Science.gov

Sample records for mri dgemric method

  1. Delayed Gadolinium-Enhanced MRI of Cartilage (dGEMRIC) Shows No Change in Cartilage Structural Composition after Viscosupplementation in Patients with Early-Stage Knee Osteoarthritis

    PubMed Central

    van Tiel, Jasper; Reijman, Max; Bos, Pieter K.; Hermans, Job; van Buul, Gerben M.; Bron, Esther E.; Klein, Stefan; Verhaar, Jan A. N.; Krestin, Gabriel P.; Bierma-Zeinstra, Sita M. A.; Weinans, Harrie; Kotek, Gyula; Oei, Edwin H. G.

    2013-01-01

    Introduction Viscosupplementation with hyaluronic acid (HA) of osteoarthritic (OA) knee joints has a well-established positive effect on clinical symptoms. This effect, however, is only temporary and the working mechanism of HA injections is not clear. It was suggested that HA might have disease modifying properties because of its beneficial effect on cartilage sulphated glycosaminoglycan (sGAG) content. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) is a highly reproducible, non-invasive surrogate measure for sGAG content and hence composition of cartilage. The aim of this study was to assess whether improvement in cartilage structural composition is detected using dGEMRIC 14 weeks after 3 weekly injections with HA in patients with early-stage knee OA. Methods In 20 early-stage knee OA patients (KLG I-II), 3D dGEMRIC at 3T was acquired before and 14 weeks after 3 weekly injections with HA. To evaluate patient symptoms, the knee injury and osteoarthritis outcome score (KOOS) and a numeric rating scale (NRS) for pain were recorded. To evaluate cartilage composition, six cartilage regions in the knee were analyzed on dGEMRIC. Outcomes of dGEMRIC, KOOS and NRS before and after HA were compared using paired t-testing. Since we performed multiple t-tests, we applied a Bonferroni-Holm correction to determine statistical significance for these analyses. Results All KOOS subscales (‘pain’, ‘symptoms’, ‘daily activities’, ‘sports’ and ’quality of life’) and the NRS pain improved significantly 14 weeks after Viscosupplementation with HA. Outcomes of dGEMRIC did not change significantly after HA compared to baseline in any of the cartilage regions analyzed in the knee. Conclusions Our results confirm previous findings reported in the literature, showing persisting improvement in symptomatic outcome measures in early-stage knee OA patients 14 weeks after Viscosupplementation. Outcomes of dGEMRIC, however, did not change after Viscosupplementation

  2. The impact of the relaxivity definition on the quantitative measurement of glycosaminoglycans in cartilage by the MRI dGEMRIC method.

    PubMed

    Zheng, Shaokuan; Xia, Yang

    2010-01-01

    The relaxivities (R-values) of the gadolinium diethylene triamine pentaacetic acid (Gd(DTPA)2-) ions in a series of skim-milk solutions at 0-40% milk concentrations were measured using NMR spectroscopy. The R-value was found to be approximately linearly proportional to the concentration of the solid component in the milk solution. Using the R-value at 20% solid component (approximately the solid concentration in bovine nasal cartilage), the glycosaminoglycan concentration in bovine nasal cartilage can be quantified using the MRI delayed gadolinium-enhanced MRI of cartilage method without the customary scaling factor of 2. This finding is also supported by the measurements using 23Na NMR spectroscopy, 23Na inductively coupled plasma analysis, and biochemical assay. The choice of the R-value definition in the MRI delayed gadolinium-enhanced MRI of cartilage method is discussed, and the definition of Gd(DTPA)2- ions as "millimole per volume of tissue (or milk solution for substitution)" should be used.

  3. Current knowledge and importance of dGEMRIC techniques in diagnosis of hip joint diseases.

    PubMed

    Zilkens, Christoph; Tiderius, Carl Johann; Krauspe, Rüdiger; Bittersohl, Bernd

    2015-08-01

    Accurate assessment of early hip joint cartilage alterations may help optimize patient selection and follow-up of hip joint preservation surgery. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) is sensitive to the glycosaminoglycan content in cartilage that is lost early in the development of osteoarthritis (OA). Hence, the dGEMRIC technique holds promise for the development of new diagnostic and therapeutic procedures. However, because of the location of the hip joint deep within the body and due to the fairly thin cartilage layers that require high spatial resolution, the diagnosis of early hip joint cartilage alterations may be problematic. The purpose of this review is to outline the current status of dGEMRIC in the assessment of hip joint cartilage. A literature search was performed with PubMed, using the terms "cartilage, osteoarthritis, hip joint, MRI, and dGEMRIC", considering all levels of studies. This review revealed that dGEMRIC can be reliably used in the evaluation of early stage cartilage pathology in various hip joint disorders. Modifications in the technique, such as the operation of three-dimensional imaging and dGEMRIC after intra-articular contrast medium administration, have expanded the range of application. Notably, the studies differ considerably in patient selection and technical prerequisites. Furthermore, there is a need for multicenter prospective studies with the required technical conditions in place to establish outcome based dGEMRIC data to obtain, in conjunction with clinical data, reliable threshold values for normal and abnormal cartilage, and for hips that may benefit from conservative or surgical treatment.

  4. No degeneration found in focal cartilage defects evaluated with dGEMRIC at 12-year follow-up

    PubMed Central

    Engen, Cathrine Nørstad; Løken, Sverre; Årøen, Asbjørn; Ho, Charles; Engebretsen, Lars

    2017-01-01

    Background and purpose — The natural history of focal cartilage defects (FCDs) is still unresolved, as is the long-term cartilage quality after cartilage surgery. It has been suggested that delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) is a biomarker of early OA. We aimed to quantitatively evaluate the articular cartilage in knees with FCDs, 12 years after arthroscopic diagnosis. Patients and methods — We included 21 patients from a cohort of patients with knee pain who underwent arthroscopy in 1999. Patients with a full-thickness cartilage defect, stable knees, and at least 50% of both their menisci intact at baseline were eligible. 10 patients had cartilage repair performed at baseline (microfracture or autologous chondrocyte implantation), whereas 11 patients had either no additional surgery or simple debridement performed. Mean follow-up time was 12 (10–13) years. The morphology and biochemical features were evaluated with dGEMRIC and T2 mapping. Standing radiographs for Kellgren and Lawrence (K&L) classification of osteoarthritis (OA) were obtained. Knee function was assessed with VAS, Tegner, Lysholm, and KOOS. Results — The dGEMRIC showed varying results but, overall, no increased degeneration of the injured knees. Degenerative changes (K&L above 0) were, however, evident in 13 of the 21 knees. Interpretation — The natural history of untreated FCDs shows large dGEMRIC variations, as does the knee articular cartilage of surgically treated patients. In this study, radiographic OA changes did not correlate with cartilage quality, as assessed with dGEMRIC. PMID:27882808

  5. Sodium MRI: Methods and applications

    PubMed Central

    Madelin, Guillaume; Lee, Jae-Seung; Regatte, Ravinder R.; Jerschow, Alexej

    2014-01-01

    Sodium NMR spectroscopy and MRI have become popular in recent years through the increased availability of high-field MRI scanners, advanced scanner hardware and improved methodology. Sodium MRI is being evaluated for stroke and tumor detection, for breast cancer studies, and for the assessment of osteoarthritis and muscle and kidney functions, to name just a few. In this article, we aim to present an up-to-date review of the theoretical background, the methodology, the challenges and limitations, and current and potential new applications of sodium MRI. PMID:24815363

  6. Low field SQUID MRI devices, components and methods

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I. (Inventor); Eom, Byeong H (Inventor); Hahn, Inseob (Inventor)

    2010-01-01

    Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.

  7. Low field SQUID MRI devices, components and methods

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor); Hahn, Inseob (Inventor)

    2011-01-01

    Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.

  8. Low Field Squid MRI Devices, Components and Methods

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor); Hahn, Inseob (Inventor)

    2013-01-01

    Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.

  9. Low Field Squid MRI Devices, Components and Methods

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor); Hahn, Inseob (Inventor)

    2014-01-01

    Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.

  10. Emerging MRI methods in rheumatoid arthritis.

    PubMed

    Borrero, Camilo G; Mountz, James M; Mountz, John D

    2011-02-01

    New MRI techniques have been developed to assess not only the static anatomy of synovial hyperplasia, bone changes and cartilage degradation in patients with rheumatoid arthritis (RA), but also the activity of the physiological events that cause these changes. This enables an estimation of the rate of change in the synovium, bone and cartilage as a result of disease activity or in response to therapy. Typical MRI signs of RA in the pre-erosive phase include synovitis, bone marrow edema and subchondral cyst formation. Synovitis can be assessed by T2-weighted imaging, dynamic contrast-enhanced MRI or diffusion tensor imaging. Bone marrow edema can be detected on fluid-sensitive sequences such as short-tau inversion recovery or T2-weighted fast-spin echo sequences. Detection of small bone erosions in the early erosive phase using T1-weighted MRI has sensitivity comparable to CT. Numerous MRI techniques have been developed for quantitative assessment of potentially pathologic changes in cartilage composition that occur before frank morphologic changes. In this Review, we summarize the advances and new directions in the field of MRI, with an emphasis on their current state of development and application in RA.

  11. MRI Segmentation of the Human Brain: Challenges, Methods, and Applications

    PubMed Central

    Despotović, Ivana

    2015-01-01

    Image segmentation is one of the most important tasks in medical image analysis and is often the first and the most critical step in many clinical applications. In brain MRI analysis, image segmentation is commonly used for measuring and visualizing the brain's anatomical structures, for analyzing brain changes, for delineating pathological regions, and for surgical planning and image-guided interventions. In the last few decades, various segmentation techniques of different accuracy and degree of complexity have been developed and reported in the literature. In this paper we review the most popular methods commonly used for brain MRI segmentation. We highlight differences between them and discuss their capabilities, advantages, and limitations. To address the complexity and challenges of the brain MRI segmentation problem, we first introduce the basic concepts of image segmentation. Then, we explain different MRI preprocessing steps including image registration, bias field correction, and removal of nonbrain tissue. Finally, after reviewing different brain MRI segmentation methods, we discuss the validation problem in brain MRI segmentation. PMID:25945121

  12. NMR and MRI apparatus and method

    DOEpatents

    Clarke, John; Kelso, Nathan; Lee, SeungKyun; Moessle, Michael; Myers, Whittier; McDermott, Robert; ten Haken, Bernard; Pines, Alexander; Trabesinger, Andreas

    2007-03-06

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. Additional signal to noise benefits are obtained by use of a low noise polarization coil, comprising litz wire or superconducting materials. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  13. Iterative Method for Predistortion of MRI Gradient Waveforms

    PubMed Central

    Harkins, Kevin D.; Does, Mark D.; Grissom, William A.

    2014-01-01

    The purpose of this work is to correct for transient gradient waveform errors in magnetic resonance imaging (MRI), whether from eddy currents, group delay, or gradient amplifier nonlinearities, which are known to affect image quality. An iterative method is proposed to minimize error between desired and measured gradient waveforms, whose success does not depend on accurate knowledge of the gradient system impulse response. The method was applied to half-pulse excitation for 2-D ultra-short echo time (UTE) imaging on a small animal MRI system and to spiral 2-D excitation on a human 7T MRI system. Predistorted gradient waveforms reduced temporal signal variation caused by excitation gradient trajectory errors in 2-D UTE, and improved the quality of excitation patterns produced by spiral excitation pulses. Iterative gradient predistortion is useful for minimizing transient gradient errors without requiring accurate characterization of the gradient system impulse response. PMID:24801945

  14. Validation of the hypercapnic calibrated fMRI method using DOT-fMRI fusion imaging

    PubMed Central

    Yücel, Meryem A.; Evans, Karleyton C.; Selb, Juliette; Huppert, Theodore J.; Boas, David A.; Gagnon, Louis

    2014-01-01

    Calibrated functional Magnetic Resonance Imaging (fMRI) is a widely used method to investigate brain function in terms of physiological quantities such as the cerebral metabolic rate of oxygen (CMRO2). The first and one of the most common methods of fMRI calibration is hypercapnic calibration. This is achieved via simultaneous measures of blood-oxygenation-level dependent (BOLD) and the arterial spin labeling (ASL) signals during a functional task that evokes regional changes in CMRO2. A subsequent acquisition is then required during which the subject inhales carbon dioxide for short periods of time. A calibration constant, typically labeled M, is then estimated from the hypercapnic data and is subsequently used together with the BOLD-ASL recordings to compute evoked changes in CMRO2 during the functional task. The computation of M assumes a constant CMRO2 during the CO2 inhalation, an assumption that has been questioned since the origin of calibrated fMRI. In this study we used Diffuse Optical Tomography (DOT) together with BOLD and ASL – an alternative calibration method that does not require any gas manipulation and therefore no constant CMRO2 assumption - to cross-validate the estimation of M obtained from a traditional hypercapnic calibration. We found a high correlation between the M values (R=0.87, p<0.01) estimated using these two approaches. The findings serve to validate the hypercapnic fMRI calibration technique and suggest that the inter-subject variability routinely obtained for M is reproducible with an alternative method and might therefore reflect inter-subject physiological variability. PMID:25196509

  15. Mathematical Methods for Diffusion MRI Processing

    PubMed Central

    Lenglet, C.; Campbell, J.S.W.; Descoteaux, M.; Haro, G.; Savadjiev, P.; Wassermann, D.; Anwander, A.; Deriche, R.; Pike, G.B.; Sapiro, G.; Siddiqi, K.; Thompson, P.

    2009-01-01

    In this article, we review recent mathematical models and computational methods for the processing of diffusion Magnetic Resonance Images, including state-of-the-art reconstruction of diffusion models, cerebral white matter connectivity analysis, and segmentation techniques. We focus on Diffusion Tensor Images (DTI) and Q-Ball Images (QBI). PMID:19063977

  16. Comparing classification methods for longitudinal fMRI studies.

    PubMed

    Schmah, Tanya; Yourganov, Grigori; Zemel, Richard S; Hinton, Geoffrey E; Small, Steven L; Strother, Stephen C

    2010-11-01

    We compare 10 methods of classifying fMRI volumes by applying them to data from a longitudinal study of stroke recovery: adaptive Fisher's linear and quadratic discriminant; gaussian naive Bayes; support vector machines with linear, quadratic, and radial basis function (RBF) kernels; logistic regression; two novel methods based on pairs of restricted Boltzmann machines (RBM); and K-nearest neighbors. All methods were tested on three binary classification tasks, and their out-of-sample classification accuracies are compared. The relative performance of the methods varies considerably across subjects and classification tasks. The best overall performers were adaptive quadratic discriminant, support vector machines with RBF kernels, and generatively trained pairs of RBMs.

  17. MRI RF array decoupling method with magnetic wall distributed filters.

    PubMed

    Connell, Ian R O; Gilbert, Kyle M; Abou-Khousa, Mohamed A; Menon, Ravi S

    2015-04-01

    Multi-channel radio-frequency (RF) transmit coil arrays have been developed to mitigate many of the RF challenges associated with ultra-high field ( ≥ 7T) magnetic resonance imaging (MRI). These arrays can be used for parallel RF transmission to produce spatially tailored RF excitation over the field of view. However, the realization of such arrays remains a challenge due to significant reactive interaction between the array coils, i.e., mutual coupling. In this paper, a novel bandstop filter ("magnetic wall") is used in an MRI RF transmit array to decouple individual coils. The proposed decoupling method is inspired by periodic resonator designs commonly used in frequency selective surfaces and is used as a distributed RF filter to suppress the transmission of RF energy between coils in an array. The decoupling of the magnetic wall (MW) is analyzed in terms of equivalent circuits that include terms for both magnetic and electric coupling for an arbitrary number of MW resonant conductors. Both frequency-and time-domain full-wave simulations were performed to analyze a specific MW structure. The performance of the proposed method is experimentally validated for both first-order coupling and higher-order coupling with a three-coil 7T array setup. Analysis and measurements confirm that the rejection band of the MW can be tuned to provide high isolation in the presence of cross coupling between RF array coils.

  18. Anisotropic phantom to calibrate high-q diffusion MRI methods

    NASA Astrophysics Data System (ADS)

    Komlosh, M. E.; Benjamini, D.; Barnett, A. S.; Schram, V.; Horkay, F.; Avram, A. V.; Basser, P. J.

    2017-02-01

    A silicon oil-filled glass capillary array is proposed as an anisotropic diffusion MRI phantom. Together with a computational/theoretical pipeline these provide a gold standard for calibrating and validating high-q diffusion MRI experiments. The phantom was used to test high angular resolution diffusion imaging (HARDI) and double pulsed-field gradient (d-PFG) MRI acquisition schemes. MRI-based predictions of microcapillary diameter using both acquisition schemes were compared with results from optical microscopy. This phantom design can be used for quality control and quality assurance purposes and for testing and validating proposed microstructure imaging experiments and the processing pipelines used to analyze them.

  19. Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI.

    PubMed

    Sauwen, N; Acou, M; Van Cauter, S; Sima, D M; Veraart, J; Maes, F; Himmelreich, U; Achten, E; Van Huffel, S

    2016-01-01

    Tumor segmentation is a particularly challenging task in high-grade gliomas (HGGs), as they are among the most heterogeneous tumors in oncology. An accurate delineation of the lesion and its main subcomponents contributes to optimal treatment planning, prognosis and follow-up. Conventional MRI (cMRI) is the imaging modality of choice for manual segmentation, and is also considered in the vast majority of automated segmentation studies. Advanced MRI modalities such as perfusion-weighted imaging (PWI), diffusion-weighted imaging (DWI) and magnetic resonance spectroscopic imaging (MRSI) have already shown their added value in tumor tissue characterization, hence there have been recent suggestions of combining different MRI modalities into a multi-parametric MRI (MP-MRI) approach for brain tumor segmentation. In this paper, we compare the performance of several unsupervised classification methods for HGG segmentation based on MP-MRI data including cMRI, DWI, MRSI and PWI. Two independent MP-MRI datasets with a different acquisition protocol were available from different hospitals. We demonstrate that a hierarchical non-negative matrix factorization variant which was previously introduced for MP-MRI tumor segmentation gives the best performance in terms of mean Dice-scores for the pathologic tissue classes on both datasets.

  20. Integration of multimodal neuroimaging methods: a rationale for clinical applications of simultaneous EEG-fMRI.

    PubMed

    Vitali, Piera; Di Perri, Carol; Vaudano, Anna Elisabetta; Meletti, Stefano; Villani, Flavio

    2015-01-01

    Functional magnetic resonance imaging (fMRI), which has high spatial resolution, is increasingly used to evaluate cerebral functions in neurological and psychiatric diseases. The main limitation of fMRI is that it detects neural activity indirectly, through the associated slow hemodynamic variations. Because neurovascular coupling can be regionally altered by pathological conditions or drugs, fMRI responses may not truly reflect neural activity. Electroencephalography (EEG) recordings, which directly detect neural activity with optimal temporal resolution, can now be obtained during fMRI data acquisition. Therefore, there is a growing interest in combining the techniques to obtain simultaneous EEG-fMRI recordings. The EEG-fMRI approach has several promising clinical applications. The first is the detection of cortical areas involved in interictal and ictal epileptic activity. Second, combining evoked potentials with fMRI could be an accurate way to study eloquent cortical areas for the planning of neurosurgery or rehabilitation, circumventing the above-mentioned limitation of fMRI. Finally, the use of this approach to evaluate the functional connectivity of resting-state networks would extend the applications of EEG-fMRI to uncooperative or unconscious patients. Integration of multimodal neuroimaging methods: a rationale for clinical applications of simultaneous EEG-fMRI.

  1. Head Motion and Correction Methods in Resting-state Functional MRI.

    PubMed

    Goto, Masami; Abe, Osamu; Miyati, Tosiaki; Yamasue, Hidenori; Gomi, Tsutomu; Takeda, Tohoru

    2016-01-01

    Resting-state functional magnetic resonance imaging (RS-fMRI) is used to investigate brain functional connectivity at rest. However, noise from human physiological motion is an unresolved problem associated with this technique. Following the unexpected previous result that group differences in head motion between control and patient groups caused group differences in the resting-state network with RS-fMRI, we reviewed the effects of human physiological noise caused by subject motion, especially motion of the head, on functional connectivity at rest detected with RS-fMRI. The aim of the present study was to review head motion artifact with RS-fMRI, individual and patient population differences in head motion, and correction methods for head motion artifact with RS-fMRI. Numerous reports have described new methods [e.g., scrubbing, regional displacement interaction (RDI)] for motion correction on RS-fMRI, many of which have been successful in reducing this negative influence. However, the influence of head motion could not be entirely excluded by any of these published techniques. Therefore, in performing RS-fMRI studies, head motion of the participants should be quantified with measurement technique (e.g., framewise displacement). Development of a more effective correction method would improve the accuracy of RS-fMRI analysis.

  2. Does diffusion MRI tell us anything about the white matter? An overview of methods and pitfalls

    PubMed Central

    O’Donnell, Lauren J.; Pasternak, Ofer

    2014-01-01

    One key pitfall in diffusion magnetic resonance imaging (dMRI) clinical neuroimaging research is the challenge of understanding and interpreting the results of a complex analysis pipeline. The sophisticated algorithms employed by the analysis software, combined with the relatively non-specific nature of many diffusion measurements, lead to challenges in interpretation of the results. This paper is aimed at an intended audience of clinical researchers who are learning about dMRI or trying to interpret dMRI results, and who may be wondering “Does dMRI tell us anything about the white matter?” We present a critical review of dMRI methods and measures used in clinical neuroimaging research, focusing on the most commonly used analysis methods and the most commonly reported measures. We describe important pitfalls in every section, and provide extensive references for the reader interested in more detail. PMID:25278106

  3. An Introduction to Normalization and Calibration Methods in Functional MRI

    ERIC Educational Resources Information Center

    Liu, Thomas T.; Glover, Gary H.; Mueller, Bryon A.; Greve, Douglas N.; Brown, Gregory G.

    2013-01-01

    In functional magnetic resonance imaging (fMRI), the blood oxygenation level dependent (BOLD) signal is often interpreted as a measure of neural activity. However, because the BOLD signal reflects the complex interplay of neural, vascular, and metabolic processes, such an interpretation is not always valid. There is growing evidence that changes…

  4. Ag/AgCl electrodes in the EEG/fMRI method in 3T MRI scanner

    NASA Astrophysics Data System (ADS)

    Akay, Cengiz; Kepceoğlu, Abdullah

    2013-10-01

    This study focuses on the comparison of two different types of EEG electrodes (the first B10-S-150 Ag/AgCl sintered ring electrode with 1, 5 mm touch proof safety socket and 150 cm heavy-duty lead wire and the second, B12-LS-100 Ag/AgCl sintered FE-electrode with 100 cm light-duty lead wire and 1, 5 mm touch proof safety socket with 5 kΩ resistor near sensor) used in the EEG/fMRI method in 3T MRI scanner. We compared these electrodes by their specific absorption rate (SAR) simulation values and the temperature change calculated by PRF method. The experimental setup of the study is described as follows: a phantom is prepared and the electrodes are placed on it. Then, a simulation for SAR values is realized. The temperature change is calculated by MR thermometer. As a result of this study, Ag/AgCl pin electrode is better to be use in EEG/fMRI; because the measured temperature change is expected to be low.

  5. An iterative reconstruction method of complex images using expectation maximization for radial parallel MRI

    NASA Astrophysics Data System (ADS)

    Choi, Joonsung; Kim, Dongchan; Oh, Changhyun; Han, Yeji; Park, HyunWook

    2013-05-01

    In MRI (magnetic resonance imaging), signal sampling along a radial k-space trajectory is preferred in certain applications due to its distinct advantages such as robustness to motion, and the radial sampling can be beneficial for reconstruction algorithms such as parallel MRI (pMRI) due to the incoherency. For radial MRI, the image is usually reconstructed from projection data using analytic methods such as filtered back-projection or Fourier reconstruction after gridding. However, the quality of the reconstructed image from these analytic methods can be degraded when the number of acquired projection views is insufficient. In this paper, we propose a novel reconstruction method based on the expectation maximization (EM) method, where the EM algorithm is remodeled for MRI so that complex images can be reconstructed. Then, to optimize the proposed method for radial pMRI, a reconstruction method that uses coil sensitivity information of multichannel RF coils is formulated. Experiment results from synthetic and in vivo data show that the proposed method introduces better reconstructed images than the analytic methods, even from highly subsampled data, and provides monotonic convergence properties compared to the conjugate gradient based reconstruction method.

  6. [Mechanical Shimming Method and Implementation for Permanent Magnet of MRI System].

    PubMed

    Xue, Tingqiang; Chen, Jinjun

    2015-03-01

    A mechanical shimming method and device for permanent magnet of MRI system has been developed to meet its stringent homogeneity requirement without time-consuming passive shimming on site, installation and adjustment efficiency has been increased.

  7. An Atlas-Based Electron Density Mapping Method for Magnetic Resonance Imaging (MRI)-Alone Treatment Planning and Adaptive MRI-Based Prostate Radiation Therapy

    SciTech Connect

    Dowling, Jason A.; Lambert, Jonathan; Parker, Joel; Salvado, Olivier; Fripp, Jurgen; Capp, Anne; Wratten, Chris; Denham, James W.; Greer, Peter B.

    2012-05-01

    Purpose: Prostate radiation therapy dose planning directly on magnetic resonance imaging (MRI) scans would reduce costs and uncertainties due to multimodality image registration. Adaptive planning using a combined MRI-linear accelerator approach will also require dose calculations to be performed using MRI data. The aim of this work was to develop an atlas-based method to map realistic electron densities to MRI scans for dose calculations and digitally reconstructed radiograph (DRR) generation. Methods and Materials: Whole-pelvis MRI and CT scan data were collected from 39 prostate patients. Scans from 2 patients showed significantly different anatomy from that of the remaining patient population, and these patients were excluded. A whole-pelvis MRI atlas was generated based on the manually delineated MRI scans. In addition, a conjugate electron-density atlas was generated from the coregistered computed tomography (CT)-MRI scans. Pseudo-CT scans for each patient were automatically generated by global and nonrigid registration of the MRI atlas to the patient MRI scan, followed by application of the same transformations to the electron-density atlas. Comparisons were made between organ segmentations by using the Dice similarity coefficient (DSC) and point dose calculations for 26 patients on planning CT and pseudo-CT scans. Results: The agreement between pseudo-CT and planning CT was quantified by differences in the point dose at isocenter and distance to agreement in corresponding voxels. Dose differences were found to be less than 2%. Chi-squared values indicated that the planning CT and pseudo-CT dose distributions were equivalent. No significant differences (p > 0.9) were found between CT and pseudo-CT Hounsfield units for organs of interest. Mean {+-} standard deviation DSC scores for the atlas-based segmentation of the pelvic bones were 0.79 {+-} 0.12, 0.70 {+-} 0.14 for the prostate, 0.64 {+-} 0.16 for the bladder, and 0.63 {+-} 0.16 for the rectum

  8. A kernel machine-based fMRI physiological noise removal method.

    PubMed

    Song, Xiaomu; Chen, Nan-kuei; Gaur, Pooja

    2014-02-01

    Functional magnetic resonance imaging (fMRI) technique with blood oxygenation level dependent (BOLD) contrast is a powerful tool for noninvasive mapping of brain function under task and resting states. The removal of cardiac- and respiration-induced physiological noise in fMRI data has been a significant challenge as fMRI studies seek to achieve higher spatial resolutions and characterize more subtle neuronal changes. The low temporal sampling rate of most multi-slice fMRI experiments often causes aliasing of physiological noise into the frequency range of BOLD activation signal. In addition, changes of heartbeat and respiration patterns also generate physiological fluctuations that have similar frequencies with BOLD activation. Most existing physiological noise-removal methods either place restrictive limitations on image acquisition or utilize filtering or regression based post-processing algorithms, which cannot distinguish the frequency-overlapping BOLD activation and the physiological noise. In this work, we address the challenge of physiological noise removal via the kernel machine technique, where a nonlinear kernel machine technique, kernel principal component analysis, is used with a specifically identified kernel function to differentiate BOLD signal from the physiological noise of the frequency. The proposed method was evaluated in human fMRI data acquired from multiple task-related and resting state fMRI experiments. A comparison study was also performed with an existing adaptive filtering method. The results indicate that the proposed method can effectively identify and reduce the physiological noise in fMRI data. The comparison study shows that the proposed method can provide comparable or better noise removal performance than the adaptive filtering approach.

  9. A Kernel Machine-based fMRI Physiological Noise Removal Method

    PubMed Central

    Song, Xiaomu; Chen, Nan-kuei; Gaur, Pooja

    2013-01-01

    Functional magnetic resonance imaging (fMRI) technique with blood oxygenation level dependent (BOLD) contrast is a powerful tool for noninvasive mapping of brain function under task and resting states. The removal of cardiac- and respiration-induced physiological noise in fMRI data has been a significant challenge as fMRI studies seek to achieve higher spatial resolutions and characterize more subtle neuronal changes. The low temporal sampling rate of most multi-slice fMRI experiments often causes aliasing of physiological noise into the frequency range of BOLD activation signal. In addition, changes of heartbeat and respiration patterns also generate physiological fluctuations that have similar frequencies with BOLD activation. Most existing physiological noise-removal methods either place restrictive limitations on image acquisition or utilize filtering or regression based post-processing algorithms, which cannot distinguish the frequency-overlapping BOLD activation and the physiological noise. In this work, we address the challenge of physiological noise removal via the kernel machine technique, where a nonlinear kernel machine technique, kernel principal component analysis, is used with a specifically identified kernel function to differentiate BOLD signal from the physiological noise of the frequency. The proposed method was evaluated in human fMRI data acquired from multiple task-related and resting state fMRI experiments. A comparison study was also performed with an existing adaptive filtering method. The results indicate that the proposed method can effectively identify and reduce the physiological noise in fMRI data. The comparison study shows that the proposed method can provide comparable or better noise removal performance than the adaptive filtering approach. PMID:24321306

  10. Principles and methods for automatic and semi-automatic tissue segmentation in MRI data.

    PubMed

    Wang, Lei; Chitiboi, Teodora; Meine, Hans; Günther, Matthias; Hahn, Horst K

    2016-04-01

    The development of magnetic resonance imaging (MRI) revolutionized both the medical and scientific worlds. A large variety of MRI options have generated a huge amount of image data to interpret. The investigation of a specific tissue in 3D or 4D MR images can be facilitated by image processing techniques, such as segmentation and registration. In this work, we provide a brief review of the principles and methods that are commonly applied to achieve superior tissue segmentation results in MRI. The impacts of MR image acquisition on segmentation outcome and the principles of selecting and exploiting segmentation techniques tailored for specific tissue identification tasks are discussed. In the end, two exemplary applications, breast and fibroglandular tissue segmentation in MRI and myocardium segmentation in short-axis cine and real-time MRI, are discussed to explain the typical challenges that can be posed in practical segmentation tasks in MRI data. The corresponding solutions that are adopted to deal with these challenges of the two practical segmentation tasks are thoroughly reviewed.

  11. MRI-Based Computed Tomography Metal Artifact Correction Method for Improving Proton Range Calculation Accuracy

    SciTech Connect

    Park, Peter C.; Schreibmann, Eduard; Roper, Justin; Elder, Eric; Crocker, Ian; Fox, Tim; Zhu, X. Ronald; Dong, Lei; Dhabaan, Anees

    2015-03-15

    Purpose: Computed tomography (CT) artifacts can severely degrade dose calculation accuracy in proton therapy. Prompted by the recently increased popularity of magnetic resonance imaging (MRI) in the radiation therapy clinic, we developed an MRI-based CT artifact correction method for improving the accuracy of proton range calculations. Methods and Materials: The proposed method replaces corrupted CT data by mapping CT Hounsfield units (HU number) from a nearby artifact-free slice, using a coregistered MRI. MRI and CT volumetric images were registered with use of 3-dimensional (3D) deformable image registration (DIR). The registration was fine-tuned on a slice-by-slice basis by using 2D DIR. Based on the intensity of paired MRI pixel values and HU from an artifact-free slice, we performed a comprehensive analysis to predict the correct HU for the corrupted region. For a proof-of-concept validation, metal artifacts were simulated on a reference data set. Proton range was calculated using reference, artifactual, and corrected images to quantify the reduction in proton range error. The correction method was applied to 4 unique clinical cases. Results: The correction method resulted in substantial artifact reduction, both quantitatively and qualitatively. On respective simulated brain and head and neck CT images, the mean error was reduced from 495 and 370 HU to 108 and 92 HU after correction. Correspondingly, the absolute mean proton range errors of 2.4 cm and 1.7 cm were reduced to less than 2 mm in both cases. Conclusions: Our MRI-based CT artifact correction method can improve CT image quality and proton range calculation accuracy for patients with severe CT artifacts.

  12. Select and Cluster: A Method for Finding Functional Networks of Clustered Voxels in fMRI

    PubMed Central

    DonGiovanni, Danilo

    2016-01-01

    Extracting functional connectivity patterns among cortical regions in fMRI datasets is a challenge stimulating the development of effective data-driven or model based techniques. Here, we present a novel data-driven method for the extraction of significantly connected functional ROIs directly from the preprocessed fMRI data without relying on a priori knowledge of the expected activations. This method finds spatially compact groups of voxels which show a homogeneous pattern of significant connectivity with other regions in the brain. The method, called Select and Cluster (S&C), consists of two steps: first, a dimensionality reduction step based on a blind multiresolution pairwise correlation by which the subset of all cortical voxels with significant mutual correlation is selected and the second step in which the selected voxels are grouped into spatially compact and functionally homogeneous ROIs by means of a Support Vector Clustering (SVC) algorithm. The S&C method is described in detail. Its performance assessed on simulated and experimental fMRI data is compared to other methods commonly used in functional connectivity analyses, such as Independent Component Analysis (ICA) or clustering. S&C method simplifies the extraction of functional networks in fMRI by identifying automatically spatially compact groups of voxels (ROIs) involved in whole brain scale activation networks. PMID:27656202

  13. Fusing DTI and fMRI data: a survey of methods and applications.

    PubMed

    Zhu, Dajiang; Zhang, Tuo; Jiang, Xi; Hu, Xintao; Chen, Hanbo; Yang, Ning; Lv, Jinglei; Han, Junwei; Guo, Lei; Liu, Tianming

    2014-11-15

    The relationship between brain structure and function has been one of the centers of research in neuroimaging for decades. In recent years, diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) techniques have been widely available and popular in cognitive and clinical neurosciences for examining the brain's white matter (WM) micro-structures and gray matter (GM) functions, respectively. Given the intrinsic integration of WM/GM and the complementary information embedded in DTI/fMRI data, it is natural and well-justified to combine these two neuroimaging modalities together to investigate brain structure and function and their relationships simultaneously. In the past decade, there have been remarkable achievements of DTI/fMRI fusion methods and applications in neuroimaging and human brain mapping community. This survey paper aims to review recent advancements on methodologies and applications in incorporating multimodal DTI and fMRI data, and offer our perspectives on future research directions. We envision that effective fusion of DTI/fMRI techniques will play increasingly important roles in neuroimaging and brain sciences in the years to come.

  14. A new method for joint susceptibility artefact correction and super-resolution for dMRI

    NASA Astrophysics Data System (ADS)

    Ruthotto, Lars; Mohammadi, Siawoosh; Weiskopf, Nikolaus

    2014-03-01

    Diffusion magnetic resonance imaging (dMRI) has become increasingly relevant in clinical research and neuroscience. It is commonly carried out using the ultra-fast MRI acquisition technique Echo-Planar Imaging (EPI). While offering crucial reduction of acquisition times, two limitations of EPI are distortions due to varying magnetic susceptibilities of the object being imaged and its limited spatial resolution. In the recent years progress has been made both for susceptibility artefact correction and increasing of spatial resolution using image processing and reconstruction methods. However, so far, the interplay between both problems has not been studied and super-resolution techniques could only be applied along one axis, the slice-select direction, limiting the potential gain in spatial resolution. In this work we describe a new method for joint susceptibility artefact correction and super-resolution in EPI-MRI that can be used to increase resolution in all three spatial dimensions and in particular increase in-plane resolutions. The key idea is to reconstruct a distortion-free, high-resolution image from a number of low-resolution EPI data that are deformed in different directions. Numerical results on dMRI data of a human brain indicate that this technique has the potential to provide for the first time in-vivo dMRI at mesoscopic spatial resolution (i.e. 500μm) a spatial resolution that could bridge the gap between white-matter information from ex-vivo histology (≍1μm) and in-vivo dMRI (≍2000μm).

  15. Associations between the properties of the cartilage matrix and findings from quantitative MRI in human osteoarthritic cartilage of the knee

    PubMed Central

    Wei, Bo; Du, Xiaotao; Liu, Jun; Mao, Fengyong; Zhang, Xiang; Liu, Shuai; Xu, Yan; Zang, Fengchao; Wang, Liming

    2015-01-01

    The aim of this study was to investigate the associations between the properties of the cartilage matrix and the results of T2 mapping and delayed gadolinium-enhanced magnetic resonance imaging (dGEMRIC) in human knee osteoarthritic cartilage. Osteochondral samples were harvested from the middle part of the femoral condyle and tibial plateaus of 20 patients with knee osteoarthritis (OA) during total knee arthroplasty. Sagittal T2 mapping, T1pre, and T1Gd were performed using 7.0T magnetic resonance imaging (MRI). Gycosaminoglycan (GAG) distribution was evaluated by OARSI, collagen anisotropy was assessed by polarized light microscopy (PLM), and biochemical analyses measured water, GAG, and collagen content. Associations between properties of the cartilage matrix and T2 and ΔR1 (1/T1Gd-1/T1pre) values were explored using correlation analysis. T2 and ΔR1 values were significantly correlated with the degree of cartilage degeneration (OARSI grade; Ρ = 0.53 and 0.77). T2 values were significantly correlated with water content (r = 0.69; P < 0.001), GAG content (r = -0.43; P < 0.001), and PLM grade (r = 0.47; P < 0.001), but not with collagen content (r = -0.02; P = 0.110). ΔR1 values were significantly correlated with GAG content (r = -0.84; P < 0.001) and PLM grade (r = 0.41; P < 0.001). Taken together, T2 mapping and dGEMRIC results were correlated with the properties of the cartilage matrix in human knee osteoarthritic cartilage. Combination T2 mapping and dGEMRIC represents a potential non-invasive monitoring technique to detect the progress of knee OA. PMID:26097577

  16. Method of performing MRI with an atomic magnetometer

    DOEpatents

    Savukov, Igor Mykhaylovich; Matlashov, Andrei Nikolaevich; Espy, Michelle A; Volegov, Petr Lvovich; Kraus, Jr., Robert Henry; Zotev, Vadim Sergeyevich

    2013-08-27

    A method and apparatus are provided for performing an in-situ magnetic resonance imaging of an object. The method includes the steps of providing an atomic magnetometer, coupling a magnetic field generated by magnetically resonating samples of the object through a flux transformer to the atomic magnetometer and measuring a magnetic resonance of the atomic magnetometer.

  17. Method of performing MRI with an atomic magnetometer

    DOEpatents

    Savukov, Igor Mykhaylovich; Matlashov, Andrei Nikolaevich; Espy, Michelle A.; Volegov, Petr Lvovich; Kraus, Jr., Robert Henry; Zotev, Vadim Sergeyevich

    2012-11-06

    A method and apparatus are provided for performing an in-situ magnetic resonance imaging of an object. The method includes the steps of providing an atomic magnetometer, coupling a magnetic field generated by magnetically resonating samples of the object through a flux transformer to the atomic magnetometer and measuring a magnetic resonance of the atomic magnetometer.

  18. A fast, accurate, and reliable reconstruction method of the lumbar spine vertebrae using positional MRI.

    PubMed

    Simons, Craig J; Cobb, Loren; Davidson, Bradley S

    2014-04-01

    In vivo measurement of lumbar spine configuration is useful for constructing quantitative biomechanical models. Positional magnetic resonance imaging (MRI) accommodates a larger range of movement in most joints than conventional MRI and does not require a supine position. However, this is achieved at the expense of image resolution and contrast. As a result, quantitative research using positional MRI has required long reconstruction times and is sensitive to incorrectly identifying the vertebral boundary due to low contrast between bone and surrounding tissue in the images. We present a semi-automated method used to obtain digitized reconstructions of lumbar vertebrae in any posture of interest. This method combines a high-resolution reference scan with a low-resolution postural scan to provide a detailed and accurate representation of the vertebrae in the posture of interest. Compared to a criterion standard, translational reconstruction error ranged from 0.7 to 1.6 mm and rotational reconstruction error ranged from 0.3 to 2.6°. Intraclass correlation coefficients indicated high interrater reliability for measurements within the imaging plane (ICC 0.97-0.99). Computational efficiency indicates that this method may be used to compile data sets large enough to account for population variance, and potentially expand the use of positional MRI as a quantitative biomechanics research tool.

  19. New method for predicting estrogen receptor status utilizing breast MRI texture kinetic analysis

    NASA Astrophysics Data System (ADS)

    Chaudhury, Baishali; Hall, Lawrence O.; Goldgof, Dmitry B.; Gatenby, Robert A.; Gillies, Robert; Drukteinis, Jennifer S.

    2014-03-01

    Magnetic Resonance Imaging (MRI) of breast cancer typically shows that tumors are heterogeneous with spatial variations in blood flow and cell density. Here, we examine the potential link between clinical tumor imaging and the underlying evolutionary dynamics behind heterogeneity in the cellular expression of estrogen receptors (ER) in breast cancer. We assume, in an evolutionary environment, that ER expression will only occur in the presence of significant concentrations of estrogen, which is delivered via the blood stream. Thus, we hypothesize, the expression of ER in breast cancer cells will correlate with blood flow on gadolinium enhanced breast MRI. To test this hypothesis, we performed quantitative analysis of blood flow on dynamic contrast enhanced MRI (DCE-MRI) and correlated it with the ER status of the tumor. Here we present our analytic methods, which utilize a novel algorithm to analyze 20 volumetric DCE-MRI breast cancer tumors. The algorithm generates post initial enhancement (PIE) maps from DCE-MRI and then performs texture features extraction from the PIE map, feature selection, and finally classification of tumors into ER positive and ER negative status. The combined gray level co-occurrence matrices, gray level run length matrices and local binary pattern histogram features allow quantification of breast tumor heterogeneity. The algorithm predicted ER expression with an accuracy of 85% using a Naive Bayes classifier in leave-one-out cross-validation. Hence, we conclude that our data supports the hypothesis that imaging characteristics can, through application of evolutionary principles, provide insights into the cellular and molecular properties of cancer cells.

  20. An adaptive MR-CT registration method for MRI-guided prostate cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Zhong, Hualiang; Wen, Ning; Gordon, James J.; Elshaikh, Mohamed A.; Movsas, Benjamin; Chetty, Indrin J.

    2015-04-01

    Magnetic Resonance images (MRI) have superior soft tissue contrast compared with CT images. Therefore, MRI might be a better imaging modality to differentiate the prostate from surrounding normal organs. Methods to accurately register MRI to simulation CT images are essential, as we transition the use of MRI into the routine clinic setting. In this study, we present a finite element method (FEM) to improve the performance of a commercially available, B-spline-based registration algorithm in the prostate region. Specifically, prostate contours were delineated independently on ten MRI and CT images using the Eclipse treatment planning system. Each pair of MRI and CT images was registered with the B-spline-based algorithm implemented in the VelocityAI system. A bounding box that contains the prostate volume in the CT image was selected and partitioned into a tetrahedral mesh. An adaptive finite element method was then developed to adjust the displacement vector fields (DVFs) of the B-spline-based registrations within the box. The B-spline and FEM-based registrations were evaluated based on the variations of prostate volume and tumor centroid, the unbalanced energy of the generated DVFs, and the clarity of the reconstructed anatomical structures. The results showed that the volumes of the prostate contours warped with the B-spline-based DVFs changed 10.2% on average, relative to the volumes of the prostate contours on the original MR images. This discrepancy was reduced to 1.5% for the FEM-based DVFs. The average unbalanced energy was 2.65 and 0.38 mJ cm-3, and the prostate centroid deviation was 0.37 and 0.28 cm, for the B-spline and FEM-based registrations, respectively. Different from the B-spline-warped MR images, the FEM-warped MR images have clear boundaries between prostates and bladders, and their internal prostatic structures are consistent with those of the original MR images. In summary, the developed adaptive FEM method preserves the prostate volume

  1. EEG/fMRI fusion based on independent component analysis: integration of data-driven and model-driven methods.

    PubMed

    Lei, Xu; Valdes-Sosa, Pedro A; Yao, Dezhong

    2012-09-01

    Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) provide complementary noninvasive information of brain activity, and EEG/fMRI fusion can achieve higher spatiotemporal resolution than each modality separately. This focuses on independent component analysis (ICA)-based EEG/fMRI fusion. In order to appreciate the issues, we first describe the potential and limitations of the developed fusion approaches: fMRI-constrained EEG imaging, EEG-informed fMRI analysis, and symmetric fusion. We then outline some newly developed hybrid fusion techniques using ICA and the combination of data-/model-driven methods, with special mention of the spatiotemporal EEG/fMRI fusion (STEFF). Finally, we discuss the current trend in methodological development and the existing limitations for extrapolating neural dynamics.

  2. Signal-to-noise ratio comparison of encoding methods for hyperpolarized noble gas MRI

    NASA Technical Reports Server (NTRS)

    Zhao, L.; Venkatesh, A. K.; Albert, M. S.; Panych, L. P.

    2001-01-01

    Some non-Fourier encoding methods such as wavelet and direct encoding use spatially localized bases. The spatial localization feature of these methods enables optimized encoding for improved spatial and temporal resolution during dynamically adaptive MR imaging. These spatially localized bases, however, have inherently reduced image signal-to-noise ratio compared with Fourier or Hadamad encoding for proton imaging. Hyperpolarized noble gases, on the other hand, have quite different MR properties compared to proton, primarily the nonrenewability of the signal. It could be expected, therefore, that the characteristics of image SNR with respect to encoding method will also be very different from hyperpolarized noble gas MRI compared to proton MRI. In this article, hyperpolarized noble gas image SNRs of different encoding methods are compared theoretically using a matrix description of the encoding process. It is shown that image SNR for hyperpolarized noble gas imaging is maximized for any orthonormal encoding method. Methods are then proposed for designing RF pulses to achieve normalized encoding profiles using Fourier, Hadamard, wavelet, and direct encoding methods for hyperpolarized noble gases. Theoretical results are confirmed with hyperpolarized noble gas MRI experiments. Copyright 2001 Academic Press.

  3. Unsupervised nonlinear dimensionality reduction machine learning methods applied to multiparametric MRI in cerebral ischemia: preliminary results

    NASA Astrophysics Data System (ADS)

    Parekh, Vishwa S.; Jacobs, Jeremy R.; Jacobs, Michael A.

    2014-03-01

    The evaluation and treatment of acute cerebral ischemia requires a technique that can determine the total area of tissue at risk for infarction using diagnostic magnetic resonance imaging (MRI) sequences. Typical MRI data sets consist of T1- and T2-weighted imaging (T1WI, T2WI) along with advanced MRI parameters of diffusion-weighted imaging (DWI) and perfusion weighted imaging (PWI) methods. Each of these parameters has distinct radiological-pathological meaning. For example, DWI interrogates the movement of water in the tissue and PWI gives an estimate of the blood flow, both are critical measures during the evolution of stroke. In order to integrate these data and give an estimate of the tissue at risk or damaged; we have developed advanced machine learning methods based on unsupervised non-linear dimensionality reduction (NLDR) techniques. NLDR methods are a class of algorithms that uses mathematically defined manifolds for statistical sampling of multidimensional classes to generate a discrimination rule of guaranteed statistical accuracy and they can generate a two- or three-dimensional map, which represents the prominent structures of the data and provides an embedded image of meaningful low-dimensional structures hidden in their high-dimensional observations. In this manuscript, we develop NLDR methods on high dimensional MRI data sets of preclinical animals and clinical patients with stroke. On analyzing the performance of these methods, we observed that there was a high of similarity between multiparametric embedded images from NLDR methods and the ADC map and perfusion map. It was also observed that embedded scattergram of abnormal (infarcted or at risk) tissue can be visualized and provides a mechanism for automatic methods to delineate potential stroke volumes and early tissue at risk.

  4. Image homogenization using pre-emphasis method for high field MRI.

    PubMed

    Li, Ye; Wang, Chunsheng; Yu, Baiying; Vigneron, Daniel; Chen, Wei; Zhang, Xiaoliang

    2013-08-01

    Radiofrequency (RF) field (B 1) inhomogeneity due to shortened wavelength at high field is a major cause of magnetic resonance imaging (MRI) nonuniformity in high dielectric biological samples (e.g., human body). In this work, we propose a method to improve the B 1 and MRI homogeneity by using pre-emphasized non-uniform B 1 distribution. The intrinsic B 1 distribution that could be generated by a RF volume coil, specifically a microstrip transmission line (MTL) coil used in this work, was pre-emphasized in the sample's periphery region of interest to compensate for the central brightness induced by high frequency interference effect due to shortened wave length. This pre-emphasized non-uniform B 1 can be realized by varying the parameters of microstrip elements, such as the substrate thickness of MTL volume coil. Both numerical simulation and phantom MR imaging studies were carried out to investigate the feasibility and merit of the proposed method in achieving homogeneous MR images. The simulation results demonstrate that by using a pre-emphasized B 1 distribution generated by the MTL volume coil, relatively uniform B 1 distribution and homogeneous MR image (98% homogeneity) within the spherical phantom (15 cm diameter) were achieved with 4.5 mm thickness. The B 1 and MRI intensity distributions of a 16-element MTL volume coil with fixed substrate thickness and five varied saline loads were modeled and experimentally tested. Similar results from both simulation and experiments were obtained, suggesting substantial improvements of B 1 and MRI homogeneities within the phantom containing 125 mM saline. The overall results demonstrate an efficient B 1 shimming approach for improving high field MRI.

  5. Cerebrovascular MRI: a review of state-of-the-art approaches, methods and techniques.

    PubMed

    MacDonald, Matthew Ethan; Frayne, Richard

    2015-07-01

    Cerebrovascular imaging is of great interest in the understanding of neurological disease. MRI is a non-invasive technology that can visualize and provide information on: (i) the structure of major blood vessels; (ii) the blood flow velocity in these vessels; and (iii) the microcirculation, including the assessment of brain perfusion. Although other medical imaging modalities can also interrogate the cerebrovascular system, MR provides a comprehensive assessment, as it can acquire many different structural and functional image contrasts whilst maintaining a high level of patient comfort and acceptance. The extent of examination is limited only by the practicalities of patient tolerance or clinical scheduling limitations. Currently, MRI methods can provide a range of metrics related to the cerebral vasculature, including: (i) major vessel anatomy via time-of-flight and contrast-enhanced imaging; (ii) blood flow velocity via phase contrast imaging; (iii) major vessel anatomy and tissue perfusion via arterial spin labeling and dynamic bolus passage approaches; and (iv) venography via susceptibility-based imaging. When designing an MRI protocol for patients with suspected cerebral vascular abnormalities, it is appropriate to have a complete understanding of when to use each of the available techniques in the 'MR angiography toolkit'. In this review article, we: (i) overview the relevant anatomy, common pathologies and alternative imaging modalities; (ii) describe the physical principles and implementations of the above listed methods; (iii) provide guidance on the selection of acquisition parameters; and (iv) describe the existing and potential applications of MRI to the cerebral vasculature and diseases. The focus of this review is on obtaining an understanding through the application of advanced MRI methodology of both normal and abnormal blood flow in the cerebrovascular arteries, capillaries and veins.

  6. fMRI bold signal analysis using a novel nonparametric statistical method

    NASA Astrophysics Data System (ADS)

    De Mazière, Patrick A.; Van Hulle, Marc M.

    2007-03-01

    We present in this article a novel analytical method that enables the application of nonparametric rank-order statistics to fMRI data analysis, since it takes the omnipresent serial correlations (temporal autocorrelations) properly into account. Comparative simulations, using the common General Linear Model and the permutation test, confirm the validity and usefulness of our approach. Our simulations, which are performed with both synthetic and real fMRI data, show that our method requires significantly less computation time than permutation-based methods, while offering the same order of robustness and returning more information about the evoked response when combined with/compared to the results obtained with the common General Lineal Model approach.

  7. A multichannel speech enhancement method for functional MRI systems using a distributed microphone array.

    PubMed

    Milani, Ali A; Kannan, Govind; Panahi, Issa M S; Briggs, Richard

    2009-01-01

    Multichannel speech enhancement has been shown to be an effective method to decrease speech distortion introduced during speech enhancement, especially in environments like MRI (magnetic resonance imaging) which have a distributed noise source. However, these methods suffer from high computational complexity which makes them almost impractical. The use of subband filtering has been suggested to reduce this complexity but the performance of the existing subband methods deteriorate as the number of subbands increases. In this paper we introduce a new multichannel speech enhancement algorithm based on subband adaptive filtering that works for higher number of subbands at a lower complexity. The real-world experiments demonstrate the performance of the new scheme in an MRI room.

  8. Oral distension methods for small bowel MRI: comparison of different agents to optimize bowel distension.

    PubMed

    Schmidt, Stefan A; Baumann, Julia A; Stanescu-Siegmund, Nora; Froehlich, Eckhart; Brambs, Hans-Juergen; Juchems, Markus S

    2016-12-01

    Background Different methods for bowel distension prior to magnetic resonance imaging (MRI) examinations were described in recent years. Purpose To compare orally administered psyllium or locust bean gum / mannitol (LBM) with tylose administered through a duodenal catheter for bowel distension in patients undergoing MRI examination of the small bowel. Material and Methods Three different methods of bowel distension prior to MRI were compared: tylose applied through a duodenal catheter and orally administered psyllium and LBM in three groups with 15 patients each. Datasets were blinded and reviewed independently by two experienced radiologists, who assessed the diagnostic value and the maximum luminal diameter. Results Tylose was superior to psyllium and LBM in the examination of the duodenum and proximal jejunum. LBM was superior to the other methods for distension of the ileum and terminal ileum. The greatest luminal diameter of the duodenum was achieved after tylose and distension of the terminal ileum was the best in patients receiving LBM. The psyllium group was inferior to the other two groups in all segments. Conclusion By using LBM as an oral method of bowel distension, many patients can avoid the unpleasant placement of a duodenal catheter without compromising the diagnostic value of the examination.

  9. New cardiac MRI gating method using event-synchronous adaptive digital filter.

    PubMed

    Park, Hodong; Park, Youngcheol; Cho, Sungpil; Jang, Bongryoel; Lee, Kyoungjoung

    2009-11-01

    When imaging the heart using MRI, an artefact-free electrocardiograph (ECG) signal is not only important for monitoring the patient's heart activity but also essential for cardiac gating to reduce noise in MR images induced by moving organs. The fundamental problem in conventional ECG is the distortion induced by electromagnetic interference. Here, we propose an adaptive algorithm for the suppression of MR gradient artefacts (MRGAs) in ECG leads of a cardiac MRI gating system. We have modeled MRGAs by assuming a source of strong pulses used for dephasing the MR signal. The modeled MRGAs are rectangular pulse-like signals. We used an event-synchronous adaptive digital filter whose reference signal is synchronous to the gradient peaks of MRI. The event detection processor for the event-synchronous adaptive digital filter was implemented using the phase space method-a sort of topology mapping method-and least-squares acceleration filter. For evaluating the efficiency of the proposed method, the filter was tested using simulation and actual data. The proposed method requires a simple experimental setup that does not require extra hardware connections to obtain the reference signals of adaptive digital filter. The proposed algorithm was more effective than the multichannel approach.

  10. Liver segmentation in MRI: A fully automatic method based on stochastic partitions.

    PubMed

    López-Mir, F; Naranjo, V; Angulo, J; Alcañiz, M; Luna, L

    2014-04-01

    There are few fully automated methods for liver segmentation in magnetic resonance images (MRI) despite the benefits of this type of acquisition in comparison to other radiology techniques such as computed tomography (CT). Motivated by medical requirements, liver segmentation in MRI has been carried out. For this purpose, we present a new method for liver segmentation based on the watershed transform and stochastic partitions. The classical watershed over-segmentation is reduced using a marker-controlled algorithm. To improve accuracy of selected contours, the gradient of the original image is successfully enhanced by applying a new variant of stochastic watershed. Moreover, a final classifier is performed in order to obtain the final liver mask. Optimal parameters of the method are tuned using a training dataset and then they are applied to the rest of studies (17 datasets). The obtained results (a Jaccard coefficient of 0.91 ± 0.02) in comparison to other methods demonstrate that the new variant of stochastic watershed is a robust tool for automatic segmentation of the liver in MRI.

  11. Resting state fMRI: A review of methods and clinical applications

    PubMed Central

    Lee, Megan H.; Smyser, Christopher D.; Shimony, Joshua S.

    2014-01-01

    Resting state fMRI measures spontaneous, low frequency fluctuations in the BOLD signal to investigate the functional architecture of the brain. Application of this technique has allowed for the identification of various RSNs, or spatially distinct areas of the brain that demonstrate synchronous BOLD fluctuations at rest. Various methods exist for analyzing resting state data, including seed based approaches, independent component analysis, graph methods, clustering algorithms, neural networks, and pattern classifiers. Clinical applications of resting state fMRI are at an early stage of development. However, its use in presurgical planning for brain tumor and epilepsy patients demonstrates early promise, and the technique may also have a future role in providing diagnostic and prognostic information for neurological and psychiatric diseases. PMID:22936095

  12. Numerical simulation of diffusion MRI signals using an adaptive time-stepping method

    NASA Astrophysics Data System (ADS)

    Li, Jing-Rebecca; Calhoun, Donna; Poupon, Cyril; Le Bihan, Denis

    2014-01-01

    The effect on the MRI signal of water diffusion in biological tissues in the presence of applied magnetic field gradient pulses can be modelled by a multiple compartment Bloch-Torrey partial differential equation. We present a method for the numerical solution of this equation by coupling a standard Cartesian spatial discretization with an adaptive time discretization. The time discretization is done using the explicit Runge-Kutta-Chebyshev method, which is more efficient than the forward Euler time discretization for diffusive-type problems. We use this approach to simulate the diffusion MRI signal from the extra-cylindrical compartment in a tissue model of the brain gray matter consisting of cylindrical and spherical cells and illustrate the effect of cell membrane permeability.

  13. Evaluation of Femoral Head Necrosis Using a Volumetric Method Based on MRI

    DTIC Science & Technology

    2001-10-25

    hip hemi - arthroplasty . The specimens were trimmed and rounded-up with wax, to take the shape of a sphere. In order to simulate the affected...106 hips with osteonecrosis before treatment with vascularized fibular grafting. The hips were evaluated using the volumetric method. The follow up...Osteonecrosis, MRI, Volumetric Feature Extraction, Automated Diagnosis I.INTRODUCTION Femoral head osteonecrosis is responsible for a large number of hip

  14. A new method based on Dempster-Shafer theory and fuzzy c-means for brain MRI segmentation

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Lu, Xi; Li, Yunpeng; Chen, Xiaowu; Deng, Yong

    2015-10-01

    In this paper, a new method is proposed to decrease sensitiveness to motion noise and uncertainty in magnetic resonance imaging (MRI) segmentation especially when only one brain image is available. The method is approached with considering spatial neighborhood information by fusing the information of pixels with their neighbors with Dempster-Shafer (DS) theory. The basic probability assignment (BPA) of each single hypothesis is obtained from the membership function of applying fuzzy c-means (FCM) clustering to the gray levels of the MRI. Then multiple hypotheses are generated according to the single hypothesis. Then we update the objective pixel’s BPA by fusing the BPA of the objective pixel and those of its neighbors to get the final result. Some examples in MRI segmentation are demonstrated at the end of the paper, in which our method is compared with some previous methods. The results show that the proposed method is more effective than other methods in motion-blurred MRI segmentation.

  15. Real-time 2D spatially selective MRI experiments: Comparative analysis of optimal control design methods.

    PubMed

    Maximov, Ivan I; Vinding, Mads S; Tse, Desmond H Y; Nielsen, Niels Chr; Shah, N Jon

    2015-05-01

    There is an increasing need for development of advanced radio-frequency (RF) pulse techniques in modern magnetic resonance imaging (MRI) systems driven by recent advancements in ultra-high magnetic field systems, new parallel transmit/receive coil designs, and accessible powerful computational facilities. 2D spatially selective RF pulses are an example of advanced pulses that have many applications of clinical relevance, e.g., reduced field of view imaging, and MR spectroscopy. The 2D spatially selective RF pulses are mostly generated and optimised with numerical methods that can handle vast controls and multiple constraints. With this study we aim at demonstrating that numerical, optimal control (OC) algorithms are efficient for the design of 2D spatially selective MRI experiments, when robustness towards e.g. field inhomogeneity is in focus. We have chosen three popular OC algorithms; two which are gradient-based, concurrent methods using first- and second-order derivatives, respectively; and a third that belongs to the sequential, monotonically convergent family. We used two experimental models: a water phantom, and an in vivo human head. Taking into consideration the challenging experimental setup, our analysis suggests the use of the sequential, monotonic approach and the second-order gradient-based approach as computational speed, experimental robustness, and image quality is key. All algorithms used in this work were implemented in the MATLAB environment and are freely available to the MRI community.

  16. Appraising the Role of Iron in Brain Aging and Cognition: Promises and Limitations of MRI Methods

    PubMed Central

    Daugherty, Ana M; Raz, Naftali

    2015-01-01

    Age-related increase in frailty is accompanied by a fundamental shift in cellular iron homeostasis. By promoting oxidative stress, the intracellular accumulation of non-heme iron outside of binding complexes contributes to chronic inflammation and interferes with normal brain metabolism. In the absence of direct non-invasive biomarkers of brain oxidative stress, iron accumulation estimated in vivo may serve as its proxy indicator. Hence, developing reliable in vivo measurements of brain iron content via magnetic resonance imaging (MRI) is of significant interest in human neuroscience. To date, by estimating brain iron content through various MRI methods, significant age differences and age-related increases in iron content of the basal ganglia have been revealed across multiple samples. Less consistent are the findings that pertain to the relationship between elevated brain iron content and systemic indices of vascular and metabolic dysfunction. Only a handful of cross-sectional investigations have linked high iron content in various brain regions and poor performance on assorted cognitive tests. The even fewer longitudinal studies indicate that iron accumulation may precede shrinkage of the basal ganglia and thus predict poor maintenance of cognitive functions. This rapidly developing field will benefit from introduction of higher-field MRI scanners, improvement in iron-sensitive and -specific acquisition sequences and post-processing analytic and computational methods, as well as accumulation of data from long-term longitudinal investigations. This review describes the potential advantages and promises of MRI-based assessment of brain iron, summarizes recent findings and highlights the limitations of the current methodology. PMID:26248580

  17. A practical MRI-based reconstruction method for a new endocavitary and interstitial gynaecological template

    PubMed Central

    Richart, Jose; Otal, Antonio; Rodriguez, Silvia; Nicolás, Ana Isabel; DePiaggio, Marina; Santos, Manuel; Vijande, Javier; Perez-Calatayud, Jose

    2015-01-01

    Purpose There are perineal templates for interstitial implants such as MUPIT and Syed applicators. Their limitations are the intracavitary component deficit and the necessity to use computed tomography (CT) for treatment planning since both applicators are non-magnetic resonance imaging (MRI) compatibles. To overcome these problems, a new template named Template Benidorm (TB) has been recently developed. Titanium needles are usually reconstructed based on their own artifacts, mainly in T1-weighted sequence, using the void on the tip as the needle tip position. Nevertheless, patient tissues surrounding the needles present heterogeneities that complicate the accurate identification of these artifact patterns. The purpose of this work is to improve the titanium needle reconstruction uncertainty for the TB case using a simple method based on the free needle lengths and typical MRI pellets markers. Material and methods The proposed procedure consists on the inclusion of three small A-vitamin pellets (hyperintense on MRI images) compressed by both applicator plates defining the central plane of the plate's arrangement. The needles used are typically 20 cm in length. For each needle, two points are selected defining the straight line. From such line and the plane equations, the intersection can be obtained, and using the free length (knowing the offset distance), the coordinates of the needle tip can be obtained. The method is applied in both T1W and T2W acquisition sequences. To evaluate the inter-observer variation of the method, three implants of T1W and another three of T2W have been reconstructed by two different medical physicists with experience on these reconstructions. Results and conclusions The differences observed in the positioning were significantly smaller than 1 mm in all cases. The presented algorithm also allows the use of only T2W sequence either for contouring or reconstruction purposes. The proposed method is robust and independent of the visibility

  18. Comparison of supervised MRI segmentation methods for tumor volume determination during therapy.

    PubMed

    Vaidyanathan, M; Clarke, L P; Velthuizen, R P; Phuphanich, S; Bensaid, A M; Hall, L O; Bezdek, J C; Greenberg, H; Trotti, A; Silbiger, M

    1995-01-01

    Two different multispectral pattern recognition methods are used to segment magnetic resonance images (MRI) of the brain for quantitative estimation of tumor volume and volume changes with therapy. A supervised k-nearest neighbor (kNN) rule and a semi-supervised fuzzy c-means (SFCM) method are used to segment MRI slice data. Tumor volumes as determined by the kNN and SFCM segmentation methods are compared with two reference methods, based on image grey scale, as a basis for an estimation of ground truth, namely: (a) a commonly used seed growing method that is applied to the contrast enhanced T1-weighted image, and (b) a manual segmentation method using a custom-designed graphical user interface applied to the same raw image (T1-weighted) dataset. Emphasis is placed on measurement of intra and inter observer reproducibility using the proposed methods. Intra- and interobserver variation for the kNN method was 9% and 5%, respectively. The results for the SFCM method was a little better at 6% and 4%, respectively. For the seed growing method, the intra-observer variation was 6% and the interobserver variation was 17%, significantly larger when compared with the multispectral methods. The absolute tumor volume determined by the multispectral segmentation methods was consistently smaller than that observed for the reference methods. The results of this study are found to be very patient case-dependent. The results for SFCM suggest that it should be useful for relative measurements of tumor volume during therapy, but further studies are required. This work demonstrates the need for minimally supervised or unsupervised methods for tumor volume measurements.

  19. Heart MRI

    MedlinePlus

    Magnetic resonance imaging - cardiac; Magnetic resonance imaging - heart; Nuclear magnetic resonance - cardiac; NMR - cardiac; MRI of the heart; Cardiomyopathy - MRI; Heart failure - MRI; Congenital heart disease - MRI

  20. Automated Robust Image Segmentation: Level Set Method Using Nonnegative Matrix Factorization with Application to Brain MRI.

    PubMed

    Dera, Dimah; Bouaynaya, Nidhal; Fathallah-Shaykh, Hassan M

    2016-07-01

    We address the problem of fully automated region discovery and robust image segmentation by devising a new deformable model based on the level set method (LSM) and the probabilistic nonnegative matrix factorization (NMF). We describe the use of NMF to calculate the number of distinct regions in the image and to derive the local distribution of the regions, which is incorporated into the energy functional of the LSM. The results demonstrate that our NMF-LSM method is superior to other approaches when applied to synthetic binary and gray-scale images and to clinical magnetic resonance images (MRI) of the human brain with and without a malignant brain tumor, glioblastoma multiforme. In particular, the NMF-LSM method is fully automated, highly accurate, less sensitive to the initial selection of the contour(s) or initial conditions, more robust to noise and model parameters, and able to detect as small distinct regions as desired. These advantages stem from the fact that the proposed method relies on histogram information instead of intensity values and does not introduce nuisance model parameters. These properties provide a general approach for automated robust region discovery and segmentation in heterogeneous images. Compared with the retrospective radiological diagnoses of two patients with non-enhancing grade 2 and 3 oligodendroglioma, the NMF-LSM detects earlier progression times and appears suitable for monitoring tumor response. The NMF-LSM method fills an important need of automated segmentation of clinical MRI.

  1. 3-dimensional throat region segmentation from MRI data based on Fourier interpolation and 3-dimensional level set methods.

    PubMed

    Campbell, Sean; Doshi, Trushali; Soraghan, John; Petropoulakis, Lykourgos; Di Caterina, Gaetano; Grose, Derek; MacKenzie, Kenneth

    2015-01-01

    A new algorithm for 3D throat region segmentation from magnetic resonance imaging (MRI) is presented. The proposed algorithm initially pre-processes the MRI data to increase the contrast between the throat region and its surrounding tissues and to reduce artifacts. Isotropic 3D volume is reconstructed using the Fourier interpolation. Furthermore, a cube encompassing the throat region is evolved using level set method to form a smooth 3D boundary of the throat region. The results of the proposed algorithm on real and synthetic MRI data are used to validate the robustness and accuracy of the algorithm.

  2. A Novel Method for Quantifying Scanner Instability in fMRI

    PubMed Central

    Greve, Douglas N.; Mueller, Bryon A.; Liu, Thomas; Turner, Jessica A.; Voyvodic, James; Yetter, Elizabeth; Diaz, Michele; McCarthy, Gregory; Wallace, Stuart; Roach, Brian J.; Ford, Judy M.; Mathalon, Daniel H.; Calhoun, Vince D.; Wible, Cynthia G.; Potkin, Stephen G.; Glover, Gary

    2010-01-01

    A method was developed to quantify the effect of scanner instability on fMRI data by comparing the instability noise to endogenous noise present when scanning a human. The instability noise was computed from agar phantom data collected with two flip angles, allowing for a separation of the instability from the background noise. This method was used on human data collected at four 3T scanners, allowing the physiological noise level to be extracted from the data. In a “well-operating” scanner, the instability noise is generally less than 10% of physiological noise in white matter and only about 2% of physiological noise in cortex. This indicates that instability in a well-operating scanner adds very little noise to fMRI results. This new method allows researchers to make informed decisions about the maximum instability level a scanner can have before it is taken off line for maintenance or rejected from a multisite consortium. This method also provides information about the background noise, which is generally larger in magnitude than the instability noise. PMID:21413069

  3. Evaluating pH in the Extracellular Tumor Microenvironment Using CEST MRI and Other Imaging Methods

    PubMed Central

    Chen, Liu Qi; Pagel, Mark D.

    2016-01-01

    Tumor acidosis is a consequence of altered metabolism, which can lead to chemoresistance and can be a target of alkalinizing therapies. Noninvasive measurements of the extracellular pH (pHe) of the tumor microenvironment can improve diagnoses and treatment decisions. A variety of noninvasive imaging methods have been developed for measuring tumor pHe. This review provides a detailed description of the advantages and limitations of each method, providing many examples from previous research reports. A substantial emphasis is placed on methods that use MR spectroscopy and MR imaging, including recently developed methods that use chemical exchange saturation transfer MRI that combines some advantages of MR spectroscopy and imaging. Together, this review provides a comprehensive overview of methods for measuring tumor pHe, which may facilitate additional creative approaches in this research field. PMID:27761517

  4. A Hybrid Machine Learning Method for Fusing fMRI and Genetic Data: Combining both Improves Classification of Schizophrenia

    PubMed Central

    Yang, Honghui; Liu, Jingyu; Sui, Jing; Pearlson, Godfrey; Calhoun, Vince D.

    2010-01-01

    We demonstrate a hybrid machine learning method to classify schizophrenia patients and healthy controls, using functional magnetic resonance imaging (fMRI) and single nucleotide polymorphism (SNP) data. The method consists of four stages: (1) SNPs with the most discriminating information between the healthy controls and schizophrenia patients are selected to construct a support vector machine ensemble (SNP-SVME). (2) Voxels in the fMRI map contributing to classification are selected to build another SVME (Voxel-SVME). (3) Components of fMRI activation obtained with independent component analysis (ICA) are used to construct a single SVM classifier (ICA-SVMC). (4) The above three models are combined into a single module using a majority voting approach to make a final decision (Combined SNP-fMRI). The method was evaluated by a fully validated leave-one-out method using 40 subjects (20 patients and 20 controls). The classification accuracy was: 0.74 for SNP-SVME, 0.82 for Voxel-SVME, 0.83 for ICA-SVMC, and 0.87 for Combined SNP-fMRI. Experimental results show that better classification accuracy was achieved by combining genetic and fMRI data than using either alone, indicating that genetic and brain function representing different, but partially complementary aspects, of schizophrenia etiopathology. This study suggests an effective way to reassess biological classification of individuals with schizophrenia, which is also potentially useful for identifying diagnostically important markers for the disorder. PMID:21119772

  5. The secret lives of experiments: methods reporting in the fMRI literature.

    PubMed

    Carp, Joshua

    2012-10-15

    Replication of research findings is critical to the progress of scientific understanding. Accordingly, most scientific journals require authors to report experimental procedures in sufficient detail for independent researchers to replicate their work. To what extent do research reports in the functional neuroimaging literature live up to this standard? The present study evaluated methods reporting and methodological choices across 241 recent fMRI articles. Many studies did not report critical methodological details with regard to experimental design, data acquisition, and analysis. Further, many studies were underpowered to detect any but the largest statistical effects. Finally, data collection and analysis methods were highly flexible across studies, with nearly as many unique analysis pipelines as there were studies in the sample. Because the rate of false positive results is thought to increase with the flexibility of experimental designs, the field of functional neuroimaging may be particularly vulnerable to false positives. In sum, the present study documented significant gaps in methods reporting among fMRI studies. Improved methodological descriptions in research reports would yield significant benefits for the field.

