are difficult to compare clinically because of the variability across human subjects. The goal of this study was to evaluate a programmable system for one-dimensional motion management MRI research. A system comprised of a programmable motorized linear stage and computer was assembled and tested in the MRI environment. Tests of the mutual interference between the platform and a whole-body MRI were performed. Organ trajectories generated from a high-temporal resolution scan of a healthy volunteer were used in phantom tests to evaluate the effects of motion on image quality and quantitative MRI measurements. No interference between the motion platform and the MRI was observed, and reliable motion could be produced across a wide range of imaging conditions. Motion-related artifacts commensurate with motion amplitude, frequency, and waveform were observed. T2 measurement of a kidney lesion in an abdominal phantom showed that its value decreased by 67% with physiologic motion, but could be partially recovered with navigator-based motion-compensation. The motion platform can produce reliable linear motion within a whole-body MRI. The system can serve as a foundation for a research platform to investigate and develop motion management approaches for MRI. Magn Reson Med 76:702-712, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  13. Cardiac Magnetic Resonance Imaging Using an Open 1.0T MR Platform: A Comparative Study with a 1.5T Tunnel System.

    PubMed

    Fischbach, Katharina; Kosiek, Otrud; Friebe, Björn; Wybranski, Christian; Schnackenburg, Bernhard; Schmeisser, Alexander; Smid, Jan; Ricke, Jens; Pech, Maciej

    2017-01-01

    Cardiac magnetic resonance imaging (cMRI) has become the non-invasive reference standard for the evaluation of cardiac function and viability. The introduction of open, high-field, 1.0T (HFO) MR scanners offers advantages for examinations of obese, claustrophobic and paediatric patients.The aim of our study was to compare standard cMRI sequences from an HFO scanner and those from a cylindrical, 1.5T MR system. Fifteen volunteers underwent cMRI both in an open HFO and in a cylindrical MR system. The protocol consisted of cine and unenhanced tissue sequences. The signal-to-noise ratio (SNR) for each sequence and blood-myocardium contrast for the cine sequences were assessed. Image quality and artefacts were rated. The location and number of non-diagnostic segments was determined. Volunteers' tolerance to examinations in both scanners was investigated. SNR was significantly lower in the HFO scanner (all p<0.001). However, the contrast of the cine sequence was significantly higher in the HFO platform compared to the 1.5T MR scanner (0.685±0.41 vs. 0.611±0.54; p<0.001). Image quality was comparable for all sequences (all p>0.05). Overall, only few non-diagnostic myocardial segments were recorded: 6/960 (0.6%) by the HFO and 17/960 (1.8%) segments by the cylindrical system. The volunteers expressed a preference for the open MR system (p<0.01). Standard cardiac MRI sequences in an HFO platform offer a high image quality that is comparable to the quality of images acquired in a cylindrical 1.5T MR scanner. An open scanner design may potentially improve tolerance of cardiac MRI and therefore allow to examine an even broader patient spectrum.

  14. A comparative study of brachial plexus sonography and magnetic resonance imaging in chronic inflammatory demyelinating neuropathy and multifocal motor neuropathy.

    PubMed

    Goedee, H S; Jongbloed, B A; van Asseldonk, J-T H; Hendrikse, J; Vrancken, A F J E; Franssen, H; Nikolakopoulos, S; Visser, L H; van der Pol, W L; van den Berg, L H

    2017-10-01

    To compare the performance of neuroimaging techniques, i.e. high-resolution ultrasound (HRUS) and magnetic resonance imaging (MRI), when applied to the brachial plexus, as part of the diagnostic work-up of chronic inflammatory demyelinating neuropathy (CIDP) and multifocal motor neuropathy (MMN). Fifty-one incident, treatment-naive patients with CIDP (n = 23) or MMN (n = 28) underwent imaging of the brachial plexus using (i) a standardized MRI protocol to assess enlargement or T2 hyperintensity and (ii) bilateral HRUS to determine the extent of nerve (root) enlargement. We found enlargement of the brachial plexus in 19/51 (37%) and T2 hyperintensity in 29/51 (57%) patients with MRI and enlargement in 37/51 (73%) patients with HRUS. Abnormal results were only found in 6/51 (12%) patients with MRI and 12/51 (24%) patients with HRUS. A combination of the two imaging techniques identified 42/51 (83%) patients. We found no association between age, disease duration or Medical Research Council sum-score and sonographic nerve size, MRI enlargement or presence of T2 hyperintensity. Brachial plexus sonography could complement MRI in the diagnostic work-up of patients with suspected CIDP and MMN. Our results indicate that combined imaging studies may add value to the current diagnostic consensus criteria for chronic inflammatory neuropathies. © 2017 EAN.

  15. Neuronal current magnetic resonance imaging of evoked potentials and neural oscillations

    NASA Astrophysics Data System (ADS)

    Jiang, Xia

    Despite its great success, the current functional magnetic resonance imaging (MRI) technique relies on changes in cerebral hemodynamic parameters to infer the underlying neural activities, and as a result is limited in its spatial and temporal resolutions. In this dissertation, we discuss the feasibility of neuronal current MRI (nc-MRI), a novel technique in which the small magnetic field changes caused by neuronal electrical activities are directly measured by MRI. Two studies are described. In the first study, we investigated the feasibility of detecting the magnetic field produced by sensory evoked potentials. To eliminate the blood-oxygen-level-dependent (BOLD) effect on the MRI signal, which confounded most previous studies, an octopus visual system model was developed, which, for the first time, allowed for an in vivo investigation of nc-MRI in a BOLD-free environment. Electrophysiological responses were measured in the octopus retina and optical lobe to guide the nc-MRI acquisition. Our results indicated that no nc-MRI signal change related to neuronal activation could be detected at 0.2°/0.2% threshold for signal phase/magnitude respectively, while robust electrophysiological responses were recorded. In the second study, we discuss the feasibility of detecting neural oscillations with MRI, Based on previous studies, a novel approach was proposed in which an external oscillatory field was exploited as the excitation pulse under a spin-locked condition. This approach has the advantages of increased sensitivity and lowered physiological noise. Successful detection of sub-nanotesla field was demonstrated in phantom. Our results suggest that evoked potentials are too weak for nc-MRI detection with the current hardware, and that previous positive findings were likely due to hemodynamic confounders. On the other hand, oscillatory magnetic field can be efficiently detected in phantom. Given the stronger equivalent current dipoles produced by neural oscillations compared to evoked potentials, they might be a more promising candidate for future nc-MRI studies.

  16. Education and the cognitive decline associated with MRI-defined brain infarct.

    PubMed

    Elkins, J S; Longstreth, W T; Manolio, T A; Newman, A B; Bhadelia, R A; Johnston, S C

    2006-08-08

    To assess whether educational attainment, a correlate of cognitive reserve, predicts the amount of cognitive decline associated with a new brain infarct. The Cardiovascular Health Study is a population-based, longitudinal study of people aged 65 years and older. Cognitive function was measured annually using the Modified Mini-Mental State Examination (3MS) and the Digit-Symbol Substitution Test (DSST). The authors tested whether education level modified 1) the cross-sectional association between cognitive performance and MRI-defined infarct and 2) the change in cognitive function associated with an incident infarct at a follow-up MRI. In cross-sectional analysis (n = 3,660), MRI-defined infarct was associated with a greater impact on 3MS performance in the lowest education quartile when compared with others (p for heterogeneity = 0.012). Among those with a follow-up MRI who had no infarct on initial MRI (n = 1,433), education level was not associated with the incidence, size, or location of new brain infarct. However, a new MRI-defined infarct predicted substantially greater decline in 3MS scores in the lowest education group compared with the others (6.3, 95% CI 4.4- to 8.2-point decline vs 1.7, 95% CI 0.7- to 2.7-point decline; p for heterogeneity < 0.001). Higher education was not associated with smaller declines in DSST performance in the setting of MRI-defined infarct. Education seems to modify an individual's decline on a test of general cognitive function when there is incident brain infarct. These findings are consistent with the hypothesis that cognitive reserve influences the impact of vascular injury in the brain.

  17. Measuring hepatic functional reserve using low temporal resolution Gd-EOB-DTPA dynamic contrast-enhanced MRI: a preliminary study comparing galactosyl human serum albumin scintigraphy with indocyanine green retention.

    PubMed

    Saito, Kazuhiro; Ledsam, Joseph; Sourbron, Steven; Hashimoto, Tsuyoshi; Araki, Yoichi; Akata, Soichi; Tokuuye, Koichi

    2014-01-01

    To investigate if tracer kinetic modelling of low temporal resolution dynamic contrast-enhanced (DCE) MRI with Gd-EOB-DTPA could replace technetium-99 m galactosyl human serum albumin (GSA) single positron emission computed tomography (SPECT) and indocyanine green (ICG) retention for the measurement of liver functional reserve. Twenty eight patients awaiting liver resection for various cancers were included in this retrospective study that was approved by the institutional review board. The Gd-EOB-DTPA MRI sequence acquired five images: unenhanced, double arterial phase, portal phase, and 4 min after injection. Intracellular contrast uptake rate (UR) and extracellular volume (Ve) were calculated from DCE-MRI, along with the ratio of GSA radioactivity of liver to heart-plus-liver and per cent of cumulative uptake from 15-16 min (LHL15 and LU15, respectively) from GSA-scintigraphy. ICG retention at 15 min, Child-Pugh cirrhosis score (CPS) and postoperative Inuyama fibrosis criteria were also recorded. Statistical analysis was with Spearman rank correlation analysis. Comparing MRI parameters with the reference methods, significant correlations were obtained for UR and LHL15, LU15, ICG15 (all 0.4-0.6, P < 0.05); UR and CPS (-0.64, P < 0.001); Ve and Inuyama (0.44, P < 0.05). Measures of liver function obtained by routine Gd-EOB-DTPA DCE-MRI with tracer kinetic modelling may provide a suitable method for the evaluation of liver functional reserve. • Magnetic resonance imaging (MRI) provides new methods of measuring hepatic functional reserve. • DCE-MRI with Gd-EOB-DTPA offers the possibility of replacing scintigraphy. • The analysis method can be used for preoperative liver function evaluation.

  18. Structural MRI Predictors of Late-Life Cognition Differ Across African Americans, Hispanics, and Whites.

    PubMed

    Zahodne, Laura B; Manly, Jennifer J; Narkhede, Atul; Griffith, Erica Y; DeCarli, Charles; Schupf, Nicole S; Mayeux, Richard; Brickman, Adam M

    2015-01-01

    Structural magnetic resonance imaging (MRI) provides key biomarkers to predict onset and track progression of Alzheimer's disease (AD). However, most published reports of relationships between MRI variables and cognition in older adults include racially, ethnically, and socioeconomically homogenous samples. Racial/ethnic differences in MRI variables and cognitive performance, as well as health, socioeconomic status and psychological factors, raise the possibility that brain-behavior relationships may be stronger or weaker in different groups. The current study tested whether MRI predictors of cognition differ in African Americans and Hispanics, compared with non-Hispanic Whites. Participants were 638 non-demented older adults (29% non-Hispanic White, 36% African American, 35% Hispanic) in the Washington Heights-Inwood Columbia Aging Project. Composite scores of memory, language, speed/executive functioning, and visuospatial function were derived from a neuropsychological battery. Hippocampal volume, regional cortical thickness, infarcts, and white matter hyperintensity (WMH) volumes were quantified with FreeSurfer and in-house developed procedures. Multiple-group regression analysis, in which each cognitive composite score was regressed onto MRI variables, demographics, and cardiovascular health, tested which paths differed across groups. Larger WMH volume was associated with worse language and speed/executive functioning among African Americans, but not among non-Hispanic Whites. Larger hippocampal volume was more strongly associated with better memory among non-Hispanic Whites compared with Hispanics. Cortical thickness and infarcts were similarly associated with cognition across groups. The main finding of this study was that certain MRI predictors of cognition differed across racial/ethnic groups. These results highlight the critical need for more diverse samples in the study of cognitive aging, as the type and relation of neurobiological substrates of cognitive functioning may be different for different groups.

  19. Reduced fMRI activity predicts relapse in patients recovering from stimulant dependence.

    PubMed

    Clark, Vincent P; Beatty, Gregory K; Anderson, Robert E; Kodituwakku, Piyadassa; Phillips, John P; Lane, Terran D R; Kiehl, Kent A; Calhoun, Vince D

    2014-02-01

    Relapse presents a significant problem for patients recovering from stimulant dependence. Here we examined the hypothesis that patterns of brain function obtained at an early stage of abstinence differentiates patients who later relapse versus those who remain abstinent. Forty-five recently abstinent stimulant-dependent patients were tested using a randomized event-related functional MRI (ER-fMRI) design that was developed in order to replicate a previous ERP study of relapse using a selective attention task, and were then monitored until 6 months of verified abstinence or stimulant use occurred. SPM revealed smaller absolute blood oxygen level-dependent (BOLD) response amplitude in bilateral ventral posterior cingulate and right insular cortex in 23 patients positive for relapse to stimulant use compared with 22 who remained abstinent. ER-fMRI, psychiatric, neuropsychological, demographic, personal and family history of drug use were compared in order to form predictive models. ER-fMRI was found to predict abstinence with higher accuracy than any other single measure obtained in this study. Logistic regression using fMRI amplitude in right posterior cingulate and insular cortex predicted abstinence with 77.8% accuracy, which increased to 89.9% accuracy when history of mania was included. Using 10-fold cross-validation, Bayesian logistic regression and multilayer perceptron algorithms provided the highest accuracy of 84.4%. These results, combined with previous studies, suggest that the functional organization of paralimbic brain regions including ventral anterior and posterior cingulate and right insula are related to patients' ability to maintain abstinence. Novel therapies designed to target these paralimbic regions identified using ER-fMRI may improve treatment outcome. Copyright © 2012 Wiley Periodicals, Inc.

  20. Estimation of Error in Maximal Intensity Projection-Based Internal Target Volume of Lung Tumors: A Simulation and Comparison Study Using Dynamic Magnetic Resonance Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai Jing; Read, Paul W.; Baisden, Joseph M.

    Purpose: To evaluate the error in four-dimensional computed tomography (4D-CT) maximal intensity projection (MIP)-based lung tumor internal target volume determination using a simulation method based on dynamic magnetic resonance imaging (dMRI). Methods and Materials: Eight healthy volunteers and six lung tumor patients underwent a 5-min MRI scan in the sagittal plane to acquire dynamic images of lung motion. A MATLAB program was written to generate re-sorted dMRI using 4D-CT acquisition methods (RedCAM) by segmenting and rebinning the MRI scans. The maximal intensity projection images were generated from RedCAM and dMRI, and the errors in the MIP-based internal target area (ITA)more » from RedCAM ({epsilon}), compared with those from dMRI, were determined and correlated with the subjects' respiratory variability ({nu}). Results: Maximal intensity projection-based ITAs from RedCAM were comparatively smaller than those from dMRI in both phantom studies ({epsilon} = -21.64% {+-} 8.23%) and lung tumor patient studies ({epsilon} = -20.31% {+-} 11.36%). The errors in MIP-based ITA from RedCAM correlated linearly ({epsilon} = -5.13{nu} - 6.71, r{sup 2} = 0.76) with the subjects' respiratory variability. Conclusions: Because of the low temporal resolution and retrospective re-sorting, 4D-CT might not accurately depict the excursion of a moving tumor. Using a 4D-CT MIP image to define the internal target volume might therefore cause underdosing and an increased risk of subsequent treatment failure. Patient-specific respiratory variability might also be a useful predictor of the 4D-CT-induced error in MIP-based internal target volume determination.« less

  1. Estimation of error in maximal intensity projection-based internal target volume of lung tumors: a simulation and comparison study using dynamic magnetic resonance imaging.

    PubMed

    Cai, Jing; Read, Paul W; Baisden, Joseph M; Larner, James M; Benedict, Stanley H; Sheng, Ke

    2007-11-01

    To evaluate the error in four-dimensional computed tomography (4D-CT) maximal intensity projection (MIP)-based lung tumor internal target volume determination using a simulation method based on dynamic magnetic resonance imaging (dMRI). Eight healthy volunteers and six lung tumor patients underwent a 5-min MRI scan in the sagittal plane to acquire dynamic images of lung motion. A MATLAB program was written to generate re-sorted dMRI using 4D-CT acquisition methods (RedCAM) by segmenting and rebinning the MRI scans. The maximal intensity projection images were generated from RedCAM and dMRI, and the errors in the MIP-based internal target area (ITA) from RedCAM (epsilon), compared with those from dMRI, were determined and correlated with the subjects' respiratory variability (nu). Maximal intensity projection-based ITAs from RedCAM were comparatively smaller than those from dMRI in both phantom studies (epsilon = -21.64% +/- 8.23%) and lung tumor patient studies (epsilon = -20.31% +/- 11.36%). The errors in MIP-based ITA from RedCAM correlated linearly (epsilon = -5.13nu - 6.71, r(2) = 0.76) with the subjects' respiratory variability. Because of the low temporal resolution and retrospective re-sorting, 4D-CT might not accurately depict the excursion of a moving tumor. Using a 4D-CT MIP image to define the internal target volume might therefore cause underdosing and an increased risk of subsequent treatment failure. Patient-specific respiratory variability might also be a useful predictor of the 4D-CT-induced error in MIP-based internal target volume determination.

  2. Incorporating drug delivery into an imaging-driven, mechanics-coupled reaction diffusion model for predicting the response of breast cancer to neoadjuvant chemotherapy: theory and preliminary clinical results

    NASA Astrophysics Data System (ADS)

    Jarrett, Angela M.; Hormuth, David A.; Barnes, Stephanie L.; Feng, Xinzeng; Huang, Wei; Yankeelov, Thomas E.

    2018-05-01

    Clinical methods for assessing tumor response to therapy are largely rudimentary, monitoring only temporal changes in tumor size. Our goal is to predict the response of breast tumors to therapy using a mathematical model that utilizes magnetic resonance imaging (MRI) data obtained non-invasively from individual patients. We extended a previously established, mechanically coupled, reaction-diffusion model for predicting tumor response initialized with patient-specific diffusion weighted MRI (DW-MRI) data by including the effects of chemotherapy drug delivery, which is estimated using dynamic contrast-enhanced (DCE-) MRI data. The extended, drug incorporated, model is initialized using patient-specific DW-MRI and DCE-MRI data. Data sets from five breast cancer patients were used—obtained before, after one cycle, and at mid-point of neoadjuvant chemotherapy. The DCE-MRI data was used to estimate spatiotemporal variations in tumor perfusion with the extended Kety–Tofts model. The physiological parameters derived from DCE-MRI were used to model changes in delivery of therapy drugs within the tumor for incorporation in the extended model. We simulated the original model and the extended model in both 2D and 3D and compare the results for this five-patient cohort. Preliminary results show reductions in the error of model predicted tumor cellularity and size compared to the experimentally-measured results for the third MRI scan when therapy was incorporated. Comparing the two models for agreement between the predicted total cellularity and the calculated total cellularity (from the DW-MRI data) reveals an increased concordance correlation coefficient from 0.81 to 0.98 for the 2D analysis and 0.85 to 0.99 for the 3D analysis (p  <  0.01 for each) when the extended model was used in place of the original model. This study demonstrates the plausibility of using DCE-MRI data as a means to estimate drug delivery on a patient-specific basis in predictive models and represents a step toward the goal of achieving individualized prediction of tumor response to therapy.

  3. Early Detection of Hypothermic Neuroprotection Using T2-Weighted Magnetic Resonance Imaging in a Mouse Model of Hypoxic Ischemic Encephalopathy.

    PubMed

    Doman, Sydney E; Girish, Akanksha; Nemeth, Christina L; Drummond, Gabrielle T; Carr, Patrice; Garcia, Maxine S; Johnston, Michael V; Kannan, Sujatha; Fatemi, Ali; Zhang, Jiangyang; Wilson, Mary Ann

    2018-01-01

    Perinatal hypoxic-ischemic encephalopathy (HIE) can lead to neurodevelopmental disorders, including cerebral palsy. Standard care for neonatal HIE includes therapeutic hypothermia, which provides partial neuroprotection; magnetic resonance imaging (MRI) is often used to assess injury and predict outcome after HIE. Immature rodent models of HIE are used to evaluate mechanisms of injury and to examine the efficacy and mechanisms of neuroprotective interventions such as hypothermia. In this study, we first confirmed that, in the CD1 mouse model of perinatal HIE used for our research, MRI obtained 3 h after hypoxic ischemia (HI) could reliably assess initial brain injury and predict histopathological outcome. Mice were subjected to HI (unilateral carotid ligation followed by exposure to hypoxia) on postnatal day 7 and were imaged with T2-weighted MRI and diffusion-weighted MRI (DWI), 3 h after HI. Clearly defined regions of increased signal were comparable in T2 MRI and DWI, and we found a strong correlation between T2 MRI injury scores 3 h after HI and histopathological brain injury 7 days after HI, validating this method for evaluating initial injury in this model of HIE. The more efficient, higher resolution T2 MRI was used to score initial brain injury in subsequent studies. In mice treated with hypothermia, we found a significant reduction in T2 MRI injury scores 3 h after HI, compared to normothermic littermates. Early hypothermic neuroprotection was maintained 7 days after HI, in both T2 MRI injury scores and histopathology. In the normothermic group, T2 MRI injury scores 3 h after HI were comparable to those obtained 7 days after HI. However, in the hypothermic group, brain injury was significantly less 7 days after HI than at 3 h. Thus, early neuroprotective effects of hypothermia were enhanced by 7 days, which may reflect the additional 3 h of hypothermia after imaging or effects on later mechanisms of injury, such as delayed cell death and inflammation. Our results demonstrate that hypothermia has early neuroprotective effects in this model. These findings suggest that hypothermia has an impact on early mechanisms of excitotoxic injury and support initiation of hypothermic intervention as soon as possible after diagnosis of HIE.

  4. Early Detection of Hypothermic Neuroprotection Using T2-Weighted Magnetic Resonance Imaging in a Mouse Model of Hypoxic Ischemic Encephalopathy

    PubMed Central

    Doman, Sydney E.; Girish, Akanksha; Nemeth, Christina L.; Drummond, Gabrielle T.; Carr, Patrice; Garcia, Maxine S.; Johnston, Michael V.; Kannan, Sujatha; Fatemi, Ali; Zhang, Jiangyang; Wilson, Mary Ann

    2018-01-01

    Perinatal hypoxic-ischemic encephalopathy (HIE) can lead to neurodevelopmental disorders, including cerebral palsy. Standard care for neonatal HIE includes therapeutic hypothermia, which provides partial neuroprotection; magnetic resonance imaging (MRI) is often used to assess injury and predict outcome after HIE. Immature rodent models of HIE are used to evaluate mechanisms of injury and to examine the efficacy and mechanisms of neuroprotective interventions such as hypothermia. In this study, we first confirmed that, in the CD1 mouse model of perinatal HIE used for our research, MRI obtained 3 h after hypoxic ischemia (HI) could reliably assess initial brain injury and predict histopathological outcome. Mice were subjected to HI (unilateral carotid ligation followed by exposure to hypoxia) on postnatal day 7 and were imaged with T2-weighted MRI and diffusion-weighted MRI (DWI), 3 h after HI. Clearly defined regions of increased signal were comparable in T2 MRI and DWI, and we found a strong correlation between T2 MRI injury scores 3 h after HI and histopathological brain injury 7 days after HI, validating this method for evaluating initial injury in this model of HIE. The more efficient, higher resolution T2 MRI was used to score initial brain injury in subsequent studies. In mice treated with hypothermia, we found a significant reduction in T2 MRI injury scores 3 h after HI, compared to normothermic littermates. Early hypothermic neuroprotection was maintained 7 days after HI, in both T2 MRI injury scores and histopathology. In the normothermic group, T2 MRI injury scores 3 h after HI were comparable to those obtained 7 days after HI. However, in the hypothermic group, brain injury was significantly less 7 days after HI than at 3 h. Thus, early neuroprotective effects of hypothermia were enhanced by 7 days, which may reflect the additional 3 h of hypothermia after imaging or effects on later mechanisms of injury, such as delayed cell death and inflammation. Our results demonstrate that hypothermia has early neuroprotective effects in this model. These findings suggest that hypothermia has an impact on early mechanisms of excitotoxic injury and support initiation of hypothermic intervention as soon as possible after diagnosis of HIE.

  5. Comparison of 18F-FDG PET/CT and PET/MRI in patients with multiple myeloma

    PubMed Central

    Sachpekidis, Christos; Hillengass, Jens; Goldschmidt, Hartmut; Mosebach, Jennifer; Pan, Leyun; Schlemmer, Heinz-Peter; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2015-01-01

    PET/MRI represents a promising hybrid imaging modality with several potential clinical applications. Although PET/MRI seems highly attractive in the diagnostic approach of multiple myeloma (MM), its role has not yet been evaluated. The aims of this prospective study are to evaluate the feasibility of 18F-FDG PET/MRI in detection of MM lesions, and to investigate the reproducibility of bone marrow lesions detection and quantitative data of 18F-FDG uptake between the functional (PET) component of PET/CT and PET/MRI in MM patients. The study includes 30 MM patients. All patients initially underwent 18F-FDG PET/CT (60 min p.i.), followed by PET/MRI (120 min p.i.). PET/CT and PET/MRI data were assessed and compared based on qualitative (lesion detection) and quantitative (SUV) evaluation. The hybrid PET/MRI system provided good image quality in all cases without artefacts. PET/MRI identified 65 of the 69 lesions, which were detectable with PET/CT (94.2%). Quantitative PET evaluations showed the following mean values in MM lesions: SUVaverage=5.5 and SUVmax=7.9 for PET/CT; SUVaverage=3.9 and SUVmax=5.8 for PET/MRI. Both SUVaverage and SUVmax were significantly higher on PET/CT than on PET/MRI. Spearman correlation analysis demonstrated a strong correlation between both lesional SUVaverage (r=0.744) and lesional SUVmax (r=0.855) values derived from PET/CT and PET/MRI. Regarding detection of myeloma skeletal lesions, PET/MRI exhibited equivalent performance to PET/CT. In terms of tracer uptake quantitation, a significant correlation between the two techniques was demonstrated, despite the statistically significant differences in lesional SUVs between PET/CT and PET/MRI. PMID:26550538

  6. Functional magnetic resonance imaging activation detection: fuzzy cluster analysis in wavelet and multiwavelet domains.

    PubMed

    Jahanian, Hesamoddin; Soltanian-Zadeh, Hamid; Hossein-Zadeh, Gholam-Ali

    2005-09-01

    To present novel feature spaces, based on multiscale decompositions obtained by scalar wavelet and multiwavelet transforms, to remedy problems associated with high dimension of functional magnetic resonance imaging (fMRI) time series (when they are used directly in clustering algorithms) and their poor signal-to-noise ratio (SNR) that limits accurate classification of fMRI time series according to their activation contents. Using randomization, the proposed method finds wavelet/multiwavelet coefficients that represent the activation content of fMRI time series and combines them to define new feature spaces. Using simulated and experimental fMRI data sets, the proposed feature spaces are compared to the cross-correlation (CC) feature space and their performances are evaluated. In these studies, the false positive detection rate is controlled using randomization. To compare different methods, several points of the receiver operating characteristics (ROC) curves, using simulated data, are estimated and compared. The proposed features suppress the effects of confounding signals and improve activation detection sensitivity. Experimental results show improved sensitivity and robustness of the proposed method compared to the conventional CC analysis. More accurate and sensitive activation detection can be achieved using the proposed feature spaces compared to CC feature space. Multiwavelet features show superior detection sensitivity compared to the scalar wavelet features. (c) 2005 Wiley-Liss, Inc.

  7. Structural MRI and Cognitive Correlates in Pest-control Personnel from Gulf War I

    DTIC Science & Technology

    2009-04-01

    Medicine where they will be reconstructed for morphometric analyses by the study imaging expert, Dr. Killiany. All the images will be transferred to... geometric design; assess ability to organize and construct Raw Score...MRI and morphometric analysis of the images. The results of the current study will be able to compare whether brain imaging differences exist

  8. Diagnosis of glenoid labral tears using 3-tesla MRI vs. 3-tesla MRA: a systematic review and meta-analysis.

    PubMed

    Ajuied, Adil; McGarvey, Ciaran P; Harb, Ziad; Smith, Christian C; Houghton, Russell P; Corbett, Steven A

    2018-05-01

    Various protocols exist for magnetic resonance arthrogram (MRA) of the shoulder, including 3D isotropic scanning and positioning in neutral (2D neutral MRA), or abduction-external-rotation (ABER). MRA does not improve diagnostic accuracy for labral tears when compared to magnetic resonance imaging (MRI) performed using 3-Tesla (3T) magnets. Systematic review of the Cochrane, MEDLINE, and PubMed databases according to PRISMA guidelines. Included studies compared 3T MRI or 3T MRA (index tests) to arthroscopic findings (reference test). Methodological appraisal performed using QUADAS-2. Pooled sensitivity and specificity were calculated. Ten studies including 929 patients were included. Index test bias and applicability were a concern in the majority of studies. The use of arthroscopy as the reference test raised concern of verification bias in all studies. For anterior labral lesions, 3T MRI was less sensitive (0.83 vs. 0.87 p = 0.083) than 3T 2D neutral MRA. Compared to 3T 2D neutral MRA, both 3T 3D Isotropic MRA and 3T ABER MRA significantly improved sensitivity (0.87 vs. 0.95 vs. 0.94). For SLAP lesions, 3T 2D neutral MRA was of similar sensitivity to 3T MRI (0.84 vs. 0.83, p = 0.575), but less specific (0.99 vs. 0.92 p < 0.0001). For posterior labral lesions, 3T 2D neutral MRA had greater sensitivity than 3T 3D Isotropic MRA and 3T MRI (0.90 vs. 0.83 vs. 0.83). At 3-T, MRA improved sensitivity for diagnosis of anterior and posterior labral lesions, but reduced specificity in diagnosis of SLAP tears. 3T MRA with ABER positioning further improved sensitivity in diagnosis of anterior labral tears. IV.

  9. Association of cartilage degeneration with four year weight gain– 3T MRI data from the Osteoarthritis Initiative

    PubMed Central

    Bucknor, Matthew D.; Nardo, Lorenzo; Joseph, Gabby B.; Alizai, Hamza; Srikhum, Waraporn; Nevitt, Michael C.; Lynch, John A.; McCulloch, Charles E.; Link, Thomas M.

    2015-01-01

    Objective To determine the effect of weight gain on progression of early knee morphologic abnormalities using magnetic resonance imaging (MRI) in a longitudinal study over 48 months. Design We studied the right knee of 100 subjects from the Osteoarthritis Initiative, selecting subjects aged ≥ 45 with osteoarthritis risk factors who demonstrated weight gain (minimum 5% increase in body mass index, BMI, n=50) or no change in weight (BMI change < 2%, n=50), frequency matched for age, gender, and baseline BMI. Baseline and 48 month knee MRI studies were scored for lesions using a modified whole organ MRI score (WORMS). Logistic regression models were used to compare the differences between the two groups. Results The odds of worsening maximum cartilage (11.3, 95%, CI 3.5–51.4) and meniscal WORMS (4.5, 95% CI 1.4–17.3) were significantly greater in the weight gain group compared to the no change group, in addition to the odds of worsening cartilage defects at the patella and average meniscal WORMS (p<0.05). Odds of worsening average bone marrow edema pattern (BMEP) were significantly greater for the weight gain group compared to the no change cohort (p<0.05). Conclusion Our study demonstrated that weight gain is strongly associated with increased progression of cartilage degeneration in middle-aged individuals with risk factors for osteoarthritis. PMID:25591445

  10. Individual white matter fractional anisotropy analysis on patients with MRI negative partial epilepsy.

    PubMed

    Duning, Thomas; Kellinghaus, Christoph; Mohammadi, Siawoosh; Schiffbauer, Hagen; Keller, Simon; Ringelstein, E Bernd; Knecht, Stefan; Deppe, Michael

    2010-02-01

    Conventional structural MRI fails to identify a cerebral lesion in 25% of patients with cryptogenic partial epilepsy (CPE). Diffusion tensor imaging is an MRI technique sensitive to microstructural abnormalities of cerebral white matter (WM) by quantification of fractional anisotropy (FA). The objectives of the present study were to identify focal FA abnormalities in patients with CPE who were deemed MRI negative during routine presurgical evaluation. Diffusion tensor imaging at 3 T was performed in 12 patients with CPE and normal conventional MRI and in 67 age matched healthy volunteers. WM integrity was compared between groups on the basis of automated voxel-wise statistics of FA maps using an analysis of covariance. Volumetric measurements from high resolution T1-weighted images were also performed. Significant FA reductions in WM regions encompassing diffuse areas of the brain were observed when all patients as a group were compared with controls. On an individual basis, voxel based analyses revealed widespread symmetrical FA reduction in CPE patients. Furthermore, asymmetrical temporal lobe FA reduction was consistently ipsilateral to the electroclinical focus. No significant correlations were found between FA alterations and clinical data. There were no differences in brain volumes of CPE patients compared with controls. Despite normal conventional MRI, WM integrity abnormalities in CPE patients extend far beyond the epileptogenic zone. Given that unilateral temporal lobe FA abnormalities were consistently observed ipsilateral to the seizure focus, analysis of temporal FA may provide an informative in vivo investigation into the localisation of the epileptogenic zone in MRI negative patients.

  11. Classification of fMRI resting-state maps using machine learning techniques: A comparative study

    NASA Astrophysics Data System (ADS)

    Gallos, Ioannis; Siettos, Constantinos

    2017-11-01

    We compare the efficiency of Principal Component Analysis (PCA) and nonlinear learning manifold algorithms (ISOMAP and Diffusion maps) for classifying brain maps between groups of schizophrenia patients and healthy from fMRI scans during a resting-state experiment. After a standard pre-processing pipeline, we applied spatial Independent component analysis (ICA) to reduce (a) noise and (b) spatial-temporal dimensionality of fMRI maps. On the cross-correlation matrix of the ICA components, we applied PCA, ISOMAP and Diffusion Maps to find an embedded low-dimensional space. Finally, support-vector-machines (SVM) and k-NN algorithms were used to evaluate the performance of the algorithms in classifying between the two groups.

  12. A hierarchical model for probabilistic independent component analysis of multi-subject fMRI studies

    PubMed Central

    Tang, Li

    2014-01-01

    Summary An important goal in fMRI studies is to decompose the observed series of brain images to identify and characterize underlying brain functional networks. Independent component analysis (ICA) has been shown to be a powerful computational tool for this purpose. Classic ICA has been successfully applied to single-subject fMRI data. The extension of ICA to group inferences in neuroimaging studies, however, is challenging due to the unavailability of a pre-specified group design matrix. Existing group ICA methods generally concatenate observed fMRI data across subjects on the temporal domain and then decompose multi-subject data in a similar manner to single-subject ICA. The major limitation of existing methods is that they ignore between-subject variability in spatial distributions of brain functional networks in group ICA. In this paper, we propose a new hierarchical probabilistic group ICA method to formally model subject-specific effects in both temporal and spatial domains when decomposing multi-subject fMRI data. The proposed method provides model-based estimation of brain functional networks at both the population and subject level. An important advantage of the hierarchical model is that it provides a formal statistical framework to investigate similarities and differences in brain functional networks across subjects, e.g., subjects with mental disorders or neurodegenerative diseases such as Parkinson’s as compared to normal subjects. We develop an EM algorithm for model estimation where both the E-step and M-step have explicit forms. We compare the performance of the proposed hierarchical model with that of two popular group ICA methods via simulation studies. We illustrate our method with application to an fMRI study of Zen meditation. PMID:24033125

  13. Simultaneous (68)Ga-DOTA-TOC PET/MRI with gadoxetate disodium in patients with neuroendocrine tumor.

    PubMed

    Hope, Thomas A; Pampaloni, Miguel Hernandez; Nakakura, Eric; VanBrocklin, Henry; Slater, James; Jivan, Salma; Aparici, Carina Mari; Yee, Judy; Bergsland, Emily

    2015-08-01

    To evaluate a simultaneous PET/MRI approach to imaging patients with neuroendocrine tumor using a combination of (68)Ga-DOTA-TOC as a PET contrast agent and gadoxetate disodium as a hepatobiliary MRI contrast agent. Ten patients with neuroendocrine tumor with known or suspected hepatic disease were imaged using a (68)Ga-DOTA-TOC PET/CT immediately followed by a 3.0T time-of-flight PET/MRI, using a combined whole body and liver specific imaging. The presence of lesions and DOTA-TOC avidity were assessed on CT, PET from PET/CT, diffusion weighted imaging, hepatobiliary phase imaging (HBP), and PET from PET/MRI. Maximum standardized uptake values (SUVmax) in hepatic lesions and nodal metastases were compared between PET/CT and PET/MRI, as were detection rates using each imaging approach. A total of 101 hepatic lesions were identified, 47 of which were DOTA-TOC avid and able to be individually measured on both PET/CT and PET/MRI. HBP imaging had a higher sensitivity for detection of hepatic lesions compared to CT or PET (99% vs. 46% and 64%, respectively; p values <0.001). There was a strong correlation between SUVmax of liver lesions obtained with PET/CT compared to PET/MR imaging (Pearson's correlation = 0.91). For nodal disease, CT had a higher sensitivity compared to whole body MRI (p = 0.015), although PET acquired from PET/MRI detected slightly more lesions compared to PET from PET/CT. A simultaneous PET/MRI using both (68)Ga-DOTA-TOC and gadoxetate disodium was successful in whole body staging of patients with neuroendocrine tumor. HBP imaging had an increased detection rate for hepatic metastases.

  14. MRI compatible optrodes for simultaneous LFP and optogenetic fMRI investigation of seizure-like afterdischarges

    PubMed Central

    Duffy, Ben A; Choy, ManKin; Chuapoco, Miguel R; Madsen, Michael; Lee, Jin Hyung

    2017-01-01

    In preclinical studies, implanted electrodes can cause severe degradation of MRI images and hence are seldom used for chronic studies employing functional magnetic resonance imaging. In this study, we developed carbon fiber optrodes (optical fiber and electrode hybrid devices), which can be utilised in chronic longitudinal studies aiming to take advantage of emerging optogenetic technologies, and compared them with the more widely used tungsten optrodes. We find that optrodes constructed using small diameter (~130 μm) carbon fiber electrodes cause significantly reduced artifact on functional MRI images compared those made with 50 μm diameter tungsten wire and at the same time the carbon electrodes have lower impedance, which leads to higher quality intracranial LFP recordings. In order to validate this approach, we use these devices to study optogenetically-induced seizure-like afterdischarges in rats sedated with dexmedetomidine and compare these to sub (seizure) threshold stimulations in the same animals. The results indicate that seizure-like afterdischarges involve several extrahippocampal brain regions that are not recruited by subthreshold optogenetic stimulation of the hippocampus at 20 Hz. Subthreshold stimulation led to activation of the entire ipsilateral hippocampus, whereas afterdischarges additionally produced activations in the contralateral hippocampal formation, septum, neocortex, cerebellum, nucleus accumbens, and thalamus. Although we demonstrate just one application, given the ease of fabrication, we anticipate that carbon fiber optrodes could be utilised in a variety of studies that could benefit from longitudinal optogenetic functional magnetic resonance imaging. PMID:26208873

  15. Supine MRI for regional breast radiotherapy: imaging axillary lymph nodes before and after sentinel-node biopsy

    NASA Astrophysics Data System (ADS)

    van Heijst, Tristan C. F.; Eschbach-Zandbergen, Debora; Hoekstra, Nienke; van Asselen, Bram; Lagendijk, Jan J. W.; Verkooijen, Helena M.; Pijnappel, Ruud M.; de Waard, Stephanie N.; Witkamp, Arjen J.; van Dalen, Thijs; Desirée van den Bongard, H. J. G.; Philippens, Marielle E. P.

    2017-08-01

    Regional radiotherapy (RT) is increasingly used in breast cancer treatment. Conventionally, computed tomography (CT) is performed for RT planning. Lymph node (LN) target levels are delineated according to anatomical boundaries. Magnetic resonance imaging (MRI) could enable individual LN delineation. The purpose was to evaluate the applicability of MRI for LN detection in supine treatment position, before and after sentinel-node biopsy (SNB). Twenty-three female breast cancer patients (cTis-3N0M0) underwent 1.5 T MRI, before and after SNB, in addition to CT. Endurance for MRI was monitored. Axillary levels were delineated. LNs were identified and delineated on MRI from before and after SNB, and on CT, and compared by Wilcoxon signed-rank tests. LN locations and LN-based volumes were related to axillary delineations and associated volumes. Although postoperative effects were visible, LN numbers on postoperative MRI (median 26 LNs) were highly reproducible compared to preoperative MRI when adding excised sentinel nodes, and higher than on CT (median 11, p  <  0.001). LN-based volumes were considerably smaller than respective axillary levels. Supine MRI of LNs is feasible and reproducible before and after SNB. This may lead to more accurate RT target definition compared to CT, with potentially lower toxicity. With the MRI techniques described here, initiation of novel MRI-guided RT strategies aiming at individual LNs could be possible.

  16. Functional Magnetic Resonance Imaging of Working Memory and Executive Dysfunction in Systemic Lupus Erythematosus and Antiphospholipid Antibody-Positive Patients.

    PubMed

    Kozora, E; Uluğ, A M; Erkan, D; Vo, A; Filley, C M; Ramon, G; Burleson, A; Zimmerman, R; Lockshin, M D

    2016-11-01

    Standardized cognitive tests and functional magnetic resonance imaging (fMRI) studies of systemic lupus erythematosus (SLE) patients demonstrate deficits in working memory and executive function. These neurobehavioral abnormalities are not well studied in antiphospholipid syndrome, which may occur independently of or together with SLE. This study compares an fMRI paradigm involving motor skills, working memory, and executive function in SLE patients without antiphospholipid antibody (aPL) (the SLE group), aPL-positive non-SLE patients (the aPL-positive group), and controls. Brain MRI, fMRI, and standardized cognitive assessment results were obtained from 20 SLE, 20 aPL-positive, and 10 healthy female subjects with no history of neuropsychiatric abnormality. Analysis of fMRI data showed no differences in performance across groups on bilateral motor tasks. When analysis of variance was used, significant group differences were found in 2 executive function tasks (word generation and word rhyming) and in a working memory task (N-Back). Patients positive for aPL demonstrated higher activation in bilateral frontal, temporal, and parietal cortices compared to controls during working memory and executive function tasks. SLE patients also demonstrated bilateral frontal and temporal activation during working memory and executive function tasks. Compared to controls, both aPL-positive and SLE patients had elevated cortical activation, primarily in the frontal lobes, during tasks involving working memory and executive function. These findings are consistent with cortical overactivation as a compensatory mechanism for early white matter neuropathology in these disorders. © 2016, American College of Rheumatology.

  17. Age-Related Normogram for Ovarian Antral Follicle Count in Women with Polycystic Ovary Syndrome and Comparison with Age Matched Controls Using Magnetic Resonance Imaging.

    PubMed

    Aiyappan, Senthil Kumar; Karpagam, Bulabai; Vadanika, V; Chidambaram, Prem Kumar; Vinayagam, S; Saravanan, K C

    2016-01-01

    Antral Follicle count (AFC) is a reliable marker for ovarian reserve. Previous studies have used transvaginal ultrasound for estimation of AFC, however we used magnetic resonance imaging (MRI) for estimation of AFC and for creating an age-related normogram in patients with polycystic ovary syndrome (PCOS) and compared it with normal patients. The aim of this study is to create an age related normogram for AFC in women with PCOS and to compare that with women without polycystic ovarian syndrome using MRI. A total of 1500 women were examined, out of which 400 fitted the criteria for PCOS. They all underwent MRI study and similar age matched women without PCOS also underwent MRI examination. Normogram for AFC were obtained using LMS software and a percentile chart was obtained. Normogram for AFC in PCOS women showed decline in number of AFC as the age progresses and the decline was linear. The normogram for AFC was compared with equal number of patients without PCOS and they also showed decline in AFC as the age progresses, however the decline was exponential and faster. Age related normogram for AFC is widely used and considered as best clinical predictor for ovarian response in assisted reproductive technology. Knowledge of ovarian reserve is important in PCOS and non-PCOS females as PCOS patients are at risk for ovarian hyperstimulation syndrome during gonadotrophin theraphy. MRI is an equally effective and in some times better alternative to transvaginal ultrasound as it has got its own advantages.

  18. MRI Before Radiography for Patients With New Shoulder Conditions.

    PubMed

    Small, Kirstin M; Rybicki, Frank J; Miller, Lindsay R; Daniels, Stephen D; Higgins, Laurence D

    2017-06-01

    To assess the patterns of Appropriate Criteria application among orthopedic specialists and other fields of medicine for use of MRI and radiography and the subsequent necessity for surgical intervention. The hospital electronic medical record was used to identify all shoulder MRI studies at a single large urban teaching hospital between January 2, 2011, and June 30, 2011. For each study, variables collected included ordering department, patient age, patient gender, patient's self-reported race/ethnicity, whether the patient obtained surgery for an issue related to the MRI diagnosis, the type of MRI ordered, the date of pain onset, the date of x-ray (if any), and the date of the MRI. A total of 475 patients who underwent shoulder MRI were included in our study. We found significant associations between a patient having had a prior x-ray and ordering department (P < .0001), male gender (P = .0005), and subjects who had subsequent surgery (P = .0006). Neither age nor race and ethnicity had an influence on x-ray before MRI. Orthopedic specialists ordering MRIs had the highest percentage of patients undergo subsequent surgery (33.3%) compared with the second-most, primary care (18.4%), and all other ordering departments (P = .0009). Detailed analysis suggests that providers who do not have specific training in shoulder pathology should consider consultation with an orthopedic surgeon before ordering shoulder MRI for patients who may need additional imaging after radiography. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  19. Directly detected 55Mn MRI: Application to phantoms for human hyperpolarized 13C MRI development

    PubMed Central

    von Morze, Cornelius; Carvajal, Lucas; Reed, Galen D.; Swisher, Christine Leon; Tropp, James; Vigneron, Daniel B.

    2014-01-01

    In this work we demonstrate for the first time directly detected manganese-55 (55Mn) MRI using a clinical 3T MRI scanner designed for human hyperpolarized 13C clinical studies with no additional hardware modifications. Due to the similar frequency of the 55Mn and 13C resonances, the use of aqueous permanganate for large, signal-dense, and cost-effective “13C” MRI phantoms was investigated, addressing the clear need for new phantoms for these studies. Due to 100% natural abundance, higher intrinsic sensitivity, and favorable relaxation properties, 55Mn MRI of aqueous permanganate demonstrates dramatically increased sensitivity over typical 13C phantom MRI, at greatly reduced cost as compared with large 13C-enriched phantoms. A large sensitivity advantage (22-fold) was demonstrated. A cylindrical phantom (d= 8 cm) containing concentrated aqueous sodium permanganate (2.7M) was scanned rapidly by 55Mn MRI in a human head coil tuned for 13C, using a balanced SSFP acquisition. The requisite penetration of RF magnetic fields into concentrated permanganate was investigated by experiments and high frequency electromagnetic simulations, and found to be sufficient for 55Mn MRI with reasonably sized phantoms. A sub-second slice-selective acquisition yielded mean image SNR of ~60 at 0.5cm3 spatial resolution, distributed with minimum central signal ~40% of the maximum edge signal. We anticipate that permanganate phantoms will be very useful for testing HP 13C coils and methods designed for human studies. PMID:25179135

  20. TH-EF-BRA-06: A Novel Retrospective 3D K-Space Sorting 4D-MRI Technique Using a Radial K-Space Acquisition MRI Sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y; Subashi, E; Yin, F

    Purpose: Current retrospective 4D-MRI provides superior tumor-to-tissue contrast and accurate respiratory motion information for radiotherapy motion management. The developed 4D-MRI techniques based on 2D-MRI image sorting require a high frame-rate of the MR sequences. However, several MRI sequences provide excellent image quality but have low frame-rate. This study aims at developing a novel retrospective 3D k-space sorting 4D-MRI technique using radial k-space acquisition MRI sequences to improve 4D-MRI image quality and temporal-resolution for imaging irregular organ/tumor respiratory motion. Methods: The method is based on a RF-spoiled, steady-state, gradient-recalled sequence with minimal echo time. A 3D radial k-space data acquisition trajectorymore » was used for sampling the datasets. Each radial spoke readout data line starts from the 3D center of Field-of-View. Respiratory signal can be extracted from the k-space center data point of each spoke. The spoke data was sorted based on its self-synchronized respiratory signal using phase sorting. Subsequently, 3D reconstruction was conducted to generate the time-resolved 4D-MRI images. As a feasibility study, this technique was implemented on a digital human phantom XCAT. The respiratory motion was controlled by an irregular motion profile. To validate using k-space center data as a respiratory surrogate, we compared it with the XCAT input controlling breathing profile. Tumor motion trajectories measured on reconstructed 4D-MRI were compared to the average input trajectory. The mean absolute amplitude difference (D) was calculated. Results: The signal extracted from k-space center data matches well with the input controlling respiratory profile of XCAT. The relative amplitude error was 8.6% and the relative phase error was 3.5%. XCAT 4D-MRI demonstrated a clear motion pattern with little serrated artifacts. D of tumor trajectories was 0.21mm, 0.23mm and 0.23mm in SI, AP and ML directions, respectively. Conclusion: A novel retrospective 3D k-space sorting 4D-MRI technique has been developed and evaluated on human digital phantom. NIH (1R21CA165384-01A1)« less

  1. Passive fMRI mapping of language function for pediatric epilepsy surgical planning: validation using Wada, ECS, and FMAER.

    PubMed

    Suarez, Ralph O; Taimouri, Vahid; Boyer, Katrina; Vega, Clemente; Rotenberg, Alexander; Madsen, Joseph R; Loddenkemper, Tobias; Duffy, Frank H; Prabhu, Sanjay P; Warfield, Simon K

    2014-12-01

    In this study we validate passive language fMRI protocols designed for clinical application in pediatric epilepsy surgical planning as they do not require overt participation from patients. We introduced a set of quality checks that assess reliability of noninvasive fMRI mappings utilized for clinical purposes. We initially compared two fMRI language mapping paradigms, one active in nature (requiring participation from the patient) and the other passive in nature (requiring no participation from the patient). Group-level analysis in a healthy control cohort demonstrated similar activation of the putative language centers of the brain in the inferior frontal (IFG) and temporoparietal (TPG) regions. Additionally, we showed that passive language fMRI produced more left-lateralized activation in TPG (LI=+0.45) compared to the active task; with similarly robust left-lateralized IFG (LI=+0.24) activations using the passive task. We validated our recommended fMRI mapping protocols in a cohort of 15 pediatric epilepsy patients by direct comparison against the invasive clinical gold-standards. We found that language-specific TPG activation by fMRI agreed to within 9.2mm to subdural localizations by invasive functional mapping in the same patients, and language dominance by fMRI agreed with Wada test results at 80% congruency in TPG and 73% congruency in IFG. Lastly, we tested the recommended passive language fMRI protocols in a cohort of very young patients and confirmed reliable language-specific activation patterns in that challenging cohort. We concluded that language activation maps can be reliably achieved using the passive language fMRI protocols we proposed even in very young (average 7.5 years old) or sedated pediatric epilepsy patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Relating resting-state fMRI and EEG whole-brain connectomes across frequency bands.

    PubMed

    Deligianni, Fani; Centeno, Maria; Carmichael, David W; Clayden, Jonathan D

    2014-01-01

    Whole brain functional connectomes hold promise for understanding human brain activity across a range of cognitive, developmental and pathological states. So called resting-state (rs) functional MRI studies have contributed to the brain being considered at a macroscopic scale as a set of interacting regions. Interactions are defined as correlation-based signal measurements driven by blood oxygenation level dependent (BOLD) contrast. Understanding the neurophysiological basis of these measurements is important in conveying useful information about brain function. Local coupling between BOLD fMRI and neurophysiological measurements is relatively well defined, with evidence that gamma (range) frequency EEG signals are the closest correlate of BOLD fMRI changes during cognitive processing. However, it is less clear how whole-brain network interactions relate during rest where lower frequency signals have been suggested to play a key role. Simultaneous EEG-fMRI offers the opportunity to observe brain network dynamics with high spatio-temporal resolution. We utilize these measurements to compare the connectomes derived from rs-fMRI and EEG band limited power (BLP). Merging this multi-modal information requires the development of an appropriate statistical framework. We relate the covariance matrices of the Hilbert envelope of the source localized EEG signal across bands to the covariance matrices derived from rs-fMRI with the means of statistical prediction based on sparse Canonical Correlation Analysis (sCCA). Subsequently, we identify the most prominent connections that contribute to this relationship. We compare whole-brain functional connectomes based on their geodesic distance to reliably estimate the performance of the prediction. The performance of predicting fMRI from EEG connectomes is considerably better than predicting EEG from fMRI across all bands, whereas the connectomes derived in low frequency EEG bands resemble best rs-fMRI connectivity.

