Schwenke, M; Hennemuth, A; Fischer, B; Friman, O
2012-01-01
Phase-contrast MRI (PC MRI) can be used to assess blood flow dynamics noninvasively inside the human body. The acquired images can be reconstructed into flow vector fields. Traditionally, streamlines can be computed based on the vector fields to visualize flow patterns and particle trajectories. The traditional methods may give a false impression of precision, as they do not consider the measurement uncertainty in the PC MRI images. In our prior work, we incorporated the uncertainty of the measurement into the computation of particle trajectories. As a major part of the contribution, a novel numerical scheme for solving the anisotropic Fast Marching problem is presented. A computing time comparison to state-of-the-art methods is conducted on artificial tensor fields. A visual comparison of healthy to pathological blood flow patterns is given. The comparison shows that the novel anisotropic Fast Marching solver outperforms previous schemes in terms of computing time. The visual comparison of flow patterns directly visualizes large deviations of pathological flow from healthy flow. The novel anisotropic Fast Marching solver efficiently resolves even strongly anisotropic path costs. The visualization method enables the user to assess the uncertainty of particle trajectories derived from PC MRI images.
NASA Astrophysics Data System (ADS)
Kim, Soo Jeong; Lee, Dong Hyuk; Song, Inchang; Kim, Nam Gook; Park, Jae-Hyeung; Kim, JongHyo; Han, Man Chung; Min, Byong Goo
1998-07-01
Phase-contrast (PC) method of magnetic resonance imaging (MRI) has bee used for quantitative measurements of flow velocity and volume flow rate. It is a noninvasive technique which provides an accurate two-dimensional velocity image. Moreover, Phase Contrast Cine magnetic resonance imaging combines the flow dependent contrast of PC-MRI with the ability of cardiac cine imaging to produce images throughout the cardiac cycle. However, the accuracy of the data acquired from the single through-plane velocity encoding can be reduced by the effect of flow direction, because in many practical cases flow directions are not uniform throughout the whole region of interest. In this study, we present dynamic three-dimensional velocity vector mapping method using PC-MRI which can visualize the complex flow pattern through 3D volume rendered images displayed dynamically. The direction of velocity mapping can be selected along any three orthogonal axes. By vector summation, the three maps can be combined to form a velocity vector map that determines the velocity regardless of the flow direction. At the same time, Cine method is used to observe the dynamic change of flow. We performed a phantom study to evaluate the accuracy of the suggested PC-MRI in continuous and pulsatile flow measurement. Pulsatile flow wave form is generated by the ventricular assistant device (VAD), HEMO-PULSA (Biomedlab, Seoul, Korea). We varied flow velocity, pulsatile flow wave form, and pulsing rate. The PC-MRI-derived velocities were compared with Doppler-derived results. The velocities of the two measurements showed a significant linear correlation. Dynamic three-dimensional velocity vector mapping was carried out for two cases. First, we applied to the flow analysis around the artificial heart valve in a flat phantom. We could observe the flow pattern around the valve through the 3-dimensional cine image. Next, it is applied to the complex flow inside the polymer sac that is used as ventricle in totally implantable artificial heart (TAH). As a result we could observe the flow pattern around the valves of the sac, though complex flow can not be detected correctly in the conventional phase contrast method. In addition, we could calculate the cardiac output from TAH sac by quantitative measurement of the volume of flow across the outlet valve.
Bollache, Emilie; Barker, Alex J; Dolan, Ryan Scott; Carr, James C; van Ooij, Pim; Ahmadian, Rouzbeh; Powell, Alex; Collins, Jeremy D; Geiger, Julia; Markl, Michael
2018-01-01
To assess the performance of highly accelerated free-breathing aortic four-dimensional (4D) flow MRI acquired in under 2 minutes compared to conventional respiratory gated 4D flow. Eight k-t accelerated nongated 4D flow MRI (parallel MRI with extended and averaged generalized autocalibrating partially parallel acquisition kernels [PEAK GRAPPA], R = 5, TRes = 67.2 ms) using four k y -k z Cartesian sampling patterns (linear, center-out, out-center-out, random) and two spatial resolutions (SRes1 = 3.5 × 2.3 × 2.6 mm 3 , SRes2 = 4.5 × 2.3 × 2.6 mm 3 ) were compared in vitro (aortic coarctation flow phantom) and in 10 healthy volunteers, to conventional 4D flow (16 mm-navigator acceptance window; R = 2; TRes = 39.2 ms; SRes = 3.2 × 2.3 × 2.4 mm 3 ). The best k-t accelerated approach was further assessed in 10 patients with aortic disease. The k-t accelerated in vitro aortic peak flow (Qmax), net flow (Qnet), and peak velocity (Vmax) were lower than conventional 4D flow indices by ≤4.7%, ≤ 11%, and ≤22%, respectively. In vivo k-t accelerated acquisitions were significantly shorter but showed a trend to lower image quality compared to conventional 4D flow. Hemodynamic indices for linear and out-center-out k-space samplings were in agreement with conventional 4D flow (Qmax ≤ 13%, Qnet ≤ 13%, Vmax ≤ 17%, P > 0.05). Aortic 4D flow MRI in under 2 minutes is feasible with moderate underestimation of flow indices. Differences in k-space sampling patterns suggest an opportunity to mitigate image artifacts by an optimal trade-off between scan time, acceleration, and k-space sampling. Magn Reson Med 79:195-207, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Stankovic, Zoran; Allen, Bradley D.; Garcia, Julio; Jarvis, Kelly B.
2014-01-01
Magnetic resonance imaging (MRI) has become an important tool for the clinical evaluation of patients with cardiovascular disease. Since its introduction in the late 1980s, 2-dimensional phase contrast MRI (2D PC-MRI) has become a routine part of standard-of-care cardiac MRI for the assessment of regional blood flow in the heart and great vessels. More recently, time-resolved PC-MRI with velocity encoding along all three flow directions and three-dimensional (3D) anatomic coverage (also termed ‘4D flow MRI’) has been developed and applied for the evaluation of cardiovascular hemodynamics in multiple regions of the human body. 4D flow MRI allows for the comprehensive evaluation of complex blood flow patterns by 3D blood flow visualization and flexible retrospective quantification of flow parameters. Recent technical developments, including the utilization of advanced parallel imaging techniques such as k-t GRAPPA, have resulted in reasonable overall scan times, e.g., 8-12 minutes for 4D flow MRI of the aorta and 10-20 minutes for whole heart coverage. As a result, the application of 4D flow MRI in a clinical setting has become more feasible, as documented by an increased number of recent reports on the utility of the technique for the assessment of cardiac and vascular hemodynamics in patient studies. A number of studies have demonstrated the potential of 4D flow MRI to provide an improved assessment of hemodynamics which might aid in the diagnosis and therapeutic management of cardiovascular diseases. The purpose of this review is to describe the methods used for 4D flow MRI acquisition, post-processing and data analysis. In addition, the article provides an overview of the clinical applications of 4D flow MRI and includes a review of applications in the heart, thoracic aorta and hepatic system. PMID:24834414
Phase-Contrast MRI and CFD Modeling of Apparent 3He Gas Flow in Rat Pulmonary Airways
Minard, Kevin R.; Kuprat, Andrew P.; Kabilan, Senthil; Jacob, Richard E.; Einstein, Daniel R.; Carson, James P.; Corley, Richard A.
2012-01-01
Phase-contrast (PC) magnetic resonance imaging (MRI) with hyperpolarized 3He is potentially useful for developing and testing patient-specific models of pulmonary airflow. One challenge, however, is that PC-MRI provides apparent values of local 3He velocity that not only depend on actual airflow but also on gas diffusion. This not only blurs laminar flow patterns in narrow airways but also introduces anomalous airflow structure that reflects gas-wall interactions. Here, both effects are predicted in a live rat using computational fluid dynamics (CFD), and for the first time, simulated patterns of apparent 3He gas velocity are compared with in-vivo PC-MRI. Results show 1) that correlations (R2) between measured and simulated airflow patterns increase from 0.23 to 0.79 simply by accounting for apparent 3He transport, and 2) that remaining differences are mainly due to uncertain airway segmentation and partial volume effects stemming from relatively coarse MRI resolution. Higher-fidelity testing of pulmonary airflow predictions should therefore be possible with future imaging improvements. PMID:22771528
Phase-contrast MRI and CFD modeling of apparent 3He gas flow in rat pulmonary airways
NASA Astrophysics Data System (ADS)
Minard, Kevin R.; Kuprat, Andrew P.; Kabilan, Senthil; Jacob, Richard E.; Einstein, Daniel R.; Carson, James P.; Corley, Richard A.
2012-08-01
Phase-contrast (PC) magnetic resonance imaging (MRI) with hyperpolarized 3He is potentially useful for developing and testing patient-specific models of pulmonary airflow. One challenge, however, is that PC-MRI provides apparent values of local 3He velocity that not only depend on actual airflow but also on gas diffusion. This not only blurs laminar flow patterns in narrow airways but also introduces anomalous airflow structure that reflects gas-wall interactions. Here, both effects are predicted in a live rat using computational fluid dynamics (CFD), and for the first time, simulated patterns of apparent 3He gas velocity are compared with in vivo PC-MRI. Results show (1) that correlations (R2) between measured and simulated airflow patterns increase from 0.23 to 0.79 simply by accounting for apparent 3He transport, and (2) that remaining differences are mainly due to uncertain airway segmentation and partial volume effects stemming from relatively coarse MRI resolution. Higher-fidelity testing of pulmonary airflow predictions should therefore be possible with future imaging improvements.
Li, Zhi-Yong; Tan, Felicia P P; Soloperto, Giulia; Wood, Nigel B; Xu, Xiao Y; Gillard, Jonathan H
2015-08-01
The aim of this study is to investigate the blood flow pattern in carotid bifurcation with a high degree of luminal stenosis, combining in vivo magnetic resonance imaging (MRI) and computational fluid dynamics (CFD). A newly developed two-equation transitional model was employed to evaluate wall shear stress (WSS) distribution and pressure drop across the stenosis, which are closely related to plaque vulnerability. A patient with an 80% left carotid stenosis was imaged using high resolution MRI, from which a patient-specific geometry was reconstructed and flow boundary conditions were acquired for CFD simulation. A transitional model was implemented to investigate the flow velocity and WSS distribution in the patient-specific model. The peak time-averaged WSS value of approximately 73 Pa was predicted by the transitional flow model, and the regions of high WSS occurred at the throat of the stenosis. High oscillatory shear index values up to 0.50 were present in a helical flow pattern from the outer wall of the internal carotid artery immediately after the throat. This study shows the potential suitability of a transitional turbulent flow model in capturing the flow phenomena in severely stenosed carotid arteries using patient-specific MRI data and provides the basis for further investigation of the links between haemodynamic variables and plaque vulnerability. It may be useful in the future for risk assessment of patients with carotid disease.
Perfusion information extracted from resting state functional magnetic resonance imaging.
Tong, Yunjie; Lindsey, Kimberly P; Hocke, Lia M; Vitaliano, Gordana; Mintzopoulos, Dionyssios; Frederick, Blaise deB
2017-02-01
It is widely known that blood oxygenation level dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) is an indirect measure for neuronal activations through neurovascular coupling. The BOLD signal is also influenced by many non-neuronal physiological fluctuations. In previous resting state (RS) fMRI studies, we have identified a moving systemic low frequency oscillation (sLFO) in BOLD signal and were able to track its passage through the brain. We hypothesized that this seemingly intrinsic signal moves with the blood, and therefore, its dynamic patterns represent cerebral blood flow. In this study, we tested this hypothesis by performing Dynamic Susceptibility Contrast (DSC) MRI scans (i.e. bolus tracking) following the RS scans on eight healthy subjects. The dynamic patterns of sLFO derived from RS data were compared with the bolus flow visually and quantitatively. We found that the flow of sLFO derived from RS fMRI does to a large extent represent the blood flow measured with DSC. The small differences, we hypothesize, are largely due to the difference between the methods in their sensitivity to different vessel types. We conclude that the flow of sLFO in RS visualized by our time delay method represents the blood flow in the capillaries and veins in the brain.
Modeling contrast agent flow in cerebral aneurysms: comparison of CFD with medical imaging
NASA Astrophysics Data System (ADS)
Rayz, Vitaliy; Vali, Alireza; Sigovan, Monica; Lawton, Michael; Saloner, David; Boussel, Loic
2016-11-01
PURPOSE: The flow in cerebral aneurysms is routinely assessed with X-ray angiography, an imaging technique based on a contrast agent injection. In addition to requiring a patient's catheterization and radiation exposure, the X-ray angiography may inaccurately estimate the flow residence time, as the injection alters the native blood flow patterns. Numerical modeling of the contrast transport based on MRI imaging, provides a non-invasive alternative for the flow diagnostics. METHODS: The flow in 3 cerebral aneurysms was measured in vivo with 4D PC-MRI, which provides time-resolved, 3D velocity field. The measured velocities were used to simulate a contrast agent transport by solving the advection-diffusion equation. In addition, the flow in the same patient-specific geometries was simulated with CFD and the velocities obtained from the Navier-Stokes solution were used to model the transport of a virtual contrast. RESULTS: Contrast filling and washout patterns obtained in simulations based on MRI-measured velocities were in agreement with those obtained using the Navier-Stokes solution. Some discrepancies were observed in comparison to the X-ray angiography data, as numerical modeling of the contrast transport is based on the native blood flow unaffected by the contrast injection. NIH HL115267.
Planning-free cerebral blood flow territory mapping in patients with intracranial arterial stenosis
Arteaga, Daniel F; Strother, Megan K; Davis, L Taylor; Fusco, Matthew R; Faraco, Carlos C; Roach, Brent A; Scott, Allison O
2016-01-01
A noninvasive method for quantifying cerebral blood flow and simultaneously visualizing cerebral blood flow territories is vessel-encoded pseudocontinuous arterial spin labeling MRI. However, obstacles to acquiring such information include limited access to the methodology in clinical centers and limited work on how clinically acquired vessel-encoded pseudocontinuous arterial spin labeling data correlate with gold-standard methods. The purpose of this work is to develop and validate a semiautomated pipeline for the online quantification of cerebral blood flow maps and cerebral blood flow territories from planning-free vessel-encoded pseudocontinuous arterial spin labeling MRI with gold-standard digital subtraction angiography. Healthy controls (n = 10) and intracranial atherosclerotic disease patients (n = 34) underwent 3.0 T MRI imaging including vascular (MR angiography) and hemodynamic (cerebral blood flow-weighted arterial spin labeling) MRI. Patients additionally underwent catheter and/or CT angiography. Variations in cross-territorial filling were grouped according to diameters of circle of Willis vessels in controls. In patients, Cohen’s k-statistics were computed to quantify agreement in perfusion patterns between vessel-encoded pseudocontinuous arterial spin labeling and angiography. Cross-territorial filling patterns were consistent with circle of Willis anatomy. The intraobserver Cohen's k-statistics for cerebral blood flow territory and digital subtraction angiography perfusion agreement were 0.730 (95% CI = 0.593–0.867; reader one) and 0.708 (95% CI = 0.561–0.855; reader two). These results support the feasibility of a semiautomated pipeline for evaluating major neurovascular cerebral blood flow territories in patients with intracranial atherosclerotic disease. PMID:27389177
fMRI and EEG responses to periodic visual stimulation.
Guy, C N; ffytche, D H; Brovelli, A; Chumillas, J
1999-08-01
EEG/VEP and fMRI responses to periodic visual stimulation are reported. The purpose of these experiments was to look for similar patterns in the time series produced by each method to help understand the relationship between the two. The stimulation protocol was the same for both sets of experiments and consisted of five complete cycles of checkerboard pattern reversal at 1.87 Hz for 30 s followed by 30 s of a stationary checkerboard. The fMRI data was analyzed using standard methods, while the EEG was analyzed with a new measurement of activation-the VEPEG. Both VEPEG and fMRI time series contain the fundamental frequency of the stimulus and quasi harmonic components-an unexplained double frequency commonly found in fMRI data. These results have prompted a reappraisal of the methods for analyzing fMRI data and have suggested a connection between our findings and much older published invasive electrophysiological measurements of blood flow and the partial pressures of oxygen and carbon dioxide. Overall our new analysis suggests that fMRI signals are strongly dependant on hydraulic blood flow effects. We distinguish three categories of fMRI signal corresponding to: focal activated regions of brain tissue; diffuse nonspecific regions of steal; and major cerebral vessels of arterial supply or venous drainage. Each category of signal has its own finger print in frequency, amplitude, and phase. Finally, we put forward the hypothesis that modulations in blood flow are not only the consequence but are also the cause of modulations in functional activity. Copyright 1999 Academic Press.
Osuga, T; Obata, T; Ikehira, H
2004-04-01
A small degree of nonuniformity in dialysate flow in a hollow-fiber dialyzer was detected using proton magnetic resonance imaging (MRI). Since paramagnetic ions reduce the spin-lattice relaxation time of protons around them, MRI can detect Gd in water. An aqueous solution of a chelate compound of Gd was impulsively injected into the dialysate flow path at a flow rate of 500 cm(3) /m, which is that utilized in actual dialysis. Despite the apparent elimination of Gd from the dialysate flow path by the newly injected dialysate fluid after the injection of Gd was terminated, MRI revealed that Gd remained in the interior of the hollow fiber. The observed structure pattern of the Gd concentration profile revealed that the dialysate flow had a small degree of nonuniformity despite the currently established design to restrict channeling in dialysate flow. Local nonuniformity of the hollow-fiber density and vortex generation in the dialysate flow were considered to cause the nonuniformity in the dialysate flow.
Segers, Patrick; Pineda, Victor; Cuellar, Hug; García-Dorado, David; Evangelista, Arturo
2017-01-01
Aortic wall stiffness, tear size and location and the presence of abdominal side branches arising from the false lumen (FL) are key properties potentially involved in FL enlargement in chronic aortic dissections (ADs). We hypothesize that temporal variations on FL flow patterns, as measured in a cross-section by phase-contrast magnetic resonance imaging (PC-MRI), could be used to infer integrated information on these features. In 33 patients with chronic descending AD, instantaneous flow profiles were quantified in the FL at diaphragm level by PC-MRI. We used a lumped-parameter model to assess the changes in flow profiles induced by wall stiffness, tear size/location, and the presence of abdominal side branches arising from the FL. Four characteristic FL flow patterns were identified in 31/33 patients (94%) based on the direction of flow in systole and diastole: BA = systolic biphasic flow and primarily diastolic antegrade flow (n = 6); BR = systolic biphasic flow and primarily diastolic retrograde flow (n = 14); MA = systolic monophasic flow and primarily diastolic antegrade flow (n = 9); MR = systolic monophasic flow and primarily diastolic retrograde flow (n = 2). In the computational model, the temporal variation of flow directions within the FL was highly dependent on the position of assessment along the aorta. FL flow patterns (especially at the level of the diaphragm) showed their characteristic patterns due to variations in the cumulative size and the spatial distribution of the communicating tears, and the incidence of visceral side branches originating from the FL. Changes in wall stiffness did not change the temporal variation of the flows whereas it importantly determined intraluminal pressures. FL flow patterns implicitly codify morphological information on key determinants of aortic expansion in ADs. This data might be taken into consideration in the imaging protocol to define the predictive value of FL flows. PMID:28125720
Kefayati, Sarah; Amans, Matthew; Faraji, Farshid; Ballweber, Megan; Kao, Evan; Ahn, Sinyeob; Meisel, Karl; Halbach, Van; Saloner, David
2016-01-01
Aberrations in flow in the cerebral venous outflow tract (CVOT) have been implicated as the cause of several pathologic conditions including idiopathic intracranial hypertension (IIH), multiple sclerosis (MS), and pulsatile tinnitus (PT). The advent of 4D Flow magnetic resonance imaging (4D-Flow MRI) has recently allowed researchers to evaluate blood flow patterns in the arterial structures with great success. We utilized similar imaging techniques and found several distinct flow characteristics in the CVOT of subjects with and without lumenal irregularities. We present the flow patterns of 8 out of 38 subjects who have varying heights of the internal jugular bulb and varying lumenal irregularities including stenosis and diverticulum. In the internal jugular vein (IJV) with an elevated jugular bulb (JB), 4DFlow MRI revealed a characteristic spiral flow that was dependent on the level of JB elevation. Vortical flow was also observed in the diverticula of the venous sinuses and IJV. The diversity of flow complexity in the CVOT illustrates the potential importance of hemodynamic investigations in elucidating venous pathologies. PMID:27894675
NASA Astrophysics Data System (ADS)
Negahdar, MJ; Shakeri, M.; McDowell, E.; Wells, J.; Vitaz, T.; Harkema, S.; Amini, A.
2011-03-01
MRI velocimetry (also known as phase-contrast MRI) is a powerful tool for quantification of cerebrospinal fluid (CSF) flow in various regions of the brain and craniospinal junction and has been accepted as a diagnostic tool to assist with the diagnosis of certain conditions such as hydrocephalus and chiari malformations. Cerebrospinal fluid is continually produced in the ventricles of the brain, flows through the ventricular system and then out and around the brain and spinal cord and is reabsorbed over the convexity of the brain. Any disease process which either impedes the normal pattern of flow or restricts the area where flow occurs can change the pattern of these waveforms with the direction and velocity of flow being determined by the pressure transmitted from the pulsation of the heart and circulation of blood within the central nervous system. Therefore, we hypothesized that phase-contrast MRI could eventually be used as a diagnostic aid in determining the degree of spinal cord compression following injury to the cervical or thoracic spine. In this study, we examined CSF flow in 3 normal subjects and 2 subjects with non-acute injuries in the cervical spine using Cine phasecontrast MRI. CSF flow analysis was performed using an in-house developed software. The flow waveform was calculated in both normal subjects (n=3) as well as subjects with spinal cord injury in the cervical spine (n=2). The bulk flow at C2 was measured to be 0.30 +/- 0.05 cc, at 5 cm distal to C2, it was 0.19+/- 0.07 cc, and at 10 cm distal to C2, it was 0.17+/- 0.05 cc. These results were in good agreement with previously published results. In patients with spinal cord injury, at the site of injury in the cervical spine, bulk flow was found to be 0.08 +/- 0.12 cc, at 5 cm proximal to the site of injury it was found to be 0.18 +/- 0.07 cc, and at 5 cm distal to the site of injury, it was found to be 0.12 +/- 0.01 cc.
Gas-liquid Phase Distribution and Void Fraction Measurements Using the MRI
NASA Technical Reports Server (NTRS)
Daidzic, N. E.; Schmidt, E.; Hasan, M. M.; Altobelli, S.
2004-01-01
We used a permanent-magnet MRI system to estimate the integral and spatially- and/or temporally-resolved void-fraction distributions and flow patterns in gas-liquid two-phase flows. Air was introduced at the bottom of the stagnant liquid column using an accurate and programmable syringe pump. Air flow rates were varied between 1 and 200 ml/min. The cylindrical non-conducting test tube in which two-phase flow was measured was placed in a 2.67 kGauss MRI with MRT spectrometer/imager. Roughly linear relationship has been obtained for the integral void-fraction, obtained by volume-averaging of the spatially-resolved signals, and the air flow rate in upward direction. The time-averaged spatially-resolved void fraction has also been obtained for the quasi-steady flow of air in a stagnant liquid column. No great accuracy is claimed as this was an exploratory proof-of-concept type of experiment. Preliminary results show that MRI a non-invasive and non-intrusive experimental technique can indeed provide a wealth of different qualitative and quantitative data and is especially well suited for averaged transport processes in adiabatic and diabatic multi-phase and/or multi-component flows.
Optimal-mass-transfer-based estimation of glymphatic transport in living brain.
Ratner, Vadim; Zhu, Liangjia; Kolesov, Ivan; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen
2015-02-21
It was recently shown that the brain-wide cerebrospinal fluid (CSF) and interstitial fluid exchange system designated the 'glymphatic pathway' plays a key role in removing waste products from the brain, similarly to the lymphatic system in other body organs 1,2 . It is therefore important to study the flow patterns of glymphatic transport through the live brain in order to better understand its functionality in normal and pathological states. Unlike blood, the CSF does not flow rapidly through a network of dedicated vessels, but rather through para-vascular channels and brain parenchyma in a slower time-domain, and thus conventional fMRI or other blood-flow sensitive MRI sequences do not provide much useful information about the desired flow patterns. We have accordingly analyzed a series of MRI images, taken at different times, of the brain of a live rat, which was injected with a paramagnetic tracer into the CSF via the lumbar intrathecal space of the spine. Our goal is twofold: (a) find glymphatic (tracer) flow directions in the live rodent brain; and (b) provide a model of a (healthy) brain that will allow the prediction of tracer concentrations given initial conditions. We model the liquid flow through the brain by the diffusion equation. We then use the Optimal Mass Transfer (OMT) approach 3 to derive the glymphatic flow vector field, and estimate the diffusion tensors by analyzing the (changes in the) flow. Simulations show that the resulting model successfully reproduces the dominant features of the experimental data.
Optimal-mass-transfer-based estimation of glymphatic transport in living brain
NASA Astrophysics Data System (ADS)
Ratner, Vadim; Zhu, Liangjia; Kolesov, Ivan; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen
2015-03-01
It was recently shown that the brain-wide cerebrospinal fluid (CSF) and interstitial fluid exchange system designated the `glymphatic pathway' plays a key role in removing waste products from the brain, similarly to the lymphatic system in other body organs . It is therefore important to study the flow patterns of glymphatic transport through the live brain in order to better understand its functionality in normal and pathological states. Unlike blood, the CSF does not flow rapidly through a network of dedicated vessels, but rather through para-vascular channels and brain parenchyma in a slower time-domain, and thus conventional fMRI or other blood-flow sensitive MRI sequences do not provide much useful information about the desired flow patterns. We have accordingly analyzed a series of MRI images, taken at different times, of the brain of a live rat, which was injected with a paramagnetic tracer into the CSF via the lumbar intrathecal space of the spine. Our goal is twofold: (a) find glymphatic (tracer) flow directions in the live rodent brain; and (b) provide a model of a (healthy) brain that will allow the prediction of tracer concentrations given initial conditions. We model the liquid flow through the brain by the diffusion equation. We then use the Optimal Mass Transfer (OMT) approach to derive the glymphatic flow vector field, and estimate the diffusion tensors by analyzing the (changes in the) flow. Simulations show that the resulting model successfully reproduces the dominant features of the experimental data. Keywords: inverse problem, optimal mass transport, diffusion equation, cerebrospinal fluid flow in brain, optical flow, liquid flow modeling, Monge Kantorovich problem, diffusion tensor estimation
Optimal-mass-transfer-based estimation of glymphatic transport in living brain
Zhu, Liangjia; Kolesov, Ivan; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen
2016-01-01
It was recently shown that the brain-wide cerebrospinal fluid (CSF) and interstitial fluid exchange system designated the ‘glymphatic pathway’ plays a key role in removing waste products from the brain, similarly to the lymphatic system in other body organs1,2. It is therefore important to study the flow patterns of glymphatic transport through the live brain in order to better understand its functionality in normal and pathological states. Unlike blood, the CSF does not flow rapidly through a network of dedicated vessels, but rather through para-vascular channels and brain parenchyma in a slower time-domain, and thus conventional fMRI or other blood-flow sensitive MRI sequences do not provide much useful information about the desired flow patterns. We have accordingly analyzed a series of MRI images, taken at different times, of the brain of a live rat, which was injected with a paramagnetic tracer into the CSF via the lumbar intrathecal space of the spine. Our goal is twofold: (a) find glymphatic (tracer) flow directions in the live rodent brain; and (b) provide a model of a (healthy) brain that will allow the prediction of tracer concentrations given initial conditions. We model the liquid flow through the brain by the diffusion equation. We then use the Optimal Mass Transfer (OMT) approach3 to derive the glymphatic flow vector field, and estimate the diffusion tensors by analyzing the (changes in the) flow. Simulations show that the resulting model successfully reproduces the dominant features of the experimental data. PMID:26877579
The physics of functional magnetic resonance imaging (fMRI)
NASA Astrophysics Data System (ADS)
Buxton, Richard B.
2013-09-01
Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm3 spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology.
The physics of functional magnetic resonance imaging (fMRI)
Buxton, Richard B
2015-01-01
Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm3 spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology. PMID:24006360
The physics of functional magnetic resonance imaging (fMRI).
Buxton, Richard B
2013-09-01
Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm(3) spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology.
She, Hoi Lam; Roest, Arno A W; Calkoen, Emmeline E; van den Boogaard, Pieter J; van der Geest, Rob J; Hazekamp, Mark G; de Roos, Albert; Westenberg, Jos J M
2017-01-01
To evaluate the inflow pattern and flow quantification in patients with functional univentricular heart after Fontan's operation using 4D flow magnetic resonance imaging (MRI) with streamline visualization when compared with the conventional 2D flow approach. Seven patients with functional univentricular heart after Fontan's operation and twenty-three healthy controls underwent 4D flow MRI. In two orthogonal two-chamber planes, streamline visualization was applied, and inflow angles with peak inflow velocity (PIV) were measured. Transatrioventricular flow quantification was assessed using conventional 2D multiplanar reformation (MPR) and 4D MPR tracking the annulus and perpendicular to the streamline inflow at PIV, and they were validated with net forward aortic flow. Inflow angles at PIV in the patient group demonstrated wide variation of angles and directions when compared with the control group (P < .01). The use of 4D flow MRI with streamlines visualization in quantification of the transatrioventricular flow had smaller limits of agreement (2.2 ± 4.1 mL; 95% limit of agreement -5.9-10.3 mL) when compared with the static plane assessment from 2DFlow MRI (-2.2 ± 18.5 mL; 95% limit of agreement agreement -38.5-34.1 mL). Stronger correlation was present in the 4D flow between the aortic and trans-atrioventricular flow (R 2 correlation in 4D flow: 0.893; in 2D flow: 0.786). Streamline visualization in 4D flow MRI confirmed variable atrioventricular inflow directions in patients with functional univentricular heart with previous Fontan's procedure. 4D flow aided generation of measurement planes according to the blood flood dynamics and has proven to be more accurate than the fixed plane 2D flow measurements when calculating flow quantifications. © 2016 Wiley Periodicals, Inc.
Nuclear Magnetic Resonance Relaxation and Imaging Studies on Water Flow in Soil Cores
NASA Astrophysics Data System (ADS)
Pohlmeier, Andreas; Haber-Pohlmeier, Sabina; Stapf, Siegfried
2010-05-01
Magnetic resonance imaging (MRI) is applied to the study of flow processes in a model and a natural soils core. Since flow velocities in soils are mostly too slow to be monitored directly by MRI flow velocity imaging, Gd-DTPA was used as contrast agent for the first time for flow processes in soils. Apart from its chemical stability the main advantage is the anionic net charge in neutral aqueous solution. Here we can show that this property hinders the adsorption at soil mineral surfaces and therefore retardation. Gd-DTPA turns out to be a very convenient conservative tracer for the investigation of flow processes in model and natural soil cores. With respect to the flow processes in the coaxial model soil column and the natural soil column we found total different flow patterns: In the first case tracer plume moves quite homogeneously only in the inner highly conductive core. No penetration into the outer fine material takes place. In contrast, the natural soil core shows a flow pattern which is characterized by preferential paths avoiding dense regions and preferring loose structures. In the case of the simpler model column also the local flow velocities are calculated by the application of a peak tracking algorithm.
Giese, Daniel; Weiss, Kilian; Baeßler, Bettina; Madershahian, Navid; Choi, Yeong-Hoon; Maintz, David; Bunck, Alexander C
2018-02-01
The objective of the current work was to evaluate flow and turbulent kinetic energy in different transcatheter aortic valve implants using highly undersampled time-resolved multi-point 3-directional phase-contrast measurements (4D Flow MRI) in an in vitro setup. A pulsatile flow setup was used with a compliant tubing mimicking a stiff left ventricular outflow tract and ascending aorta. Five different implants were measured using a highly undersampled multi-point 4D Flow MRI sequence. Velocities and turbulent kinetic energy values were analysed and compared. Strong variations of turbulent kinetic energy distributions between the valves were observed. Maximum turbulent kinetic energy values ranged from 100 to over 500 J/m 3 while through-plane velocities were similar between all valves. Highly accelerated 4D Flow MRI for the measurement of velocities and turbulent kinetic energy values allowed for the assessment of hemodynamic parameters in five different implant models. The presented setup, measurement protocol and analysis methods provides an efficient approach to compare different valve implants and could aid future novel valve designs.
Le Heron, Campbell J; Wright, Sarah L; Melzer, Tracy R; Myall, Daniel J; MacAskill, Michael R; Livingston, Leslie; Keenan, Ross J; Watts, Richard; Dalrymple-Alford, John C; Anderson, Tim J
2014-06-01
Emerging evidence suggests that Alzheimer's disease (AD) and Parkinson's disease dementia (PDD) share neurodegenerative mechanisms. We sought to directly compare cerebral perfusion in these two conditions using arterial spin labeling magnetic resonance imaging (ASL-MRI). In total, 17 AD, 20 PDD, and 37 matched healthy controls completed ASL and structural MRI, and comprehensive neuropsychological testing. Alzheimer's disease and PDD perfusion was analyzed by whole-brain voxel-based analysis (to assess absolute blood flow), a priori specified region of interest analysis, and principal component analysis (to generate a network differentiating the two groups). Corrections were made for cerebral atrophy, age, sex, education, and MRI scanner software version. Analysis of absolute blood flow showed no significant differences between AD and PDD. Comparing each group with controls revealed an overlapping, posterior pattern of hypoperfusion, including posterior cingulate gyrus, precuneus, and occipital regions. The perfusion network that differentiated AD and PDD groups identified relative differences in medial temporal lobes (AD
Sarrami-Foroushani, Ali; Nasr Esfahany, Mohsen; Nasiraei Moghaddam, Abbas; Saligheh Rad, Hamidreza; Firouznia, Kavous; Shakiba, Madjid; Ghanaati, Hossein; Wilkinson, Iain David; Frangi, Alejandro Federico
2015-01-01
Background: Understanding hemodynamic environment in vessels is important for realizing the mechanisms leading to vascular pathologies. Objectives: Three-dimensional velocity vector field in carotid bifurcation is visualized using TR 3D phase-contrast magnetic resonance imaging (TR 3D PC MRI) and computational fluid dynamics (CFD). This study aimed to present a qualitative and quantitative comparison of the velocity vector field obtained by each technique. Subjects and Methods: MR imaging was performed on a 30-year old male normal subject. TR 3D PC MRI was performed on a 3 T scanner to measure velocity in carotid bifurcation. 3D anatomical model for CFD was created using images obtained from time-of-flight MR angiography. Velocity vector field in carotid bifurcation was predicted using CFD and PC MRI techniques. A statistical analysis was performed to assess the agreement between the two methods. Results: Although the main flow patterns were the same for the both techniques, CFD showed a greater resolution in mapping the secondary and circulating flows. Overall root mean square (RMS) errors for all the corresponding data points in PC MRI and CFD were 14.27% in peak systole and 12.91% in end diastole relative to maximum velocity measured at each cardiac phase. Bland-Altman plots showed a very good agreement between the two techniques. However, this study was not aimed to validate any of methods, instead, the consistency was assessed to accentuate the similarities and differences between Time-resolved PC MRI and CFD. Conclusion: Both techniques provided quantitatively consistent results of in vivo velocity vector fields in right internal carotid artery (RCA). PC MRI represented a good estimation of main flow patterns inside the vasculature, which seems to be acceptable for clinical use. However, limitations of each technique should be considered while interpreting results. PMID:26793288
Fast interactive exploration of 4D MRI flow data
NASA Astrophysics Data System (ADS)
Hennemuth, A.; Friman, O.; Schumann, C.; Bock, J.; Drexl, J.; Huellebrand, M.; Markl, M.; Peitgen, H.-O.
2011-03-01
1- or 2-directional MRI blood flow mapping sequences are an integral part of standard MR protocols for diagnosis and therapy control in heart diseases. Recent progress in rapid MRI has made it possible to acquire volumetric, 3-directional cine images in reasonable scan time. In addition to flow and velocity measurements relative to arbitrarily oriented image planes, the analysis of 3-dimensional trajectories enables the visualization of flow patterns, local features of flow trajectories or possible paths into specific regions. The anatomical and functional information allows for advanced hemodynamic analysis in different application areas like stroke risk assessment, congenital and acquired heart disease, aneurysms or abdominal collaterals and cranial blood flow. The complexity of the 4D MRI flow datasets and the flow related image analysis tasks makes the development of fast comprehensive data exploration software for advanced flow analysis a challenging task. Most existing tools address only individual aspects of the analysis pipeline such as pre-processing, quantification or visualization, or are difficult to use for clinicians. The goal of the presented work is to provide a software solution that supports the whole image analysis pipeline and enables data exploration with fast intuitive interaction and visualization methods. The implemented methods facilitate the segmentation and inspection of different vascular systems. Arbitrary 2- or 3-dimensional regions for quantitative analysis and particle tracing can be defined interactively. Synchronized views of animated 3D path lines, 2D velocity or flow overlays and flow curves offer a detailed insight into local hemodynamics. The application of the analysis pipeline is shown for 6 cases from clinical practice, illustrating the usefulness for different clinical questions. Initial user tests show that the software is intuitive to learn and even inexperienced users achieve good results within reasonable processing times.
NASA Astrophysics Data System (ADS)
Rassi, Erik M.; Codd, Sarah L.; Seymour, Joseph D.
2011-01-01
Flow in porous media and the resultant hydrodynamics are important in fields including but not limited to the hydrology, chemical, medical and petroleum industries. The observation and understanding of the hydrodynamics in porous media are critical to the design and optimal utilization of porous media, such as those seen in trickle-bed reactors, medical filters, subsurface flows and carbon sequestration. Magnetic resonance (MR) provides for a non-invasive technique that can probe the hydrodynamics on pore and bulk scale lengths; many previous works have characterized fully saturated porous media, while rapid MR imaging (MRI) methods in particular have previously been applied to partially saturated flows. We present time- and ensemble-averaged MR measurements to observe the effects on a bead pack partially saturated with air under flowing water conditions. The 10 mm internal diameter bead pack was filled with 100 μm borosilicate glass beads. Air was injected into the bead pack as water flowed simultaneously through the sample at 25 ml h-1. The initial partially saturated state was characterized with MRI density maps, free induction decay (FID) experiments, propagators and velocity maps before the water flow rate was increased incrementally from 25 to 500 ml h-1. After the maximum flow rate of 500 ml h-1, the MRI density maps, FID experiments, propagators and velocity maps were repeated and compared to the data taken before the maximum flow rate. This work shows that a partially saturated single-phase flow has global flow dynamics that return to characteristic flow statistics once a steady-state high flow rate has been reached. This high flow rate pushed out a significant amount of the air in the bead pack and caused the return of a preferential flow pattern. Velocity maps indicated that local flow statistics were not the same for the before and after blow out conditions. It has been suggested and shown previously that a flow pattern can return to similar statistics if the preceding flow history is similar.
Trauzeddel, Ralf Felix; Löbe, Ulrike; Barker, Alex J; Gelsinger, Carmen; Butter, Christian; Markl, Michael; Schulz-Menger, Jeanette; von Knobelsdorff-Brenkenhoff, Florian
2016-03-01
Ascending aortic blood flow characteristics are altered after aortic valve surgery, but the effect of transcatheter aortic valve implantation (TAVI) is unknown. Abnormal flow may be associated with aortic and cardiac remodeling. We analyzed blood flow characteristics in the ascending aorta after TAVI in comparison to conventional stented aortic bioprostheses (AVR) and healthy subjects using time-resolved three-dimensional flow-sensitive cardiovascular magnetic resonance imaging (4D-flow MRI). Seventeen patients with TAVI (Edwards Sapien XT), 12 with AVR and 9 healthy controls underwent 4D-flow MRI of the ascending aorta. Target parameters were: severity of vortical and helical flow pattern (semiquantitative grading from 0 = none to 3 = severe) and the local distribution of systolic wall shear stress (WSSsystole). AVR revealed significantly more extensive vortical and helical flow pattern than TAVI (p = 0.042 and p = 0.002) and controls (p < 0.001 and p = 0.001). TAVI showed significantly more extensive vortical flow than controls (p < 0.001). Both TAVI and AVR revealed marked blood flow eccentricity (64.7 and 66.7%, respectively), whereas controls showed central blood flow (88.9%). TAVI and AVR exhibited an asymmetric distribution of WSSsystole in the mid-ascending aorta with local maxima at the right anterior aortic wall and local minima at the left posterior wall. In contrast, controls showed a symmetric distribution of WSSsystole along the aortic circumference. Blood flow was significantly altered in the ascending aorta after TAVI and AVR. Changes were similar regarding WSSsystole distribution, while TAVI resulted in less helical and vortical blood flow.
Late post-AVR progression of bicuspid aortopathy: link to hemodynamics.
Naito, Shiho; Gross, Tatiana; Disha, Kushtrim; von Kodolitsch, Yskert; Reichenspurner, Hermann; Girdauskas, Evaldas
2017-05-01
The ascending aortic dilatation may progress after aortic valve replacement (AVR) in bicuspid aortic valve (BAV) patients. Our aim was to evaluate rheological flow patterns and histological characteristics of the aneurysmal aorta in BAV patients at the time of reoperative aortic surgery. 13 patients (mean age: 42 ± 9 years, 10 (77%) male) with significant progression of proximal aortopathy after isolated AVR surgery for BAV disease (i.e., 16.7 ± 8.1 years post-AVR) were identified by cardiac phase-contrast cine magnetic resonance imaging (MRI) in our hospital. A total of nine patients (69%) underwent redo aortic surgery. Based on the MRI data, the aortic area of the maximal flow-induced stress (jet sample) and the opposite site (control sample) were identified and corresponding samples were collected intraoperatively. Histological sum-score values [i.e. aortic wall changes were graded based on a summation of seven histological criteria (each scored from 0 to 3)] were compared between these samples. Mean proximal aortic diameter at MRI follow-up was 55 ± 6 mm (range 47-66mm). Preoperative cardiac MRI demonstrated eccentric systolic flow pattern directed towards right-lateral/right posterior wall of the proximal aorta in 9/13 (69%) patients. Histological sum-score values were significantly higher in the jet sample vs control sample (i.e., 8.3 ± 3.8 vs 5.6 ± 2.4, respectively, p = 0.04). Hemodynamic factors may still be involved in the late progression of bicuspid aortopathy even after isolated AVR surgery for BAV disease.
Liu, Jing; Koskas, Louise; Faraji, Farshid; Kao, Evan; Wang, Yan; Haraldsson, Henrik; Kefayati, Sarah; Zhu, Chengcheng; Ahn, Sinyeob; Laub, Gerhard; Saloner, David
2018-04-01
To evaluate an accelerated 4D flow MRI method that provides high temporal resolution in a clinically feasible acquisition time for intracranial velocity imaging. Accelerated 4D flow MRI was developed by using a pseudo-random variable-density Cartesian undersampling strategy (CIRCUS) with the combination of k-t, parallel imaging and compressed sensing image reconstruction techniques (k-t SPARSE-SENSE). Four-dimensional flow data were acquired on five healthy volunteers and eight patients with intracranial aneurysms using CIRCUS (acceleration factor of R = 4, termed CIRCUS4) and GRAPPA (R = 2, termed GRAPPA2) as the reference method. Images with three times higher temporal resolution (R = 12, CIRCUS12) were also reconstructed from the same acquisition as CIRCUS4. Qualitative and quantitative image assessment was performed on the images acquired with different methods, and complex flow patterns in the aneurysms were identified and compared. Four-dimensional flow MRI with CIRCUS was achieved in 5 min and allowed further improved temporal resolution of <30 ms. Volunteer studies showed similar qualitative and quantitative evaluation obtained with the proposed approach compared to the reference (overall image scores: GRAPPA2 3.2 ± 0.6; CIRCUS4 3.1 ± 0.7; CIRCUS12 3.3 ± 0.4; difference of the peak velocities: -3.83 ± 7.72 cm/s between CIRCUS4 and GRAPPA2, -1.72 ± 8.41 cm/s between CIRCUS12 and GRAPPA2). In patients with intracranial aneurysms, the higher temporal resolution improved capturing of the flow features in intracranial aneurysms (pathline visualization scores: GRAPPA2 2.2 ± 0.2; CIRCUS4 2.5 ± 0.5; CIRCUS12 2.7 ± 0.6). The proposed rapid 4D flow MRI with a high temporal resolution is a promising tool for evaluating intracranial aneurysms in a clinically feasible acquisition time.
Sherrah, Andrew G.; Callaghan, Fraser M.; Puranik, Rajesh; Jeremy, Richmond W.; Bannon, Paul G.; Vallely, Michael P.; Grieve, Stuart M.
2017-01-01
Background Chronic descending thoracic aortic dissection (CDTAD) following surgical repair of ascending aortic dissection requires long-term imaging surveillance. We investigated four-dimensional (4D)-flow magnetic resonance imaging (MRI) with a novel multi-velocity encoding (multi-VENC) technique as an emerging clinical method enabling the dynamic quantification of blood volume and velocity throughout the cardiac cycle. Methods Patients with CDTAD (n = 10; mean age, 55.1 years; standard deviation (SD) 10.8) and healthy volunteers (n = 9; mean age, 37.1 years; SD 11.4; p < 0.01) underwent 3T MRI, and standard views and 4D-flow data were obtained. Flow measurements were made in selected regions of interest within the ascending and descending thoracic aorta. Results The overall flow profile at peak systole was reduced in the false lumen (FL) compared with the true lumen (TL) and normal aortas (p < 0.05 for velocity < 0.4 m/s). Peak systolic flow rate per aortic lumen area (mL/s/cm2) was lower in the FL than in the TL (p < 0.05), and both rates were lower than that of control aortas (p < 0.05). Blood flow reversal was higher in the FL than in the TL throughout the descending aorta in CDTAD patients (p < 0.05). A derived pulsatility index was elevated in the TL compared with that in the FL in CDTAD patients. Generated pathline images demonstrated flow patterns in detail, including sites of communication between the true and FL. Conclusions 4D-flow MRI revealed FL blood flow and reduced blood flow velocity and flow rate in the TL of CDTAD patients compared with normal aortas of healthy participants. Thus, multi-VENC 4D-flow MRI could serve as an adjunct in the long-term assessment of CDTAD following surgical repair of ascending aortic dissection. PMID:29675440
New method for predicting estrogen receptor status utilizing breast MRI texture kinetic analysis
NASA Astrophysics Data System (ADS)
Chaudhury, Baishali; Hall, Lawrence O.; Goldgof, Dmitry B.; Gatenby, Robert A.; Gillies, Robert; Drukteinis, Jennifer S.
2014-03-01
Magnetic Resonance Imaging (MRI) of breast cancer typically shows that tumors are heterogeneous with spatial variations in blood flow and cell density. Here, we examine the potential link between clinical tumor imaging and the underlying evolutionary dynamics behind heterogeneity in the cellular expression of estrogen receptors (ER) in breast cancer. We assume, in an evolutionary environment, that ER expression will only occur in the presence of significant concentrations of estrogen, which is delivered via the blood stream. Thus, we hypothesize, the expression of ER in breast cancer cells will correlate with blood flow on gadolinium enhanced breast MRI. To test this hypothesis, we performed quantitative analysis of blood flow on dynamic contrast enhanced MRI (DCE-MRI) and correlated it with the ER status of the tumor. Here we present our analytic methods, which utilize a novel algorithm to analyze 20 volumetric DCE-MRI breast cancer tumors. The algorithm generates post initial enhancement (PIE) maps from DCE-MRI and then performs texture features extraction from the PIE map, feature selection, and finally classification of tumors into ER positive and ER negative status. The combined gray level co-occurrence matrices, gray level run length matrices and local binary pattern histogram features allow quantification of breast tumor heterogeneity. The algorithm predicted ER expression with an accuracy of 85% using a Naive Bayes classifier in leave-one-out cross-validation. Hence, we conclude that our data supports the hypothesis that imaging characteristics can, through application of evolutionary principles, provide insights into the cellular and molecular properties of cancer cells.
Flow Patterns in the Jugular Veins of Pulsatile Tinnitus Patients
Kao, Evan; Kefayati, Sarah; Amans, Matthew R.; Faraji, Farshid; Ballweber, Megan; Halbach, Van; Saloner, David
2017-01-01
Pulsatile Tinnitus (PT) is a pulse-synchronous sound heard in the absence of an external source. PT is often related to abnormal flow in vascular structures near the cochlea. One vascular territory implicated in PT is the internal jugular vein (IJV). Using computational fluid dynamics (CFD) based on patient-specific Magnetic Resonance Imaging (MRI), we investigated the flow within the IJV of seven subjects, four symptomatic and three asymptomatic of PT. We found that there were two extreme anatomic types classified by the shape and position of the jugular bulbs: elevated and rounded. PT patients had elevated jugular bulbs that led to a distinctive helical flow pattern within the proximal internal jugular vein. Asymptomatic subjects generally had rounded jugular bulbs that neatly redirected flow from the sigmoid sinus directly into the jugular vein. These two flow patterns were quantified by calculating the length-averaged streamline curvature of the flow within the proximal jugular vein: 130.3 ± 8.1 m-1 for geometries with rounded bulbs, 260.7 ± 29.4 m-1 for those with elevated bulbs (P < 0.005). Our results suggest that variations in the jugular bulb geometry lead to distinct flow patterns that are linked to PT, but further investigation is needed to determine if the vortex pattern is causal to sound generation. PMID:28057349
Ratner, Vadim; Gao, Yi; Lee, Hedok; Elkin, Rena; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen
2017-01-01
The glymphatic pathway is a system which facilitates continuous cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange and plays a key role in removing waste products from the rodent brain. Dysfunction of the glymphatic pathway may be implicated in the pathophysiology of Alzheimer's disease. Intriguingly, the glymphatic system is most active during deep wave sleep general anesthesia. By using paramagnetic tracers administered into CSF of rodents, we previously showed the utility of MRI in characterizing a macroscopic whole brain view of glymphatic transport but we have yet to define and visualize the specific flow patterns. Here we have applied an alternative mathematical analysis approach to a dynamic time series of MRI images acquired every 4 min over ∼3 hrs in anesthetized rats, following administration of a small molecular weight paramagnetic tracer into the CSF reservoir of the cisterna magna. We use Optimal Mass Transport (OMT) to model the glymphatic flow vector field, and then analyze the flow to find the network of CSF-ISF flow channels. We use 3D visualization computational tools to visualize the OMT defined network of CSF-ISF flow channels in relation to anatomical and vascular key landmarks from the live rodent brain. The resulting OMT model of the glymphatic transport network agrees largely with the current understanding of the glymphatic transport patterns defined by dynamic contrast-enhanced MRI revealing key CSF transport pathways along the ventral surface of the brain with a trajectory towards the pineal gland, cerebellum, hypothalamus and olfactory bulb. In addition, the OMT analysis also revealed some interesting previously unnoticed behaviors regarding CSF transport involving parenchymal streamlines moving from ventral reservoirs towards the surface of the brain, olfactory bulb and large central veins. PMID:28323163
Ratner, Vadim; Gao, Yi; Lee, Hedok; Elkin, Rena; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen
2017-05-15
The glymphatic pathway is a system which facilitates continuous cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange and plays a key role in removing waste products from the rodent brain. Dysfunction of the glymphatic pathway may be implicated in the pathophysiology of Alzheimer's disease. Intriguingly, the glymphatic system is most active during deep wave sleep general anesthesia. By using paramagnetic tracers administered into CSF of rodents, we previously showed the utility of MRI in characterizing a macroscopic whole brain view of glymphatic transport but we have yet to define and visualize the specific flow patterns. Here we have applied an alternative mathematical analysis approach to a dynamic time series of MRI images acquired every 4min over ∼3h in anesthetized rats, following administration of a small molecular weight paramagnetic tracer into the CSF reservoir of the cisterna magna. We use Optimal Mass Transport (OMT) to model the glymphatic flow vector field, and then analyze the flow to find the network of CSF-ISF flow channels. We use 3D visualization computational tools to visualize the OMT defined network of CSF-ISF flow channels in relation to anatomical and vascular key landmarks from the live rodent brain. The resulting OMT model of the glymphatic transport network agrees largely with the current understanding of the glymphatic transport patterns defined by dynamic contrast-enhanced MRI revealing key CSF transport pathways along the ventral surface of the brain with a trajectory towards the pineal gland, cerebellum, hypothalamus and olfactory bulb. In addition, the OMT analysis also revealed some interesting previously unnoticed behaviors regarding CSF transport involving parenchymal streamlines moving from ventral reservoirs towards the surface of the brain, olfactory bulb and large central veins. Copyright © 2017. Published by Elsevier Inc.
NASA Technical Reports Server (NTRS)
Spirka, T. A.; Myers, J. G.; Setser, R. M.; Halliburton, S. S.; White, R. D.; Chatzimavroudis, G. P.
2005-01-01
A priority of NASA is to identify and study possible risks to astronauts health during prolonged space missions [l]. The goal is to develop a procedure for a preflight evaluation of the cardiovascular system of an astronaut and to forecast how it will be affected during the mission. To predict these changes, a computational cardiovascular model must be constructed. Although physiology data can be used to make a general model, a more desirable subject-specific model requires anatomical, functional, and flow data from the specific astronaut. MRI has the unique advantage of providing images with all of the above information, including three-directional velocity data which can be used as boundary conditions in a computational fluid dynamics (CFD) program [2,3]. MRI-based CFD is very promising for reproduction of the flow patterns of a specific subject and prediction of changes in the absence of gravity. The aim of this study was to test the feasibility of this approach by reconstructing the geometry of MRI-scanned arterial models and reproducing the MRI-measured velocities using CFD simulations on these geometries.
Fan, Tao; Zhao, HaiJun; Zhao, XinGang; Liang, Cong; Wang, YinQian; Gai, QiFei
2017-10-01
Chiari I malformation has been shown to present different cerebrospinal fluid (CSF) flow patterns at the cranial-vertebral junction (CVJ). Posterior fossa decompression is the first-line treatment for symptomatic Chiari I malformation. However, there is still controversy on the indication and selection of decompression procedures. This research aims to investigate the clinical indications, outcomes, and complications of the decompression procedures as alternative treatments for Chiari I malformation, based on the different CSF flow patterns at the cranial-vertebral junction. In this study, 126 Chiari I malformation patients treated with the two decompression procedures were analyzed. According to the preoperative findings obtained by using cine phase-contrast MRI (cine PC-MRI), the abnormal CSF flow dynamics at the CVJ in Chiari I malformation was classified into three patterns. After a preoperative evaluation and an intraoperative ultrasound after craniectomy, the two procedures were alternatively selected to treat the Chiari I malformation. The indication and selection of the two surgical procedures, as well as their outcomes and complications, are reported in detail in this work. Forty-eight patients underwent subdural decompression (SDD), and 78 received subarachnoid manipulation (SAM). Ninety patients were diagnosed as having Chiari I malformation with a syrinx. Two weeks after the operation, the modified Japanese Orthopedic Association (mJOA) scores increased from the preoperative value of 10.67 ± 1.61 to 12.74 ± 2.01 (P < 0.01). The mean duration of follow-up was 24.8 months; the mJOA scores increased from the postoperative value of 12.74 ± 2.01 to 12.79 ± 1.91 at the end of follow-up (P = 0.48). More complications occurred in the patients who underwent SAM than in those who received SDD (SAM 11 of 78 (9.5%) vs SDD 2 of 48 (3.5%)). The abnormal CSF flow dynamics at the CVJ in Chiari I malformation can be classified into three patterns. A SAM procedure is more feasible in Chiari I malformation (CM1) patients with pattern III CSF flow dynamics, whereas a SDD procedure is more suitable for CM1 patients with pattern I CSF flow dynamics. In CM1 patients with pattern II CSF flow dynamics, an intraoperative ultrasound after craniectomy could play an important role in the selection of an effective decompression procedure.
Gorges, Martin; Roselli, Francesco; Müller, Hans-Peter; Ludolph, Albert C.; Rasche, Volker; Kassubek, Jan
2017-01-01
“Resting-state” fMRI has substantially contributed to the understanding of human and non-human functional brain organization by the analysis of correlated patterns in spontaneous activity within dedicated brain systems. Spontaneous neural activity is indirectly measured from the blood oxygenation level-dependent signal as acquired by echo planar imaging, when subjects quietly “resting” in the scanner. Animal models including disease or knockout models allow a broad spectrum of experimental manipulations not applicable in humans. The non-invasive fMRI approach provides a promising tool for cross-species comparative investigations. This review focuses on the principles of “resting-state” functional connectivity analysis and its applications to living animals. The translational aspect from in vivo animal models toward clinical applications in humans is emphasized. We introduce the fMRI-based investigation of the non-human brain’s hemodynamics, the methodological issues in the data postprocessing, and the functional data interpretation from different abstraction levels. The longer term goal of integrating fMRI connectivity data with structural connectomes obtained with tracing and optical imaging approaches is presented and will allow the interrogation of fMRI data in terms of directional flow of information and may identify the structural underpinnings of observed functional connectivity patterns. PMID:28539914
Reentrant Information Flow in Electrophysiological Rat Default Mode Network.
Jing, Wei; Guo, Daqing; Zhang, Yunxiang; Guo, Fengru; Valdés-Sosa, Pedro A; Xia, Yang; Yao, Dezhong
2017-01-01
Functional MRI (fMRI) studies have demonstrated that the rodent brain shows a default mode network (DMN) activity similar to that in humans, offering a potential preclinical model both for physiological and pathophysiological studies. However, the neuronal mechanism underlying rodent DMN remains poorly understood. Here, we used electrophysiological data to analyze the power spectrum and estimate the directed phase transfer entropy (dPTE) within rat DMN across three vigilance states: wakeful rest (WR), slow-wave sleep (SWS), and rapid-eye-movement sleep (REMS). We observed decreased gamma powers during SWS compared with WR in most of the DMN regions. Increased gamma powers were found in prelimbic cortex, cingulate cortex, and hippocampus during REMS compared with WR, whereas retrosplenial cortex showed a reverse trend. These changed gamma powers are in line with the local metabolic variation of homologous brain regions in humans. In the analysis of directional interactions, we observed well-organized anterior-to-posterior patterns of information flow in the delta band, while opposite patterns of posterior-to-anterior flow were found in the theta band. These frequency-specific opposite patterns were only observed in WR and REMS. Additionally, most of the information senders in the delta band were also the receivers in the theta band, and vice versa. Our results provide electrophysiological evidence that rat DMN is similar to its human counterpart, and there is a frequency-dependent reentry loop of anterior-posterior information flow within rat DMN, which may offer a mechanism for functional integration, supporting conscious awareness.
NASA Astrophysics Data System (ADS)
van de Moortele, Tristan; Nemes, Andras; Wendt, Christine; Coletti, Filippo
2016-11-01
The morphological features of the airway tree directly affect the air flow features during breathing, which determines the gas exchange and inhaled particle transport. Lung disease, Chronic Obstructive Pulmonary Disease (COPD) in this study, affects the structural features of the lungs, which in turn negatively affects the air flow through the airways. Here bronchial tree air volume geometries are segmented from Computed Tomography (CT) scans of healthy and diseased subjects. Geometrical analysis of the airway centerlines and corresponding cross-sectional areas provide insight into the specific effects of COPD on the airway structure. These geometries are also used to 3D print anatomically accurate, patient specific flow models. Three-component, three-dimensional velocity fields within these models are acquired using Magnetic Resonance Imaging (MRI). The three-dimensional flow fields provide insight into the change in flow patterns and features. Additionally, particle trajectories are determined using the velocity fields, to identify the fate of therapeutic and harmful inhaled aerosols. Correlation between disease-specific and patient-specific anatomical features with dysfunctional airflow patterns can be achieved by combining geometrical and flow analysis.
Consistency of flow quantifications in tridirectional phase-contrast MRI
NASA Astrophysics Data System (ADS)
Unterhinninghofen, R.; Ley, S.; Dillmann, R.
2009-02-01
Tridirectionally encoded phase-contrast MRI is a technique to non-invasively acquire time-resolved velocity vector fields of blood flow. These may not only be used to analyze pathological flow patterns, but also to quantify flow at arbitrary positions within the acquired volume. In this paper we examine the validity of this approach by analyzing the consistency of related quantifications instead of comparing it with an external reference measurement. Datasets of the thoracic aorta were acquired from 6 pigs, 1 healthy volunteer and 3 patients with artificial aortic valves. Using in-house software an elliptical flow quantification plane was placed manually at 6 positions along the descending aorta where it was rotated to 5 different angles. For each configuration flow was computed based on the original data and data that had been corrected for phase offsets. Results reveal that quantifications are more dependent on changes in position than on changes in angle. Phase offset correction considerably reduces this dependency. Overall consistency is good with a maximum variation coefficient of 9.9% and a mean variation coefficient of 7.2%.
Asahi, Kouichi; Hori, M; Hamasaki, N; Sato, S; Nakanishi, H; Kuwatsuru, R; Sasai, K; Aoki, S
2012-01-01
It is difficult to non-invasively visualize changes in regional cerebral blood flow caused by manual compression of the carotid artery. To visualize dynamic changes in regional cerebral blood flow during and after manual compression of the carotid artery. Two healthy volunteers were recruited. Anatomic features and flow directions in the circle of Willis were evaluated with time-of-flight magnetic resonance angiography (MRA) and two-dimensional phase-contrast (2DPC) MRA, respectively. Regional cerebral blood flow was visualized with territorial arterial spin-labeling magnetic resonance imaging (TASL-MRI). TASL-MRI and 2DPC-MRA were performed in three states: at rest, during manual compression of the right carotid artery, and after decompression. In one volunteer, time-space labeling inversion pulse (Time-SLIP) MRA was performed to confirm collateral flow. During manual carotid compression, in one volunteer, the right thalamus changed to be fed only by the vertebrobasilar system, and the right basal ganglia changed to be fed by the left internal carotid artery. In the other volunteer, the right basal ganglia changed to be fed by the vertebrobasilar system. 2DPC-MRA showed that the flow direction changed in the right A1 segment of the anterior cerebral artery and the right posterior communicating artery. Perfusion patterns and flow directions recovered after decompression. Time-SLIP MRA showed pial vessels and dural collateral circulation when the right carotid artery was manually compressed. Use of TASL-MRI and 2DPC-MRA was successful for non-invasive visualization of the dynamic changes in regional cerebral blood flow during and after manual carotid compression.
Kataoka, Aiko; Kudo, Ayako; Fujino, Fukue; Chen, Yu-Wen; Mitsuyama, Yuki; Nomura, Shinobu; Yoshioka, Tohru
2013-01-01
Pain and itch are closely related sensations, yet qualitatively quite distinct. Despite recent advances in brain imaging techniques, identifying the differences between pain and itch signals in the brain cortex is difficult due to continuous temporal and spatial changes in the signals. The high spatial resolution of positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) has substantially advanced research of pain and itch, but these are uncomfortable because of expensiveness, importability and the limited operation in the shielded room. Here, we used near infrared spectroscopy (NIRS), which has more conventional usability. NIRS can be used to visualize dynamic changes in oxygenated hemoglobin and deoxyhemoglobin concentrations in the capillary networks near activated neural circuits in real-time as well as fMRI. We observed distinct activation patterns in the frontal cortex for acute pain and histamine-induced itch. The prefrontal cortex exhibited a pain-related and itch-related activation pattern of blood flow in each subject. Although it looked as though that activation pattern for pain and itching was different in each subject, further cross correlation analysis of NIRS signals between each channels showed an overall agreement with regard to prefrontal area involvement. As a result, pain-related and itch-related blood flow responses (delayed responses in prefrontal area) were found to be clearly different between pain (τ = +18.7 sec) and itch (τ = +0.63 sec) stimulation. This is the first pilot study to demonstrate the temporal and spatial separation of a pain-induced blood flow and an itch-induced blood flow in human cortex during information processing. PMID:24098378
Flow in cerebral aneurysms: 4D Flow MRI measurements and CFD models
NASA Astrophysics Data System (ADS)
Rayz, Vitaliy; Schnell, Susanne
2017-11-01
4D Flow MRI is capable of measuring blood flow in vivo, providing time-resolved velocity fields in 3D. The dynamic range of the 4D Flow MRI is determined by a velocity sensitivity parameter (venc), set above the expected maximum velocity, which can result in noisy data for slow flow regions. A dual-venc 4D flow MRI technique, where both low- and high-venc data are acquired, can improve velocity-to-noise ratio and, therefore, quantification of clinically-relevant hemodynamic metrics. In this study, patient-specific CFD simulations were used to evaluate the advantages of the dual-venc approach for assessment of the flow in cerebral aneurysms. The flow in 2 cerebral aneurysms was measured in vivo with dual-venc 4D Flow MRI and simulated with CFD, using the MRI data to prescribe flow boundary conditions. The flow fields obtained with computations were compared to those measured with a single- and dual-venc 4D Flow MRI. The numerical models resolved small flow structures near the aneurysmal wall, that were not detected with a single-venc acquisition. Comparison of the numerical and imaging results shows that the dual-venc approach can improve the accuracy of the 4D Flow MRI measurements in regions characterized by high-velocity jets and slow recirculating flows.
Ghosh, Erina; Caruthers, Shelton D; Kovács, Sándor J
2014-08-01
The Doppler echocardiographic E-wave is generated when the left ventricle's suction pump attribute initiates transmitral flow. In some subjects E-waves are accompanied by L-waves, the occurrence of which has been correlated with diastolic dysfunction. The mechanisms for L-wave generation have not been fully elucidated. We propose that the recirculating diastolic intraventricular vortex ring generates L-waves and based on this mechanism, we predict the presence of L-waves in the right ventricle (RV). We imaged intraventricular flow using Doppler echocardiography and phase-contrast magnetic resonance imaging (PC-MRI) in 10 healthy volunteers. L-waves were recorded in all subjects, with highest velocities measured typically 2 cm below the annulus. Fifty-five percent of cardiac cycles (189 of 345) had L-waves. Color M-mode images eliminated mid-diastolic transmitral flow as the cause of the observed L-waves. Three-dimensional intraventricular flow patterns were imaged via PC-MRI and independently validated our hypothesis. Additionally as predicted, L-waves were observed in the RV, by both echocardiography and PC-MRI. The re-entry of the E-wave-generated vortex ring flow through a suitably located echo sample volume can be imaged as the L-wave. These waves are a general feature and a direct consequence of LV and RV diastolic fluid mechanics. Copyright © 2014 the American Physiological Society.
The Weakly Nonlinear Magnetorotational Instability in a Local Geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, S. E.; Oishi, Jeffrey S., E-mail: seclark@astro.columbia.edu
2017-05-20
The magnetorotational instability (MRI) is a fundamental process of accretion disk physics, but its saturation mechanism remains poorly understood despite considerable theoretical and computational effort. We present a multiple-scales analysis of the non-ideal MRI in the weakly nonlinear regime—that is, when the most unstable MRI mode has a growth rate asymptotically approaching zero from above. Here, we develop our theory in a local, Cartesian channel. Our results confirm the finding by Umurhan et al. that the perturbation amplitude follows a Ginzburg–Landau equation. We further find that the Ginzburg–Landau equation will arise for the local MRI system with shear-periodic boundary conditions,more » when the effects of ambipolar diffusion are considered. A detailed force balance for the saturated azimuthal velocity and vertical magnetic field demonstrates that, even when diffusive effects are important, the bulk flow saturates via the combined processes of reducing the background shear and rearranging and strengthening the background vertical magnetic field. We directly simulate the Ginzburg–Landau amplitude evolution for our system, and demonstrate the pattern formation our model predicts on long scales of length- and timescales. We compare the weakly nonlinear theory results to a direct numerical simulation of the MRI in a thin-gap Taylor Couette flow.« less
Magnetic resonance imaging 4-D flow-based analysis of aortic hemodynamics in Turner syndrome.