  6. Two Methods of Mechanical Noise Reduction of Recorded Speech During Phonation in an MRI device

    NASA Astrophysics Data System (ADS)

    Přibil, J.; Horáček, J.; Horák, P.

    2011-01-01

    The paper presents two methods of noise reduction of speech signal recorded in an MRI device during phonation for the human vocal tract modelling. The applied approach of noise speech signal cleaning is based on cepstral speech analysis and synthesis because the noise is mainly produced by gradient coils, has a mechanical character, and can be processed in spectral domain. Our first noise reduction method is using real cepstrum limitation and clipping the "peaks" corresponding to the harmonic frequencies of mechanical noise. The second method is coming out from substation of the short-time spectra of two signals recorded withal: the first includes speech and noise, and the second consists of noise only. The resulting speech quality was compared by spectrogram and mean periodogram methods.

  7. A Method for Safety Testing of Radiofrequency/Microwave-Emitting Devices Using MRI

    PubMed Central

    Alon, Leeor; Cho, Gene Y.; Yang, Xing; Sodickson, Daniel K.; Deniz, Cem M.

    2015-01-01

    Purpose Strict regulations are imposed on the amount of radiofrequency (RF) energy that devices can emit to prevent excessive deposition of RF energy into the body. In this study, we investigated the application of MR temperature mapping and 10-g average specific absorption rate (SAR) computation for safety evaluation of RF-emitting devices. Methods Quantification of the RF power deposition was shown for an MRI-compatible dipole antenna and a non–MRI-compatible mobile phone via phantom temperature change measurements. Validation of the MR temperature mapping method was demonstrated by comparison with physical temperature measurements and electromagnetic field simulations. MR temperature measurements alongside physical property measurements were used to reconstruct 10-g average SAR. Results The maximum temperature change for a dipole antenna and the maximum 10-g average SAR were 1.83° C and 12.4 W/kg, respectively, for simulations and 1.73° C and 11.9 W/kg, respectively, for experiments. The difference between MR and probe thermometry was <0.15° C. The maximum temperature change and the maximum 10-g average SAR for a cell phone radiating at maximum output for 15 min was 1.7° C and 0.54 W/kg, respectively. Conclusion Information acquired using MR temperature mapping and thermal property measurements can assess RF/microwave safety with high resolution and fidelity. PMID:25424724

  8. A method for localizing microelectrode trajectories in the macaque brain using MRI

    PubMed Central

    Kalwani, Rishi M.; Bloy, Luke; Elliott, Mark A.; Gold, Joshua I.

    2009-01-01

    Magnetic resonance imaging (MRI) is often used by electrophysiologists to target specific brain regions for placement of microelectrodes. However, the effectiveness of this technique has been limited by few methods to quantify in three dimensions the relative locations of brain structures, recording chambers and microelectrode trajectories. Here we present such a method. After surgical implantation, recording chambers are fitted with a plastic cylinder that is filled with a high-contrast agent to aid in the segmentation of the cylinder from brain matter in an MRI volume. The resulting images of the filled cylinder correspond to a virtual cylinder that is projected along its long axis – parallel to the trajectories of microelectrodes advanced through the recording chamber – through the three-dimensional image of the brain. This technique, which does not require a stereotaxic coordinate system, can be used to quantify the coverage of an implanted recording chamber relative to anatomical landmarks at any depth or orientation. We have used this technique in conjunction with Caret (Van Essen et al., 2001) and AFNI (Cox, 1996) brain mapping software to successfully localize several regions of macaque cortex, including the middle temporal area, the lateral intraparietal area and the frontal eye field, and one subcortical structure, the locus coeruleus, for electrophysiological recordings. PMID:18831988

  9. Head MRI

    MedlinePlus

    ... the head; MRI - cranial; NMR - cranial; Cranial MRI; Brain MRI; MRI - brain; MRI - head ... the test, tell your provider if you have: Brain aneurysm clips An artificial heart valves Heart defibrillator ...

  10. The application of independent component analysis with projection method to two-task fMRI data over multiple subjects

    NASA Astrophysics Data System (ADS)

    Li, Rui; Hui, Mingqi; Yao, Li; Chen, Kewei; Long, Zhiying

    2011-03-01

    Spatial Independent component analysis (sICA) has been successfully used to analyze functional magnetic resonance (fMRI) data. However, the application of ICA was limited in multi-task fMRI data due to the potential spatial dependence between task-related components. Long et al. (2009) proposed ICA with linear projection (ICAp) method and demonstrated its capacity to solve the interaction among task-related components in multi-task fMRI data of single subject. However, it's unclear that how to perform ICAp over a group of subjects. In this study, we proposed a group analysis framework on multi-task fMRI data by combining ICAp with the temporal concatenation method reported by Calhoun (2001). The results of real fMRI experiment containing multiple visual processing tasks demonstrated the feasibility and effectiveness of the group ICAp method. Moreover, compared to the GLM method, the group ICAp method is more sensitive to detect the regions specific to each task.

  11. Magnetic wall decoupling method for monopole coil array in ultrahigh field MRI: a feasibility test.

    PubMed

    Yan, Xinqiang; Zhang, Xiaoliang; Wei, Long; Xue, Rong

    2014-04-01

    Ultrahigh field (UHF) MR imaging of deeply located target in high dielectric biological samples faces challenges due to the reduced penetration depth at the corresponding high frequencies. Radiative coils, e.g., dipole and monopole coils, have recently been applied for UHF MRI applications to obtain better signal-noise-ratio (SNR) in the area deep inside the human head and body. However, due to the unique structure of radiative coil elements, electromagnetic (EM) coupling between elements in radiative coil arrays cannot be readily addressed by using traditional decoupling methods such as element overlapping and L/C decoupling network. A new decoupling method based on induced current elimination (ICE) or magnetic wall technique has recently been proposed and has demonstrated feasibility in designing microstrip transmission line (MTL) arrays and L/C loop arrays. In this study, an array of two monopole elements decoupled using magnetic wall decoupling technique was designed, constructed and analyzed numerically and experimentally to investigate the feasibility of the decoupling technique in radiative coil array designs for MR imaging at 7 T. An L-shaped capacitive network was employed as the matching circuit and the reflection coefficients (S11) of the monopole element achieved -30 dB or better. Isolation between the two monopole elements was improved from about -10 dB (without decoupling treatment) to better than -30 dB with the ICE/magnetic wall decoupling method. B1 maps and MR images of the phantom were acquired and SNR maps were measured and calculated to evaluate the performance of the ICE/magnetic wall decoupling method. Compared with the monopole elements without decoupling methods, the ICE-decoupled array demonstrated more independent image profiles from each element and had a higher SNR in the peripheral area of the imaging subject. The experimental and simulation results indicate that the ICE/magnetic wall decoupling technique might be a promising solution

  12. Hippocampal subfields at ultra high field MRI: An overview of segmentation and measurement methods.

    PubMed

    Giuliano, Alessia; Donatelli, Graziella; Cosottini, Mirco; Tosetti, Michela; Retico, Alessandra; Fantacci, Maria Evelina

    2017-02-11

    The hippocampus is one of the most interesting and studied brain regions because of its involvement in memory functions and its vulnerability in pathological conditions, such as neurodegenerative processes. In the recent years, the increasing availability of Magnetic Resonance Imaging (MRI) scanners that operate at ultra-high field (UHF), that is, with static magnetic field strength ≥7T, has opened new research perspectives. Compared to conventional high-field scanners, these systems can provide new contrasts, increased signal-to-noise ratio and higher spatial resolution, thus they may improve the visualization of very small structures of the brain, such as the hippocampal subfields. Studying the morphometry of the hippocampus is crucial in neuroimaging research because changes in volume and thickness of hippocampal subregions may be relevant in the early assessment of pathological cognitive decline and Alzheimer's Disease (AD). The present review provides an overview of the manual, semi-automated and fully automated methods that allow the assessment of hippocampal subfield morphometry at UHF MRI, focusing on the different hippocampal segmentation produced. © 2017 Wiley Periodicals, Inc.

  13. SU-E-J-221: A Novel Expansion Method for MRI Based Target Delineation in Prostate Radiotherapy

    SciTech Connect

    Ruiz, B; Feng, Y; Shores, R; Fung, C

    2015-06-15

    Purpose: To compare a novel bladder/rectum carveout expansion method on MRI delineated prostate to standard CT and expansion based methods for maintaining prostate coverage while providing superior bladder and rectal sparing. Methods: Ten prostate cases were planned to include four trials: MRI vs CT delineated prostate/proximal seminal vesicles, and each image modality compared to both standard expansions (8mm 3D expansion and 5mm posterior, i.e. ∼8mm) and carveout method expansions (5mm 3D expansion, 4mm posterior for GTV-CTV excluding expansion into bladder/rectum followed by additional 5mm 3D expansion to PTV, i.e. ∼1cm). All trials were planned to total dose 7920 cGy via IMRT. Evaluation and comparison was made using the following criteria: QUANTEC constraints for bladder/rectum including analysis of low dose regions, changes in PTV volume, total control points, and maximum hot spot. Results: ∼8mm MRI expansion consistently produced the most optimal plan with lowest total control points and best bladder/rectum sparing. However, this scheme had the smallest prostate (average 22.9% reduction) and subsequent PTV volume, consistent with prior literature. ∼1cm MRI had an average PTV volume comparable to ∼8mm CT at 3.79% difference. Bladder QUANTEC constraints were on average less for the ∼1cm MRI as compared to the ∼8mm CT and observed as statistically significant with 2.64% reduction in V65. Rectal constraints appeared to follow the same trend. Case-by-case analysis showed variation in rectal V30 with MRI delineated prostate being most favorable regardless of expansion type. ∼1cm MRI and ∼8mm CT had comparable plan quality. Conclusion: MRI delineated prostate with standard expansions had the smallest PTV leading to margins that may be too tight. Bladder/rectum carveout expansion method on MRI delineated prostate was found to be superior to standard CT based methods in terms of bladder and rectal sparing while maintaining prostate coverage

  14. SU-E-J-196: New Visualization Methods for Longitudinal MRI Registrations and Segmentations

    SciTech Connect

    Veeraraghavan, H; Deasy, J

    2014-06-01

    Purpose: To develop visualization techniques to facilitate easy assessment of (a) registration and (b) tracking volumetric changes in structures during radiation therapy from MRI. Method: The frequently used method for visualizing registrations between scans is a multi-color overlay technique or deformation vector fields. However, the overlay technique is unintuitive and does not help to appreciate the quality of registration particularly when the registration mismatches are not very large. Similarly, the deformation fields give an indication of extent of deformation but do not help to assess the differences in registration. We present a mirroring and edge-augmented mirroring technique that places the fixed and moving image next to each other and allows the user to quickly assess the small differences in registration. Next, we present a volumetric intersection based 3D model to visualize the changes in diseased lymph node volumes in head and neck cancer. 3D model-based visualization provides more information about the location-specific changes in volume rather than the simplistic one dimensional information obtained from 2D plot of nodal volume changes. Result: We show results comparing our approach with the standard colorbased overlay method for comparing registrations of intra-patient registrations using T2-MRI. Upon comparing the mirroring technique with the color-overlay, one can more easily appreciate the differences in registration. Adding edge-based mirroring seems to further assist in evaluating the registration. Our approach for viewing registrations seems to be more intuitive and easy to use in order to help assess the quality of registration compared to color-based overlays. Similarly, the change volumetric model together with a 2D plot reveals more information including the locations undergoing changes and responding to treatment. Conclusions: Better approaches are necessary for assessing the quality of registrations and changes in diseased structures

  15. 4D MRI for the Localization of Parathyroid Adenoma: A Novel Method in Evolution.

    PubMed

    Merchavy, Shlomo; Luckman, Judith; Guindy, Michal; Segev, Yoram; Khafif, Avi

    2016-03-01

    The sestamibi scan (MIBI) and ultrasound (US) are used for preoperative localization of parathyroid adenoma (PTA), with sensitivity as high as 90%. We developed 4-dimensional magnetic resonance imaging (4D MRI) as a novel tool for identifying PTAs. Eleven patients with PTA were enrolled. 4D MRI from the mandible to the aortic arch was used. Optimization of the timing of image acquisition was obtained by changing dynamic and static sequences. PTAs were identified in all except 1 patient. In 9 patients, there was a complete match between the 4D MRI and the US and MIBI, as well as with the operative finding. In 1 patient, the adenoma was correctly localized by 4D MRI, in contrast to the US and MIBI scan. The sensitivity of the 4D MRI was 90% and after optimization, 100%. Specificity was 100%. We concluded that 4D MRI is a reliable technique for identification of PTAs, although more studies are needed.

  16. An accurate heart beat detection method in the EKG recorded in fMRI system.

    PubMed

    Oh, Sung Suk; Chung, Jun-Young; Yoon, Hyo Woon; Park, HyunWook

    2007-01-01

    The simultaneous recording of functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG) provides an efficient signal for the high spatiotemporal brain mapping because each modality provides complementary information. The peak detection in the EEG signal measured in the MR scanner is necessary for removal of the ballistocardiac artifact. Especially, it would be affected by the quality of the EKG signal and the variation of the heart beat rate. Therefore, we propose the peak detection method using a K-teager energy operator (K-TEO) as well as further refinement processes in order to detect precise peaks. We applied this technique to the analysis of simulation waves with random noise and abrupt heat beat changes.

  17. Integration of multimodal neuroimaging methods: a rationale for clinical applications of simultaneous EEG-fMRI

    PubMed Central

    Vitali, Paolo; Di Perri, Carol; Vaudano, Anna Elisabetta; Meletti, Stefano; Villani, Flavio

    2015-01-01

    Summary Functional magnetic resonance imaging (fMRI), which has high spatial resolution, is increasingly used to evaluate cerebral functions in neurological and psychiatric diseases. The main limitation of fMRI is that it detects neural activity indirectly, through the associated slow hemodynamic variations. Because neurovascular coupling can be regionally altered by pathological conditions or drugs, fMRI responses may not truly reflect neural activity. Electroencephalography (EEG) recordings, which directly detect neural activity with optimal temporal resolution, can now be obtained during fMRI data acquisition. Therefore, there is a growing interest in combining the techniques to obtain simultaneous EEG-fMRI recordings. The EEG-fMRI approach has several promising clinical applications. The first is the detection of cortical areas involved in interictal and ictal epileptic activity. Second, combining evoked potentials with fMRI could be an accurate way to study eloquent cortical areas for the planning of neurosurgery or rehabilitation, circumventing the above-mentioned limitation of fMRI. Finally, the use of this approach to evaluate the functional connectivity of resting-state networks would extend the applications of EEG-fMRI to uncooperative or unconscious patients. PMID:26214023

  18. An iterative method for coil sensitivity estimation in multi-coil MRI systems.

    PubMed

    Ling, Qiang; Li, Zhaohui; Song, Kaikai; Li, Feng

    2014-12-01

    This paper presents an iterative coil sensitivity estimation method for multi-coil MRI systems. The proposed method works with coil images in the magnitude image domain. It determines a region of support (RoS), a region being composed of the same type of tissues, by a region growing algorithm, which makes use of both intensities and intensity gradients of pixels. By repeating this procedure, it can determine multiple regions of support, which together cover most of the concerned image area. The union of these regions of support provides a rough estimate of the sensitivity of each coil through dividing the intensities of pixels by the average intensity inside every region of support. The obtained rough coil sensitivity estimate is further approached with the product of multiple low-order polynomials, rather than a single one. The product of these polynomials provides a smooth estimate of the sensitivity of each coil. With the obtained sensitivities of coils, it can produce a better reconstructed image, which determines more correct regions of support and yields preciser estimates of the sensitivities of coils. In other words, the method can be iteratively implemented to improve the estimation performance. The proposed method was verified through both simulated data and clinical data from different body parts. The experimental results confirm the superiority of our method to some conventional methods.

  19. Skeletal muscle diffusion tensor-MRI fiber tracking: rationale, data acquisition and analysis methods, applications and future directions.

    PubMed

    Damon, Bruce M; Froeling, Martijn; Buck, Amanda K W; Oudeman, Jos; Ding, Zhaohua; Nederveen, Aart J; Bush, Emily C; Strijkers, Gustav J

    2017-03-01

    The mechanical functions of muscles involve the generation of force and the actuation of movement by shortening or lengthening under load. These functions are influenced, in part, by the internal arrangement of muscle fibers with respect to the muscle's mechanical line of action. This property is known as muscle architecture. In this review, we describe the use of diffusion tensor (DT)-MRI muscle fiber tracking for the study of muscle architecture. In the first section, the importance of skeletal muscle architecture to function is discussed. In addition, traditional and complementary methods for the assessment of muscle architecture (brightness-mode ultrasound imaging and cadaver analysis) are presented. Next, DT-MRI is introduced and the structural basis for the reduced and anisotropic diffusion of water in muscle is discussed. The third section discusses issues related to the acquisition of skeletal muscle DT-MRI data and presents recommendations for optimal strategies. The fourth section discusses methods for the pre-processing of DT-MRI data, the available approaches for the calculation of the diffusion tensor and the seeding and propagating of fiber tracts, and the analysis of the tracking results to measure structural properties pertinent to muscle biomechanics. Lastly, examples are presented of how DT-MRI fiber tracking has been used to provide new insights into how muscles function, and important future research directions are highlighted. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Method of Quantifying Three Dimensional Strain Distribution in Skeletal Muscle Using Cine Phase Contrast MRI

    PubMed Central

    Jensen, Elisabeth R.; Morrow, Duane A.; Felmlee, Joel P.; Murthy, Naveen S.; Kaufman, Kenton R.

    2016-01-01

    Intramuscular pressure (IMP), a correlate of muscle tension, may fill an important clinical testing void. A barrier to implementing this measure clinically is its non-uniform distribution, which is not fully understood. Pressure is generated by changes in fluid mass and volume, therefore 3D volumetric strain distribution may affect IMP distribution. The purpose of this study was to develop a method for quantifying 3D volumetric strain distribution in the human tibialis anterior (TA) during passive tension using cine Phase Contrast (CPC) MRI and to assess its accuracy and precision. Five healthy subjects each participated in three data collections. A custom MRI-compatible apparatus repeatedly rotated the subjects’ ankle between 0 and 26 degrees plantarflexion while CPC MRI data were collected. Additionally, T2-weighted images of the lower leg were collected both before and after the CPC data collection with the ankle stationary at both 0 and 26 degrees plantarflexion for TA muscle segmentation. A 3D hexahedral mesh was generated based on the TA surface before CPC data collection with the ankle at 0 degrees plantarflexion and the node trajectories were tracked using the CPC data. The volumetric strain of each element was quantified. Three tests were employed to assess the measure accuracy and precision. First, to quantify leg position drift, the TA segmentations were compared before and after CPC data collection. This error was 1.5±0.7 mm. Second, to assess the surface node trajectory accuracy, the deformed mesh surface was compared to the TA segmented at 26 degrees of ankle plantarflexion. This error was 0.6±0.2 mm. Third, the standard deviation of volumetric strain across the three data collections was calculated for each element and subject. The median between-day variability across subjects and mesh elements was 0.06 mm3/mm3 (95% confidence interval 0.01 to 0.18 mm3/mm3). Overall the results demonstrated excellent accuracy and precision. PMID:26595686

  1. Itch induced by a novel method leads to limbic deactivations a functional MRI study.

    PubMed

    Herde, Lina; Forster, Clemens; Strupf, Marion; Handwerker, Hermann O

    2007-10-01

    Functional brain imaging studies on itch usually use histamine as a stimulus and, in consequence, have to cope with the highly variable time course of this particular itch sensation. In this study, we describe a novel method of histamine application. To provoke itch, a mixture of histamine and codeine was applied through intradermally positioned microdialysis fiber. The itch was terminated by lidocaine application through the same fiber. During one fMRI session, this procedure was repeated four times in four different microdialysis fibers, including one placebo control. Itch ratings of the subjects were correlated with blood-oxygen-level-dependent (BOLD) effects. In a subsequent experiment performed in the same fMRI session, heat pain was provoked in the right forearm with a Peltier thermode. During both experiments, activation clusters were found in brain areas that have been described previously to be frequently activated in response to painful stimuli. This includes prefrontal areas, supplementary motor areas (SMA), premotor cortex, anterior insula, anterior midcingulate cortex, S1, S2, thalamus, basal ganglia, and cerebellum. In general, itch stimulation entailed more activation clusters, in particular on the contralateral brain side. Only on itch, but not on heat pain, negative BOLD signals were found in the subgenual anterior cingulate cortex and the amygdala. The latter results may be associated with the itch induced urge to scratch. Amygdala deactivation may be related to the preparation of scratching by aiming to dissolve the otherwise aversive effects of the noxious scratch stimuli. These negative BOLD effects may also be attributed to the stressful character of itch stimulation.

  2. A comparison study between the saturation-recovery-T1 and CASL MRI methods for quantitative CBF imaging.

    PubMed

    Wang, Xiao; Zhu, Xiao-Hong; Zhang, Yi; Divani, Afshin A; Murphy, Amanda J; Chen, Wei

    2017-04-01

    The saturation-recovery (SR)-T1 MRI method for quantitatively imaging cerebral blood flow (CBF) change (ΔCBF) concurrently with the blood oxygenation level dependence (BOLD) alteration has been recently developed and validated by simultaneous measurement of relative CBF change using laser Doppler flowmetry (LDF) in rats at 9.4T. In this study, ΔCBF induced by mildly transient hypercapnia and measured by the SR-T1 MRI method was rigorously compared with an established perfusion MRI method-continuous arterial spin labeling (CASL) approach in normal and preclinical middle cerebral artery occlusion (MCAo) rat models. The results show an excellent agreement between ΔCBF values measured with these two imaging methods. Moreover, the intrinsic longitudinal relaxation rate (R1(int)) was experimentally determined in vivo in normal rat brains at 9.4T by comparing two independent measures of the apparent longitudinal relaxation rate (R1(app)) and CBF measured by the CSAL approach across a wide range of perfusion. In turn, the R1(int) constant can be employed to calculate the CBF value based on the R1(app) measurement in healthy brain. This comparison study validates the fundamental relationship for linking brain tissue water R1(app) and cerebral perfusion, demonstrates the feasibility of imaging and quantifying both CBF and its change using the SR-T1 MRI method in vivo.

  3. Magnetic wall decoupling method for monopole coil array in ultrahigh field MRI: a feasibility test

    PubMed Central

    Yan, Xinqiang; Zhang, Xiaoliang; Wei, Long

    2014-01-01

    Ultrahigh field (UHF) MR imaging of deeply located target in high dielectric biological samples faces challenges due to the reduced penetration depth at the corresponding high frequencies. Radiative coils, e.g., dipole and monopole coils, have recently been applied for UHF MRI applications to obtain better signal-noise-ratio (SNR) in the area deep inside the human head and body. However, due to the unique structure of radiative coil elements, electromagnetic (EM) coupling between elements in radiative coil arrays cannot be readily addressed by using traditional decoupling methods such as element overlapping and L/C decoupling network. A new decoupling method based on induced current elimination (ICE) or magnetic wall technique has recently been proposed and has demonstrated feasibility in designing microstrip transmission line (MTL) arrays and L/C loop arrays. In this study, an array of two monopole elements decoupled using magnetic wall decoupling technique was designed, constructed and analyzed numerically and experimentally to investigate the feasibility of the decoupling technique in radiative coil array designs for MR imaging at 7 T. An L-shaped capacitive network was employed as the matching circuit and the reflection coefficients (S11) of the monopole element achieved –30 dB or better. Isolation between the two monopole elements was improved from about –10 dB (without decoupling treatment) to better than –30 dB with the ICE/magnetic wall decoupling method. B1 maps and MR images of the phantom were acquired and SNR maps were measured and calculated to evaluate the performance of the ICE/magnetic wall decoupling method. Compared with the monopole elements without decoupling methods, the ICE-decoupled array demonstrated more independent image profiles from each element and had a higher SNR in the peripheral area of the imaging subject. The experimental and simulation results indicate that the ICE/magnetic wall decoupling technique might be a promising

  4. Use of Brain MRI Atlases to Determine Boundaries of Age-Related Pathology: The Importance of Statistical Method

    PubMed Central

    Dickie, David Alexander; Job, Dominic E.; Gonzalez, David Rodriguez; Shenkin, Susan D.; Wardlaw, Joanna M.

    2015-01-01

    Introduction Neurodegenerative disease diagnoses may be supported by the comparison of an individual patient’s brain magnetic resonance image (MRI) with a voxel-based atlas of normal brain MRI. Most current brain MRI atlases are of young to middle-aged adults and parametric, e.g., mean ±standard deviation (SD); these atlases require data to be Gaussian. Brain MRI data, e.g., grey matter (GM) proportion images, from normal older subjects are apparently not Gaussian. We created a nonparametric and a parametric atlas of the normal limits of GM proportions in older subjects and compared their classifications of GM proportions in Alzheimer’s disease (AD) patients. Methods Using publicly available brain MRI from 138 normal subjects and 138 subjects diagnosed with AD (all 55–90 years), we created: a mean ±SD atlas to estimate parametrically the percentile ranks and limits of normal ageing GM; and, separately, a nonparametric, rank order-based GM atlas from the same normal ageing subjects. GM images from AD patients were then classified with respect to each atlas to determine the effect statistical distributions had on classifications of proportions of GM in AD patients. Results The parametric atlas often defined the lower normal limit of the proportion of GM to be negative (which does not make sense physiologically as the lowest possible proportion is zero). Because of this, for approximately half of the AD subjects, 25–45% of voxels were classified as normal when compared to the parametric atlas; but were classified as abnormal when compared to the nonparametric atlas. These voxels were mainly concentrated in the frontal and occipital lobes. Discussion To our knowledge, we have presented the first nonparametric brain MRI atlas. In conditions where there is increasing variability in brain structure, such as in old age, nonparametric brain MRI atlases may represent the limits of normal brain structure more accurately than parametric approaches. Therefore, we

  5. Input permutation method to detect active voxels in fMRI study☆

    PubMed Central

    Lee, Sang H.; Lim, Johan; Park, DoHwan; Biswal, Bharat B.; Petkova, Eva

    2013-01-01

    Correctly identifying voxels or regions of interest (ROI) that actively respond to a given stimulus is often an important objective/step in many functional magnetic resonance imaging (fMRI) studies. In this article, we study a nonparametric method to detect active voxels, which makes minimal assumption about the distribution of blood oxygen level-dependent (BOLD) signals. Our proposal has several interesting features. It uses time lagged correlation to take into account the delay in response to the stimulus, due to hemodynamic variations. We introduce an input permutation method (IPM), a type of block permutation method, to approximate the null distribution of the test statistic. Also, we propose to pool the permutation-derived statistics of preselected voxels for a better approximation to the null distribution. Finally, we control multiple testing error rate using the local false discovery rate (FDR) by Efron [Correlation and large-scale simultaneous hypothesis testing. J Am Stat Assoc 102 (2007) 93–103] and Park et al. [Estimation of empirical null using a mixture of normals and its use in local false discovery rate. Comput Stat Data Anal 55 (2011) 2421–2432] to select the active voxels. PMID:22819177

  6. Fast Electromagnetic Analysis of MRI Transmit RF Coils Based on Accelerated Integral Equation Methods.

    PubMed

    Villena, Jorge Fernandez; Polimeridis, Athanasios G; Eryaman, Yigitcan; Adalsteinsson, Elfar; Wald, Lawrence L; White, Jacob K; Daniel, Luca

    2016-11-01

    A fast frequency domain full-wave electromagnetic simulation method is introduced for the analysis of MRI coils loaded with the realistic human body models. The approach is based on integral equation methods decomposed into two domains: 1) the RF coil array and shield, and 2) the human body region where the load is placed. The analysis of multiple coil designs is accelerated by introducing the precomputed magnetic resonance Green functions (MRGFs), which describe how the particular body model used responds to the incident fields from external sources. These MRGFs, which are precomputed once for a given body model, can be combined with any integral equation solver and reused for the analysis of many coil designs. This approach provides a fast, yet comprehensive, analysis of coil designs, including the port S-parameters and the electromagnetic field distribution within the inhomogeneous body. The method solves the full-wave electromagnetic problem for a head array in few minutes, achieving a speed up of over 150 folds with root mean square errors in the electromagnetic field maps smaller than 0.4% when compared to the unaccelerated integral equation-based solver. This enables the characterization of a large number of RF coil designs in a reasonable time, which is a first step toward an automatic optimization of multiple parameters in the design of transmit arrays, as illustrated in this paper, but also receive arrays.

  7. A method to determine the necessity for global signal regression in resting-state fMRI studies.

    PubMed

    Chen, Gang; Chen, Guangyu; Xie, Chunming; Ward, B Douglas; Li, Wenjun; Antuono, Piero; Li, Shi-Jiang

    2012-12-01

    In resting-state functional MRI studies, the global signal (operationally defined as the global average of resting-state functional MRI time courses) is often considered a nuisance effect and commonly removed in preprocessing. This global signal regression method can introduce artifacts, such as false anticorrelated resting-state networks in functional connectivity analyses. Therefore, the efficacy of this technique as a correction tool remains questionable. In this article, we establish that the accuracy of the estimated global signal is determined by the level of global noise (i.e., non-neural noise that has a global effect on the resting-state functional MRI signal). When the global noise level is low, the global signal resembles the resting-state functional MRI time courses of the largest cluster, but not those of the global noise. Using real data, we demonstrate that the global signal is strongly correlated with the default mode network components and has biological significance. These results call into question whether or not global signal regression should be applied. We introduce a method to quantify global noise levels. We show that a criteria for global signal regression can be found based on the method. By using the criteria, one can determine whether to include or exclude the global signal regression in minimizing errors in functional connectivity measures.

  8. Effect of the nanoparticle synthesis method on dendronized iron oxides as MRI contrast agents.

    PubMed

    Basly, Brice; Popa, Gabriela; Fleutot, Solenne; Pichon, Benoit P; Garofalo, Antonio; Ghobril, Cynthia; Billotey, Claire; Berniard, Aurélie; Bonazza, Pauline; Martinez, Hervé; Felder-Flesch, Delphine; Begin-Colin, Sylvie

    2013-02-14

    Aqueous suspensions of dendronized iron oxide nanoparticles (NPs) have been obtained after functionalization, with two types of dendrons, of NPs synthesized either by coprecipitation (leading to naked NPs in water) or by thermal decomposition (NPs in situ coated by oleic acid in an organic solvent). Different grafting strategies have been optimized depending on the NPs synthetic method. The size distribution, the colloidal stability in isoosmolar media, the surface complex nature as well as the preliminary biokinetic studies performed with optical imaging, and the contrast enhancement properties evaluated through in vitro and in vivo MRI experiments, have been compared as a function of the nature of both dendrons and NPs. All functionalized NPs displayed good colloidal stability in water, however the ones bearing a peripheral carboxylic acid function gave the best results in isoosmolar media. Whereas the grafting rates were similar, the nature of the surface complex depended on the NPs synthetic method. The in vitro contrast enhancement properties were better than commercial products, with a better performance of the NPs synthesized by coprecipitation. On the other hand, the NPs synthesized by thermal decomposition were more efficient in vivo. Furthermore, they both displayed good biodistribution with renal and hepatobiliary elimination pathways and no consistent RES uptake.

  9. Evaluation of Field Map and Nonlinear Registration Methods for Correction of Susceptibility Artifacts in Diffusion MRI

    PubMed Central

    Wang, Sijia; Peterson, Daniel J.; Gatenby, J. C.; Li, Wenbin; Grabowski, Thomas J.; Madhyastha, Tara M.

    2017-01-01

    Correction of echo planar imaging (EPI)-induced distortions (called “unwarping”) improves anatomical fidelity for diffusion magnetic resonance imaging (MRI) and functional imaging investigations. Commonly used unwarping methods require the acquisition of supplementary images during the scanning session. Alternatively, distortions can be corrected by nonlinear registration to a non-EPI acquired structural image. In this study, we compared reliability using two methods of unwarping: (1) nonlinear registration to a structural image using symmetric normalization (SyN) implemented in Advanced Normalization Tools (ANTs); and (2) unwarping using an acquired field map. We performed this comparison in two different test-retest data sets acquired at differing sites (N = 39 and N = 32). In both data sets, nonlinear registration provided higher test-retest reliability of the output fractional anisotropy (FA) maps than field map-based unwarping, even when accounting for the effect of interpolation on the smoothness of the images. In general, field map-based unwarping was preferable if and only if the field maps were acquired optimally. PMID:28270762

  10. Predicting response before initiation of neoadjuvant chemotherapy in breast cancer using new methods for the analysis of dynamic contrast enhanced MRI (DCE MRI) data

    NASA Astrophysics Data System (ADS)

    DeGrandchamp, Joseph B.; Whisenant, Jennifer G.; Arlinghaus, Lori R.; Abramson, V. G.; Yankeelov, Thomas E.; Cárdenas-Rodríguez, Julio

    2016-03-01

    The pharmacokinetic parameters derived from dynamic contrast enhanced (DCE) MRI have shown promise as biomarkers for tumor response to therapy. However, standard methods of analyzing DCE MRI data (Tofts model) require high temporal resolution, high signal-to-noise ratio (SNR), and the Arterial Input Function (AIF). Such models produce reliable biomarkers of response only when a therapy has a large effect on the parameters. We recently reported a method that solves the limitations, the Linear Reference Region Model (LRRM). Similar to other reference region models, the LRRM needs no AIF. Additionally, the LRRM is more accurate and precise than standard methods at low SNR and slow temporal resolution, suggesting LRRM-derived biomarkers could be better predictors. Here, the LRRM, Non-linear Reference Region Model (NRRM), Linear Tofts model (LTM), and Non-linear Tofts Model (NLTM) were used to estimate the RKtrans between muscle and tumor (or the Ktrans for Tofts) and the tumor kep,TOI for 39 breast cancer patients who received neoadjuvant chemotherapy (NAC). These parameters and the receptor statuses of each patient were used to construct cross-validated predictive models to classify patients as complete pathological responders (pCR) or non-complete pathological responders (non-pCR) to NAC. Model performance was evaluated using area under the ROC curve (AUC). The AUC for receptor status alone was 0.62, while the best performance using predictors from the LRRM, NRRM, LTM, and NLTM were AUCs of 0.79, 0.55, 0.60, and 0.59 respectively. This suggests that the LRRM can be used to predict response to NAC in breast cancer.

  11. Imaging transplanted stem cells in real time using an MRI dual-contrast method

    PubMed Central

    Ngen, Ethel J.; Wang, Lee; Kato, Yoshinori; Krishnamachary, Balaji; Zhu, Wenlian; Gandhi, Nishant; Smith, Barbara; Armour, Michael; Wong, John; Gabrielson, Kathleen; Artemov, Dmitri

    2015-01-01

    Stem cell therapies are currently being investigated for the repair of brain injuries. Although exogenous stem cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) prior to transplantation provides a means to noninvasively monitor stem cell transplantation by magnetic resonance imaging (MRI), monitoring cell death is still a challenge. Here, we investigate the feasibility of using an MRI dual-contrast technique to detect cell delivery, cell migration and cell death after stem cell transplantation. Human mesenchymal stem cells were dual labelled with SPIONs and gadolinium-based chelates (GdDTPA). The viability, proliferation rate, and differentiation potential of the labelled cells were then evaluated. The feasibility of this MRI technique to distinguish between live and dead cells was next evaluated using MRI phantoms, and in vivo using both immune-competent and immune-deficient mice, following the induction of brain injury in the mice. All results were validated with bioluminescence imaging. In live cells, a negative (T2/T2*) MRI contrast predominates, and is used to track cell delivery and cell migration. Upon cell death, a diffused positive (T1) MRI contrast is generated in the vicinity of the dead cells, and serves as an imaging marker for cell death. Ultimately, this technique could be used to manage stem cell therapies. PMID:26330231

  12. A practical clinical method to quantify language lateralization in fMRI using whole-brain analysis.

    PubMed

    Jones, Stephen E; Mahmoud, Shamseldeen Y; Phillips, Micheal D

    2011-02-14

    Surgery is often the only effective treatment for intractable epilepsy, but its benefits must be balanced by potential disruption of eloquent cortical functions. Wada test is the standard technique to lateralize language before surgery; however, it is invasive and associated with complications. fMRI provides an attractive noninvasive alternative, which has been previously shown to correlate with Wada results. However this correlation is imperfect since standard fMRI laterality indices are dependent on a particular arbitrary statistical threshold used in the data processing. We report a novel automated, threshold-independent fMRI methodology to assess language lateralization, which we hypothesize provides a robust and unbiased pre-operative assessment. This hemispheric histogram analysis method can accurately interrogate language lateralization, as validated against the Wada test. Fifty-nine subjects with intractable epilepsy received preoperative evaluation for language lateralization using fMRI. fMRI data then were analyzed using a novel automated threshold-independent method for determining language lateralization. The methodology generated a lateralization score based on hemispheric activation of language areas and a quality index based on multiple factors, including patient motion and signal-to-noise characteristics. Lateralization scores were compared to Wada test results (51 patients), direct cortical stimulation (3 patients), and subdural grid stimulation (5 patients). Data sets were used to generate a probability score for language lateralization for each subject. The lateralization scores correlated well with the objective measures of language lateralization (r(2)=0.46). Cumulative historical data were utilized to prospectively determine probabilities of language lateralization for individual patients. In conclusion, hemispheric language lateralization can be accurately determined using a novel objective and automated methodology that calculates language

  13. An improved hybrid MoM/FDTD technique for MRI RF coils modeling using Huygen's equivalent surface method.

    PubMed

    Li, Bing Keong; Liu, Feng; Weber, Ewald; Padhi, Shantanu; Crozier, Stuart

    2007-01-01

    In this work, an improved hybrid MoM/FDTD algorithm for modeling low to ultra high field MRI RF coil/sample interactions has been proposed. In our previous hybrid MoM/FDTD method, the accuracy of modeling MRI RF coils is generally hindered by two major issues, staircasing errors and rough approximation of the coil current distortions by electromagnetic reflections from sample. In view of this, a Huygen's equivalent surface method has been proposed to effectively bridge MoM and FDTD. In the improved hybrid MoM/FDTD algorithm, staircasing errors are eliminated, and most importantly the complex coil/tissue interactions are explicitly accounted for. The accuracy of the improved hybrid MoM/FDTD method is numerically verified with a well established hybrid Green function/MoM solution and also experimentally underpinned with MR images obtained using a prototype rotary phased array head coil.

  14. Graph cut-based method for segmenting the left ventricle from MRI or echocardiographic images.

    PubMed

    Bernier, Michael; Jodoin, Pierre-Marc; Humbert, Olivier; Lalande, Alain

    2017-04-02

    In this paper, we present a fast and interactive graph cut method for 3D segmentation of the endocardial wall of the left ventricle (LV) adapted to work on two of the most widely used modalities: magnetic resonance imaging (MRI) and echocardiography. Our method accounts for the fundamentally different nature of both modalities: 3D echocardiographic images have a low contrast, a poor signal-to-noise ratio and frequent signal drop, while MR images are more detailed but also cluttered and contain highly anisotropic voxels. The main characteristic of our method is to work in a 3D Bezier coordinate system instead of the original Euclidean space. This comes with several advantages, including an implicit shape prior and a result guarantied not to have any holes in it. The proposed method is made of 4 steps. First, a 3D sampling of the LV cavity is made based on a Bezier coordinate system. This allows to warp the input 3D image to a Bezier space in which a plane corresponds to an anatomically plausible 3D Euclidean bullet shape. Second, a 3D graph is built and an energy term (which is based on the image gradient and a 3D probability map) is assigned to each edge of the graph, some of which being given an infinite energy to ensure the resulting 3D structure passes through key anatomical points. Third, a max-flow min-cut procedure is executed on the energy graph to delineate the endocardial surface. And fourth, the resulting surface is projected back to the Euclidean space where a post-processing convex hull algorithm is applied on every short axis slice to remove local concavities. Results obtained on two datasets reveal that our method takes between 2 and 5s to segment a 3D volume, it has better results overall than most state-of-the-art methods on the CETUS echocardiographic dataset and is statistically as good as a human operator on MR images.

  15. Physiological characterization of a robust survival rodent fMRI method.

    PubMed

    Brynildsen, Julia K; Hsu, Li-Ming; Ross, Thomas J; Stein, Elliot A; Yang, Yihong; Lu, Hanbing

    2017-01-01

    Anesthetics are commonly used in preclinical functional MRI studies. It is well-appreciated that proper choice of anesthetics is of critical importance for maintaining a physiologically normal range of autonomic functioning. A recent study, using a low dose of dexmedetomidine (active isomer of medetomidine) in combination with a low dose of isoflurane, suggested stable measurements across repeated fMRI experiments in individual animals with each session lasting up to several hours. The rat default mode network has been successfully identified using this preparation, indicating that this protocol minimally disturbs brain network functions. However, medetomidine is known to cause peripheral vasoconstriction, respiratory suppression, and bradycardia, each of which could independently confound the BOLD signal. The goal of this study was to systematically characterize physiological conditions for fMRI experiments under this anesthetic regimen. To this end, we acquired somatosensory stimulation "task-evoked" and resting-state fMRI to evaluate the integrity of neurovascular coupling and brain network function during three time windows (0-30min, 30-90min, and 90-150min) following dexmedetomidine initiation. Results demonstrate that both evoked BOLD response and resting-state fMRI signal remained stable during the 90-150min time window, while autonomic physiological parameters maintained near-normal conditions during this period. Our data suggest that using a spontaneously-inhaled, low dose of isoflurane in combination with a continuous low dose of dexmedetomidine is a viable option for longitudinal imaging studies in rats.

  16. A New Method for Preparing Mesenchymal Stem Cells and Labeling with Ferumoxytol for Cell Tracking by MRI

    PubMed Central

    Liu, Li; Tseng, Lanya; Ye, Qing; Wu, Yijen L.; Bain, Daniel J.; Ho, Chien

    2016-01-01

    Mesenchymal stem cells (MSCs) are among the major stem cells used for cell therapy and regenerative medicine. In-vivo cell-tracking by magnetic resonance imaging (MRI) is crucial for regenerative medicine, allowing verification that the transplanted cells reach the targeted sites. Cellular MRI combined with superparamagnetic iron-oxide (SPIO) contrast agents is an effective cell-tracking method. Here, we are reporting a new “bio-mimicry” method by making use of the “in-vivo environment” of MSCs to prepare native MSCs, so that (i) the phagocytic activity of cultured MSCs can be recovered and expanded MSCs can be ex-vivo labeled with Ferumoxytol, which is currently the only FDA approved SPIO nanoparticles for human use. Using our new method, 7-day cultured MSCs regain the capability to take up Ferumoxytol and exhibit an intracellular iron concentration of 2.50 ± 0.50 pg/MSC, comparable to that obtained by using Ferumoxytol-heparin-protamine nanocomplex; and (ii) cells can be re-sized to more native size, reducing from 32.0 ± 7.2 μm to 19.5 ± 5.2 μm. Our method can be very useful for expanding MSCs and labeling with Ferumoxytol, without the need for transfection agents and/or electroporation, allowing cell-tracking by MRI in both pre-clinical and clinical studies. PMID:27188664

  17. A New Method for Preparing Mesenchymal Stem Cells and Labeling with Ferumoxytol for Cell Tracking by MRI.

    PubMed

    Liu, Li; Tseng, Lanya; Ye, Qing; Wu, Yijen L; Bain, Daniel J; Ho, Chien

    2016-05-18

    Mesenchymal stem cells (MSCs) are among the major stem cells used for cell therapy and regenerative medicine. In-vivo cell-tracking by magnetic resonance imaging (MRI) is crucial for regenerative medicine, allowing verification that the transplanted cells reach the targeted sites. Cellular MRI combined with superparamagnetic iron-oxide (SPIO) contrast agents is an effective cell-tracking method. Here, we are reporting a new "bio-mimicry" method by making use of the "in-vivo environment" of MSCs to prepare native MSCs, so that (i) the phagocytic activity of cultured MSCs can be recovered and expanded MSCs can be ex-vivo labeled with Ferumoxytol, which is currently the only FDA approved SPIO nanoparticles for human use. Using our new method, 7-day cultured MSCs regain the capability to take up Ferumoxytol and exhibit an intracellular iron concentration of 2.50 ± 0.50 pg/MSC, comparable to that obtained by using Ferumoxytol-heparin-protamine nanocomplex; and (ii) cells can be re-sized to more native size, reducing from 32.0 ± 7.2 μm to 19.5 ± 5.2 μm. Our method can be very useful for expanding MSCs and labeling with Ferumoxytol, without the need for transfection agents and/or electroporation, allowing cell-tracking by MRI in both pre-clinical and clinical studies.

  18. In vitro determination of biomechanical properties of human articular cartilage in osteoarthritis using multi-parametric MRI

    NASA Astrophysics Data System (ADS)

    Juras, Vladimir; Bittsansky, Michal; Majdisova, Zuzana; Szomolanyi, Pavol; Sulzbacher, Irene; Gäbler, Stefan; Stampfl, Jürgen; Schüller, Georg; Trattnig, Siegfried

    2009-03-01

    The objective of this study was to evaluate the correlations between MR parameters and the biomechanical properties of naturally degenerated human articular cartilage. Human cartilage explants from the femoral condyles of patients who underwent total knee replacement were evaluated on a micro-imaging system at 3 T. To quantify glycosaminoglycan (GAG) content, delayed gadolinium-enhanced MRI of the cartilage (dGEMRIC) was used. T2 maps were created by using multi-echo, multi-slice spin echo sequences with six echoes: 15, 30, 45, 60, 75, and 90 ms. Data for apparent diffusion constant (ADC) maps were obtained from pulsed gradient spin echo (PGSE) sequences with five b-values: 10.472, 220.0, 627.0, 452.8, 724.5, and 957.7. MR parameters were correlated with mechanical parameters (instantaneous ( I) and equilibrium ( Eq) modulus and relaxation time ( τ)), and the OA stage of each cartilage specimen was determined by histological evaluation of hematoxylin-eosin stained slices. For some parameters, a high correlation was found: the correlation of T1Gd vs Eq ( r = 0.8095), T1Gd vs I/ Eq ( r = -0.8441) and T1Gd vs τ ( r = 0.8469). The correlation of T2 and ADC with selected biomechanical parameters was not statistically significant. In conclusion, GAG content measured by dGEMRIC is highly related to the selected biomechanical properties of naturally degenerated articular cartilage. In contrast, T2 and ADC were unable to estimate these properties. The results of the study imply that some MR parameters can non-invasively predict the biomechanical properties of degenerated articular cartilage.

  19. Activated region fitting: a robust high-power method for fMRI analysis using parameterized regions of activation.

    PubMed

    Weeda, Wouter D; Waldorp, Lourens J; Christoffels, Ingrid; Huizenga, Hilde M

    2009-08-01

    An important issue in the analysis of fMRI is how to account for the spatial smoothness of activated regions. In this article a method is proposed to accomplish this by modeling activated regions with Gaussian shapes. Hypothesis tests on the location, spatial extent, and amplitude of these regions are performed instead of hypothesis tests of individual voxels. This increases power and eases interpretation. Simulation studies show robust hypothesis tests under misspecification of the shape model, and increased power over standard techniques especially at low signal-to-noise ratios. An application to real single-subject data also indicates that the method has increased power over standard methods.

  20. Battlefield MRI

    DOE PAGES

    Espy, Michelle

    2015-06-01

    Magnetic Resonance Imaging is the best method for non-invasive imaging of soft tissue anatomy, saving countless lives each year. It is regarded as the gold standard for diagnosis of mild to moderate traumatic brain injuries. Furthermore, conventional MRI relies on very high, fixed strength magnetic fields (> 1.5 T) with parts-per-million homogeneity, which requires very large and expensive magnets.

  1. MRI and low back pain

    MedlinePlus

    Backache - MRI; Low back pain - MRI; Lumbar pain - MRI; Back strain - MRI; Lumbar radiculopathy - MRI; Herniated intervertebral disk - MRI; Prolapsed intervertebral disk - MRI; Slipped disk - MRI; Ruptured ...

  2. Sodium MRI.

    PubMed

    Ouwerkerk, Ronald

    2011-01-01

    Sodium ((23)Na) imaging has a place somewhere between (1)H-MRI and MR spectroscopy (MRS). Like MRS it potentially provides information on metabolic processes, but only one single resonance of ionic (23)Na is observed. Therefore pulse sequences do not need to code for a chemical shift dimension, allowing (23)Na images to be obtained at high resolutions as compared to MRS. In this chapter the biological significance of sodium in the brain will be discussed, as well as methods for observing it with (23)Na-MRI. Many vital cellular processes and interactions in excitable tissues depend on the maintenance of a low intracellular and high extracellular sodium concentration. Healthy cells maintain this concentration gradient at the cost of energy. Leaky cell membranes or an impaired energy metabolism immediately leads to an increase in cytosolic total tissue sodium. This makes sodium a biomarker for ischemia, cancer, excessive tissue activation, or tissue damage as might be caused by ablation therapy. Special techniques allow quantification of tissue sodium for the monitoring of disease or therapy in longitudinal studies or preferential observation of the intracellular component of the tissue sodium. New methods and high-field magnet technology provide new opportunities for (23)Na-MRI in clinical and biomedical research.

  3. An aqueous method for the controlled manganese (Mn(2+)) substitution in superparamagnetic iron oxide nanoparticles for contrast enhancement in MRI.

    PubMed

    Ereath Beeran, Ansar; Nazeer, Shaiju S; Fernandez, Francis Boniface; Muvvala, Krishna Surendra; Wunderlich, Wilfried; Anil, Sukumaran; Vellappally, Sajith; Ramachandra Rao, M S; John, Annie; Jayasree, Ramapurath S; Varma, P R Harikrishna

    2015-02-14

    Despite the success in the use of superparamagnetic iron oxide nanoparticles (SPION) for various scientific applications, its potential in biomedical fields has not been exploited to its full potential. In this context, an in situ substitution of Mn(2+) was performed in SPION and a series of ferrite particles, MnxFe1-xFe2O4 with a varying molar ratio of Mn(2+) : Fe(2+) where 'x' varies from 0-0.75. The ferrite particles obtained were further studied in MRI contrast applications and showed appreciable enhancement in their MRI contrast properties. Manganese substituted ferrite nanocrystals (MnIOs) were synthesized using a novel, one-step aqueous co-precipitation method based on the use of a combination of sodium hydroxide and trisodium citrate (TSC). This approach yielded the formation of highly crystalline, superparamagnetic MnIOs with good control over their size and bivalent Mn ion crystal substitution. The presence of a TSC hydrophilic layer on the surface facilitated easy dispersion of the materials in an aqueous media. Primary characterizations such as structural, chemical and magnetic properties demonstrated the successful formation of manganese substituted ferrite. More significantly, the MRI relaxivity of the MnIOs improved fourfold when compared to SPION crystals imparting high potential for use as an MRI contrast agent. Further, the cytocompatibility and blood compatibility evaluations demonstrated excellent cell morphological integrity even at high concentrations of nanoparticles supporting the non-toxic nature of nanoparticles. These results open new horizons for the design of biocompatible water dispersible ferrite nanoparticles with good relaxivity properties via a versatile and easily scalable co-precipitation route.

  4. A Non-Local Fuzzy Segmentation Method: Application to Brain MRI

    NASA Astrophysics Data System (ADS)

    Caldairou, Benoît; Rousseau, François; Passat, Nicolas; Habas, Piotr; Studholme, Colin; Heinrich, Christian

    The Fuzzy C-Means algorithm is a widely used and flexible approach for brain tissue segmentation from 3D MRI. Despite its recent enrichment by addition of a spatial dependency to its formulation, it remains quite sensitive to noise. In order to improve its reliability in noisy contexts, we propose a way to select the most suitable example regions for regularisation. This approach inspired by the Non-Local Mean strategy used in image restoration is based on the computation of weights modelling the grey-level similarity between the neighbourhoods being compared. Experiments were performed on MRI data and results illustrate the usefulness of the approach in the context of brain tissue classification.

  5. Methods of MRI-Based Structural Imaging in the Aging Monkey

    PubMed Central

    Makris, N.; Kennedy, D. N.; Boriel, D.L.; Rosene, D. L.

    2013-01-01

    Rhesus monkeys, whose typical lifespan can be as long as 30 years in the presence of veterinary care, undergo a cognitive decline as a function of age. While cortical neurons are largely preserved in the cerebral cortex, including primary motor and visual cortex as well as prefrontal association cortex there is marked breakdown of axonal myelin and an overall reduction in white matter predominantly in the frontal and temporal lobes. Whether the myelin breakdown is diffuse or specific to individual white matter fiber pathways is important to be known with certainty. To this end the delineation and quantification of specific frontotemporal fiber pathways within the frontal and temporal lobes is essential to determine which structures are altered and the extent to which these alterations correlate with behavioral findings. The capability of studying the living brain non-invasively with MRI opens up a new window in structural-functional and anatomic-clinical relationships allowing the integration of information derived from different scanning modalities in the same subject. For instance, for any particular voxel in the cerebrum we can obtain structural T1-, diffusion- and magnetization transfer-magnetic resonance imaging (MRI) based information. Moreover, it is thus possible to follow any observed changes longitudinally over time. These acquisitions of multidimensional data in the same individual within the same MRI experimental setting would enable the creation of a data base of integrated structural MRI-behavioral correlations for normal aging monkeys to elucidate the underlying neurobiological mechanisms of functional senescence in the aging non-human primate. PMID:19577648

  6. Spatially constrained incoherent motion method improves diffusion-weighted MRI signal decay analysis in the liver and spleen

    PubMed Central

    Taimouri, Vahid; Afacan, Onur; Perez-Rossello, Jeannette M.; Callahan, Michael J.; Mulkern, Robert V.; Warfield, Simon K.; Freiman, Moti

    2015-01-01

    Purpose: To evaluate the effect of the spatially constrained incoherent motion (SCIM) method on improving the precision and robustness of fast and slow diffusion parameter estimates from diffusion-weighted MRI in liver and spleen in comparison to the independent voxel-wise intravoxel incoherent motion (IVIM) model. Methods: We collected diffusion-weighted MRI (DW-MRI) data of 29 subjects (5 healthy subjects and 24 patients with Crohn’s disease in the ileum). We evaluated parameters estimates’ robustness against different combinations of b-values (i.e., 4 b-values and 7 b-values) by comparing the variance of the estimates obtained with the SCIM and the independent voxel-wise IVIM model. We also evaluated the improvement in the precision of parameter estimates by comparing the coefficient of variation (CV) of the SCIM parameter estimates to that of the IVIM. Results: The SCIM method was more robust compared to IVIM (up to 70% in liver and spleen) for different combinations of b-values. Also, the CV values of the parameter estimations using the SCIM method were significantly lower compared to repeated acquisition and signal averaging estimated using IVIM, especially for the fast diffusion parameter in liver (CVIV IM = 46.61 ± 11.22, CVSCIM = 16.85 ± 2.160, p < 0.001) and spleen (CVIV IM = 95.15 ± 19.82, CVSCIM = 52.55 ± 1.91, p < 0.001). Conclusions: The SCIM method characterizes fast and slow diffusion more precisely compared to the independent voxel-wise IVIM model fitting in the liver and spleen. PMID:25832079

  7. Comparison of BCG artifact removal methods for evoked responses in simultaneous EEG-fMRI.

    PubMed

    Shams, Nasim; Alain, Claude; Strother, Stephen

    2015-04-30

    Simultaneous recording of electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) has gained attention due to the complimentary properties of the two imaging modalities. Their combined recording enables the study of brain function while taking advantage of the high temporal resolution of EEG and high spatial resolution of fMRI. However EEG data recorded inside the MR scanner is significantly contaminated by two main sources of artifacts: MR gradient artifacts and ballistocardiogram (BCG) artifacts. Most existing removal approaches for these artifacts fall into two main categories: average artifact subtraction (AAS) and optimal basis selection (OBS). While these techniques can improve the data quality significantly, highly effective removal of artifacts - particularly the BCG artifact - from the data is still lacking. Here, we compared two of the most commonly used algorithms for BCG artifact removal (OBS and AAS) based on the estimated signal-to-noise ratio (SNR) of auditory and visual evoked responses recorded during fMRI acquisition. We also further compared optimization of OBS for groups, and at the individual subject and run level. The results suggest that performance of the OBS algorithm can be significantly improved by choosing the optimum number of principal components. Furthermore, optimizing the number of principal components at the individual participant and run level results in significant improvements in the SNR of evoked responses compared to group optimization.

  8. A comprehensive testing protocol for MRI neuroanatomical segmentation techniques: Evaluation of a novel lateral ventricle segmentation method.

    PubMed

    Kempton, Matthew J; Underwood, Tracy S A; Brunton, Simon; Stylios, Floris; Schmechtig, Anne; Ettinger, Ulrich; Smith, Marcus S; Lovestone, Simon; Crum, William R; Frangou, Sophia; Williams, Steven C R; Simmons, Andrew

    2011-10-15

    Although a wide range of approaches have been developed to automatically assess the volume of brain regions from MRI, the reproducibility of these algorithms across different scanners and pulse sequences, their accuracy in different clinical populations and sensitivity to real changes in brain volume have not always been comprehensively examined. Firstly we present a comprehensive testing protocol which comprises 312 freely available MR images to assess the accuracy, reproducibility and sensitivity of automated brain segmentation techniques. Accuracy is assessed in infants, young adults and patients with Alzheimer's disease in comparison to gold standard measures by expert observers using a manual technique based on Cavalieri's principle. The protocol determines the reliability of segmentation between scanning sessions, different MRI pulse sequences and 1.5T and 3T field strengths and examines their sensitivity to small changes in volume using a large longitudinal dataset. Secondly we apply this testing protocol to a novel algorithm for segmenting the lateral ventricles and compare its performance to the widely used FSL FIRST and FreeSurfer methods. The testing protocol produced quantitative measures of accuracy, reliability and sensitivity of lateral ventricle volume estimates for each segmentation method. The novel algorithm showed high accuracy in all populations (intraclass correlation coefficient, ICC>0.95), good reproducibility between MRI pulse sequences (ICC>0.99) and was sensitive to age related changes in longitudinal data. FreeSurfer demonstrated high accuracy (ICC>0.95), good reproducibility (ICC>0.99) and sensitivity whilst FSL FIRST showed good accuracy in young adults and infants (ICC>0.90) and good reproducibility (ICC=0.98), but was unable to segment ventricular volume in patients with Alzheimer's disease or healthy subjects with large ventricles. Using the same computer system, the novel algorithm and FSL FIRST processed a single MRI image in less

  9. A Method for Handling Intensity Inhomogenieties in fMRI Sequences of Moving Anatomy of the Early Developing Brain

    PubMed Central

    Seshamani, Sharmishtaa; Cheng, Xi; Fogtmann, Mads; Thomason, Moriah E.; Studholme, Colin

    2014-01-01

    This paper presents a method for intensity inhomogeniety removal in fMRI studies of a moving subject. In such studies, subtle changes in signal as the subject moves in the presence of a bias field can be a significant confound for BOLD signal analysis. The proposed method avoids the need for a specific tissue model or assumptions about tissue homogeneity by making use of the multiple views of the underlying bias field provided by the subject's motion. A parametric bias field model is assumed and a regression model is used to estimate the basis function weights of this model. Quantitative evaluation of the effects of motion and noise in motion estimates are performed using simulated data. Results demonstrate the strength and robustness of the new method compared to explicit segmentation based methods that estimate bias within individual timeframes, as well as the state of the art 4D nonparametric bias estimator (N4ITK). We also qualitatively demonstrate the impact of the method on resting state neuroimage analysis of a moving adult brain with simulated motion and bias fields, as well as on in-vivo moving fetal fMRI. PMID:24317121

  10. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI.

    PubMed

    Behzadi, Yashar; Restom, Khaled; Liau, Joy; Liu, Thomas T

    2007-08-01

    A component based method (CompCor) for the reduction of noise in both blood oxygenation level-dependent (BOLD) and perfusion-based functional magnetic resonance imaging (fMRI) data is presented. In the proposed method, significant principal components are derived from noise regions-of-interest (ROI) in which the time series data are unlikely to be modulated by neural activity. These components are then included as nuisance parameters within general linear models for BOLD and perfusion-based fMRI time series data. Two approaches for the determination of the noise ROI are considered. The first method uses high-resolution anatomical data to define a region of interest composed primarily of white matter and cerebrospinal fluid, while the second method defines a region based upon the temporal standard deviation of the time series data. With the application of CompCor, the temporal standard deviation of resting-state perfusion and BOLD data in gray matter regions was significantly reduced as compared to either no correction or the application of a previously described retrospective image based correction scheme (RETROICOR). For both functional perfusion and BOLD data, the application of CompCor significantly increased the number of activated voxels as compared to no correction. In addition, for functional BOLD data, there were significantly more activated voxels detected with CompCor as compared to RETROICOR. In comparison to RETROICOR, CompCor has the advantage of not requiring external monitoring of physiological fluctuations.

  11. Temperature mapping in bread dough using SE and GE two-point MRI methods: experimental and theoretical estimation of uncertainty.

    PubMed

    Lucas, Tiphaine; Musse, Maja; Bornert, Mélanie; Davenel, Armel; Quellec, Stéphane

    2012-04-01

    Two-dimensional (2D)-SE, 2D-GE and tri-dimensional (3D)-GE two-point T(1)-weighted MRI methods were evaluated in this study in order to maximize the accuracy of temperature mapping of bread dough during thermal processing. Uncertainties were propagated throughout each protocol of measurement, and comparisons demonstrated that all the methods with comparable acquisition times minimized the temperature uncertainty to similar extent. The experimental uncertainties obtained with low-field MRI were also compared to the theoretical estimations. Some discrepancies were reported between experimental and theoretical values of uncertainties of temperature; however, experimental and theoretical trends with varying parameters agreed to a large extent for both SE and GE methods. The 2D-SE method was chosen for further applications on prefermented dough because of its lower sensitivity to susceptibility differences in porous media. It was applied for temperature mapping in prefermented dough during chilling prior to freezing and compared locally to optical fiber measurements.

  12. A method for handling intensity inhomogenieties in fMRI sequences of moving anatomy of the early developing brain.

    PubMed

    Seshamani, Sharmishtaa; Cheng, Xi; Fogtmann, Mads; Thomason, Moriah E; Studholme, Colin

    2014-02-01

    This paper presents a method for intensity inhomogeniety removal in fMRI studies of a moving subject. In such studies, subtle changes in signal as the subject moves in the presence of a bias field can be a significant confound for BOLD signal analysis. The proposed method avoids the need for a specific tissue model or assumptions about tissue homogeneity by making use of the multiple views of the underlying bias field provided by the subject's motion. A parametric bias field model is assumed and a regression model is used to estimate the basis function weights of this model. Quantitative evaluation of the effects of motion and noise in motion estimates are performed using simulated data. Results demonstrate the strength and robustness of the new method compared to the state of the art 4D nonparametric bias estimator (N4ITK). We also qualitatively demonstrate the impact of the method on resting state neuroimage analysis of a moving adult brain with simulated motion and bias fields, as well as on in vivo moving fetal fMRI.

  13. An improved cylindrical FDTD method and its application to field-tissue interaction study in MRI.

    PubMed

    Chi, Jieru; Liu, Feng; Xia, Ling; Shao, Tingting; Mason, David G; Crozier, Stuart

    2010-01-01

    This paper presents a three dimensional finite-difference time-domain (FDTD) scheme in cylindrical coordinates with an improved algorithm for accommodating the numerical singularity associated with the polar axis. The regularization of this singularity problem is entirely based on Ampere's law. The proposed algorithm has been detailed and verified against a problem with a known solution obtained from a commercial electromagnetic simulation package. The numerical scheme is also illustrated by modeling high-frequency RF field-human body interactions in MRI. The results demonstrate the accuracy and capability of the proposed algorithm.

  14. Simple diagrammatic method to delineate male urethra in prostate cancer radiotherapy: an MRI based approach.

    PubMed

    Kataria, Tejinder; Gupta, Deepak; Goyal, Shikha; Bisht, Shyam S; Chaudhary, Ravi; Narang, Kushal; Banerjee, Susovan; Basu, Trinanjan; Abhishek, Ashu; Sambasivam, Sasikumar; Vishnu, Nisha T

    2016-12-01

    Stereotactic body radiotherapy (SBRT) is being increasingly utilized in the treatment of prostate cancer. With the advent of high-precision radiosurgery systems, it is possible to obtain dose distributions akin to high-dose rate brachytherapy with SBRT. However, urethral toxicity has a significant impact on the quality of life in patients with prostate cancer. Contouring the male urethra on a CT scan is difficult in the absence of an indwelling catheter. In this pictorial essay, we have used the MRI obtained for radiotherapy planning to aid in the delineation of the male urethra and have attempted to define guidelines for the same.

  15. A method for detecting the temporal sequence of muscle activation during cycling using MRI.

    PubMed

    Elder, Christopher P; Cook, Ryan N; Wilkens, Kenneth L; Chance, Marti A; Sanchez, Otto A; Damon, Bruce M

    2011-03-01

    Surface electromyography (EMG) can assess muscle recruitment patterns during cycling, but has limited applicability to studies of deep muscle recruitment and electrically stimulated contractions. We determined whether muscle recruitment timing could be inferred from MRI-measured transverse relaxation time constant (T(2)) changes and a cycle ergometer modified to vary power as a function of pedal angle. Six subjects performed 6 min of single-leg cycling under two conditions (E0°-230° and E90°-230°), which increased the power from 0°-230° and 90-230° of the pedal cycle, respectively. The difference condition produced a virtual power output from 0-180° (V0°-180°). Recruitment was assessed by integrating EMG over the pedal cycle (IEMG) and as the (post-pre) exercise T(2) change (ΔT(2)). For E0°-230°, the mean IEMG for vastus medialis and lateralis (VM/VL; 49.3 ± 3.9 mV·s; mean ± SE) was greater (P < 0.05) than that for E90°-230° (17.9 ± 1.9 mV·s); the corresponding ΔT(2) values were 8.7 ± 1.0 and 1.4 ± 0.5 ms (P < 0.05). For E0°-230° and E90°-230°, the IEMG values for biceps femoris/long head (BF(L)) were 37.7 ± 5.4 and 27.1 ± 5.6 mV·s (P > 0.05); the corresponding ΔT(2) values were 0.9 ± 0.9 and 1.5 ± 0.9 ms (P > 0.05). MRI data indicated activation of the semitendinosus and BF/short head for E0°-230° and E90°-230°. For V0°-180°, ΔT(2) was 7.2 ± 0.9 ms for VM/VL and -0.6 ± 0.6 ms for BF(L); IEMG was 31.5 ± 3.7 mV·s for VM/VL and 10.6 ± 7.0 mV·s for BF(L). MRI and EMG data indicate VM/VL activity from 0 to 180° and selected hamstring activity from 90 to 230°. Combining ΔT(2) measurements with variable loading allows the spatial and temporal patterns of recruitment during cycling to be inferred from MRI data.

  16. Multi-parametric MRI characterization of enzymatically degraded articular cartilage.

    PubMed

    Nissi, Mikko J; Salo, Elli-Noora; Tiitu, Virpi; Liimatainen, Timo; Michaeli, Shalom; Mangia, Silvia; Ellermann, Jutta; Nieminen, Miika T

    2016-07-01

    Several laboratory and rotating frame quantitative MRI parameters were evaluated and compared for detection of changes in articular cartilage following selective enzymatic digestion. Bovine osteochondral specimens were subjected to 44 h incubation in control medium or in collagenase or chondroitinase ABC to induce superficial collagen or proteoglycan (glycosaminoglycan) alterations. The samples were scanned at 9.4 T for T1 , T1 Gd (dGEMRIC), T2 , adiabatic T1 ρ , adiabatic T2 ρ , continuous-wave T1 ρ , TRAFF2 , and T1 sat relaxation times and for magnetization transfer ratio (MTR). For reference, glycosaminoglycan content, collagen fibril orientation and biomechanical properties were determined. Changes primarily in the superficial cartilage were noted after enzymatic degradation. Most of the studied parameters were sensitive to the destruction of collagen network, whereas glycosaminoglycan depletion was detected only by native T1 and T1 Gd relaxation time constants throughout the tissue and by MTR superficially. T1 , adiabatic T1 ρ , adiabatic T2 ρ , continuous-wave T1 ρ , and T1 sat correlated significantly with the biomechanical properties while T1 Gd correlated with glycosaminoglycan staining. The findings indicated that most of the studied MRI parameters were sensitive to both glycosaminoglycan content and collagen network integrity, with changes due to enzymatic treatment detected primarily in the superficial tissue. Strong correlation of T1 , adiabatic T1ρ , adiabatic T2 ρ , continuous-wave T1 ρ , and T1 sat with the altered biomechanical properties, reflects that these parameters were sensitive to critical functional properties of cartilage. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1111-1120, 2016.

  17. MRI-Guided Focused Ultrasound as a New Method of Drug Delivery

    PubMed Central

    Thanou, M.; Gedroyc, W.

    2013-01-01

    Ultrasound-mediated drug delivery under the guidance of an imaging modality can improve drug disposition and achieve site-specific drug delivery. The term focal drug delivery has been introduced to describe the focal targeting of drugs in tissues with the help of imaging and focused ultrasound. Focal drug delivery aims to improve the therapeutic profile of drugs by improving their specificity and their permeation in defined areas. Focused-ultrasound- (FUS-) mediated drug delivery has been applied with various molecules to improve their local distribution in tissues. FUS is applied with the aid of microbubbles to enhance the permeability of bioactive molecules across BBB and improve drug distribution in the brain. Recently, FUS has been utilised in combination with MRI-labelled liposomes that respond to temperature increase. This strategy aims to “activate” nanoparticles to release their cargo locally when triggered by hyperthermia induced by FUS. MRI-guided FUS drug delivery provides the opportunity to improve drug bioavailability locally and therefore improve the therapeutic profiles of drugs. This drug delivery strategy can be directly translated to clinic as MRg FUS is a promising clinically therapeutic approach. However, more basic research is required to understand the physiological mechanism of FUS-enhanced drug delivery. PMID:23738076

  18. Semi-automatic 10/20 Identification Method for MRI-Free Probe Placement in Transcranial Brain Mapping Techniques.

    PubMed

    Xiao, Xiang; Zhu, Hao; Liu, Wei-Jie; Yu, Xiao-Ting; Duan, Lian; Li, Zheng; Zhu, Chao-Zhe

    2017-01-01

    The International 10/20 system is an important head-surface-based positioning system for transcranial brain mapping techniques, e.g., fNIRS and TMS. As guidance for probe placement, the 10/20 system permits both proper ROI coverage and spatial consistency among multiple subjects and experiments in a MRI-free context. However, the traditional manual approach to the identification of 10/20 landmarks faces problems in reliability and time cost. In this study, we propose a semi-automatic method to address these problems. First, a novel head surface reconstruction algorithm reconstructs head geometry from a set of points uniformly and sparsely sampled on the subject's head. Second, virtual 10/20 landmarks are determined on the reconstructed head surface in computational space. Finally, a visually-guided real-time navigation system guides the experimenter to each of the identified 10/20 landmarks on the physical head of the subject. Compared with the traditional manual approach, our proposed method provides a significant improvement both in reliability and time cost and thus could contribute to improving both the effectiveness and efficiency of 10/20-guided MRI-free probe placement.