  3. Relating resting-state fMRI and EEG whole-brain connectomes across frequency bands

    PubMed Central

    Deligianni, Fani; Centeno, Maria; Carmichael, David W.; Clayden, Jonathan D.

    2014-01-01

    Whole brain functional connectomes hold promise for understanding human brain activity across a range of cognitive, developmental and pathological states. So called resting-state (rs) functional MRI studies have contributed to the brain being considered at a macroscopic scale as a set of interacting regions. Interactions are defined as correlation-based signal measurements driven by blood oxygenation level dependent (BOLD) contrast. Understanding the neurophysiological basis of these measurements is important in conveying useful information about brain function. Local coupling between BOLD fMRI and neurophysiological measurements is relatively well defined, with evidence that gamma (range) frequency EEG signals are the closest correlate of BOLD fMRI changes during cognitive processing. However, it is less clear how whole-brain network interactions relate during rest where lower frequency signals have been suggested to play a key role. Simultaneous EEG-fMRI offers the opportunity to observe brain network dynamics with high spatio-temporal resolution. We utilize these measurements to compare the connectomes derived from rs-fMRI and EEG band limited power (BLP). Merging this multi-modal information requires the development of an appropriate statistical framework. We relate the covariance matrices of the Hilbert envelope of the source localized EEG signal across bands to the covariance matrices derived from rs-fMRI with the means of statistical prediction based on sparse Canonical Correlation Analysis (sCCA). Subsequently, we identify the most prominent connections that contribute to this relationship. We compare whole-brain functional connectomes based on their geodesic distance to reliably estimate the performance of the prediction. The performance of predicting fMRI from EEG connectomes is considerably better than predicting EEG from fMRI across all bands, whereas the connectomes derived in low frequency EEG bands resemble best rs-fMRI connectivity. PMID:25221467

  4. Integrated imaging using MRI and 123I metaiodobenzylguanidine scintigraphy to improve sensitivity and specificity in the diagnosis of pediatric neuroblastoma.

    PubMed

    Pfluger, Thomas; Schmied, Christoph; Porn, Ute; Leinsinger, Gerda; Vollmar, Christian; Dresel, Stefan; Schmid, Irene; Hahn, Klaus

    2003-10-01

    The objectives of this study were to compare MRI and iodine-123 ((123)I) metaiodobenzylguanidine (MIBG) scintigraphy in the detection of neuroblastoma lesions in pediatric patients and to assess the additional value of combined imaging. Fifty MRI and 50 (123)I MIBG examinations (mean interval, 6.4 days) were analyzed retrospectively with regard to suspected or proven neuroblastoma lesions (n = 193) in 28 patients. MRI and MIBG scans were reviewed by two independent observers each. Separate and combined analyses of MRI and MIBG scintigraphy were compared with clinical and histologic findings. With regard to the diagnosis of neuroblastoma lesion, MIBG scintigraphy, MRI, and combined analysis showed a sensitivity of 69%, 86%, and 99% and a specificity of 85%, 77%, and 95%, respectively. On MRI, 15 false-positive findings were recorded: posttherapeutic reactive changes (n = 10), benign adrenal tumors (n = 3), and enlarged lymph nodes (n = 2). On MIBG scintigraphy, 10 false-positive findings occurred: ganglioneuromas (n = 2), benign liver tumors (n = 2), and physiologic uptake (n = 6). Thirteen neuroblastoma metastases and two residual masses under treatment with chemotherapy were judged to be false-negative findings on MRI. Two primary or residual neuroblastomas and one orbital metastasis were misinterpreted as Wilms' tumor, reactive changes after surgery, and rhabdomyosarcoma on MRI. Thirty-two bone metastases, six other neuroblastoma metastases, and one adrenal neuroblastoma showed no MIBG uptake. On combined imaging, one false-negative (bone metastasis) and three false-positive (two ganglioneuromas and one pheochromocytoma) findings remained. In the assessment of neuroblastoma lesions in pediatric patients, MRI showed a higher sensitivity and MIBG scintigraphy a higher specificity. However, integrated imaging showed an increase in both sensitivity and specificity.

  5. Comparison of ASL and DCE MRI for the non-invasive measurement of renal blood flow: quantification and reproducibility.

    PubMed

    Cutajar, Marica; Thomas, David L; Hales, Patrick W; Banks, T; Clark, Christopher A; Gordon, Isky

    2014-06-01

    To investigate the reproducibility of arterial spin labelling (ASL) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and quantitatively compare these techniques for the measurement of renal blood flow (RBF). Sixteen healthy volunteers were examined on two different occasions. ASL was performed using a multi-TI FAIR labelling scheme with a segmented 3D-GRASE imaging module. DCE MRI was performed using a 3D-FLASH pulse sequence. A Bland-Altman analysis was used to assess repeatability of each technique, and determine the degree of correspondence between the two methods. The overall mean cortical renal blood flow (RBF) of the ASL group was 263 ± 41 ml min(-1) [100 ml tissue](-1), and using DCE MRI was 287 ± 70 ml min(-1) [100 ml tissue](-1). The group coefficient of variation (CVg) was 18 % for ASL and 28 % for DCE-MRI. Repeatability studies showed that ASL was more reproducible than DCE with CVgs of 16 % and 25 % for ASL and DCE respectively. Bland-Altman analysis comparing the two techniques showed a good agreement. The repeated measures analysis shows that the ASL technique has better reproducibility than DCE-MRI. Difference analysis shows no significant difference between the RBF values of the two techniques. Reliable non-invasive monitoring of renal blood flow is currently clinically unavailable. Renal arterial spin labelling MRI is robust and repeatable. Renal dynamic contrast-enhanced MRI is robust and repeatable. ASL blood flow values are similar to those obtained using DCE-MRI.

  6. Comparison between magnetic resonance imaging and fetopathology in the evaluation of fetal posterior fossa non-cystic abnormalities.

    PubMed

    Tilea, B; Delezoide, A L; Khung-Savatovski, S; Guimiot, F; Vuillard, E; Oury, J F; Garel, C

    2007-06-01

    To compare magnetic resonance imaging (MRI) and fetopathological findings in the evaluation of non-cystic fetal posterior fossa anomalies and to describe associated abnormalities. This was a prospective study from 2000 to 2005 of fetuses identified on ultrasound as having sonographic suspicion of posterior fossa malformation. All underwent a thorough MRI examination of the fetal brain, after which we classified each fetus as presenting one of the following pathologies: vermian hypoplasia or agenesis, cerebellar and/or brain stem hypoplasia, destructive or dysplastic lesions. All of the pregnancies were then terminated, after which the whole fetus underwent fetopathological examination. We compared the findings from MRI and fetopathological examinations and recorded the associated cerebral and extracerebral abnormalities. Twenty-five fetuses were included. MRI was performed at a mean gestational age of 31 weeks, and fetopathological examination at 33 weeks. In 12 cases we observed vermian hypoplasia, six had partial vermian agenesis, 11 had cerebellar hemisphere hypoplasia, seven had brain stem hypoplasia, four had destructive lesions and six had dysplastic lesions. The two techniques were similar in their performance with respect to the detection of vermian agenesis, brain stem hypoplasia and destructive lesions. There were four false-positive results of MRI for vermian hypoplasia and a poor agreement regarding cerebellar hemisphere hypoplasia. No dysplastic lesions were diagnosed by MRI. None of the posterior fossa malformations was isolated and many cerebral and extracerebral abnormalities were found. A systematic analysis of the posterior fossa in fetal MRI makes it possible to diagnose accurately most posterior fossa malformations. These malformations never occurred in isolation in our study.

  7. Ultrashort echo time (UTE) MRI for the assessment of caries lesions

    PubMed Central

    Bracher, A-K; Hofmann, C; Bornstedt, A; Hell, E; Janke, F; Ulrici, J; Haller, B; Geibel, M-A; Rasche, V

    2013-01-01

    Objective: Direct in vivo MRI of dental hard tissues by applying ultrashort echo time (UTE) MRI techniques has recently been reported. The objective of the presented study is to clinically evaluate the applicability of UTE MRI for the identification of caries lesions. Methods: 40 randomly selected patients (mean age 41 ± 15 years) were enrolled in this study. 39 patients underwent a conventional clinical assessment, dental bitewing X-ray and a dental MRI investigation comprising a conventional turbo-spin echo (TSE) and a dedicated UTE scan. One patient had to be excluded owing to claustrophobia. In four patients, the clinical treatment of the lesions was documented by intraoral pictures, and the resulting volume of the cavity after excavation was documented by dental imprints and compared with the MRI findings. Results: In total, 161 lesions were identified. 157 (97%) were visible in the UTE images, 27 (17%) in the conventional TSE images and 137 (85%) in the X-ray images. In total, 14 teeth could not be analysed by MR owing to artefacts caused by dental fillings. All lesions appear significantly larger in the UTE images as compared with the X-ray and TSE images. In situ measurements confirm the accuracy of the lesion dimensions as observed in the UTE images. Conclusion: The presented data provide evidence that UTE MR imaging can be applied for the identification of caries lesions. Although the current data suggest an even higher sensitivity of UTE MRI, some limitations must be expected from dental fillings. PMID:23420857

  8. Distribution and severity of hypoxic-ischaemic lesions on brain MRI following therapeutic cooling: selective head versus whole body cooling.

    PubMed

    Sarkar, Subrata; Donn, Steven M; Bapuraj, Jayapalli R; Bhagat, Indira; Barks, John D

    2012-09-01

    Whole body cooling (WBC) cools different parts of the brain uniformly, and selective head cooling (SHC) cools the superficial brain more than the deeper brain structures. In this study, the authors hypothesised that the hypoxic-ischaemic lesions on brain MRI following cooling would differ between modalities of cooling. To compare the frequency, distribution and severity of hypoxic-ischaemic lesions on brain MRI between SHC or WBC. In a single centre retrospective study, 83 infants consecutively cooled using either SHC (n=34) or WBC (n=49) underwent brain MRI. MRI images were evaluated by a neuroradiologist, who was masked to clinical parameters and outcomes, using a basal ganglia/watershed (BG/W) scoring system. Higher scores (on a scale of 0 to 4) were given for more extensive injury. The score has been reported to be predictive of neuromotor and cognitive outcome at 12 months. The two groups were similar for severity of depression as assessed by a history of an intrapartum sentinel event, Apgar scores, initial blood pH and base deficit and early neurological examination. However, abnormal MRI was more frequent in the SHC group (SHC 25 of 34, 74% vs WBC 22 of 49, 45%; p=0.0132, OR 3.4, 95% CI 1.3 to 8.8). Infants from the SHC group also had more severe hypoxic-ischaemic lesions (median BG/W score: SHC 2 vs WBC 0, p=0.0014). Hypoxic-ischaemic lesions on brain MRI following therapeutic cooling were more frequent and more severe with SHC compared with WBC.

  9. Comparison of 68Ga-PSMA PET/CT and multiparametric MRI for staging of high-risk prostate cancer68Ga-PSMA PET and MRI in prostate cancer.

    PubMed

    Tulsyan, Shruti; Das, Chandan J; Tripathi, Madhavi; Seth, Amlesh; Kumar, Rajeev; Bal, Chandrasekhar

    2017-12-01

    We carried out this study to compare Glu-NH-CO-NH-Lys-(Ahx) [Ga(HBED-CC)] [Ga prostate-specific membrane antigen-11 (PSMA-11)] PET with multiparametric MRI (mpMRI) for the staging of high-risk prostate cancer. This was a prospective study in which 36 patients with high-risk prostate cancer were included. The criteria for inclusion were biopsy-proven prostate cancer with a serum prostate specific antigen of at least 20 and/or Gleason's score of at least 8. Each patient then underwent both gallium-68 (Ga)-PSMA PET/computed tomography (CT) and mpMRI including diffusion-weighted whole-body imaging with background body signal suppression within an interval of 1 week and both modalities were compared for staging of primary disease, lymph node, and distant metastasis. The median age of the 36 patients included was 65 years (range: 44-80 years) and the median prostate specific antigen was 94.3 ng/ml (range: 20-19005  ng/ml). Concordance for localization of primary on Ga-PSMA PET/CT and MRI was observed in 19/36 (52.7%) patients. Concurrence for T staging on Ga-PSMA and MRI was observed in 58.3% of patients. Ga-PSMA PET/CT detected higher numbers of patients with regional (29) and nonregional (15) lymph nodes in comparison with MRI (20 and 5, respectively). Concurrence for regional and nonregional lymph node staging was observed in 72.2% of patients. Additional sites of metastatic disease reported on Ga-PSMA PET/CT were to the skeleton in one patient, the lung in two patients, and the liver in one patient. This study suggests that Ga-PSMA PET/CT is useful for lymph node and metastases staging in high-risk prostate cancers, whereas its utility for staging of disease in the prostate is limited.

  10. Noninvasive iPhone Measurement of Left Ventricular Ejection Fraction Using Intrinsic Frequency Methodology.

    PubMed

    Pahlevan, Niema M; Rinderknecht, Derek G; Tavallali, Peyman; Razavi, Marianne; Tran, Thao T; Fong, Michael W; Kloner, Robert A; Csete, Marie; Gharib, Morteza

    2017-07-01

    The study is based on previously reported mathematical analysis of arterial waveform that extracts hidden oscillations in the waveform that we called intrinsic frequencies. The goal of this clinical study was to compare the accuracy of left ventricular ejection fraction derived from intrinsic frequencies noninvasively versus left ventricular ejection fraction obtained with cardiac MRI, the most accurate method for left ventricular ejection fraction measurement. After informed consent, in one visit, subjects underwent cardiac MRI examination and noninvasive capture of a carotid waveform using an iPhone camera (The waveform is captured using a custom app that constructs the waveform from skin displacement images during the cardiac cycle.). The waveform was analyzed using intrinsic frequency algorithm. Outpatient MRI facility. Adults able to undergo MRI were referred by local physicians or self-referred in response to local advertisement and included patients with heart failure with reduced ejection fraction diagnosed by a cardiologist. Standard cardiac MRI sequences were used, with periodic breath holding for image stabilization. To minimize motion artifact, the iPhone camera was held in a cradle over the carotid artery during iPhone measurements. Regardless of neck morphology, carotid waveforms were captured in all subjects, within seconds to minutes. Seventy-two patients were studied, ranging in age from 20 to 92 years old. The main endpoint of analysis was left ventricular ejection fraction; overall, the correlation between ejection fraction-iPhone and ejection fraction-MRI was 0.74 (r = 0.74; p < 0.0001; ejection fraction-MRI = 0.93 × [ejection fraction-iPhone] + 1.9). Analysis of carotid waveforms using intrinsic frequency methods can be used to document left ventricular ejection fraction with accuracy comparable with that of MRI. The measurements require no training to perform or interpret, no calibration, and can be repeated at the bedside to generate almost continuous analysis of left ventricular ejection fraction without arterial cannulation.

  11. Relation between functional magnetic resonance imaging (fMRI) and single neuron, local field potential (LFP) and electrocorticography (ECoG) activity in human cortex.

    PubMed

    Ojemann, George A; Ojemann, Jeffrey; Ramsey, Nick F

    2013-01-01

    The relation between changes in the blood oxygen dependent metabolic changes imaged by functional magnetic resonance imaging (fMRI) and neural events directly recorded from human cortex from single neurons, local field potentials (LFPs) and electrocorticogram (ECoG) is critically reviewed, based on the published literature including findings from the authors' laboratories. All these data are from special populations, usually patients with medically refractory epilepsy, as this provides the major opportunity for direct cortical neuronal recording in humans. For LFP and ECoG changes are often sought in different frequency bands, for single neurons in frequency of action potentials. Most fMRI studies address issues of functional localization. The relation of those findings to localized changes in neuronal recordings in humans has been established in several ways. Only a few studies have directly compared changes in activity from the same sites in the same individual, using the same behavioral measure. More often the comparison has been between fMRI and electrophysiologic changes in populations recorded from the same functional anatomic system as defined by lesion effects; in a few studies those systems have been defined by fMRI changes such as the "default" network. The fMRI-electrophysiologic relationships have been evaluated empirically by colocalization of significant changes, and by quantitative analyses, often multiple linear regression. There is some evidence that the fMRI-electrophysiology relationships differ in different cortical areas, particularly primary motor and sensory cortices compared to association cortex, but also within areas of association cortex. Although crucial for interpretation of fMRI changes as reflecting neural activity in human cortex, controversy remains as to these relationships. Supported by: Dutch Technology Foundation and University of Utrecht Grant UGT7685, ERC-Advanced grant 320708 (NR) and NIH grant NS065186 (JO).

  12. Studies of MRI relaxivities of gadolinium-labeled dendrons

    NASA Astrophysics Data System (ADS)

    Pan, Hongmu; Daniel, Marie-Christine

    2011-05-01

    In cancer detection, imaging techniques have a great importance in early diagnosis. The more sensitive the imaging technique and the earlier the tumor can be detected. Contrast agents have the capability to increase the sensitivity in imaging techniques such as magnetic resonance imaging (MRI). Until now, gadolinium-based contrast agents are mainly used for MRI, and show good enhancement. But improvement is needed for detection of smaller tumors at the earliest stage possible. The dendrons complexed with Gd(DOTA) were synthesized and evaluated as a new MRI contrast agent. The longitudinal and transverse relaxation effects were tested and compared with commercial drug Magnevist, Gd(DTPA).

  13. Large-Scale, High-Resolution Neurophysiological Maps Underlying fMRI of Macaque Temporal Lobe

    PubMed Central

    Papanastassiou, Alex M.; DiCarlo, James J.

    2013-01-01

    Maps obtained by functional magnetic resonance imaging (fMRI) are thought to reflect the underlying spatial layout of neural activity. However, previous studies have not been able to directly compare fMRI maps to high-resolution neurophysiological maps, particularly in higher level visual areas. Here, we used a novel stereo microfocal x-ray system to localize thousands of neural recordings across monkey inferior temporal cortex (IT), construct large-scale maps of neuronal object selectivity at subvoxel resolution, and compare those neurophysiology maps with fMRI maps from the same subjects. While neurophysiology maps contained reliable structure at the sub-millimeter scale, fMRI maps of object selectivity contained information at larger scales (>2.5 mm) and were only partly correlated with raw neurophysiology maps collected in the same subjects. However, spatial smoothing of neurophysiology maps more than doubled that correlation, while a variety of alternative transforms led to no significant improvement. Furthermore, raw spiking signals, once spatially smoothed, were as predictive of fMRI maps as local field potential signals. Thus, fMRI of the inferior temporal lobe reflects a spatially low-passed version of neurophysiology signals. These findings strongly validate the widespread use of fMRI for detecting large (>2.5 mm) neuronal domains of object selectivity but show that a complete understanding of even the most pure domains (e.g., faces vs nonface objects) requires investigation at fine scales that can currently only be obtained with invasive neurophysiological methods. PMID:24048850

  14. Mapping face encoding using functional MRI in multiple sclerosis across disease phenotypes.

    PubMed

    Rocca, Maria A; Vacchi, Laura; Rodegher, Mariaemma; Meani, Alessandro; Martinelli, Vittorio; Possa, Francesca; Comi, Giancarlo; Falini, Andrea; Filippi, Massimo

    2017-10-01

    Using fMRI during a face encoding (FE) task, we investigated the behavioral and fMRI correlates of FE in patients with relapse-onset multiple sclerosis (MS) at different stages of the disease and their relation with attentive-executive performance and structural MRI measures of disease-related damage. A fMRI FE task was administered to 75 MS patients (11 clinically isolated syndromes - CIS, 40 relapsing-remitting - RRMS - and 24 secondary progressive - SPMS) and 22 healthy controls (HC). fMRI activity during the face encoding condition was correlated with behavioral, clinical, neuropsychological and structural MRI variables. All study subjects activated brain regions belonging to face perception and encoding network, and deactivated areas of the default-mode network. Compared to HC, MS patients had the concomitant presence of areas of increased and decreased activations as well as increased and decreased deactivations. Compared to HC or RRMS, CIS patients experienced an increased recruitment of posterior-visual areas. Thalami, para-hippocampal gyri and right anterior cingulum were more activated in RRMS vs CIS or SPMS patients, while an increased recruitment of frontal areas was observed in SPMS vs RRMS. Areas of abnormal activations were significantly correlated with clinical, cognitive-behavioral and structural MRI measures. Abnormalities of FE network occur in MS and vary across disease clinical phenotypes. Early in the disease, an increased recruitment of areas typically devoted to face perception and encoding occurs. In SPMS patients, abnormal functional recruitment of frontal lobe areas might contribute to the severity of clinical manifestations.

  15. Monkey cortex through fMRI glasses

    PubMed Central

    Vanduffel, Wim; Zhu, Qi; Orban, Guy A.

    2015-01-01

    In 1998 several groups reported the feasibility of functional magnetic resonance imaging (fMRI) experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category and feature selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging. PMID:25102559

  16. Monkey cortex through fMRI glasses.

    PubMed

    Vanduffel, Wim; Zhu, Qi; Orban, Guy A

    2014-08-06

    In 1998 several groups reported the feasibility of fMRI experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category- and feature-selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Teaching Dental Students to Understand the Temporomandibular Joint Using MRI: Comparison of Conventional and Digital Learning Methods.

    PubMed

    Arús, Nádia A; da Silva, Átila M; Duarte, Rogério; da Silveira, Priscila F; Vizzotto, Mariana B; da Silveira, Heraldo L D; da Silveira, Heloisa E D

    2017-06-01

    The aims of this study were to evaluate and compare the performance of dental students in interpreting the temporomandibular joint (TMJ) with magnetic resonance imaging (MRI) scans using two learning methods (conventional and digital interactive learning) and to examine the usability of the digital learning object (DLO). The DLO consisted of tutorials about MRI and anatomic and functional aspects of the TMJ. In 2014, dental students in their final year of study who were enrolled in the elective "MRI Interpretation of the TMJ" course comprised the study sample. After exclusions for nonattendance and other reasons, 29 of the initial 37 students participated in the study, for a participation rate of 78%. The participants were divided into two groups: a digital interactive learning group (n=14) and a conventional learning group (n=15). Both methods were assessed by an objective test applied before and after training and classes. Aspects such as support and training requirements, complexity, and consistency of the DLO were also evaluated using the System Usability Scale (SUS). A significant between-group difference in the posttest results was found, with the conventional learning group scoring better than the DLO group, indicated by mean scores of 9.20 and 8.11, respectively, out of 10. However, when the pretest and posttest results were compared, both groups showed significantly improved performance. The SUS score was 89, which represented a high acceptance of the DLO by the users. The students who used the conventional method of learning showed superior performance in interpreting the TMJ using MRI compared to the group that used digital interactive learning.

  18. Current whole-body MRI applications in the neurofibromatoses: NF1, NF2, and schwannomatosis.

    PubMed

    Ahlawat, Shivani; Fayad, Laura M; Khan, Muhammad Shayan; Bredella, Miriam A; Harris, Gordon J; Evans, D Gareth; Farschtschi, Said; Jacobs, Michael A; Chhabra, Avneesh; Salamon, Johannes M; Wenzel, Ralph; Mautner, Victor F; Dombi, Eva; Cai, Wenli; Plotkin, Scott R; Blakeley, Jaishri O

    2016-08-16

    The Response Evaluation in Neurofibromatosis and Schwannomatosis (REiNS) International Collaboration Whole-Body MRI (WB-MRI) Working Group reviewed the existing literature on WB-MRI, an emerging technology for assessing disease in patients with neurofibromatosis type 1 (NF1), neurofibromatosis type 2 (NF2), and schwannomatosis (SWN), to recommend optimal image acquisition and analysis methods to enable WB-MRI as an endpoint in NF clinical trials. A systematic process was used to review all published data about WB-MRI in NF syndromes to assess diagnostic accuracy, feasibility and reproducibility, and data about specific techniques for assessment of tumor burden, characterization of neoplasms, and response to therapy. WB-MRI at 1.5T or 3.0T is feasible for image acquisition. Short tau inversion recovery (STIR) sequence is used in all investigations to date, suggesting consensus about the utility of this sequence for detection of WB tumor burden in people with NF. There are insufficient data to support a consensus statement about the optimal imaging planes (axial vs coronal) or 2D vs 3D approaches. Functional imaging, although used in some NF studies, has not been systematically applied or evaluated. There are no comparative studies between regional vs WB-MRI or evaluations of WB-MRI reproducibility. WB-MRI is feasible for identifying tumors using both 1.5T and 3.0T systems. The STIR sequence is a core sequence. Additional investigation is needed to define the optimal approach for volumetric analysis, the reproducibility of WB-MRI in NF, and the diagnostic performance of WB-MRI vs regional MRI. © 2016 American Academy of Neurology.

  19. Surface-Based fMRI-Driven Diffusion Tractography in the Presence of Significant Brain Pathology: A Study Linking Structure and Function in Cerebral Palsy

    PubMed Central

    Cunnington, Ross; Boyd, Roslyn N.; Rose, Stephen E.

    2016-01-01

    Diffusion MRI (dMRI) tractography analyses are difficult to perform in the presence of brain pathology. Automated methods that rely on cortical parcellation for structural connectivity studies often fail, while manually defining regions is extremely time consuming and can introduce human error. Both methods also make assumptions about structure-function relationships that may not hold after cortical reorganisation. Seeding tractography with functional-MRI (fMRI) activation is an emerging method that reduces these confounds, but inherent smoothing of fMRI signal may result in the inclusion of irrelevant pathways. This paper describes a novel fMRI-seeded dMRI-analysis pipeline based on surface-meshes that reduces these issues and utilises machine-learning to generate task specific white matter pathways, minimising the requirement for manually-drawn ROIs. We directly compared this new strategy to a standard voxelwise fMRI-dMRI approach, by investigating correlations between clinical scores and dMRI metrics of thalamocortical and corticomotor tracts in 31 children with unilateral cerebral palsy. The surface-based approach successfully processed more participants (87%) than the voxel-based approach (65%), and provided significantly more-coherent tractography. Significant correlations between dMRI metrics and five clinical scores of function were found for the more superior regions of these tracts. These significant correlations were stronger and more frequently found with the surface-based method (15/20 investigated were significant; R2 = 0.43–0.73) than the voxelwise analysis (2 sig. correlations; 0.38 & 0.49). More restricted fMRI signal, better-constrained tractography, and the novel track-classification method all appeared to contribute toward these differences. PMID:27487011

  20. Predictive values of BI-RADS(®) magnetic resonance imaging (MRI) in the detection of breast ductal carcinoma in situ (DCIS).

    PubMed

    Badan, Gustavo Machado; Piato, Sebastião; Roveda, Décio; de Faria Castro Fleury, Eduardo

    2016-10-01

    The purpose of this study was to evaluate BI-RADS indicators in the detection of DCIS by MRI. Prospective observational study that started in 2014 and lasted 24 months. A total of 110 consecutive patients were evaluated, who presented with suspicious or highly suspicious microcalcifications on screening mammography (BI-RADS categories 4 and 5) and underwent stereotactic-guided breast biopsy, having had an MRI scan performed prior to biopsy. Altogether, 38 cases were characterized as positive for malignancy, of which 25 were DCIS and 13 were invasive ductal carcinoma cases. MRI had a sensitivity of 96%; specificity of 75.67%; positive predictive value (PPV) for DCIS detection of 57.14%; negative predictive value (NPV) in the detection of DCIS of 98.24%; and an accuracy of 80.80%. BI-RADS as a tool for the detection of DCIS by MRI is a powerful instrument whose sensitivity was higher when compared to that observed for mammography in the literature. Likewise, the PPV obtained by MRI was higher than that observed in the present study for mammography, and the high NPV obtained on MRI scans can provide early evidence to discourage breast biopsy in selected cases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Influence of different rotation angles in assessment of lung volumes by 3-dimensional sonography in comparison to magnetic resonance imaging in healthy fetuses.

    PubMed

    Kehl, Sven; Eckert, Sven; Sütterlin, Marc; Neff, K Wolfgang; Siemer, Jörn

    2011-06-01

    Three-dimensional (3D) sonographic volumetry is established in gynecology and obstetrics. Assessment of the fetal lung volume by magnetic resonance imaging (MRI) in congenital diaphragmatic hernias has become a routine examination. In vitro studies have shown a good correlation between 3D sonographic measurements and MRI. The aim of this study was to compare the lung volumes of healthy fetuses assessed by 3D sonography to MRI measurements and to investigate the impact of different rotation angles. A total of 126 fetuses between 20 and 40 weeks' gestation were measured by 3D sonography, and 27 of them were also assessed by MRI. The sonographic volumes were calculated by the rotational technique (virtual organ computer-aided analysis) with rotation angles of 6° and 30°. To evaluate the accuracy of 3D sonographic volumetry, percentage error and absolute percentage error values were calculated using MRI volumes as reference points. Formulas to calculate total, right, and left fetal lung volumes according to gestational age and biometric parameters were derived by stepwise regression analysis. Three-dimensional sonographic volumetry showed a high correlation compared to MRI (6° angle, R(2) = 0.971; 30° angle, R(2) = 0.917) with no systematic error for the 6° angle. Moreover, using the 6° rotation angle, the median absolute percentage error was significantly lower compared to the 30° angle (P < .001). The new formulas to calculate total lung volume in healthy fetuses only included gestational age and no biometric parameters (R(2) = 0.853). Three-dimensional sonographic volumetry of lung volumes in healthy fetuses showed a good correlation with MRI. We recommend using an angle of 6° because it assessed the lung volume more accurately. The specifically designed equations help estimate lung volumes in healthy fetuses.

  2. Is 3-Tesla Gd-EOB-DTPA-Enhanced MRI with Diffusion-Weighted Imaging Superior to 64-Slice Contrast-Enhanced CT for the Diagnosis of Hepatocellular Carcinoma?

    PubMed Central

    Maiwald, Bettina; Lobsien, Donald; Kahn, Thomas; Stumpp, Patrick

    2014-01-01

    Objectives To compare 64-slice contrast-enhanced computed tomography (CT) with 3-Tesla magnetic resonance imaging (MRI) using Gd-EOB-DTPA for the diagnosis of hepatocellular carcinoma (HCC) and evaluate the utility of diffusion-weighted imaging (DWI) in this setting. Methods 3-phase-liver-CT was performed in fifty patients (42 male, 8 female) with suspected or proven HCC. The patients were subjected to a 3-Tesla-MRI-examination with Gd-EOB-DTPA and diffusion weighted imaging (DWI) at b-values of 0, 50 and 400 s/mm2. The apparent diffusion coefficient (ADC)-value was determined for each lesion detected in DWI. The histopathological report after resection or biopsy of a lesion served as the gold standard, and a surrogate of follow-up or complementary imaging techniques in combination with clinical and paraclinical parameters was used in unresected lesions. Diagnostic accuracy, sensitivity, specificity, and positive and negative predictive values were evaluated for each technique. Results MRI detected slightly more lesions that were considered suspicious for HCC per patient compared to CT (2.7 versus 2.3, respectively). ADC-measurements in HCC showed notably heterogeneous values with a median of 1.2±0.5×10−3 mm2/s (range from 0.07±0.1 to 3.0±0.1×10−3 mm2/s). MRI showed similar diagnostic accuracy, sensitivity, and positive and negative predictive values compared to CT (AUC 0.837, sensitivity 92%, PPV 80% and NPV 90% for MRI vs. AUC 0.798, sensitivity 85%, PPV 79% and NPV 82% for CT; not significant). Specificity was 75% for both techniques. Conclusions Our study did not show a statistically significant difference in detection in detection of HCC between MRI and CT. Gd-EOB-DTPA-enhanced MRI tended to detect more lesions per patient compared to contrast-enhanced CT; therefore, we would recommend this modality as the first-choice imaging method for the detection of HCC and therapeutic decisions. However, contrast-enhanced CT was not inferior in our study, so that it can be a useful image modality for follow-up examinations. PMID:25375778

  3. Evaluation of three inverse problem models to quantify skin microcirculation using diffusion-weighted MRI

    NASA Astrophysics Data System (ADS)

    Cordier, G.; Choi, J.; Raguin, L. G.

    2008-11-01

    Skin microcirculation plays an important role in diseases such as chronic venous insufficiency and diabetes. Magnetic resonance imaging (MRI) can provide quantitative information with a better penetration depth than other noninvasive methods, such as laser Doppler flowmetry or optical coherence tomography. Moreover, successful MRI skin studies have recently been reported. In this article, we investigate three potential inverse models to quantify skin microcirculation using diffusion-weighted MRI (DWI), also known as q-space MRI. The model parameters are estimated based on nonlinear least-squares (NLS). For each of the three models, an optimal DWI sampling scheme is proposed based on D-optimality in order to minimize the size of the confidence region of the NLS estimates and thus the effect of the experimental noise inherent to DWI. The resulting covariance matrices of the NLS estimates are predicted by asymptotic normality and compared to the ones computed by Monte-Carlo simulations. Our numerical results demonstrate the effectiveness of the proposed models and corresponding DWI sampling schemes as compared to conventional approaches.

  4. Assessment of body composition in dialysis patients by arm bioimpedance compared to MRI and 40K measurements.

    PubMed

    Carter, M; Zhu, F; Kotanko, P; Kuhlmann, M; Ramirez, L; Heymsfield, S B; Handelman, G; Levin, N W

    2009-01-01

    This study used multi-frequency bioimpedance spectroscopy (BIS) of the arm and whole body to estimate muscle mass (MM) and subcutaneous adipose tissue (SAT) in 31 hemodialysis (HD) patients comparing these results with magnetic resonance imaging (MRI) and body potassium ((40)K) as gold standards. Total body and arm MM (MM(MRI)) and SAT (SAT(MRI)) were measured by MRI. All measurements were made before dialysis treatment. Regression models with the arm (aBIS) and whole body (wBIS) resistances were established. Correlations between gold standards and the BIS model were high for the arm SAT (r(2) = 0.93, standard error of estimate (SEE) = 3.6 kg), and whole body SAT (r(2) = 0.92, SEE = 3.5 kg), and for arm MM (r(2) = 0.84, SEE = 2.28 kg) and whole body MM (r(2) = 0.86, SEE = 2.28 kg). Total body MM and SAT can be accurately predicted by arm BIS models with advantages of convenience and portability, and it should be useful to assess nutritional status in HD patients. Copyright (c) 2009 S. Karger AG, Basel.

  5. Comparison of causality analysis on simultaneously measured fMRI and NIRS signals during motor tasks.

    PubMed

    Anwar, Abdul Rauf; Muthalib, Makii; Perrey, Stephane; Galka, Andreas; Granert, Oliver; Wolff, Stephan; Deuschl, Guenther; Raethjen, Jan; Heute, Ulrich; Muthuraman, Muthuraman

    2013-01-01

    Brain activity can be measured using different modalities. Since most of the modalities tend to complement each other, it seems promising to measure them simultaneously. In to be presented research, the data recorded from Functional Magnetic Resonance Imaging (fMRI) and Near Infrared Spectroscopy (NIRS), simultaneously, are subjected to causality analysis using time-resolved partial directed coherence (tPDC). Time-resolved partial directed coherence uses the principle of state space modelling to estimate Multivariate Autoregressive (MVAR) coefficients. This method is useful to visualize both frequency and time dynamics of causality between the time series. Afterwards, causality results from different modalities are compared by estimating the Spearman correlation. In to be presented study, we used directionality vectors to analyze correlation, rather than actual signal vectors. Results show that causality analysis of the fMRI correlates more closely to causality results of oxy-NIRS as compared to deoxy-NIRS in case of a finger sequencing task. However, in case of simple finger tapping, no clear difference between oxy-fMRI and deoxy-fMRI correlation is identified.

  6. Clinical values of (18) F-FDG PET/CT in oral cavity cancer with dental artifacts on CT or MRI.

    PubMed

    Hong, Hye Ran; Jin, Soyoung; Koo, Hyun Jung; Roh, Jong-Lyel; Kim, Jae Seung; Cho, Kyung-Ja; Choi, Seung-Ho; Nam, Soon Yuhl; Kim, Sang Yoon

    2014-11-01

    2a To investigate the role of (18) F-FDG PET/CT in tumor staging, extent, and volume measurements in oral cavity squamous cell carcinoma (OSCC) patients with/without dental artifacts on CT or MRI. This study was conducted in 63 consecutive patients with OSCC who received initial workups including (18) F-FDG PET/CT and MRI. The results of the imaging modalities were compared to those of pathology, using McNemar's test and the paired t-test. Thirty-seven patients (59%) had dental or metallic artifacts obscuring primary tumors. (18) F-FDG PET/CT scanning was superior to MRI in tumor staging (weighted κ = 0.870 vs. 0.518, P = 0.004) in patients with dental artifacts. In addition, (18) F-FDG PET/CT scans were more specific than MRI in detecting sublingual gland (P = 0.014) and mouth floor (P = 0.011) involvement. In patients with dental artifacts, there was a significant discrepancy between primary tumor volume (PTV) measured by pathology and MRI (P = 0.018), but not between PTV measured from pathology and (18) F-FDG PET/CT at SUV2.5 (P = 0.245), which showed the highest intraclass correlation coefficient value (0.860). (18) F-FDG PET/CT scans provide accurate tumor staging and volume measurements in OSCC patients with CR/MRI dental artifacts, leading to improved preoperative planning. 2b CONDENSED ABSTRACT This study evaluated the clinical value of (18) F-FDG PET/CT in 63 patients with oral cavity cancers. In 37 (59%) patients with dental artifacts on CT/MRI, (18) F-FDG PET/CT showed superior results compared to MRI in tumor staging and represented the highest intraclass correlation coefficient value to tumor volume determined by pathology. © 2014 Wiley Periodicals, Inc.

  7. Clinical utility of MRI and SPECT in the diagnosis of cognitive impairment referred to memory clinic.

    PubMed

    Guinane, John; Ng, Boon Lung

    2018-05-01

    ABSTRACTBackground:Despite of their limited availability and potential for significant variation between and within each modality, this is the first study to prospectively measure the clinical utility of MRI and/or SPECT brain scanning in addition to the routine diagnostic workup of patients presenting to memory clinic. A single center study was conducted over a convenience of 12-month sampling period. For each patient referred for MRI and/or SPECT scanning, the primary geriatrician or psychogeriatrician was asked to assign an initial diagnosis. The initial diagnosis was then compared with the final consensus diagnosis after any scans or neuropsychology testing had been completed. During the 12-month study period, 66 patients (26%) were referred for scans out of a total of 253 patients included in the study. There were 16/44 (36%) positive MRI outcomes and 13/35 (37%) positive SPECT outcomes. The diagnosis changed consistent with the MRI scan findings in 11/44 (25%) and changed consistent with the SPECT scan findings in 9/35 (26%). Potentially reversible pathology was identified in a single patient, 1/50 (2%), via an MRI scan that suggested normal pressure hydrocephalus. The number needed to test for one positive outcome was 3.8 (95% CI 2.0-23.3), 6.0 (95% CI NA), and 1.7 (95% CI 1.3-2.5) for MRI only, SPECT only, and MRI and SPECT together, respectively. The clinical utility of MRI and/or SPECT scanning in this study may be broadly superior to the available international evidence, and further research is needed to identify predictors of positive scan outcomes.

  8. Oncologic PET/MRI, part 1: tumors of the brain, head and neck, chest, abdomen, and pelvis.

    PubMed

    Buchbender, Christian; Heusner, Till A; Lauenstein, Thomas C; Bockisch, Andreas; Antoch, Gerald

    2012-06-01

    In oncology, staging forms the basis for prognostic consideration and directly influences patient care by determining the therapeutic approach. Cross-sectional imaging techniques, especially when combined with PET information, play an important role in cancer staging. With the recent introduction of integrated whole-body PET/MRI into clinical practice, a novel metabolic-anatomic imaging technique is now available. PET/MRI seems to be highly accurate in T-staging of tumor entities for which MRI has traditionally been favored, such as squamous cell carcinomas of the head and neck. By adding functional MRI to PET, PET/MRI may further improve diagnostic accuracy in the differentiation of scar tissue from recurrence of tumors such as rectal cancer. This hypothesis will have to be assessed in future studies. With regard to N-staging, PET/MRI does not seem to provide a considerable benefit as compared with PET/CT but provides similar N-staging accuracy when applied as a whole-body staging approach. M-staging will benefit from MRI accuracy in the brain and the liver. The purpose of this review is to summarize the available first experiences with PET/MRI and to outline the potential value of PET/MRI in oncologic applications for which data on PET/MRI are still lacking.

  9. Contrast-enhanced spectral mammography versus MRI: Initial results in the detection of breast cancer and assessment of tumour size.

    PubMed

    Fallenberg, E M; Dromain, C; Diekmann, F; Engelken, F; Krohn, M; Singh, J M; Ingold-Heppner, B; Winzer, K J; Bick, U; Renz, D M

    2014-01-01

    To compare mammography (MG), contrast-enhanced spectral mammography (CESM), and magnetic resonance imaging (MRI) in the detection and size estimation of histologically proven breast cancers using postoperative histology as the gold standard. After ethical approval, 80 women with newly diagnosed breast cancer underwent MG, CESM, and MRI examinations. CESM was reviewed by an independent experienced radiologist, and the maximum dimension of suspicious lesions was measured. For MG and MRI, routine clinical reports of breast specialists, with judgment based on the BI-RADS lexicon, were used. Results of each imaging technique were correlated to define the index cancer. Fifty-nine cases could be compared to postoperative histology for size estimation. Breast cancer was visible in 66/80 MG, 80/80 CESM, and 77/79 MRI examinations. Average lesion largest dimension was 27.31 mm (SD 22.18) in MG, 31.62 mm (SD 24.41) in CESM, and 27.72 mm (SD 21.51) in MRI versus 32.51 mm (SD 29.03) in postoperative histology. No significant difference was found between lesion size measurement on MRI and CESM compared with histopathology. Our initial results show a better sensitivity of CESM and MRI in breast cancer detection than MG and a good correlation with postoperative histology in size assessment. • Contrast-enhanced spectral mammography (CESM) is slowly being introduced into clinical practice. • Access to breast MRI is limited by availability and lack of reimbursement. • Initial results show a better sensitivity of CESM and MRI than conventional mammography. • CESM showed a good correlation with postoperative histology in size assessment. • Contrast-enhanced spectral mammography offers promise, seemingly providing information comparable to MRI.

  10. Value of brain MRI when sonography raises suspicion of agenesis of the corpus callosum in fetuses.

    PubMed

    Jarre, A; Llorens Salvador, R; Montoliu Fornas, G; Montoya Filardi, A

    To evaluate the role of magnetic resonance imaging (MRI) in fetuses with a previous sonographic suspicion of agenesis of the corpus callosum (ACC) to confirm the diagnosis and to detect associated intracranial anomalies. Single-center retrospective and descriptive observational study of the brain MRI performed in 78 fetuses with ACC sonographic suspicion between January 2006 and December 2015. Two experts in fetal imaging reviewed the MRI findings to evaluate the presence and morphology of the corpus callosum. When ACC was detected the whole fetal brain anatomy was thoroughly studied to determine the presence of associated anomalies. Prenatal MR imaging findings were compared to postnatal brain MRI or necropsy findings when available. Fetal MRI diagnosed 45 cases of ACC, 12 were partial (26.7%) and 33 complete (73.3%). In 28 cases (62,2%) associated intracranial anomalies were identified. The most often abnormality was ventriculomegaly (78,6%), followed by cortical malformations (53,6%), posterior fossa (25%) and midline anomalies (10,7%). Fetal brain MRI has an important role in the diagnosis of ACC and detection of associated anomalies. To perform a fetal brain MRI is important in fetuses with sonographic suspicion of ACC. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. The diagnostic value of 18F-FDG-PET/CT and MRI in suspected vertebral osteomyelitis - a prospective study.

    PubMed

    Kouijzer, Ilse J E; Scheper, Henk; de Rooy, Jacky W J; Bloem, Johan L; Janssen, Marcel J R; van den Hoven, Leon; Hosman, Allard J F; Visser, Leo G; Oyen, Wim J G; Bleeker-Rovers, Chantal P; de Geus-Oei, Lioe-Fee

    2018-05-01

    The aim of this study was to determine the diagnostic value of 18 F-fluorodeoxyglucose (FDG) positron emission tomography and computed tomography (PET/CT) and magnetic resonance imaging (MRI) in diagnosing vertebral osteomyelitis. From November 2015 until December 2016, 32 patients with suspected vertebral osteomyelitis were prospectively included. All patients underwent both 18 F-FDG-PET/CT and MRI within 48 h. All images were independently reevaluated by two radiologists and two nuclear medicine physicians who were blinded to each others' image interpretation. 18 F-FDG-PET/CT and MRI were compared to the clinical diagnosis according to international guidelines. For 18 F-FDG-PET/CT, sensitivity, specificity, PPV, and NPV in diagnosing vertebral osteomyelitis were 100%, 83.3%, 90.9%, and 100%, respectively. For MRI, sensitivity, specificity, PPV, and NPV were 100%, 91.7%, 95.2%, and 100%, respectively. MRI detected more epidural/spinal abscesses. An important advantage of 18 F-FDG-PET/CT is the detection of metastatic infection (16 patients, 50.0%). 18 F-FDG-PET/CT and MRI are both necessary techniques in diagnosing vertebral osteomyelitis. An important advantage of 18 F-FDG-PET/CT is the visualization of metastatic infection, especially in patients with bacteremia. MRI is more sensitive in detection of small epidural abscesses.

  12. Comparison of fMRI data analysis by SPM99 on different operating systems.

    PubMed

    Shinagawa, Hideo; Honda, Ei-ichi; Ono, Takashi; Kurabayashi, Tohru; Ohyama, Kimie

    2004-09-01

    The hardware chosen for fMRI data analysis may depend on the platform already present in the laboratory or the supporting software. In this study, we ran SPM99 software on multiple platforms to examine whether we could analyze fMRI data by SPM99, and to compare their differences and limitations in processing fMRI data, which can be attributed to hardware capabilities. Six normal right-handed volunteers participated in a study of hand-grasping to obtain fMRI data. Each subject performed a run that consisted of 98 images. The run was measured using a gradient echo-type echo planar imaging sequence on a 1.5T apparatus with a head coil. We used several personal computer (PC), Unix and Linux machines to analyze the fMRI data. There were no differences in the results obtained on several PC, Unix and Linux machines. The only limitations in processing large amounts of the fMRI data were found using PC machines. This suggests that the results obtained with different machines were not affected by differences in hardware components, such as the CPU, memory and hard drive. Rather, it is likely that the limitations in analyzing a huge amount of the fMRI data were due to differences in the operating system (OS).

  13. Structural and functional correlates of visual field asymmetry in the human brain by diffusion kurtosis MRI and functional MRI.

    PubMed

    O'Connell, Caitlin; Ho, Leon C; Murphy, Matthew C; Conner, Ian P; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C

    2016-11-09

    Human visual performance has been observed to show superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine whether the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI, respectively, in 15 healthy individuals at 3 T. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In diffusion kurtosis MRI, the brain regions mapping to the lower visual field showed higher mean kurtosis, but not fractional anisotropy or mean diffusivity compared with the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing.

  14. A highly sensitive x-ray imaging modality for hepatocellular carcinoma detection in vitro

    NASA Astrophysics Data System (ADS)

    Rand, Danielle; Walsh, Edward G.; Derdak, Zoltan; Wands, Jack R.; Rose-Petruck, Christoph

    2015-01-01

    Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called spatial frequency heterodyne imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. In this study we use numerical processing to produce x-ray scatter images of hepatocellular carcinoma labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and magnetic resonance imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. As x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities.

  15. Impact of preoperative functional magnetic resonance imaging during awake craniotomy procedures for intraoperative guidance and complication avoidance.

    PubMed

    Trinh, Victoria T; Fahim, Daniel K; Maldaun, Marcos V C; Shah, Komal; McCutcheon, Ian E; Rao, Ganesh; Lang, Frederick; Weinberg, Jeffrey; Sawaya, Raymond; Suki, Dima; Prabhu, Sujit S

    2014-01-01

    We wanted to study the role of functional MRI (fMRI) in preventing neurological injury in awake craniotomy patients as this has not been previously studied. To examine the role of fMRI as an intraoperative adjunct during awake craniotomy procedures. Preoperative fMRI was carried out routinely in 214 patients undergoing awake craniotomy with direct cortical stimulation (DCS). In 40% of our cases (n = 85) fMRI was utilized for the intraoperative localization of the eloquent cortex. In the other 129 cases significant noise distortion, poor task performance and nonspecific BOLD activation precluded the surgeon from using the fMRI data. Compared with DCS, fMRI had a sensitivity and specificity, respectively, of 91 and 64% in Broca's area, 93 and 18% in Wernicke's area and 100 and 100% in motor areas. A new intraoperative neurological deficit during subcortical dissection was predictive of a worsened deficit following surgery (p < 0.001). The use of fMRI for intraoperative localization was, however, not significant in preventing worsened neurological deficits, both in the immediate postoperative period (p = 1.00) and at the 3-month follow-up (p = 0.42). The routine use of fMRI was not useful in identifying language sites as performed and, more importantly, practiced tasks failed to prevent neurological deficits following awake craniotomy procedures. © 2014 S. Karger AG, Basel.

  16. Anticipatory stress associated with functional magnetic resonance imaging: Implications for psychosocial stress research.

    PubMed

    Gossett, Ethan W; Wheelock, Muriah D; Goodman, Adam M; Orem, Tyler R; Harnett, Nathaniel G; Wood, Kimberly H; Mrug, Sylvie; Granger, Douglas A; Knight, David C

    2018-03-01

    Stress tasks performed during functional magnetic resonance imaging (fMRI) elicit a relatively small cortisol response compared to stress tasks completed in a traditional behavioral laboratory, which may be due to apprehension of fMRI that elicits an anticipatory stress response. The present study investigated whether anticipatory stress is greater prior to research completed in an MRI environment than in a traditional behavioral laboratory. Anticipatory stress (indexed by cortisol) was greater prior to testing in the MRI environment than traditional behavioral laboratory. Furthermore, anticipation of fMRI elicited a cortisol response commensurate with the response to the stress task in the behavioral laboratory. However, in the MRI environment, post-stress cortisol was significantly lower than baseline cortisol. Taken together, these findings suggest the stress elicited by anticipation of fMRI may lead to acute elevations in cortisol prior to scanning, which may in turn disrupt the cortisol response to stress tasks performed during scanning. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Role of conventional radiology and MRi defecography of pelvic floor hernias

    PubMed Central

    2013-01-01

    Background Purpose of the study is to define the role of conventional radiology and MRI in the evaluation of pelvic floor hernias in female pelvic floor disorders. Methods A MEDLINE and PubMed search was performed for journals before March 2013 with MeSH major terms 'MR Defecography' and 'pelvic floor hernias'. Results The prevalence of pelvic floor hernias at conventional radiology was higher if compared with that at MRI. Concerning the hernia content, there were significantly more enteroceles and sigmoidoceles on conventional radiology than on MRI, whereas, in relation to the hernia development modalities, the prevalence of elytroceles, edroceles, and Douglas' hernias at conventional radiology was significantly higher than that at MRI. Conclusions MRI shows lower sensitivity than conventional radiology in the detection of pelvic floor hernias development. The less-invasive MRI may have a role in a better evaluation of the entire pelvic anatomy and pelvic organ interaction especially in patients with multicompartmental defects, planned for surgery. PMID:24267789

  18. Feasibility of using fMRI to study mothers responding to infant cries.

    PubMed

    Lorberbaum, J P; Newman, J D; Dubno, J R; Horwitz, A R; Nahas, Z; Teneback, C C; Bloomer, C W; Bohning, D E; Vincent, D; Johnson, M R; Emmanuel, N; Brawman-Mintzer, O; Book, S W; Lydiard, R B; Ballenger, J C; George, M S

    1999-01-01

    While parenting is a universal human behavior, its neuroanatomic basis is currently unknown. Animal data suggest that the cingulate may play an important function in mammalian parenting behavior. For example, in rodents cingulate lesions impair maternal behavior. Here, in an attempt to understand the brain basis of human maternal behavior, we had mothers listen to recorded infant cries and white noise control sounds while they underwent functional MRI (fMRI) of the brain. We hypothesized that mothers would show significantly greater cingulate activity during the cries compared to the control sounds. Of 7 subjects scanned, 4 had fMRI data suitable for analysis. When fMRI data were averaged for these 4 subjects, the anterior cingulate and right medial prefrontal cortex were the only brain regions showing statistically increased activity with the cries compared to white noise control sounds (cluster analysis with one-tailed z-map threshold of P < 0.001 and spatial extent threshold of P < 0.05). These results demonstrate the feasibility of using fMRI to study brain activity in mothers listening to infant cries and that the anterior cingulate may be involved in mothers listening to crying babies. We are currently replicating this study in a larger group of mothers. Future work in this area may help (1) unravel the functional neuroanatomy of the parent-infant bond and (2) examine whether markers of this bond, such as maternal brain response to infant crying, can predict maternal style (i.e., child neglect), offspring temperament, or offspring depression or anxiety.