Arnold, Raoul; Neu, Marie; Hirtler, Daniel; Gimpel, Charlotte; Markl, Michael; Geiger, Julia
2017-04-01
Cardiovascular surveillance is important in Turner syndrome because of the increased risk of aortic dilation and dissection with consecutively increased mortality. To compare 4-D flow MRI for the characterization of aortic 3-D flow patterns, dimensions and vessel wall parameters in pediatric patients with Turner syndrome and age-matched controls. We performed 4-D flow MRI measuring in vivo 3-D blood flow with coverage of the thoracic aorta in 25 patients with Turner syndrome and in 16 female healthy controls (age mean ± standard deviation were 16 ± 5 years and 17 ± 4 years, respectively). Blood flow was visualized by time-resolved 3-D path lines. Visual grading of aortic flow in terms of helices and vortices was performed by two independent observers. Quantitative analysis included measurement of aortic diameters, quantification of peak systolic wall shear stress, pulsatility index and oscillatory shear index at eight defined sites. Patients with Turner syndrome had significantly larger aortic diameters normalized to BSA, increased vortices in the ascending aorta and elevated helix flow in the ascending and descending aorta compared to controls (all P<0.03). Patients with abnormal helical or vortical flow in the ascending aorta had significantly larger diameters of the ascending aorta (P<0.03). Peak systolic wall shear stress, pulsatility index and oscillatory shear index were significantly lower in Turner patients compared to controls (p=0.02, p=0.002 and p=0.01 respectively). Four-dimensional flow MRI provides new insights into the altered aortic hemodynamics and wall shear stress that could have an impact on the development of aortic dissections.
Flow Quantification from 2D Phase Contrast MRI in Renal Arteries Using Clustering
NASA Astrophysics Data System (ADS)
Zöllner, Frank G.; Monnsen, Jan Ankar; Lundervold, Arvid; Rørvik, Jarle
We present an approach based on clustering to segment renal arteries from 2D PC Cine MR images to measure blood velocity and flow. Such information are important in grading renal artery stenosis and support the decision on surgical interventions like percutan transluminal angioplasty. Results show that the renal arteries could be extracted automatically and the corresponding velocity profiles could be calculated. Furthermore, the clustering could detect possible phase wrap effects automatically as well as differences in the blood flow patterns within the vessel.
Griffeth, Valerie E.M.; Perthen, Joanna E.; Buxton, Richard B.
2011-01-01
Functional magnetic resonance imaging (fMRI) provides an indirect reflection of neural activity change in the working brain through detection of blood oxygenation level dependent (BOLD) signal changes. Although widely used to map patterns of brain activation, fMRI has not yet met its potential for clinical and pharmacological studies due to difficulties in quantitatively interpreting the BOLD signal. This difficulty is due to the BOLD response being strongly modulated by two physiological factors in addition to the level of neural activity: the amount of deoxyhemoglobin present in the baseline state and the coupling ratio, n, of evoked changes in blood flow and oxygen metabolism. In this study, we used a quantitative fMRI approach with dual measurement of blood flow and BOLD responses to overcome these limitations and show that these two sources of modulation work in opposite directions following caffeine administration in healthy human subjects. A strong 27% reduction in baseline blood flow and a 22% increase in baseline oxygen metabolism after caffeine consumption led to a decrease in baseline blood oxygenation and was expected to increase the subsequent BOLD response to the visual stimulus. Opposing this, caffeine reduced n through a strong 61% increase in the evoked oxygen metabolism response to the visual stimulus. The combined effect was that BOLD responses pre- and post-caffeine were similar despite large underlying physiological changes, indicating that the magnitude of the BOLD response alone should not be interpreted as a direct measure of underlying neurophysiological changes. Instead, a quantitative methodology based on dual-echo measurement of blood flow and BOLD responses is a promising tool for applying fMRI to disease and drug studies in which both baseline conditions and the coupling of blood flow and oxygen metabolism responses to a stimulus may be altered. PMID:21586328
Joint brain connectivity estimation from diffusion and functional MRI data
NASA Astrophysics Data System (ADS)
Chu, Shu-Hsien; Lenglet, Christophe; Parhi, Keshab K.
2015-03-01
Estimating brain wiring patterns is critical to better understand the brain organization and function. Anatomical brain connectivity models axonal pathways, while the functional brain connectivity characterizes the statistical dependencies and correlation between the activities of various brain regions. The synchronization of brain activity can be inferred through the variation of blood-oxygen-level dependent (BOLD) signal from functional MRI (fMRI) and the neural connections can be estimated using tractography from diffusion MRI (dMRI). Functional connections between brain regions are supported by anatomical connections, and the synchronization of brain activities arises through sharing of information in the form of electro-chemical signals on axon pathways. Jointly modeling fMRI and dMRI data may improve the accuracy in constructing anatomical connectivity as well as functional connectivity. Such an approach may lead to novel multimodal biomarkers potentially able to better capture functional and anatomical connectivity variations. We present a novel brain network model which jointly models the dMRI and fMRI data to improve the anatomical connectivity estimation and extract the anatomical subnetworks associated with specific functional modes by constraining the anatomical connections as structural supports to the functional connections. The key idea is similar to a multi-commodity flow optimization problem that minimizes the cost or maximizes the efficiency for flow configuration and simultaneously fulfills the supply-demand constraint for each commodity. In the proposed network, the nodes represent the grey matter (GM) regions providing brain functionality, and the links represent white matter (WM) fiber bundles connecting those regions and delivering information. The commodities can be thought of as the information corresponding to brain activity patterns as obtained for instance by independent component analysis (ICA) of fMRI data. The concept of information flow is introduced and used to model the propagation of information between GM areas through WM fiber bundles. The link capacity, i.e., ability to transfer information, is characterized by the relative strength of fiber bundles, e.g., fiber count gathered from the tractography of dMRI data. The node information demand is considered to be proportional to the correlation between neural activity at various cortical areas involved in a particular functional mode (e.g. visual, motor, etc.). These two properties lead to the link capacity and node demand constraints in the proposed model. Moreover, the information flow of a link cannot exceed the demand from either end node. This is captured by the feasibility constraints. Two different cost functions are considered in the optimization formulation in this paper. The first cost function, the reciprocal of fiber strength represents the unit cost for information passing through the link. In the second cost function, a min-max (minimizing the maximal link load) approach is used to balance the usage of each link. Optimizing the first cost function selects the pathway with strongest fiber strength for information propagation. In the second case, the optimization procedure finds all the possible propagation pathways and allocates the flow proportionally to their strength. Additionally, a penalty term is incorporated with both the cost functions to capture the possible missing and weak anatomical connections. With this set of constraints and the proposed cost functions, solving the network optimization problem recovers missing and weak anatomical connections supported by the functional information and provides the functional-associated anatomical subnetworks. Feasibility is demonstrated using realistic diffusion and functional MRI phantom data. It is shown that the proposed model recovers the maximum number of true connections, with fewest number of false connections when compared with the connectivity derived from a joint probabilistic model using the expectation-maximization (EM) algorithm presented in a prior work. We also apply the proposed method to data provided by the Human Connectome Project (HCP).
Sekine, Tetsuro; Takagi, Ryo; Amano, Yasuo; Murai, Yasuo; Orita, Erika; Matsumura, Yoshio; Kumita, Shin-Ichiro
2016-03-01
Our aim was to assess the feasibility of using time-resolved 3D phase-contrast (4D flow) MRI to characterize extracranial-intracranial (EC-IC) bypass. We enrolled 32 patients who underwent EC-IC bypass (15 men, 17 women; mean age 66.4 years). In all, 16 underwent radial artery graft (RAG) bypass and 16 underwent superficial temporal artery (STA) bypass. 4D flow MRI, time-of-flight (TOF) magnetic resonance angiography (MRA), and computed tomography angiography (CTA) were performed. Bypass patency, flow direction, and blood flow volume (BFV) of each artery were determined by 4D flow MRI. Arterial diameters were measured by TOF-MRA and CTA. We compared RAG and STA bypasses by evaluating the flow direction and BFV of each artery. We evaluated the correlation between arterial diameters (measured by CTA or MRA) and the BFV and the detectability of flow direction (measured by 4D flow MRI) of each artery. 4D flow MRI confirmed the patency of each bypass artery. Flow direction of the M1 segment of the middle cerebral artery and BFV in the bypass artery differed between RAG and STA groups (p < 0.01). BFV in the bypass slightly correlated with the diameters on CTA (p < 0.05, R (2) = 0.287). Of the 29 arteries in the circle of Willis, nine were not depicted on 4D flow MRI. Cutoff values for arterial diameters on CTA and TOF-MRA for detecting the artery on 4D flow MRI were 2.4 and 1.8 mm, respectively. 4D flow MRI provided unique information for characterizing EC-IC bypasses, although this detectability is limited when addressing small arteries with slow flow.
Spatio-temporal cerebral blood flow perfusion patterns in cortical spreading depression
NASA Astrophysics Data System (ADS)
Verisokin, Andrey Yu.; Verveyko, Darya V.; Postnov, Dmitry E.
2017-04-01
Cortical spreading depression (CSD) is an example of one of the most common abnormalities in biophysical brain functioning. Despite the fact that there are many mathematical models describing the cortical spreading depression (CSD), most of them do not take into consideration the role of redistribution of cerebral blood flow (CBF), that results in the formation of spatio-temporal patterns. The paper presents a mathematical model, which successfully explains the CBD role in the CSD process. Numerical study of this model has revealed the formation of stationary dissipative structures, visually analogous to Turing structures. However, the mechanism of their formation is not diffusion. We show these structures occur due to another type of spatial coupling, that is related to tissue perfusion rate. The proposed model predicts that at similar state of neurons the distribution of blood flow and oxygenation may by different. Currently, this effect is not taken into account when the Blood oxygen-level dependent (BOLD) contrast imaging used in functional magnetic resonance imaging (fMRI). Thus, the diagnosis on the BOLD signal can be ambiguous. We believe that our results can be used in the future for a more correct interpretation of the data obtained with fMRI, NIRS and other similar methods for research of the brain activity.
Advanced flow MRI: emerging techniques and applications
Markl, M.; Schnell, S.; Wu, C.; Bollache, E.; Jarvis, K.; Barker, A. J.; Robinson, J. D.; Rigsby, C. K.
2016-01-01
Magnetic resonance imaging (MRI) techniques provide non-invasive and non-ionising methods for the highly accurate anatomical depiction of the heart and vessels throughout the cardiac cycle. In addition, the intrinsic sensitivity of MRI to motion offers the unique ability to acquire spatially registered blood flow simultaneously with the morphological data, within a single measurement. In clinical routine, flow MRI is typically accomplished using methods that resolve two spatial dimensions in individual planes and encode the time-resolved velocity in one principal direction, typically oriented perpendicular to the two-dimensional (2D) section. This review describes recently developed advanced MRI flow techniques, which allow for more comprehensive evaluation of blood flow characteristics, such as real-time flow imaging, 2D multiple-venc phase contrast MRI, four-dimensional (4D) flow MRI, quantification of complex haemodynamic properties, and highly accelerated flow imaging. Emerging techniques and novel applications are explored. In addition, applications of these new techniques for the improved evaluation of cardiovascular (aorta, pulmonary arteries, congenital heart disease, atrial fibrillation, coronary arteries) as well as cerebrovascular disease (intra-cranial arteries and veins) are presented. PMID:26944696
Parikh, Jehill D.; Kakarla, Jayant; Keavney, Bernard; O’Sullivan, John J.; Ford, Gary A.; Blamire, Andrew M.; Hollingsworth, Kieren G.
2017-01-01
Aim To investigate atrial flow patterns in the normal adult heart, to explore whether caval vein arrangement and patency of the foramen ovale (PFO) may be associated with flow pattern. Materials and Methods Time-resolved, three-dimensional velocity encoded magnetic resonance imaging (4D flow) was employed to assess atrial flow patterns in thirteen healthy subjects (6 male, 40 years, range 25–50) and thirteen subjects (6 male, 40 years, range 21–50) with cryptogenic stroke and patent foramen ovale (CS-PFO). Right atrial flow was defined as vortical, helico-vortical, helical and multiple vortices. Time-averaged and peak systolic and diastolic flows in the caval and pulmonary veins and their anatomical arrangement were compared. Results A spectrum of right atrial flow was observed across the four defined categories. The right atrial flow patterns were strongly associated with the relative position of the caval veins. Right atrial flow patterns other than vortical were more common (p = 0.015) and the separation between the superior and inferior vena cava greater (10±5mm versus 3±3mm, p = 0.002) in the CS-PFO group. In the left atrium all subjects except one had counter-clockwise vortical flow. Vortex size varied and was associated with left lower pulmonary vein flow (systolic r = 0.61, p = 0.001, diastolic r = 0.63 p = 0.002). A diastolic vortex was less common and time-averaged left atrial velocity was greater in the CS-PFO group (17±2cm/sec versus 15±1, p = 0.048). One CS-PFO subject demonstrated vortical retrograde flow in the descending aortic arch; all other subjects had laminar descending aortic flow. Conclusion Right atrial flow patterns in the normal heart are heterogeneous and are associated with the relative position of the caval veins. Patterns, other than ‘typical’ vortical flow, are more prevalent in the right atrium of those with cryptogenic stroke in the context of PFO. Left atrial flow patterns are more homogenous in normal hearts and show a relationship with flow arising from the left pulmonary veins. PMID:28282389
Production and delivery of polarized Xenon-129 for in vivo MRS/MRI.
NASA Astrophysics Data System (ADS)
Rosen, Matthew S.; Chupp, Timothy E.; Coulter, Kevin P.; Welsh, Robert C.; Swanson, Scott
1998-05-01
Laser polarized ^129Xe can be used as an entirely new magnetic tracer, and is a powerful enhancement to currently existing MRI techniques. Inert laser polarized ^129Xe is inhaled and transported via blood flow where it is detected using MR spectroscopy and imaging techniques. The time-dependent distribution patterns of ^129Xe signal intensity directly reflect local blood volume, blood flow rates, and the efficiency of perfusion and diffusive transport in tissues. We have developed a uniquely constructed laser polarized ^129Xe production and delivery system that is used in both our in vitro and in vivo imaging experiments with rats. This reliable, effective, and relatively simple production method for large volumes of laser polarized ^129Xe is the key to all other areas of research involving use of laser polarized gases.
Canstein, C; Cachot, P; Faust, A; Stalder, A F; Bock, J; Frydrychowicz, A; Küffer, J; Hennig, J; Markl, M
2008-03-01
The knowledge of local vascular anatomy and function in the human body is of high interest for the diagnosis and treatment of cardiovascular disease. A comprehensive analysis of the hemodynamics in the thoracic aorta is presented based on the integration of flow-sensitive 4D MRI with state-of-the-art rapid prototyping technology and computational fluid dynamics (CFD). Rapid prototyping was used to transform aortic geometries as measured by contrast-enhanced MR angiography into realistic vascular models with large anatomical coverage. Integration into a flow circuit with patient-specific pulsatile in-flow conditions and application of flow-sensitive 4D MRI permitted detailed analysis of local and global 3D flow dynamics in a realistic vascular geometry. Visualization of characteristic 3D flow patterns and quantitative comparisons of the in vitro experiments with in vivo data and CFD simulations in identical vascular geometries were performed to evaluate the accuracy of vascular model systems. The results indicate the potential of such patient-specific model systems for detailed experimental simulation of realistic vascular hemodynamics. Further studies are warranted to examine the influence of refined boundary conditions of the human circulatory system such as fluid-wall interaction and their effect on normal and pathological blood flow characteristics associated with vascular geometry. (c) 2008 Wiley-Liss, Inc.
MRI of chemical reactions and processes.
Britton, Melanie M
2017-08-01
As magnetic resonance imaging (MRI) can spatially resolve a wealth of molecular information available from nuclear magnetic resonance (NMR), it is able to non-invasively visualise the composition, properties and reactions of a broad range of spatially-heterogeneous molecular systems. Hence, MRI is increasingly finding applications in the study of chemical reactions and processes in a diverse range of environments and technologies. This article will explain the basic principles of MRI and how it can be used to visualise chemical composition and molecular properties, providing an overview of the variety of information available. Examples are drawn from the disciplines of chemistry, chemical engineering, environmental science, physics, electrochemistry and materials science. The review introduces a range of techniques used to produce image contrast, along with the chemical and molecular insight accessible through them. Methods for mapping the distribution of chemical species, using chemical shift imaging or spatially-resolved spectroscopy, are reviewed, as well as methods for visualising physical state, temperature, current density, flow velocities and molecular diffusion. Strategies for imaging materials with low signal intensity, such as those containing gases or low sensitivity nuclei, using compressed sensing, para-hydrogen or polarisation transfer, are discussed. Systems are presented which encapsulate the diversity of chemical and physical parameters observable by MRI, including one- and two-phase flow in porous media, chemical pattern formation, phase transformations and hydrodynamic (fingering) instabilities. Lastly, the emerging area of electrochemical MRI is discussed, with studies presented on the visualisation of electrochemical deposition and dissolution processes during corrosion and the operation of batteries, supercapacitors and fuel cells. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Chen, Guangxiang; Lei, Du; Ren, Jiechuan; Zuo, Panli; Suo, Xueling; Wang, Danny J J; Wang, Meiyun; Zhou, Dong; Gong, Qiyong
2016-07-04
The cerebral haemodynamic status of idiopathic generalized epilepsy (IGE) is a very complicated process. Little attention has been paid to cerebral blood flow (CBF) alterations in IGE detected by arterial spin labelling (ASL) perfusion magnetic resonance imaging (MRI). However, the selection of an optimal delay time is difficult for single-delay ASL. Multi-delay multi-parametric ASL perfusion MRI overcomes the limitations of single-delay ASL. We applied multi-delay multi-parametric ASL perfusion MRI to investigate the patterns of postictal cerebral perfusion in IGE patients with absence seizures. A total of 21 IGE patients with absence seizures and 24 healthy control subjects were enrolled. IGE patients exhibited prolonged arterial transit time (ATT) in the left superior temporal gyrus. The mean CBF of IGE patients was significantly increased in the left middle temporal gyrus, left parahippocampal gyrus and left fusiform gyrus. Prolonged ATT in the left superior temporal gyrus was negatively correlated with the age at onset in IGE patients. This study demonstrated that cortical dysfunction in the temporal lobe and fusiform gyrus may be related to epileptic activity in IGE patients with absence seizures. This information can play an important role in elucidating the pathophysiological mechanism of IGE from a cerebral haemodynamic perspective.
Gouya, Hervé; Grabar, Sophie; Vignaux, Olivier; Saade, Anastasia; Pol, Stanislas; Legmann, Paul; Sogni, Philippe
2016-07-01
To measure azygos, portal and aortic flow by two-dimensional cine phase-contrast magnetic resonance imaging (2D-cine PC MRI), and to compare the MRI values to hepatic venous pressure gradient (HVPG) measurements, in patients with cirrhosis. Sixty-nine patients with cirrhosis were prospectively included. All patients underwent HVPG measurements, upper gastrointestinal endoscopy and 2D-cine PC MRI measurements of azygos, portal and aortic blood flow. Univariate and multivariate regression analyses were used to evaluate the correlation between the blood flow and HVPG. The performance of 2D-cine PC MRI to diagnose severe portal hypertension (HVPG ≥ 16 mmHg) was determined by receiver operating characteristic curve (ROC) analysis, and area under the curves (AUC) were compared. Azygos and aortic flow values were associated with HVPG in univariate linear regression model. Azygos flow (p < 10(-3)), aortic flow (p = 0.001), age (p = 0.001) and presence of varices (p < 10(-3)) were independently associated with HVPG. Azygos flow (AUC = 0.96 (95 % CI [0.91-1.00]) had significantly higher AUC than aortic (AUC = 0.64 (95 % CI [0.51-0.77]) or portal blood flow (AUC = 0.40 (95 % CI [0.25-0.54]). 2D-cine PC MRI is a promising technique to evaluate significant portal hypertension in patients with cirrhosis. • Noninvasive HVPG assessment can be performed with MRI azygos flow. • Azygos MRI flow is an easy-to-measure marker to detect significant portal hypertension. • MRI flow is more specific that varice grade to detect portal hypertension.
Kunze, Karl P; Nekolla, Stephan G; Rischpler, Christoph; Zhang, Shelley HuaLei; Hayes, Carmel; Langwieser, Nicolas; Ibrahim, Tareq; Laugwitz, Karl-Ludwig; Schwaiger, Markus
2018-04-19
Systematic differences with respect to myocardial perfusion quantification exist between DCE-MRI and PET. Using the potential of integrated PET/MRI, this study was conceived to compare perfusion quantification on the basis of simultaneously acquired 13 NH 3 -ammonia PET and DCE-MRI data in patients at rest and stress. Twenty-nine patients were examined on a 3T PET/MRI scanner. DCE-MRI was implemented in dual-sequence design and additional T 1 mapping for signal normalization. Four different deconvolution methods including a modified version of the Fermi technique were compared against 13 NH 3 -ammonia results. Cohort-average flow comparison yielded higher resting flows for DCE-MRI than for PET and, therefore, significantly lower DCE-MRI perfusion ratios under the common assumption of equal arterial and tissue hematocrit. Absolute flow values were strongly correlated in both slice-average (R 2 = 0.82) and regional (R 2 = 0.7) evaluations. Different DCE-MRI deconvolution methods yielded similar flow result with exception of an unconstrained Fermi method exhibiting outliers at high flows when compared with PET. Thresholds for Ischemia classification may not be directly tradable between PET and MRI flow values. Differences in perfusion ratios between PET and DCE-MRI may be lifted by using stress/rest-specific hematocrit conversion. Proper physiological constraints are advised in model-constrained deconvolution. © 2018 International Society for Magnetic Resonance in Medicine.
The design and fabrication of two portal vein flow phantoms by different methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yunker, Bryan E., E-mail: bryan.yunker@ucdenver.edu; Lanning, Craig J.; Shandas, Robin
2014-02-15
Purpose: This study outlines the design and fabrication techniques for two portal vein flow phantoms. Methods: A materials study was performed as a precursor to this phantom fabrication effort and the desired material properties are restated for continuity. A three-dimensional portal vein pattern was created from the Visual Human database. The portal vein pattern was used to fabricate two flow phantoms by different methods with identical interior surface geometry using computer aided design software tools and rapid prototyping techniques. One portal flow phantom was fabricated within a solid block of clear silicone for use on a table with Ultrasound ormore » within medical imaging systems such as MRI, CT, PET, or SPECT. The other portal flow phantom was fabricated as a thin walled tubular latex structure for use in water tanks with Ultrasound imaging. Both phantoms were evaluated for usability and durability. Results: Both phantoms were fabricated successfully and passed durability criteria for flow testing in the next project phase. Conclusions: The fabrication methods and materials employed for the study yielded durable portal vein phantoms.« less
Gupta, Vikas; Bustamante, Mariana; Fredriksson, Alexandru; Carlhäll, Carl-Johan; Ebbers, Tino
2018-01-01
Assessment of blood flow in the left ventricle using four-dimensional flow MRI requires accurate left ventricle segmentation that is often hampered by the low contrast between blood and the myocardium. The purpose of this work is to improve left-ventricular segmentation in four-dimensional flow MRI for reliable blood flow analysis. The left ventricle segmentations are first obtained using morphological cine-MRI with better in-plane resolution and contrast, and then aligned to four-dimensional flow MRI data. This alignment is, however, not trivial due to inter-slice misalignment errors caused by patient motion and respiratory drift during breath-hold based cine-MRI acquisition. A robust image registration based framework is proposed to mitigate such errors automatically. Data from 20 subjects, including healthy volunteers and patients, was used to evaluate its geometric accuracy and impact on blood flow analysis. High spatial correspondence was observed between manually and automatically aligned segmentations, and the improvements in alignment compared to uncorrected segmentations were significant (P < 0.01). Blood flow analysis from manual and automatically corrected segmentations did not differ significantly (P > 0.05). Our results demonstrate the efficacy of the proposed approach in improving left-ventricular segmentation in four-dimensional flow MRI, and its potential for reliable blood flow analysis. Magn Reson Med 79:554-560, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Analysis of 2D Phase Contrast MRI in Renal Arteries by Self Organizing Maps
NASA Astrophysics Data System (ADS)
Zöllner, Frank G.; Schad, Lothar R.
We present an approach based on self organizing maps to segment renal arteries from 2D PC Cine MR, images to measure blood velocity and flow. Such information are important in grading renal artery stenosis and support the decision on surgical interventions like percu-tan transluminal angioplasty. Results show that the renal arteries could be extracted automatically. The corresponding velocity profiles show high correlation (r=0.99) compared those from manual delineated vessels. Furthermore, the method could detect possible blood flow patterns within the vessel.
The influence of the aortic valve angle on the hemodynamic features of the thoracic aorta
NASA Astrophysics Data System (ADS)
Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Kim, Young-Hak; Kim, Namkug; Yang, Dong Hyun
2016-08-01
Since the first observation of a helical flow pattern in aortic blood flow, the existence of helical blood flow has been found to be associated with various pathological conditions such as bicuspid aortic valve, aortic stenosis, and aortic dilatation. However, an understanding of the development of helical blood flow and its clinical implications are still lacking. In our present study, we hypothesized that the direction and angle of aortic inflow can influence helical flow patterns and related hemodynamic features in the thoracic aorta. Therefore, we investigated the hemodynamic features in the thoracic aorta and various aortic inflow angles using patient-specific vascular phantoms that were generated using a 3D printer and time-resolved, 3D, phase-contrast magnetic resonance imaging (PC-MRI). The results show that the rotational direction and strength of helical blood flow in the thoracic aorta largely vary according to the inflow direction of the aorta, and a higher helical velocity results in higher wall shear stress distributions. In addition, right-handed rotational flow conditions with higher rotational velocities imply a larger total kinetic energy than left-handed rotational flow conditions with lower rotational velocities.
The influence of the aortic valve angle on the hemodynamic features of the thoracic aorta.
Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Kim, Young-Hak; Kim, Namkug; Yang, Dong Hyun
2016-08-26
Since the first observation of a helical flow pattern in aortic blood flow, the existence of helical blood flow has been found to be associated with various pathological conditions such as bicuspid aortic valve, aortic stenosis, and aortic dilatation. However, an understanding of the development of helical blood flow and its clinical implications are still lacking. In our present study, we hypothesized that the direction and angle of aortic inflow can influence helical flow patterns and related hemodynamic features in the thoracic aorta. Therefore, we investigated the hemodynamic features in the thoracic aorta and various aortic inflow angles using patient-specific vascular phantoms that were generated using a 3D printer and time-resolved, 3D, phase-contrast magnetic resonance imaging (PC-MRI). The results show that the rotational direction and strength of helical blood flow in the thoracic aorta largely vary according to the inflow direction of the aorta, and a higher helical velocity results in higher wall shear stress distributions. In addition, right-handed rotational flow conditions with higher rotational velocities imply a larger total kinetic energy than left-handed rotational flow conditions with lower rotational velocities.
The influence of the aortic valve angle on the hemodynamic features of the thoracic aorta
Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Kim, Young-Hak; Kim, Namkug; Yang, Dong Hyun
2016-01-01
Since the first observation of a helical flow pattern in aortic blood flow, the existence of helical blood flow has been found to be associated with various pathological conditions such as bicuspid aortic valve, aortic stenosis, and aortic dilatation. However, an understanding of the development of helical blood flow and its clinical implications are still lacking. In our present study, we hypothesized that the direction and angle of aortic inflow can influence helical flow patterns and related hemodynamic features in the thoracic aorta. Therefore, we investigated the hemodynamic features in the thoracic aorta and various aortic inflow angles using patient-specific vascular phantoms that were generated using a 3D printer and time-resolved, 3D, phase-contrast magnetic resonance imaging (PC-MRI). The results show that the rotational direction and strength of helical blood flow in the thoracic aorta largely vary according to the inflow direction of the aorta, and a higher helical velocity results in higher wall shear stress distributions. In addition, right-handed rotational flow conditions with higher rotational velocities imply a larger total kinetic energy than left-handed rotational flow conditions with lower rotational velocities. PMID:27561388
Activity flow over resting-state networks shapes cognitive task activations.
Cole, Michael W; Ito, Takuya; Bassett, Danielle S; Schultz, Douglas H
2016-12-01
Resting-state functional connectivity (FC) has helped reveal the intrinsic network organization of the human brain, yet its relevance to cognitive task activations has been unclear. Uncertainty remains despite evidence that resting-state FC patterns are highly similar to cognitive task activation patterns. Identifying the distributed processes that shape localized cognitive task activations may help reveal why resting-state FC is so strongly related to cognitive task activations. We found that estimating task-evoked activity flow (the spread of activation amplitudes) over resting-state FC networks allowed prediction of cognitive task activations in a large-scale neural network model. Applying this insight to empirical functional MRI data, we found that cognitive task activations can be predicted in held-out brain regions (and held-out individuals) via estimated activity flow over resting-state FC networks. This suggests that task-evoked activity flow over intrinsic networks is a large-scale mechanism explaining the relevance of resting-state FC to cognitive task activations.
Activity flow over resting-state networks shapes cognitive task activations
Cole, Michael W.; Ito, Takuya; Bassett, Danielle S.; Schultz, Douglas H.
2016-01-01
Resting-state functional connectivity (FC) has helped reveal the intrinsic network organization of the human brain, yet its relevance to cognitive task activations has been unclear. Uncertainty remains despite evidence that resting-state FC patterns are highly similar to cognitive task activation patterns. Identifying the distributed processes that shape localized cognitive task activations may help reveal why resting-state FC is so strongly related to cognitive task activations. We found that estimating task-evoked activity flow (the spread of activation amplitudes) over resting-state FC networks allows prediction of cognitive task activations in a large-scale neural network model. Applying this insight to empirical functional MRI data, we found that cognitive task activations can be predicted in held-out brain regions (and held-out individuals) via estimated activity flow over resting-state FC networks. This suggests that task-evoked activity flow over intrinsic networks is a large-scale mechanism explaining the relevance of resting-state FC to cognitive task activations. PMID:27723746
Frydrychowicz, A; Roldan-Alzate, A; Winslow, E; Consigny, D; Campo, C A; Motosugi, U; Johnson, K M; Wieben, O; Reeder, S B
2017-12-01
Objectives of this study were to compare radial time-resolved phase contrast magnetic resonance imaging (4D Flow-MRI) with perivascular ultrasound (pvUS) and to explore a porcine model of acute pre-hepatic portal hypertension (PHTN). Abdominal 4D Flow-MRI and pvUS in portal and splenic vein, hepatic and both renal arteries were performed in 13 pigs of approximately 60 kg. In six pigs, measurements were repeated after partial portal vein (PV) ligature. Inter- and intra-reader comparisons and statistical analysis including Bland-Altman (BA) comparison, paired Student's t tests and linear regression were performed. PvUS and 4D Flow-MRI measurements agreed well; flow before partial PV ligature was 322 ± 30 ml/min in pvUS and 297 ± 27 ml/min in MRI (p = 0.294), and average BA difference was 25 ml/min [-322; 372]. Inter- and intra-reader results differed very little, revealed excellent correlation (R 2 = 0.98 and 0.99, respectively) and resulted in BA differences of -5 ml/min [-161; 150] and -2 ml/min [-28; 25], respectively. After PV ligature, PV flow decreased from 356 ± 50 to 298 ± 61 ml/min (p = 0.02), and hepatic arterial flow increased from 277 ± 36 to 331 ± 65 ml/min (p = n.s.). The successful in vivo comparison of radial 4D Flow-MRI to perivascular ultrasound revealed good agreement of abdominal blood flow although with considerable spread of results. A model of pre-hepatic PHTN was successfully introduced and acute responses monitored. • Radial 4D Flow-MRI in the abdomen was successfully compared to perivascular ultrasound. • Inter- and intra-reader testing demonstrated excellent reproducibility of upper abdominal 4D Flow-MRI. • A porcine model of acute pre-hepatic portal hypertension was successfully introduced. • 4D Flow-MRI successfully monitored acute changes in a model of portal hypertension.
Girdauskas, Evaldas; Rouman, Mina; Disha, Kushtrim; Scholle, Thorsten; Fey, Beatrix; Theis, Bernhard; Petersen, Iver; Borger, Michael A; Kuntze, Thomas
2014-08-01
The purpose of this study was to analyse the correlation between preoperative systolic transvalvular flow patterns and proximal aortic wall lesions in patients undergoing surgery for bicuspid aortic valve (BAV) stenosis. A total of 48 consecutive patients with BAV stenosis (mean age 58 ± 9 years, 65% male) underwent aortic valve replacement (AVR) ± proximal aortic surgery from January 2012 through February 2013. Preoperative cardiac phase-contrast cine magnetic resonance imaging (MRI) assessment was performed in all patients in order to detect the area of maximal flow-induced stress in the proximal aorta. Based on these MRI data, two aortic wall samples (i.e. area of the maximal stress (jet sample) and the opposite aortic wall (control sample)) were collected during AVR surgery. Aortic wall changes were graded based on a summation of seven histological criteria (each scored from 0 to 3). Histological sum score (0-21) was separately calculated and compared between the two aortic samples (i.e. jet sample vs control sample). An eccentric transvalvular flow jet hitting the proximal aortic wall could be identified in all 48 (100%) patients. The mean histological sum score was significantly higher in the jet sample vs control sample areas of the aorta (i.e. 4.1 ± 1.8 vs 2.2 ± 1.5, respectively) (P = 0.02). None of the patients had a higher sum score value in the control sample. Our study demonstrates a strong correlation between the systolic pattern of the transvalvular flow jet and asymmetric proximal aortic wall changes in patients undergoing AVR for BAV stenosis. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Sonographic Bands of Hypoechogenicity in the Spleen in Children: Zebra Spleen.
Kuint, Ruth Cytter; Daneman, Alan; Navarro, Oscar M; Oates, Adam
2016-09-01
Zebra spleen is the normal pattern of splenic enhancement during the arterial phase of CT and MRI and is attributed to different flow rates. The purpose of this study was to describe the appearance and occurrence of bands of hypoechogenicity in the spleen on unenhanced sonograms of children with no splenic abnormalities. We reviewed 100 abdominal ultrasound studies to evaluate the ultrasound characteristics of the spleen. Demographic data were collected for all patients. Homogeneous echogenicity of the spleen was found in 92 children. Heterogeneous echogenicity was present in eight. Three of the eight had discrete macronodules due to known splenic disease. The other five had bands of hypoechogenicity. These five had no known splenic disease, but one had mild splenomegaly of unknown cause. The pattern of hypoechoic bands occurred in 5% of our series. This pattern cannot be explained simply by different flow rates and probably reflects different structural components of the parenchyma. At ultrasound this pattern should be considered a normal finding that may simulate a splenic mass.
Influence of large-scale zonal flows on the evolution of stellar and planetary magnetic fields
NASA Astrophysics Data System (ADS)
Petitdemange, Ludovic; Schrinner, Martin; Dormy, Emmanuel; ENS Collaboration
2011-10-01
Zonal flows and magnetic field are present in various objects as accretion discs, stars and planets. Observations show a huge variety of stellar and planetary magnetic fields. Of particular interest is the understanding of cyclic field variations, as known from the sun. They are often explained by an important Ω-effect, i.e., by the stretching of field lines because of strong differential rotation. We computed the dynamo coefficients for an oscillatory dynamo model with the help of the test-field method. We argue that this model is of α2 Ω -type and here the Ω-effect alone is not responsible for its cyclic time variation. More general conditions which lead to dynamo waves in global direct numerical simulations are presented. Zonal flows driven by convection in planetary interiors may lead to secondary instabilities. We showed that a simple, modified version of the MagnetoRotational Instability, i.e., the MS-MRI can develop in planteray interiors. The weak shear yields an instability by its constructive interaction with the much larger rotation rate of planets. We present results from 3D simulations and show that 3D MS-MRI modes can generate wave pattern at the surface of the spherical numerical domain. Zonal flows and magnetic field are present in various objects as accretion discs, stars and planets. Observations show a huge variety of stellar and planetary magnetic fields. Of particular interest is the understanding of cyclic field variations, as known from the sun. They are often explained by an important Ω-effect, i.e., by the stretching of field lines because of strong differential rotation. We computed the dynamo coefficients for an oscillatory dynamo model with the help of the test-field method. We argue that this model is of α2 Ω -type and here the Ω-effect alone is not responsible for its cyclic time variation. More general conditions which lead to dynamo waves in global direct numerical simulations are presented. Zonal flows driven by convection in planetary interiors may lead to secondary instabilities. We showed that a simple, modified version of the MagnetoRotational Instability, i.e., the MS-MRI can develop in planteray interiors. The weak shear yields an instability by its constructive interaction with the much larger rotation rate of planets. We present results from 3D simulations and show that 3D MS-MRI modes can generate wave pattern at the surface of the spherical numerical domain. The first author thanks DFG and PlanetMag project for financial support.
Neural contributions to flow experience during video game playing.
Klasen, Martin; Weber, René; Kircher, Tilo T J; Mathiak, Krystyna A; Mathiak, Klaus
2012-04-01
Video games are an exciting part of new media. Although game play has been intensively studied, the underlying neurobiology is still poorly understood. Flow theory is a well-established model developed to describe subjective game experience. In 13 healthy male subjects, we acquired fMRI data during free play of a video game and analyzed brain activity based on the game content. In accordance with flow theory, we extracted the following factors from the game content: (i) balance between ability and challenge; (ii) concentration and focus; (iii) direct feedback of action results; (iv) clear goals; and (v) control over the situation/activity. We suggest that flow is characterized by specific neural activation patterns and that the latter can be assessed-at least partially-by content factors contributing to the emergence of flow. Each of the content factors was characterized by specific and distinguishable brain activation patterns, encompassing reward-related midbrain structures, as well as cognitive and sensorimotor networks. The activation of sensory and motor networks in the conjunction analyses underpinned the central role of simulation for flow experience. Flow factors can be validated with functional brain imaging which can improve the understanding of human emotions and motivational processes during media entertainment.
Neural contributions to flow experience during video game playing
Weber, René; Kircher, Tilo T. J.; Mathiak, Krystyna A.; Mathiak, Klaus
2012-01-01
Video games are an exciting part of new media. Although game play has been intensively studied, the underlying neurobiology is still poorly understood. Flow theory is a well-established model developed to describe subjective game experience. In 13 healthy male subjects, we acquired fMRI data during free play of a video game and analyzed brain activity based on the game content. In accordance with flow theory, we extracted the following factors from the game content: (i) balance between ability and challenge; (ii) concentration and focus; (iii) direct feedback of action results; (iv) clear goals; and (v) control over the situation/activity. We suggest that flow is characterized by specific neural activation patterns and that the latter can be assessed—at least partially—by content factors contributing to the emergence of flow. Each of the content factors was characterized by specific and distinguishable brain activation patterns, encompassing reward-related midbrain structures, as well as cognitive and sensorimotor networks. The activation of sensory and motor networks in the conjunction analyses underpinned the central role of simulation for flow experience. Flow factors can be validated with functional brain imaging which can improve the understanding of human emotions and motivational processes during media entertainment. PMID:21596764
Bollache, Emilie; van Ooij, Pim; Powell, Alex; Carr, James; Markl, Michael; Barker, Alex J.
2016-01-01
The purpose of this study was to compare aortic flow and velocity quantification using 4D flow MRI and 2D CINE phase-contrast (PC)-MRI with either one-directional (2D-1dir) or three-directional (2D-3dir) velocity encoding. 15 healthy volunteers (51 ± 19 years) underwent MRI including (1) breath-holding 2D-1dir and (2) free breathing 2D-3dir PC-MRI in planes orthogonal to the ascending (AA) and descending (DA) aorta, as well as (3) free breathing 4D flow MRI with full thoracic aorta coverage. Flow quantification included the co-registration of the 2D PC acquisition planes with 4D flow MRI data, AA and DA segmentation, and calculation of AA and DA peak systolic velocity, peak flow and net flow volume for all sequences. Additionally, the 2D-3dir velocity taking into account the through-plane component only was used to obtain results analogous to a free breathing 2D-1dir acquisition. Good agreement was found between 4D flow and 2D-3dir peak velocity (differences = −3 to 6 %), peak flow (−7 %) and net volume (−14 to −9 %). In contrast, breath-holding 2D-1dir measurements exhibited indices significantly lower than free breathing 2D-3dir and 2D-1dir (differences = −35 to −7 %, p < 0.05). Finally, high correlations (r ≥ 0.97) were obtained for indices estimated with or without eddy current correction, with the lowest correlation observed for net volume. 4D flow and 2D-3dir aortic hemodynamic indices were in concordance. However, differences between respiration state and 2D-1dir and 2D-3dir measurements indicate that reference values should be established according to the PC-MRI sequence, especially for the widely used net flow (e.g. stroke volume in the AA). PMID:27435230
Understanding neuromotor strategy during functional upper extremity tasks using symbolic dynamics.
Nathan, Dominic E; Guastello, Stephen J; Prost, Robert W; Jeutter, Dean C
2012-01-01
The ability to model and quantify brain activation patterns that pertain to natural neuromotor strategy of the upper extremities during functional task performance is critical to the development of therapeutic interventions such as neuroprosthetic devices. The mechanisms of information flow, activation sequence and patterns, and the interaction between anatomical regions of the brain that are specific to movement planning, intention and execution of voluntary upper extremity motor tasks were investigated here. This paper presents a novel method using symbolic dynamics (orbital decomposition) and nonlinear dynamic tools of entropy, self-organization and chaos to describe the underlying structure of activation shifts in regions of the brain that are involved with the cognitive aspects of functional upper extremity task performance. Several questions were addressed: (a) How is it possible to distinguish deterministic or causal patterns of activity in brain fMRI from those that are really random or non-contributory to the neuromotor control process? (b) Can the complexity of activation patterns over time be quantified? (c) What are the optimal ways of organizing fMRI data to preserve patterns of activation, activation levels, and extract meaningful temporal patterns as they evolve over time? Analysis was performed using data from a custom developed time resolved fMRI paradigm involving human subjects (N=18) who performed functional upper extremity motor tasks with varying time delays between the onset of intention and onset of actual movements. The results indicate that there is structure in the data that can be quantified through entropy and dimensional complexity metrics and statistical inference, and furthermore, orbital decomposition is sensitive in capturing the transition of states that correlate with the cognitive aspects of functional task performance.
NASA Astrophysics Data System (ADS)
DSouza, Adora M.; Abidin, Anas Z.; Leistritz, Lutz; Wismüller, Axel
2017-02-01
We investigate the applicability of large-scale Granger Causality (lsGC) for extracting a measure of multivariate information flow between pairs of regional brain activities from resting-state functional MRI (fMRI) and test the effectiveness of these measures for predicting a disease state. Such pairwise multivariate measures of interaction provide high-dimensional representations of connectivity profiles for each subject and are used in a machine learning task to distinguish between healthy controls and individuals presenting with symptoms of HIV Associated Neurocognitive Disorder (HAND). Cognitive impairment in several domains can occur as a result of HIV infection of the central nervous system. The current paradigm for assessing such impairment is through neuropsychological testing. With fMRI data analysis, we aim at non-invasively capturing differences in brain connectivity patterns between healthy subjects and subjects presenting with symptoms of HAND. To classify the extracted interaction patterns among brain regions, we use a prototype-based learning algorithm called Generalized Matrix Learning Vector Quantization (GMLVQ). Our approach to characterize connectivity using lsGC followed by GMLVQ for subsequent classification yields good prediction results with an accuracy of 87% and an area under the ROC curve (AUC) of up to 0.90. We obtain a statistically significant improvement (p<0.01) over a conventional Granger causality approach (accuracy = 0.76, AUC = 0.74). High accuracy and AUC values using our multivariate method to connectivity analysis suggests that our approach is able to better capture changes in interaction patterns between different brain regions when compared to conventional Granger causality analysis known from the literature.
Avitabile, Catherine M; Harris, Matthew A; Doddasomayajula, Ravi S; Chopski, Steven G; Gillespie, Matthew J; Dori, Yoav; Glatz, Andrew C; Fogel, Mark A; Whitehead, Kevin K
2018-06-15
Little data are available on the accuracy of phase-contrast magnetic resonance imaging (PC-MRI) velocity mapping in the vicinity of intravascular metal stents other than nitinol stents. Therefore, we sought to determine this accuracy using in vitro experiments. An in vitro flow phantom was used with 3 stent types: (1) 316L stainless steel, (2) nitinol self-expanding, and (3) platinum-iridium. Steady and pulsatile flow was delivered with a magnetic resonance imaging-compatible pump (CardioFlow 5000, Shelley Medical, London, Ontario, Canada). Flows were measured using a transit time flow meter (ME13PXN, Transonic, Inc, Ithaca, New York). Mean flows ranged from 0.5 to 7 L/min. For each condition, 5 PC-MRI acquisitions were made: within the stent, immediately adjacent to both edges of the stent artifact, and 1 cm upstream and downstream of the artifact. Mean PC-MRI flows were calculated by segmenting the tube lumen using clinical software (ARGUS, Siemens, Inc, Erlangen, Germany). PC-MRI and flow meter flows were compared by location and stent type using linear regression, Bland-Altman, and intraclass correlation (ICC). PC-MRI flows within the stent artifact were inaccurate for all stents studied, generally underestimating flow meter-measured flow. Agreement between PC-MRI and flow meter-measured flows was excellent for all stent types, both immediately adjacent to and 1 cm away from the edge of the stent artifact. Agreement was highest for the platinum-iridium stent (R = 0.999, ICC = 0.999) and lowest for the nitinol stent (R = 0.993, ICC = 0.987). In conclusion, PC-MRI flows are highly accurate just upstream and downstream of a variety of clinically used stents, supporting its use to directly measure flows in stented vessels. Copyright © 2018 Elsevier Inc. All rights reserved.
Wintermark, P; Hansen, A; Warfield, S K; Dukhovny, D; Soul, J S
2014-01-15
The measurement of brain perfusion may provide valuable information for assessment and treatment of newborns with hypoxic-ischemic encephalopathy (HIE). While arterial spin labeled perfusion (ASL) magnetic resonance imaging (MRI) provides noninvasive and direct measurements of regional cerebral blood flow (CBF) values, it is logistically challenging to obtain. Near-infrared spectroscopy (NIRS) might be an alternative, as it permits noninvasive and continuous monitoring of cerebral hemodynamics and oxygenation at the bedside. The purpose of this study is to determine the correlation between measurements of brain perfusion by NIRS and by MRI in term newborns with HIE treated with hypothermia. In this prospective cohort study, ASL-MRI and NIRS performed during hypothermia were used to assess brain perfusion in these newborns. Regional cerebral blood flow (CBF) values, measured from 1-2 MRI scans for each patient, were compared to mixed venous saturation values (SctO2) recorded by NIRS just before and after each MRI. Analysis included groupings into moderate versus severe HIE based on their initial background pattern of amplitude-integrated electroencephalogram. Twelve concomitant recordings were obtained of seven neonates. Strong correlation was found between SctO2 and CBF in asphyxiated newborns with severe HIE (r=0.88; p value=0.0085). Moreover, newborns with severe HIE had lower CBF (likely lower oxygen supply) and extracted less oxygen (likely lower oxygen demand or utilization) when comparing SctO2 and CBF to those with moderate HIE. NIRS is an effective bedside tool to monitor and understand brain perfusion changes in term asphyxiated newborns, which in conjunction with precise measurements of CBF obtained by MRI at particular times, may help tailor neuroprotective strategies in term newborns with HIE. Copyright © 2013 Elsevier Inc. All rights reserved.
Wintermark, P.; Hansen, A.; Warfield, SK.; Dukhovny, D.; Soul, JS.
2014-01-01
Background The measurement of brain perfusion may provide valuable information for assessment and treatment of newborns with hypoxic-ischemic encephalopathy (HIE). While arterial spin labeled perfusion (ASL) magnetic resonance imaging (MRI) provides noninvasive and direct measurements of regional cerebral blood flow (CBF) values, it is logistically challenging to obtain. Near-infrared spectroscopy (NIRS) might be an alternative, as it permits noninvasive and continuous monitoring of cerebral hemodynamics and oxygenation at the bedside. Objective The purpose of this study is to determine the correlation between measurements of brain perfusion by NIRS and by MRI in term newborns with HIE treated with hypothermia. Design/Methods In this prospective cohort study, ASL-MRI and NIRS performed during hypothermia were used to assess brain perfusion in these newborns. Regional cerebral blood flow values (CBF), measured from 1–2 MRI scans for each patient, were compared to mixed venous saturation values (SctO2) recorded by NIRS just before and after each MRI. Analysis included groupings into moderate versus severe HIE based on their initial background pattern of amplitude-integrated electroencephalogram. Results Twelve concomitant recordings were obtained of seven neonates. Strong correlation was found between SctO2 and CBF in asphyxiated newborns with severe HIE (r = 0.88; p value = 0.0085). Moreover, newborns with severe HIE had lower CBF (likely lower oxygen supply) and extracted less oxygen (likely lower oxygen demand or utilization) when comparing SctO2 and CBF to those with moderate HIE. Conclusions NIRS is an effective bedside tool to monitor and understand brain perfusion changes in term asphyxiated newborns, which in conjunction with precise measurements of CBF obtained by MRI at particular times, may help tailor neuroprotective strategies in term newborns with HIE. PMID:23631990
An Australian population study of factors associated with MRI patterns in cerebral palsy.
Reid, Susan M; Dagia, Charuta D; Ditchfield, Michael R; Carlin, John B; Meehan, Elaine M; Reddihough, Dinah S
2014-02-01
The aim of this study was to describe the distribution of magnetic resonance imaging (MRI) patterns in a large population sample of children with cerebral palsy (CP) and to examine associations between MRI patterns, and antenatal and perinatal variables. Data were retrieved from the Victorian CP Register for 884 children (527 males, 357 females) born between 1999 and 2006. Postneonatal MRI was classified for 594 children. For 563 children (329 males, 234 females) for whom classification was to a single MRI pattern, the frequency of each variable was compared between patterns and with the population frequency. White matter injury was the most common MRI pattern (45%), followed by grey matter injury (14%), normal imaging (13%), malformations (10%), focal vascular insults (9%), and miscellaneous patterns (7%). Parity, birth gestation, level of neonatal care, Apgar score, and time to established respiration varied between MRI patterns (p<0.01). Nulliparity was most strongly associated with focal vascular insults, whereas multiparity was associated only with malformations. Grey matter injury was not associated with birth in a tertiary unit, but was strongly associated with severe perinatal compromise. The frequency of neonatal seizures and of nursery admissions was lowest among children with malformations. As known risk factors for CP are differentially associated with specific MRI patterns, future exploration of causal pathways might be facilitated when performed in pathogenically defined groups. © 2013 Mac Keith Press.
Han, Q Joyce; Witschey, Walter R T; Fang-Yen, Christopher M; Arkles, Jeffrey S; Barker, Alex J; Forfia, Paul R; Han, Yuchi
2015-01-01
Right ventricular (RV) function has increasingly being recognized as an important predictor for morbidity and mortality in patients with pulmonary arterial hypertension (PAH). The increased RV after-load increase RV work in PAH. We used time-resolved 3D phase contrast MRI (4D flow MRI) to derive RV kinetic energy (KE) work density and energy loss in the pulmonary artery (PA) to better characterize RV work in PAH patients. 4D flow and standard cardiac cine images were obtained in ten functional class I/II patients with PAH and nine healthy subjects. For each individual, we calculated the RV KE work density and the amount of viscous dissipation in the PA. PAH patients had alterations in flow patterns in both the RV and the PA compared to healthy subjects. PAH subjects had significantly higher RV KE work density than healthy subjects (94.7±33.7 mJ/mL vs. 61.7±14.8 mJ/mL, p = 0.007) as well as a much greater percent PA energy loss (21.1±6.4% vs. 2.2±1.3%, p = 0.0001) throughout the cardiac cycle. RV KE work density and percent PA energy loss had mild and moderate correlations with RV ejection fraction. This study has quantified two kinetic energy metrics to assess RV function using 4D flow. RV KE work density and PA viscous energy loss not only distinguished healthy subjects from patients, but also provided distinction amongst PAH patients. These metrics hold promise as imaging markers for RV function.
Imaging features of colovesical fistulae on MRI.
Tang, Y Z; Booth, T C; Swallow, D; Shahabuddin, K; Thomas, M; Hanbury, D; Chang, S; King, C
2012-10-01
MRI is routinely used in the investigation of colovesical fistulae at our institute. Several papers have alluded to its usefulness in achieving the diagnosis; however, there is a paucity of literature on its imaging findings. Our objective was to quantify the MRI characteristics of these fistulae. We selected all cases over a 4-year period with a final clinical diagnosis of colovesical fistula which had been investigated with MRI. The MRI scans were reviewed in a consensus fashion by two consultant uroradiologists. Their MRI features were quantified. There were 40 cases of colovesical fistulae. On MRI, the fistula morphology consistently fell into three patterns. The most common pattern (71%) demonstrated an intervening abscess between the bowel wall and bladder wall. The second pattern (15%) had a visible track between the affected bowel and bladder. The third pattern (13%) was a complete loss of fat plane between the affected bladder and bowel wall. MRI correctly determined the underlying aetiology in 63% of cases. MRI is a useful imaging modality in the diagnosis of colovesical fistulae. The fistulae appear to have three characteristic morphological patterns that may aid future diagnoses of colovesical fistulae. To the authors' knowledge, this is the first publication of the MRI findings in colovesical fistulae.
Wada, Atsushi; Sakano, Yuichi; Ando, Hiroshi
2016-01-01
Vision is important for estimating self-motion, which is thought to involve optic-flow processing. Here, we investigated the fMRI response profiles in visual area V6, the precuneus motion area (PcM), and the cingulate sulcus visual area (CSv)—three medial brain regions recently shown to be sensitive to optic-flow. We used wide-view stereoscopic stimulation to induce robust self-motion processing. Stimuli included static, randomly moving, and coherently moving dots (simulating forward self-motion). We varied the stimulus size and the presence of stereoscopic information. A combination of univariate and multi-voxel pattern analyses (MVPA) revealed that fMRI responses in the three regions differed from each other. The univariate analysis identified optic-flow selectivity and an effect of stimulus size in V6, PcM, and CSv, among which only CSv showed a significantly lower response to random motion stimuli compared with static conditions. Furthermore, MVPA revealed an optic-flow specific multi-voxel pattern in the PcM and CSv, where the discrimination of coherent motion from both random motion and static conditions showed above-chance prediction accuracy, but that of random motion from static conditions did not. Additionally, while area V6 successfully classified different stimulus sizes regardless of motion pattern, this classification was only partial in PcM and was absent in CSv. This may reflect the known retinotopic representation in V6 and the absence of such clear visuospatial representation in CSv. We also found significant correlations between the strength of subjective self-motion and univariate activation in all examined regions except for primary visual cortex (V1). This neuro-perceptual correlation was significantly higher for V6, PcM, and CSv when compared with V1, and higher for CSv when compared with the visual motion area hMT+. Our convergent results suggest the significant involvement of CSv in self-motion processing, which may give rise to its percept. PMID:26973588
Studies of the Tumor Microenvironment in Pathogenesis of Neuroblastoma
2012-07-01
DISTRIBUTION / AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES 14. ABSTRACT The NBL -Tag neuroblastoma mice were crossed with B-cell... NBL -Tag mice were established. The NBL -Tag/B-cell deficient mice lacked B-cells as expected using flow cytometry analyses and immunohistochemistry...However, the lack of B-cells did not alter the growth patterns of NBL -Tag tumor formation as imaged by MRI. Studies using anti-B cell therapy were
4D flow mri post-processing strategies for neuropathologies
NASA Astrophysics Data System (ADS)
Schrauben, Eric Mathew
4D flow MRI allows for the measurement of a dynamic 3D velocity vector field. Blood flow velocities in large vascular territories can be qualitatively visualized with the added benefit of quantitative probing. Within cranial pathologies theorized to have vascular-based contributions or effects, 4D flow MRI provides a unique platform for comprehensive assessment of hemodynamic parameters. Targeted blood flow derived measurements, such as flow rate, pulsatility, retrograde flow, or wall shear stress may provide insight into the onset or characterization of more complex neuropathologies. Therefore, the thorough assessment of each parameter within the context of a given disease has important medical implications. Not surprisingly, the last decade has seen rapid growth in the use of 4D flow MRI. Data acquisition sequences are available to researchers on all major scanner platforms. However, the use has been limited mostly to small research trials. One major reason that has hindered the more widespread use and application in larger clinical trials is the complexity of the post-processing tasks and the lack of adequate tools for these tasks. Post-processing of 4D flow MRI must be semi-automated, fast, user-independent, robust, and reliably consistent for use in a clinical setting, within large patient studies, or across a multicenter trial. Development of proper post-processing methods coupled with systematic investigation in normal and patient populations pushes 4D flow MRI closer to clinical realization while elucidating potential underlying neuropathological origins. Within this framework, the work in this thesis assesses venous flow reproducibility and internal consistency in a healthy population. A preliminary analysis of venous flow parameters in healthy controls and multiple sclerosis patients is performed in a large study employing 4D flow MRI. These studies are performed in the context of the chronic cerebrospinal venous insufficiency hypothesis. Additionally, a double-gated flow acquisition and reconstruction scheme demonstrates respiratory-induced changes in internal jugular vein flow. Finally, a semi-automated intracranial vessel segmentation and flow parameter measurement software tool for fast and consistent 4D flow post-processing analysis is developed, validated, and exhibited an in-vivo.
Visual brain activity patterns classification with simultaneous EEG-fMRI: A multimodal approach.
Ahmad, Rana Fayyaz; Malik, Aamir Saeed; Kamel, Nidal; Reza, Faruque; Amin, Hafeez Ullah; Hussain, Muhammad
2017-01-01
Classification of the visual information from the brain activity data is a challenging task. Many studies reported in the literature are based on the brain activity patterns using either fMRI or EEG/MEG only. EEG and fMRI considered as two complementary neuroimaging modalities in terms of their temporal and spatial resolution to map the brain activity. For getting a high spatial and temporal resolution of the brain at the same time, simultaneous EEG-fMRI seems to be fruitful. In this article, we propose a new method based on simultaneous EEG-fMRI data and machine learning approach to classify the visual brain activity patterns. We acquired EEG-fMRI data simultaneously on the ten healthy human participants by showing them visual stimuli. Data fusion approach is used to merge EEG and fMRI data. Machine learning classifier is used for the classification purposes. Results showed that superior classification performance has been achieved with simultaneous EEG-fMRI data as compared to the EEG and fMRI data standalone. This shows that multimodal approach improved the classification accuracy results as compared with other approaches reported in the literature. The proposed simultaneous EEG-fMRI approach for classifying the brain activity patterns can be helpful to predict or fully decode the brain activity patterns.
Cooper, Elisa; Henson, Richard N.
2013-01-01
A simple cue can be sufficient to elicit vivid recollection of a past episode. Theoretical models suggest that upon perceiving such a cue, disparate episodic elements held in neocortex are retrieved through hippocampal pattern completion. We tested this fundamental assumption by applying functional magnetic resonance imaging (fMRI) while objects or scenes were used to cue participants' recall of previously paired scenes or objects, respectively. We first demonstrate functional segregation within the medial temporal lobe (MTL), showing domain specificity in perirhinal and parahippocampal cortices (for object-processing vs scene-processing, respectively), but domain generality in the hippocampus (retrieval of both stimulus types). Critically, using fMRI latency analysis and dynamic causal modeling, we go on to demonstrate functional integration between these MTL regions during successful memory retrieval, with reversible signal flow from the cue region to the target region via the hippocampus. This supports the claim that the human hippocampus provides the vital associative link that integrates information held in different parts of cortex. PMID:23986252
Oxygen-limited thermal tolerance in Antarctic fish investigated by MRI and (31)P-MRS.
Mark, F C; Bock, C; Pörtner, H O
2002-11-01
The hypothesis of an oxygen-limited thermal tolerance was tested in the Antarctic teleost Pachycara brachycephalum. With the use of flow-through respirometry, in vivo (31)P-NMR spectroscopy, and MRI, we studied energy metabolism, intracellular pH (pH(i)), blood flow, and oxygenation between 0 and 13 degrees C under normoxia (PO(2): 20.3 to 21.3 kPa) and hyperoxia (PO(2): 45 kPa). Hyperoxia reduced the metabolic increment and the rise in arterial blood flow observed under normoxia. The normoxic increase of blood flow leveled off beyond 7 degrees C, indicating a cardiovascular capacity limitation. Ventilatory effort displayed an exponential rise in both groups. In the liver, blood oxygenation increased, whereas in white muscle it remained unaltered (normoxia) or declined (hyperoxia). In both groups, the slope of pH(i) changes followed the alpha-stat pattern below 6 degrees C, whereas it decreased above. In conclusion, aerobic scope declines around 6 degrees C under normoxia, marking the pejus temperature. By reducing circulatory costs, hyperoxia improves aerobic scope but is unable to shift the breakpoint in pH regulation or lethal limits. Hyperoxia appears beneficial at sublethal temperatures, but no longer beyond when cellular or molecular functions become disturbed.
Wang, Jian; Xiang, Bo; Lin, Hung Yu; Liu, Hongyu; Freed, Darren; Arora, Rakesh C.; Tian, Ganghong
2015-01-01
Objectives Because the distribution volume and mechanism of extracellular and intravascular MR contrast media differ considerably, the enhancement pattern of chronic myocardial infarction with extracellular or intravascular media might also be different. This study aims to investigate the differences in MR enhancement patterns of chronic myocardial infarction between extracellular and intravascular contrast media. Materials and Methods Twenty pigs with myocardial infarction underwent cine MRI, first pass perfusion MRI and delayed enhancement MRI with extracellular or intravascular media at four weeks after coronary occlusion. Myocardial blood flow (MBF) was determined with microsphere measurement. The infarction histopathological changes were evaluated by hematoxylin and eosin staining and Masson's trichrome method. Results Cine MRI revealed the reduced wall thickening in chronic infarction compared with normal myocardium. Moreover, significant wall thinning in chronic infarction was observed in cine MRI. Peak first-pass signal intensity didn’t significantly differ between chronic infarction and normal myocardium no matter what kinds of contrast media. At the following delayed enhancement phase, extracellular media-enhanced signal intensity was significantly higher in chronic infarction than in normal myocardium. Conversely, intravascular media-enhanced signal intensity was almost equivalent among chronic infarction and normal myocardium. At four weeks after infarction, MBF in chronic infarction approached to that in normal myocardium. Large thick-walled vessels were detected at peri-infarction zones. The cardiomyocytes were replaced by scar tissue consisting of dilated blood vessels and discrete fibers of collagen. Conclusions Chronic infarction was characterized by the significantly reduced wall thickening and the definite wall thinning. First-pass myocardial perfusion defect was not detected in chronic infarction with two media due to the significantly recovered MBF and well-developed collateral vessels. Infarction remodeling enlarged the extracellular compartment, which was available for extracellular media but not accessible to intravascular media. Extracellular media identified chronic infarction as the hyper-enhancement; nonetheless, intravascular media didn’t provide delayed enhancement. PMID:25816056
Respiration and the watershed of spinal CSF flow in humans.
Dreha-Kulaczewski, Steffi; Konopka, Mareen; Joseph, Arun A; Kollmeier, Jost; Merboldt, Klaus-Dietmar; Ludwig, Hans-Christoph; Gärtner, Jutta; Frahm, Jens
2018-04-04
The dynamics of human CSF in brain and upper spinal canal are regulated by inspiration and connected to the venous system through associated pressure changes. Upward CSF flow into the head during inspiration counterbalances venous flow out of the brain. Here, we investigated CSF motion along the spinal canal by real-time phase-contrast flow MRI at high spatial and temporal resolution. Results reveal a watershed of spinal CSF dynamics which divides flow behavior at about the level of the heart. While forced inspiration prompts upward surge of CSF flow volumes in the entire spinal canal, ensuing expiration leads to pronounced downward CSF flow, but only in the lower canal. The resulting pattern of net flow volumes during forced respiration yields upward CSF motion in the upper and downward flow in the lower spinal canal. These observations most likely reflect closely coupled CSF and venous systems as both large caval veins and their anastomosing vertebral plexus react to respiration-induced pressure changes.
Stadlbauer, Andreas; van der Riet, Wilma; Crelier, Gerard; Salomonowitz, Erich
2010-07-01
To assess the feasibility and potential limitations of the acceleration techniques SENSE and k-t BLAST for time-resolved three-dimensional (3D) velocity mapping of aortic blood flow. Furthermore, to quantify differences in peak velocity versus heart phase curves. Time-resolved 3D blood flow patterns were investigated in eleven volunteers and two patients suffering from aortic diseases with accelerated PC-MR sequences either in combination with SENSE (R=2) or k-t BLAST (6-fold). Both sequences showed similar data acquisition times and hence acceleration efficiency. Flow-field streamlines were calculated and visualized using the GTFlow software tool in order to reconstruct 3D aortic blood flow patterns. Differences between the peak velocities from single-slice PC-MRI experiments using SENSE 2 and k-t BLAST 6 were calculated for the whole cardiac cycle and averaged for all volunteers. Reconstruction of 3D flow patterns in volunteers revealed attenuations in blood flow dynamics for k-t BLAST 6 compared to SENSE 2 in terms of 3D streamlines showing fewer and less distinct vortices and reduction in peak velocity, which is caused by temporal blurring. Solely by time-resolved 3D MR velocity mapping in combination with SENSE detected pathologic blood flow patterns in patients with aortic diseases. For volunteers, we found a broadening and flattering of the peak velocity versus heart phase diagram between the two acceleration techniques, which is an evidence for the temporal blurring of the k-t BLAST approach. We demonstrated the feasibility of SENSE and detected potential limitations of k-t BLAST when used for time-resolved 3D velocity mapping. The effects of higher k-t BLAST acceleration factors have to be considered for application in 3D velocity mapping. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
van Amerom, Joshua F P; Kellenberger, Christian J; Yoo, Shi-Joon; Macgowan, Christopher K
2009-01-01
An automated method was evaluated to detect blood flow in small pulmonary arteries and classify each as artery or vein, based on a temporal correlation analysis of their blood-flow velocity patterns. The method was evaluated using velocity-sensitive phase-contrast magnetic resonance data collected in vitro with a pulsatile flow phantom and in vivo in 11 human volunteers. The accuracy of the method was validated in vitro, which showed relative velocity errors of 12% at low spatial resolution (four voxels per diameter), but was reduced to 5% at increased spatial resolution (16 voxels per diameter). The performance of the method was evaluated in vivo according to its reproducibility and agreement with manual velocity measurements by an experienced radiologist. In all volunteers, the correlation analysis was able to detect and segment peripheral pulmonary vessels and distinguish arterial from venous velocity patterns. The intrasubject variability of repeated measurements was approximately 10% of peak velocity, or 2.8 cm/s root-mean-variance, demonstrating the high reproducibility of the method. Excellent agreement was obtained between the correlation analysis and radiologist measurements of pulmonary velocities, with a correlation of R2=0.98 (P<.001) and a slope of 0.99+/-0.01.
Choi, Young Joon; Constantino, Jason; Vedula, Vijay; Trayanova, Natalia; Mittal, Rajat
2015-01-01
A methodology for the simulation of heart function that combines an MRI-based model of cardiac electromechanics (CE) with a Navier–Stokes-based hemodynamics model is presented. The CE model consists of two coupled components that simulate the electrical and the mechanical functions of the heart. Accurate representations of ventricular geometry and fiber orientations are constructed from the structural magnetic resonance and the diffusion tensor MR images, respectively. The deformation of the ventricle obtained from the electromechanical model serves as input to the hemodynamics model in this one-way coupled approach via imposed kinematic wall velocity boundary conditions and at the same time, governs the blood flow into and out of the ventricular volume. The time-dependent endocardial surfaces are registered using a diffeomorphic mapping algorithm, while the intraventricular blood flow patterns are simulated using a sharp-interface immersed boundary method-based flow solver. The utility of the combined heart-function model is demonstrated by comparing the hemodynamic characteristics of a normal canine heart beating in sinus rhythm against that of the dyssynchronously beating failing heart. We also discuss the potential of coupled CE and hemodynamics models for various clinical applications. PMID:26442254
Takano, Hiroshi; Nishida, Naohiro; Itoh, Masayuki; Hyo, Noboru; Majima, Yuichi
2006-01-01
To evaluate the clinical effectiveness of aerosol therapy for the lower and upper respiratory airways, particle deposition at the human laryngeal region has been analyzed with various unsteady-state respiratory flow-patterns. The flow profiles and trajectory of aerosol particles were calculated by 3-D thermo-fluid analysis of a finite volume method (FVM) with 8-CPUs parallel computational system. A reconstructed physical model of the real laryngeal airways was modified from 3-D CAM modeling function of Rhinoceros based on the images of Magnetic Resonance Imaging (MRI). By using 104 MRI images taken vertically and horizontally at intervals of 2 mm on the oral cavity and the pharynx-larynx respectively, 3-D physical model of the laryngeal airways was obtained. The numerical results of flow profile analyzed by the unsteady-state respiration model showed that vortex flow was occurred with time at near larynx, showing uniform flow profile in both the oral cavity and upper side of pharynx. The vortex was appeared at the anterior part of the epiglottis and downward of the vocal cord. However, it was confirmed that few particles deposit in the vocal cord. In these cases, the particle deposition was taken place mostly at the oral cavity and the oropharynx. On the other hand, the relationship between the particle deposition efficiency and the impaction in the laryngeal region was well agreement with the data sets of ICRP task group (1993) for the larynx deposition.