  19. Semi-automatic 10/20 Identification Method for MRI-Free Probe Placement in Transcranial Brain Mapping Techniques

    PubMed Central

    Xiao, Xiang; Zhu, Hao; Liu, Wei-Jie; Yu, Xiao-Ting; Duan, Lian; Li, Zheng; Zhu, Chao-Zhe

    2017-01-01

    The International 10/20 system is an important head-surface-based positioning system for transcranial brain mapping techniques, e.g., fNIRS and TMS. As guidance for probe placement, the 10/20 system permits both proper ROI coverage and spatial consistency among multiple subjects and experiments in a MRI-free context. However, the traditional manual approach to the identification of 10/20 landmarks faces problems in reliability and time cost. In this study, we propose a semi-automatic method to address these problems. First, a novel head surface reconstruction algorithm reconstructs head geometry from a set of points uniformly and sparsely sampled on the subject's head. Second, virtual 10/20 landmarks are determined on the reconstructed head surface in computational space. Finally, a visually-guided real-time navigation system guides the experimenter to each of the identified 10/20 landmarks on the physical head of the subject. Compared with the traditional manual approach, our proposed method provides a significant improvement both in reliability and time cost and thus could contribute to improving both the effectiveness and efficiency of 10/20-guided MRI-free probe placement. PMID:28190997

  20. Comparison of dynamic susceptibility contrast-MRI perfusion quantification methods in the presence of delay and dispersion

    NASA Astrophysics Data System (ADS)

    Maan, Bianca; Simões, Rita Lopes; Meijer, Frederick J. A.; Klaas Jan Renema, W.; Slump, Cornelis H.

    2011-03-01

    The perfusion of the brain is essential to maintain brain function. Stroke is an example of a decrease in blood flow and reduced perfusion. During ischemic stroke the blood flow to tissue is hampered due to a clot inside a vessel. To investigate the recovery of stroke patients, follow up studies are necessary. MRI is the preferred imaging modality for follow up because of the absence of radiation dose concerns, contrary to CT. Dynamic Susceptibility Contrast (DSC) MRI is an imaging technique used for measuring perfusion of the brain, however, is not standard applied in the clinical routine due to lack of immediate patient benefit. Several post processing algorithms are described in the literature to obtain cerebral blood flow (CBF). The quantification of CBF relies on the deconvolution of a tracer concentration-time curve in an arterial and a tissue voxel. There are several methods to obtain this deconvolution based on singular-value decomposition (SVD). This contribution describes a comparison between the different approaches as currently there is no best practice for (all) clinical relevant situations. We investigate the influence of tracer delay, dispersion and recirculation on the performance of the methods. In the presence of negative delays, the truncated SVD approach overestimates the CBF. Block-circulant and reformulated SVD are delay-independent. Due to its delay dependent behavior, the truncated SVD approach performs worse in the presence of dispersion as well. However all SVD approaches are dependent on the amount of dispersion. Moreover, we observe that the optimal truncation parameter varies when recirculation is added to noisy data, suggesting that, in practice, these methods are not immune to tracer recirculation. Finally, applying the methods to clinical data resulted in a large variability of the CBF estimates. Block-circulant SVD will work in all situations and is the method with the highest potential.

  1. Quantification of fibrosis in infarcted swine hearts by ex vivo late gadolinium-enhancement and diffusion-weighted MRI methods

    NASA Astrophysics Data System (ADS)

    Pop, Mihaela; Ghugre, Nilesh R.; Ramanan, Venkat; Morikawa, Lily; Stanisz, Greg; Dick, Alexander J.; Wright, Graham A.

    2013-08-01

    Many have speculated that MRI signal characteristics can be used to identify regions of heterogeneous infarct associated with an arrhythmogenic substrate; however, direct evidence of this relationship is limited. The aim of this study was to demonstrate the remodelling characteristics of fibrosis by means of histology and high-resolution MR imaging. For this purpose, we performed whole-mount histology in heart samples (n = 9) collected from five swine at six weeks post-infarction and compared the extent of fibrosis in the infarcted areas delineated in these histological images with that obtained ex vivo by MRI using late gadolinium-enhancement (LGE) and diffusion-weighted imaging (DWI) methods. All MR images were obtained at a submillimetre resolution (i.e., voxel size of 0.6×0.6×1.2 mm3). Specifically, in the histology images, we differentiated moderate fibrosis (consisting of a mixture of viable and non-viable myocytes, known as border zone, BZ) from severe fibrosis (i.e., the dense scar). Correspondingly, tissue heterogeneities in the MR images were categorized by a Gaussian mixture model into healthy, BZ and scar. Our results showed that (a) both MRI methods were capable of qualitatively distinguishing sharp edges between dense scar and healthy tissue from regions of heterogeneous BZ; (b) the BZ and dense scar areas had intermediate-to-high increased values of signal intensity in the LGE images and of apparent diffusion coefficient in the DWI, respectively. In addition, as demonstrated by the Picrosirius Red and immunohistochemistry stains, the viable bundles in the BZ were clearly separated by thin collagen strands and had reduced expression of Cx43, whereas the core scar was composed of dense fibrosis. A quantitative analysis demonstrated that the comparison between BZ/scar extent in LGE and DWI to the corresponding areas identified in histology yielded very good correlations (i.e., for the scar identified by LGE, R2 was 0.96 compared to R2 = 0.93 for the

  2. The Efficiency Limits of Spin Exchange Optical Pumping Methods of 129Xe Hyperpolarization: Implications for in vivo MRI Applications

    NASA Astrophysics Data System (ADS)

    Freeman, Matthew S.

    Since the inception of hyperpolarized 129Xe MRI, the field has yearned for more efficient production of more highly polarized 129Xe. For nearly all polarizers built to date, both peak 129Xe polarization and production rate fall far below theoretical predictions. This thesis sought to develop a fundamental understanding of why the observed performance of large-scale 129Xe hyperpolarization lagged so badly behind theoretical predictions. This is done by thoroughly characterizing a high-volume, continuous-flow polarizer using optical cells having three different internal volumes, and employing two different laser sources. For each of these 6 combinations, 129Xe polarization was carefully measured as a function of production rate across a range of laser absorption levels. The resultant peak polarizations were consistently a factor of 2-3 lower than predicted across a range of absorption levels, and scaling of production rates deviated badly from predictions based on spin exchange efficiency. To bridge this gap, we propose that paramagnetic, activated Rb clusters form during spin exchange optical pumping (SEOP), and depolarize Rb and 129Xe, while unproductively scattering optical pumping light. When a model was built that incorporated the effects of clusters, its predictions matched observations for both polarization and production rate for all 6 systems studied. This permits us to place a limit on cluster number density of <2 x 109 cm-3. The work culminates with deploying this framework to identify methods to improve polarization to above 50%, leaving the SEOP cell. Combined with additional methods of preserving polarization, the polarization of a 300-mL batch of 129Xe increased from an average of 9%, before this work began, to a recent value of 34%. We anticipate that these developments will lay the groundwork for continued advancement and scaling up of SEOP-based hyperpolarization methods that may one day permit real-time, on-demand 129Xe MRI to become a reality.

  3. Finite difference time domain (FDTD) method for modeling the effect of switched gradients on the human body in MRI.

    PubMed

    Zhao, Huawei; Crozier, Stuart; Liu, Feng

    2002-12-01

    Numerical modeling of the eddy currents induced in the human body by the pulsed field gradients in MRI presents a difficult computational problem. It requires an efficient and accurate computational method for high spatial resolution analyses with a relatively low input frequency. In this article, a new technique is described which allows the finite difference time domain (FDTD) method to be efficiently applied over a very large frequency range, including low frequencies. This is not the case in conventional FDTD-based methods. A method of implementing streamline gradients in FDTD is presented, as well as comparative analyses which show that the correct source injection in the FDTD simulation plays a crucial rule in obtaining accurate solutions. In particular, making use of the derivative of the input source waveform is shown to provide distinct benefits in accuracy over direct source injection. In the method, no alterations to the properties of either the source or the transmission media are required. The method is essentially frequency independent and the source injection method has been verified against examples with analytical solutions. Results are presented showing the spatial distribution of gradient-induced electric fields and eddy currents in a complete body model.

  4. A new production method of elastic silicone carotid phantom based on MRI acquisition using rapid prototyping technique.

    PubMed

    Cao, Peng; Duhamel, Yvan; Olympe, Guillaume; Ramond, Bruno; Langevin, Francois

    2013-01-01

    In vitro experimental simulations of blood fluid in carotid artery require ideal phantoms that are as precise as possible. The purpose of this work is to demonstrate a method for carotid phantom fabrication by rapid prototyping technique (RP). By using 3D reconstructed projection of the 3D time-of-flight (TOF) Magnetic Resonance Imaging (MRI) sequence, a 12.5 cm multi-dimensional spatial structure of a carotid artery has been set up. Y-shaped and patient specific models have been generated respectively using silicone elastomer, which has a high resilience and a good tensile strength. The final patient specific model has internal carotid artery (ICA) with a highly spiraling siphon and an external carotid artery (ECA). Elastic properties of carotid walls have also been evaluated by Young's elastic modulus test and dynamic behaviors in optical and echography simulation experiments.

  5. TH-C-BRD-06: A Novel MRI Based CT Artifact Correction Method for Improving Proton Range Calculation in the Presence of Severe CT Artifacts

    SciTech Connect

    Park, P; Schreibmann, E; Fox, T; Roper, J; Elder, E; Tejani, M; Crocker, I; Curran, W; Dhabaan, A

    2014-06-15

    Purpose: Severe CT artifacts can impair our ability to accurately calculate proton range thereby resulting in a clinically unacceptable treatment plan. In this work, we investigated a novel CT artifact correction method based on a coregistered MRI and investigated its ability to estimate CT HU and proton range in the presence of severe CT artifacts. Methods: The proposed method corrects corrupted CT data using a coregistered MRI to guide the mapping of CT values from a nearby artifact-free region. First patient MRI and CT images were registered using 3D deformable image registration software based on B-spline and mutual information. The CT slice with severe artifacts was selected as well as a nearby slice free of artifacts (e.g. 1cm away from the artifact). The two sets of paired MRI and CT images at different slice locations were further registered by applying 2D deformable image registration. Based on the artifact free paired MRI and CT images, a comprehensive geospatial analysis was performed to predict the correct CT HU of the CT image with severe artifact. For a proof of concept, a known artifact was introduced that changed the ground truth CT HU value up to 30% and up to 5cm error in proton range. The ability of the proposed method to recover the ground truth was quantified using a selected head and neck case. Results: A significant improvement in image quality was observed visually. Our proof of concept study showed that 90% of area that had 30% errors in CT HU was corrected to 3% of its ground truth value. Furthermore, the maximum proton range error up to 5cm was reduced to 4mm error. Conclusion: MRI based CT artifact correction method can improve CT image quality and proton range calculation for patients with severe CT artifacts.

  6. The connectivity domain: Analyzing resting state fMRI data using feature-based data-driven and model-based methods.

    PubMed

    Iraji, Armin; Calhoun, Vince D; Wiseman, Natalie M; Davoodi-Bojd, Esmaeil; Avanaki, Mohammad R N; Haacke, E Mark; Kou, Zhifeng

    2016-07-01

    Spontaneous fluctuations of resting state functional MRI (rsfMRI) have been widely used to understand the macro-connectome of the human brain. However, these fluctuations are not synchronized among subjects, which leads to limitations and makes utilization of first-level model-based methods challenging. Considering this limitation of rsfMRI data in the time domain, we propose to transfer the spatiotemporal information of the rsfMRI data to another domain, the connectivity domain, in which each value represents the same effect across subjects. Using a set of seed networks and a connectivity index to calculate the functional connectivity for each seed network, we transform data into the connectivity domain by generating connectivity weights for each subject. Comparison of the two domains using a data-driven method suggests several advantages in analyzing data using data-driven methods in the connectivity domain over the time domain. We also demonstrate the feasibility of applying model-based methods in the connectivity domain, which offers a new pathway for the use of first-level model-based methods on rsfMRI data. The connectivity domain, furthermore, demonstrates a unique opportunity to perform first-level feature-based data-driven and model-based analyses. The connectivity domain can be constructed from any technique that identifies sets of features that are similar across subjects and can greatly help researchers in the study of macro-connectome brain function by enabling us to perform a wide range of model-based and data-driven approaches on rsfMRI data, decreasing susceptibility of analysis techniques to parameters that are not related to brain connectivity information, and evaluating both static and dynamic functional connectivity of the brain from a new perspective.

  7. Regularization parameter selection for nonlinear iterative image restoration and MRI reconstruction using GCV and SURE-based methods.

    PubMed

    Ramani, Sathish; Liu, Zhihao; Rosen, Jeffrey; Nielsen, Jon-Fredrik; Fessler, Jeffrey A

    2012-08-01

    Regularized iterative reconstruction algorithms for imaging inverse problems require selection of appropriate regularization parameter values. We focus on the challenging problem of tuning regularization parameters for nonlinear algorithms for the case of additive (possibly complex) Gaussian noise. Generalized cross-validation (GCV) and (weighted) mean-squared error (MSE) approaches (based on Steinfs Unbiased Risk Estimate. SURE) need the Jacobian matrix of the nonlinear reconstruction operator (representative of the iterative algorithm) with respect to the data. We derive the desired Jacobian matrix for two types of nonlinear iterative algorithms: a fast variant of the standard iterative reweighted least-squares method and the contemporary split-Bregman algorithm, both of which can accommodate a wide variety of analysis- and synthesis-type regularizers. The proposed approach iteratively computes two weighted SURE-type measures: Predicted-SURE and Projected-SURE (that require knowledge of noise variance Ð2), and GCV (that does not need Ð2) for these algorithms. We apply the methods to image restoration and to magnetic resonance image (MRI) reconstruction using total variation (TV) and an analysis-type .1-regularization. We demonstrate through simulations and experiments with real data that minimizing Predicted-SURE and Projected-SURE consistently lead to near-MSE-optimal reconstructions. We also observed that minimizing GCV yields reconstruction results that are near-MSE-optimal for image restoration and slightly suboptimal for MRI. Theoretical derivations in this work related to Jacobian matrix evaluations can be extended, in principle, to other types of regularizers and reconstruction algorithms.

  8. Carbon-wire loop based artifact correction outperforms post-processing EEG/fMRI corrections--A validation of a real-time simultaneous EEG/fMRI correction method.

    PubMed

    van der Meer, Johan N; Pampel, André; Van Someren, Eus J W; Ramautar, Jennifer R; van der Werf, Ysbrand D; Gomez-Herrero, German; Lepsien, Jöran; Hellrung, Lydia; Hinrichs, Hermann; Möller, Harald E; Walter, Martin

    2016-01-15

    Simultaneous EEG-fMRI combines two powerful neuroimaging techniques, but the EEG signal suffers from severe artifacts in the MRI environment that are difficult to remove. These are the MR scanning artifact and the blood-pulsation artifact--strategies to remove them are a topic of ongoing research. Additionally large, unsystematic artifacts are produced across the full frequency spectrum by the magnet's helium pump (and ventilator) systems which are notoriously hard to remove. As a consequence, experimenters routinely deactivate the helium pump during simultaneous EEG-fMRI acquisitions which potentially risks damaging the MRI system and necessitates more frequent and expensive helium refills. We present a novel correction method addressing both helium pump and ballisto-cardiac (BCG) artifacts, consisting of carbon-wire loops (CWL) as additional sensors to accurately track unpredictable artifacts related to subtle movements in the scanner, and an EEGLAB plugin to perform artifact correction. We compare signal-to-noise metrics of EEG data, corrected with CWL and three conventional correction methods, for helium pump off and on measurements. Because the CWL setup records signals in real-time, it fits requirements of applications where immediate correction is necessary, such as neuro-feedback applications or stimulation time-locked to specific sleep oscillations. The comparison metrics in this paper relate to: (1) the EEG signal itself, (2) the "eyes open vs. eyes closed" effect, and (3) an assessment of how the artifact corrections impacts the ability to perform meaningful correlations between EEG alpha power and the BOLD signal. Results show that the CWL correction corrects for He pump artifact and also produces EEG data more comparable to EEG obtained outside the magnet than conventional post-processing methods.

  9. Accurate Learning with Few Atlases (ALFA): an algorithm for MRI neonatal brain extraction and comparison with 11 publicly available methods

    NASA Astrophysics Data System (ADS)

    Serag, Ahmed; Blesa, Manuel; Moore, Emma J.; Pataky, Rozalia; Sparrow, Sarah A.; Wilkinson, A. G.; MacNaught, Gillian; Semple, Scott I.; Boardman, James P.

    2016-03-01

    Accurate whole-brain segmentation, or brain extraction, of magnetic resonance imaging (MRI) is a critical first step in most neuroimage analysis pipelines. The majority of brain extraction algorithms have been developed and evaluated for adult data and their validity for neonatal brain extraction, which presents age-specific challenges for this task, has not been established. We developed a novel method for brain extraction of multi-modal neonatal brain MR images, named ALFA (Accurate Learning with Few Atlases). The method uses a new sparsity-based atlas selection strategy that requires a very limited number of atlases ‘uniformly’ distributed in the low-dimensional data space, combined with a machine learning based label fusion technique. The performance of the method for brain extraction from multi-modal data of 50 newborns is evaluated and compared with results obtained using eleven publicly available brain extraction methods. ALFA outperformed the eleven compared methods providing robust and accurate brain extraction results across different modalities. As ALFA can learn from partially labelled datasets, it can be used to segment large-scale datasets efficiently. ALFA could also be applied to other imaging modalities and other stages across the life course.

  10. Accurate Learning with Few Atlases (ALFA): an algorithm for MRI neonatal brain extraction and comparison with 11 publicly available methods.

    PubMed

    Serag, Ahmed; Blesa, Manuel; Moore, Emma J; Pataky, Rozalia; Sparrow, Sarah A; Wilkinson, A G; Macnaught, Gillian; Semple, Scott I; Boardman, James P

    2016-03-24

    Accurate whole-brain segmentation, or brain extraction, of magnetic resonance imaging (MRI) is a critical first step in most neuroimage analysis pipelines. The majority of brain extraction algorithms have been developed and evaluated for adult data and their validity for neonatal brain extraction, which presents age-specific challenges for this task, has not been established. We developed a novel method for brain extraction of multi-modal neonatal brain MR images, named ALFA (Accurate Learning with Few Atlases). The method uses a new sparsity-based atlas selection strategy that requires a very limited number of atlases 'uniformly' distributed in the low-dimensional data space, combined with a machine learning based label fusion technique. The performance of the method for brain extraction from multi-modal data of 50 newborns is evaluated and compared with results obtained using eleven publicly available brain extraction methods. ALFA outperformed the eleven compared methods providing robust and accurate brain extraction results across different modalities. As ALFA can learn from partially labelled datasets, it can be used to segment large-scale datasets efficiently. ALFA could also be applied to other imaging modalities and other stages across the life course.

  11. A fast alignment method for breast MRI follow-up studies using automated breast segmentation and current-prior registration

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Strehlow, Jan; Rühaak, Jan; Weiler, Florian; Diez, Yago; Gubern-Merida, Albert; Diekmann, Susanne; Laue, Hendrik; Hahn, Horst K.

    2015-03-01

    In breast cancer screening for high-risk women, follow-up magnetic resonance images (MRI) are acquired with a time interval ranging from several months up to a few years. Prior MRI studies may provide additional clinical value when examining the current one and thus have the potential to increase sensitivity and specificity of screening. To build a spatial correlation between suspicious findings in both current and prior studies, a reliable alignment method between follow-up studies is desirable. However, long time interval, different scanners and imaging protocols, and varying breast compression can result in a large deformation, which challenges the registration process. In this work, we present a fast and robust spatial alignment framework, which combines automated breast segmentation and current-prior registration techniques in a multi-level fashion. First, fully automatic breast segmentation is applied to extract the breast masks that are used to obtain an initial affine transform. Then, a non-rigid registration algorithm using normalized gradient fields as similarity measure together with curvature regularization is applied. A total of 29 subjects and 58 breast MR images were collected for performance assessment. To evaluate the global registration accuracy, the volume overlap and boundary surface distance metrics are calculated, resulting in an average Dice Similarity Coefficient (DSC) of 0.96 and root mean square distance (RMSD) of 1.64 mm. In addition, to measure local registration accuracy, for each subject a radiologist annotated 10 pairs of markers in the current and prior studies representing corresponding anatomical locations. The average distance error of marker pairs dropped from 67.37 mm to 10.86 mm after applying registration.

  12. A novel passive shimming method for the correction of magnetic fields above the patient bed in MRI

    NASA Astrophysics Data System (ADS)

    Kong, Xia; Zhu, Minhua; Xia, Ling; Crozier, Stuart; Wang, Qiuliang; Ni, Zhipeng; Liu, Feng

    2015-08-01

    This paper presents a novel passive shimming method for the effective correction of static magnetic field (B0) inhomogeneities in Magnetic Resonance Imaging (MRI) systems. Passive shimming is used to find an optimum configuration for the placement of iron pieces applied to improve the B0 uniformity in the predefined imaging region referred to as the diameter of spherical volume (DSV). However, most passive shimming methods neglect to recognize that the space under the patient bed is not in use for imaging. In this work, we present a new algorithm that attempts to avoid the unnecessary shimming of the space under the patient bed. During implementation, the B0 field is still measured over the DSV surface and then mapped onto the effective imaging volume surface; a dedicated sensitivity matrix is generated only for the imaging area above the patient bed. A linear programming optimization procedure is performed for the determination of thicknesses and locations the shim pieces. Our experimental results showed that by revising the shimming target area, the new method provides superior optimization solutions. Compared to a conventional approach, the new method requires smaller amount of iron to correct the B0 inhomogeneities in the imaging area which has the effect of improving thermal stability to the B0 field. It also reduces the complexity of the optimization problem. Our new shimming strategy helps to improve the magnetic field homogeneity within the realistic imaging space, and ultimately improve image quality.

  13. A methodology for generating normal and pathological brain perfusion SPECT images for evaluation of MRI/SPECT fusion methods: application in epilepsy

    NASA Astrophysics Data System (ADS)

    Grova, C.; Jannin, P.; Biraben, A.; Buvat, I.; Benali, H.; Bernard, A. M.; Scarabin, J. M.; Gibaud, B.

    2003-12-01

    Quantitative evaluation of brain MRI/SPECT fusion methods for normal and in particular pathological datasets is difficult, due to the frequent lack of relevant ground truth. We propose a methodology to generate MRI and SPECT datasets dedicated to the evaluation of MRI/SPECT fusion methods and illustrate the method when dealing with ictal SPECT. The method consists in generating normal or pathological SPECT data perfectly aligned with a high-resolution 3D T1-weighted MRI using realistic Monte Carlo simulations that closely reproduce the response of a SPECT imaging system. Anatomical input data for the SPECT simulations are obtained from this 3D T1-weighted MRI, while functional input data result from an inter-individual analysis of anatomically standardized SPECT data. The method makes it possible to control the 'brain perfusion' function by proposing a theoretical model of brain perfusion from measurements performed on real SPECT images. Our method provides an absolute gold standard for assessing MRI/SPECT registration method accuracy since, by construction, the SPECT data are perfectly registered with the MRI data. The proposed methodology has been applied to create a theoretical model of normal brain perfusion and ictal brain perfusion characteristic of mesial temporal lobe epilepsy. To approach realistic and unbiased perfusion models, real SPECT data were corrected for uniform attenuation, scatter and partial volume effect. An anatomic standardization was used to account for anatomic variability between subjects. Realistic simulations of normal and ictal SPECT deduced from these perfusion models are presented. The comparison of real and simulated SPECT images showed relative differences in regional activity concentration of less than 20% in most anatomical structures, for both normal and ictal data, suggesting realistic models of perfusion distributions for evaluation purposes. Inter-hemispheric asymmetry coefficients measured on simulated data were found within

  14. A methodology for generating normal and pathological brain perfusion SPECT images for evaluation of MRI/SPECT fusion methods: application in epilepsy.

    PubMed

    Grova, C; Jannin, P; Biraben, A; Buvat, I; Benali, H; Bernard, A M; Scarabin, J M; Gibaud, B

    2003-12-21

    Quantitative evaluation of brain MRI/SPECT fusion methods for normal and in particular pathological datasets is difficult, due to the frequent lack of relevant ground truth. We propose a methodology to generate MRI and SPECT datasets dedicated to the evaluation of MRI/SPECT fusion methods and illustrate the method when dealing with ictal SPECT. The method consists in generating normal or pathological SPECT data perfectly aligned with a high-resolution 3D T1-weighted MRI using realistic Monte Carlo simulations that closely reproduce the response of a SPECT imaging system. Anatomical input data for the SPECT simulations are obtained from this 3D T1-weighted MRI, while functional input data result from an inter-individual analysis of anatomically standardized SPECT data. The method makes it possible to control the 'brain perfusion' function by proposing a theoretical model of brain perfusion from measurements performed on real SPECT images. Our method provides an absolute gold standard for assessing MRI/SPECT registration method accuracy since, by construction, the SPECT data are perfectly registered with the MRI data. The proposed methodology has been applied to create a theoretical model of normal brain perfusion and ictal brain perfusion characteristic of mesial temporal lobe epilepsy. To approach realistic and unbiased perfusion models, real SPECT data were corrected for uniform attenuation, scatter and partial volume effect. An anatomic standardization was used to account for anatomic variability between subjects. Realistic simulations of normal and ictal SPECT deduced from these perfusion models are presented. The comparison of real and simulated SPECT images showed relative differences in regional activity concentration of less than 20% in most anatomical structures, for both normal and ictal data, suggesting realistic models of perfusion distributions for evaluation purposes. Inter-hemispheric asymmetry coefficients measured on simulated data were found within

  15. MRI-based elastic-mapping method for inter-subject comparison of brain FDG-PET images

    SciTech Connect

    Yang, J.; Huang, S.C.; Lin, K.P.; Small, G.; Phelps, M.E.

    1996-12-31

    Inter-subject anatomic differences prohibits direct image-wise statistical evaluation of brain FDG-PET images of Alzheimer`s disease (AD) patients. In this study, we propose a MRI-based elastic-mapping method which enables image-wise evaluation. The method involves intra-subject MR-PET registration, 3-D elastic mapping of two set of MR images, and elastically transforming the co-registered PET images. The MR-PET registration used simulated PET images, which were based on segmentation of MR images. In the 3-D elastic mapping stage, first a global linear scaling was applied to compensate for brain size difference, then a deformation field was obtained by minimizing the regional sum of squared difference between the two sets of MR images. Two groups (AD patient and normal control), each with three subjects, were included in the current study. After processing, images from all subjects have similar shapes. Averaging the images across all subjects (either within the individual group or for both groups) give images indistinguishable from original single subject FDG images (i.e. without much spatial resolution loss), except with lower image noise level. The method is expected to allow statistical image-wise analysis to be performed across different subjects.

  16. Marked effects of intracranial volume correction methods on sex differences in neuroanatomical structures: a HUNT MRI study

    PubMed Central

    Pintzka, Carl W. S.; Hansen, Tor I.; Evensmoen, Hallvard R.; Håberg, Asta K.

    2015-01-01

    To date, there is no consensus whether sexual dimorphism in the size of neuroanatomical structures exists, or if such differences are caused by choice of intracranial volume (ICV) correction method. When investigating volume differences in neuroanatomical structures, corrections for variation in ICV are used. Commonly applied methods are the ICV-proportions, ICV-residuals and ICV as a covariate of no interest, ANCOVA. However, these different methods give contradictory results with regard to presence of sex differences. Our aims were to investigate presence of sexual dimorphism in 18 neuroanatomical volumes unrelated to ICV-differences by using a large ICV-matched subsample of 304 men and women from the HUNT-MRI general population study, and further to demonstrate in the entire sample of 966 healthy subjects, which of the ICV-correction methods gave results similar to the ICV-matched subsample. In addition, sex-specific subsamples were created to investigate whether differences were an effect of head size or sex. Most sex differences were related to volume scaling with ICV, independent of sex. Sex differences were detected in a few structures; amygdala, cerebellar cortex, and 3rd ventricle were larger in men, but the effect sizes were small. The residuals and ANCOVA methods were most effective at removing the effects of ICV. The proportions method suffered from systematic errors due to lack of proportionality between ICV and neuroanatomical volumes, leading to systematic mis-assignment of structures as either larger or smaller than their actual size. Adding additional sexual dimorphic covariates to the ANCOVA gave opposite results of those obtained in the ICV-matched subsample or with the residuals method. The findings in the current study explain some of the considerable variation in the literature on sexual dimorphisms in neuroanatomical volumes. In conclusion, sex plays a minor role for neuroanatomical volume differences; most differences are related to ICV

  17. Generalized least-squares method applied to fMRI time series with empirically determined correlation matrix.

    PubMed

    Wicker, B; Fonlupt, P

    2003-03-01

    Functional magnetic resonance imaging (fMRI) time series analysis and statistical inferences about the effect of a cognitive task on the regional cerebral blood flow (rCBF) are largely based on the linear model. However, this method requires that the error vector is a gaussian variable with an identity correlation matrix. When this assumption cannot be accepted, statistical inferences can be made using generalized least squares. In this case, knowledge of the covariance matrix of the error vector is needed. In the present report, we propose a method that needs stationarity of the autocorrelation function but is more flexible than autoregressive model of order p (AR(p)) models because it is not necessary to predefine a relation between coefficients of the correlation matrix. We tested this method on sets of simulated data (with presence of an effect of interest or not) representing a time series with a monotonically decreasing autocorrelation function. This time series mimicked an experiment using a random event-related design that does not create correlation between scans. The autocorrelation function is empirically determined and used to reconstitute the correlation matrix as the toeplitz matrix built from the autocorrelation function. When applied to simulated time series with no effect of interest, this method allows the determination of F values corresponding to the accurate false positive level. Moreover, when applied to time series with an effect of interest, this method gives a density function of F values which allows the rejection of the null hypothesis. This method provides a flexible but interpretable time domain noise model.

  18. Molecular fMRI

    PubMed Central

    Bartelle, Benjamin B.; Barandov, Ali

    2016-01-01

    Comprehensive analysis of brain function depends on understanding the dynamics of diverse neural signaling processes over large tissue volumes in intact animals and humans. Most existing approaches to measuring brain signaling suffer from limited tissue penetration, poor resolution, or lack of specificity for well-defined neural events. Here we discuss a new brain activity mapping method that overcomes some of these problems by combining MRI with contrast agents sensitive to neural signaling. The goal of this “molecular fMRI” approach is to permit noninvasive whole-brain neuroimaging with specificity and resolution approaching current optical neuroimaging methods. In this article, we describe the context and need for molecular fMRI as well as the state of the technology today. We explain how major types of MRI probes work and how they can be sensitized to neurobiological processes, such as neurotransmitter release, calcium signaling, and gene expression changes. We comment both on past work in the field and on challenges and promising avenues for future development. SIGNIFICANCE STATEMENT Brain researchers currently have a choice between measuring neural activity using cellular-level recording techniques, such as electrophysiology and optical imaging, or whole-brain imaging methods, such as fMRI. Cellular level methods are precise but only address a small portion of mammalian brains; on the other hand, whole-brain neuroimaging techniques provide very little specificity for neural pathways or signaling components of interest. The molecular fMRI techniques we discuss have particular potential to combine the specificity of cellular-level measurements with the noninvasive whole-brain coverage of fMRI. On the other hand, molecular fMRI is only just getting off the ground. This article aims to offer a snapshot of the status and future prospects for development of molecular fMRI techniques. PMID:27076413

  19. A Dictionary Learning Method with Total Generalized Variation for MRI Reconstruction

    PubMed Central

    Lu, Hongyang; Wei, Jingbo; Wang, Yuhao; Deng, Xiaohua

    2016-01-01

    Reconstructing images from their noisy and incomplete measurements is always a challenge especially for medical MR image with important details and features. This work proposes a novel dictionary learning model that integrates two sparse regularization methods: the total generalized variation (TGV) approach and adaptive dictionary learning (DL). In the proposed method, the TGV selectively regularizes different image regions at different levels to avoid oil painting artifacts largely. At the same time, the dictionary learning adaptively represents the image features sparsely and effectively recovers details of images. The proposed model is solved by variable splitting technique and the alternating direction method of multiplier. Extensive simulation experimental results demonstrate that the proposed method consistently recovers MR images efficiently and outperforms the current state-of-the-art approaches in terms of higher PSNR and lower HFEN values. PMID:27110235

  20. New method for fMRI investigations of language: defining ROIs functionally in individual subjects.

    PubMed

    Fedorenko, Evelina; Hsieh, Po-Jang; Nieto-Castañón, Alfonso; Whitfield-Gabrieli, Susan; Kanwisher, Nancy

    2010-08-01

    Previous neuroimaging research has identified a number of brain regions sensitive to different aspects of linguistic processing, but precise functional characterization of these regions has proven challenging. We hypothesize that clearer functional specificity may emerge if candidate language-sensitive regions are identified functionally within each subject individually, a method that has revealed striking functional specificity in visual cortex but that has rarely been applied to neuroimaging studies of language. This method enables pooling of data from corresponding functional regions across subjects rather than from corresponding locations in stereotaxic space (which may differ functionally because of the anatomical variability across subjects). However, it is far from obvious a priori that this method will work as it requires that multiple stringent conditions be met. Specifically, candidate language-sensitive brain regions must be identifiable functionally within individual subjects in a short scan, must be replicable within subjects and have clear correspondence across subjects, and must manifest key signatures of language processing (e.g., a higher response to sentences than nonword strings, whether visual or auditory). We show here that this method does indeed work: we identify 13 candidate language-sensitive regions that meet these criteria, each present in >or=80% of subjects individually. The selectivity of these regions is stronger using our method than when standard group analyses are conducted on the same data, suggesting that the future application of this method may reveal clearer functional specificity than has been evident in prior neuroimaging research on language.

  1. An improved method for susceptibility and radius quantification of cylindrical objects from MRI.

    PubMed

    Hsieh, Ching-Yi; Cheng, Yu-Chung N; Neelavalli, Jaladhar; Haacke, E Mark; Stafford, R Jason

    2015-05-01

    A new method is developed to measure the magnetic susceptibilities and radii of small cylinder-like objects at arbitrary orientations accurately. This method for most biological substances only requires a standard gradient echo sequence with one or two echo times, depending on the orientation of an object relative to the main magnetic field. For objects oriented at the magic angle, however, this method is not applicable. As a byproduct of this method, the cross-sectional area as well as signals inside and outside the object can be determined. The uncertainty of each measurement is estimated from the error propagation method. Partial volume, dephasing, and phase aliasing effects are naturally included in the equations of this method. A number of simulations, phantom, and pilot in-vivo human studies are carried out to validate the theory. When the maximal phase value at the boundary of a given cylindrical object is larger than 3 radians, and the phase inside the object is more than 1 radian, the susceptibility can be accurately quantified within 15%. The radius of the object can be determined to subpixel accuracy. This is the case when the signal-to-noise ratio inside the object is about 6:1 or higher and the radius of the object is about one pixel or larger. These conditions are realistic when considering medullary and pial veins for example.

  2. A theoretical comparison of two optimization methods for radiofrequency drive schemes in high frequency MRI resonators

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Beck, Barbara L.; Fitzsimmons, Jeffrey R.; Blackband, Stephen J.; Crozier, Stuart

    2005-11-01

    In this paper, numerical simulations are used in an attempt to find optimal source profiles for high frequency radiofrequency (RF) volume coils. Biologically loaded, shielded/unshielded circular and elliptical birdcage coils operating at 170 MHz, 300 MHz and 470 MHz are modelled using the FDTD method for both 2D and 3D cases. Taking advantage of the fact that some aspects of the electromagnetic system are linear, two approaches have been proposed for the determination of the drives for individual elements in the RF resonator. The first method is an iterative optimization technique with a kernel for the evaluation of RF fields inside an imaging plane of a human head model using pre-characterized sensitivity profiles of the individual rungs of a resonator; the second method is a regularization-based technique. In the second approach, a sensitivity matrix is explicitly constructed and a regularization procedure is employed to solve the ill-posed problem. Test simulations show that both methods can improve the B1-field homogeneity in both focused and non-focused scenarios. While the regularization-based method is more efficient, the first optimization method is more flexible as it can take into account other issues such as controlling SAR or reshaping the resonator structures. It is hoped that these schemes and their extensions will be useful for the determination of multi-element RF drives in a variety of applications.

  3. A theoretical comparison of two optimization methods for radiofrequency drive schemes in high frequency MRI resonators.

    PubMed

    Liu, Feng; Beck, Barbara L; Fitzsimmons, Jeffrey R; Blackband, Stephen J; Crozier, Stuart

    2005-11-21

    In this paper, numerical simulations are used in an attempt to find optimal source profiles for high frequency radiofrequency (RF) volume coils. Biologically loaded, shielded/unshielded circular and elliptical birdcage coils operating at 170 MHz, 300 MHz and 470 MHz are modelled using the FDTD method for both 2D and 3D cases. Taking advantage of the fact that some aspects of the electromagnetic system are linear, two approaches have been proposed for the determination of the drives for individual elements in the RF resonator. The first method is an iterative optimization technique with a kernel for the evaluation of RF fields inside an imaging plane of a human head model using pre-characterized sensitivity profiles of the individual rungs of a resonator; the second method is a regularization-based technique. In the second approach, a sensitivity matrix is explicitly constructed and a regularization procedure is employed to solve the ill-posed problem. Test simulations show that both methods can improve the B(1)-field homogeneity in both focused and non-focused scenarios. While the regularization-based method is more efficient, the first optimization method is more flexible as it can take into account other issues such as controlling SAR or reshaping the resonator structures. It is hoped that these schemes and their extensions will be useful for the determination of multi-element RF drives in a variety of applications.

  4. Susceptibility and size quantification of small human veins from an MRI method.

    PubMed

    Hsieh, Ching-Yi; Cheng, Yu-Chung N; Xie, He; Haacke, E Mark; Neelavalli, Jaladhar

    2015-12-01

    Recently a method called CISSCO (Complex Image Summation around a Spherical or a Cylindrical Object) was introduced for accurately quantifying the susceptibility and the radius of any narrow cylindrical object at any orientation using a typical two-echo gradient echo sequence. This work further optimizes the method for quantifying oxygen saturation in small cerebral veins in the human brain. The revised method is first validated through numerical simulations and then applied to data from phantom and human brain. The effect of phase high pass filtering on the quantified parameters is studied and procedures for mitigating its adverse effects are suggested. Uncertainty of each measurement is estimated from the error propagation method. It is shown that the revised method allows for accurate quantification of both the vessel size and its oxygen saturation even in the case of a low SNR (signal to noise ratio) in the vein. The results are self consistent across different veins within a given subject with a variation of less than 6%. Finally, imaging parameters and some procedures are suggested for accurate susceptibility and radius quantifications of small human veins.

  5. The EM Method in a Probabilistic Wavelet-Based MRI Denoising

    PubMed Central

    2015-01-01

    Human body heat emission and others external causes can interfere in magnetic resonance image acquisition and produce noise. In this kind of images, the noise, when no signal is present, is Rayleigh distributed and its wavelet coefficients can be approximately modeled by a Gaussian distribution. Noiseless magnetic resonance images can be modeled by a Laplacian distribution in the wavelet domain. This paper proposes a new magnetic resonance image denoising method to solve this fact. This method performs shrinkage of wavelet coefficients based on the conditioned probability of being noise or detail. The parameters involved in this filtering approach are calculated by means of the expectation maximization (EM) method, which avoids the need to use an estimator of noise variance. The efficiency of the proposed filter is studied and compared with other important filtering techniques, such as Nowak's, Donoho-Johnstone's, Awate-Whitaker's, and nonlocal means filters, in different 2D and 3D images. PMID:26089959

  6. The EM Method in a Probabilistic Wavelet-Based MRI Denoising.

    PubMed

    Martin-Fernandez, Marcos; Villullas, Sergio

    2015-01-01

    Human body heat emission and others external causes can interfere in magnetic resonance image acquisition and produce noise. In this kind of images, the noise, when no signal is present, is Rayleigh distributed and its wavelet coefficients can be approximately modeled by a Gaussian distribution. Noiseless magnetic resonance images can be modeled by a Laplacian distribution in the wavelet domain. This paper proposes a new magnetic resonance image denoising method to solve this fact. This method performs shrinkage of wavelet coefficients based on the conditioned probability of being noise or detail. The parameters involved in this filtering approach are calculated by means of the expectation maximization (EM) method, which avoids the need to use an estimator of noise variance. The efficiency of the proposed filter is studied and compared with other important filtering techniques, such as Nowak's, Donoho-Johnstone's, Awate-Whitaker's, and nonlocal means filters, in different 2D and 3D images.

  7. Improving the performance of the prony method using a wavelet domain filter for MRI denoising.

    PubMed

    Jaramillo, Rodney; Lentini, Marianela; Paluszny, Marco

    2014-01-01

    The Prony methods are used for exponential fitting. We use a variant of the Prony method for abnormal brain tissue detection in sequences of T 2 weighted magnetic resonance images. Here, MR images are considered to be affected only by Rician noise, and a new wavelet domain bilateral filtering process is implemented to reduce the noise in the images. This filter is a modification of Kazubek's algorithm and we use synthetic images to show the ability of the new procedure to suppress noise and compare its performance with respect to the original filter, using quantitative and qualitative criteria. The tissue classification process is illustrated using a real sequence of T 2 MR images, and the filter is applied to each image before using the variant of the Prony method.

  8. Improving the Performance of the Prony Method Using a Wavelet Domain Filter for MRI Denoising

    PubMed Central

    Lentini, Marianela; Paluszny, Marco

    2014-01-01

    The Prony methods are used for exponential fitting. We use a variant of the Prony method for abnormal brain tissue detection in sequences of T2 weighted magnetic resonance images. Here, MR images are considered to be affected only by Rician noise, and a new wavelet domain bilateral filtering process is implemented to reduce the noise in the images. This filter is a modification of Kazubek's algorithm and we use synthetic images to show the ability of the new procedure to suppress noise and compare its performance with respect to the original filter, using quantitative and qualitative criteria. The tissue classification process is illustrated using a real sequence of T2 MR images, and the filter is applied to each image before using the variant of the Prony method. PMID:24834108

  9. A new method to record and control for 2D-movement kinematics during functional magnetic resonance imaging (fMRI).

    PubMed

    Hauptmann, Bjoern; Sosnik, Ronen; Smikt, Oded; Okon, Eli; Manor, David; Kushnir, Tammar; Flash, Tamar; Karni, Avi

    2009-03-01

    The recording of movement kinematics during functional magnetic resonance imaging (fMRI) experiments is complicated due to technical constraints of the imaging environment. Nevertheless, to study the functions of brain areas related to motor control, reliable and accurate records of movement trajectories and speed profiles are needed. We present a method designed to record and characterize the kinematic properties of drawing- and handwriting-like forearm movements during fMRI studies by recording pen stroke trajectories. The recording system consists of a translucent plastic board, a plastic pen containing fiber optics and a halogen light power source, a CCD camera, a video monitor and a PC with a video grabber card. Control experiments using a commercially available digitizer tablet have demonstrated the reliability of the data recorded during fMRI. Since the movement tracking signal is purely optical, there is no interaction with the MR (echoplanar) images. Thus, the method allows to obtain movement records with high spatial and temporal resolution which are suitable for the kinematic analysis of hand movements in fMRI studies.

  10. Better living through transparency: improving the reproducibility of fMRI results through comprehensive methods reporting.

    PubMed

    Carp, Joshua

    2013-09-01

    Recent studies suggest that a greater proportion of published scientific findings than expected cannot be replicated. The field of functional neuroimaging research is no exception to this trend, with estimates of false positive results ranging from 10 % to 40 %. While false positive results in neuroimaging studies stem from a variety of causes, incomplete methodological reporting is perhaps the most obvious: Most published reports of neuroimaging studies provide ambiguous or incomplete descriptions of their methods and results. If neuroimaging researchers do not report methods and results in adequate detail, independent scientists can neither check their work for errors nor accurately replicate their efforts. Thus, I argue that comprehensive methods reporting is essential for reproducible research. I recommend three strategies for improving transparency and reproducibility in neuroimaging research: improving natural language descriptions of research protocols; sharing source code for data collection and analysis; and sharing formal, machine-readable representations of methods and results. Last, I discuss the technological and cultural barriers to implementing these recommendations and suggest steps toward overcoming those barriers.

  11. Segmentation of Brain MRI Using SOM-FCM-Based Method and 3D Statistical Descriptors

    PubMed Central

    Ortiz, Andrés; Palacio, Antonio A.; Górriz, Juan M.; Ramírez, Javier; Salas-González, Diego

    2013-01-01

    Current medical imaging systems provide excellent spatial resolution, high tissue contrast, and up to 65535 intensity levels. Thus, image processing techniques which aim to exploit the information contained in the images are necessary for using these images in computer-aided diagnosis (CAD) systems. Image segmentation may be defined as the process of parcelling the image to delimit different neuroanatomical tissues present on the brain. In this paper we propose a segmentation technique using 3D statistical features extracted from the volume image. In addition, the presented method is based on unsupervised vector quantization and fuzzy clustering techniques and does not use any a priori information. The resulting fuzzy segmentation method addresses the problem of partial volume effect (PVE) and has been assessed using real brain images from the Internet Brain Image Repository (IBSR). PMID:23762192

  12. SU-C-17A-03: Evaluation of Deformable Image Registration Methods Between MRI and CT for Prostate Cancer Radiotherapy

    SciTech Connect

    Wen, N; Glide-Hurst, C; Zhong, H; Chin, K; Kumarasiri, A; Liu, C; Liu, M; Siddiqui, S

    2014-06-15

    Purpose: We evaluated the performance of two commercially available and one open source B-Spline deformable image registration (DIR) algorithms between T2-weighted MRI and treatment planning CT using the DICE indices. Methods: CT simulation (CT-SIM) and MR simulation (MR-SIM) for four prostate cancer patients were conducted on the same day using the same setup and immobilization devices. CT images (120 kVp, 500 mAs, voxel size = 1.1x1.1x3.0 mm3) were acquired using an open-bore CT scanner. T2-weighted Turbo Spine Echo (T2W-TSE) images (TE/TR/α = 80/4560 ms/90°, voxel size = 0.7×0.7×2.5 mm3) were scanned on a 1.0T high field open MR-SIM. Prostates, seminal vesicles, rectum and bladders were delineated on both T2W-TSE and CT images by the attending physician. T2W-TSE images were registered to CT images using three DIR algorithms, SmartAdapt (Varian), Velocity AI (Velocity) and Elastix (Klein et al 2010) and contours were propagated. DIR results were evaluated quantitatively or qualitatively by image comparison and calculating organ DICE indices. Results: Significant differences in the contours of prostate and seminal vesicles were observed between MR and CT. On average, volume changes of the propagated contours were 5%, 2%, 160% and 8% for the prostate, seminal vesicles, bladder and rectum respectively. Corresponding mean DICE indices were 0.7, 0.5, 0.8, and 0.7. The intraclass correlation coefficient (ICC) was 0.9 among three algorithms for the Dice indices. Conclusion: Three DIR algorithms for CT/MR registration yielded similar results for organ propagation. Due to the different soft tissue contrasts between MRI and CT, organ delineation of prostate and SVs varied significantly, thus efforts to develop other DIR evaluation metrics are warranted. Conflict of interest: Submitting institution has research agreements with Varian Medical System and Philips Healthcare.

  13. A Supervoxel-Based Method for Groupwise Whole Brain Parcellation with Resting-State fMRI Data

    PubMed Central

    Wang, Jing; Wang, Haixian

    2016-01-01

    Node definition is a very important issue in human brain network analysis and functional connectivity studies. Typically, the atlases generated from meta-analysis, random criteria, and structural criteria are utilized as nodes in related applications. However, these atlases are not originally designed for such purposes and may not be suitable. In this study, we combined normalized cut (Ncut) and a supervoxel method called simple linear iterative clustering (SLIC) to parcellate whole brain resting-state fMRI data in order to generate appropriate brain atlases. Specifically, Ncut was employed to extract features from connectivity matrices, and then SLIC was applied on the extracted features to generate parcellations. To obtain group level parcellations, two approaches named mean SLIC and two-level SLIC were proposed. The cluster number varied in a wide range in order to generate parcellations with multiple granularities. The two SLIC approaches were compared with three state-of-the-art approaches under different evaluation metrics, which include spatial contiguity, functional homogeneity, and reproducibility. Both the group-to-group reproducibility and the group-to-subject reproducibility were evaluated in our study. The experimental results showed that the proposed approaches obtained relatively good overall clustering performances in different conditions that included different weighting functions, different sparsifying schemes, and several confounding factors. Therefore, the generated atlases are appropriate to be utilized as nodes for network analysis. The generated atlases and major source codes of this study have been made publicly available at http://www.nitrc.org/projects/slic/. PMID:28082885

  14. New multispectral MRI data fusion technique for white matter lesion segmentation: method and comparison with thresholding in FLAIR images

    PubMed Central

    Ferguson, Karen J.; Chappell, Francesca M.; Wardlaw, Joanna M.

    2010-01-01

    Objective Brain tissue segmentation by conventional threshold-based techniques may have limited accuracy and repeatability in older subjects. We present a new multispectral magnetic resonance (MR) image analysis approach for segmenting normal and abnormal brain tissue, including white matter lesions (WMLs). Methods We modulated two 1.5T MR sequences in the red/green colour space and calculated the tissue volumes using minimum variance quantisation. We tested it on 14 subjects, mean age 73.3 ± 10 years, representing the full range of WMLs and atrophy. We compared the results of WML segmentation with those using FLAIR-derived thresholds, examined the effect of sampling location, WML amount and field inhomogeneities, and tested observer reliability and accuracy. Results FLAIR-derived thresholds were significantly affected by the location used to derive the threshold (P = 0.0004) and by WML volume (P = 0.0003), and had higher intra-rater variability than the multispectral technique (mean difference ± SD: 759 ± 733 versus 69 ± 326 voxels respectively). The multispectral technique misclassified 16 times fewer WMLs. Conclusion Initial testing suggests that the multispectral technique is highly reproducible and accurate with the potential to be applied to routinely collected clinical MRI data. Electronic supplementary material The online version of this article (doi:10.1007/s00330-010-1718-6) contains supplementary material, which is available to authorized users. PMID:20157814

  15. Cortical activation by tactile stimulation to face and anterior neck areas: an fMRI study with three analytic methods.

    PubMed

    Lin, Chou-Ching K; Sun, Yung-Nien; Huang, Chung-I; Yu, Chin-Yin; Ju, Ming-Shaung

    2010-12-01

    The main purpose of this study was to investigate the sensory cortical activation of the anterior neck region and the relationship between the neck and face representation areas. Functional MRI by blood oxygenation level dependent measurements was performed while tactile stimulation was applied to the face or neck area. Nonpainful tactile stimuli were manually delivered by an experimenter at a frequency of ∼1 Hz. Block (epoch) design was adopted with a block duration of 30 s and a whole run duration of 6 min. For each location, two runs were performed. After the image data were preprocessed, both parameteric and nonparametric methods were performed to test the group results. The results showed that (1) unilateral face or neck stimulation could elicit bilateral cortical activation, (2) mainly the face representation and face-hand junction areas, but not the conventional neck representation area, were activated by face or neck stimulation, and (3) the activation areas were larger when right face or neck was stimulated. In conclusion, the sensory cortical representation area of the anterior neck region was mainly at the junction of hand and face representation area and the activated area was larger when the right face or neck was stimulated.

  16. An MRI denoising method using image data redundancy and local SNR estimation.

    PubMed

    Golshan, Hosein M; Hasanzadeh, Reza P R; Yousefzadeh, Shahrokh C

    2013-09-01

    This paper presents an LMMSE-based method for the three-dimensional (3D) denoising of MR images assuming a Rician noise model. Conventionally, the LMMSE method estimates the noise-less signal values using the observed MR data samples within local neighborhoods. This is not an efficient procedure to deal with this issue while the 3D MR data intrinsically includes many similar samples that can be used to improve the estimation results. To overcome this problem, we model MR data as random fields and establish a principled way which is capable of choosing the samples not only from a local neighborhood but also from a large portion of the given data. To follow the similar samples within the MR data, an effective similarity measure based on the local statistical moments of images is presented. The parameters of the proposed filter are automatically chosen from the estimated local signal-to-noise ratio. To further enhance the denoising performance, a recursive version of the introduced approach is also addressed. The proposed filter is compared with related state-of-the-art filters using both synthetic and real MR datasets. The experimental results demonstrate the superior performance of our proposal in removing the noise and preserving the anatomical structures of MR images.

  17. Methods and evaluations of MRI content-adaptive finite element mesh generation for bioelectromagnetic problems.

    PubMed

    Lee, W H; Kim, T-S; Cho, M H; Ahn, Y B; Lee, S Y

    2006-12-07

    In studying bioelectromagnetic problems, finite element analysis (FEA) offers several advantages over conventional methods such as the boundary element method. It allows truly volumetric analysis and incorporation of material properties such as anisotropic conductivity. For FEA, mesh generation is the first critical requirement and there exist many different approaches. However, conventional approaches offered by commercial packages and various algorithms do not generate content-adaptive meshes (cMeshes), resulting in numerous nodes and elements in modelling the conducting domain, and thereby increasing computational load and demand. In this work, we present efficient content-adaptive mesh generation schemes for complex biological volumes of MR images. The presented methodology is fully automatic and generates FE meshes that are adaptive to the geometrical contents of MR images, allowing optimal representation of conducting domain for FEA. We have also evaluated the effect of cMeshes on FEA in three dimensions by comparing the forward solutions from various cMesh head models to the solutions from the reference FE head model in which fine and equidistant FEs constitute the model. The results show that there is a significant gain in computation time with minor loss in numerical accuracy. We believe that cMeshes should be useful in the FEA of bioelectromagnetic problems.

  18. Methods and evaluations of MRI content-adaptive finite element mesh generation for bioelectromagnetic problems

    NASA Astrophysics Data System (ADS)

    Lee, W. H.; Kim, T.-S.; Cho, M. H.; Ahn, Y. B.; Lee, S. Y.

    2006-12-01

    In studying bioelectromagnetic problems, finite element analysis (FEA) offers several advantages over conventional methods such as the boundary element method. It allows truly volumetric analysis and incorporation of material properties such as anisotropic conductivity. For FEA, mesh generation is the first critical requirement and there exist many different approaches. However, conventional approaches offered by commercial packages and various algorithms do not generate content-adaptive meshes (cMeshes), resulting in numerous nodes and elements in modelling the conducting domain, and thereby increasing computational load and demand. In this work, we present efficient content-adaptive mesh generation schemes for complex biological volumes of MR images. The presented methodology is fully automatic and generates FE meshes that are adaptive to the geometrical contents of MR images, allowing optimal representation of conducting domain for FEA. We have also evaluated the effect of cMeshes on FEA in three dimensions by comparing the forward solutions from various cMesh head models to the solutions from the reference FE head model in which fine and equidistant FEs constitute the model. The results show that there is a significant gain in computation time with minor loss in numerical accuracy. We believe that cMeshes should be useful in the FEA of bioelectromagnetic problems.

  19. MRI brain tumor segmentation based on improved fuzzy c-means method

    NASA Astrophysics Data System (ADS)

    Deng, Wankai; Xiao, Wei; Pan, Chao; Liu, Jianguo

    2009-10-01

    This paper focuses on the image segmentation, which is one of the key problems in medical image processing. A new medical image segmentation method is proposed based on fuzzy c- means algorithm and spatial information. Firstly, we classify the image into the region of interest and background using fuzzy c means algorithm. Then we use the information of the tissues' gradient and the intensity inhomogeneities of regions to improve the quality of segmentation. The sum of the mean variance in the region and the reciprocal of the mean gradient along the edge of the region are chosen as an objective function. The minimum of the sum is optimum result. The result shows that the clustering segmentation algorithm is effective.

  20. A new method for improving functional-to-structural MRI alignment using local Pearson correlation.

    PubMed

    Saad, Ziad S; Glen, Daniel R; Chen, Gang; Beauchamp, Michael S; Desai, Rutvik; Cox, Robert W

    2009-02-01

    Accurate registration of Functional Magnetic Resonance Imaging (FMRI) T2-weighted volumes to same-subject high-resolution T1-weighted structural volumes is important for Blood Oxygenation Level Dependent (BOLD) FMRI and crucial for applications such as cortical surface-based analyses and pre-surgical planning. Such registration is generally implemented by minimizing a cost functional, which measures the mismatch between two image volumes over the group of proper affine transformations. Widely used cost functionals, such as mutual information (MI) and correlation ratio (CR), appear to yield decent alignments when visually judged by matching outer brain contours. However, close inspection reveals that internal brain structures are often significantly misaligned. Poor registration is most evident in the ventricles and sulcal folds, where CSF is concentrated. This observation motivated our development of an improved modality-specific cost functional which uses a weighted local Pearson coefficient (LPC) to align T2- and T1-weighted images. In the absence of an alignment gold standard, we used three human observers blinded to registration method to provide an independent assessment of the quality of the registration for each cost functional. We found that LPC performed significantly better (p<0.001) than generic cost functionals including MI and CR. Generic cost functionals were very often not minimal near the best alignment, thereby suggesting that optimization is not the cause of their failure. Lastly, we emphasize the importance of precise visual inspection of alignment quality and present an automated method for generating composite images that help capture errors of misalignment.

  1. “Black Bone” MRI: a potential non-ionizing method for three-dimensional cephalometric analysis—a preliminary feasibility study

    PubMed Central

    Watt-Smith, S R; Golding, S J

    2013-01-01

    Objectives: CT offers a three-dimensional solution to the inaccuracies associated with lateral cephalogram-based cephalometric analysis. However, it is associated with significant concerns regarding ionizing radiation exposure. MRI offers a non-ionizing alternative, but this has been less well investigated. We present a novel gradient echo MRI sequence (“Black Bone”) and highlight the potential of this sequence in cephalometric analysis. Methods: After regional ethics approval, “Black Bone” imaging was obtained in eight patients in whom lateral cephalograms were available. “Black Bone”, T1 and T2 weighted spin echo imaging were obtained in the mid-sagittal plane, and measurements were compared with those obtained on the lateral cephalogram using both the Advantage Windows Workstation (GE Medical Systems, Buckinghamshire, UK) and the Dolphin® cephalometric software (v. 11.5.04.23, Premium; Dolphin Imaging, Chatsworth, CA) by one assessor. Further assessment was made by scoring the ease of landmark identification on a ten-point scale. Results: “Black Bone” imaging surpassed T1 and T2 weighted imaging in terms of cephalometric landmark identification. A number of mid-sagittal cephalometric landmarks could not be clearly identified on T2 weighted imaging, making analysis impossible. Measurements on “Black Bone” demonstrated the smallest discrepancy when compared with those obtained on the lateral cephalogram. The discrepancy seen between measurements completed on mid-sagittal MRI and the lateral cephalogram was compounded by inherent inaccuracies of the lateral cephalogram. The overall mean discrepancy between distance measurements on “Black Bone” imaging and those on the lateral cephalogram was 1–2 mm. Conclusions: Overall, “Black Bone” MRI offered an improved method of cephalometric landmark identification over routine MRI sequences, and provides a potential non-ionizing alternative to CT for three-dimensional cephalometrics. PMID

  2. Gradient refractive index of the crystalline lens of the Black Oreo Dory (Allocyttus Niger): comparison of magnetic resonance imaging (MRI) and laser ray-trace methods.

    PubMed

    Garner, L F; Smith, G; Yao, S; Augusteyn, R C

    2001-04-01

    The gradient refractive index of the crystalline lens in the Black Oreo Dory (Allocyttus Niger) was determined using two methods; an optimisation program based on finite ray-tracing and the path of laser beams through the lens, and magnetic resonance imaging (MRI) and the linear relationship between refractive index and nuclear transverse relaxation rates. The methods showed good agreement in the cortical zone of the lens, but the lack of free water in the core of the lens made MRI measurement impossible in this region. The laser-optimisation method gave mean values of 1.368 and 1.543 for the surface and core refractive indices respectively, with a radial distribution for the gradient refractive index given by n(r)=1.543-0.121r2-0.033r4-0.021r6.

  3. Shoulder MRI

    MedlinePlus

    ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...

  4. Knee MRI

    MedlinePlus

    ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...

  5. Shoulder MRI

    MedlinePlus

    ... of the shoulder uses a powerful magnetic field, radio waves and a computer to produce detailed pictures of ... scans, MRI does not utilize ionizing radiation. Instead, radio waves redirect alignment of hydrogen atoms that naturally exist ...

  6. Knee MRI

    MedlinePlus

    ... of the knee uses a powerful magnetic field, radio waves and a computer to produce detailed pictures of ... scans, MRI does not utilize ionizing radiation. Instead, radio waves redirect alignment of hydrogen atoms that naturally exist ...

  7. Multidimensional diffusion MRI

    NASA Astrophysics Data System (ADS)

    Topgaard, Daniel

    2017-02-01

    Principles from multidimensional NMR spectroscopy, and in particular solid-state NMR, have recently been transferred to the field of diffusion MRI, offering non-invasive characterization of heterogeneous anisotropic materials, such as the human brain, at an unprecedented level of detail. Here we revisit the basic physics of solid-state NMR and diffusion MRI to pinpoint the origin of the somewhat unexpected analogy between the two fields, and provide an overview of current diffusion MRI acquisition protocols and data analysis methods to quantify the composition of heterogeneous materials in terms of diffusion tensor distributions with size, shape, and orientation dimensions. While the most advanced methods allow estimation of the complete multidimensional distributions, simpler methods focus on various projections onto lower-dimensional spaces as well as determination of means and variances rather than actual distributions. Even the less advanced methods provide simple and intuitive scalar parameters that are directly related to microstructural features that can be observed in optical microscopy images, e.g. average cell eccentricity, variance of cell density, and orientational order - properties that are inextricably entangled in conventional diffusion MRI. Key to disentangling all these microstructural features is MRI signal acquisition combining isotropic and directional dimensions, just as in the field of multidimensional solid-state NMR from which most of the ideas for the new methods are derived.

  8. Derivation and validation of simple anthropometric equations to predict adipose tissue mass and total fat mass with MRI as the reference method.

    PubMed

    Al-Gindan, Yasmin Y; Hankey, Catherine R; Govan, Lindsay; Gallagher, Dympna; Heymsfield, Steven B; Lean, Michael E J

    2015-12-14

    The reference organ-level body composition measurement method is MRI. Practical estimations of total adipose tissue mass (TATM), total adipose tissue fat mass (TATFM) and total body fat are valuable for epidemiology, but validated prediction equations based on MRI are not currently available. We aimed to derive and validate new anthropometric equations to estimate MRI-measured TATM/TATFM/total body fat and compare them with existing prediction equations using older methods. The derivation sample included 416 participants (222 women), aged between 18 and 88 years with BMI between 15·9 and 40·8 (kg/m2). The validation sample included 204 participants (110 women), aged between 18 and 86 years with BMI between 15·7 and 36·4 (kg/m2). Both samples included mixed ethnic/racial groups. All the participants underwent whole-body MRI to quantify TATM (dependent variable) and anthropometry (independent variables). Prediction equations developed using stepwise multiple regression were further investigated for agreement and bias before validation in separate data sets. Simplest equations with optimal R (2) and Bland-Altman plots demonstrated good agreement without bias in the validation analyses: men: TATM (kg)=0·198 weight (kg)+0·478 waist (cm)-0·147 height (cm)-12·8 (validation: R 2 0·79, CV=20 %, standard error of the estimate (SEE)=3·8 kg) and women: TATM (kg)=0·789 weight (kg)+0·0786 age (years)-0·342 height (cm)+24·5 (validation: R (2) 0·84, CV=13 %, SEE=3·0 kg). Published anthropometric prediction equations, based on MRI and computed tomographic scans, correlated strongly with MRI-measured TATM: (R (2) 0·70-0·82). Estimated TATFM correlated well with published prediction equations for total body fat based on underwater weighing (R (2) 0·70-0·80), with mean bias of 2·5-4·9 kg, correctable with log-transformation in most equations. In conclusion, new equations, using simple anthropometric measurements, estimated MRI-measured TATM with correlations and

  9. Multiplexed MRI methods for rapid estimation of global cerebral metabolic rate of oxygen consumption.

    PubMed

    Lee, Hyunyeol; Langham, Michael C; Rodriguez-Soto, Ana E; Wehrli, Felix W

    2017-04-01

    The global cerebral metabolic rate of oxygen (CMRO2), which reflects metabolic activity of the brain under various physiologic conditions, can be quantified using a method, referred to as 'OxFlow', which simultaneously measures hemoglobin oxygen saturation in a draining vein (Yv) and total cerebral blood flow (tCBF). Conventional OxFlow (Conv-OxFlow) entails four interleaves incorporated in a single pulse sequence - two for phase-contrast based measurement of tCBF in the supplying arteries of the neck, and two to measure the intra- to extravascular phase difference in the superior sagittal sinus to derive Yv [Jain et al., JCBFM 2010]. However, this approach limits achievable temporal resolution thus precluding capture of rapid changes of brain metabolic states such as the response to apneic stimuli. Here, we developed a time-efficient, multiplexed OxFlow method and evaluated its potential for measuring dynamic alterations in global CMRO2 during a breath-hold challenge. Two different implementations of multiplexed OxFlow were investigated: 1) simultaneous-echo-refocusing based OxFlow (SER-OxFlow) and 2) simultaneous-multi-slice imaging-based dual-band OxFlow (DB-OxFlow). The two sequences were implemented on 3T scanners (Siemens TIM Trio and Prisma) and their performance was evaluated in comparison to Conv-OxFlow in ten healthy subjects for baseline CMRO2 quantification. Comparison of measured parameters (Yv, tCBF, CMRO2) revealed no significant bias of SER-OxFlow and DB-OxFlow, with respect to the reference Conv-OxFlow while improving temporal resolution two-fold (12.5 versus 25s). Further acceleration shortened scan time to 8 and 6s for SER and DB-OxFlow, respectively, for time-resolved CMRO2 measurement. The two sequences were able of capturing smooth transitions of Yv, tCBF, and CMRO2 over the time course consisting of 30s of normal breathing, 30s of volitional apnea, and 90s of recovery. While both SER- and DB-OxFlow techniques provide significantly improved

  10. MRI renaissance.

    PubMed

    Hensley, S

    1997-12-01

    A few years ago, magnetic resonance imaging was healthcare's version of a foreign sports car-flashy, expensive and impractical. Now, after years in the doldrums, sales of MRI systems are roaring back. An aging fleet of MRI scanners due for replacement and a hearty increase in doctors' use of the versatile imaging tools are combining to fuel the surge in demand, vendors and customers say.

  11. An accurate and efficient bayesian method for automatic segmentation of brain MRI.

    PubMed

    Marroquin, J L; Vemuri, B C; Botello, S; Calderon, F; Fernandez-Bouzas, A

    2002-08-01

    Automatic three-dimensional (3-D) segmentation of the brain from magnetic resonance (MR) scans is a challenging problem that has received an enormous amount of attention lately. Of the techniques reported in the literature, very few are fully automatic. In this paper, we present an efficient and accurate, fully automatic 3-D segmentation procedure for brain MR scans. It has several salient features; namely, the following. 1) Instead of a single multiplicative bias field that affects all tissue intensities, separate parametric smooth models are used for the intensity of each class. 2) A brain atlas is used in conjunction with a robust registration procedure to find a nonrigid transformation that maps the standard brain to the specimen to be segmented. This transformation is then used to: segment the brain from nonbrain tissue; compute prior probabilities for each class at each voxel location and find an appropriate automatic initialization. 3) Finally, a novel algorithm is presented which is a variant of the expectation-maximization procedure, that incorporates a fast and accurate way to find optimal segmentations, given the intensity models along with the spatial coherence assumption. Experimental results with both synthetic and real data are included, as well as comparisons of the performance of our algorithm with that of other published methods.

  12. Optogenetic Functional MRI

    PubMed Central

    Lin, Peter; Fang, Zhongnan; Liu, Jia; Lee, Jin Hyung

    2016-01-01

    The investigation of the functional connectivity of precise neural circuits across the entire intact brain can be achieved through optogenetic functional magnetic resonance imaging (ofMRI), which is a novel technique that combines the relatively high spatial resolution of high-field fMRI with the precision of optogenetic stimulation. Fiber optics that enable delivery of specific wavelengths of light deep into the brain in vivo are implanted into regions of interest in order to specifically stimulate targeted cell types that have been genetically induced to express light-sensitive trans-membrane conductance channels, called opsins. fMRI is used to provide a non-invasive method of determining the brain's global dynamic response to optogenetic stimulation of specific neural circuits through measurement of the blood-oxygen-level-dependent (BOLD) signal, which provides an indirect measurement of neuronal activity. This protocol describes the construction of fiber optic implants, the implantation surgeries, the imaging with photostimulation and the data analysis required to successfully perform ofMRI. In summary, the precise stimulation and whole-brain monitoring ability of ofMRI are crucial factors in making ofMRI a powerful tool for the study of the connectomics of the brain in both healthy and diseased states. PMID:27167840

  13. Structural MRI volumetric analysis in patients with organic amnesia, 1: methods and comparative findings across diagnostic groups

    PubMed Central

    Colchester, A; Kingsley, D; Lasserson, D; Kendall, B; Bello, F; Rush, C; Stevens, T; Goodman, G; Heilpern, G; Stanhope, N; Kopelman, M

    2001-01-01

    BACKGROUND—If they are to be replicable, MRI volume measurements require explicit definitions of structures and of criteria for delineating these structures on MRI. Previously published volumes in healthy subjects show considerable differences in measurements across different studies, including a fourfold variation in estimates of hippocampal volume. Previous neuroimaging reports in patients with Korsakoff syndrome have generally found widespread or non-specific change, whereas in patients with herpes encephalitis the extent of pathological involvement reported beyond the temporal lobes has varied.
METHOD—In the present study, a clear set of anatomical criteria and detailed MRI segmentation procedures were applied to measure whole brain, frontal and temporal lobe, and anterolateral and medial temporal volumes, as well as thalamic areas in patients with organic amnesia (from Korsakoff's syndrome, herpes encephalitis, and focal frontal lesions) as well as healthy controls.
RESULTS—Patients with Korsakoff's syndrome showed decreased thalamic measurements but no significant changes in the medial temporal lobes, whereas patients with herpes encephalitis showed severe medial temporal but not thalamic atrophy. In the patients with known frontal lobe lesions, quantitative analysis on MRI showed reduced frontal lobe volume but no significant temporal lobe or thalamic atrophy.
CONCLUSION—Quantified MRI can be a useful technique with which to examine brain-cognitive relations, provided that detailed techniques are explicitly described. In particular, specific patterns of volume change can be found in vivo in patients with Korsakoff's syndrome and those with herpes encephalitis.

 PMID:11413256

  14. Sparse Reconstruction Challenge for diffusion MRI: Validation on a physical phantom to determine which acquisition scheme and analysis method to use?

    PubMed Central

    Ning, Lipeng; Laun, Frederik; Gur, Yaniv; DiBella, Edward V. R.; Deslauriers-Gauthier, Samuel; Megherbi, Thinhinane; Ghosh, Aurobrata; Zucchelli, Mauro; Menegaz, Gloria; Fick, Rutger; St-Jean, Samuel; Paquette, Michael; Aranda, Ramon; Descoteaux, Maxime; Deriche, Rachid; O’Donnell, Lauren; Rathi, Yogesh

    2015-01-01

    Diffusion magnetic resonance imaging (dMRI) is the modality of choice for investigating in-vivo white matter connectivity and neural tissue architecture of the brain. The diffusion-weighted signal in dMRI reflects the diffusivity of water molecules in brain tissue and can be utilized to produce image-based biomarkers for clinical research. Due to the constraints on scanning time, a limited number of measurements can be acquired within a clinically feasible scan time. In order to reconstruct the dMRI signal from a discrete set of measurements, a large number of algorithms have been proposed in recent years in conjunction with varying sampling schemes, i.e., with varying b-values and gradient directions. Thus, it is imperative to compare the performance of these reconstruction methods on a single data set to provide appropriate guidelines to neuroscientists on making an informed decision while designing their acquisition protocols. For this purpose, the SParse Reconstruction Challenge (SPARC) was held along with the workshop on Computational Diffusion MRI (at MICCAI 2014) to validate the performance of multiple reconstruction methods using data acquired from a physical phantom. A total of 16 reconstruction algorithms (9 teams) participated in this community challenge. The goal was to reconstruct single b-value and/or multiple b-value data from a sparse set of measurements. In particular, the aim was to determine an appropriate acquisition protocol (in terms of the number of measurements, b-values) and the analysis method to use for a neuroimaging study. The challenge did not delve on the accuracy of these methods in estimating model specific measures such as fractional anisotropy (FA) or mean diffusivity, but on the accuracy of these methods to fit the data. This paper presents several quantitative results pertaining to each reconstruction algorithm. The conclusions in this paper provide a valuable guideline for choosing a suitable algorithm and the corresponding

  15. A new ex vivo method to evaluate the performance of candidate MRI contrast agents: a proof-of-concept study

    PubMed Central

    2014-01-01

    Background Magnetic resonance imaging (MRI) plays an important role in tumor detection/diagnosis. The use of exogenous contrast agents (CAs) helps to improve the discrimination between lesion and neighbouring tissue, but most of the currently available CAs are non-specific. Assessing the performance of new, selective CAs requires exhaustive assays and large amounts of material. Accordingly, in a preliminary screening of new CAs, it is important to choose candidate compounds with good potential for in vivo efficiency. This screening method should reproduce as close as possible the in vivo environment. In this sense, a fast and reliable method to select the best candidate CAs for in vivo studies would minimize time and investment cost, and would benefit the development of better CAs. Results The post-mortem ex vivo relative contrast enhancement (RCE) was evaluated as a method to screen different types of CAs, including paramagnetic and superparamagnetic agents. In detail, sugar/gadolinium-loaded gold nanoparticles (Gd-GNPs) and iron nanoparticles (SPIONs) were tested. Our results indicate that the post-mortem ex vivo RCE of evaluated CAs, did not correlate well with their respective in vitro relaxivities. The results obtained with different Gd-GNPs suggest that the linker length of the sugar conjugate could modulate the interactions with cellular receptors and therefore the relaxivity value. A paramagnetic CA (GNP (E_2)), which performed best among a series of Gd-GNPs, was evaluated both ex vivo and in vivo. The ex vivo RCE was slightly worst than gadoterate meglumine (201.9 ± 9.3% versus 237 ± 14%, respectively), while the in vivo RCE, measured at the time-to-maximum enhancement for both compounds, pointed to GNP E_2 being a better CA in vivo than gadoterate meglumine. This is suggested to be related to the nanoparticule characteristics of the evaluated GNP. Conclusion We have developed a simple, cost-effective relatively high-throughput method for

  16. Brief Report: Methods for Acquiring Structural MRI Data in Very Young Children with Autism Without the Use of Sedation

    PubMed Central

    Simon, Tony J.; Zierhut, Cynthia; Solomon, Marjorie; Rogers, Sally J.; Amaral, David G.