  19. [Different aspects of magnetic resonance imaging of muscles between dermatomyositis and polymyositis].

    PubMed

    Miranda, Sofia Silveira de Castro; Alvarenga, Daniel; Rodrigues, João Carlos; Shinjo, Samuel Katsuyuki

    2014-01-01

    Although dermatomyositis (DM) and polymyositis (PM) share many clinical features in common, they have distinct pathophysiological and histological features. It is possible that these distinctions reflect also macroscopically, for example, in muscle alterations seen in magnetic resonance images (MRI). To compare simultaneously the MRI of various muscle compartments of the thighs of adult DM and PM. The present study is a cross-sectional that included, between 2010 and 2013, 11 newly diagnosed DM and 11 PM patients (Bohan and Peter's criteria, 1975), with clinical and laboratory activity. They were valued at RM thighs, T1 and T2 with fat suppression, 1.5 T MRI scanner sequences. The mean age at the time of MRI, the time between onset of symptoms and the realization of the MRI distribution of sex and drug therapy were comparable between the two groups (p>0.050). Concerning the MRI, muscle edema was significantly found in DM, and mainly in the proximal region of the muscles. The area of fat replacement was found predominantly in PM. The partial fat replacement area occurred mainly in the medial and distal region, whereas the total fat replacement area occurred mainly in the distal muscles. There was no area of muscle fibrosis. DM and PM have different characteristics on MRI muscles, alike pathophysiological and histological distinctions. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.

  20. Can cerebral MRI at age 1 year predict motor and intellectual outcomes in very-low-birthweight children?

    PubMed

    Skranes, J; Vik, T; Nilsen, G; Smevik, O; Andersson, H W; Brubakk, A M

    1998-04-01

    This follow-up study reports on cerebral MRI findings in 20 very-low-birthweight (VLBW) infants without disabilities at age 1 year in relation to motor, intellectual, and perceptual function at age 6 years. MRI findings, anthropometrics, and Bayley Scales of Infant Development scores at age 1 year as predictors of psychomotor status at age 6 years are also evaluated and compared. Outcome parameters were the Peabody Developmental Motor Scales and the Wechsler Preschool and Primary Scale of Intelligence. The results show that infants with myelin hyperintensities including the centrum semiovale or with occipital hyperintensities with associated ventricular dilatation at age 1 scored lower on the Peabody Gross Motor Locomotion Scale at age 6 than infants with normal myelination or with isolated occipital hyperintensities. This may indicate damage to motor fibers caused by perinatal periventricular leukomalacia. No relation was found between abnormal MRI findings at age 1 and later fine motor, intellectual, and perceptual function. Comparing different age 1-year predictors, an abnormality score defined by MRI was used as an independent predictor of gross motor locomotion function at age 6 years. However, the Bayley Mental Development Index scores and weight at age 1 were more important predictors of later motor and intellectual outcome, respectively, than MRI findings. It is recommended that cerebral MRI should not be used routinely to examine VLBW infants without disabilities at 1 year of age.

  1. DCE-MRI of the prostate using shutter-speed vs. Tofts model for tumor characterization and assessment of aggressiveness.

    PubMed

    Hectors, Stefanie J; Besa, Cecilia; Wagner, Mathilde; Jajamovich, Guido H; Haines, George K; Lewis, Sara; Tewari, Ashutosh; Rastinehad, Ardeshir; Huang, Wei; Taouli, Bachir

    2017-09-01

    To quantify Tofts model (TM) and shutter-speed model (SSM) perfusion parameters in prostate cancer (PCa) and noncancerous peripheral zone (PZ) and to compare the diagnostic performance of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to Prostate Imaging and Reporting and Data System (PI-RADS) classification for the assessment of PCa aggressiveness. Fifty PCa patients (mean age 60 years old) who underwent MRI at 3.0T followed by prostatectomy were included in this Institutional Review Board-approved retrospective study. DCE-MRI parameters (K trans , v e , k ep [TM&SSM] and intracellular water molecule lifetime τ i [SSM]) were determined in PCa and PZ. Differences in DCE-MRI parameters between PCa and PZ, and between models were assessed using Wilcoxon signed-rank tests. Receiver operating characteristic (ROC) analysis for differentiation between PCa and PZ was performed for individual and combined DCE-MRI parameters. Diagnostic performance of DCE-MRI parameters for identification of aggressive PCa (Gleason ≥8, grade group [GG] ≥3 or pathology stage pT3) was assessed using ROC analysis and compared with PI-RADSv2 scores. DCE-MRI parameters were significantly different between TM and SSM and between PZ and PCa (P < 0.037). Diagnostic performances of TM and SSM for differentiation of PCa from PZ were similar (highest AUC TM: K trans +k ep 0.76, SSM: τ i +k ep 0.80). PI-RADS outperformed TM and SSM DCE-MRI for identification of Gleason ≥8 lesions (AUC PI-RADS: 0.91, highest AUC DCE-MRI: K trans +τ i SSM 0.61, P = 0.002). The diagnostic performance of PI-RADS and DCE-MRI for identification of GG ≥3 and pT3 PCa was not significantly different (P > 0.213). SSM DCE-MRI did not increase the diagnostic performance of DCE-MRI for PCa characterization. PI-RADS outperformed both TM and SSM DCE-MRI for identification of aggressive cancer. 3 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:837-849. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Hybrid core shell nanoparticles entrapping Gd-DTPA and 18F-FDG for simultaneous PET/MRI acquisitions.

    PubMed

    Vecchione, Donatella; Aiello, Marco; Cavaliere, Carlo; Nicolai, Emanuele; Netti, Paolo Antonio; Torino, Enza

    2017-09-01

    Although there has been an improvement in the hardware and software of the PET/MRI system, the development of the nanoprobes exploiting the simultaneous acquisition of the bimodal data is still under investigation. Moreover, few studies on biocompatible and clinically relevant probes are available. This work presents a core-shell polymeric nanocarrier with improved relaxometric properties for simultaneous PET/MRI acquisitions. Core-shell nanoparticles entrapping the Gd-DTPA and 18 F-FDG are obtained by a complex coacervation. The boosting of r 1 of the entrapped Gd-DTPA up to five-times compared with 'free Gd-DTPA', is confirmed by the PET/MRI scan. The sorption of 18 F-FDG into the nanoparticles is studied and designed to be integrated downstream for the production of the tracer.

  3. Effect of Observation of Simple Hand Movement on Brain Activations in Patients with Unilateral Cerebral Palsy: An fMRI Study

    ERIC Educational Resources Information Center

    Dinomais, Mickael; Lignon, Gregoire; Chinier, Eva; Richard, Isabelle; Minassian, Aram Ter; The Tich, Sylvie N'Guyen

    2013-01-01

    The aim of this functional magnetic resonance imaging (fMRI) study was to examine and compare brain activation in patients with unilateral cerebral palsy (CP) during observation of simple hand movement performed by the paretic and nonparetic hand. Nineteen patients with clinical unilateral CP (14 male, mean age 14 years, 7-21 years) participated…

  4. Neural Changes after Phonological Treatment for Anomia: An fMRI Study

    ERIC Educational Resources Information Center

    Rochon, Elizabeth; Leonard, Carol; Burianova, Hana; Laird, Laura; Soros, Peter; Graham, Simon; Grady, Cheryl

    2010-01-01

    Functional magnetic resonance imaging (fMRI) was used to investigate the neural processing characteristics associated with word retrieval abilities after a phonologically-based treatment for anomia in two stroke patients with aphasia. Neural activity associated with a phonological and a semantic task was compared before and after treatment with…

  5. Tissue-Point Motion Tracking in the Tongue from Cine MRI and Tagged MRI

    ERIC Educational Resources Information Center

    Woo, Jonghye; Stone, Maureen; Suo, Yuanming; Murano, Emi Z.; Prince, Jerry L.

    2014-01-01

    Purpose: Accurate tissue motion tracking within the tongue can help professionals diagnose and treat vocal tract--related disorders, evaluate speech quality before and after surgery, and conduct various scientific studies. The authors compared tissue tracking results from 4 widely used deformable registration (DR) methods applied to cine magnetic…

  6. MRI with and without a high-density EEG cap--what makes the difference?

    PubMed

    Klein, Carina; Hänggi, Jürgen; Luechinger, Roger; Jäncke, Lutz

    2015-02-01

    Besides the benefit of combining electroencephalography (EEG) and magnetic resonance imaging (MRI), much effort has been spent to develop algorithms aimed at successfully cleaning the EEG data from MRI-related gradient and ballistocardiological artifacts. However, there are also studies showing a negative influence of the EEG on MRI data quality. Therefore, in the present study, we focused for the first time on the influence of the EEG on morphometric measurements of T1-weighted MRI data (voxel- and surfaced-based morphometry). Here, we demonstrate a strong influence of the EEG on cortical thickness, surface area, and volume as well as subcortical volumes due to local EEG-related inhomogeneities of the static magnetic (B0) and the gradient field (B1). In a second step, we analyzed the signal-to-noise ratios for both the anatomical and the functional data when recorded simultaneously with EEG and MRI and compared them to the ratios of the MRI data without simultaneous EEG measurements. These analyses revealed consistently lower signal-to-noise ratios for anatomical as well as functional MRI data during simultaneous EEG registration. In contrast, further analyses of T2*-weighted images provided reliable results independent of whether including the individuals' T1-weighted image with or without the EEG cap in the fMRI preprocessing stream. Based on our findings, we strongly recommend against using the structural images obtained during simultaneous EEG-MRI recordings for further anatomical data analysis. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. [Potentialities of low-field magnetic resonance tomography in the diagnosis and treatment of invasive cancer of cervix uteri].

    PubMed

    Shatov, A V

    2003-01-01

    The aim of the study was to evaluate the efficiency of low-field (0.14 T) magnetic resonance imaging (MRI) in the diagnosis and treatment of cancer of the cervix uteri. Low-field MRI was performed in 39 patients with cancer of the cervix uteri to define the stage of the tumor and to follow up the outcomes of their treatment. Particular emphasis was laid on the determination of the size of the tumor and the presence of parametral invasion and on metastatic lesions of lymph nodes. MRI data were compared with clinical, morphological, and surgical staging results. In detecting the stage of cancer of the cervix uteri, the accuracy of MRI was 72% whereas that of clinical study was 51%. In determining parametral invasion, the accuracy of clinical study and low-field MRI was 71 and 90%, respectively. The sensitivity and specificity of MRI were 83 and 92%, respectively. The anterioposterior tumor size was an important prognostic factor in following up the outcomes of treatment as there was its close association and the incidence of tumor recurrences. The present study has indicated that the high efficiency of low-field MRI in detecting the stage of invasive cancer of cervix uteri makes it the method of choice in planning treatment and monitoring the outcomes of combined radiation therapy.

  8. Increased fMRI signal with age in familial Alzheimer’s disease mutation carriers

    PubMed Central

    Braskie, Meredith N.; Medina, Luis D.; Rodriguez-Agudelo, Yaneth; Geschwind, Daniel H.; Macias-Islas, Miguel Angel; Cummings, Jeffrey L.; Bookheimer, Susan Y.; Ringman, John M.

    2010-01-01

    Although many Alzheimer’s disease (AD) patients have a family history of the disease, it is rarely inherited in a predictable way. Functional magnetic resonance imaging (fMRI) studies of non-demented adults carrying familial AD mutations provide an opportunity to prospectively identify brain differences associated with early AD-related changes. We compared fMRI activity of 18 non-demented autosomal dominant AD mutation carriers with fMRI activity in 8 of their non-carrier relatives as they performed a novelty encoding task in which they viewed novel and repeated images. Because age of disease onset is relatively consistent within families, we also correlated fMRI activity with subjects’ distance from the median age of diagnosis for their family. Mutation carriers did not show significantly different voxelwise fMRI activity from non-carriers as a group. However, as they approached their family age of disease diagnosis, only mutation carriers showed increased fMRI activity in the fusiform and middle temporal gyri. This suggests that during novelty encoding, increased fMRI activity in the temporal lobe may relate to incipient AD processes. PMID:21129823

  9. Load-dependent dysfunction of the putamen during attentional processing in patients with clinically isolated syndrome suggestive of multiple sclerosis.

    PubMed

    Tortorella, C; Romano, R; Direnzo, V; Taurisano, P; Zoccolella, S; Iaffaldano, P; Fazio, L; Viterbo, R; Popolizio, T; Blasi, G; Bertolino, A; Trojano, M

    2013-08-01

    Load-related functional magnetic resonance imaging (fMRI) abnormalities of brain activity during performance of attention tasks have been described in definite multiple sclerosis (MS). No data are available in clinically isolated syndrome (CIS) suggestive of MS. The objective of this research is to evaluate in CIS patients the fMRI pattern of brain activation during an attention task and to explore the effect of increasing task load demand on neurofunctional modifications. Twenty-seven untreated CIS patients and 32 age- and sex-matched healthy controls (HCs) underwent fMRI while performing the Variable Attentional Control (VAC) task, a cognitive paradigm requiring increasing levels of attentional control processing. Random-effects models were used for statistical analyses of fMRI data. CIS patients had reduced accuracy and greater reaction time at the VAC task compared with HCs (p=0.007). On blood oxygenation level-dependent (BOLD)-fMRI, CIS patients had greater activity in the right parietal cortex (p=0.0004) compared with HCs. Furthermore, CIS patients had greater activity at the lower (p=0.05) and reduced activity at the greater (p=0.04) level of attentional control demand in the left putamen, compared with HCs. This study demonstrates the failure of attentional control processing in CIS. The load-related fMRI dysfunction of the putamen supports the role of basal ganglia in the failure of attention observed at the earliest stage of MS.

  10. Metastatic Renal Cell Carcinoma Masquerading as Jugular Foramen Paraganglioma: A Role for Novel Magnetic Resonance Imaging.

    PubMed

    Thomas, Andrew J; Wiggins, Richard H; Gurgel, Richard K

    2017-08-01

    To describe a case of metastatic renal cell carcinoma (RCC) masquerading as a jugular foramen paraganglioma (JP). To compare imaging findings between skull base metastatic RCC and histologically proven paraganglioma. A case of unexpected metastatic skull base RCC is reviewed. Computed tomography (CT) and magnetic resonance imaging (MRI) were compared between 3 confirmed cases of JP and our case of metastatic RCC. Diffusion-weighted MRI (DW-MRI) sequences and computed apparent diffusion coefficient (ADC) values were compared between these entities. A 55-year-old man presents with what appears clinically and radiographically to be JP. The tumor was resected, then discovered on postoperative pathology to be metastatic RCC. Imaging was retrospectively compared between 3 histologically confirmed cases of JP and our case of skull base RCC. The RCC metastasis was indistinguishable from JP on CT and traditional MRI but distinct by ADC values calculated from DW-MRI. Metastatic RCC at the skull base may mimic the clinical presentation and radiographic appearance of JP. The MRI finding of flow voids is seen in both paraganglioma and metastatic RCC. Diffusion-weighted MRI is able to distinguish these entities, highlighting its potential utility in distinguishing skull base lesions.

  11. Breast MRI at 3.0 T in a high-risk familial breast cancer screening cohort: comparison with 1.5 T screening studies.

    PubMed

    Pickles, M D; Turnbull, L W

    2012-07-01

    The sensitivity of X-ray mammography for the detection of breast malignancy in younger females is lower than that of breast MRI; consequently, guidelines recommend annual MRI for patients with a significantly elevated lifetime risk. The improved signal-to-noise ratio obtainable at 3.0 T should result in data superior to those obtainable at 1.5 T. However, breast imaging on higher field strength systems poses specific problems. As a result, caution has been urged in the implementation of breast MRI at 3.0 T. The aim of this study was to determine if it is appropriate to use 3.0 T MRI in the screening of patients by comparing the summary statistics achieved by this 3.0 T MRI programme against the published results of 1.5 T screening studies. Over a 20-month period, 291 patients referred with an elevated familial risk of breast cancer were examined at 3.0 T. Resulting images were scored based on the Royal College of Radiologists Breast Group imaging classification. The reference standard was a combination of histology and follow-up imaging. Follow-up data were available in 267 patients. Analysis revealed positive and negative post-test probabilities of 28% [95% confidence intervals (CI); range, 10-60%] and 1% (95% CI; range, 0-2%), respectively. These results compared favourably against those of a recent meta-analysis [25.3% (95% CI; range, 18.4-33.8%) and 0.4% (95% CI; range, 0.2-0.9%), respectively]. Given the similar summary statistics between this work and the 1.5 T results, it would appear that screening of high-risk patients at 3.0 T has potential. Further studies should be undertaken to verify this result.

  12. Indications for MARS-MRI in Patients Treated With Articular Surface Replacement XL Total Hip Arthroplasty.

    PubMed

    Connelly, James W; Galea, Vincent P; Laaksonen, Inari; Matuszak, Sean J; Madanat, Rami; Muratoglu, Orhun; Malchau, Henrik

    2018-04-19

    The purpose of this study was to identify which patient and clinical factors are predictive of adverse local tissue reaction (ALTR) and to use these factors to create a highly sensitive algorithm for indicating metal artifact reduction sequence magnetic resonance imaging (MARS-MRI) in Articular Surface Replacement (ASR) XL total hip arthroplasty patients. Our secondary aim was to compare our algorithm to existing national guidelines on when to take MARS-MRI in metal-on-metal total hip arthroplasty patients. The study consisted of 137 patients treated with unilateral ASR XL implants from a prospective, multicenter study. Patients underwent MARS-MRI regardless of clinical presentation at a mean of 6.2 (range, 3.3-10.4) years from surgery. Univariate and multivariate analyses were conducted to determine which variables were predictive of ALTR. Predictors were used to create an algorithm to indicate MARS-MRI. Finally, we compared our algorithm's ability to detect ALTR to existing guidelines. We found a visual analog scale pain score ≥2 (odds ratio [OR] = 2.53; P = .023), high blood cobalt (OR = 1.05; P = .023), and male gender (OR = 2.37; P = .034) to be significant predictors of ALTR presence in our cohort. The resultant algorithm achieved 86.4% sensitivity and 60.2% specificity in detecting ALTR within our cohort. Our algorithm had the highest area under the curve and was the only guideline that was significantly predictive of ALTR (P = .014). Our algorithm including patient-reported pain and sex-specific cutoffs for blood cobalt levels could predict ALTR and indicate MARS-MRI in our cohort of ASR XL metal-on-metal patients with high sensitivity. Level II, diagnostic study. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Uterine sarcoma vs adenocarcinoma: can MRI distinguish between them?

    PubMed

    Hernández Mateo, P; Méndez Fernández, R; Serrano Tamayo, E

    2016-01-01

    To analyze the MRI characteristics of uterine sarcomas (mainly carcinosarcomas) and to compare them with those of adenocarcinomas to define the findings that would be useful for the differential diagnosis. We retrospectively reviewed the MRI studies of 13 patients with histologically diagnosed uterine sarcoma. We analyzed tumor size, signal in T2-weighted, unenhanced and gadolinium-enhanced T1-weighted, and diffusion-weighted sequences. We compared the data obtained with those of another series of 30 consecutive cases of adenocarcinomas studied with MRI. The sarcomas (> 9cm in 77% of cases) were considerably larger than the adenocarcinomas (p<0.001). There were no differences in FIGO staging by MRI or surgery: both tumor types were diagnosed in early stages. The signal intensity in T2-weighted images differed significantly between the two tumor types: all the sarcomas were heterogeneous and predominantly hyperintense with respect to the myometrium in T2-weighted sequences (p<0.001). In postcontrast studies, all the sarcomas showed enhancement greater than or equal to the myometrium; this finding was significantly different from the adenocarcinomas (p<0.001). In diffusion-weighted sequences, we found no significant differences in ADC values in the areas with greatest restriction, but the ADC map was more heterogeneous in the sarcomas. Uterine sarcomas do not have specific characteristics on MRI, but some findings can indicate the diagnosis. In our study, we found significant differences between sarcomas and adenocarcinomas. Sarcomas were larger, had more hyperintense and heterogeneous signal intensity in T2-weighted sequences, and enhanced more than or at least as much as the myometrium. Copyright © 2015 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  14. Prognostic value of magnetic resonance imaging findings in patients with sciatica.

    PubMed

    El Barzouhi, Abdelilah; Verwoerd, Annemieke J H; Peul, Wilco C; Verhagen, Arianne P; Lycklama À Nijeholt, Geert J; Van der Kallen, Bas F; Koes, Bart W; Vleggeert-Lankamp, Carmen L A M

    2016-06-01

    OBJECTIVE This study aimed to determine the prognostic value of MRI variables to predict outcome in patients with herniated disc-related sciatica, and whether MRI could facilitate the decision making between early surgery and prolonged conservative care in these patients. METHODS A prospective observational evaluation of patients enrolled in a randomized trial with 1-year follow-up was completed. A total of 283 patients with sciatica who had a radiologically confirmed disc herniation were randomized either to surgery or to prolonged conservative care with surgery if needed. Outcome measures were recovery and leg pain severity. Recovery was registered on a 7-point Likert scale. Complete/near complete recovery was considered a satisfactory outcome. Leg pain severity was measured on a 0- to 100-mm visual analog scale. Multiple MRI characteristics of the degenerated disc herniation were independently scored by 3 spine experts. Cox models were used to study the influence of MRI variables on rate of recovery, and linear mixed models were used to determine the predictive value of MRI variables for leg pain severity during follow-up. The interaction of each MRI predictor with treatment allocation was tested. There were no study-specific conflicts of interest. RESULTS Baseline MRI variables associated with less leg pain severity were the reader's assessment of presence of nerve root compression (p < 0.001), and assessment of extrusion compared with protrusion of the disc herniation (p = 0.006). Both variables tended to be associated, but not significantly, with satisfactory outcome during follow-up (HR 1.45, 95% CI 0.93-2.24, and HR 1.24, 95% CI 0.96-1.61, respectively). The size of disc herniation at baseline was not associated with outcome. There was no significant change in the effects between treatment groups. CONCLUSIONS MRI assessment of the presence of nerve root compression and extrusion of a herniated disc at baseline was associated with less leg pain during 1-year follow-up, irrespective of a surgical or conservative treatment. MRI findings seem not to be helpful in determining which patients might fare better with early surgery compared with a strategy of prolonged conservative care. Clinical trial registration no.: ISRCTN26872154 ( controlled-trials.com ).

  15. Magnetic resonance imaging in experimental stroke and comparison with histology: systematic review and meta-analysis.

    PubMed

    Milidonis, Xenios; Marshall, Ian; Macleod, Malcolm R; Sena, Emily S

    2015-03-01

    Because the new era of preclinical stroke research demands improvements in validity and generalizability of findings, moving from single site to multicenter studies could be pivotal. However, the conduct of magnetic resonance imaging (MRI) in stroke remains ill-defined. We sought to assess the variability in the use of MRI for evaluating lesions post stroke and to examine the possibility as an alternative to gold standard histology for measuring the infarct size. We identified animal studies of ischemic stroke reporting lesion sizes using MRI. We assessed the degree of heterogeneity and reporting of scanning protocols, postprocessing methods, study design characteristics, and study quality. Studies performing histological evaluation of infarct size were further selected to compare with corresponding MRI using meta-regression. Fifty-four articles undertaking a total of 78 different MRI scanning protocols met the inclusion criteria. T2-weighted imaging was most frequently used (83% of the studies), followed by diffusion-weighted imaging (43%). Reporting of the imaging parameters was adequate, but heterogeneity between studies was high. Twelve studies assessed the infarct size using both MRI and histology at corresponding time points, with T2-weighted imaging-based treatment effect having a significant positive correlation with histology (; P<0.001). Guidelines for standardized use and reporting of MRI in preclinical stroke are urgently needed. T2-weighted imaging could be used as an effective in vivo alternative to histology for estimating treatment effects based on the extent of infarction; however, additional studies are needed to explore the effect of individual parameters. © 2015 American Heart Association, Inc.

  16. A meta-analysis of the diagnostic test accuracy of MRA and MRI for the detection of glenoid labral injury.

    PubMed

    Smith, Toby O; Drew, Benjamin T; Toms, Andoni P

    2012-07-01

    Magnetic resonance imaging (MRI) and magnetic resonance arthrography (MRA) have gained increasing favour in the assessment of patients with suspected glenoid labral injuries. The purpose of this study was to determine the diagnostic accuracy of MRI or MRA in the detection of gleniod labral lesions. A systematic review was undertaken of the electronic databases Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, AMED and CINAHL, in addition to a search of unpublished literature databases. All studies which compared the ability of MRI or MRA (index test) to assess gleniod labral tears or lesions, when verified with a surgical procedure (arthroscopy or open surgery-reference test) were included. Data extraction and methodological appraisal using the QUADAS tool were both conducted by two reviewers independently. Data were analysed through a summary receiver operator characteristic curve and pooled sensitivity and specificity analysis were calculated with 95% confidence intervals. Sixty studies including 4,667 shoulders from 4,574 patients were reviewed. There appeared slightly greater diagnostic test accuracy for MRA over MRI for the detection of overall gleniod labral lesions (MRA-sensitivity 88%, specificity 93% vs. MRI sensitivity 76% vs. specificity 87%). Methodologically, studies recruited and identified their samples appropriately and clearly defined the radiological procedures. In general, it was not clearly defined why patients were lost during the study, and studies were poor at recording whether the same clinical data were available to the radiologist interpreting the MRI or MRA as would be available in clinical practice. Most studies did not state whether the surgeon interpreting the arthroscopic procedure was blinded to the results of the MR or MRA imaging. Based on the available literature, overall MRA appeared marginally superior to MRI for the detection of glenohumeral labral lesions. Level 2a.

  17. Concurrent segmentation of the prostate on MRI and CT via linked statistical shape models for radiotherapy planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, Najeeb; Toth, Robert; Chappelow, Jonathan

    2012-04-15

    Purpose: Prostate gland segmentation is a critical step in prostate radiotherapy planning, where dose plans are typically formulated on CT. Pretreatment MRI is now beginning to be acquired at several medical centers. Delineation of the prostate on MRI is acknowledged as being significantly simpler to perform, compared to delineation on CT. In this work, the authors present a novel framework for building a linked statistical shape model (LSSM), a statistical shape model (SSM) that links the shape variation of a structure of interest (SOI) across multiple imaging modalities. This framework is particularly relevant in scenarios where accurate boundary delineations ofmore » the SOI on one of the modalities may not be readily available, or difficult to obtain, for training a SSM. In this work the authors apply the LSSM in the context of multimodal prostate segmentation for radiotherapy planning, where the prostate is concurrently segmented on MRI and CT. Methods: The framework comprises a number of logically connected steps. The first step utilizes multimodal registration of MRI and CT to map 2D boundary delineations of the prostate from MRI onto corresponding CT images, for a set of training studies. Hence, the scheme obviates the need for expert delineations of the gland on CT for explicitly constructing a SSM for prostate segmentation on CT. The delineations of the prostate gland on MRI and CT allows for 3D reconstruction of the prostate shape which facilitates the building of the LSSM. In order to perform concurrent prostate MRI and CT segmentation using the LSSM, the authors employ a region-based level set approach where the authors deform the evolving prostate boundary to simultaneously fit to MRI and CT images in which voxels are classified to be either part of the prostate or outside the prostate. The classification is facilitated by using a combination of MRI-CT probabilistic spatial atlases and a random forest classifier, driven by gradient and Haar features. Results: The authors acquire a total of 20 MRI-CT patient studies and use the leave-one-out strategy to train and evaluate four different LSSMs. First, a fusion-based LSSM (fLSSM) is built using expert ground truth delineations of the prostate on MRI alone, where the ground truth for the gland on CT is obtained via coregistration of the corresponding MRI and CT slices. The authors compare the fLSSM against another LSSM (xLSSM), where expert delineations of the gland on both MRI and CT are employed in the model building; xLSSM representing the idealized LSSM. The authors also compare the fLSSM against an exclusive CT-based SSM (ctSSM), built from expert delineations of the gland on CT alone. In addition, two LSSMs trained using trainee delineations (tLSSM) on CT are compared with the fLSSM. The results indicate that the xLSSM, tLSSMs, and the fLSSM perform equivalently, all of them out-performing the ctSSM. Conclusions: The fLSSM provides an accurate alternative to SSMs that require careful expert delineations of the SOI that may be difficult or laborious to obtain. Additionally, the fLSSM has the added benefit of providing concurrent segmentations of the SOI on multiple imaging modalities.« less

  18. Comparing diffuse optical tomography and functional magnetic resonance imaging signals during a cognitive task: pilot study

    PubMed Central

    Hernández-Martin, Estefania; Marcano, Francisco; Casanova, Oscar; Modroño, Cristian; Plata-Bello, Julio; González-Mora, Jose Luis

    2017-01-01

    Abstract. Diffuse optical tomography (DOT) measures concentration changes in both oxy- and deoxyhemoglobin providing three-dimensional images of local brain activations. A pilot study, which compares both DOT and functional magnetic resonance imaging (fMRI) volumes through t-maps given by canonical statistical parametric mapping (SPM) processing for both data modalities, is presented. The DOT series were processed using a method that is based on a Bayesian filter application on raw DOT data to remove physiological changes and minimum description length application index to select a number of singular values, which reduce the data dimensionality during image reconstruction and adaptation of DOT volume series to normalized standard space. Therefore, statistical analysis is performed with canonical SPM software in the same way as fMRI analysis is done, accepting DOT volumes as if they were fMRI volumes. The results show the reproducibility and ruggedness of the method to process DOT series on group analysis using cognitive paradigms on the prefrontal cortex. Difficulties such as the fact that scalp–brain distances vary between subjects or cerebral activations are difficult to reproduce due to strategies used by the subjects to solve arithmetic problems are considered. T-images given by fMRI and DOT volume series analyzed in SPM show that at the functional level, both DOT and fMRI measures detect the same areas, although DOT provides complementary information to fMRI signals about cerebral activity. PMID:28386575

  19. Cerebral perfusion alterations in epileptic patients during peri-ictal and post-ictal phase: PASL vs DSC-MRI.

    PubMed

    Pizzini, Francesca B; Farace, Paolo; Manganotti, Paolo; Zoccatelli, Giada; Bongiovanni, Luigi G; Golay, Xavier; Beltramello, Alberto; Osculati, Antonio; Bertini, Giuseppe; Fabene, Paolo F

    2013-07-01

    Non-invasive pulsed arterial spin labeling (PASL) MRI is a method to study brain perfusion that does not require the administration of a contrast agent, which makes it a valuable diagnostic tool as it reduces cost and side effects. The purpose of the present study was to establish the viability of PASL as an alternative to dynamic susceptibility contrast (DSC-MRI) and other perfusion imaging methods in characterizing changes in perfusion patterns caused by seizures in epileptic patients. We evaluated 19 patients with PASL. Of these, the 9 affected by high-frequency seizures were observed during the peri-ictal period (within 5hours since the last seizure), while the 10 patients affected by low-frequency seizures were observed in the post-ictal period. For comparison, 17/19 patients were also evaluated with DSC-MRI and CBF/CBV. PASL imaging showed focal vascular changes, which allowed the classification of patients in three categories: 8 patients characterized by increased perfusion, 4 patients with normal perfusion and 7 patients with decreased perfusion. PASL perfusion imaging findings were comparable to those obtained by DSC-MRI. Since PASL is a) sensitive to vascular alterations induced by epileptic seizures, b) comparable to DSC-MRI for detecting perfusion asymmetries, c) potentially capable of detecting time-related perfusion changes, it can be recommended for repeated evaluations, to identify the epileptic focus, and in follow-up and/or therapy-response assessment. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Comparative Study of SVM Methods Combined with Voxel Selection for Object Category Classification on fMRI Data

    PubMed Central

    Song, Sutao; Zhan, Zhichao; Long, Zhiying; Zhang, Jiacai; Yao, Li

    2011-01-01

    Background Support vector machine (SVM) has been widely used as accurate and reliable method to decipher brain patterns from functional MRI (fMRI) data. Previous studies have not found a clear benefit for non-linear (polynomial kernel) SVM versus linear one. Here, a more effective non-linear SVM using radial basis function (RBF) kernel is compared with linear SVM. Different from traditional studies which focused either merely on the evaluation of different types of SVM or the voxel selection methods, we aimed to investigate the overall performance of linear and RBF SVM for fMRI classification together with voxel selection schemes on classification accuracy and time-consuming. Methodology/Principal Findings Six different voxel selection methods were employed to decide which voxels of fMRI data would be included in SVM classifiers with linear and RBF kernels in classifying 4-category objects. Then the overall performances of voxel selection and classification methods were compared. Results showed that: (1) Voxel selection had an important impact on the classification accuracy of the classifiers: in a relative low dimensional feature space, RBF SVM outperformed linear SVM significantly; in a relative high dimensional space, linear SVM performed better than its counterpart; (2) Considering the classification accuracy and time-consuming holistically, linear SVM with relative more voxels as features and RBF SVM with small set of voxels (after PCA) could achieve the better accuracy and cost shorter time. Conclusions/Significance The present work provides the first empirical result of linear and RBF SVM in classification of fMRI data, combined with voxel selection methods. Based on the findings, if only classification accuracy was concerned, RBF SVM with appropriate small voxels and linear SVM with relative more voxels were two suggested solutions; if users concerned more about the computational time, RBF SVM with relative small set of voxels when part of the principal components were kept as features was a better choice. PMID:21359184

  1. Comparative study of SVM methods combined with voxel selection for object category classification on fMRI data.

    PubMed

    Song, Sutao; Zhan, Zhichao; Long, Zhiying; Zhang, Jiacai; Yao, Li

    2011-02-16

    Support vector machine (SVM) has been widely used as accurate and reliable method to decipher brain patterns from functional MRI (fMRI) data. Previous studies have not found a clear benefit for non-linear (polynomial kernel) SVM versus linear one. Here, a more effective non-linear SVM using radial basis function (RBF) kernel is compared with linear SVM. Different from traditional studies which focused either merely on the evaluation of different types of SVM or the voxel selection methods, we aimed to investigate the overall performance of linear and RBF SVM for fMRI classification together with voxel selection schemes on classification accuracy and time-consuming. Six different voxel selection methods were employed to decide which voxels of fMRI data would be included in SVM classifiers with linear and RBF kernels in classifying 4-category objects. Then the overall performances of voxel selection and classification methods were compared. Results showed that: (1) Voxel selection had an important impact on the classification accuracy of the classifiers: in a relative low dimensional feature space, RBF SVM outperformed linear SVM significantly; in a relative high dimensional space, linear SVM performed better than its counterpart; (2) Considering the classification accuracy and time-consuming holistically, linear SVM with relative more voxels as features and RBF SVM with small set of voxels (after PCA) could achieve the better accuracy and cost shorter time. The present work provides the first empirical result of linear and RBF SVM in classification of fMRI data, combined with voxel selection methods. Based on the findings, if only classification accuracy was concerned, RBF SVM with appropriate small voxels and linear SVM with relative more voxels were two suggested solutions; if users concerned more about the computational time, RBF SVM with relative small set of voxels when part of the principal components were kept as features was a better choice.

  2. Functional versus Nonfunctional Rehabilitation in Chronic Ischemic Stroke: Evidences from a Randomized Functional MRI Study

    PubMed Central

    Pelicioni, Maristela C. X.; Novaes, Morgana M.; Peres, Andre S. C.; Lino de Souza, Altay A.; Minelli, Cesar; Fabio, Soraia R. C.; Pontes-Neto, Octavio M.; Santos, Antonio C.; de Araujo, Draulio B.

    2016-01-01

    Motor rehabilitation of stroke survivors may include functional and/or nonfunctional strategy. The present study aimed to compare the effect of these two rehabilitation strategies by means of clinical scales and functional Magnetic Resonance Imaging (fMRI). Twelve hemiparetic chronic stroke patients were selected. Patients were randomly assigned a nonfunctional (NFS) or functional (FS) rehabilitation scheme. Clinical scales (Fugl-Meyer, ARA test, and modified Barthel) and fMRI were applied at four moments: before rehabilitation (P1) and immediately after (P2), 1 month after (P3), and three months after (P4) the end of rehabilitation. The NFS group improved significantly and exclusively their Fugl-Meyer scores at P2, P3, and P4, when compared to P1. On the other hand, the FS group increased significantly in Fugl-Meyer at P2, when compared to P1, and also in their ARA and Barthel scores. fMRI inspection at the individual level revealed that both rehabilitation schemes most often led to decreased activation sparseness, decreased activity of contralesional M1, increased asymmetry of M1 activity to the ipsilesional side, decreased perilesional activity, and decreased SMA activity. Increased M1 asymmetry with rehabilitation was also confirmed by Lateralization Indexes. Our clinical analysis revealed subtle differences between FS and NFS. PMID:26839716

  3. Role of FDG-PET/MRI, FDG-PET/CT, and Dynamic Susceptibility Contrast Perfusion MRI in Differentiating Radiation Necrosis from Tumor Recurrence in Glioblastomas.

    PubMed

    Hojjati, Mojgan; Badve, Chaitra; Garg, Vasant; Tatsuoka, Curtis; Rogers, Lisa; Sloan, Andrew; Faulhaber, Peter; Ros, Pablo R; Wolansky, Leo J

    2018-01-01

    To compare the utility of quantitative PET/MRI, dynamic susceptibility contrast (DSC) perfusion MRI (pMRI), and PET/CT in differentiating radiation necrosis (RN) from tumor recurrence (TR) in patients with treated glioblastoma multiforme (GBM). The study included 24 patients with GBM treated with surgery, radiotherapy, and temozolomide who presented with progression on imaging follow-up. All patients underwent PET/MRI and pMRI during a single examination. Additionally, 19 of 24 patients underwent PET/CT on the same day. Diagnosis was established by pathology in 17 of 24 and by clinical/radiologic consensus in 7 of 24. For the quantitative PET/MRI and PET/CT analysis, a region of interest (ROI) was drawn around each lesion and within the contralateral white matter. Lesion to contralateral white matter ratios for relative maximum, mean, and median were calculated. For pMRI, lesion ROI was drawn on the cerebral blood volume (CBV) maps and histogram metrics were calculated. Diagnostic performance for each metric was assessed using receiver operating characteristic curve analysis and area under curve (AUC) was calculated. In 24 patients, 28 lesions were identified. For PET/MRI, relative mean ≥ 1.31 resulted in AUC of .94 with both sensitivity and negative predictive values (NPVs) of 100%. For pMRI, CBV max ≥3.32 yielded an AUC of .94 with both sensitivity and NPV measuring 100%. The joint model utilizing r-mean (PET/MRI) and CBV mode (pMRI) resulted in AUC of 1.0. Our study demonstrates that quantitative PET/MRI parameters in combination with DSC pMRI provide the best diagnostic utility in distinguishing RN from TR in treated GBMs. © 2017 The Authors. Journal of Neuroimaging published by Wiley Periodicals, Inc. on behalf of American Society of Neuroimaging.

  4. A comparative MRI study of cartilage damage in gout versus rheumatoid arthritis.

    PubMed

    Popovich, Ivor; Lee, Arier C L; Doyle, Anthony; McHaffie, Alexandra; Clarke, Andrew; Reeves, Quentin; Dalbeth, Nicola; McQueen, Fiona M

    2015-08-01

    Magnetic resonance imaging (MRI) is useful for detecting joint inflammation and damage in the inflammatory arthropathies. This study aimed to investigate MRI cartilage damage and its associations with joint inflammation in patients with gout compared with a group with rheumatoid arthritis (RA). Forty patients with gout and 38 with seropositive RA underwent 3T-MRI of the wrist with assessment of cartilage damage at six carpal sites, using established scoring systems. Synovitis and bone oedema (BME) were graded according to Rheumatoid Arthritis MRI Scoring System criteria. Cartilage damage was compared between the groups adjusting for synovitis and disease duration using logistic regression analysis. Compared with RA, there were fewer sites of cartilage damage and lower total damage scores in the gout group (P = 0.02 and 0.003), adjusting for their longer disease duration and lesser degree of synovitis. Cartilage damage was strongly associated with synovitis in both conditions (R = 0.59, P < 0.0001 and R = 0.52, P = 0.0045 respectively) and highly correlated with BME in RA (R = 0.69, P < 0.0001) but not in gout (R = 0.095, P = 0.56). Cartilage damage is less severe in gout than in RA, with fewer sites affected and lower overall scores. It is associated with synovitis in both diseases, likely indicating an effect of pro-inflammatory cytokine production on cartilage integrity. However, the strong association between cartilage damage and BME observed in RA was not identified in gout. This emphasizes differences in the underlying pathophysiology of joint damage in these two conditions. © 2015 The Royal Australian and New Zealand College of Radiologists.

  5. Use of Brain MRI Atlases to Determine Boundaries of Age-Related Pathology: The Importance of Statistical Method

    PubMed Central

    Dickie, David Alexander; Job, Dominic E.; Gonzalez, David Rodriguez; Shenkin, Susan D.; Wardlaw, Joanna M.

    2015-01-01

    Introduction Neurodegenerative disease diagnoses may be supported by the comparison of an individual patient’s brain magnetic resonance image (MRI) with a voxel-based atlas of normal brain MRI. Most current brain MRI atlases are of young to middle-aged adults and parametric, e.g., mean ±standard deviation (SD); these atlases require data to be Gaussian. Brain MRI data, e.g., grey matter (GM) proportion images, from normal older subjects are apparently not Gaussian. We created a nonparametric and a parametric atlas of the normal limits of GM proportions in older subjects and compared their classifications of GM proportions in Alzheimer’s disease (AD) patients. Methods Using publicly available brain MRI from 138 normal subjects and 138 subjects diagnosed with AD (all 55–90 years), we created: a mean ±SD atlas to estimate parametrically the percentile ranks and limits of normal ageing GM; and, separately, a nonparametric, rank order-based GM atlas from the same normal ageing subjects. GM images from AD patients were then classified with respect to each atlas to determine the effect statistical distributions had on classifications of proportions of GM in AD patients. Results The parametric atlas often defined the lower normal limit of the proportion of GM to be negative (which does not make sense physiologically as the lowest possible proportion is zero). Because of this, for approximately half of the AD subjects, 25–45% of voxels were classified as normal when compared to the parametric atlas; but were classified as abnormal when compared to the nonparametric atlas. These voxels were mainly concentrated in the frontal and occipital lobes. Discussion To our knowledge, we have presented the first nonparametric brain MRI atlas. In conditions where there is increasing variability in brain structure, such as in old age, nonparametric brain MRI atlases may represent the limits of normal brain structure more accurately than parametric approaches. Therefore, we conclude that the statistical method used for construction of brain MRI atlases should be selected taking into account the population and aim under study. Parametric methods are generally robust for defining central tendencies, e.g., means, of brain structure. Nonparametric methods are advisable when studying the limits of brain structure in ageing and neurodegenerative disease. PMID:26023913

  6. Presurgical language fMRI: Clinical practices and patient outcomes in epilepsy surgical planning.

    PubMed

    Benjamin, Christopher F A; Li, Alexa X; Blumenfeld, Hal; Constable, R Todd; Alkawadri, Rafeed; Bickel, Stephan; Helmstaedter, Christoph; Meletti, Stefano; Bronen, Richard; Warfield, Simon K; Peters, Jurriaan M; Reutens, David; Połczyńska, Monika; Spencer, Dennis D; Hirsch, Lawrence J

    2018-03-12

    The goal of this study was to document current clinical practice and report patient outcomes in presurgical language functional MRI (fMRI) for epilepsy surgery. Epilepsy surgical programs worldwide were surveyed as to the utility, implementation, and efficacy of language fMRI in the clinic; 82 programs responded. Respondents were predominantly US (61%) academic programs (85%), and evaluated adults (44%), adults and children (40%), or children only (16%). Nearly all (96%) reported using language fMRI. Surprisingly, fMRI is used to guide surgical margins (44% of programs) as well as lateralize language (100%). Sites using fMRI for localization most often use a distance margin around activation of 10mm. While considered useful, 56% of programs reported at least one instance of disagreement with other measures. Direct brain stimulation typically confirmed fMRI findings (74%) when guiding margins, but instances of unpredicted decline were reported by 17% of programs and 54% reported unexpected preservation of function. Programs reporting unexpected decline did not clearly differ from those which did not. Clinicians using fMRI to guide surgical margins do not typically map known language-critical areas beyond Broca's and Wernicke's. This initial data shows many clinical teams are confident using fMRI not only for language lateralization but also to guide surgical margins. Reported cases of unexpected language preservation when fMRI activation is resected, and cases of language decline when it is not, emphasize a critical need for further validation. Comprehensive studies comparing commonly-used fMRI paradigms to predict stimulation mapping and post-surgical language decline remain of high importance. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  7. Turbulent Kinetic Energy Measurement Using Phase Contrast MRI for Estimating the Post-Stenotic Pressure Drop: In Vitro Validation and Clinical Application

    PubMed Central

    Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Huh, Hyung Kyu; Lee, Sang Joon; Koo, Hyun Jung; Kang, Joon-Won; Lim, Tae-Hwan; Kim, Dae-Hee; Kim, Young-Hak

    2016-01-01

    Background Although the measurement of turbulence kinetic energy (TKE) by using magnetic resonance imaging (MRI) has been introduced as an alternative index for quantifying energy loss through the cardiac valve, experimental verification and clinical application of this parameter are still required. Objectives The goal of this study is to verify MRI measurements of TKE by using a phantom stenosis with particle image velocimetry (PIV) as the reference standard. In addition, the feasibility of measuring TKE with MRI is explored. Methods MRI measurements of TKE through a phantom stenosis was performed by using clinical 3T MRI scanner. The MRI measurements were verified experimentally by using PIV as the reference standard. In vivo application of MRI-driven TKE was explored in seven patients with aortic valve disease and one healthy volunteer. Transvalvular gradients measured by MRI and echocardiography were compared. Results MRI and PIV measurements of TKE are consistent for turbulent flow (0.666 < R2 < 0.738) with a mean difference of −11.13 J/m3 (SD = 4.34 J/m3). Results of MRI and PIV measurements differ by 2.76 ± 0.82 cm/s (velocity) and −11.13 ± 4.34 J/m3 (TKE) for turbulent flow (Re > 400). The turbulence pressure drop correlates strongly with total TKE (R2 = 0.986). However, in vivo measurements of TKE are not consistent with the transvalvular pressure gradient estimated by echocardiography. Conclusions These results suggest that TKE measurement via MRI may provide a potential benefit as an energy-loss index to characterize blood flow through the aortic valve. However, further clinical studies are necessary to reach definitive conclusions regarding this technique. PMID:26978529

  8. Turbulent Kinetic Energy Measurement Using Phase Contrast MRI for Estimating the Post-Stenotic Pressure Drop: In Vitro Validation and Clinical Application.

    PubMed

    Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Huh, Hyung Kyu; Lee, Sang Joon; Koo, Hyun Jung; Kang, Joon-Won; Lim, Tae-Hwan; Kim, Dae-Hee; Kim, Young-Hak; Kim, Namkug; Yang, Dong Hyun

    2016-01-01

    Although the measurement of turbulence kinetic energy (TKE) by using magnetic resonance imaging (MRI) has been introduced as an alternative index for quantifying energy loss through the cardiac valve, experimental verification and clinical application of this parameter are still required. The goal of this study is to verify MRI measurements of TKE by using a phantom stenosis with particle image velocimetry (PIV) as the reference standard. In addition, the feasibility of measuring TKE with MRI is explored. MRI measurements of TKE through a phantom stenosis was performed by using clinical 3T MRI scanner. The MRI measurements were verified experimentally by using PIV as the reference standard. In vivo application of MRI-driven TKE was explored in seven patients with aortic valve disease and one healthy volunteer. Transvalvular gradients measured by MRI and echocardiography were compared. MRI and PIV measurements of TKE are consistent for turbulent flow (0.666 < R2 < 0.738) with a mean difference of -11.13 J/m3 (SD = 4.34 J/m3). Results of MRI and PIV measurements differ by 2.76 ± 0.82 cm/s (velocity) and -11.13 ± 4.34 J/m3 (TKE) for turbulent flow (Re > 400). The turbulence pressure drop correlates strongly with total TKE (R2 = 0.986). However, in vivo measurements of TKE are not consistent with the transvalvular pressure gradient estimated by echocardiography. These results suggest that TKE measurement via MRI may provide a potential benefit as an energy-loss index to characterize blood flow through the aortic valve. However, further clinical studies are necessary to reach definitive conclusions regarding this technique.

  9. Evaluation of cerebrospinal fluid lactate and plasma lactate concentrations in anesthetized dogs with and without intracranial disease

    PubMed Central

    Caines, Deanne; Sinclair, Melissa; Wood, Darren; Valverde, Alexander; Dyson, Doris; Gaitero, Luis; Nykamp, Stephanie

    2013-01-01

    The objectives of this study were to establish a reference interval for canine cerebrospinal fluid lactate (CSFL) and to compare CSFL and plasma lactate (PL) concentrations in anesthetized dogs with and without intracranial disease. Using a prospective study, canine blood and cerebrospinal fluid were collected for lactate analysis in 11 dogs with intracranial disease after undergoing magnetic resonance imaging (MRI) (Group ID-MRI), in 10 healthy dogs post-MRI (Group H-MRI), and in 39 healthy dogs after induction of anesthesia (Group H-Sx). Dogs were anesthetized for the procedures using different anesthetic protocols. Neurological scores (NS) and sedation scores (SS) were assessed pre-anesthesia in ID-MRI dogs. The CSFL reference interval [90% confidence interval (CI) for lower and upper limits] was 1.1 (1.0 to 1.2) to 2.0 (2.0 to 2.1) mmol/L. Mean ± SD CSFL concentrations were: ID-MRI, 2.1 ± 0.8; H-MRI, 1.6 ± 0.4; and H-Sx, 1.6 ± 0.2 mmol/L. There was a tendency for higher CSFL in dogs in the ID-MRI group than in those in the H-MRI or H-Sx groups (P = 0.12). There was agreement between CSFL and PL in ID-MRI dogs (P = 0.007), but not in dogs in H-MRI (P = 0.5) or H-Sx (P = 0.2). Of the ID-MRI dogs, those with worse NS had higher CSFL (r2 = 0.44). The correlation between CSFL and PL in dogs with intracranial disease and between worse NS and higher CSFL warrants further investigation into the use of CSFL and PL for diagnostic and prognostic purposes. PMID:24124273

  10. Detection of the index tumour and tumour volume in prostate cancer using T2-weighted and diffusion-weighted magnetic resonance imaging (MRI) alone.