Cutajar, Marica; Thomas, David L; Hales, Patrick W; Banks, T; Clark, Christopher A; Gordon, Isky
2014-06-01
To investigate the reproducibility of arterial spin labelling (ASL) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and quantitatively compare these techniques for the measurement of renal blood flow (RBF). Sixteen healthy volunteers were examined on two different occasions. ASL was performed using a multi-TI FAIR labelling scheme with a segmented 3D-GRASE imaging module. DCE MRI was performed using a 3D-FLASH pulse sequence. A Bland-Altman analysis was used to assess repeatability of each technique, and determine the degree of correspondence between the two methods. The overall mean cortical renal blood flow (RBF) of the ASL group was 263 ± 41 ml min(-1) [100 ml tissue](-1), and using DCE MRI was 287 ± 70 ml min(-1) [100 ml tissue](-1). The group coefficient of variation (CVg) was 18 % for ASL and 28 % for DCE-MRI. Repeatability studies showed that ASL was more reproducible than DCE with CVgs of 16 % and 25 % for ASL and DCE respectively. Bland-Altman analysis comparing the two techniques showed a good agreement. The repeated measures analysis shows that the ASL technique has better reproducibility than DCE-MRI. Difference analysis shows no significant difference between the RBF values of the two techniques. Reliable non-invasive monitoring of renal blood flow is currently clinically unavailable. Renal arterial spin labelling MRI is robust and repeatable. Renal dynamic contrast-enhanced MRI is robust and repeatable. ASL blood flow values are similar to those obtained using DCE-MRI.
Gijsen, Frank J.; Marquering, Henk; van Ooij, Pim; vanBavel, Ed; Wentzel, Jolanda J.; Nederveen, Aart J.
2016-01-01
Introduction Wall shear stress (WSS) and oscillatory shear index (OSI) are associated with atherosclerotic disease. Both parameters are derived from blood velocities, which can be measured with phase-contrast MRI (PC-MRI). Limitations in spatiotemporal resolution of PC-MRI are known to affect these measurements. Our aim was to investigate the effect of spatiotemporal resolution using a carotid artery phantom. Methods A carotid artery phantom was connected to a flow set-up supplying pulsatile flow. MRI measurement planes were placed at the common carotid artery (CCA) and internal carotid artery (ICA). Two-dimensional PC-MRI measurements were performed with thirty different spatiotemporal resolution settings. The MRI flow measurement was validated with ultrasound probe measurements. Mean flow, peak flow, flow waveform, WSS and OSI were compared for these spatiotemporal resolutions using regression analysis. The slopes of the regression lines were reported in %/mm and %/100ms. The distribution of low and high WSS and OSI was compared between different spatiotemporal resolutions. Results The mean PC-MRI CCA flow (2.5±0.2mL/s) agreed with the ultrasound probe measurements (2.7±0.02mL/s). Mean flow (mL/s) depended only on spatial resolution (CCA:-13%/mm, ICA:-49%/mm). Peak flow (mL/s) depended on both spatial (CCA:-13%/mm, ICA:-17%/mm) and temporal resolution (CCA:-19%/100ms, ICA:-24%/100ms). Mean WSS (Pa) was in inverse relationship only with spatial resolution (CCA:-19%/mm, ICA:-33%/mm). OSI was dependent on spatial resolution for CCA (-26%/mm) and temporal resolution for ICA (-16%/100ms). The regions of low and high WSS and OSI matched for most of the spatiotemporal resolutions (CCA:30/30, ICA:28/30 cases for WSS; CCA:23/30, ICA:29/30 cases for OSI). Conclusion We show that both mean flow and mean WSS are independent of temporal resolution. Peak flow and OSI are dependent on both spatial and temporal resolution. However, the magnitude of mean and peak flow, WSS and OSI, and the spatial distribution of OSI and WSS did not exhibit a strong dependency on spatiotemporal resolution. PMID:27669568
Frič, Radek; Lindstrøm, Erika Kristina; Ringstad, Geir Andre; Mardal, Kent-André; Eide, Per Kristian
2016-12-01
In symptomatic Chiari malformation type 1 (CMI), impaired intracranial compliance (ICC) is associated with an increased cranio-spinal pulsatile pressure gradient. Phase-contrast magnetic resonance imaging (MRI) represents a non-invasive modality for the assessment of the pulse pressure gradient at the cranio-cervical junction (CCJ). We wished to explore how the MRI-derived pulse pressure gradient (MRI-dP) compares with invasively measured pulsatile intracranial pressure (ICP) in CMI, and with healthy controls. From phase-contrast MRI of CMI patients and healthy controls, we computed cerebrospinal fluid (CSF) flow velocities and MRI-dP at the CCJ. We assessed bidirectional flow and compared the flow between the anterior and the posterior subarachnoid space at the CCJ. We computed total intracranial volume (ICV), ventricular CSF volume (VV), and posterior cranial fossa volume (PCFV). We analyzed the static and pulsatile ICP scores from overnight monitoring in CMI patients. Five CMI patients and four healthy subjects were included. The CMI group had a significantly larger extent of tonsillar ectopia, smaller PCFV, and a smaller area of CSF in the FM. The pulsatile ICP (mean ICP wave amplitude, MWA) was abnormally increased in 4/5 CMI patients and correlated positively with MRI-dP. However, the MRI-dP as well as the CSF flow velocities did not differ significantly between CMI and healthy subjects. Moreover, bidirectional flow was observed in both CMI as well as healthy subjects, with no significant difference. In symptomatic CMI patients, we found a significant association between the pulse pressure gradient at the CCJ derived from phase-contrast MRI and the pulsatile ICP (MWA) measured invasively. However, the MRI-dP was close to identical in CMI patients and healthy subjects. Moreover, the CSF flow velocities at the CCJ and the occurrence of bidirectional flow were not different in CMI patients and healthy individuals. Further studies are required to determine the diagnostic role of phase-contrast MRI in CMI patients.
Plasma MRI Experiments at UW-Madison
NASA Astrophysics Data System (ADS)
Flanagan, K.; Clark, M.; Desangles, V.; Siller, R.; Wallace, J.; Weisberg, D.; Forest, C. B.
2015-11-01
Experiments for driving Keplerian-like flow profiles on both the Plasma Couette Experiment Upgrade (PCX-U) and the Wisconsin Plasma Astrophysics Laboratory (WiPAL) user facility are described. Instead of driving flow at the boundaries, as is typical in many liquid metal Couette experiments, a global drive is implemented. A large radial current is drawn across a small axial field generating torque across the whole profile. This global electrically driven flow is capable of producing profiles similar to Keplerian flow. PCX-U has been purposely constructed for MRI experiments, while similar experiments on the WiPAL device show the versatility of the user facility and provide a larger plasma volume. Numerical calculations show the predicted parameter spaces for exciting the MRI in these plasmas and the equilibrium flow profiles expected. In both devices, relevant MRI parameters appear to be within reach of typical operating characteristics.
Development of an outdoor MRI system for measuring flow in a living tree
NASA Astrophysics Data System (ADS)
Nagata, Akiyoshi; Kose, Katsumi; Terada, Yasuhiko
2016-04-01
An outdoor MRI system for noninvasive, long-term measurements of sap flow in a living tree in its natural environment has been developed. An open-access, 0.2 T permanent magnet with a 160 mm gap was combined with a radiofrequency probe, planar gradient coils, electromagnetic shielding, several electrical units, and a waterproofing box. Two-dimensional cross-sectional images were acquired for a ring-porous tree, and the anatomical structures, including xylem and phloem, were identified. The MRI flow measurements demonstrated the diurnal changes in flow velocity in the stem on a per-pixel basis. These results demonstrate that our outdoor MRI system is a powerful tool for studies of water transport in outdoor trees.
Haraldsson, Henrik; Kefayati, Sarah; Ahn, Sinyeob; Dyverfeldt, Petter; Lantz, Jonas; Karlsson, Matts; Laub, Gerhard; Ebbers, Tino; Saloner, David
2018-04-01
To measure the Reynolds stress tensor using 4D flow MRI, and to evaluate its contribution to computed pressure maps. A method to assess both velocity and Reynolds stress using 4D flow MRI is presented and evaluated. The Reynolds stress is compared by cross-sectional integrals of the Reynolds stress invariants. Pressure maps are computed using the pressure Poisson equation-both including and neglecting the Reynolds stress. Good agreement is seen for Reynolds stress between computational fluid dynamics, simulated MRI, and MRI experiment. The Reynolds stress can significantly influence the computed pressure loss for simulated (eg, -0.52% vs -15.34% error; P < 0.001) and experimental (eg, 306 ± 11 vs 203 ± 6 Pa; P < 0.001) data. A 54% greater pressure loss is seen at the highest experimental flow rate when accounting for Reynolds stress (P < 0.001). 4D flow MRI with extended motion-encoding enables quantification of both the velocity and the Reynolds stress tensor. The additional information provided by this method improves the assessment of pressure gradients across a stenosis in the presence of turbulence. Unlike conventional methods, which are only valid if the flow is laminar, the proposed method is valid for both laminar and disturbed flow, a common presentation in diseased vessels. Magn Reson Med 79:1962-1971, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Schnerr, Roald S; Jansen, Jacobus F A; Uludag, Kamil; Hofman, Paul A M; Wildberger, Joachim E; van Oostenbrugge, Robert J; Backes, Walter H
2017-01-01
Characterization of flow properties in cerebral arteries with 1.5 and 3 Tesla MRI is usually limited to large cerebral arteries and difficult to evaluate in the small perforating arteries due to insufficient spatial resolution. In this study, we assessed the feasibility to measure blood flow waveforms in the small lenticulostriate arteries with 7 Tesla velocity-sensitive MRI. The middle cerebral artery was included as reference. Imaging was performed in five young and five old healthy volunteers. Flow was calculated by integrating time-varying velocity values over the vascular cross-section. MRI acquisitions were performed twice in each subject to determine reproducibility. From the flow waveforms, the pulsatility index and damping factor were deduced. Reproducibility values, in terms of the intraclass correlation coefficients, were found to be good to excellent. Measured pulsatility index of the lenticulostriate arteries significantly increased and damping factor significantly decreased with age. In conclusion, we demonstrate that blood flow through the lenticostriate arteries can be precisely measured using 7 Tesla MRI and reveal effects of arterial stiffness due to aging. These findings hold promise to provide relevant insights into the pathologies involving perforating cerebral arteries.
Magnetic resonance imaging of chemistry.
Britton, Melanie M
2010-11-01
Magnetic resonance imaging (MRI) has long been recognized as one of the most important tools in medical diagnosis and research. However, MRI is also well placed to image chemical reactions and processes, determine the concentration of chemical species, and look at how chemistry couples with environmental factors, such as flow and heterogeneous media. This tutorial review will explain how magnetic resonance imaging works, reviewing its application in chemistry and its ability to directly visualise chemical processes. It will give information on what resolution and contrast are possible, and what chemical and physical parameters can be measured. It will provide examples of the use of MRI to study chemical systems, its application in chemical engineering and the identification of contrast agents for non-clinical applications. A number of studies are presented including investigation of chemical conversion and selectivity in fixed-bed reactors, temperature probes for catalyst pellets, ion mobility during tablet dissolution, solvent dynamics and ion transport in Nafion polymers and the formation of chemical waves and patterns.
Neural Representations of Physics Concepts.
Mason, Robert A; Just, Marcel Adam
2016-06-01
We used functional MRI (fMRI) to assess neural representations of physics concepts (momentum, energy, etc.) in juniors, seniors, and graduate students majoring in physics or engineering. Our goal was to identify the underlying neural dimensions of these representations. Using factor analysis to reduce the number of dimensions of activation, we obtained four physics-related factors that were mapped to sets of voxels. The four factors were interpretable as causal motion visualization, periodicity, algebraic form, and energy flow. The individual concepts were identifiable from their fMRI signatures with a mean rank accuracy of .75 using a machine-learning (multivoxel) classifier. Furthermore, there was commonality in participants' neural representation of physics; a classifier trained on data from all but one participant identified the concepts in the left-out participant (mean accuracy = .71 across all nine participant samples). The findings indicate that abstract scientific concepts acquired in an educational setting evoke activation patterns that are identifiable and common, indicating that science education builds abstract knowledge using inherent, repurposed brain systems. © The Author(s) 2016.
Visual Learning Induces Changes in Resting-State fMRI Multivariate Pattern of Information.
Guidotti, Roberto; Del Gratta, Cosimo; Baldassarre, Antonello; Romani, Gian Luca; Corbetta, Maurizio
2015-07-08
When measured with functional magnetic resonance imaging (fMRI) in the resting state (R-fMRI), spontaneous activity is correlated between brain regions that are anatomically and functionally related. Learning and/or task performance can induce modulation of the resting synchronization between brain regions. Moreover, at the neuronal level spontaneous brain activity can replay patterns evoked by a previously presented stimulus. Here we test whether visual learning/task performance can induce a change in the patterns of coded information in R-fMRI signals consistent with a role of spontaneous activity in representing task-relevant information. Human subjects underwent R-fMRI before and after perceptual learning on a novel visual shape orientation discrimination task. Task-evoked fMRI patterns to trained versus novel stimuli were recorded after learning was completed, and before the second R-fMRI session. Using multivariate pattern analysis on task-evoked signals, we found patterns in several cortical regions, as follows: visual cortex, V3/V3A/V7; within the default mode network, precuneus, and inferior parietal lobule; and, within the dorsal attention network, intraparietal sulcus, which discriminated between trained and novel visual stimuli. The accuracy of classification was strongly correlated with behavioral performance. Next, we measured multivariate patterns in R-fMRI signals before and after learning. The frequency and similarity of resting states representing the task/visual stimuli states increased post-learning in the same cortical regions recruited by the task. These findings support a representational role of spontaneous brain activity. Copyright © 2015 the authors 0270-6474/15/359786-13$15.00/0.
Cibis, Merih; Jarvis, Kelly; Markl, Michael; Rose, Michael; Rigsby, Cynthia; Barker, Alex J.; Wentzel, Jolanda J.
2016-01-01
Viscous dissipation inside Fontan circulation, a parameter associated with the exercise intolerance of Fontan patients, can be derived from computational fluid dynamics (CFD) or 4D flow MRI velocities. However, the impact of spatial resolution and measurement noise on the estimation of viscous dissipation is unclear. Our aim was to evaluate the influence of these parameters on viscous dissipation calculation. Six Fontan patients underwent whole heart 4D flow MRI. Subject-specific CFD simulations were performed. The CFD velocities were down-sampled to isotropic spatial resolutions of 0.5 mm, 1 mm, 2 mm and to MRI resolution. Viscous dissipation was compared between (1) high resolution CFD velocities, (2) CFD velocities down-sampled to MRI resolution, (3) down-sampled CFD velocities with MRI mimicked noise levels, and (4) in-vivo 4D flow MRI velocities. Relative viscous dissipation between subjects was also calculated. 4D flow MRI velocities (15.6±3.8 cm/s) were higher, although not significantly different than CFD velocities (13.8±4.7 cm/s, p=0.16), down-sampled CFD velocities (12.3±4.4 cm/s, p=0.06) and the down-sampled CFD velocities with noise (13.2±4.2 cm/s, p=0.06). CFD-based viscous dissipation (0.81±0.55 mW) was significantly higher than those based on down-sampled CFD (0.25±0.19 mW, p=0.03), down-sampled CFD with noise (0.49±0.26 mW, p=0.03) and 4D flow MRI (0.56±0.28 mW, p=0.06). Nevertheless, relative viscous dissipation between different subjects was maintained irrespective of resolution and noise, suggesting that comparison of viscous dissipation between patients is still possible. PMID:26298492
Xuesong, Du; Wei, Xue; Heng, Liu; Xiao, Chen; Shunan, Wang; Yu, Guo; Weiguo, Zhang
2017-09-01
Background Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has been proved useful in evaluating glioma angiogenesis, but the utility in evaluating neovascularization patterns has not been reported. Purpose To evaluate in vivo real-time glioma neovascularization patterns by measuring glioma perfusion quantitatively using DCE-MRI. Material and Methods Thirty Sprague-Dawley rats were used to establish C6 orthotopic glioma model and underwent MRI and pathology detections. As MRI and pathology were performed at six time points (i.e. 4, 8, 12, 16, 20, and 24 days) post transplantation, neovascularization patterns were evaluated via DCE-MRI. Results Four neovascularization patterns were observed in glioma tissues. Sprout angiogenesis and intussusceptive microvascular growth located inside tumor, while vascular co-option and vascular mimicry were found in the tumor margin and necrotic area, respectively. Sprout angiogenesis and intussusceptive microvascular growth increased with K trans , K ep , and V p inside tumor tissue. In addition, K ep and V p were positively correlated with sprout angiogenesis and intussusceptive microvascular growth. Vascular co-option was decreased at 12 and 16 days post transplantation and correlated negatively with K trans and K ep detected in the glioma margin, respectively. Changes of vascular mimicry showed no significant statistical difference at the six time points. Conclusion Our results indicate that DCE-MRI can evaluate neovascularization patterns in a glioma model. Furthermore, DCE-MRI could be an imaging biomarker for guidance of antiangiogenic treatments in humans in the future.
Retrospectively gated intracardiac 4D flow MRI using spiral trajectories.
Petersson, Sven; Sigfridsson, Andreas; Dyverfeldt, Petter; Carlhäll, Carl-Johan; Ebbers, Tino
2016-01-01
To develop and evaluate retrospectively gated spiral readout four-dimensional (4D) flow MRI for intracardiac flow analysis. Retrospectively gated spiral 4D flow MRI was implemented on a 1.5-tesla scanner. The spiral sequence was compared against conventional Cartesian 4D flow (SENSE [sensitivity encoding] 2) in seven healthy volunteers and three patients (only spiral). In addition to comparing flow values, linear regression was used to assess internal consistency of aortic versus pulmonary net volume flows and left ventricular inflow versus outflow using quantitative pathlines analysis. Total scan time with spiral 4D flow was 44% ± 6% of the Cartesian counterpart (13 ± 3 vs. 31 ± 7 min). Aortic versus pulmonary flow correlated strongly for the spiral sequence (P < 0.05, slope = 1.03, R(2) = 0.88, N = 10), whereas the linear relationship for the Cartesian sequence was not significant (P = 0.06, N = 7). Pathlines analysis indicated good data quality for the spiral (P < 0.05, slope = 1.02, R(2) = 0.90, N = 10) and Cartesian sequence (P < 0.05, slope = 1.10, R(2) = 0.93, N = 7). Spiral and Cartesian peak flow rate (P < 0.05, slope = 0.96, R(2) = 0.72, N = 14), peak velocity (P < 0.05, slope = 1.00, R(2) = 0.81, N = 14), and pathlines flow components (P < 0.05, slope = 1.04, R(2) = 0.87, N = 28) correlated well. Retrospectively gated spiral 4D flow MRI permits more than two-fold reduction in scan time compared to conventional Cartesian 4D flow MRI, while maintaining similar data quality. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Lantz, Jonas; Gupta, Vikas; Henriksson, Lilian; Karlsson, Matts; Persson, Ander; Carhall, Carljohan; Ebbers, Tino
2017-11-01
In this study, cardiac blood flow was simulated using Computational Fluid Dynamics and compared to in vivo flow measurements by 4D Flow MRI. In total, nine patients with various heart diseases were studied. Geometry and heart wall motion for the simulations were obtained from clinical CT measurements, with 0.3x0.3x0.3 mm spatial resolution and 20 time frames covering one heartbeat. The CFD simulations included pulmonary veins, left atrium and ventricle, mitral and aortic valve, and ascending aorta. Mesh sizes were on the order of 6-16 million cells, depending on the size of the heart, in order to resolve both papillary muscles and trabeculae. The computed flow field agreed visually very well with 4D Flow MRI, with characteristic vortices and flow structures seen in both techniques. Regression analysis showed that peak flow rate as well as stroke volume had an excellent agreement for the two techniques. We demonstrated the feasibility, and more importantly, fidelity of cardiac flow simulations by comparing CFD results to in vivo measurements. Both qualitative and quantitative results agreed well with the 4D Flow MRI measurements. Also, the developed simulation methodology enables ``what if'' scenarios, such as optimization of valve replacement and other surgical procedures. Funded by the Wallenberg Foundation.
Role of eNOS in water exchange index maintenance-MRI studies
NASA Astrophysics Data System (ADS)
Atochin, D.; Litvak, M.; Huang, S.; Kim, Y. R.; Huang, P.
2017-08-01
Stroke studies employ experimental models of cerebral ischemic and reperfusion injury in rodents. MRI provides valuable supravital data of cerebral blood flow and brain tissue damage. This paper presents MRI applications for cerebral blood flow research in mice lines with impaired nitric oxide production by endothelial nitric oxide synthase. Our data demonstrates that specific modifications of MRI methodology in transgenic mouse models help to evaluate the role of eNOS in the brain-blood barrier function.
Bernstein, Jonathan A; Hastings, Lloyd; Boespflug, Erin L; Allendorfer, Jane B; Lamy, Martine; Eliassen, James C
2011-06-01
Although nonallergic rhinitis (NAR) patients tend to be more sensitive to chemical/olfactory stimuli, a suprathreshold olfactory response or the presence of specific olfactory receptor genes do not explain why their symptoms are triggered by such exposures. To investigate differential neurogenic responses to azelastine in NAR patients, using functional magnetic resonance imaging (fMRI) in response to specific olfactory triggers. A longitudinal study design on 12 subjects with a physician diagnosis of NAR previously demonstrated to be clinically responsive to intranasal azelastine (Astelin) was performed. Subjects underwent fMRI during exposure to unpleasant (hickory smoke) and pleasant (vanilla) odorants while off and then on azelastine for 2 weeks. The olfactory fMRI paradigm consisted of a visually triggered sniff every 21 seconds with synchronized delivery of a 4 second pulse of odorant. Each odorant was presented 18 times over 4-6-minute fMRI runs. Continuous fresh air was presented to wash out each odorant after presentation. Nonallergic rhinitis patients exhibited increased blood flow to several regions of the brain in response to both pleasant and unpleasant odorants, specifically in odor-sensitive regions, while off intranasal azelastine. Treatment with intranasal azelastine significantly attenuated blood flow to regions of the brain relevant to either olfactory sensation or sensory processing in response to these odorants compared with fresh air. The general reduction compared with increase in brain activation in NAR patients on versus off azelastine suggests that a possible effect of this medication may be reduction of brain responses to odorants. Copyright © 2011. Published by Elsevier Inc.
Dynamic Contrast-Enhanced MRI in the Evaluation of Carotid Space Paraganglioma versus Schwannoma.
Gaddikeri, Santhosh; Hippe, Daniel S; Anzai, Yoshimi
2016-11-01
To describe the potential role of dynamic contrast-enhanced (DCE) MRI in differentiating carotid space (CS) paraganglioma from schwannoma in the head and neck. We retrospectively reviewed records of 126 patients who had undergone DCE-MRI between June 2008 and July 2014 and found six patients with histologically verified benign CS tumors. The images were evaluated for tumor T1 and T2 signal characteristics, flow voids, and enhancement pattern. The dynamic data were analyzed for quantitative parameters using extended Toft's model (K trans , K ep , V e , and V p ) and semiquantitative parameters based on time-intensity curve (area under curve, peak enhancement, wash-in, wash-out, signal-enhancement ratio [SER], and time for maximum enhancement [TME]). Due to the small sample size, groups were compared qualitatively. Patients with CS paraganglioma (P group, n = 2) and schwannoma (S group, n = 4) were included. All tumors were hypointense on T1W imaging, hyperintense on T2W imaging, and show avid enhancement. One patient with paraganglioma had subtle flow voids. The conventional MR images were insufficient to confidently diagnose tumor type. Both paragangliomas had high peak enhancement and SER, and a short TME, while the schwannomas had relatively low peak enhancement and SER with a longer TME. K trans , K ep , and V e were relatively low in the paragangliomas than in the schwannomas. DCE-MRI could potentially be used to assist differentiating paraganglioma from schwannoma, when diagnosis is difficult on the conventional MR imaging sequences. Simple assessment of semiquantitative parameters suffices to provide supportive information. Copyright © 2016 by the American Society of Neuroimaging.
Mastocytosis: magnetic resonance imaging patterns of marrow disease.
Avila, N A; Ling, A; Metcalfe, D D; Worobec, A S
1998-03-01
To report the bone marrow MRI findings of patients with mastocytosis and correlate them with clinical, pathologic, and radiographic features. Eighteen patients with mastocytosis had T1-weighted spin echo and short tau inversion recovery MRI of the pelvis at 0.5 T. In each patient the MR pattern of marrow disease was classified according to intensity and uniformity and was correlated with the clinical category of mastocytosis, bone marrow biopsy results, and radiographic findings. Two patients had normal MRI scans and normal bone marrow biopsies. One patient had a normal MRI scan and a marrow biopsy consistent with mastocytosis. Fifteen patients had abnormal MRI scans and abnormal marrow biopsies. There were several different MR patterns of marrow involvement; none was specifically associated with any given clinical category of mastocytosis. Fifteen of the 18 patients had radiographs of the pelvis; of those, 13 with abnormal MRI scans and abnormal marrow biopsies had the following radiographic findings: normal (nine); sclerosis (three); diffuse osteopenia (one). While radiographs are very insensitive for the detection of marrow abnormalities in mastocytosis, MRI is very sensitive and may display several different patterns of marrow involvement.
Kochunov, Peter; Wey, Hsiao-Ying; Fox, Peter T; Lancaster, Jack L; Davis, Michael D; Wang, Danny J J; Lin, Ai-Ling; Bastarrachea, Raul A; Andrade, Marcia C R; Mattern, Vicki; Frost, Patrice; Higgins, Paul B; Comuzzie, Anthony G; Voruganti, Venkata S
2017-01-01
Changes in cerebral blood flow (CBF) during a hyperglycemic challenge were mapped, using perfusion-weighted MRI, in a group of non-human primates. Seven female baboons were fasted for 16 h prior to 1-h imaging experiment, performed under general anesthesia, that consisted of a 20-min baseline, followed by a bolus infusion of glucose (500 mg/kg). CBF maps were collected every 7 s and blood glucose and insulin levels were sampled at regular intervals. Blood glucose levels rose from 51.3 ± 10.9 to 203.9 ± 38.9 mg/dL and declined to 133.4 ± 22.0 mg/dL, at the end of the experiment. Regional CBF changes consisted of four clusters: cerebral cortex, thalamus, hypothalamus, and mesencephalon. Increases in the hypothalamic blood flow occurred concurrently with the regulatory response to systemic glucose change, whereas CBF declined for other clusters. The return to baseline of hypothalamic blood flow was observed while CBF was still increasing in other brain regions. The spatial pattern of extra-hypothalamic CBF changes was correlated with the patterns of several cerebral networks including the default mode network. These findings suggest that hypothalamic blood flow response to systemic glucose levels can potentially be explained by regulatory activity. The response of extra-hypothalamic clusters followed a different time course and its spatial pattern resembled that of the default-mode network.
Non-invasive pulmonary blood flow analysis and blood pressure mapping derived from 4D flow MRI
NASA Astrophysics Data System (ADS)
Delles, Michael; Rengier, Fabian; Azad, Yoo-Jin; Bodenstedt, Sebastian; von Tengg-Kobligk, Hendrik; Ley, Sebastian; Unterhinninghofen, Roland; Kauczor, Hans-Ulrich; Dillmann, Rüdiger
2015-03-01
In diagnostics and therapy control of cardiovascular diseases, detailed knowledge about the patient-specific behavior of blood flow and pressure can be essential. The only method capable of measuring complete time-resolved three-dimensional vector fields of the blood flow velocities is velocity-encoded magnetic resonance imaging (MRI), often denoted as 4D flow MRI. Furthermore, relative pressure maps can be computed from this data source, as presented by different groups in recent years. Hence, analysis of blood flow and pressure using 4D flow MRI can be a valuable technique in management of cardiovascular diseases. In order to perform these tasks, all necessary steps in the corresponding process chain can be carried out in our in-house developed software framework MEDIFRAME. In this article, we apply MEDIFRAME for a study of hemodynamics in the pulmonary arteries of five healthy volunteers. The study included measuring vector fields of blood flow velocities by phase-contrast MRI and subsequently computing relative blood pressure maps. We visualized blood flow by streamline depictions and computed characteristic values for the left and the right pulmonary artery (LPA and RPA). In all volunteers, we observed a lower amount of blood flow in the LPA compared to the RPA. Furthermore, we visualized blood pressure maps using volume rendering and generated graphs of pressure differences between the LPA, the RPA and the main pulmonary artery. In most volunteers, blood pressure was increased near to the bifurcation and in the proximal LPA, leading to higher average pressure values in the LPA compared to the RPA.
Post-stenotic plug-like jet with a vortex ring demonstrated by 4D flow MRI.
Kim, Guk Bae; Ha, Hojin; Kweon, Jihoon; Lee, Sang Joon; Kim, Young-Hak; Yang, Dong Hyun; Kim, Namkug
2016-05-01
To investigate the details of the flow structure of a plug-like jet that had a vortex ring in pulsatile stenotic phantoms using 4D flow MRI. Pulsatile Newtonian flows in two stenotic phantoms with 50% and 75% reductions in area were scanned by 4D flow MRI. Blood analog working fluid was circulated via the stenotic phantom using a pulsatile pump at a constant pulsating frequency of 1Hz. The velocity and vorticity fields of the plug-like jet with a vortex ring were quantitatively analyzed in the spatial and temporal domains. Pulsatile stenotic flow showed a plug-like jet at the specific stenotic degree of 50% in our pulsatile waveform design. This plug-like jet was found at the decelerating period in the post-stenotic region of 26.4mm (1.2 D). It revealed a vortex ring structure with vorticity strength in the range of ±100s(-1). We observed a plug-like jet with a vortex ring in pulsatile stenotic flow by in vitro visualization using 4D flow MRI. In this plug-like jet, the local fastest flow region occurred at the post-systole phase in the post-stenotic region, which was distinguishable from a typical stenotic jet flow at systole phase. Copyright © 2015 Elsevier Inc. All rights reserved.
Event-related functional MRI: Past, present, and future
Rosen, Bruce R.; Buckner, Randy L.; Dale, Anders M.
1998-01-01
The past two decades have seen an enormous growth in the field of human brain mapping. Investigators have extensively exploited techniques such as positron emission tomography and MRI to map patterns of brain activity based on changes in cerebral hemodynamics. However, until recently, most studies have investigated equilibrium changes in blood flow measured over time periods upward of 1 min. The advent of high-speed MRI methods, capable of imaging the entire brain with a temporal resolution of a few seconds, allows for brain mapping based on more transient aspects of the hemodynamic response. Today it is now possible to map changes in cerebrovascular parameters essentially in real time, conferring the ability to observe changes in brain state that occur over time periods of seconds. Furthermore, because robust hemodynamic alterations are detectable after neuronal stimuli lasting only a few tens of milliseconds, a new class of task paradigms designed to measure regional responses to single sensory or cognitive events can now be studied. Such “event related” functional MRI should provide for fundamentally new ways to interrogate brain function, and allow for the direct comparison and ultimately integration of data acquired by using more traditional behavioral and electrophysiological methods. PMID:9448240
The Weakly Nonlinear Magnetorotational Instability in a Global, Cylindrical Taylor–Couette Flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, S. E.; Oishi, Jeffrey S., E-mail: seclark@astro.columbia.edu
We conduct a global, weakly nonlinear analysis of the magnetorotational instability (MRI) in a Taylor–Couette flow. This is a multiscale, perturbative treatment of the nonideal, axisymmetric MRI near threshold, subject to realistic radial boundary conditions and cylindrical geometry. We analyze both the standard MRI, initialized by a constant vertical background magnetic field, and the helical MRI, with an azimuthal background field component. This is the first weakly nonlinear analysis of the MRI in a global Taylor–Couette geometry, as well as the first weakly nonlinear analysis of the helical MRI. We find that the evolution of the amplitude of the standardmore » MRI is described by a real Ginzburg–Landau equation (GLE), whereas the amplitude of the helical MRI takes the form of a complex GLE. This suggests that the saturated state of the helical MRI may itself be unstable on long spatial and temporal scales.« less
Gaass, Thomas; Schneider, Moritz Jörg; Dietrich, Olaf; Ingrisch, Michael; Dinkel, Julien
2017-04-01
Variability across devices, patients, and time still hinders widespread recognition of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) as quantitative biomarker. The purpose of this work was to introduce and characterize a dedicated microchannel phantom as a model for quantitative DCE-MRI measurements. A perfusable, MR-compatible microchannel network was constructed on the basis of sacrificial melt-spun sugar fibers embedded in a block of epoxy resin. Structural analysis was performed on the basis of light microscopy images before DCE-MRI experiments. During dynamic acquisition the capillary network was perfused with a standard contrast agent injection system. Flow-dependency, as well as inter- and intrascanner reproducibility of the computed DCE parameters were evaluated using a 3.0 T whole-body MRI. Semi-quantitative and quantitative flow-related parameters exhibited the expected proportionality to the set flow rate (mean Pearson correlation coefficient: 0.991, P < 2.5e-5). The volume fraction was approximately independent from changes of the applied flow rate through the phantom. Repeatability and reproducibility experiments yielded maximum intrascanner coefficients of variation (CV) of 4.6% for quantitative parameters. All evaluated parameters were well in the range of known in vivo results for the applied flow rates. The constructed phantom enables reproducible, flow-dependent, contrast-enhanced MR measurements with the potential to facilitate standardization and comparability of DCE-MRI examinations. © 2017 American Association of Physicists in Medicine.
Dynamic MRI for distinguishing high-flow from low-flow peripheral vascular malformations.
Ohgiya, Yoshimitsu; Hashimoto, Toshi; Gokan, Takehiko; Watanabe, Shouji; Kuroda, Masayoshi; Hirose, Masanori; Matsui, Seishi; Nobusawa, Hiroshi; Kitanosono, Takashi; Munechika, Hirotsugu
2005-11-01
The purpose of our study was to assess the usefulness of dynamic MRI in distinguishing high-flow vascular malformations from low-flow vascular malformations, which do not need angiography for treatment. Between September 2001 and January 2003, 16 patients who underwent conventional and dynamic MRI had peripheral vascular malformations (six high- and 10 low-flow). The temporal resolution of dynamic MRI was 5 sec. Time intervals between beginning of enhancement of an arterial branch in the vicinity of a lesion in the same slice and the onset of enhancement in the lesion were calculated. We defined these time intervals as "artery-lesion enhancement time." Time intervals between the onset of enhancement in the lesion and the time of the maximal percentage of enhancement above baseline of the lesion within 120 sec were measured. We defined these time intervals as "contrast rise time" of the lesion. Diagnosis of the peripheral vascular malformations was based on angiographic or venographic findings. The mean artery-lesion enhancement time of the high-flow vascular malformations (3.3 sec [range, 0-5 sec]) was significantly shorter than that of the low-flow vascular malformations (8.8 sec [range, 0-20 sec]) (Mann-Whitney test, p < 0.05). The mean maximal lesion enhancement time of the high-flow vascular malformations (5.8 sec [range, 5-10 sec]) was significantly shorter than that of the low-flow vascular malformations (88.4 sec [range, 50-100 sec]) (Mann-Whitney test, p < 0.01). Dynamic MRI is useful for distinguishing high-flow from low-flow vascular malformations, especially when the contrast rise time of the lesion is measured.
Tan, Zhengguo; Hohage, Thorsten; Kalentev, Oleksandr; Joseph, Arun A; Wang, Xiaoqing; Voit, Dirk; Merboldt, K Dietmar; Frahm, Jens
2017-12-01
The purpose of this work is to develop an automatic method for the scaling of unknowns in model-based nonlinear inverse reconstructions and to evaluate its application to real-time phase-contrast (RT-PC) flow magnetic resonance imaging (MRI). Model-based MRI reconstructions of parametric maps which describe a physical or physiological function require the solution of a nonlinear inverse problem, because the list of unknowns in the extended MRI signal equation comprises multiple functional parameters and all coil sensitivity profiles. Iterative solutions therefore rely on an appropriate scaling of unknowns to numerically balance partial derivatives and regularization terms. The scaling of unknowns emerges as a self-adjoint and positive-definite matrix which is expressible by its maximal eigenvalue and solved by power iterations. The proposed method is applied to RT-PC flow MRI based on highly undersampled acquisitions. Experimental validations include numerical phantoms providing ground truth and a wide range of human studies in the ascending aorta, carotid arteries, deep veins during muscular exercise and cerebrospinal fluid during deep respiration. For RT-PC flow MRI, model-based reconstructions with automatic scaling not only offer velocity maps with high spatiotemporal acuity and much reduced phase noise, but also ensure fast convergence as well as accurate and precise velocities for all conditions tested, i.e. for different velocity ranges, vessel sizes and the simultaneous presence of signals with velocity aliasing. In summary, the proposed automatic scaling of unknowns in model-based MRI reconstructions yields quantitatively reliable velocities for RT-PC flow MRI in various experimental scenarios. Copyright © 2017 John Wiley & Sons, Ltd.
Wei, Zehong; Xu, Zhixiang; Li, Bo; Xu, Fuqiang
2013-01-01
The sense of smell is largely dependent on the airflow and odorant transport in the nasal cavity, which in turn depends on the anatomical structure of the nose. In order to evaluate the effect of airway dimension on rat nasal airflow patterns and odorant deposition patterns, we constructed two 3-dimensional, anatomically accurate models of the left nasal cavity of a Sprague-Dawley rat: one was based on high-resolution MRI images with relatively narrow airways and the other was based on artificially-widening airways of the MRI images by referencing the section images with relatively wide airways. Airflow and odorant transport, in the two models, were determined using the method of computational fluid dynamics with finite volume method. The results demonstrated that an increase of 34 µm in nasal airway dimension significantly decreased the average velocity in the whole nasal cavity by about 10% and in the olfactory region by about 12% and increased the volumetric flow into the olfactory region by about 3%. Odorant deposition was affected to a larger extent, especially in the olfactory region, where the maximum odorant deposition difference reached one order of magnitude. The results suggest that a more accurate nasal cavity model is necessary in order to more precisely study the olfactory function of the nose when using the rat. PMID:24204875
Downes, Michelle R; Gibson, Eli; Sykes, Jenna; Haider, Masoom; van der Kwast, Theo H; Ward, Aaron
2016-11-01
The study aimed to determine the relationship between T2-weighted magnetic resonance imaging (MRI) signal and histologic sub-patterns in prostate cancer areas with different Gleason grades. MR images of prostates (n = 25) were obtained prior to radical prostatectomy. These were processed as whole-mount specimens with tumors and the peripheral zone was annotated digitally by two pathologists. Gleason grade 3 was the most prevalent grade and was subdivided into packed, intermediate, and sparse based on gland-to-stroma ratio. Large cribriform, intraductal carcinoma, and small cribriform glands (grade 4 group) were separately annotated but grouped together for statistical analysis. The log MRI signal intensity for each contoured region (n = 809) was measured, and pairwise comparisons were performed using the open-source software R version 3.0.1. Packed grade 3 sub-pattern has a significantly lower MRI intensity than the grade 4 group (P < 0.00001). Sparse grade 3 has a significantly higher MRI intensity than the packed grade 3 sub-pattern (P < 0.0001). No significant difference in MRI intensity was observed between the Gleason grade 4 group and the sparse sub-pattern grade 3 group (P = 0.54). In multivariable analysis adjusting for peripheral zone, the P values maintained significance (packed grade 3 group vs grade 4 group, P < 0.001; and sparse grade 3 sub-pattern vs packed grade 3 sub-pattern, P < 0.001). This study demonstrated that T2-weighted MRI signal is dependent on histologic sub-patterns within Gleason grades 3 and 4 cancers, which may have implications for directed biopsy sampling and patient management. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Petersson, Sven; Dyverfeldt, Petter; Sigfridsson, Andreas; Lantz, Jonas; Carlhäll, Carl-Johan; Ebbers, Tino
2016-03-01
Evaluate spiral three-dimensional (3D) phase contrast MRI for the assessment of turbulence and velocity in stenotic flow. A-stack-of-spirals 3D phase contrast MRI sequence was evaluated in vitro against a conventional Cartesian sequence. Measurements were made in a flow phantom with a 75% stenosis. Both spiral and Cartesian imaging were performed using different scan orientations and flow rates. Volume flow rate, maximum velocity and turbulent kinetic energy (TKE) were computed for both methods. Moreover, the estimated TKE was compared with computational fluid dynamics (CFD) data. There was good agreement between the turbulent kinetic energy from the spiral, Cartesian and CFD data. Flow rate and maximum velocity from the spiral data agreed well with Cartesian data. As expected, the short echo time of the spiral sequence resulted in less prominent displacement artifacts compared with the Cartesian sequence. However, both spiral and Cartesian flow rate estimates were sensitive to displacement when the flow was oblique to the encoding directions. Spiral 3D phase contrast MRI appears favorable for the assessment of stenotic flow. The spiral sequence was more than three times faster and less sensitive to displacement artifacts when compared with a conventional Cartesian sequence. © 2015 Wiley Periodicals, Inc.
Stegger, Lars; Martirosian, Petros; Schwenzer, Nina; Bisdas, Sotirios; Kolb, Armin; Pfannenberg, Christina; Claussen, Claus D; Pichler, Bernd; Schick, Fritz; Boss, Andreas
2012-11-01
Hybrid positron emission tomography/magnetic resonance imaging (PET/MRI) with simultaneous data acquisition promises a comprehensive evaluation of cerebral pathophysiology on a molecular, anatomical, and functional level. Considering the necessary changes to the MR scanner design the feasibility of arterial spin labeling (ASL) is unclear. To evaluate whether cerebral blood flow imaging with ASL is feasible using a prototype PET/MRI device. ASL imaging of the brain with Flow-sensitive Alternating Inversion Recovery (FAIR) spin preparation and true fast imaging in steady precession (TrueFISP) data readout was performed in eight healthy volunteers sequentially on a prototype PET/MRI and a stand-alone MR scanner with 128 × 128 and 192 × 192 matrix sizes. Cerebral blood flow values for gray matter, signal-to-noise and contrast-to-noise ratios, and relative signal change were compared. Additionally, the feasibility of ASL as part of a clinical hybrid PET/MRI protocol was demonstrated in five patients with intracerebral tumors. Blood flow maps showed good delineation of gray and white matter with no discernible artifacts. The mean blood flow values of the eight volunteers on the PET/MR system were 51 ± 9 and 51 ± 7 mL/100 g/min for the 128 × 128 and 192 × 192 matrices (stand-alone MR, 57 ± 2 and 55 ± 5, not significant). The value for signal-to-noise (SNR) was significantly higher for the PET/MRI system using the 192 × 192 matrix size (P < 0.01), the relative signal change (δS) was significantly lower for the 192 × 192 matrix size (P = 0.02). ASL imaging as part of a clinical hybrid PET/MRI protocol could successfully be accomplished in all patients in diagnostic image quality. ASL brain imaging is feasible with a prototype hybrid PET/MRI scanner, thus adding to the value of this novel imaging technique.
Pairwise Classifier Ensemble with Adaptive Sub-Classifiers for fMRI Pattern Analysis.
Kim, Eunwoo; Park, HyunWook
2017-02-01
The multi-voxel pattern analysis technique is applied to fMRI data for classification of high-level brain functions using pattern information distributed over multiple voxels. In this paper, we propose a classifier ensemble for multiclass classification in fMRI analysis, exploiting the fact that specific neighboring voxels can contain spatial pattern information. The proposed method converts the multiclass classification to a pairwise classifier ensemble, and each pairwise classifier consists of multiple sub-classifiers using an adaptive feature set for each class-pair. Simulated and real fMRI data were used to verify the proposed method. Intra- and inter-subject analyses were performed to compare the proposed method with several well-known classifiers, including single and ensemble classifiers. The comparison results showed that the proposed method can be generally applied to multiclass classification in both simulations and real fMRI analyses.
Formisano, Elia; De Martino, Federico; Valente, Giancarlo
2008-09-01
Machine learning and pattern recognition techniques are being increasingly employed in functional magnetic resonance imaging (fMRI) data analysis. By taking into account the full spatial pattern of brain activity measured simultaneously at many locations, these methods allow detecting subtle, non-strictly localized effects that may remain invisible to the conventional analysis with univariate statistical methods. In typical fMRI applications, pattern recognition algorithms "learn" a functional relationship between brain response patterns and a perceptual, cognitive or behavioral state of a subject expressed in terms of a label, which may assume discrete (classification) or continuous (regression) values. This learned functional relationship is then used to predict the unseen labels from a new data set ("brain reading"). In this article, we describe the mathematical foundations of machine learning applications in fMRI. We focus on two methods, support vector machines and relevance vector machines, which are respectively suited for the classification and regression of fMRI patterns. Furthermore, by means of several examples and applications, we illustrate and discuss the methodological challenges of using machine learning algorithms in the context of fMRI data analysis.
Postoperative enhancement on breast MRI: Time course and pattern of changes.
Mahoney, Mary C; Sharda, Radhika G
2018-04-23
Expected postoperative enhancement on breast MRI can appear similar to enhancement seen in recurrent or residual malignancy. Our aim was to assess the time course and patterns of enhancement at the surgical site, thereby helping to distinguish between benign and malignant postoperative enhancement. In 200 MRI scans performed in 153 patients after breast conservation treatment, 43 after surgical excision of atypia, and 4 patients after benign excisional biopsy were categorized by postoperative time interval. We defined 4 patterns of morphologic enhancement on MRI: cavity wall/seroma (Pattern I); thin linear (Pattern II); mass (Pattern III); and fat necrosis (Pattern IV). Of 200 MRI scans, 66 (33%) demonstrated enhancement at the surgical site. Enhancement typically decreased through the postoperative follow-up period. Enhancement was observed in 41% (28/68) of cases beyond the 18-month interval but was uncommon after 5 years. Pattern III enhancement was the morphologic pattern seen most commonly with malignancy (5/19 cases, 26%). When associated with delayed washout kinetics, it was even more strongly predictive of malignancy (4/5 cases, 80%). In patients with a history of excisional biopsy and no prior radiation treatment, the percentage of MRI scans showing enhancement was significantly lower than (21% vs 49% with P-value .0027) in patients who had undergone radiation. Enhancement at the surgical site occurred in one-third of cases up to 5 years after surgery, particularly in patients who underwent both radiation and surgery. Mass enhancement, particularly in conjunction with delayed washout kinetics, is most predictive of malignancy and should prompt biopsy or re-excision. © 2018 Wiley Periodicals, Inc.
van Pelt, Roy; Nguyen, Huy; ter Haar Romeny, Bart; Vilanova, Anna
2012-03-01
Quantitative analysis of vascular blood flow, acquired by phase-contrast MRI, requires accurate segmentation of the vessel lumen. In clinical practice, 2D-cine velocity-encoded slices are inspected, and the lumen is segmented manually. However, segmentation of time-resolved volumetric blood-flow measurements is a tedious and time-consuming task requiring automation. Automated segmentation of large thoracic arteries, based solely on the 3D-cine phase-contrast MRI (PC-MRI) blood-flow data, was done. An active surface model, which is fast and topologically stable, was used. The active surface model requires an initial surface, approximating the desired segmentation. A method to generate this surface was developed based on a voxel-wise temporal maximum of blood-flow velocities. The active surface model balances forces, based on the surface structure and image features derived from the blood-flow data. The segmentation results were validated using volunteer studies, including time-resolved 3D and 2D blood-flow data. The segmented surface was intersected with a velocity-encoded PC-MRI slice, resulting in a cross-sectional contour of the lumen. These cross-sections were compared to reference contours that were manually delineated on high-resolution 2D-cine slices. The automated approach closely approximates the manual blood-flow segmentations, with error distances on the order of the voxel size. The initial surface provides a close approximation of the desired luminal geometry. This improves the convergence time of the active surface and facilitates parametrization. An active surface approach for vessel lumen segmentation was developed, suitable for quantitative analysis of 3D-cine PC-MRI blood-flow data. As opposed to prior thresholding and level-set approaches, the active surface model is topologically stable. A method to generate an initial approximate surface was developed, and various features that influence the segmentation model were evaluated. The active surface segmentation results were shown to closely approximate manual segmentations.
von Knobelsdorff-Brenkenhoff, Florian; Karunaharamoorthy, Achudhan; Trauzeddel, Ralf Felix; Barker, Alex J; Blaszczyk, Edyta; Markl, Michael; Schulz-Menger, Jeanette
2016-01-01
Background Aortic stenosis (AS) leads to variable stress for the left ventricle (LV) and consequently a broad range of LV remodeling. Study aim was to describe blood flow patterns in the ascending aorta of AS patients and determine their association with remodeling. Methods and Results Thirty-seven patients with AS (14 mild, 8 moderate, 15 severe; age 63±13 years) and 37 healthy controls (age 60±10 years) underwent 4D-flow MRI. Helical and vortical flow formations and flow eccentricity were assessed in the ascending aorta. Normalized flow displacement from the vessel center and peak systolic wall shear stress (WSSpeak) in the ascending aorta were quantified. LV remodeling was assessed based on LV mass index (LVMI-I) and the ratio of LV mass to enddiastolic volume (relative wall mass; RWM). Marked helical and vortical flow formation and eccentricity were more prevalent in patients with AS than in healthy subjects, and AS patients exhibited an asymmetric and elevated distribution of WSSpeak. In AS, aortic orifice area was strongly negatively associated with vortical flow formation (p=0.0274), eccentricity (p=0.0070) and flow displacement (p=0.0021). Bicuspid aortic valve was associated with more intense helical (p=0.0098) and vortical flow formation (p=0.0536), higher flow displacement (p=0.11) and higher WSSpeak (p=0.0926). LVM-I and RWM were significantly associated with aortic orifice area (p=0.0611, p=0.0058) and flow displacement (p=0.0058, p=0.0283). Conclusions In this pilot study, AS leads to abnormal blood flow pattern and WSSpeak in the ascending aorta. In addition to aortic orifice area, normalized flow displacement was significantly associated with LV remodeling. PMID:26917824
Phase unwrapping using region-based markov random field model.
Dong, Ying; Ji, Jim
2010-01-01
Phase unwrapping is a classical problem in Magnetic Resonance Imaging (MRI), Interferometric Synthetic Aperture Radar and Sonar (InSAR/InSAS), fringe pattern analysis, and spectroscopy. Although many methods have been proposed to address this problem, robust and effective phase unwrapping remains a challenge. This paper presents a novel phase unwrapping method using a region-based Markov Random Field (MRF) model. Specifically, the phase image is segmented into regions within which the phase is not wrapped. Then, the phase image is unwrapped between different regions using an improved Highest Confidence First (HCF) algorithm to optimize the MRF model. The proposed method has desirable theoretical properties as well as an efficient implementation. Simulations and experimental results on MRI images show that the proposed method provides similar or improved phase unwrapping than Phase Unwrapping MAx-flow/min-cut (PUMA) method and ZpM method.
Magnetic resonance imaging in central nervous system sarcoidosis.
Miller, D H; Kendall, B E; Barter, S; Johnson, G; MacManus, D G; Logsdail, S J; Ormerod, I E; McDonald, W I
1988-03-01
We performed brain MRIs on 21 patients with CNS sarcoidosis. Brain CTs were performed in 18 of these. Parenchymal lesions were seen in 17 of 21 with MRI, compared with 9 of 18 with CT. MRI detected a greater number of parenchymal lesions in cases where both CT and MRI were positive, and some lesions appeared more extensive with MRI than with CT. The most common MRI pattern was one of periventricular and multifocal white matter lesions (14 cases). Such a pattern is not specific, and other recognized causes for it were identified in four cases. It is likely, however, that sarcoid tissue causes this pattern in some cases, and confirmation was obtained from cerebral biopsy in one. In six patients, the white matter changes were indistinguishable from those seen in multiple sclerosis. Contrast-enhanced CT in two patients showed diffuse meningeal involvement not seen with MRI. MRI is the investigation of choice in detecting parenchymal changes in the brain of patients with CNS sarcoidosis and may prove useful in monitoring treatment in such cases.
NASA Astrophysics Data System (ADS)
Ha, Hojin; Lantz, Jonas; Haraldsson, Henrik; Casas, Belen; Ziegler, Magnus; Karlsson, Matts; Saloner, David; Dyverfeldt, Petter; Ebbers, Tino
2016-12-01
Flow-induced blood damage plays an important role in determining the hemodynamic impact of abnormal blood flow, but quantifying of these effects, which are dominated by shear stresses in highly fluctuating turbulent flow, has not been feasible. This study evaluated the novel application of turbulence tensor measurements using simulated 4D Flow MRI data with six-directional velocity encoding for assessing hemodynamic stresses and corresponding blood damage index (BDI) in stenotic turbulent blood flow. The results showed that 4D Flow MRI underestimates the maximum principal shear stress of laminar viscous stress (PLVS), and overestimates the maximum principal shear stress of Reynolds stress (PRSS) with increasing voxel size. PLVS and PRSS were also overestimated by about 1.2 and 4.6 times at medium signal to noise ratio (SNR) = 20. In contrast, the square sum of the turbulent viscous shear stress (TVSS), which is used for blood damage index (BDI) estimation, was not severely affected by SNR and voxel size. The square sum of TVSS and the BDI at SNR >20 were underestimated by less than 1% and 10%, respectively. In conclusion, this study demonstrated the feasibility of 4D Flow MRI based quantification of TVSS and BDI which are closely linked to blood damage.
Comparison of PIV with 4D-Flow in a physiological accurate flow phantom
NASA Astrophysics Data System (ADS)
Sansom, Kurt; Balu, Niranjan; Liu, Haining; Aliseda, Alberto; Yuan, Chun; Canton, Maria De Gador
2016-11-01
Validation of 4D MRI flow sequences with planar particle image velocimetry (PIV) is performed in a physiologically-accurate flow phantom. A patient-specific phantom of a carotid artery is connected to a pulsatile flow loop to simulate the 3D unsteady flow in the cardiovascular anatomy. Cardiac-cycle synchronized MRI provides time-resolved 3D blood velocity measurements in clinical tool that is promising but lacks a robust validation framework. PIV at three different Reynolds numbers (540, 680, and 815, chosen based on +/- 20 % of the average velocity from the patient-specific CCA waveform) and four different Womersley numbers (3.30, 3.68, 4.03, and 4.35, chosen to reflect a physiological range of heart rates) are compared to 4D-MRI measurements. An accuracy assessment of raw velocity measurements and a comparison of estimated and measureable flow parameters such as wall shear stress, fluctuating velocity rms, and Lagrangian particle residence time, will be presented, with justification for their biomechanics relevance to the pathophysiology of arterial disease: atherosclerosis and intimal hyperplasia. Lastly, the framework is applied to a new 4D-Flow MRI sequence and post processing techniques to provide a quantitative assessment with the benchmarked data. Department of Education GAANN Fellowship.
Functional versus effector-specific organization of the human posterior parietal cortex: revisited
Leone, Frank T. M.; Medendorp, W. Pieter
2016-01-01
It has been proposed that the posterior parietal cortex (PPC) is characterized by an effector-specific organization. However, strikingly similar functional MRI (fMRI) activation patterns have been found in the PPC for hand and foot movements. Because the fMRI signal is related to average neuronal activity, similar activation levels may result either from effector-unspecific neurons or from intermingled subsets of effector-specific neurons within a voxel. We distinguished between these possibilities using fMRI repetition suppression (RS). Participants made delayed, goal-directed eye, hand, and foot movements to visual targets. In each trial, the instructed effector was identical or different to that of the previous trial. RS effects indicated an attenuation of the fMRI signal in repeat trials. The caudal PPC was active during the delay but did not show RS, suggesting that its planning activity was effector independent. Hand and foot-specific RS effects were evident in the anterior superior parietal lobule (SPL), extending to the premotor cortex, with limb overlap in the anterior SPL. Connectivity analysis suggested information flow between the caudal PPC to limb-specific anterior SPL regions and between the limb-unspecific anterior SPL toward limb-specific motor regions. These results underline that both function and effector specificity should be integrated into a concept of PPC action representation not only on a regional but also on a fine-grained, subvoxel level. PMID:27466132
Frolov, Sergey; Prothmann, Sascha; Liepsch, Dieter; Balasso, Andrea; Berg, Philipp; Kaczmarz, Stephan; Kirschke, Jan Stefan
2018-01-01
Cerebral aneurysms are a major risk factor for intracranial bleeding with devastating consequences for the patient. One recently established treatment is the implantation of flow-diverters (FD). Methods to predict their treatment success before or directly after implantation are not well investigated yet. The aim of this work was to quantitatively study hemodynamic parameters in patient-specific models of treated cerebral aneurysms and its correlation with the clinical outcome. Hemodynamics were evaluated using both computational fluid dynamics (CFD) and phase contrast (PC) MRI. CFD simulations and in vitro MRI measurements were done under similar flow conditions and results of both methods were comparatively analyzed. For preoperative and postoperative distribution of hemodynamic parameters, CFD simulations and PC-MRI velocity measurements showed similar results. In both cases where no occlusion of the aneurysm was observed after six months, a flow reduction of about 30-50% was found, while in the clinically successful case with complete occlusion of the aneurysm after 6 months, the flow reduction was about 80%. No vortex was observed in any of the three models after treatment. The results are in agreement with recent studies suggesting that CFD simulations can predict post-treatment aneurysm flow alteration already before implantation of a FD and PC-MRI could validate the predicted hemodynamic changes right after implantation of a FD. PMID:29304062
Shankaran, Seetha; McDonald, Scott A; Laptook, Abbot R; Hintz, Susan R; Barnes, Patrick D; Das, Abhik; Pappas, Athina; Higgins, Rosemary D
2015-11-01
To examine the ability of magnetic resonance imaging (MRI) patterns of neonatal brain injury defined by the National Institute of Child Health and Human Development Neonatal Research Network to predict death or IQ at 6-7 years of age following hypothermia for neonatal encephalopathy. Out of 208 participants, 124 had MRI and primary outcome (death or IQ <70) data. The relationship between injury pattern and outcome was assessed. Death or IQ <70 occurred in 4 of 50 (8%) of children with pattern 0 (normal MRI), 1 of 6 (17%) with 1A (minimal cerebral lesions), 1 of 4 (25%) with 1B (extensive cerebral lesions), 3 of 8 (38%) with 2A (basal ganglia thalamic, anterior or posterior limb of internal capsule, or watershed infarction), 32 of 49 (65%) with 2B (2A with cerebral lesions), and 7 of 7 (100%) with pattern 3 (hemispheric devastation), P < .001; this association was also seen within hypothermia and control subgroups. IQ was 90 ± 13 among the 46 children with a normal MRI and 69 ± 25 among the 50 children with an abnormal MRI. In childhood, for a normal outcome, a normal neonatal MRI had a sensitivity of 61%, specificity of 92%, a positive predictive value of 92%, and a negative predictive value of 59%; for death or IQ <70, the 2B and 3 pattern combined had a sensitivity of 81%, specificity of 78%, positive predictive value of 70%, and a negative predictive value of 87%. The Neonatal Research Network MRI pattern of neonatal brain injury is a biomarker of neurodevelopmental outcome at 6-7 years of age. ClinicalTrials.gov: NCT00005772. Copyright © 2015. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Gilson, Erik; Caspary, Kyle; Goodman, Jeremy; Ji, Hantao; Schartman, Ethan; Wei, Xing
2015-11-01
Results are presented from initial experiments on the upgraded Magnetorotational Instability (MRI) experiment that uses GaInSn as the working fluid and now operates with conductive end caps to improve the coupling of angular momentum to the fluid to increase the saturation amplitude of the MRI signal. Measurements of the fluid velocity field and perturbed magnetic field over a range of magnetic Reynolds numbers, Rm , and Lundquist numbers, S, are compared with results from the SFEMaNS code in order to separate the effects of MRI on the system from effects such as Ekman flows and Shercliff layer instabilities. The MRI can be identified by observing its growth rate, noting the relative magnitudes and spatial distributions of the perturbed radial flow velocity ur and radial magnetic field Br, and measuring the scaling of ur and Br with Rm . The clear identification of the onset of MRI in the apparatus is complicated by the geometry and boundary conditions creating an imperfect supercritical pitchfork bifurcation. Nevertheless, a stability diagram can be created that shows that MRI is a weak-field instability that occurs only below a certain value of the normalized magnetic field S / Rm but above a threshold where viscous effects damps the growth of the instability.
Jarvis, Kelly; Schnell, Susanne; Barker, Alex J.; Garcia, Julio; Lorenz, Ramona; Rose, Michael; Chowdhary, Varun; Carr, James; Robinson, Joshua D.; Rigsby, Cynthia K.; Markl, Michael
2016-01-01
Background Asymmetrical caval to pulmonary blood flow is suspected to cause complications in patients with Fontan circulation. The aim of this study was to test the feasibility of 4-D flow MRI for characterizing the relationship between 3-D blood flow distribution and vascular geometry. Objective We hypothesized that both flow distribution and geometry can be calculated with low interobserver variability and will detect a direct relationship between flow distribution and Fontan geometry. Materials and methods Four-dimensional flow MRI was acquired in 10 Fontan patients (age: 16±4 years [mean ± standard deviation; range 9–21 years]). The Fontan connection was isolated by 3-D segmentation to evaluate flow distribution from the inferior vena cava (IVC) and superior vena cava (SVC) to the left and right pulmonary arteries (LPA, RPA) and to characterize geometry (cross-sectional area, caval offset, vessel angle). Results Flow distribution results indicated SVC flow tended toward the RPA while IVC flow was more evenly distributed (SVC to RPA: 78%±28 [9–100], IVC to LPA: 54%±28 [4–98]). There was a significant relationship between pulmonary artery cross-sectional area and flow distribution (IVC to RPA: R2=0.50, P=0.02; SVC to LPA: R2=0.81, P=0.0004). Good agreement was found between observers and for flow distribution when compared to net flow values. Conclusion Four-dimensional (4-D) flow MRI was able to detect relationships between flow distribution and vessel geometry. Future studies are warranted to investigate the potential of patient specific hemodynamic analysis to improve diagnostic capability. PMID:27350377
Muscle MRI findings in facioscapulohumeral muscular dystrophy.
Gerevini, Simonetta; Scarlato, Marina; Maggi, Lorenzo; Cava, Mariangela; Caliendo, Giandomenico; Pasanisi, Barbara; Falini, Andrea; Previtali, Stefano Carlo; Morandi, Lucia
2016-03-01
Facioscapulohumeral muscular dystrophy (FSHD) is characterized by extremely variable degrees of facial, scapular and lower limb muscle involvement. Clinical and genetic determination can be difficult, as molecular analysis is not always definitive, and other similar muscle disorders may have overlapping clinical manifestations. Whole-body muscle MRI examination for fat infiltration, atrophy and oedema was performed to identify specific patterns of muscle involvement in FSHD patients (30 subjects), and compared to a group of control patients (23) affected by other myopathies (NFSHD). In FSHD patients, we detected a specific pattern of muscle fatty replacement and atrophy, particularly in upper girdle muscles. The most frequently affected muscles, including paucisymptomatic and severely affected FSHD patients, were trapezius, teres major and serratus anterior. Moreover, asymmetric muscle involvement was significantly higher in FSHD as compared to NFSHD patients. In conclusion, muscle MRI is very sensitive for identifying a specific pattern of involvement in FSHD patients and in detecting selective muscle involvement of non-clinically testable muscles. Muscle MRI constitutes a reliable tool for differentiating FSHD from other muscular dystrophies to direct diagnostic molecular analysis, as well as to investigate FSHD natural history and follow-up of the disease. Muscle MRI identifies a specific pattern of muscle involvement in FSHD patients. Muscle MRI may predict FSHD in asymptomatic and severely affected patients. Muscle MRI of upper girdle better predicts FSHD. Muscle MRI may differentiate FSHD from other forms of muscular dystrophy. Muscle MRI may show the involvement of non-clinical testable muscles.
Scurr, E D; Collins, D J; Temple, L; Karanjia, N; Leach, M O; Koh, D-M
2012-03-01
To describe the appearances of colorectal liver metastases on diffusion-weighted MRI (DW-MRI) and to compare these appearances with histopathology. 43 patients with colorectal liver metastases were evaluated using breath-hold DW-MRI (b-values 0, 150 and 500 s mm(-2)). The b=500 s mm(-2) DW-MRI were reviewed consensually for lesion size and appearance by two readers. 18/43 patients underwent surgery allowing radiological-pathological comparison. Tissue sections were reviewed by a pathologist, who classified metastases histologically as cellular, fibrotic, necrotic or mixed. The frequency of DW-MRI findings and histological features were compared using the χ(2) test. 84 metastases were found in 43 patients. On b=500 s mm(-2) DW-MRI, metastases showed three high signal intensity patterns: rim (55/84), uniform (23/84) and variegate (6/84). Of the 55 metastases showing rim pattern, 54 were >1 cm in diameter (p<0.01, χ(2) test). 25/84 metastases were surgically resected. Of these, 11/22 metastases >1 cm in diameter showed rim pattern and demonstrated central necrosis at histopathology (p=0.04, χ(2) test). No definite relationship was found between uniform and variegate patterns with histology. Rim high signal intensity was the most common appearance of colorectal liver metastases >1 cm diameter on DW-MRI at b-values of 500 s mm(-2), a finding attributable to central necrosis.
Comparison of 7T and 3T MRI in patients with moyamoya disease.
Oh, Byeong Ho; Moon, Hyeong Cheol; Baek, Hyeon Man; Lee, Youn Joo; Kim, Sang Woo; Jeon, Young Jai; Lee, Gun Seok; Kim, Hong Rae; Choi, Jai Ho; Min, Kyung Soo; Lee, Mou Seop; Kim, Young Gyu; Kim, Dong Ho; Kim, Won Seop; Park, Young Seok
2017-04-01
Magnetic resonance imaging and magnetic resonance angiography (MRI/MRA) are widely used for evaluating the moyamoya disease (MMD). This study compared the diagnostic accuracy of 7Tesla (T) and 3T MRI/MRA in MMD. In this case control study, 12 patients [median age: 34years; range (10-66years)] with MMD and 12 healthy controls [median age: 25years; range (22-59years)] underwent both 7T and 3T MRI/MRA. To evaluate the accuracy of MRI/MRA in MMD, five criteria were compared between imaging systems of 7T and 3T: Suzuki grading system, internal carotid artery (ICA) diameter, ivy sign, flow void of the basal ganglia on T2-weighted images, and high signal intensity areas of the basal ganglia on time-of-flight (TOF) source images. No difference was observed between 7T and 3T MRI/MRA in Suzuki stage, ICA diameter, and ivy sign score; while, 7T MRI/MRA showed a higher detection rate in the flow void on T2-weighted images and TOF source images (p<0.001). Receiver operating characteristic curves of both T2 and TOF criteria showed that 7T MRI/MRA had higher sensitivity and specificity than 3T MRI/MRA. Our findings indicate that 7T MRI/MRA is superior to 3T MRI/MRA for the diagnosis of MMD in point of detecting the flow void in basal ganglia by T2-weighted and TOF images. Copyright © 2016. Published by Elsevier Inc.
Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Huh, Hyung Kyu; Lee, Sang Joon; Koo, Hyun Jung; Kang, Joon-Won; Lim, Tae-Hwan; Kim, Dae-Hee; Kim, Young-Hak
2016-01-01
Background Although the measurement of turbulence kinetic energy (TKE) by using magnetic resonance imaging (MRI) has been introduced as an alternative index for quantifying energy loss through the cardiac valve, experimental verification and clinical application of this parameter are still required. Objectives The goal of this study is to verify MRI measurements of TKE by using a phantom stenosis with particle image velocimetry (PIV) as the reference standard. In addition, the feasibility of measuring TKE with MRI is explored. Methods MRI measurements of TKE through a phantom stenosis was performed by using clinical 3T MRI scanner. The MRI measurements were verified experimentally by using PIV as the reference standard. In vivo application of MRI-driven TKE was explored in seven patients with aortic valve disease and one healthy volunteer. Transvalvular gradients measured by MRI and echocardiography were compared. Results MRI and PIV measurements of TKE are consistent for turbulent flow (0.666 < R2 < 0.738) with a mean difference of −11.13 J/m3 (SD = 4.34 J/m3). Results of MRI and PIV measurements differ by 2.76 ± 0.82 cm/s (velocity) and −11.13 ± 4.34 J/m3 (TKE) for turbulent flow (Re > 400). The turbulence pressure drop correlates strongly with total TKE (R2 = 0.986). However, in vivo measurements of TKE are not consistent with the transvalvular pressure gradient estimated by echocardiography. Conclusions These results suggest that TKE measurement via MRI may provide a potential benefit as an energy-loss index to characterize blood flow through the aortic valve. However, further clinical studies are necessary to reach definitive conclusions regarding this technique. PMID:26978529
Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Huh, Hyung Kyu; Lee, Sang Joon; Koo, Hyun Jung; Kang, Joon-Won; Lim, Tae-Hwan; Kim, Dae-Hee; Kim, Young-Hak; Kim, Namkug; Yang, Dong Hyun
2016-01-01
Although the measurement of turbulence kinetic energy (TKE) by using magnetic resonance imaging (MRI) has been introduced as an alternative index for quantifying energy loss through the cardiac valve, experimental verification and clinical application of this parameter are still required. The goal of this study is to verify MRI measurements of TKE by using a phantom stenosis with particle image velocimetry (PIV) as the reference standard. In addition, the feasibility of measuring TKE with MRI is explored. MRI measurements of TKE through a phantom stenosis was performed by using clinical 3T MRI scanner. The MRI measurements were verified experimentally by using PIV as the reference standard. In vivo application of MRI-driven TKE was explored in seven patients with aortic valve disease and one healthy volunteer. Transvalvular gradients measured by MRI and echocardiography were compared. MRI and PIV measurements of TKE are consistent for turbulent flow (0.666 < R2 < 0.738) with a mean difference of -11.13 J/m3 (SD = 4.34 J/m3). Results of MRI and PIV measurements differ by 2.76 ± 0.82 cm/s (velocity) and -11.13 ± 4.34 J/m3 (TKE) for turbulent flow (Re > 400). The turbulence pressure drop correlates strongly with total TKE (R2 = 0.986). However, in vivo measurements of TKE are not consistent with the transvalvular pressure gradient estimated by echocardiography. These results suggest that TKE measurement via MRI may provide a potential benefit as an energy-loss index to characterize blood flow through the aortic valve. However, further clinical studies are necessary to reach definitive conclusions regarding this technique.
Characterization of task-free and task-performance brain states via functional connectome patterns.
Zhang, Xin; Guo, Lei; Li, Xiang; Zhang, Tuo; Zhu, Dajiang; Li, Kaiming; Chen, Hanbo; Lv, Jinglei; Jin, Changfeng; Zhao, Qun; Li, Lingjiang; Liu, Tianming
2013-12-01
Both resting state fMRI (R-fMRI) and task-based fMRI (T-fMRI) have been widely used to study the functional activities of the human brain during task-free and task-performance periods, respectively. However, due to the difficulty in strictly controlling the participating subject's mental status and their cognitive behaviors during R-fMRI/T-fMRI scans, it has been challenging to ascertain whether or not an R-fMRI/T-fMRI scan truly reflects the participant's functional brain states during task-free/task-performance periods. This paper presents a novel computational approach to characterizing and differentiating the brain's functional status into task-free or task-performance states, by which the functional brain activities can be effectively understood and differentiated. Briefly, the brain's functional state is represented by a whole-brain quasi-stable connectome pattern (WQCP) of R-fMRI or T-fMRI data based on 358 consistent cortical landmarks across individuals, and then an effective sparse representation method was applied to learn the atomic connectome patterns (ACPs) of both task-free and task-performance states. Experimental results demonstrated that the learned ACPs for R-fMRI and T-fMRI datasets are substantially different, as expected. A certain portion of ACPs from R-fMRI and T-fMRI data were overlapped, suggesting some subjects with overlapping ACPs were not in the expected task-free/task-performance brain states. Besides, potential outliers in the T-fMRI dataset were further investigated via functional activation detections in different groups, and our results revealed unexpected task-performances of some subjects. This work offers novel insights into the functional architectures of the brain. Copyright © 2013 Elsevier B.V. All rights reserved.
Characterization of Task-free and Task-performance Brain States via Functional Connectome Patterns
Zhang, Xin; Guo, Lei; Li, Xiang; Zhang, Tuo; Zhu, Dajiang; Li, Kaiming; Chen, Hanbo; Lv, Jinglei; Jin, Changfeng; Zhao, Qun; Li, Lingjiang; Liu, Tianming
2014-01-01
Both resting state fMRI (R-fMRI) and task-based fMRI (T-fMRI) have been widely used to study the functional activities of the human brain during task-free and task-performance periods, respectively. However, due to the difficulty in strictly controlling the participating subject's mental status and their cognitive behaviors during R-fMRI/T-fMRI scans, it has been challenging to ascertain whether or not an R-fMRI/T-fMRI scan truly reflects the participant's functional brain states during task-free/task-performance periods. This paper presents a novel computational approach to characterizing and differentiating the brain's functional status into task-free or task-performance states, by which the functional brain activities can be effectively understood and differentiated. Briefly, the brain's functional state is represented by a whole-brain quasi-stable connectome pattern (WQCP) of R-fMRI or T-fMRI data based on 358 consistent cortical landmarks across individuals, and then an effective sparse representation method was applied to learn the atomic connectome patterns (ACP) of both task-free and task-performance states. Experimental results demonstrated that the learned ACPs for R-fMRI and T-fMRI datasets are substantially different, as expected. A certain portion of ACPs from R-fMRI and T-fMRI data were overlapped, suggesting some subjects with overlapping ACPs were not in the expected task-free/task-performance brain states. Besides, potential outliers in the T-fMRI dataset were further investigated via functional activation detections in different groups, and our results revealed unexpected task-performances of some subjects. This work offers novel insights into the functional architectures of the brain. PMID:23938590
Application of Medical Magnetic Resonance Imaging for Particle Concentration Measurement
NASA Astrophysics Data System (ADS)
Borup, Daniel; Elkins, Christopher; Eaton, John
2014-11-01
Particle transport and deposition in internal flows is important in a range of applications such as dust aggregation in turbine engines and aerosolized medicine deposition in human airways. Unlike optical techniques, Magnetic Resonance Imaging (MRI) is well suited for complex applications in which optical access is not possible. Here we present efforts to measure 3D particle concentration distribution using MRI. Glass particles dispersed in water flow reduce MRI signal from a spin-echo or gradient-echo scanning sequence by decreasing spin density and dephasing the spins present in the fluid. A preliminary experiment was conducted with a particle streak injected at the centerline of a turbulent round pipe flow with a U bend. Measurements confirmed that signal strength was related to particle concentration and showed the effects of gravitational settling and turbulent dispersion. Next, measurements of samples in a mixing chamber were taken. Particle volume fraction was varied and sensitivity to particle/fluid velocity was investigated. These results give a relationship between MRI signal, particle volume fraction, MRI sequence echo time, and spin relaxation parameters that can be used to measure local particle volume fraction in other turbulent flows of interest.
Different dynamic resting state fMRI patterns are linked to different frequencies of neural activity
Thompson, Garth John; Pan, Wen-Ju
2015-01-01
Resting state functional magnetic resonance imaging (rsfMRI) results have indicated that network mapping can contribute to understanding behavior and disease, but it has been difficult to translate the maps created with rsfMRI to neuroelectrical states in the brain. Recently, dynamic analyses have revealed multiple patterns in the rsfMRI signal that are strongly associated with particular bands of neural activity. To further investigate these findings, simultaneously recorded invasive electrophysiology and rsfMRI from rats were used to examine two types of electrical activity (directly measured low-frequency/infraslow activity and band-limited power of higher frequencies) and two types of dynamic rsfMRI (quasi-periodic patterns or QPP, and sliding window correlation or SWC). The relationship between neural activity and dynamic rsfMRI was tested under three anesthetic states in rats: dexmedetomidine and high and low doses of isoflurane. Under dexmedetomidine, the lightest anesthetic, infraslow electrophysiology correlated with QPP but not SWC, whereas band-limited power in higher frequencies correlated with SWC but not QPP. Results were similar under isoflurane; however, the QPP was also correlated to band-limited power, possibly due to the burst-suppression state induced by the anesthetic agent. The results provide additional support for the hypothesis that the two types of dynamic rsfMRI are linked to different frequencies of neural activity, but isoflurane anesthesia may make this relationship more complicated. Understanding which neural frequency bands appear as particular dynamic patterns in rsfMRI may ultimately help isolate components of the rsfMRI signal that are of interest to disorders such as schizophrenia and attention deficit disorder. PMID:26041826
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jen, M; Johnson, J; Hou, P
Purpose: Cerebral blood flow quantification in arterial spin labeling (ASL) MRI requires an estimate of the equilibrium magnetization of blood, which is often obtained by a set of proton density (PD) reference image. Normally, a constant blood-brain partition coefficient is assumed across the brain. However, this assumption may not be valid for brain lesions. This study aimed to evaluate the impact of lesion-related PD variations on ASL quantification in patients with brain tumors. Methods: MR images for posttreatment evaluation of 42 patients with brain tumors were retrospectively analyzed. These images were acquired on a 3T MRI scanner, including T2-weighted FLAIR,more » 3D pseudo-continuous ASL and post-contrast T1-weighted images. Anatomical images were coregistered with ASL images using the SPM software. Regions of interest (ROIs) of the enhancing and FLAIR lesions were manually drawn on the coregistered images. ROIs of the contralateral normal appearing tissues were also determined, with the consideration of approximating coil sensitivity patterns in lesion ROIs. Relative lesion blood flow (lesion/contralateral tissue) was calculated from both the CBF map (dependent on the PD) and the ΔM map for comparison. Results: The signal intensities in both enhancing and FLAIR lesions were significantly different than contralateral tissues on the PD reference image (p<0.001). The percent signal difference ranged from −15.9 to 19.2%, with a mean of 5.4% for the enhancing lesion, and from −2.8 to 22.9% with a mean of 10.1% for the FLAIR lesion. The high/low lesion-related PD signal resulted in inversely proportional under-/over-estimation of blood flow in both enhancing and FLAIR lesions. Conclusion: Significant signal differences were found between lesions and contralateral tissues in the PD reference image, which introduced errors in blood flow quantification in ASL. The error can be up to 20% in individual patients with an average of 5- 10% for the group of patients with brain tumors.« less
Paret, Christian; Ruf, Matthias; Gerchen, Martin Fungisai; Kluetsch, Rosemarie; Demirakca, Traute; Jungkunz, Martin; Bertsch, Katja; Schmahl, Christian; Ende, Gabriele
2016-01-15
Down-regulation of the amygdala with real-time fMRI neurofeedback (rtfMRI NF) potentially allows targeting brain circuits of emotion processing and may involve prefrontal-limbic networks underlying effective emotion regulation. Little research has been dedicated to the effect of rtfMRI NF on the functional connectivity of the amygdala and connectivity patterns in amygdala down-regulation with neurofeedback have not been addressed yet. Using psychophysiological interaction analysis of fMRI data, we present evidence that voluntary amygdala down-regulation by rtfMRI NF while viewing aversive pictures was associated with increased connectivity of the right amygdala with the ventromedial prefrontal cortex (vmPFC) in healthy subjects (N=16). In contrast, a control group (N=16) receiving sham feedback did not alter amygdala connectivity (Group×Condition t-contrast: p<.05 at cluster-level). Task-dependent increases in amygdala-vmPFC connectivity were predicted by picture arousal (β=.59, p<.05). A dynamic causal modeling analysis with Bayesian model selection aimed at further characterizing the underlying causal structure and favored a bottom-up model assuming predominant information flow from the amygdala to the vmPFC (xp=.90). The results were complemented by the observation of task-dependent alterations in functional connectivity of the vmPFC with the visual cortex and the ventrolateral PFC in the experimental group (Condition t-contrast: p<.05 at cluster-level). Taken together, the results underscore the potential of amygdala fMRI neurofeedback to influence functional connectivity in key networks of emotion processing and regulation. This may be beneficial for patients suffering from severe emotion dysregulation by improving neural self-regulation. Copyright © 2015 Elsevier Inc. All rights reserved.
Medero, Rafael; García-Rodríguez, Sylvana; François, Christopher J; Roldán-Alzate, Alejandro
2017-03-21
Non-invasive hemodynamic assessment of total cavopulmonary connection (TCPC) is challenging due to the complex anatomy. Additive manufacturing (AM) is a suitable alternative for creating patient-specific in vitro models for flow measurements using four-dimensional (4D) Flow MRI. These in vitro systems have the potential to serve as validation for computational fluid dynamics (CFD), simulating different physiological conditions. This study investigated three different AM technologies, stereolithography (SLA), selective laser sintering (SLS) and fused deposition modeling (FDM), to determine differences in hemodynamics when measuring flow using 4D Flow MRI. The models were created using patient-specific MRI data from an extracardiac TCPC. These models were connected to a perfusion pump circulating water at three different flow rates. Data was processed for visualization and quantification of velocity, flow distribution, vorticity and kinetic energy. These results were compared between each model. In addition, the flow distribution obtained in vitro was compared to in vivo. The results showed significant difference in velocities measured at the outlets of the models that required internal support material when printing. Furthermore, an ultrasound flow sensor was used to validate flow measurements at the inlets and outlets of the in vitro models. These results were highly correlated to those measured with 4D Flow MRI. This study showed that commercially available AM technologies can be used to create patient-specific vascular models for in vitro hemodynamic studies at reasonable costs. However, technologies that do not require internal supports during manufacturing allow smoother internal surfaces, which makes them better suited for flow analyses. Copyright © 2017 Elsevier Ltd. All rights reserved.
MRI studies of the hydrodynamics in a USP 4 dissolution testing cell.
Shiko, G; Gladden, L F; Sederman, A J; Connolly, P C; Butler, J M
2011-03-01
We present a detailed study of hydrodynamics inside the flow-through dissolution apparatus when operated according to USP recommendations. The pulsatile flow inside the flow-through cell was measured quantitatively using magnetic resonance imaging (MRI) at a spatial resolution of 234 × 234 μm(2) and slice thickness of 1 mm. We report the experimental protocols developed for in situ MRI studies and the effect that the operating conditions and tablet orientation have on the hydrodynamics inside commercial flow cells. It was found that the flow field inside the dissolution cells was, at most operating conditions, heterogeneous, rather than fully developed laminar flow, and characterised by re-circulation and backward flow. A model tablet was shown to be contacted by a wide distribution of local velocities as a function of position and orientation in the flow cell. The use of 1 mm beads acted as a distributor of the flow but did not suffice to ensure a fully developed laminar flow profile. These results emphasise the necessity to understand the influence of test conditions on dissolution behaviour in defining robust flow-through dissolution methods. Copyright © 2010 Wiley-Liss, Inc.
Real-Time fMRI in Neuroscience Research and Its Use in Studying the Aging Brain
Rana, Mohit; Varan, Andrew Q.; Davoudi, Anis; Cohen, Ronald A.; Sitaram, Ranganatha; Ebner, Natalie C.
2016-01-01
Cognitive decline is a major concern in the aging population. It is normative to experience some deterioration in cognitive abilities with advanced age such as related to memory performance, attention distraction to interference, task switching, and processing speed. However, intact cognitive functioning in old age is important for leading an independent day-to-day life. Thus, studying ways to counteract or delay the onset of cognitive decline in aging is crucial. The literature offers various explanations for the decline in cognitive performance in aging; among those are age-related gray and white matter atrophy, synaptic degeneration, blood flow reduction, neurochemical alterations, and change in connectivity patterns with advanced age. An emerging literature on neurofeedback and Brain Computer Interface (BCI) reports exciting results supporting the benefits of volitional modulation of brain activity on cognition and behavior. Neurofeedback studies based on real-time functional magnetic resonance imaging (rtfMRI) have shown behavioral changes in schizophrenia and behavioral benefits in nicotine addiction. This article integrates research on cognitive and brain aging with evidence of brain and behavioral modification due to rtfMRI neurofeedback. We offer a state-of-the-art description of the rtfMRI technique with an eye towards its application in aging. We present preliminary results of a feasibility study exploring the possibility of using rtfMRI to train older adults to volitionally control brain activity. Based on these first findings, we discuss possible implementations of rtfMRI neurofeedback as a novel technique to study and alleviate cognitive decline in healthy and pathological aging. PMID:27803662
Glover, Paul M; Watkins, Roger H; O'Neill, George C; Ackerley, Rochelle; Sanchez-Panchuelo, Rosa; McGlone, Francis; Brookes, Matthew J; Wessberg, Johan; Francis, Susan T
2017-10-01
Intra-neural microstimulation (INMS) is a technique that allows the precise delivery of low-current electrical pulses into human peripheral nerves. Single unit INMS can be used to stimulate individual afferent nerve fibres during microneurography. Combining this with neuroimaging allows the unique monitoring of central nervous system activation in response to unitary, controlled tactile input, with functional magnetic resonance imaging (fMRI) providing exquisite spatial localisation of brain activity and magnetoencephalography (MEG) high temporal resolution. INMS systems suitable for use within electrophysiology laboratories have been available for many years. We describe an INMS system specifically designed to provide compatibility with both ultra-high field (7T) fMRI and MEG. Numerous technical and safety issues are addressed. The system is fully analogue, allowing for arbitrary frequency and amplitude INMS stimulation. Unitary recordings obtained within both the MRI and MEG screened-room environments are comparable with those obtained in 'clean' electrophysiology recording environments. Single unit INMS (current <7μA, 200μs pulses) of individual mechanoreceptive afferents produces appropriate and robust responses during fMRI and MEG. This custom-built MRI- and MEG-compatible stimulator overcomes issues with existing INMS approaches; it allows well-controlled switching between recording and stimulus mode, prevents electrical shocks because of long cable lengths, permits unlimited patterns of stimulation, and provides a system with improved work-flow and participant comfort. We demonstrate that the requirements for an INMS-integrated system, which can be used with both fMRI and MEG imaging systems, have been fully met. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gilson, Erik; Caspary, Kyle; Ebrahimi, Fatima; Goodman, Jeremy; Ji, Hantao; Nuñez, Tahiri; Wei, Xing
2016-10-01
The liquid metal magnetorotational instability experiment at PPPL is designed to search for the MRI in a controlled laboratory setup. MRI is thought to be the primary mechanism behind turbulence in accretion disks, leading to an enhanced effective viscosity that can explain observed fast accretion rates. The apparatus has several key differences from an accretion disk. The top and bottom surfaces of the vessel exert stresses on the surfaces of the working fluid. There are no surface stresses on an accretion disk, but rather a free-surface. To interpret experimental results, the Spectral Finite Element Maxwell and Navier Stokes (SFEMaNS) code (Guermond et al., 2009) has been used to simulate experiments in the MRI apparatus and study MRI onset in the presence of residual flows induced by the boundaries. These Ekman flows lead to the generation of radial magnetic fields that can obfuscate the MRI signal. Simulation results are presented that show the full spatial distribution of the velocity field and the magnetic field over a range of experimental operating parameters, including both above and below the expected MRI threshold. Both the residual flow and the radial magnetic field at the location of the diagnostics are computed for comparisons with experimental results. This research is supported by DOE, NSF, and NASA.
Scurr, E D; Collins, D J; Temple, L; Karanjia, N; Leach, M O; Koh, D-M
2012-01-01
Objective To describe the appearances of colorectal liver metastases on diffusion-weighted MRI (DW-MRI) and to compare these appearances with histopathology. Methods 43 patients with colorectal liver metastases were evaluated using breath-hold DW-MRI (b-values 0, 150 and 500 s mm–2). The b=500 s mm–2 DW-MRI were reviewed consensually for lesion size and appearance by two readers. 18/43 patients underwent surgery allowing radiological–pathological comparison. Tissue sections were reviewed by a pathologist, who classified metastases histologically as cellular, fibrotic, necrotic or mixed. The frequency of DW-MRI findings and histological features were compared using the χ2 test. Results 84 metastases were found in 43 patients. On b=500 s mm–2 DW-MRI, metastases showed three high signal intensity patterns: rim (55/84), uniform (23/84) and variegate (6/84). Of the 55 metastases showing rim pattern, 54 were >1 cm in diameter (p<0.01, χ2 test). 25/84 metastases were surgically resected. Of these, 11/22 metastases >1 cm in diameter showed rim pattern and demonstrated central necrosis at histopathology (p=0.04, χ2 test). No definite relationship was found between uniform and variegate patterns with histology. Conclusion Rim high signal intensity was the most common appearance of colorectal liver metastases >1 cm diameter on DW-MRI at b-values of 500 s mm–2, a finding attributable to central necrosis. PMID:21224302
Freed, Melanie; de Zwart, Jacco A; Hariharan, Prasanna; Myers, Matthew R; Badano, Aldo
2011-10-01
To develop a dynamic lesion phantom that is capable of producing physiological kinetic curves representative of those seen in human dynamic contrast-enhanced MRI (DCE-MRI) data. The objective of this phantom is to provide a platform for the quantitative comparison of DCE-MRI protocols to aid in the standardization and optimization of breast DCE-MRI. The dynamic lesion consists of a hollow, plastic mold with inlet and outlet tubes to allow flow of a contrast agent solution through the lesion over time. Border shape of the lesion can be controlled using the lesion mold production method. The configuration of the inlet and outlet tubes was determined using fluid transfer simulations. The total fluid flow rate was determined using x-ray images of the lesion for four different flow rates (0.25, 0.5, 1.0, and 1.5 ml/s) to evaluate the resultant kinetic curve shape and homogeneity of the contrast agent distribution in the dynamic lesion. High spatial and temporal resolution x-ray measurements were used to estimate the true kinetic curve behavior in the dynamic lesion for benign and malignant example curves. DCE-MRI example data were acquired of the dynamic phantom using a clinical protocol. The optimal inlet and outlet tube configuration for the lesion molds was two inlet molds separated by 30° and a single outlet tube directly between the two inlet tubes. X-ray measurements indicated that 1.0 ml/s was an appropriate total fluid flow rate and provided truth for comparison with MRI data of kinetic curves representative of benign and malignant lesions. DCE-MRI data demonstrated the ability of the phantom to produce realistic kinetic curves. The authors have constructed a dynamic lesion phantom, demonstrated its ability to produce physiological kinetic curves, and provided estimations of its true kinetic curve behavior. This lesion phantom provides a tool for the quantitative evaluation of DCE-MRI protocols, which may lead to improved discrimination of breast cancer lesions.
Flip-flop method: A new T1-weighted flow-MRI for plants studies.
Buy, Simon; Le Floch, Simon; Tang, Ning; Sidiboulenouar, Rahima; Zanca, Michel; Canadas, Patrick; Nativel, Eric; Cardoso, Maida; Alibert, Eric; Dupont, Guillaume; Ambard, Dominique; Maurel, Christophe; Verdeil, Jean-Luc; Bertin, Nadia; Goze-Bac, Christophe; Coillot, Christophe
2018-01-01
The climate warming implies an increase of stress of plants (drought and torrential rainfall). The understanding of plant behavior, in this context, takes a major importance and sap flow measurement in plants remains a key issue for plant understanding. Magnetic Resonance Imaging (MRI) which is well known to be a powerful tool to access water quantity can be used to measure moving water. We describe a novel flow-MRI method which takes advantage of inflow slice sensitivity. The method involves the slice selectivity in the context of multi slice spin echo sequence. Two sequences such as a given slice is consecutively inflow and outflow sensitive are performed, offering the possiblility to perform slow flow sensitive imaging in a quite straigthforward way. The method potential is demonstrated by imaging both a slow flow measurement on a test bench (as low as 10 μm.s-1) and the Poiseuille's profile of xylemian sap flow velocity in the xylematic tissues of a tomato plant stem.
A Technique for Generating Volumetric Cine-Magnetic Resonance Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, Wendy; Ren, Lei, E-mail: lei.ren@duke.edu; Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
Purpose: The purpose of this study was to develop a techique to generate on-board volumetric cine-magnetic resonance imaging (VC-MRI) using patient prior images, motion modeling, and on-board 2-dimensional cine MRI. Methods and Materials: One phase of a 4-dimensional MRI acquired during patient simulation is used as patient prior images. Three major respiratory deformation patterns of the patient are extracted from 4-dimensional MRI based on principal-component analysis. The on-board VC-MRI at any instant is considered as a deformation of the prior MRI. The deformation field is represented as a linear combination of the 3 major deformation patterns. The coefficients of themore » deformation patterns are solved by the data fidelity constraint using the acquired on-board single 2-dimensional cine MRI. The method was evaluated using both digital extended-cardiac torso (XCAT) simulation of lung cancer patients and MRI data from 4 real liver cancer patients. The accuracy of the estimated VC-MRI was quantitatively evaluated using volume-percent-difference (VPD), center-of-mass-shift (COMS), and target tracking errors. Effects of acquisition orientation, region-of-interest (ROI) selection, patient breathing pattern change, and noise on the estimation accuracy were also evaluated. Results: Image subtraction of ground-truth with estimated on-board VC-MRI shows fewer differences than image subtraction of ground-truth with prior image. Agreement between normalized profiles in the estimated and ground-truth VC-MRI was achieved with less than 6% error for both XCAT and patient data. Among all XCAT scenarios, the VPD between ground-truth and estimated lesion volumes was, on average, 8.43 ± 1.52% and the COMS was, on average, 0.93 ± 0.58 mm across all time steps for estimation based on the ROI region in the sagittal cine images. Matching to ROI in the sagittal view achieved better accuracy when there was substantial breathing pattern change. The technique was robust against noise levels up to SNR = 20. For patient data, average tracking errors were less than 2 mm in all directions for all patients. Conclusions: Preliminary studies demonstrated the feasibility of generating real-time VC-MRI for on-board localization of moving targets in radiation therapy.« less
Kiviniemi, Vesa; Remes, Jukka; Starck, Tuomo; Nikkinen, Juha; Haapea, Marianne; Silven, Olli; Tervonen, Osmo
2009-01-01
Temporal blood oxygen level dependent (BOLD) contrast signals in functional MRI during rest may be characterized by power spectral distribution (PSD) trends of the form 1/f(alpha). Trends with 1/f characteristics comprise fractal properties with repeating oscillation patterns in multiple time scales. Estimates of the fractal properties enable the quantification of phenomena that may otherwise be difficult to measure, such as transient, non-linear changes. In this study it was hypothesized that the fractal metrics of 1/f BOLD signal trends can map changes related to dynamic, multi-scale alterations in cerebral blood flow (CBF) after a transient hyperventilation challenge. Twenty-three normal adults were imaged in a resting-state before and after hyperventilation. Different variables (1/f trend constant alpha, fractal dimension D(f), and, Hurst exponent H) characterizing the trends were measured from BOLD signals. The results show that fractal metrics of the BOLD signal follow the fractional Gaussian noise model, even during the dynamic CBF change that follows hyperventilation. The most dominant effect on the fractal metrics was detected in grey matter, in line with previous hyperventilation vaso-reactivity studies. The alpha was able to differentiate also blood vessels from grey matter changes. D(f) was most sensitive to grey matter. H correlated with default mode network areas before hyperventilation but this pattern vanished after hyperventilation due to a global increase in H. In the future, resting-state fMRI combined with fractal metrics of the BOLD signal may be used for analyzing multi-scale alterations of cerebral blood flow.
Applications of optically detected MRI for enhanced contrast and penetration in metal
NASA Astrophysics Data System (ADS)
Ruangchaithaweesuk, Songtham; Yu, Dindi S.; Garcia, Nissa C.; Yao, Li; Xu, Shoujun
2012-10-01
We report quantitative measurements using optically detected magnetic resonance imaging (MRI) for enhanced pH contrast and flow inside porous metals. Using a gadolinium chelate as the pH contrast agent, we show the response is 0.6 s-1 mM-1 per pH unit at the ambient magnetic field for the pH range 6-8.5. A stopped flow scheme was used to directly measure T1 relaxation time to determine the relaxivity. Flow profiles and images were obtained for a series of porous metals with different average pore sizes. The signal amplitudes and spatial distributions were compared. A clogged region in one of the samples was revealed using optically detected MRI but not optical imaging or scanning electron microscopy. These applications will significantly broaden the impact of optically detected MRI in chemical imaging and materials research.
Feature-space-based FMRI analysis using the optimal linear transformation.
Sun, Fengrong; Morris, Drew; Lee, Wayne; Taylor, Margot J; Mills, Travis; Babyn, Paul S
2010-09-01
The optimal linear transformation (OLT), an image analysis technique of feature space, was first presented in the field of MRI. This paper proposes a method of extending OLT from MRI to functional MRI (fMRI) to improve the activation-detection performance over conventional approaches of fMRI analysis. In this method, first, ideal hemodynamic response time series for different stimuli were generated by convolving the theoretical hemodynamic response model with the stimulus timing. Second, constructing hypothetical signature vectors for different activity patterns of interest by virtue of the ideal hemodynamic responses, OLT was used to extract features of fMRI data. The resultant feature space had particular geometric clustering properties. It was then classified into different groups, each pertaining to an activity pattern of interest; the applied signature vector for each group was obtained by averaging. Third, using the applied signature vectors, OLT was applied again to generate fMRI composite images with high SNRs for the desired activity patterns. Simulations and a blocked fMRI experiment were employed for the method to be verified and compared with the general linear model (GLM)-based analysis. The simulation studies and the experimental results indicated the superiority of the proposed method over the GLM-based analysis in detecting brain activities.
On the flow through the normal fetal aortic arc at late gestation
NASA Astrophysics Data System (ADS)
Pekkan, Kerem; Nourparvar, Paymon; Yerneni, Srinivasu; Dasi, Lakshmi; de Zelicourt, Diane; Fogel, Mark; Yoganathan, Ajit
2006-11-01
During the fetal stage, the aortic arc is a complex junction of great vessels (right and left ventricular outflow tracks (RVOT, LVOT), pulmonary arteries (PA), ductus, head-neck vessels, decending aorta (Dao)) delicately distributing the oxygenated blood flow to the lungs and the body -preferential to the brain. Experimental and computational studies are performed in idealized models of the fetal aorta to understand and visualize the unsteady hemodynamics. Unsteady in vitro flow, generated by two peristaltic pumps (RVOT and LVOT) is visualized with two colored dyes and a red laser in a rigid glass model with physiological diameters. Helical flow patterns at the PA's and ductal shunting to the Dao are visualized. Computational fluid dynamics of the same geometry is modeled using the commercial code Fidap with porous boundary conditions representing systemic and pulmonary resistances (˜400000 tetrahedral elements). Combined (RVOT+LVOT) average flow rates ranging from 1.9 to 2.1-L/min for 34 to 38-weeks gestation were simulated with the Reynolds and Womersly numbers (Dao) of 500 and 8. Computational results are compared qualitatively with the flow visualizations at this target flow condition. Understanding fetal hemodynamics is critical for congenital heart defects, tissue engineering, fetal cardiac MRI and surgeries.
The "starfield" pattern of cerebral fat embolism from bone marrow necrosis in sickle cell crisis.
Dhakal, Laxmi P; Bourgeois, Kirk; Barrett, Kevin M; Freeman, William D
2015-04-01
Sickle cell disease may manifest with cerebrovascular and systemic complications. Sickle crisis that results in avascular necrosis of long bones with resultant cerebral fat embolism syndrome is rare and has a characteristic "starfield" pattern on MRI. This "starfield" MRI pattern should raise suspicion for sickle cell crisis in patients without a known history of the disease, which can lead to earlier sickle cell red blood cell exchange transfusion and treatment. We present a case of a male who presented emergently with acute seizure, coma with a characteristic MRI pattern, which lead to the diagnosis of avascular bone marrow necrosis and cerebral fat embolism syndrome from sickle cell crisis.
Individual Patient Diagnosis of AD and FTD via High-Dimensional Pattern Classification of MRI
Davatzikos, C.; Resnick, S. M.; Wu, X.; Parmpi, P.; Clark, C. M.
2008-01-01
The purpose of this study is to determine the diagnostic accuracy of MRI-based high-dimensional pattern classification in differentiating between patients with Alzheimer’s Disease (AD), Frontotemporal Dementia (FTD), and healthy controls, on an individual patient basis. MRI scans of 37 patients with AD and 37 age-matched cognitively normal elderly individuals, as well as 12 patients with FTD and 12 age-matched cognitively normal elderly individuals, were analyzed using voxel-based analysis and high-dimensional pattern classification. Diagnostic sensitivity and specificity of spatial patterns of regional brain atrophy found to be characteristic of AD and FTD were determined via cross-validation and via split-sample methods. Complex spatial patterns of relatively reduced brain volumes were identified, including temporal, orbitofrontal, parietal and cingulate regions, which were predominantly characteristic of either AD or FTD. These patterns provided 100% diagnostic accuracy, when used to separate AD or FTD from healthy controls. The ability to correctly distinguish AD from FTD averaged 84.3%. All estimates of diagnostic accuracy were determined via cross-validation. In conclusion, AD- and FTD-specific patterns of brain atrophy can be detected with high accuracy using high-dimensional pattern classification of MRI scans obtained in a typical clinical setting. PMID:18474436
van der Bel, René; Coolen, Bram F; Nederveen, Aart J; Potters, Wouter V; Verberne, Hein J; Vogt, Liffert; Stroes, Erik S G; Krediet, C T Paul
2016-03-28
The role of kidney hypoxia is considered pivotal in the progression of chronic kidney disease. A widely used method to assess kidney oxygenation is blood oxygen level dependent (BOLD)-magnetic resonance imaging (MRI), but its interpretation remains problematic. The BOLD-MRI signal is the result of kidney oxygen consumption (a proxy of glomerular filtration) and supply (ie, glomerular perfusion). Therefore, we hypothesized that with pharmacological modulation of kidney blood flow, renal oxygenation, as assessed by BOLD-MRI, correlates to filtration fraction (ie, glomerular filtration rate/effective renal plasma flow) in healthy humans. Eight healthy volunteers were subjected to continuous angiotensin-II infusion at 0.3, 0.9, and 3.0 ng/kg per minute. At each dose, renal oxygenation and blood flow were assessed using BOLD and phase-contrast MRI. Subsequently, "gold standard" glomerular filtration rate/effective renal plasma flow measurements were performed under the same conditions. Renal plasma flow decreased dose dependently from 660±146 to 467±103 mL/min per 1.73 m(2) (F[3, 21]=33.3, P<0.001). Glomerular filtration rate decreased from 121±23 to 110±18 mL/min per 1.73 m(2) (F[1.8, 2.4]=6.4, P=0.013). Cortical transverse relaxation rate (R2*; increases in R2* represent decreases in oxygenation) increased by 7.2±3.8% (F[3, 21]=7.37, P=0.001); medullar R2* did not change. Cortical R2* related to filtration fraction (R(2) 0.46, P<0.001). By direct comparison between "gold standard" kidney function measurements and BOLD MRI, we showed that cortical oxygenation measured by BOLD MRI relates poorly to glomerular filtration rate but is associated with filtration fraction. For future studies, there may be a need to include renal plasma flow measurements when employing renal BOLD-MRI. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
The representation of order information in auditory-verbal short-term memory.
Kalm, Kristjan; Norris, Dennis
2014-05-14
Here we investigate how order information is represented in auditory-verbal short-term memory (STM). We used fMRI and a serial recall task to dissociate neural activity patterns representing the phonological properties of the items stored in STM from the patterns representing their order. For this purpose, we analyzed fMRI activity patterns elicited by different item sets and different orderings of those items. These fMRI activity patterns were compared with the predictions made by positional and chaining models of serial order. The positional models encode associations between items and their positions in a sequence, whereas the chaining models encode associations between successive items and retain no position information. We show that a set of brain areas in the postero-dorsal stream of auditory processing store associations between items and order as predicted by a positional model. The chaining model of order representation generates a different pattern similarity prediction, which was shown to be inconsistent with the fMRI data. Our results thus favor a neural model of order representation that stores item codes, position codes, and the mapping between them. This study provides the first fMRI evidence for a specific model of order representation in the human brain. Copyright © 2014 the authors 0270-6474/14/346879-08$15.00/0.
Multilevel non-contiguous spinal injuries: incidence and patterns based on whole spine MRI.
Kanna, Rishi Mugesh; Gaike, Chandrasekar V; Mahesh, Anupama; Shetty, Ajoy Prasad; Rajasekaran, S
2016-04-01
Multi-level non-contiguous spinal injuries are not uncommon and their incidence varies from 1.6 to 77% depending on the type of imaging modality used. Delayed diagnosis and missed spinal injuries in non-contiguous spine fractures have been frequently described which can result in significant pain, deformity and neurological deficit. The efficacy of whole spine MRI in detecting asymptomatic significant vertebral fractures is not known. Consecutive spinal injury patients treated between 2011 and 2013 were retrospectively evaluated based on clinical and radiographic records. Patients' demographics, mode of injury, presence of associated injuries, clinical symptoms and the presence of neurological deficit were studied. Radiographs of the fractured region and whole spine MRI were evaluated for the presence of multi-level injuries. Among 484 patients, 95 (19.62%) patients had multilevel injuries including 86 (17.76%) with non-contiguous injuries. Five common patterns of non-contiguous spinal injuries were observed. Pattern I: cervical and thoracic--29.1%, Pattern II: thoracolumbar and lumbosacral--22.1%, Pattern III: thoracic and thoracolumbar--12.8 %, Pattern IV: cervical and thoracolumbar--9.1% and Pattern V: lumbosacral and associated injuries--9.0 %. The incidence of intra-regional non-contiguous injuries was 17.4%. Whole spine MRI scan detected 24 (28.6%) missed secondary injuries of which 5 were unstable. The incidence of multilevel non-contiguous spine injury using whole spine MRI imaging is 17.76%. Five different patterns of multi-level non-contiguous injuries were found with the most common pattern being the cervical and thoracic level injuries. The incidence of unstable injuries can be as high as 21% of missed secondary injuries.
Towards high-resolution 4D flow MRI in the human aorta using kt-GRAPPA and B1+ shimming at 7T.
Schmitter, Sebastian; Schnell, Susanne; Uğurbil, Kâmil; Markl, Michael; Van de Moortele, Pierre-François
2016-08-01
To evaluate the feasibility of aortic 4D flow magnetic resonance imaging (MRI) at 7T with improved spatial resolution using kt-GRAPPA acceleration while restricting acquisition time and to address radiofrequency (RF) excitation heterogeneities with B1+ shimming. 4D flow MRI data were obtained in the aorta of eight subjects using a 16-channel transmit/receive coil array at 7T. Flow quantification and acquisition time were compared for a kt-GRAPPA accelerated (R = 5) and a standard GRAPPA (R = 2) accelerated protocol. The impact of different dynamic B1+ shimming strategies on flow quantification was investigated. Two kt-GRAPPA accelerated protocols with 1.2 × 1.2 × 1.2 mm(3) and 1.8 × 1.8 × 2.4 mm(3) spatial resolution were compared. Using kt-GRAPPA, we achieved a 4.3-fold reduction in net acquisition time resulting in scan times of about 10 minutes. No significant effect on flow quantification was observed compared to standard GRAPPA with R = 2. Optimizing the B1+ fields for the aorta impacted significantly (P < 0.05) the flow quantification while specific B1+ settings were required for respiration navigators. The high-resolution protocol yielded similar flow quantification, but allowed the depiction of branching vessels. 7T in combination with B1+ shimming allows for high-resolution 4D flow MRI acquisitions in the human aorta, while kt-GRAPPA limits total scan times without affecting flow quantification. J. Magn. Reson. Imaging 2016;44:486-499. © 2016 Wiley Periodicals, Inc.
Choi, Ja Young; Choi, Yoon Seong; Rha, Dong-Wook; Park, Eun Sook
2016-08-01
In the present study we investigated the nature and extent of clinical outcomes using various classifications and analyzed the relationship between brain magnetic resonance imaging (MRI) findings and the extent of clinical outcomes in children with cerebral palsy (CP) with deep gray matter injury. The deep gray matter injuries of 69 children were classified into hypoxic ischemic encephalopathy (HIE) and kernicterus patterns. HIE patterns were divided into four groups (I-IV) based on severity. Functional classification was investigated using the gross motor function classification system-expanded and revised, manual ability classification system, communication function classification system, and tests of cognitive function, and other associated problems. The severity of HIE pattern on brain MRI was strongly correlated with the severity of clinical outcomes in these various domains. Children with a kernicterus pattern showed a wide range of clinical outcomes in these areas. Children with severe HIE are at high risk of intellectual disability (ID) or epilepsy and children with a kernicterus pattern are at risk of hearing impairment and/or ID. Grading severity of HIE pattern on brain MRI is useful for predicting overall outcomes. The clinical outcomes of children with a kernicterus pattern range widely from mild to severe. Delineation of the clinical outcomes of children with deep gray matter injury, which are a common abnormal brain MRI finding in children with CP, is necessary. The present study provides clinical outcomes for various domains in children with deep gray matter injury on brain MRI. The deep gray matter injuries were divided into two major groups; HIE and kernicterus patterns. Our study showed that severity of HIE pattern on brain MRI was strongly associated with the severity of impairments in gross motor function, manual ability, communication function, and cognition. These findings suggest that severity of HIE pattern can be useful for predicting the severity of impairments. Conversely, children with a kernicterus pattern showed a wide range of clinical outcomes in various domains. Children with severe HIE pattern are at high risk of ID or epilepsy and children with kernicterus pattern are at risk of hearing impairment or ID. The strength of our study was the assessment of clinical outcomes after 3 years of age using standardized classification systems in various domains in children with deep gray matter injury. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
N, Gwilliam M; J, Collins D; O, Leach M
Purpose: To assess the feasibility of accurately quantifying the concentration of MRI contrast agent (CA) in pulsatile flowing blood by measuring its T{sub 1}, as is common for the purposes of obtaining a patientspecific arterial input function (AIF). Dynamic contrast enhanced (DCE) - MRI and pharmacokinetic (PK) modelling is widely used to produce measures of vascular function but accurate measurement of the AIF undermines their accuracy. A proposed solution is to measure the T{sub 1} of blood in a large vessel using the Fram double flip angle method during the passage of a bolus of CA. This work expands onmore » previous work by assessing pulsatile flow and the changes in T{sub 1} seen with a CA bolus. Methods: A phantom was developed which used a physiological pump to pass fluid of a known T{sub 1} (812ms) through the centre of a head coil of a clinical 1.5T MRI scanner. Measurements were made using high temporal resolution sequences suitable for DCE-MRI and were used to validate a virtual phantom that simulated the expected errors due to pulsatile flow and bolus of CA concentration changes typically found in patients. Results: : Measured and virtual results showed similar trends, although there were differences that may be attributed to the virtual phantom not accurately simulating the spin history of the fluid before entering the imaging volume. The relationship between T{sub 1} measurement and flow speed was non-linear. T{sub 1} measurement is compromised by new spins flowing into the imaging volume, not being subject to enough excitations to have reached steady-state. The virtual phantom demonstrated a range of recorded T{sub 1} for various simulated T{sub 1} / flow rates. Conclusion: T{sub 1} measurement of flowing blood using standard DCE-MRI sequences is very challenging. Measurement error is non-linear with relation to instantaneous flow speed. Optimising sequence parameters and lowering baseline T{sub 1} of blood should be considered.« less
Tabassum, Sumera; Haider, Shahbaz
2016-01-01
To determine frequencies of different MRI patterns of tuberculous spondylitisin a public sector hospital in Karachi. This descriptive multidisciplinary case series study was done from October 25, 2011 to May 28, 2012 in Radiology Department and Department of Medicine in the Jinnah Postgraduate Medical Center Karachi. MRI scans (dorsal / lumbosacral spine) of the Patients presenting with backache in Medical OPD, were performed in Radiology Department. Axial and sagittal images of T1 weighted, T2 weighted and STIR sequences of the affected region were taken. A total of 140 patients who were diagnosed as having tuberculous spondylitis were further evaluated and analyzed for having different patterns of involvement of the spine and compared with similar studies. Among frequencies of different MRI pattern of tuberculous spondylitis, contiguous vertebral involvement was 100%, discal involvement 98.6%, paravertebral abscess 92.1% cases, epidural abscess 91.4%, spinal cord / thecal sac compression 89.3%, vertebral collapse 72.9%, gibbus deformity 42.9% and psoas abscess 36.4%. Contiguous vertebral involvement was commonest MRI pattern, followed by disk involvement, paravertebral & epidural abscesses, thecal sac compression and vertebral collapse.
NASA Astrophysics Data System (ADS)
Lantz, Jonas; Ebbers, Tino; Karlsson, Matts
2012-11-01
In this study, turbulent kinetic energy (TKE) in an aortic coarctation was studied using both a numerical technique (large eddy simulation, LES) and in vivo measurements using magnetic resonance imaging (MRI). High levels of TKE are undesirable, as kinetic energy is extracted from the mean flow to feed the turbulent fluctuations. The patient underwent surgery to widen the coarctation, and the flow before and after surgery was computed and compared to MRI measurements. The resolution of the MRI was about 7 × 7 voxels in axial cross-section while 50x50 mesh cells with increased resolution near the walls was used in the LES simulation. In general, the numerical simulations and MRI measurements showed that the aortic arch had no or very low levels of TKE, while elevated values were found downstream the coarctation. It was also found that TKE levels after surgery were lowered, indicating that the diameter of the constriction was increased enough to decrease turbulence effects. In conclusion, both the numerical simulation and MRI measurements gave very similar results, thereby validating the simulations and suggesting that MRI measured TKE can be used as an initial estimation in clinical practice, while LES results can be used for detailed quantification and further research of aortic flows.
Application of calibrated fMRI in Alzheimer's disease.
Lajoie, Isabelle; Nugent, Scott; Debacker, Clément; Dyson, Kenneth; Tancredi, Felipe B; Badhwar, AmanPreet; Belleville, Sylvie; Deschaintre, Yan; Bellec, Pierre; Doyon, Julien; Bocti, Christian; Gauthier, Serge; Arnold, Douglas; Kergoat, Marie-Jeanne; Chertkow, Howard; Monchi, Oury; Hoge, Richard D
2017-01-01
Calibrated fMRI based on arterial spin-labeling (ASL) and blood oxygen-dependent contrast (BOLD), combined with periods of hypercapnia and hyperoxia, can provide information on cerebrovascular reactivity (CVR), resting blood flow (CBF), oxygen extraction fraction (OEF), and resting oxidative metabolism (CMRO 2 ). Vascular and metabolic integrity are believed to be affected in Alzheimer's disease (AD), thus, the use of calibrated fMRI in AD may help understand the disease and monitor therapeutic responses in future clinical trials. In the present work, we applied a calibrated fMRI approach referred to as Quantitative O2 (QUO2) in a cohort of probable AD dementia and age-matched control participants. The resulting CBF, OEF and CMRO 2 values fell within the range from previous studies using positron emission tomography (PET) with 15 O labeling. Moreover, the typical parietotemporal pattern of hypoperfusion and hypometabolism in AD was observed, especially in the precuneus, a particularly vulnerable region. We detected no deficit in frontal CBF, nor in whole grey matter CVR, which supports the hypothesis that the effects observed were associated specifically with AD rather than generalized vascular disease. Some key pitfalls affecting both ASL and BOLD methods were encountered, such as prolonged arterial transit times (particularly in the occipital lobe), the presence of susceptibility artifacts obscuring medial temporal regions, and the challenges associated with the hypercapnic manipulation in AD patients and elderly participants. The present results are encouraging and demonstrate the promise of calibrated fMRI measurements as potential biomarkers in AD. Although CMRO 2 can be imaged with 15 O PET, the QUO2 method uses more widely available imaging infrastructure, avoids exposure to ionizing radiation, and integrates with other MRI-based measures of brain structure and function.
Semaan, Edouard; Markl, Michael; Chris Malaisrie, S.; Barker, Alex; Allen, Bradley; McCarthy, Patrick; Carr, James C.; Collins, Jeremy D.
2014-01-01
OBJECTIVE To provide a more complete characterization of aortic blood flow in patients following valve-sparing aortic root replacement (VSARR) compared with presurgical cohorts matched by tricuspid and bicuspid valve morphology, age and presurgical aorta size. METHODS Four-dimensional (4D) flow magnetic resonance imaging (MRI) was performed to analyse three-dimensional (3D) blood flow in the thoracic aorta of n = 13 patients after VSARR with reimplantation of native tricuspid aortic valve (TAV, n = 6) and bicuspid aortic valve (BAV, n = 7). Results were compared with presurgical age and aortic size-matched control cohorts with TAV (n = 10) and BAV (n = 10). Pre- and post-surgical aortic flow was evaluated using time-resolved 3D pathlines using a blinded grading system (0–2, 0 = small, 1 = moderate and 2 = prominent) analysing ascending aortic (AAo) helical flow. Systolic flow profile uniformity in the aortic root, proximal and mid-AAo was evaluated using a four-quadrant model. Further analysis in nine analysis planes distributed along the thoracic aorta quantified peak systolic velocity, retrograde fraction and peak systolic flow acceleration. RESULTS Pronounced AAo helical flow in presurgical control subjects (both BAV and TAV: helix grading = 1.8 ± 0.4) was significantly reduced (0.2 ± 0.4, P < 0.001) in cohorts after VSARR independent of aortic valve morphology. Presurgical AAo flow was highly eccentric for BAV patients but more uniform for TAV. VSARR resulted in less eccentric flow profiles. Systolic peak velocities were significantly (P < 0.05) increased in post-root repair BAV patients throughout the aorta (six of nine analysis planes) and to a lesser extent in TAV patients (three of nine analysis planes). BAV reimplantation resulted in significantly increased peak velocities in the proximal AAo compared with root repair with TAV (2.3 ± 0.6 vs 1.6 ± 0.4 m/s, P = 0.017). Post-surgical patients showed a non-significant trend towards higher systolic flow acceleration as a surrogate measure of reduced aortic compliance. CONCLUSIONS VSARR restored a cohesive flow pattern independent of native valve morphology but resulted in increased peak velocities throughout the aorta. 4D flow MRI methods can assess the clinical implications of altered aortic flow dynamics in patients undergoing VSARR. PMID:24317086
Voluntary Enhancement of Neural Signatures of Affiliative Emotion Using fMRI Neurofeedback
Moll, Jorge; Weingartner, Julie H.; Bado, Patricia; Basilio, Rodrigo; Sato, João R.; Melo, Bruno R.; Bramati, Ivanei E.; de Oliveira-Souza, Ricardo; Zahn, Roland
2014-01-01
In Ridley Scott’s film “Blade Runner”, empathy-detection devices are employed to measure affiliative emotions. Despite recent neurocomputational advances, it is unknown whether brain signatures of affiliative emotions, such as tenderness/affection, can be decoded and voluntarily modulated. Here, we employed multivariate voxel pattern analysis and real-time fMRI to address this question. We found that participants were able to use visual feedback based on decoded fMRI patterns as a neurofeedback signal to increase brain activation characteristic of tenderness/affection relative to pride, an equally complex control emotion. Such improvement was not observed in a control group performing the same fMRI task without neurofeedback. Furthermore, the neurofeedback-driven enhancement of tenderness/affection-related distributed patterns was associated with local fMRI responses in the septohypothalamic area and frontopolar cortex, regions previously implicated in affiliative emotion. This demonstrates that humans can voluntarily enhance brain signatures of tenderness/affection, unlocking new possibilities for promoting prosocial emotions and countering antisocial behavior. PMID:24847819
Liu, Peiying; Lu, Hanzhang; Filbey, Francesca M.; Pinkham, Amy E.; McAdams, Carrie J.; Adinoff, Bryon; Daliparthi, Vamsi; Cao, Yan
2014-01-01
Phase-Contrast MRI (PC-MRI) is a noninvasive technique to measure blood flow. In particular, global but highly quantitative cerebral blood flow (CBF) measurement using PC-MRI complements several other CBF mapping methods such as arterial spin labeling and dynamic susceptibility contrast MRI by providing a calibration factor. The ability to estimate blood supply in physiological units also lays a foundation for assessment of brain metabolic rate. However, a major obstacle before wider applications of this method is that the slice positioning of the scan, ideally placed perpendicular to the feeding arteries, requires considerable expertise and can present a burden to the operator. In the present work, we proposed that the majority of PC-MRI scans can be positioned using an automatic algorithm, leaving only a small fraction of arteries requiring manual positioning. We implemented and evaluated an algorithm for this purpose based on feature extraction of a survey angiogram, which is of minimal operator dependence. In a comparative test-retest study with 7 subjects, the blood flow measurement using this algorithm showed an inter-session coefficient of variation (CoV) of . The Bland-Altman method showed that the automatic method differs from the manual method by between and , for of the CBF measurements. This is comparable to the variance in CBF measurement using manually-positioned PC MRI alone. In a further application of this algorithm to 157 consecutive subjects from typical clinical cohorts, the algorithm provided successful positioning in 89.7% of the arteries. In 79.6% of the subjects, all four arteries could be planned using the algorithm. Chi-square tests of independence showed that the success rate was not dependent on the age or gender, but the patients showed a trend of lower success rate (p = 0.14) compared to healthy controls. In conclusion, this automatic positioning algorithm could improve the application of PC-MRI in CBF quantification. PMID:24787742
The “Starfield” Pattern of Cerebral Fat Embolism From Bone Marrow Necrosis in Sickle Cell Crisis
Dhakal, Laxmi P.; Bourgeois, Kirk; Barrett, Kevin M.
2015-01-01
Sickle cell disease may manifest with cerebrovascular and systemic complications. Sickle crisis that results in avascular necrosis of long bones with resultant cerebral fat embolism syndrome is rare and has a characteristic “starfield” pattern on MRI. This “starfield” MRI pattern should raise suspicion for sickle cell crisis in patients without a known history of the disease, which can lead to earlier sickle cell red blood cell exchange transfusion and treatment. We present a case of a male who presented emergently with acute seizure, coma with a characteristic MRI pattern, which lead to the diagnosis of avascular bone marrow necrosis and cerebral fat embolism syndrome from sickle cell crisis PMID:25829988
NASA Astrophysics Data System (ADS)
Chatzimavroudis, George P.; Spirka, Thomas A.; Setser, Randolph M.; Myers, Jerry G.
2005-04-01
One of NASA"s objectives is to be able to perform a complete pre-flight evaluation of possible cardiovascular changes in astronauts scheduled for prolonged space missions. Blood flow is an important component of cardiovascular function. Lately, attention has focused on using computational fluid dynamics (CFD) to analyze flow with realistic vessel geometries. MRI can provide detailed geometrical information and is the only clinical technique to measure all three spatial velocity components. The objective of this study was to investigate the reliability of MRI-based model reconstruction for CFD simulations. An aortic arch model and a carotid bifurcation model were scanned in a 1.5T MRI scanner. Axial MRI acquisitions provided images for geometry reconstruction using different resolution settings. The vessel walls were identified and the geometry was reconstructed using existing software. The geometry was then imported into a commercial CFD package for meshing and numerical solution. MRI velocity acquisitions provided true inlet boundary conditions for steady flow, as well as three-directional velocity data at several locations. In addition, an idealized version of each geometry was created from the model drawings. Contour and vector plots of the velocity showed identical features between the MRI velocity data, the MRI-based CFD data, and the idealized-geometry CFD data, with mean differences <10%. CFD results from different MRI resolution settings did not show significant differences (<5%). This study showed quantitatively that reliable CFD simulations can be performed in models reconstructed from MRI acquisitions and gives evidence that a future, subject-specific, computational evaluation of the cardiovascular system is possible.
Shellock, Frank G; Valencerina, Samuel
2008-01-01
Purpose To evaluate MRI issues at 3-Tesla for a ventricular assist device (VAD). Methods The AB5000 Ventricle with a prototype Nitinol wire-reinforced In-Flow Cannula and Out-Flow Cannula attached (Abiomed, Inc., Danvers, MA) was evaluated for magnetic field interactions, heating, and artifacts at 3-Tesla. MRI-related heating was assessed with the device in a gelled-saline-filled, head/torso phantom using a transmit/received RF body coil while performing MRI at a whole body averaged SAR of 3-W/kg for 15-min. Artifacts were assessed for the main metallic component of this VAD (atrial cannula) using T1-weighted, spin echo and gradient echo pulse sequences. Results The AB5000 Ventricle with the prototype In-Flow Cannula and Out-Flow Cannula attached showed relatively minor magnetic field interactions that will not cause movement in situ. Heating was not excessive (highest temperature change, +0.8°C). Artifacts may create issues for diagnostic imaging if the area of interest is in the same area or close to the implanted metallic component of this VAD (i.e., the venous cannula). Conclusion The results of this investigation demonstrated that it would be acceptable for a patient with this VAD (AB5000 Ventricle with a prototype Nitinol wire-reinforced In-Flow Cannula and Out-Flow Cannula attached) to undergo MRI at 3-Tesla or less. Notably, it is likely that the operation console for this device requires positioning a suitable distance (beyond the 100 Gauss line or in the MR control room) from the 3-Tesla MR system to ensure proper function of the VAD. PMID:18495028
A Bayesian Model for Highly Accelerated Phase-Contrast MRI
Rich, Adam; Potter, Lee C.; Jin, Ning; Ash, Joshua; Simonetti, Orlando P.; Ahmad, Rizwan
2015-01-01
Purpose Phase-contrast magnetic resonance imaging (PC-MRI) is a noninvasive tool to assess cardiovascular disease by quantifying blood flow; however, low data acquisition efficiency limits the spatial and temporal resolutions, real-time application, and extensions to 4D flow imaging in clinical settings. We propose a new data processing approach called Reconstructing Velocity Encoded MRI with Approximate message passing aLgorithms (ReVEAL) that accelerates the acquisition by exploiting data structure unique to PC-MRI. Theory and Methods ReVEAL models physical correlations across space, time, and velocity encodings. The proposed Bayesian approach exploits the relationships in both magnitude and phase among velocity encodings. A fast iterative recovery algorithm is introduced based on message passing. For validation, prospectively undersampled data are processed from a pulsatile flow phantom and five healthy volunteers. Results ReVEAL is in good agreement, quantified by peak velocity and stroke volume (SV), with reference data for acceleration rates R ≤ 10. For SV, Pearson r ≥ 0.996 for phantom imaging (n = 24) and r ≥ 0.956 for prospectively accelerated in vivo imaging (n = 10) for R ≤ 10. Conclusion ReVEAL enables accurate quantification of blood flow from highly undersampled data. The technique is extensible to 4D flow imaging, where higher acceleration may be possible due to additional redundancy. PMID:26444911
fMRI activation patterns in an analytic reasoning task: consistency with EEG source localization
NASA Astrophysics Data System (ADS)
Li, Bian; Vasanta, Kalyana C.; O'Boyle, Michael; Baker, Mary C.; Nutter, Brian; Mitra, Sunanda
2010-03-01
Functional magnetic resonance imaging (fMRI) is used to model brain activation patterns associated with various perceptual and cognitive processes as reflected by the hemodynamic (BOLD) response. While many sensory and motor tasks are associated with relatively simple activation patterns in localized regions, higher-order cognitive tasks may produce activity in many different brain areas involving complex neural circuitry. We applied a recently proposed probabilistic independent component analysis technique (PICA) to determine the true dimensionality of the fMRI data and used EEG localization to identify the common activated patterns (mapped as Brodmann areas) associated with a complex cognitive task like analytic reasoning. Our preliminary study suggests that a hybrid GLM/PICA analysis may reveal additional regions of activation (beyond simple GLM) that are consistent with electroencephalography (EEG) source localization patterns.
Geytenbeek, Joke J; Oostrom, Kim J; Harlaar, Laurike; Becher, Jules G; Knol, Dirk L; Barkhof, Frederik; Pinto, Pedro S; Vermeulen, R Jeroen
2015-09-01
To identify relations between brain abnormalities and spoken language comprehension, MRI characteristics of 80 nonspeaking children with severe CP were examined. MRI scans were analysed for patterns of brain abnormalities and scored for specific MRI measures: white matter (WM) areas; size of lateral ventricles, WM abnormality/reduction, cysts, subarachnoid space, corpus callosum thinning and grey matter (GM) areas; cortical GM abnormalities, thalamus, putamen, globus pallidus and nucleus caudatus and cerebellar abnormalities. Language comprehension was assessed with a new validated instrument (C-BiLLT). MRI scans of 35 children were classified as a basal ganglia necrosis (BGN) pattern, with damage to central GM areas; in 60% of these children damage to WM areas was also found. MRI scans of 13 children were classified as periventricular leukomalacia (PVL) with little concomitant damage to central GM areas, 13 as malformations and 19 as miscellaneous. Language comprehension was best in children with BGN, followed by malformations and miscellaneous, and was poorest in PVL. Linear regression modelling per pattern group (malformations excluded), with MRI measures as independent variables, revealed that corpus callosum thinning in BGN and parieto-occipital WM reduction in PVL were the most important explanatory factors for poor language comprehension. No MRI measures explained outcomes in language comprehension in the miscellaneous group. Comprehension of spoken language differs between MRI patterns of severe CP. In children with BGN and PVL differences in language comprehension performance is attributed to damage in the WM areas. Language comprehension was most affected in children with WM lesions in the subcortical and then periventricular areas, most characteristic for children with PVL. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
A brain stress test: Cerebral perfusion during memory encoding in mild cognitive impairment.
Xie, Long; Dolui, Sudipto; Das, Sandhitsu R; Stockbower, Grace E; Daffner, Molly; Rao, Hengyi; Yushkevich, Paul A; Detre, John A; Wolk, David A
2016-01-01
Arterial spin labeled perfusion magnetic resonance imaging (ASL MRI) provides non-invasive quantification of cerebral blood flow, which can be used as a biomarker of brain function due to the tight coupling between cerebral blood flow (CBF) and brain metabolism. A growing body of literature suggests that regional CBF is altered in neurodegenerative diseases. Here we examined ASL MRI CBF in subjects with amnestic mild cognitive impairment (n = 65) and cognitively normal healthy controls (n = 62), both at rest and during performance of a memory-encoding task. As compared to rest, task-enhanced ASL MRI improved group discrimination, which supports the notion that physiologic measures during a cognitive challenge, or "stress test", may increase the ability to detect subtle functional changes in early disease stages. Further, logistic regression analysis demonstrated that ASL MRI and concomitantly acquired structural MRI provide complementary information of disease status. The current findings support the potential utility of task-enhanced ASL MRI as a biomarker in early Alzheimer's disease.
Keller, Johannes; Grön, Georg
2016-01-01
Previously, experimentally induced flow experiences have been demonstrated with perfusion imaging during activation blocks of 3 min length to accommodate with the putatively slowly evolving “mood” characteristics of flow. Here, we used functional magnetic resonance imaging (fMRI) in a sample of 23 healthy, male participants to investigate flow in the context of a typical fMRI block design with block lengths as short as 30 s. To induce flow, demands of arithmetic tasks were automatically and continuously adjusted to the individual skill level. Compared against conditions of boredom and overload, experience of flow was evident from individuals’ reported subjective experiences and changes in electrodermal activity. Neural activation was relatively increased during flow, particularly in the anterior insula, inferior frontal gyri, basal ganglia and midbrain. Relative activation decreases during flow were observed in medial prefrontal and posterior cingulate cortex, and in the medial temporal lobe including the amygdala. Present findings suggest that even in the context of comparably short activation blocks flow can be reliably experienced and is associated with changes in neural activation of brain regions previously described. Possible mechanisms of interacting brain regions are outlined, awaiting further investigation which should now be possible given the greater temporal resolution compared with previous perfusion imaging. PMID:26508774
Multivariate pattern analysis of fMRI: the early beginnings.
Haxby, James V
2012-08-15
In 2001, we published a paper on the representation of faces and objects in ventral temporal cortex that introduced a new method for fMRI analysis, which subsequently came to be called multivariate pattern analysis (MVPA). MVPA now refers to a diverse set of methods that analyze neural responses as patterns of activity that reflect the varying brain states that a cortical field or system can produce. This paper recounts the circumstances and events that led to the original study and later developments and innovations that have greatly expanded this approach to fMRI data analysis, leading to its widespread application. Copyright © 2012 Elsevier Inc. All rights reserved.
Rygg, Alex D.; Cox, Jonathan P. L.; Abel, Richard; Webb, Andrew G.; Smith, Nadine B.; Craven, Brent A.
2013-01-01
The hammerhead shark possesses a unique head morphology that is thought to facilitate enhanced olfactory performance. The olfactory chambers, located at the distal ends of the cephalofoil, contain numerous lamellae that increase the surface area for olfaction. Functionally, for the shark to detect chemical stimuli, water-borne odors must reach the olfactory sensory epithelium that lines these lamellae. Thus, odorant transport from the aquatic environment to the sensory epithelium is the first critical step in olfaction. Here we investigate the hydrodynamics of olfaction in Sphyrna tudes based on an anatomically-accurate reconstruction of the head and olfactory chamber from high-resolution micro-CT and MRI scans of a cadaver specimen. Computational fluid dynamics simulations of water flow in the reconstructed model reveal the external and internal hydrodynamics of olfaction during swimming. Computed external flow patterns elucidate the occurrence of flow phenomena that result in high and low pressures at the incurrent and excurrent nostrils, respectively, which induces flow through the olfactory chamber. The major (prenarial) nasal groove along the cephalofoil is shown to facilitate sampling of a large spatial extent (i.e., an extended hydrodynamic “reach”) by directing oncoming flow towards the incurrent nostril. Further, both the major and minor nasal grooves redirect some flow away from the incurrent nostril, thereby limiting the amount of fluid that enters the olfactory chamber. Internal hydrodynamic flow patterns are also revealed, where we show that flow rates within the sensory channels between olfactory lamellae are passively regulated by the apical gap, which functions as a partial bypass for flow in the olfactory chamber. Consequently, the hammerhead shark appears to utilize external (major and minor nasal grooves) and internal (apical gap) flow regulation mechanisms to limit water flow between the olfactory lamellae, thus protecting these delicate structures from otherwise high flow rates incurred by sampling a larger area. PMID:23555780
Patterns of Breast Magnetic Resonance Imaging Use in Community Practice
Wernli, Karen J.; DeMartini, Wendy B.; Ichikawa, Laura; Lehman, Constance D.; Onega, Tracy; Kerlikowske, Karla; Henderson, Louise M.; Geller, Berta M.; Hofmann, Mike; Yankaskas, Bonnie C.