    2016-01-01

    We describe a protocol with which we achieved a 93% success rate in acquiring high quality MRI scans without the use of sedation in 2.5–4.5 year old children with autism, developmental delays, and typical development. Our main strategy was to conduct MRIs during natural nocturnal sleep in the evenings after the child's normal bedtime. Alternatively, with some older and higher functioning children, the MRI was conducted while the child was awake and watching a video. Both strategies relied heavily on the creation of a child and family friendly MRI environment and the involvement of parents as collaborators in the project. Scanning very young children with autism, typical development, and developmental delays without the use of sedation or anesthesia was possible in the majority of cases. PMID:18157624

  17. Inferring the Dysconnection Syndrome in Schizophrenia: Interpretational Considerations on Methods for the Network Analyses of fMRI Data

    PubMed Central

    Silverstein, Brian H.; Bressler, Steven L.; Diwadkar, Vaibhav A.

    2016-01-01

    Schizophrenia has long been considered one of the most intractable psychiatric conditions. Its etiology is likely polygenic, and its symptoms are hypothesized to result from complex aberrations in network-level neuronal activity. While easily identifiable by psychiatrists based on clear behavioral signs, the biological substrate of the disease remains poorly understood. Here, we discuss current trends and key concepts in the theoretical framework surrounding schizophrenia and critically discuss network approaches applied to neuroimaging data that can illuminate the correlates of the illness. We first consider a theoretical framework encompassing basic principles of brain function ranging from neural units toward perspectives of network function. Next, we outline the strengths and limitations of several fMRI-based analytic methodologies for assessing in vivo brain network function, including undirected and directed functional connectivity and effective connectivity. The underlying assumptions of each approach for modeling fMRI data are treated in some quantitative detail, allowing for assessment of the utility of each for generating inferences about brain networks relevant to schizophrenia. fMRI and the analyses of fMRI signals provide a limited, yet vibrant platform from which to test specific hypotheses about brain network dysfunction in schizophrenia. Carefully considered and applied connectivity measures have the power to illuminate loss or change of function at the network level, thus providing insight into the underlying neurobiology which gives rise to the emergent symptoms seen in the altered cognition and behavior of schizophrenia patients. PMID:27536253

  18. Methods for Acquiring Structural MRI Data in Very Young Children with Autism without the Use of Sedation

    ERIC Educational Resources Information Center

    Nordahl, Christine Wu; Simon, Tony J.; Zierhut, Cynthia; Solomon, Marjorie; Rogers, Sally J.; Amaral, David G.

    2008-01-01

    We describe a protocol with which we achieved a 93% success rate in acquiring high quality MRI scans without the use of sedation in 2.5-4.5 year old children with autism, developmental delays, and typical development. Our main strategy was to conduct MRIs during natural nocturnal sleep in the evenings after the child's normal bedtime.…

  19. Inferring the Dysconnection Syndrome in Schizophrenia: Interpretational Considerations on Methods for the Network Analyses of fMRI Data.

    PubMed

    Silverstein, Brian H; Bressler, Steven L; Diwadkar, Vaibhav A

    2016-01-01

    Schizophrenia has long been considered one of the most intractable psychiatric conditions. Its etiology is likely polygenic, and its symptoms are hypothesized to result from complex aberrations in network-level neuronal activity. While easily identifiable by psychiatrists based on clear behavioral signs, the biological substrate of the disease remains poorly understood. Here, we discuss current trends and key concepts in the theoretical framework surrounding schizophrenia and critically discuss network approaches applied to neuroimaging data that can illuminate the correlates of the illness. We first consider a theoretical framework encompassing basic principles of brain function ranging from neural units toward perspectives of network function. Next, we outline the strengths and limitations of several fMRI-based analytic methodologies for assessing in vivo brain network function, including undirected and directed functional connectivity and effective connectivity. The underlying assumptions of each approach for modeling fMRI data are treated in some quantitative detail, allowing for assessment of the utility of each for generating inferences about brain networks relevant to schizophrenia. fMRI and the analyses of fMRI signals provide a limited, yet vibrant platform from which to test specific hypotheses about brain network dysfunction in schizophrenia. Carefully considered and applied connectivity measures have the power to illuminate loss or change of function at the network level, thus providing insight into the underlying neurobiology which gives rise to the emergent symptoms seen in the altered cognition and behavior of schizophrenia patients.

  20. Portable MRI

    SciTech Connect

    Espy, Michelle A.

    2012-06-29

    This project proposes to: (1) provide the power of MRI to situations where it presently isn't available; (2) perform the engineering required to move from lab to a functional prototype; and (3) leverage significant existing infrastructure and capability in ultra-low field MRI. The reasons for doing this: (1) MRI is the most powerful tool for imaging soft-tissue (e.g. brain); (2) Billions don't have access due to cost or safety issues; (3) metal will heat/move in high magnetic fields; (4) Millions of cases of traumatic brain injury in US alone; (5) even more of non-traumatic brain injury; (6) (e.g. stroke, infection, chemical exposure); (7) Need for early diagnostic; (8) 'Signature' wound of recent conflicts; (9) 22% of injuries; (10) Implications for post-traumatic stress disorder; and (11) chronic traumatic encephalopathy.

  1. A novel AIF tracking method and comparison of DCE-MRI parameters using individual and population-based AIFs in human breast cancer

    NASA Astrophysics Data System (ADS)

    Li, Xia; Welch, E. Brian; Arlinghaus, Lori R.; Bapsi Chakravarthy, A.; Xu, Lei; Farley, Jaime; Loveless, Mary E.; Mayer, Ingrid A.; Kelley, Mark C.; Meszoely, Ingrid M.; Means-Powell, Julie A.; Abramson, Vandana G.; Grau, Ana M.; Gore, John C.; Yankeelov, Thomas E.

    2011-09-01

    Quantitative analysis of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) data requires the accurate determination of the arterial input function (AIF). A novel method for obtaining the AIF is presented here and pharmacokinetic parameters derived from individual and population-based AIFs are then compared. A Philips 3.0 T Achieva MR scanner was used to obtain 20 DCE-MRI data sets from ten breast cancer patients prior to and after one cycle of chemotherapy. Using a semi-automated method to estimate the AIF from the axillary artery, we obtain the AIF for each patient, AIFind, and compute a population-averaged AIF, AIFpop. The extended standard model is used to estimate the physiological parameters using the two types of AIFs. The mean concordance correlation coefficient (CCC) for the AIFs segmented manually and by the proposed AIF tracking approach is 0.96, indicating accurate and automatic tracking of an AIF in DCE-MRI data of the breast is possible. Regarding the kinetic parameters, the CCC values for Ktrans, vp and ve as estimated by AIFind and AIFpop are 0.65, 0.74 and 0.31, respectively, based on the region of interest analysis. The average CCC values for the voxel-by-voxel analysis are 0.76, 0.84 and 0.68 for Ktrans, vp and ve, respectively. This work indicates that Ktrans and vp show good agreement between AIFpop and AIFind while there is a weak agreement on ve.

  2. MRI (Magnetic Resonance Imaging)

    MedlinePlus

    ... and Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options ... usually given through an IV in the arm. MRI Research Programs at FDA Magnetic Resonance Imaging (MRI) ...

  3. MRI Safety during Pregnancy

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z MRI Safety During Pregnancy Magnetic resonance imaging (MRI) Illness ... during the exam? Contrast material MRI during pregnancy Magnetic resonance imaging (MRI) If you are pregnant and your doctor ...

  4. A Method for Automated Classification of Parkinson’s Disease Diagnosis Using an Ensemble Average Propagator Template Brain Map Estimated from Diffusion MRI

    PubMed Central

    Banerjee, Monami; Okun, Michael S.; Vaillancourt, David E.; Vemuri, Baba C.

    2016-01-01

    Parkinson’s disease (PD) is a common and debilitating neurodegenerative disorder that affects patients in all countries and of all nationalities. Magnetic resonance imaging (MRI) is currently one of the most widely used diagnostic imaging techniques utilized for detection of neurologic diseases. Changes in structural biomarkers will likely play an important future role in assessing progression of many neurological diseases inclusive of PD. In this paper, we derived structural biomarkers from diffusion MRI (dMRI), a structural modality that allows for non-invasive inference of neuronal fiber connectivity patterns. The structural biomarker we use is the ensemble average propagator (EAP), a probability density function fully characterizing the diffusion locally at a voxel level. To assess changes with respect to a normal anatomy, we construct an unbiased template brain map from the EAP fields of a control population. Use of an EAP captures both orientation and shape information of the diffusion process at each voxel in the dMRI data, and this feature can be a powerful representation to achieve enhanced PD brain mapping. This template brain map construction method is applicable to small animal models as well as to human brains. The differences between the control template brain map and novel patient data can then be assessed via a nonrigid warping algorithm that transforms the novel data into correspondence with the template brain map, thereby capturing the amount of elastic deformation needed to achieve this correspondence. We present the use of a manifold-valued feature called the Cauchy deformation tensor (CDT), which facilitates morphometric analysis and automated classification of a PD versus a control population. Finally, we present preliminary results of automated discrimination between a group of 22 controls and 46 PD patients using CDT. This method may be possibly applied to larger population sizes and other parkinsonian syndromes in the near future. PMID

  5. MO-C-17A-02: A Novel Method for Evaluating Hepatic Stiffness Based On 4D-MRI and Deformable Image Registration

    SciTech Connect

    Cui, T; Liang, X; Czito, B; Palta, M; Bashir, M; Yin, F; Cai, J

    2014-06-15

    Purpose: Quantitative imaging of hepatic stiffness has significant potential in radiation therapy, ranging from treatment planning to response assessment. This study aims to develop a novel, noninvasive method to quantify liver stiffness with 3D strains liver maps using 4D-MRI and deformable image registration (DIR). Methods: Five patients with liver cancer were imaged with an institutionally developed 4D-MRI technique under an IRB-approved protocol. Displacement vector fields (DVFs) across the liver were generated via DIR of different phases of 4D-MRI. Strain tensor at each voxel of interest (VOI) was computed from the relative displacements between the VOI and each of the six adjacent voxels. Three principal strains (E{sub 1}, E{sub 2} and E{sub 3}) of the VOI were derived as the eigenvalue of the strain tensor, which represent the magnitudes of the maximum and minimum stretches. Strain tensors for two regions of interest (ROIs) were calculated and compared for each patient, one within the tumor (ROI{sub 1}) and the other in normal liver distant from the heart (ROI{sub 2}). Results: 3D strain maps were successfully generated fort each respiratory phase of 4D-MRI for all patients. Liver deformations induced by both respiration and cardiac motion were observed. Differences in strain values adjacent to the distant from the heart indicate significant deformation caused by cardiac expansion during diastole. The large E{sub 1}/E{sub 2} (∼2) and E{sub 1}/E{sub 2} (∼10) ratios reflect the predominance of liver deformation in the superior-inferior direction. The mean E{sub 1} in ROI{sub 1} (0.12±0.10) was smaller than in ROI{sub 2} (0.15±0.12), reflecting a higher degree of stiffness of the cirrhotic tumor. Conclusion: We have successfully developed a novel method for quantitatively evaluating regional hepatic stiffness based on DIR of 4D-MRI. Our initial findings indicate that liver strain is heterogeneous, and liver tumors may have lower principal strain values

  6. A stimulation method using odors suitable for PET and fMRI studies with recording of physiological and behavioral signals.

    PubMed

    Vigouroux, M; Bertrand, B; Farget, V; Plailly, J; Royet, J P

    2005-03-15

    A design for a semi-automatic olfactometric system is described for PET and fMRI experiments. The olfactometer presents several advantages because it enables the use of an 'infinite' number of odorants and the synchronization of stimuli with breathing. These advantages mean that the subject is recorded while breathing normally during olfactory judgment tasks. In addition, the design includes a system for recording the behavioral (rating scale) and physiological (breathing, electrodermal reaction (ED), plethysmography (PL)) signals given by the subject. Both systems present the advantage of being compatible with fMRI magnetic fields since no ferrous material is used in the Faraday cage and signals are transmitted via an optical transmission interface to an acquisition system.

  7. A novel manipulation method of human body ownership using an fMRI-compatible master-slave system.

    PubMed

    Hara, Masayuki; Salomon, Roy; van der Zwaag, Wietske; Kober, Tobias; Rognini, Giulio; Nabae, Hiroyuki; Yamamoto, Akio; Blanke, Olaf; Higuchi, Toshiro

    2014-09-30

    Bodily self-consciousness has become an important topic in cognitive neuroscience aiming to understand how the brain creates a unified sensation of the self in a body. Specifically, full body illusion (FBI) in which changes in bodily self-consciousness are experimentally introduced by using visual-tactile stimulation has led to improve understanding of these mechanisms. This paper introduces a novel approach to the classic FBI paradigm using a robotic master-slave system which allows us to examine interactions between action and the sense of body ownership in behavioral and MRI experiments. In the proposed approach, the use of the robotic master-slave system enables unique stimulation in which experimental participants can administer tactile cues on their own back using active self-touch. This active self-touch has never been employed in FBI experiments and it allows to test the role of sensorimotor integration and agency (the feeling of control over our actions) in FBI paradigms. The objective of this study is to propose a robotic-haptic platform allowing a new FBI paradigm including the active self-touch in MRI environments. This paper, first, describes the design concept and the performance of the prototype device in the fMRI environment (for 3T and 7T MRI scanners). In addition, the prototype device is applied to a classic FBI experiment, and we verify that the use of the prototype device succeeded in inducing the FBI. These results indicate that the proposed approach has a potential to drive advances in our understanding of human body ownership and agency by allowing novel manipulation and paradigms.

  8. Concurrent fNIRS-fMRI measurement to validate a method for separating deep and shallow fNIRS signals by using multidistance optodes

    PubMed Central

    Funane, Tsukasa; Sato, Hiroki; Yahata, Noriaki; Takizawa, Ryu; Nishimura, Yukika; Kinoshita, Akihide; Katura, Takusige; Atsumori, Hirokazu; Fukuda, Masato; Kasai, Kiyoto; Koizumi, Hideaki; Kiguchi, Masashi

    2015-01-01

    Abstract. It has been reported that a functional near-infrared spectroscopy (fNIRS) signal can be contaminated by extracerebral contributions. Many algorithms using multidistance separations to address this issue have been proposed, but their spatial separation performance has rarely been validated with simultaneous measurements of fNIRS and functional magnetic resonance imaging (fMRI). We previously proposed a method for discriminating between deep and shallow contributions in fNIRS signals, referred to as the multidistance independent component analysis (MD-ICA) method. In this study, to validate the MD-ICA method from the spatial aspect, multidistance fNIRS, fMRI, and laser-Doppler-flowmetry signals were simultaneously obtained for 12 healthy adult males during three tasks. The fNIRS signal was separated into deep and shallow signals by using the MD-ICA method, and the correlation between the waveforms of the separated fNIRS signals and the gray matter blood oxygenation level–dependent signals was analyzed. A three-way analysis of variance (signal depth×Hb kind×task) indicated that the main effect of fNIRS signal depth on the correlation is significant [F(1,1286)=5.34, p<0.05]. This result indicates that the MD-ICA method successfully separates fNIRS signals into spatially deep and shallow signals, and the accuracy and reliability of the fNIRS signal will be improved with the method. PMID:26157983

  9. Fast numerical design of spatial-selective rf pulses in MRI using Krotov and quasi-Newton based optimal control methods.

    PubMed

    Vinding, Mads S; Maximov, Ivan I; Tošner, Zdenĕk; Nielsen, Niels Chr

    2012-08-07

    The use of increasingly strong magnetic fields in magnetic resonance imaging (MRI) improves sensitivity, susceptibility contrast, and spatial or spectral resolution for functional and localized spectroscopic imaging applications. However, along with these benefits come the challenges of increasing static field (B(0)) and rf field (B(1)) inhomogeneities induced by radial field susceptibility differences and poorer dielectric properties of objects in the scanner. Increasing fields also impose the need for rf irradiation at higher frequencies which may lead to elevated patient energy absorption, eventually posing a safety risk. These reasons have motivated the use of multidimensional rf pulses and parallel rf transmission, and their combination with tailoring of rf pulses for fast and low-power rf performance. For the latter application, analytical and approximate solutions are well-established in linear regimes, however, with increasing nonlinearities and constraints on the rf pulses, numerical iterative methods become attractive. Among such procedures, optimal control methods have recently demonstrated great potential. Here, we present a Krotov-based optimal control approach which as compared to earlier approaches provides very fast, monotonic convergence even without educated initial guesses. This is essential for in vivo MRI applications. The method is compared to a second-order gradient ascent method relying on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method, and a hybrid scheme Krotov-BFGS is also introduced in this study. These optimal control approaches are demonstrated by the design of a 2D spatial selective rf pulse exciting the letters "JCP" in a water phantom.

  10. Infarct density distribution by MRI in the porcine model of acute and chronic myocardial infarction as a potential method transferable to the clinic.

    PubMed

    Varga-Szemes, Akos; Simor, Tamas; Lenkey, Zsofia; van der Geest, Rob J; Kirschner, Robert; Toth, Levente; Brott, Brigitta C; Elgavish, Ada; Elgavish, Gabriel A

    2014-06-01

    To study the feasibility of a myocardial infarct (MI) quantification method [signal intensity-based percent infarct mapping (SI-PIM)] that is able to evaluate not only the size, but also the density distribution of the MI. In 14 male swine, MI was generated by 90 min of closed-chest balloon occlusion followed by reperfusion. Seven (n = 7) or 56 (n = 7) days after reperfusion, Gd-DTPA-bolus and continuous-infusion enhanced late gadolinium enhancement (LGE) MRI, and R1-mapping were carried out and post mortem triphenyl-tetrazolium-chloride (TTC) staining was performed. MI was quantified using binary [2 or 5 standard deviation (SD)], SI-PIM and R1-PIM methods. Infarct fraction (IF), and infarct-involved voxel fraction (IIVF) were determined by each MRI method. Bias of each method was compared to the TTC technique. The accuracy of MI quantification did not depend on the method of contrast administration or the age of the MI. IFs obtained by either of the two PIM methods were statistically not different from the IFs derived from the TTC measurements at either MI age. IFs obtained from the binary 2SD method overestimated IF obtained from TTC. IIVF among the three different PIM methods did not vary, but with the binary methods the IIVF gradually decreased with increasing the threshold limit. The advantage of SI-PIM over the conventional binary method is the ability to represent not only IF but also the density distribution of the MI. Since the SI-PIM methods are based on a single LGE acquisition, the bolus-data-based SI-PIM method can effortlessly be incorporated into the clinical image post-processing procedure.

  11. TU-CD-BRA-04: Evaluation of An Atlas-Based Segmentation Method for Prostate and Peripheral Zone Regions On MRI

    SciTech Connect

    Nelson, AS; Piper, J; Curry, K; Swallen, A; Padgett, K; Pollack, A; Stoyanova, RS

    2015-06-15

    Purpose: Prostate MRI plays an important role in diagnosis, biopsy guidance, and therapy planning for prostate cancer. Prostate MRI contours can be used to aid in image fusion for ultrasound biopsy guidance and delivery of radiation. Our goal in this study is to evaluate an automatic atlas-based segmentation method for generating prostate and peripheral zone (PZ) contours on MRI. Methods: T2-weighted MRIs were acquired on 3T-Discovery MR750 System (GE, Milwaukee). The Volumes of Interest (VOIs): prostate and PZ were outlined by an expert radiation oncologist and used to create an atlas library for atlas-based segmentation. The atlas-segmentation accuracy was evaluated using a leave-one-out analysis. The method involved automatically finding the atlas subject that best matched the test subject followed by a normalized intensity-based free-form deformable registration of the atlas subject to the test subject. The prostate and PZ contours were transformed to the test subject using the same deformation. For each test subject the three best matches were used and the final contour was combined using Majority Vote. The atlas-segmentation process was fully automatic. Dice similarity coefficients (DSC) and mean Hausdorff values were used for comparison. Results: VOIs contours were available for 28 subjects. For the prostate, the atlas-based segmentation method resulted in an average DSC of 0.88+/−0.08 and a mean Hausdorff distance of 1.1+/−0.9mm. The number of patients (#) in DSC ranges are as follows: 0.60–0.69(1), 0.70–0.79(2), 0.80–0.89(13), >0.89(11). For the PZ, the average DSC was 0.72+/−0.17 and average Hausdorff of 0.9+/−0.9mm. The number of patients (#) in DSC ranges are as follows: <0.60(4), 0.60–0.69(6), 0.70–0.79(7), 0.80–0.89(9), >0.89(1). Conclusion: The MRI atlas-based segmentation method achieved good results for both the whole prostate and PZ compared to expert defined VOIs. The technique is fast, fully automatic, and has the potential

  12. Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer's disease.

    PubMed

    Khazaee, Ali; Ebrahimzadeh, Ata; Babajani-Feremi, Abbas

    2016-09-01

    The study of brain networks by resting-state functional magnetic resonance imaging (rs-fMRI) is a promising method for identifying patients with dementia from healthy controls (HC). Using graph theory, different aspects of the brain network can be efficiently characterized by calculating measures of integration and segregation. In this study, we combined a graph theoretical approach with advanced machine learning methods to study the brain network in 89 patients with mild cognitive impairment (MCI), 34 patients with Alzheimer's disease (AD), and 45 age-matched HC. The rs-fMRI connectivity matrix was constructed using a brain parcellation based on a 264 putative functional areas. Using the optimal features extracted from the graph measures, we were able to accurately classify three groups (i.e., HC, MCI, and AD) with accuracy of 88.4 %. We also investigated performance of our proposed method for a binary classification of a group (e.g., MCI) from two other groups (e.g., HC and AD). The classification accuracies for identifying HC from AD and MCI, AD from HC and MCI, and MCI from HC and AD, were 87.3, 97.5, and 72.0 %, respectively. In addition, results based on the parcellation of 264 regions were compared to that of the automated anatomical labeling atlas (AAL), consisted of 90 regions. The accuracy of classification of three groups using AAL was degraded to 83.2 %. Our results show that combining the graph measures with the machine learning approach, on the basis of the rs-fMRI connectivity analysis, may assist in diagnosis of AD and MCI.

  13. Development and application of methods to quantify spatial and temporal hyperpolarized 3He MRI ventilation dynamics: preliminary results in chronic obstructive pulmonary disease

    NASA Astrophysics Data System (ADS)

    Kirby, Miranda; Wheatley, Andrew; McCormack, David G.; Parraga, Grace

    2010-03-01

    Hyperpolarized helium-3 (3He) magnetic resonance imaging (MRI) has emerged as a non-invasive research method for quantifying lung structural and functional changes, enabling direct visualization in vivo at high spatial and temporal resolution. Here we described the development of methods for quantifying ventilation dynamics in response to salbutamol in Chronic Obstructive Pulmonary Disease (COPD). Whole body 3.0 Tesla Excite 12.0 MRI system was used to obtain multi-slice coronal images acquired immediately after subjects inhaled hyperpolarized 3He gas. Ventilated volume (VV), ventilation defect volume (VDV) and thoracic cavity volume (TCV) were recorded following segmentation of 3He and 1H images respectively, and used to calculate percent ventilated volume (PVV) and ventilation defect percent (VDP). Manual segmentation and Otsu thresholding were significantly correlated for VV (r=.82, p=.001), VDV (r=.87 p=.0002), PVV (r=.85, p=.0005), and VDP (r=.85, p=.0005). The level of agreement between these segmentation methods was also evaluated using Bland-Altman analysis and this showed that manual segmentation was consistently higher for VV (Mean=.22 L, SD=.05) and consistently lower for VDV (Mean=-.13, SD=.05) measurements than Otsu thresholding. To automate the quantification of newly ventilated pixels (NVp) post-bronchodilator, we used translation, rotation, and scaling transformations to register pre-and post-salbutamol images. There was a significant correlation between NVp and VDV (r=-.94 p=.005) and between percent newly ventilated pixels (PNVp) and VDP (r=- .89, p=.02), but not for VV or PVV. Evaluation of 3He MRI ventilation dynamics using Otsu thresholding and landmark-based image registration provides a way to regionally quantify functional changes in COPD subjects after treatment with beta-agonist bronchodilators, a common COPD and asthma therapy.

  14. A fuzzy integral method based on the ensemble of neural networks to analyze fMRI data for cognitive state classification across multiple subjects.

    PubMed

    Cacha, L A; Parida, S; Dehuri, S; Cho, S-B; Poznanski, R R

    2016-12-01

    The huge number of voxels in fMRI over time poses a major challenge to for effective analysis. Fast, accurate, and reliable classifiers are required for estimating the decoding accuracy of brain activities. Although machine-learning classifiers seem promising, individual classifiers have their own limitations. To address this limitation, the present paper proposes a method based on the ensemble of neural networks to analyze fMRI data for cognitive state classification for application across multiple subjects. Similarly, the fuzzy integral (FI) approach has been employed as an efficient tool for combining different classifiers. The FI approach led to the development of a classifiers ensemble technique that performs better than any of the single classifier by reducing the misclassification, the bias, and the variance. The proposed method successfully classified the different cognitive states for multiple subjects with high accuracy of classification. Comparison of the performance improvement, while applying ensemble neural networks method, vs. that of the individual neural network strongly points toward the usefulness of the proposed method.

  15. Automated fibroglandular tissue segmentation and volumetric density estimation in breast MRI using an atlas-aided fuzzy C-means method

    SciTech Connect

    Wu, Shandong; Weinstein, Susan P.; Conant, Emily F.; Kontos, Despina

    2013-12-15

    Purpose: Breast magnetic resonance imaging (MRI) plays an important role in the clinical management of breast cancer. Studies suggest that the relative amount of fibroglandular (i.e., dense) tissue in the breast as quantified in MR images can be predictive of the risk for developing breast cancer, especially for high-risk women. Automated segmentation of the fibroglandular tissue and volumetric density estimation in breast MRI could therefore be useful for breast cancer risk assessment. Methods: In this work the authors develop and validate a fully automated segmentation algorithm, namely, an atlas-aided fuzzy C-means (FCM-Atlas) method, to estimate the volumetric amount of fibroglandular tissue in breast MRI. The FCM-Atlas is a 2D segmentation method working on a slice-by-slice basis. FCM clustering is first applied to the intensity space of each 2D MR slice to produce an initial voxelwise likelihood map of fibroglandular tissue. Then a prior learned fibroglandular tissue likelihood atlas is incorporated to refine the initial FCM likelihood map to achieve enhanced segmentation, from which the absolute volume of the fibroglandular tissue (|FGT|) and the relative amount (i.e., percentage) of the |FGT| relative to the whole breast volume (FGT%) are computed. The authors' method is evaluated by a representative dataset of 60 3D bilateral breast MRI scans (120 breasts) that span the full breast density range of the American College of Radiology Breast Imaging Reporting and Data System. The automated segmentation is compared to manual segmentation obtained by two experienced breast imaging radiologists. Segmentation performance is assessed by linear regression, Pearson's correlation coefficients, Student's pairedt-test, and Dice's similarity coefficients (DSC). Results: The inter-reader correlation is 0.97 for FGT% and 0.95 for |FGT|. When compared to the average of the two readers’ manual segmentation, the proposed FCM-Atlas method achieves a correlation ofr = 0

  16. Integration of DCE-MRI and DW-MRI Quantitative Parameters for Breast Lesion Classification

    PubMed Central

    Fusco, Roberta; Sansone, Mario; Filice, Salvatore; Granata, Vincenza; Catalano, Orlando; Amato, Daniela Maria; Di Bonito, Maurizio; D'Aiuto, Massimiliano; Capasso, Immacolata; Rinaldo, Massimo; Petrillo, Antonella

    2015-01-01

    Objective. The purpose of our study was to evaluate the diagnostic value of an imaging protocol combining dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted MRI (DW-MRI) in patients with suspicious breast lesions. Materials and Methods. A total of 31 breast lesions (15 malignant and 16 benign proved by histological examination) in 26 female patients were included in this study. For both DCE-MRI and DW-MRI model free and model based parameters were computed pixel by pixel on manually segmented ROIs. Statistical procedures included conventional linear analysis and more advanced techniques for classification of lesions in benign and malignant. Results. Our findings indicated no strong correlation between DCE-MRI and DW-MRI parameters. Results of classification analysis show that combining of DCE parameters or DW-MRI parameter, in comparison of single feature, does not yield a dramatic improvement of sensitivity and specificity of the two techniques alone. The best performance was obtained considering a full combination of all features. Moreover, the classification results combining all features are dominated by DCE-MRI features alone. Conclusion. The combination of DWI and DCE-MRI does not show a potential to dramatically increase the sensitivity and specificity of breast MRI. DCE-MRI alone gave the same performance as in combination with DW-MRI. PMID:26339597

  17. Anatomo-clinical overlapping maps (AnaCOM): a new method to create anatomo-functional maps from neuropsychological tests and structural MRI scan of subjects with brain lesions

    NASA Astrophysics Data System (ADS)

    Kinkingnehun, Serge R. J.; du Boisgueheneuc, Foucaud; Golmard, Jean-Louis; Zhang, Sandy X.; Levy, Richard; Dubois, Bruno

    2004-04-01

    We have developed a new technique to analyze correlations between brain anatomy and its neurological functions. The technique is based on the anatomic MRI of patients with brain lesions who are administered neuropsychological tests. Brain lesions of the MRI scans are first manually segmented. The MRI volumes are then normalized to a reference map, using the segmented area as a mask. After normalization, the brain lesions of the MRI are segmented again in order to redefine the border of the lesions in the context of the normalized brain. Once the MRI is segmented, the patient's score on the neuropsychological test is assigned to each voxel in the lesioned area, while the rest of the voxels of the image are set to 0. Subsequently, the individual patient's MRI images are superimposed, and each voxel is reassigned the average score of the patients who have a lesion at that voxel. A threshold is applied to remove regions having less than three overlaps. This process leads to an anatomo-functional map that links brain areas to functional loss. Other maps can be created to aid in analyzing the functional maps, such as one that indicates the 95% confidence interval of the averaged scores for each area. This anatomo-clinical overlapping map (AnaCOM) method was used to obtain functional maps from patients with lesions in the superior frontal gyrus. By finding particular subregions more responsible for a particular deficit, this method can generate new hypotheses to be tested by conventional group methods.

  18. A novel segmentation approach for implementation of MRAC in head PET/MRI employing Short-TE MRI and 2-point Dixon method in a fuzzy C-means framework

    NASA Astrophysics Data System (ADS)

    Khateri, Parisa; Rad, Hamidreza Saligheh; Jafari, Amir Homayoun; Ay, Mohammad Reza

    2014-01-01

    Quantitative PET image reconstruction requires an accurate map of attenuation coefficients of the tissue under investigation at 511 keV (μ-map), and in order to correct the emission data for attenuation. The use of MRI-based attenuation correction (MRAC) has recently received lots of attention in the scientific literature. One of the major difficulties facing MRAC has been observed in the areas where bone and air collide, e.g. ethmoidal sinuses in the head area. Bone is intrinsically not detectable by conventional MRI, making it difficult to distinguish air from bone. Therefore, development of more versatile MR sequences to label the bone structure, e.g. ultra-short echo-time (UTE) sequences, certainly plays a significant role in novel methodological developments. However, long acquisition time and complexity of UTE sequences limit its clinical applications. To overcome this problem, we developed a novel combination of Short-TE (ShTE) pulse sequence to detect bone signal with a 2-point Dixon technique for water-fat discrimination, along with a robust image segmentation method based on fuzzy clustering C-means (FCM) to segment the head area into four classes of air, bone, soft tissue and adipose tissue. The imaging protocol was set on a clinical 3 T Tim Trio and also 1.5 T Avanto (Siemens Medical Solution, Erlangen, Germany) employing a triple echo time pulse sequence in the head area. The acquisition parameters were as follows: TE1/TE2/TE3=0.98/4.925/6.155 ms, TR=8 ms, FA=25 on the 3 T system, and TE1/TE2/TE3=1.1/2.38/4.76 ms, TR=16 ms, FA=18 for the 1.5 T system. The second and third echo-times belonged to the Dixon decomposition to distinguish soft and adipose tissues. To quantify accuracy, sensitivity and specificity of the bone segmentation algorithm, resulting classes of MR-based segmented bone were compared with the manual segmented one by our expert neuro-radiologist. Results for both 3 T and 1.5 T systems show that bone segmentation applied in several

  19. MRI in ocular drug delivery

    PubMed Central

    Li, S. Kevin; Lizak, Martin J.; Jeong, Eun-Kee

    2008-01-01

    Conventional pharmacokinetic methods for studying ocular drug delivery are invasive and cannot be conveniently applied to humans. The advancement of MRI technology has provided new opportunities in ocular drug-delivery research. MRI provides a means to non-invasively and continuously monitor ocular drug-delivery systems with a contrast agent or compound labeled with a contrast agent. It is a useful technique in pharmacokinetic studies, evaluation of drug-delivery methods, and drug-delivery device testing. Although the current status of the technology presents some major challenges to pharmaceutical research using MRI, it has a lot of potential. In the past decade, MRI has been used to examine ocular drug delivery via the subconjunctival route, intravitreal injection, intrascleral injection to the suprachoroidal space, episcleral and intravitreal implants, periocular injections, and ocular iontophoresis. In this review, the advantages and limitations of MRI in the study of ocular drug delivery are discussed. Different MR contrast agents and MRI techniques for ocular drug-delivery research are compared. Ocular drug-delivery studies using MRI are reviewed. PMID:18186077

  20. Integrated speech enhancement for functional MRI environment.

    PubMed

    Pathak, Nishank; Milani, Ali A; Panahi, Issa; Briggs, Richard

    2009-01-01

    This paper presents an integrated speech enhancement (SE) method for the noisy MRI environment. We show that the performance of SE system improves considerably when the speech signal dominated by MRI acoustic noise at very low SNR is enhanced in two successive stages using two-channel SE methods followed by a single-channel post processing SE algorithm. Actual MRI noisy speech data are used in our experiments showing the improved performance of the proposed SE method.

  1. Improved operator agreement and efficiency using the minimum area contour change method for delineation of hyperintense multiple sclerosis lesions on FLAIR MRI

    PubMed Central

    2013-01-01

    Background Activity of disease in patients with multiple sclerosis (MS) is monitored by detecting and delineating hyper-intense lesions on MRI scans. The Minimum Area Contour Change (MACC) algorithm has been created with two main goals: a) to improve inter-operator agreement on outlining regions of interest (ROIs) and b) to automatically propagate longitudinal ROIs from the baseline scan to a follow-up scan. Methods The MACC algorithm first identifies an outer bound for the solution path, forms a high number of iso-contour curves based on equally spaced contour values, and then selects the best contour value to outline the lesion. The MACC software was tested on a set of 17 FLAIR MRI images evaluated by a pair of human experts and a longitudinal dataset of 12 pairs of T2-weighted Fluid Attenuated Inversion Recovery (FLAIR) images that had lesion analysis ROIs drawn by a single expert operator. Results In the tests where two human experts evaluated the same MRI images, the MACC program demonstrated that it could markedly reduce inter-operator outline error. In the longitudinal part of the study, the MACC program created ROIs on follow-up scans that were in close agreement to the original expert’s ROIs. Finally, in a post-hoc analysis of 424 follow-up scans 91% of propagated MACC were accepted by an expert and only 9% of the final accepted ROIS had to be created or edited by the expert. Conclusion When used with an expert operator's verification of automatically created ROIs, MACC can be used to improve inter- operator agreement and decrease analysis time, which should improve data collected and analyzed in multicenter clinical trials. PMID:24004511

  2. Fiber estimation and tractography in diffusion MRI: Development of simulated brain images and comparison of multi-fiber analysis methods at clinical b-values

    PubMed Central

    Wilkins, Bryce; Lee, Namgyun; Gajawelli, Niharika; Law, Meng; Leporé, Natasha

    2015-01-01

    Advances in diffusion-weighted magnetic resonance imaging (DW-MRI) have led to many alternative diffusion sampling strategies and analysis methodologies. A common objective among methods is estimation of white matter fiber orientations within each voxel, as doing so permits in-vivo fiber-tracking and the ability to study brain connectivity and networks. Knowledge of how DW-MRI sampling schemes affect fiber estimation accuracy, and consequently tractography and the ability to recover complex white-matter pathways, as well as differences between results due to choice of analysis method and which method(s) perform optimally for specific data sets, all remain important problems, especially as tractography-based studies become common. In this work we begin to address these concerns by developing sets of simulated diffusion-weighted brain images which we then use to quantitatively evaluate the performance of six DW-MRI analysis methods in terms of estimated fiber orientation accuracy, false-positive (spurious) and false-negative (missing) fiber rates, and fiber-tracking. The analysis methods studied are: 1) a two-compartment “ball and stick” model (BSM) (Behrens et al., 2003); 2) a non-negativity constrained spherical deconvolution (CSD) approach (Tournier et al., 2007); 3) analytical q-ball imaging (QBI) (Descoteaux et al., 2007); 4) q-ball imaging with Funk-Radon and Cosine Transform (FRACT) (Haldar and Leahy, 2013); 5) q-ball imaging within constant solid angle (CSA) (Aganj et al., 2010); and 6) a generalized Fourier transform approach known as generalized q-sampling imaging (GQI) (Yeh et al., 2010). We investigate these methods using 20, 30, 40, 60, 90 and 120 evenly distributed q-space samples of a single shell, and focus on a signal-to-noise ratio (SNR = 18) and diffusion-weighting (b = 1000 s/mm2) common to clinical studies. We found the BSM and CSD methods consistently yielded the least fiber orientation error and simultaneously greatest detection rate of

  3. Fiber estimation and tractography in diffusion MRI: development of simulated brain images and comparison of multi-fiber analysis methods at clinical b-values.

    PubMed

    Wilkins, Bryce; Lee, Namgyun; Gajawelli, Niharika; Law, Meng; Leporé, Natasha

    2015-04-01

    Advances in diffusion-weighted magnetic resonance imaging (DW-MRI) have led to many alternative diffusion sampling strategies and analysis methodologies. A common objective among methods is estimation of white matter fiber orientations within each voxel, as doing so permits in-vivo fiber-tracking and the ability to study brain connectivity and networks. Knowledge of how DW-MRI sampling schemes affect fiber estimation accuracy, tractography and the ability to recover complex white-matter pathways, differences between results due to choice of analysis method, and which method(s) perform optimally for specific data sets, all remain important problems, especially as tractography-based studies become common. In this work, we begin to address these concerns by developing sets of simulated diffusion-weighted brain images which we then use to quantitatively evaluate the performance of six DW-MRI analysis methods in terms of estimated fiber orientation accuracy, false-positive (spurious) and false-negative (missing) fiber rates, and fiber-tracking. The analysis methods studied are: 1) a two-compartment "ball and stick" model (BSM) (Behrens et al., 2003); 2) a non-negativity constrained spherical deconvolution (CSD) approach (Tournier et al., 2007); 3) analytical q-ball imaging (QBI) (Descoteaux et al., 2007); 4) q-ball imaging with Funk-Radon and Cosine Transform (FRACT) (Haldar and Leahy, 2013); 5) q-ball imaging within constant solid angle (CSA) (Aganj et al., 2010); and 6) a generalized Fourier transform approach known as generalized q-sampling imaging (GQI) (Yeh et al., 2010). We investigate these methods using 20, 30, 40, 60, 90 and 120 evenly distributed q-space samples of a single shell, and focus on a signal-to-noise ratio (SNR = 18) and diffusion-weighting (b = 1000 s/mm(2)) common to clinical studies. We found that the BSM and CSD methods consistently yielded the least fiber orientation error and simultaneously greatest detection rate of fibers. Fiber detection

  4. MRI of plants and foods.

    PubMed

    Van As, Henk; van Duynhoven, John

    2013-04-01

    The importance and prospects for MRI as applied to intact plants and to foods are presented in view of one of humanity's most pressing concerns, the sustainable and healthy feeding of a worldwide increasing population. Intact plants and foods have in common that their functionality is determined by complex multiple length scale architectures. Intact plants have an additional level of complexity since they are living systems which critically depend on transport and signalling processes between and within tissues and organs. The combination of recent cutting-edge technical advances and integration of MRI accessible parameters has the perspective to contribute to breakthroughs in understanding complex regulatory plant performance mechanisms. In food science and technology MRI allows for quantitative multi-length scale structural assessment of food systems, non-invasive monitoring of heat and mass transport during shelf-life and processing, and for a unique view on food properties under shear. These MRI applications are powerful enablers of rationally (re)designed food formulations and processes. Limitations and bottlenecks of the present plant and food MRI methods are mainly related to short T2 values and susceptibility artefacts originating from small air spaces in tissues/materials. We envisage cross-fertilisation of solutions to overcome these hurdles in MRI applications in plants and foods. For both application areas we witness a development where MRI is moving from highly specialised equipment to mobile and downscaled versions to be used by a broad user base in the field, greenhouse, food laboratory or factory.

  5. Power spectrum scale invariance quantifies limbic dysregulation in trait anxious adults using fMRI: adapting methods optimized for characterizing autonomic dysregulation to neural dynamic timeseries.

    PubMed Central

    Tolkunov, Denis; Rubin, Denis; Mujica-Parodi, LR

    2010-01-01

    In a well-regulated control system, excitatory and inhibitory components work closely together with minimum lag; in response to inputs of finite duration, outputs should show rapid rise and, following the input's termination, immediate return to baseline. The efficiency of this response can be quantified using the power spectrum density's scaling parameter β, a measure of self-similarity, applied to the first-derivative of the raw signal. In this study, we adapted power spectrum density methods, previously used to quantify autonomic dysregulation (heart rate variability), to neural time-series obtained via functional MRI. The negative feedback loop we investigated was the limbic system, using affect-valent faces as stimuli. We hypothesized that trait anxiety would be related to efficiency of regulation of limbic responses, as quantified by power law scaling of fMRI time series. Our results supported this hypothesis, showing moderate to strong correlations of β (r = 0.4–0.54) for the amygdala, orbitofrontal cortex, hippocampus, superior temporal gyrus, posterior insula, and anterior cingulate. Strong anticorrelations were also found between the amygdala's β and wake heart rate variability (r = −0.61), suggesting a robust relationship between dysregulated limbic outputs and their autonomic consequences. PMID:20025979

  6. MRI-aided tissues interface characterization: An accurate signal propagation time calculation method for UWB breast tumor imaging

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Xiao, Xia; Kikkawa, Takamaro

    2016-12-01

    Radar-based ultrawideband (UWB) microwave imaging is expected to be a safe, low-cost tool for breast cancer detection. However, since radar wave travels at different speeds in different tissues, propagation time is hard to be estimated in heterogeneous breast. Wrongly estimated propagation time leads to error of tumor location in resulting image, aka imaging error. In this paper, we develop a magnetic resonance imaging-aided (MRI-aided) propagation time calculation technique which is independent from radar imaging system but can help decrease the imaging error. The technique can eliminate the influence of the rough interface between fat layer and gland layer in breast and get relative accurate thicknesses of two layers. The propagation time in each layer is calculated and summed. The summed propagation time is used in Confocal imaging algorithm to increase the accuracy of resulting image. 25 patients' breast models with glands of varying size are classified into four categories for imaging simulation tests. Imaging accuracy in terms of tumor location along x-direction has been improved for 21 among 25 cases, as a result, overall around 50% improvement compared to conventional UWB imaging.

  7. MRI Biomarkers in Oncology Clinical Trials

    PubMed Central

    Abramson, Richard G.; Arlinghaus, Lori; Dula, Adrienne; Quarles, C. Chad; Stokes, Ashley; Weis, Jared; Whisenant, Jennifer; Chekmenev, Eduard Y.; Zhukov, Igor; Williams, Jason; Yankeelov, Thomas

    2015-01-01

    Quantitative magnetic resonance imaging (MRI) techniques have the ability to quantitatively report various pathophysiological processes associated with cancer. These measures have been shown to provide complementary information to that typically obtained from standard morphologically based criteria (e.g., size) and, furthermore, have been shown to outperform sized based measures in certain applications. In this review, we discuss eight areas of quantitative MRI that are either currently employed in clinical trials, or are emerging as promising techniques for both diagnosing cancer as well as assessing—or even predicting—the response of cancer to various therapies. The currently employed methods include the response evaluation criteria in solid tumors (RECIST), dynamic susceptibility MRI (DSC-MRI), dynamic contrast enhanced MRI (DCE-MRI), and diffusion weighted imaging (DWI). The emerging techniques covered are chemical exchange saturation transfer MRI (CEST-MRI), elastography, hyperpolarized MRI, and multi-parameter MRI. After a brief introduction to each technique, we present a small number of illustrative applications before noting the existing limitations of each method and what must be done to move each to more routine clinical application. PMID:26613873

  8. A model-constrained Monte Carlo method for blind arterial input function estimation in dynamic contrast-enhanced MRI: I. Simulations.

    PubMed

    Schabel, Matthias C; Fluckiger, Jacob U; DiBella, Edward V R

    2010-08-21

    Widespread adoption of quantitative pharmacokinetic modeling methods in conjunction with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has led to increased recognition of the importance of obtaining accurate patient-specific arterial input function (AIF) measurements. Ideally, DCE-MRI studies use an AIF directly measured in an artery local to the tissue of interest, along with measured tissue concentration curves, to quantitatively determine pharmacokinetic parameters. However, the numerous technical and practical difficulties associated with AIF measurement have made the use of population-averaged AIF data a popular, if sub-optimal, alternative to AIF measurement. In this work, we present and characterize a new algorithm for determining the AIF solely from the measured tissue concentration curves. This Monte Carlo blind estimation (MCBE) algorithm estimates the AIF from the subsets of D concentration-time curves drawn from a larger pool of M candidate curves via nonlinear optimization, doing so for multiple (Q) subsets and statistically averaging these repeated estimates. The MCBE algorithm can be viewed as a generalization of previously published methods that employ clustering of concentration-time curves and only estimate the AIF once. Extensive computer simulations were performed over physiologically and experimentally realistic ranges of imaging and tissue parameters, and the impact of choosing different values of D and Q was investigated. We found the algorithm to be robust, computationally efficient and capable of accurately estimating the AIF even for relatively high noise levels, long sampling intervals and low diversity of tissue curves. With the incorporation of bootstrapping initialization, we further demonstrated the ability to blindly estimate AIFs that deviate substantially in shape from the population-averaged initial guess. Pharmacokinetic parameter estimates for K(trans), k(ep), v(p) and v(e) all showed relative biases and

  9. A New Method to Explore the Spectral Impact of the Piriform Fossae on the Singing Voice: Benchmarking Using MRI-Based 3D-Printed Vocal Tracts

    PubMed Central

    Delvaux, Bertrand; Howard, David

    2014-01-01

    The piriform fossae are the 2 pear-shaped cavities lateral to the laryngeal vestibule at the lower end of the vocal tract. They act acoustically as side-branches to the main tract, resulting in a spectral zero in the output of the human voice. This study investigates their spectral role by comparing numerical and experimental results of MRI-based 3D printed Vocal Tracts, for which a new experimental method (based on room acoustics) is introduced. The findings support results in the literature: the piriform fossae create a spectral trough in the region 4–5 kHz and act as formants repellents. Moreover, this study extends those results by demonstrating numerically and perceptually the impact of having large piriform fossae on the sung output. PMID:25048199

  10. A new method to explore the spectral impact of the piriform fossae on the singing voice: benchmarking using MRI-based 3D-printed vocal tracts.

    PubMed

    Delvaux, Bertrand; Howard, David

    2014-01-01

    The piriform fossae are the 2 pear-shaped cavities lateral to the laryngeal vestibule at the lower end of the vocal tract. They act acoustically as side-branches to the main tract, resulting in a spectral zero in the output of the human voice. This study investigates their spectral role by comparing numerical and experimental results of MRI-based 3D printed Vocal Tracts, for which a new experimental method (based on room acoustics) is introduced. The findings support results in the literature: the piriform fossae create a spectral trough in the region 4-5 kHz and act as formants repellents. Moreover, this study extends those results by demonstrating numerically and perceptually the impact of having large piriform fossae on the sung output.

  11. Calculation of susceptibility through multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI.

    PubMed

    Liu, Tian; Spincemaille, Pascal; de Rochefort, Ludovic; Kressler, Bryan; Wang, Yi

    2009-01-01

    Magnetic susceptibility differs among tissues based on their contents of iron, calcium, contrast agent, and other molecular compositions. Susceptibility modifies the magnetic field detected in the MR signal phase. The determination of an arbitrary susceptibility distribution from the induced field shifts is a challenging, ill-posed inverse problem. A method called "calculation of susceptibility through multiple orientation sampling" (COSMOS) is proposed to stabilize this inverse problem. The field created by the susceptibility distribution is sampled at multiple orientations with respect to the polarization field, B(0), and the susceptibility map is reconstructed by weighted linear least squares to account for field noise and the signal void region. Numerical simulations and phantom and in vitro imaging validations demonstrated that COSMOS is a stable and precise approach to quantify a susceptibility distribution using MRI.

  12. [Recent advances in newborn MRI].

    PubMed

    Morel, B; Hornoy, P; Husson, B; Bloch, I; Adamsbaum, C

    2014-07-01

    The accurate morphological exploration of the brain is a major challenge in neonatology that advances in magnetic resonance imaging (MRI) can now provide. MRI is the gold standard if an hypoxic ischemic pathology is suspected in a full term neonate. In prematures, the specific role of MRI remains to be defined, secondary to US in any case. We present a state of the art of hardware and software technical developments in MRI. The increase in magnetic field strength (3 tesla) and the emergence of new MRI sequences provide access to new information. They both have positive and negative consequences on the daily clinical data acquisition use. The semiology of brain imaging in full term newborns and prematures is more extensive and complex and thereby more difficult to interpret. The segmentation of different brain structures in the newborn, even very premature, is now available. It is now possible to dissociate the cortex and basal ganglia from the cerebral white matter, to calculate the volume of anatomical structures, which improves the morphometric quantification and the understanding of the normal and abnormal brain development. MRI is a powerful tool to analyze the neonatal brain. The relevance of the diagnostic contribution requires an adaptation of the parameters of the sequences to acquire and of the image processing methods.

  13. Quantitative validation of a nonlinear histology-MRI coregistration method using Generalized Q-sampling Imaging in complex human cortical white matter.

    PubMed

    Gangolli, Mihika; Holleran, Laurena; Hee Kim, Joong; Stein, Thor D; Alvarez, Victor; McKee, Ann C; Brody, David L

    2017-03-29

    Advanced diffusion MRI methods have recently been proposed for detection of pathologies such as traumatic axonal injury and chronic traumatic encephalopathy which commonly affect complex cortical brain regions. However, radiological-pathological correlations in human brain tissue that detail the relationship between the multi-component diffusion signal and underlying pathology are lacking. We present a nonlinear voxel based two dimensional coregistration method that is useful for matching diffusion signals to quantitative metrics of high resolution histological images. When validated in ex vivo human cortical tissue at a 250 × 250 x 500 μm spatial resolution, the method proved robust in correlations between generalized q-sampling imaging and histologically based white matter fiber orientations, with r = 0.94 for the primary fiber direction and r = 0.88 for secondary fiber direction in each voxel. Importantly, however, the correlation was substantially worse with reduced spatial resolution or with fiber orientations derived using a diffusion tensor model. Furthermore, we have detailed a quantitative histological metric of white matter fiber integrity termed power coherence capable of distinguishing between architecturally complex but intact white matter from disrupted white matter regions. These methods may allow for more sensitive and specific radiological-pathological correlations of neurodegenerative diseases affecting complex gray and white matter.

  14. MRI EVALUATION OF KNEE CARTILAGE

    PubMed Central

    Rodrigues, Marcelo Bordalo; Camanho, Gilberto Luís

    2015-01-01

    Through the ability of magnetic resonance imaging (MRI) to characterize soft tissue noninvasively, it has become an excellent method for evaluating cartilage. The development of new and faster methods allowed increased resolution and contrast in evaluating chondral structure, with greater diagnostic accuracy. In addition, physiological techniques for cartilage assessment that can detect early changes before the appearance of cracks and erosion have been developed. In this updating article, the various techniques for chondral assessment using knee MRI will be discussed and demonstrated. PMID:27022562

  15. A model-constrained Monte Carlo method for blind arterial input function estimation in dynamic contrast-enhanced MRI: II. In vivo results

    NASA Astrophysics Data System (ADS)

    Schabel, Matthias C.; DiBella, Edward V. R.; Jensen, Randy L.; Salzman, Karen L.

    2010-08-01

    Accurate quantification of pharmacokinetic model parameters in tracer kinetic imaging experiments requires correspondingly accurate determination of the arterial input function (AIF). Despite significant effort expended on methods of directly measuring patient-specific AIFs in modalities as diverse as dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), dynamic positron emission tomography (PET), and perfusion computed tomography (CT), fundamental and technical difficulties have made consistent and reliable achievement of that goal elusive. Here, we validate a new algorithm for AIF determination, the Monte Carlo blind estimation (MCBE) method (which is described in detail and characterized by extensive simulations in a companion paper), by comparing AIFs measured in DCE-MRI studies of eight brain tumor patients with results of blind estimation. Blind AIFs calculated with the MCBE method using a pool of concentration-time curves from a region of normal brain tissue were found to be quite similar to the measured AIFs, with statistically significant decreases in fit residuals observed in six of eight patients. Biases between the blind and measured pharmacokinetic parameters were the dominant source of error. Averaged over all eight patients, the mean biases were +7% in K trans, 0% in kep, -11% in vp and +10% in ve. Corresponding uncertainties (median absolute deviation from the best fit line) were 0.0043 min-1 in K trans, 0.0491 min-1 in kep, 0.29% in vp and 0.45% in ve. The use of a published population-averaged AIF resulted in larger mean biases in three of the four parameters (-23% in K trans, -22% in kep, -63% in vp), with the bias in ve unchanged, and led to larger uncertainties in all four parameters (0.0083 min-1 in K trans, 0.1038 min-1 in kep, 0.31% in vp and 0.95% in ve). When blind AIFs were calculated from a region of tumor tissue, statistically significant decreases in fit residuals were observed in all eight patients despite larger

  16. Cyclic generalized projection MRI.

    PubMed

    Sarty, Gordon E

    2015-04-01

    Progress in the development of portable MRI hinges on the ability to use lightweight magnets that have non-uniform magnetic fields. An image encoding method and mathematical procedure for recovering the image from the NMR signal from non-uniform magnets with closed isomagnetic contours is given. Individual frequencies in an NMR signal from an object in a non-uniform magnetic field give rise to integrals of the object along contours of constant magnetic field: generalized projections. With closed isomagnetic field contours a simple, cyclic, direct reconstruction of the image from the generalized projections is possible when the magnet and RF transmit coil are held fixed relative to the imaged object while the RF receive coil moves. Numerical simulations, using the Shepp and Logan mathematical phantom, were completed to show that the mathematical method works and to illustrate numerical limitations. The method is numerically verified and exact reconstruction demonstrated for discrete mathematical image phantoms. Correct knowledge of the RF receive field is necessary or severe image distortions will result. The cyclic mathematical reconstruction method presented here will be useful for portable MRI schemes that use non-uniform magnets with closed isomagnetic contours along with mechanically or electronically moving the RF receive coils.

  17. A comparison of MRI tissue relaxometry and ROI methods used to determine regional brain iron concentrations in restless legs syndrome

    PubMed Central

    Moon, Hye-Jin; Chang, Yongmin; Lee, Yeong Seon; Song, Huijin; Chang, Hyuk Won; Ku, Jeonghun; Allen, Richard P; Earley, Christopher J; Cho, Yong Won

    2015-01-01

    Purpose Magnetic resonance imaging relaxometry studies differed on the relaxometry methods and their approaches to determining the regions of interest (ROIs) in restless legs syndrome (RLS) patients. These differences could account for the variable and inconsistent results found across these studies. The aim of this study was to assess the relationship between the different relaxometry methods and different ROI approaches using each of these methods on a single population of controls and RLS subjects. Methods A 3.0-T magnetic resonance imaging with the gradient-echo sampling of free induction decay and echo pulse sequence was used. The regional brain “iron concentrations” were determined using three relaxometry metrics (R2, R2*, and R2′) through two different ROI methods. The substantia nigra (SN) was the primary ROI with red nucleus, caudate, putamen, and globus pallidus as the secondary ROIs. Results Thirty-seven RLS patients and 40 controls were enrolled. The iron concentration as determined by R2 did not correlate with either of the other two methods, while R2* and R2′ showed strong correlations, particularly for the substantia nigra and red nucleus. In the fixed-shape ROI method, the RLS group showed a lower iron index compared to the control group in the substantia nigra and several other regions. With the semi-automated ROI method, however, only the red nucleus showed a significant difference between the two groups. Conclusion Both the relaxometry and ROI determination methods significantly influenced the outcome of studies that used these methods to estimate regional brain iron concentrations. PMID:26257527

  18. Estimating Motion From MRI Data

    PubMed Central

    OZTURK, CENGIZHAN; DERBYSHIRE, J. ANDREW; MCVEIGH, ELLIOT R.

    2007-01-01

    Invited Paper Magnetic resonance imaging (MRI) is an ideal imaging modality to measure blood flow and tissue motion. It provides excellent contrast between soft tissues, and images can be acquired at positions and orientations freely defined by the user. From a temporal sequence of MR images, boundaries and edges of tissues can be tracked by image processing techniques. Additionally, MRI permits the source of the image signal to be manipulated. For example, temporary magnetic tags displaying a pattern of variable brightness may be placed in the object using MR saturation techniques, giving the user a known pattern to detect for motion tracking. The MRI signal is a modulated complex quantity, being derived from a rotating magnetic field in the form of an induced current. Well-defined patterns can also be introduced into the phase of the magnetization, and could be thought of as generalized tags. If the phase of each pixel is preserved during image reconstruction, relative phase shifts can be used to directly encode displacement, velocity and acceleration. New methods for modeling motion fields from MRI have now found application in cardiovascular and other soft tissue imaging. In this review, we shall describe the methods used for encoding, imaging, and modeling motion fields with MRI. PMID:18958181

  19. [Anatomic variants of Meckel's cave on MRI].

    PubMed

    Benoudiba, F; Hadj-Rabia, M; Iffenecker, C; Fuerxer, F; Bekkali, F; Francke, J P; Doyon, D

    1998-10-01

    Magnetic resonance imaging (MRI) gives an accurate analysis of Meckel's cave variability. Images were acquired in 50 patients with several sections for anatomical comparison. Using several sections, MRI is a suitable method for better analysis of the trigeminal cistern. The most frequent findings are symmetrical trigeminal cisterns. Expansion of Meckel's cave or its disappearance has pathological significance.

  20. Dynamic keyhole: A novel method to improve MR images in the presence of respiratory motion for real-time MRI

    SciTech Connect

    Lee, Danny; Pollock, Sean; Whelan, Brendan; Keall, Paul; Kim, Taeho

    2014-07-15

    Purpose: In this work, the authors present a novel magnetic resonance imaging reconstruction method to improve the quality of MR images in the presence of respiratory motion for real-time thoracic image-guided radiotherapy. Methods: This new reconstruction method is called dynamic keyhole and utilizes a library of previously acquired, peripheral k-space datasets from the same (or similar) respiratory state in conjunction with central k-space datasets acquired in real-time. Internal or external respiratory signals are utilized to sort, match, and combine the two separate peripheral and central k-space datasets with respect to respiratory displacement, thereby reducing acquisition time and improving image quality without respiratory-related artifacts. In this study, the dynamic keyhole, conventional keyhole, and zero-filling methods were compared to full k-space acquisition (ground truth) for 60 coronal datasets acquired from 15 healthy human subjects. Results: For the same image-quality difference from the ground-truth image, the dynamic keyhole method reused 79% of the prior peripheral phase-encoding lines, while the conventional keyhole reused 73% and zero-filling 63% (p-value < 0.0001), corresponding to faster acquisition speed of dynamic keyhole for real-time imaging applications. Conclusions: This study demonstrates that the dynamic keyhole method is a promising technique for clinical applications such as image-guided radiotherapy requiring real-time MR monitoring of the thoracic region. Based on the results from this study, the dynamic keyhole method could increase the temporal resolution by a factor of five compared with full k-space methods.

  1. Sinus MRI scan

    MedlinePlus

    ... sinuses. The test is noninvasive. MRI uses powerful magnets and radio waves instead of radiation. Signals from ... in the eyes. Because the MRI contains a magnet, metal-containing objects such as pens, pocketknives, and ...

  2. Arm MRI scan

    MedlinePlus

    ... arm MRI (magnetic resonance imaging) scan uses strong magnets to create pictures of the upper and lower ... in your eyes) Because the MRI contains strong magnets, metal objects are not allowed into the room ...

  3. MRI Safety during Pregnancy

    MedlinePlus

    ... 20 to 40 minutes. top of page Contrast material For some MRI exams, a contrast material called gadolinium will need to be injected into a vein in the arm. While contrast material sometimes improves the MRI images, during pregnancy the ...

  4. Maximum entropy spherical deconvolution for diffusion MRI.

    PubMed

    Alexander, Daniel C

    2005-01-01

    This paper proposes a maximum entropy method for spherical deconvolution. Spherical deconvolution arises in various inverse problems. This paper uses the method to reconstruct the distribution of microstructural fibre orientations from diffusion MRI measurements. Analysis shows that the PASMRI algorithm, one of the most accurate diffusion MRI reconstruction algorithms in the literature, is a special case of the maximum entropy spherical deconvolution. Experiments compare the new method to linear spherical deconvolution, used previously in diffusion MRI, and to the PASMRI algorithm. The new method compares favourably both in simulation and on standard brain-scan data.

  5. 3D Segmentation with an application of level set-method using MRI volumes for image guided surgery.

    PubMed

    Bosnjak, A; Montilla, G; Villegas, R; Jara, I

    2007-01-01

    This paper proposes an innovation in the application for image guided surgery using a comparative study of three different method of segmentation. This segmentation method is faster than the manual segmentation of images, with the advantage that it allows to use the same patient as anatomical reference, which has more precision than a generic atlas. This new methodology for 3D information extraction is based on a processing chain structured of the following modules: 1) 3D Filtering: the purpose is to preserve the contours of the structures and to smooth the homogeneous areas; several filters were tested and finally an anisotropic diffusion filter was used. 2) 3D Segmentation. This module compares three different methods: Region growing Algorithm, Cubic spline hand assisted, and Level Set Method. It then proposes a Level Set-based on the front propagation method that allows the making of the reconstruction of the internal walls of the anatomical structures of the brain. 3) 3D visualization. The new contribution of this work consists on the visualization of the segmented model and its use in the pre-surgery planning.

  6. Technical aspects and evaluation methodology for the application of two automated brain MRI tumor segmentation methods in radiation therapy planning.

    PubMed

    Beyer, Gloria P; Velthuizen, Robert P; Murtagh, F Reed; Pearlman, James L

    2006-11-01

    The purpose of this study was to design the steps necessary to create a tumor volume outline from the results of two automated multispectral magnetic resonance imaging segmentation methods and integrate these contours into radiation therapy treatment planning. Algorithms were developed to create a closed, smooth contour that encompassed the tumor pixels resulting from two automated segmentation methods: k-nearest neighbors and knowledge guided. These included an automatic three-dimensional (3D) expansion of the results to compensate for their undersegmentation and match the extended contouring technique used in practice by radiation oncologists. Each resulting radiation treatment plan generated from the automated segmentation and from the outlining by two radiation oncologists for 11 brain tumor patients was compared against the volume and treatment plan from an expert radiation oncologist who served as the control. As part of this analysis, a quantitative and qualitative evaluation mechanism was developed to aid in this comparison. It was found that the expert physician reference volume was irradiated within the same level of conformity when using the plans generated from the contours of the segmentation methods. In addition, any uncertainty in the identification of the actual gross tumor volume by the segmentation methods, as identified by previous research into this area, had small effects when used to generate 3D radiation therapy treatment planning due to the averaging process in the generation of margins used in defining a planning target volume.

  7. Validation of White-Matter Lesion Change Detection Methods on a Novel Publicly Available MRI Image Database.

    PubMed

    Lesjak, Žiga; Pernuš, Franjo; Likar, Boštjan; Špiclin, Žiga

    2016-10-01

    Changes of white-matter lesions (WMLs) are good predictors of the progression of neurodegenerative diseases like multiple sclerosis (MS). Based on longitudinal magnetic resonance (MR) imaging the changes can be monitored, while the need for their accurate and reliable quantification led to the development of several automated MR image analysis methods. However, an objective comparison of the methods is difficult, because publicly unavailable validation datasets with ground truth and different sets of performance metrics were used. In this study, we acquired longitudinal MR datasets of 20 MS patients, in which brain regions were extracted, spatially aligned and intensity normalized. Two expert raters then delineated and jointly revised the WML changes on subtracted baseline and follow-up MR images to obtain ground truth WML segmentations. The main contribution of this paper is an objective, quantitative and systematic evaluation of two unsupervised and one supervised intensity based change detection method on the publicly available datasets with ground truth segmentations, using common pre- and post-processing steps and common evaluation metrics. Besides, different combinations of the two main steps of the studied change detection methods, i.e. dissimilarity map construction and its segmentation, were tested to identify the best performing combination.

  8. A comparison between MRI, sonography and Functional Independence Score in Haemophilia methods in diagnosis, evaluation and classification of arthropathy in severe haemophilia A and B.

    PubMed

    Tasbihi, Mandana; Pishdad, Parisa; Haghpanah, Sezaneh; Ardeshiri, Rezvan; Tavoosi, Hakimeh; Karimi, Mehran

    2016-03-01

    Evaluation of joints in children with haemophilia is important in detecting abnormalities, staging their severity and following the effects of treatment. The aim of this study is to evaluate the correlation of FISH score (Functional Independence Score in Haemophilia) with the scores obtained by MRI and sonography for the diagnosis, evaluation and classification of arthropathy in severe haemophilia. In this cross-sectional study on 25 severe haemophilia patients, FISH, MRI and sonography procedures were performed in the elbow or knee joint. All patients' information, including age, type of haemophilia, affected joint, scores of MRI, sonography and FISH, dose of factor consumed, weight and prophylaxis protocol were collected and analysed. Among the 25 patients (age range of 11-70 years), 22 patients were haemophilia A and three patients were haemophilia B. Affected joints were right knee in 12 patients, left knee in nine and right elbow in four. There was only a statistically significant negative correlation between FISH and MRI Additive (A) scale (rs = -0.537, P = 0.006). Considering cartilage loss domain (related MRI A scale: 13-20), 20 patients (80%) were classified in this group with FISH scores ranged from 17 to 22. On the basis of our results, FISH scores in severe haemophilia patients were negatively correlated with MRI A scale. Also, it seems that a FISH score less than 22 could be considered as loss of cartilage; however, due to the small number of our patients, it needs further assessment in different populations.

  9. Perfusion MRI: The Five Most Frequently Asked Clinical Questions

    PubMed Central

    Essig, Marco; Nguyen, Thanh Binh; Shiroishi, Mark S.; Saake, Marc; Provenzale, James M.; Enterline, David S.; Anzalone, Nicoletta; Dörfler, Arnd; Rovira, Àlex; Wintermark, Max; Law, Meng

    2013-01-01

    OBJECTIVE This article addresses questions that radiologists frequently ask when planning, performing, processing, and interpreting MRI perfusion studies in CNS imaging. CONCLUSION Perfusion MRI is a promising tool in assessing stroke, brain tumors, and neurodegenerative diseases. Most of the impediments that have limited the use of perfusion MRI can be overcome to allow integration of these methods into modern neuroimaging protocols. PMID:23971482

  10. An active contour-based atlas registration model applied to automatic subthalamic nucleus targeting on MRI: method and validation.

    PubMed

    Duay, Valérie; Bresson, Xavier; Castro, Javier Sanchez; Pollo, Claudio; Cuadra, Meritxell Bach; Thiran, Jean-Philippe

    2008-01-01

    This paper presents a new non parametric atlas registration framework, derived from the optical flow model and the active contour theory, applied to automatic subthalamic nucleus (STN) targeting in deep brain stimulation (DBS) surgery. In a previous work, we demonstrated that the STN position can be predicted based on the position of surrounding visible structures, namely the lateral and third ventricles. A STN targeting process can thus be obtained by registering these structures of interest between a brain atlas and the patient image. Here we aim to improve the results of the state of the art targeting methods and at the same time to reduce the computational time. Our simultaneous segmentation and registration model shows mean STN localization errors statistically similar to the most performing registration algorithms tested so far and to the targeting expert's variability. Moreover, the computational time of our registration method is much lower, which is a worthwhile improvement from a clinical point of view.

  11. Fetal MRI: A pictorial essay

    PubMed Central

    Rathee, Sapna; Joshi, Priscilla; Kelkar, Abhimanyu; Seth, Nagesh

    2016-01-01

    Ultrasonography (USG) is the primary method for antenatal fetal evaluation. However, fetal magnetic resonance imaging (MRI) has now become a valuable adjunct to USG in confirming/excluding suspected abnormalities and in the detection of additional abnormalities, thus changing the outcome of pregnancy and optimizing perinatal management. With the development of ultrafast sequences, fetal MRI has made remarkable progress in recent times. In this pictorial essay, we illustrate a spectrum of structural abnormalities affecting the central nervous system, thorax, genitourinary and gastrointestinal tract, as well as miscellaneous anomalies. Anomalies in twin gestations and placental abnormalities have also been included. PMID:27081224

  12. [MRI of the pineal gland].

    PubMed

    Langevad, Line; Madsen, Camilla Gøbel; Siebner, Hartwig; Garde, Ellen

    2014-11-10

    The pineal gland (CP) is located centrally in the brain and produces melatonin. Cysts and concrements are frequent findings on MRI but their significance is still unclear. The visualization of CP is difficult due to its location and surrounding structures and so far, no standardized method exists. New studies suggest a correlation between CP-morphology and melatonin secretion as well as a connection between melatonin, disturbed circadian rhythm, and the development of cancer and cardiovascular diseases, underlining the need for a standardized approach to CP on MRI.

  13. A novel method to decrease electric field and SAR using an external high dielectric sleeve at 3 T head MRI: numerical and experimental results.

    PubMed

    Park, Bu S; Rajan, Sunder S; Guag, Joshua W; Angelone, Leonardo M

    2015-04-01

    Materials with high dielectric constant (HDC) have been used in high field MRI to decrease specific absorption rate (SAR), increase magnetic field intensity, and increase signal-to-noise ratio. In previous studies, the HDC materials were placed inside the RF coil decreasing the space available. This study describes an alternative approach that considers an HDC-based sleeve placed outside the RF coil. The effects of an HDC on the electromagnetic (EM) field were studied using numerical simulations with a coil unloaded and loaded with a human head model. In addition, experimental EM measurements at 128 MHz were performed inside a custom-made head coil, fitted with a distilled water sleeve. The numerical simulations showed up to 40% decrease in maximum 10 g-avg. SAR on the surface of the head model with an HDC material of barium titanate. Experimental measurements also showed up to 20% decrease of maximum electric field using an HDC material of distilled water. The proposed method can be incorporated in the design of high field transmit RF coils.