    PubMed

    Rud, Erik; Klotz, Dagmar; Rennesund, Kristin; Baco, Eduard; Berge, Viktor; Lien, Diep; Svindland, Aud; Lundeby, Eskild; Berg, Rolf E; Eri, Lars M; Eggesbø, Heidi B

    2014-12-01

    To examine the performance of T2-weighted (T2W) and diffusion-weighted (DW) magnetic resonance imaging (MRI) for detecting the index tumour in patients with prostate cancer and to examine the agreement between MRI and histology when assessing tumour volume (TV) and overall tumour burden. The study included 199 consecutive patients with biopsy confirmed prostate cancer randomised to MRI before radical prostatectomy from December 2009 to July 2012. MRI-detected tumours (MRTs) were ranked from 1 to 3 according to decreasing volume and were compared with histologically detected tumours (HTs) ranked from 1 to 3, with HT 1 = index tumour. Whole-mount section histology was used as a reference standard. The TVs of true-positive MRTs (MRTVs 1-3) were compared with the TVs found by histology (HTVs 1-3). All tumours were registered on a 30-sector map and by classifying each sector as positive/negative, the rate of true-positive and -negative sectors was calculated. The detection rate for the HT 1 (index tumour) was 92%; HT 2, 45%; and HT 3, 37%. The MRTV 1-3 vs the HTV 1-3 were 2.8 mL vs 4.0 mL (index tumour, P < 0.001), 1.0 mL vs 0.9 mL (tumour 2, P = 0.413), and 0.6 mL vs 0.5 mL (tumour 3, P = 0.492). The rate of true-positive and -negative sectors was 50% and 88%, κ = 0.39. A combination of T2W and DW MRI detects the index tumour in 92% of cases, although MRI underestimates both TV and tumour burden compared with histology. © 2014 The Authors. BJU International © 2014 BJU International.

  11. Feasibility of FDG-PET in myocarditis: Comparison to CMR using integrated PET/MRI.

    PubMed

    Nensa, Felix; Kloth, Julia; Tezgah, Ercan; Poeppel, Thorsten D; Heusch, Philipp; Goebel, Juliane; Nassenstein, Kai; Schlosser, Thomas

    2018-06-01

    Besides cardiac sarcoidosis, FDG-PET is rarely used in the diagnosis of myocardial inflammation, while cardiac MRI (CMR) is the actual imaging reference for the workup of myocarditis. Using integrated PET/MRI in patients with suspected myocarditis, we prospectively compared FDG-PET to CMR and the feasibility of integrated FDG-PET/MRI in myocarditis. A total of 65 consecutive patients with suspected myocarditis were prospectively assessed using integrated cardiac FDG-PET/MRI. Studies comprised T2-weighted imaging, late gadolinium enhancement (LGE), and simultaneous PET acquisition. Physiological glucose uptake in the myocardium was suppressed using dietary preparation. FDG-PET/MRI was successful in 55 of 65 enrolled patients: two patients were excluded due to claustrophobia and eight patients due to failed inhibition of myocardial glucose uptake. Compared with CMR (LGE and/or T2), sensitivity and specificity of PET was 74% and 97%. Overall spatial agreement between PET and CMR was κ = 0.73. Spatial agreement between PET and T2 (κ = 0.75) was higher than agreement between PET and LGE (κ = 0.64) as well as between LGE and T2 (κ = 0.56). In patients with suspected myocarditis, FDG-PET is in good agreement with CMR findings.

  12. Lung tumor motion change during stereotactic body radiotherapy (SBRT): an evaluation using MRI

    PubMed Central

    Olivier, Kenneth R.; Li, Jonathan G.; Liu, Chihray; Newlin, Heather E.; Schmalfuss, Ilona; Kyogoku, Shinsuke; Dempsey, James F.

    2014-01-01

    The purpose of this study is to investigate changes in lung tumor internal target volume during stereotactic body radiotherapy treatment (SBRT) using magnetic resonance imaging (MRI). Ten lung cancer patients (13 tumors) undergoing SBRT (48 Gy over four consecutive days) were evaluated. Each patient underwent three lung MRI evaluations: before SBRT (MRI‐1), after fraction 3 of SBRT (MRI‐3), and three months after completion of SBRT (MRI‐3m). Each MRI consisted of T1‐weighted images in axial plane through the entire lung. A cone‐beam CT (CBCT) was taken before each fraction. On MRI and CBCT taken before fractions 1 and 3, gross tumor volume (GTV) was contoured and differences between the two volumes were compared. Median tumor size on CBCT before fractions 1 (CBCT‐1) and 3 (CBCT‐3) was 8.68 and 11.10 cm3, respectively. In 12 tumors, the GTV was larger on CBCT‐3 compared to CBCT‐1 (median enlargement, 1.56 cm3). Median tumor size on MRI‐1, MRI‐3, and MRI‐3m was 7.91, 11.60, and 3.33 cm3, respectively. In all patients, the GTV was larger on MRI‐3 compared to MRI‐1 (median enlargement, 1.54 cm3). In all patients, GTV was smaller on MRI‐3m compared to MRI‐1 (median shrinkage, 5.44 cm3). On CBCT and MRI, all patients showed enlargement of the GTV during the treatment week of SBRT, except for one patient who showed minimal shrinkage (0.86 cm3). Changes in tumor volume are unpredictable; therefore, motion and breathing must be taken into account during treatment planning, and image‐guided methods should be used, when treating with large fraction sizes. PACS number: 87.53.Ly PMID:24892328

  13. Lateral cephalometric analysis for treatment planning in orthodontics based on MRI compared with radiographs: A feasibility study in children and adolescents

    PubMed Central

    Lazo Gonzalez, Eduardo; Hilgenfeld, Tim; Kickingereder, Philipp; Bendszus, Martin; Heiland, Sabine; Ozga, Ann-Kathrin; Sommer, Andreas; Lux, Christopher J.; Zingler, Sebastian

    2017-01-01

    Objective The objective of this prospective study was to evaluate whether magnetic resonance imaging (MRI) is equivalent to lateral cephalometric radiographs (LCR, “gold standard”) in cephalometric analysis. Methods The applied MRI technique was optimized for short scanning time, high resolution, high contrast and geometric accuracy. Prior to orthodontic treatment, 20 patients (mean age ± SD, 13.95 years ± 5.34) received MRI and LCR. MRI datasets were postprocessed into lateral cephalograms. Cephalometric analysis was performed twice by two independent observers for both modalities with an interval of 4 weeks. Eight bilateral and 10 midsagittal landmarks were identified, and 24 widely used measurements (14 angles, 10 distances) were calculated. Statistical analysis was performed by using intraclass correlation coefficient (ICC), Bland-Altman analysis and two one-sided tests (TOST) within the predefined equivalence margin of ± 2°/mm. Results Geometric accuracy of the MRI technique was confirmed by phantom measurements. Mean intraobserver ICC were 0.977/0.975 for MRI and 0.975/0.961 for LCR. Average interobserver ICC were 0.980 for MRI and 0.929 for LCR. Bland-Altman analysis showed high levels of agreement between the two modalities, bias range (mean ± SD) was -0.66 to 0.61 mm (0.06 ± 0.44) for distances and -1.33 to 1.14° (0.06 ± 0.71) for angles. Except for the interincisal angle (p = 0.17) all measurements were statistically equivalent (p < 0.05). Conclusions This study demonstrates feasibility of orthodontic treatment planning without radiation exposure based on MRI. High-resolution isotropic MRI datasets can be transformed into lateral cephalograms allowing reliable measurements as applied in orthodontic routine with high concordance to the corresponding measurements on LCR. PMID:28334054

  14. Spontaneous low frequency BOLD signal variations from resting-state fMRI are decreased in Alzheimer disease

    PubMed Central

    Manning, Kathryn Y.; Rajakumar, Nagalingam; Gómez, Francisco A.; Soddu, Andrea; Borrie, Michael J.

    2017-01-01

    Previous studies have demonstrated altered brain activity in Alzheimer's disease using task based functional MRI (fMRI), network based resting-state fMRI, and glucose metabolism from 18F fluorodeoxyglucose-PET (FDG-PET). Our goal was to define a novel indicator of neuronal activity based on a first-order textural feature of the resting state functional MRI (RS-fMRI) signal. Furthermore, we examined the association between this neuronal activity metric and glucose metabolism from 18F FDG-PET. We studied 15 normal elderly controls (NEC) and 15 probable Alzheimer disease (AD) subjects from the AD Neuroimaging Initiative. An independent component analysis was applied to the RS-fMRI, followed by template matching to identify neuronal components (NC). A regional brain activity measurement was constructed based on the variation of the RS-fMRI signal of these NC. The standardized glucose uptake values of several brain regions relative to the cerebellum (SUVR) were measured from partial volume corrected FDG-PET images. Comparing the AD and NEC groups, the mean brain activity metric was significantly lower in the accumbens, while the glucose SUVR was significantly lower in the amygdala and hippocampus. The RS-fMRI brain activity metric was positively correlated with cognitive measures and amyloid β1–42 cerebral spinal fluid levels; however, these did not remain significant following Bonferroni correction. There was a significant linear correlation between the brain activity metric and the glucose SUVR measurements. This proof of concept study demonstrates that this novel and easy to implement RS-fMRI brain activity metric can differentiate a group of healthy elderly controls from a group of people with AD. PMID:28582450

  15. Lateral cephalometric analysis for treatment planning in orthodontics based on MRI compared with radiographs: A feasibility study in children and adolescents.

    PubMed

    Heil, Alexander; Lazo Gonzalez, Eduardo; Hilgenfeld, Tim; Kickingereder, Philipp; Bendszus, Martin; Heiland, Sabine; Ozga, Ann-Kathrin; Sommer, Andreas; Lux, Christopher J; Zingler, Sebastian

    2017-01-01

    The objective of this prospective study was to evaluate whether magnetic resonance imaging (MRI) is equivalent to lateral cephalometric radiographs (LCR, "gold standard") in cephalometric analysis. The applied MRI technique was optimized for short scanning time, high resolution, high contrast and geometric accuracy. Prior to orthodontic treatment, 20 patients (mean age ± SD, 13.95 years ± 5.34) received MRI and LCR. MRI datasets were postprocessed into lateral cephalograms. Cephalometric analysis was performed twice by two independent observers for both modalities with an interval of 4 weeks. Eight bilateral and 10 midsagittal landmarks were identified, and 24 widely used measurements (14 angles, 10 distances) were calculated. Statistical analysis was performed by using intraclass correlation coefficient (ICC), Bland-Altman analysis and two one-sided tests (TOST) within the predefined equivalence margin of ± 2°/mm. Geometric accuracy of the MRI technique was confirmed by phantom measurements. Mean intraobserver ICC were 0.977/0.975 for MRI and 0.975/0.961 for LCR. Average interobserver ICC were 0.980 for MRI and 0.929 for LCR. Bland-Altman analysis showed high levels of agreement between the two modalities, bias range (mean ± SD) was -0.66 to 0.61 mm (0.06 ± 0.44) for distances and -1.33 to 1.14° (0.06 ± 0.71) for angles. Except for the interincisal angle (p = 0.17) all measurements were statistically equivalent (p < 0.05). This study demonstrates feasibility of orthodontic treatment planning without radiation exposure based on MRI. High-resolution isotropic MRI datasets can be transformed into lateral cephalograms allowing reliable measurements as applied in orthodontic routine with high concordance to the corresponding measurements on LCR.

  16. [3-Tesla MRI vs. arthroscopy for diagnostics of degenerative knee cartilage diseases: preliminary clinical results].

    PubMed

    von Engelhardt, L V; Schmitz, A; Burian, B; Pennekamp, P H; Schild, H H; Kraft, C N; von Falkenhausen, M

    2008-09-01

    The literature contains only a few studies investigating the magnetic resonance imaging (MRI) diagnostics of degenerative cartilage diseases. Studies on MRI diagnostics of the cartilage using field strengths of 3-Tesla demonstrate promising results. To assess the value of 3-Tesla MRI for decision making regarding conservative or operative treatment possibilities, this study focused on patients with degenerative cartilage diseases. Thirty-two patients with chronic knee pain, a minimum age of 40 years, a negative history of trauma, and at least grade II degenerative cartilage disease were included. Cartilage abnormalities detected at preoperative 3-Tesla MRI (axial/koronar/sagittal PD-TSE-SPAIR, axial/sagittal 3D-T1-FFE, axial T2-FFE; Intera 3.0T, Philips Medical Systems) were classified (grades I-IV) and compared with arthroscopic findings. Thirty-six percent (70/192) of the examined cartilage surfaces demonstrated no agreement between MRI and arthroscopic grading. In most of these cases, grades II and III cartilage lesions were confounded with each other. Regarding the positive predictive values, the probability that a positive finding in MRI would be exactly confirmed by arthroscopy was 39-72%. In contrast, specificities and negative predictive values of different grades of cartilage diseases were 85-95%. Regarding the high specificities and negative predictive values, 3-Tesla MRI is a reliable method for excluding even slight cartilage degeneration. In summary, in degenerative cartilage diseases, 3-Tesla MRI is a supportive, noninvasive method for clinical decision making regarding conservative or operative treatment possibilities. However, the value of diagnostic arthroscopy for a definitive assessment of the articular surfaces and for therapeutic planning currently cannot be replaced by 3-Tesla MRI. This applies especially to treatment options in which a differentiation between grade II and III cartilage lesions is of interest.

  17. Spontaneous low frequency BOLD signal variations from resting-state fMRI are decreased in Alzheimer disease.

    PubMed

    Kazemifar, Samaneh; Manning, Kathryn Y; Rajakumar, Nagalingam; Gómez, Francisco A; Soddu, Andrea; Borrie, Michael J; Menon, Ravi S; Bartha, Robert

    2017-01-01

    Previous studies have demonstrated altered brain activity in Alzheimer's disease using task based functional MRI (fMRI), network based resting-state fMRI, and glucose metabolism from 18F fluorodeoxyglucose-PET (FDG-PET). Our goal was to define a novel indicator of neuronal activity based on a first-order textural feature of the resting state functional MRI (RS-fMRI) signal. Furthermore, we examined the association between this neuronal activity metric and glucose metabolism from 18F FDG-PET. We studied 15 normal elderly controls (NEC) and 15 probable Alzheimer disease (AD) subjects from the AD Neuroimaging Initiative. An independent component analysis was applied to the RS-fMRI, followed by template matching to identify neuronal components (NC). A regional brain activity measurement was constructed based on the variation of the RS-fMRI signal of these NC. The standardized glucose uptake values of several brain regions relative to the cerebellum (SUVR) were measured from partial volume corrected FDG-PET images. Comparing the AD and NEC groups, the mean brain activity metric was significantly lower in the accumbens, while the glucose SUVR was significantly lower in the amygdala and hippocampus. The RS-fMRI brain activity metric was positively correlated with cognitive measures and amyloid β1-42 cerebral spinal fluid levels; however, these did not remain significant following Bonferroni correction. There was a significant linear correlation between the brain activity metric and the glucose SUVR measurements. This proof of concept study demonstrates that this novel and easy to implement RS-fMRI brain activity metric can differentiate a group of healthy elderly controls from a group of people with AD.

  18. Behavioral, Cognitive and Neural Markers of Asperger Syndrome

    PubMed Central

    Faridi, Farnaz; Khosrowabadi, Reza

    2017-01-01

    Asperger syndrome (AS) is a subtype of Autism Spectrum Disorder (ASD) characterized by major problems in social and nonverbal communication, together with limited and repetitive forms of behavior and interests. The linguistic and cognitive development in AS is preserved which help us to differentiate it from other subtypes of ASD. However, significant effects of AS on cognitive abilities and brain functions still need to be researched. Although a clear cut pathology for Asperger has not been identified yet, recent studies have largely focused on brain imaging techniques to investigate AS. In this regard, we carried out a systematic review on behavioral, cognitive, and neural markers (specifically using MRI and fMRI) studies on AS. In this paper, behavior, motor skills and language capabilities of individuals with Asperger are compared to those in healthy controls. In addition, common findings across MRI and fMRI based studies associated with behavior and cognitive disabilities are highlighted. PMID:29167722

  19. Behavioral, Cognitive and Neural Markers of Asperger Syndrome.

    PubMed

    Faridi, Farnaz; Khosrowabadi, Reza

    2017-01-01

    Asperger syndrome (AS) is a subtype of Autism Spectrum Disorder (ASD) characterized by major problems in social and nonverbal communication, together with limited and repetitive forms of behavior and interests. The linguistic and cognitive development in AS is preserved which help us to differentiate it from other subtypes of ASD. However, significant effects of AS on cognitive abilities and brain functions still need to be researched. Although a clear cut pathology for Asperger has not been identified yet, recent studies have largely focused on brain imaging techniques to investigate AS. In this regard, we carried out a systematic review on behavioral, cognitive, and neural markers (specifically using MRI and fMRI) studies on AS. In this paper, behavior, motor skills and language capabilities of individuals with Asperger are compared to those in healthy controls. In addition, common findings across MRI and fMRI based studies associated with behavior and cognitive disabilities are highlighted.

  20. A Comparison of Ultrasound and MRI Measurements of the Cross-Sectional Area of the Median Nerve at the Wrist.

    PubMed

    Hersh, Beverly; D'Auria, Jennifer; Scott, Michael; Fowler, John R

    2018-05-01

    Ultrasound (US) measurement of cross-sectional area (CSA) of the median nerve has emerged as a viable alternative to electromyography/nerve conduction studies (EMG/NCS) for diagnosis of carpal tunnel syndrome (CTS). The purpose of this study is to compare CSA of the median nerve between US and MRI using current MRI and US technology. The null hypothesis is there is no difference between US and MRI CSA measurements. The study design was an observational cohort, enrolling patients presenting to clinic with MRI of the wrist. Participants with clinical signs and symptoms of CTS were excluded. The CSA measurements of the median nerve on MRI T1-weighted axial images were performed by a hand fellow blinded to results of US measurements, and US measurement of median nerve CSA was performed by a hand fellowship trained surgeon blinded to results of the MRI measurements. Results were analyzed via percent error, Pearson correlation, and t tests. Twenty participants were enrolled with mean age of 29.4 years. Four left wrists and 16 right wrists were measured. The US mean CSA of the median nerve was 6.8 mm 2 (±2.330 mm 2 ). The MRI mean CSA of the median nerve was 6.8 mm 2 (±2.153 mm 2 ), P = .442. Pearson correlation between modalities was 0.93, suggesting near-perfect correlation. Mean percent error was 8.8%. Results of this study suggest that US is an accurate method to measure CSA of the median nerve at the carpal tunnel inlet. The mean difference between US and MRI was unlikely to be clinically significant.

  1. CT versus MR Techniques in the Detection of Cervical Artery Dissection.

    PubMed

    Hanning, Uta; Sporns, Peter B; Schmiedel, Meilin; Ringelstein, Erich B; Heindel, Walter; Wiendl, Heinz; Niederstadt, Thomas; Dittrich, Ralf

    2017-11-01

    Spontaneous cervical artery dissection (sCAD) is an important etiology of juvenile stroke. The gold standard for the diagnosis of sCAD is convential angiography. However, magnetic resonance imaging (MRI)/MR angiography (MRA) and computed tomography (CT)/CT angiography (CTA) are frequently used alternatives. New developments such as multislice CT/CTA have enabled routine acquisition of thinner sections with rapid imaging times. The goal of this study was to compare the capability of recent developed 128-slice CT/CTA to MRI/MRA to detect radiologic features of sCAD. Retrospective review of patients with suspected sCAD (n = 188) in a database of our Stroke center (2008-2014), who underwent CT/CTA and MRI/MRA on initial clinical work-up. A control group of 26 patients was added. All Images were evaluated concerning specific and sensitive radiological features for dissection by two experienced neuroradiologists. Imaging features were compared between the two modalities. Forty patients with 43 dissected arteries received both modalities (29 internal carotid arteries [ICAs] and 14 vertebral arteries [VAs]). All CADs were identified in CT/CTA and MRI/MRA. The features intimal flap, stenosis, and lumen irregularity appeared in both modalities. One high-grade stenosis was identified by CT/CTA that was expected occluded on MRI/MRA. Two MRI/MRA-confirmed pseudoaneurysms were missed by CT/CTA. None of the controls evidenced specific imaging signs for dissection. CT/CTA is a reliable and better available alternative to MRI/MRA for diagnosis of sCAD. CT/CTA should be used to complement MRI/MRA in cases where MRI/MRA suggests occlusion. Copyright © 2017 by the American Society of Neuroimaging.

  2. Does Low-Field Intraoperative Magnetic Resonance Improve the Results of Endoscopic Pituitary Surgery? Experience of the Implementation of a New Device in a Referral Center.

    PubMed

    García, Sergio; Reyes, Luis; Roldán, Pedro; Torales, Jorge; Halperin, Irene; Hanzu, Felicia; Langdon, Cristobal; Alobid, Isam; Enseñat, Joaquim

    2017-06-01

    To assess the contribution of low-field intraoperative magnetic resonance (iMRI) to endoscopic pituitary surgery. We analyzed a prospective series of patients undergoing endoscopic endonasal surgery for pituitary macroadenomas assisted with a low-field iMRI (PoleStarN30, 0.15 T [Medtronic]). Clinical, radiologic, and surgical variables were analyzed and compared with our fully endoscopic historic cohort operated on without iMRI assistance. A bibliographic review of pituitary surgery assisted with iMRI was conducted. Thirty patients (57% female; mean age, 55 years) were prospectively analyzed. The most frequent tumor subtype was nonfunctioning macroadenoma (50%). The average Knosp grade was 2.3 and mean tumor size was 18 mm. Surgical and positioning time were 102 and 47 minutes, respectively. Hospital stay and complication rates were similar to our historical cohort for pituitary surgery. Mean follow-up was 10 months. Complete resection (CR) was achieved in 83% of patients. Seven patients (23%) benefited from iMRI assistance and achieved a CR in their surgeries. All patients except 1 experienced hormonal activity remission. iMRI sensitivity and specificity was 0.8 and 1, respectively. Although not statistically significant, CR rates were globally 11.5% superior in iMRI series compared with our historical cohort. This difference was independent of cavernous sinus invasiveness grade (CR rate increased 12.5% for Knosp grade 0-2 and 8.1% for Knosp grade 3-4). Low-field iMRI is a useful and safe assistance even in advanced surgical techniques such as endoscopy. Its contribution is limited by the intrinsic features of the tumor. Further randomized studies are required to confirm the cost-effectiveness of iMRI in pituitary surgery. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Is Ultrasound As Useful As Metal Artifact Reduction Sequence Magnetic Resonance Imaging in Longitudinal Surveillance of Metal-on-Metal Hip Arthroplasty Patients?

    PubMed

    Kwon, Young-Min; Dimitriou, Dimitris; Liow, Ming Han Lincoln; Tsai, Tsung-Yuan; Li, Guoan

    2016-08-01

    Current guidelines recommend longitudinal monitoring of at-risk metal-on-metal (MoM) arthroplasty patients with cross-sectional imaging such as metal artifact reduction sequence (MARS) magnetic resonance imaging (MRI) or ultrasound. During follow-up evaluations, the clinical focus is on the relative interval changes in symptoms, radiographs, laboratory tests, and cross-sectional imaging modalities. Although MRI has the capacity for the detection of adverse local soft tissue reactions (ALTRs), the potential disadvantages of MARS MRI include the obscuration of periprosthetic tissues by metal artifacts and the cost. The aim of this study was to evaluate the diagnostic accuracy of ultrasound in comparison with MARS MRI in detecting ALTR in MoM patients during consecutive follow-up. Thirty-five MoM patients (42 hips) were recruited prospectively to evaluate the sensitivity and specificity of the ultrasound for detecting ALTR in relation to MARS MRI during 2 longitudinal follow-up scans. The agreement between ultrasound and MARS MRI in ALTR grade, size, and size change was calculated. At the initial evaluation and at the subsequent follow-up, ultrasound had a sensitivity of 81% and 86% and a specificity of 92% and 88%, respectively. At the follow-up evaluations, ultrasound was able to detect the "change" in the lesions size with -0.3 cm(2) average bias from the MARS MRI with higher agreement (k = 0.85) with MARS MRI compared to the initial evaluation in detecting any "change" in ALTR size or grade. Ultrasound detected the interval change in the ALTR size and grade with higher accuracy and higher agreement with MARS MRI compared with the initial evaluation, suggesting ultrasound is a valid and useful. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. A comparison of liver fat content as determined by magnetic resonance imaging-proton density fat fraction and MRS versus liver histology in non-alcoholic fatty liver disease.

    PubMed

    Idilman, Ilkay S; Keskin, Onur; Celik, Azim; Savas, Berna; Elhan, Atilla Halil; Idilman, Ramazan; Karcaaltincaba, Musturay

    2016-03-01

    Many imaging methods have been defined for quantification of hepatic steatosis in non-alcoholic fatty liver disease (NAFLD). However, studies comparing the efficiency of magnetic resonance imaging-proton density fat fraction (MRI-PDFF), magnetic resonance spectroscopy (MRS), and liver histology for quantification of liver fat content are limited. To compare the efficiency of MRI-PDFF and MRS in the quantification of liver fat content in individuals with NAFLD. A total of 19 NAFLD patients underwent MRI-PDFF, MRS, and liver biopsy for quantification of liver fat content. The MR examinations were performed on a 1.5 HDx MRI system. The MRI protocol included T1-independent volumetric multi-echo gradient-echo imaging with T2* correction and spectral fat modeling and MRS with STEAM technique. A close correlation was observed between liver MRI-PDFF- and histology- determined steatosis (r = 0.743, P < 0.001) and between liver MRS- and histology-determined steatosis (r = 0.712, P < 0.001), with no superiority between them (ƶ = 0.19, P = 0.849). For quantification of hepatic steatosis, a high correlation was observed between the two MRI methods (r = 0.986, P < 0.001). MRI-PDFF and MRS accurately differentiated moderate/severe steatosis from mild/no hepatic steatosis (P = 0.007 and 0.013, respectively), with no superiority between them (AUCMRI-PDFF = 0.881 ± 0.0856 versus AUCMRS = 0.857 ± 0.0924, P = 0.461). Both MRI-PDFF and MRS can be used for accurate quantification of hepatic steatosis. © The Foundation Acta Radiologica 2015.

  5. Characterization of Focal Liver Lesions using CEUS and MRI with Liver-Specific Contrast Media: Experience of a Single Radiologic Center.

    PubMed

    Beyer, Lukas Philipp; Wassermann, Florian; Pregler, Benedikt; Michalik, Katharina; Rennert, Janine; Wiesinger, Isabel; Stroszczynski, Christian; Wiggermann, Philipp; Jung, Ernst Michael

    2017-12-01

     The purpose of this study was to compare contrast-enhanced ultrasound (CEUS), magnetic resonance imaging (MRI) using liver-specific contrast agent and a combination of both for the characterization of focal liver lesions (FLL).  83 patients with both benign and malignant liver lesions were examined using CEUS and MRI after the intravenous administration of liver-specific contrast media. All patients had inconclusive results from prior imaging examinations. Histopathological specimens could be obtained in 53 patients. Ultrasound was performed using a multi-frequency curved probe (1 - 6 MHz) after the injection of 1 - 2.4 ml ultrasound contrast media. The sensitivity, specificity, positive predictive value and negative predictive value of CEUS, MRI and a combination of both (CEUS + MRI) were compared.  The sensitivity, specificity, positive and negative predictive values regarding lesion classification were 90.9 %, 70.6 %, 92.3 % and 66.6 %, respectively, for CEUS; 90.9 %, 82.4 %, 95.2 % and 70.0 %, respectively, for MRI; and 96.9 %, 70.6 %, 92.7 % and 85.7 % respectively, for CEUS + MRI. There were no statistically significant differences. 6 malignant lesions were missed using CEUS or MRI alone (false negatives). The use of both modalities combined reduced the false-negative results to 2.  CEUS and MRI with liver-specific contrast media are very reliable and of equal informative value in the characterization of focal liver lesions. The number of false-negative results can be decreased using a combination of the two methods. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Comparing consistency of R2* and T2*-weighted BOLD analysis of resting state fetal fMRI

    NASA Astrophysics Data System (ADS)

    Seshamani, Sharmishtaa; Blazejewska, Anna I.; Gatenby, Christopher; Mckown, Susan; Caucutt, Jason; Dighe, Manjiri; Studholme, Colin

    2015-03-01

    Understanding when and how resting state brain functional activity begins in the human brain is an increasing area of interest in both basic neuroscience and in the clinical evaluation of the brain during pregnancy and after premature birth. Although fMRI studies have been carried out on pregnant women since the 1990's, reliable mapping of brain function in utero is an extremely challenging problem due to the unconstrained fetal head motion. Recent studies have employed scrubbing to exclude parts of the time series and whole subjects from studies in order to control the confounds of motion. Fundamentally, even after correction of the location of signals due to motion, signal intensity variations are a fundamental limitation, due to coil sensitivity and spin history effects. An alternative technique is to use a more parametric MRI signal derived from multiple echoes that provides a level of independence from basic MRI signal variation. Here we examine the use of R2* mapping combined with slice based multi echo geometric distortion correction for in-utero studies. The challenges for R2* mapping arise from the relatively low signal strength of in-utero data. In this paper we focus on comparing activation detection in-utero using T2W and R2* approaches. We make use a subset of studies with relatively limited motion to compare the activation patterns without the additional confound of significant motion. Results at different gestational ages indicate comparable agreement in many activation patterns when limited motion is present, and the detection of some additional networks in the R2* data, not seen in the T2W results.

  7. Radiotherapy treatment planning: benefits of CT-MR image registration and fusion in tumor volume delineation.

    PubMed

    Djan, Igor; Petrović, Borislava; Erak, Marko; Nikolić, Ivan; Lucić, Silvija

    2013-08-01

    Development of imaging techniques, computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), made great impact on radiotherapy treatment planning by improving the localization of target volumes. Improved localization allows better local control of tumor volumes, but also minimizes geographical misses. Mutual information is obtained by registration and fusion of images achieved manually or automatically. The aim of this study was to validate the CT-MRI image fusion method and compare delineation obtained by CT versus CT-MRI image fusion. The image fusion software (XIO CMS 4.50.0) was applied to delineate 16 patients. The patients were scanned on CT and MRI in the treatment position within an immobilization device before the initial treatment. The gross tumor volume (GTV) and clinical target volume (CTV) were delineated on CT alone and on CT+MRI images consecutively and image fusion was obtained. Image fusion showed that CTV delineated on a CT image study set is mainly inadequate for treatment planning, in comparison with CTV delineated on CT-MRI fused image study set. Fusion of different modalities enables the most accurate target volume delineation. This study shows that registration and image fusion allows precise target localization in terms of GTV and CTV and local disease control.

  8. Repeated exposure of the developing rat brain to magnetic resonance imaging did not affect neurogenesis, cell death or memory function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Changlian; Department of Pediatrics, The Third Affiliated Hospital, Zhengzhou University; Gao, Jianfeng

    2011-01-07

    Research highlights: {yields} The effect of MRI on the developing brain is a matter of debate. {yields} Repeated exposure to MRI did not affect neurogenesis. {yields} Memory function was not affected by repeated MRI during development. {yields} Neither late gestation nor young postnatal brains were affected by MRI. {yields} Repeated MRI did not cause cell death in the neurogenic region of the hippocampus. -- Abstract: The effect of magnetic fields on the brain is a matter of debate. The objective of this study was to investigate whether repeated exposure to strong magnetic fields, such as during magnetic resonance imaging (MRI),more » could elicit changes in the developing rat brain. Embryonic day 15 (E15) and postnatal day 14 (P14) rats were exposed to MRI using a 7.05 T MR system. The animals were anesthetized and exposed for 35 min per day for 4 successive days. Control animals were anesthetized but no MRI was performed. Body temperature was maintained at 37 {sup o}C. BrdU was injected after each session (50 mg/kg). One month later, cell proliferation, neurogenesis and astrogenesis in the dentate gyrus were evaluated, revealing no effects of MRI, neither in the E15, nor in the P14 group. DNA damage in the dentate gyrus in the P14 group was evaluated on P18, 1 day after the last session, using TUNEL staining. There was no difference in the number of TUNEL-positive cells after MRI compared with controls, neither in mature neurons, nor in newborn progenitors (BrdU/TUNEL double-labeled cells). Novel object recognition was performed to assess memory function 1 month after MRI. There was no difference in the recognition index observed after MRI compared with the control rats, neither for the E15, nor for the P14 group. In conclusion, repeated exposure to MRI did not appear to affect neurogenesis, cell death or memory function in rats, neither in late gestation (E15-E18) nor in young postnatal (P14-P17) rats.« less

  9. SU-E-J-232: Feasibility of MRI-Based Preplan On Low Dose Rate Prostate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Y; Tward, J; Rassiah-Szegedi, P

    Purpose: To investigate the feasibility of using MRI-based preplan for low dose rate prostate brachytherapy. Methods: 12 patients who received transrectal ultrasound (TRUS) guided prostate brachytherapy with Pd-103 were retrospectively studied. Our care-standard of the TRUS-based preplan served as the control. One or more prostate T2-weighted wide and/or narrow-field of view MRIs obtained within the 3 months prior to the implant were imported into the MIM Symphony software v6.3 (MIM Software Inc., Cleveland, OH) for each patient. In total, 37 MRI preplans (10 different image sequences with average thickness of 4.8mm) were generated. The contoured prostate volume and the seedmore » counts required to achieve adequate dosimetric coverage from TRUS and MRI preplans were compared for each patient. The effects of different MRI sequences and image thicknesses were also investigated statistically using Student’s t-test. Lastly, the nomogram from the MRI preplan and TRUS preplan from our historical treatment data were compared. Results: The average prostate volume contoured on the TRUS and MRI were 26.6cc (range: 12.6∼41.3cc), and 27.4 cc (range: 14.3∼50.0cc), respectively. Axial MRI thicknesses (range: 3.5∼8.1mm) did not significantly affect the contoured volume or the number of seeds required on the preplan (R2 = 0.0002 and 0.0012, respectively). Four of the MRI sequences (AX-T2, AX-T2-Whole-Pelvis, AX-T2-FSE, and AXIALT2- Hi-Res) showed statistically significant better prostate volume agreement with TRUS than the other seven sequences (P <0.01). Nomogram overlay between the MRI and TRUS preplans showed good agreement; indicating volumes contoured on MRI preplan scan reliably predict how many seeds are needed for implant. Conclusion: Although MRI does not allow for determination of the actual implant geometry, it can give reliable volumes for seed ordering purposes. Our future work will investigate if MRI is sufficient to reliably replace TRUS preplanning in patients where preplan TRUS may be technically challenging.« less

  10. Quantitative assessment of the hepatic metabolic volume product in patients with diffuse hepatic steatosis and normal controls through use of FDG-PET and MR imaging: a novel concept.

    PubMed

    Bural, Gonca G; Torigian, Drew A; Burke, Anne; Houseni, Mohamed; Alkhawaldeh, Khaled; Cucchiara, Andrew; Basu, Sandip; Alavi, Abass

    2010-06-01

    The aim of this study was to compare hepatic standardized uptake values (SUVs) and hepatic metabolic volumetric products (HMVP) between patients of diffuse hepatic steatosis and control subjects with normal livers. Twenty-seven subjects were included in the study (13 men and 14 women; age range, 34-72 years). All had 18F-2-fluoro-2-D-deoxyglucose-positron emission tomography (FDG-PET) and magnetic resonance imaging (MRI) scans with an interscan interval of 0-5 months. Twelve of 27 subjects had diffuse hepatic steatosis on MRI. The remaining 15 were selected as age-matched controls based on normal liver parenchyma on MRI. Mean and maximum hepatic SUVs were calculated for both patient groups on FDG-PET images. Hepatic volumes were measured from MRI. HMVP in each subject was subsequently calculated by multiplication of hepatic volume by mean hepatic SUV. HMVPs as well as mean and maximum hepatic SUVs were compared between the two study groups. HMVPs, mean hepatic SUVs, and maximum hepatic SUVs were greater (statistically significant, p < 0.05) in subjects with diffuse hepatic steatosis compared to those in the control group. The increase in HMVP is the result of increased hepatic metabolic activity likely related to the diffuse hepatic steatosis. The active inflammatory process related to the diffuse hepatic steatosis is the probable explanation for the increase in hepatic metabolic activity on FDG-PET study.

  11. MRI assessment of local acute radiation syndrome.

    PubMed

    Weber-Donat, G; Amabile, J-C; Lahutte-Auboin, M; Potet, J; Baccialone, J; Bey, E; Teriitehau, C; Laroche, P

    2012-12-01

    To describe local acute radiation syndrome and its radiological imaging characteristics. We performed a retrospective study of patients who had suffered skin and deeper radiation damage who were investigated by magnetic resonance imaging (MRI). We compared the clinical findings, C-reactive protein (CRP) levels and MRI results. A total of 22 MRI examinations were performed between 2005 and 2010 in 7 patients; 6 patients had increased CRP levels and MRI abnormalities. They were treated by surgery and local cellular therapy. One patient had no CRP or MRI abnormalities, and had a spontaneous good outcome. Eighteen abnormal MR examinations demonstrated high STIR signal and/or abnormal enhancement in the dermis and muscle tissues. Three MRI examinations demonstrated skeletal abnormalities, consistent with radionecrosis. The four normal MRI examinations were associated only with minor clinical manifestations such as pain and pigmentation disorders. MRI seems to be a useful and promising imaging investigation in radiation burns management i.e. initial lesion evaluation, treatment evaluation and complication diagnosis. MRI findings correlated perfectly with clinical stage and no false negative examinations were obtained. In particular, the association between normal MRI and low CRP level seems to be related to good outcome without specific treatment. Local acute radiation syndrome (radioepidermitis) mainly affects the skin and superficial tissues. MRI findings correspond with clinical stage (with a strong negative predictive value). MRI outperformed X-ray examination for the diagnosis of bone radionecrosis. Diffusion-weighted imaging shows low ADC in bone and soft tissue necrosis. Perfusion sequence allows assessment of tissue microcirculation impairment.

  12. Routine clinical knee MR reports: comparison of diagnostic performance at 1.5 T and 3.0 T for assessment of the articular cartilage.

    PubMed

    Mandell, Jacob C; Rhodes, Jeffrey A; Shah, Nehal; Gaviola, Glenn C; Gomoll, Andreas H; Smith, Stacy E

    2017-11-01

    Accurate assessment of knee articular cartilage is clinically important. Although 3.0 Tesla (T) MRI is reported to offer improved diagnostic performance, literature regarding the clinical impact of MRI field strength is lacking. The purpose of this study is to compare the diagnostic performance of clinical MRI reports for assessment of cartilage at 1.5 and 3.0 T in comparison to arthroscopy. This IRB-approved retrospective study consisted of 300 consecutive knees in 297 patients who had routine clinical MRI and arthroscopy. Descriptions of cartilage from MRI reports of 165 knees at 1.5 T and 135 at 3.0 T were compared with arthroscopy. The sensitivity, specificity, percent of articular surfaces graded concordantly, and percent of articular surfaces graded within one grade of the arthroscopic grading were calculated for each articular surface at 1.5 and 3.0 T. Agreement between MRI and arthroscopy was calculated with the weighted-kappa statistic. Significance testing was performed utilizing the z-test after bootstrapping to obtain the standard error. The sensitivity, specificity, percent of articular surfaces graded concordantly, and percent of articular surfaces graded within one grade were 61.4%, 82.7%, 62.2%, and 77.5% at 1.5 T and 61.8%, 80.6%, 59.5%, and 75.6% at 3.0 T, respectively. The weighted kappa statistic was 0.56 at 1.5 T and 0.55 at 3.0 T. There was no statistically significant difference in any of these parameters between 1.5 and 3.0 T. Factors potentially contributing to the lack of diagnostic advantage of 3.0 T MRI are discussed.

  13. Accounting for the Confound of Meninges in Segmenting Entorhinal and Perirhinal Cortices in T1-Weighted MRI.

    PubMed

    Xie, Long; Wisse, Laura E M; Das, Sandhitsu R; Wang, Hongzhi; Wolk, David A; Manjón, Jose V; Yushkevich, Paul A

    2016-10-01

    Quantification of medial temporal lobe (MTL) cortices, including entorhinal cortex (ERC) and perirhinal cortex (PRC), from in vivo MRI is desirable for studying the human memory system as well as in early diagnosis and monitoring of Alzheimer's disease. However, ERC and PRC are commonly over-segmented in T1-weighted (T1w) MRI because of the adjacent meninges that have similar intensity to gray matter in T1 contrast. This introduces errors in the quantification and could potentially confound imaging studies of ERC/PRC. In this paper, we propose to segment MTL cortices along with the adjacent meninges in T1w MRI using an established multi-atlas segmentation framework together with super-resolution technique. Experimental results comparing the proposed pipeline with existing pipelines support the notion that a large portion of meninges is segmented as gray matter by existing algorithms but not by our algorithm. Cross-validation experiments demonstrate promising segmentation accuracy. Further, agreement between the volume and thickness measures from the proposed pipeline and those from the manual segmentations increase dramatically as a result of accounting for the confound of meninges. Evaluated in the context of group discrimination between patients with amnestic mild cognitive impairment and normal controls, the proposed pipeline generates more biologically plausible results and improves the statistical power in discriminating groups in absolute terms comparing to other techniques using T1w MRI. Although the performance of the proposed pipeline is inferior to that using T2-weighted MRI, which is optimized to image MTL sub-structures, the proposed pipeline could still provide important utilities in analyzing many existing large datasets that only have T1w MRI available.

  14. Impact of an Information Technology-Enabled Initiative on the Quality of Prostate Multiparametric MRI Reports

    PubMed Central

    Silveira, Patricia C.; Dunne, Ruth; Sainani, Nisha I.; Lacson, Ronilda; Silverman, Stuart G.; Tempany, Clare M.; Khorasani, Ramin

    2015-01-01

    Rationale and Objectives Assess the impact of implementing a structured report template and a computer-aided diagnosis (CAD) tool on the quality of prostate multiparametric MRI (mp-MRI) reports. Materials and Methods Institutional Review Board approval was obtained for this HIPAA-compliant study performed at an academic medical center. The study cohort included all prostate mp-MRI reports (n=385) finalized 6 months before and after implementation of a structured report template and a CAD tool (collectively the IT tools) integrated into the PACS workstation. Primary outcome measure was quality of prostate mp-MRI reports. An expert panel of our institution’s subspecialty trained abdominal radiologists defined prostate mp-MRI report quality as optimal, satisfactory or unsatisfactory based on documentation of 9 variables. Reports were reviewed to extract the predefined quality variables and determine whether the IT tools were used to create each report. Chi-square and Student’s t-tests were used to compare report quality before and after implementation of IT tools. Results The overall proportion of optimal or satisfactory reports increased from 29.8% (47/158) to 53.3% (121/227) (p<0.001) after implementing the IT tools. While the proportion of optimal or satisfactory reports increased among reports generated using at least one of the IT tools (47/158=[29.8%] vs. 105/161=[65.2%]; p<0.001), there was no change in quality among reports generated without use of the IT tools (47/158=[29.8%] vs. 16/66=[24.2%]; p=0.404). Conclusion The use of a structured template and CAD tool improved the quality of prostate mp-MRI reports compared to free-text report format and subjective measurement of contrast enhancement kinetic curve. PMID:25863794

  15. Quantitative correlational study of microbubble-enhanced ultrasound imaging and magnetic resonance imaging of glioma and early response to radiotherapy in a rat model.

    PubMed

    Yang, Chen; Lee, Dong-Hoon; Mangraviti, Antonella; Su, Lin; Zhang, Kai; Zhang, Yin; Zhang, Bin; Li, Wenxiao; Tyler, Betty; Wong, John; Wang, Ken Kang-Hsin; Velarde, Esteban; Zhou, Jinyuan; Ding, Kai

    2015-08-01

    Radiotherapy remains a major treatment method for malignant tumors. Magnetic resonance imaging (MRI) is the standard modality for assessing glioma treatment response in the clinic. Compared to MRI, ultrasound imaging is low-cost and portable and can be used during intraoperative procedures. The purpose of this study was to quantitatively compare contrast-enhanced ultrasound (CEUS) imaging and MRI of irradiated gliomas in rats and to determine which quantitative ultrasound imaging parameters can be used for the assessment of early response to radiation in glioma. Thirteen nude rats with U87 glioma were used. A small thinned skull window preparation was performed to facilitate ultrasound imaging and mimic intraoperative procedures. Both CEUS and MRI with structural, functional, and molecular imaging parameters were performed at preradiation and at 1 day and 4 days postradiation. Statistical analysis was performed to determine the correlations between MRI and CEUS parameters and the changes between pre- and postradiation imaging. Area under the curve (AUC) in CEUS showed significant difference between preradiation and 4 days postradiation, along with four MRI parameters, T2, apparent diffusion coefficient, cerebral blood flow, and amide proton transfer-weighted (APTw) (all p < 0.05). The APTw signal was correlated with three CEUS parameters, rise time (r = - 0.527, p < 0.05), time to peak (r = - 0.501, p < 0.05), and perfusion index (r = 458, p < 0.05). Cerebral blood flow was correlated with rise time (r = - 0.589, p < 0.01) and time to peak (r = - 0.543, p < 0.05). MRI can be used for the assessment of radiotherapy treatment response and CEUS with AUC as a new technique and can also be one of the assessment methods for early response to radiation in glioma.

  16. FIACH: A biophysical model for automatic retrospective noise control in fMRI.

    PubMed

    Tierney, Tim M; Weiss-Croft, Louise J; Centeno, Maria; Shamshiri, Elhum A; Perani, Suejen; Baldeweg, Torsten; Clark, Christopher A; Carmichael, David W

    2016-01-01

    Different noise sources in fMRI acquisition can lead to spurious false positives and reduced sensitivity. We have developed a biophysically-based model (named FIACH: Functional Image Artefact Correction Heuristic) which extends current retrospective noise control methods in fMRI. FIACH can be applied to both General Linear Model (GLM) and resting state functional connectivity MRI (rs-fcMRI) studies. FIACH is a two-step procedure involving the identification and correction of non-physiological large amplitude temporal signal changes and spatial regions of high temporal instability. We have demonstrated its efficacy in a sample of 42 healthy children while performing language tasks that include overt speech with known activations. We demonstrate large improvements in sensitivity when FIACH is compared with current methods of retrospective correction. FIACH reduces the confounding effects of noise and increases the study's power by explaining significant variance that is not contained within the commonly used motion parameters. The method is particularly useful in detecting activations in inferior temporal regions which have proven problematic for fMRI. We have shown greater reproducibility and robustness of fMRI responses using FIACH in the context of task induced motion. In a clinical setting this will translate to increasing the reliability and sensitivity of fMRI used for the identification of language lateralisation and eloquent cortex. FIACH can benefit studies of cognitive development in young children, patient populations and older adults. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Comparison of post-surgical MRI presentation of the pituitary gland and its hormonal function.

    PubMed

    Bladowska, Joanna; Sokolska, Violetta; Sozański, Tomasz; Bednarek-Tupikowska, Grażyna; Sąsiadek, Marek

    2010-01-01

    Post-surgical evaluation of the pituitary gland in MRI is difficult because of a change of anatomical conditions. It depends also on numerous other factors, including: size and expansion of a tumour before surgery, type of surgical access, quality and volume of filling material used and time of its resorption.The aim of the study was to compare MR image of the pituitary gland after surgery with clinical findings and to establish a correlation between MRI presentation of spared pituitary and its hormonal function. 124 patients after resection of pituitary adenomas - 409 MRI results in total - were studied. With a 1.5-T unit, T1-weighted sagittal and coronal, enhanced and unenhanced images were obtained. The pituitary gland seemed to be normal in MRI in 11 patients, 8 of them had completely regular pituitary function but in 3 of them we noticed a partial hypopituitarism. In 99 patients only a part of the pituitary gland was recognised, 53 of them had hypopituitarism but 46 of them were endocrinologically healthy. 14 patients seemed to have no persistent pituitary gland in MRI, in comparison to hormonal studies: there was panhypopituitarism in 6 and hypopituitarism in 8 cases. MRI presentation of post - surgical pituitary gland doesn't necessarily correlate with its hormonal function - there was a significant statistical difference. Some patients with partial pituitary seems normal hormonal function. In some cases the pituitary seem normal in MRI but these patients have hormonal disorders and need substitution therapy.

  18. Change in brain and lesion volumes after CEE therapies

    PubMed Central

    Espeland, Mark A.; Hogan, Patricia E.; Resnick, Susan M.; Bryan, R. Nick; Robinson, Jennifer G.; Goveas, Joseph S.; Davatzikos, Christos; Kuller, Lewis H.; Williamson, Jeff D.; Bushnell, Cheryl D.; Shumaker, Sally A.

    2014-01-01

    Objectives: To determine whether smaller brain volumes in older women who had completed Women's Health Initiative (WHI)-assigned conjugated equine estrogen–based hormone therapy (HT), reported by WHI Memory Study (WHIMS)-MRI, correspond to a continuing increased rate of atrophy an average of 6.1 to 7.7 years later in WHIMS-MRI2. Methods: A total of 1,230 WHI participants were contacted: 797 (64.8%) consented, and 729 (59%) were rescanned an average of 4.7 years after the initial MRI scan. Mean annual rates of change in total brain volume, the primary outcome, and rates of change in ischemic lesion volumes, the secondary outcome, were compared between treatment groups using mixed-effect models with adjustment for trial, clinical site, age, intracranial volumes, and time between MRI measures. Results: Total brain volume decreased an average of 3.22 cm3/y in the active arm and 3.07 cm3/y in the placebo arm (p = 0.53). Total ischemic lesion volumes increased in both arms at a rate of 0.12 cm3/y (p = 0.88). Conclusions: Conjugated equine estrogen–based postmenopausal HT, previously assigned at WHI baseline, did not affect rates of decline in brain volumes or increases in brain lesion volumes during the 4.7 years between the initial and follow-up WHIMS-MRI studies. Smaller frontal lobe volumes were observed as persistent group differences among women assigned to active HT compared with placebo. Women with a history of cardiovascular disease treated with active HT, compared with placebo, had higher rates of accumulation in white matter lesion volume and total brain lesion volume. Further study may elucidate mechanisms that explain these findings. PMID:24384646

  19. Comparative studies of brain activation with MEG and functional MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, J.S.; Aine, C.J.; Sanders, J.A.

    The past two years have witnessed the emergence of MRI as a functional imaging methodology. Initial demonstrations involved the injection of a paramagnetic contrast agent and required ultrafast echo planar imaging capability to adequately resolve the passage of the injected bolus. By measuring the local reduction in image intensity due to magnetic susceptibility, it was possible to calculate blood volume, which changes as a function of neural activation. Later developments have exploited endogenous contrast mechanisms to monitor changes in blood volume or in venous blood oxygen content. Recently, we and others have demonstrated that it is possible to make suchmore » measurements in a clinical imager, suggesting that the large installed base of such machines might be utilized for functional imaging. Although it is likely that functional MRI (fMRI) will subsume some of the clinical and basic neuroscience applications now touted for MEG, it is also clear that these techniques offer different largely complementary, capabilities. At the very least, it is useful to compare and cross-validate the activation maps produced by these techniques. Such studies will be valuable as a check on results of neuromagnetic distributed current reconstructions and will allow better characterization of the relationship between neurophysiological activation and associated hemodynamic changes. A more exciting prospect is the development of analyses that combine information from the two modalities to produce a better description of underlying neural activity than is possible with either technique in isolation. In this paper we describe some results from initial comparative studies and outline several techniques that can be used to treat MEG and fMRI data within a unified computational framework.« less

  20. Quantitative MRI for hepatic fat fraction and T2* measurement in pediatric patients with non-alcoholic fatty liver disease.

    PubMed

    Deng, Jie; Fishbein, Mark H; Rigsby, Cynthia K; Zhang, Gang; Schoeneman, Samantha E; Donaldson, James S

    2014-11-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in children. The gold standard for diagnosis is liver biopsy. MRI is a non-invasive imaging method to provide quantitative measurement of hepatic fat content. The methodology is particularly appealing for the pediatric population because of its rapidity and radiation-free imaging techniques. To develop a multi-point Dixon MRI method with multi-interference models (multi-fat-peak modeling and bi-exponential T2* correction) for accurate hepatic fat fraction (FF) and T2* measurements in pediatric patients with NAFLD. A phantom study was first performed to validate the accuracy of the MRI fat fraction measurement by comparing it with the chemical fat composition of the ex-vivo pork liver-fat homogenate. The most accurate model determined from the phantom study was used for fat fraction and T2* measurements in 52 children and young adults referred from the pediatric hepatology clinic with suspected or identified NAFLD. Separate T2* values of water (T2*W) and fat (T2*F) components derived from the bi-exponential fitting were evaluated and plotted as a function of fat fraction. In ten patients undergoing liver biopsy, we compared histological analysis of liver fat fraction with MRI fat fraction. In the phantom study the 6-point Dixon with 5-fat-peak, bi-exponential T2* modeling demonstrated the best precision and accuracy in fat fraction measurements compared with other methods. This model was further calibrated with chemical fat fraction and applied in patients, where similar patterns were observed as in the phantom study that conventional 2-point and 3-point Dixon methods underestimated fat fraction compared to the calibrated 6-point 5-fat-peak bi-exponential model (P < 0.0001). With increasing fat fraction, T2*W (27.9 ± 3.5 ms) decreased, whereas T2*F (20.3 ± 5.5 ms) increased; and T2*W and T2*F became increasingly more similar when fat fraction was higher than 15-20%. Histological fat fraction measurements in ten patients were highly correlated with calibrated MRI fat fraction measurements (Pearson correlation coefficient r = 0.90 with P = 0.0004). Liver MRI using multi-point Dixon with multi-fat-peak and bi-exponential T2* modeling provided accurate fat quantification in children and young adults with non-alcoholic fatty liver disease and may be used to screen at-risk or affected individuals and to monitor disease progress noninvasively.