2014-01-01
Importance Breast magnetic resonance imaging (MRI) is increasingly used for breast cancer screening, diagnostic evaluation, and surveillance However, we lack data on national patterns of breast MRI use in community practice. Objective To describe 2005–2009 patterns of breast magnetic resonance imaging (MRI) use in U.S. community practice. Design Observational cohort study Setting Data collected from 2005–2009 on breast MRI and mammography from five national Breast Cancer Surveillance Consortium registries. Participants Data included 8931 breast MRI examinations and 1,288,924 screening mammograms from women aged 18–79 years. Main measures We calculated the rate of breast MRI examinations per 1000 women with breast imaging within the same year and described the clinical indications for the breast MRI examinations by year and age. We compared women screened with breast MRI to women screened with mammography alone for patient characteristics and lifetime breast cancer risk. Results The overall rate of breast MRI from 2005 through 2009 nearly tripled from 4.2 to 11.5 examinations per 1000 women with the most rapid rise from 2005–2007 (p=0.02). The most common clinical indication was diagnostic evaluation (40.3%), followed by screening (31.7%). Compared to women who received screening mammography alone, women who underwent screening breast MRI were more likely to be <50 years, white non-Hispanic, nulliparous, and have extremely dense breast tissue, a family history of breast cancer, and a personal history of breast cancer. The proportion of women screened by breast MRI at high lifetime risk for breast cancer (>20%) increased during the study period from 9% in 2005 to 29% in 2009. Conclusions and relevance Use of breast MRI for screening in high-risk women is increasing. However, our findings suggest there is a need to improve appropriate utilization, including among women who may benefit from screening breast MRI. PMID:24247555
Freed, Melanie; de Zwart, Jacco A.; Hariharan, Prasanna; R. Myers, Matthew; Badano, Aldo
2011-01-01
Purpose: To develop a dynamic lesion phantom that is capable of producing physiological kinetic curves representative of those seen in human dynamic contrast-enhanced MRI (DCE-MRI) data. The objective of this phantom is to provide a platform for the quantitative comparison of DCE-MRI protocols to aid in the standardization and optimization of breast DCE-MRI. Methods: The dynamic lesion consists of a hollow, plastic mold with inlet and outlet tubes to allow flow of a contrast agent solution through the lesion over time. Border shape of the lesion can be controlled using the lesion mold production method. The configuration of the inlet and outlet tubes was determined using fluid transfer simulations. The total fluid flow rate was determined using x-ray images of the lesion for four different flow rates (0.25, 0.5, 1.0, and 1.5 ml∕s) to evaluate the resultant kinetic curve shape and homogeneity of the contrast agent distribution in the dynamic lesion. High spatial and temporal resolution x-ray measurements were used to estimate the true kinetic curve behavior in the dynamic lesion for benign and malignant example curves. DCE-MRI example data were acquired of the dynamic phantom using a clinical protocol. Results: The optimal inlet and outlet tube configuration for the lesion molds was two inlet molds separated by 30° and a single outlet tube directly between the two inlet tubes. X-ray measurements indicated that 1.0 ml∕s was an appropriate total fluid flow rate and provided truth for comparison with MRI data of kinetic curves representative of benign and malignant lesions. DCE-MRI data demonstrated the ability of the phantom to produce realistic kinetic curves. Conclusions: The authors have constructed a dynamic lesion phantom, demonstrated its ability to produce physiological kinetic curves, and provided estimations of its true kinetic curve behavior. This lesion phantom provides a tool for the quantitative evaluation of DCE-MRI protocols, which may lead to improved discrimination of breast cancer lesions. PMID:21992378
Kamagata, Koji; Motoi, Yumiko; Hori, Masaaki; Suzuki, Michimasa; Nakanishi, Atsushi; Shimoji, Keigo; Kyougoku, Shinsuke; Kuwatsuru, Ryohei; Sasai, Keisuke; Abe, Osamu; Mizuno, Yoshikuni; Aoki, Shigeki; Hattori, Nobutaka
2011-04-01
To determine whether quantitative arterial spin labeling (ASL) can be used to evaluate regional cerebral blood flow in Parkinson's disease with dementia (PDD) and without dementia (PD). Thirty-five PD patients, 11 PDD patients, and 35 normal controls were scanned by using a quantitative ASL method with a 3 Tesla MRI unit. Regional cerebral blood flow was compared in the posterior cortex using region-of-interest analysis. PD and PDD patients showed lower regional cerebral blood flow in the posterior cortex than normal controls (P = 0.002 and P = 0.001, respectively, analysis of variance with a Bonferroni post hoc test). This is the first study to detect hypoperfusion in the posterior cortex in PD and PDD patients using ASL perfusion MRI. Because ASL perfusion MRI is completely noninvasive and can, therefore, safely be used for repeated assessments, this method can be used to monitor treatment effects or disease progression in PD. Copyright © 2011 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Li, Baojuan; Liu, Jian; Liu, Yang; Lu, Hong-Bing; Yin, Hong
2013-03-01
The majority of studies on posttraumatic stress disorder (PTSD) so far have focused on delineating patterns of activations during cognitive processes. Recently, more and more researches have started to investigate functional connectivity in PTSD subjects using BOLD-fMRI. Functional connectivity analysis has been demonstrated as a powerful approach to identify biomarkers of different brain diseases. This study aimed to detect resting-state functional connectivity abnormities in patients with PTSD using arterial spin labeling (ASL) fMRI. As a completely non-invasive technique, ASL allows quantitative estimates of cerebral blood flow (CBF). Compared with BOLD-fMRI, ASL fMRI has many advantages, including less low-frequency signal drifts, superior functional localization, etc. In the current study, ASL images were collected from 10 survivors in mining disaster with recent onset PTSD and 10 survivors without PTSD. Decreased regional CBF in the right middle temporal gyrus, lingual gyrus, and postcentral gyrus was detected in the PTSD patients. Seed-based resting-state functional connectivity analysis was performed using an area in the right middle temporal gyrus as region of interest. Compared with the non-PTSD group, the PTSD subjects demonstrated increased functional connectivity between the right middle temporal gyrus and the right superior temporal gyrus, the left middle temporal gyrus. Meanwhile, decreased functional connectivity between the right middle temporal gyrus and the right postcentral gyrus, the right superior parietal lobule was also found in the PTSD patients. This is the first study which investigated resting-state functional connectivity in PTSD using ASL images. The results may provide new insight into the neural substrates of PTSD.
Chakkarapani, Elavazhagan; Poskitt, Kenneth J; Miller, Steven P; Zwicker, Jill G; Xu, Qi; Wong, Darren S T; Roland, Elke H; Hill, Alan; Chau, Vann
2016-04-01
In cooled newborns with encephalopathy, although late magnetic resonance imaging (MRI) scan (10-14 days of age) is reliable in predicting long-term outcome, it is unknown whether early scan (3-6 days of life) is. We compared the predominant pattern and extent of lesion between early and late MRI in 89 term neonates with neonatal encephalopathy. Forty-three neonates (48%) were cooled. The predominant pattern of lesions and the extent of lesion in the watershed region agreed near perfectly in noncooled (kappa = 0.94; k = 0.88) and cooled (k = 0.89; k = 0.87) infants respectively. There was perfect agreement in the extent of lesion in the basal nuclei in noncooled infants (k = 0.83) and excellent agreement in cooled infants (k = 0.67). Changes in extent of lesions on late MRI occurred in 19 of 89 infants, with higher risk in infants with hypoglycemia and moderate-severe lesions in basal nuclei. In most term neonates with neonatal encephalopathy, early MRI (relative to late scan) robustly predicts the predominant pattern and extent of injury. © The Author(s) 2015.
Decoding complex flow-field patterns in visual working memory.
Christophel, Thomas B; Haynes, John-Dylan
2014-05-01
There has been a long history of research on visual working memory. Whereas early studies have focused on the role of lateral prefrontal cortex in the storage of sensory information, this has been challenged by research in humans that has directly assessed the encoding of perceptual contents, pointing towards a role of visual and parietal regions during storage. In a previous study we used pattern classification to investigate the storage of complex visual color patterns across delay periods. This revealed coding of such contents in early visual and parietal brain regions. Here we aim to investigate whether the involvement of visual and parietal cortex is also observable for other types of complex, visuo-spatial pattern stimuli. Specifically, we used a combination of fMRI and multivariate classification to investigate the retention of complex flow-field stimuli defined by the spatial patterning of motion trajectories of random dots. Subjects were trained to memorize the precise spatial layout of these stimuli and to retain this information during an extended delay. We used a multivariate decoding approach to identify brain regions where spatial patterns of activity encoded the memorized stimuli. Content-specific memory signals were observable in motion sensitive visual area MT+ and in posterior parietal cortex that might encode spatial information in a modality independent manner. Interestingly, we also found information about the memorized visual stimulus in somatosensory cortex, suggesting a potential crossmodal contribution to memory. Our findings thus indicate that working memory storage of visual percepts might be distributed across unimodal, multimodal and even crossmodal brain regions. Copyright © 2014 Elsevier Inc. All rights reserved.
Wen, Feiqiu; Huang, Wenxian; Gan, Yungen; Zeng, Weibin; Chen, Ranran; He, Yanxia; Wang, Yonker; Liu, Zaiyi; Liang, Changhong; Wong, Kelvin K. L.
2016-01-01
Background To report the diversity of MRI features of brainstem encephalitis (BE) induced by Enterovirus 71. This is supported by implementation and testing of our new classification scheme in order to improve the diagnostic level on this specific disease. Methods Neuroimaging of 91 pediatric patients who got EV71 related BE were hospitalized between March, 2010 to October, 2012, were analyzed retrospectively. All patients underwent pre- and post-contrast MRI scan. Thereafter, 31 patients were randomly called back for follow-up MRI study during December 2013 to August 2014. The MRI signal patterns of BE primary lesion were analyzed and classified according to MR signal alteration at various disease stages. Findings in fatal and non-fatal cases were compared, and according to the MRI scan time point during the course of this disease, the patients’ conditions were classified as 1) acute stage, 2) convalescence stage, 3) post mortem stage, and 4) long term follow-up study. Results 103 patients were identified. 11 patients did not undergo MRI, as they died within 48 hours. One patient died on 14th day without MR imaging. 2 patients had postmortem MRI. Medical records and imaging were reviewed in the 91 patients, aged 4 months to 12 years, and two cadavers who have had MRI scan. At acute stage: the most frequent pattern (40 patients) was foci of prolonged T1 and T2 signal, with (15) or without (25) contrast enhancement. We observed a novel pattern in 4 patients having foci of low signal intensity on T2WI, with contrast enhancement. Another pattern in 10 patients having foci of contrast enhancement without abnormalities in T1WI or T2WI weighted images. Based on 2 cases, the entire medulla and pons had prolonged T1 and T2 signal, and 2 of our postmortem cases demonstrated the same pattern. At convalescence stage, the pattern observed in 4 patients was foci of prolonged T1 and T2 signal without contrast enhancement. Follow-up MR study of 31 cases showed normal in 26 cases, and demonstrated foci of prolonged T1 and T2 signal with hyper-intensity on FLAIR in 3 cases, or of prolonged T1 and T2 signal with hypo-intensity on FLAIR in 2 cases. Most importantly, MR findings of each case were thoroughly investigated and classified according to phases and MRI signal alteration. Conclusions This study has provided enhanced and useful information for the MRI features of BE induced by EV71, apart from common practice established by previous reports. In addition, a classification scheme that summarizes all types of features based on the MRI signal at the four different stages of the disease would be helpful to improve the diagnostic level. PMID:27798639
Zeng, Hongwu; Wen, Feiqiu; Huang, Wenxian; Gan, Yungen; Zeng, Weibin; Chen, Ranran; He, Yanxia; Wang, Yonker; Liu, Zaiyi; Liang, Changhong; Wong, Kelvin K L
2016-01-01
To report the diversity of MRI features of brainstem encephalitis (BE) induced by Enterovirus 71. This is supported by implementation and testing of our new classification scheme in order to improve the diagnostic level on this specific disease. Neuroimaging of 91 pediatric patients who got EV71 related BE were hospitalized between March, 2010 to October, 2012, were analyzed retrospectively. All patients underwent pre- and post-contrast MRI scan. Thereafter, 31 patients were randomly called back for follow-up MRI study during December 2013 to August 2014. The MRI signal patterns of BE primary lesion were analyzed and classified according to MR signal alteration at various disease stages. Findings in fatal and non-fatal cases were compared, and according to the MRI scan time point during the course of this disease, the patients' conditions were classified as 1) acute stage, 2) convalescence stage, 3) post mortem stage, and 4) long term follow-up study. 103 patients were identified. 11 patients did not undergo MRI, as they died within 48 hours. One patient died on 14th day without MR imaging. 2 patients had postmortem MRI. Medical records and imaging were reviewed in the 91 patients, aged 4 months to 12 years, and two cadavers who have had MRI scan. At acute stage: the most frequent pattern (40 patients) was foci of prolonged T1 and T2 signal, with (15) or without (25) contrast enhancement. We observed a novel pattern in 4 patients having foci of low signal intensity on T2WI, with contrast enhancement. Another pattern in 10 patients having foci of contrast enhancement without abnormalities in T1WI or T2WI weighted images. Based on 2 cases, the entire medulla and pons had prolonged T1 and T2 signal, and 2 of our postmortem cases demonstrated the same pattern. At convalescence stage, the pattern observed in 4 patients was foci of prolonged T1 and T2 signal without contrast enhancement. Follow-up MR study of 31 cases showed normal in 26 cases, and demonstrated foci of prolonged T1 and T2 signal with hyper-intensity on FLAIR in 3 cases, or of prolonged T1 and T2 signal with hypo-intensity on FLAIR in 2 cases. Most importantly, MR findings of each case were thoroughly investigated and classified according to phases and MRI signal alteration. This study has provided enhanced and useful information for the MRI features of BE induced by EV71, apart from common practice established by previous reports. In addition, a classification scheme that summarizes all types of features based on the MRI signal at the four different stages of the disease would be helpful to improve the diagnostic level.
Beier, Susann; Ormiston, John; Webster, Mark; Cater, John; Norris, Stuart; Medrano-Gracia, Pau; Young, Alistair; Gilbert, Kathleen; Cowan, Brett
2016-08-01
The majority of patients with angina or heart failure have coronary artery disease. Left main bifurcations are particularly susceptible to pathological narrowing. Flow is a major factor of atheroma development, but limitations in imaging technology such as spatio-temporal resolution, signal-to-noise ratio (SNRv), and imaging artefacts prevent in vivo investigations. Computational fluid dynamics (CFD) modelling is a common numerical approach to study flow, but it requires a cautious and rigorous application for meaningful results. Left main bifurcation angles of 40°, 80° and 110° were found to represent the spread of an atlas based 100 computed tomography angiograms. Three left mains with these bifurcation angles were reconstructed with 1) idealized, 2) stented, and 3) patient-specific geometry. These were then approximately 7× scaled-up and 3D printing as large phantoms. Their flow was reproduced using a blood-analogous, dynamically scaled steady flow circuit, enabling in vitro phase-contrast magnetic resonance (PC-MRI) measurements. After threshold segmentation the image data was registered to true-scale CFD of the same coronary geometry using a coherent point drift algorithm, yielding a small covariance error (σ 2 <;5.8×10 -4 ). Natural-neighbour interpolation of the CFD data onto the PC-MRI grid enabled direct flow field comparison, showing very good agreement in magnitude (error 2-12%) and directional changes (r 2 0.87-0.91), and stent induced flow alternations were measureable for the first time. PC-MRI over-estimated velocities close to the wall, possibly due to partial voluming. Bifurcation shape determined the development of slow flow regions, which created lower SNRv regions and increased discrepancies. These can likely be minimised in future by testing different similarity parameters to reduce acquisition error and improve correlation further. It was demonstrated that in vitro large phantom acquisition correlates to true-scale coronary flow simulations when dynamically scaled, and thus can overcome current PC-MRI's spatio-temporal limitations. This novel method enables experimental assessment of stent induced flow alternations, and in future may elevate CFD coronary flow simulations by providing sophisticated boundary conditions, and enable investigations of stenosis phantoms.
Andersson, Magnus; Lantz, Jonas; Ebbers, Tino; Karlsson, Matts
2015-09-01
Turbulence and flow eccentricity can be measured by magnetic resonance imaging (MRI) and may play an important role in the pathogenesis of numerous cardiovascular diseases. In the present study, we propose quantitative techniques to assess turbulent kinetic energy (TKE) and flow eccentricity that could assist in the evaluation and treatment of stenotic severities. These hemodynamic parameters were studied in a pre-treated aortic coarctation (CoA) and after several virtual interventions using computational fluid dynamics (CFD), to demonstrate the effect of different dilatation options on the flow field. Patient-specific geometry and flow conditions were derived from MRI data. The unsteady pulsatile flow was resolved by large eddy simulation including non-Newtonian blood rheology. Results showed an inverse asymptotic relationship between the total amount of TKE and degree of dilatation of the stenosis, where turbulent flow proximal the constriction limits the possible improvement by treating the CoA alone. Spatiotemporal maps of TKE and flow eccentricity could be linked to the characteristics of the jet, where improved flow conditions were favored by an eccentric dilatation of the CoA. By including these flow markers into a combined MRI-CFD intervention framework, CoA therapy has not only the possibility to produce predictions via simulation, but can also be validated pre- and immediate post treatment, as well as during follow-up studies.
MRI-based biomechanical parameters for carotid artery plaque vulnerability assessment.
Speelman, Lambert; Teng, Zhongzhao; Nederveen, Aart J; van der Lugt, Aad; Gillard, Jonathan H
2016-03-01
Carotid atherosclerotic plaques are a major cause of ischaemic stroke. The biomechanical environment to which the arterial wall and plaque is subjected to plays an important role in the initiation, progression and rupture of carotid plaques. MRI is frequently used to characterize the morphology of a carotid plaque, but new developments in MRI enable more functional assessment of carotid plaques. In this review, MRI based biomechanical parameters are evaluated on their current status, clinical applicability, and future developments. Blood flow related biomechanical parameters, including endothelial wall shear stress and oscillatory shear index, have been shown to be related to plaque formation. Deriving these parameters directly from MRI flow measurements is feasible and has great potential for future carotid plaque development prediction. Blood pressure induced stresses in a plaque may exceed the tissue strength, potentially leading to plaque rupture. Multi-contrast MRI based stress calculations in combination with tissue strength assessment based on MRI inflammation imaging may provide a plaque stress-strength balance that can be used to assess the plaque rupture risk potential. Direct plaque strain analysis based on dynamic MRI is already able to identify local plaque displacement during the cardiac cycle. However, clinical evidence linking MRI strain to plaque vulnerability is still lacking. MRI based biomechanical parameters may lead to improved assessment of carotid plaque development and rupture risk. However, better MRI systems and faster sequences are required to improve the spatial and temporal resolution, as well as increase the image contrast and signal-to-noise ratio.
Garbade, Sven F; Greenberg, Cheryl R; Demirkol, Mübeccel; Gökçay, Gülden; Ribes, Antonia; Campistol, Jaume; Burlina, Alberto B; Burgard, Peter; Kölker, Stefan
2014-09-01
Glutaric aciduria type I (GA-I) is a cerebral organic aciduria caused by inherited deficiency of glutaryl-CoA dehydrogenase and is characterized biochemically by an accumulation of putatively neurotoxic dicarboxylic metabolites. The majority of untreated patients develops a complex movement disorder with predominant dystonia during age 3-36 months. Magnetic resonance imaging (MRI) studies have demonstrated striatal and extrastriatal abnormalities. The major aim of this study was to elucidate the complex neuroradiological pattern of patients with GA-I and to associate the MRI findings with the severity of predominant neurological symptoms. In 180 patients, detailed information about the neurological presentation and brain region-specific MRI abnormalities were obtained via a standardized questionnaire. Patients with a movement disorder had more often MRI abnormalities in putamen, caudate, cortex, ventricles and external CSF spaces than patients without or with minor neurological symptoms. Putaminal MRI changes and strongly dilated ventricles were identified as the most reliable predictors of a movement disorder. In contrast, abnormalities in globus pallidus were not clearly associated with a movement disorder. Caudate and putamen as well as cortex, ventricles and external CSF spaces clearly collocalized on a two-dimensional map demonstrating statistical similarity and suggesting the same underlying pathomechanism. This study demonstrates that complex statistical methods are useful to decipher the age-dependent and region-specific MRI patterns of rare neurometabolic diseases and that these methods are helpful to elucidate the clinical relevance of specific MRI findings.
Bradley, Christopher R; Cox, Eleanor F; Scott, Robert A; James, Martin W; Kaye, Phillip; Aithal, Guruprasad P; Francis, Susan T; Guha, Indra Neil
2018-06-07
Advancing liver disease results in deleterious changes in a number of critical organs. The ability to measure structure, blood flow and tissue perfusion within multiple organs in a single scan has implications for determining the balance of benefit versus harm for therapies. Our aim was to establish the feasibility of Magnetic Resonance Imaging to assess changes in compensated cirrhosis (CC), and relate this to disease severity and future liver related outcomes (LROs). 60 CC patients, 40 healthy volunteers and 7 decompensated cirrhotics were recruited. In a single scan session, MRI measures comprised phase-contrast MRI vessel blood flow, arterial spin labelling tissue perfusion, T 1 longitudinal relaxation time and volume assessment of liver, spleen and kidneys, heart rate and cardiac index. We explore MRI parameters with disease severity and differences in baseline MRI parameters in those 11 (18%) of CC patients who had future LROs. In the liver compositional changes were reflected by increased T 1 in progressive disease (p<0.001) and an increase in liver volume in CC (p=0.006), with associated progressive reduction in liver (p < 0.001) and splenic (p<0.001) perfusion. A significant reduction in renal cortex T 1 and increase in cardiac index and superior mesenteric arterial (SMA) blood flow was seen with increasing disease severity. Baseline liver T 1 (p=0.01) and perfusion (p< 0.01), and renal cortex T 1 (p<0.01) were significantly different in CC patients who subsequently developed negative LROs. MRI allows the contemporaneous assessment of organs in liver cirrhosis in a single scan without the requirement of contrast agent. MRI parameters of liver T 1, renal T 1, hepatic and splenic perfusion, and SMA blood flow were related to risk of LROs. This study assesses the changes to structure, blood flow and perfusion that occur in the key organs (liver, spleen and kidney) associated with severe liver disease (compensated cirrhosis). Those MRI measures which change with disease severity and are related to negative liver related clinical outcomes are described. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Stankovic, Zoran; Fink, Jury; Collins, Jeremy D; Semaan, Edouard; Russe, Maximilian F; Carr, James C; Markl, Michael; Langer, Mathias; Jung, Bernd
2015-04-01
We sought to evaluate the feasibility of k-t parallel imaging for accelerated 4D flow MRI in the hepatic vascular system by investigating the impact of different acceleration factors. k-t GRAPPA accelerated 4D flow MRI of the liver vasculature was evaluated in 16 healthy volunteers at 3T with acceleration factors R = 3, R = 5, and R = 8 (2.0 × 2.5 × 2.4 mm(3), TR = 82 ms), and R = 5 (TR = 41 ms); GRAPPA R = 2 was used as the reference standard. Qualitative flow analysis included grading of 3D streamlines and time-resolved particle traces. Quantitative evaluation assessed velocities, net flow, and wall shear stress (WSS). Significant scan time savings were realized for all acceleration factors compared to standard GRAPPA R = 2 (21-71 %) (p < 0.001). Quantification of velocities and net flow offered similar results between k-t GRAPPA R = 3 and R = 5 compared to standard GRAPPA R = 2. Significantly increased leakage artifacts and noise were seen between standard GRAPPA R = 2 and k-t GRAPPA R = 8 (p < 0.001) with significant underestimation of peak velocities and WSS of up to 31 % in the hepatic arterial system (p <0.05). WSS was significantly underestimated up to 13 % in all vessels of the portal venous system for k-t GRAPPA R = 5, while significantly higher values were observed for the same acceleration with higher temporal resolution in two veins (p < 0.05). k-t acceleration of 4D flow MRI is feasible for liver hemodynamic assessment with acceleration factors R = 3 and R = 5 resulting in a scan time reduction of at least 40 % with similar quantitation of liver hemodynamics compared with GRAPPA R = 2.
Tabassum, Sumera; Haider, Shahbaz
2016-01-01
Objective: To determine frequencies of different MRI patterns of tuberculous spondylitisin a public sector hospital in Karachi. Methods: This descriptive multidisciplinary case series study was done from October 25, 2011 to May 28, 2012 in Radiology Department and Department of Medicine in the Jinnah Postgraduate Medical Center Karachi. MRI scans (dorsal / lumbosacral spine) of the Patients presenting with backache in Medical OPD, were performed in Radiology Department. Axial and sagittal images of T1 weighted, T2 weighted and STIR sequences of the affected region were taken. A total of 140 patients who were diagnosed as having tuberculous spondylitis were further evaluated and analyzed for having different patterns of involvement of the spine and compared with similar studies. Results: Among frequencies of different MRI pattern of tuberculous spondylitis, contiguous vertebral involvement was 100%, discal involvement 98.6%, paravertebral abscess 92.1% cases, epidural abscess 91.4%, spinal cord / thecal sac compression 89.3%, vertebral collapse 72.9%, gibbus deformity 42.9% and psoas abscess 36.4%. Conclusion: Contiguous vertebral involvement was commonest MRI pattern, followed by disk involvement, paravertebral & epidural abscesses, thecal sac compression and vertebral collapse. PMID:27022369
Bonakdarpour, B.; Parrish, T.B.; Thompson, C.K.
2007-01-01
Functional MRI is based on changes in cerebral microvasculature triggered by increased neuronal oxidative metabolism. This change in blood flow follows a pattern known as the hemodynamic response function (HRF), which typically peaks 4–6 s following stimulus delivery. However, in the presence of cerebrovascular disease the HRF may not follow this normal pattern, due to either the temporal signal to noise (tSNR) ratio or delays in the HRF, which may result in misinterpretation or underestimation of fMRI signal. The present study examined the HRF and SNR in five individuals with aphasia resulting from stroke and four unimpaired participants using a lexical decision task and a long trial event-related design. T1-weighted images were acquired using an MP-RAGE sequence and BOLD T2*-weighted images were acquired using Echo Planar Imaging to measure time to peak (TTP) in the HRF. Data were analyzed using Brain Voyager in four anatomic regions known to be involved in language processing: Broca’s area and the posterior perisylvian network (PPN) (including Wernicke’s area, the angular and supramarginal gyri) and right hemisphere homologues of these regions. The occipital area also was examined as a control region. Analyses showed that the TTP in three out of five patients in the left perisylvian area was increased significantly as compared to normal individuals and the left primary visual cortex in the same patients. In two other patients no significant delays were detected. We also found that the SNR for BOLD signal detection may by insufficient in damaged areas. These findings indicate that obtaining physiologic (TTP) and quality assurance (tSNR) information is essential for studying activation patterns in brain-damaged patients in order to avoid errors in interpretation of the data. An example of one such misinterpretation and the need for alternative data analysis strategies is discussed. PMID:17467297
Bonakdarpour, B; Parrish, T B; Thompson, C K
2007-06-01
Functional MRI is based on changes in cerebral microvasculature triggered by increased neuronal oxidative metabolism. This change in blood flow follows a pattern known as the hemodynamic response function (HRF), which typically peaks 4-6 s following stimulus delivery. However, in the presence of cerebrovascular disease the HRF may not follow this normal pattern, due to either the temporal signal to noise (tSNR) ratio or delays in the HRF, which may result in misinterpretation or underestimation of fMRI signal. The present study examined the HRF and SNR in five individuals with aphasia resulting from stroke and four unimpaired participants using a lexical decision task and a long trial event-related design. T1-weighted images were acquired using an MP-RAGE sequence and BOLD T2*-weighted images were acquired using Echo Planar Imaging to measure time to peak (TTP) in the HRF. Data were analyzed using Brain Voyager in four anatomic regions known to be involved in language processing: Broca's area and the posterior perisylvian network (PPN) (including Wernicke's area, the angular and supramarginal gyri) and right hemisphere homologues of these regions. The occipital area also was examined as a control region. Analyses showed that the TTP in three out of five patients in the left perisylvian area was increased significantly as compared to normal individuals and the left primary visual cortex in the same patients. In two other patients no significant delays were detected. We also found that the SNR for BOLD signal detection may by insufficient in damaged areas. These findings indicate that obtaining physiologic (TTP) and quality assurance (tSNR) information is essential for studying activation patterns in brain-damaged patients in order to avoid errors in interpretation of the data. An example of one such misinterpretation and the need for alternative data analysis strategies is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Gareth C.; Pessah, Martin E., E-mail: gmurphy@nbi.dk, E-mail: mpessah@nbi.dk
The magnetorotational instability (MRI) is thought to play an important role in enabling accretion in sufficiently ionized astrophysical disks. The rate at which MRI-driven turbulence transports angular momentum is intimately related to both the strength of the amplitudes of the fluctuations on various scales and the degree of anisotropy of the underlying turbulence. This has motivated several studies to characterize the distribution of turbulent power in spectral space. In this paper we investigate the anisotropic nature of MRI-driven turbulence using a pseudo-spectral code and introduce novel ways for providing a robust characterization of the underlying turbulence. We study the growth ofmore » the MRI and the subsequent transition to turbulence via parasitic instabilities, identifying their potential signature in the late linear stage. We show that the general flow properties vary in a quasi-periodic way on timescales comparable to ∼10 inverse angular frequencies, motivating the temporal analysis of its anisotropy. We introduce a 3D tensor invariant analysis to quantify and classify the evolution of the anisotropy of the turbulent flow. This analysis shows a continuous high level of anisotropy, with brief sporadic transitions toward two- and three-component isotropic turbulent flow. This temporal-dependent anisotropy renders standard shell averaging especially when used simultaneously with long temporal averages, inadequate for characterizing MRI-driven turbulence. We propose an alternative way to extract spectral information from the turbulent magnetized flow, whose anisotropic character depends strongly on time. This consists of stacking 1D Fourier spectra along three orthogonal directions that exhibit maximum anisotropy in Fourier space. The resulting averaged spectra show that the power along each of the three independent directions differs by several orders of magnitude over most scales, except the largest ones. Our results suggest that a first-principles theory to describe fully developed MRI-driven turbulence will likely have to consider the anisotropic nature of the flow at a fundamental level.« less
Behavior of CO2/water flow in porous media for CO2 geological storage.
Jiang, Lanlan; Yu, Minghao; Liu, Yu; Yang, Mingjun; Zhang, Yi; Xue, Ziqiu; Suekane, Tetsuya; Song, Yongchen
2017-04-01
A clear understanding of two-phase fluid flow properties in porous media is of importance to CO 2 geological storage. The study visually measured the immiscible and miscible displacement of water by CO 2 using MRI (magnetic resonance imaging), and investigated the factor influencing the displacement process in porous media which were filled with quartz glass beads. For immiscible displacement at slow flow rates, the MR signal intensity of images increased because of CO 2 dissolution; before the dissolution phenomenon became inconspicuous at flow rate of 0.8mLmin -1 . For miscible displacement, the MR signal intensity decreased gradually independent of flow rates, because supercritical CO 2 and water became miscible in the beginning of CO 2 injection. CO 2 channeling or fingering phenomena were more obviously observed with lower permeable porous media. Capillary force decreases with increasing particle size, which would increase permeability and allow CO 2 and water to invade into small pore spaces more easily. The study also showed CO 2 flow patterns were dominated by dimensionless capillary number, changing from capillary finger to stable flow. The relative permeability curve was calculated using Brooks-Corey model, while the results showed the relative permeability of CO 2 slightly decreases with the increase of capillary number. Copyright © 2016 Elsevier Inc. All rights reserved.
The Organization of Dorsal Frontal Cortex in Humans and Macaques
Mars, Rogier B.; Noonan, MaryAnn P.; Neubert, Franz-Xaver; Jbabdi, Saad; O'Reilly, Jill X.; Filippini, Nicola; Thomas, Adam G.; Rushworth, Matthew F.
2013-01-01
The human dorsal frontal cortex has been associated with the most sophisticated aspects of cognition, including those that are thought to be especially refined in humans. Here we used diffusion-weighted magnetic resonance imaging (DW-MRI) and functional MRI (fMRI) in humans and macaques to infer and compare the organization of dorsal frontal cortex in the two species. Using DW-MRI tractography-based parcellation, we identified 10 dorsal frontal regions lying between the human inferior frontal sulcus and cingulate cortex. Patterns of functional coupling between each area and the rest of the brain were then estimated with fMRI and compared with functional coupling patterns in macaques. Areas in human medial frontal cortex, including areas associated with high-level social cognitive processes such as theory of mind, showed a surprising degree of similarity in their functional coupling patterns with the frontal pole, medial prefrontal, and dorsal prefrontal convexity in the macaque. We failed to find evidence for “new” regions in human medial frontal cortex. On the lateral surface, comparison of functional coupling patterns suggested correspondences in anatomical organization distinct from those that are widely assumed. A human region sometimes referred to as lateral frontal pole more closely resembled area 46, rather than the frontal pole, of the macaque. Overall the pattern of results suggest important similarities in frontal cortex organization in humans and other primates, even in the case of regions thought to carry out uniquely human functions. The patterns of interspecies correspondences are not, however, always those that are widely assumed. PMID:23884933
NASA Astrophysics Data System (ADS)
Hirai, Kenichiro; Katoh, Yuto; Terada, Naoki; Kawai, Soshi
2018-02-01
Magnetic turbulence in accretion disks under ideal magnetohydrodynamic (MHD) conditions is expected to be driven by the magneto-rotational instability (MRI) followed by secondary parasitic instabilities. We develop a three-dimensional ideal MHD code that can accurately resolve turbulent structures, and carry out simulations with a net vertical magnetic field in a local shearing box disk model to investigate the role of parasitic instabilities in the formation process of magnetic turbulence. Our simulations reveal that a highly anisotropic Kelvin–Helmholtz (K–H) mode parasitic instability evolves just before the first peak in turbulent stress and then breaks large-scale shear flows created by MRI. The wavenumber of the enhanced parasitic instability is larger than the theoretical estimate, because the shear flow layers sometimes become thinner than those assumed in the linear analysis. We also find that interaction between antiparallel vortices caused by the K–H mode parasitic instability induces small-scale waves that break the shear flows. On the other hand, at repeated peaks in the nonlinear phase, anisotropic wavenumber spectra are observed only in the small wavenumber region and isotropic waves dominate at large wavenumbers unlike for the first peak. Restructured channel flows due to MRI at the peaks in nonlinear phase seem to be collapsed by the advection of small-scale shear structures into the restructured flow and resultant mixing.
Resting-state fMRI in sleeping infants more closely resembles adult sleep than adult wakefulness
Snyder, Abraham Z.; Tagliazucchi, Enzo; Laufs, Helmut; Elison, Jed; Emerson, Robert W.; Shen, Mark D.; Wolff, Jason J.; Botteron, Kelly N.; Dager, Stephen; Estes, Annette M.; Evans, Alan; Gerig, Guido; Hazlett, Heather C.; Paterson, Sarah J.; Schultz, Robert T.; Styner, Martin A.; Zwaigenbaum, Lonnie; Schlaggar, Bradley L.
2017-01-01
Resting state functional magnetic resonance imaging (rs-fMRI) in infants enables important studies of functional brain organization early in human development. However, rs-fMRI in infants has universally been obtained during sleep to reduce participant motion artifact, raising the question of whether differences in functional organization between awake adults and sleeping infants that are commonly attributed to development may instead derive, at least in part, from sleep. This question is especially important as rs-fMRI differences in adult wake vs. sleep are well documented. To investigate this question, we compared functional connectivity and BOLD signal propagation patterns in 6, 12, and 24 month old sleeping infants with patterns in adult wakefulness and non-REM sleep. We find that important functional connectivity features seen during infant sleep closely resemble those seen during adult sleep, including reduced default mode network functional connectivity. However, we also find differences between infant and adult sleep, especially in thalamic BOLD signal propagation patterns. These findings highlight the importance of considering sleep state when drawing developmental inferences in infant rs-fMRI. PMID:29149191
Resting-state fMRI in sleeping infants more closely resembles adult sleep than adult wakefulness.
Mitra, Anish; Snyder, Abraham Z; Tagliazucchi, Enzo; Laufs, Helmut; Elison, Jed; Emerson, Robert W; Shen, Mark D; Wolff, Jason J; Botteron, Kelly N; Dager, Stephen; Estes, Annette M; Evans, Alan; Gerig, Guido; Hazlett, Heather C; Paterson, Sarah J; Schultz, Robert T; Styner, Martin A; Zwaigenbaum, Lonnie; Schlaggar, Bradley L; Piven, Joseph; Pruett, John R; Raichle, Marcus
2017-01-01
Resting state functional magnetic resonance imaging (rs-fMRI) in infants enables important studies of functional brain organization early in human development. However, rs-fMRI in infants has universally been obtained during sleep to reduce participant motion artifact, raising the question of whether differences in functional organization between awake adults and sleeping infants that are commonly attributed to development may instead derive, at least in part, from sleep. This question is especially important as rs-fMRI differences in adult wake vs. sleep are well documented. To investigate this question, we compared functional connectivity and BOLD signal propagation patterns in 6, 12, and 24 month old sleeping infants with patterns in adult wakefulness and non-REM sleep. We find that important functional connectivity features seen during infant sleep closely resemble those seen during adult sleep, including reduced default mode network functional connectivity. However, we also find differences between infant and adult sleep, especially in thalamic BOLD signal propagation patterns. These findings highlight the importance of considering sleep state when drawing developmental inferences in infant rs-fMRI.
Jaeger, Matthias; Khoo, Angela K; Conforti, David A; Cuganesan, Ramesh
2016-11-01
Phase contrast cine MRI with determination of pulsatile aqueductal cerebrospinal fluid (CSF) stroke volume and flow velocity has been suggested to assess intracranial pulsations in idiopathic normal pressure hydrocephalus (iNPH). We aimed to compare this non-invasive measure of pulsations to intracranial pressure (ICP) pulse wave amplitude from continuous ICP monitoring. We hypothesised that a significant correlation between these two markers of intracranial pulsations exists. Fifteen patients with suspected iNPH had continuous computerised ICP monitoring with calculation of mean ICP pulse wave amplitude (MWA) from time-domain analysis. MRI measured CSF aqueductal stroke volume and peak flow velocity. Mean MWA was 5.4mmHg (range 2.3-12.4mmHg). Mean CSF stroke volume and peak flow velocity were 65μl (range 3-195μl) and 9.31cm/s (range 1.68-15.0cm/s), respectively. No significant correlation between the invasive and non-invasive measures of pulsations existed (Spearman r=-0.30 and r=-0.27, respectively; p>0.05). We observed marked intra-individual fluctuation of MWA during continuous ICP monitoring of an average of 6.0mmHg (range 2.8-12.2mmHg). The results suggest a complex interplay between measures of pulsations derived from snapshot MRI measurements and continuous computerised ICP measurements, as no significant relationship existed in our data. Further study is needed to better understand the temporal profile of CSF MRI flow studies, as substantial variation in MWA over the course of several hours of ICP monitoring is common, suggesting that these physiologic fluctuations might obscure MRI snapshot measures of intracranial pulsations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Parra, N Andres; Orman, Amber; Padgett, Kyle; Casillas, Victor; Punnen, Sanoj; Abramowitz, Matthew; Pollack, Alan; Stoyanova, Radka
2017-01-01
This study aimed to develop an automated procedure for identifying suspicious foci of residual/recurrent disease in the prostate bed using dynamic contrast-enhanced-MRI (DCE-MRI) in prostate cancer patients after prostatectomy. Data of 22 patients presenting for salvage radiotherapy (RT) with an identified gross tumor volume (GTV) in the prostate bed were analyzed retrospectively. An unsupervised pattern recognition method was used to analyze DCE-MRI curves from the prostate bed. Data were represented as a product of a number of signal-vs.-time patterns and their weights. The temporal pattern, characterized by fast wash-in and gradual wash-out, was considered the "tumor" pattern. The corresponding weights were thresholded based on the number (1, 1.5, 2, 2.5) of standard deviations away from the mean, denoted as DCE1.0, …, DCE2.5, and displayed on the T2-weighted MRI. The resultant four volumes were compared with the GTV and maximum pre-RT prostate-specific antigen (PSA) level. Pharmacokinetic modeling was also carried out. Principal component analysis determined 2-4 significant patterns in patients' DCE-MRI. Analysis and display of the identified suspicious foci was performed in commercial software (MIM Corporation, Cleveland, OH, USA). In general, DCE1.0/DCE1.5 highlighted larger areas than GTV. DCE2.0 and GTV were significantly correlated (r = 0.60, p < 0.05). DCE2.0/DCA2.5 were also significantly correlated with PSA (r = 0.52, 0.67, p < 0.05). K trans for DCE2.5 was statistically higher than the GTV's K trans (p < 0.05), indicating that the automatic volume better captures areas of malignancy. A software tool was developed for identification and visualization of the suspicious foci in DCE-MRI from post-prostatectomy patients and was integrated into the treatment planning system.
Sanganahalli, Basavaraju G.; Rebello, Michelle R.; Herman, Peter; Papademetris, Xenophon; Shepherd, Gordon M.; Verhagen, Justus V.; Hyder, Fahmeed
2015-01-01
Functional imaging signals arise from distinct metabolic and hemodynamic events at the neuropil, but how these processes are influenced by pre- and post-synaptic activities need to be understood for quantitative interpretation of stimulus-evoked mapping data. The olfactory bulb (OB) glomeruli, spherical neuropil regions with well-defined neuronal circuitry, can provide insights into this issue. Optical calcium-sensitive fluorescent dye imaging (OICa2+) reflects dynamics of pre-synaptic input to glomeruli, whereas high-resolution functional magnetic resonance imaging (fMRI) using deoxyhemoglobin contrast reveals neuropil function within the glomerular layer where both pre- and post-synaptic activities contribute. We imaged odor-specific activity patterns of the dorsal OB in the same anesthetized rats with fMRI and OICa2+ and then co-registered the respective maps to compare patterns in the same space. Maps by each modality were very reproducible as trial-to-trial patterns for a given odor, overlapping by ~80%. Maps evoked by ethyl butyrate and methyl valerate for a given modality overlapped by ~80%, suggesting activation of similar dorsal glomerular networks by these odors. Comparison of maps generated by both methods for a given odor showed ~70% overlap, indicating similar odor-specific maps by each method. These results suggest that odor-specific glomerular patterns by high-resolution fMRI primarily tracks pre-synaptic input to the OB. Thus combining OICa2+ and fMRI lays the framework for studies of OB processing over a range of spatiotemporal scales, where OICa2+ can feature the fast dynamics of dorsal glomerular clusters and fMRI can map the entire glomerular sheet in the OB. PMID:26631819
In Vitro MRV-based Hemodynamic Study of Complex Helical Flow in a Patient-specific Jugular Model
NASA Astrophysics Data System (ADS)
Kefayati, Sarah; Acevedo-Bolton, Gabriel; Haraldsson, Henrik; Saloner, David
2014-11-01
Neurointerventional Radiologists are frequently requested to evaluate the venous side of the intracranial circulation for a variety of conditions including: Chronic Cerebrospinal Venous Insufficiency thought to play a role in the development of multiple sclerosis; sigmoid sinus diverticulum which has been linked to the presence of pulsatile tinnitus; and jugular vein distension which is related to cardiac dysfunction. Most approaches to evaluating these conditions rely on structural assessment or two dimensional flow analyses. This study was designed to investigate the highly complex jugular flow conditions using magnetic resonance velocimetry (MRV). A jugular phantom was fabricated based on the geometry of the dominant jugular in a tinnitus patient. Volumetric three-component time-resolved velocity fields were obtained using 4D PC-MRI -with the protocol enabling turbulence acquisition- and the patient-specific pulsatile waveform. Flow was highly complex exhibiting regions of jet, high swirling strength, and strong helical pattern with the core originating from the focal point of the jugular bulb. Specifically, flow was analyzed for helicity and the level of turbulence kinetic energy elevated in the core of helix and distally, in the post-narrowing region.
NASA Astrophysics Data System (ADS)
van de Moortele, Pierre-Francois; Amili, Omid; Coletti, Filippo; Toloui, Mostafa
2017-11-01
Cardiovascular flows are predominantly laminar. Nevertheless, transient and even turbulent flows have been observed in the vicinity of the heart (e.g. valves, ascending aorta, valvular/vascular stenosis). Effective in-vivo hemodynamic-based diagnostics in these sites require both high-resolution velocity measurements (especially in the near-vessel wall regions) and accurate evaluation of blood flow turbulence level (e.g. in terms of TKE). In addition to phase contrast (PC), appropriately designed PC-MRI sequences provide intravoxel incoherent motion encoding, a unique tool for simultaneous, non-invasive evaluation of velocity 3D vector fields and Reynolds stresses in cardiovascular flows in vivo. However, limited spatial and temporal resolution of PC-MRI result in inaccuracies in the estimation of hemodynamics (e.g. WSS) and of flow turbulence characteristics. This study aims to assess whether SNR gains at higher magnetic field could overcome these limits, providing more accurate velocity and turbulence characterization at higher spatial resolution. Experiments are conducted on MR Scanners at 3 and 7 Tesla with a U-bent pipe flow shaped phantom. 3D velocity fields, Reynolds stresses and TKE are analyzed and compared to a reference PIV experiments.
Bray, Joshua M.; Lauchnor, Ellen G.; Redden, George D.; ...
2016-12-21
Here, precipitation reactions in porous media influence transport properties of the environment and can control advective and dispersive transport. In subsurface environments, mixing of saline groundwater or injected solutions for remediation with fresh groundwater can induce supersaturation of constituents and drive precipitation reactions. Magnetic resonance imaging (MRI) and micro-computed tomography (µ-CT) were employed as complimentary techniques to evaluate advection, dispersion and formation of precipitate in a 3D porous media flow cell. Two parallel fluids were flowed concentrically through the porous media under two flow rate conditions with Na 2CO 3 and CaCl 2 in the inner and outer fluids, respectively.more » Upon mixing, calcium carbonate became supersaturated and formed a precipitate at the interface of the two fluids. Spatial maps of changing local velocity fields and dispersion in the flow cell were generated from MRI, while high resolution imaging of the precipitate formed in the porous media was achieved via µ-CT imaging. Formation of a precipitate layer minimized dispersive and advective transport between the two fluids and the shape of the precipitation was influenced by the flow rate condition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bray, Joshua M.; Lauchnor, Ellen G.; Redden, George D.
Here, precipitation reactions in porous media influence transport properties of the environment and can control advective and dispersive transport. In subsurface environments, mixing of saline groundwater or injected solutions for remediation with fresh groundwater can induce supersaturation of constituents and drive precipitation reactions. Magnetic resonance imaging (MRI) and micro-computed tomography (µ-CT) were employed as complimentary techniques to evaluate advection, dispersion and formation of precipitate in a 3D porous media flow cell. Two parallel fluids were flowed concentrically through the porous media under two flow rate conditions with Na 2CO 3 and CaCl 2 in the inner and outer fluids, respectively.more » Upon mixing, calcium carbonate became supersaturated and formed a precipitate at the interface of the two fluids. Spatial maps of changing local velocity fields and dispersion in the flow cell were generated from MRI, while high resolution imaging of the precipitate formed in the porous media was achieved via µ-CT imaging. Formation of a precipitate layer minimized dispersive and advective transport between the two fluids and the shape of the precipitation was influenced by the flow rate condition.« less
de Pierrefeu, Amicie; Fovet, Thomas; Hadj-Selem, Fouad; Löfstedt, Tommy; Ciuciu, Philippe; Lefebvre, Stephanie; Thomas, Pierre; Lopes, Renaud; Jardri, Renaud; Duchesnay, Edouard
2018-04-01
Despite significant progress in the field, the detection of fMRI signal changes during hallucinatory events remains difficult and time-consuming. This article first proposes a machine-learning algorithm to automatically identify resting-state fMRI periods that precede hallucinations versus periods that do not. When applied to whole-brain fMRI data, state-of-the-art classification methods, such as support vector machines (SVM), yield dense solutions that are difficult to interpret. We proposed to extend the existing sparse classification methods by taking the spatial structure of brain images into account with structured sparsity using the total variation penalty. Based on this approach, we obtained reliable classifying performances associated with interpretable predictive patterns, composed of two clearly identifiable clusters in speech-related brain regions. The variation in transition-to-hallucination functional patterns not only from one patient to another but also from one occurrence to the next (e.g., also depending on the sensory modalities involved) appeared to be the major difficulty when developing effective classifiers. Consequently, second, this article aimed to characterize the variability within the prehallucination patterns using an extension of principal component analysis with spatial constraints. The principal components (PCs) and the associated basis patterns shed light on the intrinsic structures of the variability present in the dataset. Such results are promising in the scope of innovative fMRI-guided therapy for drug-resistant hallucinations, such as fMRI-based neurofeedback. © 2018 Wiley Periodicals, Inc.
Voskrebenzev, Andreas; Gutberlet, Marcel; Klimeš, Filip; Kaireit, Till F; Schönfeld, Christian; Rotärmel, Alexander; Wacker, Frank; Vogel-Claussen, Jens
2018-04-01
In this feasibility study, a phase-resolved functional lung imaging postprocessing method for extraction of dynamic perfusion (Q) and ventilation (V) parameters using a conventional 1H lung MRI Fourier decomposition acquisition is introduced. Time series of coronal gradient-echo MR images with a temporal resolution of 288 to 324 ms of two healthy volunteers, one patient with chronic thromboembolic hypertension, one patient with cystic fibrosis, and one patient with chronic obstructive pulmonary disease were acquired at 1.5 T. Using a sine model to estimate cardiac and respiratory phases of each image, all images were sorted to reconstruct full cardiac and respiratory cycles. Time to peak (TTP), V/Q maps, and fractional ventilation flow-volume loops were calculated. For the volunteers, homogenous ventilation and perfusion TTP maps (V-TTP, Q-TTP) were obtained. The chronic thromboembolic hypertension patient showed increased perfusion TTP in hypoperfused regions in visual agreement with dynamic contrast-enhanced MRI, which improved postpulmonary endaterectomy surgery. Cystic fibrosis and chronic obstructive pulmonary disease patients showed a pattern of increased V-TTP and Q-TTP in regions of hypoventilation and decreased perfusion. Fractional ventilation flow-volume loops of the chronic obstructive pulmonary disease patient were smaller in comparison with the healthy volunteer, and showed regional differences in visual agreement with functional small airways disease and emphysema on CT. This study shows the feasibility of phase-resolved functional lung imaging to gain quantitative information regarding regional lung perfusion and ventilation without the need for ultrafast imaging, which will be advantageous for future clinical translation. Magn Reson Med 79:2306-2314, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Viscous Energy Loss in the Presence of Abnormal Aortic Flow
Barker, A.J.; van Ooij, P.; Bandi, K.; Garcia, J.; Albaghdadi, M.; McCarthy, P.; Bonow, R. O.; Carr, J.; Collins, J.; Malaisrie, C.; Markl, M.
2014-01-01
Purpose To present a theoretical basis for noninvasively characterizing in vivo fluid-mechanical energy losses, and to apply it in a pilot study of patients known to express abnormal aortic flow patterns. Methods 4D flow MRI was used to characterize laminar viscous energy losses in the aorta of normal controls (n=12, age=37±10), patients with aortic dilation (n=16, age=52±8), and patients with aortic valve stenosis matched for age and aortic size (n=14, age=46±15), using a relationship between the 3D velocity field and viscous energy dissipation. Results Viscous energy loss was significantly elevated in the thoracic aorta for patients with dilated aorta (3.6±1.3 mW, p=0.024) and patients with aortic stenosis (14.3±8.2 mW, p<0.001) compared to healthy volunteers (2.3±0.9 mW). The same pattern of significant differences were seen in the ascending aorta, where viscous energy losses in patients with dilated aortas (2.2±1.1 mW, p=0.021) and patients with aortic stenosis (10.9±6.8 mW, p<0.001) were elevated compared to healthy volunteers (1.2±0.6 mW). Conclusion This technique provides a capability to quantify the contribution of abnormal laminar blood flow to increased ventricular afterload. In this pilot study, viscous energy loss in patient cohorts was significantly elevated and indicates that cardiac afterload is increased due to abnormal flow. PMID:24122967
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, W; Yin, F; Cai, J
Purpose: To develop a technique to generate on-board VC-MRI using patient prior 4D-MRI, motion modeling and on-board 2D-cine MRI for real-time 3D target verification of liver and lung radiotherapy. Methods: The end-expiration phase images of a 4D-MRI acquired during patient simulation are used as patient prior images. Principal component analysis (PCA) is used to extract 3 major respiratory deformation patterns from the Deformation Field Maps (DFMs) generated between end-expiration phase and all other phases. On-board 2D-cine MRI images are acquired in the axial view. The on-board VC-MRI at any instant is considered as a deformation of the prior MRI atmore » the end-expiration phase. The DFM is represented as a linear combination of the 3 major deformation patterns. The coefficients of the deformation patterns are solved by matching the corresponding 2D slice of the estimated VC-MRI with the acquired single 2D-cine MRI. The method was evaluated using both XCAT (a computerized patient model) simulation of lung cancer patients and MRI data from a real liver cancer patient. The 3D-MRI at every phase except end-expiration phase was used to simulate the ground-truth on-board VC-MRI at different instances, and the center-tumor slice was selected to simulate the on-board 2D-cine images. Results: Image subtraction of ground truth with estimated on-board VC-MRI shows fewer differences than image subtraction of ground truth with prior image. Excellent agreement between profiles was achieved. The normalized cross correlation coefficients between the estimated and ground-truth in the axial, coronal and sagittal views for each time step were >= 0.982, 0.905, 0.961 for XCAT data and >= 0.998, 0.911, 0.9541 for patient data. For XCAT data, the maximum-Volume-Percent-Difference between ground-truth and estimated tumor volumes was 1.6% and the maximum-Center-of-Mass-Shift was 0.9 mm. Conclusion: Preliminary studies demonstrated the feasibility to estimate real-time VC-MRI for on-board target localization before or during radiotherapy treatments. National Institutes of Health Grant No. R01-CA184173; Varian Medical System.« less
Muscle MRI in female carriers of dystrophinopathy.
Tasca, G; Monforte, M; Iannaccone, E; Laschena, F; Ottaviani, P; Silvestri, G; Masciullo, M; Mirabella, M; Servidei, S; Ricci, E
2012-09-01
Duchenne muscular dystrophy carriers represent a rare condition that needs to be recognized because of the possible implications for prenatal diagnosis. Muscle biopsy is currently the diagnostic instrument of choice in sporadic patients. We wanted to verify whether muscle magnetic resonance imaging (MRI) could identify a pattern of involvement suggestive of this condition and whether it was similar to that reported in Duchenne and Becker muscular dystrophy. Evaluation of pelvic and lower limb MRI scans of 12 dystrophinopathy carriers was performed. We found a frequent involvement of the quadratus femoris, gluteus maximus and medius, biceps femoris long head, adductor magnus, vasti and paraspinal muscles, whilst the popliteus, iliopsoas, recti abdominis, sartorius, and gracilis were relatively spared. Asymmetry was a major feature on MRI; it could be detected significantly more often than with sole clinical examination and even in patients without weakness. The pattern we describe here is similar to that reported in Duchenne and Becker muscular dystrophy, although asymmetry represents a major distinctive feature. Muscle MRI was more sensitive than clinical examination for detecting single muscle involvement and asymmetry. Further studies are needed to verify the consistency of this pattern in larger cohorts and to assess whether muscle MRI can improve diagnostic accuracy in carriers with normal dystrophin staining on muscle biopsy. © 2012 The Author(s) European Journal of Neurology © 2012 EFNS.
Joseph, Arun Antony; Merboldt, Klaus-Dietmar; Voit, Dirk; Dahm, Johannes; Frahm, Jens
2016-12-01
The accurate assessment of peripheral venous flow is important for the early diagnosis and treatment of disorders such as deep-vein thrombosis (DVT) which is a major cause of post-thrombotic syndrome or even death due to pulmonary embolism. The aim of this work is to quantitatively determine blood flow in deep veins during rest and muscular exercise using a novel real-time magnetic resonance imaging (MRI) method for velocity-encoded phase-contrast (PC) MRI at high spatiotemporal resolution. Real-time PC MRI of eight healthy volunteers and one patient was performed at 3 Tesla (Prisma fit, Siemens, Erlangen, Germany) using a flexible 16-channel receive coil (Variety, NORAS, Hoechberg, Germany). Acquisitions were based on a highly undersampled radial FLASH sequence with image reconstruction by regularized nonlinear inversion at 0.5×0.5×6 mm 3 spatial resolution and 100 ms temporal resolution. Flow was assessed in two cross-sections of the lower leg at the level of the calf muscle and knee using a protocol of 10 s rest, 20 s flexion and extension of the foot, and 10 s rest. Quantitative analyses included through-plane flow in the right posterior tibial, right peroneal and popliteal vein (PC maps) as well as signal intensity changes due to flow and muscle movements (corresponding magnitude images). Real-time PC MRI successfully monitored the dynamics of venous flow at high spatiotemporal resolution and clearly demonstrated increased flow in deep veins in response to flexion and extension of the foot. In normal subjects, the maximum velocity (averaged across vessel lumen) during exercise was 9.4±5.7 cm·s -1 for the right peroneal vein, 8.5±4.6 cm·s -1 for the right posterior tibial vein and 17.8±5.8 cm·s -1 for the popliteal vein. The integrated flow volume per exercise (20 s) was 1.9, 1.6 and 50 mL (mean across subjects) for right peroneal, right posterior tibial and popliteal vein, respectively. A patient with DVT presented with peak flow velocities of only about 2 cm·s -1 during exercise and less than 1 cm·s -1 during rest. Real-time PC MRI emerges as a new tool for quantifying the dynamics of muscle-induced flow in deep veins. The method provides both signal intensity changes and velocity information for the assessment of blood flow and muscle movements. It now warrants extended clinical trials to patients with suspected thrombosis.
NASA Astrophysics Data System (ADS)
Peuser, Jörn; Belhaj-Saif, Abderraouf; Hamadjida, Adjia; Schmidlin, Eric; Gindrat, Anne-Dominique; Völker, Andreas Charles; Zakharov, Pavel; Hoogewoud, Henri-Marcel; Rouiller, Eric M.; Scheffold, Frank
2011-09-01
The nonhuman primate model is suitable to study mechanisms of functional recovery following lesion of the cerebral cortex (motor cortex), on which therapeutic strategies can be tested. To interpret behavioral data (time course and extent of functional recovery), it is crucial to monitor the properties of the experimental cortical lesion, induced by infusion of the excitotoxin ibotenic acid. In two adult macaque monkeys, ibotenic acid infusions produced a restricted, permanent lesion of the motor cortex. In one monkey, the lesion was monitored over 3.5 weeks, combining laser speckle imaging (LSI) as metabolic readout (cerebral blood flow) and anatomical assessment with magnetic resonance imaging (T2-weighted MRI). The cerebral blood flow, measured online during subsequent injections of the ibotenic acid in the motor cortex, exhibited a dramatic increase, still present after one week, in parallel to a MRI hypersignal. After 3.5 weeks, the cerebral blood flow was strongly reduced (below reference level) and the hypersignal disappeared from the MRI scan, although the lesion was permanent as histologically assessed post-mortem. The MRI data were similar in the second monkey. Our experiments suggest that LSI and MRI, although they reflect different features, vary in parallel during a few weeks following an excitotoxic cortical lesion.
Weaver, Kurt E.; Wander, Jeremiah D.; Ko, Andrew L.; Casimo, Kaitlyn; Grabowski, Thomas J.; Ojemann, Jeffrey G.; Darvas, Felix
2016-01-01
Functional imaging investigations into the brain's resting state interactions have yielded a wealth of insight into the intrinsic and dynamic neural architecture supporting cognition and behavior. Electrophysiological studies however have highlighted the fact that synchrony across large-scale cortical systems is composed of spontaneous interactions occurring at timescales beyond the traditional resolution of fMRI, a feature that limits the capacity of fMRI to draw inference on the true directional relationship between network nodes. To approach the question of directionality in resting state signals, we recorded resting state functional MRI (rsfMRI) and electrocorticography (ECoG) from four human subjects undergoing invasive epilepsy monitoring. Using a seed-point based approach, we employed phase-amplitude coupling (PAC) and biPhase Locking Values (bPLV), two measures of cross-frequency coupling (CFC) to explore both outgoing and incoming connections between the seed and all non-seed, site electrodes. We observed robust PAC between a wide range of low-frequency phase and high frequency amplitude estimates. However, significant bPLV, a CFC measure of phase-phase synchrony, was only observed at specific narrow low and high frequency bandwidths. Furthermore, the spatial patterns of outgoing PAC connectivity were most closely associated with the rsfMRI connectivity maps. Our results support the hypothesis that PAC is relatively ubiquitous phenomenon serving as a mechanism for coordinating high-frequency amplitudes across distant neuronal assemblies even in absence of overt task structure. Additionally, we demonstrate that the spatial distribution of a seed-point rsfMRI sensorimotor network is strikingly similar to specific patterns of directional PAC. Specifically, the high frequency activities of distal patches of cortex owning membership in a rsfMRI sensorimotor network were most likely to be entrained to the phase of a low frequency rhythm engendered from the neural populations at the seed-point, suggestive of greater directional coupling from the seed out to the site electrodes. PMID:26747745
Lin, Ai-Ling; Fox, Peter T; Yang, Yihong; Lu, Hanzhang; Tan, Li-Hai; Gao, Jia-Hong
2009-01-01
The aim of this study was to investigate the relationship between relative cerebral blood flow (delta CBF) and relative cerebral metabolic rate of oxygen (delta CMRO(2)) during continuous visual stimulation (21 min at 8 Hz) with fMRI biophysical models by simultaneously measuring of BOLD, CBF and CBV fMRI signals. The delta CMRO(2) was determined by both a newly calibrated single-compartment model (SCM) and a multi-compartment model (MCM) and was in agreement between these two models (P>0.5). The duration-varying delta CBF and delta CMRO(2) showed a negative correlation with time (r=-0.97, P<0.001); i.e., delta CBF declines while delta CMRO(2) increases during continuous stimulation. This study also illustrated that without properly calibrating the critical parameters employed in the SCM, an incorrect and even an opposite appearance of the flow-metabolism relationship during prolonged visual stimulation (positively linear coupling) can result. The time-dependent negative correlation between flow and metabolism demonstrated in this fMRI study is consistent with a previous PET observation and further supports the view that the increase in CBF is driven by factors other than oxygen demand and the energy demands will eventually require increased aerobic metabolism as stimulation continues.
Terekhov, Maxim; Krummenacker, Jan; Denysenkov, Vasyl; Gerz, Kathrin; Prisner, Thomas; Schreiber, Laura Maria
2016-03-01
Overhauser dynamic nuclear polarization (DNP) allows the production of liquid hyperpolarized substrate inside the MRI magnet bore as well as its administration in continuous flow mode to acquire MR images with enhanced signal-to-noise ratio. We implemented inversion recovery preparation in order to improve contrast-to-noise ratio and to quantify the overall imaging performance of Overhauser DNP-enhanced MRI. The negative enhancement created by DNP in combination with inversion recovery (IR) preparation allows canceling selectively the signal originated from Boltzmann magnetization and visualizing only hyperpolarized fluid. The theoretical model describing gain of MR image intensity produced by steady-state continuous flow DNP hyperpolarized magnetization was established and proved experimentally. A precise quantification of signal originated purely from DNP hyperpolarization was achieved. A temperature effect on longitudinal relaxation had to be taken into account to fit experimental results with numerical prediction. Using properly adjusted IR preparation, the complete zeroing of thermal background magnetization was achieved, providing an essential increase of contrast-to-noise ratio of DNP-hyperpolarized water images. To quantify and optimize the steady-state conditions for MRI with continuous flow DNP, an approach similar to that incorporating transient-state thermal magnetization equilibrium in spoiled fast field echo imaging sequences can be used. © 2015 Wiley Periodicals, Inc.
Williams, Rebecca J; Reutens, David C; Hocking, Julia
2015-11-01
Decreased water displacement following increased neural activity has been observed using diffusion-weighted functional MRI (DfMRI) at high b-values. The physiological mechanisms underlying the diffusion signal change may be unique from the standard blood oxygenation level-dependent (BOLD) contrast and closer to the source of neural activity. Whether DfMRI reflects neural activity more directly than BOLD outside the primary cerebral regions remains unclear. Colored and achromatic Mondrian visual stimuli were statistically contrasted to functionally localize the human color center Area V4 in neurologically intact adults. Spatial and temporal properties of DfMRI and BOLD activation were examined across regions of the visual cortex. At the individual level, DfMRI activation patterns showed greater spatial specificity to V4 than BOLD. The BOLD activation patterns were more prominent in the primary visual cortex than DfMRI, where activation was localized to the ventral temporal lobe. Temporally, the diffusion signal change in V4 and V1 both preceded the corresponding hemodynamic response, however the early diffusion signal change was more evident in V1. DfMRI may be of use in imaging applications implementing cognitive subtraction paradigms, and where highly precise individual functional localization is required.
SU-G-IeP1-13: Sub-Nyquist Dynamic MRI Via Prior Rank, Intensity and Sparsity Model (PRISM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, B; Gao, H
Purpose: Accelerated dynamic MRI is important for MRI guided radiotherapy. Inspired by compressive sensing (CS), sub-Nyquist dynamic MRI has been an active research area, i.e., sparse sampling in k-t space for accelerated dynamic MRI. This work is to investigate sub-Nyquist dynamic MRI via a previously developed CS model, namely Prior Rank, Intensity and Sparsity Model (PRISM). Methods: The proposed method utilizes PRISM with rank minimization and incoherent sampling patterns for sub-Nyquist reconstruction. In PRISM, the low-rank background image, which is automatically calculated by rank minimization, is excluded from the L1 minimization step of the CS reconstruction to further sparsify themore » residual image, thus allowing for higher acceleration rates. Furthermore, the sampling pattern in k-t space is made more incoherent by sampling a different set of k-space points at different temporal frames. Results: Reconstruction results from L1-sparsity method and PRISM method with 30% undersampled data and 15% undersampled data are compared to demonstrate the power of PRISM for dynamic MRI. Conclusion: A sub- Nyquist MRI reconstruction method based on PRISM is developed with improved image quality from the L1-sparsity method.« less
Loureiro, Begoña; Martinez-Biarge, Miriam; Foti, Francesca; Papadaki, Maria; Cowan, Frances M; Wusthoff, Courtney J
2017-02-01
To define patterns of brain injury and associated neurodevelopmental outcomes in infants with severe neonatal anaemia. We studied 20 infants with severe anaemia at birth (haemoglobin<7g/dL). Clinical details were analysed for causes of anaemia and co-morbidities. All had early brain magnetic resonance imaging (MRI) scans, which were reviewed for injury pattern. Neurodevelopmental outcomes were assessed at a median age of 24months. The aetiology of the anaemia was feto-maternal haemorrhage in 17 and antepartum haemorrhage in 3 infants. The predominant site of injury was the white matter, which was affected in all infants, with differing grades of severity and with cystic evolution in 45%. Only one infant showed an injury pattern typical of an acute severe hypoxic-ischaemic insult. Outcomes correlated closely to the severity of MRI findings. Cerebral palsy was seen only with the most severe neuroimaging patterns (n=6). Global developmental delay, learning or behavioural problems and seizures were common with moderate injury. Visual impairment occurred, particularly with posterior injury. Microcephaly developed in 45%. Severe neonatal anaemia at birth was associated with a white matter predominant pattern of injury, the severity of which was related to neurodevelopmental outcomes. Early MRI and long-term follow-up are advisable following severe neonatal anaemia. Copyright © 2017 Elsevier B.V. All rights reserved.
Decoding Information in the Human Hippocampus: A User's Guide
ERIC Educational Resources Information Center
Chadwick, Martin J.; Bonnici, Heidi M.; Maguire, Eleanor A.
2012-01-01
Multi-voxel pattern analysis (MVPA), or "decoding", of fMRI activity has gained popularity in the neuroimaging community in recent years. MVPA differs from standard fMRI analyses by focusing on whether information relating to specific stimuli is encoded in patterns of activity across multiple voxels. If a stimulus can be predicted, or decoded,…
[The diagnostic value of cine-MR imaging in diseases of great vessels].
Sasaki, S; Yoshida, H; Matsui, Y; Sakuma, M; Yasuda, K; Tanabe, T; Chouji, H
1990-02-01
The diagnostic value of cine magnetic resonance imaging (cine-MRI) was evaluated in 10 patients with disease of great vessels. The parameters necessary to decide the appropriate treatment, such as presence and extension of intimal flap, DeBakey type classification, identification of the entry, differentiation between true and false lumen, and between thrombosis and slow flow were demonstrated in all patients with dissecting aortic aneurysm. However, abdominal aortic branches could not be demonstrated enough by cine-MRI, therefore conventional AOG was necessary to choose the operative procedure in these cases. In patients with thoracic aortic aneurysm (TAA), cine-MRI was valuable in demonstrating both blood flow and thrombus in the lumen of aneurysm, and AOG was thought to be unnecessary in most cases. Cine-MRI is a promising new technique for the evaluation of diseases of great vessels.