  14. MRI endoscopy using intrinsically localized probes

    PubMed Central

    Sathyanarayana, Shashank; Bottomley, Paul A.

    2009-01-01

    Magnetic resonance imaging (MRI) is traditionally performed with fixed externally applied gradient magnetic fields and is hence intrinsically locked to the laboratory frame of reference (FoR). Here a method for high-resolution MRI that employs active, catheter-based, tiny internal probes that utilize the spatial properties of the probe itself for localization is proposed and demonstrated at 3 T. Because these properties are intrinsic to the probe, they move with it, transforming MRI from the laboratory FoR to the FoR of the device itself, analogous to an endoscope. The “MRI endoscope” can utilize loop coils and loopless antennas with modified sensitivity, in combination with adiabatic excitation by the device itself, to restrict the MRI sensitivity to a disk-shaped plane a few mm thick. Excitation with the MRI endoscope limits the eddy currents induced in the sample to an excited volume whose size is orders of magnitude below that excited by a conventional body MRI coil. Heat testing shows maximum local temperature increases of <1 °C during MRI, within regulatory guidelines. The method is demonstrated in a kiwifruit, in intact porcine and rabbit aortas, and in an atherosclerotic human iliac artery specimen, with in-plane resolution as small as 80 μm and 1.5–5 mm slice thickness. PMID:19378751

  15. 4D flow imaging with MRI

    PubMed Central

    Stankovic, Zoran; Allen, Bradley D.; Garcia, Julio; Jarvis, Kelly B.

    2014-01-01

    Magnetic resonance imaging (MRI) has become an important tool for the clinical evaluation of patients with cardiovascular disease. Since its introduction in the late 1980s, 2-dimensional phase contrast MRI (2D PC-MRI) has become a routine part of standard-of-care cardiac MRI for the assessment of regional blood flow in the heart and great vessels. More recently, time-resolved PC-MRI with velocity encoding along all three flow directions and three-dimensional (3D) anatomic coverage (also termed ‘4D flow MRI’) has been developed and applied for the evaluation of cardiovascular hemodynamics in multiple regions of the human body. 4D flow MRI allows for the comprehensive evaluation of complex blood flow patterns by 3D blood flow visualization and flexible retrospective quantification of flow parameters. Recent technical developments, including the utilization of advanced parallel imaging techniques such as k-t GRAPPA, have resulted in reasonable overall scan times, e.g., 8-12 minutes for 4D flow MRI of the aorta and 10-20 minutes for whole heart coverage. As a result, the application of 4D flow MRI in a clinical setting has become more feasible, as documented by an increased number of recent reports on the utility of the technique for the assessment of cardiac and vascular hemodynamics in patient studies. A number of studies have demonstrated the potential of 4D flow MRI to provide an improved assessment of hemodynamics which might aid in the diagnosis and therapeutic management of cardiovascular diseases. The purpose of this review is to describe the methods used for 4D flow MRI acquisition, post-processing and data analysis. In addition, the article provides an overview of the clinical applications of 4D flow MRI and includes a review of applications in the heart, thoracic aorta and hepatic system. PMID:24834414

  16. On the construction of a ground truth framework for evaluating voxel-based diffusion tensor MRI analysis methods.

    PubMed

    Van Hecke, Wim; Sijbers, Jan; De Backer, Steve; Poot, Dirk; Parizel, Paul M; Leemans, Alexander

    2009-07-01

    Although many studies are starting to use voxel-based analysis (VBA) methods to compare diffusion tensor images between healthy and diseased subjects, it has been demonstrated that VBA results depend heavily on parameter settings and implementation strategies, such as the applied coregistration technique, smoothing kernel width, statistical analysis, etc. In order to investigate the effect of different parameter settings and implementations on the accuracy and precision of the VBA results quantitatively, ground truth knowledge regarding the underlying microstructural alterations is required. To address the lack of such a gold standard, simulated diffusion tensor data sets are developed, which can model an array of anomalies in the diffusion properties of a predefined location. These data sets can be employed to evaluate the numerous parameters that characterize the pipeline of a VBA algorithm and to compare the accuracy, precision, and reproducibility of different post-processing approaches quantitatively. We are convinced that the use of these simulated data sets can improve the understanding of how different diffusion tensor image post-processing techniques affect the outcome of VBA. In turn, this may possibly lead to a more standardized and reliable evaluation of diffusion tensor data sets of large study groups with a wide range of white matter altering pathologies. The simulated DTI data sets will be made available online (http://www.dti.ua.ac.be).

  17. WE-B-BRD-00: MRI for Radiation Oncology

    SciTech Connect

    2015-06-15

    The use of MRI in radiation therapy is rapidly increasing. Applications vary from the MRI simulator, to the MRI fused with CT, and to the integrated MRI+RT system. Compared with the standard MRI QA, a broader scope of QA features has to be defined in order to maximize the benefits of using MRI in radiation therapy. These QA features include geometric fidelity, image registration, motion management, cross-system alignment, and hardware interference. Advanced MRI techniques require a specific type of QA, as they are being widely used in radiation therapy planning, dose calculations, post-implant dosimetry, and prognoses. A vigorous and adaptive QA program is crucial to defining the responsibility of the entire radiation therapy group and detecting deviations from the performance of high-quality treatment. As a drastic departure from CT simulation, MRI simulation requires changes in the work flow of treatment planning and image guidance. MRI guided radiotherapy platforms are being developed and commercialized to take the advantage of the advance in knowledge, technology and clinical experience. This symposium will from an educational perspective discuss the scope and specific issues related to MRI guided radiotherapy. Learning Objectives: Understand the difference between a standard and a radiotherapy-specific MRI QA program. Understand the effects of MRI artifacts (geometric distortion and motion) on radiotherapy. Understand advanced MRI techniques (ultrashort echo, fast MRI including dynamic MRI and 4DMRI, diffusion, perfusion, and MRS) and related QA. Understand the methods to prepare MRI for treatment planning (electron density assignment, multimodality image registration, segmentation and motion management). Current status of MRI guided treatment platforms. Dr. Jihong Wang has a research grant with Elekta-MRL project. Dr. Ke Sheng receives research grants from Varian Medical systems.

  18. Comparing different analysis methods for quantifying the MRI amide proton transfer (APT) effect in hyperacute stroke patients.

    PubMed

    Tee, Y K; Harston, G W J; Blockley, N; Okell, Thomas W; Levman, J; Sheerin, F; Cellerini, M; Jezzard, P; Kennedy, J; Payne, S J; Chappell, M A

    2014-09-01

    Amide proton transfer (APT) imaging is a pH mapping method based on the chemical exchange saturation transfer phenomenon that has potential for penumbra identification following stroke. The majority of the literature thus far has focused on generating pH-weighted contrast using magnetization transfer ratio asymmetry analysis instead of quantitative pH mapping. In this study, the widely used asymmetry analysis and a model-based analysis were both assessed on APT data collected from healthy subjects (n = 2) and hyperacute stroke patients (n = 6, median imaging time after onset = 2 hours 59 minutes). It was found that the model-based approach was able to quantify the APT effect with the lowest variation in grey and white matter (≤ 13.8 %) and the smallest average contrast between these two tissue types (3.48 %) in the healthy volunteers. The model-based approach also performed quantitatively better than the other measures in the hyperacute stroke patient APT data, where the quantified APT effect in the infarct core was consistently lower than in the contralateral normal appearing tissue for all the patients recruited, with the group average of the quantified APT effect being 1.5 ± 0.3 % (infarct core) and 1.9 ± 0.4 % (contralateral). Based on the fitted parameters from the model-based analysis and a previously published pH and amide proton exchange rate relationship, quantitative pH maps for hyperacute stroke patients were generated, for the first time, using APT imaging.

  19. Validation of Sodium MRI of Intervertebral Disc

    PubMed Central

    Wang, Chenyang; McArdle, Erin; Fenty, Matthew; Witschey, Walter; Elliott, Mark; Sochor, Matthew; Reddy, Ravinder; Borthakur, Arijitt

    2009-01-01

    Study Design This study demonstrated the diagnostic potential of sodium MRI for non-invasive quantification of PG in the intervertebral discs. Objective To determine the existence of a linear correlation between intervertebral disc [Na] measured from sodium MRI and [PG] measurement from DMMB assay. Summary of Background Data Previous studies have shown the possibility of quantifying [Na] in vivo using sodium MRI, however none has shown a direct linear correlation between [Na] measured from sodium MRI and [PG]. Methods 3D sodium MRI images of bovine discs were acquired and converted into [Na] maps. Samples were systematically removed from the discs for DMMB assay. The removal locations were photographically recorded and applied to the [Na] maps to extract the [Na] measurements for comparison. In vivo sodium MRI scans were also carried out on a pair of symptomatic and asymptomatic subjects. Results The linear regression fit of [Na] versus [PG] data yielded a significant linear correlation coefficient of 0.71. The in vivo sodium MRI image of the symptomatic subject showed significant [Na] decrease when compared to that of the asymptomatic subject. Conclusion Sodium MRI's specificity for PG in the intervertebral discs makes it a promising diagnostic tool for the earlier phase of disc degeneration. PMID:20147881

  20. Monodisperse magnetite (Fe3O4) nanoparticles modified with water soluble polymers for the diagnosis of breast cancer by MRI method

    NASA Astrophysics Data System (ADS)

    Rezayan, Ali Hossein; Mousavi, Majid; Kheirjou, Somayyeh; Amoabediny, Ghasem; Ardestani, Mehdi Shafiee; Mohammadnejad, Javad

    2016-12-01

    In this study, magnetic nanoparticles (MNPs) were synthesized via co-precipitation method. To enhance the biocompatibility and colloidal stability of the synthesized nanoparticles, they were modified with carboxyl functionalized PEG via dopamine (DPA) linker. Both modified and unmodified Fe3O4 nanoparticles exhibited super paramagnetic behavior (particle size below 20 nm). The saturation magnetization (Ms) of PEGdiacid-modified Fe3O4 was 45 emu/g, which was less than the unmodified Fe3O4 nanoparticles (70 emu/g). This difference indicated that PEGdiacid polymer was immobilized on the surface of Fe3O4 nanoparticles successfully. To evaluate the efficiency of the resulting nanoparticles as contrast agents for magnetic resonance imaging (MRI), different concentration of MNPs and different value of echo time TE were investigated. The results showed that by increasing the concentration of the nanoparticles, transverse relaxation time (T2) decreased, which subsequently resulted in MR signal enhancement. T2-weighted MR images of the different concentration of MNPs in different value of echo time TE indicated that MR signal intensity increased with increase in TE value up to 66 and then remained constant. The cytotoxicity effect of the modified and unmodified nanoparticles was evaluated in three different concentrations (12, 60 and 312 mg l-1) on MDA-MB-231 cancer cells for 24 and 48 h. In both tested time (24 and 48 h) for all three samples, the modified nanoparticles had long life time than unmodified nanoparticles. Cellular uptake of modified MNPs was 80% and reduced to 9% by the unmodified MNPs.

  1. Recent Advances in MRI of Articular Cartilage

    PubMed Central

    Gold, Garry E.; Chen, Christina A.; Koo, Seungbum; Hargreaves, Brian A.; Bangerter, Neal K.

    2010-01-01

    OBJECTIVE MRI is the most accurate noninvasive method available to diagnose disorders of articular cartilage. Conventional 2D and 3D approaches show changes in cartilage morphology. Faster 3D imaging methods with isotropic resolution can be reformatted into arbitrary planes for improved detection and visualization of pathology. Unique contrast mechanisms allow us to probe cartilage physiology and detect changes in cartilage macromolecules. CONCLUSION MRI has great promise as a noninvasive comprehensive tool for cartilage evaluation. PMID:19696274

  2. MRI visualisation by digitally reconstructed radiographs

    NASA Astrophysics Data System (ADS)

    Serrurier, Antoine; Bönsch, Andrea; Lau, Robert; Deserno, Thomas M.

    2015-03-01

    Visualising volumetric medical images such as computed tomography and magnetic resonance imaging (MRI) on picture archiving and communication systems (PACS) clients is often achieved by image browsing in sagittal, coronal or axial views or three-dimensional (3D) rendering. This latter technique requires fine thresholding for MRI. On the other hand, computing virtual radiograph images, also referred to as digitally reconstructed radiographs (DRR), provides in a single two-dimensional (2D) image a complete overview of the 3D data. It appears therefore as a powerful alternative for MRI visualisation and preview in PACS. This study describes a method to compute DRR from T1-weighted MRI. After segmentation of the background, a histogram distribution analysis is performed and each foreground MRI voxel is labeled as one of three tissues: cortical bone, also known as principal absorber of the X-rays, muscle and fat. An intensity level is attributed to each voxel according to the Hounsfield scale, linearly related to the X-ray attenuation coefficient. Each DRR pixel is computed as the accumulation of the new intensities of the MRI dataset along the corresponding X-ray. The method has been tested on 16 T1-weighted MRI sets. Anterior-posterior and lateral DRR have been computed with reasonable qualities and avoiding any manual tissue segmentations. This proof-of-concept holds for research application for use in clinical PACS.

  3. Influence of dental materials on dental MRI

    PubMed Central

    Tymofiyeva, O; Vaegler, S; Rottner, K; Boldt, J; Hopfgartner, AJ; Proff, PC; Richter, E-J; Jakob, PM

    2013-01-01

    Objectives: To investigate the potential influence of standard dental materials on dental MRI (dMRI) by estimating the magnetic susceptibility with the help of the MRI-based geometric distortion method and to classify the materials from the standpoint of dMRI. Methods: A series of standard dental materials was studied on a 1.5 T MRI system using spin echo and gradient echo pulse sequences and their magnetic susceptibility was estimated using the geometric method. Measurements on samples of dental materials were supported by in vivo examples obtained in dedicated dMRI procedures. Results: The tested materials showed a range of distortion degrees. The following materials were classified as fully compatible materials that can be present even in the tooth of interest: the resin-based sealer AH Plus® (Dentsply, Maillefer, Germany), glass ionomer cement, gutta-percha, zirconium dioxide and composites from one of the tested manufacturers. Interestingly, composites provided by the other manufacturer caused relatively strong distortions and were therefore classified as compatible I, along with amalgam, gold alloy, gold–ceramic crowns, titanium alloy and NiTi orthodontic wires. Materials, the magnetic susceptibility of which differed from that of water by more than 200 ppm, were classified as non-compatible materials that should not be present in the patient’s mouth for any dMRI applications. They included stainless steel orthodontic appliances and CoCr. Conclusions: A classification of the materials that complies with the standard grouping of materials according to their magnetic susceptibility was proposed and adopted for the purposes of dMRI. The proposed classification can serve as a guideline in future dMRI research. PMID:23610088

  4. Recommendations for Real-Time Speech MRI

    PubMed Central

    Lingala, Sajan Goud; Sutton, Brad P.; Miquel, Marc E.; Nayak, Krishna S.

    2016-01-01

    Real-time magnetic resonance imaging (RT-MRI) is being increasingly used for speech and vocal production research studies. Several imaging protocols have emerged based on advances in RT-MRI acquisition, reconstruction, and audio-processing methods. This review summarizes the state-of-the-art, discusses technical considerations, and provides specific guidance for new groups entering this field. We provide recommendations for performing RT-MRI of the upper airway. This is a consensus statement stemming from the ISMRM-endorsed Speech MRI summit held in Los Angeles, February 2014. A major unmet need identified at the summit was the need for consensus on protocols that can be easily adapted by researchers equipped with conventional MRI systems. To this end, we provide a discussion of tradeoffs in RT-MRI in terms of acquisition requirements, a priori assumptions, artifacts, computational load, and performance for different speech tasks. We provide four recommended protocols and identify appropriate acquisition and reconstruction tools. We list pointers to open-source software that facilitate implementation. We conclude by discussing current open challenges in the methodological aspects of RT-MRI of speech. PMID:26174802

  5. Fundamentals of tracer kinetics for dynamic contrast-enhanced MRI.

    PubMed

    Koh, Tong San; Bisdas, Sotirios; Koh, Dow Mu; Thng, Choon Hua

    2011-12-01

    Tracer kinetic methods employed for quantitative analysis of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) share common roots with earlier tracer studies involving arterial-venous sampling and other dynamic imaging modalities. This article reviews the essential foundation concepts and principles in tracer kinetics that are relevant to DCE MRI, including the notions of impulse response and convolution, which are central to the analysis of DCE MRI data. We further examine the formulation and solutions of various compartmental models frequently used in the literature. Topics of recent interest in the processing of DCE MRI data, such as the account of water exchange and the use of reference tissue methods to obviate the measurement of an arterial input, are also discussed. Although the primary focus of this review is on the tracer models and methods for T(1) -weighted DCE MRI, some of these concepts and methods are also applicable for analysis of dynamic susceptibility contrast-enhanced MRI data.

  6. Current status of magnetic resonance imaging (MRI) and ultrasonography fusion software platforms for guidance of prostate biopsies.

    PubMed

    Logan, Jennifer K; Rais-Bahrami, Soroush; Turkbey, Baris; Gomella, Andrew; Amalou, Hayet; Choyke, Peter L; Wood, Bradford J; Pinto, Peter A

    2014-11-01

    Prostate MRI is currently the best diagnostic imaging method for detecting PCa. Magnetic resonance imaging (MRI)/ultrasonography (US) fusion allows the sensitivity and specificity of MRI to be combined with the real-time capabilities of transrectal ultrasonography (TRUS). Multiple approaches and techniques exist for MRI/US fusion and include direct 'in bore' MRI biopsies, cognitive fusion, and MRI/US fusion via software-based image coregistration platforms.

  7. Resting state BOLD fMRI for pre-surgical planning

    PubMed Central

    Kamran, Mudassar; Hacker, Carl D; Allen, Monica G; Mitchell, Timothy J; Leuthardt, Eric C; Snyder, Abraham Z; Shimony, Joshua S

    2014-01-01

    SYNOPSIS Resting state functional MRI (rsfMRI) measures spontaneous fluctuations in the BOLD signal and can be used to elucidate the brain’s functional organization. It can be used to simultaneously assess multiple distributed resting state networks. Unlike task fMRI, rsfMRI does not require task performance and thus can be performed in any subject that can obtain an MRI scan. In this article we present a brief introduction of rsfMRI processing methods followed by a detailed discussion on the use of rsfMRI in pre-surgical planning. Example cases are provided to highlight the strengths and limitations of the technique. PMID:25441506

  8. Current Status of MRI and Ultrasound Fusion Software Platforms for Guidance of Prostate Biopsies

    PubMed Central

    Logan, Jennifer K; Rais-Bahrami, Soroush; Turkbey, Baris; Gomella, Andrew; Amalou, Hayet; Choyke, Peter L; Wood, Bradford J; Pinto, Peter A

    2015-01-01

    • Prostate MRI is currently the best diagnostic imaging method for detecting prostate cancer • Magnetic Resonance Imaging-Ultrasound (MRI/US) fusion allows the sensitivity and specificity of MRI to be combined with real time capabilities of transrectal ultrasound (TRUS). • Multiple approaches and techniques exist for MRI/US fusion and include (1) direct “in bore” MR biopsies, (2) cognitive fusion, and (3) MRI/US fusion via software-based image co-registration platforms. PMID:24298917

  9. Curved reformat of the paediatric brain MRI into a 'flat-earth map' - standardised method for demonstrating cortical surface atrophy resulting from hypoxic-ischaemic encephalopathy.

    PubMed

    Simpson, Ewan; Andronikou, Savvas; Vedajallam, Schadie; Chacko, Anith; Thai, Ngoc Jade

    2016-09-01

    Hypoxic-ischaemic encephalopathy is optimally imaged with brain MRI in the neonatal period. However neuroimaging is often also performed later in childhood (e.g., when parents seek compensation in cases of alleged birth asphyxia). We describe a standardised technique for creating two curved reconstructions of the cortical surface to show the characteristic surface changes of hypoxic-ischaemic encephalopathy in children imaged after the neonatal period. The technique was applied for 10 cases of hypoxic-ischaemic encephalopathy and also for age-matched healthy children to assess the visibility of characteristic features of hypoxic-ischaemic encephalopathy. In the abnormal brains, fissural or sulcal widening was seen in all cases and ulegyria was identifiable in 7/10. These images could be used as a visual aid for communicating MRI findings to clinicians and other interested parties.

  10. A Novel MRI Marker for Prostate Brachytherapy

    SciTech Connect

    Frank, Steven J. Stafford, R. Jason; Bankson, James A.; Li Chun; Swanson, David A.; Kudchadker, Rajat J.; Martirosyan, Karen S.

    2008-05-01

    Purpose: Magnetic resonance imaging (MRI) is the optimal imaging modality for the prostate and surrounding critical organ structures. However, on MRI, the titanium radioactive seeds used for brachytherapy appear as black holes (negative contrast) and cannot be accurately localized. We sought to develop an encapsulated contrast agent marker (ECAM) with high-signal intensity on MRI to permit accurate localization of radioactive seeds with MRI during and after prostate brachytherapy. Methods and Materials: We investigated several agents with paramagnetic and superparamagnetic properties. The agents were injected into titanium, acrylic, and glass seeds, which were linked together in various combinations and imaged with MRI. The agent with the greatest T1-weighted signal was tested further in a canine prostate and agarose phantom. Studies were performed on a 1.5-T clinical MRI scanner. Results: The cobalt-chloride complex contrast (C4) agent with stoichiometry (CoCl{sub 2}){sub 0.8}(C{sub 2}H{sub 5}NO{sub 2}){sub 0.2} had the greatest T1-weighted signal (positive contrast) with a relaxivity ratio >1 (r{sub 2}/r{sub 1} = 1.21 {+-} 0.29). Acrylic-titanium and glass-titanium seed strands were clearly visualized with the encapsulated contrast agent marker. Conclusion: We have developed a novel ECAM that permits positive identification of the radioactive seeds used for prostate brachytherapy on MRI. Preclinical in vitro phantom studies and in vivo canine studies are needed to further optimize MRI sequencing techniques to facilitate MRI-based dosimetry.

  11. Correction of MRI-induced geometric distortions in whole-body small animal PET-MRI

    SciTech Connect

    Frohwein, Lynn J. Schäfers, Klaus P.; Hoerr, Verena; Faber, Cornelius

    2015-07-15

    Purpose: The fusion of positron emission tomography (PET) and magnetic resonance imaging (MRI) data can be a challenging task in whole-body PET-MRI. The quality of the registration between these two modalities in large field-of-views (FOV) is often degraded by geometric distortions of the MRI data. The distortions at the edges of large FOVs mainly originate from MRI gradient nonlinearities. This work describes a method to measure and correct for these kind of geometric distortions in small animal MRI scanners to improve the registration accuracy of PET and MRI data. Methods: The authors have developed a geometric phantom which allows the measurement of geometric distortions in all spatial axes via control points. These control points are detected semiautomatically in both PET and MRI data with a subpixel accuracy. The spatial transformation between PET and MRI data is determined with these control points via 3D thin-plate splines (3D TPS). The transformation derived from the 3D TPS is finally applied to real MRI mouse data, which were acquired with the same scan parameters used in the phantom data acquisitions. Additionally, the influence of the phantom material on the homogeneity of the magnetic field is determined via field mapping. Results: The spatial shift according to the magnetic field homogeneity caused by the phantom material was determined to a mean of 0.1 mm. The results of the correction show that distortion with a maximum error of 4 mm could be reduced to less than 1 mm with the proposed correction method. Furthermore, the control point-based registration of PET and MRI data showed improved congruence after correction. Conclusions: The developed phantom has been shown to have no considerable negative effect on the homogeneity of the magnetic field. The proposed method yields an appropriate correction of the measured MRI distortion and is able to improve the PET and MRI registration. Furthermore, the method is applicable to whole-body small animal

  12. The PRESTO technique for fMRI

    PubMed Central

    van Gelderen, P.; Duyn, J.H.; Ramsey, N.F.; Liu, G.; Moonen, C.T.W.

    2012-01-01

    In the early days of BOLD fMRI, the acquisition of T2* weighted data was greatly facilitated by rapid scan techniques such as EPI. The latter, however, was only available on a few MRI systems that were equipped with specialized hardware that allowed rapid switching of the imaging gradients. For this reason, soon after the invention of fMRI, the scan technique PRESTO was developed to make rapid T2* weighted scanning available on standard clinical scanning. This method combined echo shifting, which allows for echo times longer than the sequence repetition time, with acquisition of multiple k-space lines per excitation. These two concepts were combined in order to achieve a method fast enough for fMRI, while maintaining a sufficiently long echo time for optimal contrast. PRESTO has been primarily used for 3D scanning, which minimized the contribution of large vessels due to inflow effects. Although PRESTO is still being used today, its appeal has lessened somewhat due to increased gradient performance of modern MRI scanners. Compared to 2D EPI, PRESTO may have somewhat reduced temporal stability, which is a disadvantage for fMRI that may not outweigh the advantage of reduced inflow effects provided by 3D scanning. In this overview, the history of the development of the PRESTO is presented, followed by a qualitative comparison with EPI. PMID:22245350

  13. Advanced flow MRI: emerging techniques and applications.

    PubMed

    Markl, M; Schnell, S; Wu, C; Bollache, E; Jarvis, K; Barker, A J; Robinson, J D; Rigsby, C K

    2016-08-01

    Magnetic resonance imaging (MRI) techniques provide non-invasive and non-ionising methods for the highly accurate anatomical depiction of the heart and vessels throughout the cardiac cycle. In addition, the intrinsic sensitivity of MRI to motion offers the unique ability to acquire spatially registered blood flow simultaneously with the morphological data, within a single measurement. In clinical routine, flow MRI is typically accomplished using methods that resolve two spatial dimensions in individual planes and encode the time-resolved velocity in one principal direction, typically oriented perpendicular to the two-dimensional (2D) section. This review describes recently developed advanced MRI flow techniques, which allow for more comprehensive evaluation of blood flow characteristics, such as real-time flow imaging, 2D multiple-venc phase contrast MRI, four-dimensional (4D) flow MRI, quantification of complex haemodynamic properties, and highly accelerated flow imaging. Emerging techniques and novel applications are explored. In addition, applications of these new techniques for the improved evaluation of cardiovascular (aorta, pulmonary arteries, congenital heart disease, atrial fibrillation, coronary arteries) as well as cerebrovascular disease (intra-cranial arteries and veins) are presented.

  14. In vivo prostate cancer detection and grading using restriction spectrum imaging-MRI

    PubMed Central

    McCammack, KC; Kane, CJ; Parsons, JK; White, NS; Schenker-Ahmed, NM; Kuperman, JM; Bartsch, H; Desikan, RS; Rakow-Penner, RA; Adams, D; Liss, MA; Mattrey, RF; Bradley, WG; Margolis, DJA; Raman, SS; Shabaik, A; Dale, AM; Karow, DS

    2017-01-01

    BACKGROUND Magnetic resonance imaging (MRI) is emerging as a robust, noninvasive method for detecting and characterizing prostate cancer (PCa), but limitations remain in its ability to distinguish cancerous from non-cancerous tissue. We evaluated the performance of a novel MRI technique, restriction spectrum imaging (RSI-MRI), to quantitatively detect and grade PCa compared with current standard-of-care MRI. METHODS In a retrospective evaluation of 33 patients with biopsy-proven PCa who underwent RSI-MRI and standard MRI before radical prostatectomy, receiver-operating characteristic (ROC) curves were performed for RSI-MRI and each quantitative MRI term, with area under the ROC curve (AUC) used to compare each term’s ability to differentiate between PCa and normal prostate. Spearman rank-order correlations were performed to assess each term’s ability to predict PCa grade in the radical prostatectomy specimens. RESULTS RSI-MRI demonstrated superior differentiation of PCa from normal tissue, with AUC of 0.94 and 0.85 for RSI-MRI and conventional diffusion MRI, respectively (P = 0.04). RSI-MRI also demonstrated superior performance in predicting PCa aggressiveness, with Spearman rank-order correlation coefficients of 0.53 (P = 0.002) and − 0.42 (P = 0.01) for RSI-MRI and conventional diffusion MRI, respectively, with tumor grade. CONCLUSIONS RSI-MRI significantly improves upon current noninvasive PCa imaging and may potentially enhance its diagnosis and characterization. PMID:26754261

  15. Lumbar MRI scan

    MedlinePlus

    ... may need a lumbar MRI if you have: Low back pain that does not get better after treatment Leg ... spine Injury or trauma to the lower spine Low back pain and a history or signs of cancer Multiple ...

  16. MRI of the Breast

    MedlinePlus

    ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...

  17. MRI of the Prostate

    MedlinePlus

    ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...

  18. MRI of the Chest

    MedlinePlus

    ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...

  19. Magnetic Resonance Imaging (MRI)

    MedlinePlus

    ... problems (in men)Path to improved healthIf your primary care doctor determines that you should have an MRI, ... may not apply to everyone. Talk to your family doctor to find out if this information applies to ...

  20. MRI of the Breast

    MedlinePlus

    ... of the breast uses a powerful magnetic field, radio waves and a computer to produce detailed pictures of ... scans, MRI does not utilize ionizing radiation. Instead, radio waves redirect alignment of hydrogen atoms that naturally exist ...

  1. Cervical MRI scan

    MedlinePlus

    ... magnetic resonance imaging) scan uses energy from strong magnets to create pictures of the part of the ... in your eyes) Because the MRI contains strong magnets, metal objects are not allowed into the room ...

  2. Leg MRI scan

    MedlinePlus

    ... resonance imaging) scan of the leg uses strong magnets to create pictures of the leg. This may ... in your eyes) Because the MRI contains strong magnets, metal objects are not allowed into the room ...

  3. Shoulder MRI scan

    MedlinePlus

    ... an imaging test that uses energy from powerful magnets and to create pictures of the shoulder area. ... in your eyes) Because the MRI contains strong magnets, metal objects are not allowed in the room ...

  4. MRI-guided brachytherapy

    PubMed Central

    Tanderup, Kari; Viswanathan, Akila; Kirisits, Christian; Frank, Steven J.

    2014-01-01

    The application of MRI-guided brachytherapy has demonstrated significant growth during the last two decades. Clinical improvements in cervix cancer outcomes have been linked to the application of repeated MRI for identification of residual tumor volumes during radiotherapy. This has changed clinical practice in the direction of individualized dose administration, and mounting evidence of improved clinical outcome with regard to local control, overall survival as well as morbidity. MRI-guided prostate HDR and LDR brachytherapy has improved the accuracy of target and organs-at-risk (OAR) delineation, and the potential exists for improved dose prescription and reporting for the prostate gland and organs at risk. Furthermore, MRI-guided prostate brachytherapy has significant potential to identify prostate subvolumes and dominant lesions to allow for dose administration reflecting the differential risk of recurrence. MRI-guided brachytherapy involves advanced imaging, target concepts, and dose planning. The key issue for safe dissemination and implementation of high quality MRI-guided brachytherapy is establishment of qualified multidisciplinary teams and strategies for training and education. PMID:24931089

  5. Diffusion MRI and its role in neuropsychology

    PubMed Central

    Mueller, Bryon A; Lim, Kelvin O; Hemmy, Laura; Camchong, Jazmin

    2015-01-01

    Diffusion Magnetic Resonance Imaging (dMRI) is a popular method used by neuroscientists to uncover unique information about the structural connections within the brain. dMRI is a non-invasive imaging methodology in which image contrast is based on the diffusion of water molecules in tissue. While applicable to many tissues in the body, this review focuses exclusively on the use of dMRI to examine white matter in the brain. In this review, we begin with a definition of diffusion and how diffusion is measured with MRI. Next we introduce the diffusion tensor model, the predominant model used in dMRI. We then describe acquisition issues related to acquisition parameters and scanner hardware and software. Sources of artifacts are then discussed, followed by a brief review of analysis approaches. We provide an overview of the limitations of the traditional diffusion tensor model, and highlight several more sophisticated non-tensor models that better describe the complex architecture of the brain’s white matter. We then touch on reliability and validity issues of diffusion measurements. Finally, we describe examples of ways in which dMRI has been applied to studies of brain disorders and how identified alterations relate to symptomatology and cognition. PMID:26255305

  6. Diffusion MRI and its Role in Neuropsychology.

    PubMed

    Mueller, Bryon A; Lim, Kelvin O; Hemmy, Laura; Camchong, Jazmin

    2015-09-01

    Diffusion Magnetic Resonance Imaging (dMRI) is a popular method used by neuroscientists to uncover unique information about the structural connections within the brain. dMRI is a non-invasive imaging methodology in which image contrast is based on the diffusion of water molecules in tissue. While applicable to many tissues in the body, this review focuses exclusively on the use of dMRI to examine white matter in the brain. In this review, we begin with a definition of diffusion and how diffusion is measured with MRI. Next we introduce the diffusion tensor model, the predominant model used in dMRI. We then describe acquisition issues related to acquisition parameters and scanner hardware and software. Sources of artifacts are then discussed, followed by a brief review of analysis approaches. We provide an overview of the limitations of the traditional diffusion tensor model, and highlight several more sophisticated non-tensor models that better describe the complex architecture of the brain's white matter. We then touch on reliability and validity issues of diffusion measurements. Finally, we describe examples of ways in which dMRI has been applied to studies of brain disorders and how identified alterations relate to symptomatology and cognition.

  7. MRI of Uncommon Lesions of the Large Bowel: A Pictorial Essay

    PubMed Central

    Lee, Christine U; Glockner, James F

    2014-01-01

    This pictorial essay briefly discusses methods for optimizing bowel imaging with magnetic resonance imaging (MRI) and illustrates the MRI appearance of a variety of unusual lesions involving or related specifically to the large bowel. PMID:25806129

  8. Adaptive image guided brachytherapy for cervical cancer: A combined MRI-/CT-planning technique with MRI only at first fraction

    PubMed Central

    Nesvacil, Nicole; Pötter, Richard; Sturdza, Alina; Hegazy, Neamat; Federico, Mario; Kirisits, Christian

    2013-01-01

    Purpose To investigate and test the feasibility of adaptive 3D image based BT planning for cervix cancer patients in settings with limited access to MRI, using a combination of MRI for the first BT fraction and planning of subsequent fractions on CT. Material and methods For 20 patients treated with EBRT and HDR BT with tandem/ring applicators two sets of treatment plans were compared. Scenario one is based on the “gold standard” with individual MRI-based treatment plans (applicator reconstruction, target contouring and dose optimization) for two BT applications with two fractions each. Scenario two is based on one initial MRI acquisition with an applicator in place for the planning of the two fractions of the first BT application and reuse of the target contour delineated on MRI for subsequent planning of the second application on CT. Transfer of the target from MRI of the first application to the CT of the second one was accomplished by use of an automatic applicator-based image registration procedure. Individual dose optimization of the second BT application was based on the transferred MRI target volume and OAR structures delineated on CT. DVH parameters were calculated for transferred target structures (virtual dose from MRI/CT plan) and CT-based OAR. The quality of the MRI/CT combination method was investigated by evaluating the CT-based dose distributions on MRI-based target and OAR contours of the same application (real dose from MRI/CT plan). Results The mean difference between the MRI based target volumes (HR CTVMRI2) and the structures transferred from MRI to CT (HR CTVCT2) was −1.7 ± 6.6 cm3 (−2.9 ± 20.4%) with a median of −0.7 cm3. The mean difference between the virtual and the real total D90, based on the MRI/CT combination technique was −1.5 ± 4.3 Gy EQD2. This indicates a small systematic underestimation of the real D90. Conclusions A combination of MRI for first fraction and subsequent CT based planning is feasible and easy

  9. "MRI Stealth" robot for prostate interventions.

    PubMed

    Stoianovici, Dan; Song, Danny; Petrisor, Doru; Ursu, Daniel; Mazilu, Dumitru; Muntener, Michael; Mutener, Michael; Schar, Michael; Patriciu, Alexandru

    2007-01-01

    The paper reports an important achievement in MRI instrumentation, a pneumatic, fully actuated robot located within the scanner alongside the patient and operating under remote control based on the images. Previous MRI robots commonly used piezoelectric actuation limiting their compatibility. Pneumatics is an ideal choice for MRI compatibility because it is decoupled from electromagnetism, but pneumatic actuators were hardly controllable. This achievement was possible due to a recent technology breakthrough, the invention of a new type of pneumatic motor, PneuStep 1, designed for the robot reported here with uncompromised MRI compatibility, high-precision, and medical safety. MrBot is one of the "MRI stealth" robots today (the second is described in this issue by Zangos et al.). Both of these systems are also multi-imager compatible, being able to operate with the imager of choice or cross-imaging modalities. For MRI compatibility the robot is exclusively constructed of nonmagnetic and dielectric materials such as plastics, ceramics, crystals, rubbers and is electricity free. Light-based encoding is used for feedback, so that all electric components are distally located outside the imager's room. MRI robots are modern, digital medical instruments in line with advanced imaging equipment and methods. These allow for accessing patients within closed bore scanners and performing interventions under direct (in scanner) imaging feedback. MRI robots could allow e.g. to biopsy small lesions imaged with cutting edge cancer imaging methods, or precisely deploy localized therapy at cancer foci. Our robot is the first to show the feasibility of fully automated in-scanner interventions. It is customized for the prostate and operates transperineally for needle interventions. It can accommodate various needle drivers for different percutaneous procedures such as biopsy, thermal ablations, or brachytherapy. The first needle driver is customized for fully automated low

  10. Sodium MRI in human heart: a review.

    PubMed

    Bottomley, Paul A

    2016-02-01

    This paper offers a critical review of the properties, methods and potential clinical application of sodium ((23)Na) MRI in human heart. Because the tissue sodium concentration (TSC) in heart is about ~40 µmol/g wet weight, and the (23)Na gyromagnetic ratio and sensitivity are respectively about one-quarter and one-11th of that of hydrogen ((1)H), the signal-to-noise ratio of (23)Na MRI in the heart is about one-6000th of that of conventional cardiac (1)H MRI. In addition, as a quadrupolar nucleus, (23)Na exhibits ultra-short and multi-component relaxation behavior (T1 ~ 30 ms; T2 ~ 0.5-4 ms and 12-20 ms), which requires fast, specialized, ultra-short echo-time MRI sequences, especially for quantifying TSC. Cardiac (23)Na MRI studies from 1.5 to 7 T measure a volume-weighted sum of intra- and extra-cellular components present at cytosolic concentrations of 10-15 mM and 135-150 mM in healthy tissue, respectively, at a spatial resolution of about 0.1-1 ml in 10 min or so. Currently, intra- and extra-cellular sodium cannot be unambiguously resolved without the use of potentially toxic shift reagents. Nevertheless, increases in TSC attributable to an influx of intra-cellular sodium and/or increased extra-cellular volume have been demonstrated in human myocardial infarction consistent with prior animal studies, and arguably might also be seen in future studies of ischemia and cardiomyopathies--especially those involving defects in sodium transport. While technical implementation remains a hurdle, a central question for clinical use is whether cardiac (23)Na MRI can deliver useful information unobtainable by other more convenient methods, including (1)H MRI.

  11. APPLICATION OF LASERS AND LASER-OPTICAL METHODS IN LIFE SCIENCES Non-invasive, MRI-compatible fibreoptic device for functional near-IR reflectometry of human brain

    NASA Astrophysics Data System (ADS)

    Sorvoja H. S., S.; Myllylä, T. S.; Kirillin, M. Yu; Sergeeva, Ekaterina A.; Myllylä, Risto A.; Elseoud, A. A.; Nikkinen, J.; Tervonen, O.; Kiviniemi, V.

    2011-01-01

    A non-invasive device for measuring blood oxygen variations in human brain is designed, implemented, and tested for MRI compatibility. The device is based on principles of near-IR reflectometry; power LEDs serve as sources of probing radiation delivered to patient skin surface through optical fibres. Numerical Monte Carlo simulations of probing radiation propagation in a multilayer brain model are performed to evaluate signal levels at different source — detector separations at three operation wavelengths and an additional wavelength of 915 nm. It is shown that the device can be applied for brain activity studies using power LEDs operating at 830 and 915 nm, while employment of wavelength of 660 nm requires an increased probing power. Employment of the wavelength of 592 nm in the current configuration is unreasonable.

  12. A comparison of Bayesian and non-linear regression methods for robust estimation of pharmacokinetics in DCE-MRI and how it affects cancer diagnosis.

    PubMed

    Dikaios, Nikolaos; Atkinson, David; Tudisca, Chiara; Purpura, Pierpaolo; Forster, Martin; Ahmed, Hashim; Beale, Timothy; Emberton, Mark; Punwani, Shonit

    2017-03-01

    The aim of this work is to compare Bayesian Inference for nonlinear models with commonly used traditional non-linear regression (NR) algorithms for estimating tracer kinetics in Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI). The algorithms are compared in terms of accuracy, and reproducibility under different initialization settings. Further it is investigated how a more robust estimation of tracer kinetics affects cancer diagnosis. The derived tracer kinetics from the Bayesian algorithm were validated against traditional NR algorithms (i.e. Levenberg-Marquardt, simplex) in terms of accuracy on a digital DCE phantom and in terms of goodness-of-fit (Kolmogorov-Smirnov test) on ROI-based concentration time courses from two different patient cohorts. The first cohort consisted of 76 men, 20 of whom had significant peripheral zone prostate cancer (any cancer-core-length (CCL) with Gleason>3+3 or any-grade with CCL>=4mm) following transperineal template prostate mapping biopsy. The second cohort consisted of 9 healthy volunteers and 24 patients with head and neck squamous cell carcinoma. The diagnostic ability of the derived tracer kinetics was assessed with receiver operating characteristic area under curve (ROC AUC) analysis. The Bayesian algorithm accurately recovered the ground-truth tracer kinetics for the digital DCE phantom consistently improving the Structural Similarity Index (SSIM) across the 50 different initializations compared to NR. For optimized initialization, Bayesian did not improve significantly the fitting accuracy on both patient cohorts, and it only significantly improved the ve ROC AUC on the HN population from ROC AUC=0.56 for the simplex to ROC AUC=0.76. For both cohorts, the values and the diagnostic ability of tracer kinetic parameters estimated with the Bayesian algorithm weren't affected by their initialization. To conclude, the Bayesian algorithm led to a more accurate and reproducible quantification of tracer kinetic

  13. Functional Imaging: CT and MRI

    PubMed Central

    van Beek, Edwin JR; Hoffman, Eric A

    2008-01-01

    Synopsis Numerous imaging techniques permit evaluation of regional pulmonary function. Contrast-enhanced CT methods now allow assessment of vasculature and lung perfusion. Techniques using spirometric controlled MDCT allow for quantification of presence and distribution of parenchymal and airway pathology, Xenon gas can be employed to assess regional ventilation of the lungs and rapid bolus injections of iodinated contrast agent can provide quantitative measure of regional parenchymal perfusion. Advances in magnetic resonance imaging (MRI) of the lung include gadolinium-enhanced perfusion imaging and hyperpolarized helium imaging, which can allow imaging of pulmonary ventilation and .measurement of the size of emphysematous spaces. PMID:18267192

  14. Motion correction in MRI of the brain

    PubMed Central

    Godenschweger, F; Kägebein, U; Stucht, D; Yarach, U; Sciarra, A; Yakupov, R; Lüsebrink, F; Schulze, P; Speck, O

    2016-01-01

    Subject motion in MRI is a relevant problem in the daily clinical routine as well as in scientific studies. Since the beginning of clinical use of MRI, many research groups have developed methods to suppress or correct motion artefacts. This review focuses on rigid body motion correction of head and brain MRI and its application in diagnosis and research. It explains the sources and types of motion and related artefacts, classifies and describes existing techniques for motion detection, compensation and correction and lists established and experimental approaches. Retrospective motion correction modifies the MR image data during the reconstruction, while prospective motion correction performs an adaptive update of the data acquisition. Differences, benefits and drawbacks of different motion correction methods are discussed. PMID:26864183

  15. Motion correction in MRI of the brain

    NASA Astrophysics Data System (ADS)

    Godenschweger, F.; Kägebein, U.; Stucht, D.; Yarach, U.; Sciarra, A.; Yakupov, R.; Lüsebrink, F.; Schulze, P.; Speck, O.

    2016-03-01

    Subject motion in MRI is a relevant problem in the daily clinical routine as well as in scientific studies. Since the beginning of clinical use of MRI, many research groups have developed methods to suppress or correct motion artefacts. This review focuses on rigid body motion correction of head and brain MRI and its application in diagnosis and research. It explains the sources and types of motion and related artefacts, classifies and describes existing techniques for motion detection, compensation and correction and lists established and experimental approaches. Retrospective motion correction modifies the MR image data during the reconstruction, while prospective motion correction performs an adaptive update of the data acquisition. Differences, benefits and drawbacks of different motion correction methods are discussed.

  16. Radiotherapy Planning using MRI

    PubMed Central

    Schmidt, Maria A; Payne, Geoffrey S

    2016-01-01

    The use of Magnetic Resonance Imaging (MRI) in Radiotherapy (RT) planning is rapidly expanding. We review the wide range of image contrast mechanisms available to MRI and the way they are exploited for RT planning. However a number of challenges are also considered: the requirements that MR images are acquired in the RT treatment position, that they are geometrically accurate, that effects of patient motion during the scan are minimised, that tissue markers are clearly demonstrated, that an estimate of electron density can be obtained. These issues are discussed in detail, prior to the consideration of a number of specific clinical applications. This is followed by a brief discussion on the development of real-time MRI-guided RT. PMID:26509844

  17. Dental MRI using wireless intraoral coils

    PubMed Central

    Ludwig, Ute; Eisenbeiss, Anne-Katrin; Scheifele, Christian; Nelson, Katja; Bock, Michael; Hennig, Jürgen; von Elverfeldt, Dominik; Herdt, Olga; Flügge, Tabea; Hövener, Jan-Bernd

    2016-01-01

    Currently, the gold standard for dental imaging is projection radiography or cone-beam computed tomography (CBCT). These methods are fast and cost-efficient, but exhibit poor soft tissue contrast and expose the patient to ionizing radiation (X-rays). The need for an alternative imaging modality e.g. for soft tissue management has stimulated a rising interest in dental magnetic resonance imaging (MRI) which provides superior soft tissue contrast. Compared to X-ray imaging, however, so far the spatial resolution of MRI is lower and the scan time is longer. In this contribution, we describe wireless, inductively-coupled intraoral coils whose local sensitivity enables high resolution MRI of dental soft tissue. In comparison to CBCT, a similar image quality with complementary contrast was obtained ex vivo. In-vivo, a voxel size of the order of 250∙250∙500 μm3 was achieved in 4 min only. Compared to dental MRI acquired with clinical equipment, the quality of the images was superior in the sensitive volume of the coils and is expected to improve the planning of interventions and monitoring thereafter. This method may enable a more accurate dental diagnosis and avoid unnecessary interventions, improving patient welfare and bringing MRI a step closer to becoming a radiation-free alternative for dental imaging. PMID:27021387

  18. Dental MRI using wireless intraoral coils

    NASA Astrophysics Data System (ADS)

    Ludwig, Ute; Eisenbeiss, Anne-Katrin; Scheifele, Christian; Nelson, Katja; Bock, Michael; Hennig, Jürgen; von Elverfeldt, Dominik; Herdt, Olga; Flügge, Tabea; Hövener, Jan-Bernd

    2016-03-01

    Currently, the gold standard for dental imaging is projection radiography or cone-beam computed tomography (CBCT). These methods are fast and cost-efficient, but exhibit poor soft tissue contrast and expose the patient to ionizing radiation (X-rays). The need for an alternative imaging modality e.g. for soft tissue management has stimulated a rising interest in dental magnetic resonance imaging (MRI) which provides superior soft tissue contrast. Compared to X-ray imaging, however, so far the spatial resolution of MRI is lower and the scan time is longer. In this contribution, we describe wireless, inductively-coupled intraoral coils whose local sensitivity enables high resolution MRI of dental soft tissue. In comparison to CBCT, a similar image quality with complementary contrast was obtained ex vivo. In-vivo, a voxel size of the order of 250•250•500 μm3 was achieved in 4 min only. Compared to dental MRI acquired with clinical equipment, the quality of the images was superior in the sensitive volume of the coils and is expected to improve the planning of interventions and monitoring thereafter. This method may enable a more accurate dental diagnosis and avoid unnecessary interventions, improving patient welfare and bringing MRI a step closer to becoming a radiation-free alternative for dental imaging.

  19. Simulation of phase contrast MRI of turbulent flow.

    PubMed

    Petersson, Sven; Dyverfeldt, Petter; Gårdhagen, Roland; Karlsson, Matts; Ebbers, Tino

    2010-10-01

    Phase contrast MRI is a powerful tool for the assessment of blood flow. However, especially in the highly complex and turbulent flow that accompanies many cardiovascular diseases, phase contrast MRI may suffer from artifacts. Simulation of phase contrast MRI of turbulent flow could increase our understanding of phase contrast MRI artifacts in turbulent flows and facilitate the development of phase contrast MRI methods for the assessment of turbulent blood flow. We present a method for the simulation of phase contrast MRI measurements of turbulent flow. The method uses an Eulerian-Lagrangian approach, in which spin particle trajectories are computed from time-resolved large eddy simulations. The Bloch equations are solved for each spin for a frame of reference moving along the spins trajectory. The method was validated by comparison with phase contrast MRI measurements of velocity and intravoxel velocity standard deviation (IVSD) on a flow phantom consisting of a straight rigid pipe with a stenosis. Turbulence related artifacts, such as signal drop and ghosting, could be recognized in the measurements as well as in the simulations. The velocity and the IVSD obtained from the magnitude of the phase contrast MRI simulations agreed well with the measurements.

  20. Magnetic Resonance Imaging (MRI) (For Teens)

    MedlinePlus

    ... the MRI table. A specially trained technician (or "tech") operates the MRI machine. He or she may ... can't stay still during MRI. Sometimes MRI techs sedate teens who have trouble relaxing inside the ...

  1. Getting an MRI (For Kids)

    MedlinePlus

    ... Happens in the Operating Room? Getting an MRI (Video) KidsHealth > For Kids > Getting an MRI (Video) A A A en español Obtención de una resonancia magnética, RM (video) An MRI (magnetic resonance imaging) scan creates detailed ...

  2. fMRI alignment based on local functional connectivity patterns

    NASA Astrophysics Data System (ADS)

    Jiang, Di; Du, Yuhui; Cheng, Hewei; Jiang, Tianzi; Fan, Yong

    2012-02-01

    In functional neuroimaging studies, the inter-subject alignment of functional magnetic resonance imaging (fMRI) data is a necessary precursor to improve functional consistency across subjects. Traditional structural MRI based registration methods cannot achieve accurate inter-subject functional consistency in that functional units are not necessarily consistently located relative to anatomical structures due to functional variability across subjects. Although spatial smoothing commonly used in fMRI data preprocessing can reduce the inter-subject functional variability, it may blur the functional signals and thus lose the fine-grained information. In this paper we propose a novel functional signal based fMRI image registration method which aligns local functional connectivity patterns of different subjects to improve the inter-subject functional consistency. Particularly, the functional connectivity is measured using Pearson correlation. For each voxel of an fMRI image, its functional connectivity to every voxel in its local spatial neighborhood, referred to as its local functional connectivity pattern, is characterized by a rotation and shift invariant representation. Based on this representation, the spatial registration of two fMRI images is achieved by minimizing the difference between their corresponding voxels' local functional connectivity patterns using a deformable image registration model. Experiment results based on simulated fMRI data have demonstrated that the proposed method is more robust and reliable than the existing fMRI image registration methods, including maximizing functional correlations and minimizing difference of global connectivity matrices across different subjects. Experiment results based on real resting-state fMRI data have further demonstrated that the proposed fMRI registration method can statistically significantly improve functional consistency across subjects.

  3. Contrast agents for MRI.

    PubMed

    Shokrollahi, H

    2013-12-01

    Contrast agents are divided into two categories. The first one is paramagnetic compounds, including lanthanides like gadolinium, which mainly reduce the longitudinal (T1) relaxation property and result in a brighter signal. The second class consists of super-paramagnetic magnetic nanoparticles (SPMNPs) such as iron oxides, which have a strong effect on the transversal (T2) relaxation properties. SPMNPs have the potential to be utilized as excellent probes for magnetic resonance imaging (MRI). For instance, clinically benign iron oxide and engineered ferrite nanoparticles provide a good MRI probing capability for clinical applications. Furthermore, the limited magnetic property and inability to escape from the reticuloendothelial system (RES) of the used nanoparticles impede their further advancement. Therefore, it is necessary to develop the engineered magnetic nanoparticle probes for the next-generation molecular MRI. Considering the importance of MRI in diagnosing diseases, this paper presents an overview of recent scientific achievements in the development of new synthetic SPMNP probes whereby the sensitive and target-specific observation of biological events at the molecular and cellular levels is feasible.

  4. Compressed sensing MRI: a review of the clinical literature

    PubMed Central

    Jaspan, Oren N; Fleysher, Roman

    2015-01-01

    MRI is one of the most dynamic and safe imaging techniques available in the clinic today. However, MRI acquisitions tend to be slow, limiting patient throughput and limiting potential indications for use while driving up costs. Compressed sensing (CS) is a method for accelerating MRI acquisition by acquiring less data through undersampling of k-space. This has the potential to mitigate the time-intensiveness of MRI. The limited body of research evaluating the effects of CS on MR images has been mostly positive with regards to its potential as a clinical tool. Studies have successfully accelerated MRI with this technology, with varying degrees of success. However, more must be performed before its diagnostic efficacy and benefits are clear. Studies involving a greater number radiologists and images must be completed, rating CS based on its diagnostic efficacy. Also, standardized methods for determining optimal imaging parameters must be developed. PMID:26402216

  5. Comparison of the Specificity of MREIT and Dynamic Contrast-Enhanced MRI in Breast Cancer

    DTIC Science & Technology

    2007-05-01

    Method; EIS, Electrical Impedance Scanning; OPAMP, Operational Amplifier; SVD, Singular Value Decomposition; NEX, Number of Excitations ; CE- MRI ... simulate a low conductivity region (Fig. 1). The plane of the disk was placed perpendicular to the main static MRI field. Four copper electrodes each...and Dynamic Contrast-Enhanced MRI in Breast Cancer PRINCIPAL INVESTIGATOR: Ozlem Birgul, Ph.D. CONTRACTING ORGANIZATION

  6. Stem Cell Therapy: MRI Guidance and Monitoring

    PubMed Central

    Kraitchman, Dara L.; Gilson, Wesley D.; Lorenz, Christine H.

    2011-01-01

    With the recent advances in magnetic resonance (MR) labeling of cellular therapeutics, it is natural that interventional MRI techniques for targeting would be developed. This review provides an overview of the current methods of stem cell labeling and the challenges that are created with respect to interventional MRI administration. In particular, stem cell therapies will require specialized, MR-compatible devices as well as integration of graphical user interfaces with pulse sequences designed for interactive, real-time delivery in many organs. Specific applications that are being developed will be reviewed as well as strategies for future translation to the clinical realm. PMID:18219684

  7. Segmentation of human brain using structural MRI.

    PubMed

    Helms, Gunther

    2016-04-01

    Segmentation of human brain using structural MRI is a key step of processing in imaging neuroscience. The methods have undergone a rapid development in the past two decades and are now widely available. This non-technical review aims at providing an overview and basic understanding of the most common software. Starting with the basis of structural MRI contrast in brain and imaging protocols, the concepts of voxel-based and surface-based segmentation are discussed. Special emphasis is given to the typical contrast features and morphological constraints of cortical and sub-cortical grey matter. In addition to the use for voxel-based morphometry, basic applications in quantitative MRI, cortical thickness estimations, and atrophy measurements as well as assignment of cortical regions and deep brain nuclei are briefly discussed. Finally, some fields for clinical applications are given.

  8. Comprehensive MRI simulation methodology using a dedicated MRI scanner in radiation oncology for external beam radiation treatment planning

    SciTech Connect

    Paulson, Eric S.; Erickson, Beth; Schultz, Chris; Allen Li, X.

    2015-01-15

    Purpose: The use of magnetic resonance imaging (MRI) in radiation oncology is expanding rapidly, and more clinics are integrating MRI into their radiation therapy workflows. However, radiation therapy presents a new set of challenges and places additional constraints on MRI compared to diagnostic radiology that, if not properly addressed, can undermine the advantages MRI offers for radiation treatment planning (RTP). The authors introduce here strategies to manage several challenges of using MRI for virtual simulation in external beam RTP. Methods: A total of 810 clinical MRI simulation exams were performed using a dedicated MRI scanner for external beam RTP of brain, breast, cervix, head and neck, liver, pancreas, prostate, and sarcoma cancers. Patients were imaged in treatment position using MRI-optimal immobilization devices. Radiofrequency (RF) coil configurations and scan protocols were optimized based on RTP constraints. Off-resonance and gradient nonlinearity-induced geometric distortions were minimized or corrected prior to using images for RTP. A multidisciplinary MRI simulation guide, along with window width and level presets, was created to standardize use of MR images during RTP. A quality assurance program was implemented to maintain accuracy and repeatability of MRI simulation exams. Results: The combination of a large bore scanner, high field strength, and circumferentially wrapped, flexible phased array RF receive coils permitted acquisition of thin slice images with high contrast-to-noise ratio (CNR) and image intensity uniformity, while simultaneously accommodating patient setup and immobilization devices. Postprocessing corrections and alternative acquisition methods were required to reduce or correct off-resonance and gradient nonlinearity induced geometric distortions. Conclusions: The methodology described herein contains practical strategies the authors have implemented through lessons learned performing clinical MRI simulation exams. In

  9. ‘Extra-operatve’ MRI (eoMRI) for Brain Tumor Surgery – Initial Results at a Single Institution

    PubMed Central

    Abd-El-Barr, Muhammad M.; Santos, Seth M.; Aglio, Linda S.; Young, Geoffrey S.; Mukundan, Srinivasan; Golby, Alexandra J.; Gormley, William B.; Dunn, Ian F.

    2015-01-01

    Background There is accumulating evidence that extent of resection (EOR) in intrinsic brain tumor surgery prolongs overall survival (OS) and progression-free survival (PFS). One of the strategies to increase EOR is the use of intraoperative MRI (ioMRI). However, considerable infrastructure investment is needed to establish and maintain a sophisticated ioMRI. We report the preliminary results of an extra-operative (eoMRI) protocol, with a focus on safety, feasibility and EOR in intrinsic brain tumor surgery. Methods Ten patients underwent an eoMRI protocol consisting of surgical resection in a conventional operating room followed by an immediate MRI in a clinical MRI scanner while the patient was still under anesthesia. If MRI suggested residual safely resectable tumor, the patient was returned to the operating room. Retrospective volumetric analysis was undertaken to investigate the percentage of tumor resected after first resection and if applicable, after further resection. Results 6 out of 10 (60%) patients were felt to require no further resection after eoMRI. The EOR in these patients was 97.8±1.8%. In the 4 patients who underwent further resection, the EOR during the original surgery was 88.5±9.5% (p =0.04). There was an average of 10.1 % more tumor removed between the first and second surgery. In 3/4 (75%) of patients who returned for further resection, gross total resection of was achieved. Conclusion An eoMRI protocol appears to be a safe and practical method to ensure maximum safe resections in patients with brain tumors and can be performed readily in all centers with MRI capability. PMID:25700968

  10. Challenges for Molecular Neuroimaging with MRI

    PubMed Central

    Lelyveld, Victor S.; Atanasijevic, Tatjana; Jasanoff, Alan

    2010-01-01

    Magnetic resonance (MRI)-based molecular imaging methods are beginning to have impact in neuroscience. A growing number of molecular imaging agents have been synthesized and tested in vitro, but so far relatively few have been validated in the brains of live animals. Here, we discuss key challenges associated with expanding the repertoire of successful molecular neuroimaging approaches. The difficulty of delivering agents past the blood-brain barrier (BBB) is a particular obstacle to molecular imaging in the central nervous system. We review established and emerging techniques for trans-BBB delivery, including intracranial infusion, BBB disruption, and transporter-related methods. Improving the sensitivity with which MRI-based molecular agents can be detected is a second major challenge. Better sensitivity would in turn reduce the requirements for delivery and alleviate potential side effects. We discuss recent efforts to enhance relaxivity of conventional longitudinal relaxation time (T1) and transverse relaxation time (T2) MRI contrast agents, as well as strategies that involve amplifying molecular signals or reducing endogenous background influences. With ongoing refinement of imaging approaches and brain delivery methods, MRI-based techniques for molecular-level neuroscientific investigation will fall increasingly within reach. PMID:20808721

  11. Alliance for aging research AD biomarkers work group: structural MRI.

    PubMed

    Jack, Clifford R

    2011-12-01

    Biomarkers of Alzheimer's disease (AD) are increasingly important. All modern AD therapeutic trials employ AD biomarkers in some capacity. In addition, AD biomarkers are an essential component of recently updated diagnostic criteria for AD from the National Institute on Aging--Alzheimer's Association. Biomarkers serve as proxies for specific pathophysiological features of disease. The 5 most well established AD biomarkers include both brain imaging and cerebrospinal fluid (CSF) measures--cerebrospinal fluid Abeta and tau, amyloid positron emission tomography (PET), fluorodeoxyglucose (FDG) positron emission tomography, and structural magnetic resonance imaging (MRI). This article reviews evidence supporting the position that MRI is a biomarker of neurodegenerative atrophy. Topics covered include methods of extracting quantitative and semiquantitative information from structural MRI; imaging-autopsy correlation; and evidence supporting diagnostic and prognostic value of MRI measures. Finally, the place of MRI in a hypothetical model of temporal ordering of AD biomarkers is reviewed.

  12. Massively Parallel MRI Detector Arrays

    PubMed Central

    Keil, Boris; Wald, Lawrence L

    2013-01-01

    Originally proposed as a method to increase sensitivity by extending the locally high-sensitivity of small surface coil elements to larger areas, the term parallel imaging now includes the use of array coils to perform image encoding. This methodology has impacted clinical imaging to the point where many examinations are performed with an array comprising multiple smaller surface coil elements as the detector of the MR signal. This article reviews the theoretical and experimental basis for the trend towards higher channel counts relying on insights gained from modeling and experimental studies as well as the theoretical analysis of the so-called “ultimate” SNR and g-factor. We also review the methods for optimally combining array data and changes in RF methodology needed to construct massively parallel MRI detector arrays and show some examples of state-of-the-art for highly accelerated imaging with the resulting highly parallel arrays. PMID:23453758

  13. NMR, MRI, and spectroscopic MRI in inhomogeneous fields

    DOEpatents

    Demas, Vasiliki; Pines, Alexander; Martin, Rachel W; Franck, John; Reimer, Jeffrey A

    2013-12-24

    A method for locally creating effectively homogeneous or "clean" magnetic field gradients (of high uniformity) for imaging (with NMR, MRI, or spectroscopic MRI) both in in-situ and ex-situ systems with high degrees of inhomogeneous field strength. THe method of imaging comprises: a) providing a functional approximation of an inhomogeneous static magnetic field strength B.sub.0({right arrow over (r)}) at a spatial position {right arrow over (r)}; b) providing a temporal functional approximation of {right arrow over (G)}.sub.shim(t) with i basis functions and j variables for each basis function, resulting in v.sub.ij variables; c) providing a measured value .OMEGA., which is an temporally accumulated dephasing due to the inhomogeneities of B.sub.0({right arrow over(r)}); and d) minimizing a difference in the local dephasing angle .phi.({right arrow over (r)},t)=.gamma..intg..sub.0.sup.t{square root over (|{right arrow over (B)}.sub.1({right arrow over (r)},t')|.sup.2+({right arrow over (r)}{right arrow over (G)}.sub.shimG.sub.shim(t')+.parallel.{right arrow over (B)}.sub.0({right arrow over (r)}).parallel..DELTA..omega.({right arrow over (r)},t'/.gamma/).sup.2)}dt'-.OMEGA. by varying the v.sub.ij variables to form a set of minimized v.sub.ij variables. The method requires calibration of the static fields prior to minimization, but may thereafter be implemented without such calibration, may be used in open or closed systems, and potentially portable systems.

  14. Data collection and analysis strategies for phMRI.

    PubMed

    Mandeville, Joseph B; Liu, Christina H; Vanduffel, Wim; Marota, John J A; Jenkins, Bruce G

    2014-09-01

    Although functional MRI traditionally has been applied mainly to study changes in task-induced brain function, evolving acquisition methodologies and improved knowledge of signal mechanisms have increased the utility of this method for studying responses to pharmacological stimuli, a technique often dubbed "phMRI". The proliferation of higher magnetic field strengths and the use of exogenous contrast agent have boosted detection power, a critical factor for successful phMRI due to the restricted ability to average multiple stimuli within subjects. Receptor-based models of neurovascular coupling, including explicit pharmacological models incorporating receptor densities and affinities and data-driven models that incorporate weak biophysical constraints, have demonstrated compelling descriptions of phMRI signal induced by dopaminergic stimuli. This report describes phMRI acquisition and analysis methodologies, with an emphasis on data-driven analyses. As an example application, statistically efficient data-driven regressors were used to describe the biphasic response to the mu-opioid agonist remifentanil, and antagonism using dopaminergic and GABAergic ligands revealed modulation of the mesolimbic pathway. Results illustrate the power of phMRI as well as our incomplete understanding of mechanisms underlying the signal. Future directions are discussed for phMRI acquisitions in human studies, for evolving analysis methodologies, and for interpretative studies using the new generation of simultaneous PET/MRI scanners. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'.

  15. Anatomical MRI with an atomic magnetometer.

    PubMed

    Savukov, I; Karaulanov, T

    2013-06-01

    Ultra-low field (ULF) MRI is a promising method for inexpensive medical imaging with various additional advantages over conventional instruments such as low weight, low power, portability, absence of artifacts from metals, and high contrast. Anatomical ULF MRI has been successfully implemented with SQUIDs, but SQUIDs have the drawback of a cryogen requirement. Atomic magnetometers have sensitivity comparable to SQUIDs and can be in principle used for ULF MRI to replace SQUIDs. Unfortunately some problems exist due to the sensitivity of atomic magnetometers to a magnetic field and gradients. At low frequency, noise is also substantial and a shielded room is needed for improving sensitivity. In this paper, we show that at 85 kHz, the atomic magnetometer can be used to obtain anatomical images. This is the first demonstration of any use of atomic magnetometers for anatomical MRI. The demonstrated resolution is 1.1 mm×1.4 mm in about 6 min of acquisition with SNR of 10. Some applications of the method are discussed. We discuss several measures to increase the sensitivity to reach a resolution 1 mm×1 mm.

  16. An MRI-Compatible Robotic System With Hybrid Tracking for MRI-Guided Prostate Intervention

    PubMed Central

    Krieger, Axel; Iordachita, Iulian I.; Guion, Peter; Singh, Anurag K.; Kaushal, Aradhana; Ménard, Cynthia; Pinto, Peter A.; Camphausen, Kevin; Fichtinger, Gabor

    2012-01-01

    This paper reports the development, evaluation, and first clinical trials of the access to the prostate tissue (APT) II system—a scanner independent system for magnetic resonance imaging (MRI)-guided transrectal prostate interventions. The system utilizes novel manipulator mechanics employing a steerable needle channel and a novel six degree-of-freedom hybrid tracking method, comprising passive fiducial tracking for initial registration and subsequent incremental motion measurements. Targeting accuracy of the system in prostate phantom experiments and two clinical human-subject procedures is shown to compare favorably with existing systems using passive and active tracking methods. The portable design of the APT II system, using only standard MRI image sequences and minimal custom scanner interfacing, allows the system to be easily used on different MRI scanners. PMID:22009867

  17. Comparison of dual-echo DSC-MRI- and DCE-MRI-derived contrast agent kinetic parameters.

    PubMed

    Quarles, C Chad; Gore, John C; Xu, Lei; Yankeelov, Thomas E

    2012-09-01

    The application of dynamic susceptibility contrast (DSC) MRI methods to assess brain tumors is often confounded by the extravasation of contrast agent (CA). Disruption of the blood-brain barrier allows CA to leak out of the vasculature leading to additional T(1), T(2) and T(2) relaxation effects in the extravascular space, thereby affecting the signal intensity time course in a complex manner. The goal of this study was to validate a dual-echo DSC-MRI approach that separates and quantifies the T(1) and T(2) contributions to the acquired signal and enables the estimation of the volume transfer constant, K(trans), and the volume fraction of the extravascular extracellular space, v(e). To test the validity of this approach, DSC-MRI- and dynamic contrast enhanced (DCE) MRI-derived K(trans) and v(e) estimates were spatially compared in both 9L and C6 rat brain tumor models. A high degree of correlation (concordance correlation coefficients >0.83, Pearson's r>0.84) and agreement was found between the DSC-MRI- and DCE-MRI-derived measurements. These results indicate that dual-echo DSC-MRI can be used to simultaneously extract reliable DCE-MRI kinetic parameters in brain tumors in addition to conventional blood volume and blood flow metrics.

  18. Computational approaches to fMRI analysis.

    PubMed

    Cohen, Jonathan D; Daw, Nathaniel; Engelhardt, Barbara; Hasson, Uri; Li, Kai; Niv, Yael; Norman, Kenneth A; Pillow, Jonathan; Ramadge, Peter J; Turk-Browne, Nicholas B; Willke, Theodore L

    2017-02-23

    Analysis methods in cognitive neuroscience have not always matched the richness of fMRI data. Early methods focused on estimating neural activity within individual voxels or regions, averaged over trials or blocks and modeled separately in each participant. This approach mostly neglected the distributed nature of neural representations over voxels, the continuous dynamics of neural activity during tasks, the statistical benefits of performing joint inference over multiple participants and the value of using predictive models to constrain analysis. Several recent exploratory and theory-driven methods have begun to pursue these opportunities. These methods highlight the importance of computational techniques in fMRI analysis, especially machine learning, algorithmic optimization and parallel computing. Adoption of these techniques is enabling a new generation of experiments and analyses that could transform our understanding of some of the most complex-and distinctly human-signals in the brain: acts of cognition such as thoughts, intentions and memories.

  19. Feature space analysis of MRI

    NASA Astrophysics Data System (ADS)

    Soltanian-Zadeh, Hamid; Windham, Joe P.; Peck, Donald J.

    1997-04-01

    This paper presents development and performance evaluation of an MRI feature space method. The method is useful for: identification of tissue types; segmentation of tissues; and quantitative measurements on tissues, to obtain information that can be used in decision making (diagnosis, treatment planning, and evaluation of treatment). The steps of the work accomplished are as follows: (1) Four T2-weighted and two T1-weighted images (before and after injection of Gadolinium) were acquired for ten tumor patients. (2) Images were analyed by two image analysts according to the following algorithm. The intracranial brain tissues were segmented from the scalp and background. The additive noise was suppressed using a multi-dimensional non-linear edge- preserving filter which preserves partial volume information on average. Image nonuniformities were corrected using a modified lowpass filtering approach. The resulting images were used to generate and visualize an optimal feature space. Cluster centers were identified on the feature space. Then images were segmented into normal tissues and different zones of the tumor. (3) Biopsy samples were extracted from each patient and were subsequently analyzed by the pathology laboratory. (4) Image analysis results were compared to each other and to the biopsy results. Pre- and post-surgery feature spaces were also compared. The proposed algorithm made it possible to visualize the MRI feature space and to segment the image. In all cases, the operators were able to find clusters for normal and abnormal tissues. Also, clusters for different zones of the tumor were found. Based on the clusters marked for each zone, the method successfully segmented the image into normal tissues (white matter, gray matter, and CSF) and different zones of the lesion (tumor, cyst, edema, radiation necrosis, necrotic core, and infiltrated tumor). The results agreed with those obtained from the biopsy samples. Comparison of pre- to post-surgery and radiation

  20. A review of MRI evaluation of demyelination in cuprizone murine model

    SciTech Connect

    Krutenkova, E. Pan, E.; Khodanovich, M.

    2015-11-17

    The cuprizone mouse model of non-autoimmune demyelination reproduces some phenomena of multiple sclerosis and is appropriate for validation and specification of a new method of non-invasive diagnostics. In the review new data which are collected using the new MRI method are compared with one or more conventional MRI tools. Also the paper reviewed the validation of MRI approaches using histological or immunohistochemical methods. Luxol fast blue histological staining and myelin basic protein immunostaining is widespread. To improve the accuracy of non-invasive conventional MRI, multimodal scanning could be applied. The new quantitative MRI method of fast mapping of the macromolecular proton fraction is a reliable biomarker of myelin in the brain and can be used for research of demyelination in animals. To date, a validation of MPF method on the CPZ mouse model of demyelination is not performed, although this method is probably the best way to evaluate demyelination using MRI.