  1. Progressive brain changes in children and adolescents with early-onset psychosis: A meta-analysis of longitudinal MRI studies.

    PubMed

    Fraguas, David; Díaz-Caneja, Covadonga M; Pina-Camacho, Laura; Janssen, Joost; Arango, Celso

    2016-06-01

    Studies on longitudinal brain volume changes in patients with early-onset psychosis (EOP) are particularly valuable for understanding the neurobiological basis of brain abnormalities associated with psychosis. However, findings have not been consistent across studies in this population. We aimed to conduct a meta-analysis on progressive brain volume changes in children and adolescents with EOP. A systematic literature search of magnetic resonance imaging (MRI) studies comparing longitudinal brain volume changes in children and adolescents with EOP and healthy controls was conducted. The annualized rates of relative change in brain volume by region of interest (ROI) were used as raw data for the meta-analysis. The effect of age, sex, duration of illness, and specific diagnosis on volume change was also evaluated. Five original studies with 156 EOP patients (mean age at baseline MRI in the five studies ranged from 13.3 to 16.6years, 67.31% males) and 163 age- and sex-matched healthy controls, with a mean duration of follow-up of 2.46years (range 2.02-3.40), were included. Frontal gray matter (GM) was the only region in which significant differences in volume change over time were found between patients and controls (Hedges' g -0.435, 95% confidence interval (CI): -0.678 to -0.193, p<0.001). Younger age at baseline MRI was associated with greater loss of temporal GM volume over time in patients as compared with controls (p=0.005). Within patients, a diagnosis of schizophrenia was related to greater occipital GM volume loss over time (p=0.001). Compared with healthy individuals, EOP patients show greater progressive frontal GM loss over the first few years after illness onset. Age at baseline MRI and diagnosis of schizophrenia appear to be significant moderators of particular specific brain volume changes. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Intersession reliability of fMRI activation for heat pain and motor tasks

    PubMed Central

    Quiton, Raimi L.; Keaser, Michael L.; Zhuo, Jiachen; Gullapalli, Rao P.; Greenspan, Joel D.

    2014-01-01

    As the practice of conducting longitudinal fMRI studies to assess mechanisms of pain-reducing interventions becomes more common, there is a great need to assess the test–retest reliability of the pain-related BOLD fMRI signal across repeated sessions. This study quantitatively evaluated the reliability of heat pain-related BOLD fMRI brain responses in healthy volunteers across 3 sessions conducted on separate days using two measures: (1) intraclass correlation coefficients (ICC) calculated based on signal amplitude and (2) spatial overlap. The ICC analysis of pain-related BOLD fMRI responses showed fair-to-moderate intersession reliability in brain areas regarded as part of the cortical pain network. Areas with the highest intersession reliability based on the ICC analysis included the anterior midcingulate cortex, anterior insula, and second somatosensory cortex. Areas with the lowest intersession reliability based on the ICC analysis also showed low spatial reliability; these regions included pregenual anterior cingulate cortex, primary somatosensory cortex, and posterior insula. Thus, this study found regional differences in pain-related BOLD fMRI response reliability, which may provide useful information to guide longitudinal pain studies. A simple motor task (finger-thumb opposition) was performed by the same subjects in the same sessions as the painful heat stimuli were delivered. Intersession reliability of fMRI activation in cortical motor areas was comparable to previously published findings for both spatial overlap and ICC measures, providing support for the validity of the analytical approach used to assess intersession reliability of pain-related fMRI activation. A secondary finding of this study is that the use of standard ICC alone as a measure of reliability may not be sufficient, as the underlying variance structure of an fMRI dataset can result in inappropriately high ICC values; a method to eliminate these false positive results was used in this study and is recommended for future studies of test–retest reliability. PMID:25161897

  3. Dual-TRACER: High resolution fMRI with constrained evolution reconstruction.

    PubMed

    Li, Xuesong; Ma, Xiaodong; Li, Lyu; Zhang, Zhe; Zhang, Xue; Tong, Yan; Wang, Lihong; Sen Song; Guo, Hua

    2018-01-01

    fMRI with high spatial resolution is beneficial for studies in psychology and neuroscience, but is limited by various factors such as prolonged imaging time, low signal to noise ratio and scarcity of advanced facilities. Compressed Sensing (CS) based methods for accelerating fMRI data acquisition are promising. Other advanced algorithms like k-t FOCUSS or PICCS have been developed to improve performance. This study aims to investigate a new method, Dual-TRACER, based on Temporal Resolution Acceleration with Constrained Evolution Reconstruction (TRACER), for accelerating fMRI acquisitions using golden angle variable density spiral. Both numerical simulations and in vivo experiments at 3T were conducted to evaluate and characterize this method. Results show that Dual-TRACER can provide functional images with a high spatial resolution (1×1mm 2 ) under an acceleration factor of 20 while maintaining hemodynamic signals well. Compared with other investigated methods, dual-TRACER provides a better signal recovery, higher fMRI sensitivity and more reliable activation detection. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Comparison of abdominal ultrasound and magnetic resonance imaging for detection of abdominal lymphadenopathy in dogs with metastatic apocrine gland adenocarcinoma of the anal sac.

    PubMed

    Anderson, C L; MacKay, C S; Roberts, G D; Fidel, J

    2015-06-01

    Imaging studies in humans with anal and rectal cancer indicate that magnetic resonance imaging (MRI) is a more sensitive technique than abdominal ultrasound (AUS) for the detection of abdominal lymphadenopathy. The purpose of this retrospective study was to directly compare the efficacy of these two techniques in detecting abdominal lymphadenopathy in dogs with apocrine gland adenocarcinoma of the anal sac (AGAAS). Six dogs with histologically confirmed AGAAS and histopathologic confirmation of metastasis to abdominal lymph nodes (LNs) had AUS and abdominal MRI. AUS identified lymphadenopathy in two of six dogs, whereas MRI identified lymphadenopathy in all the six dogs. Lymphadenopathy was predominantly sacral in location, with involvement of the medial iliac and hypogastric LNs in only two cases. These data suggest that MRI is more sensitive than AUS for detecting sacral abdominal lymphadenopathy in dogs with AGAAS. As such, MRI could be considered in any patient with AGAAS for initial staging of this disease. © 2013 Blackwell Publishing Ltd.

  5. Optimal gross tumor volume definition in lung-sparing intensity modulated radiotherapy for pleural mesothelioma: an in silico study.

    PubMed

    Botticella, Angela; Defraene, Gilles; Nackaerts, Kristiaan; Deroose, Christophe M; Coolen, Johan; Nafteux, Philippe; Peeters, Stephanie; Ricardi, Umberto; De Ruysscher, Dirk

    2016-12-01

    The gross tumor volume (GTV) definition for malignant pleural mesothelioma (MPM) is ill-defined. We therefore investigated which imaging modality is optimal: computed tomography (CT) with intravenous contrast (IVC), positron emission tomography-CT (PET/CT) or magnetic resonance imaging (MRI). Sixteen consecutive patients with untreated stage I-IV MPM were included. Patients with prior pleurodesis were excluded. CT with IVC, 18FDG-PET/CT and MRI (T2 and contrast-enhanced T1) were obtained. CT was rigidly co-registered with PET/CT and with MRI. Three sets of pleural GTVs were defined: GTV CT , GTV CT+PET/CT and GTV CT+MRI . Quantitative and qualitative evaluations of the contoured GTVs were performed. Compared to CT-based GTV definition, PET/CT identified additional tumor sites (defined as either separate nodules or greater extent of a known tumor) in 12/16 patients. Compared to either CT or PET/CT, MRI identified additional tumor sites in 15/16 patients (p = .7). The mean GTV CT , GTV CT+PET/CT and GTV CT+MRI [±standard deviation (SD)] were 630.1 cm 3 (±302.81), 640.23 cm 3 (±302.83) and 660.8 cm 3 (±290.8), respectively. Differences in mean volumes were not significant. The mean Jaccard Index was significantly lower in MRI-based contours versus all the others. As MRI identified additional pleural disease sites in the majority of patients, it may play a role in optimal target volume definition.

  6. Altered resting-state functional connectivity in post-traumatic stress disorder: a perfusion MRI study

    NASA Astrophysics Data System (ADS)

    Li, Baojuan; Liu, Jian; Liu, Yang; Lu, Hong-Bing; Yin, Hong

    2013-03-01

    The majority of studies on posttraumatic stress disorder (PTSD) so far have focused on delineating patterns of activations during cognitive processes. Recently, more and more researches have started to investigate functional connectivity in PTSD subjects using BOLD-fMRI. Functional connectivity analysis has been demonstrated as a powerful approach to identify biomarkers of different brain diseases. This study aimed to detect resting-state functional connectivity abnormities in patients with PTSD using arterial spin labeling (ASL) fMRI. As a completely non-invasive technique, ASL allows quantitative estimates of cerebral blood flow (CBF). Compared with BOLD-fMRI, ASL fMRI has many advantages, including less low-frequency signal drifts, superior functional localization, etc. In the current study, ASL images were collected from 10 survivors in mining disaster with recent onset PTSD and 10 survivors without PTSD. Decreased regional CBF in the right middle temporal gyrus, lingual gyrus, and postcentral gyrus was detected in the PTSD patients. Seed-based resting-state functional connectivity analysis was performed using an area in the right middle temporal gyrus as region of interest. Compared with the non-PTSD group, the PTSD subjects demonstrated increased functional connectivity between the right middle temporal gyrus and the right superior temporal gyrus, the left middle temporal gyrus. Meanwhile, decreased functional connectivity between the right middle temporal gyrus and the right postcentral gyrus, the right superior parietal lobule was also found in the PTSD patients. This is the first study which investigated resting-state functional connectivity in PTSD using ASL images. The results may provide new insight into the neural substrates of PTSD.

  7. A urinary biomarker-based risk score correlates with multiparametric MRI for prostate cancer detection.

    PubMed

    Hendriks, Rianne J; van der Leest, Marloes M G; Dijkstra, Siebren; Barentsz, Jelle O; Van Criekinge, Wim; Hulsbergen-van de Kaa, Christina A; Schalken, Jack A; Mulders, Peter F A; van Oort, Inge M

    2017-10-01

    Prostate cancer (PCa) diagnostics would greatly benefit from more accurate, non-invasive techniques for the detection of clinically significant disease, leading to a reduction of over-diagnosis and over-treatment. The aim of this study was to determine the association between a novel urinary biomarker-based risk score (SelectMDx), multiparametric MRI (mpMRI) outcomes, and biopsy results for PCa detection. This retrospective observational study used data from the validation study of the SelectMDx score, in which urine was collected after digital rectal examination from men undergoing prostate biopsies. A subset of these patients also underwent a mpMRI scan of the prostate. The indications for performing mpMRI were based on persistent clinical suspicion of PCa or local staging after PCa was found upon biopsy. All mpMRI images were centrally reviewed in 2016 by an experienced radiologist blinded for the urine test results and biopsy outcome. The PI-RADS version 2 was used. In total, 172 patients were included for analysis. Hundred (58%) patients had PCa detected upon prostate biopsy, of which 52 (52%) had high-grade disease correlated with a significantly higher SelectMDx score (P < 0.01). The median SelectMDx score was significantly higher in patients with a suspicious significant lesion on mpMRI compared to no suspicion of significant PCa (P < 0.01). For the prediction of mpMRI outcome, the area-under-the-curve of SelectMDx was 0.83 compared to 0.66 for PSA and 0.65 for PCA3. There was a positive association between SelectMDx score and the final PI-RADS grade. There was a statistically significant difference in SelectMDx score between PI-RADS 3 and 4 (P < 0.01) and between PI-RADS 4 and 5 (P < 0.01). The novel urinary biomarker-based SelectMDx score is a promising tool in PCa detection. This study showed promising results regarding the correlation between the SelectMDx score and mpMRI outcomes, outperforming PCA3. Our results suggest that this risk score could guide clinicians in identifying patients at risk for significant PCa and selecting patients for further radiological diagnostics to reduce unnecessary procedures. © 2017 Wiley Periodicals, Inc.

  8. Effortful Pitch Glide: A Potential New Exercise Evaluated by Dynamic MRI

    ERIC Educational Resources Information Center

    Miloro, Keri Vasquez; Pearson, William G., Jr.; Langmore, Susan E.

    2014-01-01

    Purpose: The purpose of this study was to compare the biomechanics of the effortful pitch glide (EPG) with swallowing using dynamic MRI. The EPG is a combination of a pitch glide and a pharyngeal squeeze maneuver for targeting laryngeal and pharyngeal muscles. The authors hypothesized that the EPG would elicit significantly greater structural…

  9. Automatic and Reproducible Positioning of Phase-Contrast MRI for the Quantification of Global Cerebral Blood Flow

    PubMed Central

    Liu, Peiying; Lu, Hanzhang; Filbey, Francesca M.; Pinkham, Amy E.; McAdams, Carrie J.; Adinoff, Bryon; Daliparthi, Vamsi; Cao, Yan

    2014-01-01

    Phase-Contrast MRI (PC-MRI) is a noninvasive technique to measure blood flow. In particular, global but highly quantitative cerebral blood flow (CBF) measurement using PC-MRI complements several other CBF mapping methods such as arterial spin labeling and dynamic susceptibility contrast MRI by providing a calibration factor. The ability to estimate blood supply in physiological units also lays a foundation for assessment of brain metabolic rate. However, a major obstacle before wider applications of this method is that the slice positioning of the scan, ideally placed perpendicular to the feeding arteries, requires considerable expertise and can present a burden to the operator. In the present work, we proposed that the majority of PC-MRI scans can be positioned using an automatic algorithm, leaving only a small fraction of arteries requiring manual positioning. We implemented and evaluated an algorithm for this purpose based on feature extraction of a survey angiogram, which is of minimal operator dependence. In a comparative test-retest study with 7 subjects, the blood flow measurement using this algorithm showed an inter-session coefficient of variation (CoV) of . The Bland-Altman method showed that the automatic method differs from the manual method by between and , for of the CBF measurements. This is comparable to the variance in CBF measurement using manually-positioned PC MRI alone. In a further application of this algorithm to 157 consecutive subjects from typical clinical cohorts, the algorithm provided successful positioning in 89.7% of the arteries. In 79.6% of the subjects, all four arteries could be planned using the algorithm. Chi-square tests of independence showed that the success rate was not dependent on the age or gender, but the patients showed a trend of lower success rate (p = 0.14) compared to healthy controls. In conclusion, this automatic positioning algorithm could improve the application of PC-MRI in CBF quantification. PMID:24787742

  10. Value of Frequency Domain Resting-State Functional Magnetic Resonance Imaging Metrics Amplitude of Low-Frequency Fluctuation and Fractional Amplitude of Low-Frequency Fluctuation in the Assessment of Brain Tumor-Induced Neurovascular Uncoupling.

    PubMed

    Agarwal, Shruti; Lu, Hanzhang; Pillai, Jay J

    2017-08-01

    The aim of this study was to explore whether the phenomenon of brain tumor-related neurovascular uncoupling (NVU) in resting-state blood oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI) (rsfMRI) may also affect the resting-state fMRI (rsfMRI) frequency domain metrics the amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF). Twelve de novo brain tumor patients, who underwent clinical fMRI examinations, including task-based fMRI (tbfMRI) and rsfMRI, were included in this Institutional Review Board-approved study. Each patient displayed decreased/absent tbfMRI activation in the primary ipsilesional (IL) sensorimotor cortex in the absence of a corresponding motor deficit or suboptimal task performance, consistent with NVU. Z-score maps for the motor tasks were obtained from general linear model analysis (reflecting motor activation vs. rest). Seed-based correlation analysis (SCA) maps of sensorimotor network, ALFF, and fALFF were calculated from rsfMRI data. Precentral and postcentral gyri in contralesional (CL) and IL hemispheres were parcellated using an automated anatomical labeling template for each patient. Region of interest (ROI) analysis was performed on four maps: tbfMRI, SCA, ALFF, and fALFF. Voxel values in the CL and IL ROIs of each map were divided by the corresponding global mean of ALFF and fALFF in the cortical brain tissue. Group analysis revealed significantly decreased IL ALFF (p = 0.02) and fALFF (p = 0.03) metrics compared with CL ROIs, consistent with similar findings of significantly decreased IL BOLD signal for tbfMRI (p = 0.0005) and SCA maps (p = 0.0004). The frequency domain metrics ALFF and fALFF may be markers of lesion-induced NVU in rsfMRI similar to previously reported alterations in tbfMRI activation and SCA-derived resting-state functional connectivity maps.

  11. Functional MRI follow-up study of language processes in healthy subjects and during recovery in a case of aphasia.

    PubMed

    Fernandez, Bruno; Cardebat, Dominique; Demonet, Jean-François; Joseph, Pierre Alain; Mazaux, Jean-Michel; Barat, Michel; Allard, Michèle

    2004-09-01

    The goal of this study was to develop a functional MRI (fMRI) paradigm robust and reproducible enough in healthy subjects to be adapted for a follow-up study aiming at evaluating the anatomical substratum of recovery in poststroke aphasia. Ten right-handed subjects were studied longitudinally using fMRI (7 of them being scanned twice) and compared with a patient with conduction aphasia during the first year of stroke recovery. Controls exhibited reproducible activation patterns between subjects and between sessions during language tasks. In contrast, the patient exhibited dynamic changes in brain activation pattern, particularly in the phonological task, during the 2 fMRI sessions. At 1 month after stroke, language homotopic right areas were recruited, whereas large perilesional left involvement occurred later (12 months). We first demonstrate intersubject robustness and intrasubject reproducibility of our paradigm in 10 healthy subjects and thus its validity in a patient follow-up study over a stroke recovery time course. Indeed, results suggest a spatiotemporal poststroke brain reorganization involving both hemispheres during the recovery course, with an early implication of a new contralateral functional neural network and a later implication of an ipsilateral one.

  12. Neural Correlates of Dream Lucidity Obtained from Contrasting Lucid versus Non-Lucid REM Sleep: A Combined EEG/fMRI Case Study

    PubMed Central

    Dresler, Martin; Wehrle, Renate; Spoormaker, Victor I.; Koch, Stefan P.; Holsboer, Florian; Steiger, Axel; Obrig, Hellmuth; Sämann, Philipp G.; Czisch, Michael

    2012-01-01

    Study Objectives: To investigate the neural correlates of lucid dreaming. Design: Parallel EEG/fMRI recordings of night sleep. Setting: Sleep laboratory and fMRI facilities. Participants: Four experienced lucid dreamers. Interventions: N/A. Measurements and Results: Out of 4 participants, one subject had 2 episodes of verified lucid REM sleep of sufficient length to be analyzed by fMRI. During lucid dreaming the bilateral precuneus, cuneus, parietal lobules, and prefrontal and occipito-temporal cortices activated strongly as compared with non-lucid REM sleep. Conclusions: In line with recent EEG data, lucid dreaming was associated with a reactivation of areas which are normally deactivated during REM sleep. This pattern of activity can explain the recovery of reflective cognitive capabilities that are the hallmark of lucid dreaming. Citation: Dresler M; Wehrle R; Spoormaker VI; Koch SP; Holsboer F; Steiger A; Obrig H; Sämann PG; Czisch M. Neural correlates of dream lucidity obtained from contrasting lucid versus non-lucid REM sleep: a combined EEG/fMRI case study. SLEEP 2012;35(7):1017–1020. PMID:22754049

  13. MRI/US fusion-guided prostate biopsy allows for equivalent cancer detection with significantly fewer needle cores in biopsy-naive men

    PubMed Central

    Yarlagadda, Vidhush K.; Lai, Win Shun; Gordetsky, Jennifer B.; Porter, Kristin K.; Nix, Jeffrey W.; Thomas, John V.; Rais-Bahrami, Soroush

    2018-01-01

    PURPOSE We aimed to investigate the efficiency and cancer detection of magnetic resonance imaging (MRI)/ultrasonography (US) fusion-guided prostate biopsy in a cohort of biopsy-naive men compared with standard-of-care systematic extended sextant transrectal ultrasonography (TRUS)-guided biopsy. METHODS From 2014 to 2016, 72 biopsy-naive men referred for initial prostate cancer evaluation who underwent MRI of the prostate were prospectively evaluated. Retrospective review was performed on 69 patients with lesions suspicious for malignancy who underwent MRI/US fusion-guided biopsy in addition to systematic extended sextant biopsy. Biometric, imaging, and pathology data from both the MRI-targeted biopsies and systematic biopsies were analyzed and compared. RESULTS There were no significant differences in overall prostate cancer detection when comparing MRI-targeted biopsies to standard systematic biopsies (P = 0.39). Furthermore, there were no significant differences in the distribution of severity of cancers based on grade groups in cases with cancer detection (P = 0.68). However, significantly fewer needle cores were taken during the MRI/US fusion-guided biopsy compared with systematic biopsy (63% less cores sampled, P < 0.001) CONCLUSION In biopsy-naive men, MRI/US fusion-guided prostate biopsy offers equal prostate cancer detection compared with systematic TRUS-guided biopsy with significantly fewer tissue cores using the targeted technique. This approach can potentially reduce morbidity in the future if used instead of systematic biopsy without sacrificing the ability to detect prostate cancer, particularly in cases with higher grade disease. PMID:29770762

  14. High MRI performance fluorescent mesoporous silica-coated magnetic nanoparticles for tracking neural progenitor cells in an ischemic mouse model

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Wang, Yao; Tang, Yaohui; Jiao, Zheng; Xie, Chengying; Zhang, Haijiao; Gu, Ping; Wei, Xunbin; Yang, Guo-Yuan; Gu, Hongchen; Zhang, Chunfu

    2013-05-01

    Multifunctional probes with high MRI sensitivity and high efficiency for cell labeling are desirable for MR cell imaging. Herein, we have fabricated fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs) for neural progenitor cell (C17.2) MR imaging. FmSiO4@SPIONs were discrete and uniform in size, and had a clear core-shell structure. The magnetic core size was about 10 nm and the fluorescent mesoporous silica coating layer was around 20 nm. Compared with fluorescent dense silica-coated SPIONs (fdSiO4@SPIONs) with a similar size, fmSiO4@SPIONs demonstrated higher MR sensitivity and cell labeling efficiency. When implanted into the right hemisphere of stroke mice, contralateral to the ischemic territory, a small amount of labeled cells were able to be tracked migrating to the lesion sites using a clinical MRI scanner (3 T). More impressively, even when administered intravenously, the labeled cells could also be monitored homing to the ischemic area. MRI observations were corroborated by histological studies of the brain tissues. Our study demonstrated that fmSiO4@SPIONs are highly effective for cell imaging and hold great promise for MRI cell tracking in future.Multifunctional probes with high MRI sensitivity and high efficiency for cell labeling are desirable for MR cell imaging. Herein, we have fabricated fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs) for neural progenitor cell (C17.2) MR imaging. FmSiO4@SPIONs were discrete and uniform in size, and had a clear core-shell structure. The magnetic core size was about 10 nm and the fluorescent mesoporous silica coating layer was around 20 nm. Compared with fluorescent dense silica-coated SPIONs (fdSiO4@SPIONs) with a similar size, fmSiO4@SPIONs demonstrated higher MR sensitivity and cell labeling efficiency. When implanted into the right hemisphere of stroke mice, contralateral to the ischemic territory, a small amount of labeled cells were able to be tracked migrating to the lesion sites using a clinical MRI scanner (3 T). More impressively, even when administered intravenously, the labeled cells could also be monitored homing to the ischemic area. MRI observations were corroborated by histological studies of the brain tissues. Our study demonstrated that fmSiO4@SPIONs are highly effective for cell imaging and hold great promise for MRI cell tracking in future. Electronic supplementary information (ESI) available: Details of cell internalization of fmSiO4@SPIONs compared with SHU555A, immunofluorescence image of the immature phenotype of labeled C17.2. See DOI: 10.1039/c3nr00119a

  15. Delayed clearance of cerebrospinal fluid tracer from entorhinal cortex in idiopathic normal pressure hydrocephalus: A glymphatic magnetic resonance imaging study.

    PubMed

    Eide, Per K; Ringstad, Geir

    2018-01-01

    The glymphatic system plays a key role for clearance of waste solutes from the rodent brain. We recently found evidence of glymphatic circulation in the human brain when using magnetic resonance imaging (MRI) contrast agent as cerebrospinal fluid (CSF) tracer in conjunction with multiple MRI acquisitions (gMRI). The present study explored the hypothesis that reduced glymphatic clearance in entorhinal cortex (ERC) may be instrumental in idiopathic normal pressure hydrocephalus (iNPH) dementia. gMRI acquisitions were obtained over a 24-48 h time span in cognitively affected iNPH patients and non-cognitively affected patients with suspected CSF leaks. The CSF tracer enrichment was determined as changes in normalized MRI T1 signal units. The study included 30 patients with iNPH and 8 individuals with suspected CSF leaks (i.e. reference individuals). Compared to reference individuals, iNPH patients presented with higher medial temporal lobe atrophy score and Evan's index and inferior ERC thickness. We found delayed clearance of the intrathecal CSF tracer gadobutrol from CSF, the ERC and adjacent white matter, suggesting impaired glymphatic circulation. Reduced clearance and accumulation of toxic waste product such as amyloid-β may be a mechanism behind dementia in iNPH. Glymphatic MRI (gMRI) may become a tool for assessment of early dementia.

  16. Quantitative assessment of atherosclerotic plaques on (18)F-FDG PET/MRI: comparison with a PET/CT hybrid system.

    PubMed

    Li, Xiang; Heber, Daniel; Rausch, Ivo; Beitzke, Dietrich; Mayerhoefer, Marius E; Rasul, Sazan; Kreissl, Michael; Mitthauser, Markus; Wadsak, Wolfgang; Hartenbach, Markus; Haug, Alexander; Zhang, Xiaoli; Loewe, Christian; Beyer, Thomas; Hacker, Marcus

    2016-07-01

    PET with (18)F-FDG has the potential to assess vascular macrophage metabolism. (18)F-FDG is most often used in combination with contrast-enhanced CT to localize increased metabolism to specific arterial lesions. Novel (18)F-FDG PET/MRI hybrid imaging shows high potential for the combined evaluation of atherosclerotic plaques, due to the superior morphological conspicuity of plaque lesions. The purpose of this study was to evaluate the reliability and accuracy of (18)F-FDG PET/MRI uptake quantification compared to PET/CT as a reference standard in patients with carotid atherosclerotic plaques. The study group comprised 34 consecutive oncological patients with carotid plaques who underwent both PET/CT and PET/MRI with (18)F-FDG on the same day. The presence of atherosclerotic plaques was confirmed by 3 T MRI scans. Maximum standardized uptake values (SUVmax) for carotid plaque lesions and the average SUV of the blood pool within the adjacent internal jugular vein were determined and target-to-blood ratios (TBRs, plaque to blood pool) were calculated. Atherosclerotic lesions with maximum colocalized focal FDG uptake were assessed in each patient. SUVmax values of carotid plaque lesions were significantly lower on PET/MRI than on PET/CT (2.3 ± 0.6 vs. 3.1 ± 0.6; P < 0.01), but were significantly correlated between PET/CT and PET/MRI (Spearman's r = 0.67, P < 0.01). In contrast, TBRmax values of plaque lesions were similar on PET/MRI and on PET/CT (2.2 ± 0.3 vs. 2.2 ± 0.3; P = 0.4), and again were significantly correlated between PET/MRI and PET/CT (Spearman's r = 0.73, P < 0.01). Considering the increasing trend in SUVmax and TBRmax values from early to delayed imaging time-points on PET/CT and PET/MRI, respectively, with continuous clearance of radioactivity from the blood, a slight underestimation of TBRmax values may also be expected with PET/MRI compared with PET/CT. SUVmax and TBRmax values are widely accepted reference parameters for estimation of the radioactivity of atherosclerotic plaques on PET/CT. However, due to a systematic underestimation of SUVmax and TBRmax with PET/MRI, the optimal cut-off values indicating the presence of inflamed plaque tissue need to be newly defined for PET/MRI.

  17. 3.0 Tesla breast magnetic resonance imaging in patients with nipple discharge when mammography and ultrasound fail.

    PubMed

    Lubina, Nóra; Schedelbeck, Ulla; Roth, Anne; Weng, Andreas Max; Geissinger, Eva; Hönig, Arnd; Hahn, Dietbert; Bley, Thorsten Alexander

    2015-05-01

    To compare 3.0 Tesla breast magnetic resonance imaging (MRI) with galactography for detection of benign and malignant causes of nipple discharge in patients with negative mammography and ultrasound. We prospectively evaluated 56 breasts of 50 consecutive patients with nipple discharge who had inconspicuous mammography and ultrasound, using 3.0 Tesla breast MRI with a dedicated 16-channel breast coil, and then compared the results with galactography. Histopathological diagnoses and follow-ups were used as reference standard. Lesion size estimated on MRI was compared with the size at histopathology. Sensitivity and specificity of MRI vs. galactography for detecting pathologic findings were 95.7 % vs. 85.7 % and 69.7 % vs. 33.3 %, respectively. For the supposed concrete pathology based on MRI findings, the specificity was 67.6 % and the sensitivity 77.3 % (PPV 60.7 %, NPV 82.1 %). Eight malignant lesions were detected (14.8 %). The estimated size at breast MRI showed excellent correlation with the size at histopathology (Pearson's correlation coefficient 0.95, p < 0.0001). MRI of the breast at 3.0 Tesla is an accurate imaging test and can replace galactography in the workup of nipple discharge in patients with inconspicuous mammography and ultrasound. • Breast MRI is an excellent diagnostic tool for patients with nipple discharge. • MRI of the breast reveals malignant lesions despite inconspicuous mammography and ultrasound. • MRI of the breast has greater sensitivity and specificity than galactography. • Excellent correlation of lesion size measured at MRI and histopathology was found.

  18. Comparison of endorectal coil and nonendorectal coil T2W and diffusion-weighted MRI at 3 Tesla for localizing prostate cancer: correlation with whole-mount histopathology.

    PubMed

    Turkbey, Baris; Merino, Maria J; Gallardo, Elma Carvajal; Shah, Vijay; Aras, Omer; Bernardo, Marcelino; Mena, Esther; Daar, Dagane; Rastinehad, Ardeshir R; Linehan, W Marston; Wood, Bradford J; Pinto, Peter A; Choyke, Peter L

    2014-06-01

    To compare utility of T2-weighted (T2W) MRI and diffusion-weighted MRI (DWI-MRI) obtained with and without an endorectal coil at 3 Tesla (T) for localizing prostate cancer. This Institutional Review Board-approved study included 20 patients (median prostate-specific antigen, 8.4 ng/mL). Patients underwent consecutive prostate MRIs at 3T, first with a surface coil alone, then with combination of surface, endorectal coils (dual coil) followed by robotic assisted radical prostatectomy. Lesions were mapped at time of acquisition on dual-coil T2W, DWI-MRI. To avoid bias, 6 months later nonendorectal coil T2W, DWI-MRI were mapped. Both MRI evaluations were performed by two readers blinded to pathology with differences resolved by consensus. A lesion-based correlation with whole-mount histopathology was performed. At histopathology 51 cancer foci were present ranging in size from 2 to 60 mm. The sensitivity of the endorectal dual-coil, nonendorectal coil MRIs were 0.76, 0.45, respectively. PPVs for endorectal dual-coil, nonendorectal coil MRI were 0.80, 0.64, respectively. Mean size of detected lesions with nonendorectal coil MRI were larger than those detected by dual-coil MRI (22 mm versus 17.4 mm). Dual-coil prostate MRI detected more cancer foci than nonendorectal coil MRI. While nonendorectal coil MRI is an attractive alternative, physicians performing prostate MRI should be aware of its limitations. Copyright © 2013 Wiley Periodicals, Inc.

  19. Altered functional connectivity in early Alzheimer's disease: a resting-state fMRI study.

    PubMed

    Wang, Kun; Liang, Meng; Wang, Liang; Tian, Lixia; Zhang, Xinqing; Li, Kuncheng; Jiang, Tianzi

    2007-10-01

    Previous studies have led to the proposal that patients with Alzheimer's disease (AD) may have disturbed functional connectivity between different brain regions. Furthermore, recent resting-state functional magnetic resonance imaging (fMRI) studies have also shown that low-frequency (<0.08 Hz) fluctuations (LFF) of the blood oxygenation level-dependent signals were abnormal in several brain areas of AD patients. However, few studies have investigated disturbed LFF connectivity in AD patients. By using resting-state fMRI, this study sought to investigate the abnormal functional connectivities throughout the entire brain of early AD patients, and analyze the global distribution of these abnormalities. For this purpose, the authors divided the whole brain into 116 regions and identified abnormal connectivities by comparing the correlation coefficients of each pair. Compared with healthy controls, AD patients had decreased positive correlations between the prefrontal and parietal lobes, but increased positive correlations within the prefrontal lobe, parietal lobe, and occipital lobe. The AD patients also had decreased negative correlations (closer to zero) between two intrinsically anti-correlated networks that had previously been found in the resting brain. By using resting-state fMRI, our results supported previous studies that have reported an anterior-posterior disconnection phenomenon and increased within-lobe functional connectivity in AD patients. In addition, the results also suggest that AD may disturb the correlation/anti-correlation effect in the two intrinsically anti-correlated networks. Wiley-Liss, Inc.

  20. Detection of adrenocorticotropin-secreting pituitary adenomas by magnetic resonance imaging in children and adolescents with cushing disease.

    PubMed

    Batista, Dalia; Courkoutsakis, Nickolas A; Oldfield, Edward H; Griffin, Kurt J; Keil, Meg; Patronas, Nickolas J; Stratakis, Constantine A

    2005-09-01

    We recently showed that pre- and postcontrast spoiled gradient-recalled acquisition in the steady-state (SPGR) was superior to conventional pre- and postcontrast T-1 weighted spin echo (SE) acquisition magnetic resonance imaging (MRI) for the diagnostic evaluation of pituitary tumors in adult patients. The present investigation assessed the use of SPGR vs. SE-MRI in the diagnostic evaluation of ACTH-secreting tumors in children and adolescents with Cushing disease. Data were analyzed retrospectively from a series of patients seen over 7 yr (1997-2004). The setting for this study was a tertiary care referral center. Thirty children with Cushing disease (13 females and 17 males with a mean age of 12 +/- 3 yr) were studied. Imaging results were compared with surgical and pathological findings and the clinical outcome. Twenty-eight patients had microadenomas, and two had macroadenomas; the latter were identified by both MRI techniques. Precontrast SE and SPGR-MRI identified four and six of the microadenomas, respectively. Postcontrast SPGR-MRI identified the location of the tumor in 18 of 28 patients, whereas postcontrast SE-MRI identified the location and accurately estimated the size of the tumor in only five patients (P < 0.001). We conclude that conventional MRI, even with contrast enhancement, mostly failed to identify ACTH-secreting microadenomas in children and adolescents with Cushing disease. Postcontrast SPGR-MRI was superior to SE-MRI and should be used in addition to conventional SE-MRI in the pituitary evaluation of children and adolescents with suspected Cushing disease.

  1. A new concept of a unified parameter management, experiment control, and data analysis in fMRI: application to real-time fMRI at 3T and 7T.

    PubMed

    Hollmann, M; Mönch, T; Mulla-Osman, S; Tempelmann, C; Stadler, J; Bernarding, J

    2008-10-30

    In functional MRI (fMRI) complex experiments and applications require increasingly complex parameter handling as the experimental setup usually consists of separated soft- and hardware systems. Advanced real-time applications such as neurofeedback-based training or brain computer interfaces (BCIs) may even require adaptive changes of the paradigms and experimental setup during the measurement. This would be facilitated by an automated management of the overall workflow and a control of the communication between all experimental components. We realized a concept based on an XML software framework called Experiment Description Language (EDL). All parameters relevant for real-time data acquisition, real-time fMRI (rtfMRI) statistical data analysis, stimulus presentation, and activation processing are stored in one central EDL file, and processed during the experiment. A usability study comparing the central EDL parameter management with traditional approaches showed an improvement of the complete experimental handling. Based on this concept, a feasibility study realizing a dynamic rtfMRI-based brain computer interface showed that the developed system in combination with EDL was able to reliably detect and evaluate activation patterns in real-time. The implementation of a centrally controlled communication between the subsystems involved in the rtfMRI experiments reduced potential inconsistencies, and will open new applications for adaptive BCIs.

  2. Evaluation of carotid stenosis with axial high-resolution black-blood MR imaging.

    PubMed

    U-King-Im, Jean M; Trivedi, Rikin A; Sala, Evis; Graves, Martin J; Gaskarth, Mathew; Higgins, Nicholas J; Cross, Justin C; Hollingworth, William; Coulden, Richard A; Kirkpatrick, Peter J; Antoun, Nagui M; Gillard, Jonathan H

    2004-07-01

    High-resolution axial black-blood MR imaging (BB MRI) has been shown to be able to characterise carotid plaque morphology. The aim of this study was to explore the accuracy of this technique in quantifying the severity of carotid stenosis. A prospective study of 54 patients with symptomatic carotid disease was conducted, comparing BB MRI to the gold standard, conventional digital subtraction X-ray angiography (DSA). The BB MRI sequence was a fast-spin echo acquisition (TE = 42 ms, ETL = 24, field of view = 100 x 100 mm, slice thickness = 3.0 mm) at 1.5 T using a custom-built phased-array coil. Linear measurements of luminal and outer carotid wall diameter were made directly from the axial BB MRI slices by three independent blinded readers and stenosis was calculated according to European Carotid Surgery Trial (ECST) criteria. There was good agreement between BB MRI and DSA (intraclass correlation = 0.83). Inter-observer agreement was good (average kappa = 0.77). BB MRI was accurate for detection of severe stenosis (> or = 80%) with sensitivity and specificity of 87 and 81%, respectively. Eight cases of "DSA-defined" moderate stenosis were overestimated as severe by BB MRI and this may be related to non-circular lumens. Axial imaging with BB MRI could potentially be used to provide useful information about severity of carotid stenosis. Copyright 2004 Springer-Verlag

  3. An Australian population study of factors associated with MRI patterns in cerebral palsy.

    PubMed

    Reid, Susan M; Dagia, Charuta D; Ditchfield, Michael R; Carlin, John B; Meehan, Elaine M; Reddihough, Dinah S

    2014-02-01

    The aim of this study was to describe the distribution of magnetic resonance imaging (MRI) patterns in a large population sample of children with cerebral palsy (CP) and to examine associations between MRI patterns, and antenatal and perinatal variables. Data were retrieved from the Victorian CP Register for 884 children (527 males, 357 females) born between 1999 and 2006. Postneonatal MRI was classified for 594 children. For 563 children (329 males, 234 females) for whom classification was to a single MRI pattern, the frequency of each variable was compared between patterns and with the population frequency. White matter injury was the most common MRI pattern (45%), followed by grey matter injury (14%), normal imaging (13%), malformations (10%), focal vascular insults (9%), and miscellaneous patterns (7%). Parity, birth gestation, level of neonatal care, Apgar score, and time to established respiration varied between MRI patterns (p<0.01). Nulliparity was most strongly associated with focal vascular insults, whereas multiparity was associated only with malformations. Grey matter injury was not associated with birth in a tertiary unit, but was strongly associated with severe perinatal compromise. The frequency of neonatal seizures and of nursery admissions was lowest among children with malformations. As known risk factors for CP are differentially associated with specific MRI patterns, future exploration of causal pathways might be facilitated when performed in pathogenically defined groups. © 2013 Mac Keith Press.

  4. Hepatopulmonary shunting on Tc99m-MAA liver mapping: correlation with dynamic cross-sectional imaging and description of different shunting patterns.

    PubMed

    Bermo, Mohammed; Matesan, Manuela C; Itani, Malak; Behnia, Fatemeh; Vesselle, Hubert J

    2018-04-09

    The purpose of the study was to correlate lung shunt fraction (LSF) calculated by intra-arterial injection of Technetium-99m (Tc-99m)-labeled macroaggregated albumin (MAA) in a hepatic artery branch with the presence of certain patterns of vascular shunts on dynamic CT or MRI of the liver. This retrospective study was approved by the institutional review board and informed consent was waived. We reviewed 523 MAA scans in 453 patients (301 men, 152 women) performed from July 2007 to June 2015 and their correlative cross-sectional imaging. Patterns of vascular shunts on dynamic CT or MRI performed within 3 months of the MAA study and that potentially divert hepatic arterial inflow to the systemic venous return were defined as "target shunts." Dynamic CT or MRI was classified into three groups with target shunt present, absent, or indeterminate. The mean LSF was compared across the first and second groups using paired t test. 342 CT and MRI studies met inclusion criteria: target shunts were present in 63 studies, absent in 271 studies, and 8 studies were indeterminate. When target shunts were visualized, the mean LSF on corresponding MAA scans was 12.9 ± 10.36% (95% CI 10.29-15.15%) compared to 4.3 ± 3.17% (95% CI 3.93-4.68%) when no target shunt was visualized. The difference was statistically significant (p value < 0.001). Identified target shunts were either direct (arteriohepatic venous shunt) or indirect (arterioportal shunt combined with a portosystemic shunt). Visualizing certain patterns of vascular shunting on a dynamic CT or MRI scan is associated with high LSF.

  5. Near-infrared spectroscopy versus magnetic resonance imaging to study brain perfusion in newborns with hypoxic-ischemic encephalopathy treated with hypothermia.

    PubMed

    Wintermark, P; Hansen, A; Warfield, S K; Dukhovny, D; Soul, J S

    2014-01-15

    The measurement of brain perfusion may provide valuable information for assessment and treatment of newborns with hypoxic-ischemic encephalopathy (HIE). While arterial spin labeled perfusion (ASL) magnetic resonance imaging (MRI) provides noninvasive and direct measurements of regional cerebral blood flow (CBF) values, it is logistically challenging to obtain. Near-infrared spectroscopy (NIRS) might be an alternative, as it permits noninvasive and continuous monitoring of cerebral hemodynamics and oxygenation at the bedside. The purpose of this study is to determine the correlation between measurements of brain perfusion by NIRS and by MRI in term newborns with HIE treated with hypothermia. In this prospective cohort study, ASL-MRI and NIRS performed during hypothermia were used to assess brain perfusion in these newborns. Regional cerebral blood flow (CBF) values, measured from 1-2 MRI scans for each patient, were compared to mixed venous saturation values (SctO2) recorded by NIRS just before and after each MRI. Analysis included groupings into moderate versus severe HIE based on their initial background pattern of amplitude-integrated electroencephalogram. Twelve concomitant recordings were obtained of seven neonates. Strong correlation was found between SctO2 and CBF in asphyxiated newborns with severe HIE (r=0.88; p value=0.0085). Moreover, newborns with severe HIE had lower CBF (likely lower oxygen supply) and extracted less oxygen (likely lower oxygen demand or utilization) when comparing SctO2 and CBF to those with moderate HIE. NIRS is an effective bedside tool to monitor and understand brain perfusion changes in term asphyxiated newborns, which in conjunction with precise measurements of CBF obtained by MRI at particular times, may help tailor neuroprotective strategies in term newborns with HIE. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Near-Infrared Spectroscopy versus Magnetic Resonance Imaging To Study Brain Perfusion in Newborns with Hypoxic-Ischemic Encephalopathy Treated with Hypothermia

    PubMed Central

    Wintermark, P.; Hansen, A.; Warfield, SK.; Dukhovny, D.; Soul, JS.

    2014-01-01

    Background The measurement of brain perfusion may provide valuable information for assessment and treatment of newborns with hypoxic-ischemic encephalopathy (HIE). While arterial spin labeled perfusion (ASL) magnetic resonance imaging (MRI) provides noninvasive and direct measurements of regional cerebral blood flow (CBF) values, it is logistically challenging to obtain. Near-infrared spectroscopy (NIRS) might be an alternative, as it permits noninvasive and continuous monitoring of cerebral hemodynamics and oxygenation at the bedside. Objective The purpose of this study is to determine the correlation between measurements of brain perfusion by NIRS and by MRI in term newborns with HIE treated with hypothermia. Design/Methods In this prospective cohort study, ASL-MRI and NIRS performed during hypothermia were used to assess brain perfusion in these newborns. Regional cerebral blood flow values (CBF), measured from 1–2 MRI scans for each patient, were compared to mixed venous saturation values (SctO2) recorded by NIRS just before and after each MRI. Analysis included groupings into moderate versus severe HIE based on their initial background pattern of amplitude-integrated electroencephalogram. Results Twelve concomitant recordings were obtained of seven neonates. Strong correlation was found between SctO2 and CBF in asphyxiated newborns with severe HIE (r = 0.88; p value = 0.0085). Moreover, newborns with severe HIE had lower CBF (likely lower oxygen supply) and extracted less oxygen (likely lower oxygen demand or utilization) when comparing SctO2 and CBF to those with moderate HIE. Conclusions NIRS is an effective bedside tool to monitor and understand brain perfusion changes in term asphyxiated newborns, which in conjunction with precise measurements of CBF obtained by MRI at particular times, may help tailor neuroprotective strategies in term newborns with HIE. PMID:23631990

  7. Specific Shoulder Pathoanatomy in Semiprofessional Water Polo Players

    PubMed Central

    Klein, Maria; Tarantino, Ignazio; Warschkow, René; Berger, Claus Joachim; Zdravkovic, Vilijam; Jost, Bernhard; Badulescu, Michael

    2014-01-01

    Background: Shoulders of throwing and swimming athletes are highly stressed joints that often show structural abnormalities on magnetic resonance imaging (MRI). However, while water polo players exhibit a combination of throwing and swimming movements, a specific pattern of pathological findings has not been described. Purpose: To assess specific MRI abnormalities in shoulders of elite water polo players and to compare these findings with a healthy control group. Study Design: Cross-sectional study; Level of evidence, 3. Methods: After performing a power analysis, volunteers were recruited for this study. Both shoulders of 28 semiprofessional water polo players and 15 healthy volunteers were assessed clinically (based on the Constant score) and had bilateral shoulder MRIs. The shoulders were clustered into 3 groups: 28 throwing and 28 nonthrowing shoulders of water polo athletes and 30 shoulders of healthy control subjects. Results: Twenty-eight male water polo players with an average age of 24 years and 15 healthy subjects (30 shoulders) with an average age of 31 years were examined. Compared with controls, significantly more MRI abnormalities in the water polo players' throwing shoulders could be found in the subscapularis, infraspinatus, and posterior labrum (P = .001, P = .024, and P = .041, respectively). Other structures showed no statistical differences between the 3 groups, including the supraspinatus tendon, which had abnormalities in 36% of throwing versus 32% of nonthrowing shoulders and 33% of control shoulders. All throwing shoulders showed abnormal findings in the MRI, but only 8 (29%) were symptomatic. Conclusion: The shoulders of semiprofessional water polo players demonstrated abnormalities in subscapularis and infraspinatus tendons that were not typical abnormalities for swimmers or throwing athletes. Clinical Relevance: The throwing shoulders of water polo players have specific MRI changes. Clinical symptoms do not correlate with the MRI findings. PMID:26535326

  8. Left-sided strokes are more often recognized than right-sided strokes: the Rotterdam study.

    PubMed

    Portegies, Marileen L P; Selwaness, Mariana; Hofman, Albert; Koudstaal, Peter J; Vernooij, Meike W; Ikram, M Arfan

    2015-01-01

    Left-sided strokes are reported to be more common than right-sided strokes, but it is unknown whether they occur more often or are simply recognized more easily by clinicians. In a large unselected community-dwelling population, we examined the frequency of clinical left- and right-sided strokes and transient ischemic attacks (TIAs) and compared it with the frequency of left- and right-sided infarcts on MRI. This study was conducted within the population-based Rotterdam Study. Between 1990 and 2012, 13 894 participants were followed up for first-ever stroke and TIA. MRI scans were performed within a random subgroup of 5081 persons and were rated for the presence of supratentorial cortical and lacunar infarcts. We compared frequencies of left- and right-sided strokes, TIAs, or MRI infarcts using binomial and Fisher exact tests. After a mean follow-up of 9.6 (±6.0) years, 1252 patients had a stroke, of which 704 were ischemic, and 799 participants had a TIA. Within the subgroup with MRI, we identified 673 infarcts. Ischemic strokes were more frequently left-sided (57.7%; 95% confidence interval, 53.7-61.6) than right-sided, similar to TIAs (57.8% left-sided; 53.4-62.3). In contrast, we found no left-right difference in distribution of infarcts on MRI (51.9% left-sided; 48.1-55.6). Clinical ischemic strokes and TIAs are more frequently left-sided than right-sided, whereas this difference is not present for infarcts on MRI. This suggests that left-sided strokes and TIAs are more easily recognized. Consequently, there should be more attention for symptoms of right-sided strokes and TIAs. © 2014 American Heart Association, Inc.

  9. Unimodal Versus Bimodal EEG-fMRI Neurofeedback of a Motor Imagery Task.

    PubMed

    Perronnet, Lorraine; Lécuyer, Anatole; Mano, Marsel; Bannier, Elise; Lotte, Fabien; Clerc, Maureen; Barillot, Christian

    2017-01-01

    Neurofeedback is a promising tool for brain rehabilitation and peak performance training. Neurofeedback approaches usually rely on a single brain imaging modality such as EEG or fMRI. Combining these modalities for neurofeedback training could allow to provide richer information to the subject and could thus enable him/her to achieve faster and more specific self-regulation. Yet unimodal and multimodal neurofeedback have never been compared before. In the present work, we introduce a simultaneous EEG-fMRI experimental protocol in which participants performed a motor-imagery task in unimodal and bimodal NF conditions. With this protocol we were able to compare for the first time the effects of unimodal EEG-neurofeedback and fMRI-neurofeedback versus bimodal EEG-fMRI-neurofeedback by looking both at EEG and fMRI activations. We also propose a new feedback metaphor for bimodal EEG-fMRI-neurofeedback that integrates both EEG and fMRI signal in a single bi-dimensional feedback (a ball moving in 2D). Such a feedback is intended to relieve the cognitive load of the subject by presenting the bimodal neurofeedback task as a single regulation task instead of two. Additionally, this integrated feedback metaphor gives flexibility on defining a bimodal neurofeedback target. Participants were able to regulate activity in their motor regions in all NF conditions. Moreover, motor activations as revealed by offline fMRI analysis were stronger during EEG-fMRI-neurofeedback than during EEG-neurofeedback. This result suggests that EEG-fMRI-neurofeedback could be more specific or more engaging than EEG-neurofeedback. Our results also suggest that during EEG-fMRI-neurofeedback, participants tended to regulate more the modality that was harder to control. Taken together our results shed first light on the specific mechanisms of bimodal EEG-fMRI-neurofeedback and on its added-value as compared to unimodal EEG-neurofeedback and fMRI-neurofeedback.