Patel, Rajan P; Sitton, Clark W; Ketonen, Leena M; Hou, Ping; Johnson, Jason M; Romo, Seferino; Fletcher, Stephen; Shah, Manish N; Kerr, Marcia; Zaky, Wafik; Rytting, Michael E; Khatua, Soumen; Sandberg, David I
2018-03-01
Nuclear medicine studies have previously been utilized to assess for blockage of cerebrospinal fluid (CSF) flow prior to intraventricular chemotherapy infusions. To assess CSF flow without nuclear medicine studies, we obtained cine phase-contrast MRI sequences that assess CSF flow from the fourth ventricle down to the sacrum. In three clinical trials, 18 patients with recurrent malignant posterior fossa tumors underwent implantation of a ventricular access device (VAD) into the fourth ventricle, either with or without simultaneous tumor resection. Prior to infusing therapeutic agents into the VAD, cine MRI phase-contrast CSF flow sequences of the brain and total spine were performed. Velocity encoding (VENC) of 5 and 10 cm/s was used to confirm CSF flow from the fourth ventricular outlets to the cervical, thoracic, and lumbar spine. Qualitative CSF flow was characterized by neuroradiologists as present or absent. All 18 patients demonstrated CSF flow from the outlets of the fourth ventricle down to the sacrum with no evidence of obstruction. One of these patients, after disease progression, subsequently showed obstruction of CSF flow. No patient required a nuclear medicine study to assess CSF flow prior to initiation of infusions. Fourteen patients have received infusions to date, and none has had neurological toxicity. CSF flow including the fourth ventricle and the total spine can be assessed noninvasively with phase-contrast MRI sequences. Advantages over nuclear medicine studies include avoiding both an invasive procedure and radiation exposure.
The evolving role of MRI in the assessment of coronary artery disease.
Blackwell, G G; Pohost, G M
1995-04-13
Magnetic resonance imaging (MRI) methods are positioned to make a major impact in the care of patients with ischemic heart disease. Further advances are to be expected in the area of myocardial perfusion imaging and noninvasive MRI coronary "angiography." Work also continues in determining quantitative flow via MRI. Although expensive, the unique ability of MRI methods to provide multiple pieces of information in a single examination may make this technology cost effective. The concept of a "one-step shop" is progressing steadily toward a clinical reality.
Mapping Informative Clusters in a Hierarchial Framework of fMRI Multivariate Analysis
Xu, Rui; Zhen, Zonglei; Liu, Jia
2010-01-01
Pattern recognition methods have become increasingly popular in fMRI data analysis, which are powerful in discriminating between multi-voxel patterns of brain activities associated with different mental states. However, when they are used in functional brain mapping, the location of discriminative voxels varies significantly, raising difficulties in interpreting the locus of the effect. Here we proposed a hierarchical framework of multivariate approach that maps informative clusters rather than voxels to achieve reliable functional brain mapping without compromising the discriminative power. In particular, we first searched for local homogeneous clusters that consisted of voxels with similar response profiles. Then, a multi-voxel classifier was built for each cluster to extract discriminative information from the multi-voxel patterns. Finally, through multivariate ranking, outputs from the classifiers were served as a multi-cluster pattern to identify informative clusters by examining interactions among clusters. Results from both simulated and real fMRI data demonstrated that this hierarchical approach showed better performance in the robustness of functional brain mapping than traditional voxel-based multivariate methods. In addition, the mapped clusters were highly overlapped for two perceptually equivalent object categories, further confirming the validity of our approach. In short, the hierarchical framework of multivariate approach is suitable for both pattern classification and brain mapping in fMRI studies. PMID:21152081
NASA Astrophysics Data System (ADS)
D'Souza, Maximian Felix
1995-01-01
The purpose of the present study was to determine the changes in regional cerebral blood flow (rCBF) with a cognitive task of semantic word retrieval (verbal fluency) in patients with multiple sclerosis (MS) and compare with the rCBF distribution of normal controls. Two groups of patients with low and high verbal fluency scores and two groups of normal controls were selected to determine a relationship between rCBF and verbal performance. A three-detector gamma camera (TRIAD 88) was used with radiotracer Tc-99m HMPAO and single photon emission computed tomography (SPECT) to obtain 3D rCBF maps. The performance characteristics of the camera was comprehensively studied before being utilized for clinical studies. In addition, technical improvements were implemented in the form of scatter correction and MRI-SPECT coregistration to potentially enhance the quantitative accuracy of the rCBF data. The performance analysis of the gamma camera showed remarkable consistency among the three-detector heads and yielded results that were consistent with the manufacturer's specification. Measurements of physical objects also showed excellent image quality. The coregistration of SPECT and MRI images allowed more accurate anatomical localization for extraction of regional blood flow information. The validation of the scatter correction technique with physical phantoms indicated marked improvements in quantitative accuracy. There was marked difference in activation patterns between patients and normals. In normals, individually subjects showed either an increase or a decrease in blood flow to left frontal and temporal, however, on average, there was not a statistically significant change. The lack of significant change may suggest large variability among subjects chosen or that the individual changes are not large enough to be significant. The results from MS patients showed several left cortical areas with statistically significant change in blood flow after cognitive activation, especially in the low fluent group, with decreased flow. Scatter corrected data yielded mostly right sided significant increases in blood flow. Further studies must be conducted to further evaluate the scatter correction technique. Additional studies on MS patients must focus on correlating lesion volume, location and number to the rCBF distribution.
Multivariate detrending of fMRI signal drifts for real-time multiclass pattern classification.
Lee, Dongha; Jang, Changwon; Park, Hae-Jeong
2015-03-01
Signal drift in functional magnetic resonance imaging (fMRI) is an unavoidable artifact that limits classification performance in multi-voxel pattern analysis of fMRI. As conventional methods to reduce signal drift, global demeaning or proportional scaling disregards regional variations of drift, whereas voxel-wise univariate detrending is too sensitive to noisy fluctuations. To overcome these drawbacks, we propose a multivariate real-time detrending method for multiclass classification that involves spatial demeaning at each scan and the recursive detrending of drifts in the classifier outputs driven by a multiclass linear support vector machine. Experiments using binary and multiclass data showed that the linear trend estimation of the classifier output drift for each class (a weighted sum of drifts in the class-specific voxels) was more robust against voxel-wise artifacts that lead to inconsistent spatial patterns and the effect of online processing than voxel-wise detrending. The classification performance of the proposed method was significantly better, especially for multiclass data, than that of voxel-wise linear detrending, global demeaning, and classifier output detrending without demeaning. We concluded that the multivariate approach using classifier output detrending of fMRI signals with spatial demeaning preserves spatial patterns, is less sensitive than conventional methods to sample size, and increases classification performance, which is a useful feature for real-time fMRI classification. Copyright © 2014 Elsevier Inc. All rights reserved.
Just, Marcel Adam; Cherkassky, Vladimir L; Buchweitz, Augusto; Keller, Timothy A; Mitchell, Tom M
2014-01-01
Autism is a psychiatric/neurological condition in which alterations in social interaction (among other symptoms) are diagnosed by behavioral psychiatric methods. The main goal of this study was to determine how the neural representations and meanings of social concepts (such as to insult) are altered in autism. A second goal was to determine whether these alterations can serve as neurocognitive markers of autism. The approach is based on previous advances in fMRI analysis methods that permit (a) the identification of a concept, such as the thought of a physical object, from its fMRI pattern, and (b) the ability to assess the semantic content of a concept from its fMRI pattern. These factor analysis and machine learning methods were applied to the fMRI activation patterns of 17 adults with high-functioning autism and matched controls, scanned while thinking about 16 social interactions. One prominent neural representation factor that emerged (manifested mainly in posterior midline regions) was related to self-representation, but this factor was present only for the control participants, and was near-absent in the autism group. Moreover, machine learning algorithms classified individuals as autistic or control with 97% accuracy from their fMRI neurocognitive markers. The findings suggest that psychiatric alterations of thought can begin to be biologically understood by assessing the form and content of the altered thought's underlying brain activation patterns.
Just, Marcel Adam; Cherkassky, Vladimir L.; Buchweitz, Augusto; Keller, Timothy A.; Mitchell, Tom M.
2014-01-01
Autism is a psychiatric/neurological condition in which alterations in social interaction (among other symptoms) are diagnosed by behavioral psychiatric methods. The main goal of this study was to determine how the neural representations and meanings of social concepts (such as to insult) are altered in autism. A second goal was to determine whether these alterations can serve as neurocognitive markers of autism. The approach is based on previous advances in fMRI analysis methods that permit (a) the identification of a concept, such as the thought of a physical object, from its fMRI pattern, and (b) the ability to assess the semantic content of a concept from its fMRI pattern. These factor analysis and machine learning methods were applied to the fMRI activation patterns of 17 adults with high-functioning autism and matched controls, scanned while thinking about 16 social interactions. One prominent neural representation factor that emerged (manifested mainly in posterior midline regions) was related to self-representation, but this factor was present only for the control participants, and was near-absent in the autism group. Moreover, machine learning algorithms classified individuals as autistic or control with 97% accuracy from their fMRI neurocognitive markers. The findings suggest that psychiatric alterations of thought can begin to be biologically understood by assessing the form and content of the altered thought’s underlying brain activation patterns. PMID:25461818
Patrick, Peter D; Mabry, Jennifer L; Gurka, Matthew J; Buck, Marcia L; Boatwright, Evelyn; Blackman, James A
2007-01-01
To explore the relationship between location and pattern of brain injury identified on MRI and prolonged low response state in children post-traumatic brain injury (TBI). This observational study compared 15 children who spontaneously recovered within 30 days post-TBI to 17 who remained in a prolonged low response state. 92.9% of children with brain stem injury were in the low response group. The predicted probability was 0.81 for brain stem injury alone, increasing to 0.95 with a regional pattern of injury to the brain stem, basal ganglia, and thalamus. Low response state in children post-TBI is strongly correlated with two distinctive regions of injury: the brain stem alone, and an injury pattern to the brain stem, basal ganglia, and thalamus. This study demonstrates the need for large-scale clinical studies using MRI as a tool for outcome assessment in children and adolescents following severe TBI.
Active control of the spatial MRI phase distribution with optimal control theory
NASA Astrophysics Data System (ADS)
Lefebvre, Pauline M.; Van Reeth, Eric; Ratiney, Hélène; Beuf, Olivier; Brusseau, Elisabeth; Lambert, Simon A.; Glaser, Steffen J.; Sugny, Dominique; Grenier, Denis; Tse Ve Koon, Kevin
2017-08-01
This paper investigates the use of Optimal Control (OC) theory to design Radio-Frequency (RF) pulses that actively control the spatial distribution of the MRI magnetization phase. The RF pulses are generated through the application of the Pontryagin Maximum Principle and optimized so that the resulting transverse magnetization reproduces various non-trivial and spatial phase patterns. Two different phase patterns are defined and the resulting optimal pulses are tested both numerically with the ODIN MRI simulator and experimentally with an agar gel phantom on a 4.7 T small-animal MR scanner. Phase images obtained in simulations and experiments are both consistent with the defined phase patterns. A practical application of phase control with OC-designed pulses is also presented, with the generation of RF pulses adapted for a Magnetic Resonance Elastography experiment. This study demonstrates the possibility to use OC-designed RF pulses to encode information in the magnetization phase and could have applications in MRI sequences using phase images.
Combining Neutron and Magnetic Resonance Imaging to Study the Interaction of Plant Roots and Soil
NASA Astrophysics Data System (ADS)
Oswald, Sascha E.; Tötzke, Christian; Haber-Pohlmeier, Sabina; Pohlmeier, Andreas; Kaestner, Anders P.; Lehmann, Eberhard
The soil in direct vicinity of the roots, the root-soil interface or so called rhizosphere, is heavily modified by the activity of roots, compared to bulk soil, e.g. in respect to microbiology and soil chemistry. It has turned out that the root-soil interface, though small in size, also plays a decisive role in the hydraulics controlling the water flow from bulk soil into the roots. A promising approach for the non-invasive investigation of water dynamics, water flow and solute transport is the combination of the two imaging techniques magnetic resonance imaging (MRI) and neutron imaging (NI). Both methods are complementary, because NI maps the total proton density, possibly amplified by NI tracers, which usually corresponds to total water content, and is able to detect changes and spatial patterns with high resolution. On the other side, nuclear magnetic resonance relaxation times reflect the interaction between fluid and matrix, while also a mapping of proton spin density and thus water content is possible. Therefore MRI is able to classify different water pools via their relaxation times additionally to the water distribution inside soil as a porous medium. We have started such combined measurements with the approach to use the same samples and perform tomography with each imaging method at different location and short-term sample transfer.
2013-01-01
Background Due to the different properties of the contrast agents, the lung perfusion maps as measured by 99mTc-labeled macroaggregated albumin perfusion scintigraphy (PS) are not uncommonly discrepant from those measured by dynamic contrast-enhanced MRI (DCE-MRI) using indicator-dilution analysis in complex pulmonary circulation. Since PS offers the pre-capillary perfusion of the first-pass transit, we hypothesized that an inflow-weighted perfusion model of DCE-MRI could simulate the result by PS. Methods 22 patients underwent DCE-MRI at 1.5T and also PS. Relative perfusion contributed by the left lung was calculated by PS (PSL%), by DCE-MRI using conventional indicator dilution theory for pulmonary blood volume (PBVL%) and pulmonary blood flow (PBFL%) and using our proposed inflow-weighted pulmonary blood volume (PBViwL%). For PBViwL%, the optimal upper bound of the inflow-weighted integration range was determined by correlation coefficient analysis. Results The time-to-peak of the normal lung parenchyma was the optimal upper bound in the inflow-weighted perfusion model. Using PSL% as a reference, PBVL% showed error of 49.24% to −40.37% (intraclass correlation coefficient RI = 0.55) and PBFL% had error of 34.87% to −27.76% (RI = 0.80). With the inflow-weighted model, PBViwL% had much less error of 12.28% to −11.20% (RI = 0.98) from PSL%. Conclusions The inflow-weighted DCE-MRI provides relative perfusion maps similar to that by PS. The discrepancy between conventional indicator-dilution and inflow-weighted analysis represents a mixed-flow component in which pathological flow such as shunting or collaterals might have participated. PMID:23448679
Lin, Yi-Ru; Tsai, Shang-Yueh; Huang, Teng-Yi; Chung, Hsiao-Wen; Huang, Yi-Luan; Wu, Fu-Zong; Lin, Chu-Chuan; Peng, Nan-Jing; Wu, Ming-Ting
2013-02-28
Due to the different properties of the contrast agents, the lung perfusion maps as measured by 99mTc-labeled macroaggregated albumin perfusion scintigraphy (PS) are not uncommonly discrepant from those measured by dynamic contrast-enhanced MRI (DCE-MRI) using indicator-dilution analysis in complex pulmonary circulation. Since PS offers the pre-capillary perfusion of the first-pass transit, we hypothesized that an inflow-weighted perfusion model of DCE-MRI could simulate the result by PS. 22 patients underwent DCE-MRI at 1.5T and also PS. Relative perfusion contributed by the left lung was calculated by PS (PS(L%)), by DCE-MRI using conventional indicator dilution theory for pulmonary blood volume (PBV(L%)) and pulmonary blood flow (PBFL%) and using our proposed inflow-weighted pulmonary blood volume (PBV(iw)(L%)). For PBViw(L%), the optimal upper bound of the inflow-weighted integration range was determined by correlation coefficient analysis. The time-to-peak of the normal lung parenchyma was the optimal upper bound in the inflow-weighted perfusion model. Using PSL% as a reference, PBV(L%) showed error of 49.24% to -40.37% (intraclass correlation coefficient R(I) = 0.55) and PBF(L%) had error of 34.87% to -27.76% (R(I) = 0.80). With the inflow-weighted model, PBV(iw)(L%) had much less error of 12.28% to -11.20% (R(I) = 0.98) from PS(L%). The inflow-weighted DCE-MRI provides relative perfusion maps similar to that by PS. The discrepancy between conventional indicator-dilution and inflow-weighted analysis represents a mixed-flow component in which pathological flow such as shunting or collaterals might have participated.
RF HEATING OF MRI-ASSISTED CATHETER STEERING COILS FOR INTERVENTIONAL MRI
Settecase, Fabio; Hetts, Steven W.; Martin, Alastair J.; Roberts, Timothy P. L.; Bernhardt, Anthony F.; Evans, Lee; Malba, Vincent; Saeed, Maythem; Arenson, Ronald L.; Kucharzyk, Walter; Wilson, Mark W.
2010-01-01
RATIONALE AND OBJECTIVES To assess magnetic resonance imaging (MRI) radiofrequency (RF) related heating of conductive wire coils used in magnetically steerable endovascular catheters. MATERIALS AND METHODS A 3-axis microcoil was fabricated onto a 1.8 Fr catheter tip. In vitro testing was performed in a 1.5 T MRI system using an agarose gel filled vessel phantom, a transmit/receive body RF coil and a steady state free precession (SSFP) pulse sequence, and a fluoroptic thermometry system. Temperature was measured without simulated blood flow at varying distances from magnet isocenter and varying flip angles. Additional experiments were performed with laser-lithographed single-axis microcoil-tipped microcatheters in air and in a saline bath with varied grounding of the microcoil wires. Preliminary in vivo evaluation of RF heating was performed in pigs at 1.5 T with coil-tipped catheters in various positions in the common carotid arteries with SSFP pulse sequence on and off, and under physiologic flow and zero flow conditions. RESULTS In tissue-mimicking agarose gel, RF heating resulted in a maximal temperature increase of 0.35°C after 15 minutes of imaging, 15 cm from magnet isocenter. For a single axis microcoil, maximal temperature increases were 0.73-1.91°C in air and 0.45-0.55°C in saline. In vivo, delayed contrast enhanced MRI revealed no evidence of vascular injury and histopathological sections from the common carotid arteries confirmed the lack of vascular damage. CONCLUSIONS Microcatheter tip microcoils for endovascular catheter steering in MRI experience minimal RF heating under the conditions tested. These data provide the basis for further in vivo testing of this promising technology for endovascular interventional MRI. PMID:21075019
Choroidal Blood Flow Decreases with Age: An MRI Study
San Emeterio Nateras, Oscar; Harrison, Joseph M.; Muir, Eric R.; Zhang, Yi; Peng, Qi; Chalfin, Steven; Gutierrez, Juan E.; Johnson, Daniel A.; Kiel, Jeffrey W.; Duong, Timothy Q.
2014-01-01
Purpose To verify that a visual fixation protocol with cued eye blinks achieves sufficient stability for magnetic resonance imaging (MRI) blood-flow measurements and to determine if choroidal blood flow (ChBF) changes with age in humans. Methods The visual fixation stability achievable during an MRI scan was measured in five normal subjects using an eye-tracking camera outside the MRI scanner. Subjects were instructed to blink immediately after recorded MRI sound cues but to otherwise maintain stable visual fixation on a small target. Using this fixation protocol, ChBF was measured with MRI using a 3 Tesla clinical scanner in 17 normal subjects (24–68 years old). Arterial and intraocular pressures (IOP) were measured to calculate perfusion pressure in the same subjects. Results The mean temporal fluctuations (standard deviation) of the horizontal and vertical displacements were 29 ± 9 μm and 38 ± 11 μm within individual fixation periods, and 50 ± 34 μm and 48 ± 19 μm across different fixation periods. The absolute displacements were 67 ± 31 μm and 81 ± 26 μm. ChBF was negatively correlated with age (R =−0.7, p = 0.003), declining 2.7 ml/100 ml/min per year. There were no significant correlations between ChBF versus perfusion pressure, arterial pressure, or IOP. There were also no significant correlations between age versus perfusion pressure, arterial pressure, or IOP. Multiple regression analysis indicated that age was the only measured independent variable that was significantly correlated with ChBF (p = 0.03). Conclusions The visual fixation protocol with cued eye blinks was effective in achieving sufficient stability for MRI measurements. ChBF had a significant negative correlation with age. PMID:24655028
Bilek, Edda; Ruf, Matthias; Schäfer, Axel; Akdeniz, Ceren; Calhoun, Vince D; Schmahl, Christian; Demanuele, Charmaine; Tost, Heike; Kirsch, Peter; Meyer-Lindenberg, Andreas
2015-04-21
Social interactions are fundamental for human behavior, but the quantification of their neural underpinnings remains challenging. Here, we used hyperscanning functional MRI (fMRI) to study information flow between brains of human dyads during real-time social interaction in a joint attention paradigm. In a hardware setup enabling immersive audiovisual interaction of subjects in linked fMRI scanners, we characterize cross-brain connectivity components that are unique to interacting individuals, identifying information flow between the sender's and receiver's temporoparietal junction. We replicate these findings in an independent sample and validate our methods by demonstrating that cross-brain connectivity relates to a key real-world measure of social behavior. Together, our findings support a central role of human-specific cortical areas in the brain dynamics of dyadic interactions and provide an approach for the noninvasive examination of the neural basis of healthy and disturbed human social behavior with minimal a priori assumptions.
Stramaglia, Sebastiano; Angelini, Leonardo; Wu, Guorong; Cortes, Jesus M; Faes, Luca; Marinazzo, Daniele
2016-12-01
We develop a framework for the analysis of synergy and redundancy in the pattern of information flow between subsystems of a complex network. The presence of redundancy and/or synergy in multivariate time series data renders difficulty to estimate the neat flow of information from each driver variable to a given target. We show that adopting an unnormalized definition of Granger causality, one may put in evidence redundant multiplets of variables influencing the target by maximizing the total Granger causality to a given target, over all the possible partitions of the set of driving variables. Consequently, we introduce a pairwise index of synergy which is zero when two independent sources additively influence the future state of the system, differently from previous definitions of synergy. We report the application of the proposed approach to resting state functional magnetic resonance imaging data from the Human Connectome Project showing that redundant pairs of regions arise mainly due to space contiguity and interhemispheric symmetry, while synergy occurs mainly between nonhomologous pairs of regions in opposite hemispheres. Redundancy and synergy, in healthy resting brains, display characteristic patterns, revealed by the proposed approach. The pairwise synergy index, here introduced, maps the informational character of the system at hand into a weighted complex network: the same approach can be applied to other complex systems whose normal state corresponds to a balance between redundant and synergetic circuits.
Resting state cerebral blood flow with arterial spin labeling MRI in developing human brains.
Liu, Feng; Duan, Yunsuo; Peterson, Bradley S; Asllani, Iris; Zelaya, Fernando; Lythgoe, David; Kangarlu, Alayar
2018-07-01
The development of brain circuits is coupled with changes in neurovascular coupling, which refers to the close relationship between neural activity and cerebral blood flow (CBF). Studying the characteristics of CBF during resting state in developing brain can be a complementary way to understand the functional connectivity of the developing brain. Arterial spin labeling (ASL), as a noninvasive MR technique, is particularly attractive for studying cerebral perfusion in children and even newborns. We have collected pulsed ASL data in resting state for 47 healthy subjects from young children to adolescence (aged from 6 to 20 years old). In addition to studying the developmental change of static CBF maps during resting state, we also analyzed the CBF time series to reveal the dynamic characteristics of CBF in differing age groups. We used the seed-based correlation analysis to examine the temporal relationship of CBF time series between the selected ROIs and other brain regions. We have shown the developmental patterns in both static CBF maps and dynamic characteristics of CBF. While higher CBF of default mode network (DMN) in all age groups supports that DMN is the prominent active network during the resting state, the CBF connectivity patterns of some typical resting state networks show distinct patterns of metabolic activity during the resting state in the developing brains. Copyright © 2018 European Paediatric Neurology Society. All rights reserved.
Multimodal MRI-based imputation of the Aβ+ in early mild cognitive impairment
Tosun, Duygu; Joshi, Sarang; Weiner, Michael W; for the Alzheimer's Disease Neuroimaging Initiative
2014-01-01
Objective The primary goal of this study was to identify brain atrophy from structural MRI (magnetic resonance imaging) and cerebral blood flow (CBF) patterns from arterial spin labeling perfusion MRI that are best predictors of the Aβ-burden, measured as composite 18F-AV45-PET (positron emission tomography) uptake, in individuals with early mild cognitive impairment (MCI). Furthermore, another objective was to assess the relative importance of imaging modalities in classification of Aβ+/Aβ− early MCI. Methods Sixty-seven Alzheimer's Disease Neuroimaging Initiative (ADNI)-GO/2 participants with early MCI were included. Voxel-wise anatomical shape variation measures were computed by estimating the initial diffeomorphic mapping momenta from an unbiased control template. CBF measures normalized to average motor cortex CBF were mapped onto the template space. Using partial least squares regression, we identified the structural and CBF signatures of Aβ after accounting for normal cofounding effects of age, gender, and education. Results 18F-AV45-positive early MCIs could be identified with 83% classification accuracy, 87% positive predictive value, and 84% negative predictive value by multidisciplinary classifiers combining demographics data, ApoE ε4-genotype, and a multimodal MRI-based Aβ score. Interpretation Multimodal MRI can be used to predict the amyloid status of early-MCI individuals. MRI is a very attractive candidate for the identification of inexpensive and noninvasive surrogate biomarkers of Aβ deposition. Our approach is expected to have value for the identification of individuals likely to be Aβ+ in circumstances where cost or logistical problems prevent Aβ detection using cerebrospinal fluid analysis or Aβ-PET. This can also be used in clinical settings and clinical trials, aiding subject recruitment and evaluation of treatment efficacy. Imputation of the Aβ-positivity status could also complement Aβ-PET by identifying individuals who would benefit the most from this assessment. PMID:24729983
Córdova-Palomera, Aldo; Tornador, Cristian; Falcón, Carles; Bargalló, Nuria; Nenadic, Igor; Deco, Gustavo; Fañanás, Lourdes
2015-10-01
Recent findings indicate that alterations of the amygdalar resting-state fMRI connectivity play an important role in the etiology of depression. While both depression and resting-state brain activity are shaped by genes and environment, the relative contribution of genetic and environmental factors mediating the relationship between amygdalar resting-state connectivity and depression remain largely unexplored. Likewise, novel neuroimaging research indicates that different mathematical representations of resting-state fMRI activity patterns are able to embed distinct information relevant to brain health and disease. The present study analyzed the influence of genes and environment on amygdalar resting-state fMRI connectivity, in relation to depression risk. High-resolution resting-state fMRI scans were analyzed to estimate functional connectivity patterns in a sample of 48 twins (24 monozygotic pairs) informative for depressive psychopathology (6 concordant, 8 discordant and 10 healthy control pairs). A graph-theoretical framework was employed to construct brain networks using two methods: (i) the conventional approach of filtered BOLD fMRI time-series and (ii) analytic components of this fMRI activity. Results using both methods indicate that depression risk is increased by environmental factors altering amygdalar connectivity. When analyzing the analytic components of the BOLD fMRI time-series, genetic factors altering the amygdala neural activity at rest show an important contribution to depression risk. Overall, these findings show that both genes and environment modify different patterns the amygdala resting-state connectivity to increase depression risk. The genetic relationship between amygdalar connectivity and depression may be better elicited by examining analytic components of the brain resting-state BOLD fMRI signals. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Knight, Silvin P.; Browne, Jacinta E.; Meaney, James F.; Smith, David S.; Fagan, Andrew J.
2016-10-01
A novel anthropomorphic flow phantom device has been developed, which can be used for quantitatively assessing the ability of magnetic resonance imaging (MRI) scanners to accurately measure signal/concentration time-intensity curves (CTCs) associated with dynamic contrast-enhanced (DCE) MRI. Modelling of the complex pharmacokinetics of contrast agents as they perfuse through the tumour capillary network has shown great promise for cancer diagnosis and therapy monitoring. However, clinical adoption has been hindered by methodological problems, resulting in a lack of consensus regarding the most appropriate acquisition and modelling methodology to use and a consequent wide discrepancy in published data. A heretofore overlooked source of such discrepancy may arise from measurement errors of tumour CTCs deriving from the imaging pulse sequence itself, while the effects on the fidelity of CTC measurement of using rapidly-accelerated sequences such as parallel imaging and compressed sensing remain unknown. The present work aimed to investigate these features by developing a test device in which ‘ground truth’ CTCs were generated and presented to the MRI scanner for measurement, thereby allowing for an assessment of the DCE-MRI protocol to accurately measure this curve shape. The device comprised a four-pump flow system wherein CTCs derived from prior patient prostate data were produced in measurement chambers placed within the imaged volume. The ground truth was determined as the mean of repeat measurements using an MRI-independent, custom-built optical imaging system. In DCE-MRI experiments, significant discrepancies between the ground truth and measured CTCs were found for both tumorous and healthy tissue-mimicking curve shapes. Pharmacokinetic modelling revealed errors in measured K trans, v e and k ep values of up to 42%, 31%, and 50% respectively, following a simple variation of the parallel imaging factor and number of signal averages in the acquisition protocol. The device allows for the quantitative assessment and standardisation of DCE-MRI protocols (both existing and emerging).
Wah, Tze Min; Sourbron, Steven; Wilson, Daniel Jonathan; Magee, Derek; Gregory, Walter Martin; Selby, Peter John; Buckley, David L
2018-01-08
To investigate if the early treatment effects of radiofrequency ablation (RFA) on renal cell carcinoma (RCC) can be detected with dynamic contrast enhanced (DCE)-MRI and to correlate RCC perfusion with RFA treatment time. 20 patients undergoing RFA of their 21 RCCs were evaluated with DCE-MRI before and at one month after RFA treatment. Perfusion was estimated using the maximum slope technique at two independent sittings. Total RCC blood flow was correlated with total RFA treatment time, tumour location, size and histology. DCE-MRI examinations were successfully evaluated for 21 RCCs (size from 1.3 to 4 cm). Perfusion of the RCCs decreased significantly ( p < 0.0001) from a mean of 203 (±80) mL/min/100 mL before RFA to 8.1 (±3.1) mL/min/100 mL after RFA with low intra-observer variability ( r ≥ 0.99, p < 0.0001). There was an excellent correlation ( r = 0.95) between time to complete ablation and pre-treatment total RCC blood flow. Tumours with an exophytic location exhibit the lowest mean RFA treatment time. DCE-MRI can detect early treatment effects by measuring RCC perfusion before and after RFA. Perfusion significantly decreases in the zone of ablation, suggesting that it may be useful for the assessment of treatment efficacy. Pre-RFA RCC blood flow may be used to predict RFA treatment time.
Large enhancement of perfusion contribution on fMRI signal
Wang, Xiao; Zhu, Xiao-Hong; Zhang, Yi; Chen, Wei
2012-01-01
The perfusion contribution to the total functional magnetic resonance imaging (fMRI) signal was investigated using a rat model with mild hypercapnia at 9.4 T, and human subjects with visual stimulation at 4 T. It was found that the total fMRI signal change could be approximated as a linear superposition of ‘true' blood oxygenation level-dependent (BOLD; T2/T2*) effect and the blood flow-related (T1) effect. The latter effect was significantly enhanced by using short repetition time and large radiofrequency pulse flip angle and became comparable to the ‘true' BOLD signal in response to a mild hypercapnia in the rat brain, resulting in an improved contrast-to-noise ratio (CNR). Bipolar diffusion gradients suppressed the intravascular signals but had no significant effect on the flow-related signal. Similar results of enhanced fMRI signal were observed in the human study. The overall results suggest that the observed flow-related signal enhancement is likely originated from perfusion, and this enhancement can improve CNR and the spatial specificity for mapping brain activity and physiology changes. The nature of mixed BOLD and perfusion-related contributions in the total fMRI signal also has implication on BOLD quantification, in particular, the BOLD calibration model commonly used to estimate the change of cerebral metabolic rate of oxygen. PMID:22395206
Enhancing 4D PC-MRI in an aortic phantom considering numerical simulations
NASA Astrophysics Data System (ADS)
Kratzke, Jonas; Schoch, Nicolai; Weis, Christian; Müller-Eschner, Matthias; Speidel, Stefanie; Farag, Mina; Beller, Carsten J.; Heuveline, Vincent
2015-03-01
To date, cardiovascular surgery enables the treatment of a wide range of aortic pathologies. One of the current challenges in this field is given by the detection of high-risk patients for adverse aortic events, who should be treated electively. Reliable diagnostic parameters, which indicate the urge of treatment, have to be determined. Functional imaging by means of 4D phase contrast-magnetic resonance imaging (PC-MRI) enables the time-resolved measurement of blood flow velocity in 3D. Applied to aortic phantoms, three dimensional blood flow properties and their relation to adverse dynamics can be investigated in vitro. Emerging "in silico" methods of numerical simulation can supplement these measurements in computing additional information on crucial parameters. We propose a framework that complements 4D PC-MRI imaging by means of numerical simulation based on the Finite Element Method (FEM). The framework is developed on the basis of a prototypic aortic phantom and validated by 4D PC-MRI measurements of the phantom. Based on physical principles of biomechanics, the derived simulation depicts aortic blood flow properties and characteristics. The framework might help identifying factors that induce aortic pathologies such as aortic dilatation or aortic dissection. Alarming thresholds of parameters such as wall shear stress distribution can be evaluated. The combined techniques of 4D PC-MRI and numerical simulation can be used as complementary tools for risk-stratification of aortic pathology.
Crowe, Lindsey Alexandra; Manasseh, Gibran; Chmielewski, Aneta; Hachulla, Anne-Lise; Speicher, Daniel; Greiser, Andreas; Muller, Hajo; de Perrot, Thomas; Vallee, Jean-Paul; Salomir, Rares
2018-02-01
We demonstrate the use of a magnetic-resonance (MR)-compatible ultrasound (US) imaging probe using spatially resolved Doppler for diagnostic quality cardiovascular MR imaging (MRI) as an initial step toward hybrid US/MR fetal imaging. A newly developed technology for a dedicated MR-compatible phased array ultrasound-imaging probe acquired pulsed color Doppler carotid images, which were converted in near-real time to a trigger signal for cardiac cine and flow quantification MRI. Ultrasound and MR data acquired simultaneously were interference free. Conventional electrocardiogram (ECG) and the proposed spatially resolved Doppler triggering were compared in 10 healthy volunteers. A synthetic "false-triggered" image was retrospectively processed using metric optimized gating (MOG). Images were scored by expert readers, and sharpness, cardiac function and aortic flow were quantified. Four-dimensional (4-D) flow (two volunteers) showed feasibility of Doppler triggering over a long acquisition time. Imaging modalities were compatible. US probe positioning was stable and comfortable. Image quality scores and quantified sharpness were statistically equal for Doppler- and ECG-triggering (p ). ECG-, Doppler-triggered, and MOG ejection fractions were equivalent (p ), with false-triggered values significantly lower (p < 0.0005). Aortic flow showed no difference between ECG- and Doppler-triggered and MOG (p > 0.05). 4-D flow quantification gave consistent results between ECG and Doppler triggering. We report interference-free pulsed color Doppler ultrasound during MR data acquisition. Cardiovascular MRI of diagnostic quality was successfully obtained with pulsed color Doppler triggering. The hardware platform could further enable advanced free-breathing cardiac imaging. Doppler ultrasound triggering is applicable where ECG is compromised due to pathology or interference at higher magnetic fields, and where direct ECG is impossible, i.e., fetal imaging.
Magnetic particle imaging for in vivo blood flow velocity measurements in mice
NASA Astrophysics Data System (ADS)
Kaul, Michael G.; Salamon, Johannes; Knopp, Tobias; Ittrich, Harald; Adam, Gerhard; Weller, Horst; Jung, Caroline
2018-03-01
Magnetic particle imaging (MPI) is a new imaging technology. It is a potential candidate to be used for angiographic purposes, to study perfusion and cell migration. The aim of this work was to measure velocities of the flowing blood in the inferior vena cava of mice, using MPI, and to evaluate it in comparison with magnetic resonance imaging (MRI). A phantom mimicking the flow within the inferior vena cava with velocities of up to 21 cm s‑1 was used for the evaluation of the applied analysis techniques. Time–density and distance–density analyses for bolus tracking were performed to calculate flow velocities. These findings were compared with the calibrated velocities set by a flow pump, and it can be concluded that velocities of up to 21 cm s‑1 can be measured by MPI. A time–density analysis using an arrival time estimation algorithm showed the best agreement with the preset velocities. In vivo measurements were performed in healthy FVB mice (n = 10). MRI experiments were performed using phase contrast (PC) for velocity mapping. For MPI measurements, a standardized injection of a superparamagnetic iron oxide tracer was applied. In vivo MPI data were evaluated by a time–density analysis and compared to PC MRI. A Bland–Altman analysis revealed good agreement between the in vivo velocities acquired by MRI of 4.0 ± 1.5 cm s‑1 and those measured by MPI of 4.8 ± 1.1 cm s‑1. Magnetic particle imaging is a new tool with which to measure and quantify flow velocities. It is fast, radiation-free, and produces 3D images. It therefore offers the potential for vascular imaging.
Unilateral or bilateral punctate hippocampal hyperintensities on DW-MRI: seizures, amnesia, or both?
Bocos-Portillo, Jone; Escalza-Cortina, Inés; Gómez-Beldarrain, Marian; Rodriguez-Sainz, Aida; Garcia-Monco, Juan Carlos
2018-06-02
The presence of small hippocampal hyperintense lesions on diffusion-weighted (DW) MRI can respond to different etiologies and represents a challenge where clinical judgment is imperative, since therapeutic approach may be quite different.We here report three patients with similar neuroradiological findings, i.e., hyperintense punctate hippocampal lesions on diffusion-weighted MRI sequences, yet of different origin. The first one presented with isolated amnesia (transient global amnesia), the second one with amnesia and seizures, and the third one with seizures.Thus, hippocampal punctate lesions appear after transient global amnesia, but the same pattern may be present after seizures, either focal-onset or generalized seizures. This peculiar radiological MRI pattern could indicate a pathogenic link between transient global amnesia (TGA) and seizures which should be further studied.
Kozák, Lajos R; van Graan, Louis André; Chaudhary, Umair J; Szabó, Ádám György; Lemieux, Louis
2017-12-01
Generally, the interpretation of functional MRI (fMRI) activation maps continues to rely on assessing their relationship to anatomical structures, mostly in a qualitative and often subjective way. Recently, the existence of persistent and stable brain networks of functional nature has been revealed; in particular these so-called intrinsic connectivity networks (ICNs) appear to link patterns of resting state and task-related state connectivity. These networks provide an opportunity of functionally-derived description and interpretation of fMRI maps, that may be especially important in cases where the maps are predominantly task-unrelated, such as studies of spontaneous brain activity e.g. in the case of seizure-related fMRI maps in epilepsy patients or sleep states. Here we present a new toolbox (ICN_Atlas) aimed at facilitating the interpretation of fMRI data in the context of ICN. More specifically, the new methodology was designed to describe fMRI maps in function-oriented, objective and quantitative way using a set of 15 metrics conceived to quantify the degree of 'engagement' of ICNs for any given fMRI-derived statistical map of interest. We demonstrate that the proposed framework provides a highly reliable quantification of fMRI activation maps using a publicly available longitudinal (test-retest) resting-state fMRI dataset. The utility of the ICN_Atlas is also illustrated on a parametric task-modulation fMRI dataset, and on a dataset of a patient who had repeated seizures during resting-state fMRI, confirmed on simultaneously recorded EEG. The proposed ICN_Atlas toolbox is freely available for download at http://icnatlas.com and at http://www.nitrc.org for researchers to use in their fMRI investigations. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Piersson, A D; Nunoo, G; Gorleku, P N
2018-05-01
The aim of this study was to investigate current brain MRI practice, pattern of brain MRI requests, and their appropriateness using the American College of Radiology (ACR) Appropriateness Criteria. We used direct observation and questionnaires to obtain data concerning routine brain MRI practice. We then retrospectively analyzed (i) demographic characteristics, (ii) clinical history, and (iii) appropriateness of brain MRI requests against published criteria. All patients were administered the screening questionnaire; however, no reviews were undertaken directly with patients, and no signature of the radiographer was recorded. Apart from routine brain protocol, there were dedicated protocols for epilepsy and stroke. Brain MRI images from 161 patients (85 Males; 76 Females) were analyzed. The age group with most brain MRI requests were from 26 to 45 year olds. The commonest four clinical indications for imaging were brain tumour, headache, seizure, and stroke. Using the ACR Appropriateness Criteria, almost 43% of the brain MRI scans analyzed were found to be "usually appropriate", 38% were "maybe appropriate" and 19% were categorized as "usually not appropriate". There was knowledge gap with regards to MRI safety in local practice, thus there is the utmost need for MRI safety training. Data on the commonest indications for performing brain MRI in this study should be used to inform local neuroradiological practice. Dedicated stroke and epilepsy MRI protocols require additional sequences i.e. MRA and 3D T1 volume acquisition, respectively. The ACR Appropriateness Criteria is recommended for use by the referring practitioners to improve appropriateness of brain MRI requests. Copyright © 2017 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.
Ha, Hojin; Lantz, Jonas; Ziegler, Magnus; Casas, Belen; Karlsson, Matts; Dyverfeldt, Petter; Ebbers, Tino
2017-01-01
The pressure drop across a stenotic vessel is an important parameter in medicine, providing a commonly used and intuitive metric for evaluating the severity of the stenosis. However, non-invasive estimation of the pressure drop under pathological conditions has remained difficult. This study demonstrates a novel method to quantify the irreversible pressure drop across a stenosis using 4D Flow MRI by calculating the total turbulence production of the flow. Simulation MRI acquisitions showed that the energy lost to turbulence production can be accurately quantified with 4D Flow MRI within a range of practical spatial resolutions (1–3 mm; regression slope = 0.91, R2 = 0.96). The quantification of the turbulence production was not substantially influenced by the signal-to-noise ratio (SNR), resulting in less than 2% mean bias at SNR > 10. Pressure drop estimation based on turbulence production robustly predicted the irreversible pressure drop, regardless of the stenosis severity and post-stenosis dilatation (regression slope = 0.956, R2 = 0.96). In vitro validation of the technique in a 75% stenosis channel confirmed that pressure drop prediction based on the turbulence production agreed with the measured pressure drop (regression slope = 1.15, R2 = 0.999, Bland-Altman agreement = 0.75 ± 3.93 mmHg). PMID:28425452
Unal, Ozkan; Kartum, Alp; Avcu, Serhat; Etlik, Omer; Arslan, Halil; Bora, Aydin
2009-12-01
The aim of this study was cerebrospinal flow quantification in the cerebral aqueduct using cine phase-contrast magnetic resonance imaging (MRI) technique in both sexes and five different age groups to provide normative data. Sixty subjects with no cerebral pathology were included in this study. Subjects were divided into five age groups: < or =14 years, 15-24 years, 25-34 years, 35-44 years, and > or =45 years. Phase, rephase, and magnitude images were acquired by 1.5 T MR unit at the level of cerebral aqueduct with spoiled gradient echo through-plane, which is a cine phase-contrast sequence. At this level, peak flow velocity (cm/s), average flow rate (cm/ s), average flow (L/min), volumes in cranial and caudal directions (mL), and net volumes (mL) were studied. There was a statistically significant difference in peak flow between the age group of < or =14 years and the older age groups. There were no statistically significant differences in average velocity, cranial and caudal volume, net volume, and average flow parameters among different age groups. Statistically significant differences were not detected in flow parameters between sexes. When using cine-phase contrast MRI in the cerebral aqueduct, only the peak velocity showed a statistically significant difference between age groups; it was higher in subjects aged < or =14 years than those in older age groups. When performing age-dependent clinical studies including adolescents, this should be taken into consideration.
Revealing representational content with pattern-information fMRI--an introductory guide.
Mur, Marieke; Bandettini, Peter A; Kriegeskorte, Nikolaus
2009-03-01
Conventional statistical analysis methods for functional magnetic resonance imaging (fMRI) data are very successful at detecting brain regions that are activated as a whole during specific mental activities. The overall activation of a region is usually taken to indicate involvement of the region in the task. However, such activation analysis does not consider the multivoxel patterns of activity within a brain region. These patterns of activity, which are thought to reflect neuronal population codes, can be investigated by pattern-information analysis. In this framework, a region's multivariate pattern information is taken to indicate representational content. This tutorial introduction motivates pattern-information analysis, explains its underlying assumptions, introduces the most widespread methods in an intuitive way, and outlines the basic sequence of analysis steps.
Yourganov, Grigori; Schmah, Tanya; Churchill, Nathan W; Berman, Marc G; Grady, Cheryl L; Strother, Stephen C
2014-08-01
The field of fMRI data analysis is rapidly growing in sophistication, particularly in the domain of multivariate pattern classification. However, the interaction between the properties of the analytical model and the parameters of the BOLD signal (e.g. signal magnitude, temporal variance and functional connectivity) is still an open problem. We addressed this problem by evaluating a set of pattern classification algorithms on simulated and experimental block-design fMRI data. The set of classifiers consisted of linear and quadratic discriminants, linear support vector machine, and linear and nonlinear Gaussian naive Bayes classifiers. For linear discriminant, we used two methods of regularization: principal component analysis, and ridge regularization. The classifiers were used (1) to classify the volumes according to the behavioral task that was performed by the subject, and (2) to construct spatial maps that indicated the relative contribution of each voxel to classification. Our evaluation metrics were: (1) accuracy of out-of-sample classification and (2) reproducibility of spatial maps. In simulated data sets, we performed an additional evaluation of spatial maps with ROC analysis. We varied the magnitude, temporal variance and connectivity of simulated fMRI signal and identified the optimal classifier for each simulated environment. Overall, the best performers were linear and quadratic discriminants (operating on principal components of the data matrix) and, in some rare situations, a nonlinear Gaussian naïve Bayes classifier. The results from the simulated data were supported by within-subject analysis of experimental fMRI data, collected in a study of aging. This is the first study that systematically characterizes interactions between analysis model and signal parameters (such as magnitude, variance and correlation) on the performance of pattern classifiers for fMRI. Copyright © 2014 Elsevier Inc. All rights reserved.
Detailed magnetic resonance imaging features of a case series of primary gliosarcoma.
Sampaio, Luísa; Linhares, Paulo; Fonseca, José
2017-12-01
Objective We aimed to characterise the magnetic resonance imaging (MRI) features of a case series of primary gliosarcoma, with the inclusion of diffusion-weighted imaging and perfusion imaging with dynamic susceptibility contrast MRI. Materials and methods We conducted a retrospective study of cases of primary gliosarcoma from the Pathology Department database from January 2006 to December 2014. Clinical and demographic data were obtained. Two neuroradiologists, blinded to diagnosis, assessed tumour location, signal intensity in T1 and T2-weighted images, pattern of enhancement, diffusion-weighted imaging and dynamic susceptibility contrast MRI studies on preoperative MRI. Results Seventeen patients with primary gliosarcomas had preoperative MRI study: seven men and 10 women, with a mean age of 59 years (range 27-74). All lesions were well demarcated, supratentorial and solitary (frontal n = 5, temporal n = 4, parietal n = 3); 13 tumours abutted the dural surface (8/13 with dural enhancement); T1 and T2-weighted imaging patterns were heterogeneous and the majority of lesions (12/17) showed a rim-like enhancement pattern with focal nodularities/irregular thickness. Restricted diffusion (mean apparent diffusion coefficient values 0.64 × 10 -3 mm 2 /s) in the more solid/thick components was present in eight out of 11 patients with diffusion-weighted imaging study. Dynamic susceptibility contrast MRI study ( n = 8) consistently showed hyperperfusion in non-necrotic/cystic components on relative cerebral volume maps. Conclusions The main distinguishing features of primary gliosarcoma are supratentorial and peripheral location, well-defined boundaries and a rim-like pattern of enhancement with an irregular thick wall. Diffusion-weighted imaging and relative cerebral volume map analysis paralleled primary gliosarcoma with high-grade gliomas, thus proving helpful in differential diagnosis.
Wu, Dan; Faria, Andreia V; Younes, Laurent; Mori, Susumu; Brown, Timothy; Johnson, Hans; Paulsen, Jane S; Ross, Christopher A; Miller, Michael I
2017-10-01
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder that progressively affects motor, cognitive, and emotional functions. Structural MRI studies have demonstrated brain atrophy beginning many years prior to clinical onset ("premanifest" period), but the order and pattern of brain structural changes have not been fully characterized. In this study, we investigated brain regional volumes and diffusion tensor imaging (DTI) measurements in premanifest HD, and we aim to determine (1) the extent of MRI changes in a large number of structures across the brain by atlas-based analysis, and (2) the initiation points of structural MRI changes in these brain regions. We adopted a novel multivariate linear regression model to detect the inflection points at which the MRI changes begin (namely, "change-points"), with respect to the CAG-age product (CAP, an indicator of extent of exposure to the effects of CAG repeat expansion). We used approximately 300 T1-weighted and DTI data from premanifest HD and control subjects in the PREDICT-HD study, with atlas-based whole brain segmentation and change-point analysis. The results indicated a distinct topology of structural MRI changes: the change-points of the volumetric measurements suggested a central-to-peripheral pattern of atrophy from the striatum to the deep white matter; and the change points of DTI measurements indicated the earliest changes in mean diffusivity in the deep white matter and posterior white matter. While interpretation needs to be cautious given the cross-sectional nature of the data, these findings suggest a spatial and temporal pattern of spread of structural changes within the HD brain. Hum Brain Mapp 38:5035-5050, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Hemodynamics in a giant intracranial aneurysm characterized by in vitro 4D flow MRI
Schiavazzi, Daniele; Moen, Sean; Jagadeesan, Bharathi; Van de Moortele, Pierre-François; Coletti, Filippo
2018-01-01
Experimental and computational data suggest that hemodynamics play a critical role in the development, growth, and rupture of cerebral aneurysms. The flow structure, especially in aneurysms with a large sac, is highly complex and three-dimensional. Therefore, volumetric and time-resolved measurements of the flow properties are crucial to fully characterize the hemodynamics. In this study, phase-contrast Magnetic Resonance Imaging is used to assess the fluid dynamics inside a 3D-printed replica of a giant intracranial aneurysm, whose hemodynamics was previously simulated by multiple research groups. The physiological inflow waveform is imposed in a flow circuit with realistic cardiovascular impedance. Measurements are acquired with sub-millimeter spatial resolution for 16 time steps over a cardiac cycle, allowing for the detailed reconstruction of the flow evolution. Moreover, the three-dimensional and time-resolved pressure distribution is calculated from the velocity field by integrating the fluid dynamics equations, and is validated against differential pressure measurements using precision transducers. The flow structure is characterized by vortical motions that persist within the aneurysm sac for most of the cardiac cycle. All the main flow statistics including velocity, vorticity, pressure, and wall shear stress suggest that the flow pattern is dictated by the aneurysm morphology and is largely independent of the pulsatility of the inflow, at least for the flow regimes investigated here. Comparisons are carried out with previous computational simulations that used the same geometry and inflow conditions, both in terms of cycle-averaged and systolic quantities. PMID:29300738
Marschallinger, Robert; Golaszewski, Stefan M; Kunz, Alexander B; Kronbichler, Martin; Ladurner, Gunther; Hofmann, Peter; Trinka, Eugen; McCoy, Mark; Kraus, Jörg
2014-01-01
In multiple sclerosis (MS) the individual disease courses are very heterogeneous among patients and biomarkers for setting the diagnosis and the estimation of the prognosis for individual patients would be very helpful. For this purpose, we are developing a multidisciplinary method and workflow for the quantitative, spatial, and spatiotemporal analysis and characterization of MS lesion patterns from MRI with geostatistics. We worked on a small data set involving three synthetic and three real-world MS lesion patterns, covering a wide range of possible MS lesion configurations. After brain normalization, MS lesions were extracted and the resulting binary 3-dimensional models of MS lesion patterns were subject to geostatistical indicator variography in three orthogonal directions. By applying geostatistical indicator variography, we were able to describe the 3-dimensional spatial structure of MS lesion patterns in a standardized manner. Fitting a model function to the empirical variograms, spatial characteristics of the MS lesion patterns could be expressed and quantified by two parameters. An orthogonal plot of these parameters enabled a well-arranged comparison of the involved MS lesion patterns. This method in development is a promising candidate to complement standard image-based statistics by incorporating spatial quantification. The work flow is generic and not limited to analyzing MS lesion patterns. It can be completely automated for the screening of radiological archives. Copyright © 2013 by the American Society of Neuroimaging.
Frederick, Blaise deB; Nickerson, Lisa D; Tong, Yunjie
2012-04-15
Confounding noise in BOLD fMRI data arises primarily from fluctuations in blood flow and oxygenation due to cardiac and respiratory effects, spontaneous low frequency oscillations (LFO) in arterial pressure, and non-task related neural activity. Cardiac noise is particularly problematic, as the low sampling frequency of BOLD fMRI ensures that these effects are aliased in recorded data. Various methods have been proposed to estimate the noise signal through measurement and transformation of the cardiac and respiratory waveforms (e.g. RETROICOR and respiration volume per time (RVT)) and model-free estimation of noise variance through examination of spatial and temporal patterns. We have previously demonstrated that by applying a voxel-specific time delay to concurrently acquired near infrared spectroscopy (NIRS) data, we can generate regressors that reflect systemic blood flow and oxygenation fluctuations effects. Here, we apply this method to the task of removing physiological noise from BOLD data. We compare the efficacy of noise removal using various sets of noise regressors generated from NIRS data, and also compare the noise removal to RETROICOR+RVT. We compare the results of resting state analyses using the original and noise filtered data, and we evaluate the bias for the different noise filtration methods by computing null distributions from the resting data and comparing them with the expected theoretical distributions. Using the best set of processing choices, six NIRS-generated regressors with voxel-specific time delays explain a median of 10.5% of the variance throughout the brain, with the highest reductions being seen in gray matter. By comparison, the nine RETROICOR+RVT regressors together explain a median of 6.8% of the variance in the BOLD data. Detection of resting state networks was enhanced with NIRS denoising, and there were no appreciable differences in the bias of the different techniques. Physiological noise regressors generated using Regressor Interpolation at Progressive Time Delays (RIPTiDe) offer an effective method for efficiently removing hemodynamic noise from BOLD data. Copyright © 2012 Elsevier Inc. All rights reserved.
Midulla, Marco; Moreno, Ramiro; Baali, Adil; Chau, Ming; Negre-Salvayre, Anne; Nicoud, Franck; Pruvo, Jean-Pierre; Haulon, Stephan; Rousseau, Hervé
2012-10-01
In the last decade, there was been increasing interest in finding imaging techniques able to provide a functional vascular imaging of the thoracic aorta. The purpose of this paper is to present an imaging method combining magnetic resonance imaging (MRI) and computational fluid dynamics (CFD) to obtain a patient-specific haemodynamic analysis of patients treated by thoracic endovascular aortic repair (TEVAR). MRI was used to obtain boundary conditions. MR angiography (MRA) was followed by cardiac-gated cine sequences which covered the whole thoracic aorta. Phase contrast imaging provided the inlet and outlet profiles. A CFD mesh generator was used to model the arterial morphology, and wall movements were imposed according to the cine imaging. CFD runs were processed using the finite volume (FV) method assuming blood as a homogeneous Newtonian fluid. Twenty patients (14 men; mean age 62.2 years) with different aortic lesions were evaluated. Four-dimensional mapping of velocity and wall shear stress were obtained, depicting different patterns of flow (laminar, turbulent, stenosis-like) and local alterations of parietal stress in-stent and along the native aorta. A computational method using a combined approach with MRI appears feasible and seems promising to provide detailed functional analysis of thoracic aorta after stent-graft implantation. • Functional vascular imaging of the thoracic aorta offers new diagnostic opportunities • CFD can model vascular haemodynamics for clinical aortic problems • Combining CFD with MRI offers patient specific method of aortic analysis • Haemodynamic analysis of stent-grafts could improve clinical management and follow-up.
Arterial spin labeling blood flow magnetic resonance imaging for evaluation of renal injury.
Liu, Yupin P; Song, Rui; Liang, Chang hong; Chen, Xin; Liu, Bo
2012-08-15
A multitude of evidence suggests that iodinated contrast material causes nephrotoxicity; however, there have been no previous studies that use arterial spin labeling (ASL) blood flow functional magnetic resonance imaging (fMRI) to investigate the alterations in effective renal plasma flow between normointensive and hypertensive rats following injection of contrast media. We hypothesized that FAIR-SSFSE arterial spin labeling MRI may enable noninvasive and quantitative assessment of regional renal blood flow abnormalities and correlate with disease severity as assessed by histological methods. Renal blood flow (RBF) values of the cortex and medulla of rat kidneys were obtained from ASL images postprocessed at ADW4.3 workstation 0.3, 24, 48, and 72 h before and after injection of iodinated contrast media (6 ml/kg). The H&E method for morphometric measurements was used to confirm the MRI findings. The RBF values of the outer medulla were lower than those of the cortex and the inner medulla as reported previously. Iodinated contrast media treatment resulted in decreases in RBF in the outer medulla and cortex in spontaneously hypertensive rats (SHR), but only in the outer medulla in normotensive rats. The iodinated contrast agent significantly decreased the RBF value in the outer medulla and the cortex in SHR compared with normotensive rats after injection of the iodinated contrast media. Histological observations of kidney morphology were also consistent with ASL perfusion changes. These results demonstrate that the RBF value can reflect changes of renal perfusion in the cortex and medulla. ASL-MRI is a feasible and accurate method for evaluating nephrotoxic drugs-induced kidney damage.
Joly, Florian; Soulez, Gilles; Garcia, Damien; Lessard, Simon; Kauffmann, Claude
2018-01-01
Abdominal aortic aneurysms (AAA) are localized, commonly-occurring dilations of the aorta. When equilibrium between blood pressure (loading) and wall mechanical resistance is lost, rupture ensues, and patient death follows, if not treated immediately. Experimental and numerical analyses of flow patterns in arteries show direct correlations between wall shear stress and wall mechano-adaptation with the development of zones prone to thrombus formation. For further insights into AAA flow topology/growth interaction, a workout of patient-specific computational flow dynamics (CFD) is proposed to compute finite-time Lyapunov exponents and extract Lagrangian-coherent structures (LCS). This computational model was first compared with 4-D phase-contrast magnetic resonance imaging (MRI) in 5 patients. To better understand the impact of flow topology and transport on AAA growth, hyperbolic, repelling LCS were computed in 1 patient during 8-year follow-up, including 9 volumetric morphologic AAA measures by computed tomography-angiography (CTA). LCS defined barriers to Lagrangian jet cores entering AAA. Domains enclosed between LCS and the aortic wall were considered to be stagnation zones. Their evolution was studied during AAA growth. Good correlation - 2-D cross-correlation coefficients of 0.65, 0.86 and 0.082 (min, max, SD) - was obtained between numerical simulations and 4-D MRI acquisitions in 6 specific cross-sections from 4 patients. In follow-up study, LCS divided AAA lumens into 3 dynamically-isolated zones: 2 stagnation volumes lying in dilated portions of the AAA, and circulating volume connecting the inlet to the outlet. The volume of each zone was tracked over time. Although circulating volume remained unchanged during 8-year follow-up, the AAA lumen and main stagnation zones grew significantly (8 cm 3 /year and 6 cm 3 /year, respectively). This study reveals that transient transport topology can be quantified in patient-specific AAA during disease progression by CTA, in parallel with lumen morphology. It is anticipated that analysis of the main AAA stagnation zones by patient-specific CFD on a yearly basis could help to predict AAA growth and rupture. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hedden, Trey; Mormino, Elizabeth C.; Huijbers, Willem; LaPoint, Molly; Buckley, Rachel F.
2017-01-01
Alzheimer's disease (AD) is characterized by two hallmark molecular pathologies: amyloid aβ1–42 and Tau neurofibrillary tangles. To date, studies of functional connectivity MRI (fcMRI) in individuals with preclinical AD have relied on associations with in vivo measures of amyloid pathology. With the recent advent of in vivo Tau-PET tracers it is now possible to extend investigations on fcMRI in a sample of cognitively normal elderly humans to regional measures of Tau. We modeled fcMRI measures across four major cortical association networks [default-mode network (DMN), salience network (SAL), dorsal attention network, and frontoparietal control network] as a function of global cortical amyloid [Pittsburgh Compound B (PiB)-PET] and regional Tau (AV1451-PET) in entorhinal, inferior temporal (IT), and inferior parietal cortex. Results showed that the interaction term between PiB and IT AV1451 was significantly associated with connectivity in the DMN and salience. The interaction revealed that amyloid-positive (aβ+) individuals show increased connectivity in the DMN and salience when neocortical Tau levels are low, whereas aβ+ individuals demonstrate decreased connectivity in these networks as a function of elevated Tau-PET signal. This pattern suggests a hyperconnectivity phase followed by a hypoconnectivity phase in the course of preclinical AD. SIGNIFICANCE STATEMENT This article offers a first look at the relationship between Tau-PET imaging with F18-AV1451 and functional connectivity MRI (fcMRI) in the context of amyloid-PET imaging. The results suggest a nonlinear relationship between fcMRI and both Tau-PET and amyloid-PET imaging. The pattern supports recent conjecture that the AD fcMRI trajectory is characterized by periods of both hyperconnectivity and hypoconnectivity. Furthermore, this nonlinear pattern can account for the sometimes conflicting reports of associations between amyloid and fcMRI in individuals with preclinical Alzheimer's disease. PMID:28314821
Schultz, Aaron P; Chhatwal, Jasmeer P; Hedden, Trey; Mormino, Elizabeth C; Hanseeuw, Bernard J; Sepulcre, Jorge; Huijbers, Willem; LaPoint, Molly; Buckley, Rachel F; Johnson, Keith A; Sperling, Reisa A
2017-04-19
Alzheimer's disease (AD) is characterized by two hallmark molecular pathologies: amyloid aβ 1-42 and Tau neurofibrillary tangles. To date, studies of functional connectivity MRI (fcMRI) in individuals with preclinical AD have relied on associations with in vivo measures of amyloid pathology. With the recent advent of in vivo Tau-PET tracers it is now possible to extend investigations on fcMRI in a sample of cognitively normal elderly humans to regional measures of Tau. We modeled fcMRI measures across four major cortical association networks [default-mode network (DMN), salience network (SAL), dorsal attention network, and frontoparietal control network] as a function of global cortical amyloid [Pittsburgh Compound B (PiB)-PET] and regional Tau (AV1451-PET) in entorhinal, inferior temporal (IT), and inferior parietal cortex. Results showed that the interaction term between PiB and IT AV1451 was significantly associated with connectivity in the DMN and salience. The interaction revealed that amyloid-positive (aβ + ) individuals show increased connectivity in the DMN and salience when neocortical Tau levels are low, whereas aβ + individuals demonstrate decreased connectivity in these networks as a function of elevated Tau-PET signal. This pattern suggests a hyperconnectivity phase followed by a hypoconnectivity phase in the course of preclinical AD. SIGNIFICANCE STATEMENT This article offers a first look at the relationship between Tau-PET imaging with F 18 -AV1451 and functional connectivity MRI (fcMRI) in the context of amyloid-PET imaging. The results suggest a nonlinear relationship between fcMRI and both Tau-PET and amyloid-PET imaging. The pattern supports recent conjecture that the AD fcMRI trajectory is characterized by periods of both hyperconnectivity and hypoconnectivity. Furthermore, this nonlinear pattern can account for the sometimes conflicting reports of associations between amyloid and fcMRI in individuals with preclinical Alzheimer's disease. Copyright © 2017 the authors 0270-6474/17/374324-09$15.00/0.
Lee, Sang Ho; Hayano, Koichi; Zhu, Andrew X.; Sahani, Dushyant V.; Yoshida, Hiroyuki
2015-01-01
Background To find prognostic biomarkers in pretreatment dynamic contrast-enhanced MRI (DCE-MRI) water-exchange-modified (WX) kinetic parameters for advanced hepatocellular carcinoma (HCC) treated with antiangiogenic monotherapy. Methods Twenty patients with advanced HCC underwent DCE-MRI and were subsequently treated with sunitinib. Pretreatment DCE-MRI data on advanced HCC were analyzed using five different WX kinetic models: the Tofts-Kety (WX-TK), extended TK (WX-ETK), two compartment exchange, adiabatic approximation to tissue homogeneity (WX-AATH), and distributed parameter (WX-DP) models. The total hepatic blood flow, arterial flow fraction (γ), arterial blood flow (BF A), portal blood flow, blood volume, mean transit time, permeability-surface area product, fractional interstitial volume (v I), extraction fraction, mean intracellular water molecule lifetime (τ C), and fractional intracellular volume (v C) were calculated. After receiver operating characteristic analysis with leave-one-out cross-validation, individual parameters for each model were assessed in terms of 1-year-survival (1YS) discrimination using Kaplan-Meier analysis, and association with overall survival (OS) using univariate Cox regression analysis with permutation testing. Results The WX-TK-model-derived γ (P = 0.022) and v I (P = 0.010), and WX-ETK-model-derived τ C (P = 0.023) and v C (P = 0.042) were statistically significant prognostic biomarkers for 1YS. Increase in the WX-DP-model-derived BF A (P = 0.025) and decrease in the WX-TK, WX-ETK, WX-AATH, and WX-DP-model-derived v C (P = 0.034, P = 0.038, P = 0.028, P = 0.041, respectively) were significantly associated with an increase in OS. Conclusions The WX-ETK-model-derived v C was an effective prognostic biomarker for advanced HCC treated with sunitinib. PMID:26366997
Quantitative multiparametric MRI assessment of glioma response to radiotherapy in a rat model.