  1. A review of MRI evaluation of demyelination in cuprizone murine model

    NASA Astrophysics Data System (ADS)

    Krutenkova, E.; Pan, E.; Khodanovich, M.

    2015-11-01

    The cuprizone mouse model of non-autoimmune demyelination reproduces some phenomena of multiple sclerosis and is appropriate for validation and specification of a new method of non-invasive diagnostics. In the review new data which are collected using the new MRI method are compared with one or more conventional MRI tools. Also the paper reviewed the validation of MRI approaches using histological or immunohistochemical methods. Luxol fast blue histological staining and myelin basic protein immunostaining is widespread. To improve the accuracy of non-invasive conventional MRI, multimodal scanning could be applied. The new quantitative MRI method of fast mapping of the macromolecular proton fraction is a reliable biomarker of myelin in the brain and can be used for research of demyelination in animals. To date, a validation of MPF method on the CPZ mouse model of demyelination is not performed, although this method is probably the best way to evaluate demyelination using MRI.

  2. Biparametric versus multiparametric MRI in the diagnosis of prostate cancer

    PubMed Central

    Logager, Vibeke; Baslev, Ingerd; Møller, Jakob M; Hansen, Rasmus Hvass; Thomsen, Henrik S

    2016-01-01

    Background Since multiparametric magnetic resonance imaging (mp-MRI) of the prostate exceeds 30 min, minimizing the evaluation time of significant (Gleason scores > 6) prostate cancer (PCa) would be beneficial. A reduced protocol might be sufficient for the diagnosis. Purpose To study whether a short unenhanced biparametric MRI (bp-MRI) matches mp-MRI in detecting significant PCa. Material and Methods A total of 204 men (median age, 65 years; mean ± SD, 64.1; range 45–75 years; median serum PSA level, 14 ng/mL; range, 2.2–120 ng/mL; median prostate volume, 60 mL; range, 23–263 mL) fulfilled the criteria for being enrolled. They underwent mp-MRI and prostate biopsy from January through June 2014. Of the included patients, 9.3% underwent prostatectomy, 90.7% had TRUS-bx, and 10.8 had MRI-targeted TRUS-bx. Two radiologists separately assessed the mp-MRI examination (T2-weighted [T2W] imaging, diffusion-weighted imaging [DWI], apparent diffusion coefficient map [ADC-map] and dynamic contrast-enhanced imaging [DCE]). Two months later, the bp-MRI version (T2W imaging, DWI, and ADC-map) was evaluated. Results Reader 1: Assessing mp-MRI: 0 false negatives, sensitivity of 1, and specificity 0.04. Assessing bp-MRI: four false negatives, sensitivity of 0.94, and specificity 0.15. Reader 2: Assessing mp-MRI: five false negatives, sensitivity of 0.93, and specificity 0.16. Assessing bp-MRI: three false negatives, sensitivity of 0.96, and specificity 0.15. Intra-reader agreement Cohen’s Kappa (κ) was 0.87 for reader 1 (95% confidence interval [CI], 0.83–0.92) and 0.84 for reader 2 (95% CI 0.78–0.89). Conclusion Bp-MRI is as good as mp-MRI at detecting PCa. A large prospective study seems to be strongly warranted. PMID:27583170

  3. Efficient gradient calibration based on diffusion MRI

    PubMed Central

    Teh, Irvin; Maguire, Mahon L.

    2016-01-01

    Purpose To propose a method for calibrating gradient systems and correcting gradient nonlinearities based on diffusion MRI measurements. Methods The gradient scaling in x, y, and z were first offset by up to 5% from precalibrated values to simulate a poorly calibrated system. Diffusion MRI data were acquired in a phantom filled with cyclooctane, and corrections for gradient scaling errors and nonlinearity were determined. The calibration was assessed with diffusion tensor imaging and independently validated with high resolution anatomical MRI of a second structured phantom. Results The errors in apparent diffusion coefficients along orthogonal axes ranged from −9.2% ± 0.4% to + 8.8% ± 0.7% before calibration and −0.5% ± 0.4% to + 0.8% ± 0.3% after calibration. Concurrently, fractional anisotropy decreased from 0.14 ± 0.03 to 0.03 ± 0.01. Errors in geometric measurements in x, y and z ranged from −5.5% to + 4.5% precalibration and were likewise reduced to −0.97% to + 0.23% postcalibration. Image distortions from gradient nonlinearity were markedly reduced. Conclusion Periodic gradient calibration is an integral part of quality assurance in MRI. The proposed approach is both accurate and efficient, can be setup with readily available materials, and improves accuracy in both anatomical and diffusion MRI to within ±1%. Magn Reson Med 77:170–179, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. PMID:26749277

  4. Automatic cardiac MRI myocardium segmentation using graphcut

    NASA Astrophysics Data System (ADS)

    Kedenburg, Gunnar; Cocosco, Chris A.; Köthe, Ullrich; Niessen, Wiro J.; Vonken, Evert-jan P. A.; Viergever, Max A.

    2006-03-01

    Segmentation of the left myocardium in four-dimensional (space-time) cardiac MRI data sets is a prerequisite of many diagnostic tasks. We propose a fully automatic method based on global minimization of an energy functional by means of the graphcut algorithm. Starting from automatically obtained segmentations of the left and right ventricles and a cardiac region of interest, a spatial model is constructed using simple and plausible assumptions. This model is used to learn the appearance of different tissue types by non parametric robust estimation. Our method does not require previously trained shape or appearance models. Processing takes 30-40s on current hardware. We evaluated our method on 11 clinical cardiac MRI data sets acquired using cine balanced fast field echo. Linear regression of the automatically segmented myocardium volume against manual segmentations (performed by a radiologist) showed an RMS error of about 12ml.

  5. Multiscan MRI-based virtual cystoscopy

    NASA Astrophysics Data System (ADS)

    Chen, Dongqing; Li, Bin; Huang, Wei; Liang, Zach

    2000-04-01

    Computed tomography (CT) based virtual cystoscopy (VC) has been studied as a potential tool for screening bladder cancer. It is accurate in localizing tumor of size larger than 1 cm and less expensive, as compared to fiberoptic cystoscopy. However, it is invasive and difficult to perform due to using Foley catheter for bladder insufflating with air. In a previous work, we investigated a magnetic resonance imaging (MRI) based VC scheme with urine as a natural contrast solution, in which a MRI acquisition protocol and an adaptive segmentation method were utilized. Both bladder lumen and wall were successfully delineated. To suppress motion artifact and insight pathological change on the bladder wall images, a multi-scan MRI scheme was presented in this study. One transverse and another coronal acquisitions of T1-weighted that cover the whole bladder were obtained twice, at one time the bladder is full of urine and at another time it is near the empty. Four bladder volumes extracted from those 4 datasets were registered first using a flexible three- dimensional (3D) registration algorithm. Then, associated 4 lumen surfaces were viewed simultaneously with the help of an interactive 3D visualization system. This MRI-based VC was tested on volunteers and demonstrated the feasibility to mass screening for bladder cancer.

  6. Diffusion-MRI in neurodegenerative disorders.

    PubMed

    Goveas, Joseph; O'Dwyer, Laurence; Mascalchi, Mario; Cosottini, Mirco; Diciotti, Stefano; De Santis, Silvia; Passamonti, Luca; Tessa, Carlo; Toschi, Nicola; Giannelli, Marco

    2015-09-01

    The ability to image the whole brain through ever more subtle and specific methods/contrasts has come to play a key role in understanding the basis of brain abnormalities in several diseases. In magnetic resonance imaging (MRI), "diffusion" (i.e. the random, thermally-induced displacements of water molecules over time) represents an extraordinarily sensitive contrast mechanism, and the exquisite structural detail it affords has proven useful in a vast number of clinical as well as research applications. Since diffusion-MRI is a truly quantitative imaging technique, the indices it provides can serve as potential imaging biomarkers which could allow early detection of pathological alterations as well as tracking and possibly predicting subtle changes in follow-up examinations and clinical trials. Accordingly, diffusion-MRI has proven useful in obtaining information to better understand the microstructural changes and neurophysiological mechanisms underlying various neurodegenerative disorders. In this review article, we summarize and explore the main applications, findings, perspectives as well as challenges and future research of diffusion-MRI in various neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease and degenerative ataxias.

  7. MRI assessment of bone structure and microarchitecture.

    PubMed

    Chang, Gregory; Boone, Sean; Martel, Dimitri; Rajapakse, Chamith S; Hallyburton, Robert S; Valko, Mitch; Honig, Stephen; Regatte, Ravinder R

    2017-02-06

    Osteoporosis is a disease of weak bone and increased fracture risk caused by low bone mass and microarchitectural deterioration of bone tissue. The standard-of-care test used to diagnose osteoporosis, dual-energy x-ray absorptiometry (DXA) estimation of areal bone mineral density (BMD), has limitations as a tool to identify patients at risk for fracture and as a tool to monitor therapy response. Magnetic resonance imaging (MRI) assessment of bone structure and microarchitecture has been proposed as another method to assess bone quality and fracture risk in vivo. MRI is advantageous because it is noninvasive, does not require ionizing radiation, and can evaluate both cortical and trabecular bone. In this review article, we summarize and discuss research progress on MRI of bone structure and microarchitecture over the last decade, focusing on in vivo translational studies. Single-center, in vivo studies have provided some evidence for the added value of MRI as a biomarker of fracture risk or treatment response. Larger, prospective, multicenter studies are needed in the future to validate the results of these initial translational studies.

  8. In amnio MRI of mouse embryos.

    PubMed

    Roberts, Thomas A; Norris, Francesca C; Carnaghan, Helen; Savery, Dawn; Wells, Jack A; Siow, Bernard; Scambler, Peter J; Pierro, Agostino; De Coppi, Paolo; Eaton, Simon; Lythgoe, Mark F

    2014-01-01

    Mouse embryo imaging is conventionally carried out on ex vivo embryos excised from the amniotic sac, omitting vital structures and abnormalities external to the body. Here, we present an in amnio MR imaging methodology in which the mouse embryo is retained in the amniotic sac and demonstrate how important embryonic structures can be visualised in 3D with high spatial resolution (100 µm/px). To illustrate the utility of in amnio imaging, we subsequently apply the technique to examine abnormal mouse embryos with abdominal wall defects. Mouse embryos at E17.5 were imaged and compared, including three normal phenotype embryos, an abnormal embryo with a clear exomphalos defect, and one with a suspected gastroschisis phenotype. Embryos were excised from the mother ensuring the amnion remained intact and stereo microscopy was performed. Embryos were next embedded in agarose for 3D, high resolution MRI on a 9.4T scanner. Identification of the abnormal embryo phenotypes was not possible using stereo microscopy or conventional ex vivo MRI. Using in amnio MRI, we determined that the abnormal embryos had an exomphalos phenotype with varying severities. In amnio MRI is ideally suited to investigate the complex relationship between embryo and amnion, together with screening for other abnormalities located outside of the mouse embryo, providing a valuable complement to histology and existing imaging methods available to the phenotyping community.

  9. Occupational exposure in MRI

    PubMed Central

    Mcrobbie, D W

    2012-01-01

    This article reviews occupational exposure in clinical MRI; it specifically considers units of exposure, basic physical interactions, health effects, guideline limits, dosimetry, results of exposure surveys, calculation of induced fields and the status of the European Physical Agents Directive. Electromagnetic field exposure in MRI from the static field B0, imaging gradients and radiofrequency transmission fields induces electric fields and currents in tissue, which are responsible for various acute sensory effects. The underlying theory and its application to the formulation of incident and induced field limits are presented. The recent International Commission on Non-Ionizing Radiation Protection (ICNIRP) Bundesministerium für Arbeit und Soziales and Institute of Electrical and Electronics Engineers limits for incident field exposure are interpreted in a manner applicable to MRI. Field measurements show that exposure from movement within the B0 fringe field can exceed ICNIRP reference levels within 0.5 m of the bore entrance. Rate of change of field dB/dt from the imaging gradients is unlikely to exceed the new limits, although incident field limits can be exceeded for radiofrequency (RF) exposure within 0.2–0.5 m of the bore entrance. Dosimetric surveys of routine clinical practice show that staff are exposed to peak values of 42±24% of B0, with time-averaged exposures of 5.2±2.8 mT for magnets in the range 0.6–4 T. Exposure to time-varying fields arising from movement within the B0 fringe resulted in peak dB/dt of approximately 2 T s−1. Modelling of induced electric fields from the imaging gradients shows that ICNIRP-induced field limits are unlikely to be exceeded in most situations; however, movement through the static field may still present a problem. The likely application of the limits is discussed with respect to the reformulation of the European Union (EU) directive and its possible implications for MRI. PMID:22457400

  10. SU-E-J-239: IMRT Planning of Prostate Cancer for a MRI-Linac Based On MRI Only

    SciTech Connect

    Chen, X; Prior, P; Paulson, E; Lawton, C; Li, X

    2014-06-01

    Purpose: : To investigate dosimetric differences between MRI- and CT-based IMRT planning for prostate cancer, the impact of a magnetic field in a MRI-Linac, and to explore the feasibility of IMRT planning based on MRI alone. Methods: IMRT plans were generated based on CT and MRI images acquired on two representative prostate-cancer patients using clinical dose volume constraints. A research planning system (Monaco, Elekta), which employs a Monte Carlo dose engine and includes a perpendicular magnetic field of 1.5T from an MRI-Linac, was used. Bulk electron density assignments based on organ-specific values from ICRU 46 were used to convert MRI (T2) to pseudo CT. With the same beam configuration as in the original CT plan, 5 additional plans were generated based on CT or MRI, with or without optimization (i.e., just recalculation) and with or without the magnetic field. The plan quality in terms of commonly used dose volume (DV) parameters for all plans was compared. The statistical uncertainty on dose was < 1%. Results: For plans with the same contour set but without re-optimization, the DV parameters were different from those for the original CT plan, mostly less than 5% with a few exceptions. These differences were reduced to mostly less than 3% when the plans were re-optimized. For plans with contours from MRI, the differences in the DV parameters varied depending on the difference in the contours as compared to CT. For the optimized plans with contours from MR, the differences for PTV were less than 3%. Conclusion: The prostate IMRT plans based on MRI-only for a MR-Linac were practically similar as compared to the CT plan under the same beam and optimization configuration if the difference on the structure delineation is excluded, indicating the feasibility of using MRI-only for prostate IMRT.

  11. Evaluation of head and neck tumors with functional MRI

    PubMed Central

    Jansen, Jacobus F.A.; Parra, Carlos; Lu, Yonggang; Shukla-Dave, Amita

    2015-01-01

    Synopsys Head and neck (HN) cancer is one of the most common cancers worldwide. Magnetic Resonance Imaging (MRI) based diffusion and perfusion techniques enable the non-invasive assessment of tumor biology and physiology, which supplement information obtained from standard structural scans. Diffusion and perfusion MRI techniques provide novel biomarkers that can aid the monitoring pre-, during, and post-treatment stages to improve patient selection for therapeutic strategies, provide evidence for change of therapy regime, and evaluation of treatment response. This review discusses pertinent aspects of the role of diffusion and perfusion MRI and computational analysis methods in studying HN cancer. PMID:26613878

  12. Can MRI accurately detect pilon articular malreduction? A quantitative comparison between CT and 3T MRI bone models

    PubMed Central

    Radzi, Shairah; Dlaska, Constantin Edmond; Cowin, Gary; Robinson, Mark; Pratap, Jit; Schuetz, Michael Andreas; Mishra, Sanjay

    2016-01-01

    Background Pilon fracture reduction is a challenging surgery. Radiographs are commonly used to assess the quality of reduction, but are limited in revealing the remaining bone incongruities. The study aimed to develop a method in quantifying articular malreductions using 3D computed tomography (CT) and magnetic resonance imaging (MRI) models. Methods CT and MRI data were acquired using three pairs of human cadaveric ankle specimens. Common tibial pilon fractures were simulated by performing osteotomies to the ankle specimens. Five of the created fractures [three AO type-B (43-B1), and two AO type-C (43-C1) fractures] were then reduced and stabilised using titanium implants, then rescanned. All datasets were reconstructed into CT and MRI models, and were analysed in regards to intra-articular steps and gaps, surface deviations, malrotations and maltranslations of the bone fragments. Results Initial results reveal that type B fracture CT and MRI models differed by ~0.2 (step), ~0.18 (surface deviations), ~0.56° (rotation) and ~0.4 mm (translation). Type C fracture MRI models showed metal artefacts extending to the articular surface, thus unsuitable for analysis. Type C fracture CT models differed from their CT and MRI contralateral models by ~0.15 (surface deviation), ~1.63° (rotation) and ~0.4 mm (translation). Conclusions Type B fracture MRI models were comparable to CT and may potentially be used for the postoperative assessment of articular reduction on a case-to-case basis. PMID:28090442

  13. WE-EF-BRD-01: Past, Present and Future: MRI-Guided Radiotherapy From 2005 to 2025

    SciTech Connect

    Lagendijk, J.

    2015-06-15

    MRI-guided treatment is a growing area of medicine, particularly in radiotherapy and surgery. The exquisite soft tissue anatomic contrast offered by MRI, along with functional imaging, makes the use of MRI during therapeutic procedures very attractive. Challenging the utility of MRI in the therapy room are many issues including the physics of MRI and the impact on the environment and therapeutic instruments, the impact of the room and instruments on the MRI; safety, space, design and cost. In this session, the applications and challenges of MRI-guided treatment will be described. The session format is: Past, present and future: MRI-guided radiotherapy from 2005 to 2025: Jan Lagendijk Battling Maxwell’s equations: Physics challenges and solutions for hybrid MRI systems: Paul Keall I want it now!: Advances in MRI acquisition, reconstruction and the use of priors to enable fast anatomic and physiologic imaging to inform guidance and adaptation decisions: Yanle Hu MR in the OR: The growth and applications of MRI for interventional radiology and surgery: Rebecca Fahrig Learning Objectives: To understand the history and trajectory of MRI-guided radiotherapy To understand the challenges of integrating MR imaging systems with linear accelerators To understand the latest in fast MRI methods to enable the visualisation of anatomy and physiology on radiotherapy treatment timescales To understand the growing role and challenges of MRI for image-guided surgical procedures My disclosures are publicly available and updated at: http://sydney.edu.au/medicine/radiation-physics/about-us/disclosures.php.

  14. WE-EF-BRD-02: Battling Maxwell’s Equations: Physics Challenges and Solutions for Hybrid MRI Systems

    SciTech Connect

    Keall, P.

    2015-06-15

    MRI-guided treatment is a growing area of medicine, particularly in radiotherapy and surgery. The exquisite soft tissue anatomic contrast offered by MRI, along with functional imaging, makes the use of MRI during therapeutic procedures very attractive. Challenging the utility of MRI in the therapy room are many issues including the physics of MRI and the impact on the environment and therapeutic instruments, the impact of the room and instruments on the MRI; safety, space, design and cost. In this session, the applications and challenges of MRI-guided treatment will be described. The session format is: Past, present and future: MRI-guided radiotherapy from 2005 to 2025: Jan Lagendijk Battling Maxwell’s equations: Physics challenges and solutions for hybrid MRI systems: Paul Keall I want it now!: Advances in MRI acquisition, reconstruction and the use of priors to enable fast anatomic and physiologic imaging to inform guidance and adaptation decisions: Yanle Hu MR in the OR: The growth and applications of MRI for interventional radiology and surgery: Rebecca Fahrig Learning Objectives: To understand the history and trajectory of MRI-guided radiotherapy To understand the challenges of integrating MR imaging systems with linear accelerators To understand the latest in fast MRI methods to enable the visualisation of anatomy and physiology on radiotherapy treatment timescales To understand the growing role and challenges of MRI for image-guided surgical procedures My disclosures are publicly available and updated at: http://sydney.edu.au/medicine/radiation-physics/about-us/disclosures.php.

  15. WE-EF-BRD-04: MR in the OR: The Growth and Applications of MRI for Interventional Radiology and Surgery

    SciTech Connect

    Fahrig, R.

    2015-06-15

    MRI-guided treatment is a growing area of medicine, particularly in radiotherapy and surgery. The exquisite soft tissue anatomic contrast offered by MRI, along with functional imaging, makes the use of MRI during therapeutic procedures very attractive. Challenging the utility of MRI in the therapy room are many issues including the physics of MRI and the impact on the environment and therapeutic instruments, the impact of the room and instruments on the MRI; safety, space, design and cost. In this session, the applications and challenges of MRI-guided treatment will be described. The session format is: Past, present and future: MRI-guided radiotherapy from 2005 to 2025: Jan Lagendijk Battling Maxwell’s equations: Physics challenges and solutions for hybrid MRI systems: Paul Keall I want it now!: Advances in MRI acquisition, reconstruction and the use of priors to enable fast anatomic and physiologic imaging to inform guidance and adaptation decisions: Yanle Hu MR in the OR: The growth and applications of MRI for interventional radiology and surgery: Rebecca Fahrig Learning Objectives: To understand the history and trajectory of MRI-guided radiotherapy To understand the challenges of integrating MR imaging systems with linear accelerators To understand the latest in fast MRI methods to enable the visualisation of anatomy and physiology on radiotherapy treatment timescales To understand the growing role and challenges of MRI for image-guided surgical procedures My disclosures are publicly available and updated at: http://sydney.edu.au/medicine/radiation-physics/about-us/disclosures.php.

  16. Volume estimation of brain abnormalities in MRI data

    NASA Astrophysics Data System (ADS)

    Suprijadi, Pratama, S. H.; Haryanto, F.

    2014-02-01

    The abnormality of brain tissue always becomes a crucial issue in medical field. This medical condition can be recognized through segmentation of certain region from medical images obtained from MRI dataset. Image processing is one of computational methods which very helpful to analyze the MRI data. In this study, combination of segmentation and rendering image were used to isolate tumor and stroke. Two methods of thresholding were employed to segment the abnormality occurrence, followed by filtering to reduce non-abnormality area. Each MRI image is labeled and then used for volume estimations of tumor and stroke-attacked area. The algorithms are shown to be successful in isolating tumor and stroke in MRI images, based on thresholding parameter and stated detection accuracy.

  17. Biomimetic phantom for cardiac diffusion MRI

    PubMed Central

    Teh, Irvin; Zhou, Feng‐Lei; Hubbard Cristinacce, Penny L.; Parker, Geoffrey J.M.

    2015-01-01

    Purpose Diffusion magnetic resonance imaging (MRI) is increasingly used to characterize cardiac tissue microstructure, necessitating the use of physiologically relevant phantoms for methods development. Existing phantoms are generally simplistic and mostly simulate diffusion in the brain. Thus, there is a need for phantoms mimicking diffusion in cardiac tissue. Materials and Methods A biomimetic phantom composed of hollow microfibers generated using co‐electrospinning was developed to mimic myocardial diffusion properties and fiber and sheet orientations. Diffusion tensor imaging was carried out at monthly intervals over 4 months at 9.4T. 3D fiber tracking was performed using the phantom and compared with fiber tracking in an ex vivo rat heart. Results The mean apparent diffusion coefficient and fractional anisotropy of the phantom remained stable over the 4‐month period, with mean values of 7.53 ± 0.16 × 10‐4 mm2/s and 0.388 ± 0.007, respectively. Fiber tracking of the 1st and 3rd eigenvectors generated analogous results to the fiber and sheet‐normal direction respectively, found in the left ventricular myocardium. Conclusion A biomimetic phantom simulating diffusion in the heart was designed and built. This could aid development and validation of novel diffusion MRI methods for investigating cardiac microstructure, decrease the number of animals and patients needed for methods development, and improve quality control in longitudinal and multicenter cardiac diffusion MRI studies. J. MAGN. RESON. IMAGING 2016;43:594–600. PMID:26213152

  18. MRI atlas of ectopic endometriosis.

    PubMed

    Dallaudière, B; Salut, C; Hummel, V; Pouquet, M; Piver, P; Rouanet, J-P; Maubon, A

    2013-03-01

    Ectopic endometriosis is a common condition which is often underdiagnosed, where MRI can help make a diagnosis simply, non-invasively and without irradiation. However, imagery signs of it are enormously polymorphic with a wide range of possible locations. In this paper, we have tried to illustrate comprehensively all its MRI appearances depending on the different locations where it occurs.

  19. MRI-Based Assessment of Safe Margins in Tumor Surgery

    PubMed Central

    Bellanova, Laura; Schubert, Thomas; Cartiaux, Olivier; Lecouvet, Frédéric; Galant, Christine; Banse, Xavier; Docquier, Pierre-Louis

    2014-01-01

    Introduction. In surgical oncology, histological analysis of excised tumor specimen is the conventional method to assess the safety of the resection margins. We tested the feasibility of using MRI to assess the resection margins of freshly explanted tumor specimens in rats. Materials and Methods. Fourteen specimen of sarcoma were resected in rats and analysed both with MRI and histologically. Slicing of the specimen was identical for the two methods and corresponding slices were paired. 498 margins were measured in length and classified using the UICC classification (R0, R1, and R2). Results. The mean difference between the 498 margins measured both with histology and MRI was 0.3 mm (SD 1.0 mm). The agreement interval of the two measurement methods was [−1.7 mm; 2.2 mm]. In terms of the UICC classification, a strict correlation was observed between MRI- and histology-based classifications (κ = 0.84, P < 0.05). Discussion. This experimental study showed the feasibility to use MRI images of excised tumor specimen to assess the resection margins with the same degree of accuracy as the conventional histopathological analysis. When completed, MRI acquisition of resected tumors may alert the surgeon in case of inadequate margin and help advantageously the histopathological analysis. PMID:24701131

  20. Intra voxel analysis in MRI

    NASA Astrophysics Data System (ADS)

    Ambrosanio, Michele; Baselice, Fabio; Ferraioli, Giampaolo; Pascazio, Vito

    2014-03-01

    A new application of Compressive Sensing (CS) in Magnetic Resonance Imaging (MRI) field is presented. In particular, first results of the Intra Voxel Analysis (IVA) technique are reported. The idea is to exploit CS peculiarities in order to distinguish different contributions inside the same resolution cell, instead of reconstructing images from not fully sampled k-space acquisition. Applied to MRI field, this means the possibility of estimating the presence of different tissues inside the same voxel, i.e. in one pixel of the obtained image. In other words, the method is the first attempt, as far as we know, of achieving Spectroscopy-like results starting from each pixel of MR images. In particular, tissues are distinguished each others by evaluating their spin-spin relaxation times. Within this manuscript, first results on clinical dataset, in particular a phantom made by aqueous solution and oil and an occipital brain lesion corresponding to a metastatic breast cancer nodule, are reported. Considering the phantom dataset, in particular focusing on the slice where the separation between water and oil occurs, the methodology is able to distinguish the two components with different spin-spin relaxation times. With respect to clinical dataset,focusing on a voxel of the lesion area, the approach is able to detect the presence of two tissues, namely the healthy and the cancer related ones, while in other location outside the lesion only the healthy tissue is detected. Of course, these are the first results of the proposed methodology, further studies on different types of clinical datasets are required in order to widely validate the approach. Although few datasets have been considered, results seem both interesting and promising.

  1. Target image search using fMRI signals

    NASA Astrophysics Data System (ADS)

    Xiong, Shi; Song, Sutao; Zhan, Yu; Zhang, Jiacai

    2014-03-01

    Recent neural signal decoding studies based on functional magnetic resonance imaging (fMRI) have identified the specific image presenting to the subject from a set of potential images, and some studies extend neural decoding into image reconstruction, i.e. image contents that the subject perceived were decoded from the fMRI signals recorded during the subject looking at images. In this paper, we decoded the target images using fMRI signals and described a target image searching method based on the relationship between target image stimuli and fMRI activity. We recorded fMRI data during a serial visual stimuli image presentation task, some of the stimuli images were target images and the rest images were non-target ones. Our fMRI data analysis results showed that in the serial visual presentation task, target images elicited a stereotypical response in the fMRI, which can be detected by multi-voxel pattern analysis (MVPA). Classifiers designed with support vector machine (SVM) used this response to decipher target images from non-target images. The leave-one-run-out cross-validation showed that we can pick out the target images with a possibility far above the chance level, which indicate that there's a neural signatures correlated with the target image recognition process in the human systems.

  2. Data Collection and Analysis Strategies for phMRI

    PubMed Central

    Mandeville, Joseph B.; Liu, Christina H.; Vanduffel, Wim; Marota, John J.A.; Jenkins, Bruce G.

    2014-01-01

    Although functional MRI traditionally has been applied mainly to study changes in task-induced brain function, evolving acquisition methodologies and improved knowledge of signal mechanisms have increased the utility of this method for studying responses to pharmacological stimuli, a technique often dubbed “phMRI”. The proliferation of higher magnetic field strengths and the use of exogenous contrast agent have boosted detection power, a critical factor for successful phMRI due to the restricted ability to average multiple stimuli within subjects. Receptor-based models of neurovascular coupling, including explicit pharmacological models incorporating receptor densities and affinities and data-driven models that incorporate weak biophysical constraints, have demonstrated compelling descriptions of phMRI signal induced by dopaminergic stimuli. This report describes phMRI acquisition and analysis methodologies, with an emphasis on data-driven analyses. As an example application, statistically efficient data-driven regressors were used to describe the biphasic response to the mu-opioid agonist remifentanil, and antagonism using dopaminergic and GABAergic ligands revealed modulation of the mesolimbic pathway. Results illustrate the power of phMRI as well as our incomplete understanding of mechanisms underlying the signal. Future directions are discussed for phMRI acquisitions in human studies, for evolving analysis methodologies, and for interpretative studies using the new generation of simultaneous PET/MRI scanners. PMID:24613447

  3. Perfusion MRI: The Five Most Frequently Asked Technical Questions

    PubMed Central

    Essig, Marco; Shiroishi, Mark S.; Nguyen, Thanh Binh; Saake, Marc; Provenzale, James M.; Enterline, David; Anzalone, Nicoletta; Dörfler, Arnd; Rovira, Àlex; Wintermark, Max; Law, Meng

    2013-01-01

    OBJECTIVE This and its companion article address the 10 most frequently asked questions that radiologists face when planning, performing, processing, and interpreting different MR perfusion studies in CNS imaging. CONCLUSION Perfusion MRI is a promising tool in assessing stroke, brain tumors, and patients with neurodegenerative diseases. Most of the impediments that have limited the use of perfusion MRI can be overcome to allow integration of these methods into modern neuroimaging protocols. PMID:23255738

  4. Ballistocardiogram correction in simultaneous EEG/ fMRI recordings: a comparison of average artifact subtraction and optimal basis set methods using two popular software tools.

    PubMed

    Harrison, Amabilis H; Noseworthy, Michael D; Reilly, James P; Connolly, John F

    2014-01-01

    Electroencephalography data recorded during functional magnetic resonance imaging acquisition are subject to large cardiac-related artifacts that must be corrected during postprocessing. This study compared two widely used ballistocardiogram (BCG) correction algorithms as implemented in two software programs. Reduction of BCG amplitude, correlation of corrected data with electrocardiogram traces, correlation of independent components with electrocardiogram traces, and event-related potential signal-to-noise ratio from each algorithm were compared. Both algorithms effectively reduced the BCG artifact, with a slight advantage of average artifact subtraction over the optimal basis set method (0.1-2.2%) when the quality of the correction was examined at the individual subject level. This study provides users of these software tools with an important, practical, and previously unavailable comparison of the performance of these two methods.

  5. MRI findings in Hirayama disease.

    PubMed

    Raval, Monali; Kumari, Rima; Dung, Aldrin Anthony Dung; Guglani, Bhuvnesh; Gupta, Nitij; Gupta, Rohit

    2010-11-01

    The objective of the study was to study the magnetic resonance imaging (MRI) features of Hirayama disease on a 3 Tesla MRI scanner. Nine patients with clinically suspected Hirayama disease were evaluated with neutral position, flexion, contrast-enhanced MRI and fast imaging employing steady-state acquisition (FIESTA) sequences. The spectrum of MRI features was evaluated and correlated with the clinical and electromyography findings. MRI findings of localized lower cervical cord atrophy (C5-C7), abnormal curvature, asymmetric cord flattening, loss of attachment of the dorsal dural sac and subjacent laminae in the neutral position, anterior displacement of the dorsal dura on flexion and a prominent epidural space were revealed in all patients on conventional MRI as well as with the dynamic 3D-FIESTA sequence. Intramedullary hyperintensity was seen in four patients on conventional MRI and on the 3D-FIESTA sequence. Flow voids were seen in four patients on conventional MRI sequences and in all patients with the 3D-FIESTA sequence. Contrast enhancement of the epidural component was noted in all the five patients with thoracic extensions. The time taken for conventional and contrast-enhanced MRI was about 30-40 min, while that for the 3D-FIESTA sequence was 6 min. Neutral and flexion position MRI and the 3D-FIESTA sequence compliment each other in displaying the spectrum of findings in Hirayama disease. A flexion study should form an essential part of the screening protocol in patients with suspected Hirayama disease. Newer sequences such as the 3D-FIESTA may help in reducing imaging time and obviating the need for contrast.

  6. Non-invasive breast biopsy method using GD-DTPA contrast enhanced MRI series and F-18-FDG PET/CT dynamic image series

    NASA Astrophysics Data System (ADS)

    Magri, Alphonso William

    This study was undertaken to develop a nonsurgical breast biopsy from Gd-DTPA Contrast Enhanced Magnetic Resonance (CE-MR) images and F-18-FDG PET/CT dynamic image series. A five-step process was developed to accomplish this. (1) Dynamic PET series were nonrigidly registered to the initial frame using a finite element method (FEM) based registration that requires fiducial skin markers to sample the displacement field between image frames. A commercial FEM package (ANSYS) was used for meshing and FEM calculations. Dynamic PET image series registrations were evaluated using similarity measurements SAVD and NCC. (2) Dynamic CE-MR series were nonrigidly registered to the initial frame using two registration methods: a multi-resolution free-form deformation (FFD) registration driven by normalized mutual information, and a FEM-based registration method. Dynamic CE-MR image series registrations were evaluated using similarity measurements, localization measurements, and qualitative comparison of motion artifacts. FFD registration was found to be superior to FEM-based registration. (3) Nonlinear curve fitting was performed for each voxel of the PET/CT volume of activity versus time, based on a realistic two-compartmental Patlak model. Three parameters for this model were fitted; two of them describe the activity levels in the blood and in the cellular compartment, while the third characterizes the washout rate of F-18-FDG from the cellular compartment. (4) Nonlinear curve fitting was performed for each voxel of the MR volume of signal intensity versus time, based on a realistic two-compartment Brix model. Three parameters for this model were fitted: rate of Gd exiting the compartment, representing the extracellular space of a lesion; rate of Gd exiting a blood compartment; and a parameter that characterizes the strength of signal intensities. Curve fitting used for PET/CT and MR series was accomplished by application of the Levenburg-Marquardt nonlinear regression

  7. Posterior Eye Shape Measurement With Retinal OCT Compared to MRI

    PubMed Central

    Kuo, Anthony N.; Verkicharla, Pavan K.; McNabb, Ryan P.; Cheung, Carol Y.; Hilal, Saima; Farsiu, Sina; Chen, Christopher; Wong, Tien Y.; Ikram, M. Kamran; Cheng, Ching Y.; Young, Terri L.; Saw, Seang M.; Izatt, Joseph A.

    2016-01-01

    Purpose Posterior eye shape assessment by magnetic resonance imaging (MRI) is used to study myopia. We tested the hypothesis that optical coherence tomography (OCT), as an alternative, could measure posterior eye shape similarly to MRI. Methods Macular spectral-domain OCT and brain MRI images previously acquired as part of the Singapore Epidemiology of Eye Diseases study were analyzed. The right eye in the MRI and OCT images was automatically segmented. Optical coherence tomography segmentations were corrected for optical and display distortions requiring biometry data. The segmentations were fitted to spheres and ellipsoids to obtain the posterior eye radius of curvature (Rc) and asphericity (Qxz). The differences in Rc and Qxz measured by MRI and OCT were tested using paired t-tests. Categorical assignments of prolateness or oblateness using Qxz were compared. Results Fifty-two subjects (67.8 ± 5.6 years old) with spherical equivalent refraction from +0.50 to −5.38 were included. The mean paired difference between MRI and original OCT posterior eye Rc was 24.03 ± 46.49 mm (P = 0.0005). For corrected OCT images, the difference in Rc decreased to −0.23 ± 2.47 mm (P = 0.51). The difference between MRI and OCT asphericity, Qxz, was −0.052 ± 0.343 (P = 0.28). However, categorical agreement was only moderate (κ = 0.50). Conclusions Distortion-corrected OCT measurements of Rc and Qxz were not statistically significantly different from MRI, although the moderate categorical agreement suggests that individual differences remained. This study provides evidence that with distortion correction, noninvasive office-based OCT could potentially be used instead of MRI for the study of posterior eye shape. PMID:27409473

  8. The physics of functional magnetic resonance imaging (fMRI)

    PubMed Central

    Buxton, Richard B

    2015-01-01

    Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm3 spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology. PMID:24006360

  9. Independent component analysis of instantaneous power-based fMRI.

    PubMed

    Zhong, Yuan; Zheng, Gang; Liu, Yijun; Lu, Guangming

    2014-01-01

    In functional magnetic resonance imaging (fMRI) studies using spatial independent component analysis (sICA) method, a model of "latent variables" is often employed, which is based on the assumption that fMRI data are linear mixtures of statistically independent signals. However, actual fMRI signals are nonlinear and do not automatically meet with the requirement of sICA. To provide a better solution to this problem, we proposed a novel approach termed instantaneous power based fMRI (ip-fMRI) for regularization of fMRI data. Given that the instantaneous power of fMRI signals is a scalar value, it should be a linear mixture that naturally satisfies the "latent variables" model. Based on our simulated data, the curves of accuracy and resulting receiver-operating characteristic curves indicate that the proposed approach is superior to the traditional fMRI in terms of accuracy and specificity by using sICA. Experimental results from human subjects have shown that spatial components of a hand movement task-induced activation reveal a brain network more specific to motor function by ip-fMRI than that by the traditional fMRI. We conclude that ICA decomposition of ip-fMRI may be used to localize energy signal changes in the brain and may have a potential to be applied to detection of brain activity.

  10. An improved MRI guided ultrasound system for superficial tumor hyperthermia

    NASA Astrophysics Data System (ADS)

    Zhu, Mengyuan; Shen, Guofeng; Su, Zhiqiang; Chen, Sheng; Wu, Hao

    2017-03-01

    Among many methods in tumor treatment, ultrasound hyperthermia is characterized by non-invasiveness, and it has been proven very effective for clinical treatment. But the problem of monitoring temperature limits its development. MRI-based temperature mapping techniques are safe compared with invasive methods and have been applied to detect temperature changes for a variety of applications. Among these techniques, the proton resonance frequency (PRF) method is relatively advanced. With a temperature measuring experiment and experiment conducted on tumors inside rabbit legs, the effectiveness of PRF method has been proved. This paper is to introduce an MRI guided ultrasound superficial tumor hyperthermia instrument based on PRF method.

  11. SU-F-BRF-10: Deformable MRI to CT Validation Employing Same Day Planning MRI for Surrogate Analysis

    SciTech Connect

    Padgett, K; Stoyanova, R; Johnson, P; Dogan, N; Pollack, A; Piper, J; Javorek, A

    2014-06-15

    Purpose: To compare rigid and deformable registrations of the prostate in the multi-modality setting (diagnostic-MRI to planning-CT) by utilizing a planning-MRI as a surrogate. The surrogate allows for the direct quantitative analysis which can be difficult in the multi-modality domain where intensity mapping differs. Methods: For ten subjects, T2 fast-spin-echo images were acquired at two different time points, the first several weeks prior to planning (diagnostic-MRI) and the second on the same day in which the planning CT was collected (planning-MRI). Significant effort in patient positioning and bowel/bladder preparation was undertaken to minimize distortion of the prostate in all datasets. The diagnostic-MRI was deformed to the planning-CT utilizing a commercially available deformable registration algorithm synthesized from local registrations. The deformed MRI was then rigidly aligned to the planning MRI which was used as the surrogate for the planning-CT. Agreement between the two MRI datasets was scored using intensity based metrics including Pearson correlation and normalized mutual information, NMI. A local analysis was performed by looking only within the prostate, proximal seminal vesicles, penile bulb and combined areas. A similar method was used to assess a rigid registration between the diagnostic-MRI and planning-CT. Results: Utilizing the NMI, the deformable registrations were superior to the rigid registrations in 9 of 10 cases demonstrating a 15.94% improvement (p-value < 0.001) within the combined area. The Pearson correlation showed similar results with the deformable registration superior in the same number of cases and demonstrating a 6.97% improvement (p-value <0.011). Conclusion: Validating deformable multi-modality registrations using spatial intensity based metrics is difficult due to the inherent differences in intensity mapping. This population provides an ideal testing ground for MRI to CT deformable registrations by obviating the need

  12. Custom Fit 3D-Printed Brain Holders for Comparison of Histology with MRI in Marmosets

    PubMed Central

    Guy, Joseph R.; Sati, Pascal; Leibovitch, Emily; Jacobson, Steven; Silva, Afonso C.; Reich, Daniel S.

    2015-01-01

    Background MRI has the advantage of sampling large areas of tissue and locating areas of interest in 3D space in both living and ex vivo systems, whereas histology has the ability to examine thin slices of ex vivo tissue with high detail and specificity. Although both are valuable tools, it is currently difficult to make high-precision comparisons between MRI and histology due to large differences inherent to the techniques. A method combining the advantages would be an asset to understanding the pathological correlates of MRI. New Method 3D-printed brain holders were used to maintain marmoset brains in the same orientation during acquisition of ex vivo MRI and pathologic cutting of the tissue. Results The results of maintaining this same orientation show that sub-millimeter, discrete neuropathological features in marmoset brain consistently share size, shape, and location between histology and ex vivo MRI, which facilitates comparison with serial imaging acquired in vivo. Comparison with Existing Methods Existing methods use computational approaches sensitive to data input in order to warp histologic images to match large-scale features on MRI, but the new method requires no warping of images, due to a preregistration accomplished in the technique, and is insensitive to data formatting and artifacts in both MRI and histology. Conclusions The simple method of using 3D-printed brain holders to match brain orientation during pathologic sectioning and MRI acquisition enables rapid and precise comparison of small features seen on MRI to their underlying histology. PMID:26365332

  13. Non-Hodgkin lymphoma response evaluation with MRI texture classification

    PubMed Central

    Harrison, Lara CV; Luukkaala, Tiina; Pertovaara, Hannu; Saarinen, Tuomas O; Heinonen, Tomi T; Järvenpää, Ritva; Soimakallio, Seppo; Kellokumpu-Lehtinen, Pirkko-Liisa I; Eskola, Hannu J; Dastidar, Prasun

    2009-01-01

    Background To show magnetic resonance imaging (MRI) texture appearance change in non-Hodgkin lymphoma (NHL) during treatment with response controlled by quantitative volume analysis. Methods A total of 19 patients having NHL with an evaluable lymphoma lesion were scanned at three imaging timepoints with 1.5T device during clinical treatment evaluation. Texture characteristics of images were analyzed and classified with MaZda application and statistical tests. Results NHL tissue MRI texture imaged before treatment and under chemotherapy was classified within several subgroups, showing best discrimination with 96% correct classification in non-linear discriminant analysis of T2-weighted images. Texture parameters of MRI data were successfully tested with statistical tests to assess the impact of the separability of the parameters in evaluating chemotherapy response in lymphoma tissue. Conclusion Texture characteristics of MRI data were classified successfully; this proved texture analysis to be potential quantitative means of representing lymphoma tissue changes during chemotherapy response monitoring. PMID:19545438

  14. An RF dosimeter for independent SAR measurement in MRI scanners

    PubMed Central

    Qian, Di; El-Sharkawy, AbdEl-Monem M.; Bottomley, Paul A.; Edelstein, William A.

    2013-01-01

    Purpose: The monitoring and management of radio frequency (RF) exposure is critical for ensuring magnetic resonance imaging (MRI) safety. Commercial MRI scanners can overestimate specific absorption rates (SAR) and improperly restrict clinical MRI scans or the application of new MRI sequences, while underestimation of SAR can lead to tissue heating and thermal injury. Accurate scanner-independent RF dosimetry is essential for measuring actual exposure when SAR is critical for ensuring regulatory compliance and MRI safety, for establishing RF exposure while evaluating interventional leads and devices, and for routine MRI quality assessment by medical physicists. However, at present there are no scanner-independent SAR dosimeters. Methods: An SAR dosimeter with an RF transducer comprises two orthogonal, rectangular copper loops and a spherical MRI phantom. The transducer is placed in the magnet bore and calibrated to approximate the resistive loading of the scanner's whole-body birdcage RF coil for human subjects in Philips, GE and Siemens 3 tesla (3T) MRI scanners. The transducer loop reactances are adjusted to minimize interference with the transmit RF field (B1) at the MRI frequency. Power from the RF transducer is sampled with a high dynamic range power monitor and recorded on a computer. The deposited power is calibrated and tested on eight different MRI scanners. Whole-body absorbed power vs weight and body mass index (BMI) is measured directly on 26 subjects. Results: A single linear calibration curve sufficed for RF dosimetry at 127.8 MHz on three different Philips and three GE 3T MRI scanners. An RF dosimeter operating at 123.2 MHz on two Siemens 3T scanners required a separate transducer and a slightly different calibration curve. Measurement accuracy was ∼3%. With the torso landmarked at the xiphoid, human adult whole‑body absorbed power varied approximately linearly with patient weight and BMI. This indicates that whole-body torso SAR is on average

  15. An RF dosimeter for independent SAR measurement in MRI scanners

    SciTech Connect

    Qian, Di; Bottomley, Paul A.; El-Sharkawy, AbdEl-Monem M.; Edelstein, William A.

    2013-12-15

    Purpose: The monitoring and management of radio frequency (RF) exposure is critical for ensuring magnetic resonance imaging (MRI) safety. Commercial MRI scanners can overestimate specific absorption rates (SAR) and improperly restrict clinical MRI scans or the application of new MRI sequences, while underestimation of SAR can lead to tissue heating and thermal injury. Accurate scanner-independent RF dosimetry is essential for measuring actual exposure when SAR is critical for ensuring regulatory compliance and MRI safety, for establishing RF exposure while evaluating interventional leads and devices, and for routine MRI quality assessment by medical physicists. However, at present there are no scanner-independent SAR dosimeters. Methods: An SAR dosimeter with an RF transducer comprises two orthogonal, rectangular copper loops and a spherical MRI phantom. The transducer is placed in the magnet bore and calibrated to approximate the resistive loading of the scanner's whole-body birdcage RF coil for human subjects in Philips, GE and Siemens 3 tesla (3T) MRI scanners. The transducer loop reactances are adjusted to minimize interference with the transmit RF field (B{sub 1}) at the MRI frequency. Power from the RF transducer is sampled with a high dynamic range power monitor and recorded on a computer. The deposited power is calibrated and tested on eight different MRI scanners. Whole-body absorbed power vs weight and body mass index (BMI) is measured directly on 26 subjects. Results: A single linear calibration curve sufficed for RF dosimetry at 127.8 MHz on three different Philips and three GE 3T MRI scanners. An RF dosimeter operating at 123.2 MHz on two Siemens 3T scanners required a separate transducer and a slightly different calibration curve. Measurement accuracy was ∼3%. With the torso landmarked at the xiphoid, human adult whole‑body absorbed power varied approximately linearly with patient weight and BMI. This indicates that whole-body torso SAR is on

  16. Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST).

    PubMed

    Ling, Wen; Regatte, Ravinder R; Navon, Gil; Jerschow, Alexej

    2008-02-19

    Glycosaminogycans (GAGs) are involved in numerous vital functions in the human body. Mapping the GAG concentration in vivo is desirable for the diagnosis and monitoring of a number of diseases such as osteoarthritis, which affects millions of individuals. GAG loss in cartilage is typically an initiating event in osteoarthritis. Another widespread pathology related to GAG is intervertebral disk degeneration. Currently existing techniques for GAG monitoring, such as delayed gadolinium-enhanced MRI contrast (dGEMRIC), T(1)(rho), and (23)Na MRI, have some practical limitations. We show that by exploiting the exchangeable protons of GAG one may directly measure the localized GAG concentration in vivo with high sensitivity and therefore obtain a powerful diagnostic MRI method.

  17. WE-G-BRD-09: Novel MRI Compatible Electron Accelerator for MRI-Linac Radiotherapy

    SciTech Connect

    Whelan, B; Keall, P; Gierman, S; Schmerge, J; Holloway, L; Fahrig, R

    2015-06-15

    Purpose: MRI guided radiotherapy is a rapidly growing field; however current linacs are not designed to operate in MRI fringe fields. As such, current MRI- Linac systems require magnetic shielding, impairing MR image quality and system flexibility. Here, we present a bespoke electron accelerator concept with robust operation in in-line magnetic fields. Methods: For in-line MRI-Linac systems, electron gun performance is the major constraint on accelerator performance. To overcome this, we propose placing a cathode directly within the first accelerating cavity. Such a configuration is used extensively in high energy particle physics, but not previously for radiotherapy. Benchmarked computational modelling (CST, Darmstadt, Germany) was employed to design and assess a 5.5 cell side coupled accelerator with a temperature limited thermionic cathode in the first accelerating cell. This simulation was coupled to magnetic fields from a 1T MRI model to assess robustness in magnetic fields for Source to Isocenter Distance between 1 and 2 meters. Performance was compared to a conventional electron gun based system in the same magnetic field. Results: A temperature limited cathode (work function 1.8eV, temperature 1245K, emission constant 60A/K/cm{sup 2}) will emit a mean current density of 24mA/mm{sup 2} (Richardson’s Law). We modeled a circular cathode with radius 2mm and mean current 300mA. Capture efficiency of the device was 43%, resulting in target current of 130 mA. The electron beam had a FWHM of 0.2mm, and mean energy of 5.9MeV (interquartile spread of 0.1MeV). Such an electron beam is suitable for radiotherapy, comparing favourably to conventional systems. This model was robust to operation the MRI fringe field, with a maximum current loss of 6% compared to 85% for the conventional system. Conclusion: The bespoke electron accelerator is robust to operation in in-line magnetic fields. This will enable MRI-Linacs with no accelerator magnetic shielding, and minimise

  18. MRI Meets MPI: a bimodal MPI-MRI tomograph.

    PubMed

    Vogel, Patrick; Lother, Steffen; Rückert, Martin A; Kullmann, Walter H; Jakob, Peter M; Fidler, Florian; Behr, Volker C

    2014-10-01

    While magnetic particle imaging (MPI) constitutes a novel biomedical imaging technique for tracking superparamagnetic nanoparticles in vivo, unlike magnetic resonance imaging (MRI), it cannot provide anatomical background information. Until now these two modalities have been performed in separate scanners and image co-registration has been hampered by the need to reposition the sample in both systems as similarly as possible. This paper presents a bimodal MPI-MRI-tomograph that combines both modalities in a single system.MPI and MRI images can thus be acquired without moving the sample or replacing any parts in the setup. The images acquired with the presented setup show excellent agreement between the localization of the nanoparticles in MPI and the MRI background data. A combination of two highly complementary imaging modalities has been achieved.

  19. [CT and MRI of hip arthroplasty].

    PubMed

    Agten, C A; Sutter, R; Pfirrmann, C W A

    2014-07-01

    Metal-induced artifacts impair image quality of computed tomography (CT) and magnetic resonance imaging (MRI) in patients with hip prostheses. Due to new developments in metal artifact reduction both methods can now be used for evaluation of a painful hip prosthesis. Iterative reconstruction algorithms and dual-energy scans are among the newer CT techniques for artifact reduction, while slice-encoding for metal artifact correction (SEMAC) and multi-acquisition variable-resonance image combination (MAVRIC) have introduced substantial improvements for MRI. Loosening of the hip prosthesis, osteolysis from small wear particles and pseudotumors in metal-on-metal prostheses are specific pathologies in patients with total hip arthroplasty. Other causes of painful hip prostheses are infections, fractures, tendinopathies, tendon ruptures, muscle and nerve alterations and heterotopic ossifications.

  20. Patch-based generation of a pseudo CT from conventional MRI sequences for MRI-only radiotherapy of the brain

    SciTech Connect

    Andreasen, Daniel; Van Leemput, Koen; Hansen, Rasmus H.; Andersen, Jon A. L.; Edmund, Jens M.

    2015-04-15

    Purpose: In radiotherapy (RT) based on magnetic resonance imaging (MRI) as the only modality, the information on electron density must be derived from the MRI scan by creating a so-called pseudo computed tomography (pCT). This is a nontrivial task, since the voxel-intensities in an MRI scan are not uniquely related to electron density. To solve the task, voxel-based or atlas-based models have typically been used. The voxel-based models require a specialized dual ultrashort echo time MRI sequence for bone visualization and the atlas-based models require deformable registrations of conventional MRI scans. In this study, we investigate the potential of a patch-based method for creating a pCT based on conventional T{sub 1}-weighted MRI scans without using deformable registrations. We compare this method against two state-of-the-art methods within the voxel-based and atlas-based categories. Methods: The data consisted of CT and MRI scans of five cranial RT patients. To compare the performance of the different methods, a nested cross validation was done to find optimal model parameters for all the methods. Voxel-wise and geometric evaluations of the pCTs were done. Furthermore, a radiologic evaluation based on water equivalent path lengths was carried out, comparing the upper hemisphere of the head in the pCT and the real CT. Finally, the dosimetric accuracy was tested and compared for a photon treatment plan. Results: The pCTs produced with the patch-based method had the best voxel-wise, geometric, and radiologic agreement with the real CT, closely followed by the atlas-based method. In terms of the dosimetric accuracy, the patch-based method had average deviations of less than 0.5% in measures related to target coverage. Conclusions: We showed that a patch-based method could generate an accurate pCT based on conventional T{sub 1}-weighted MRI sequences and without deformable registrations. In our evaluations, the method performed better than existing voxel-based and

  1. Measuring glomerular number from kidney MRI images

    NASA Astrophysics Data System (ADS)

    Thiagarajan, Jayaraman J.; Natesan Ramamurthy, Karthikeyan; Kanberoglu, Berkay; Frakes, David; Bennett, Kevin; Spanias, Andreas

    2016-03-01

    Measuring the glomerular number in the entire, intact kidney using non-destructive techniques is of immense importance in studying several renal and systemic diseases. Commonly used approaches either require destruction of the entire kidney or perform extrapolation from measurements obtained from a few isolated sections. A recent magnetic resonance imaging (MRI) method, based on the injection of a contrast agent (cationic ferritin), has been used to effectively identify glomerular regions in the kidney. In this work, we propose a robust, accurate, and low-complexity method for estimating the number of glomeruli from such kidney MRI images. The proposed technique has a training phase and a low-complexity testing phase. In the training phase, organ segmentation is performed on a few expert-marked training images, and glomerular and non-glomerular image patches are extracted. Using non-local sparse coding to compute similarity and dissimilarity graphs between the patches, the subspace in which the glomerular regions can be discriminated from the rest are estimated. For novel test images, the image patches extracted after pre-processing are embedded using the discriminative subspace projections. The testing phase is of low computational complexity since it involves only matrix multiplications, clustering, and simple morphological operations. Preliminary results with MRI data obtained from five kidneys of rats show that the proposed non-invasive, low-complexity approach performs comparably to conventional approaches such as acid maceration and stereology.

  2. Fetal MRI: A Technical Update with Educational Aspirations

    PubMed Central

    Gholipour, Ali; Estroff, Judith A.; Barnewolt, Carol E.; Robertson, Richard L.; Grant, P. Ellen; Gagoski, Borjan; Warfield, Simon K.; Afacan, Onur; Connolly, Susan A.; Neil, Jeffrey J.; Wolfberg, Adam; Mulkern, Robert V.

    2015-01-01

    Fetal magnetic resonance imaging (MRI) examinations have become well-established procedures at many institutions and can serve as useful adjuncts to ultrasound (US) exams when diagnostic doubts remain after US. Due to fetal motion, however, fetal MRI exams are challenging and require the MR scanner to be used in a somewhat different mode than that employed for more routine clinical studies. Herein we review the techniques most commonly used, and those that are available, for fetal MRI with an emphasis on the physics of the techniques and how to deploy them to improve success rates for fetal MRI exams. By far the most common technique employed is single-shot T2-weighted imaging due to its excellent tissue contrast and relative immunity to fetal motion. Despite the significant challenges involved, however, many of the other techniques commonly employed in conventional neuro- and body MRI such as T1 and T2*-weighted imaging, diffusion and perfusion weighted imaging, as well as spectroscopic methods remain of interest for fetal MR applications. An effort to understand the strengths and limitations of these basic methods within the context of fetal MRI is made in order to optimize their use and facilitate implementation of technical improvements for the further development of fetal MR imaging, both in acquisition and post-processing strategies. PMID:26225129

  3. Analytic heuristics for a fast DSC-MRI

    NASA Astrophysics Data System (ADS)

    Virgulin, M.; Castellaro, M.; Marcuzzi, F.; Grisan, E.

    2014-03-01

    Hemodynamics of the human brain may be studied with Dynamic Susceptibility Contrast MRI (DSC-MRI) imaging. The sequence of volumes obtained exhibits a strong spatiotemporal correlation, that can be exploited to predict which measurements will bring mostly the new information contained in the next frames. In general, the sampling speed is an important issue in many applications of the MRI, so that the focus of many current researches is to study methods to reduce the number of measurement samples needed for each frame without degrading the image quality. For the DSC-MRI, the frequency under-sampling of single frame can be exploited to make more frequent space or time acquisitions, thus increasing the time resolution and allowing the analysis of fast dynamics not yet observed. Generally (and also for MRI), the recovery of sparse signals has been achieved by Compressed Sensing (CS) techniques, which are based on statistical properties rather than deterministic ones.. By studying analytically the compound Fourier+Wavelet transform, involved in the processes of reconstruction and sparsification of MR images, we propose a deterministic technique for a rapid-MRI, exploiting the relations between the wavelet sparse representation of the recovered and the frequency samples. We give results on real images and on artificial phantoms with added noise, showing the superiority of the methods both with respect to classical Iterative Hard Thresholding (IHT) and to Location Constraint Approximate Message Passing (LCAMP) reconstruction algorithms.

  4. A Three-Dimensional Regional Strain Computation Method with Displacement ENcoding with Stimulated Echoes (DENSE) in Non-Ischemic, Non-Valvular Dilated Cardiomyopathy Patients and Healthy Subjects Validated by Tagged MRI

    PubMed Central

    Kar, Julia; Knutsen, Andrew K.; Cupps, Brian P.; Zhong, Xiaodong; Pasque, Michael K.

    2015-01-01

    Purpose Fast cine displacement encoding with stimulated echoes (DENSE) MR has higher spatial resolution and enables rapid post-processing. Thus we compared the accuracy of regional strains computation by DENSE with tagged MR in healthy and non-ischemic, non-valvular dilated cardiomyopathy (DCM) subjects. Materials and Methods Validation of 3D regional strains computed with DENSE was conducted in reference to standard tagged MRI (TMRI) in healthy subjects and patients with DCM. Additional repeatability studies in healthy subjects were conducted to increase confidence in DENSE. A meshfree multiquadrics radial point interpolation method (RPIM) was used for computing Lagrange strains in sixteen left ventricular segments. Bland-Altman analysis and Student's t-tests were conducted to observe similarities in regional strains between sequences and in DENSE repeatability studies. Results Regional circumferential strains ranged from -0.21 ± 0.07 (Lateral-Apex) to -0.11 ± 0.05 (Posterorseptal-Base) in healthy subjects and -0.15 ± 0.04 (Anterior-Apex) to -0.02 ± 0.08 (Posterorseptal-Base) in DCM patients. Computed mean differences in regional circumferential strain from the DENSE-TMRI comparison study was 0.01 ± 0.03 (95% limits of agreement) in normal subjects, -0.01 ± 0.06 in DCM patients and 0.0 ± 0.02 in repeatability studies, with similar agreements in longitudinal and radial strains. Conclusion We found agreement between DENSE and tagged MR in patients and volunteers in terms of evaluation of regional strains. PMID:24753028

  5. Radiologic-Histopathologic Correlation of Cerebral Microbleeds Using Pre-Mortem and Post-Mortem MRI

    PubMed Central

    Montandon, Marie-Louise; Lazeyras, François; Scheffler, Max; Meckel, Stephan; Herrmann, Francois R.; Giannakopoulos, Panteleimon; Kövari, Enikö

    2016-01-01

    Introduction Cerebral microbleeds (CMB), also known as cerebral microhemorrhages, are small areas of susceptibility on brain magnetic resonance imaging (MRI), that are increasingly detected due to the higher availability of high-field MRI systems and dedicated pulse sequences. The prevalence of CMBs increases in cases with cognitive decline. The current investigation assessed the poorly investigated radiologic–histopathologic correlation of CMBs on MRI. Methods The local ethical committee approved the current investigation. We retrospectively assessed a consecutive series of 1303 autopsy cases hospitalized in Geneva University Hospitals between 2000–2014. Of 112 cases with pre-mortem T2* sequences, we included 25 cases (mean age 77.3 ± 9.6, 9 females) with at least one CMB. We compared pre-mortem CMBs with targeted histopathology and post-mortem MRI. Results 25 cases had 31 CMB lesions detected by pre-mortem MRI. 25 additional CMB were detected on histopathology. 4 CMBs on pre-mortem MRI were false positives, resulting in a total of 52 CMBs. 27 CMBs on pre-mortem MRI were confirmed on histopathology, corresponding to a sensitivity or true positive rate of 51.9% (95% CI 37.6–66.0%). The false negative rate of pre-mortem MRI was 48.1% (95% CI 34.0–62.4%). Post-mortem MRI showed only 3 cases with additional CMBs. Overall, pre-mortem MRI significantly underestimated CMBs (p = 0.0001). Conclusions Routine clinical brain MRI underestimates the prevalence of CMBs by approximately 50%, and 12% of radiologic pre-mortem MRI CMBs were false positives. Post-mortem MRI confirmed that this discordance is not explained by microbleeds occurring after the pre-mortem MRI. PMID:27936213

  6. MRI Technologies in Recent Human Brain Mapping

    NASA Astrophysics Data System (ADS)

    Sasaki, Yuka

    The recent magnetic resonance imaging (MRI) technology and techniques used in human brain mapping are remarkable. They are getting, faster, stronger and better. The advanced MRI technologies and techniques include, but not to limited to, the magnetic resonance imaging at higher magnetic field strengths, diffusion tensor imaging, multimodal neuroimaging, and monkey functional MRI. In this article, these advanced MRI techniques are briefly overviewed.

  7. [Standartization of MRI studies in multiple sclerosis].

    PubMed

    Bryukhov, V V; Krotenkova, I A; Morozova, S N; Krotenkova, M V

    2016-01-01

    The use of magnetic resonance imaging (MRI) in patients with multiple sclerosis has markedly increased in recent years. The main task of the MRI studies after the diagnosis of multiple sclerosis is to assess the dynamics of MRI for determining disease progression and monitoring the efficacy of therapy. In this regard, it is very important to obtain the most identical baseline and follow-up MRI that is possible when a single standard protocol is used. This article presents the protocol of brain MRI and spinal cord MRI and interpretation of MRI studies in patients with multiple sclerosis.

  8. Arteriovenous fistula complication following MRI

    PubMed Central

    Kirkman, Danielle; Junglee, Naushad; Mullins, Paul; Macdonald, Jamie Hugo

    2012-01-01

    Health professionals should be aware of medical procedures that cause vascular access complications. This case describes a haemodialysis patient who experienced pain, swelling and bruising over a radiocephalic fistula following MRI. Exactly the same signs and symptoms were evident following a second scan performed 3 months later. Plausible explanations include a radio frequency-induced electrical current being formed at the arteriovenous fistula, or varying gradients of the MRI sequence stimulating peripheral nerves, leading to a site of increased tissue stimulation. Of note, a juxta-anastomotic venous stenosis was confirmed by fistulogram 4 days after the second scan, although whether this access failure was due to the MRI scan per se could not be ascertained. Nevertheless, these previously undocumented observations suggest that careful patient and fistula monitoring is required when completing MRI scans in those with an arteriovenous fistula. PMID:22927271

  9. MRI of the Musculoskeletal System

    MedlinePlus

    ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...

  10. Magnetic Resonance Imaging (MRI) - Spine

    MedlinePlus

    ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...

  11. Magnetic Resonance Imaging (MRI) -- Head

    MedlinePlus

    ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...

  12. Magnetic Resonance Imaging (MRI) Safety

    MedlinePlus

    ... radiation. Instead, MRI uses a powerful magnetic field, radio waves, rapidly changing magnetic fields, and a computer to ... in most of the body's tissues. The applied radio waves then cause these protons to produce signals that ...

  13. A tonsillolith seen on MRI.

    PubMed

    el-Sherif, I; Shembesh, F M

    1997-01-01

    A case of a large tonsillolith visualized by magnetic resonance imaging is presented. Although otolaryngologists are well aware of this entity, few radiologists are. The importance of distinguishing tonsilloliths from other structures by MRI is discussed.

  14. On the feasibility of concurrent human TMS-EEG-fMRI measurements.

    PubMed

    Peters, Judith C; Reithler, Joel; Schuhmann, Teresa; de Graaf, Tom; Uludag, Kâmil; Goebel, Rainer; Sack, Alexander T

    2013-02-01

    Simultaneously combining the complementary assets of EEG, functional MRI (fMRI), and transcranial magnetic stimulation (TMS) within one experimental session provides synergetic results, offering insights into brain function that go beyond the scope of each method when used in isolation. The steady increase of concurrent EEG-fMRI, TMS-EEG, and TMS-fMRI studies further underlines the added value of such multimodal imaging approaches. Whereas concurrent EEG-fMRI enables monitoring of brain-wide network dynamics with high temporal and spatial resolution, the combination with TMS provides insights in causal interactions within these networks. Thus the simultaneous use of all three methods would allow studying fast, spatially accurate, and distributed causal interactions in the perturbed system and its functional relevance for intact behavior. Concurrent EEG-fMRI, TMS-EEG, and TMS-fMRI experiments are already technically challenging, and the three-way combination of TMS-EEG-fMRI might yield additional difficulties in terms of hardware strain or signal quality. The present study explored the feasibility of concurrent TMS-EEG-fMRI studies by performing safety and quality assurance tests based on phantom and human data combining existing commercially available hardware. Results revealed that combined TMS-EEG-fMRI measurements were technically feasible, safe in terms of induced temperature changes, allowed functional MRI acquisition with comparable image quality as during concurrent EEG-fMRI or TMS-fMRI, and provided artifact-free EEG before and from 300 ms after TMS pulse application. Based on these empirical findings, we discuss the conceptual benefits of this novel complementary approach to investigate the working human brain and list a number of precautions and caveats to be heeded when setting up such multimodal imaging facilities with current hardware.

  15. Potential Clinical Applications for Spinal Functional MRI

    PubMed Central

    Kornelsen, Jennifer; Mackey, Sean

    2010-01-01

    Functional MRI (fMRI) of the spinal cord is a noninvasive technique for obtaining information regarding spinal cord neuronal function. This article provides a brief overview of recent developments in spinal cord fMRI and outlines potential applications, as well as the limitations that must be overcome, for using spinal fMRI in the clinic. This technique is currently used for research purposes, but significant potential exists for spinal fMRI to become an important clinical tool. PMID:17504642

  16. Diffusion MRI in the heart

    PubMed Central

    Mekkaoui, Choukri; Reese, Timothy G.; Jackowski, Marcel P.; Bhat, Himanshu

    2015-01-01

    Diffusion MRI provides unique information on the structure, organization, and integrity of the myocardium without the need for exogenous contrast agents. Diffusion MRI in the heart, however, has proven technically challenging because of the intrinsic non‐rigid deformation during the cardiac cycle, displacement of the myocardium due to respiratory motion, signal inhomogeneity within the thorax, and short transverse relaxation times. Recently developed accelerated diffusion‐weighted MR acquisition sequences combined with advanced post‐processing techniques have improved the accuracy and efficiency of diffusion MRI in the myocardium. In this review, we describe the solutions and approaches that have been developed to enable diffusion MRI of the heart in vivo, including a dual‐gated stimulated echo approach, a velocity‐ (M 1) or an acceleration‐ (M 2) compensated pulsed gradient spin echo approach, and the use of principal component analysis filtering. The structure of the myocardium and the application of these techniques in ischemic heart disease are also briefly reviewed. The advent of clinical MR systems with stronger gradients will likely facilitate the translation of cardiac diffusion MRI into clinical use. The addition of diffusion MRI to the well‐established set of cardiovascular imaging techniques should lead to new and complementary approaches for the diagnosis and evaluation of patients with heart disease. © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. PMID:26484848

  17. [Differential diagnosis of parkinsonian syndromes using MRI].

    PubMed

    Mahlknecht, P; Schocke, M; Seppi, K

    2010-10-01

    The differential diagnosis of parkinsonian syndromes is considered one of the most challenging in clinical neurology. Despite published consensus operational criteria for the diagnosis of Parkinson's disease (PD) and the various atypical parkinsonian disorders (APD), such as progressive supranuclear palsy (PSP), multiple system atrophy (MSA) and corticobasal degeneration (CBD), the clinical separation of APDs from PD carries a high rate of misdiagnosis. However, the early differentiation between APD and PD, each characterized by a very different natural history, is crucial for determining the prognosis and choosing a treatment strategy. Despite limitations the various modern magnetic resonance imaging (MRI) techniques have undoubtedly added to the differential diagnosis of neurodegenerative parkinsonism. In clinical practice conventional MRI with visual assessment of T2 and T1-weighted imaging is a well established method for the exclusion of symptomatic parkinsonism due to other pathologies and may also point to the diagnosis of APD. Furthermore, advances in MRI techniques, such as diffusion-weighted imaging (DWI), have enabled abnormalities in the basal ganglia and infratentorial brain structures in APD to be quantitatively illustrated.

  18. DT-MRI segmentation using graph cuts

    NASA Astrophysics Data System (ADS)

    Weldeselassie, Yonas T.; Hamarneh, Ghassan

    2007-03-01

    An important problem in medical image analysis is the segmentation of anatomical regions of interest. Once regions of interest are segmented, one can extract shape, appearance, and structural features that can be analyzed for disease diagnosis or treatment evaluation. Diffusion tensor magnetic resonance imaging (DT-MRI) is a relatively new medical imaging modality that captures unique water diffusion properties and fiber orientation information of the imaged tissues. In this paper, we extend the interactive multidimensional graph cuts segmentation technique to operate on DT-MRI data by utilizing latest advances in tensor calculus and diffusion tensor dissimilarity metrics. The user interactively selects certain tensors as object ("obj") or background ("bkg") to provide hard constraints for the segmentation. Additional soft constraints incorporate information about both regional tissue diffusion as well as boundaries between tissues of different diffusion properties. Graph cuts are used to find globally optimal segmentation of the underlying 3D DT-MR image among all segmentations satisfying the constraints. We develop a graph structure from the underlying DT-MR image with the tensor voxels corresponding to the graph vertices and with graph edge weights computed using either Log-Euclidean or the J-divergence tensor dissimilarity metric. The topology of our segmentation is unrestricted and both obj and bkg segments may consist of several isolated parts. We test our method on synthetic DT data and apply it to real 2D and 3D MRI, providing segmentations of the corpus callosum in the brain and the ventricles of the heart.

  19. Minimum Field Strength Simulator for Proton Density Weighted MRI

    PubMed Central

    Chen, Weiyi; Nayak, Krishna S.