  10. Unimodal Versus Bimodal EEG-fMRI Neurofeedback of a Motor Imagery Task

    PubMed Central

    Perronnet, Lorraine; Lécuyer, Anatole; Mano, Marsel; Bannier, Elise; Lotte, Fabien; Clerc, Maureen; Barillot, Christian

    2017-01-01

    Neurofeedback is a promising tool for brain rehabilitation and peak performance training. Neurofeedback approaches usually rely on a single brain imaging modality such as EEG or fMRI. Combining these modalities for neurofeedback training could allow to provide richer information to the subject and could thus enable him/her to achieve faster and more specific self-regulation. Yet unimodal and multimodal neurofeedback have never been compared before. In the present work, we introduce a simultaneous EEG-fMRI experimental protocol in which participants performed a motor-imagery task in unimodal and bimodal NF conditions. With this protocol we were able to compare for the first time the effects of unimodal EEG-neurofeedback and fMRI-neurofeedback versus bimodal EEG-fMRI-neurofeedback by looking both at EEG and fMRI activations. We also propose a new feedback metaphor for bimodal EEG-fMRI-neurofeedback that integrates both EEG and fMRI signal in a single bi-dimensional feedback (a ball moving in 2D). Such a feedback is intended to relieve the cognitive load of the subject by presenting the bimodal neurofeedback task as a single regulation task instead of two. Additionally, this integrated feedback metaphor gives flexibility on defining a bimodal neurofeedback target. Participants were able to regulate activity in their motor regions in all NF conditions. Moreover, motor activations as revealed by offline fMRI analysis were stronger during EEG-fMRI-neurofeedback than during EEG-neurofeedback. This result suggests that EEG-fMRI-neurofeedback could be more specific or more engaging than EEG-neurofeedback. Our results also suggest that during EEG-fMRI-neurofeedback, participants tended to regulate more the modality that was harder to control. Taken together our results shed first light on the specific mechanisms of bimodal EEG-fMRI-neurofeedback and on its added-value as compared to unimodal EEG-neurofeedback and fMRI-neurofeedback. PMID:28473762

  11. Automated Registration of Sequential Breath-Hold Dynamic Contrast-Enhanced MRI Images: a Comparison of 3 Techniques

    PubMed Central

    Rajaraman, Sivaramakrishnan; Rodriguez, Jeffery J.; Graff, Christian; Altbach, Maria I.; Dragovich, Tomislav; Sirlin, Claude B.; Korn, Ronald L.; Raghunand, Natarajan

    2011-01-01

    Dynamic Contrast-Enhanced MRI (DCE-MRI) is increasingly in use as an investigational biomarker of response in cancer clinical studies. Proper registration of images acquired at different time-points is essential for deriving diagnostic information from quantitative pharmacokinetic analysis of these data. Motion artifacts in the presence of time-varying intensity due to contrast-enhancement make this registration problem challenging. DCE-MRI of chest and abdominal lesions is typically performed during sequential breath-holds, which introduces misregistration due to inconsistent diaphragm positions, and also places constraints on temporal resolution vis-à-vis free-breathing. In this work, we have employed a computer-generated DCE-MRI phantom to compare the performance of two published methods, Progressive Principal Component Registration and Pharmacokinetic Model-Driven Registration, with Sequential Elastic Registration (SER) to register adjacent time-sample images using a published general-purpose elastic registration algorithm. In all 3 methods, a 3-D rigid-body registration scheme with a mutual information similarity measure was used as a pre-processing step. The DCE-MRI phantom images were mathematically deformed to simulate misregistration which was corrected using the 3 schemes. All 3 schemes were comparably successful in registering large regions of interest (ROIs) such as muscle, liver, and spleen. SER was superior in retaining tumor volume and shape, and in registering smaller but important ROIs such as tumor core and tumor rim. The performance of SER on clinical DCE-MRI datasets is also presented. PMID:21531108

  12. Prostate cancer: role of pretreatment multiparametric 3-T MRI in predicting biochemical recurrence after radical prostatectomy.

    PubMed

    Park, Jung Jae; Kim, Chan Kyo; Park, Sung Yoon; Park, Byung Kwan; Lee, Hyun Moo; Cho, Seong Whi

    2014-05-01

    The purpose of this study is to retrospectively investigate whether pretreatment multiparametric MRI findings can predict biochemical recurrence in patients who underwent radical prostatectomy (RP) for localized prostate cancer. In this study, 282 patients with biopsy-proven prostate cancer who received RP underwent pretreatment MRI using a phased-array coil at 3 T, including T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and dynamic contrast-enhanced MRI (DCE-MRI). MRI variables included apparent tumor presence on combined imaging sequences, extracapsular extension, and tumor size on DWI or DCE-MRI. Clinical variables included baseline prostate-specific antigen (PSA) level, clinical stage, and Gleason score at biopsy. The relationship between clinical and imaging variables and biochemical recurrence was evaluated using Cox regression analysis. After a median follow-up of 26 months, biochemical recurrence developed in 61 patients (22%). Univariate analysis revealed that all the imaging and clinical variables were significantly associated with biochemical recurrence (p < 0.01). On multivariate analysis, however, baseline PSA level (p = 0.002), Gleason score at biopsy (p = 0.024), and apparent tumor presence on combined T2WI, DWI, and DCE-MRI (p = 0.047) were the only significant independent predictors of biochemical recurrence. Of the independent predictors, apparent tumor presence on combined T2WI, DWI, and DCE-MRI showed the highest hazard ratio (2.38) compared with baseline PSA level (hazard ratio, 1.05) and Gleason score at biopsy (hazard ratio, 1.34). The apparent tumor presence on combined T2WI, DWI, and DCE-MRI of pretreatment MRI is an independent predictor of biochemical recurrence after RP. This finding may be used to construct a predictive model for biochemical recurrence after surgery.

  13. Effects of resting state condition on reliability, trait specificity, and network connectivity of brain function measured with arterial spin labeled perfusion MRI.

    PubMed

    Li, Zhengjun; Vidorreta, Marta; Katchmar, Natalie; Alsop, David C; Wolf, Daniel H; Detre, John A

    2018-06-01

    Resting state fMRI (rs-fMRI) provides imaging biomarkers of task-independent brain function that can be associated with clinical variables or modulated by interventions such as behavioral training or pharmacological manipulations. These biomarkers include time-averaged regional brain function as manifested by regional cerebral blood flow (CBF) measured using arterial spin labeled (ASL) perfusion MRI and correlated temporal fluctuations of function across brain networks with either ASL or blood oxygenation level dependent (BOLD) fMRI. Resting-state studies are typically carried out using just one of several prescribed state conditions such as eyes closed (EC), eyes open (EO), or visual fixation on a cross-hair (FIX), which may affect the reliability and specificity of rs-fMRI. In this study, we collected test-retest ASL MRI data during 4 resting-state task conditions: EC, EO, FIX and PVT (low-frequency psychomotor vigilance task), and examined the effects of these task conditions on reliability and reproducibility as well as trait specificity of regional brain function. We also acquired resting-state BOLD fMRI under FIX and compared the network connectivity reliabilities between the four ASL conditions and the BOLD FIX condition. For resting-state ASL data, EC provided the highest CBF reliability, reproducibility, trait specificity, and network connectivity reliability, followed by EO, while FIX was lowest on all of these measures. PVT demonstrated lower CBF reliability, reproducibility and trait specificity than EO and EC. Overall network connectivity reliability was comparable between ASL and BOLD. Our findings confirm ASL CBF as a reliable, stable, and consistent measure of resting-state regional brain function and support the use of EC or EO over FIX and PVT as the resting-state condition. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Coregistration of Preoperative MRI with Ex Vivo Mesorectal Pathology Specimens to Spatially Map Post-treatment Changes in Rectal Cancer Onto In Vivo Imaging: Preliminary Findings.

    PubMed

    Antunes, Jacob; Viswanath, Satish; Brady, Justin T; Crawshaw, Benjamin; Ros, Pablo; Steele, Scott; Delaney, Conor P; Paspulati, Raj; Willis, Joseph; Madabhushi, Anant

    2018-07-01

    The objective of this study was to develop and quantitatively evaluate a radiology-pathology fusion method for spatially mapping tissue regions corresponding to different chemoradiation therapy-related effects from surgically excised whole-mount rectal cancer histopathology onto preoperative magnetic resonance imaging (MRI). This study included six subjects with rectal cancer treated with chemoradiation therapy who were then imaged with a 3-T T2-weighted MRI sequence, before undergoing mesorectal excision surgery. Excised rectal specimens were sectioned, stained, and digitized as two-dimensional (2D) whole-mount slides. Annotations of residual disease, ulceration, fibrosis, muscularis propria, mucosa, fat, inflammation, and pools of mucin were made by an expert pathologist on digitized slide images. An expert radiologist and pathologist jointly established corresponding 2D sections between MRI and pathology images, as well as identified a total of 10 corresponding landmarks per case (based on visually similar structures) on both modalities (five for driving registration and five for evaluating alignment). We spatially fused the in vivo MRI and ex vivo pathology images using landmark-based registration. This allowed us to spatially map detailed annotations from 2D pathology slides onto corresponding 2D MRI sections. Quantitative assessment of coregistered pathology and MRI sections revealed excellent structural alignment, with an overall deviation of 1.50 ± 0.63 mm across five expert-selected anatomic landmarks (in-plane misalignment of two to three pixels at 0.67- to 1.00-mm spatial resolution). Moreover, the T2-weighted intensity distributions were distinctly different when comparing fibrotic tissue to perirectal fat (as expected), but showed a marked overlap when comparing fibrotic tissue and residual rectal cancer. Our fusion methodology enabled successful and accurate localization of post-treatment effects on in vivo MRI. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  15. Utility of magnetic resonance imaging in diagnosing cervical spine injury in children with severe traumatic brain injury.

    PubMed

    Qualls, David; Leonard, Jeffrey R; Keller, Martin; Pineda, Jose; Leonard, Julie C

    2015-06-01

    Evaluation of children for cervical spine injuries (CSIs) after blunt trauma is complicated, particularly if the patient is unresponsive because of severe traumatic brain injury. Plain radiography and computed tomography (CT) are commonly used, but CT combined with magnetic resonance imaging (MRI) is still considered the gold standard in CSI detection. However, MRI is expensive and can delay cervical clearance. The purpose of this study is to determine the added benefit of MRI as an adjunct to CT in the clearance of children with severe head trauma. We performed a retrospective chart review of pediatric head trauma patients admitted to the pediatric intensive care unit at St. Louis Children's Hospital from 2002 to 2012. Patients who received both cervical spine CT and MRI and presented with a Glasgow Coma Scale score of 8 or lower were included in the study. Imaging was analyzed by two pediatric trauma subspecialists and classified as demonstrating "no injury," "stable injury," or "unstable injury." Results were compared, and discrepancies between CT and MRI findings were noted. A total of 1,196 head-injured children were admitted to the pediatric intensive care unit between January 2002 and December 2012. Sixty-three children underwent CT and MRI and met Glasgow Coma Scale criteria. Seven children were identified with negative CT and positive MRI findings, but none of these injuries were considered unstable by our criteria. Five children were determined to have unstable injuries, and all were detected on CT. The results of this study suggest that MRI does not detect unstable CSIs in the setting of negative CT imaging. Given the limited patient population for this study, further and more extensive studies investigating the utility of MRI in the head-injured pediatric patient are warranted. Diagnostic and care management study, level IV.

  16. Evaluation of dose delivery accuracy of gamma knife using MRI polymer gel dosimeter in an inhomogeneous phantom

    NASA Astrophysics Data System (ADS)

    Pourfallah T, A.; Alam N, Riahi; M, Allahverdi; M, Ay; M, Zahmatkesh

    2009-05-01

    Polymer gel dosimetry is still the only dosimetry method for directly measuring three-dimensional dose distributions. MRI Polymer gel dosimeters are tissue equivalent and can act as a phantom material. Because of high dose response sensitivity, the MRI was chosen as readout device. In this study dose profiles calculated with treatment-planning software (LGP) and measurements with the MR polymer gel dosimeter for single-shot irradiations were compared. A custom-built 16 cm diameter spherical plexiglas head phantom was used in this study. Inside the phantom, there is a cubic cutout for insertion of gel phantoms and another cutout for inserting the inhomogeneities. The phantoms were scanned with a 1.5T MRI (Siemens syngo MR 2004A 4VA25A) scanner. The multiple spin-echo sequence with 32 echoes was used for the MRI scans. Calibration relations between the spin-spin relaxation rate and the absorbed dose were obtained by using small cylindrical vials, which were filled with the PAGAT polymer gel from the same batch as for the spherical phantom. 1D and 2D data obtained using gel dosimeter for homogeneous and inhomogeneous phantoms were compared with dose obtained using LGP calculation. The distance between relative isodose curves obtained for homogeneous phantom and heterogeneous phantoms exceed the accepted total positioning error (>±2mm). The findings of this study indicate that dose measurement using PAGAT gel dosimeter can be used for verifying dose delivering accuracy in GK unit in presence of inhomogeneities.

  17. Cost Analysis of MRI Services in Iran: An Application of Activity Based Costing Technique

    PubMed Central

    Bayati, Mohsen; Mahboub Ahari, Alireza; Badakhshan, Abbas; Gholipour, Mahin; Joulaei, Hassan

    2015-01-01

    Background: Considerable development of MRI technology in diagnostic imaging, high cost of MRI technology and controversial issues concerning official charges (tariffs) have been the main motivations to define and implement this study. Objectives: The present study aimed to calculate the unit-cost of MRI services using activity-based costing (ABC) as a modern cost accounting system and to fairly compare calculated unit-costs with official charges (tariffs). Materials and Methods: We included both direct and indirect costs of MRI services delivered in fiscal year 2011 in Shiraz Shahid Faghihi hospital. Direct allocation method was used for distribution of overhead costs. We used micro-costing approach to calculate unit-cost of all different MRI services. Clinical cost data were retrieved from the hospital registering system. Straight-line method was used for depreciation cost estimation. To cope with uncertainty and to increase the robustness of study results, unit costs of 33 MRI services was calculated in terms of two scenarios. Results: Total annual cost of MRI activity center (AC) was calculated at USD 400,746 and USD 532,104 based on first and second scenarios, respectively. Ten percent of the total cost was allocated from supportive departments. The annual variable costs of MRI center were calculated at USD 295,904. Capital costs measured at USD 104,842 and USD 236, 200 resulted from the first and second scenario, respectively. Existing tariffs for more than half of MRI services were above the calculated costs. Conclusion: As a public hospital, there are considerable limitations in both financial and administrative databases of Shahid Faghihi hospital. Labor cost has the greatest share of total annual cost of Shahid Faghihi hospital. The gap between unit costs and tariffs implies that the claim for extra budget from health providers may not be relevant for all services delivered by the studied MRI center. With some adjustments, ABC could be implemented in MRI centers. With the settlement of a reliable cost accounting system such as ABC technique, hospitals would be able to generate robust evidences for financial management of their overhead, intermediate and final ACs. PMID:26715979

  18. Cost Analysis of MRI Services in Iran: An Application of Activity Based Costing Technique.

    PubMed

    Bayati, Mohsen; Mahboub Ahari, Alireza; Badakhshan, Abbas; Gholipour, Mahin; Joulaei, Hassan

    2015-10-01

    Considerable development of MRI technology in diagnostic imaging, high cost of MRI technology and controversial issues concerning official charges (tariffs) have been the main motivations to define and implement this study. The present study aimed to calculate the unit-cost of MRI services using activity-based costing (ABC) as a modern cost accounting system and to fairly compare calculated unit-costs with official charges (tariffs). We included both direct and indirect costs of MRI services delivered in fiscal year 2011 in Shiraz Shahid Faghihi hospital. Direct allocation method was used for distribution of overhead costs. We used micro-costing approach to calculate unit-cost of all different MRI services. Clinical cost data were retrieved from the hospital registering system. Straight-line method was used for depreciation cost estimation. To cope with uncertainty and to increase the robustness of study results, unit costs of 33 MRI services was calculated in terms of two scenarios. Total annual cost of MRI activity center (AC) was calculated at USD 400,746 and USD 532,104 based on first and second scenarios, respectively. Ten percent of the total cost was allocated from supportive departments. The annual variable costs of MRI center were calculated at USD 295,904. Capital costs measured at USD 104,842 and USD 236, 200 resulted from the first and second scenario, respectively. Existing tariffs for more than half of MRI services were above the calculated costs. As a public hospital, there are considerable limitations in both financial and administrative databases of Shahid Faghihi hospital. Labor cost has the greatest share of total annual cost of Shahid Faghihi hospital. The gap between unit costs and tariffs implies that the claim for extra budget from health providers may not be relevant for all services delivered by the studied MRI center. With some adjustments, ABC could be implemented in MRI centers. With the settlement of a reliable cost accounting system such as ABC technique, hospitals would be able to generate robust evidences for financial management of their overhead, intermediate and final ACs.

  19. Preoperative Assessment of Neural Elements in Lumbar Spinal Stenosis by Upright Magnetic Resonance Imaging: An Implication for Routine Practice?

    PubMed

    Lang, Gernot; Vicari, Marco; Siller, Alexander; Kubosch, Eva J; Hennig, Juergen; Südkamp, Norbert P; Izadpanah, Kaywan; Kubosch, David

    2018-04-06

    Introduction Lumbar spinal stenosis (LSS) is a kinetic-dependent disease typically aggravating during spinal loading. To date, assessment of LSS is usually performed with magnetic resonance imaging (MRI). However, conventional supine MRI is associated with significant drawbacks as it does not truly reflect physiological loads, experienced by discoligamentous structures during erect posture. Consequently, supine MRI often fails to reveal the source of pain and/or disability caused by LSS. The present study sought to assess neural dimensions via MRI in supine, upright, and upright-hyperlordotic position in order to evaluate the impact of patient positioning on neural narrowing. Therefore, radiological measures such as neuroforaminal dimensions, central canal volume, sagittal listhesis, and lumbar lordosis at spinal level L4/5 were extracted and stratified according to patient posture. Materials and methods Overall, 10 subjects were enclosed in this experimental study. MRI was performed in three different positions: (1) 0° supine (SP), (2) 80° upright (UP), and (3) 80° upright + hyperlordotic (HY) posture. Upright MRI was conducted utilizing a 0.25T open-configuration scanner equipped with a rotatable examination bed allowing for true standing MRI. Radiographic outcome of upright MRI imaging was extracted and evaluated according to patient positioning. Results Upright MRI-based assessment of neural dimensions was successfully accomplished in all subjects. Overall, radiographic parameters revealed a significant decrease of neural dimensions from supine to upright position: Specifically, mean foraminal area decreased from SP to UP by 13.3% (P ≤ 0.05) as well as from SP to HY position by 21% (P ≤ 0.05). Supplementation of hyperlordosis did not result in additional narrowing of neural elements (P ≥ 0.05). Furthermore, central canal volume revealed a decrease of 7% at HY and 8% at UP compared to SP position (P ≥ 0.05). Assessment of lumbar lordosis yielded in a significant increase when assessed at HY (+22.1%) or UP (+8.7%) compared to SP (P ≤ 0.05). Conclusions Our data suggest that neuroforaminal dimensions assessed by conventional supine MRI are potentially overestimated in patients with LSS. Especially, in patients having occult disease not visualized on conventional imaging modalities, upright MRI allows for a precise, clinically relevant, and at the same time non-invasive evaluation of neural elements in LSS when neural decompression is considered.

  20. Understanding disease processes in multiple sclerosis through magnetic resonance imaging studies in animal models

    PubMed Central

    Nathoo, Nabeela; Yong, V. Wee; Dunn, Jeff F.

    2014-01-01

    There are exciting new advances in multiple sclerosis (MS) resulting in a growing understanding of both the complexity of the disorder and the relative involvement of grey matter, white matter and inflammation. Increasing need for preclinical imaging is anticipated, as animal models provide insights into the pathophysiology of the disease. Magnetic resonance (MR) is the key imaging tool used to diagnose and to monitor disease progression in MS, and thus will be a cornerstone for future research. Although gadolinium-enhancing and T2 lesions on MRI have been useful for detecting MS pathology, they are not correlative of disability. Therefore, new MRI methods are needed. Such methods require validation in animal models. The increasing necessity for MRI of animal models makes it critical and timely to understand what research has been conducted in this area and what potential there is for use of MRI in preclinical models of MS. Here, we provide a review of MRI and magnetic resonance spectroscopy (MRS) studies that have been carried out in animal models of MS that focus on pathology. We compare the MRI phenotypes of animals and patients and provide advice on how best to use animal MR studies to increase our understanding of the linkages between MR and pathology in patients. This review describes how MRI studies of animal models have been, and will continue to be, used in the ongoing effort to understand MS. PMID:24936425

  1. Exploiting the wavelet structure in compressed sensing MRI.

    PubMed

    Chen, Chen; Huang, Junzhou

    2014-12-01

    Sparsity has been widely utilized in magnetic resonance imaging (MRI) to reduce k-space sampling. According to structured sparsity theories, fewer measurements are required for tree sparse data than the data only with standard sparsity. Intuitively, more accurate image reconstruction can be achieved with the same number of measurements by exploiting the wavelet tree structure in MRI. A novel algorithm is proposed in this article to reconstruct MR images from undersampled k-space data. In contrast to conventional compressed sensing MRI (CS-MRI) that only relies on the sparsity of MR images in wavelet or gradient domain, we exploit the wavelet tree structure to improve CS-MRI. This tree-based CS-MRI problem is decomposed into three simpler subproblems then each of the subproblems can be efficiently solved by an iterative scheme. Simulations and in vivo experiments demonstrate the significant improvement of the proposed method compared to conventional CS-MRI algorithms, and the feasibleness on MR data compared to existing tree-based imaging algorithms. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Detection of liver metastasis: is diffusion-weighted imaging needed in Gd-EOB-DTPA-enhanced MR imaging for evaluation of colorectal liver metastases?

    PubMed

    Tajima, Taku; Akahane, Masaaki; Takao, Hidemasa; Akai, Hiroyuki; Kiryu, Shigeru; Imamura, Hiroshi; Watanabe, Yasushi; Kokudo, Norihiro; Ohtomo, Kuni

    2012-10-01

    We compared diagnostic ability for detecting hepatic metastases between gadolinium ethoxy benzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) and diffusion-weighted imaging (DWI) on a 1.5-T system, and determined whether DWI is necessary in Gd-EOB-DTPA-enhanced MRI for diagnosing colorectal liver metastases. We assessed 29 consecutive prospectively enrolled patients with suspected metachronous colorectal liver metastases; all patients underwent surgery and had preoperative Gd-EOB-DTPA-enhanced MRI. Overall detection rate, sensitivity for detecting metastases and benign lesions, positive predictive value, and diagnostic accuracy (Az value) were compared among three image sets [unenhanced MRI (DWI set), Gd-EOB-DTPA-enhanced MRI excluding DWI (EOB set), and combined set]. Gd-EOB-DTPA-enhanced MRI yielded better overall detection rate (77.8-79.0 %) and sensitivity (87.1-89.4 %) for detecting metastases than the DWI set (55.9 % and 64.7 %, respectively) for one observer (P < 0.001). No statistically significant difference was seen between the EOB and combined sets, although several metastases were newly detected on additional DWI. Gd-EOB-DTPA-enhanced MRI yielded a better overall detection rate and higher sensitivity for detecting metastases compared with unenhanced MRI. Additional DWI may be able to reduce oversight of lesions in Gd-EOB-DTPA-enhanced 1.5-T MRI for detecting colorectal liver metastases.

  3. A Highly Sensitive X-ray Imaging Modality for Hepatocellular Carcinoma Detection in Vitro

    PubMed Central

    Rand, Danielle; Walsh, Edward G.; Derdak, Zoltan; Wands, Jack R.; Rose-Petruck, Christoph

    2015-01-01

    Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called Spatial Frequency Heterodyne Imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. In this study we use numerical processing to produce x-ray scatter images of Hepatocellular Carcinoma (HCC) labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and Magnetic Resonance Imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. As x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities. PMID:25559398

  4. A highly sensitive x-ray imaging modality for hepatocellular carcinoma detection in vitro

    DOE PAGES

    Rand, Danielle; Walsh, Edward G.; Derdak, Zoltan; ...

    2015-01-05

    Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called Spatial Frequency Heterodyne Imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. Here in this study we use numerical processing to produce x-ray scatter images ofmore » Hepatocellular Carcinoma (HCC) labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and Magnetic Resonance Imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. Lastly, as x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities.« less

  5. Error-related processing following severe traumatic brain injury: An event-related functional magnetic resonance imaging (fMRI) study

    PubMed Central

    Sozda, Christopher N.; Larson, Michael J.; Kaufman, David A.S.; Schmalfuss, Ilona M.; Perlstein, William M.

    2011-01-01

    Continuous monitoring of one’s performance is invaluable for guiding behavior towards successful goal attainment by identifying deficits and strategically adjusting responses when performance is inadequate. In the present study, we exploited the advantages of event-related functional magnetic resonance imaging (fMRI) to examine brain activity associated with error-related processing after severe traumatic brain injury (sTBI). fMRI and behavioral data were acquired while 10 sTBI participants and 12 neurologically-healthy controls performed a task-switching cued-Stroop task. fMRI data were analyzed using a random-effects whole-brain voxel-wise general linear model and planned linear contrasts. Behaviorally, sTBI patients showed greater error-rate interference than neurologically-normal controls. fMRI data revealed that, compared to controls, sTBI patients showed greater magnitude error-related activation in the anterior cingulate cortex (ACC) and an increase in the overall spatial extent of error-related activation across cortical and subcortical regions. Implications for future research and potential limitations in conducting fMRI research in neurologically-impaired populations are discussed, as well as some potential benefits of employing multimodal imaging (e.g., fMRI and event-related potentials) of cognitive control processes in TBI. PMID:21756946

  6. Error-related processing following severe traumatic brain injury: an event-related functional magnetic resonance imaging (fMRI) study.

    PubMed

    Sozda, Christopher N; Larson, Michael J; Kaufman, David A S; Schmalfuss, Ilona M; Perlstein, William M

    2011-10-01

    Continuous monitoring of one's performance is invaluable for guiding behavior towards successful goal attainment by identifying deficits and strategically adjusting responses when performance is inadequate. In the present study, we exploited the advantages of event-related functional magnetic resonance imaging (fMRI) to examine brain activity associated with error-related processing after severe traumatic brain injury (sTBI). fMRI and behavioral data were acquired while 10 sTBI participants and 12 neurologically-healthy controls performed a task-switching cued-Stroop task. fMRI data were analyzed using a random-effects whole-brain voxel-wise general linear model and planned linear contrasts. Behaviorally, sTBI patients showed greater error-rate interference than neurologically-normal controls. fMRI data revealed that, compared to controls, sTBI patients showed greater magnitude error-related activation in the anterior cingulate cortex (ACC) and an increase in the overall spatial extent of error-related activation across cortical and subcortical regions. Implications for future research and potential limitations in conducting fMRI research in neurologically-impaired populations are discussed, as well as some potential benefits of employing multimodal imaging (e.g., fMRI and event-related potentials) of cognitive control processes in TBI. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Technical Note: Building a combined cyclotron and MRI facility: Implications for interference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofman, Mark B. M.; Kuijer, Joost P. A.; Ridder, Jan Willem de

    2013-01-15

    Purpose: With the introduction of hybrid PET/MRI systems, it has become more likely that the cyclotron and MRI systems will be located close to each other. This study considered the interference between a cyclotron and a superconducting MRI system. Methods: Interactions between cyclotrons and MRIs are theoretically considered. The main interference is expected to be the perturbation of the magnetic field in the MRI due to switching on or off the magnetic field of the cyclotron. MR imaging is distorted by a dynamic spatial gradient of an external inplane magnetic field larger than 0.5-0.04 {mu}T/m, depending on the specific MRmore » application. From the design of a cyclotron, it is expected that the magnetic fringe field at large distances behaves as a magnetic dipolar field. This allows estimation of the full dipolar field and its spatial gradients from a single measurement. Around an 18 MeV cyclotron (Cyclone, IBA), magnetic field measurements were performed on 5 locations and compared with calculations based upon a dipolar field model. Results: At the measurement locations the estimated and measured values of the magnetic field component and its spatial gradients of the inplane component were compared, and found to agree within a factor 1.1 for the magnetic field and within a factor of 1.5 for the spatial gradients of the field. In the specific case of the 18 MeV cyclotron with a vertical magnetic field and a 3T superconducting whole body MR system, a minimum distance of 20 m has to be considered to prevent interference. Conclusions: This study showed that a dipole model is sufficiently accurate to predict the interference of a cyclotron on a MRI scanner, for site planning purposes. The cyclotron and a whole body MRI system considered in this study need to be placed more than 20 m apart, or magnetic shielding should be utilized.« less

  8. Superficial Fascia (SF) in the Cheek and Parotid Area: Histology and Magnetic Resonance Image (MRI).

    PubMed

    Hwang, Kun; Kim, Hun; Kim, Dae Joong; Kim, Yeo Ju; Kang, Young Hye

    2016-08-01

    The aim of this study is to compare the superficial fascia (SF) in the cheek and parotid areas histologically and through MRI. An in vitro study included a histological report and an MRI of the cheek of two Korean adult cadavers. The in vivo study included 100 MRI images and three axial image cuts (mandibular condyle, notch, and half the distance between the top of the condyle and the angle). Four angles, one length, and four thicknesses were measured and compared. The MRI results were in concord with the gross specimen or histology. The SF consisted of multilayered horizontal and vertical fibrous connective tissues at all three levels in both the histology and MRI. In the cheek, both histology and MRI showed horizontal fibrous connective tissues which were connected with the zygomaticus major, visualized as a continuous membrane (membranous layer, MSF). MSF divided the SF into the superficial fatty layer (SFS) and the deep fatty layer. The thickness of the SF depended upon the thickness of the SFS since the thickness of the MSF was very similar irrespective of the three levels. The thickness of the SFS was thicker in females than in males. At the condyle level, the AS-PS angle (AP line-the most posterior superficial fascia angle) and AS-PS length increased significantly (p = 0.001, y = 0.15x + 16.19, and p < 0.001, y = 0.33x + 14.68, respectively). We hope the information we have gathered could be useful to provide subcutaneous dissection or sub-SMAS dissection in facelift surgeries. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  9. fMRI activation in the middle frontal gyrus as an indicator of hemispheric dominance for language in brain tumor patients: a comparison with Broca's area

    PubMed Central

    Dong, Jian W.; Brennan, Nicole M. Petrovich; Izzo, Giana; Peck, Kyung K.; Holodny, Andrei I.

    2016-01-01

    Introduction Functional MRI (fMRI) can assess language lateralization in brain tumor patients; however, this can be limited if the primary language area—Broca's area (BA)—is affected by the tumor. We hypothesized that the middle frontal gyrus (MFG) can be used as a clinical indicator of hemispheric dominance for language during presurgical workup. Methods Fifty-two right-handed subjects with solitary left-hemispheric primary brain tumors were retrospectively studied. Subjects performed a verbal fluency task during fMRI. The MFG was compared to BA for fMRI voxel activation, language laterality index (LI), and the effect of tumor grade on the LI. Results Language fMRI (verbal fluency) activated more voxels in MFG than in BA (MFG = 315, BA = 216, p < 0.001). Voxel activations in the left-hemispheric MFG and BA were positively correlated (r = 0.69, p < 0.001). Mean LI in the MFG was comparable to that in BA (MFG = 0.48, BA = 0.39, p = 0.06). LIs in MFG and BA were positively correlated (r = 0.62, p < 0.001). Subjects with high-grade tumors demonstrate lower language lateralization than those with low-grade tumors in both BA and MFG (p = 0.02, p = 0.02, respectively). Conclusion MFG is comparable to BA in its ability to indicate hemispheric dominance for language using a measure of verbal fluency and may be an adjunct measure in the clinical determination of language laterality for presurgical planning. PMID:26847705

  10. fMRI activation in the middle frontal gyrus as an indicator of hemispheric dominance for language in brain tumor patients: a comparison with Broca's area.

    PubMed

    Dong, Jian W; Brennan, Nicole M Petrovich; Izzo, Giana; Peck, Kyung K; Holodny, Andrei I

    2016-05-01

    Functional MRI (fMRI) can assess language lateralization in brain tumor patients; however, this can be limited if the primary language area-Broca's area (BA)-is affected by the tumor. We hypothesized that the middle frontal gyrus (MFG) can be used as a clinical indicator of hemispheric dominance for language during presurgical workup. Fifty-two right-handed subjects with solitary left-hemispheric primary brain tumors were retrospectively studied. Subjects performed a verbal fluency task during fMRI. The MFG was compared to BA for fMRI voxel activation, language laterality index (LI), and the effect of tumor grade on the LI. Language fMRI (verbal fluency) activated more voxels in MFG than in BA (MFG = 315, BA = 216, p < 0.001). Voxel activations in the left-hemispheric MFG and BA were positively correlated (r = 0.69, p < 0.001). Mean LI in the MFG was comparable to that in BA (MFG = 0.48, BA = 0.39, p = 0.06). LIs in MFG and BA were positively correlated (r = 0.62, p < 0.001). Subjects with high-grade tumors demonstrate lower language lateralization than those with low-grade tumors in both BA and MFG (p = 0.02, p = 0.02, respectively). MFG is comparable to BA in its ability to indicate hemispheric dominance for language using a measure of verbal fluency and may be an adjunct measure in the clinical determination of language laterality for presurgical planning.

  11. Multiparametric MRI characterization and prediction in autism spectrum disorder using graph theory and machine learning.

    PubMed

    Zhou, Yongxia; Yu, Fang; Duong, Timothy

    2014-01-01

    This study employed graph theory and machine learning analysis of multiparametric MRI data to improve characterization and prediction in autism spectrum disorders (ASD). Data from 127 children with ASD (13.5±6.0 years) and 153 age- and gender-matched typically developing children (14.5±5.7 years) were selected from the multi-center Functional Connectome Project. Regional gray matter volume and cortical thickness increased, whereas white matter volume decreased in ASD compared to controls. Small-world network analysis of quantitative MRI data demonstrated decreased global efficiency based on gray matter cortical thickness but not with functional connectivity MRI (fcMRI) or volumetry. An integrative model of 22 quantitative imaging features was used for classification and prediction of phenotypic features that included the autism diagnostic observation schedule, the revised autism diagnostic interview, and intelligence quotient scores. Among the 22 imaging features, four (caudate volume, caudate-cortical functional connectivity and inferior frontal gyrus functional connectivity) were found to be highly informative, markedly improving classification and prediction accuracy when compared with the single imaging features. This approach could potentially serve as a biomarker in prognosis, diagnosis, and monitoring disease progression.

  12. The prognostic reliability of intracranial pressure monitoring and MRI data in severe traumatic brain injury.

    PubMed

    Woischneck, Dieter; Kapapa, Thomas

    2017-02-01

    The predictive quality of intracranial pressure (ICP) monitoring has for many years been a matter of debate. We correlate ICP data comparing MRI data with the outcome after severe traumatic brain injury to evaluate their prognostic potency. This study compares the results of ICP monitoring, MRI, coma duration and outcome according to Glasgow Outcome Scale obtained in 32 patients having suffered severe TBI. Level of significance was set to p≤0.05 in statistical tests. The MRI results were closely correlated with coma duration and Glasgow Outcome Scale, but the ICP measurements were not. With the exception of severe, bipontine lesions, there is no other region of the brain in which increased evidence of traumatogenic lesions emerges as the intracranial pressure rises. Just bipontine lesions that proof to be infaust correlate with elevated ICP values. ICP monitoring does not allow individual prognostic conclusions to be made. Implantation of an intracranial pressure sensor alone for making a prognostic estimate is not advisable. The use of intracranial pressure measurements in the retrospective appraisal of disease progress is highly problematic. However, MRI diagnostic in patients with severe TBI improves prognostic potency of clinical parameters. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. [Nuclear magnetic resonance tomography diagnosis of changes in the glenoid process in patients with unstable shoulder joints].

    PubMed

    Jerosch, J; Castro, W H; Assheuer, J

    1992-09-01

    In 4 fresh specimens and in 14 healthy volunteers we studied normal anatomy of the glenoid labrum by MRI. In a total of 124 patients we examined the shoulder joints by MRI. 69 patients had any kind of subacromial pathology. 55 patients showed a glenohumeral instability. All MRI findings were compared with the surgical findings during arthroscopy and during open surgery. 44 patients showed a recurrent anterior instability, 7 patients showed a multidirectional instability, 2 patients showed a posterior instability, and 2 patients presented acute anterior dislocation. We found significant variability in the labral shape as well as significant variability of anterior capsular attachment. The pathologic changes of the glenoid labrum were classified in four different types. In 78% we found a concomitant Hill-Sachs lesion of various diameter. 5 patients suffered from an additional complete rotator cuff tear. Compared to the intraoperative findings MRI had a sensitivity of 95%, a specificity of 94%, an accuracy of 94%, a positive predictive value of 91%, and a negative predictive value of 96% in detecting labral pathology. Presenting a high diagnostic value for detecting Bankart lesions, MRI may replace other diagnostic modalities like CT-arthrography.

  14. [Evaluation of cartilage defects in the knee: validity of clinical, magnetic-resonance-imaging and radiological findings compared with arthroscopy].

    PubMed

    Spahn, G; Wittig, R; Kahl, E; Klinger, H M; Mückley, T; Hofmann, G O

    2007-05-01

    The study was aimed to evaluate the validity of clinical, radiological and MRI examination for cartilage defects of the knee compared with arthroscopic finding. Seven-hundred seventy-two patients who were suffering from knee pain over more than 3 months were evaluated clinical (grinding-sign) and with radiography and magnetic resonance imaging (MRI) and subsequent arthroscopy. The grinding sign had a sensitivity of 0.39. The association of a positive grinding test with high grade cartilage defects was significant (p<0.000). In 97.4% an intact chondral surface correlated with a normal radiological finding. Subchondral sclerosis, exophytes and a joint space narrowing was significantly associated with high grade cartilage defects (p<0.000). The accuracy of MRI was 59.5%. The MRI resulted in an overestimation in 36.6% and an underestimation in 3.9%. False-positive results were significant more often assessed in low-grade cartilage defects (p<0.000). Clinical signs, x-ray imaging and MRI correlate with arthroscopic findings in cases of deep cartilage lesions. In intact or low-grade degenerated cartilage often results an overestimating of these findings.

  15. Comparison and analysis of nonlinear algorithms for compressed sensing in MRI.

    PubMed

    Yu, Yeyang; Hong, Mingjian; Liu, Feng; Wang, Hua; Crozier, Stuart

    2010-01-01

    Compressed sensing (CS) theory has been recently applied in Magnetic Resonance Imaging (MRI) to accelerate the overall imaging process. In the CS implementation, various algorithms have been used to solve the nonlinear equation system for better image quality and reconstruction speed. However, there are no explicit criteria for an optimal CS algorithm selection in the practical MRI application. A systematic and comparative study of those commonly used algorithms is therefore essential for the implementation of CS in MRI. In this work, three typical algorithms, namely, the Gradient Projection For Sparse Reconstruction (GPSR) algorithm, Interior-point algorithm (l(1)_ls), and the Stagewise Orthogonal Matching Pursuit (StOMP) algorithm are compared and investigated in three different imaging scenarios, brain, angiogram and phantom imaging. The algorithms' performances are characterized in terms of image quality and reconstruction speed. The theoretical results show that the performance of the CS algorithms is case sensitive; overall, the StOMP algorithm offers the best solution in imaging quality, while the GPSR algorithm is the most efficient one among the three methods. In the next step, the algorithm performances and characteristics will be experimentally explored. It is hoped that this research will further support the applications of CS in MRI.

  16. An Observational Study to Assess Brain MRI Change and Disease Progression in Multiple Sclerosis Clinical Practice-The MS-MRIUS Study.

    PubMed

    Zivadinov, Robert; Khan, Nasreen; Medin, Jennie; Christoffersen, Pia; Price, Jennifer; Korn, Jonathan R; Bonzani, Ian; Dwyer, Michael G; Bergsland, Niels; Carl, Ellen; Silva, Diego; Weinstock-Guttman, Bianca

    2017-05-01

    To describe methodology, interim baseline, and longitudinal magnetic resonance imaging (MRI) acquisition parameter characteristics of the multiple sclerosis clinical outcome and MRI in the United States (MS-MRIUS). The MS-MRIUS is an ongoing longitudinal and retrospective study of MS patients on fingolimod. Clinical and brain MRI image scan data were collected from 600 patients across 33 MS centers in the United States. MRI brain outcomes included change in whole-brain volume, lateral ventricle volume, T2- and T1-lesion volumes, and new/enlarging T2 and gadolinium-enhancing lesions. Interim baseline and longitudinal MRI acquisition parameters results are presented for 252 patients. Mean age was 44 years and 81% were female. Forty percent of scans had 3-dimensional (3D) T1 sequence in the preindex period, increasing to 50% in the postindex period. Use of 2-dimensional (2D) T1 sequence decreased over time from 85% in the preindex period to 65% in the postindex. About 95% of the scans with FLAIR and 2D T1-WI were considered acceptable or good quality compared to 99-100% with 3D T1-WI. There were notable changes in MRI hardware, software, and coil (39.5% in preindex to index and 50% in index to postindex). MRI sequence parameters (orientation, thickness, or protocol) differed for 36%, 29%, and 20% of index/postindex scans for FLAIR, 2D T1-WI, and 3D T1-WI, respectively. The MS-MRIUS study linked the clinical and brain MRI outcomes into an integrated database to create a cohort of fingolimod patients in real-world practice. Variability was observed in MRI acquisition protocols overtime. © 2016 The Authors. Journal of Neuroimaging published by Wiley Periodicals, Inc. on behalf of American Society of Neuroimaging.

  17. The predictive value of MRI in detecting thyroid gland invasion in patients with advanced laryngeal or hypopharyngeal carcinoma.

    PubMed

    Lin, Peiliang; Huang, Xiaoming; Zheng, Chushan; Cai, Qian; Guan, Zhong; Liang, Faya; Zheng, Yiqing

    2017-01-01

    The aim of this study was to evaluate the predictive value of magnetic resonance imaging (MRI) in detecting thyroid gland invasion (TGI) in patients with advanced laryngeal or hypopharyngeal carcinoma. In a retrospective chart review, 41 patients with advanced laryngeal or hypopharyngeal carcinoma underwent MRI scan before total laryngectomy and ipsilateral or bilateral thyroidectomy during the past 5 years. The MRI findings were compared with the postoperative pathological results. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated. Among the 41 patients, 3 had thyroid gland invasion in postoperative pathological results. MRI correctly predicted the absence of TGI in 37 of 38 patients and TGI in all 3 patients. The sensitivity, specificity, PPV, and NPV of MRI were 100.0, 97.4, 75.0, and 100 %, respectively, with the diagnostic accuracy of 97.6 %. In consideration of the high negative predictive value of MRI, it may help surgeons selectively preserve thyroid gland in total laryngectomy and reduce the incidence of hypothyroidism and hypoparathyroidism postoperatively.

  18. Estimation of gas and tissue lung volumes by MRI: functional approach of lung imaging.

    PubMed

    Qanadli, S D; Orvoen-Frija, E; Lacombe, P; Di Paola, R; Bittoun, J; Frija, G

    1999-01-01

    The purpose of this work was to assess the accuracy of MRI for the determination of lung gas and tissue volumes. Fifteen healthy subjects underwent MRI of the thorax and pulmonary function tests [vital capacity (VC) and total lung capacity (TLC)] in the supine position. MR examinations were performed at inspiration and expiration. Lung volumes were measured by a previously validated technique on phantoms. Both individual and total lung volumes and capacities were calculated. MRI total vital capacity (VC(MRI)) was compared with spirometric vital capacity (VC(SP)). Capacities were correlated to lung volumes. Tissue volume (V(T)) was estimated as the difference between the total lung volume at full inspiration and the TLC. No significant difference was seen between VC(MRI) and VC(SP). Individual capacities were well correlated (r = 0.9) to static volume at full inspiration. The V(T) was estimated to be 836+/-393 ml. This preliminary study demonstrates that MRI can accurately estimate lung gas and tissue volumes. The proposed approach appears well suited for functional imaging of the lung.

  19. Comparison between target magnetic resonance imaging (MRI) in-gantry and cognitively directed transperineal or transrectal-guided prostate biopsies for Prostate Imaging-Reporting and Data System (PI-RADS) 3-5 MRI lesions.

    PubMed

    Yaxley, Anna J; Yaxley, John W; Thangasamy, Isaac A; Ballard, Emma; Pokorny, Morgan R

    2017-11-01

    To compare the detection rates of prostate cancer (PCa) in men with Prostate Imaging-Reporting and Data System (PI-RADS) 3-5 abnormalities on 3-Tesla multiparametric (mp) magnetic resonance imaging (MRI) using in-bore MRI-guided biopsy compared with cognitively directed transperineal (cTP) biopsy and transrectal ultrasonography (cTRUS) biopsy. This was a retrospective single-centre study of consecutive men attending the private practice clinic of an experienced urologist performing MRI-guided biopsy and an experienced urologist performing cTP and cTRUS biopsy techniques for PI-RADS 3-5 lesions identified on 3-Tesla mpMRI. There were 595 target mpMRI lesions from 482 men with PI-RADS 3-5 regions of interest during 483 episodes of biopsy. The abnormal mpMRI target lesion was biopsied using the MRI-guided method for 298 biopsies, the cTP method for 248 biopsies and the cTRUS method for 49 biopsies. There were no significant differences in PCa detection among the three biopsy methods in PI-RADS 3 (48.9%, 40.0% and 44.4%, respectively), PI-RADS 4 (73.2%, 81.0% and 85.0%, respectively) or PI-RADS 5 (95.2, 92.0% and 95.0%, respectively) lesions, and there was no significant difference in detection of significant PCa among the biopsy methods in PI-RADS 3 (42.2%, 30.0% and 33.3%, respectively), PI-RADS 4 (66.8%, 66.0% and 80.0%, respectively) or PI-RADS 5 (90.5%, 89.8% and 90.0%, respectively) lesions. There were also no differences in PCa or significant PCa detection based on lesion location or size among the methods. We found no significant difference in the ability to detect PCa or significant PCa using targeted MRI-guided, cTP or cTRUS biopsy methods. Identification of an abnormal area on mpMRI appears to be more important in increasing the detection of PCa than the technique used to biopsy an MRI abnormality. © 2017 The Authors BJU International © 2017 BJU International Published by John Wiley & Sons Ltd.

  20. Comparison of quantitative regional ventilation-weighted fourier decomposition MRI with dynamic fluorinated gas washout MRI and lung function testing in COPD patients.

    PubMed

    Kaireit, Till F; Gutberlet, Marcel; Voskrebenzev, Andreas; Freise, Julia; Welte, Tobias; Hohlfeld, Jens M; Wacker, Frank; Vogel-Claussen, Jens

    2018-06-01

    Ventilation-weighted Fourier decomposition-MRI (FD-MRI) has matured as a reliable technique for quantitative measures of regional lung ventilation in recent years, but has yet not been validated in COPD patients. To compare regional fractional lung ventilation obtained by ventilation-weighted FD-MRI with dynamic fluorinated gas washout MRI ( 19 F-MRI) and lung function test parameters. Prospective study. Twenty-seven patients with chronic obstructive pulmonary disease (COPD, median age 61 [54-67] years) were included. For FD-MRI and for 19 F-MRI a spoiled gradient echo sequence was used at 1.5T. FD-MRI coronal slices were acquired in free breathing. Dynamic 19 F-MRI was performed after inhalation of 25-30 L of a mixture of 79% fluorinated gas (C 3 F 8 ) and 21% oxygen via a closed face mask tubing using a dedicated coil tuned to 59.9 MHz. 19 F washout times in numbers of breaths ( 19 F-n breaths ) as well as fractional ventilation maps for both methods (FD-FV, 19 F-FV) were calculated. Slices were matched using a landmark driven algorithm, and only corresponding slices with an overlap of >90% were coregistered for evaluation. The obtained parameters were correlated with each other using Spearman's correlation coefficient (r). FD-FV strongly correlated with 19 F-n breaths on a global (r = -0.72, P < 0.0001) as well as on a lobar level and with lung function test parameters (FD-FV vs. FEV1, r = 0.76, P < 0.0001). There was a small systematic overestimation of FD-FV compared to 19 F-FV (mean difference -0.03 (95% confidence interval [CI]: -0.097; -0.045). Regional ventilation-weighted Fourier decomposition-MRI is a promising noninvasive, radiation-free tool for quantification of regional ventilation in COPD patients. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1534-1541. © 2017 International Society for Magnetic Resonance in Medicine.

  1. TU-H-CAMPUS-JeP2-01: Inter-Observer Delineation Comparison of Visible Glandular Breast Tissue On Magnetic Resonance Imaging and Computed Tomography (prone and Supine)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pogson, EM; University of Wollongong, Wollongong, NSW; Liverpool and Macarthur Cancer Therapy Centres, Liverpool, NSW

    2016-06-15

    Purpose: Breast cancers predominantly arise from Glandular Breast Tissue (GBT). If the GBT can be treated effectively post-operatively utilising radiotherapy this may be adequate volumetric coverage for adjuvant breast radiotherapy. Adequate imaging of the GBT is necessary and will be assessed between MRI and CT modalities. GBT visualisation is acknowledged to be qualitatively superior on Magnetic Resonance Image (MRI) compared to Computed Tomography (CT), the current radiotherapy imaging standard, however this has not been quantitatively assessed. For radiotherapy purposes it is important that any treatment volume can be consistently defined between observers. This study investigates the consistency of CT andmore » MRI GBT contours for potential radiotherapy planning. Methods: Ten experts (9 breast radiation oncologists and 1 radiologist) contoured the extent of the visible GBT for 33 patients on MRI and CT (both without contrast), which was performed according to a contouring guideline in supine and prone patient positions. The GBT volume was not a conventional whole breast radiotherapy planning volume, but rather the extent of GBT that was indicated from the CT or MR imaging. Volumes were compared utilizing the dice similarity coefficient (DSC), kappa statistic, and Hausdorff Distances (HDs) to ascertain the modality that was most consistently volumed. Results: The inter-observer concordance was of substantial agreement (kappa above 0.6) for the CT supine, CT prone, MRI supine and MRI prone datasets. The MRI GBT volumes were larger than the CT GBT volumes (p<0.001). Inter-observer conformity was higher for CT than MRI, although the magnitude of this difference was small (VOI<0.04). Conformity between modalities (CT and MRI) was in agreement for both prone and supine, DSC=0.75. Prone GBT volumes were larger than supine for both MRI and CT. Conclusion: MRI improves the extent of GBT delineation. The role of MRI guided, GBT-targeted radiotherapy requires investigation in a clinical trial. This work was supported by a grant number APP1033237 from Cancer Australia and the National Breast Cancer Foundation.« less

  2. Network analysis of EEG related functional MRI changes due to medication withdrawal in focal epilepsy

    PubMed Central

    Hermans, Kees; Ossenblok, Pauly; van Houdt, Petra; Geerts, Liesbeth; Verdaasdonk, Rudolf; Boon, Paul; Colon, Albert; de Munck, Jan C.

    2015-01-01

    Anti-epileptic drugs (AEDs) have a global effect on the neurophysiology of the brain which is most likely reflected in functional brain activity recorded with EEG and fMRI. These effects may cause substantial inter-subject variability in studies where EEG correlated functional MRI (EEG–fMRI) is used to determine the epileptogenic zone in patients who are candidate for epilepsy surgery. In the present study the effects on resting state fMRI are quantified in conditions with AED administration and after withdrawal of AEDs. EEG–fMRI data were obtained from 10 patients in the condition that the patient was on the steady-state maintenance doses of AEDs as prescribed (condition A) and after withdrawal of AEDs (condition B), at the end of a clinically standard pre-surgical long term video-EEG monitoring session. Resting state networks (RSN) were extracted from fMRI. The epileptic component (ICE) was identified by selecting the RSN component with the largest overlap with the EEG–fMRI correlation pattern. Changes in RSN functional connectivity between conditions A and B were quantified. EEG–fMRI correlation analysis was successful in 30% and 100% of the cases in conditions A and B, respectively. Spatial patterns of ICEs are comparable in conditions A and B, except for one patient for whom it was not possible to identify the ICE in condition A. However, the resting state functional connectivity is significantly increased in the condition after withdrawal of AEDs (condition B), which makes resting state fMRI potentially a new tool to study AED effects. The difference in sensitivity of EEG–fMRI in conditions A and B, which is not related to the number of epileptic EEG events occurring during scanning, could be related to the increased functional connectivity in condition B. PMID:26137444

  3. [Use of MRI before biopsy in diagnosis of prostate cancer: Single-operator study].