Hong, Xiaohua; Liu, Li; Wang, Meiyun; Ding, Kai; Fan, Ying; Ma, Bo; Lal, Bachchu; Tyler, Betty; Mangraviti, Antonella; Wang, Silun; Wong, John; Laterra, John; Zhou, Jinyuan
2014-06-01
The inability of structural MRI to accurately measure tumor response to therapy complicates care management for patients with gliomas. The purpose of this study was to assess the potential of several noninvasive functional and molecular MRI biomarkers for the assessment of glioma response to radiotherapy. Fourteen U87 tumor-bearing rats were irradiated using a small-animal radiation research platform (40 or 20 Gy), and 6 rats were used as controls. MRI was performed on a 4.7 T animal scanner, preradiation treatment, as well as at 3, 6, 9, and 14 days postradiation. Image features of the tumors, as well as tumor volumes and animal survival, were quantitatively compared. Structural MRI showed that all irradiated tumors still grew in size during the initial days postradiation. The apparent diffusion coefficient (ADC) values of tumors increased significantly postradiation (40 and 20 Gy), except at day 3 postradiation, compared with preradiation. The tumor blood flow decreased significantly postradiation (40 and 20 Gy), but the relative blood flow (tumor vs contralateral) did not show a significant change at most time points postradiation. The amide proton transfer weighted (APTw) signals of the tumor decreased significantly at all time points postradiation (40 Gy), and also at day 9 postradiation (20 Gy). The blood flow and APTw maps demonstrated tumor features that were similar to those seen on gadolinium-enhanced T1-weighted images. Tumor ADC, blood flow, and APTw were all useful imaging biomarkers by which to predict glioma response to radiotherapy. The APTw signal was most promising for early response assessment in this model. © The Author(s) 2013. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Nagao, Michinobu; Yamasaki, Yuzo; Abe, Kohtaro; Hosokawa, Kazuya; Kawanami, Satoshi; Kamitani, Takeshi; Yamanouchi, Torahiko; Yabuuchi, Hidetake; Fukushima, Kenji; Honda, Hiroshi
2017-02-01
The aims of this study were to propose a new quantitative method for pulmonary artery (PA) flow energetics using phase-contrast magnetic resonance imaging (PC-MRI), and to investigate how balloon pulmonary angioplasty (BPA) impacts energetics in chronic thromboembolic pulmonary hypertension (CTEPH). PC-MRI at 3-Teslar and with a flow sensitive gradient echo was used to examine energetics prior to and following BPA for 24 CTEPH patients. Stroke volume (m; ml) and mean velocity (V; mm/s) for the main pulmonary artery (PA), right PA, and left PA were calculated from a time-flow curve derived from PC-MRI. Based on the Bernoulli principle, PA energy was identified as 1/2mV 2 (μj/kg), and energy loss was defined as the following equation "energy loss=main PA energy-(rt. PA energy+lt. PA energy)". Right PA energy was significantly greater post-BPA than pre-BPA (61±55 vs. 32±40μj/kg). There was no difference in main PA and left PA energies. Energy loss was significantly decreased post-BPA (18±97μj/kg) than pre-BPA (79±125μj/kg). An optimal cutoff of left PA energy of 45μj/kg pre-BPA can be used to predict patients with mPAP≥30mmHg after BPA, with an area under the curve of 0.91, 78% sensitivity, and 92% specificity. Analysis of PA energetics using phase-contrast MRI demonstrates that BPA improves energy loss in CTEPH. In addition, BPA responses can be predicted by PA energy status pre-treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Diaz-Manera, Jordi; Fernandez-Torron, Roberto; LLauger, Jaume; James, Meredith K; Mayhew, Anna; Smith, Fiona E; Moore, Ursula R; Blamire, Andrew M; Carlier, Pierre G; Rufibach, Laura; Mittal, Plavi; Eagle, Michelle; Jacobs, Marni; Hodgson, Tim; Wallace, Dorothy; Ward, Louise; Smith, Mark; Stramare, Roberto; Rampado, Alessandro; Sato, Noriko; Tamaru, Takeshi; Harwick, Bruce; Rico Gala, Susana; Turk, Suna; Coppenrath, Eva M; Foster, Glenn; Bendahan, David; Le Fur, Yann; Fricke, Stanley T; Otero, Hansel; Foster, Sheryl L; Peduto, Anthony; Sawyer, Anne Marie; Hilsden, Heather; Lochmuller, Hanns; Grieben, Ulrike; Spuler, Simone; Tesi Rocha, Carolina; Day, John W; Jones, Kristi J; Bharucha-Goebel, Diana X; Salort-Campana, Emmanuelle; Harms, Matthew; Pestronk, Alan; Krause, Sabine; Schreiber-Katz, Olivia; Walter, Maggie C; Paradas, Carmen; Hogrel, Jean-Yves; Stojkovic, Tanya; Takeda, Shin'ichi; Mori-Yoshimura, Madoka; Bravver, Elena; Sparks, Susan; Bello, Luca; Semplicini, Claudio; Pegoraro, Elena; Mendell, Jerry R; Bushby, Kate; Straub, Volker
2018-05-07
Dysferlinopathies are a group of muscle disorders caused by mutations in the DYSF gene. Previous muscle imaging studies describe a selective pattern of muscle involvement in smaller patient cohorts, but a large imaging study across the entire spectrum of the dysferlinopathies had not been performed and previous imaging findings were not correlated with functional tests. We present cross-sectional T1-weighted muscle MRI data from 182 patients with genetically confirmed dysferlinopathies. We have analysed the pattern of muscles involved in the disease using hierarchical analysis and presented it as heatmaps. Results of the MRI scans have been correlated with relevant functional tests for each region of the body analysed. In 181 of the 182 patients scanned, we observed muscle pathology on T1-weighted images, with the gastrocnemius medialis and the soleus being the most commonly affected muscles. A similar pattern of involvement was identified in most patients regardless of their clinical presentation. Increased muscle pathology on MRI correlated positively with disease duration and functional impairment. The information generated by this study is of high diagnostic value and important for clinical trial development. We have been able to describe a pattern that can be considered as characteristic of dysferlinopathy. We have defined the natural history of the disease from a radiological point of view. These results enabled the identification of the most relevant regions of interest for quantitative MRI in longitudinal studies, such as clinical trials. NCT01676077. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Estimation of Dynamic Sparse Connectivity Patterns From Resting State fMRI.
Cai, Biao; Zille, Pascal; Stephen, Julia M; Wilson, Tony W; Calhoun, Vince D; Wang, Yu Ping
2018-05-01
Functional connectivity (FC) estimated from functional magnetic resonance imaging (fMRI) time series, especially during resting state periods, provides a powerful tool to assess human brain functional architecture in health, disease, and developmental states. Recently, the focus of connectivity analysis has shifted toward the subnetworks of the brain, which reveals co-activating patterns over time. Most prior works produced a dense set of high-dimensional vectors, which are hard to interpret. In addition, their estimations to a large extent were based on an implicit assumption of spatial and temporal stationarity throughout the fMRI scanning session. In this paper, we propose an approach called dynamic sparse connectivity patterns (dSCPs), which takes advantage of both matrix factorization and time-varying fMRI time series to improve the estimation power of FC. The feasibility of analyzing dynamic FC with our model is first validated through simulated experiments. Then, we use our framework to measure the difference between young adults and children with real fMRI data set from the Philadelphia Neurodevelopmental Cohort (PNC). The results from the PNC data set showed significant FC differences between young adults and children in four different states. For instance, young adults had reduced connectivity between the default mode network and other subnetworks, as well as hyperconnectivity within the visual system in states 1 and 3, and hypoconnectivity in state 2. Meanwhile, they exhibited temporal correlation patterns that changed over time within functional subnetworks. In addition, the dSCPs model indicated that older people tend to spend more time within a relatively connected FC pattern. Overall, the proposed method provides a valid means to assess dynamic FC, which could facilitate the study of brain networks.
Preclinical Feasibility of a Technology Framework for MRI-guided Iliac Angioplasty
Rube, Martin A.; Fernandez-Gutierrez, Fabiola; Cox, Benjamin F.; Holbrook, Andrew B.; Houston, J. Graeme; White, Richard D.; McLeod, Helen; Fatahi, Mahsa; Melzer, Andreas
2015-01-01
Purpose Interventional MRI has significant potential for image guidance of iliac angioplasty and related vascular procedures. A technology framework with in-room image display, control, communication and MRI-guided intervention techniques was designed and tested for its potential to provide safe, fast and efficient MRI-guided angioplasty of the iliac arteries. Methods A 1.5T MRI scanner was adapted for interactive imaging during endovascular procedures using new or modified interventional devices such as guidewires and catheters. A perfused vascular phantom was used for testing. Pre-, intra- and post-procedural visualization and measurement of vascular morphology and flow was implemented. A detailed analysis of X-Ray fluoroscopic angiography workflow was conducted and applied. Two interventional radiologists and one physician in training performed 39 procedures. All procedures were timed and analyzed. Results MRI-guided iliac angioplasty procedures were successfully performed with progressive adaptation of techniques and workflow. The workflow, setup and protocol enabled a reduction in table time for a dedicated MRI-guided procedure to 6 min 33 s with a mean procedure time of 9 min 2 s, comparable to the mean procedure time of 8 min 42 s for the standard X-Ray guided procedure. Conclusions MRI-guided iliac vascular interventions were found to be feasible and practical using this framework and optimized workflow. In particular the real-time flow analysis was found to be helpful for pre- and post-interventional assessments. Design optimization of the catheters and in vivo experiments are required before clinical evaluation. PMID:25102933
Mouton Paradot, Gaëlle; Baledent, Olivier; Sallioux, Guillaume; Lehmann, Pierre; Gondry-Jouet, Catherine; Le Gars, Daniel
2010-02-01
The diagnosis and management of patients with idiopathic normal-pressure hydrocephalus (NPH) remain somewhat controversial and there is no clear guideline for assessing the post-shunt outcome. The objective of this study was to investigate whether cerebrospinal fluid (CSF) flow dynamics is linked to post-shunt improvement. Fourteen NPH patients (nine males and five females; mean age, 68 years) investigated by magnetic resonance imaging (MRI) before surgical diversion of CSF were retrospectively reviewed. Phase-contrast sequences were added to the morphological clinical protocol for quantification of CSF oscillations, which were recorded at the level of the cerebral aqueduct and the C2 and C3 subarachnoid spaces (SAS). The phase-contrast images were analysed with custom-designed dedicated flow segmentation software. The oscillations measured in this hydrocephalus population were compared to a previously studied healthy population. A difference of at least two standard deviations was used to define a hyperdynamic or hypodynamic state of CSF flow. The cervical CSF flow of the hydrocephalus patients was not significantly different from those of the volunteer population. Of the 14 hydrocephalus patients, 12 had a good response to the shunt. Of these, 10 presented an increased ventricular CSF flow, one a low ventricular CSF flow, and the last one had a normal ventricular CSF flow. Phase-contrast MRI can help develop guidelines for surgical management of NPH. The shunt responders appear to be the patients with hyperdynamic ventricular CSF flow and normal cervical CSF flow. Copyright 2009 Elsevier Masson SAS. All rights reserved.
Lin, Yen-Heng; Wang, Yu-Fen; Liu, Hon-Man; Lee, Chung-Wei; Chen, Ya-Fang; Hsieh, Hong-Jen
2018-01-01
Computed tomography angiography (CTA) and magnetic resonance imaging/angiography (MRI/MRA) are used for the diagnosis of intracranial dural arteriovenous fistulas (DAVFs). The purpose of this study was to compare the diagnostic accuracy of CTA and magnetic resonance imaging/angiography (MRI/MRA) for detection of cortical venous reflux (CVR) in intracranial DAVFs. The records of patients with angiography-confirmed intracranial DAVFs who also received CTA and MRI/MRA from January 2008 to July 2016 were reviewed. CTA and MRI/MRA were reviewed for signs of CVR, and the diagnostic accuracy of individual signs was evaluated by receiver operating curve (ROC) analysis. A total 108 patients were included in this study. CTA signs of CVR included abnormal dilatation, early enhancement, and the presence of a medullary or pial vein. MRI/MRA signs of CVR included abnormal dilatation, early enhancement, flow-related enhancement, flow void, and medullary or pial venous collaterals. The sensitivity of individual CTA signs ranged from 62 to 96%, and specificities from 79 to 94%. The sensitivities of individual MRI/MRA signs ranged from 58 to 83%, and specificities from 77 to 93%. The area under ROC curve (AUC) of CTA and MRI/MRA were 0.91 and 0.87, respectively (P = 0.04 in direct comparison). In subgroup analysis, CTA had better diagnostic accuracy for higher grade disease (P = 0.05) and non-aggressive manifestation (P = 0.04). Both CTA and MRI/MRA have good diagnostic accuracy for detection of CVR in patients with intracranial DAVFs. There is modest evidence that CTA is better than MRI/MRA.
Sparse network-based models for patient classification using fMRI
Rosa, Maria J.; Portugal, Liana; Hahn, Tim; Fallgatter, Andreas J.; Garrido, Marta I.; Shawe-Taylor, John; Mourao-Miranda, Janaina
2015-01-01
Pattern recognition applied to whole-brain neuroimaging data, such as functional Magnetic Resonance Imaging (fMRI), has proved successful at discriminating psychiatric patients from healthy participants. However, predictive patterns obtained from whole-brain voxel-based features are difficult to interpret in terms of the underlying neurobiology. Many psychiatric disorders, such as depression and schizophrenia, are thought to be brain connectivity disorders. Therefore, pattern recognition based on network models might provide deeper insights and potentially more powerful predictions than whole-brain voxel-based approaches. Here, we build a novel sparse network-based discriminative modeling framework, based on Gaussian graphical models and L1-norm regularized linear Support Vector Machines (SVM). In addition, the proposed framework is optimized in terms of both predictive power and reproducibility/stability of the patterns. Our approach aims to provide better pattern interpretation than voxel-based whole-brain approaches by yielding stable brain connectivity patterns that underlie discriminative changes in brain function between the groups. We illustrate our technique by classifying patients with major depressive disorder (MDD) and healthy participants, in two (event- and block-related) fMRI datasets acquired while participants performed a gender discrimination and emotional task, respectively, during the visualization of emotional valent faces. PMID:25463459
NASA Astrophysics Data System (ADS)
Lazarovitch, Naftali; Perelman, Adi; Guerra, Helena; Vanderborght, Jan; Pohlmeier, Andreas
2016-04-01
Root water and nutrient uptake are among the most important processes considered in numerical models simulating water content and fluxes in the subsurface, as they control plant growth and production as well as water flow and nutrient transport out of the root zone. Root water uptake may lead to salt accumulation at the root-soil interface, resulting in rhizophere salt concentrations much higher than in the bulk soil. This salt accumulation is caused by soluble salt transport towards the roots by mass flow through the soil, followed by preferential adsorption of specific nutrients by active uptake, thereby excluding most other salts at the root-soil interface or in the root apoplast. The salinity buildup can lead to large osmotic pressure gradients across the roots thereby effectively reducing root water uptake. The initial results from rhizoslides (capillary paper growth system) show that sodium concentration is decreasing with distance from the root, compared with the bulk that remained more stable. When transpiration rate was decreased under high salinity levels, sodium concentration was more homogenous compared with low salinity levels. Additionally, sodium and gadolinium distributions were measured nondestructively around tomato roots using magnetic resonance imaging (MRI). This technique could also observe the root structure and water content around single roots. Results from the MRI confirm the solutes concentration pattern around roots and its relation to their initial concentration. We conclude that local water potentials at the soil-root interface differ from bulk potentials. These relative differences increase with decreasing root density, decreasing initial salt concentration and increasing transpiration rate. Furthermore, since climate may significantly influence plant response to salinity a dynamic climate-coupled salinity reduction functions are critical in while using macroscopic numerical models.
Onishi, S; Fukui, S; Atsumi, C; Morita, R; Fujii, K; Kusuoka, H; Kitabatake, A; Kamada, T; Takizawa, O
1989-06-01
The clinical usefulness of magnetic resonance imaging (MRI) for evaluating regurgitant blood flow in patients with valvular heart disease was studied. The study subjects comprised three healthy volunteers and nine patients with valvular heart disease (aortic regurgitation 3, mitral regurgitation 2, tricuspid regurgitation 2, and pulmonary regurgitation 2). Five were men and seven were women, ranging in age from 31 to 85 years. Valvular heart disease was diagnosed by two-dimensional Doppler echocardiography. MRI was performed using a 1.5 tesla super-conductive magnet system (MAGNETOM, Siemens AG). A rapid MRI technique (fast low-angle shot [FLASH], flip angle = 30 degrees, TR = 65-90 msec, TE = 10-38 msec) was used to generate 11 frames throughout one cardiac cycle in the transaxial, coronal and oblique planes. These sequential frames were displayed in cine mode on a CRT. 1. Intracavitary blood was imaged as a high signal intensity on gradient echo images, while surrounding cardiac structures had somewhat lower signal intensities. 2. In healthy volunteers, systolic ejection blood flow from the left ventricle was observed on coronal images in the cine mode display. The influx of atrial blood into the left and right ventricles was also clearly observed on transaxial cine images. 3. Aortic regurgitant flow was observed as areas of no signal intensity within the left ventricular cavity during diastole on coronal images. 4. Mitral and tricuspid regurgitations were observed within the left and right atria, respectively, as areas of no signal intensity on transaxial images. The extent of regurgitant flow was determined in the vertical long-axis plane, equivalent to the right anterior oblique projection. 5. The vertical oblique scan was suitable for detecting pulmonary regurgitant flow. These results indicate that the rapid cine MRI technique is a useful tool for noninvasively determining regurgitant blood flow in patients with various valvular heart diseases.
Real-Time fMRI Pattern Decoding and Neurofeedback Using FRIEND: An FSL-Integrated BCI Toolbox
Sato, João R.; Basilio, Rodrigo; Paiva, Fernando F.; Garrido, Griselda J.; Bramati, Ivanei E.; Bado, Patricia; Tovar-Moll, Fernanda; Zahn, Roland; Moll, Jorge
2013-01-01
The demonstration that humans can learn to modulate their own brain activity based on feedback of neurophysiological signals opened up exciting opportunities for fundamental and applied neuroscience. Although EEG-based neurofeedback has been long employed both in experimental and clinical investigation, functional MRI (fMRI)-based neurofeedback emerged as a promising method, given its superior spatial resolution and ability to gauge deep cortical and subcortical brain regions. In combination with improved computational approaches, such as pattern recognition analysis (e.g., Support Vector Machines, SVM), fMRI neurofeedback and brain decoding represent key innovations in the field of neuromodulation and functional plasticity. Expansion in this field and its applications critically depend on the existence of freely available, integrated and user-friendly tools for the neuroimaging research community. Here, we introduce FRIEND, a graphic-oriented user-friendly interface package for fMRI neurofeedback and real-time multivoxel pattern decoding. The package integrates routines for image preprocessing in real-time, ROI-based feedback (single-ROI BOLD level and functional connectivity) and brain decoding-based feedback using SVM. FRIEND delivers an intuitive graphic interface with flexible processing pipelines involving optimized procedures embedding widely validated packages, such as FSL and libSVM. In addition, a user-defined visual neurofeedback module allows users to easily design and run fMRI neurofeedback experiments using ROI-based or multivariate classification approaches. FRIEND is open-source and free for non-commercial use. Processing tutorials and extensive documentation are available. PMID:24312569
Detecting Brain State Changes via Fiber-Centered Functional Connectivity Analysis
Li, Xiang; Lim, Chulwoo; Li, Kaiming; Guo, Lei; Liu, Tianming
2013-01-01
Diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) have been widely used to study structural and functional brain connectivity in recent years. A common assumption used in many previous functional brain connectivity studies is the temporal stationarity. However, accumulating literature evidence has suggested that functional brain connectivity is under temporal dynamic changes in different time scales. In this paper, a novel and intuitive approach is proposed to model and detect dynamic changes of functional brain states based on multimodal fMRI/DTI data. The basic idea is that functional connectivity patterns of all fiber-connected cortical voxels are concatenated into a descriptive functional feature vector to represent the brain’s state, and the temporal change points of brain states are decided by detecting the abrupt changes of the functional vector patterns via the sliding window approach. Our extensive experimental results have shown that meaningful brain state change points can be detected in task-based fMRI/DTI, resting state fMRI/DTI, and natural stimulus fMRI/DTI data sets. Particularly, the detected change points of functional brain states in task-based fMRI corresponded well to the external stimulus paradigm administered to the participating subjects, thus partially validating the proposed brain state change detection approach. The work in this paper provides novel perspective on the dynamic behaviors of functional brain connectivity and offers a starting point for future elucidation of the complex patterns of functional brain interactions and dynamics. PMID:22941508
Genetic and Diagnostic Biomarker Development in ASD Toddlers Using Resting State Functional MRI
2017-11-01
and activation-based fMRI from the Courchesne lab report the presence of structural and functional abnormality in these structures by ages 1 to 2...young ages. With this invaluable resource, we will identify early developmental patterns of intrinsic functional network abnormalities in ASD infants...all infants and toddlers, analyses also investigate whether there may be subtypes of abnormal intrinsic connectivity patterns based on early clinical
Assessment of turbulent flow effects on the vessel wall using four-dimensional flow MRI.
Ziegler, Magnus; Lantz, Jonas; Ebbers, Tino; Dyverfeldt, Petter
2017-06-01
To explore the use of MR-estimated turbulence quantities for the assessment of turbulent flow effects on the vessel wall. Numerical velocity data for two patient-derived models was obtained using computational fluid dynamics (CFD) for two physiological flow rates. The four-dimensional (4D) Flow MRI measurements were simulated at three different spatial resolutions and used to investigate the estimation of turbulent wall shear stress (tWSS) using the intravoxel standard deviation (IVSD) of velocity and turbulent kinetic energy (TKE) estimated near the vessel wall. Accurate estimation of tWSS using the IVSD is limited by the spatial resolution achievable with 4D Flow MRI. TKE, estimated near the wall, has a strong linear relationship to the tWSS (mean R 2 = 0.84). Near-wall TKE estimates from MR simulations have good agreement to CFD-derived ground truth (mean R 2 = 0.90). Maps of near-wall TKE have strong visual correspondence to tWSS. Near-wall estimation of TKE permits assessment of relative maps of tWSS, but direct estimation of tWSS is challenging due to limitations in spatial resolution. Assessment of tWSS and near-wall TKE may open new avenues for analysis of different pathologies. Magn Reson Med 77:2310-2319, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Tosun, Duygu; Schuff, Norbert; Jagust, William; Weiner, Michael W
2016-01-01
Recent studies have demonstrated that arterial spin labeling magnetic resonance imaging (ASL-MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) identify similar regional abnormalities and have comparable diagnostic accuracy in Alzheimer's disease (AD). The agreement between these modalities in the AD continuum, which is an important concept for early detection and disease monitoring, is yet unclear. We aimed to assess the ability of the cerebral blood flow (CBF) measures from ASL-MRI and cerebral metabolic rate for glucose (CMRgl) measures from FDG-PET to distinguish amyloid-β-positive (Aβ+) subjects in the AD continuum from healthy controls. The study included asymptomatic, cognitively normal (CN) controls and patients with early mild cognitive impairment (MCI), late MCI, and AD, all with significant levels of cortical Aβ based on their florbetapir PET scans to restrict the study to patients truly in the AD continuum. The discrimination power of each modality was based on the whole-brain patterns of CBF and CMRgl changes identified by partial least squares logistic regression, a multivariate analysis technique. While CBF changes in the posterior inferior aspects of the brain and a pattern of CMRgl changes in the superior aspects of the brain including frontal and parietal regions best discriminated the Aβ+ subjects in the early disease stages from the Aβ- CN subjects, there was a greater agreement in the whole-brain patterns of CBF and CMRgl changes that best discriminated the Aβ+ subjects from the Aβ- CN subjects in the later disease stages. Despite the differences in the whole-brain patterns of CBF and CMRgl changes, the discriminative powers of both modalities were similar with statistically nonsignificant performance differences in sensitivity and specificity. The results comparing measurements of CBF to CMRgl add to previous reports that MRI-measured CBF has a similar diagnostic ability to detect AD as has FDG-PET. Our findings that CBF and CMRgl changes occur in different brain regions in Aβ+ subjects across the AD continuum compared with Aβ- CN subjects may be the result of methodological differences. Alternatively, these findings may signal alterations in neurovascular coupling which alter relationships between brain perfusion and glucose metabolism in the AD continuum. © 2015 S. Karger AG, Basel.
Mayer, Philipp; Dinkic, Christine; Jesenofsky, Ralf; Klauss, Miriam; Schirmacher, Peter; Dapunt, Ulrike; Hackert, Thilo; Uhle, Florian; Hänsch, G. Maria; Gaida, Matthias M.
2018-01-01
In pancreatic cancer (PDAC) intratumor infiltration of polymorphonuclear neutrophils (PMN) is associated with histologically apparent alterations of the tumor growth pattern. The aim of this study was to examine possible associations between PMN infiltration, tumor microarchitecture, and water diffusivity in diffusion-weighted magnetic resonance imaging (DW-MRI), and to further asses the underlying mechanisms. Methods: DW-MRI was performed in 33 PDAC patients prior to surgery. In parallel, tissue specimen were examined histologically for growth pattern, azurocidin-positive PMN infiltrates, and the presence of alpha-smooth muscle actin (α-SMA) and metalloproteinase 9 (MMP9)-positive myofibroblastic cells. For confirmation of the histological findings, a tissue microarray of a second cohort of patients (n=109) was prepared and examined similarly. For in vitro studies, the pancreatic stellate cell line RLT was co-cultivated either with isolated PMN, PMN-lysates, or recombinant azurocidin and characterized by Western blot, flow cytometry, and proteome profiler arrays. Results: Tumors with high PMN density showed restricted water diffusion in DW-MRI and histologic apparent alterations of the tumor microarchitecture (microglandular, micropapillary, or overall poorly differentiated growth pattern) as opposed to tumors with scattered PMN. Areas with altered growth pattern lacked α-SMA-positive myofibroblastic cells. Tissue microarrays confirmed a close association of high PMN density with alterations of the tumor microarchitecture and revealed a significant association of high PMN density with poor histologic grade of differentiation (G3). In vitro experiments provided evidence for direct effects of PMN on stellate cells, where a change to a spindle shaped cell morphology in response to PMN and to PMN-derived azurocidin was seen. Azurocidin incorporated into stellate cells, where it associated with F-actin. Down-regulation of α-SMA was seen within hours, as was activation of the p38-cofilin axis, up-regulation of MMP9, and acquisition of intracellular lipid droplets, which together indicate a phenotype switch of the stellate cells. Conclusion: In PDAC, PMN infiltrates are associated with alterations of the tumor microarchitecture. As a causal relationship, we propose a reprogramming of stellate cells by PMN-derived azurocidin towards a phenotype, which affects the microarchitecture of the tumor. PMID:29290790
Ordinal patterns in epileptic brains: Analysis of intracranial EEG and simultaneous EEG-fMRI
NASA Astrophysics Data System (ADS)
Rummel, C.; Abela, E.; Hauf, M.; Wiest, R.; Schindler, K.
2013-06-01
Epileptic seizures are associated with high behavioral stereotypy of the patients. In the EEG of epilepsy patients characteristic signal patterns can be found during and between seizures. Here we use ordinal patterns to analyze EEGs of epilepsy patients and quantify the degree of signal determinism. Besides relative signal redundancy and the fraction of forbidden patterns we introduce the fraction of under-represented patterns as a new measure. Using the logistic map, parameter scans are performed to explore the sensitivity of the measures to signal determinism. Thereafter, application is made to two types of EEGs recorded in two epilepsy patients. Intracranial EEG shows pronounced determinism peaks during seizures. Finally, we demonstrate that ordinal patterns may be useful for improving analysis of non-invasive simultaneous EEG-fMRI.
Bilek, Edda; Ruf, Matthias; Schäfer, Axel; Akdeniz, Ceren; Calhoun, Vince D.; Schmahl, Christian; Demanuele, Charmaine; Tost, Heike; Kirsch, Peter; Meyer-Lindenberg, Andreas
2015-01-01
Social interactions are fundamental for human behavior, but the quantification of their neural underpinnings remains challenging. Here, we used hyperscanning functional MRI (fMRI) to study information flow between brains of human dyads during real-time social interaction in a joint attention paradigm. In a hardware setup enabling immersive audiovisual interaction of subjects in linked fMRI scanners, we characterize cross-brain connectivity components that are unique to interacting individuals, identifying information flow between the sender’s and receiver’s temporoparietal junction. We replicate these findings in an independent sample and validate our methods by demonstrating that cross-brain connectivity relates to a key real-world measure of social behavior. Together, our findings support a central role of human-specific cortical areas in the brain dynamics of dyadic interactions and provide an approach for the noninvasive examination of the neural basis of healthy and disturbed human social behavior with minimal a priori assumptions. PMID:25848050
Dyverfeldt, Petter; Sigfridsson, Andreas; Kvitting, John-Peder Escobar; Ebbers, Tino
2006-10-01
Turbulent flow, characterized by velocity fluctuations, is a contributing factor to the pathogenesis of several cardiovascular diseases. A clinical noninvasive tool for assessing turbulence is lacking, however. It is well known that the occurrence of multiple spin velocities within a voxel during the influence of a magnetic gradient moment causes signal loss in phase-contrast magnetic resonance imaging (PC-MRI). In this paper a mathematical derivation of an expression for computing the standard deviation (SD) of the blood flow velocity distribution within a voxel is presented. The SD is obtained from the magnitude of PC-MRI signals acquired with different first gradient moments. By exploiting the relation between the SD and turbulence intensity (TI), this method allows for quantitative studies of turbulence. For validation, the TI in an in vitro flow phantom was quantified, and the results compared favorably with previously published laser Doppler anemometry (LDA) results. This method has the potential to become an important tool for the noninvasive assessment of turbulence in the arterial tree.
Beyond mind-reading: multi-voxel pattern analysis of fMRI data.
Norman, Kenneth A; Polyn, Sean M; Detre, Greg J; Haxby, James V
2006-09-01
A key challenge for cognitive neuroscience is determining how mental representations map onto patterns of neural activity. Recently, researchers have started to address this question by applying sophisticated pattern-classification algorithms to distributed (multi-voxel) patterns of functional MRI data, with the goal of decoding the information that is represented in the subject's brain at a particular point in time. This multi-voxel pattern analysis (MVPA) approach has led to several impressive feats of mind reading. More importantly, MVPA methods constitute a useful new tool for advancing our understanding of neural information processing. We review how researchers are using MVPA methods to characterize neural coding and information processing in domains ranging from visual perception to memory search.
Karmonik, Christof; Klucznik, Richard; Benndorf, Goetz
2008-01-01
Computational Fluid Dynamic (CFD) is increasingly being used for modeling hemodynamics in intracranial aneurysms. While CFD techniques are well established, need for validation of the results remains. By quantifying features in velocity patterns measured with 2D phase contrast magnetic resonance (pcMRI) in vivo and simulated with CFD, the role of pcMRI for providing reference data for the CFD simulation is explored. Unsteady CFD simulations were performed with inflow boundary conditions obtained from 2D pcMRI measurements of an aneurysm of the anterior communication artery. Intra-aneurysmal velocity profiles were recorded with 2D pcMRI and calculated with CFD. Relative areas of positive and negative velocity were calculated in these profiles for maximum and minimum inflow. Areas of positive and of negative velocity similar in shape were found in the velocity profiles obtained with both methods. Relative difference in size of the relative areas for the whole cardiac cycle ranged from 1%-25% (average 12%). 2D pcMRI is able to record velocity profiles in an aneurysm of the anterior commuting artery in vivo. These velocity profiles can serve as reference data for validation of CFD simulations. Further studies are needed to explore the role of pcMRI in the context of CFD simulations.
Hakim, R; Black, P M
1998-01-01
After the initial description of normal pressure hydrocephalus (NPH) and its clinical triad, there has been a continuous interest from clinicians and researchers to set different diagnostic criteria that would make the selection of candidates for shunt surgery easier and more precise. A preliminary group of 12 patients was given a diagnosis of idiopathic normal pressure hydrocephalus by clinical and radiologic criteria. Each patient underwent two different tests: a magnetic resonance imaging-cerebrospinal fluid (MRI-CSF) flow study and a lumbo-ventricular perfusion test. The purpose was to compare the correlation of the results obtained with these tests and the clinical results obtained after CSF diversion. Eleven patients were given shunts and one was managed with lumbar punctures. One year after treatment, 10 of the 12 patients had improved with good results. The MRI-CSF flow studies were reliable in six patients; there were five false negatives and one false positive. The lumbo-ventricular perfusion test showed reliability in nine patients; there were two false negatives and one false positive. In only three patients were the results of both of these tests in accordance with the outcome. Even though there are few patients in this study so far, the data suggests that at the present time the most predictive guides for the diagnosis of NPH and its outcome after shunting are the clinical criteria and the radiological findings in computed tomography (CT) and/or MRI rather than lumbo-ventricular perfusion and CSF flow studies.
Driving and driven architectures of directed small-world human brain functional networks.
Yan, Chaogan; He, Yong
2011-01-01
Recently, increasing attention has been focused on the investigation of the human brain connectome that describes the patterns of structural and functional connectivity networks of the human brain. Many studies of the human connectome have demonstrated that the brain network follows a small-world topology with an intrinsically cohesive modular structure and includes several network hubs in the medial parietal regions. However, most of these studies have only focused on undirected connections between regions in which the directions of information flow are not taken into account. How the brain regions causally influence each other and how the directed network of human brain is topologically organized remain largely unknown. Here, we applied linear multivariate Granger causality analysis (GCA) and graph theoretical approaches to a resting-state functional MRI dataset with a large cohort of young healthy participants (n = 86) to explore connectivity patterns of the population-based whole-brain functional directed network. This directed brain network exhibited prominent small-world properties, which obviously improved previous results of functional MRI studies showing weak small-world properties in the directed brain networks in terms of a kernel-based GCA and individual analysis. This brain network also showed significant modular structures associated with 5 well known subsystems: fronto-parietal, visual, paralimbic/limbic, subcortical and primary systems. Importantly, we identified several driving hubs predominantly located in the components of the attentional network (e.g., the inferior frontal gyrus, supplementary motor area, insula and fusiform gyrus) and several driven hubs predominantly located in the components of the default mode network (e.g., the precuneus, posterior cingulate gyrus, medial prefrontal cortex and inferior parietal lobule). Further split-half analyses indicated that our results were highly reproducible between two independent subgroups. The current study demonstrated the directions of spontaneous information flow and causal influences in the directed brain networks, thus providing new insights into our understanding of human brain functional connectome.
RF Heating of MRI-Assisted Catheter Steering Coils for Interventional MRI.
Settecase, Fabio; Hetts, Steven W; Martin, Alastair J; Roberts, Timothy P L; Bernhardt, Anthony F; Evans, Lee; Malba, Vincent; Saeed, Maythem; Arenson, Ronald L; Kucharzyk, Walter; Wilson, Mark W
2011-03-01
The aim of this study was too assess magnetic resonance imaging (MRI) radiofrequency (RF)-related heating of conductive wire coils used in magnetically steerable endovascular catheters. A three-axis microcoil was fabricated onto a 1.8Fr catheter tip. In vitro testing was performed on a 1.5-T MRI system using an agarose gel-filled vessel phantom, a transmit-receive body RF coil, a steady-state free precession pulse sequence, and a fluoroptic thermometry system. Temperature was measured without simulated blood flow at varying distances from the magnet isocenter and at varying flip angles. Additional experiments were performed with laser-lithographed single-axis microcoil-tipped microcatheters in air and in a saline bath with varied grounding of the microcoil wires. Preliminary in vivo evaluation of RF heating was performed in pigs at 1.5 T with coil-tipped catheters in various positions in the common carotid arteries with steady-state free precession pulse sequence on and off and under physiologic-flow and zero-flow conditions. In tissue-mimicking agarose gel, RF heating resulted in a maximal temperature increase of 0.35°C after 15 minutes of imaging, 15 cm from the magnet isocenter. For a single-axis microcoil, maximal temperature increases were 0.73°C to 1.91°C in air and 0.45°C to 0.55°C in saline. In vivo, delayed contrast-enhanced MRI revealed no evidence of vascular injury, and histopathologic sections from the common carotid arteries confirmed the lack of vascular damage. Microcatheter tip microcoils for endovascular catheter steering in MRI experience minimal RF heating under the conditions tested. These data provide the basis for further in vivo testing of this promising technology for endovascular interventional MRI. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.
Differentiating between bipolar and unipolar depression in functional and structural MRI studies.
Han, Kyu-Man; De Berardis, Domenico; Fornaro, Michele; Kim, Yong-Ku
2018-03-28
Distinguishing depression in bipolar disorder (BD) from unipolar depression (UD) solely based on clinical clues is difficult, which has led to the exploration of promising neural markers in neuroimaging measures for discriminating between BD depression and UD. In this article, we review structural and functional magnetic resonance imaging (MRI) studies that directly compare UD and BD depression based on neuroimaging modalities including functional MRI studies on regional brain activation or functional connectivity, structural MRI on gray or white matter morphology, and pattern classification analyses using a machine learning approach. Numerous studies have reported distinct functional and structural alterations in emotion- or reward-processing neural circuits between BD depression and UD. Different activation patterns in neural networks including the amygdala, anterior cingulate cortex (ACC), prefrontal cortex (PFC), and striatum during emotion-, reward-, or cognition-related tasks have been reported between BD and UD. A stronger functional connectivity pattern in BD was pronounced in default mode and in frontoparietal networks and brain regions including the PFC, ACC, parietal and temporal regions, and thalamus compared to UD. Gray matter volume differences in the ACC, hippocampus, amygdala, and dorsolateral prefrontal cortex (DLPFC) have been reported between BD and UD, along with a thinner DLPFC in BD compared to UD. BD showed reduced integrity in the anterior part of the corpus callosum and posterior cingulum compared to UD. Several studies performed pattern classification analysis using structural and functional MRI data to distinguish between UD and BD depression using a supervised machine learning approach, which yielded a moderate level of accuracy in classification. Copyright © 2018 Elsevier Inc. All rights reserved.
Zheng, Weili; Ackley, Elena S; Martínez-Ramón, Manel; Posse, Stefan
2013-02-01
In previous works, boosting aggregation of classifier outputs from discrete brain areas has been demonstrated to reduce dimensionality and improve the robustness and accuracy of functional magnetic resonance imaging (fMRI) classification. However, dimensionality reduction and classification of mixed activation patterns of multiple classes remain challenging. In the present study, the goals were (a) to reduce dimensionality by combining feature reduction at the voxel level and backward elimination of optimally aggregated classifiers at the region level, (b) to compare region selection for spatially aggregated classification using boosting and partial least squares regression methods and (c) to resolve mixed activation patterns using probabilistic prediction of individual tasks. Brain activation maps from interleaved visual, motor, auditory and cognitive tasks were segmented into 144 functional regions. Feature selection reduced the number of feature voxels by more than 50%, leaving 95 regions. The two aggregation approaches further reduced the number of regions to 30, resulting in more than 75% reduction of classification time and misclassification rates of less than 3%. Boosting and partial least squares (PLS) were compared to select the most discriminative and the most task correlated regions, respectively. Successful task prediction in mixed activation patterns was feasible within the first block of task activation in real-time fMRI experiments. This methodology is suitable for sparsifying activation patterns in real-time fMRI and for neurofeedback from distributed networks of brain activation. Copyright © 2013 Elsevier Inc. All rights reserved.
Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress
NASA Astrophysics Data System (ADS)
Wang, Jiongjiong; Rao, Hengyi; Wetmore, Gabriel S.; Furlan, Patricia M.; Korczykowski, Marc; Dinges, David F.; Detre, John A.
2005-12-01
Despite the prevalence of stress in everyday life and its impact on happiness, health, and cognition, little is known about the neural substrate of the experience of everyday stress in humans. We use a quantitative and noninvasive neuroimaging technique, arterial spin-labeling perfusion MRI, to measure cerebral blood flow (CBF) changes associated with mild to moderate stress induced by a mental arithmetic task with performance monitoring. Elicitation of stress was verified by self-report of stress and emotional state and measures of heart rate and salivary-cortisol level. The change in CBF induced by the stress task was positively correlated with subjective stress rating in the ventral right prefrontal cortex (RPFC) and left insula/putamen area. The ventral RPFC along with right insula/putamen and anterior cingulate showed sustained activation after task completion in subjects reporting a high stress level during arithmetic tasks. Additionally, variations of baseline CBF in the ventral RPFC and right orbitofrontal cortex were found to correlate with changes in salivary-cortisol level and heart rate caused by undergoing stress tasks. We further demonstrated that the observed right prefrontal activation could not be attributed to increased cognitive demand accompanying stress tasks and extended beyond neural pathways associated with negative emotions. Our results provide neuroimaging evidence that psychological stress induces negative emotion and vigilance and that the ventral RPFC plays a key role in the central stress response. anterior cingulate cortex | arterial spin labeling | right prefrontal cortex
NASA Astrophysics Data System (ADS)
Watanabe, Shuji; Takano, Hiroshi; Fukuda, Hiroya; Hiraki, Eiji; Nakaoka, Mutsuo
This paper deals with a digital control scheme of multiple paralleled high frequency switching current amplifier with four-quadrant chopper for generating gradient magnetic fields in MRI (Magnetic Resonance Imaging) systems. In order to track high precise current pattern in Gradient Coils (GC), the proposal current amplifier cancels the switching current ripples in GC with each other and designed optimum switching gate pulse patterns without influences of the large filter current ripple amplitude. The optimal control implementation and the linear control theory in GC current amplifiers have affinity to each other with excellent characteristics. The digital control system can be realized easily through the digital control implementation, DSPs or microprocessors. Multiple-parallel operational microprocessors realize two or higher paralleled GC current pattern tracking amplifier with optimal control design and excellent results are given for improving the image quality of MRI systems.
Pressure-anisotropy-induced nonlinearities in the kinetic magnetorotational instability
NASA Astrophysics Data System (ADS)
Squire, J.; Quataert, E.; Kunz, M. W.
2017-12-01
In collisionless and weakly collisional plasmas, such as hot accretion flows onto compact objects, the magnetorotational instability (MRI) can differ significantly from the standard (collisional) MRI. In particular, pressure anisotropy with respect to the local magnetic-field direction can both change the linear MRI dispersion relation and cause nonlinear modifications to the mode structure and growth rate, even when the field and flow perturbations are very small. This work studies these pressure-anisotropy-induced nonlinearities in the weakly nonlinear, high-ion-beta regime, before the MRI saturates into strong turbulence. Our goal is to better understand how the saturation of the MRI in a low-collisionality plasma might differ from that in the collisional regime. We focus on two key effects: (i) the direct impact of self-induced pressure-anisotropy nonlinearities on the evolution of an MRI mode, and (ii) the influence of pressure anisotropy on the `parasitic instabilities' that are suspected to cause the mode to break up into turbulence. Our main conclusions are: (i) The mirror instability regulates the pressure anisotropy in such a way that the linear MRI in a collisionless plasma is an approximate nonlinear solution once the mode amplitude becomes larger than the background field (just as in magnetohyrodynamics). This implies that differences between the collisionless and collisional MRI become unimportant at large amplitudes. (ii) The break up of large-amplitude MRI modes into turbulence via parasitic instabilities is similar in collisionless and collisional plasmas. Together, these conclusions suggest that the route to magnetorotational turbulence in a collisionless plasma may well be similar to that in a collisional plasma, as suggested by recent kinetic simulations. As a supplement to these findings, we offer guidance for the design of future kinetic simulations of magnetorotational turbulence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jutras, Jean-David
MRI-only Radiation Treatment Planning (RTP) is becoming increasingly popular because of a simplified work-flow, and less inconvenience to the patient who avoids multiple scans. The advantages of MRI-based RTP over traditional CT-based RTP lie in its superior soft-tissue contrast, and absence of ionizing radiation dose. The lack of electron-density information in MRI can be addressed by automatic tissue classification. To distinguish bone from air, which both appear dark in MRI, an ultra-short echo time (UTE) pulse sequence may be used. Quantitative MRI parametric maps can provide improved tissue segmentation/classification and better sensitivity in monitoring disease progression and treatment outcome thanmore » standard weighted images. Superior tumor contrast can be achieved on pure T{sub 1} images compared to conventional T{sub 1}-weighted images acquired in the same scan duration and voxel resolution. In this study, we have developed a robust and fast quantitative MRI acquisition and post-processing work-flow that integrates these latest advances into the MRI-based RTP of brain lesions. Using 3D multi-echo FLASH images at two different optimized flip angles (both acquired in under 9 min, and 1mm isotropic resolution), parametric maps of T{sub 1}, proton-density (M{sub 0}), and T{sub 2}{sup *} are obtained with high contrast-to-noise ratio, and negligible geometrical distortions, water-fat shifts and susceptibility effects. An additional 3D UTE MRI dataset is acquired (in under 4 min) and post-processed to classify tissues for dose simulation. The pipeline was tested on four healthy volunteers and a clinical trial on brain cancer patients is underway.« less
Orita, Erika; Murai, Yasuo; Sekine, Tetsuro; Takagi, Ryo; Amano, Yasuo; Ando, Takahiro; Iwata, Kotomi; Obara, Makoto; Kumita, Shinichiro
2018-05-11
The hemodynamic changes that occur after high-flow (extracranial-intracranial) EC-IC bypass surgery with internal carotid artery (ICA) ligation are not well known. To assess blood flow changes after high-flow EC-IC bypass with ICA ligation by time-resolved 3-dimensional phase-contrast (4D Flow) magnetic resonance imaging (MRI). We enrolled 11 patients who underwent high-flow EC-IC bypass. 4D Flow MRI was performed before and after surgery to quantify the blood flow volume (BFV) of the ipsilateral ICA (BFViICA), bypass artery (BFVbypass), contralateral ICA (BFVcICA), and basilar artery (BFVBA). Subsequently, we calculated the total BFV (BFVtotal = BFViICA + BFVcICA + BFVBA [before surgery], BFVcICA + BFVBA + BFVbypass [after surgery]). The BFV changes after bypass was statistically analyzed. BFVbypass was slightly lower than BFViICA, but the difference was not statistically significant (3.84 ± 0.94 vs 4.42 ± 1.38 mL/s). The BFVcICA and BFVBA significantly increased after bypass surgery (BFVcICA 5.89 ± 1.44 vs 7.22 ± 1.37 mL/s [P = .0018], BFVBA 3.06 ± 0.41 vs 4.12 ± 0.38 mL/s [P < .001]). The BFVtotal significantly increased after surgery (13.37 ± 2.58 vs 15.18 ± 1.77 mL/s [P = .015]). There was no evidence of hyperperfusion syndrome in any cases. After high-flow EC-IC bypass with permanent ICA ligation, the bypass artery could partially compensate for the loss of BFV of the sacrificed ICA. The increased flow of the contralateral ICA and BA supply collateral blood flow. Clinically irrelevant hyperperfusion was observed.
Lai, Lillian M; Cheng, Joseph Y; Alley, Marcus T; Zhang, Tao; Lustig, Michael; Vasanawala, Shreyas S
2017-05-01
To assess the feasibility of ferumoxytol-enhanced anesthesia-free cardiac MRI in neonates and young infants for complex congenital heart disease (CHD). With Institutional Review Board approval, 21 consecutive neonates and young infants (1 day to 11 weeks old; median age of 3 days) who underwent a rapid two-sequence (MR angiography [MRA] and four-dimensional [4D] flow) MRI protocol with intravenous ferumoxytol without sedation (n = 17) or light sedation (n = 4) at 3 Tesla (T) (except one case at 1.5T) between June 2014 and February 2016 were retrospectively identified. Medical records were reviewed for indication, any complications, if further diagnostic imaging was performed after MRI, and surgical findings. Two radiologists scored the images in two sessions on a 5-point scale for overall image quality and delineation of various anatomical structures. Confidence interval of proportions for likelihood of requiring additional diagnostic imaging after MRI was determined. For the possibility of reducing the protocol to a single rapid sequence, Wilcoxon-rank sum test was used to assess whether 4D flow and MRA significantly differed in anatomical delineation. One of 21 patients (4.8%, 80% confidence interval 0-11%) required additional imaging, a computed tomography angiography to assess lung parenchyma and peripheral pulmonary arteries. Only 1 of 13 patients (7.7%) with operative confirmation had a minor discrepancy between radiology and operative reports (80% confidence interval 0-17%). 4D flow was significantly superior to MRA (P < 0.05) for the evaluation of systemic arteries, valves, ventricular trabeculae, and overall quality. Using Cohen's kappa coefficient, there was good interobserver agreement for the evaluation of systemic arteries by 4D flow (κ = 0.782), and systemic veins and pulmonary arteries by MRA (κ > 0.6). Overall 4D flow measurements (mean κ = 0.64-0.74) had better internal agreement compared with MRA (mean κ = 0.30-0.64). Ferumoxytol-enhanced cardiac MRI, without anesthesia, is feasible for the evaluation of complex CHD in neonates and young infants, with a low likelihood of need for additional diagnostic studies. The decreased risk by avoiding anesthesia must be balanced against the potential for adverse reactions with ferumoxytol. 2 J. MAGN. RESON. IMAGING 2017;45:1407-1418. © 2016 International Society for Magnetic Resonance in Medicine.
Perspectives on Porous Media MR in Clinical MRI
NASA Astrophysics Data System (ADS)
Sigmund, E. E.
2011-03-01
Many goals and challenges of research in natural or synthetic porous media are mirrored in quantitative medical MRI. This review will describe examples where MR techniques used in porous media (particularly diffusion-weighted imaging (DWI)) are applied to physiological pathologies. Tissue microstructure is one area with great overlap with porous media science. Diffusion-weighting (esp. in neurological tissue) has motivated models with explicit physical dimensions, statistical parameters, empirical descriptors, or hybrids thereof. Another clinically relevant microscopic process is active flow. Renal (kidney) tissue possesses significant active vascular / tubular transport that manifests as "pseudodiffusion." Cancerous lesions involve anomalies in both structure and flow. The tools of magnetic resonance and their interpretation in porous media has had great impact on clinical MRI, and continued cross-fertilization of ideas can only enhance the progress of both fields.
Spain, Aisling; Howarth, Clare; Khrapitchev, Alexandre A.; Sharp, Trevor; Sibson, Nicola R.; Martin, Chris
2015-01-01
The development of pharmacological magnetic resonance imaging (phMRI) has presented the opportunity for investigation of the neurophysiological effects of drugs in vivo. Psilocin, a hallucinogen metabolised from psilocybin, was recently reported to evoke brain region-specific, phMRI signal changes in humans. The present study investigated the effects of psilocin in a rat model using phMRI and then probed the relationship between neuronal and haemodynamic responses using a multimodal measurement preparation. Psilocin (2 mg/kg or 0.03 mg/kg i.v.) or vehicle was administered to rats (N = 6/group) during either phMRI scanning or concurrent imaging of cortical blood flow and recording of local field potentials. Compared to vehicle controls psilocin (2 mg/kg) evoked phMRI signal increases in a number of regions including olfactory and limbic areas and elements of the visual system. PhMRI signal decreases were seen in other regions including somatosensory and motor cortices. Investigation of neurovascular coupling revealed that whilst neuronal responses (local field potentials) to sensory stimuli were decreased in amplitude by psilocin administration, concurrently measured haemodynamic responses (cerebral blood flow) were enhanced. The present findings show that psilocin evoked region-specific changes in phMRI signals in the rat, confirming recent human data. However, the results also suggest that the haemodynamic signal changes underlying phMRI responses reflect changes in both neuronal activity and neurovascular coupling. This highlights the importance of understanding the neurovascular effects of pharmacological manipulations for interpreting haemodynamic neuroimaging data. PMID:26192543
Feldstein Ewing, Sarah W.; Sakhardande, Ashok; Blakemore, Sarah-Jayne
2014-01-01
Background A large proportion of adolescents drink alcohol, with many engaging in high-risk patterns of consumption, including binge drinking. Here, we systematically review and synthesize the existing empirical literature on how consuming alcohol affects the developing human brain in alcohol-using (AU) youth. Methods For this systematic review, we began by conducting a literature search using the PubMED database to identify all available peer-reviewed magnetic resonance imaging (MRI) and functional magnetic resonance imaging (fMRI) studies of AU adolescents (aged 19 and under). All studies were screened against a strict set of criteria designed to constrain the impact of confounding factors, such as co-occurring psychiatric conditions. Results Twenty-one studies (10 MRI and 11 fMRI) met the criteria for inclusion. A synthesis of the MRI studies suggested that overall, AU youth showed regional differences in brain structure as compared with non-AU youth, with smaller grey matter volumes and lower white matter integrity in relevant brain areas. In terms of fMRI outcomes, despite equivalent task performance between AU and non-AU youth, AU youth showed a broad pattern of lower task-relevant activation, and greater task-irrelevant activation. In addition, a pattern of gender differences was observed for brain structure and function, with particularly striking effects among AU females. Conclusions Alcohol consumption during adolescence was associated with significant differences in structure and function in the developing human brain. However, this is a nascent field, with several limiting factors (including small sample sizes, cross-sectional designs, presence of confounding factors) within many of the reviewed studies, meaning that results should be interpreted in light of the preliminary state of the field. Future longitudinal and large-scale studies are critical to replicate the existing findings, and to provide a more comprehensive and conclusive picture of the effect of alcohol consumption on the developing brain. PMID:26958467
Ewing, Sarah W Feldstein; Sakhardande, Ashok; Blakemore, Sarah-Jayne
2014-01-01
A large proportion of adolescents drink alcohol, with many engaging in high-risk patterns of consumption, including binge drinking. Here, we systematically review and synthesize the existing empirical literature on how consuming alcohol affects the developing human brain in alcohol-using (AU) youth. For this systematic review, we began by conducting a literature search using the PubMED database to identify all available peer-reviewed magnetic resonance imaging (MRI) and functional magnetic resonance imaging (fMRI) studies of AU adolescents (aged 19 and under). All studies were screened against a strict set of criteria designed to constrain the impact of confounding factors, such as co-occurring psychiatric conditions. Twenty-one studies (10 MRI and 11 fMRI) met the criteria for inclusion. A synthesis of the MRI studies suggested that overall, AU youth showed regional differences in brain structure as compared with non-AU youth, with smaller grey matter volumes and lower white matter integrity in relevant brain areas. In terms of fMRI outcomes, despite equivalent task performance between AU and non-AU youth, AU youth showed a broad pattern of lower task-relevant activation, and greater task-irrelevant activation. In addition, a pattern of gender differences was observed for brain structure and function, with particularly striking effects among AU females. Alcohol consumption during adolescence was associated with significant differences in structure and function in the developing human brain. However, this is a nascent field, with several limiting factors (including small sample sizes, cross-sectional designs, presence of confounding factors) within many of the reviewed studies, meaning that results should be interpreted in light of the preliminary state of the field. Future longitudinal and large-scale studies are critical to replicate the existing findings, and to provide a more comprehensive and conclusive picture of the effect of alcohol consumption on the developing brain.
Equilibrium and stability of flow-dominated Plasmas in the Big Red Ball
NASA Astrophysics Data System (ADS)
Siller, Robert; Flanagan, Kenneth; Peterson, Ethan; Milhone, Jason; Mirnov, Vladimir; Forest, Cary
2017-10-01
The equilibrium and linear stability of flow-dominated plasmas are studied numerically using a spectral techniques to model MRI and dynamo experiments in the Big Red Ball device. The equilibrium code solves for steady-state magnetic fields and plasma flows subject to boundary conditions in a spherical domain. It has been benchmarked with NIMROD (non-ideal MHD with rotation - open discussion), Two different flow scenarios are studied. The first scenario creates a differentially rotating toroidal flow that is peaked at the center. This is done to explore the onset of the magnetorotational instability (MRI) in a spherical geometry. The second scenario creates a counter-rotating von Karman-like flow in the presence of a weak magnetic field. This is done to explore the plasma dynamo instability in the limit of a weak applied field. Both scenarios are numerically modeled as axisymmetric flow to create a steady-state equilibrium solution, the stability and normal modes are studied in the lowest toroidal mode number. The details of the observed flow, and the structure of the fastest growing modes will be shown. DoE, NSF.
Jang, Hojin; Plis, Sergey M.; Calhoun, Vince D.; Lee, Jong-Hwan
2016-01-01
Feedforward deep neural networks (DNN), artificial neural networks with multiple hidden layers, have recently demonstrated a record-breaking performance in multiple areas of applications in computer vision and speech processing. Following the success, DNNs have been applied to neuroimaging modalities including functional/structural magnetic resonance imaging (MRI) and positron-emission tomography data. However, no study has explicitly applied DNNs to 3D whole-brain fMRI volumes and thereby extracted hidden volumetric representations of fMRI that are discriminative for a task performed as the fMRI volume was acquired. Our study applied fully connected feedforward DNN to fMRI volumes collected in four sensorimotor tasks (i.e., left-hand clenching, right-hand clenching, auditory attention, and visual stimulus) undertaken by 12 healthy participants. Using a leave-one-subject-out cross-validation scheme, a restricted Boltzmann machine-based deep belief network was pretrained and used to initialize weights of the DNN. The pretrained DNN was fine-tuned while systematically controlling weight-sparsity levels across hidden layers. Optimal weight-sparsity levels were determined from a minimum validation error rate of fMRI volume classification. Minimum error rates (mean ± standard deviation; %) of 6.9 (± 3.8) were obtained from the three-layer DNN with the sparsest condition of weights across the three hidden layers. These error rates were even lower than the error rates from the single-layer network (9.4 ± 4.6) and the two-layer network (7.4 ± 4.1). The estimated DNN weights showed spatial patterns that are remarkably task-specific, particularly in the higher layers. The output values of the third hidden layer represented distinct patterns/codes of the 3D whole-brain fMRI volume and encoded the information of the tasks as evaluated from representational similarity analysis. Our reported findings show the ability of the DNN to classify a single fMRI volume based on the extraction of hidden representations of fMRI volumes associated with tasks across multiple hidden layers. Our study may be beneficial to the automatic classification/diagnosis of neuropsychiatric and neurological diseases and prediction of disease severity and recovery in (pre-) clinical settings using fMRI volumes without requiring an estimation of activation patterns or ad hoc statistical evaluation. PMID:27079534
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, C; Yin, F; Harris, W
Purpose: To develop a technique generating ultrafast on-board VC-MRI using prior 4D-MRI and on-board phase-skipped encoding k-space acquisition for real-time 3D target tracking of liver and lung radiotherapy. Methods: The end-of-expiration (EOE) volume in 4D-MRI acquired during the simulation was selected as the prior volume. 3 major respiratory deformation patterns were extracted through the principal component analysis of the deformation field maps (DFMs) generated between EOE and all other phases. The on-board VC-MRI at each instant was considered as a deformation of the prior volume, and the deformation was modeled as a linear combination of the extracted 3 major deformationmore » patterns. To solve the weighting coefficients of the 3 major patterns, a 2D slice was extracted from VC-MRI volume to match with the 2D on-board sampling data, which was generated by 8-fold phase skipped-encoding k-space acquisition (i.e., sample 1 phase-encoding line out of every 8 lines) to achieve an ultrafast 16–24 volumes/s frame rate. The method was evaluated using XCAT digital phantom to simulate lung cancer patients. The 3D volume of end-ofinhalation (EOI) phase at the treatment day was used as ground-truth onboard VC-MRI with simulated changes in 1) breathing amplitude and 2) breathing amplitude/phase change from the simulation day. A liver cancer patient case was evaluated for in-vivo feasibility demonstration. Results: The comparison between ground truth and estimated on-board VC-MRI shows good agreements. In XCAT study with changed breathing amplitude, the volume-percent-difference(VPD) between ground-truth and estimated tumor volumes at EOI was 6.28% and the Center-of-Mass-Shift(COMS) was 0.82mm; with changed breathing amplitude and phase, the VPD was 8.50% and the COMS was 0.54mm. The study of liver patient case also demonstrated a promising in vivo feasibility of the proposed method Conclusion: Preliminary results suggest the feasibility to estimate ultrafast VC-MRI for on-board target localization with phase skipped-encoding k-space acquisition. Research grant from NIH R01-184173.« less
Jang, Hojin; Plis, Sergey M; Calhoun, Vince D; Lee, Jong-Hwan
2017-01-15
Feedforward deep neural networks (DNNs), artificial neural networks with multiple hidden layers, have recently demonstrated a record-breaking performance in multiple areas of applications in computer vision and speech processing. Following the success, DNNs have been applied to neuroimaging modalities including functional/structural magnetic resonance imaging (MRI) and positron-emission tomography data. However, no study has explicitly applied DNNs to 3D whole-brain fMRI volumes and thereby extracted hidden volumetric representations of fMRI that are discriminative for a task performed as the fMRI volume was acquired. Our study applied fully connected feedforward DNN to fMRI volumes collected in four sensorimotor tasks (i.e., left-hand clenching, right-hand clenching, auditory attention, and visual stimulus) undertaken by 12 healthy participants. Using a leave-one-subject-out cross-validation scheme, a restricted Boltzmann machine-based deep belief network was pretrained and used to initialize weights of the DNN. The pretrained DNN was fine-tuned while systematically controlling weight-sparsity levels across hidden layers. Optimal weight-sparsity levels were determined from a minimum validation error rate of fMRI volume classification. Minimum error rates (mean±standard deviation; %) of 6.9 (±3.8) were obtained from the three-layer DNN with the sparsest condition of weights across the three hidden layers. These error rates were even lower than the error rates from the single-layer network (9.4±4.6) and the two-layer network (7.4±4.1). The estimated DNN weights showed spatial patterns that are remarkably task-specific, particularly in the higher layers. The output values of the third hidden layer represented distinct patterns/codes of the 3D whole-brain fMRI volume and encoded the information of the tasks as evaluated from representational similarity analysis. Our reported findings show the ability of the DNN to classify a single fMRI volume based on the extraction of hidden representations of fMRI volumes associated with tasks across multiple hidden layers. Our study may be beneficial to the automatic classification/diagnosis of neuropsychiatric and neurological diseases and prediction of disease severity and recovery in (pre-) clinical settings using fMRI volumes without requiring an estimation of activation patterns or ad hoc statistical evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.
Hemodynamics in an Aorta with Bicuspid and Trileaflet Valves
NASA Astrophysics Data System (ADS)
Gilmanov, Anvar; Sotiropoulos, Fotis
2015-11-01
Bicuspid aortic valve (BAV) is a congenital heart defect that has been associated with serious aortopathies, such as ascending aortic aneurysm, aortic stenosis, aortic regurgitation, infective endocarditis, aortic dissection, calcific aortic valve and dilatation of ascending aorta. Two main hypotheses - the genetic and the hemodynamic are discussed in literature to explain the development and progression of aortopathies in patients with BAV. In this study we seek to investigate the possible role of hemodynamic factors as causes of BAV-associated aortopathy. We employ the Curvilinear Immersed Boundary (CURVIB) method coupled with an efficient thin-shell finite element (TS-FE) formulation for tissues to carry out fluid-structure interaction simulations of a healthy tri-leaflet aortic valve (TAV) and a BAV placed in the same anatomic aorta. The computed results reveal major differences between the TAV and BAV flow patterns. These include: the dynamics of the aortic valve vortex ring formation and break up; the large scale flow patterns in the ascending aorta; and the shear stress magnitude on the aortic wall. The computed results are in qualitative agreement with in vivo Magnetic Resonance Imaging (MRI) data and suggest that the linkages between BAV aortopathy and hemodynamics deserve further investigation. This work is supported by the Lillehei Heart Institute at the University of Minnesota and the Minnesota Supercomputing Institute.
Computational studies of steering nanoparticles with magnetic gradients
NASA Astrophysics Data System (ADS)
Aylak, Sultan Suleyman
Magnetic Resonance Imaging (MRI) guided nanorobotic systems that could perform diagnostic, curative, and reconstructive treatments in the human body at the cellular and subcellular level in a controllable manner have recently been proposed. The concept of a MRI-guided nanorobotic system is based on the use of a MRI scanner to induce the required external driving forces to guide magnetic nanocapsules to a specific target. However, the maximum magnetic gradient specifications of existing clinical MRI systems are not capable of driving magnetic nanocapsules against the blood flow. This thesis presents the visualization of nanoparticles inside blood vessel, Graphical User Interface (GUI) for updating file including initial parameters and demonstrating the simulation of particles and C++ code for computing magnetic forces and fluidic forces. The visualization and GUI were designed using Virtual Reality Modeling Language (VRML), MATLAB and C#. The addition of software for MRI-guided nanorobotic system provides simulation results. Preliminary simulation results demonstrate that external magnetic field causes aggregation of nanoparticles while they flow in the vessel. This is a promising result --in accordance with similar experimental results- and encourages further investigation on the nanoparticle-based self-assembly structures for use in nanorobotic drug delivery.
Eyes on MEGDEL: distinctive basal ganglia involvement in dystonia deafness syndrome.
Wortmann, Saskia B; van Hasselt, Peter M; Barić, Ivo; Burlina, Alberto; Darin, Niklas; Hörster, Friederike; Coker, Mahmut; Ucar, Sema Kalkan; Krumina, Zita; Naess, Karin; Ngu, Lock H; Pronicka, Ewa; Riordan, Gilian; Santer, Rene; Wassmer, Evangeline; Zschocke, Johannes; Schiff, Manuel; de Meirleir, Linda; Alowain, Mohammed A; Smeitink, Jan A M; Morava, Eva; Kozicz, Tamas; Wevers, Ron A; Wolf, Nicole I; Willemsen, Michel A
2015-04-01
Pediatric movement disorders are still a diagnostic challenge, as many patients remain without a (genetic) diagnosis. Magnetic resonance imaging (MRI) pattern recognition can lead to the diagnosis. MEGDEL syndrome (3-MethylGlutaconic aciduria, Deafness, Encephalopathy, Leigh-like syndrome MIM #614739) is a clinically and biochemically highly distinctive dystonia deafness syndrome accompanied by 3-methylglutaconic aciduria, severe developmental delay, and progressive spasticity. Mutations are found in SERAC1, encoding a phosphatidylglycerol remodeling enzyme essential for both mitochondrial function and intracellular cholesterol trafficking. Based on the homogenous phenotype, we hypothesized an accordingly characteristic MRI pattern. A total of 43 complete MRI studies of 30 patients were systematically reevaluated. All patients presented a distinctive brain MRI pattern with five characteristic disease stages affecting the basal ganglia, especially the putamen. In stage 1, T2 signal changes of the pallidum are present. In stage 2, swelling of the putamen and caudate nucleus is seen. The dorsal putamen contains an "eye" that shows no signal alteration and (thus) seems to be spared during this stage of the disease. It later increases, reflecting progressive putaminal involvement. This "eye" was found in all patients with MEGDEL syndrome during a specific age range, and has not been reported in other disorders, making it pathognomonic for MEDGEL and allowing diagnosis based on MRI findings. Georg Thieme Verlag KG Stuttgart · New York.
Defining Functional Areas in Individual Human Brains using Resting Functional Connectivity MRI
Cohen, Alexander L.; Fair, Damien A.; Dosenbach, Nico U.F.; Miezin, Francis M.; Dierker, Donna; Van Essen, David C.; Schlaggar, Bradley L.; Petersen, Steven E.
2009-01-01
The cerebral cortex is anatomically organized at many physical scales starting at the level of single neurons and extending up to functional systems. Current functional magnetic resonance imaging (fMRI) studies often focus at the level of areas, networks, and systems. Except in restricted domains, (e.g. topographically-organized sensory regions), it is difficult to determine area boundaries in the human brain using fMRI. The ability to delineate functional areas non-invasively would enhance the quality of many experimental analyses allowing more accurate across-subject comparisons of independently identified functional areas. Correlations in spontaneous BOLD activity, often referred to as resting state functional connectivity (rs-fcMRI), are especially promising as a way to accurately localize differences in patterns of correlated activity across large expanses of cortex. In the current report, we applied a novel set of image analysis tools to explore the utility of rs-fcMRI for defining wide-ranging functional area boundaries. We find that rs-fcMRI patterns show sharp transitions in correlation patterns and that these putative areal boundaries can be reliably detected in individual subjects as well as in group data. Additionally, combining surface-based analysis techniques with image processing algorithms allows automated mapping of putative areal boundaries across large expanses of cortex without the need for prior information about a region’s function or topography. Our approach reliably produces maps of bounded regions appropriate in size and number for putative functional areas. These findings will hopefully stimulate further methodological refinements and validations. PMID:18367410
High Intracranial Pressure Induced Injury in the Healthy Rat Brain.
Dai, Xingping; Bragina, Olga; Zhang, Tongsheng; Yang, Yirong; Rao, Gutti R; Bragin, Denis E; Statom, Gloria; Nemoto, Edwin M
2016-08-01
We recently showed that increased intracranial pressure to 50 mm Hg in the healthy rat brain results in microvascular shunt flow characterized by tissue hypoxia, edema, and increased blood-brain barrier permeability. We now determined whether increased intracranial pressure results in neuronal injury by Fluoro-Jade stain and whether changes in cerebral blood flow and cerebral metabolic rate for oxygen suggest nonnutritive microvascular shunt flow. Intracranial pressure was elevated by a reservoir of artificial cerebrospinal fluid connected to the cisterna magna. Arterial blood gases, cerebral arterial-venous oxygen content difference, and cerebral blood flow by MRI were measured. Fluoro-Jade stain neurons were counted in histologic sections of the right and left dorsal and lateral cortices and hippocampus. University laboratory. Male Sprague Dawley rats. Arterial pressure support if needed by IV dopamine infusion and base deficit corrected by sodium bicarbonate. Fluoro-Jade stain neurons increased 2.5- and 5.5-fold at intracranial pressures of 30 and 50 mm Hg and cerebral perfusion pressures of 57 ± 4 (mean ± SEM) and 47 ± 6 mm Hg, respectively (p < 0.001) (highest in the right and left cortices). Voxel frequency histograms of cerebral blood flow showed a pattern consistent with microvascular shunt flow by dispersion to higher cerebral blood flow at high intracranial pressure and decreased cerebral metabolic rate for oxygen. High intracranial pressure likely caused neuronal injury because of a transition from normal capillary flow to nonnutritive microvascular shunt flow resulting in tissue hypoxia and edema, and it is manifest by a reduction in the cerebral metabolic rate for oxygen.