    2016-01-01

    Objective To develop and evaluate a framework for simulating low-field proton-density weighted MRI acquisitions based on high-field acquisitions, which could be used to predict the minimum B0 field strength requirements for MRI techniques. This framework would be particularly useful in the evaluation of de-noising and constrained reconstruction techniques. Materials and Methods Given MRI raw data, lower field MRI acquisitions can be simulated based on the signal and noise scaling with field strength. Certain assumptions are imposed for the simulation and their validity is discussed. A validation experiment was performed using a standard resolution phantom imaged at 0.35 T, 1.5 T, 3 T, and 7 T. This framework was then applied to two sample proton-density weighted MRI applications that demonstrated estimation of minimum field strength requirements: real-time upper airway imaging and liver proton-density fat fraction measurement. Results The phantom experiment showed good agreement between simulated and measured images. The SNR difference between simulated and measured was ≤ 8% for the 1.5T, 3T, and 7T cases which utilized scanners with the same geometry and from the same vendor. The measured SNR at 0.35T was 1.8- to 2.5-fold less than predicted likely due to unaccounted differences in the RF receive chain. The predicted minimum field strength requirements for the two sample applications were 0.2 T and 0.3 T, respectively. Conclusions Under certain assumptions, low-field MRI acquisitions can be simulated from high-field MRI data. This enables prediction of the minimum field strength requirements for a broad range of MRI techniques. PMID:27136334

  20. Clinical Correlation between Perverted Nystagmus and Brain MRI Abnormal Findings

    PubMed Central

    Han, Won-Gue; Yoon, Hee-Chul; Kim, Tae-Min; Rah, Yoon Chan

    2016-01-01

    Background and Objectives To analyze the clinical correlation between perverted nystagmus and brain magnetic resonance imaging (MRI) abnormal findings and to evaluate whether perverted nystagmus is clinically significant results of brain abnormal lesions or not. Subjects and Methods We performed medical charts review from January 2008 to July 2014, retrospectively. Patients who were suspected central originated vertigo at Frenzel goggles test were included among patients who visited our hospital. To investigate the correlation with nystagmus suspected central originated vertigo and brain MRI abnormal findings, we confirmed whether performing brain MRI or not. Then we exclude that patients not performed brain MRI. Results The number of patients with perverted nystagmus was 15, upbeating was 1 and down-beating was 14. Among these patients, 5 patients have brain MRI abnormal findings. However, 2 patients with MRI abnormal findings were not associated correctly with perverted nystagmus and only 3 patients with perverted nystagmus were considered central originated vertigo and further evaluation and treatment was performed by the department of neurology. Conclusions Perverted nystagmus was considered to the abnormalities at brain lesions, especially cerebellum, but neurologic symptoms and further evaluation were needed for exact diagnosis of central originated vertigo. PMID:27626081

  1. THE IMPACT OF BREAST MRI ON SURGICAL DECISION-MAKING: ARE PATIENTS AT RISK FOR MASTECTOMY?

    PubMed Central

    Pettit, Kelli; Swatske, Mary Ellen; Gao, Feng; Salavaggione, Lorena; Gillanders, William E.; Aft, Rebecca L.; Monsees, Barbara S.; Eberlein, Timothy J.; Margenthaler, Julie A.

    2014-01-01

    Background and Objectives The goal of the current study was to determine whether MRI impacts multidisciplinary treatment planning and if it leads to increased mastectomy rates. Methods A retrospective review was conducted of 441 patients treated for breast cancer between January 2005 and May 2008 who underwent breast MRI. Data included number of additional findings and their imaging and pathologic work-up. This was analyzed to determine impact of MRI on treatment planning. Results Of 441 patients, 45% had ≥1 additional finding on MRI. Of 410 patients with complete records, 29% had changes in the treatment plan, including 36 patients who were initially considered for breast conservation but proceeded directly to mastectomy based on MRI findings of suspected multicentricity. Twenty-three of those patients did not have a biopsy of the MRI lesion, with 87% having unicentric disease on final pathology. Overall, the mastectomy rate was 44%, which was significantly increased compared to patients not undergoing MRI (32%, p<0.05). Conclusions Breast MRI alters the treatment planning for many patients with newly-diagnosed breast cancer. Mastectomy rates are increased when MRI results alone direct surgical planning. Biopsy of MRI-identified lesions should be performed to avoid over-treatment. PMID:19757442

  2. The relevance of MRI for patient modeling in head and neck hyperthermia treatment planning: A comparison of CT and CT-MRI based tissue segmentation on simulated temperature

    SciTech Connect

    Verhaart, René F. Paulides, Margarethus M.; Fortunati, Valerio; Walsum, Theo van; Veenland, Jifke F.; Lugt, Aad van der

    2014-12-15

    Purpose: In current clinical practice, head and neck (H and N) hyperthermia treatment planning (HTP) is solely based on computed tomography (CT) images. Magnetic resonance imaging (MRI) provides superior soft-tissue contrast over CT. The purpose of the authors’ study is to investigate the relevance of using MRI in addition to CT for patient modeling in H and N HTP. Methods: CT and MRI scans were acquired for 11 patients in an immobilization mask. Three observers manually segmented on CT, MRI T1 weighted (MRI-T1w), and MRI T2 weighted (MRI-T2w) images the following thermo-sensitive tissues: cerebrum, cerebellum, brainstem, myelum, sclera, lens, vitreous humor, and the optical nerve. For these tissues that are used for patient modeling in H and N HTP, the interobserver variation of manual tissue segmentation in CT and MRI was quantified with the mean surface distance (MSD). Next, the authors compared the impact of CT and CT and MRI based patient models on the predicted temperatures. For each tissue, the modality was selected that led to the lowest observer variation and inserted this in the combined CT and MRI based patient model (CT and MRI), after a deformable image registration. In addition, a patient model with a detailed segmentation of brain tissues (including white matter, gray matter, and cerebrospinal fluid) was created (CT and MRI{sub db}). To quantify the relevance of MRI based segmentation for H and N HTP, the authors compared the predicted maximum temperatures in the segmented tissues (T{sub max}) and the corresponding specific absorption rate (SAR) of the patient models based on (1) CT, (2) CT and MRI, and (3) CT and MRI{sub db}. Results: In MRI, a similar or reduced interobserver variation was found compared to CT (maximum of median MSD in CT: 0.93 mm, MRI-T1w: 0.72 mm, MRI-T2w: 0.66 mm). Only for the optical nerve the interobserver variation is significantly lower in CT compared to MRI (median MSD in CT: 0.58 mm, MRI-T1w: 1.27 mm, MRI-T2w: 1.40 mm

  3. Gradient-Modulated PETRA MRI.

    PubMed

    Kobayashi, Naoharu; Goerke, Ute; Wang, Luning; Ellermann, Jutta; Metzger, Gregory J; Garwood, Michael

    2015-12-01

    Image blurring due to off-resonance and fast T 2(*) signal decay is a common issue in radial ultrashort echo time MRI sequences. One solution is to use a higher readout bandwidth, but this may be impractical for some techniques like pointwise encoding time reduction with radial acquisition (PETRA), which is a hybrid method of zero echo time and single point imaging techniques. Specifically, PETRA has severe specific absorption rate (SAR) and radiofrequency (RF) pulse peak power limitations when using higher bandwidths in human measurements. In this study, we introduce gradient modulation (GM) to PETRA to reduce image blurring artifacts while keeping SAR and RF peak power low. Tolerance of GM-PETRA to image blurring was evaluated in simulations and experiments by comparing with the conventional PETRA technique. We performed inner ear imaging of a healthy subject at 7T. GM-PETRA showed significantly less image blurring due to off-resonance and fast T2(*) signal decay compared to PETRA. In in vivo imaging, GM-PETRA nicely captured complex structures of the inner ear such as the cochlea and semicircular canals. Gradient modulation can improve the PETRA image quality and mitigate SAR and RF peak power limitations without special hardware modification in clinical scanners.

  4. Restriction spectrum imaging improves MRI-based prostate cancer detection

    PubMed Central

    McCammack, Kevin C.; Schenker-Ahmed, Natalie M.; White, Nathan S.; Best, Shaun R.; Marks, Robert M.; Heimbigner, Jared; Kane, Christopher J.; Parsons, J. Kellogg; Kuperman, Joshua M.; Bartsch, Hauke; Desikan, Rahul S.; Rakow-Penner, Rebecca A.; Liss, Michael A.; Margolis, Daniel J. A.; Raman, Steven S.; Shabaik, Ahmed; Dale, Anders M.; Karow, David S.

    2017-01-01

    Purpose To compare the diagnostic performance of restriction spectrum imaging (RSI), with that of conventional multi-parametric (MP) magnetic resonance imaging (MRI) for prostate cancer (PCa) detection in a blinded reader-based format. Methods Three readers independently evaluated 100 patients (67 with proven PCa) who underwent MP-MRI and RSI within 6 months of systematic biopsy (N = 67; 23 with targeting performed) or prostatectomy (N = 33). Imaging was performed at 3 Tesla using a phased-array coil. Readers used a five-point scale estimating the likelihood of PCa present in each prostate sextant. Evaluation was performed in two separate sessions, first using conventional MP-MRI alone then immediately with MP-MRI and RSI in the same session. Four weeks later, another scoring session used RSI and T2-weighted imaging (T2WI) without conventional diffusion-weighted or dynamic contrast-enhanced imaging. Reader interpretations were then compared to prostatectomy data or biopsy results. Receiver operating characteristic curves were performed, with area under the curve (AUC) used to compare across groups. Results MP-MRI with RSI achieved higher AUCs compared to MP-MRI alone for identifying high-grade (Gleason score greater than or equal to 4 + 3=7) PCa (0.78 vs. 0.70 at the sextant level; P < 0.001 and 0.85 vs. 0.79 at the hemigland level; P = 0.04). RSI and T2WI alone achieved AUCs similar to MP-MRI for high-grade PCa (0.71 vs. 0.70 at the sextant level). With hemigland analysis, high-grade disease results were similar when comparing RSI + T2WI with MP-MRI, although with greater AUCs compared to the sextant analysis (0.80 vs. 0.79). Conclusion Including RSI with MP-MRI improves PCa detection compared to MP-MRI alone, and RSI with T2WI achieves similar PCa detection as MP-MRI. PMID:26910114

  5. Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project

    PubMed Central

    Uğurbil, Kamil; Xu, Junqian; Auerbach, Edward J.; Moeller, Steen; Vu, An; Duarte-Carvajalino, Julio M.; Lenglet, Christophe; Wu, Xiaoping; Schmitter, Sebastian; Van de Moortele, Pierre Francois; Strupp, John; Sapiro, Guillermo; De Martino, Federico; Wang, Dingxin; Harel, Noam; Garwood, Michael; Chen, Liyong; Feinberg, David A.; Smith, Stephen M.; Miller, Karla L.; Sotiropoulos, Stamatios N; Jbabdi, Saad; Andersson, Jesper L; Behrens, Timothy EJ; Glasser, Matthew F.; Van Essen, David; Yacoub, Essa

    2013-01-01

    The human connectome project (HCP) relies primarily on three complementary magnetic resonance (MR) methods. These are: 1) resting state functional MR imaging (rfMRI) which uses correlations in the temporal fluctuations in an fMRI time series to deduce ‘functional connectivity’; 2) diffusion imaging (dMRI), which provides the input for tractography algorithms used for the reconstruction of the complex axonal fiber architecture; and 3) task based fMRI (tfMRI), which is employed to identify functional parcellation in the human brain in order to assist analyses of data obtained with the first two methods. We describe technical improvements and optimization of these methods as well as instrumental choices that impact speed of acquisition of fMRI and dMRI images at 3 Tesla, leading to whole brain coverage with 2 mm isotropic resolution in 0.7 second for fMRI, and 1.25 mm isotropic resolution dMRI data for tractography analysis with three-fold reduction in total data acquisition time. Ongoing technical developments and optimization for acquisition of similar data at 7 Tesla magnetic field are also presented, targeting higher resolution, specificity of functional imaging signals, mitigation of the inhomogeneous radio frequency (RF) fields and power deposition. Results demonstrate that overall, these approaches represent a significant advance in MR imaging of the human brain to investigate brain function and structure. PMID:23702417

  6. Evaluation of highly accelerated real-time cardiac cine MRI in tachycardia.

    PubMed

    Bassett, Elwin C; Kholmovski, Eugene G; Wilson, Brent D; DiBella, Edward V R; Dosdall, Derek J; Ranjan, Ravi; McGann, Christopher J; Kim, Daniel

    2014-02-01

    Electrocardiogram (ECG)-gated breath-hold cine MRI is considered to be the gold standard test for the assessment of cardiac function. However, it may fail in patients with arrhythmia, impaired breath-hold capacity and poor ECG gating. Although ungated real-time cine MRI may mitigate these problems, commercially available real-time cine MRI pulse sequences using parallel imaging typically yield relatively poor spatiotemporal resolution because of their low image acquisition efficiency. As an extension of our previous work, the purpose of this study was to evaluate the diagnostic quality and accuracy of eight-fold-accelerated real-time cine MRI with compressed sensing (CS) for the quantification of cardiac function in tachycardia, where it is challenging for real-time cine MRI to provide sufficient spatiotemporal resolution. We evaluated the performances of eight-fold-accelerated cine MRI with CS, three-fold-accelerated real-time cine MRI with temporal generalized autocalibrating partially parallel acquisitions (TGRAPPA) and ECG-gated breath-hold cine MRI in 21 large animals with tachycardia (mean heart rate, 104 beats per minute) at 3T. For each cine MRI method, two expert readers evaluated the diagnostic quality in four categories (image quality, temporal fidelity of wall motion, artifacts and apparent noise) using a Likert scale (1-5, worst to best). One reader evaluated the left ventricular functional parameters. The diagnostic quality scores were significantly different between the three cine pulse sequences, except for the artifact level between CS and TGRAPPA real-time cine MRI. Both ECG-gated breath-hold cine MRI and eight-fold accelerated real-time cine MRI yielded all four scores of ≥ 3.0 (acceptable), whereas three-fold-accelerated real-time cine MRI yielded all scores below 3.0, except for artifact (3.0). The left ventricular ejection fraction (LVEF) measurements agreed better between ECG-gated cine MRI and eight-fold-accelerated real-time cine MRI

  7. SU-E-J-193: Feasibility of MRI-Only Based IMRT Planning for Pancreatic Cancer

    SciTech Connect

    Prior, P; Botros, M; Chen, X; Paulson, E; Erickson, B; Li, X

    2014-06-01

    Purpose: With the increasing use of MRI simulation and the advent of MRI-guided delivery, it is desirable to use MRI only for treatment planning. In this study, we assess the dosimetric difference between MRI- and CTbased IMRT planning for pancreatic cancer. Methods: Planning CTs and MRIs acquired for a representative pancreatic cancer patient were used. MRI-based planning utilized forced relative electron density (rED) assignment of organ specific values from IRCU report 46, where rED = 1.029 for PTV and a rED = 1.036 for non-specified tissue (NST). Six IMRT plans were generated with clinical dose-volume (DV) constraints using a research Monaco planning system employing Monte Carlo dose calculation with optional perpendicular magnetic field (MF) of 1.5T. The following five plans were generated and compared with the planning CT: 1.) CT plan with MF and dose recalculation without optimization; 2.) MRI (T2) plan with target and OARs redrawn based on MRI, forced rED, no MF, and recalculation without optimization; 3.) Similar as in 2 but with MF; 4.) MRI plan with MF but without optimization; and 5.) Similar as in 4 but with optimization. Results: Generally, noticeable differences in PTV point doses and DV parameters (DVPs) between the CT-and MRI-based plans with and without the MF were observed. These differences between the optimized plans were generally small, mostly within 2%. Larger differences were observed in point doses and mean doses for certain OARs between the CT and MRI plan, mostly due to differences between image acquisition times. Conclusion: MRI only based IMRT planning for pancreatic cancer is feasible. The differences observed between the optimized CT and MRI plans with or without the MF were practically negligible if excluding the differences between MRI and CT defined structures.

  8. TH-A-BRF-11: Image Intensity Non-Uniformities Between MRI Simulation and Diagnostic MRI

    SciTech Connect

    Paulson, E

    2014-06-15

    Purpose: MRI simulation for MRI-based radiotherapy demands that patients be setup in treatment position, which frequently involves use of alternative radiofrequency (RF) coil configurations to accommodate immobilized patients. However, alternative RF coil geometries may exacerbate image intensity non-uniformities (IINU) beyond those observed in diagnostic MRI, which may challenge image segmentation and registration accuracy as well as confound studies assessing radiotherapy response when MR simulation images are used as baselines for evaluation. The goal of this work was to determine whether differences in IINU exist between MR simulation and diagnostic MR images. Methods: ACR-MRI phantom images were acquired at 3T using a spin-echo sequence (TE/TR:20/500ms, rBW:62.5kHz, TH/skip:5/5mm). MR simulation images were obtained by wrapping two flexible phased-array RF coils around the phantom. Diagnostic MR images were obtained by placing the phantom into a commercial phased-array head coil. Pre-scan normalization was enabled in both cases. Images were transferred offline and corrected for IINU using the MNI N3 algorithm. Coefficients of variation (CV=σ/μ) were calculated for each slice. Wilcoxon matched-pairs and Mann-Whitney tests compared CV values between original and N3 images and between MR simulation and diagnostic MR images. Results: Significant differences in CV were detected between original and N3 images in both MRI simulation and diagnostic MRI groups (p=0.010, p=0.010). In addition, significant differences in CV were detected between original MR simulation and original and N3 diagnostic MR images (p=0.0256, p=0.0016). However, no significant differences in CV were detected between N3 MR simulation images and original or N3 diagnostic MR images, demonstrating the importance of correcting MR simulation images beyond pre-scan normalization prior to use in radiotherapy. Conclusions: Alternative RF coil configurations used in MRI simulation can Result in

  9. Selecting magnetic resonance imaging (MRI) outcome measures for juvenile idiopathic arthritis (JIA) clinical trials: first report of the MRI in JIA special interest group.

    PubMed

    Hemke, Robert; Doria, Andrea S; Tzaribachev, Nikolay; Maas, Mario; van der Heijde, Désirée M F M; van Rossum, Marion A J

    2014-02-01

    Recent advances in magnetic resonance imaging (MRI) techniques have substantially improved the evaluation of joint pathologies in juvenile idiopathic arthritis (JIA). Because of the current availability of highly effective antirheumatic therapies and the unique and useful features of MRI, there is a growing need for an accurate and reproducible MRI assessment scoring system for JIA, such as the rheumatoid arthritis MRI Scoring (RAMRIS) for patients with rheumatoid arthritis (RA). To effectively evaluate the efficacy of treatment in clinical research trials, we need to develop and validate scoring methods to accurately measure joint outcomes, standardize imaging protocols for data acquisition and interpretation, and create imaging atlases to differentiate physiologic and pathologic joint findings in childhood and adolescence. Such a standardized, validated, JIA-MRI scoring method could be used as an outcome measure in clinical trials.

  10. Across Languages, Space, and Time: A Review of the Role of Cross-Language Similarity in L2 (Morpho)Syntactic Processing as Revealed by fMRI and ERP Methods

    ERIC Educational Resources Information Center

    Tolentino, Leida C.; Tokowicz, Natasha

    2011-01-01

    This review examines whether similarity between the first language (L1) and second language (L2) influences the (morpho)syntactic processing of the L2, using both neural location and temporal processing information. Results from functional magnetic resonance imaging (fMRI) and event-related potential (ERP) studies show that nonnative speakers can…

  11. Linking MRI Postprocessing with Magnetic Source Imaging in MRI-negative Epilepsy

    PubMed Central

    Wang, Zhong I.; Alexopoulos, Andreas V.; Jones, Stephen E.; Najm, Imad M.; Ristic, Aleksandar; Wong, Chong; Prayson, Richard; Schneider, Felix; Kakisaka, Yosuke; Wang, Shuang; Bingaman, William; Gonzalez-Martinez, Jorge A.; Burgess, Richard C.

    2015-01-01

    Objective MRI-negative (MRI–) pharmacoresistant focal epilepsy (PFE) patients are most challenging for epilepsy surgical management. This study utilizes a voxel-based MRI postprocessing technique, implemented using a morphometric analysis program (MAP), aiming to facilitate detection of subtle focal cortical dysplasia (FCD) in MRI– patients. Furthermore, the study examines the concordance between MAP-identified regions and localization from magnetic source imaging (MSI). Methods Included in this retrospective study were 25 MRI– surgical patients. MAP was performed on T1-weighted MRI, with comparison to a normal database. The pertinence of MAP+ areas was confirmed by MSI, surgical outcome and pathology. Analyses of MAP and MSI were performed blindly from patients' clinical information and independently from each other. Results The detection rate of subtle changes by MAP was 48% (12/25). Once MAP+ areas were resected, patients were more likely to be seizure-free (p = 0.02). There were no false positives in the 25 age-matched normal controls. Seven patients had a concordant MSI correlate. Patients in whom a concordant area was identified by both MAP and MSI had a significantly higher chance of achieving a seizure-free outcome following complete resection of this area (p = 0.008). In the 9 resected MAP+ areas, pathology revealed FCD type IA in 7 and type IIB in 2. Interpretation MAP shows promise in identifying subtle FCD abnormalities and increasing the diagnostic yield of conventional MRI visual analysis in presurgical evaluation of PFE. Concordant MRI postprocessing and MSI analyses may lead to the noninvasive identification of a structurally and electrically abnormal subtle lesion that can be surgically targeted. PMID:24777960

  12. Voxel-based Morphometric MRI Post-processing in MRI-negative Epilepsies

    PubMed Central

    Wang, ZI; Jones, SE; Jaisani, Z; Najm, IM; Prayson, RA; Burgess, RC; Krishnan, B; Ristic, A; Wong, CH; Bingaman, W; Gonzalez-Martinez, JA; Alexopoulos, AV

    2015-01-01

    Objective In the presurgical workup of MRI-negative (MRI−, or “nonlesional”) pharmacoresistant focal epilepsy (PFE) patients, discovering a previously undetected lesion can drastically change the evaluation and likely improve surgical outcome. Our study utilizes a voxel-based MRI post-processing technique, implemented in a morphometric analysis program (MAP), to facilitate detection of subtle abnormalities in a consecutive cohort of MRI− surgical candidates. Methods Included in this retrospective study was a consecutive cohort of 150 MRI-surgical patients. MAP was performed on T1-weighted MRI, with comparison to a scanner-specific normal database. Review and analysis of MAP were performed blinded to patients’ clinical information. The pertinence of MAP+ areas was confirmed by surgical outcome and pathology. Results MAP showed a 43% positive rate, sensitivity of 0.9 and specificity of 0.67. Overall, patients with MAP+ region completely resected had the best seizure outcomes, followed by the MAP− patients, and patients who had no/partial resection of the MAP+ region had the worst outcome (p<0.001). Subgroup analysis revealed that visually identified subtle findings are more likely correct if also MAP+. False-positive rate in 52 normal controls was 2%. Surgical pathology of the resected MAP+ areas contained mainly non-balloon-cell FCD. Multiple MAP+ regions were present in 7% of patients. Conclusions MAP can be a practical and valuable tool to: (1) guide the search for subtle MRI abnormalities, and (2) confirm visually identified questionable abnormalities in patients with PFE due to suspected FCD. A MAP+ region, when concordant with the patient’s electro-clinical presentation, should provide a legitimate target for surgical exploration. PMID:25807928

  13. SU-E-J-192: Verification of 4D-MRI Internal Target Volume Using Cine MRI

    SciTech Connect

    Lafata, K; Czito, B; Palta, M; Bashir, M; Yin, F; Cai, J

    2014-06-01

    Purpose: To investigate the accuracy of 4D-MRI in determining the Internal Target Volume (ITV) used in radiation oncology treatment planning of liver cancers. Cine MRI is used as the standard baseline in establishing the feasibility and accuracy of 4D-MRI tumor motion within the liver. Methods: IRB approval was obtained for this retrospective study. Analysis was performed on MR images from four patients receiving external beam radiation therapy for liver cancer at our institution. Eligible patients received both Cine and 4D-MRI scans before treatment. Cine images were acquired sagittally in real time at a slice bisecting the tumor, while 4D images were acquired volumetrically. Cine MR DICOM headers were manipulated such that each respiratory frame was assigned a unique slice location. This approach permitted the treatment planning system (Eclipse, Varian Medical Systems) to recognize a complete respiratory cycle as a “volume”, where the gross tumor was contoured temporally. Software was developed to calculate the union of all frame contours in the structure set, resulting in the corresponding plane of the ITV projecting through the middle of the tumor, defined as the Internal Target Area (ITA). This was repeated for 4D-MRI, at the corresponding slice location, allowing a direct comparison of ITAs obtained from each modality. Results: Four patients have been analyzed. ITAs contoured from 4D-MRI correlate with contours from Cine MRI. The mean error of 4D values relative to Cine values is 7.67 +/− 2.55 %. No single ITA contoured from 4D-MRI demonstrated more than 10.5 % error compared to its Cine MRI counterpart. Conclusion: Motion management is a significant aspect of treatment planning within dynamic environments such as the liver, where diaphragmatic and cardiac activity influence plan accuracy. This small pilot study suggests that 4D-MRI based ITA measurements agree with Cine MRI based measurements, an important step towards clinical implementation. NIH 1R21

  14. Multiple velocity encoding in the phase of an MRI signal

    NASA Astrophysics Data System (ADS)

    Benitez-Read, E. E.

    2017-01-01

    The measurement of fluid velocity by encoding it in the phase of a magnetic resonance imaging (MRI) signal could allow the discrimination of the stationary spins signals from those of moving spins. This results in a wide variety of applications i.e. in medicine, in order to obtain more than angiograms, blood velocity images of veins, arteries and other vessels without having static tissue perturbing the signal of fluid in motion. The work presented in this paper is a theoretical analysis of some novel methods for multiple fluid velocity encoding in the phase of an MRI signal. These methods are based on a tripolar gradient (TPG) and can be an alternative to the conventional methods based on a bipolar gradient (BPG) and could be more suitable for multiple velocity encoding in the phase of an MRI signal.

  15. PCA-based groupwise image registration for quantitative MRI.

    PubMed

    Huizinga, W; Poot, D H J; Guyader, J-M; Klaassen, R; Coolen, B F; van Kranenburg, M; van Geuns, R J M; Uitterdijk, A; Polfliet, M; Vandemeulebroucke, J; Leemans, A; Niessen, W J; Klein, S

    2016-04-01

    Quantitative magnetic resonance imaging (qMRI) is a technique for estimating quantitative tissue properties, such as the T1 and T2 relaxation times, apparent diffusion coefficient (ADC), and various perfusion measures. This estimation is achieved by acquiring multiple images with different acquisition parameters (or at multiple time points after injection of a contrast agent) and by fitting a qMRI signal model to the image intensities. Image registration is often necessary to compensate for misalignments due to subject motion and/or geometric distortions caused by the acquisition. However, large differences in image appearance make accurate image registration challenging. In this work, we propose a groupwise image registration method for compensating misalignment in qMRI. The groupwise formulation of the method eliminates the requirement of choosing a reference image, thus avoiding a registration bias. The method minimizes a cost function that is based on principal component analysis (PCA), exploiting the fact that intensity changes in qMRI can be described by a low-dimensional signal model, but not requiring knowledge on the specific acquisition model. The method was evaluated on 4D CT data of the lungs, and both real and synthetic images of five different qMRI applications: T1 mapping in a porcine heart, combined T1 and T2 mapping in carotid arteries, ADC mapping in the abdomen, diffusion tensor mapping in the brain, and dynamic contrast-enhanced mapping in the abdomen. Each application is based on a different acquisition model. The method is compared to a mutual information-based pairwise registration method and four other state-of-the-art groupwise registration methods. Registration accuracy is evaluated in terms of the precision of the estimated qMRI parameters, overlap of segmented structures, distance between corresponding landmarks, and smoothness of the deformation. In all qMRI applications the proposed method performed better than or equally well as

  16. The power of using functional fMRI on small rodents to study brain pharmacology and disease

    PubMed Central

    Jonckers, Elisabeth; Shah, Disha; Hamaide, Julie; Verhoye, Marleen; Van der Linden, Annemie

    2015-01-01

    Functional magnetic resonance imaging (fMRI) is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD) fMRI techniques, including resting state (rsfMRI), stimulus-evoked (st-fMRI), and pharmacological MRI (phMRI). Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sensory stimulation and/or a pharmacological challenge. The first part of this review describes the physiological basis of BOLD fMRI and the hemodynamic response on which the MRI contrast is based. Specific emphasis goes to possible effects of anesthesia and the animal’s physiological conditions on neural activity and the hemodynamic response. The second part of this review describes applications of the aforementioned techniques in pharmacologically induced, as well as in traumatic and transgenic disease models and illustrates how multiple fMRI methods can be applied successfully to evaluate different aspects of a specific disorder. For example, fMRI techniques can be used to pinpoint the neural substrate of a disease beyond previously defined hypothesis-driven regions-of-interest. In addition, fMRI techniques allow one to dissect how specific modifications (e.g., treatment, lesion etc.) modulate the functioning of specific brain areas (st-fMRI, phMRI) and how functional connectivity (rsfMRI) between several brain regions is affected, both in acute and extended time frames. Furthermore, fMRI techniques can be used to assess/explore the efficacy of novel treatments in depth, both in fundamental research as well as in preclinical settings. In conclusion, by describing several exemplary studies, we aim to highlight the advantages of functional MRI in exploring the acute and long-term effects of pharmacological substances and/or pathology on brain functioning along with several methodological

  17. Relation between serum ferritin and liver and heart MRI T2* in beta thalassaemia major patients.

    PubMed

    Azarkeivan, A; Hashemieh, M; Akhlaghpoor, S; Shirkavand, A; Yaseri, M; Sheibani, K

    2013-08-01

    There is a need for higly accurate non-invasive methods for assessing organ iron content in thalassaemia patients. This study evaluated the relation between serum ferritin level, liver enzyme levels and hepatitis C antibody and liver and heart iron deposition assessed by MRI T2*. Data were obtained from the medical records of 156 thalassemia major patients in Tehran. There was a moderate negative correlation between serum ferritin and liver MRI T2* relaxation time (r = -0.535) and a weak negative correlation between serum ferritin and heart MRI T2* relaxation time (r = -0.361). Hepatitis C infection and liver enzyme levels did not confound or modify the relation between ferritin and liver or heart MRI T2*. Liver and heart MRI T2* readings were poorly correlated (r = 0.281). Routine evaluation of liver and heart iron content using MRI T2* is suggested to better evaluate the haemosiderosis status in thalassemia patients.

  18. Acute vertigo in an anesthesia provider during exposure to a 3T MRI scanner.

    PubMed

    Gorlin, Andrew; Hoxworth, Joseph M; Pavlicek, William; Thunberg, Christopher A; Seamans, David

    2015-01-01

    Vertigo induced by exposure to the magnetic field of a magnetic resonance imaging (MRI) scanner is a well-known phenomenon within the radiology community but is not widely appreciated by other clinical specialists. Here, we describe a case of an anesthetist experiencing acute vertigo while providing sedation to a patient undergoing a 3 Tesla MRI scan. After discussing previous reports, and the evidence surrounding MRI-induced vertigo, we review potential etiologies that include the effects of both static and time-varying magnetic fields on the vestibular apparatus. We conclude our review by discussing the occupational standards that exist for MRI exposure and methods to minimize the risks of MRI-induced vertigo for clinicians working in the MRI environment.

  19. [Study on cine view of relative enhancement ratio map in O2-enhanced MRI].

    PubMed

    Fujii, Keita; Watanabe, Yasushi; Hanaoka, Shouhei; Motoyoshi, Kouichi; Goto, Masami; Amemiya, Shiori; Ino, Kenji; Akahane, Masaaki; Yano, Keiichi; Ohtomo, Kuni

    2014-11-01

    Magnetic resonance imaging (MRI) enables the evaluation of organ structure and function. Oxygen-enhanced MRI (O2-enhanced MRI) is a method for evaluating the pulmonary ventilation function using oxygen as a contrast agent. We created the Cine View of Relative Enhancement Ratio Map (Cine RER map) in O2-enhanced MRI to easily observe the contrast effect for clinical use. Relative enhancement ratio (RER) was determined as the pixel values of the Cine RER map. Moreover, six healthy volunteers underwent O2-enhanced MRI to determine the appropriate scale width of the Cine RER map. We calculated each RER and set 0 to 1.27 as the scale width of the Cine RER map based on the results. The Cine RER map made it possible to observe the contrast effect over time and thus is a convenient tool for evaluating the pulmonary ventilation function in O2-enhanced MRI.

  20. Outcome of MRI-guided vacuum-assisted breast biopsy – initial experience at Institute of Oncology Ljubljana, Slovenia

    PubMed Central

    Zebic-Sinkovec, Marta; Hertl, Kristijana; Kadivec, Maksimiljan; Cavlek, Mihael; Podobnik, Gasper; Snoj, Marko

    2012-01-01

    Background Like all breast imaging modalities MRI has limited specificity and the positive predictive value for lesions detected by MRI alone ranges between 15 and 50%. MRI guided procedures (needle biopsy, presurgical localisation) are mandatory for suspicious findings visible only at MRI, with potential influence on therapeutic decision. The aim of this retrospective study was to evaluate our initial clinical experience with MRI-guided vacuum-assisted breast biopsy as an alternative to surgical excision and to investigate the outcome of MRI-guided breast biopsy as a function of the MRI features of the lesions. Patients and methods. In 14 women (median age 51 years) with 14 MRI-detected lesions, MRI-guided vacuum-assisted breast biopsy was performed. We evaluated the MRI findings that led to biopsy and we investigated the core and postoperative histology results and follow-up data. Results The biopsy was technically successful in 14 (93%) of 15 women. Of 14 biopsies in 14 women, core histology revealed 6 malignant (6/14, 43%), 6 benign (6/14, 43%) and 2 high-risk (2/14, 14%) lesions. Among the 6 cancer 3 were invasive and 3 were ductal carcinoma in situ (DCIS). The probability of malignancy in our experience was higher for non-mass lesion type and for washout and plateau kinetics. Conclusions Our initial experience confirms that MRI-guided vacuum-assisted biopsy is fast, safe and accurate alternative to surgical biopsy for breast lesions detected at MRI only. PMID:23077445

  1. MRI Stealth” robot for prostate interventions

    PubMed Central

    STOIANOVICI, DAN; SONG, DANNY; PETRISOR, DORU; URSU, DANIEL; MAZILU, DUMITRU; MUTENER, MICHAEL; SCHAR, MICHAEL; PATRICIU, ALEXANDRU

    2011-01-01

    The paper reports an important achievement in MRI instrumentation, a pneumatic, fully actuated robot located within the scanner alongside the patient and operating under remote control based on the images. Previous MRI robots commonly used piezoelectric actuation limiting their compatibility. Pneumatics is an ideal choice for MRI compatibility because it is decoupled from electromagnetism, but pneumatic actuators were hardly controllable. This achievement was possible due to a recent technology breakthrough, the invention of a new type of pneumatic motor, PneuStep (1), designed for the robot reported here with uncompromised MRI compatibility, high-precision, and medical safety. MrBot is one of the “MRI stealth” robots today (the second is described in this issue by Zangos et al.). Both of these systems are also multi-imager compatible, being able to operate with the imager of choice or cross-imaging modalities. For MRI compatibility the robot is exclusively constructed of nonmagnetic and dielectric materials such as plastics, ceramics, crystals, rubbers and is electricity free. Light-based encoding is used for feedback, so that all electric components are distally located outside the imager’s room. MRI robots are modern, digital medical instruments in line with advanced imaging equipment and methods. These allow for accessing patients within closed bore scanners and performing interventions under direct (in scanner) imaging feedback. MRI robots could allow e.g. to biopsy small lesions imaged with cutting edge cancer imaging methods, or precisely deploy localized therapy at cancer foci. Our robot is the first to show the feasibility of fully automated in-scanner interventions. It is customized for the prostate and operates transperineally for needle interventions. It can accommodate various needle drivers for different percutaneous procedures such as biopsy, thermal ablations, or brachytherapy. The first needle driver is customized for fully automated low

  2. Quantitative functional MRI: concepts, issues and future challenges.

    PubMed

    Pike, G Bruce

    2012-08-15

    Since its inception 20 years ago, functional magnetic resonance imaging (fMRI) of the human brain based on the blood oxygenation level dependent (BOLD) contrast phenomenon has proliferated and matured. Today it is the predominant functional brain imaging modality with the majority of applications being in basic cognitive neuroscience where it has primarily been used as a tool to localize brain activity. While the magnitude of the BOLD response is often used in these studies as a surrogate for the level of neuronal activity, the link between the two is, in fact, quite indirect. The BOLD response is dependent upon hemodynamic (blood flow and volume) and metabolic (oxygen consumption) responses as well as acquisition details. Furthermore, the relationship between neuronal activity and the hemodynamic response, termed neurovascular coupling, is itself complex and incompletely understood. Quantitative fMRI techniques have therefore been developed to measure the hemodynamic and metabolic responses to modulations in brain activity. These methods have not only helped clarify the behaviour and origins of the BOLD signal under normal physiological conditions but they have also provided a potentially valuable set of tools for exploring pathophysiological conditions. Such quantitative methods will be critical to realize the potential of fMRI in a clinical context, where simple BOLD measurements cannot be uniquely interpreted, and to enhance the power of fMRI in basic neuroscience research. In this article, recent advances in human quantitative fMRI methods are reviewed, outstanding issues discussed and future challenges and opportunities highlighted.

  3. Delineating potential epileptogenic areas utilizing resting functional magnetic resonance imaging (fMRI) in epilepsy patients.

    PubMed

    Pizarro, Ricardo; Nair, Veena; Meier, Timothy; Holdsworth, Ryan; Tunnell, Evelyn; Rutecki, Paul; Sillay, Karl; Meyerand, Mary E; Prabhakaran, Vivek

    2016-08-01

    Seizure localization includes neuroimaging like electroencephalogram, and magnetic resonance imaging (MRI) with limited ability to characterize the epileptogenic network. Temporal clustering analysis (TCA) characterizes epileptogenic network congruent with interictal epileptiform discharges by clustering together voxels with transient signals. We generated epileptogenic areas for 12 of 13 epilepsy patients with TCA, congruent with different areas of seizure onset. Resting functional MRI (fMRI) scans are noninvasive, and can be acquired quickly, in patients with different levels of severity and function. Analyzing resting fMRI data using TCA is quick and can complement clinical methods to characterize the epileptogenic network.

  4. Deciphering laminar-specific neural inputs with line-scanning fMRI

    PubMed Central

    Yu, Xin; Qian, Chunqi; Chen, Der-yow; Dodd, Stephen; Koretsky, Alan P.

    2014-01-01

    Using a line-scanning method during functional magnetic resonance imaging (fMRI) we obtain high temporal (50 ms) and spatial (50 μm) resolution information along the cortical thickness, and show that the laminar position of fMRI onset coincides with distinct neural inputs t in therat somatosensory and motor cortices. This laminar specific fMRI onset allowed the identification of the neural inputs underlying ipsilateral fMRI activation in the barrel cortex due to peripheral denervation-induced plasticity. PMID:24240320

  5. Diffusion MRI of the spinal cord: from structural studies to pathology.

    PubMed

    Cohen, Yoram; Anaby, Debbie; Morozov, Darya

    2017-03-01

    Diffusion MRI is extensively used to study brain microarchitecture and pathologies, and water diffusion appears highly anisotropic in the white matter (WM) of the spinal cord (SC). Despite these facts, the use of diffusion MRI to study the SC, which has increased in recent years, is much less common than that in the brain. In the present review, after a brief outline of early studies of diffusion MRI (DWI) and diffusion tensor MRI (DTI) of the SC, we provide a short survey on DTI and on diffusion MRI methods beyond the tensor that have been used to study SC microstructure and pathologies. After introducing the porous view of WM and describing the q-space approach and q-space diffusion MRI (QSI), we describe other methodologies that can be applied to study the SC. Selected applications of the use of DTI, QSI, and other more advanced diffusion MRI methods to study SC microstructure and pathologies are presented, with some emphasis on the use of less conventional diffusion methodologies. Because of length constraints, we concentrate on structural studies and on a few selected pathologies. Examples of the use of diffusion MRI to study dysmyelination, demyelination as in experimental autoimmune encephalomyelitis and multiple sclerosis, amyotrophic lateral sclerosis, and traumatic SC injury are presented. We conclude with a brief summary and a discussion of challenges and future directions for diffusion MRI of the SC. Copyright © 2016 John Wiley & Sons, Ltd.

  6. QUESPOWR MRI: QUantification of Exchange as a function of Saturation Power On the Water Resonance

    NASA Astrophysics Data System (ADS)

    Randtke, Edward A.; Pagel, Mark D.; Cárdenas-Rodríguez, Julio

    2016-09-01

    QUantification of Exchange as a function of Saturation Power On the Water Resonance (QUESPOWR) MRI is a new method that can estimate chemical exchange rates. This method acquires a series of OPARACHEE MRI acquisitions with a range of RF powers for the WALTZ16∗ pulse train, which are applied on the water resonance. A QUESPOWR plot can be generated from the power dependence of the % water signal, which is similar to a QUESP plot that is generated from CEST MRI acquisition methods with RF saturation applied off-resonance from water. A QUESPOWR plot can be quantitatively analyzed using linear fitting methods to provide estimates of average chemical exchange rates. Analyses of the shapes of QUESPOWR plots can also be used to estimate relative differences in average chemical exchange rates and concentrations of biomolecules. The performance of QUESPOWR MRI was assessed via simulations, an in vitro study with iopamidol, and an in vivo study with a mouse model of mammary carcinoma. The results showed that QUESPOWR MRI is especially sensitive to chemical exchange between water and biomolecules that have intermediate to fast chemical exchange rates and chemical shifts that are close to water, which are notoriously difficult to assess with other CEST MRI methods. In addition, in vivo QUESPOWR MRI detected acidic tumor tissues relative to normal tissues that are pH-neutral, and therefore may be a new paradigm for tumor detection with MRI.

  7. Microtesla MRI with dynamic nuclear polarization

    PubMed Central

    Zotev, Vadim S.; Owens, Tuba; Matlashov, Andrei N.; Savukov, Igor M.; Gomez, John J.; Espy, Michelle A.

    2010-01-01

    Magnetic resonance imaging at microtesla fields is a promising imaging method that combines the pre-polarization technique and broadband signal reception by superconducting quantum interference device (SQUID) sensors to enable in vivo MRI at microtesla-range magnetic fields similar in strength to the Earth magnetic field. Despite significant advances in recent years, the potential of microtesla MRI for biomedical imaging is limited by its insufficient signal-to-noise ratio due to a relatively low sample polarization. Dynamic nuclear polarization (DNP) is a widely used approach that allows polarization enhancement by two-four orders of magnitude without an increase in the polarizing field strength. In this work, the first implementation of microtesla MRI with Overhauser DNP and SQUID signal detection is described. The first measurements of carbon-13 NMR spectra at microtesla fields are also reported. The experiments were performed at the measurement field of 96 microtesla, corresponding to Larmor frequency of 4 kHz for protons and 1 kHz for carbon-13. The Overhauser DNP was carried out at 3.5 –5.7 mT field using rf irradiation at 120 MHz. Objects for imaging included water phantoms and a cactus plant. Aqueous solutions of metabolically relevant sodium bicarbonate, pyruvate, alanine, and lactate, labeled with carbon-13, were used for NMR studies. All the samples were doped with TEMPO free radicals. The Overhauser DNP enabled nuclear polarization enhancement by factor as high as −95 for protons and as high as −200 for carbon-13, corresponding to thermal polarizations at 0.33 T and 1.1 T fields, respectively. These results demonstrate that SQUID-based microtesla MRI can be naturally combined with Overhauser DNP in one system, and that its signal-to-noise performance is greatly improved in this case. They also suggest that microtesla MRI can become an efficient tool for in vivo imaging of hyperpolarized carbon-13, produced by the low-temperature dissolution DNP

  8. Brain Morphometry using MRI in Schizophrenia Patients

    NASA Astrophysics Data System (ADS)

    Abanshina, I.; Pirogov, Yu.; Kupriyanov, D.; Orlova, V.

    2010-01-01

    Schizophrenia has been the focus of intense neuroimaging research. Although its fundamental pathobiology remains elusive, neuroimaging studies provide evidence of abnormalities of cerebral structure and function in patients with schizophrenia. We used morphometry as a quantitative method for estimation of volume of brain structures. Seventy eight right-handed subjects aged 18-45 years were exposed to MRI-examination. Patients were divided into 3 groups: patients with schizophrenia, their relatives and healthy controls. The volumes of interested structures (caudate nucleus, putamen, ventricles, frontal and temporal lobe) were measured using T2-weighted MR-images. Correlations between structural differences and functional deficit were evaluated.

  9. MRI-guided laser ablation of neuroendocrine tumor hepatic metastases

    PubMed Central

    Perälä, Jukka; Klemola, Rauli; Kallio, Raija; Li, Chengli; Vihriälä, Ilkka; Salmela, Pasi I; Tervonen, Osmo

    2014-01-01

    Background Neuroendocrine tumors (NET) represent a therapeutically challenging and heterogeneous group of malignancies occurring throughout the body, but mainly in the gastrointestinal system. Purpose To describe magnetic resonance imaging (MRI)-guided laser ablation of NET liver metastases and assess its role within the current treatment options and methods. Material and Methods Two patients with NET tumor hepatic metastases were treated with MRI-guided interstitial laser ablation (LITT). Three tumors were treated. Clinical follow-up time was 10 years. Results Both patients were successfully treated. There were no local recurrences at the ablation site during the follow-up. Both patients had survived at 10-year follow-up. One patient is disease-free. Conclusion MRI-guided laser ablation can be used to treat NET tumor liver metastases but combination therapy and a rigorous follow-up schedule are recommended. PMID:24778794

  10. Realignment strategies for awake-monkey fMRI data.

    PubMed

    Stoewer, Steffen; Goense, Jozien; Keliris, Georgios A; Bartels, Andreas; Logothetis, Nikos K; Duncan, John; Sigala, Natasha

    2011-12-01

    Functional magnetic resonance imaging (fMRI) experiments with awake nonhuman primates (NHPs) have recently seen a surge of applications. However, the standard fMRI analysis tools designed for human experiments are not optimal for NHP data collected at high fields. One major difference is the experimental setup. Although real head movement is impossible for NHPs, MRI image series often contain visible motion artifacts. Animal body movement results in image position changes and geometric distortions. Since conventional realignment methods are not appropriate to address such differences, algorithms tailored specifically for animal scanning become essential. We have implemented a series of high-field NHP specific methods in a software toolbox, fMRI Sandbox (http://kyb.tuebingen.mpg.de/~stoewer/), which allows us to use different realignment strategies. Here we demonstrate the effect of different realignment strategies on the analysis of awake-monkey fMRI data acquired at high field (7 T). We show that the advantage of using a nonstandard realignment algorithm depends on the amount of distortion in the dataset. While the benefits for less distorted datasets are minor, the improvement of statistical maps for heavily distorted datasets is significant.

  11. Neuronal or hemodynamic? Grappling with the functional MRI signal.

    PubMed

    Bandettini, Peter A

    2014-09-01

    Magnetic resonance imaging (MRI) and functional MRI (fMRI) continue to advance because creative physicists, engineers, neuroscientists, clinicians, and physiologists find new ways for extracting more information from the signal. Innovations in pulse sequence design, paradigm design, and processing methods have advanced the field and firmly established fMRI as a cornerstone for understanding the human brain. In this article, the field of fMRI is described through consideration of the central problem of separating hemodynamic from neuronal information. Discussed here are examples of how pulse sequences, activation paradigms, and processing methods are integrated such that novel, high-quality information can be obtained. Examples include the extraction of information such as activation onset latency, metabolic rate, neuronal adaptation, vascular patency, vessel diameter, vigilance, and subvoxel activation. Experimental measures include time series latency, hemodynamic shape, MR phase, multivoxel patterns, ratios of activation-related R2* to R2, metabolic rate changes, fluctuation correlations and frequencies, changes in fluctuation correlations and frequencies over time, resting correlation states, echo time dependence, and more.

  12. Automated Localization of Multiple Pelvic Bone Structures on MRI.

    PubMed

    Onal, Sinan; Lai-Yuen, Susana; Bao, Paul; Weitzenfeld, Alfredo; Hart, Stuart

    2016-01-01

    In this paper, we present a fully automated localization method for multiple pelvic bone structures on magnetic resonance images (MRI). Pelvic bone structures are at present identified manually on MRI to locate reference points for measurement and evaluation of pelvic organ prolapse (POP). Given that this is a time-consuming and subjective procedure, there is a need to localize pelvic bone structures automatically. However, bone structures are not easily differentiable from soft tissue on MRI as their pixel intensities tend to be very similar. In this paper, we present a model that combines support vector machines and nonlinear regression capturing global and local information to automatically identify the bounding boxes of bone structures on MRI. The model identifies the location of the pelvic bone structures by establishing the association between their relative locations and using local information such as texture features. Results show that the proposed method is able to locate the bone structures of interest accurately (dice similarity index >0.75) in 87-91% of the images. This research aims to enable accurate, consistent, and fully automated localization of bone structures on MRI to facilitate and improve the diagnosis of health conditions such as female POP.

  13. Fully automated localization of multiple pelvic bone structures on MRI.

    PubMed

    Onal, Sinan; Lai-Yuen, Susana; Bao, Paul; Weitzenfeld, Alfredo; Hart, Stuart

    2014-01-01

    In this paper, we present a fully automated localization method for multiple pelvic bone structures on magnetic resonance images (MRI). Pelvic bone structures are currently identified manually on MRI to identify reference points for measurement and evaluation of pelvic organ prolapse (POP). Given that this is a time-consuming and subjective procedure, there is a need to localize pelvic bone structures without any user interaction. However, bone structures are not easily differentiable from soft tissue on MRI as their pixel intensities tend to be very similar. In this research, we present a model that automatically identifies the bounding boxes of the bone structures on MRI using support vector machines (SVM) based classification and non-linear regression model that captures global and local information. Based on the relative locations of pelvic bones and organs, and local information such as texture features, the model identifies the location of the pelvic bone structures by establishing the association between their locations. Results show that the proposed method is able to locate the bone structures of interest accurately. The pubic bone, sacral promontory, and coccyx were correctly detected (DSI > 0.75) in 92%, 90%, and 88% of the testing images. This research aims to enable accurate, consistent and fully automated identification of pelvic bone structures on MRI to facilitate and improve the diagnosis of female pelvic organ prolapse.

  14. Ethical and Practical Considerations in the Management of Incidental Findings in Pediatric MRI Studies

    ERIC Educational Resources Information Center

    Kumra, Sanjiv; Ashtari, Manzar; Anderson, Britt; Cervellione, Kelly L.; Kan, Li

    2006-01-01

    Objective: The authors examined the ethical and practical management issues resulting from the detection of incidental abnormal findings on magnetic resonance imaging (MRI) research studies in healthy pediatric volunteers. Method: A retrospective examination of the findings from 60 clinical reports of research MRI scans from a cohort of healthy…

  15. Outcome Classification of Preschool Children with Autism Spectrum Disorders Using Mri Brain Measures.

    ERIC Educational Resources Information Center

    Akshoomoff, Natacha; Lord, Catherine; Lincoln, Alan J.; Courchesne, Rachel Y.; Carper, Ruth A.; Townsend, Jeanne; Courchesne, Eric

    2004-01-01

    Objective: To test the hypothesis that a combination of magnetic resonance imaging (MRI) brain measures obtained during early childhood distinguish children with autism spectrum disorders (ASD) from typically developing children and is associated with functional outcome. Method: Quantitative MRI technology was used to measure gray and white matter…

  16. Dipy, a library for the analysis of diffusion MRI data

    PubMed Central

    Garyfallidis, Eleftherios; Brett, Matthew; Amirbekian, Bagrat; Rokem, Ariel; van der Walt, Stefan; Descoteaux, Maxime; Nimmo-Smith, Ian

    2014-01-01

    Diffusion Imaging in Python (Dipy) is a free and open source software project for the analysis of data from diffusion magnetic resonance imaging (dMRI) experiments. dMRI is an application of MRI that can be used to measure structural features of brain white matter. Many methods have been developed to use dMRI data to model the local configuration of white matter nerve fiber bundles and infer the trajectory of bundles connecting different parts of the brain. Dipy gathers implementations of many different methods in dMRI, including: diffusion signal pre-processing; reconstruction of diffusion distributions in individual voxels; fiber tractography and fiber track post-processing, analysis and visualization. Dipy aims to provide transparent implementations for all the different steps of dMRI analysis with a uniform programming interface. We have implemented classical signal reconstruction techniques, such as the diffusion tensor model and deterministic fiber tractography. In addition, cutting edge novel reconstruction techniques are implemented, such as constrained spherical deconvolution and diffusion spectrum imaging (DSI) with deconvolution, as well as methods for probabilistic tracking and original methods for tractography clustering. Many additional utility functions are provided to calculate various statistics, informative visualizations, as well as file-handling routines to assist in the development and use of novel techniques. In contrast to many other scientific software projects, Dipy is not being developed by a single research group. Rather, it is an open project that encourages contributions from any scientist/developer through GitHub and open discussions on the project mailing list. Consequently, Dipy today has an international team of contributors, spanning seven different academic institutions in five countries and three continents, which is still growing. PMID:24600385

  17. Patient Outcomes in Canceled MRI-Guided Breast Biopsies

    PubMed Central

    Niell, Bethany L.; Lee, Janie M.; Johansen, Christopher; Halpern, Elkan F.; Rafferty, Elizabeth A.

    2013-01-01

    OBJECTIVE. The reported frequency of aborted MRI-guided breast biopsies ranges from 8% to 17%, usually secondary to nonvisualization at attempted biopsy. Our study examines the frequency of MRI-guided breast biopsies aborted because of lesion nonvisualization and the subsequent risk of malignancy. MATERIALS AND METHODS. We identified 350 patients and 445 lesions scheduled for MRI-guided biopsy between January 1, 2007, and December 31, 2009. Medical records and imaging studies were reviewed to ascertain patient demographics, lesion and imaging characteristics, and subsequent pathology results. Chi-square statistics were calculated for patient level analyses. RESULTS. MRI-guided biopsies were aborted in 13% (56/445) of lesions and 15% (53/350; 95% CI, 11.6–19.3%) of patients because of nonvisualization of the biopsy target at the time of attempted biopsy. Of these 53 patients, 50 patients had follow-up data available. Malignancy was subsequently diagnosed in five of those 50 patients (10%; 95% CI, 3.3–21.8%) patients, three with invasive ductal carcinomas and two with ductal carcinoma in situ. The mean time to malignant diagnosis from the date of aborted biopsy was 2.6 months (range, 1.1–6.9 months). CONCLUSION. Informed consent for MRI-guided breast biopsies should include discussion of biopsy cancellation because of nonvisualization of the target lesion. The low yet significant risk of malignancy in patients subsequent to an aborted MRI-guided breast biopsy warrants short-term follow-up MRI after a canceled biopsy. PMID:24370148

  18. Magnetic Resonance Imaging (MRI): Brain (For Parents)

    MedlinePlus

    ... to 2-Year-Old Magnetic Resonance Imaging (MRI): Brain KidsHealth > For Parents > Magnetic Resonance Imaging (MRI): Brain ... child may be given headphones to listen to music or earplugs to block the noise, and will ...

  19. Characterizing and differentiating task-based and resting state fMRI signals via two-stage sparse representations.

    PubMed

    Zhang, Shu; Li, Xiang; Lv, Jinglei; Jiang, Xi; Guo, Lei; Liu, Tianming

    2016-03-01

    A relatively underexplored question in fMRI is whether there are intrinsic differences in terms of signal composition patterns that can effectively characterize and differentiate task-based or resting state fMRI (tfMRI or rsfMRI) signals. In this paper, we propose a novel two-stage sparse representation framework to examine the fundamental difference between tfMRI and rsfMRI signals. Specifically, in the first stage, the whole-brain tfMRI or rsfMRI signals of each subject were composed into a big data matrix, which was then factorized into a subject-specific dictionary matrix and a weight coefficient matrix for sparse representation. In the second stage, all of the dictionary matrices from both tfMRI/rsfMRI data across multiple subjects were composed into another big data-matrix, which was further sparsely represented by a cross-subjects common dictionary and a weight matrix. This framework has been applied on the recently publicly released Human Connectome Project (HCP) fMRI data and experimental results revealed that there are distinctive and descriptive atoms in the cross-subjects common dictionary that can effectively characterize and differentiate tfMRI and rsfMRI signals, achieving 100% classification accuracy. Moreover, our methods and results can be meaningfully interpreted, e.g., the well-known default mode network (DMN) activities can be recovered from the very noisy and heterogeneous aggregated big-data of tfMRI and rsfMRI signals across all subjects in HCP Q1 release.

  20. Incorporating MRI structural information into bioluminescence tomography: system, heterogeneous reconstruction and in vivo quantification

    PubMed Central

    Zhang, Jun; Chen, Duofang; Liang, Jimin; Xue, Huadan; Lei, Jing; Wang, Qin; Chen, Dongmei; Meng, Ming; Jin, Zhengyu; Tian, Jie

    2014-01-01

    Combining two or more imaging modalities to provide complementary information has become commonplace in clinical practice and in preclinical and basic biomedical research. By incorporating the structural information provided by computed tomography (CT) or magnetic resonance imaging (MRI), the ill poseness nature of bioluminescence tomography (BLT) can be reduced significantly, thus improve the accuracies of reconstruction and in vivo quantification. In this paper, we present a small animal imaging system combining multi-view and multi-spectral BLT with MRI. The independent MRI-compatible optical device is placed at the end of the clinical MRI scanner. The small animal is transferred between the light tight chamber of the optical device and the animal coil of MRI via a guide rail during the experiment. After the optical imaging and MRI scanning procedures are finished, the optical images are mapped onto the MRI surface by interactive registration between boundary of optical images and silhouette of MRI. Then, incorporating the MRI structural information, a heterogeneous reconstruction algorithm based on finite element method (FEM) with L 1 normalization is used to reconstruct the position, power and region of the light source. In order to validate the feasibility of the system, we conducted experiments of nude mice model implanted with artificial light source and quantitative analysis of tumor inoculation model with MDA-231-GFP-luc. Preliminary results suggest the feasibility and effectiveness of the prototype system. PMID:24940545

  1. Widespread inflammation in CLIPPERS syndrome indicated by autopsy and ultra-high-field 7T MRI

    PubMed Central

    Blaabjerg, Morten; Ruprecht, Klemens; Sinnecker, Tim; Kondziella, Daniel; Niendorf, Thoralf; Kerrn-Jespersen, Bjørg Morell; Lindelof, Mette; Lassmann, Hans; Kristensen, Bjarne Winther; Paul, Friedemann

    2016-01-01

    Objective: To examine if there is widespread inflammation in the brain of patients with chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) syndrome by using histology and ultra-high-field MRI at 7.0T. Methods: We performed a detailed neuropathologic examination in 4 cases, including 1 autopsy case, and studied 2 additional patients by MRI at 7.0T to examine (1) extension of inflammation to areas appearing normal on 3.0T MRI, (2) potential advantages of 7.0T MRI compared to 3.0T MRI in reflecting widespread inflammation, perivascular pathology, and axonal damage, and (3) the possibility of lymphoma. Results: In the autopsy case, perivascular inflammation dominated by CD4+ T cells was not only detected in the brainstem and cerebellum but also in brain areas with normal appearance on 3.0T MRI, including supratentorial regions and cranial nerve roots. There was no evidence of lymphoma in any of the 4 patients. The 7.0T MRI in clinical remission also revealed supratentorial lesions and perivascular pathology in vivo with contrast-enhancing lesions centered around a small venous vessel. Ultra-high-field MRI at 7.0T disclosed prominent T1 hypointensities in the brainstem, which were not seen on 3.0T MRI. This corresponded to neuropathologic detection of axonal injury in the autopsy case. Conclusion: Our findings suggest more widespread perivascular inflammation and postinflammatory axonal injury in patients with CLIPPERS. PMID:27144217

  2. Ultrasound assessment of medial meniscal extrusion: a validation study using MRI as reference standard.

    PubMed

    Nogueira-Barbosa, Marcello H; Gregio-Junior, Everaldo; Lorenzato, Mario M; Guermazi, Ali; Roemer, Frank W; Chagas-Neto, Francisco A; Crema, Michel D

    2015-03-01

    OBJECTIVE. The purpose of this article is to validate both semiquantitative and quantitative ultrasound assessment of medial meniscal extrusion using MRI assessment as the reference standard. SUBJECTS AND METHODS. Ninety-three consecutive patients with chronic knee pain referred for knee MRI were evaluated by ultrasound and MRI on the same day. Two musculoskeletal radiologists assessed meniscal extrusion on ultrasound and MRI separately and independently and graded it semiquantitatively as follows: 0 (< 2 mm), 1 (≥ 2 mm and < 4 mm), and 2 (≥ 4 mm). Agreement between the ultrasound and MRI evaluations was determined using weighted kappa statistics. Intraclass correlation coefficients were used to evaluate agreement using the absolute values of extrusion (quantitative assessment). We further evaluated the diagnostic performance of ultrasound for the detection of medial meniscal extrusion using MRI as the reference standard. RESULTS. For semiquantitative grading, agreement between ultrasound and MRI was moderate for reader 1 (κ = 0.57) and substantial for reader 2 (κ = 0.64). Substantial agreement was found for both readers (intraclass correlation coefficients, 0.73 and 0.70) when comparing quantitative assessment of meniscal extrusion between ultrasound and MRI. Ultrasound showed excellent sensitivity (95% and 96% for each reader) and good specificity (82% and 70% for each reader) in the detection of meniscal extrusion. CONCLUSION. Ultrasound assessment of meniscal extrusion is reliable and can be used for both quantitative and semiquantitative assessment, exhibiting excellent diagnostic performance for the detection of meniscal extrusion compared with MRI.

  3. Role of MRI in Evaluation of Malignant Lesions of Tongue and Oral Cavity

    PubMed Central

    Singh, Amandeep; Thukral, Chuni Lal; Gupta, Kamlesh; Sood, Arvinder Singh; Singla, Hanish; Singh, Kunwarpal

    2017-01-01

    Summary Background Aim of the present study was to evaluate the role of MRI in staging of malignant lesions of the oral cavity and to correlate MRI findings with clinical/surgical and anatomical-pathological findings, wherever possible. Material/Methods The study included 50 patients who presented with malignant lesions of the oral cavity and were referred to radiology departments for MRI. All patients included were subjected to a detailed physical examination following which MRI was carried out on Philips Gyroscan Achieva 1.5 Tesla unit. Results In the study, the highest number of patients were found to have tongue malignancy (82%) followed by buccal mucosa and gingivobuccal sulcus malignancy (18%). The highest number of patients was in the age group of 51–60 years (32%). The incidence was higher in males (96%). There was moderate agreement (k=0.537) for T stage between the clinical and MRI staging assessments. The agreement for N stage between clinical and MRI staging assessments was fair (k=0.328). The final diagnosis was made by histopathology in 22 patients. The agreement for T stage was good/substantial (k=0.790) and for N stage was moderate (k=0.458) between MRI and histopathology staging assessments. Conclusions MRI provides satisfactory accuracy for preoperative estimation of tumor thickness and predicting occult cervical nodal metastasis. MRI is the preferred modality in evaluation and staging of oral cavity malignancy which helps a clinician for planning of treatment. PMID:28289481

  4. Groupwise spatial normalization of fMRI data based on multi-range functional connectivity patterns.

    PubMed

    Jiang, Di; Du, Yuhui; Cheng, Hewei; Jiang, Tianzi; Fan, Yong

    2013-11-15

    Spatial alignment of functional magnetic resonance images (fMRI) of different subjects is a necessary precursor to improve functional consistency across subjects for group analysis in fMRI studies. Traditional structural MRI (sMRI) based registration methods cannot achieve accurate inter-subject functional consistency in that functional units are not necessarily located relative to anatomical structures consistently due to functional variability across subjects. Although spatial smoothing commonly used in fMRI data preprocessing can reduce the inter-subject functional variability, it may blur the functional signals and thus lose the fine-grained information. To overcome the limitations of exiting techniques, in this paper, we propose a novel method for spatial normalization of fMRI data by matching their multi-range functional connectivity patterns progressively. In particular, the image registration of different subjects is achieved by maximizing inter-subject similarity of their functional images' local functional connectivity patterns that characterize functional connectivity information for each voxel of the images to its spatial neighbors. The neighborhood size for computing the local functional connectivity patterns is gradually increased with the progression of image registration to capture the functional connectivity information in larger ranges. We also adopt the congealing groupwise image registration strategy to simultaneously warp a group of subjects to an unbiased template. Experimental comparisons between the proposed method and other fMRI image registration methods have demonstrated that the proposed method could achieve superior registration performance for resting state fMRI data. Experiment results based on real resting-state fMRI data have further demonstrated that the proposed fMRI registration method can achieve a statistically significant improvement in functional consistency across subjects.

  5. WE-G-BRD-06: Volumetric Cine MRI (VC-MRI) Estimated Based On Prior Knowledge for On-Board Target Localization

    SciTech Connect

    Harris, W; Yin, F; Cai, J; Zhang, Y; Ren, L

    2015-06-15

    Purpose: To develop a technique to generate on-board VC-MRI using patient prior 4D-MRI, motion modeling and on-board 2D-cine MRI for real-time 3D target verification of liver and lung radiotherapy. Methods: The end-expiration phase images of a 4D-MRI acquired during patient simulation are used as patient prior images. Principal component analysis (PCA) is used to extract 3 major respiratory deformation patterns from the Deformation Field Maps (DFMs) generated between end-expiration phase and all other phases. On-board 2D-cine MRI images are acquired in the axial view. The on-board VC-MRI at any instant is considered as a deformation of the prior MRI at the end-expiration phase. The DFM is represented as a linear combination of the 3 major deformation patterns. The coefficients of the deformation patterns are solved by matching the corresponding 2D slice of the estimated VC-MRI with the acquired single 2D-cine MRI. The method was evaluated using both XCAT (a computerized patient model) simulation of lung cancer patients and MRI data from a real liver cancer patient. The 3D-MRI at every phase except end-expiration phase was used to simulate the ground-truth on-board VC-MRI at different instances, and the center-tumor slice was selected to simulate the on-board 2D-cine images. Results: Image subtraction of ground truth with estimated on-board VC-MRI shows fewer differences than image subtraction of ground truth with prior image. Excellent agreement between profiles was achieved. The normalized cross correlation coefficients between the estimated and ground-truth in the axial, coronal and sagittal views for each time step were >= 0.982, 0.905, 0.961 for XCAT data and >= 0.998, 0.911, 0.9541 for patient data. For XCAT data, the maximum-Volume-Percent-Difference between ground-truth and estimated tumor volumes was 1.6% and the maximum-Center-of-Mass-Shift was 0.9 mm. Conclusion: Preliminary studies demonstrated the feasibility to estimate real-time VC-MRI for on

  6. Complete fourier direct magnetic resonance imaging (CFD-MRI) for diffusion MRI

    PubMed Central

    Özcan, Alpay

    2013-01-01

    The foundation for an accurate and unifying Fourier-based theory of diffusion weighted magnetic resonance imaging (DW–MRI) is constructed by carefully re-examining the first principles of DW–MRI signal formation and deriving its mathematical model from scratch. The derivations are specifically obtained for DW–MRI signal by including all of its elements (e.g., imaging gradients) using complex values. Particle methods are utilized in contrast to conventional partial differential equations approach. The signal is shown to be the Fourier transform of the joint distribution of number of the magnetic moments (at a given location at the initial time) and magnetic moment displacement integrals. In effect, the k-space is augmented by three more dimensions, corresponding to the frequency variables dual to displacement integral vectors. The joint distribution function is recovered by applying the Fourier transform to the complete high-dimensional data set. In the process, to obtain a physically meaningful real valued distribution function, phase corrections are applied for the re-establishment of Hermitian symmetry in the signal. Consequently, the method is fully unconstrained and directly presents the distribution of displacement integrals without any assumptions such as symmetry or Markovian property. The joint distribution function is visualized with isosurfaces, which describe the displacement integrals, overlaid on the distribution map of the number of magnetic moments with low mobility. The model provides an accurate description of the molecular motion measurements via DW–MRI. The improvement of the characterization of tissue microstructure leads to a better localization, detection and assessment of biological properties such as white matter integrity. The results are demonstrated on the experimental data obtained from an ex vivo baboon brain. PMID:23596401

  7. TH-A-BRF-08: Deformable Registration of MRI and CT Images for MRI-Guided Radiation Therapy

    SciTech Connect

    Zhong, H; Wen, N; Gordon, J; Movsas, B; Chetty, I

    2014-06-15

    Purpose: To evaluate the quality of a commercially available MRI-CT image registration algorithm and then develop a method to improve the performance of this algorithm for MRI-guided prostate radiotherapy. Methods: Prostate contours were delineated on ten pairs of MRI and CT images using Eclipse. Each pair of MRI and CT images was registered with an intensity-based B-spline algorithm implemented in Velocity. A rectangular prism that contains the prostate volume was partitioned into a tetrahedral mesh which was aligned to the CT image. A finite element method (FEM) was developed on the mesh with the boundary constraints assigned from the Velocity generated displacement vector field (DVF). The resultant FEM displacements were used to adjust the Velocity DVF within the prism. Point correspondences between the CT and MR images identified within the prism could be used as additional boundary constraints to enforce the model deformation. The FEM deformation field is smooth in the interior of the prism, and equal to the Velocity displacements at the boundary of the prism. To evaluate the Velocity and FEM registration results, three criteria were used: prostate volume conservation and center consistence under contour mapping, and unbalanced energy of their deformation maps. Results: With the DVFs generated by the Velocity and FEM simulations, the prostate contours were warped from MRI to CT images. With the Velocity DVFs, the prostate volumes changed 10.2% on average, in contrast to 1.8% induced by the FEM DVFs. The average of the center deviations was 0.36 and 0.27 cm, and the unbalance energy was 2.65 and 0.38 mJ/cc3 for the Velocity and FEM registrations, respectively. Conclusion: The adaptive FEM method developed can be used to reduce the error of the MIbased registration algorithm implemented in Velocity in the prostate region, and consequently may help improve the quality of MRI-guided radiation therapy.

  8. Building an EEG-fMRI Multi-Modal Brain Graph: A Concurrent EEG-fMRI Study

    PubMed Central

    Yu, Qingbao; Wu, Lei; Bridwell, David A.; Erhardt, Erik B.; Du, Yuhui; He, Hao; Chen, Jiayu; Liu, Peng; Sui, Jing; Pearlson, Godfrey; Calhoun, Vince D.

    2016-01-01

    The topological architecture of brain connectivity has been well-characterized by graph theory based analysis. However, previous studies have primarily built brain graphs based on a single modality of brain imaging data. Here we develop a framework to construct multi-modal brain graphs using concurrent EEG-fMRI data which are simultaneously collected during eyes open (EO) and eyes closed (EC) resting states. FMRI data are decomposed into independent components with associated time courses by group independent component analysis (ICA). EEG time series are segmented, and then spectral power time courses are computed and averaged within 5 frequency bands (delta; theta; alpha; beta; low gamma). EEG-fMRI brain graphs, with EEG electrodes and fMRI brain components serving as nodes, are built by computing correlations within and between fMRI ICA time courses and EEG spectral power time courses. Dynamic EEG-fMRI graphs are built using a sliding window method, versus static ones treating the entire time course as stationary. In global level, static graph measures and properties of dynamic graph measures are different across frequency bands and are mainly showing higher values in eyes closed than eyes open. Nodal level graph measures of a few brain components are also showing higher values during eyes closed in specific frequency bands. Overall, these findings incorporate fMRI spatial localization and EEG frequency information which could not be obtained by examining only one modality. This work provides a new approach to examine EEG-fMRI associations within a graph theoretic framework with potential application to many topics. PMID:27733821

  9. Building an EEG-fMRI Multi-Modal Brain Graph: A Concurrent EEG-fMRI Study.

    PubMed

    Yu, Qingbao; Wu, Lei; Bridwell, David A; Erhardt, Erik B; Du, Yuhui; He, Hao; Chen, Jiayu; Liu, Peng; Sui, Jing; Pearlson, Godfrey; Calhoun, Vince D

    2016-01-01

    The topological architecture of brain connectivity has been well-characterized by graph theory based analysis. However, previous studies have primarily built brain graphs based on a single modality of brain imaging data. Here we develop a framework to construct multi-modal brain graphs using concurrent EEG-fMRI data which are simultaneously collected during eyes open (EO) and eyes closed (EC) resting states. FMRI data are decomposed into independent components with associated time courses by group independent component analysis (ICA). EEG time series are segmented, and then spectral power time courses are computed and averaged within 5 frequency bands (delta; theta; alpha; beta; low gamma). EEG-fMRI brain graphs, with EEG electrodes and fMRI brain components serving as nodes, are built by computing correlations within and between fMRI ICA time courses and EEG spectral power time courses. Dynamic EEG-fMRI graphs are built using a sliding window method, versus static ones treating the entire time course as stationary. In global level, static graph measures and properties of dynamic graph measures are different across frequency bands and are mainly showing higher values in eyes closed than eyes open. Nodal level graph measures of a few brain components are also showing higher values during eyes closed in specific frequency bands. Overall, these findings incorporate fMRI spatial localization and EEG frequency information which could not be obtained by examining only one modality. This work provides a new approach to examine EEG-fMRI associations within a graph theoretic framework with potential application to many topics.