    PubMed

    Bassard, S; Mege, J-L

    2015-12-01

    The diagnostic for prostate cancer is changing. To improve the detection of this cancer, urologists expect a lot from the contribution of magnetic resonance imaging (MRI). What is the role of this imaging in prostate cancer detection? This is a retrospective study, from 2011 to 2013, mono-centric and single-operator. Of the 464 needle biopsy of the prostate (BP), we excluded those with PSA>20 ng/mL or digital rectal examination (DRE)>T3. The remaining 430 BP were submitted or not to a 1.5 tesla MRI with pelvic antenna. The primary aim is the overall detection of prostate cancer. Secondary aim was the detection rate during the first series of BP and repeat BP, between the two groups in the MRI group. MRI and MRI without populations are comparable for age (63.3 vs 64.6), PSA (6.10 vs 6.13), DRE>T1c, prostate volume (55.4 cm(3) vs 51.7 cm(3)). There is no significant difference in overall detection between the two groups (P=0.12). There is no significant difference in cancer detection between the first BP (P=0.13) and the repeat BP (P=0.07). There is a significant difference in the early detection of BP MRI group (P=0.03) but not for the BP repeat MRI group (P=0.07). For 108 BP iterative MRI group, there were 67 BP targeted "mentally" with MRI: 18 cancers were detected, making a 25% detection rate. This study helps to highlight the value of MRI in the early rounds of BP but we can ask the value of this imaging during repeat biopsies. Targeted biopsies "mentally" do not have the expected detection sensitivity and seems to require a three-dimensional reconstruction to be more effective. 5. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. Assessing perioperative complications associated with use of intraoperative magnetic resonance imaging during glioma surgery - a single centre experience with 516 cases.

    PubMed

    Ahmadi, Rezvan; Campos, Benito; Haux, Daniel; Rieke, Jörn; Beigel, Bernhard; Unterberg, Andreas

    2016-08-01

    Intraoperative magnetic resonance imaging (io-MRI) improves the extent of glioma resection. Due to the magnetic field, patients have to be covered with sterile drape and are then transferred into an io-MRI chamber, where ferromagnetic anaesthesia monitors and machines must be kept at distance and can only be applied with limitations. Despite the development of specific paramagnetic equipment for io-MRI use, this method is suspected to carry a higher risk for anaesthesiological and surgical complications. Particularly, serial draping and un-draping cycles as well as the extended surgery duration might increase the risk of perioperative infection. Given the importance of io-MRI for glioma surgery, the question regarding io-MRI safety needs to be answered. We prospectively evaluate the perioperative anaesthesiological and surgical complications for 516 cases of brain tumour surgery involving io-MRI (MRI cohort). As a control group, we evaluate a cohort of 610 cases of brain tumour surgery, performed without io-MRI (control group). The io-MRI procedure (including draping/undraping, transfer to and from the MRI cabinet and io-MRI scan) significantly extended surgery, defined as "skin to skin" time, by 57 min (SD = 16 min) (p ≤ 0.01). Still, we show low and comparable rates of surgical complications in the MRI cohort and the control group. Postoperative haemorrhage (3.7% versus 3.0% in MRI cohort versus control group; p = 0.49) and infections (2.2% versus 1.8% in MRI cohort versus control group; p = 0.69) were not significantly different between both groups. No anaesthesiological disturbances were reported. Despite prolonged surgery and serial draping and un-draping cycles, io-MRI was not linked to higher rates of infections and postoperative haemorrhage in this study.

  5. Technical Note: Independent component analysis for quality assurance in functional MRI.

    PubMed

    Astrakas, Loukas G; Kallistis, Nikolaos S; Kalef-Ezra, John A

    2016-02-01

    Independent component analysis (ICA) is an established method of analyzing human functional MRI (fMRI) data. Here, an ICA-based fMRI quality control (QC) tool was developed and used. ICA-based fMRI QC tool to be used with a commercial phantom was developed. In an attempt to assess the performance of the tool relative to preexisting alternative tools, it was used seven weeks before and eight weeks after repair of a faulty gradient amplifier of a non-state-of-the-art MRI unit. More specifically, its performance was compared with the AAPM 100 acceptance testing and quality assurance protocol and two fMRI QC protocols, proposed by Freidman et al. ["Report on a multicenter fMRI quality assurance protocol," J. Magn. Reson. Imaging 23, 827-839 (2006)] and Stocker et al. ["Automated quality assurance routines for fMRI data applied to a multicenter study," Hum. Brain Mapp. 25, 237-246 (2005)], respectively. The easily developed and applied ICA-based QC protocol provided fMRI QC indices and maps equally sensitive to fMRI instabilities with the indices and maps of other established protocols. The ICA fMRI QC indices were highly correlated with indices of other fMRI QC protocols and in some cases theoretically related to them. Three or four independent components with slow varying time series are detected under normal conditions. ICA applied on phantom measurements is an easy and efficient tool for fMRI QC. Additionally, it can protect against misinterpretations of artifact components as human brain activations. Evaluating fMRI QC indices in the central region of a phantom is not always the optimal choice.

  6. PET/MRI in cancer patients: first experiences and vision from Copenhagen.

    PubMed

    Kjær, Andreas; Loft, Annika; Law, Ian; Berthelsen, Anne Kiil; Borgwardt, Lise; Löfgren, Johan; Johnbeck, Camilla Bardram; Hansen, Adam Espe; Keller, Sune; Holm, Søren; Højgaard, Liselotte

    2013-02-01

    Combined PET/MRI systems are now commercially available and are expected to change the medical imaging field by providing combined anato-metabolic image information. We believe this will be of particular relevance in imaging of cancer patients. At the Department of Clinical Physiology, Nuclear Medicine & PET at Rigshospitalet in Copenhagen we installed an integrated PET/MRI in December 2011. Here, we describe our first clinical PET/MR cases and discuss some of the areas within oncology where we envision promising future application of integrated PET/MR imaging in clinical routine. Cases described include brain tumors, pediatric oncology as well as lung, abdominal and pelvic cancer. In general the cases show that PET/MRI performs well in all these types of cancer when compared to PET/CT. However, future large-scale clinical studies are needed to establish when to use PET/MRI. We envision that PET/MRI in oncology will prove to become a valuable addition to PET/CT in diagnosing, tailoring and monitoring cancer therapy in selected patient populations.

  7. A Prospective Study Comparing 99mTc-Hydroxyethylene-Diphosphonate Planar Bone Scintigraphy and Whole-Body SPECT/CT with 18F-Fluoride PET/CT and 18F-Fluoride PET/MRI for Diagnosing Bone Metastases.

    PubMed

    Löfgren, Johan; Mortensen, Jann; Rasmussen, Sine H; Madsen, Claus; Loft, Annika; Hansen, Adam E; Oturai, Peter; Jensen, Karl Erik; Mørk, Mette Louise; Reichkendler, Michala; Højgaard, Liselotte; Fischer, Barbara M

    2017-11-01

    We prospectively evaluated and compared the diagnostic performance of 99m Tc-hydroxyethylene-diphosphonate ( 99m Tc-HDP) planar bone scintigraphy (pBS), 99m Tc-HDP SPECT/CT, 18 F-NaF PET/CT, and 18 F-NaF PET/MRI for the detection of bone metastases. Methods: One hundred seventeen patients with histologically proven malignancy referred for clinical pBS were prospectively enrolled. pBS and whole-body SPECT/CT were performed followed by 18 F-NaF PET/CT within 9 d. 18 F-NaF PET/MRI was also performed in 46 patients. Results: Bone metastases were confirmed in 16 patients and excluded in 101, which was lower than expected. The number of equivocal scans was significantly higher for pBS than for SPECT/CT and PET/CT (18 vs. 5 and 6, respectively; P = 0.004 and 0.01, respectively). When equivocal readings were excluded, no statistically significant difference in sensitivity, specificity, positive predictive value, negative predictive value, or overall accuracy were found when comparing the different imaging techniques. In the per-patient analysis, equivocal scans were either assumed positive for metastases ("pessimistic analysis") or assumed negative for metastases ("optimistic analysis"). The percentages of misdiagnosed patients for the pessimistic analysis were 21%, 15%, 9%, and 7% for pBS, SPECT/CT, PET/CT, and PET/MRI, respectively. Corresponding figures for the optimistic analysis were 9%, 12%, 5%, and 7%. In those patients identified as having bone metastases according to the reference standard, SPECT/CT, 18 F-NaF PET/CT, and PET/MRI detected additional lesions compared with pBS in 31%, 63%, and 71%, respectively. Conclusion: 18 F-NaF PET/CT and whole-body SPECT/CT resulted in a significant reduction of equivocal readings compared with pBS, which implies an improved diagnostic confidence. However, the clinical benefit of using, for example, 18 F-NaF PET/CT or PET/MRI as compared with SPECT/CT and pBS in this patient population with a relatively low prevalence of bone metastases (14%) is likely limited. This conclusion is influenced by the low prevalence of patients with osseous metastases. There may well be significant differences in the sensitivity of SPECT/CT, PET/CT, and PET/MRI compared with pBS, but a larger patient population or a patient population with a higher prevalence of bone metastases would have to be studied to demonstrate this. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  8. BRAPH: A graph theory software for the analysis of brain connectivity

    PubMed Central

    Mijalkov, Mite; Kakaei, Ehsan; Pereira, Joana B.; Westman, Eric; Volpe, Giovanni

    2017-01-01

    The brain is a large-scale complex network whose workings rely on the interaction between its various regions. In the past few years, the organization of the human brain network has been studied extensively using concepts from graph theory, where the brain is represented as a set of nodes connected by edges. This representation of the brain as a connectome can be used to assess important measures that reflect its topological architecture. We have developed a freeware MatLab-based software (BRAPH–BRain Analysis using graPH theory) for connectivity analysis of brain networks derived from structural magnetic resonance imaging (MRI), functional MRI (fMRI), positron emission tomography (PET) and electroencephalogram (EEG) data. BRAPH allows building connectivity matrices, calculating global and local network measures, performing non-parametric permutations for group comparisons, assessing the modules in the network, and comparing the results to random networks. By contrast to other toolboxes, it allows performing longitudinal comparisons of the same patients across different points in time. Furthermore, even though a user-friendly interface is provided, the architecture of the program is modular (object-oriented) so that it can be easily expanded and customized. To demonstrate the abilities of BRAPH, we performed structural and functional graph theory analyses in two separate studies. In the first study, using MRI data, we assessed the differences in global and nodal network topology in healthy controls, patients with amnestic mild cognitive impairment, and patients with Alzheimer’s disease. In the second study, using resting-state fMRI data, we compared healthy controls and Parkinson’s patients with mild cognitive impairment. PMID:28763447

  9. BRAPH: A graph theory software for the analysis of brain connectivity.

    PubMed

    Mijalkov, Mite; Kakaei, Ehsan; Pereira, Joana B; Westman, Eric; Volpe, Giovanni

    2017-01-01

    The brain is a large-scale complex network whose workings rely on the interaction between its various regions. In the past few years, the organization of the human brain network has been studied extensively using concepts from graph theory, where the brain is represented as a set of nodes connected by edges. This representation of the brain as a connectome can be used to assess important measures that reflect its topological architecture. We have developed a freeware MatLab-based software (BRAPH-BRain Analysis using graPH theory) for connectivity analysis of brain networks derived from structural magnetic resonance imaging (MRI), functional MRI (fMRI), positron emission tomography (PET) and electroencephalogram (EEG) data. BRAPH allows building connectivity matrices, calculating global and local network measures, performing non-parametric permutations for group comparisons, assessing the modules in the network, and comparing the results to random networks. By contrast to other toolboxes, it allows performing longitudinal comparisons of the same patients across different points in time. Furthermore, even though a user-friendly interface is provided, the architecture of the program is modular (object-oriented) so that it can be easily expanded and customized. To demonstrate the abilities of BRAPH, we performed structural and functional graph theory analyses in two separate studies. In the first study, using MRI data, we assessed the differences in global and nodal network topology in healthy controls, patients with amnestic mild cognitive impairment, and patients with Alzheimer's disease. In the second study, using resting-state fMRI data, we compared healthy controls and Parkinson's patients with mild cognitive impairment.

  10. MRI-based quantification of Duchenne muscular dystrophy in a canine model

    NASA Astrophysics Data System (ADS)

    Wang, Jiahui; Fan, Zheng; Kornegay, Joe N.; Styner, Martin A.

    2011-03-01

    Duchenne muscular dystrophy (DMD) is a progressive and fatal X-linked disease caused by mutations in the DMD gene. Magnetic resonance imaging (MRI) has shown potential to provide non-invasive and objective biomarkers for monitoring disease progression and therapeutic effect in DMD. In this paper, we propose a semi-automated scheme to quantify MRI features of golden retriever muscular dystrophy (GRMD), a canine model of DMD. Our method was applied to a natural history data set and a hydrodynamic limb perfusion data set. The scheme is composed of three modules: pre-processing, muscle segmentation, and feature analysis. The pre-processing module includes: calculation of T2 maps, spatial registration of T2 weighted (T2WI) images, T2 weighted fat suppressed (T2FS) images, and T2 maps, and intensity calibration of T2WI and T2FS images. We then manually segment six pelvic limb muscles. For each of the segmented muscles, we finally automatically measure volume and intensity statistics of the T2FS images and T2 maps. For the natural history study, our results showed that four of six muscles in affected dogs had smaller volumes and all had higher mean intensities in T2 maps as compared to normal dogs. For the perfusion study, the muscle volumes and mean intensities in T2FS were increased in the post-perfusion MRI scans as compared to pre-perfusion MRI scans, as predicted. We conclude that our scheme successfully performs quantitative analysis of muscle MRI features of GRMD.

  11. Integrated SSFP for functional brain mapping at 7 T with reduced susceptibility artifact

    NASA Astrophysics Data System (ADS)

    Sun, Kaibao; Xue, Rong; Zhang, Peng; Zuo, Zhentao; Chen, Zhongwei; Wang, Bo; Martin, Thomas; Wang, Yi; Chen, Lin; He, Sheng; Wang, Danny J. J.

    2017-03-01

    Balanced steady-state free precession (bSSFP) offers an alternative and potentially important tool to the standard gradient-echo echo-planar imaging (GE-EPI) for functional MRI (fMRI). Both passband and transition band based bSSFP have been proposed for fMRI. The applications of these methods, however, are limited by banding artifacts due to the sensitivity of bSSFP signal to off-resonance effects. In this article, a unique case of the SSFP-FID sequence, termed integrated-SSFP or iSSFP, was proposed to overcome the obstacle by compressing the SSFP profile into the width of a single voxel. The magnitude of the iSSFP signal was kept constant irrespective of frequency shift. Visual stimulation studies were performed to demonstrate the feasibility of fMRI using iSSFP at 7 T with flip angles of 4° and 25°, compared to standard bSSFP and gradient echo (GRE) imaging. The signal changes for the complex iSSFP signal in activated voxels were 2.48 ± 0.53 (%) and 2.96 ± 0.87 (%) for flip angles (FA) of 4° and 25° respectively at the TR of 9.88 ms. Simultaneous multi-slice acquisition (SMS) with the CAIPIRIHNA technique was carried out with iSSFP scanning to detect the anterior temporal lobe activation using a semantic processing task fMRI, compared with standard 2D GE-EPI. This study demonstrates the feasibility of iSSFP for fMRI with reduced susceptibility artifacts, while maintaining robust functional contrast at 7 T.

  12. Carotid artery stenting with double cerebral embolic protection in asymptomatic patients - a diffusion-weighted MRI controlled study.

    PubMed

    Vuruskan, Ertan; Saracoglu, Erhan; Ergun, Ugur; Poyraz, Fatih; Duzen, İrfan Veysel

    2017-01-01

    The aim of this study was to compare the simultaneous double-protection method (proximal balloon plus distal filter) with distal-filter protection or proximal-balloon protection alone in asymptomatic patients during carotid artery stenting. 119 consecutive patients were investigated for carotid artery stentings in the extracranial internal carotid artery with the use of distal filters (n = 41, 34.4 %), proximal balloon (MoMa) protection (n = 40, 33.6 %) or double protection (n = 38, 31.9 %). Magnetic resonance imaging (MRI) was performed on all patients before the procedure, and control diffusion-weighted MRI (DW-MRI) was obtained within 24-48 h after the procedure. Procedural data, complications, success rate, major adverse cardiovascular events, and MRI findings were collected. New cerebral high-intensity (HI) lesions were observed in 47 (39.4 %) patients. HI lesions were observed in 22 (53.6 %), 15 (37.5 %), and 10 (26.3 %) of the patients with distal filters, proximal protection, and double protection, respectively (p = 0.004). The average number of HI lesions on DW-MRI was 1.80 in the distal-filter group, 0.90 in the proximal-balloon group, and 0.55 in the double-protection group (p < 0.001). Procedure and fluoroscopy times were slightly longer in the double-protection group compared to the distal- or proximal-protection groups (p = 0.001). The double (proximal plus distal) cerebral embolic protection technique is safe and effective for minimizing the risk of cerebral embolization, even in patients with asymptomatic carotid artery stenosis, despite slightly longer procedure and fluoroscopy times.
.

  13. Simultaneous whole-body 18F-PSMA-1007-PET/MRI with integrated high-resolution multiparametric imaging of the prostatic fossa for comprehensive oncological staging of patients with prostate cancer: a pilot study.

    PubMed

    Freitag, Martin T; Kesch, Claudia; Cardinale, Jens; Flechsig, Paul; Floca, Ralf; Eiber, Matthias; Bonekamp, David; Radtke, Jan P; Kratochwil, Clemens; Kopka, Klaus; Hohenfellner, Markus; Stenzinger, Albrecht; Schlemmer, Heinz-Peter; Haberkorn, Uwe; Giesel, Frederik

    2018-03-01

    The aim of the present study was to explore the clinical feasibility and reproducibility of a comprehensive whole-body 18 F-PSMA-1007-PET/MRI protocol for imaging prostate cancer (PC) patients. Eight patients with high-risk biopsy-proven PC underwent a whole-body PET/MRI (3 h p.i.) including a multi-parametric prostate MRI after 18 F-PSMA-1007-PET/CT (1 h p.i.) which served as reference. Seven patients presented with non-treated PC, whereas one patient presented with biochemical recurrence. SUV mean -quantification was performed using a 3D-isocontour volume-of-interest. Imaging data was consulted for TNM-staging and compared with histopathology. PC was confirmed in 4/7 patients additionally by histopathology after surgery. PET-artifacts, co-registration of pelvic PET/MRI and MRI-data were assessed (PI-RADS 2.0). The examinations were well accepted by patients and comprised 1 h. SUV mean -values between PET/CT (1 h p.i.) and PET/MRI (3 h p.i.) were significantly correlated (p < 0.0001, respectively) and similar to literature of 18 F-PSMA-1007-PET/CT 1 h vs 3 h p.i. The dominant intraprostatic lesion could be detected in all seven patients in both PET and MRI. T2c, T3a, T3b and T4 features were detected complimentarily by PET and MRI in five patients. PET/MRI demonstrated moderate photopenic PET-artifacts surrounding liver and kidneys representing high-contrast areas, no PET-artifacts were observed for PET/CT. Simultaneous PET-readout during prostate MRI achieved optimal co-registration results. The presented 18 F-PSMA-1007-PET/MRI protocol combines efficient whole-body assessment with high-resolution co-registered PET/MRI of the prostatic fossa for comprehensive oncological staging of patients with PC.

  14. Arcuate fasciculus laterality by diffusion tensor imaging correlates with language laterality by functional MRI in preadolescent children.

    PubMed

    Sreedharan, Ruma Madhu; Menon, Amitha C; James, Jija S; Kesavadas, Chandrasekharan; Thomas, Sanjeev V

    2015-03-01

    Language lateralization is unique to humans. Functional MRI (fMRI) and diffusion tensor imaging (DTI) enable the study of language areas and white matter fibers involved in language, respectively. The objective of this study was to correlate arcuate fasciculus (AF) laterality by diffusion tensor imaging with that by fMRI in preadolescent children which has not yet been reported. Ten children between 8 and 12 years were subjected to fMRI and DTI imaging using Siemens 1.5 T MRI. Two language fMRI paradigms--visual verb generation and word pair task--were used. Analysis was done using SPM8 software. In DTI, the fiber volume of the arcuate fasciculus (AFV) and fractional anisotropy (FA) was measured. The fMRI Laterality Index (fMRI-LI) and DTI Laterality Index (DTI-LI) were calculated and their correlation assessed using the Pearson Correlation Index. Of ten children, mean age 10.6 years, eight showed left lateralization while bilateral language lateralization was seen in two. AFV by DTI was more on the left side in seven of the eight children who had left lateralization by fMRI. DTI could not trace the AF in one child. Of the two with bilateral language lateralization on fMRI, one showed larger AFV on the right side while the other did not show any asymmetry. There was a significant correlation (p < 0.02) between fMRI-LI and DTI-LI. Group mean of AFV by DTI was higher on the left side (2659.89 ± 654.75 mm(3)) as compared to the right (1824.11 ± 582.81 mm(3)) (p < 0.01). Like fMRI, DTI also reveals language laterality in children with a high degree of correlation between the two imaging modalities.

  15. Association of quantitative magnetic resonance imaging parameters with histological findings from MRI/ultrasound fusion prostate biopsy.

    PubMed

    Dianat, Seyed Saeid; Carter, H Ballentine; Schaeffer, Edward M; Hamper, Ulrik M; Epstein, Jonathan I; Macura, Katarzyna J

    2015-10-01

    Purpose of this pilot study was to correlate quantitative parameters derived from the multiparametric magnetic resonance imaging (MP-MRI) of the prostate with results from MRI guided transrectal ultrasound (MRI/TRUS) fusion prostate biopsy in men with suspected prostate cancer. Thirty-nine consecutive patients who had 3.0T MP-MRI and subsequent MRI/TRUS fusion prostate biopsy were included and 73 MRI-identified targets were sampled by 177 cores. The pre-biopsy MP-MRI consisted of T2-weighted, diffusion weighted (DWI), and dynamic contrast enhanced (DCE) images. The association of quantitative MRI measurements with biopsy histopathology findings was assessed by Mann-Whitney U- test and Kruskal-Wallis test. Of 73 targets, biopsy showed benign prostate tissue in 46 (63%), cancer in 23 (31.5%), and atypia/high grade prostatic intraepithelial neoplasia in four (5.5%) targets. The median volume of cancer-positive targets was 1.3 cm3. The cancer-positive targets were located in the peripheral zone (56.5%), transition zone (39.1%), and seminal vesicle (4.3%). Nine of 23 (39.1%) cancer-positive targets were higher grade cancer (Gleason grade > 6). Higher grade targets and cancer-positive targets compared to benign lesions exhibited lower mean apparent diffusion coefficient (ADC) value (952.7 < 1167.9 < 1278.9), and lower minimal extracellular volume fraction (ECF) (0.13 < 0.185 < 0.213), respectively. The difference in parameters was more pronounced between higher grade cancer and benign lesions. Our findings from a pilot study indicate that quantitative MRI parameters can predict malignant histology on MRI/TRUS fusion prostate biopsy, which is a valuable technique to ensure adequate sampling of MRI-visible suspicious lesions under TRUS guidance and may impact patient management. The DWI-based quantitative measurement exhibits a stronger association with biopsy findings than the other MRI parameters.

  16. Comparison of semi-quantitative and quantitative dynamic contrast-enhanced MRI evaluations of vertebral marrow perfusion in a rat osteoporosis model.

    PubMed

    Zhu, Jingqi; Xiong, Zuogang; Zhang, Jiulong; Qiu, Yuyou; Hua, Ting; Tang, Guangyu

    2017-11-14

    This study aims to investigate the technical feasibility of semi-quantitative and quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in the assessment of longitudinal changes of marrow perfusion in a rat osteoporosis model, using bone mineral density (BMD) measured by micro-computed tomography (micro-CT) and histopathology as the gold standards. Fifty rats were randomly assigned to the control group (n=25) and ovariectomy (OVX) group whose bilateral ovaries were excised (n=25). Semi-quantitative and quantitative DCE-MRI, micro-CT, and histopathological examinations were performed on lumbar vertebrae at baseline and 3, 6, 9, and 12 weeks after operation. The differences between the two groups in terms of semi-quantitative DCE-MRI parameter (maximum enhancement, E max ), quantitative DCE-MRI parameters (volume transfer constant, K trans ; interstitial volume, V e ; and efflux rate constant, K ep ), micro-CT parameter (BMD), and histopathological parameter (microvessel density, MVD) were compared at each of the time points using an independent-sample t test. The differences in these parameters between baseline and other time points in each group were assessed via Bonferroni's multiple comparison test. A Pearson correlation analysis was applied to assess the relationships between DCE-MRI, micro-CT, and histopathological parameters. In the OVX group, the E max values decreased significantly compared with those of the control group at weeks 6 and 9 (p=0.003 and 0.004, respectively). The K trans values decreased significantly compared with those of the control group from week 3 (p<0.05). However, the V e values decreased significantly only at week 9 (p=0.032), and no difference in the K ep was found between two groups. The BMD values of the OVX group decreased significantly compared with those of the control group from week 3 (p<0.05). Transmission electron microscopy showed tighter gaps between vascular endothelial cells with swollen mitochondria in the OVX group from week 3. The MVD values of the OVX group decreased significantly compared with those of the control group only at week 12 (p=0.023). A weak positive correlation of E max and a strong positive correlation of K trans with MVD were found. Compared with semi-quantitative DCE-MRI, the quantitative DCE-MRI parameter K trans is a more sensitive and accurate index for detecting early reduced perfusion in osteoporotic bone.

  17. Comparison of gadobenate dimeglumine-enhanced breast MRI and gadopentetate dimeglumine-enhanced breast MRI with mammography and ultrasound for the detection of breast cancer.

    PubMed

    Gilbert, Fiona J; van den Bosch, Harrie C M; Petrillo, Antonella; Siegmann, Katja; Heverhagen, Johannes T; Panizza, Pietro; Gehl, Hans-Björn; Pediconi, Federica; Diekmann, Felix; Peng, Wei-Jun; Ma, Lin; Sardanelli, Francesco; Belli, Paolo; Corcione, Stefano; Zechmann, Christian M; Faivre-Pierret, Matthieu; Martincich, Laura

    2014-05-01

    To compare gadobenate dimeglumine-enhanced magnetic resonance imaging (MRI) with gadopentetate dimeglumine-enhanced MRI, mammography, and ultrasound for breast cancer detection across different malignant lesion types and across different densities of breast tissue. In all, 153 women with Breast Imaging Reporting and Data System (BI-RADS) 3–5 findings on mammography and/or ultrasound underwent identical breast MRI exams at 1.5T with gadobenate dimeglumine and gadopentetate dimeglumine. Images were evaluated by three independent blinded radiologists. Mammography, ultrasound, and combined mammography and/or ultrasound findings were available for 108, 109, and 131 women. Imaging findings were matched with histology data by a fourth, independent, blinded radiologist. Malignant lesion detection rates and diagnostic performance were compared. In all, 120, 120, and 140 confirmed malignant lesions were present in patients undergoing MRI+mammography, MRI+ultrasound, and MRI+mammography and/or ultrasound, respectively. Significantly greater cancer detection rates were noted by all three readers for comparisons of gadobenate dimeglumine-enhanced MRI with mammography (Δ15.8–17.5%; P < 0.0001), ultrasound (Δ18.3–20.0%; P < 0.0001), and mammography and/or ultrasound (Δ8.6–10.7%; P ≤ 0.0105) but not for comparisons of gadopentetate dimeglumine-enhanced MRI with conventional techniques (P > 0.05). The false-positive detection rates were lower on gadobenate dimeglumine-enhanced MRI than on conventional imaging (4.0–5.5% vs. 11.1% at mammography; 6.3–8.4% vs. 15.5% at ultrasound). Significantly improved cancer detection on MRI was noted in heterogeneously dense breast (91.2–97.3% on gadobenate dimeglumine-enhanced MRI vs. 77.2–84.9% on gadopentetate dimeglumine-enhanced MRI vs. 71.9-84.9% with conventional techniques) and for invasive cancers (93.2–96.2% for invasive ductal carcinoma [IDC] on gadobenate dimeglumine-enhanced MRI vs. 79.7–88.5% on gadopentetate dimeglumine-enhanced MRI vs. 77.0–84.4% with conventional techniques). Overall diagnostic performance for the detection of cancer was superior on gadobenate dimeglumine-enhanced MRI than on conventional imaging or gadopentetate dimeglumine-enhanced MRI. Gadobenate dimeglumine-enhanced MRI significantly improves cancer detection compared to gadopentetate dimeglumine-enhanced MRI, mammography, and ultrasound in a selected group of patients undergoing breast MRI for preoperative staging or because of inconclusive findings at conventional imaging.

  18. Brain MRI abnormalities in the adult form of myotonic dystrophy type 1: A longitudinal case series study.

    PubMed

    Conforti, Renata; de Cristofaro, Mario; Cristofano, Adriana; Brogna, Barbara; Sardaro, Angela; Tedeschi, Gioacchino; Cirillo, Sossio; Di Costanzo, Alfonso

    2016-02-01

    This study aimed to verify whether brain abnormalities, previously described in patients with myotonic dystrophy type 1 (DM1) by magnetic resonance imaging (MRI), progressed over time and, if so, to characterize their progression. Thirteen DM1 patients, who had at least two MRI examinations, were retrospectively evaluated and included in the study. The mean duration (± standard deviation) of follow-up was 13.4 (±3.8) years, over a range of 7-20 years. White matter lesions (WMLs) were rated by semi-quantitative method, the signal intensity of white matter poster-superior to trigones (WMPST) by reference to standard images and brain atrophy by ventricular/brain ratio (VBR). At the end of MRI follow-up, the scores relative to lobar, temporal and periventricular WMLs, to WMPST signal intensity and to VBR were significantly increased compared to baseline, and MRI changes were more evident in some families than in others. No correlation was found between the MRI changes and age, onset, disease duration, muscular involvement, CTG repetition and follow-up duration. These results demonstrated that white matter involvement and brain atrophy were progressive in DM1 and suggested that progression rate varied from patient to patient, regardless of age, disease duration and genetic defect. © The Author(s) 2016.

  19. Anatomic study of the canine stifle using low-field magnetic resonance imaging (MRI) and MRI arthrography.

    PubMed

    Pujol, Esteban; Van Bree, Henri; Cauzinille, Laurent; Poncet, Cyrill; Gielen, Ingrid; Bouvy, Bernard

    2011-06-01

    To investigate the use of low-field magnetic resonance imaging (MRI) and MR arthrography in normal canine stifles and to compare MRI images to gross dissection. Descriptive study. Adult canine pelvic limbs (n=17). Stifle joints from 12 dogs were examined by orthopedic and radiographic examination, synovial fluid analysis, and MRI performed using a 0.2 T system. Limbs 1 to 7 were used to develop the MR and MR arthrography imaging protocol. Limbs 8-17 were studied with the developed MR and MR arthrography protocol and by gross dissection. Three sequences were obtained: T1-weighted spin echo (SE) in sagittal, dorsal, and transverse plane; T2-weighted SE in sagittal plane and T1-gradient echo in sagittal plane. Specific bony and soft tissue structures were easily identifiable with the exception of articular cartilage. The cranial and caudal cruciate ligaments were identified. Medial and lateral menisci were seen as wedge-shaped hypointense areas. MR arthrography permitted further delineation of specific structures. MR images corresponded with gross dissection morphology. With the exception of poor delineation of articular cartilage, a low-field MRI and MR arthrography protocol provides images of adequate quality to assess the normal canine stifle joint. © Copyright 2011 by The American College of Veterinary Surgeons.

  20. Cost-effectiveness of alternative strategies for integrating MRI into breast cancer screening for women at high risk.

    PubMed

    Ahern, C H; Shih, Y-C T; Dong, W; Parmigiani, G; Shen, Y

    2014-10-14

    Magnetic resonance imaging (MRI) is recommended for women at high risk for breast cancer. We evaluated the cost-effectiveness of alternative screening strategies involving MRI. Using a microsimulation model, we generated life histories under different risk profiles, and assessed the impact of screening on quality-adjusted life-years, and lifetime costs, both discounted at 3%. We compared 12 screening strategies combining annual or biennial MRI with mammography and clinical breast examination (CBE) in intervals of 0.5, 1, or 2 years vs without, and reported incremental cost-effectiveness ratios (ICERs). Based on an ICER threshold of $100,000/QALY, the most cost-effective strategy for women at 25% lifetime risk was to stagger MRI and mammography plus CBE every year from age 30 to 74, yielding ICER $58,400 (compared to biennial MRI alone). At 50% lifetime risk and with 70% reduction in MRI cost, the recommended strategy was to stagger MRI and mammography plus CBE every 6 months (ICER=$84,400). At 75% lifetime risk, the recommended strategy is biennial MRI combined with mammography plus CBE every 6 months (ICER=$62,800). The high costs of MRI and its lower specificity are limiting factors for annual screening schedule of MRI, except for women at sufficiently high risk.

  1. Magnetic resonance imaging findings in pediatric bilateral vocal fold dysfunction.

    PubMed

    Steiner, Joel I; Fink, A Michelle; Berkowitz, Robert G

    2013-07-01

    We studied the findings of brain magnetic resonance imaging (MRI) in infants with idiopathic congenital bilateral vocal fold dysfunction (CBVFD). We performed a retrospective investigation of a case series. We identified 26 children (14 male, 12 female) over 11 years. Three children were excluded. Thirteen patients required airway interventions, including continuous positive airway pressure (4 patients), endotracheal intubation (1), and tracheostomy (8). The findings on brain MRI were abnormal in 8 patients (35%). Tracheostomy was required in 3 patients (38%) with abnormal MRI findings, as compared with 5 of 15 patients (33%) with normal MRI findings. The MRI abnormalities involved evidence of white matter injury (2), abnormal white matter signal (1), subdural blood (3), cerebral swelling (1), and perisylvian polymicrogyria (1). The cranial ultrasound findings were abnormal in 4 of 11 patients. The MRI findings were abnormal in 2 of 7 children in whom the cranial ultrasound findings were normal, and in 2 of the 4 patients in whom the cranial ultrasound findings were abnormal. The MRI abnormalities were nonspecific; however, they may indicate unrecognized perinatal intracranial injury as being related to CBVFD. In addition, MRI may reveal an underlying structural brain anomaly. Cranial ultrasound has poor sensitivity and specificity. Hence, MRI should be considered as part of the routine assessment of neonates with CBVFD.

  2. Computed tomography versus magnetic resonance imaging for diagnosing cervical lymph node metastasis of head and neck cancer: a systematic review and meta-analysis

    PubMed Central

    Sun, J; Li, B; Li, CJ; Li, Y; Su, F; Gao, QH; Wu, FL; Yu, T; Wu, L; Li, LJ

    2015-01-01

    Computed tomography (CT) and magnetic resonance imaging (MRI) are common imaging methods to detect cervical lymph node metastasis of head and neck cancer. We aimed to assess the diagnostic efficacy of CT and MRI in detecting cervical lymph node metastasis, and to establish unified diagnostic criteria via systematic review and meta-analysis. A systematic literature search in five databases until January 2014 was carried out. All retrieved studies were reviewed and eligible studies were qualitatively summarized. Besides pooling the sensitivity (SEN) and specificity (SPE) data of CT and MRI, summary receiver operating characteristic curves were generated. A total of 63 studies including 3,029 participants were involved. The pooled results of meta-analysis showed that CT had a higher SEN (0.77 [95% confidence interval {CI} 0.73–0.87]) than MRI (0.72 [95% CI 0.70–0.74]) when node was considered as unit of analysis (P<0.05); MRI had a higher SPE (0.81 [95% CI 0.80–0.82]) than CT (0.72 [95% CI 0.69–0.74]) when neck level was considered as unit of analysis (P<0.05) and MRI had a higher area under concentration-time curve than CT when the patient was considered as unit of analysis (P<0.05). With regards to diagnostic criteria, for MRI, the results showed that the minimal axial diameter of 10 mm could be considered as the best size criterion, compared to 12 mm for CT. Overall, MRI conferred significantly higher SPE while CT demonstrated higher SEN. The diagnostic criteria for MRI and CT on size of metastatic lymph nodes were suggested as 10 and 12 mm, respectively. PMID:26089682

  3. ASAS definition for sacroiliitis on MRI in SpA: applicable to children?

    PubMed

    Herregods, Nele; Dehoorne, Joke; Van den Bosch, Filip; Jaremko, Jacob Lester; Van Vlaenderen, Joke; Joos, Rik; Baraliakos, Xenofon; Varkas, Gaëlle; Verstraete, Koenraad; Elewaut, Dirk; Jans, Lennart

    2017-04-11

    The Assessment of Spondyloarthritis International Society (ASAS) definition for a 'positive' Magnetic Resonance Imaging (MRI) for sacroiliitis is well studied and validated in adults, but studies about the value of this definition in children are lacking. The aim of this study is to evaluate whether the adult ASAS definition of a positive MRI of the sacroiliac joints can be applied to children with a clinical suspicion of Juvenile Spondyloarthritis (JSpA). Two pediatric musculoskeletal radiologists blinded to clinical data independently retrospectively reviewed sacroiliac (SI) joint MRI in 109 children suspected of sacroiliitis. They recorded global impression (sacroiliitis yes/no) and whether the adult ASAS definition for sacroiliitis was met at each joint. This was compared to gold-standard clinical diagnosis of JSpA. Additionally, MRI were scored according to'adapted' ASAS definitions including other features of sacroiliitis on MRI. JSpA was diagnosed clinically in 47/109 (43%) patients. On MRI, sacroiliitis was diagnosed by global assessment in 30/109 patients, of whom 14 also fulfilled ASAS criteria. No patients with negative global assessment for sacroiliitis fulfilled ASAS criteria. Sensitivity (SN) for JSpA was higher for global assessment (SN = 49%) than for ASAS definition (SN = 26%), but the ASAS definition was more specific (SP = 97% vs. 89%). Modifying adult ASAS criteria to allow bone marrow edema (BME) lesions seen on only one slice, synovitis or capsulitis, increased SN to 36%, 32% and 32% respectively, only slightly lowering SP. Including structural lesions increased SN to 28%, but lowered specificity to 95%. The adult ASAS definition for sacroiliitis has low sensitivity in children. A pediatric-specific definition of MRI-positive sacroiliitis including BME lesions visible on one slice only, synovitis and/or capsulitis may improve diagnostic utility, and increase relevance of MRI in pediatric rheumatology practice.

  4. Multiscale multimodal fusion of histological and MRI volumes for characterization of lung inflammation

    NASA Astrophysics Data System (ADS)

    Rusu, Mirabela; Wang, Haibo; Golden, Thea; Gow, Andrew; Madabhushi, Anant

    2013-03-01

    Mouse lung models facilitate the investigation of conditions such as chronic inflammation which are associated with common lung diseases. The multi-scale manifestation of lung inflammation prompted us to use multi-scale imaging - both in vivo, ex vivo MRI along with ex vivo histology, for its study in a new quantitative way. Some imaging modalities, such as MRI, are non-invasive and capture macroscopic features of the pathology, while others, e.g. ex vivo histology, depict detailed structures. Registering such multi-modal data to the same spatial coordinates will allow the construction of a comprehensive 3D model to enable the multi-scale study of diseases. Moreover, it may facilitate the identification and definition of quantitative of in vivo imaging signatures for diseases and pathologic processes. We introduce a quantitative, image analytic framework to integrate in vivo MR images of the entire mouse with ex vivo histology of the lung alone, using lung ex vivo MRI as conduit to facilitate their co-registration. In our framework, we first align the MR images by registering the in vivo and ex vivo MRI of the lung using an interactive rigid registration approach. Then we reconstruct the 3D volume of the ex vivo histological specimen by efficient group wise registration of the 2D slices. The resulting 3D histologic volume is subsequently registered to the MRI volumes by interactive rigid registration, directly to the ex vivo MRI, and implicitly to in vivo MRI. Qualitative evaluation of the registration framework was performed by comparing airway tree structures in ex vivo MRI and ex vivo histology where airways are visible and may be annotated. We present a use case for evaluation of our co-registration framework in the context of studying chronic inammation in a diseased mouse.

  5. Ionising radiation-free whole-body MRI versus (18)F-fluorodeoxyglucose PET/CT scans for children and young adults with cancer: a prospective, non-randomised, single-centre study.

    PubMed

    Klenk, Christopher; Gawande, Rakhee; Uslu, Lebriz; Khurana, Aman; Qiu, Deqiang; Quon, Andrew; Donig, Jessica; Rosenberg, Jarrett; Luna-Fineman, Sandra; Moseley, Michael; Daldrup-Link, Heike E

    2014-03-01

    Imaging tests are essential for staging of children with cancer. However, CT and radiotracer-based imaging procedures are associated with substantial exposure to ionising radiation and risk of secondary cancer development later in life. Our aim was to create a highly effective, clinically feasible, ionising radiation-free staging method based on whole-body diffusion-weighted MRI and the iron supplement ferumoxytol, used off-label as a contrast agent. We compared whole-body diffusion-weighted MRI with standard clinical (18)F-fluorodeoxyglucose ((18)F-FDG) PET/CT scans in children and young adults with malignant lymphomas and sarcomas. Whole-body diffusion-weighted magnetic resonance images were generated by coregistration of colour-encoded ferumoxytol-enhanced whole-body diffusion-weighted MRI scans for tumour detection with ferumoxytol-enhanced T1-weighted MRI scans for anatomical orientation, similar to the concept of integrated (18)F-FDG PET/CT scans. Tumour staging results were compared using Cohen's κ statistics. Histopathology and follow-up imaging served as the standard of reference. Data was assessed in the per-protocol population. This study is registered with ClinicalTrials.gov, number NCT01542879. 22 of 23 recruited patients were analysed because one patient discontinued before completion of the whole-body scan. Mean exposure to ionising radiation was 12·5 mSv (SD 4·1) for (18)F-FDG PET/CT compared with zero for whole-body diffusion-weighted MRI. (18)F-FDG PET/CT detected 163 of 174 malignant lesions at 1325 anatomical regions and whole-body diffusion-weighted MRI detected 158. Comparing (18)F-FDG PET/CT to whole-body diffusion-weighted MRI, sensitivities were 93·7% (95% CI 89·0-96·8) versus 90·8% (85·5-94·7); specificities 97·7% (95% CI 96·7-98·5) versus 99·5% (98·9-99·8); and diagnostic accuracies 97·2% (93·6-99·4) versus 98·3% (97·4-99·2). Tumour staging results showed very good agreement between both imaging modalities with a κ of 0·93 (0·81-1·00). No adverse events after administration of ferumoxytol were recorded. Ferumoxytol-enhanced whole-body diffusion-weighted MRI could be an alternative to (18)F-FDG PET/CT for staging of children and young adults with cancer that is free of ionising radiation. This new imaging test might help to prevent long-term side-effects from radiographic staging procedures. Thrasher Research Fund and Clinical Health Research Institute at Stanford University. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Effects of ageing and Alzheimer disease on haemodynamic response function: a challenge for event-related fMRI.

    PubMed

    Asemani, Davud; Morsheddost, Hassan; Shalchy, Mahsa Alizadeh

    2017-06-01

    Functional magnetic resonance imaging (fMRI) can generate brain images that show neuronal activity due to sensory, cognitive or motor tasks. Haemodynamic response function (HRF) may be considered as a biomarker to discriminate the Alzheimer disease (AD) from healthy ageing. As blood-oxygenation-level-dependent fMRI signal is much weak and noisy, particularly for the elderly subjects, a robust method is necessary for HRF estimation to efficiently differentiate the AD. After applying minimum description length wavelet as an extra denoising step, deconvolution algorithm is here employed for HRF estimation, substituting the averaging method used in the previous works. The HRF amplitude peaks are compared for three groups HRF of young, non-demented and demented elderly groups for both vision and motor regions. Prior works often reported significant differences in the HRF peak amplitude between the young and the elderly. The authors' experimentations show that the HRF peaks are not significantly different comparing the young adults with the elderly (either demented or non-demented). It is here demonstrated that the contradictory findings of the previous studies on the HRF peaks for the elderly compared with the young are originated from the noise contribution in fMRI data.

  7. Comparing cerebral perfusion in Alzheimer's disease and Parkinson's disease dementia: an ASL-MRI study.

    PubMed

    Le Heron, Campbell J; Wright, Sarah L; Melzer, Tracy R; Myall, Daniel J; MacAskill, Michael R; Livingston, Leslie; Keenan, Ross J; Watts, Richard; Dalrymple-Alford, John C; Anderson, Tim J

    2014-06-01

    Emerging evidence suggests that Alzheimer's disease (AD) and Parkinson's disease dementia (PDD) share neurodegenerative mechanisms. We sought to directly compare cerebral perfusion in these two conditions using arterial spin labeling magnetic resonance imaging (ASL-MRI). In total, 17 AD, 20 PDD, and 37 matched healthy controls completed ASL and structural MRI, and comprehensive neuropsychological testing. Alzheimer's disease and PDD perfusion was analyzed by whole-brain voxel-based analysis (to assess absolute blood flow), a priori specified region of interest analysis, and principal component analysis (to generate a network differentiating the two groups). Corrections were made for cerebral atrophy, age, sex, education, and MRI scanner software version. Analysis of absolute blood flow showed no significant differences between AD and PDD. Comparing each group with controls revealed an overlapping, posterior pattern of hypoperfusion, including posterior cingulate gyrus, precuneus, and occipital regions. The perfusion network that differentiated AD and PDD groups identified relative differences in medial temporal lobes (AD

  8. Japanese and English Sentence Reading Comprehension and Writing Systems: An fMRI Study of First and Second Language Effects on Brain Activation

    ERIC Educational Resources Information Center

    Buchweitz, Augusto; Mason, Robert A.; Hasegawa, Mihoko; Just, Marcel A.

    2009-01-01

    Functional magnetic resonance imaging (fMRI) was used to compare brain activation from native Japanese (L1) readers reading hiragana (syllabic) and kanji (logographic) sentences, and English as a second language (L2). Kanji showed more activation than hiragana in right-hemisphere occipito-temporal lobe areas associated with visuospatial…

  9. The Role of Diffusion-Weighted Magnetic Resonance Imaging in the Differentiation of Head and Neck Masses.

    PubMed

    Kanmaz, Lutfi; Karavas, Erdal

    2018-05-29

    The purpose of this study was to evaluate the value of diffusion-weighted MRI (DW-MRI) in differentiating benign and malignant head and neck masses by comparing their apparent diffusion coefficient (ADC) values. The study included 32 patients with a neck mass >1 cm in diameter who were examined with echo planar DW-MRI. Two different diffusion gradients (b values of b = 0 and b = 1000 s/mm²) were applied. DWI and ADC maps of 32 neck masses in 32 patients were obtained. Mean ADC values of benign and malignant neck lesions were measured and compared statistically. A total of 15 (46.9%) malignant masses and 17 (53.1%) benign masses were determined. Of all the neck masses, the ADC value of cystic masses was the highest and that of lymphomas was the lowest. The mean ADC values of benign and malignant neck masses were 1.57 × 10 -3 mm²/s and 0.90 × 10 -3 mm²/s, respectively. The difference between mean ADC values of benign and malignant neck masses was significant ( p < 0.01). Diffusion-weighted MRI with ADC measurements can be useful in the differential diagnosis of neck masses.

  10. Magnetic resonance imaging assessment of the rotator cuff: is it really accurate?

    PubMed

    Wnorowski, D C; Levinsohn, E M; Chamberlain, B C; McAndrew, D L

    1997-12-01

    Magnetic resonance imaging (MRI) is used increasingly for evaluating the rotator cuff. This study of 39 shoulders (38 patients) compared the accuracy of MRI interpretation of rotator cuff integrity by a group of community hospital radiologists (clinical community scenario, CCS) with that of a musculoskeletal radiologist (experienced specialist scenario, ESS), relative to arthroscopy. For the CCS subgroup, the sensitivity, specificity, positive predictive value (PV), negative PV, and accuracy for partial tears were: 0%, 68%, 0%, 82%, and 59%, respectively; for complete tears: 56%, 73%, 36%, 86%, and 69%, respectively; and for all tears combined: 85%, 52%, 50%, 87%, and 64%, respectively. For the ESS subgroup, the respective values for partial tears were: 20%, 88%, 20%, 88%, and 79%, respectively; for complete tears: 78%, 83%, 58%, 92%, and 82%, respectively; and for all tears: 71%, 71%, 59%, 81%, and 71%, respectively. We concluded that MRI assessment of the rotator cuff was not accurate relative to arthroscopy. MRI was most helpful if the result was negative, and MRI diagnosis of partial tear was of little value. Considering the high cost of shoulder MRI, this study has significant implications for the evaluation of patients with possible rotator cuff pathology.

  11. Efficacy of texture, shape, and intensity features for robust posterior-fossa tumor segmentation in MRI

    NASA Astrophysics Data System (ADS)

    Ahmed, S.; Iftekharuddin, K. M.; Ogg, R. J.; Laningham, F. H.

    2009-02-01

    Our previous works suggest that fractal-based texture features are very useful for detection, segmentation and classification of posterior-fossa (PF) pediatric brain tumor in multimodality MRI. In this work, we investigate and compare efficacy of our texture features such as fractal and multifractional Brownian motion (mBm), and intensity along with another useful level-set based shape feature in PF tumor segmentation. We study feature selection and ranking using Kullback -Leibler Divergence (KLD) and subsequent tumor segmentation; all in an integrated Expectation Maximization (EM) framework. We study the efficacy of all four features in both multimodality as well as disparate MRI modalities such as T1, T2 and FLAIR. Both KLD feature plots and information theoretic entropy measure suggest that mBm feature offers the maximum separation between tumor and non-tumor tissues in T1 and FLAIR MRI modalities. The same metrics show that intensity feature offers the maximum separation between tumor and non-tumor tissue in T2 MRI modality. The efficacies of these features are further validated in segmenting PF tumor using both single modality and multimodality MRI for six pediatric patients with over 520 real MR images.

  12. Random Forest Segregation of Drug Responses May Define Regions of Biological Significance.

    PubMed

    Bukhari, Qasim; Borsook, David; Rudin, Markus; Becerra, Lino

    2016-01-01

    The ability to assess brain responses in unsupervised manner based on fMRI measure has remained a challenge. Here we have applied the Random Forest (RF) method to detect differences in the pharmacological MRI (phMRI) response in rats to treatment with an analgesic drug (buprenorphine) as compared to control (saline). Three groups of animals were studied: two groups treated with different doses of the opioid buprenorphine, low (LD), and high dose (HD), and one receiving saline. PhMRI responses were evaluated in 45 brain regions and RF analysis was applied to allocate rats to the individual treatment groups. RF analysis was able to identify drug effects based on differential phMRI responses in the hippocampus, amygdala, nucleus accumbens, superior colliculus, and the lateral and posterior thalamus for drug vs. saline. These structures have high levels of mu opioid receptors. In addition these regions are involved in aversive signaling, which is inhibited by mu opioids. The results demonstrate that buprenorphine mediated phMRI responses comprise characteristic features that allow a supervised differentiation from placebo treated rats as well as the proper allocation to the respective drug dose group using the RF method, a method that has been successfully applied in clinical studies.

  13. Design and preliminary accuracy studies of an MRI-guided transrectal prostate intervention system.

    PubMed

    Krieger, Axel; Csoma, Csaba; Iordachital, Iulian I; Guion, Peter; Singh, Anurag K; Fichtinger, Gabor; Whitcomb, Louis L

    2007-01-01

    This paper reports a novel system for magnetic resonance imaging (MRI) guided transrectal prostate interventions, such as needle biopsy, fiducial marker placement, and therapy delivery. The system utilizes a hybrid tracking method, comprised of passive fiducial tracking for initial registration and subsequent incremental motion measurement along the degrees of freedom using fiber-optical encoders and mechanical scales. Targeting accuracy of the system is evaluated in prostate phantom experiments. Achieved targeting accuracy and procedure times were found to compare favorably with existing systems using passive and active tracking methods. Moreover, the portable design of the system using only standard MRI image sequences and minimal custom scanner interfacing allows the system to be easily used on different MRI scanners.