  10. Cervical Spine MRI in Abused Infants.

    ERIC Educational Resources Information Center

    Feldman, Kenneth W.; And Others

    1997-01-01

    This study attempted to use cervical spine magnetic resonance imaging (MRI) to detect cord injury in 12 dead children with head injury from child abuse. Eighty percent of children autopsied had small cervical spine hemorrhages; MRI did not identify them and did not identify cord injury in any child studied, indicating that MRI scans are probably…

  11. Magnetic Resonance Imaging (MRI) -- Head

    MedlinePlus

    ... provides detailed images of blood vessels in the brain—often without the need for contrast material. See the MRA page for more information. MRI can detect stroke at a very early stage by mapping the motion of water molecules in the tissue. ...

  12. Review of treatment assessment using DCE-MRI in breast cancer radiation therapy

    PubMed Central

    Wang, Chun-Hao; Yin, Fang-Fang; Horton, Janet; Chang, Zheng

    2014-01-01

    As a noninvasive functional imaging technique, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is being used in oncology to measure properties of tumor microvascular structure and permeability. Studies have shown that parameters derived from certain pharmacokinetic models can be used as imaging biomarkers for tumor treatment response. The use of DCE-MRI for quantitative and objective assessment of radiation therapy has been explored in a variety of methods and tumor types. However, due to the complexity in imaging technology and divergent outcomes from different pharmacokinetic approaches, the method of using DCE-MRI in treatment assessment has yet to be standardized, especially for breast cancer. This article reviews the basic principles of breast DCE-MRI and recent studies using DCE-MRI in treatment assessment. Technical and clinical considerations are emphasized with specific attention to assessment of radiation treatment response. PMID:25332905

  13. Automatic EEG-assisted retrospective motion correction for fMRI (aE-REMCOR).

    PubMed

    Wong, Chung-Ki; Zotev, Vadim; Misaki, Masaya; Phillips, Raquel; Luo, Qingfei; Bodurka, Jerzy

    2016-04-01

    Head motions during functional magnetic resonance imaging (fMRI) impair fMRI data quality and introduce systematic artifacts that can affect interpretation of fMRI results. Electroencephalography (EEG) recordings performed simultaneously with fMRI provide high-temporal-resolution information about ongoing brain activity as well as head movements. Recently, an EEG-assisted retrospective motion correction (E-REMCOR) method was introduced. E-REMCOR utilizes EEG motion artifacts to correct the effects of head movements in simultaneously acquired fMRI data on a slice-by-slice basis. While E-REMCOR is an efficient motion correction approach, it involves an independent component analysis (ICA) of the EEG data and identification of motion-related ICs. Here we report an automated implementation of E-REMCOR, referred to as aE-REMCOR, which we developed to facilitate the application of E-REMCOR in large-scale EEG-fMRI studies. The aE-REMCOR algorithm, implemented in MATLAB, enables an automated preprocessing of the EEG data, an ICA decomposition, and, importantly, an automatic identification of motion-related ICs. aE-REMCOR has been used to perform retrospective motion correction for 305 fMRI datasets from 16 subjects, who participated in EEG-fMRI experiments conducted on a 3T MRI scanner. Performance of aE-REMCOR has been evaluated based on improvement in temporal signal-to-noise ratio (TSNR) of the fMRI data, as well as correction efficiency defined in terms of spike reduction in fMRI motion parameters. The results show that aE-REMCOR is capable of substantially reducing head motion artifacts in fMRI data. In particular, when there are significant rapid head movements during the scan, a large TSNR improvement and high correction efficiency can be achieved. Depending on a subject's motion, an average TSNR improvement over the brain upon the application of aE-REMCOR can be as high as 27%, with top ten percent of the TSNR improvement values exceeding 55%. The average

  14. Can Dynamic Contrast-Enhanced MRI (DCE-MRI) and Diffusion-Weighted MRI (DW-MRI) Evaluate Inflammation Disease

    PubMed Central

    Zhu, Jianguo; Zhang, Faming; Luan, Yun; Cao, Peng; Liu, Fei; He, Wenwen; Wang, Dehang

    2016-01-01

    Abstract The aim of the study was to investigate diagnosis efficacy of dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted MRI (DW-MRI) in Crohn's disease (CD). To find out the correlations between functional MRI parameters including Ktrans, Kep, Ve, Vp, and apparent diffusion coefficient (ADC) with a serologic biomarker. The relationships between pharmacokinetic parameters and ADC were also studied. Thirty-two patients with CD (22 men, 10 women; mean age: 30.5 years) and 18 healthy volunteers without any inflammatory disease (10 men, 8 women; mean age, 34.11 years) were enrolled into this approved prospective study. Pearson analysis was used to evaluate the correlation between Ktrans, Kep, Ve, Vp, and C-reactive protein (CRP), ADC, and CRP respectively. The diagnostic efficacy of the functional MRI parameters in terms of sensitivity and specificity were analyzed by receiver operating characteristic (ROC) curve analyses. Optimal cut-off values of each functional MRI parameters for differentiation of inflammatory from normal bowel were determined according to the Youden criterion. Mean value of Ktrans in the CD group was significantly higher than that of normal control group. Similar results were observed for Kep and Ve. On the contrary, the ADC value was lower in the CD group than that in the control group. Ktrans and Ve were shown to be correlated with CRP (r = 0.725, P < 0.001; r = 0.533, P = 0.002), meanwhile ADC showed negative correlation with CRP (r = −0.630, P < 0.001). There were negative correlations between the pharmacokinetic parameters and ADC, such as Ktrans to ADC (r = −0.856, P < 0.001), and Ve to ADC (r = −0.451, P = 0.01). The area under the curve (AUC) was 0.994 for Ktrans (P < 0.001), 0.905 for ADC (P < 0.001), 0.806 for Ve (P < 0.001), and 0.764 for Kep (P = 0.002). The cut-off point of the Ktrans was found to be 0.931 min–1. This value provided the best trade-off between

  15. Manganese-Enhanced MRI: Biological Applications in Neuroscience.

    PubMed

    Malheiros, Jackeline Moraes; Paiva, Fernando Fernandes; Longo, Beatriz Monteiro; Hamani, Clement; Covolan, Luciene

    2015-01-01

    Magnetic resonance imaging (MRI) is an excellent non-invasive tool to investigate biological systems. The administration of the paramagnetic divalent ion manganese (Mn(2+)) enhances MRI contrast in vivo. Due to similarities between Mn(2+) and calcium (Ca(2+)), the premise of manganese-enhanced MRI (MEMRI) is that the former may enter neurons and other excitable cells through voltage-gated Ca(2+) channels. As such, MEMRI has been used to trace neuronal pathways, define morphological boundaries, and study connectivity in morphological and functional imaging studies. In this article, we provide a brief overview of MEMRI and discuss recently published data to illustrate the usefulness of this method, particularly in animal models.

  16. Manganese-Enhanced MRI: Biological Applications in Neuroscience

    PubMed Central

    Malheiros, Jackeline Moraes; Paiva, Fernando Fernandes; Longo, Beatriz Monteiro; Hamani, Clement; Covolan, Luciene

    2015-01-01

    Magnetic resonance imaging (MRI) is an excellent non-invasive tool to investigate biological systems. The administration of the paramagnetic divalent ion manganese (Mn2+) enhances MRI contrast in vivo. Due to similarities between Mn2+ and calcium (Ca2+), the premise of manganese-enhanced MRI (MEMRI) is that the former may enter neurons and other excitable cells through voltage-gated Ca2+ channels. As such, MEMRI has been used to trace neuronal pathways, define morphological boundaries, and study connectivity in morphological and functional imaging studies. In this article, we provide a brief overview of MEMRI and discuss recently published data to illustrate the usefulness of this method, particularly in animal models. PMID:26217304

  17. Real time speech enhancement for the noisy MRI environment.

    PubMed

    Pathak, Nishank; Panahi, Issa; Devineni, P; Briggs, Richard

    2009-01-01

    Performance of two Adaptive (nLMS and Normalized Sign-error LMS) and a single channel (LogMMSE) speech enhancement algorithms are tested on a floating point DSP to reveal their effectiveness in enhancing speech corrupted in noisy MRI environment with very low SNR. The purpose of experiments is to reduce the fatigue of the listener by eliminating the strong MRI noise. The experiments use actual data set collected from a 3-Tesla MRI machine. Results of the experiments and performance of the speech enhancement system are presented in this paper. The speech enhancement system is automated. Our experiments reveal that after enhancement of the speech signal using Sign-Error LMS, the residual noise shows characteristics of white noise in contrast to the residual noise of the other algorithms which is more structured. It is also shown that the Sign-Error LMS offers fast convergence in comparison to the other two methods.

  18. The future of functional MRI in clinical medicine.

    PubMed

    Bullmore, Ed

    2012-08-15

    In the last 20 years or so, functional MRI has matured very rapidly from being an experimental imaging method in the hands of a few labs to being a very widely available and widely used workhorse of cognitive neuroscience and clinical neuroscience research internationally. FMRI studies have had a considerable impact on our understanding of brain system phenotypes of neurological and psychiatric disorders; and some impact already on development of new therapeutics. However, the direct benefit of fMRI to individual patients with brain disorders has so far been minimal. Here I provide a personal perspective on what has already been achieved, and imagine how the further development of fMRI over the medium term might lead to even greater engagement with clinical medicine.

  19. Gated MRI of cardiac and paracardiac masses: initial experience

    SciTech Connect

    Amparo, E.G.; Higgins, C.B.; Farmer, D.; Gamsu, G.; McNamara, M.

    1984-12-01

    Ten cardiac and paracardiac masses were studied with magnetic resonance imaging (MRI) to evaluate the utility of this new method for determining the nature, location, and extent of such masses. The masses were intramural lesions (two cases), left atrial thrombus (one case), pericardial cysts (three cases), and mediastinal masses deforming and displacing the left atrium (two cases). ECG-gated images were obtained in all patients. In each of nine cases, MRI determined the location of the mass as intracavitary, intramural, or paracardiac, without the need for exogenous contrast material. This initial experience suggests that MRI can provide as much information as echocardiography, computed tomography, and angiography combined in the evaluation of cardiac and paracardiac masses.

  20. Replication of Functional MRI Detection of Deception

    PubMed Central

    Kozel, F. Andrew; Laken, Steven J.; Johnson, Kevin A.; Boren, Bryant; Mapes, Kimberly S.; Morgan, Paul S.; George, Mark S.

    2009-01-01

    Background Several studies support the use of fMRI for detecting deception. There have been, however, no reported replications on different scanners or at different locations. In a previous study, deception was accurately detected in at least 90% of the participants in two independent cohorts. This study attempted to replicate those findings using a different scanner and location. Methods Healthy participants 18–50 years of age were recruited from the local community. After providing written informed consent, participants were screened to ensure that they were healthy, not taking any medications, and safe to have an MRI. For the testing paradigm, subjects chose one of two objects (ring or watch) to “steal” and placed it in their locker. Participants were then scanned while being visually presented with a series of questions. Functional MRI analysis was performed in the same manner as described in Kozel et al. 2005. A Chi-Squared test was used to test for a significant difference between the results in the previous study and in this replication study. Results Thirty subjects (20 women, mean age 29.0±6.5 years) were scanned with one subject being noncompliant with the protocol. Twenty-five of twenty-nine (86%) participants were correctly identified when being deceptive. There was no statistical difference between the accuracy rate obtained in this study (25/29) versus the previous study (28/31) (Chi-Squared, χ2=0.246, p=0.6197). Conclusions Our methodology for detecting deception was successfully replicated at a different site suggesting that this methodology is robust and independent of both scanner and location. PMID:19844599

  1. Speech Perception in MRI Scanner Noise by Persons with Aphasia

    ERIC Educational Resources Information Center

    Healy, Eric W.; Moser, Dana C.; Morrow-Odom, K. Leigh; Hall, Deborah A.; Fridriksson, Julius

    2007-01-01

    Purpose: To examine reductions in performance on auditory tasks by aphasic and neurologically intact individuals as a result of concomitant magnetic resonance imaging (MRI) scanner noise. Method: Four tasks together forming a continuum of linguistic complexity were developed. They included complex-tone pitch discrimination, same-different…

  2. 3D-EAUS and MRI in the Activity of Anal Fistulas in Crohn's Disease.

    PubMed

    Alabiso, Maria Eleonora; Iasiello, Francesca; Pellino, Gianluca; Iacomino, Aniello; Roberto, Luca; Pinto, Antonio; Riegler, Gabriele; Selvaggi, Francesco; Reginelli, Alfonso

    2016-01-01

    Aim. This study aspires to assess the role of 3D-Endoanal Ultrasound (3D-EAUS) and Magnetic Resonance Imaging (MRI) in preoperative evaluation of the primary tract and internal opening of perianal fistulas, of secondary extensions and abscess. Methods. During 2014, 51 Crohn's disease patients suspected for perianal fistula were enrolled. All patients underwent physical examination with both the methods and subsequent surgery. Results. In the evaluation of CD perianal fistulas, there are no significant differences between 3D-EAUS and MRI in the identification of abscess and secondary extension. Considering the location, 3D-EAUS was more accurate than MRI in the detection of intersphincteric fistulas (p value = 10(-6)); conversely, MRI was more accurate than 3D-EAUS in the detection of suprasphincteric fistulas (p value = 0.0327) and extrasphincteric fistulas (p  value = 4 ⊕ 10(-6)); there was no significant difference between MRI and 3D-EAUS in the detection of transsphincteric fistulas. Conclusions. Both 3D-EAUS and MRI have a crucial role in the evaluation and detection of CD perianal fistulas. 3D-EAUS was preferable to MRI in the detection of intersphincteric fistulas; conversely, in the evaluation of suprasphincteric and extrasphincteric fistulas the MRI was preferable to 3D-EAUS.

  3. Cortical feature analysis and machine learning improves detection of "MRI-negative" focal cortical dysplasia.

    PubMed

    Ahmed, Bilal; Brodley, Carla E; Blackmon, Karen E; Kuzniecky, Ruben; Barash, Gilad; Carlson, Chad; Quinn, Brian T; Doyle, Werner; French, Jacqueline; Devinsky, Orrin; Thesen, Thomas

    2015-07-01

    Focal cortical dysplasia (FCD) is the most common cause of pediatric epilepsy and the third most common lesion in adults with treatment-resistant epilepsy. Advances in MRI have revolutionized the diagnosis of FCD, resulting in higher success rates for resective epilepsy surgery. However, many patients with histologically confirmed FCD have normal presurgical MRI studies ('MRI-negative'), making presurgical diagnosis difficult. The purpose of this study was to test whether a novel MRI postprocessing method successfully detects histopathologically verified FCD in a sample of patients without visually appreciable lesions. We applied an automated quantitative morphometry approach which computed five surface-based MRI features and combined them in a machine learning model to classify lesional and nonlesional vertices. Accuracy was defined by classifying contiguous vertices as "lesional" when they fell within the surgical resection region. Our multivariate method correctly detected the lesion in 6 of 7 MRI-positive patients, which is comparable with the detection rates that have been reported in univariate vertex-based morphometry studies. More significantly, in patients that were MRI-negative, machine learning correctly identified 14 out of 24 FCD lesions (58%). This was achieved after separating abnormal thickness and thinness into distinct classifiers, as well as separating sulcal and gyral regions. Results demonstrate that MRI-negative images contain sufficient information to aid in the in vivo detection of visually elusive FCD lesions.

  4. Advances in Clinical PET/MRI Instrumentation.

    PubMed

    Herzog, Hans; Lerche, Christoph

    2016-04-01

    In 2010, the first whole-body PET/MRI scanners installed for clinical use were the sequential Philips PET/MRI with PMT-based, TOF-capable technology and the integrated simultaneous Siemens PET/MRI. Avalanche photodiodes as non-magneto-sensitive readout electronics allowed PET integrated within the MRI. The experiences with these scanners showed that improvements of software aspects, such as attenuation correction, were necessary and that efficient protocols combining optimally PET and MRI must be still developed. In 2014, General Electric issued an integrated PET/MRI with SiPM-based PET detectors, allowing TOF-PET. Looking at the MRI components of current PET/MR imaging systems, primary improvements come from sequences and new coils.

  5. Bayesian segmentation of brainstem structures in MRI.

    PubMed

    Iglesias, Juan Eugenio; Van Leemput, Koen; Bhatt, Priyanka; Casillas, Christen; Dutt, Shubir; Schuff, Norbert; Truran-Sacrey, Diana; Boxer, Adam; Fischl, Bruce

    2015-06-01

    In this paper we present a method to segment four brainstem structures (midbrain, pons, medulla oblongata and superior cerebellar peduncle) from 3D brain MRI scans. The segmentation method relies on a probabilistic atlas of the brainstem and its neighboring brain structures. To build the atlas, we combined a dataset of 39 scans with already existing manual delineations of the whole brainstem and a dataset of 10 scans in which the brainstem structures were manually labeled with a protocol that was specifically designed for this study. The resulting atlas can be used in a Bayesian framework to segment the brainstem structures in novel scans. Thanks to the generative nature of the scheme, the segmentation method is robust to changes in MRI contrast or acquisition hardware. Using cross validation, we show that the algorithm can segment the structures in previously unseen T1 and FLAIR scans with great accuracy (mean error under 1mm) and robustness (no failures in 383 scans including 168 AD cases). We also indirectly evaluate the algorithm with a experiment in which we study the atrophy of the brainstem in aging. The results show that, when used simultaneously, the volumes of the midbrain, pons and medulla are significantly more predictive of age than the volume of the entire brainstem, estimated as their sum. The results also demonstrate that the method can detect atrophy patterns in the brainstem structures that have been previously described in the literature. Finally, we demonstrate that the proposed algorithm is able to detect differential effects of AD on the brainstem structures. The method will be implemented as part of the popular neuroimaging package FreeSurfer.

  6. MRI tissue segmentation incorporating a bias field modulated smoothness prior

    NASA Astrophysics Data System (ADS)

    Song, Enmin; Cardenas, Valerie A.; Sacrey, Diana; Blumenfeld, Robert; Weiner, Michael W.; Studholme, Colin

    2003-05-01

    This paper examines a refinement to probabilistic intensity based tissue segmentation methods, which makes use of knowledge derived from an MRI bias field estimate. Intensity based labeling techniques have employed local smoothness priors to reduce voxel level tissue labeling errors, by making use of the assumption that, within uniform regions of tissue, a voxel should be highly likely to have a similar tissue assignment to its neighbors. Increasing the size of this neighborhood provides more robustness to noise, but reduces the ability to describe small structures. However, when intensity bias due to RF field inhomogeneity is present within the MRI data, local contrast to noise may vary across the image. We therefore propose an approach to refining the labeling by making use of the bias field estimate, to adapt the neighborhood size applied to reduce local labeling errors. We explore the use of a radially symmetric Gaussian weighted neighborhood, and the use of the mean and median of the adapted region probabilities, to refine local probabilistic labeling. The approach is evaluated using the Montreal brainweb MRI simulator as a gold standard providing known gray, white and CSF tissue segmentation. These results show that the method is capable of improving the local tissue labeling in areas most influenced by inhomogeneity. The method appears most promising in its application to regional tissue volume analysis or higher field MRI data where bias field inhomogeneity can be significant.

  7. FPGA-based RF interference reduction techniques for simultaneous PET–MRI

    PubMed Central

    Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, PK; Schulz, V

    2017-01-01

    The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET–MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling–decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion IID PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field

  8. FPGA-based RF interference reduction techniques for simultaneous PET-MRI

    NASA Astrophysics Data System (ADS)

    Gebhardt, P.; Wehner, J.; Weissler, B.; Botnar, R.; Marsden, P. K.; Schulz, V.

    2016-05-01

    The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II D PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution

  9. FPGA-based RF interference reduction techniques for simultaneous PET-MRI.

    PubMed

    Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, P K; Schulz, V

    2016-05-07

    The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II (D) PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field

  10. A comparison between EEG source localization and fMRI during the processing of emotional visual stimuli

    NASA Astrophysics Data System (ADS)

    Hu, Jin; Tian, Jie; Pan, Xiaohong; Liu, Jiangang

    2007-03-01

    The purpose of this paper is to compare between EEG source localization and fMRI during emotional processing. 108 pictures for EEG (categorized as positive, negative and neutral) and 72 pictures for fMRI were presented to 24 healthy, right-handed subjects. The fMRI data were analyzed using statistical parametric mapping with SPM2. LORETA was applied to grand averaged ERP data to localize intracranial sources. Statistical analysis was implemented to compare spatiotemporal activation of fMRI and EEG. The fMRI results are in accordance with EEG source localization to some extent, while part of mismatch in localization between the two methods was also observed. In the future we should apply the method for simultaneous recording of EEG and fMRI to our study.

  11. Geometric strategies for neuroanatomic analysis from MRI

    PubMed Central

    Duncan, James S.; Papademetris, Xenophon; Yang, Jing; Jackowski, Marcel; Zeng, Xiaolan; Staib, Lawrence H.

    2010-01-01

    In this paper, we describe ongoing work in the Image Processing and Analysis Group (IPAG) at Yale University specifically aimed at the analysis of structural information as represented within magnetic resonance images (MRI) of the human brain. Specifically, we will describe our applied mathematical approaches to the segmentation of cortical and subcortical structure, the analysis of white matter fiber tracks using diffusion tensor imaging (DTI), and the intersubject registration of neuroanatomical (aMRI) data sets. Many of our methods rally around the use of geometric constraints, statistical (MAP) estimation, and the use of level set evolution strategies. The analysis of gray matter structure and connecting white matter paths combined with the ability to bring all information into a common space via intersubject registration should provide us with a rich set of data to investigate structure and variation in the human brain in neuropsychiatric disorders, as well as provide a basis for current work in the development of integrated brain function–structure analysis. PMID:15501099

  12. Interpolation of vector fields from human cardiac DT-MRI

    NASA Astrophysics Data System (ADS)

    Yang, F.; Zhu, Y. M.; Rapacchi, S.; Luo, J. H.; Robini, M.; Croisille, P.

    2011-03-01

    There has recently been increased interest in developing tensor data processing methods for the new medical imaging modality referred to as diffusion tensor magnetic resonance imaging (DT-MRI). This paper proposes a method for interpolating the primary vector fields from human cardiac DT-MRI, with the particularity of achieving interpolation and denoising simultaneously. The method consists of localizing the noise-corrupted vectors using the local statistical properties of vector fields, removing the noise-corrupted vectors and reconstructing them by using the thin plate spline (TPS) model, and finally applying global TPS interpolation to increase the resolution in the spatial domain. Experiments on 17 human hearts show that the proposed method allows us to obtain higher resolution while reducing noise, preserving details and improving direction coherence (DC) of vector fields as well as fiber tracking. Moreover, the proposed method perfectly reconstructs azimuth and elevation angle maps.

  13. Implementation of time-efficient adaptive sampling function design for improved undersampled MRI reconstruction

    NASA Astrophysics Data System (ADS)

    Choi, Jinhyeok; Kim, Hyeonjin

    2016-12-01

    To improve the efficacy of undersampled MRI, a method of designing adaptive sampling functions is proposed that is simple to implement on an MR scanner and yet effectively improves the performance of the sampling functions. An approximation of the energy distribution of an image (E-map) is estimated from highly undersampled k-space data acquired in a prescan and efficiently recycled in the main scan. An adaptive probability density function (PDF) is generated by combining the E-map with a modeled PDF. A set of candidate sampling functions are then prepared from the adaptive PDF, among which the one with maximum energy is selected as the final sampling function. To validate its computational efficiency, the proposed method was implemented on an MR scanner, and its robust performance in Fourier-transform (FT) MRI and compressed sensing (CS) MRI was tested by simulations and in a cherry tomato. The proposed method consistently outperforms the conventional modeled PDF approach for undersampling ratios of 0.2 or higher in both FT-MRI and CS-MRI. To fully benefit from undersampled MRI, it is preferable that the design of adaptive sampling functions be performed online immediately before the main scan. In this way, the proposed method may further improve the efficacy of the undersampled MRI.

  14. Layer-specific anatomical, physiological and functional MRI of the retina

    PubMed Central

    Duong, Timothy Q.; Pardue, Machelle T.; Thulé, Peter M.; Olson, Darin E.; Cheng, Haiying; Nair, Govind; Li, Yingxia; Kim, Moon; Zhang, Xiaodong; Shen, Qiang

    2009-01-01

    Most retinal imaging has been performed using optical techniques. This paper reviews alternative retinal imaging methods based on magnetic resonance imaging (MRI) performed with spatial resolution sufficient to resolve multiple well-defined retinal layers. The development of these MRI technologies to study retinal anatomy, physiology (blood flow, blood volume, and oxygenation) and function, and their applications to study normal retinas, retinal degeneration and diabetic retinopathy in animal models are discussed. While the spatiotemporal resolution of MRI is poorer than optical imaging techniques, MRI is unhampered by media opacity and can thus image all retinal and pararetinal structures, and has the potential to provide multiple unique clinically relevant data in a single setting and could thus complement existing retinal imaging techniques. In turn, the highly structured retina with well-defined layers serves as an excellent model to advance emerging high-resolution anatomic, physiologic and functional MRI technologies. PMID:18792422

  15. [Brain functional MRI: physiological, technical, and methodological bases, and clinical applications].

    PubMed

    Hertz-Pannier, L; Lehéricy, S; Cordoliani, Y; Le Bihan, D; Marsault, C; Brunelle, F

    2000-06-01

    Brain functional MRI (fMRI) provides an indirect mapping of cerebral activity, based on the detection of the local blood flow and oxygenation changes following neuronal activity (BOLD contrast, Blood Oxygenation Level Dependent). fMRI allows us to study non invasively the normal and pathological aspects of cortical functional organization. Each fMRI study compares two different states of activity. Echo-Planar Imaging (EPI) is the technic of choice that makes it possible to study the whole brain at a rapid pace. Activation maps are calculated from a statistical analysis of the local signal changes. Functional MRI is now becoming an essential tool in the neurofunctional work-up of many neurosurgery patients, as well as the reference method to image normal or pathologic functional brain organization in adults and children.

  16. Cell tracking with caged xenon: using cryptophanes as MRI reporters upon cellular internalization.

    PubMed

    Klippel, Stefan; Döpfert, Jörg; Jayapaul, Jabadurai; Kunth, Martin; Rossella, Federica; Schnurr, Matthias; Witte, Christopher; Freund, Christian; Schröder, Leif

    2014-01-07

    Caged xenon has great potential in overcoming sensitivity limitations for solution-state NMR detection of dilute molecules. However, no application of such a system as a magnetic resonance imaging (MRI) contrast agent has yet been performed with live cells. We demonstrate MRI localization of cells labeled with caged xenon in a packed-bed bioreactor working under perfusion with hyperpolarized-xenon-saturated medium. Xenon hosts enable NMR/MRI experiments with switchable contrast and selectivity for cell-associated versus unbound cages. We present MR images with 10(3) -fold sensitivity enhancement for cell-internalized, dual-mode (fluorescence/MRI) xenon hosts at low micromolar concentrations. Our results illustrate the capability of functionalized xenon to act as a highly sensitive cell tracer for MRI detection even without signal averaging. The method will bridge the challenging gap for translation to in vivo studies for the optimization of targeted biosensors and their multiplexing applications.

  17. Multispectral optoacoustic and MRI coregistration for molecular imaging of orthotopic model of human glioblastoma.

    PubMed

    Attia, Amalina Binte Ebrahim; Ho, Chris Jun Hui; Chandrasekharan, Prashant; Balasundaram, Ghayathri; Tay, Hui Chien; Burton, Neal C; Chuang, Kai-Hsiang; Ntziachristos, Vasilis; Olivo, Malini

    2016-07-01

    Multi-modality imaging methods are of great importance in oncologic studies for acquiring complementary information, enhancing the efficacy in tumor detection and characterization. We hereby demonstrate a hybrid non-invasive in vivo imaging approach of utilizing magnetic resonance imaging (MRI) and Multispectral Optoacoustic Tomography (MSOT) for molecular imaging of glucose uptake in an orthotopic glioblastoma in mouse. The molecular and functional information from MSOT can be overlaid on MRI anatomy via image coregistration to provide insights into probe uptake in the brain, which is verified by ex vivo fluorescence imaging and histological validation. In vivo MSOT and MRI imaging of an orthotopic glioma mouse model injected with IRDye800-2DG. Image coregistration between MSOT and MRI enables multifaceted (anatomical, functional, molecular) information from MSOT to be overlaid on MRI anatomy images to derive tumor physiological parameters such as perfusion, haemoglobin and oxygenation.

  18. Multimodal MRI of experimental stroke

    PubMed Central

    Duong, Timothy Q

    2014-01-01

    Stroke is the fourth leading cause of death and the leading cause of long-term disability in the United States. Brain imaging data from experimental stroke models and stroke patients have shown that there is often a gradual progression of potentially reversible ischemic injury toward infarction. Reestablishing tissue perfusion and/or treating with neuroprotective drugs in a timely fashion are expected to salvage some ischemic tissues. Diffusion-weighted imaging based on magnetic resonance imaging (MRI) in which contrast is based on water motion can detect ischemic injury within minutes after onsets, whereas computed tomography and other imaging modalities fail to detect stroke injury for at least a few hours. Along with quantitative perfusion imaging, the perfusion-diffusion mismatch which approximates the ischemic penumbra could be imaged non-invasively. This review describes recent progresses in the development and application of multimodal MRI and image analysis techniques to study ischemic tissue at risk in experimental stroke in rats. PMID:24323751

  19. A new MRI grading system for chondromalacia patellae.

    PubMed

    Özgen, Ali; Taşdelen, Neslihan; Fırat, Zeynep

    2017-04-01

    Background Chondromalacia patellae is a very common disorder. Although magnetic resonance imaging (MRI) is widely used to investigate patellar cartilage lesions, there is no descriptive MRI-based grading system for chondromalacia patellae. Purpose To propose a new MRI grading system for chondromalacia patellae with corresponding high resolution images which might be useful in precisely reporting and comparing knee examinations in routine daily practice and used in predicting natural course and clinical outcome of the patellar cartilage lesions. Material and Methods High resolution fat-saturated proton density (FS PD) images in the axial plane with corresponding T2 mapping images were reviewed. A detailed MRI grading system covering the deficiencies of the existing gradings has been set and presented on these images. Two experienced observers blinded to clinical data examined 44 knee MR images and evaluated patellar cartilage changes according to the proposed grading system. Inter- and intra-rater validity testing using kappa statistics were calculated. Results A descriptive and detailed grading system with corresponding FS PD and T2 mapping images has been presented. Inter-rater agreement was 0.80 (95% confidence interval [CI], 0.71-0.89). Intra-rater agreements were 0.83 (95% CI, 0.74-0.91) for observer A and 0.79 (95% CI, 0.70-0.88) for observer B (k-values). Conclusion We present a new MRI grading system for chondromalacia patellae with corresponding images and good inter- and intra-rater agreement which might be useful in reporting and comparing knee MRI examinations in daily practice and may also have the potential for using more precisely predicting prognosis and clinical outcome of the patients.

  20. MRI reporting standard for chronic pelvic pain: consensus development

    PubMed Central

    Tirlapur, Seema A; Balogun, Moji; Priest, Lee; Khan, Khalid S; Zamora, Javier; Sahdev, Anju

    2016-01-01

    Aim: To identify radiological parameters that should be reported on gynaecological MRI in order to create a standardized assessment pro forma for reporting CPP, which may be used in clinical practice. Methods: Chronic pelvic pain (CPP) in females is a common problem presenting a major challenge to healthcare providers. The complex multifactorial aetiology requires a multidisciplinary approach and often necessitates diagnostic laparoscopy for assessment. MRI is emerging as a potential non-invasive alternative for evaluation of CPP; however, standardization of reporting is required for it to be used in routine clinical practice. A two-generational Delphi survey with an expert panel of 28 radiologists specializing in gynaecological MRI from across the UK was used to refine a proposed reporting template for CPP. Results: 75% response rate for the first round and 79% for the second. Following the second round, agreement was reached on the structure of the pro forma and the way in which information was sought, with overall consistency of agreement between experts deemed as fair (intraclass correlation coefficient = 0.394). This was accepted as the final version by consensus. Conclusion: The standardized pro forma developed in this study will form the basis for future prospective evaluation of MRI in CPP. This template could be modified for the assessment of other benign gynaecological conditions. Advances in knowledge: Female CPP is a significant problem presenting challenges for clinicians. MRI is often used for evaluation and standardization of techniques, and reporting is required. The pro forma developed in this study will form the basis for future prospective MRI evaluation. PMID:26562496

  1. Functional MRI and diffusion tensor imaging of brain reorganization after experimental stroke.

    PubMed

    Dijkhuizen, Rick M; van der Marel, Kajo; Otte, Willem M; Hoff, Erik I; van der Zijden, Jet P; van der Toorn, Annette; van Meer, Maurits P A

    2012-03-01

    The potential of the adult brain to reorganize after ischemic injury is critical for functional recovery and provides a significant target for therapeutic strategies to promote brain repair. Despite the accumulating evidence of brain plasticity, the interaction and significance of morphological and physiological modifications in post-stroke brain tissue remain mostly unclear. Neuroimaging techniques such as functional MRI (fMRI) and diffusion tensor imaging (DTI) enable in vivo assessment of the spatial and temporal pattern of functional and structural changes inside and outside ischemic lesion areas. This can contribute to the elucidation of critical aspects in post-stroke brain remodeling. Task/stimulus-related fMRI, resting-state fMRI, or pharmacological MRI enables direct or indirect measurement of neuronal activation, functional connectivity, or neurotransmitter system responses, respectively. DTI allows estimation of the structural integrity and connectivity of white matter tracts. Together, these MRI methods provide an unprecedented means to (a) measure longitudinal changes in tissue structure and function close by and remote from ischemic lesion areas, (b) evaluate the organizational profile of neural networks after stroke, and (c) identify degenerative and restorative processes that affect post-stroke functional outcome. Besides, the availability of MRI in clinical institutions as well as research laboratories provides an optimal basis for translational research on stroke recovery. This review gives an overview of the current status and perspectives of fMRI and DTI applications to study brain reorganization in experimental stroke models.

  2. MRI characterization of 124 CT-indeterminate focal hepatic lesions: evaluation of clinical utility

    PubMed Central

    Leyendecker, John R.; Menias, Christine O.; Oliveira, Erica P.; Narra, Vamsidhar R.; Chapman, William C.; Hassanien, Moataz H.; Elsharkawy, Mohamed S.; Brown, Jeffrey J.

    2007-01-01

    Objective. To evaluate the diagnostic yield of MRI performed for characterization of focal hepatic lesions that are interpreted as indeterminate on CT. Patients and methods. In a retrospective investigation, 124 indeterminate focal hepatic lesions in 96 patients were identified on CT examinations over 5 years from 1997 to 2001. All patients had MRI performed for the liver within 6 weeks of their CT examination. CT and MR images were reviewed independently by two separate groups of two radiologists. The value of MRI in characterizing these lesions was assessed. Diagnoses were confirmed based on histology, characteristic imaging features, and clinical follow-up. Results. MRI definitely characterized 73 lesions (58%) that were indeterminate on CT. MRI was accurate in 72/73 of these lesions. MRI could not definitely characterize 51 lesions (42%). Ten lesions were not visualized on MRI, and follow-up imaging confirmed that no lesion was present in eight of these cases (pseudolesions). Conclusion. MRI is valuable for the characterization of indeterminate focal hepatic lesions detected on CT. PMID:18333224

  3. fMRI at High Spatial Resolution: Implications for BOLD-Models

    PubMed Central

    Goense, Jozien; Bohraus, Yvette; Logothetis, Nikos K.

    2016-01-01

    As high-resolution functional magnetic resonance imaging (fMRI) and fMRI of cortical layers become more widely used, the question how well high-resolution fMRI signals reflect the underlying neural processing, and how to interpret laminar fMRI data becomes more and more relevant. High-resolution fMRI has shown laminar differences in cerebral blood flow (CBF), volume (CBV), and neurovascular coupling. Features and processes that were previously lumped into a single voxel become spatially distinct at high resolution. These features can be vascular compartments such as veins, arteries, and capillaries, or cortical layers and columns, which can have differences in metabolism. Mesoscopic models of the blood oxygenation level dependent (BOLD) response therefore need to be expanded, for instance, to incorporate laminar differences in the coupling between neural activity, metabolism and the hemodynamic response. Here we discuss biological and methodological factors that affect the modeling and interpretation of high-resolution fMRI data. We also illustrate with examples from neuropharmacology and the negative BOLD response how combining BOLD with CBF- and CBV-based fMRI methods can provide additional information about neurovascular coupling, and can aid modeling and interpretation of high-resolution fMRI. PMID:27445782

  4. A multi-contrast MRI study of microstructural brain damage in patients with mild cognitive impairment

    PubMed Central

    Granziera, C.; Daducci, A.; Donati, A.; Bonnier, G.; Romascano, D.; Roche, A.; Bach Cuadra, M.; Schmitter, D.; Klöppel, S.; Meuli, R.; von Gunten, A.; Krueger, G.

    2015-01-01

    Objectives The aim of this study was to investigate pathological mechanisms underlying brain tissue alterations in mild cognitive impairment (MCI) using multi-contrast 3 T magnetic resonance imaging (MRI). Methods Forty-two MCI patients and 77 healthy controls (HC) underwent T1/T2* relaxometry as well as Magnetization Transfer (MT) MRI. Between-groups comparisons in MRI metrics were performed using permutation-based tests. Using MRI data, a generalized linear model (GLM) was computed to predict clinical performance and a support-vector machine (SVM) classification was used to classify MCI and HC subjects. Results Multi-parametric MRI data showed microstructural brain alterations in MCI patients vs HC that might be interpreted as: (i) a broad loss of myelin/cellular proteins and tissue microstructure in the hippocampus (p ≤ 0.01) and global white matter (p < 0.05); and (ii) iron accumulation in the pallidus nucleus (p ≤ 0.05). MRI metrics accurately predicted memory and executive performances in patients (p ≤ 0.005). SVM classification reached an accuracy of 75% to separate MCI and HC, and performed best using both volumes and T1/T2*/MT metrics. Conclusion Multi-contrast MRI appears to be a promising approach to infer pathophysiological mechanisms leading to brain tissue alterations in MCI. Likewise, parametric MRI data provide powerful correlates of cognitive deficits and improve automatic disease classification based on morphometric features. PMID:26236628

  5. Highly accelerated real-time cardiac cine MRI using k-t SPARSE-SENSE.

    PubMed

    Feng, Li; Srichai, Monvadi B; Lim, Ruth P; Harrison, Alexis; King, Wilson; Adluru, Ganesh; Dibella, Edward V R; Sodickson, Daniel K; Otazo, Ricardo; Kim, Daniel

    2013-07-01

    For patients with impaired breath-hold capacity and/or arrhythmias, real-time cine MRI may be more clinically useful than breath-hold cine MRI. However, commercially available real-time cine MRI methods using parallel imaging typically yield relatively poor spatio-temporal resolution due to their low image acquisition speed. We sought to achieve relatively high spatial resolution (∼2.5 × 2.5 mm(2)) and temporal resolution (∼40 ms), to produce high-quality real-time cine MR images that could be applied clinically for wall motion assessment and measurement of left ventricular function. In this work, we present an eightfold accelerated real-time cardiac cine MRI pulse sequence using a combination of compressed sensing and parallel imaging (k-t SPARSE-SENSE). Compared with reference, breath-hold cine MRI, our eightfold accelerated real-time cine MRI produced significantly worse qualitative grades (1-5 scale), but its image quality and temporal fidelity scores were above 3.0 (adequate) and artifacts and noise scores were below 3.0 (moderate), suggesting that acceptable diagnostic image quality can be achieved. Additionally, both eightfold accelerated real-time cine and breath-hold cine MRI yielded comparable left ventricular function measurements, with coefficient of variation <10% for left ventricular volumes. Our proposed eightfold accelerated real-time cine MRI with k-t SPARSE-SENSE is a promising modality for rapid imaging of myocardial function.

  6. A multichannel, real-time MRI RF power monitor for independent SAR determination

    SciTech Connect

    El-Sharkawy, AbdEl-Monem M.; Qian Di; Bottomley, Paul A.; Edelstein, William A.

    2012-05-15

    Purpose: Accurate measurements of the RF power delivered during clinical MRI are essential for safety and regulatory compliance, avoiding inappropriate restrictions on clinical MRI sequences, and for testing the MRI safety of peripheral and interventional devices at known RF exposure levels. The goal is to make independent RF power measurements to test the accuracy of scanner-reported specific absorption rate (SAR) over the extraordinary range of operating conditions routinely encountered in MRI. Methods: A six channel, high dynamic range, real-time power profiling system was designed and built for monitoring power delivery during MRI up to 440 MHz. The system was calibrated and used in two 3 T scanners to measure power applied to human subjects during MRI scans. The results were compared with the scanner-reported SAR. Results: The new power measurement system has highly linear performance over a 90 dB dynamic range and a wide range of MRI duty cycles. It has about 0.1 dB insertion loss that does not interfere with scanner operation. The measurements of whole-body SAR in volunteers showed that scanner-reported SAR was significantly overestimated by up to about 2.2 fold. Conclusions: The new power monitor system can accurately and independently measure RF power deposition over the wide range of conditions routinely encountered during MRI. Scanner-reported SAR values are not appropriate for setting exposure limits during device or pulse sequence testing.

  7. MRI-based Preplanning Using CT and MRI Data Fusion in Patients With Cervical Cancer Treated With 3D-based Brachytherapy: Feasibility and Accuracy Study

    SciTech Connect

    Dolezel, Martin; Odrazka, Karel; Zizka, Jan; Vanasek, Jaroslav; Kohlova, Tereza; Kroulik, Tomas; Spitzer, Dusan; Ryska, Pavel; Tichy, Michal; Kostal, Milan; Jalcova, Lubica

    2012-09-01

    Purpose: Magnetic resonance imaging (MRI)-assisted radiation treatment planning enables enhanced target contouring. The purpose of this study is to analyze the feasibility and accuracy of computed tomography (CT) and MRI data fusion for MRI-based treatment planning in an institution where an MRI scanner is not available in the radiotherapy department. Methods and Materials: The registration inaccuracy of applicators and soft tissue was assessed in 42 applications with CT/MRI data fusion. The absolute positional difference of the center of the applicators was measured in four different planes from the top of the tandem to the cervix. Any inaccuracy of registration of soft tissue in relation to the position of applicators was determined and dose-volume parameters for MRI preplans and for CT/MRI fusion plans with or without target and organs at risk (OAR) adaptation were evaluated. Results: We performed 6,132 measurements in 42 CT/MRI image fusions. Median absolute difference of the center of tandem on CT and MRI was 1.1 mm. Median distance between the center of the right ovoid on CT and MRI was 1.7 and 1.9 mm in the laterolateral and anteroposterior direction, respectively. Corresponding values for the left ovoid were 1.6 and 1.8 mm. Rotation of applicators was 3.1 Degree-Sign . Median absolute difference in position of applicators in relation to soft tissue was 1.93, 1.50, 1.05, and 0.84 mm in the respective transverse planes, and 1.17, 1.28, 1.27, and 1.17 mm in selected angular directions. The dosimetric parameters for organs at risk on CT/MRI fusion plans without OAR adaptation were significantly impaired whereas the target coverage was not influenced. Planning without target adaptation led to overdosing of the target volume, especially high-risk clinical target volume - D{sub 90} 88.2 vs. 83.1 (p < 0.05). Conclusions: MRI-based preplanning with consecutive CT/MRI data fusion can be safe and feasible, with an acceptable inaccuracy of soft tissue registration.

  8. Magnetic Resonance Imaging (MRI) Markers for MRI-Guided High-Dose-Rate Brachytherapy: Novel Marker-Flange for Cervical Cancer and Marker Catheters for Prostate Cancer

    SciTech Connect

    Schindel, Joshua; Muruganandham, Manickam; Pigge, F. Christopher; Anderson, James; Kim, Yusung

    2013-06-01

    Purpose: To present a novel marker-flange, addressing source-reconstruction uncertainties due to the artifacts of a titanium intracavitary applicator used for magnetic resonance imaging (MRI)-guided high-dose-rate (HDR) brachytherapy (BT); and to evaluate 7 different MRI marker agents used for interstitial prostate BT and intracavitary gynecologic HDR BT when treatment plans are guided by MRI. Methods and Materials: Seven MRI marker agents were analyzed: saline solution, Conray-60, copper sulfate (CuSO{sub 4}) (1.5 g/L), liquid vitamin E, fish oil, 1% agarose gel (1 g agarose powder per 100 mL distilled water), and a cobalt–chloride complex contrast (C4) (CoCl{sub 2}/glycine = 4:1). A plastic, ring-shaped marker-flange was designed and tested on both titanium and plastic applicators. Three separate phantoms were designed to test the marker-flange, interstitial catheters for prostate BT, and intracavitary catheters for gynecologic HDR BT. T1- and T2-weighted MRI were analyzed for all markers in each phantom and quantified as percentages compared with a 3% agarose gel background. The geometric accuracy of the MR signal for the marker-flange was measured using an MRI-CT fusion. Results: The CuSO{sub 4} and C4 markers on T1-weighted MRI and saline on T2-weighted MRI showed the highest signals. The marker-flange showed hyper-signals of >500% with CuSO{sub 4} and C4 on T1-weighted MRI and of >400% with saline on T2-weighted MRI on titanium applicators. On T1-weighted MRI, the MRI signal inaccuracies of marker-flanges were measured <2 mm, regardless of marker agents, and that of CuSO{sub 4} was 0.42 ± 0.14 mm. Conclusion: The use of interstitial/intracavitary markers for MRI-guided prostate/gynecologic BT was observed to be feasible, providing accurate source pathway reconstruction. The novel marker-flange can produce extremely intense, accurate signals, demonstrating its feasibility for gynecologic HDR BT.

  9. Rank-One and Transformed Sparse Decomposition for Dynamic Cardiac MRI

    PubMed Central

    Xiu, Xianchao; Kong, Lingchen

    2015-01-01

    It is challenging and inspiring for us to achieve high spatiotemporal resolutions in dynamic cardiac magnetic resonance imaging (MRI). In this paper, we introduce two novel models and algorithms to reconstruct dynamic cardiac MRI data from under-sampled k − t space data. In contrast to classical low-rank and sparse model, we use rank-one and transformed sparse model to exploit the correlations in the dataset. In addition, we propose projected alternative direction method (PADM) and alternative hard thresholding method (AHTM) to solve our proposed models. Numerical experiments of cardiac perfusion and cardiac cine MRI data demonstrate improvement in performance. PMID:26247010

  10. Feature extraction for MRI segmentation.

    PubMed

    Velthuizen, R P; Hall, L O; Clarke, L P

    1999-04-01

    Magnetic resonance images (MRIs) of the brain are segmented to measure the efficacy of treatment strategies for brain tumors. To date, no reproducible technique for measuring tumor size is available to the clinician, which hampers progress of the search for good treatment protocols. Many segmentation techniques have been proposed, but the representation (features) of the MRI data has received little attention. A genetic algorithm (GA) search was used to discover a feature set from multi-spectral MRI data. Segmentations were performed using the fuzzy c-means (FCM) clustering technique. Seventeen MRI data sets from five patients were evaluated. The GA feature set produces a more accurate segmentation. The GA fitness function that achieves the best results is the Wilks's lambda statistic when applied to FCM clusters. Compared to linear discriminant analysis, which requires class labels, the same or better accuracy is obtained by the features constructed from a GA search without class labels, allowing fully operator independent segmentation. The GA approach therefore provides a better starting point for the measurement of the response of a brain tumor to treatment.

  11. Whole-body MRI including diffusion-weighted MRI compared with 5-HTP PET/CT in the detection of neuroendocrine tumors

    PubMed Central

    Carlbom, Lina; Caballero-Corbalán, José; Granberg, Dan; Sörensen, Jens; Eriksson, Barbro; Ahlström, Håkan

    2017-01-01

    Aim We wanted to explore if whole-body magnetic resonance imaging (MRI) including diffusion-weighted (DW) and liver-specific contrast agent-enhanced imaging could be valuable in lesion detection of neuroendocrine tumors (NET). [11C]-5-Hydroxytryptophan positron emission tomography/computed tomography (5-HTP PET/CT) was used for comparison. Materials and methods Twenty-one patients with NET were investigated with whole-body MRI, including DW imaging (DWI) and contrast-enhanced imaging of the liver, and whole-body 5-HTP PET/CT. Seven additional patients underwent upper abdomen MRI including DWI, liver-specific contrast agent-enhanced imaging, and 5-HTP PET/CT. Results There was a patient-based concordance of 61% and a lesion-based concordance of 53% between the modalities. MRI showed good concordance with PET in detecting bone metastases but was less sensitive in detecting metastases in mediastinal lymph nodes. MRI detected more liver metastases than 5-HTP PET/CT. Conclusion Whole-body MRI with DWI did not detect all NET lesions found with whole-body 5-HTP PET/CT. Our findings indicate that MRI of the liver including liver-specific contrast agent-enhanced imaging and DWI could be a useful complement to whole-body 5-HTP PET/CT. PMID:27894208

  12. Histology-derived volumetric annotation of the human hippocampal subfields in postmortem MRI.

    PubMed

    Adler, Daniel H; Pluta, John; Kadivar, Salmon; Craige, Caryne; Gee, James C; Avants, Brian B; Yushkevich, Paul A

    2014-01-01

    Recently, there has been a growing effort to analyze the morphometry of hippocampal subfields using both in vivo and postmortem magnetic resonance imaging (MRI). However, given that boundaries between subregions of the hippocampal formation (HF) are conventionally defined on the basis of microscopic features that often lack discernible signature in MRI, subfield delineation in MRI literature has largely relied on heuristic geometric rules, the validity of which with respect to the underlying anatomy is largely unknown. The development and evaluation of such rules are challenged by the limited availability of data linking MRI appearance to microscopic hippocampal anatomy, particularly in three dimensions (3D). The present paper, for the first time, demonstrates the feasibility of labeling hippocampal subfields in a high resolution volumetric MRI dataset based directly on microscopic features extracted from histology. It uses a combination of computational techniques and manual post-processing to map subfield boundaries from a stack of histology images (obtained with 200μm spacing and 5μm slice thickness; stained using the Kluver-Barrera method) onto a postmortem 9.4Tesla MRI scan of the intact, whole hippocampal formation acquired with 160μm isotropic resolution. The histology reconstruction procedure consists of sequential application of a graph-theoretic slice stacking algorithm that mitigates the effects of distorted slices, followed by iterative affine and diffeomorphic co-registration to postmortem MRI scans of approximately 1cm-thick tissue sub-blocks acquired with 200μm isotropic resolution. These 1cm blocks are subsequently co-registered to the MRI of the whole HF. Reconstruction accuracy is evaluated as the average displacement error between boundaries manually delineated in both the histology and MRI following the sequential stages of reconstruction. The methods presented and evaluated in this single-subject study can potentially be applied to multiple

  13. Histology-derived volumetric annotation of the human hippocampal subfields in postmortem MRI

    PubMed Central

    Adler, Daniel H.; Pluta, John; Kadivar, Salmon; Craige, Caryne; Gee, James C.; Avants, Brian B.; Yushkevich, Paul A.

    2013-01-01

    Recently, there has been a growing effort to analyze the morphometry of hippocampal subfields using both in vivo and postmortem magnetic resonance imaging (MRI). However, given that boundaries between subregions of the hippocampal formation (HF) are conventionally defined on the basis of microscopic features that often lack discernible signature in MRI, subfield delineation in MRI literature has largely relied on heuristic geometric rules, the validity of which with respect to the underlying anatomy is largely unknown. The development and evaluation of such rules is challenged by the limited availability of data linking MRI appearance to microscopic hippocampal anatomy, particularly in three dimensions (3D). The present paper, for the first time, demonstrates the feasibility of labeling hippocampal subfields in a high resolution volumetric MRI dataset based directly on microscopic features extracted from histology. It uses a combination of computational techniques and manual post-processing to map subfield boundaries from a stack of histology images (obtained with 200 μm spacing and 5 μm slice thickness; stained using the Kluver-Barrera method) onto a postmortem 9.4 Tesla MRI scan of the intact, whole hippocampal formation acquired with 160 μm isotropic resolution. The histology reconstruction procedure consists of sequential application of a graph-theoretic slice stacking algorithm that mitigates the effects of distorted slices, followed by iterative affine and diffeomorphic co-registration to postmortem MRI scans of approximately 1 cm-thick tissue sub-blocks acquired with 200 μm isotropic resolution. These 1 cm blocks are subsequently co-registered to the MRI of the whole HF. Reconstruction accuracy is evaluated as the average displacement error between boundaries manually delineated in both the histology and MRI following the sequential stages of reconstruction. The methods presented and evaluated in this single-subject study can potentially be applied to

  14. Sources of Variation Influencing Concordance between Functional MRI and Direct Cortical Stimulation in Brain Tumor Surgery

    PubMed Central

    Morrison, Melanie A.; Tam, Fred; Garavaglia, Marco M.; Hare, Gregory M. T.; Cusimano, Michael D.; Schweizer, Tom A.; Das, Sunit; Graham, Simon J.

    2016-01-01

    Object: Preoperative functional magnetic resonance imaging (fMRI) remains a promising method to aid in the surgical management of patients diagnosed with brain tumors. For patients that are candidates for awake craniotomies, surgical decisions can potentially be improved by fMRI but this depends on the level of concordance between preoperative brain maps and the maps provided by the gold standard intraoperative method, direct cortical stimulation (DCS). There have been numerous studies of the concordance between fMRI and DCS using sensitivity and specificity measures, however the results are variable across studies and the key factors influencing variability are not well understood. Thus, the present work addresses the influence of technical factors on fMRI and DCS concordance. Methods: Motor and language mapping data were collected for a group of glioma patients (n = 14) who underwent both preoperative fMRI and intraoperative DCS in an awake craniotomy procedure for tumor removal. Normative fMRI data were also acquired in a healthy control group (n = 12). The fMRI and DCS mapping data were co-registered; true positive (TP), true negative (TN), false positive (FP), and false negative (FN) occurrences were tabulated over the exposed brain surface. Sensitivity and specificity were measured for the total group, and for the motor and language sub-groups. The influence of grid placement, fMRI statistical thresholding, and task standardization were assessed. Correlations between proportions of agreement and error were also carefully scrutinized to evaluate concordance in more detail. Results: Concordance was significantly better for motor vs. language mapping. There was an inverse relationship between TP and TN with increasing statistical threshold, and FP dominated the total error. Sensitivity and specificity were reduced when tasks were not standardized across fMRI and DCS. Conclusions: Although the agreement between fMRI and DCS is good, variability is introduced by

  15. Simultaneous segmentation and registration of contrast-enhanced breast MRI.

    PubMed

    Xiaohua, Chen; Brady, Michael; Lo, Jonathan Lok-Chuen; Moore, Niall

    2005-01-01

    Breast Contrast-Enhanced MRI (ce-MRI) requires a series of images to be acquired before, and repeatedly after, intravenous injection of a contrast agent. Breast MRI segmentation based on the differential enhancement of image intensities can assist the clinician detect suspicious regions. Image registration between the temporal data sets is necessary to compensate for patient motion, which is quite often substantial. Although segmentation and registration are usually treated as separate problems in medical image analysis, they can naturally benefit a great deal from each other. In this paper, we propose a scheme for simultaneous segmentation and registration of breast ce-MRI. It is developed within a Bayesian framework, based on a maximum a posteriori estimation method. A pharmacokinetic model and Markov Random Field model have been incorporated into the framework in order to improve the performance of our algorithm. Our method has been applied to the segmentation and registration of clinical ce-MR images. The results show the potential of our methodology to extract useful information for breast cancer detection.

  16. Automatic MRI 2D brain segmentation using graph searching technique.

    PubMed

    Pedoia, Valentina; Binaghi, Elisabetta

    2013-09-01

    Accurate and efficient segmentation of the whole brain in magnetic resonance (MR) images is a key task in many neuroscience and medical studies either because the whole brain is the final anatomical structure of interest or because the automatic extraction facilitates further analysis. The problem of segmenting brain MRI images has been extensively addressed by many researchers. Despite the relevant achievements obtained, automated segmentation of brain MRI imagery is still a challenging problem whose solution has to cope with critical aspects such as anatomical variability and pathological deformation. In the present paper, we describe and experimentally evaluate a method for segmenting brain from MRI images basing on two-dimensional graph searching principles for border detection. The segmentation of the whole brain over the entire volume is accomplished slice by slice, automatically detecting frames including eyes. The method is fully automatic and easily reproducible by computing the internal main parameters directly from the image data. The segmentation procedure is conceived as a tool of general applicability, although design requirements are especially commensurate with the accuracy required in clinical tasks such as surgical planning and post-surgical assessment. Several experiments were performed to assess the performance of the algorithm on a varied set of MRI images obtaining good results in terms of accuracy and stability.

  17. Segmentation of knee MRI using structure enhanced local phase filtering

    NASA Astrophysics Data System (ADS)

    Lim, Mikhiel; Hacihaliloglu, Ilker

    2016-03-01

    The segmentation of bone surfaces from magnetic resonance imaging (MRI) data has applications in the quanti- tative measurement of knee osteoarthritis, surgery planning for patient specific total knee arthroplasty and its subsequent fabrication of artificial implants. However, due to the problems associated with MRI imaging such as low contrast between bone and surrounding tissues, noise, bias fields, and the partial volume effect, segmentation of bone surfaces continues to be a challenging operation. In this paper, a new framework is presented for the enhancement of knee MRI scans prior to segmentation in order to obtain high contrast bone images. During the first stage, a new contrast enhanced relative total variation (RTV) regularization method is used in order to remove textural noise from the bone structures and surrounding soft tissue interface. This salient bone edge information is further enhanced using a sparse gradient counting method based on L0 gradient minimization, which globally controls how many non-zero gradients are resulted in order to approximate prominent bone structures in a structure-sparsity-management manner. The last stage of the framework involves incorporation of local phase bone boundary information in order to provide an intensity invariant enhancement of contrast between the bone and surrounding soft tissue. The enhanced images are segmented using a fast random walker algorithm. Validation against expert segmentation was performed on 10 clinical knee MRI images, and achieved a mean dice similarity coefficient (DSC) of 0.975.

  18. fMRI analysis software tools: an evaluation framework

    NASA Astrophysics Data System (ADS)

    Pedoia, Valentina; Colli, Vittoria; Strocchi, Sabina; Vite, Cristina; Binaghi, Elisabetta; Conte, Leopoldo

    2011-03-01

    Performance comparison of functional Magnetic Resonance Imaging (fMRI) software tools is a very difficult task. In this paper, a framework for comparison of fMRI analysis results obtained with different software packages is proposed. An objective evaluation is possible only after pre-processing steps that normalize input data in a standard domain. Segmentation and registration algorithms are implemented in order to classify voxels belonging to brain or not, and to find the non rigid transformation that best aligns the volume under inspection with a standard one. Through the definitions of intersection and union of fuzzy logic an index was defined which quantify information overlap between Statistical Parametrical Maps (SPMs). Direct comparison between fMRI results can only highlight differences. In order to assess the best result, an index that represents the goodness of the activation detection is required. The transformation of the activation map in a standard domain allows the use of a functional Atlas for labeling the active voxels. For each functional area the Activation Weighted Index (AWI) that identifies the mean activation level of whole area was defined. By means of this brief, but comprehensive description, it is easy to find a metric for the objective evaluation of a fMRI analysis tools. Trough the first evaluation method the situations where the SPMs are inconsistent were identified. The result of AWI analysis suggest which tool has higher sensitivity and specificity. The proposed method seems a valid evaluation tool when applied to an adequate number of patients.

  19. Pairwise Classifier Ensemble with Adaptive Sub-Classifiers for fMRI Pattern Analysis.

    PubMed

    Kim, Eunwoo; Park, HyunWook

    2017-02-01

    The multi-voxel pattern analysis technique is applied to fMRI data for classification of high-level brain functions using pattern information distributed over multiple voxels. In this paper, we propose a classifier ensemble for multiclass classification in fMRI analysis, exploiting the fact that specific neighboring voxels can contain spatial pattern information. The proposed method converts the multiclass classification to a pairwise classifier ensemble, and each pairwise classifier consists of multiple sub-classifiers using an adaptive feature set for each class-pair. Simulated and real fMRI data were used to verify the proposed method. Intra- and inter-subject analyses were performed to compare the proposed method with several well-known classifiers, including single and ensemble classifiers. The comparison results showed that the proposed method can be generally applied to multiclass classification in both simulations and real fMRI analyses.

  20. Ex vivo assessment of polyol coated-iron oxide nanoparticles for MRI diagnosis applications: toxicological and MRI contrast enhancement effects

    NASA Astrophysics Data System (ADS)

    Bomati-Miguel, Oscar; Miguel-Sancho, Nuria; Abasolo, Ibane; Candiota, Ana Paula; Roca, Alejandro G.; Acosta, Milena; Schwartz, Simó; Arus, Carles; Marquina, Clara; Martinez, Gema; Santamaria, Jesus

    2014-03-01

    Polyol synthesis is a promising method to obtain directly pharmaceutical grade colloidal dispersion of superparamagnetic iron oxide nanoparticles (SPIONs). Here, we study the biocompatibility and performance as T2-MRI contrast agents (CAs) of high quality magnetic colloidal dispersions (average hydrodynamic aggregate diameter of 16-27 nm) consisting of polyol-synthesized SPIONs (5 nm in mean particle size) coated with triethylene glycol (TEG) chains (TEG-SPIONs), which were subsequently functionalized to carboxyl-terminated meso-2-3-dimercaptosuccinic acid (DMSA) coated-iron oxide nanoparticles (DMSA-SPIONs). Standard MTT assays on HeLa, U87MG, and HepG2 cells revealed that colloidal dispersions of TEG-coated iron oxide nanoparticles did not induce any loss of cell viability after 3 days incubation with dose concentrations below 50 μg Fe/ml. However, after these nanoparticles were functionalized with DMSA molecules, an increase on their cytotoxicity was observed, so that particles bearing free terminal carboxyl groups on their surface were not cytotoxic only at low concentrations (<10 μg Fe/ml). Moreover, cell uptake assays on HeLa and U87MG and hemolysis tests have demonstrated that TEG-SPIONs and DMSA-SPIONs were well internalized by the cells and did not induce any adverse effect on the red blood cells at the tested concentrations. Finally, in vitro relaxivity measurements and post mortem MRI studies in mice indicated that both types of coated-iron oxide nanoparticles produced higher negative T2-MRI contrast enhancement than that measured for a similar commercial T2-MRI CAs consisting in dextran-coated ultra-small iron oxide nanoparticles (Ferumoxtran-10). In conclusion, the above attributes make both types of as synthesized coated-iron oxide nanoparticles, but especially DMSA-SPIONs, promising candidates as T2-MRI CAs for nanoparticle-enhanced MRI diagnosis applications.

  1. Variational Bayesian causal connectivity analysis for fMRI.

    PubMed

    Luessi, Martin; Babacan, S Derin; Molina, Rafael; Booth, James R; Katsaggelos, Aggelos K

    2014-01-01

    The ability to accurately estimate effective connectivity among brain regions from neuroimaging data could help answering many open questions in neuroscience. We propose a method which uses causality to obtain a measure of effective connectivity from fMRI data. The method uses a vector autoregressive model for the latent variables describing neuronal activity in combination with a linear observation model based on a convolution with a hemodynamic response function. Due to the employed modeling, it is possible to efficiently estimate all latent variables of the model using a variational Bayesian inference algorithm. The computational efficiency of the method enables us to apply it to large scale problems with high sampling rates and several hundred regions of interest. We use a comprehensive empirical evaluation with synthetic and real fMRI data to evaluate the performance of our method under various conditions.

  2. Variational Bayesian causal connectivity analysis for fMRI

    PubMed Central

    Luessi, Martin; Babacan, S. Derin; Molina, Rafael; Booth, James R.; Katsaggelos, Aggelos K.

    2014-01-01

    The ability to accurately estimate effective connectivity among brain regions from neuroimaging data could help answering many open questions in neuroscience. We propose a method which uses causality to obtain a measure of effective connectivity from fMRI data. The method uses a vector autoregressive model for the latent variables describing neuronal activity in combination with a linear observation model based on a convolution with a hemodynamic response function. Due to the employed modeling, it is possible to efficiently estimate all latent variables of the model using a variational Bayesian inference algorithm. The computational efficiency of the method enables us to apply it to large scale problems with high sampling rates and several hundred regions of interest. We use a comprehensive empirical evaluation with synthetic and real fMRI data to evaluate the performance of our method under various conditions. PMID:24847244

  3. Multiparametric Breast MRI of Breast Cancer

    PubMed Central

    Rahbar, Habib; Partridge, Savannah C.

    2015-01-01

    Synopsis Breast MRI has increased in popularity over the past two decades due to evidence for its high sensitivity for cancer detection. Current clinical MRI approaches rely on the use of a dynamic contrast enhanced (DCE-MRI) acquisition that facilitates morphologic and semi-quantitative kinetic assessments of breast lesions. The use of more functional and quantitative parameters, such as pharmacokinetic features from high temporal resolution DCE-MRI, apparent diffusion coefficient (ADC) and intravoxel incoherent motion (IVIM) on diffusion weighted MRI, and choline concentrations on MR spectroscopy, hold promise to broaden the utility of MRI and improve its specificity. However, due to wide variations in approach among centers for measuring these parameters and the considerable technical challenges, robust multicenter data supporting their routine use is not yet available, limiting current applications of many of these tools to research purposes. PMID:26613883

  4. Moyamoya disease: diagnostic accuracy of MRI.

    PubMed

    Yamada, I; Suzuki, S; Matsushima, Y

    1995-07-01

    Our purpose was to evaluate the diagnostic accuracy of MRI in moyamoya disease. We studied 30 patients with this disease, comparing MRI and angiographic findings. The diagnostic value of MRI was evaluated for occlusive lesions, collateral vessels, and parenchymal lesions. In all patients bilateral occlusion or stenosis of the supraclinoid internal carotid artery and proximal anterior and middle cerebral arteries was clearly shown by MRI, and staging of the extent of occlusion agreed with angiographic staging in 44 (73%) of 60 arteries. MRI, particularly coronal images, clearly showed basal cerebral moyamoya vessels in 54 hemispheres, and 45 of a total of 71 large leptomeningeal and transdural collateral vessels were identified. MRI also showed parenchymal lesions in 48 (80%) hemispheres, and the extent of occlusion in the anterior and posterior circulations respectively correlated with white matter and cortical and/or subcortical infarcts.

  5. Brain development in preterm infants assessed using advanced MRI techniques.

    PubMed

    Tusor, Nora; Arichi, Tomoki; Counsell, Serena J; Edwards, A David

    2014-03-01

    Infants who are born preterm have a high incidence of neurocognitive and neurobehavioral abnormalities, which may be associated with impaired brain development. Advanced magnetic resonance imaging (MRI) approaches, such as diffusion MRI (d-MRI) and functional MRI (fMRI), provide objective and reproducible measures of brain development. Indices derived from d-MRI can be used to provide quantitative measures of preterm brain injury. Although fMRI of the neonatal brain is currently a research tool, future studies combining d-MRI and fMRI have the potential to assess the structural and functional properties of the developing brain and its response to injury.

  6. Ultrafast multi-slice spatiotemporally encoded MRI with slice-selective dimension segmented

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Chen, Lin; Huang, Jianpan; Li, Jing; Cai, Shuhui; Cai, Congbo; Chen, Zhong

    2016-08-01

    As a recently emerging method, spatiotemporally encoded (SPEN) magnetic resonance imaging (MRI) has a high robustness to field inhomogeneity and chemical shift effect. It has been broadened from single-slice scanning to multi-slice scanning. In this paper, a novel multi-slice SPEN MRI method was proposed. In this method, the slice-selective dimension was segmented to lower the specific absorption rate (SAR) and improve the image quality. This segmented method, dubbed SeSPEN method, was theoretically analyzed and demonstrated with phantom, lemon and in vivo rat brain experiments. The experimental results were compared with the results obtained from the spin-echo EPI, spin-echo SPEN method and multi-slice global SPEN method proposed by Frydman and coauthors (abbr. GlSPEN method). All the SPEN images were super-resolved reconstructed using deconvolution method. The results indicate that the SeSPEN method retains the advantage of SPEN MRI with respect to resistance to field inhomogeneity and can provide better signal-to-noise ratio than multi-slice GlSPEN MRI technique. The SeSPEN method has comparable SAR to the GlSPEN method while the T1 signal attenuation effect is alleviated. The proposed method will facilitate the multi-slice SPEN MRI to scan more slices within one scan with better image quality.

  7. Classifying Glioblastoma Multiforme Follow-Up Progressive vs. Responsive Forms Using Multi-Parametric MRI Features

    PubMed Central

    Ion-Mărgineanu, Adrian; Van Cauter, Sofie; Sima, Diana M.; Maes, Frederik; Sunaert, Stefan; Himmelreich, Uwe; Van Huffel, Sabine

    2017-01-01

    Purpose: The purpose of this paper is discriminating between tumor progression and response to treatment based on follow-up multi-parametric magnetic resonance imaging (MRI) data retrieved from glioblastoma multiforme (GBM) patients. Materials and Methods: Multi-parametric MRI data consisting of conventional MRI (cMRI) and advanced MRI [i.e., perfusion weighted MRI (PWI) and diffusion kurtosis MRI (DKI)] were acquired from 29 GBM patients treated with adjuvant therapy after surgery. We propose an automatic pipeline for processing advanced MRI data and extracting intensity-based histogram features and 3-D texture features using manually and semi-manually delineated regions of interest (ROIs). Classifiers are trained using a leave-one-patient-out cross validation scheme on complete MRI data. Balanced accuracy rate (BAR)–values are computed and compared between different ROIs, MR modalities, and classifiers, using non-parametric multiple comparison tests. Results: Maximum BAR–values using manual delineations are 0.956, 0.85, 0.879, and 0.932, for cMRI, PWI, DKI, and all three MRI modalities combined, respectively. Maximum BAR–values using semi-manual delineations are 0.932, 0.894, 0.885, and 0.947, for cMRI, PWI, DKI, and all three MR modalities combined, respectively. After statistical testing using Kruskal-Wallis and post-hoc Dunn-Šidák analysis we conclude that training a RUSBoost classifier on features extracted using semi-manual delineations on cMRI or on all MRI modalities combined performs best. Conclusions: We present two main conclusions: (1) using T1 post-contrast (T1pc) features extracted from manual total delineations, AdaBoost achieves the highest BAR–value, 0.956; (2) using T1pc-average, T1pc-90th percentile, and Cerebral Blood Volume (CBV) 90th percentile extracted from semi-manually delineated contrast enhancing ROIs, SVM-rbf, and RUSBoost achieve BAR–values of 0.947 and 0.932, respectively. Our findings show that AdaBoost, SVM-rbf, and

  8. A proposal for PET/MRI attenuation correction with μ-values measured using a fixed-position radiation source and MRI segmentation

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Hiroshi; Hirano, Yoshiyuki; Yoshida, Eiji; Kershaw, Jeff; Shiraishi, Takahiro; Suga, Mikio; Ikoma, Yoko; Obata, Takayuki; Ito, Hiroshi; Yamaya, Taiga

    2014-01-01

    Several MRI-based attenuation correction methods have been reported for PET/MRI; these methods are expected to make efficient use of high-quality anatomical MRIs and reduce the radiation dose for PET/MRI scanning. The accuracy of the attenuation map (μ-map) from an MRI depends on the accuracy of tissue segmentation and the attenuation coefficients to be assigned (μ-values). In this study, we proposed an MRI-based μ-value estimation method with a non-rotational radiation source to construct a suitable μ-map for PET/MRI. The proposed method uses an accurately segmented tissue map, the partial path length of each tissue, and detected intensities of attenuated radiation from a fixed-position (rather than a rotating) radiation source to obtain the μ-map. We estimated the partial path length from a virtual blank scan of fixed-point radiation with the same scanner geometry using the known tissue map from MRI. The μ-values of every tissue were estimated by inverting a linear relationship involving the partial path lengths and measured radioactivity intensity. Validation of the proposed method was performed by calculating a fixed- point data set based upon real a real transmission scan. The root-mean-square error between the μ-values derived from a conventional transmission scan and those obtained with our proposed method were 2.4±1.4%, 17.4±9.1% and 6.6±4.3% for brain, bone and soft tissue other than brain, respectively. Although the error estimates for bone and soft tissue are not insignificant, the method we propose is able to estimate the brain μ-value accurately and it is this factor that most strongly affects the quantitative value of PET images because of the large volumetric ratio of the brain.

  9. Competitive advantage o