  14. Simultaneous whole body 18F-fluorodeoxyglucose positron emission tomography magnetic resonance imaging for evaluation of pediatric cancer: Preliminary experience and comparison with 18F-fluorodeoxyglucose positron emission tomography computed tomography

    PubMed Central

    Pugmire, Brian S; Guimaraes, Alexander R; Lim, Ruth; Friedmann, Alison M; Huang, Mary; Ebb, David; Weinstein, Howard; Catalano, Onofrio A; Mahmood, Umar; Catana, Ciprian; Gee, Michael S

    2016-01-01

    AIM: To describe our preliminary experience with simultaneous whole body 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography and magnetic resonance imaging (PET-MRI) in the evaluation of pediatric oncology patients. METHODS: This prospective, observational, single-center study was Health Insurance Portability and Accountability Act-compliant, and institutional review board approved. To be eligible, a patient was required to: (1) have a known or suspected cancer diagnosis; (2) be under the care of a pediatric hematologist/oncologist; and (3) be scheduled for clinically indicated 18F-FDG positron emission tomography-computed tomography (PET-CT) examination at our institution. Patients underwent PET-CT followed by PET-MRI on the same day. PET-CT examinations were performed using standard department protocols. PET-MRI studies were acquired with an integrated 3 Tesla PET-MRI scanner using whole body T1 Dixon, T2 HASTE, EPI diffusion-weighted imaging (DWI) and STIR sequences. No additional radiotracer was given for the PET-MRI examination. Both PET-CT and PET-MRI examinations were reviewed by consensus by two study personnel. Test performance characteristics of PET-MRI, for the detection of malignant lesions, including FDG maximum standardized uptake value (SUVmax) and minimum apparent diffusion coefficient (ADCmin), were calculated on a per lesion basis using PET-CT as a reference standard. RESULTS: A total of 10 whole body PET-MRI exams were performed in 7 pediatric oncology patients. The mean patient age was 16.1 years (range 12-19 years) including 6 males and 1 female. A total of 20 malignant and 21 benign lesions were identified on PET-CT. PET-MRI SUVmax had excellent correlation with PET-CT SUVmax for both benign and malignant lesions (R = 0.93). PET-MRI SUVmax > 2.5 had 100% accuracy for discriminating benign from malignant lesions using PET-CT reference. Whole body DWI was also evaluated: the mean ADCmin of malignant lesions (780.2 + 326.6) was significantly lower than that of benign lesions (1246.2 + 417.3; P = 0.0003; Student’s t test). A range of ADCmin thresholds for malignancy were evaluated, from 0.5-1.5 × 10-3 mm2/s. The 1.0 × 10-3 ADCmin threshold performed best compared with PET-CT reference (68.3% accuracy). However, the accuracy of PET-MRI SUVmax was significantly better than ADCmin for detecting malignant lesions compared with PET-CT reference (P < 0.0001; two-tailed McNemar’s test). CONCLUSION: These results suggest a clinical role for simultaneous whole body PET-MRI in evaluating pediatric cancer patients. PMID:27028112

  15. Simultaneous whole body (18)F-fluorodeoxyglucose positron emission tomography magnetic resonance imaging for evaluation of pediatric cancer: Preliminary experience and comparison with (18)F-fluorodeoxyglucose positron emission tomography computed tomography.

    PubMed

    Pugmire, Brian S; Guimaraes, Alexander R; Lim, Ruth; Friedmann, Alison M; Huang, Mary; Ebb, David; Weinstein, Howard; Catalano, Onofrio A; Mahmood, Umar; Catana, Ciprian; Gee, Michael S

    2016-03-28

    To describe our preliminary experience with simultaneous whole body (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography and magnetic resonance imaging (PET-MRI) in the evaluation of pediatric oncology patients. This prospective, observational, single-center study was Health Insurance Portability and Accountability Act-compliant, and institutional review board approved. To be eligible, a patient was required to: (1) have a known or suspected cancer diagnosis; (2) be under the care of a pediatric hematologist/oncologist; and (3) be scheduled for clinically indicated (18)F-FDG positron emission tomography-computed tomography (PET-CT) examination at our institution. Patients underwent PET-CT followed by PET-MRI on the same day. PET-CT examinations were performed using standard department protocols. PET-MRI studies were acquired with an integrated 3 Tesla PET-MRI scanner using whole body T1 Dixon, T2 HASTE, EPI diffusion-weighted imaging (DWI) and STIR sequences. No additional radiotracer was given for the PET-MRI examination. Both PET-CT and PET-MRI examinations were reviewed by consensus by two study personnel. Test performance characteristics of PET-MRI, for the detection of malignant lesions, including FDG maximum standardized uptake value (SUVmax) and minimum apparent diffusion coefficient (ADCmin), were calculated on a per lesion basis using PET-CT as a reference standard. A total of 10 whole body PET-MRI exams were performed in 7 pediatric oncology patients. The mean patient age was 16.1 years (range 12-19 years) including 6 males and 1 female. A total of 20 malignant and 21 benign lesions were identified on PET-CT. PET-MRI SUVmax had excellent correlation with PET-CT SUVmax for both benign and malignant lesions (R = 0.93). PET-MRI SUVmax > 2.5 had 100% accuracy for discriminating benign from malignant lesions using PET-CT reference. Whole body DWI was also evaluated: the mean ADCmin of malignant lesions (780.2 + 326.6) was significantly lower than that of benign lesions (1246.2 + 417.3; P = 0.0003; Student's t test). A range of ADCmin thresholds for malignancy were evaluated, from 0.5-1.5 × 10(-3) mm(2)/s. The 1.0 × 10(-3) ADCmin threshold performed best compared with PET-CT reference (68.3% accuracy). However, the accuracy of PET-MRI SUVmax was significantly better than ADCmin for detecting malignant lesions compared with PET-CT reference (P < 0.0001; two-tailed McNemar's test). These results suggest a clinical role for simultaneous whole body PET-MRI in evaluating pediatric cancer patients.

  16. Topiramate and its effect on fMRI of language in patients with right or left temporal lobe epilepsy.

    PubMed

    Szaflarski, Jerzy P; Allendorfer, Jane B

    2012-05-01

    Topiramate (TPM) is well recognized for its negative effects on cognition, language performance and lateralization results on the intracarotid amobarbital procedure (IAP). But, the effects of TPM on functional MRI (fMRI) of language and the fMRI signals are less clear. Functional MRI is increasingly used for presurgical evaluation of epilepsy patients in place of IAP for language lateralization. Thus, the goal of this study was to assess the effects of TPM on fMRI signals. In this study, we included 8 patients with right temporal lobe epilepsy (RTLE) and 8 with left temporal lobe epilepsy (LTLE) taking TPM (+TPM). Matched to them for age, handedness and side of seizure onset were 8 patients with RTLE and 8 with LTLE not taking TPM (-TPM). Matched for age and handedness to the patients with TLE were 32 healthy controls. The fMRI paradigm involved semantic decision/tone decision task (in-scanner behavioral data were collected). All epilepsy patients received a standard neuropsychological language battery. One sample t-tests were performed within each group to assess task-specific activations. Functional MRI data random-effects analysis was performed to determine significant group activation differences and to assess the effect of TPM dose on task activation. Direct group comparisons of fMRI, language and demographic data between patients with R/L TLE +TPM vs. -TPM and the analysis of the effects of TPM on blood oxygenation level-dependent (BOLD) signal were performed. Groups were matched for age, handedness and, within the R/L TLE groups, for the age of epilepsy onset/duration and the number of AEDs/TPM dose. The in-scanner language performance of patients was worse when compared to healthy controls - all p<0.044. While all groups showed fMRI activation typical for this task, regression analyses comparing L/R TLE +TPM vs. -TPM showed significant fMRI signal differences between groups (increases in left cingulate gyrus and decreases in left superior temporal gyrus in the patients with LTLE +TPM; increases in the right BA 10 and left visual cortex and decreases in the left BA 47 in +TPM RTLE). Further, TPM dose showed positive relationship with activation in the basal ganglia and negative associations with activation in anterior cingulate and posterior visual cortex. Thus, TPM appears to have a different effect on fMRI language distribution in patients with R/L TLE and a dose-dependent effect on fMRI signals. These findings may, in part, explain the negative effects of TPM on cognition and language performance and support the notion that TPM may affect the results of language fMRI lateralization/localization. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Prostate tissue ablation with MRI guided transurethral therapeutic ultrasound and intraoperative assessment of the integrity of the neurovascular bundle

    NASA Astrophysics Data System (ADS)

    Sammet, Steffen; Partanen, Ari; Yousuf, Ambereen; Wardrip, Craig; Niekrasz, Marek; Antic, Tatjana; Razmaria, Aria; Sokka, Sham; Karczmar, Gregory; Oto, Aytekin

    2017-03-01

    OBJECTIVES: Evaluation of the precision of prostate tissue ablation with MRI guided therapeuticultrasound by intraoperative objective assessment of the neurovascular bundle in canines in-vivo. METHODS: In this ongoing IACUC approved study, eight male canines were scanned in a clinical 3T Achieva MRI scanner (Philips) before, during, and after ultrasound therapy with a prototype MR-guided ultrasound therapy system (Philips). The system includes a therapy console to plan treatment, to calculate real-time temperature maps, and to control ultrasound exposures with temperature feedback. Atransurethral ultrasound applicator with eight transducer elements was used to ablate canine prostate tissue in-vivo. Ablated prostate tissue volumes were compared to the prescribed target volumes to evaluate technical effectiveness. The ablated volumes determined by MRI (T1, T2, diffusion, dynamic contrast enhanced and 240 CEM43 thermal dose maps) were compared to H&E stained histological slides afterprostatectomy. Potential nerve damage of the neurovascular bundle was objectively assessed intraoperativelyduring prostatectomy with a CaverMap Surgical Aid nerve stimulator (Blue Torch Medical Technologies). RESULTS: Transurethral MRI -guided ultrasound therapy can effectively ablate canine prostate tissue invivo. Coronal MR-imaging confirmed the correct placement of the HIFU transducer. MRI temperature maps were acquired during HIFU treatment, and subsequently used for calculating thermal dose. Prescribed target volumes corresponded to the 240 CEM43 thermal dose maps during HIFU treatment in all canines. Ablated volumes on high resolution anatomical, diffusion weighted, and contrast enhanced MR images matched corresponding histological slides after prostatectomy. MRI guidance with realtime temperature monitoring showed no damage to surrounding tissues, especially to the neurovascular bundle (assessed intra-operatively with a nerve stimulator) or to the rectum wall. CONCLUSIONS: Our study demonstrates the effectiveness and precision of transurethral ultrasound ablation of prostatic tissue in canines with MRI monitoring and guidance. The canine prostate is an excellent model for the human prostate with similar anatomical characteristics and diseases. MRI guidance with real-time, intraoperative temperature monitoring reduces the risk of damaging critical surrounding anatomical structures in ultrasound therapy of the prostate.

  18. Validation of goose liver fat measurement by QCT and CSE-MRI with biochemical extraction and pathology as reference.

    PubMed

    Xu, Li; Duanmu, Yangyang; Blake, Glen M; Zhang, Chenxin; Zhang, Yong; Brown, Keenan; Wang, Xiaoqi; Wang, Peng; Zhou, Xingang; Zhang, Manling; Wang, Chao; Guo, Zhe; Guglielmi, Giuseppe; Cheng, Xiaoguang

    2018-05-01

    This study aimed to validate the accuracy and reliability of quantitative computed tomography (QCT) and chemical shift encoded magnetic resonance imaging (CSE-MRI) to assess hepatic steatosis. Twenty-two geese with a wide range of hepatic steatosis were collected. After QCT and CSE-MRI examinations, the liver of each goose was removed and samples were taken from the left lobe, upper and lower half of the right lobe for biochemical measurement and histology. Fat percentages by QCT and proton density fat fraction by MRI (MRI-PDFF) were measured within the sample regions of biochemical measurement and histology. The accuracy of QCT and MR measurements were assessed through Spearman correlation coefficients (r) and Passing and Bablok regression equations using biochemical measurement as the "gold standard". Both QCT and MRI correlated highly with chemical extraction [r = 0.922 (p < 0.001) and r = 0.949 (p < 0.001) respectively]. Chemically extracted triglyceride was accurately predicted by both QCT liver fat percentages (Y = 0.6 + 0.866 × X) and by MRI-PDFF (Y = -1.8 + 0.773 × X). QCT and CSE-MRI measurements of goose liver fat were accurate and reliable compared with biochemical measurement. • QCT and CSE-MRI can measure liver fat content accurately and reliably • Histological grading of hepatic steatosis has larger sampling variability • QCT and CSE-MRI have potential in the clinical setting.

  19. Fiber Optic Force Sensors for MRI-Guided Interventions and Rehabilitation: A Review

    PubMed Central

    Iordachita, Iulian I.; Tokuda, Junichi; Hata, Nobuhiko; Liu, Xuan; Seifabadi, Reza; Xu, Sheng; Wood, Bradford; Fischer, Gregory S.

    2017-01-01

    Magnetic Resonance Imaging (MRI) provides both anatomical imaging with excellent soft tissue contrast and functional MRI imaging (fMRI) of physiological parameters. The last two decades have witnessed the manifestation of increased interest in MRI-guided minimally invasive intervention procedures and fMRI for rehabilitation and neuroscience research. Accompanying the aspiration to utilize MRI to provide imaging feedback during interventions and brain activity for neuroscience study, there is an accumulated effort to utilize force sensors compatible with the MRI environment to meet the growing demand of these procedures, with the goal of enhanced interventional safety and accuracy, improved efficacy and rehabilitation outcome. This paper summarizes the fundamental principles, the state of the art development and challenges of fiber optic force sensors for MRI-guided interventions and rehabilitation. It provides an overview of MRI-compatible fiber optic force sensors based on different sensing principles, including light intensity modulation, wavelength modulation, and phase modulation. Extensive design prototypes are reviewed to illustrate the detailed implementation of these principles. Advantages and disadvantages of the sensor designs are compared and analyzed. A perspective on the future development of fiber optic sensors is also presented which may have additional broad clinical applications. Future surgical interventions or rehabilitation will rely on intelligent force sensors to provide situational awareness to augment or complement human perception in these procedures. PMID:28652857

  20. Comprehensive imaging of tumor recurrence in breast cancer patients using whole-body MRI at 1.5 and 3 T compared to FDG-PET-CT.

    PubMed

    Schmidt, Gerwin P; Baur-Melnyk, Andrea; Haug, Alexander; Heinemann, Volker; Bauerfeind, Ingo; Reiser, Maximilian F; Schoenberg, Stefan O

    2008-01-01

    To compare the diagnostic accuracy for the detection of tumor recurrence in breast cancer patients using whole-body-MRI (WB-MRI) at 1.5 or 3T compared to FDG-PET-CT. Thirty-three female patients with breast cancer and suspicion of recurrence underwent FDG-PET-CT and WB-MRI. Coronal T1w-TSE- and STIR-sequences, HASTE-imaging of the lungs, contrast-enhanced T1w- and T2w-TSE-sequences of the liver, brain and abdomen were performed, using a WB-MRI-scanner at 1.5 (n=23) or 3T (n=10). Presence of local recurrence, lymph node involvement and distant metastatic disease was assessed using clinical and radiological follow-up as a standard of reference. Tumor recurrence was found in 20 of 33 patients. Overall 186 malignant foci were detected with WB-MRI and PET-CT. Both modalities revealed two recurrent tumors of the breast. PET-CT detected more lymph node metastases (n=21) than WB-MRI (n=16). WB-MRI was more precise in the detection of distant metastases (n=154 versus n=147). Sensitivity was 93% (172/186) and 91% (170/186) for WB-MRI and PET-CT, specificity was 86% (66/77) and 90% (69/77), respectively. Examination times for WB-MRI at 1.5 and 3T were 51 and 43 min, respectively, examination time for PET-CT was 103 min. WB-MRI and PET-CT are useful for the detection of tumor recurrence in the follow-up of breast cancer. WB-MRI is highly sensitive to distant metastatic disease. PET-CT is more sensitive in detecting lymph node involvement. Tumor screening with WB-MRI is feasible at 1.5 and 3T, scan time is further reduced at 3T with identical resolution.

  1. 18F-FDG PET/MRI fusion in characterizing pancreatic tumors: comparison to PET/CT.

    PubMed

    Tatsumi, Mitsuaki; Isohashi, Kayako; Onishi, Hiromitsu; Hori, Masatoshi; Kim, Tonsok; Higuchi, Ichiro; Inoue, Atsuo; Shimosegawa, Eku; Takeda, Yutaka; Hatazawa, Jun

    2011-08-01

    To demonstrate that positron emission tomography (PET)/magnetic resonance imaging (MRI) fusion was feasible in characterizing pancreatic tumors (PTs), comparing MRI and computed tomography (CT) as mapping images for fusion with PET as well as fused PET/MRI and PET/CT. We retrospectively reviewed 47 sets of (18)F-fluorodeoxyglucose ((18)F -FDG) PET/CT and MRI examinations to evaluate suspected or known pancreatic cancer. To assess the ability of mapping images for fusion with PET, CT (of PET/CT), T1- and T2-weighted (w) MR images (all non-contrast) were graded regarding the visibility of PT (5-point confidence scale). Fused PET/CT, PET/T1-w or T2-w MR images of the upper abdomen were evaluated to determine whether mapping images provided additional diagnostic information to PET alone (3-point scale). The overall quality of PET/CT or PET/MRI sets in diagnosis was also assessed (3-point scale). These PET/MRI-related scores were compared to PET/CT-related scores and the accuracy in characterizing PTs was compared. Forty-three PTs were visualized on CT or MRI, including 30 with abnormal FDG uptake and 13 without. The confidence score for the visibility of PT was significantly higher on T1-w MRI than CT. The scores for additional diagnostic information to PET and overall quality of each image set in diagnosis were significantly higher on the PET/T1-w MRI set than the PET/CT set. The diagnostic accuracy was higher on PET/T1-w or PET/T2-w MRI (93.0 and 90.7%, respectively) than PET/CT (88.4%), but statistical significance was not obtained. PET/MRI fusion, especially PET with T1-w MRI, was demonstrated to be superior to PET/CT in characterizing PTs, offering better mapping and fusion image quality.

  2. Comparison of gadolinium-EOB-DTPA-enhanced and diffusion-weighted liver MRI for detection of small hepatic metastases.

    PubMed

    Shimada, Kotaro; Isoda, Hiroyoshi; Hirokawa, Yuusuke; Arizono, Shigeki; Shibata, Toshiya; Togashi, Kaori

    2010-11-01

    To compare the accuracy of gadolinium ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced MRI with that of diffusion-weighted MRI (DWI) in the detection of small hepatic metastases (2 cm or smaller). Forty-five patients underwent abdominal MRI at 3 T, including T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), heavily T2WI (HASTE), DWI with a b-value of 500 s/mm(2) and contrast-enhanced MRI with Gd-EOB-DTPA. Two groups were assigned and compared: group A (T1WI, T2WI, HASTE and contrast-enhanced study with Gd-EOB-DTPA), and group B (T1WI, T2WI, HASTE and DWI). Two observers independently interpreted the images obtained in a random order. For all hepatic metastases, the diagnostic performance using each imaging set was evaluated by receiver-operating characteristic (ROC) curve analysis. A total of 51 hepatic metastases were confirmed. The area under the ROC curve (Az) of group A was larger than that of group B, and the difference in the mean Az values between the two image sets was statistically significant, whereas, there were three metastases that lay near thin vessels or among multiple cysts and were better visualised in group B than in group A. Gd-EOB-DTPA-enhanced MRI showed higher accuracy in the detection of small metastases than DWI.

  3. Contribution of mammography to MRI screening in BRCA mutation carriers by BRCA status and age: individual patient data meta-analysis

    PubMed Central

    Phi, Xuan-Anh; Saadatmand, Sepideh; De Bock, Geertruida H; Warner, Ellen; Sardanelli, Francesco; Leach, Martin O; Riedl, Christopher C; Trop, Isabelle; Hooning, Maartje J; Mandel, Rodica; Santoro, Filippo; Kwan-Lim, Gek; Helbich, Thomas H; Tilanus-Linthorst, Madeleine MA; van den Heuvel, Edwin R; Houssami, Nehmat

    2016-01-01

    Background: We investigated the additional contribution of mammography to screening accuracy in BRCA1/2 mutation carriers screened with MRI at different ages using individual patient data from six high-risk screening trials. Methods: Sensitivity and specificity of MRI, mammography and the combination of these tests were compared stratified for BRCA mutation and age using generalised linear mixed models with random effect for studies. Number of screens needed (NSN) for additional mammography-only detected cancer was estimated. Results: In BRCA1/2 mutation carriers of all ages (BRCA1=1219 and BRCA2=732), adding mammography to MRI did not significantly increase screening sensitivity (increased by 3.9% in BRCA1 and 12.6% in BRCA2 mutation carriers, P>0.05). However, in women with BRCA2 mutation younger than 40 years, one-third of breast cancers were detected by mammography only. Number of screens needed for mammography to detect one breast cancer not detected by MRI was much higher for BRCA1 compared with BRCA2 mutation carriers at initial and repeat screening. Conclusions: Additional screening sensitivity from mammography above that from MRI is limited in BRCA1 mutation carriers, whereas mammography contributes to screening sensitivity in BRCA2 mutation carriers, especially those ⩽40 years. The evidence from our work highlights that a differential screening schedule by BRCA status is worth considering. PMID:26908327

  4. Dynamic glucose enhanced (DGE) MRI for combined imaging of blood-brain barrier break down and increased blood volume in brain cancer.

    PubMed

    Xu, Xiang; Chan, Kannie W Y; Knutsson, Linda; Artemov, Dmitri; Xu, Jiadi; Liu, Guanshu; Kato, Yoshinori; Lal, Bachchu; Laterra, John; McMahon, Michael T; van Zijl, Peter C M

    2015-12-01

    Recently, natural d-glucose was suggested as a potential biodegradable contrast agent. The feasibility of using d-glucose for dynamic perfusion imaging was explored to detect malignant brain tumors based on blood brain barrier breakdown. Mice were inoculated orthotopically with human U87-EGFRvIII glioma cells. Time-resolved glucose signal changes were detected using chemical exchange saturation transfer (glucoCEST) MRI. Dynamic glucose enhanced (DGE) MRI was used to measure tissue response to an intravenous bolus of d-glucose. DGE images of mouse brains bearing human glioma showed two times higher and persistent changes in tumor compared with contralateral brain. Area-under-curve (AUC) analysis of DGE delineated blood vessels and tumor and had contrast comparable to the AUC determined using dynamic contrast enhanced (DCE) MRI with GdDTPA, both showing a significantly higher AUC in tumor than in brain (P < 0.005). Both CEST and relaxation effects contribute to the signal change. DGE MRI is a feasible technique for studying brain tumor enhancement reflecting differences in tumor blood volume and permeability with respect to normal brain. We expect DGE will provide a low-risk and less expensive alternative to DCE MRI for imaging cancer in vulnerable populations, such as children and patients with renal impairment. © 2015 Wiley Periodicals, Inc.

  5. Dynamic Glucose Enhanced (DGE) MRI for Combined Imaging of Blood Brain Barrier Break Down and Increased Blood Volume in Brain Cancer

    PubMed Central

    Xu, Xiang; Chan, Kannie WY; Knutsson, Linda; Artemov, Dmitri; Xu, Jiadi; Liu, Guanshu; Kato, Yoshinori; Lal, Bachchu; Laterra, John; McMahon, Michael T.; van Zijl, Peter C.M.

    2015-01-01

    Purpose Recently, natural d-glucose was suggested as a potential biodegradable contrast agent. The feasibility of using d-glucose for dynamic perfusion imaging was explored to detect malignant brain tumors based on blood brain barrier breakdown. Methods Mice were inoculated orthotopically with human U87-EGFRvIII glioma cells. Time-resolved glucose signal changes were detected using chemical exchange saturation transfer (glucoCEST) MRI. Dynamic glucose enhanced (DGE) MRI was used to measure tissue response to an intravenous bolus of d-glucose. Results DGE images of mouse brains bearing human glioma showed two times higher and persistent changes in tumor compared to contralateral brain. Area-under-curve (AUC) analysis of DGE delineated blood vessels and tumor and had contrast comparable to the AUC determined using dynamic contrast enhanced (DCE) MRI with GdDTPA, both showing a significantly higher AUC in tumor than in brain (p<0.005). Both CEST and relaxation effects contribute to the signal change. Conclusion DGE MRI is a feasible technique for studying brain tumor enhancement reflecting differences in tumor blood volume and permeability with respect to normal brain. We expect DGE will provide a low-risk and less expensive alternative to DCE MRI for imaging cancer in vulnerable populations, such as children and patients with renal impairment. PMID:26404120

  6. Magnetic Resonance Imaging for Patellofemoral Chondromalacia: Is There a Role for T2 Mapping?

    PubMed

    van Eck, Carola F; Kingston, R Scott; Crues, John V; Kharrazi, F Daniel

    2017-11-01

    Patellofemoral pain is common, and treatment is guided by the presence and grade of chondromalacia. To evaluate and compare the sensitivity and specificity in detecting and grading chondral abnormalities of the patella between proton density fat suppression (PDFS) and T2 mapping magnetic resonance imaging (MRI). Cohort study; Level of evidence, 2. A total of 25 patients who underwent MRI of the knee with both a PDFS sequence and T2 mapping and subsequently underwent arthroscopic knee surgery were included. The cartilage surface of the patella was graded on both MRI sequences by 2 independent, blinded radiologists. Cartilage was then graded during arthroscopic surgery by a sports medicine fellowship-trained orthopaedic surgeon. Reliability, sensitivity, specificity, and accuracy were determined for both MRI methods. The findings during arthroscopic surgery were considered the gold standard. Intraobserver and interobserver agreement for both PDFS (98.5% and 89.4%, respectively) and T2 mapping (99.4% and 91.3%, respectively) MRI were excellent. For T2 mapping, the sensitivity (61%) and specificity (64%) were comparable, whereas for PDFS there was a lower sensitivity (37%) but higher specificity (81%) in identifying cartilage abnormalities. This resulted in a similar accuracy for PDFS (59%) and T2 mapping (62%). Both PDFS and T2 mapping MRI were reliable but only moderately accurate in predicting patellar chondromalacia found during knee arthroscopic surgery.

  7. Diagnostic capability of gadoxetate disodium-enhanced liver MRI for diagnosis of hepatocellular carcinoma: comparison with multi-detector CT.

    PubMed

    Toyota, Naoyuki; Nakamura, Yuko; Hieda, Masashi; Akiyama, Naoko; Terada, Hiroaki; Matsuura, Noriaki; Nishiki, Masayo; Kono, Hirotaka; Kohno, Hiroshi; Irei, Toshimitsu; Yoshikawa, Yukinobu; Kuraoka, Kazuya; Taniyama, Kiyomi; Awai, Kazuo

    2013-09-01

    The purpose of this study was to evaluate the diagnostic capability of gadoxetate disodium (Gd-EOB)-MRI for the detection of hepatocellular carcinoma (HCC) compared with multidetector CT (MDCT). Fifty patients with 57 surgically proven HCCs who underwent Gd-EOB-MRI and MDCT from March 2008 to June 2011 were evaluated. Two observers evaluated MR and CT on a lesion-by-lesion basis. We analyzed sensitivity by grading on a 5-point scale, the degree of arterial enhancement and the differences in histological grades in the diffusion-weighted images (DWI). The results showed that the sensitivity of Gd-EOB-MRI was higher than that of MDCT especially for HCCs that were 1 cm in diameter or smaller. The hepatobiliary phase was useful for the detecting of small HCC. We had few cases in which it was difficult to judge HCC in the arterial enhancement between MRI and MDCT. In the diffusion-weighted image, well differentiated HCC tended to show a low signal intensity, and poorly differentiated HCC tended to show a high signal intensity. In moderately differentiated HCC's, the mean diameter of the high signal intensity group was larger than that of the low signal intensity group (24.5 mm vs. 15.8 mm). In conclusion, Gd-EOB-MRI tended to show higher sensitivity compared to MDCT in the detection of HCC.

  8. Contribution of mammography to MRI screening in BRCA mutation carriers by BRCA status and age: individual patient data meta-analysis.

    PubMed

    Phi, Xuan-Anh; Saadatmand, Sepideh; De Bock, Geertruida H; Warner, Ellen; Sardanelli, Francesco; Leach, Martin O; Riedl, Christopher C; Trop, Isabelle; Hooning, Maartje J; Mandel, Rodica; Santoro, Filippo; Kwan-Lim, Gek; Helbich, Thomas H; Tilanus-Linthorst, Madeleine M A; van den Heuvel, Edwin R; Houssami, Nehmat

    2016-03-15

    We investigated the additional contribution of mammography to screening accuracy in BRCA1/2 mutation carriers screened with MRI at different ages using individual patient data from six high-risk screening trials. Sensitivity and specificity of MRI, mammography and the combination of these tests were compared stratified for BRCA mutation and age using generalised linear mixed models with random effect for studies. Number of screens needed (NSN) for additional mammography-only detected cancer was estimated. In BRCA1/2 mutation carriers of all ages (BRCA1 = 1,219 and BRCA2 = 732), adding mammography to MRI did not significantly increase screening sensitivity (increased by 3.9% in BRCA1 and 12.6% in BRCA2 mutation carriers, P > 0.05). However, in women with BRCA2 mutation younger than 40 years, one-third of breast cancers were detected by mammography only. Number of screens needed for mammography to detect one breast cancer not detected by MRI was much higher for BRCA1 compared with BRCA2 mutation carriers at initial and repeat screening. Additional screening sensitivity from mammography above that from MRI is limited in BRCA1 mutation carriers, whereas mammography contributes to screening sensitivity in BRCA2 mutation carriers, especially those ⩽ 40 years. The evidence from our work highlights that a differential screening schedule by BRCA status is worth considering.

  9. Staging of neuroendocrine tumours: comparison of [68Ga]DOTATOC multiphase PET/CT and whole-body MRI

    PubMed Central

    Schwenzer, N. F.; Sperling, O.; Aschoff, P.; Lichy, M. P.; Müller, M.; Brendle, C.; Werner, M. K.; Claussen, C. D.; Pfannenberg, C.

    2013-01-01

    Abstract Purpose: In patients with a neuroendocrine tumour (NET), the extent of disease strongly influences the outcome and multidisciplinary therapeutic management. Thus, systematic analysis of the diagnostic performance of the existing staging modalities is necessary. The aim of this study was to compare the diagnostic performance of 2 whole-body imaging modalities, [68Ga]DOTATOC positron emission tomography (PET)/computed tomography (CT) and magnetic resonance imaging (MRI) in patients with NET with regard to possible impact on treatment decisions. Materials and methods: [68Ga]DOTATOC-PET/CT and whole-body magnetic resonance imaging (wbMRI) were performed on 51 patients (25 females, 26 males, mean age 57 years) with histologically proven NET and suspicion of metastatic spread within a mean interval of 2.4 days (range 0–28 days). PET/CT was performed after intravenous administration of 150 MBq [68Ga]DOTATOC. The CT protocol comprised multiphase contrast-enhanced imaging. The MRI protocol consisted of standard sequences before and after intravenous contrast administration at 1.5 T. Each modality (PET, CT, PET/CT, wbMRI) was evaluated independently by 2 experienced readers. Consensus decision based on correlation of all imaging data, histologic and surgical findings and clinical follow-up was established as the standard of reference. Lesion-based and patient-based analysis was performed. Detection rates and accuracy were compared using the McNemar test. P values <0.05 were considered significant. The impact of whole-body imaging on the treatment decision was evaluated by the interdisciplinary tumour board of our institution. Results: 593 metastatic lesions were detected in 41 of 51 (80%) patients with NET (lung 54, liver 266, bone 131, lymph node 99, other 43). One hundred and twenty PET-negative lesions were detected by CT or MRI. Of all 593 lesions detected, PET identified 381 (64%) true-positive lesions, CT 482 (81%), PET/CT 545 (92%) and wbMRI 540 (91%). Comparison of lesion-based detection rates between PET/CT and wbMRI revealed significantly higher sensitivity of PET/CT for metastatic lymph nodes (100% vs 73%; P < 0.0001) and pulmonary lesions (100% vs 87%; P = 0.0233), whereas wbMRI had significantly higher detection rates for liver (99% vs 92%; P < 0.0001) and bone lesions (96% vs 82%; P < 0.0001). Of all 593 lesions, 22 were found only in PET, 11 only in CT and 47 only in wbMRI. The patient-based overall assessment of the metastatic status of the patient showed comparable sensitivity of PET/CT and MRI with slightly higher accuracy of PET/CT. Patient-based analysis of metastatic organ involvement revealed significantly higher accuracy of PET/CT for bone and lymph node metastases (100% vs 88%; P = 0.0412 and 98% vs 78%; P = 0.0044) and for the overall comparison (99% vs 89%; P < 0.0001). The imaging results influenced the treatment decision in 30 patients (59%) with comparable information from PET/CT and wbMRI in 30 patients, additional relevant information from PET/CT in 16 patients and from wbMRI in 7 patients. Conclusion: PET/CT and wbMRI showed comparable overall lesion-based detection rates for metastatic involvement in NET but significantly differed in organ-based detection rates with superiority of PET/CT for lymph node and pulmonary lesions and of wbMRI for liver and bone metastases. Patient-based analysis revealed superiority of PET/CT for NET staging. Individual treatment strategies benefit from complementary information from PET/CT and MRI. PMID:23466785

  10. Less head motion during MRI under task than resting-state conditions.

    PubMed

    Huijbers, Willem; Van Dijk, Koene R A; Boenniger, Meta M; Stirnberg, Rüdiger; Breteler, Monique M B

    2017-02-15

    Head motion reduces data quality of neuroimaging data. In three functional magnetic resonance imaging (MRI) experiments we demonstrate that people make less head movements under task than resting-state conditions. In Experiment 1, we observed less head motion during a memory encoding task than during the resting-state condition. In Experiment 2, using publicly shared data from the UCLA Consortium for Neuropsychiatric Phenomics LA5c Study, we again found less head motion during several active task conditions than during a resting-state condition, although some task conditions also showed comparable motion. In the healthy controls, we found more head motion in men than in women and more motion with increasing age. When comparing clinical groups, we found that patients with a clinical diagnosis of bipolar disorder, or schizophrenia, move more compared to healthy controls or patients with ADHD. Both these experiments had a fixed acquisition order across participants, and we could not rule out that a first or last scan during a session might be particularly prone to more head motion. Therefore, we conducted Experiment 3, in which we collected several task and resting-state fMRI runs with an acquisition order counter-balanced. The results of Experiment 3 show again less head motion during several task conditions than during rest. Together these experiments demonstrate that small head motions occur during MRI even with careful instruction to remain still and fixation with foam pillows, but that head motion is lower when participants are engaged in a cognitive task. These finding may inform the choice of functional runs when studying difficult-to-scan populations, such as children or certain patient populations. Our findings also indicate that differences in head motion complicate direct comparisons of measures of functional neuronal networks between task and resting-state fMRI because of potential differences in data quality. In practice, a task to reduce head motion might be especially useful when acquiring structural MRI data such as T1/T2-weighted and diffusion MRI in research and clinical settings. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Evaluation of PET and MR datasets in integrated 18F-FDG PET/MRI: A comparison of different MR sequences for whole-body restaging of breast cancer patients.

    PubMed

    Grueneisen, Johannes; Sawicki, Lino Morris; Wetter, Axel; Kirchner, Julian; Kinner, Sonja; Aktas, Bahriye; Forsting, Michael; Ruhlmann, Verena; Umutlu, Lale

    2017-04-01

    To investigate the diagnostic value of different MR sequences and 18F-FDG PET data for whole-body restaging of breast cancer patients utilizing PET/MRI. A total of 36 patients with suspected tumor recurrence of breast cancer based on clinical follow-up or abnormal findings in follow-up examinations (e.g. CT, MRI) were prospectively enrolled in this study. All patients underwent a PET/CT and subsequently an additional PET/MR scan. Two readers were instructed to identify the occurrence of a tumor relapse in subsequent MR and PET/MR readings, utilizing different MR sequence constellations for each session. The diagnostic confidence for the determination of a malignant or benign lesion was qualitatively rated (3-point ordinal scale) for each lesion in the different reading sessions and the lesion conspicuity (4-point ordinal scale) for the three different MR sequences was additionally evaluated. Tumor recurrence was present in 25/36 (69%) patients. All three PET/MRI readings showed a significantly higher accuracy as well as higher confidence levels for the detection of recurrent breast cancer lesions when compared to MRI alone (p<0.05). Furthermore, all three PET/MR sequence constellations showed comparable diagnostic accuracy for the identification of a breast cancer recurrence (p>0.05), yet the highest confidence levels were obtained, when all three MR sequences were used for image interpretation. Moreover, contrast-enhanced T1-weighted VIBE imaging showed significantly higher values for the delineation of malignant and benign lesions when compared to T2w HASTE and diffusion-weighted imaging. Integrated PET/MRI provides superior restaging of breast cancer patients over MRI alone. Facing the need for appropriate and efficient whole-body PET/MR protocols, our results show the feasibility of fast and morphologically adequate PET/MR protocols. However, considering an equivalent accuracy for the detection of breast cancer recurrences in the three PET/MR readings, the application of contrast-agent and the inclusion of DWI in the study protocol seems to be debatable. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Contribution of MRI to clinically equivocal penile fracture cases.

    PubMed

    Türkay, Rüştü; Yenice, Mustafa Gürkan; Aksoy, Sema; Şeker, Gökhan; Şahin, Selçuk; İnci, Ercan; Tuğcu, Volkan; Taşcı, Ali İhsan

    2016-11-01

    Penile fracture is a surgical emergency defined as rupture of the tunica albuginea. Although most cases can be diagnosed with clinical evaluation, it has been stated in the literature that diagnosis in as many as 15% of cases can be challenging. In uncertain cases, imaging can help determine diagnosis. Present study included 20 cases where diagnosis could not be made with certainty and magnetic resonance imaging (MRI) was performed. MR images were examined for tunical rupture and accompanying pathologies. When rupture was observed, localization and length of rupture were noted. All patients underwent degloving surgery. All imaging findings were compared to surgical findings. MRI revealed 19 tunical ruptures. In 1 case, hematoma was seen with no sign of penile fracture. No urethral injuries were found. All MRI findings were confirmed during surgery. Performing MRI in clinically equivocal cases can provide crucial data to make precise diagnosis and improve patient management.

  13. [Comparison of the accuracy of rectal endoscopic sonography and magnetic resonance imaging in the diagnosis of colorectal endometriosis].

    PubMed

    Kanté, F; Belghiti, J; Roseau, G; Thomassin-Naggara, I; Bazot, M; Daraï, E; Ballester, M

    2017-03-01

    To compare the accuracy of magnetic resonance imaging (MRI) and rectal endoscopic sonography (RES) for the diagnosis of colorectal endometriosis. In retrospective study, 407 patients operated on service of gynecology of Tenon hospital for deep endometriosis with suspected colorectal involvement. All patients underwent MRI and then RES. In the study, 239 patients (59%) had colorectal endometriosis which were diagnosed with the histology. The sensitivity, specificity, positive and negative predictive value (PPV and NPV) of RES and MRI for the diagnosis of colorectal endometriosis were respectively 92%, 87%, 91%, 88% and 85%, 88%, 91%, 80%. The accuracy of RES was not significantly different than MRI (90% versus 86%, P=0.09). RES is a good exam to diagnose colorectal endometriosis. It is able to improve diagnosis performances. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. MRI vs. CT for orthodontic applications: comparison of two MRI protocols and three CT (multislice, cone-beam, industrial) technologies.

    PubMed

    Detterbeck, Andreas; Hofmeister, Michael; Hofmann, Elisabeth; Haddad, Daniel; Weber, Daniel; Hölzing, Astrid; Zabler, Simon; Schmid, Matthias; Hiller, Karl-Heinz; Jakob, Peter; Engel, Jens; Hiller, Jochen; Hirschfelder, Ursula

    2016-07-01

    To examine the relative usefulness and suitability of magnetic resonance imaging (MRI) in daily clinical practice as compared to various technologies of computed tomography (CT) in addressing questions of orthodontic interest. Three blinded raters evaluated 2D slices and 3D reconstructions created from scans of two pig heads. Five imaging modalities were used, including three CT technologies-multislice (MSCT), cone-beam CT (CBCT), and industrial (µCT)-and two MRI protocols with different scan durations. Defined orthodontic parameters were rated one by one on the 2D slices and the 3D reconstructions, followed by final overall ratings for each modality. A mixed linear model was used for statistical analysis. Based on the 2D slices, the parameter of visualizing tooth-germ topography did not yield any significantly different ratings for MRI versus any of the CT scans. While some ratings for the other parameters did involve significant differences, how these should be interpreted depends greatly on the relevance of each parameter. Based on the 3D reconstructions, the only significant difference between technologies was noted for the parameter of visualizing root-surface morphology. Based on the final overall ratings, the imaging performance of the standard MRI protocol was noninferior to the performance of the three CT technologies. On comparing the imaging performance of MRI and CT scans, it becomes clear that MRI has a huge potential for applications in daily clinical practice. Given its additional benefits of a good contrast ratio and complete absence of ionizing radiation, further studies are needed to explore this clinical potential in greater detail.

  15. Cost-Effectiveness of Diagnostic Strategies for Suspected Scaphoid Fractures.

    PubMed

    Yin, Zhong-Gang; Zhang, Jian-Bing; Gong, Ke-Tong

    2015-08-01

    The aim of this study was to assess the cost effectiveness of multiple competing diagnostic strategies for suspected scaphoid fractures. With published data, the authors created a decision-tree model simulating the diagnosis of suspected scaphoid fractures. Clinical outcomes, costs, and cost effectiveness of immediate computed tomography (CT), day 3 magnetic resonance imaging (MRI), day 3 bone scan, week 2 radiographs alone, week 2 radiographs-CT, week 2 radiographs-MRI, week 2 radiographs-bone scan, and immediate MRI were evaluated. The primary clinical outcome was the detection of scaphoid fractures. The authors adopted societal perspective, including both the costs of healthcare and the cost of lost productivity. The incremental cost-effectiveness ratio (ICER), which expresses the incremental cost per incremental scaphoid fracture detected using a strategy, was calculated to compare these diagnostic strategies. Base case analysis, 1-way sensitivity analyses, and "worst case scenario" and "best case scenario" sensitivity analyses were performed. In the base case, the average cost per scaphoid fracture detected with immediate CT was $2553. The ICER of immediate MRI and day 3 MRI compared with immediate CT was $7483 and $32,000 per scaphoid fracture detected, respectively. The ICER of week 2 radiographs-MRI was around $170,000. Day 3 bone scan, week 2 radiographs alone, week 2 radiographs-CT, and week 2 radiographs-bone scan strategy were dominated or extendedly dominated by MRI strategies. The results were generally robust in multiple sensitivity analyses. Immediate CT and MRI were the most cost-effective strategies for diagnosing suspected scaphoid fractures. Economic and Decision Analyses Level II. See Instructions for Authors for a complete description of levels of evidence.

  16. Travel Burden to Breast MRI and Utilization: Are Risk and Sociodemographics Related?

    PubMed

    Onega, Tracy; Lee, Christoph I; Benkeser, David; Alford-Teaster, Jennifer; Haas, Jennifer S; Tosteson, Anna N A; Hill, Deirdre; Shi, Xun; Henderson, Louise M; Hubbard, Rebecca A

    2016-06-01

    Mammography, unlike MRI, is relatively geographically accessible. Additional travel time is often required to access breast MRI. However, the amount of additional travel time and whether it varies on the basis of sociodemographic or breast cancer risk factors is unknown. The investigators examined screening mammography and MRI between 2005 and 2012 in the Breast Cancer Surveillance Consortium by (1) travel time to the closest and actual mammography facility used and the difference between the two, (2) women's breast cancer risk factors, and (3) sociodemographic characteristics. Logistic regression was used to examine the odds of traveling farther than the closest facility in relation to women's characteristics. Among 821,683 screening mammographic examinations, 76.6% occurred at the closest facility, compared with 51.9% of screening MRI studies (n = 3,687). The median differential travel time among women not using the closest facility for mammography was 14 min (interquartile range, 8-25 min) versus 20 min (interquartile range, 11-40 min) for breast MRI. Differential travel time for both imaging modalities did not vary notably by breast cancer risk factors but was significantly longer for nonurban residents. For non-Hispanic black compared with non-Hispanic white women, the adjusted odds of traveling farther than the closest facility were 9% lower for mammography (odds ratio, 0.91; 95% confidence interval, 0.87-0.95) but more than two times higher for MRI (odds ratio, 2.64; 95% confidence interval, 1.36-5.13). Breast cancer risk factors were not related to excess travel time for screening MRI, but sociodemographic factors were, suggesting the possibility that geographic distribution of advanced imaging may exacerbated disparities for some vulnerable populations. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  17. Impairment of preoperative language mapping by lesion location: a functional magnetic resonance imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation study.

    PubMed

    Ille, Sebastian; Sollmann, Nico; Hauck, Theresa; Maurer, Stefanie; Tanigawa, Noriko; Obermueller, Thomas; Negwer, Chiara; Droese, Doris; Boeckh-Behrens, Tobias; Meyer, Bernhard; Ringel, Florian; Krieg, Sandro M

    2015-08-01

    Language mapping by repetitive navigated transcranial magnetic stimulation (rTMS) is increasingly used and has already replaced functional MRI (fMRI) in some institutions for preoperative mapping of neurosurgical patients. Yet some factors affect the concordance of both methods with direct cortical stimulation (DCS), most likely by lesions affecting cortical oxygenation levels. Therefore, the impairment of the accuracy of rTMS and fMRI was analyzed and compared with DCS during awake surgery in patients with intraparenchymal lesions. Language mapping was performed by DCS, rTMS, and fMRI using an object-naming task in 27 patients with left-sided perisylvian lesions, and the induced language errors of each method were assigned to the cortical parcellation system. Subsequently, the receiver operating characteristics were calculated for rTMS and fMRI and compared with DCS as ground truth for regions with (w/) and without (w/o) the lesion in the mapped regions. The w/ subgroup revealed a sensitivity of 100% (w/o 100%), a specificity of 8% (w/o 5%), a positive predictive value of 34% (w/o: 53%), and a negative predictive value (NPV) of 100% (w/o: 100%) for the comparison of rTMS versus DCS. Findings for the comparison of fMRI versus DCS within the w/ subgroup revealed a sensitivity of 32% (w/o: 62%), a specificity of 88% (w/o: 60%), a positive predictive value of 56% (w/o: 62%), and a NPV of 73% (w/o: 60%). Although strengths and weaknesses exist for both rTMS and fMRI, the results show that rTMS is less affected by a brain lesion than fMRI, especially when performing mapping of language-negative cortical regions based on sensitivity and NPV.

  18. Detection of hepatocellular carcinoma in transgenic mice by Gd-DTPA- and rhodamine 123-conjugated human serum albumin nanoparticles in T1 magnetic resonance imaging.

    PubMed

    Watcharin, Waralee; Schmithals, Christian; Pleli, Thomas; Köberle, Verena; Korkusuz, Hüdayi; Hübner, Frank; Waidmann, Oliver; Zeuzem, Stefan; Korf, Horst-Werner; Terfort, Andreas; Gelperina, Svetlana; Vogl, Thomas J; Kreuter, Jörg; Piiper, Albrecht

    2015-02-10

    Nanoparticle (NP)-based contrast agents that enable high resolution anatomic T1-weighted magnetic resonance imaging (MRI) offer the prospect of improving differential diagnosis of liver tumors such as hepatocellular carcinoma (HCC). In the present study, we investigated the possibility of employing novel non-toxic human serum albumin nanoparticles conjugated with Gd-DTPA and rhodamine 123 (Gd-Rho-HSA-NPs) for the detection of HCC by T1-weighted MRI. In addition, the influence of surface coating of the NPs with poloxamine 908, which alters the absorptive behavior of NPs and changes their distribution between the liver and tumor was examined. MRI of transgenic mice with endogenously formed HCCs following intravenous injection of Gd-Rho-HSA-NPs revealed a strong negative contrast of the tumors. Contrasting of the HCCs by NP-enhanced MRI required less Gd as compared to gadolinium-ethoxybenzyl-diethylenetriaminepentaacetic acid-enhanced MRI, which currently provides the most sensitive detection of HCC in patients. Immunohistochemical analyses revealed that the Gd-Rho-HSA-NPs were localized to macrophages, which were - similar to HCC in patients - fewer in number in HCC as compared to the liver tissue, which is in agreement with the negative contrasting of HCC in Gd-Rho-HSA-NP-enhanced MRI. Poloxamine-coated NPs showed lower accumulation in the tumor macrophages and caused a longer lasting enhancement of the MRI signal. These data indicate that Gd-Rho-HSA-NPs enable sensitive detection of HCC by T1-weighted MRI in mice with endogenous HCC through their uptake by macrophages. Poloxamine coating of the NPs delayed the tumor localization of the NPs. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Randomized Clinical Trial of Real-Time fMRI Amygdala Neurofeedback for Major Depressive Disorder: Effects on Symptoms and Autobiographical Memory Recall.

    PubMed

    Young, Kymberly D; Siegle, Greg J; Zotev, Vadim; Phillips, Raquel; Misaki, Masaya; Yuan, Han; Drevets, Wayne C; Bodurka, Jerzy

    2017-08-01

    Patients with depression show blunted amygdala hemodynamic activity to positive stimuli, including autobiographical memories. The authors examined the therapeutic efficacy of real-time functional MRI neurofeedback (rtfMRI-nf) training aimed at increasing the amygdala's hemodynamic response to positive memories in patients with depression. In a double-blind, placebo-controlled, randomized clinical trial, unmedicated adults with depression (N=36) were randomly assigned to receive two sessions of rtfMRI-nf either from the amygdala (N=19) or from a parietal control region not involved in emotional processing (N=17). Clinical scores and autobiographical memory performance were assessed at baseline and 1 week after the final rtfMRI-nf session. The primary outcome measure was change in score on the Montgomery-Åsberg Depression Rating Scale (MADRS), and the main analytic approach consisted of a linear mixed-model analysis. In participants in the experimental group, the hemodynamic response in the amygdala increased relative to their own baseline and to the control group. Twelve participants in the amygdala rtfMRI-nf group, compared with only two in the control group, had a >50% decrease in MADRS score. Six participants in the experimental group, compared with one in the control group, met conventional criteria for remission at study end, resulting in a number needed to treat of 4. In participants receiving amygdala rtfMRI-nf, the percent of positive specific memories recalled increased relative to baseline and to the control group. rtfMRI-nf training to increase the amygdala hemodynamic response to positive memories significantly decreased depressive symptoms and increased the percent of specific memories recalled on an autobiographical memory test. These data support a role of the amygdala in recovery from depression.

  20. Diagnostic Pathway with Multiparametric Magnetic Resonance Imaging Versus Standard Pathway: Results from a Randomized Prospective Study in Biopsy-naïve Patients with Suspected Prostate Cancer.

    PubMed

    Porpiglia, Francesco; Manfredi, Matteo; Mele, Fabrizio; Cossu, Marco; Bollito, Enrico; Veltri, Andrea; Cirillo, Stefano; Regge, Daniele; Faletti, Riccardo; Passera, Roberto; Fiori, Cristian; De Luca, Stefano

    2017-08-01

    An approach based on multiparametric magnetic resonance imaging (mpMRI) might increase the detection rate (DR) of clinically significant prostate cancer (csPCa). To compare an mpMRI-based pathway with the standard approach for the detection of prostate cancer (PCa) and csPCa. Between November 2014 and April 2016, 212 biopsy-naïve patients with suspected PCa (prostate specific antigen level ≤15 ng/ml and negative digital rectal examination results) were included in this randomized clinical trial. Patients were randomized into a prebiopsy mpMRI group (arm A, n=107) or a standard biopsy (SB) group (arm B, n=105). In arm A, patients with mpMRI evidence of lesions suspected for PCa underwent mpMRI/transrectal ultrasound fusion software-guided targeted biopsy (TB) (n=81). The remaining patients in arm A (n=26) with negative mpMRI results and patients in arm B underwent 12-core SB. The primary end point was comparison of the DR of PCa and csPCa between the two arms of the study; the secondary end point was comparison of the DR between TB and SB. The overall DRs were higher in arm A versus arm B for PCa (50.5% vs 29.5%, respectively; p=0.002) and csPCa (43.9% vs 18.1%, respectively; p<0.001). Concerning the biopsy approach, that is, TB in arm A, SB in arm A, and SB in arm B, the overall DRs were significantly different for PCa (60.5% vs 19.2% vs 29.5%, respectively; p<0.001) and for csPCa (56.8% vs 3.8% vs 18.1%, respectively; p<0.001). The reproducibility of the study could have been affected by the single-center nature. A diagnostic pathway based on mpMRI had a higher DR than the standard pathway in both PCa and csPCa. In this randomized trial, a pathway for the diagnosis of prostate cancer based on multiparametric magnetic resonance imaging (mpMRI) was compared with the standard pathway based on random biopsy. The mpMRI-based pathway had better performance than the standard pathway. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.

Top