Guimaraes, Julio Brandao; Zanoteli, Edmar; Link, Thomas M; de Camargo, Leonardo V; Facchetti, Luca; Nardo, Lorenzo; Fernandes, Artur da Rocha Correa
2017-12-01
The purpose of this prospective study is to assess MRI findings in patients with sporadic inclusion body myositis (IBM) and correlate them with clinical and functional parameters. This study included 12 patients with biopsy-proven sporadic IBM. All patients underwent MRI of the bilateral upper and lower extremities. The images were scored for muscle atrophy, fatty infiltration, and edema pattern. Clinical data included onset and duration of disease. Muscle strength was measured using the Medical Research Council (MRC) scale, and functional status was assessed using the Modified Rankin Scale. Correlation between MRI and different clinical and functional parameters was calculated using the Spearman rank test and Pearson correlation. All patients showed MRI abnormalities, which were more severe within the lower limbs and the distal segments. The most prevalent MRI finding was fat infiltration. There was a statistically significant correlation between disease duration and number of muscles infiltrated by fat (r = 0.65; p = 0.04). The number of muscles with fat infiltration correlated with the sum of the scores of MRC (r = -0.60; p = 0.04) and with the Modified Rankin Scale (r = 0.48; p = 0.03). Our findings suggest that most patients with biopsy-proven sporadic IBM present with a typical pattern of muscle involvement at MRI, more extensively in the lower extremities. Moreover, MRI findings strongly correlated with clinical and functional parameters, because both the extent and severity of muscle involvement assessed by MRI and clinical and functional parameters are associated with the early onset of the disease and its duration.
Li, Yuanqing; Wang, Guangyi; Long, Jinyi; Yu, Zhuliang; Huang, Biao; Li, Xiaojian; Yu, Tianyou; Liang, Changhong; Li, Zheng; Sun, Pei
2011-01-01
One of the central questions in cognitive neuroscience is the precise neural representation, or brain pattern, associated with a semantic category. In this study, we explored the influence of audiovisual stimuli on the brain patterns of concepts or semantic categories through a functional magnetic resonance imaging (fMRI) experiment. We used a pattern search method to extract brain patterns corresponding to two semantic categories: "old people" and "young people." These brain patterns were elicited by semantically congruent audiovisual, semantically incongruent audiovisual, unimodal visual, and unimodal auditory stimuli belonging to the two semantic categories. We calculated the reproducibility index, which measures the similarity of the patterns within the same category. We also decoded the semantic categories from these brain patterns. The decoding accuracy reflects the discriminability of the brain patterns between two categories. The results showed that both the reproducibility index of brain patterns and the decoding accuracy were significantly higher for semantically congruent audiovisual stimuli than for unimodal visual and unimodal auditory stimuli, while the semantically incongruent stimuli did not elicit brain patterns with significantly higher reproducibility index or decoding accuracy. Thus, the semantically congruent audiovisual stimuli enhanced the within-class reproducibility of brain patterns and the between-class discriminability of brain patterns, and facilitate neural representations of semantic categories or concepts. Furthermore, we analyzed the brain activity in superior temporal sulcus and middle temporal gyrus (STS/MTG). The strength of the fMRI signal and the reproducibility index were enhanced by the semantically congruent audiovisual stimuli. Our results support the use of the reproducibility index as a potential tool to supplement the fMRI signal amplitude for evaluating multimodal integration.
Long, Jinyi; Yu, Zhuliang; Huang, Biao; Li, Xiaojian; Yu, Tianyou; Liang, Changhong; Li, Zheng; Sun, Pei
2011-01-01
One of the central questions in cognitive neuroscience is the precise neural representation, or brain pattern, associated with a semantic category. In this study, we explored the influence of audiovisual stimuli on the brain patterns of concepts or semantic categories through a functional magnetic resonance imaging (fMRI) experiment. We used a pattern search method to extract brain patterns corresponding to two semantic categories: “old people” and “young people.” These brain patterns were elicited by semantically congruent audiovisual, semantically incongruent audiovisual, unimodal visual, and unimodal auditory stimuli belonging to the two semantic categories. We calculated the reproducibility index, which measures the similarity of the patterns within the same category. We also decoded the semantic categories from these brain patterns. The decoding accuracy reflects the discriminability of the brain patterns between two categories. The results showed that both the reproducibility index of brain patterns and the decoding accuracy were significantly higher for semantically congruent audiovisual stimuli than for unimodal visual and unimodal auditory stimuli, while the semantically incongruent stimuli did not elicit brain patterns with significantly higher reproducibility index or decoding accuracy. Thus, the semantically congruent audiovisual stimuli enhanced the within-class reproducibility of brain patterns and the between-class discriminability of brain patterns, and facilitate neural representations of semantic categories or concepts. Furthermore, we analyzed the brain activity in superior temporal sulcus and middle temporal gyrus (STS/MTG). The strength of the fMRI signal and the reproducibility index were enhanced by the semantically congruent audiovisual stimuli. Our results support the use of the reproducibility index as a potential tool to supplement the fMRI signal amplitude for evaluating multimodal integration. PMID:21750692
Park, Hyun Jeong; Kim, Seong Hyun; Jang, Kyung Mi; Choi, Seo-youn; Lee, Soon Jin; Choi, Dongil
2014-04-01
To assess the added value of diffusion-weighted imaging (DWI) to conventional magnetic resonance imaging (MRI) for differentiating benign from malignant bile duct strictures. Twenty-seven patients with a benign stricture and 42 patients with a malignant stricture who had undergone gadoxetic acid-enhanced MRI with DWI were enrolled. Qualitative (signal intensity, dynamic enhancement pattern) and quantitative (wall thickness and length) analyses were performed. Two observers independently reviewed a set of conventional MRI and a combined set of conventional MRI and DWI, and receiver operating characteristic (ROC) curve analysis was assessed. Benign strictures showed isointensity (18.5-70.4 %) and a similar enhancement pattern (22.2 %) to that of normal bile duct more frequently than malignant strictures (0-40.5 % and 0 %) on conventional MRI (P < 0.05). Malignant strictures (90.5-92.9 %) showed hypervascularity on arterial and portal venous phase images more frequently than benign strictures (37.0-70.4 %) (P < 0.01) On DWI, all malignant strictures showed hyperintensity compared with benign cases (70.4 %) (P < 0.001). Malignant strictures were significantly thicker and longer than benign strictures (P < 0.001). The diagnostic performance of both observers improved significantly after additional review of DWI. Adding DWI to conventional MRI is more helpful for differentiating benign from malignant bile duct strictures than conventional MRI alone. • Accurate diagnosis and exclusion of benign strictures of bile duct are important. • Diffusion-weighted MRI helps to distinguish benign from malignant bile duct strictures. • DWI plus conventional MRI provides superior diagnostic accuracy to conventional MRI alone.
Powell, S E; Ramzan, P H L; Head, M J; Shepherd, M C; Baldwin, G I; Steven, W N
2010-01-01
The proximal metacarpal region is a common site of origin of lameness in the performance horse. A number of disease entities are recognised as causes of proximal metacarpal lameness but a definitive diagnosis is often elusive. Magnetic resonance imaging (MRI) is hypothesised to offer advantages over traditional imaging modalities in the investigation of proximal metacarpal pain. To describe clinical and imaging features of cases of lameness in racehorses arising from the proximal metacarpal region in which standing MRI identified 'bone marrow oedema-type' (BMO-type) signal patterns. Records for all horses undergoing standing MRI of the proximal metacarpus/distal carpus from September 2006 to December 2008 were reviewed. Cases underwent a standardised protocol for diagnostic analgesia, radiography and ultrasonography of the proximal metacarpus and distal carpus. Cases with proximal metacarpal lameness displaying a characteristic BMO-type signal pattern on MRI were identified and outcomes analysed. Eight cases were identified with characteristic MRI findings of extensive hyperintensity on T2* gradient echo and short tau inversion fast spin echo sequences and corresponding hypointensity on T1 gradient echo images within the palmaroproximal aspect of the third metacarpal bone. Follow-up information was available for all cases; at the time of writing 7/8 had returned to full work and were free from lameness. The BMO-type signal patterns visible on MR images in these cases may signal the existence of a previously under-diagnosed pathological process associated with proximal metacarpal lameness in racehorses. This finding is postulated to be associated with a stress reaction and possible prodromal stress fracture of the palmaroproximal metacarpus not appreciable radiographically or ultrasonographically. MRI of the proximal metacarpal region permits detection of pathological processes, which may elude conventional imaging and, therefore, has important therapeutic and prognostic implications in these cases.
Decoding fMRI Signatures of Real-world Autobiographical Memory Retrieval.
Rissman, Jesse; Chow, Tiffany E; Reggente, Nicco; Wagner, Anthony D
2016-04-01
Extant neuroimaging data implicate frontoparietal and medial-temporal lobe regions in episodic retrieval, and the specific pattern of activity within and across these regions is diagnostic of an individual's subjective mnemonic experience. For example, in laboratory-based paradigms, memories for recently encoded faces can be accurately decoded from single-trial fMRI patterns [Uncapher, M. R., Boyd-Meredith, J. T., Chow, T. E., Rissman, J., & Wagner, A. D. Goal-directed modulation of neural memory patterns: Implications for fMRI-based memory detection. Journal of Neuroscience, 35, 8531-8545, 2015; Rissman, J., Greely, H. T., & Wagner, A. D. Detecting individual memories through the neural decoding of memory states and past experience. Proceedings of the National Academy of Sciences, U.S.A., 107, 9849-9854, 2010]. Here, we investigated the neural patterns underlying memory for real-world autobiographical events, probed at 1- to 3-week retention intervals as well as whether distinct patterns are associated with different subjective memory states. For 3 weeks, participants (n = 16) wore digital cameras that captured photographs of their daily activities. One week later, they were scanned while making memory judgments about sequences of photos depicting events from their own lives or events captured by the cameras of others. Whole-brain multivoxel pattern analysis achieved near-perfect accuracy at distinguishing correctly recognized events from correctly rejected novel events, and decoding performance did not significantly vary with retention interval. Multivoxel pattern classifiers also differentiated recollection from familiarity and reliably decoded the subjective strength of recollection, of familiarity, or of novelty. Classification-based brain maps revealed dissociable neural signatures of these mnemonic states, with activity patterns in hippocampus, medial PFC, and ventral parietal cortex being particularly diagnostic of recollection. Finally, a classifier trained on previously acquired laboratory-based memory data achieved reliable decoding of autobiographical memory states. We discuss the implications for neuroscientific accounts of episodic retrieval and comment on the potential forensic use of fMRI for probing experiential knowledge.
Lee, Yune-Sang; Turkeltaub, Peter; Granger, Richard; Raizada, Rajeev D S
2012-03-14
Although much effort has been directed toward understanding the neural basis of speech processing, the neural processes involved in the categorical perception of speech have been relatively less studied, and many questions remain open. In this functional magnetic resonance imaging (fMRI) study, we probed the cortical regions mediating categorical speech perception using an advanced brain-mapping technique, whole-brain multivariate pattern-based analysis (MVPA). Normal healthy human subjects (native English speakers) were scanned while they listened to 10 consonant-vowel syllables along the /ba/-/da/ continuum. Outside of the scanner, individuals' own category boundaries were measured to divide the fMRI data into /ba/ and /da/ conditions per subject. The whole-brain MVPA revealed that Broca's area and the left pre-supplementary motor area evoked distinct neural activity patterns between the two perceptual categories (/ba/ vs /da/). Broca's area was also found when the same analysis was applied to another dataset (Raizada and Poldrack, 2007), which previously yielded the supramarginal gyrus using a univariate adaptation-fMRI paradigm. The consistent MVPA findings from two independent datasets strongly indicate that Broca's area participates in categorical speech perception, with a possible role of translating speech signals into articulatory codes. The difference in results between univariate and multivariate pattern-based analyses of the same data suggest that processes in different cortical areas along the dorsal speech perception stream are distributed on different spatial scales.
Girdauskas, Evaldas; Rouman, Mina; Disha, Kushtrim; Espinoza, Andres; Dubslaff, Georg; Fey, Beatrix; Theis, Bernhard; Petersen, Iver; Borger, Michael A; Kuntze, Thomas
2016-02-01
We prospectively examined functional characteristics of the aortic root and transvalvular haemodynamic flow in order to define factors associated with the severity of aortopathy in patients undergoing surgery for bicuspid aortic valve (BAV) stenosis. A total of 103 consecutive patients with BAV stenosis (mean age 61 ± 9 years, 66% male) underwent aortic valve replacement ± concomitant aortic surgery from January 2012 through March 2014. All patients underwent preoperative cardiac magnetic resonance imaging (MRI) in order to evaluate the systolic transvalvular flow and the following functional parameters: (i) angulation between the left ventricular outflow axis and the aortic root, (ii) geometrical orientation of residual aortic valve orifice and (iii) BAV cusp fusion pattern. MRI data were used to guide sampling of the ascending aorta during surgery [i.e. jet-sample from the area where the flow-jet impacts on the aortic wall and control sample from the opposite aortic wall (obtained from the aortotomy site)]. Aortopathy was quantified by means of a histological sum-score (0 to 21+) in each sample. A significant correlation was found between histological sum-score in the jet-sample and the angle between the LV outflow axis and the aortic root (r = 0.6, P = 0.007). Moreover, there was a linear correlation between proximal aortic diameter and the angle between systolic flow-jet and ascending aortic wall (r = 0.5, P = 0.006). Logistic regression identified the angle between the LV outflow axis and the aortic root (OR 1.1, P = 0.04) and the angle between the flow-jet and the aortic wall (OR 1.2, P = 0.001) as independent predictors of an indexed proximal aortic diameter ≥22 mm/m(2). Functional parameters of the aortic root may be used to predict the severity of aortopathy in patients with BAV stenosis, and may be useful in predicting future risk of aortic disease in such patients. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Schlumpf, Yolanda R.; Reinders, Antje A. T. S.; Nijenhuis, Ellert R. S.; Luechinger, Roger; van Osch, Matthias J. P.; Jäncke, Lutz
2014-01-01
Background In accordance with the Theory of Structural Dissociation of the Personality (TSDP), studies of dissociative identity disorder (DID) have documented that two prototypical dissociative subsystems of the personality, the “Emotional Part” (EP) and the “Apparently Normal Part” (ANP), have different biopsychosocial reactions to supraliminal and subliminal trauma-related cues and that these reactions cannot be mimicked by fantasy prone healthy controls nor by actors. Methods Arterial spin labeling perfusion MRI was used to test the hypotheses that ANP and EP in DID have different perfusion patterns in response to rest instructions, and that perfusion is different in actors who were instructed to simulate ANP and EP. In a follow-up study, regional cerebral blood flow of DID patients was compared with the activation pattern of healthy non-simulating controls. Results Compared to EP, ANP showed elevated perfusion in bilateral thalamus. Compared to ANP, EP had increased perfusion in the dorsomedial prefrontal cortex, primary somatosensory cortex, and motor-related areas. Perfusion patterns for simulated ANP and EP were different. Fitting their reported role-play strategies, the actors activated brain structures involved in visual mental imagery and empathizing feelings. The follow-up study demonstrated elevated perfusion in the left temporal lobe in DID patients, whereas non-simulating healthy controls had increased activity in areas which mediate the mental construction of past and future episodic events. Conclusion DID involves dissociative part-dependent resting-state differences. Compared to ANP, EP activated brain structures involved in self-referencing and sensorimotor actions more. Actors had different perfusion patterns compared to genuine ANP and EP. Comparisons of neural activity for individuals with DID and non-DID simulating controls suggest that the resting-state features of ANP and EP in DID are not due to imagination. The findings are consistent with TSDP and inconsistent with the idea that DID is caused by suggestion, fantasy proneness, and role-playing. PMID:24922512
Lower Parietal Encoding Activation Is Associated with Sharper Information and Better Memory.
Lee, Hongmi; Chun, Marvin M; Kuhl, Brice A
2017-04-01
Mean fMRI activation in ventral posterior parietal cortex (vPPC) during memory encoding often negatively predicts successful remembering. A popular interpretation of this phenomenon is that vPPC reflects "off-task" processing. However, recent fMRI studies considering distributed patterns of activity suggest that vPPC actively represents encoded material. Here, we assessed the relationships between pattern-based content representations in vPPC, mean activation in vPPC, and subsequent remembering. We analyzed data from two fMRI experiments where subjects studied then recalled word-face or word-scene associations. For each encoding trial, we measured 1) mean univariate activation within vPPC and 2) the strength of face/scene information as indexed by pattern analysis. Mean activation in vPPC negatively predicted subsequent remembering, but the strength of pattern-based information in the same vPPC voxels positively predicted later memory. Indeed, univariate amplitude averaged across vPPC voxels negatively correlated with pattern-based information strength. This dissociation reflected a tendency for univariate reductions to maximally occur in voxels that were not strongly tuned for the category of encoded stimuli. These results indicate that vPPC activity patterns reflect the content and quality of memory encoding and constitute a striking example of lower univariate activity corresponding to stronger pattern-based information. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Observation of cardiogenic flow oscillations in healthy subjects with hyperpolarized 3He MRI
Collier, Guilhem J.; Marshall, Helen; Rao, Madhwesha; Stewart, Neil J.; Capener, David
2015-01-01
Recently, dynamic MRI of hyperpolarized 3He during inhalation revealed an alternation of the image intensity between left and right lungs with a cardiac origin (Sun Y, Butler JP, Ferrigno M, Albert MS, Loring SH. Respir Physiol Neurobiol 185: 468–471, 2013). This effect is investigated further using dynamic and phase-contrast flow MRI with inhaled 3He during slow inhalations (flow rate ∼100 ml/s) to elucidate airflow dynamics in the main lobes in six healthy subjects. The ventilation MR signal and gas inflow in the left lower lobe (LLL) of the lungs were found to oscillate clearly at the cardiac frequency in all subjects, whereas the MR signals in the other parts of the lungs had a similar oscillatory behavior but were smaller in magnitude and in anti-phase to the signal in the left lower lung. The airflow in the main bronchi showed periodic oscillations at the frequency of the cardiac cycle. In four of the subjects, backflows were observed for a short period of time of the cardiac cycle, demonstrating a pendelluft effect at the carina bifurcation between the left and right lungs. Additional 1H structural MR images of the lung volume and synchronized ECG recording revealed that maximum inspiratory flow rates in the LLL of the lungs occurred during systole when the corresponding left lung volume increased, whereas the opposite effect was observed during diastole, with gas flow redirected to the other parts of the lung. In conclusion, cardiogenic flow oscillations have a significant effect on regional gas flow and distribution within the lungs. PMID:26338461
Discriminant analysis of resting-state functional connectivity patterns on the Grassmann manifold
NASA Astrophysics Data System (ADS)
Fan, Yong; Liu, Yong; Jiang, Tianzi; Liu, Zhening; Hao, Yihui; Liu, Haihong
2010-03-01
The functional networks, extracted from fMRI images using independent component analysis, have been demonstrated informative for distinguishing brain states of cognitive functions and neurological diseases. In this paper, we propose a novel algorithm for discriminant analysis of functional networks encoded by spatial independent components. The functional networks of each individual are used as bases for a linear subspace, referred to as a functional connectivity pattern, which facilitates a comprehensive characterization of temporal signals of fMRI data. The functional connectivity patterns of different individuals are analyzed on the Grassmann manifold by adopting a principal angle based subspace distance. In conjunction with a support vector machine classifier, a forward component selection technique is proposed to select independent components for constructing the most discriminative functional connectivity pattern. The discriminant analysis method has been applied to an fMRI based schizophrenia study with 31 schizophrenia patients and 31 healthy individuals. The experimental results demonstrate that the proposed method not only achieves a promising classification performance for distinguishing schizophrenia patients from healthy controls, but also identifies discriminative functional networks that are informative for schizophrenia diagnosis.
Multistability of the Brain Network for Self-other Processing
Chen, Yi-An; Huang, Tsung-Ren
2017-01-01
Early fMRI studies suggested that brain areas processing self-related and other-related information were highly overlapping. Hypothesising functional localisation of the cortex, researchers have tried to locate “self-specific” and “other-specific” regions within these overlapping areas by subtracting suspected confounding signals in task-based fMRI experiments. Inspired by recent advances in whole-brain dynamic modelling, we instead explored an alternative hypothesis that similar spatial activation patterns could be associated with different processing modes in the form of different synchronisation patterns. Combining an automated synthesis of fMRI data with a presumption-free diffusion spectrum image (DSI) fibre-tracking algorithm, we isolated a network putatively composed of brain areas and white matter tracts involved in self-other processing. We sampled synchronisation patterns from the dynamical systems of this network using various combinations of physiological parameters. Our results showed that the self-other processing network, with simulated gamma-band activity, tended to stabilise at a number of distinct synchronisation patterns. This phenomenon, termed “multistability,” could serve as an alternative model in theorising the mechanism of processing self-other information. PMID:28256520
MRI and Related Astrophysical Instabilities in the Lab
NASA Astrophysics Data System (ADS)
Goodman, Jeremy
2018-06-01
The dynamics of accretion in astronomical disks is only partly understood. Magnetorotational instability (MRI) is surely important but has been studied largely through linear analysis and numerical simulations rather than experiments. Also, it is unclear whether MRI is effective in protostellar disks, which are likely poor electrical conductors. Shear-driven hydrodynamic turbulence is very familiar in terrestrial flows, but simulations indicate that it is inhibited in disks. I summarize experimental progress and challenges relevant to both types of instability.
Tak, Sungho; Polimeni, Jonathan R; Wang, Danny J J; Yan, Lirong; Chen, J Jean
2015-04-01
There has been tremendous interest in applying functional magnetic resonance imaging-based resting-state functional connectivity (rs-fcMRI) measurements to the study of brain function. However, a lack of understanding of the physiological mechanisms of rs-fcMRI limits their ability to interpret rs-fcMRI findings. In this work, the authors examine the regional associations between rs-fcMRI estimates and dynamic coupling between the blood oxygenation level-dependent (BOLD) and cerebral blood flow (CBF), as well as resting macrovascular volume. Resting-state BOLD and CBF data were simultaneously acquired using a dual-echo pseudocontinuous arterial spin labeling (pCASL) technique, whereas macrovascular volume fraction was estimated using time-of-flight MR angiography. Functional connectivity within well-known functional networks—including the default mode, frontoparietal, and primary sensory-motor networks—was calculated using a conventional seed-based correlation approach. They found the functional connectivity strength to be significantly correlated with the regional increase in CBF-BOLD coupling strength and inversely proportional to macrovascular volume fraction. These relationships were consistently observed within all functional networks considered. Their findings suggest that highly connected networks observed using rs-fcMRI are not likely to be mediated by common vascular drainage linking distal cortical areas. Instead, high BOLD functional connectivity is more likely to reflect tighter neurovascular connections, attributable to neuronal pathways.
Hoge, Richard D
2012-08-15
Functional magnetic resonance imaging with blood oxygenation level-dependent (BOLD) contrast has had a tremendous influence on human neuroscience in the last twenty years, providing a non-invasive means of mapping human brain function with often exquisite sensitivity and detail. However the BOLD method remains a largely qualitative approach. While the same can be said of anatomic MRI techniques, whose clinical and research impact has not been diminished in the slightest by the lack of a quantitative interpretation of their image intensity, the quantitative expression of BOLD responses as a percent of the baseline T2*- weighted signal has been viewed as necessary since the earliest days of fMRI. Calibrated MRI attempts to dissociate changes in oxygen metabolism from changes in blood flow and volume, the latter three quantities contributing jointly to determine the physiologically ambiguous percent BOLD change. This dissociation is typically performed using a "calibration" procedure in which subjects inhale a gas mixture containing small amounts of carbon dioxide or enriched oxygen to produce changes in blood flow and BOLD signal which can be measured under well-defined hemodynamic conditions. The outcome is a calibration parameter M which can then be substituted into an expression providing the fractional change in oxygen metabolism given changes in blood flow and BOLD signal during a task. The latest generation of calibrated MRI methods goes beyond fractional changes to provide absolute quantification of resting-state oxygen consumption in micromolar units, in addition to absolute measures of evoked metabolic response. This review discusses the history, challenges, and advances in calibrated MRI, from the personal perspective of the author. Copyright © 2012 Elsevier Inc. All rights reserved.
Xu, Nan; Spreng, R Nathan; Doerschuk, Peter C
2017-01-01
Resting-state functional MRI (rs-fMRI) is widely used to noninvasively study human brain networks. Network functional connectivity is often estimated by calculating the timeseries correlation between blood-oxygen-level dependent (BOLD) signal from different regions of interest (ROIs). However, standard correlation cannot characterize the direction of information flow between regions. In this paper, we introduce and test a new concept, prediction correlation, to estimate effective connectivity in functional brain networks from rs-fMRI. In this approach, the correlation between two BOLD signals is replaced by a correlation between one BOLD signal and a prediction of this signal via a causal system driven by another BOLD signal. Three validations are described: (1) Prediction correlation performed well on simulated data where the ground truth was known, and outperformed four other methods. (2) On simulated data designed to display the "common driver" problem, prediction correlation did not introduce false connections between non-interacting driven ROIs. (3) On experimental data, prediction correlation recovered the previously identified network organization of human brain. Prediction correlation scales well to work with hundreds of ROIs, enabling it to assess whole brain interregional connectivity at the single subject level. These results provide an initial validation that prediction correlation can capture the direction of information flow and estimate the duration of extended temporal delays in information flow between regions of interest ROIs based on BOLD signal. This approach not only maintains the high sensitivity to network connectivity provided by the correlation analysis, but also performs well in the estimation of causal information flow in the brain.
Spithoven, E M; Meijer, E; Borns, C; Boertien, W E; Gaillard, C A J M; Kappert, P; Greuter, M J W; van der Jagt, E; Vart, P; de Jong, P E; Gansevoort, R T
2016-03-01
Renal blood flow (RBF) has been shown to predict disease progression in autosomal dominant polycystic kidney disease (ADPKD). We investigated the feasibility and accuracy of phase-contrast RBF by MRI (RBFMRI) in ADPKD patients with a wide range of estimated glomerular filtration rate (eGFR) values. First, we validated RBFMRI measurement using phantoms simulating renal artery hemodynamics. Thereafter, we investigated in a test-set of 21 patients intra- and inter-observer coefficient of variation of RBFMRI. After validation, we measured RBFMRI in a cohort of 91 patients and compared the variability explained by characteristics indicative for disease severity for RBFMRI and RBF measured by continuous hippuran infusion. The correlation in flow measurement using phantoms by phase-contrast MRI was high and fluid collection was high (CCC=0.969). Technical problems that precluded RBFMRI measurement occurred predominantly in patients with a lower eGFR (34% vs. 16%). In subjects with higher eGFRs, variability in RBF explained by disease characteristics was similar for RBFMRI compared to RBFHip, whereas in subjects with lower eGFRs, this was significantly less for RBFMRI. Our study shows that RBF can be measured accurately in ADPKD patients by phase-contrast, but this technique may be less feasible in subjects with a lower eGFR. Renal blood flow (RBF) can be accurately measured by phase-contrast MRI in ADPKD patients. RBF measured by phase-contrast is associated with ADPKD disease severity. RBF measurement by phase-contrast MRI may be less feasible in patients with an impaired eGFR.
Bermo, Mohammed; Matesan, Manuela C; Itani, Malak; Behnia, Fatemeh; Vesselle, Hubert J
2018-04-09
The purpose of the study was to correlate lung shunt fraction (LSF) calculated by intra-arterial injection of Technetium-99m (Tc-99m)-labeled macroaggregated albumin (MAA) in a hepatic artery branch with the presence of certain patterns of vascular shunts on dynamic CT or MRI of the liver. This retrospective study was approved by the institutional review board and informed consent was waived. We reviewed 523 MAA scans in 453 patients (301 men, 152 women) performed from July 2007 to June 2015 and their correlative cross-sectional imaging. Patterns of vascular shunts on dynamic CT or MRI performed within 3 months of the MAA study and that potentially divert hepatic arterial inflow to the systemic venous return were defined as "target shunts." Dynamic CT or MRI was classified into three groups with target shunt present, absent, or indeterminate. The mean LSF was compared across the first and second groups using paired t test. 342 CT and MRI studies met inclusion criteria: target shunts were present in 63 studies, absent in 271 studies, and 8 studies were indeterminate. When target shunts were visualized, the mean LSF on corresponding MAA scans was 12.9 ± 10.36% (95% CI 10.29-15.15%) compared to 4.3 ± 3.17% (95% CI 3.93-4.68%) when no target shunt was visualized. The difference was statistically significant (p value < 0.001). Identified target shunts were either direct (arteriohepatic venous shunt) or indirect (arterioportal shunt combined with a portosystemic shunt). Visualizing certain patterns of vascular shunting on a dynamic CT or MRI scan is associated with high LSF.
Reconstructing Perceived and Retrieved Faces from Activity Patterns in Lateral Parietal Cortex.
Lee, Hongmi; Kuhl, Brice A
2016-06-01
Recent findings suggest that the contents of memory encoding and retrieval can be decoded from the angular gyrus (ANG), a subregion of posterior lateral parietal cortex. However, typical decoding approaches provide little insight into the nature of ANG content representations. Here, we tested whether complex, multidimensional stimuli (faces) could be reconstructed from ANG by predicting underlying face components from fMRI activity patterns in humans. Using an approach inspired by computer vision methods for face recognition, we applied principal component analysis to a large set of face images to generate eigenfaces. We then modeled relationships between eigenface values and patterns of fMRI activity. Activity patterns evoked by individual faces were then used to generate predicted eigenface values, which could be transformed into reconstructions of individual faces. We show that visually perceived faces were reliably reconstructed from activity patterns in occipitotemporal cortex and several lateral parietal subregions, including ANG. Subjective assessment of reconstructed faces revealed specific sources of information (e.g., affect and skin color) that were successfully reconstructed in ANG. Strikingly, we also found that a model trained on ANG activity patterns during face perception was able to successfully reconstruct an independent set of face images that were held in memory. Together, these findings provide compelling evidence that ANG forms complex, stimulus-specific representations that are reflected in activity patterns evoked during perception and remembering. Neuroimaging studies have consistently implicated lateral parietal cortex in episodic remembering, but the functional contributions of lateral parietal cortex to memory remain a topic of debate. Here, we used an innovative form of fMRI pattern analysis to test whether lateral parietal cortex actively represents the contents of memory. Using a large set of human face images, we first extracted latent face components (eigenfaces). We then used machine learning algorithms to predict face components from fMRI activity patterns and, ultimately, to reconstruct images of individual faces. We show that activity patterns in a subregion of lateral parietal cortex, the angular gyrus, supported successful reconstruction of perceived and remembered faces, confirming a role for this region in actively representing remembered content. Copyright © 2016 the authors 0270-6474/16/366069-14$15.00/0.
Multibreath alveolar oxygen tension imaging.
Clapp, Justin; Hamedani, Hooman; Kadlecek, Stephen; Xin, Yi; Shaghaghi, Hoora; Siddiqui, Sarmad; Rossman, Milton D; Rizi, Rahim R
2016-10-01
This study tested the ability of a multibreath hyperpolarized HP (3) He MRI protocol to increase the accuracy of regional alveolar oxygen tension (PA O2 ) measurements by lessening the influence of gas-flow artifacts. Conventional single-breath PA O2 measurement has been susceptible to error induced by intervoxel gas flow, particularly when used to study subjects with moderate-to-severe chronic obstructive pulmonary disease (COPD). Both single-breath and multibreath PA O2 imaging schemes were implemented in seven human subjects (one healthy, three asymptomatic smokers, and three COPD). The number and location of voxels with nonphysiologic PA O2 values generated by intervoxel gas flow were compared between the two protocols. The multibreath scheme resulted in a significantly lower total percentage of nonphysiologic PA O2 values (6.0%) than the single-breath scheme (13.7%) (P = 0.006). PA O2 maps showed several patterns of gas-flow artifacts that were present in the single-breath protocol but mitigated by the multibreath approach. Multibreath imaging also allowed for the analysis of slow-filling areas that presented no signal after a single breath. A multibreath approach enhances the accuracy and completeness of noninvasive PA O2 measurement by significantly lessening the proportion of nonphysiologic values generated by intervoxel gas flow. Magn Reson Med 76:1092-1101, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Menon, Samir; Zhu, Jack; Goyal, Deeksha; Khatib, Oussama
2017-07-01
Haptic interfaces compatible with functional magnetic resonance imaging (Haptic fMRI) promise to enable rich motor neuroscience experiments that study how humans perform complex manipulation tasks. Here, we present a large-scale study (176 scans runs, 33 scan sessions) that characterizes the reliability and performance of one such electromagnetically actuated device, Haptic fMRI Interface 3 (HFI-3). We outline engineering advances that ensured HFI-3 did not interfere with fMRI measurements. Observed fMRI temporal noise levels with HFI-3 operating were at the fMRI baseline (0.8% noise to signal). We also present results from HFI-3 experiments demonstrating that high resolution fMRI can be used to study spatio-temporal patterns of fMRI blood oxygenation dependent (BOLD) activation. These experiments include motor planning, goal-directed reaching, and visually-guided force control. Observed fMRI responses are consistent with existing literature, which supports Haptic fMRI's effectiveness at studying the brain's motor regions.
MRI as a biomarker for mild neonatal encephalopathy.
Walsh, Brian H; Inder, Terrie E
2018-05-01
Historically, there has been limited neuro-imaging data acquired on infants with mild neonatal encephalopathy (NE). This likely reflects the traditional assumption that these infants had a universally good prognosis. As new evidence has emerged challenging this assumption, there has been a renewed interest in the neuro-imaging findings of these infants. To date, magnetic resonance imaging (MRI) studies in infants with mild NE have demonstrated abnormalities in 20-40% of cases suggestive that the injury occurs during the peripartum period with a predominant watershed pattern of injury. The severity of the injury on MRI in infants with mild NE varies, but includes patterns of injury that have been associated with long-term neuro-developmental impairment. Copyright © 2018 Elsevier B.V. All rights reserved.
Feasibility of ASL spinal bone marrow perfusion imaging with optimized inversion time.
Xing, Dong; Zha, Yunfei; Yan, Liyong; Wang, Kejun; Gong, Wei; Lin, Hui
2015-11-01
To assess the correlation between flow-sensitive alternating inversion recovery (FAIR) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in the measurement of spinal bone marrow (SBM) perfusion; in addition, to assess for an optimized inversion time (TI) as well as the reproducibility of SBM FAIR perfusion. The optimized TI of a FAIR SBM perfusion experiment was carried out on 14 volunteers; two adjacent vertebral bodies were selected from each volunteer to measure the change of signal intensity (ΔM) and the signal-to-noise ratio (SNR) of FAIR perfusion MRI with five different TIs. Then, reproducibility of FAIR data from 10 volunteers was assessed by the reposition SBM FAIR experiments. Finally, FAIR and DCE-MRI were performed on 27 subjects. The correlation between the blood flow on FAIR (BFASL ) and perfusion-related parameters on DCE-MRI was evaluated. The maximum value of ΔM and SNR were 36.39 ± 12.53 and 2.38 ± 0.97, respectively; both were obtained when TI was near 1200 msec. There were no significant difference between the two successive measurements of SBM BFASL perfusion (P = 0.879), and the within-subject coefficients of variation (wCV) of the measurements was 3.28%. The BFASL showed a close correlation with K(trans) (P < 0.001) and Kep (P = 0.004), and no correlation with Ve (P = 0.082) was found. 1200 msec was the optimal TI for the SBM ASL perfusion image, which led to the maximum ΔM and a good quality perfusion image. The SBM FAIR perfusion scan protocol has good reproducibility, and as blood flow measurement on FAIR is reliable and closely related with the parameters on DCE-MRI, FAIR is feasible for measuring SBM blood flow. © 2015 Wiley Periodicals, Inc.
Large-scale Density Structures in Magneto-rotational Disk Turbulence
NASA Astrophysics Data System (ADS)
Youdin, Andrew; Johansen, A.; Klahr, H.
2009-01-01
Turbulence generated by the magneto-rotational instability (MRI) is a strong candidate to drive accretion flows in disks, including sufficiently ionized regions of protoplanetary disks. The MRI is often studied in local shearing boxes, which model a small section of the disk at high resolution. I will present simulations of large, stratified shearing boxes which extend up to 10 gas scale-heights across. These simulations are a useful bridge to fully global disk simulations. We find that MRI turbulence produces large-scale, axisymmetric density perturbations . These structures are part of a zonal flow --- analogous to the banded flow in Jupiter's atmosphere --- which survives in near geostrophic balance for tens of orbits. The launching mechanism is large-scale magnetic tension generated by an inverse cascade. We demonstrate the robustness of these results by careful study of various box sizes, grid resolutions, and microscopic diffusion parameterizations. These gas structures can trap solid material (in the form of large dust or ice particles) with important implications for planet formation. Resolved disk images at mm-wavelengths (e.g. from ALMA) will verify or constrain the existence of these structures.
Slowik, T J; Green, B L; Thorvilson, H G
1997-01-01
Red imported fire ant (Solenopsis invicta) workers, queens, and alates were analyzed by magnetic resonance imaging (MRI) for the presence of natural magnetism. Images of ants showed distortion patterns similar to those of honey bees and monarch butterflies, both of which possess ferromagnetic material. The bipolar ring patterns of MRI indicated the presence in fire ants of small amounts of internal magnetic material, which may be used in orientation behaviors, as in the honey bees.
Strappini, Francesca; Gilboa, Elad; Pitzalis, Sabrina; Kay, Kendrick; McAvoy, Mark; Nehorai, Arye; Snyder, Abraham Z
2017-03-01
Temporal and spatial filtering of fMRI data is often used to improve statistical power. However, conventional methods, such as smoothing with fixed-width Gaussian filters, remove fine-scale structure in the data, necessitating a tradeoff between sensitivity and specificity. Specifically, smoothing may increase sensitivity (reduce noise and increase statistical power) but at the cost loss of specificity in that fine-scale structure in neural activity patterns is lost. Here, we propose an alternative smoothing method based on Gaussian processes (GP) regression for single subjects fMRI experiments. This method adapts the level of smoothing on a voxel by voxel basis according to the characteristics of the local neural activity patterns. GP-based fMRI analysis has been heretofore impractical owing to computational demands. Here, we demonstrate a new implementation of GP that makes it possible to handle the massive data dimensionality of the typical fMRI experiment. We demonstrate how GP can be used as a drop-in replacement to conventional preprocessing steps for temporal and spatial smoothing in a standard fMRI pipeline. We present simulated and experimental results that show the increased sensitivity and specificity compared to conventional smoothing strategies. Hum Brain Mapp 38:1438-1459, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Shi, Huilan; Jia, Junya; Li, Dong; Wei, Li; Shang, Wenya; Zheng, Zhenfeng
2018-02-09
Precise renal histopathological diagnosis will guide therapy strategy in patients with lupus nephritis. Blood oxygen level dependent (BOLD) magnetic resonance imaging (MRI) has been applicable noninvasive technique in renal disease. This current study was performed to explore whether BOLD MRI could contribute to diagnose renal pathological pattern. Adult patients with lupus nephritis renal pathological diagnosis were recruited for this study. Renal biopsy tissues were assessed based on the lupus nephritis ISN/RPS 2003 classification. The Blood oxygen level dependent magnetic resonance imaging (BOLD-MRI) was used to obtain functional magnetic resonance parameter, R2* values. Several functions of R2* values were calculated and used to construct algorithmic models for renal pathological patterns. In addition, the algorithmic models were compared as to their diagnostic capability. Both Histopathology and BOLD MRI were used to examine a total of twelve patients. Renal pathological patterns included five classes III (including 3 as class III + V) and seven classes IV (including 4 as class IV + V). Three algorithmic models, including decision tree, line discriminant, and logistic regression, were constructed to distinguish the renal pathological pattern of class III and class IV. The sensitivity of the decision tree model was better than that of the line discriminant model (71.87% vs 59.48%, P < 0.001) and inferior to that of the Logistic regression model (71.87% vs 78.71%, P < 0.001). The specificity of decision tree model was equivalent to that of the line discriminant model (63.87% vs 63.73%, P = 0.939) and higher than that of the logistic regression model (63.87% vs 38.0%, P < 0.001). The Area under the ROC curve (AUROCC) of the decision tree model was greater than that of the line discriminant model (0.765 vs 0.629, P < 0.001) and logistic regression model (0.765 vs 0.662, P < 0.001). BOLD MRI is a useful non-invasive imaging technique for the evaluation of lupus nephritis. Decision tree models constructed using functions of R2* values may facilitate the prediction of renal pathological patterns.
Frias, A.E.; Schabel, M.C.; Roberts, V.H.J.; Tudorica, A.; Grigsby, P.L.; Oh, K.Y.; Kroenke, C. D.
2015-01-01
Purpose The maternal microvasculature of the primate placenta is organized into 10-20 perfusion domains that are functionally optimized to facilitate nutrient exchange to support fetal growth. This study describes a dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) method for identifying vascular domains, and quantifying maternal blood flow in them. Methods A rhesus macaque on the 133rd day of pregnancy (G133, term=165 days) underwent Doppler ultrasound (US) procedures, DCE-MRI, and Cesarean-section delivery. Serial T1-weighted images acquired throughout intravenous injection of a contrast reagent (CR) bolus were analyzed to obtain CR arrival time maps of the placenta. Results Watershed segmentation of the arrival time map identified 16 perfusion domains. The number and location of these domains corresponded to anatomical cotyledonary units observed following delivery. Analysis of the CR wave front through each perfusion domain enabled determination of volumetric flow, which ranged from 9.03 to 44.9 mL/sec (25.2 ± 10.3 mL/sec). These estimates are supported by Doppler US results. Conclusions The DCE-MRI analysis described here provides quantitative estimates of the number of maternal perfusion domains in a primate placenta, and estimates flow within each domain. Anticipated extensions of this technique are to the study placental function in nonhuman primate models of obstetric complications. PMID:24753177
Lingwood, Mark D.; Siaw, Ting Ann; Sailasuta, Napapon; Ross, Brian D.; Bhattacharya, Pratip; Han, Songi
2016-01-01
We describe and demonstrate a system to generate hyperpolarized water in the 0.35 T fringe field of a clinical 1.5 T whole-body magnetic resonance imaging (MRI) magnet. Once generated, the hyperpolarized water is quickly and continuously transferred from the 0.35 T fringe to the 1.5 T center field of the same magnet for image acquisition using standard MRI equipment. The hyperpolarization is based on Overhauser dynamic nuclear polarization (DNP), which effectively and quickly transfers the higher spin polarization of free radicals to nuclear spins at ambient temperatures. We visualize the dispersion of hyperpolarized water as it flows through water-saturated systems by utilizing an observed −15 fold DNP signal enhancement with respect to the unenhanced 1H MRI signal of water at 1.5 T. The experimental DNP apparatus presented here is readily portable and can be brought to and used with any conventional unshielded MRI system. A new method of immobilizing radicals to gel beads via polyelectrolyte linker arms is described, which led to superior flow Overhauser DNP performance compared to previously presented gels. We discuss the general applicability of Overhauser DNP hyperpolarization of water and aqueous solutions in the fringe field of commercially available magnets with central fields up to 4.7 Tesla. PMID:20541445
Specht, Karsten; Baumgartner, Florian; Stadler, Jörg; Hugdahl, Kenneth; Pollmann, Stefan
2014-01-01
To differentiate between stop-consonants, the auditory system has to detect subtle place of articulation (PoA) and voice-onset time (VOT) differences between stop-consonants. How this differential processing is represented on the cortical level remains unclear. The present functional magnetic resonance (fMRI) study takes advantage of the superior spatial resolution and high sensitivity of ultra-high-field 7 T MRI. Subjects were attentively listening to consonant–vowel (CV) syllables with an alveolar or bilabial stop-consonant and either a short or long VOT. The results showed an overall bilateral activation pattern in the posterior temporal lobe during the processing of the CV syllables. This was however modulated strongest by PoA such that syllables with an alveolar stop-consonant showed stronger left lateralized activation. In addition, analysis of underlying functional and effective connectivity revealed an inhibitory effect of the left planum temporale (PT) onto the right auditory cortex (AC) during the processing of alveolar CV syllables. Furthermore, the connectivity result indicated also a directed information flow from the right to the left AC, and further to the left PT for all syllables. These results indicate that auditory speech perception relies on an interplay between the left and right ACs, with the left PT as modulator. Furthermore, the degree of functional asymmetry is determined by the acoustic properties of the CV syllables. PMID:24966841
Bouts, Mark J R J; Westmoreland, Susan V; de Crespigny, Alex J; Liu, Yutong; Vangel, Mark; Dijkhuizen, Rick M; Wu, Ona; D'Arceuil, Helen E
2015-12-15
Spatial and temporal changes in brain tissue after acute ischemic stroke are still poorly understood. Aims of this study were three-fold: (1) to determine unique temporal magnetic resonance imaging (MRI) patterns at the acute, subacute and chronic stages after stroke in macaques by combining quantitative T2 and diffusion MRI indices into MRI 'tissue signatures', (2) to evaluate temporal differences in these signatures between transient (n = 2) and permanent (n = 2) middle cerebral artery occlusion, and (3) to correlate histopathology findings in the chronic stroke period to the acute and subacute MRI derived tissue signatures. An improved iterative self-organizing data analysis algorithm was used to combine T2, apparent diffusion coefficient (ADC), and fractional anisotropy (FA) maps across seven successive timepoints (1, 2, 3, 24, 72, 144, 240 h) which revealed five temporal MRI signatures, that were different from the normal tissue pattern (P < 0.001). The distribution of signatures between brains with permanent and transient occlusions varied significantly between groups (P < 0.001). Qualitative comparisons with histopathology revealed that these signatures represented regions with different histopathology. Two signatures identified areas of progressive injury marked by severe necrosis and the presence of gitter cells. Another signature identified less severe but pronounced neuronal and axonal degeneration, while the other signatures depicted tissue remodeling with vascular proliferation and astrogliosis. These exploratory results demonstrate the potential of temporally and spatially combined voxel-based methods to generate tissue signatures that may correlate with distinct histopathological features. The identification of distinct ischemic MRI signatures associated with specific tissue fates may further aid in assessing and monitoring the efficacy of novel pharmaceutical treatments for stroke in a pre-clinical and clinical setting.
Thompson, Garth John; Pan, Wen-Ju; Magnuson, Matthew Evan; Jaeger, Dieter; Keilholz, Shella Dawn
2014-01-01
Functional connectivity measurements from resting state blood-oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) are proving a powerful tool to probe both normal brain function and neuropsychiatric disorders. However, the neural mechanisms that coordinate these large networks are poorly understood, particularly in the context of the growing interest in network dynamics. Recent work in anesthetized rats has shown that the spontaneous BOLD fluctuations are tightly linked to infraslow local field potentials (LFPs) that are seldom recorded but comparable in frequency to the slow BOLD fluctuations. These findings support the hypothesis that long-range coordination involves low frequency neural oscillations and establishes infraslow LFPs as an excellent candidate for probing the neural underpinnings of the BOLD spatiotemporal patterns observed in both rats and humans. To further examine the link between large-scale network dynamics and infraslow LFPs, simultaneous fMRI and microelectrode recording were performed in anesthetized rats. Using an optimized filter to isolate shared components of the signals, we found that time-lagged correlation between infraslow LFPs and BOLD is comparable in spatial extent and timing to a quasi-periodic pattern (QPP) found from BOLD alone, suggesting that fMRI-measured QPPs and the infraslow LFPs share a common mechanism. As fMRI allows spatial resolution and whole brain coverage not available with electroencephalography, QPPs can be used to better understand the role of infraslow oscillations in normal brain function and neurological or psychiatric disorders. © 2013.
Thompson, Garth John; Pan, Wen-Ju; Magnuson, Matthew Evan; Jaeger, Dieter; Keilholz, Shella Dawn
2013-01-01
Functional connectivity measurements from resting state blood-oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) are proving a powerful tool to probe both normal brain function and neuropsychiatric disorders. However, the neural mechanisms that coordinate these large networks are poorly understood, particularly in the context of the growing interest in network dynamics. Recent work in anesthetized rats has shown that the spontaneous BOLD fluctuations are tightly linked to infraslow local field potentials (LFPs) that are seldom recorded but comparable in frequency to the slow BOLD fluctuations. These findings support the hypothesis that long-range coordination involves low frequency neural oscillations and establishes infraslow LFPs as an excellent candidate for probing the neural underpinnings of the BOLD spatiotemporal patterns observed in both rats and humans. To further examine the link between large-scale network dynamics and infraslow LFPs, simultaneous fMRI and microelectrode recording were performed in anesthetized rats. Using an optimized filter to isolate shared components of the signals, we found that time-lagged correlation between infraslow LFPs and BOLD is comparable in spatial extent and timing to a quasi-periodic pattern (QPP) found from BOLD alone, suggesting that fMRI-measured QPPs and the infraslow LFPs share a common mechanism. As fMRI allows spatial resolution and whole brain coverage not available with electroencephalography, QPPs can be used to better understand the role of infraslow oscillations in normal brain function and neurological or psychiatric disorders. PMID:24071524
Function in the Human Connectome: Task-fMRI and Individual Differences in Behavior
Barch, Deanna M.; Burgess, Gregory C.; Harms, Michael P.; Petersen, Steven E.; Schlaggar, Bradley L.; Corbetta, Maurizio; Glasser, Matthew F.; Curtiss, Sandra; Dixit, Sachin; Feldt, Cindy; Nolan, Dan; Bryant, Edward; Hartley, Tucker; Footer, Owen; Bjork, James M.; Poldrack, Russ; Smith, Steve; Johansen-Berg, Heidi; Snyder, Abraham Z.; Van Essen, David C.
2014-01-01
The primary goal of the Human Connectome Project (HCP) is to delineate the typical patterns of structural and functional connectivity in the healthy adult human brain. However, we know that there are important individual differences in such patterns of connectivity, with evidence that this variability is associated with alterations in important cognitive and behavioral variables that affect real world function. The HCP data will be a critical stepping-off point for future studies that will examine how variation in human structural and functional connectivity play a role in adult and pediatric neurological and psychiatric disorders that account for a huge amount of public health resources. Thus, the HCP is collecting behavioral measures of a range of motor, sensory, cognitive and emotional processes that will delineate a core set of functions relevant to understanding the relationship between brain connectivity and human behavior. In addition, the HCP is using task-fMRI (tfMRI) to help delineate the relationships between individual differences in the neurobiological substrates of mental processing and both functional and structural connectivity, as well as to help characterize and validate the connectivity analyses to be conducted on the structural and functional connectivity data. This paper describes the logic and rationale behind the development of the behavioral, individual difference, and tfMRI batteries and provides preliminary data on the patterns of activation associated with each of the fMRI tasks, at both a group and individual level. PMID:23684877
Hermans, Kees; Ossenblok, Pauly; van Houdt, Petra; Geerts, Liesbeth; Verdaasdonk, Rudolf; Boon, Paul; Colon, Albert; de Munck, Jan C.
2015-01-01
Anti-epileptic drugs (AEDs) have a global effect on the neurophysiology of the brain which is most likely reflected in functional brain activity recorded with EEG and fMRI. These effects may cause substantial inter-subject variability in studies where EEG correlated functional MRI (EEG–fMRI) is used to determine the epileptogenic zone in patients who are candidate for epilepsy surgery. In the present study the effects on resting state fMRI are quantified in conditions with AED administration and after withdrawal of AEDs. EEG–fMRI data were obtained from 10 patients in the condition that the patient was on the steady-state maintenance doses of AEDs as prescribed (condition A) and after withdrawal of AEDs (condition B), at the end of a clinically standard pre-surgical long term video-EEG monitoring session. Resting state networks (RSN) were extracted from fMRI. The epileptic component (ICE) was identified by selecting the RSN component with the largest overlap with the EEG–fMRI correlation pattern. Changes in RSN functional connectivity between conditions A and B were quantified. EEG–fMRI correlation analysis was successful in 30% and 100% of the cases in conditions A and B, respectively. Spatial patterns of ICEs are comparable in conditions A and B, except for one patient for whom it was not possible to identify the ICE in condition A. However, the resting state functional connectivity is significantly increased in the condition after withdrawal of AEDs (condition B), which makes resting state fMRI potentially a new tool to study AED effects. The difference in sensitivity of EEG–fMRI in conditions A and B, which is not related to the number of epileptic EEG events occurring during scanning, could be related to the increased functional connectivity in condition B. PMID:26137444
Tracking the unconscious generation of free decisions using ultra-high field fMRI.
Bode, Stefan; He, Anna Hanxi; Soon, Chun Siong; Trampel, Robert; Turner, Robert; Haynes, John-Dylan
2011-01-01
Recently, we demonstrated using functional magnetic resonance imaging (fMRI) that the outcome of free decisions can be decoded from brain activity several seconds before reaching conscious awareness. Activity patterns in anterior frontopolar cortex (BA 10) were temporally the first to carry intention-related information and thus a candidate region for the unconscious generation of free decisions. In the present study, the original paradigm was replicated and multivariate pattern classification was applied to functional images of frontopolar cortex, acquired using ultra-high field fMRI at 7 Tesla. Here, we show that predictive activity patterns recorded before a decision was made became increasingly stable with increasing temporal proximity to the time point of the conscious decision. Furthermore, detailed questionnaires exploring subjects' thoughts before and during the decision confirmed that decisions were made spontaneously and subjects were unaware of the evolution of their decision outcomes. These results give further evidence that FPC stands at the top of the prefrontal executive hierarchy in the unconscious generation of free decisions.
Human inferior colliculus activity relates to individual differences in spoken language learning.
Chandrasekaran, Bharath; Kraus, Nina; Wong, Patrick C M
2012-03-01
A challenge to learning words of a foreign language is encoding nonnative phonemes, a process typically attributed to cortical circuitry. Using multimodal imaging methods [functional magnetic resonance imaging-adaptation (fMRI-A) and auditory brain stem responses (ABR)], we examined the extent to which pretraining pitch encoding in the inferior colliculus (IC), a primary midbrain structure, related to individual variability in learning to successfully use nonnative pitch patterns to distinguish words in American English-speaking adults. fMRI-A indexed the efficiency of pitch representation localized to the IC, whereas ABR quantified midbrain pitch-related activity with millisecond precision. In line with neural "sharpening" models, we found that efficient IC pitch pattern representation (indexed by fMRI) related to superior neural representation of pitch patterns (indexed by ABR), and consequently more successful word learning following sound-to-meaning training. Our results establish a critical role for the IC in speech-sound representation, consistent with the established role for the IC in the representation of communication signals in other animal models.
Geist, Barbara K; Baltzer, Pascal; Fueger, Barbara; Hamboeck, Martina; Nakuz, Thomas; Papp, Laszlo; Rasul, Sazan; Sundar, Lalith Kumar Shiyam; Hacker, Marcus; Staudenherz, Anton
2018-05-09
A method was developed to assess the kidney parameters glomerular filtration rate (GFR) and effective renal plasma flow (ERPF) from 2-deoxy-2-[ 18 F]fluoro-D-glucose (FDG) concentration behavior in kidneys, measured with positron emission tomography (PET) scans. Twenty-four healthy adult subjects prospectively underwent dynamic simultaneous PET/magnetic resonance imaging (MRI) examination. Time activity curves (TACs) were obtained from the dynamic PET series, with the guidance of MR information. Patlak analysis was performed to determine the GFR, and based on integrals, ERPF was calculated. Results were compared to intra-individually obtained reference values determined from venous blood samples. Total kidney GFR and ERPF as estimated by dynamic PET/MRI were highly correlated to their reference values (r = 0.88/p < 0.0001 and r = 0.82/p < 0.0001, respectively) with no significant difference between their means. The study is a proof of concept that GFR and ERPF can be assessed with dynamic FDG PET/MRI scans in healthy kidneys. This has advantages for patients getting a routine scan, where additional examinations for kidney function estimation could be avoided. Further studies are required for transferring this PET/MRI method to PET/CT applications.
Krasinski, Adam; Chiu, Bernard; Fenster, Aaron; Parraga, Grace
2009-04-01
To evaluate differences in carotid atherosclerosis measured using magnetic resonance imaging (MRI) and three-dimensional ultrasound (3DUS). Ten subject volunteers underwent carotid 3DUS and MRI (multislice black blood fast spin echo, T1-weighted contrast, double inversion recovery, 0.5 mm in-plane resolution, 2 mm slice, 3.0 T) within 1 hour. 3DUS and MR images were manually segmented by two observers providing vessel wall and lumen contours for quantification of vessel wall volume (VWV) and generation of carotid thickness maps. MRI VWV (1040 +/- 210 mm(3)) and 3DUS VWV (540 +/- 110 mm(3)) were significantly different (P < 0.0001). When normalized for the estimated adventitia volume, mean MRI VWV decreased 240 +/- 50 mm(3) and was significantly different from 3DUS VWV (P < 0.001). Two-dimensional carotid maps showed qualitative evidence of regional differences in the plaque and vessel wall thickness between MR and 3DUS in all subjects. Power Doppler US confirmed that heterogeneity in the common carotid artery in all patients resulted from apparent flow disturbances, not atherosclerotic plaque. MRI and 3DUS VWV were significantly different and carotid maps showed homogeneous thickness differences and heterogeneity in specific regions of interest identified as MR flow artifacts in the common carotid artery.
Real view radiology-impact on search patterns and confidence in radiology education.
Bailey, Jared H; Roth, Trenton D; Kohli, Mark D; Heitkamp, Darel E
2014-07-01
Search patterns are important for radiologists because they enable systematic case review. Because radiology residents are exposed to so many imaging modalities and anatomic regions, and they rotate on-and-off service so frequently, they may have difficulty establishing effective search patterns. We developed Real View Radiology (RVR), an educational system founded on guided magnetic resonance imaging (MRI) case review and evaluated its impact on search patterns and interpretative confidence of junior radiology residents. RVR guides learners through unknown examinations by sequentially prompting learners to certain aspects of a case via a comprehensive question set and then providing immediate feedback. Junior residents first completed a brief evaluation regarding their level of confidence when interpreting certain joint MRI cases and frequency of search pattern use. They spent four half-days interpreting cases using RVR. Once finished, they repeated the evaluations. The junior resident results were compared to third-year residents who had not used RVR. The data were analyzed for change in confidence, use of search patterns, and number of cases completed. Twelve first-year and thirteen second-year residents (trained cohort) were enrolled in the study. During their 4-week musculoskeletal rotations, they completed on average 29.3 MRI knee (standard deviation [SD], 1.6) and 17.4 shoulder (SD, 1.2) cases using RVR. Overall search pattern scores of the trained cohort increased significantly both from pretraining to posttraining (knee P < .01, shoulder P < .01) and compared to the untrained third-year residents (knee (P < .01, and shoulder P < .01). The trained cohort confidence scores also increased significantly from pre to post for all joints (knee P < .01, shoulder P < .01, pelvis P < .01, and ankle P < .01). Radiology residents can increase their MRI case interpretation confidence and improve the consistency of search pattern use by training with a question-based sequential reveal educational program. RVR could be used to supplement training and assist with search pattern creation in areas in which residents often do not acquire adequate clinical exposure. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.
Juvenile Osteochondritis Dissecans: Correlation Between Histopathology and MRI.
Zbojniewicz, Andrew M; Stringer, Keith F; Laor, Tal; Wall, Eric J
2015-07-01
The objective of our study was to correlate specimens of juvenile osteochondritis dissecans (OCD) lesions of the knee to MRI examinations to elucidate the histopathologic basis of characteristic imaging features. Five children (three boys and two girls; age range, 12-13 years old) who underwent transarticular biopsy of juvenile OCD lesions of the knee were retrospectively included in this study. Two radiologists reviewed the MRI examinations and a pathologist reviewed the histopathologic specimens and recorded characteristic features. Digital specimen photographs were calibrated to the size of the respective MR image with the use of a reference scale. Photographs were rendered semitransparent and over-laid onto the MR image with the location chosen on the basis of the site of the prior biopsy. A total of seven biopsy specimens were included. On MRI, all lesions showed cystlike foci in the subchondral bone, bone marrow edema pattern on proton density-or T2-weighted images, and relatively thick unossified epiphyseal cartilage. In four patients, a laminar signal intensity pattern was seen, and two patients had multiple breaks in the subchondral bone plate. Fibrovascular tissue was found at histopathology in all patients. Cleft spaces near the cartilage-bone interface and were seen in all patients while chondrocyte cloning was present in most cases. Focal bone necrosis and inflammation were infrequent MRI findings. Precise correlation of the MRI appearance to the histopathologic overlays consistently was found. A direct correlation exists between the histopathologic findings and the MRI features in patients with juvenile OCD. Additional studies are needed to correlate these MRI features with juvenile OCD healing success rates.
Tracking brain arousal fluctuations with fMRI
Chang, Catie; Leopold, David A.; Schölvinck, Marieke Louise; Mandelkow, Hendrik; Picchioni, Dante; Liu, Xiao; Ye, Frank Q.; Turchi, Janita N.; Duyn, Jeff H.
2016-01-01
Changes in brain activity accompanying shifts in vigilance and arousal can interfere with the study of other intrinsic and task-evoked characteristics of brain function. However, the difficulty of tracking and modeling the arousal state during functional MRI (fMRI) typically precludes the assessment of arousal-dependent influences on fMRI signals. Here we combine fMRI, electrophysiology, and the monitoring of eyelid behavior to demonstrate an approach for tracking continuous variations in arousal level from fMRI data. We first characterize the spatial distribution of fMRI signal fluctuations that track a measure of behavioral arousal; taking this pattern as a template, and using the local field potential as a simultaneous and independent measure of cortical activity, we observe that the time-varying expression level of this template in fMRI data provides a close approximation of electrophysiological arousal. We discuss the potential benefit of these findings for increasing the sensitivity of fMRI as a cognitive and clinical biomarker. PMID:27051064
Shiina, Yumi; Inai, Kei; Takahashi, Tatsunori; Shimomiya, Yamato; Ishizaki, Umiko; Fukushima, Kenji; Nagao, Michinobu
2018-02-01
We developed a novel imaging technique, designated as vortex flow (VF) mapping, which presents a vortex flow visually on conventional two-dimensional (2D) cine MRI. Using it, we assessed circumferential VF patterns and influences on RA thrombus and supraventricular tachycardia (SVT) in AP connection-type Fontan circulation. Retrospectively, we enrolled 27 consecutive patients (25.1 ± 9.2 years) and 7 age-matched controls who underwent cardiac MRI. Conventional cine images acquired using a 1.5-Tesla scanner were scanned for axial and coronal cross section of the RA. We developed "vortex flow mapping" to demonstrate the ratio of the circumferential voxel movement at each phase to the total movement throughout a cardiac cycle towards the RA center. The maximum ratio was used as a magnitude of vortex flow (MVF%) in RA cine imaging. We also measured percentages of strong and weak VF areas (VFA%). Furthermore, in 10 out of 27, we compared VF between previous CMR (3.8 ± 1.5 years ago) and latest CMR. Of the patients, 15 had cardiovascular complications (Group A); 12 did not (Group B). A transaxial image showed that strong VFA% in Group A was significantly smaller than that in Group B or controls. A coronal view revealed that strong VFA% was also smaller, and weak VFA% was larger in Group A than in Group B or controls (P < 0.05, and P < 0.05). Maximum MVF% in Group A was significantly smaller than in other groups (P < 0.001). Univariate logistic analyses revealed weak VFA% on a coronal image, and serum total bilirubin level as factors affecting cardiovascular complications (Odds ratio 1.14 and 66.1, 95% CI 1.004-1.30 and 1.59-2755.6, P values < 0.05 and < 0.05, respectively). Compared to the previous CMR, smaller maximum VMF%, smaller strong VFA%, and larger weak VFA% were identified in the latest CMR. Circumferentially weak VFA% on a coronal image can be one surrogate marker of SVT and thrombus in AP connection-type Fontan circulation. This simple VF assessment is clinically useful to detect blood stagnation.
Strain Rate Tensor Estimation in Cine Cardiac MRI Based on Elastic Image Registration
NASA Astrophysics Data System (ADS)
Sánchez-Ferrero, Gonzalo Vegas; Vega, Antonio Tristán; Grande, Lucilio Cordero; de La Higuera, Pablo Casaseca; Fernández, Santiago Aja; Fernández, Marcos Martín; López, Carlos Alberola
In this work we propose an alternative method to estimate and visualize the Strain Rate Tensor (SRT) in Magnetic Resonance Images (MRI) when Phase Contrast MRI (PCMRI) and Tagged MRI (TMRI) are not available. This alternative is based on image processing techniques. Concretely, image registration algorithms are used to estimate the movement of the myocardium at each point. Additionally, a consistency checking method is presented to validate the accuracy of the estimates when no golden standard is available. Results prove that the consistency checking method provides an upper bound of the mean squared error of the estimate. Our experiments with real data show that the registration algorithm provides a useful deformation field to estimate the SRT fields. A classification between regional normal and dysfunctional contraction patterns, as compared with experts diagnosis, points out that the parameters extracted from the estimated SRT can represent these patterns. Additionally, a scheme for visualizing and analyzing the local behavior of the SRT field is presented.
Wentland, Andrew L; Artz, Nathan S; Fain, Sean B; Grist, Thomas M; Djamali, Arjang; Sadowski, Elizabeth A
2012-01-01
Magnetic resonance imaging (MRI) may be a useful adjunct to current methods of evaluating renal function. MRI is a noninvasive imaging modality that has the ability to evaluate the kidneys regionally, which is lacking in current clinical methods. Other investigators have evaluated renal function with MRI-based measurements, such as with techniques to measure cortical and medullary perfusion, oxygen bioavailability and total renal blood flow (TRBF). However, use of all three techniques simultaneously, and therefore the relationships between these MRI-derived functional parameters, have not been reported previously. To evaluate the ability of these MRI techniques to track changes in renal function, we scanned 11 swine during a state of hyperperfusion with acetylcholine and a saline bolus and subsequently scanned during a state of hypoperfusion with the prolonged use of isoflurane anesthesia. For each time point, measurements of perfusion, oxygen bioavailability and TRBF were acquired. Measurements of perfusion and oxygen bioavailability were compared with measurements of TRBF for all swine across all time points. Cortical perfusion, cortical oxygen bioavailability, medullary oxygen bioavailability and TRBF significantly increased with the acetylcholine challenge. Cortical perfusion, medullary perfusion, cortical oxygen bioavailability and TRBF significantly decreased during isoflurane anesthesia. Cortical perfusion (Spearman's correlation coefficient = 0.68; P < 1 × 10(-6)) and oxygen bioavailability (Spearman's correlation coefficient = -0.60; P < 0.0001) correlated significantly with TRBF, whereas medullary perfusion and oxygen bioavailability did not correlate with TRBF. Our results demonstrate expected changes given the pharmacologically induced changes in renal function. Maintenance of the medullary oxygen bioavailability in low blood flow states may reflect the autoregulation particular to this region of the kidney. The ability to non-invasively measure all three parameters of kidney function in a single MRI examination and to evaluate the relationships between these functional parameters is potentially useful for evaluating the state of the human kidneys in situ in future studies.
Lüdemann, Lutz; Nafz, Benno; Elsner, Franz; Grosse-Siestrup, Christian; Meissler, Michael; Kaufels, Nicola; Rehbein, Hagen; Persson, Pontus B; Michaely, Henrik J; Lengsfeld, Philipp; Voth, Matthias; Gutberlet, Matthias
2009-03-01
To evaluate for the first time in an animal model the possibility of absolute regional quantification of renal medullary and cortical perfusion by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using a blood pool contrast agent. A total of 18 adult female pigs (age, 16-22 weeks; body weight, 45-65 kg; no dietary restrictions) were investigated by DCE-MRI. Absolute renal blood flow (RBF) measured by an ultrasound transit time flow probe around the renal vein was used as the standard of reference. An inflatable stainless cuff placed around the renal artery near its origin from the abdominal aorta was used to reduce RBF to 60%, 40%, and 20% of the baseline flow. The last measurement was performed with the cuff fully reopened. Absolute RBF values during these 4 perfusion states were compared with the results of DCE-MRI performed on a 1.5-T scanner with an 8-channel phased-array surface coil. All scans were acquired in breath-hold technique in the coronal plane using a field of view of 460 mm.Each dynamic scan commenced with a set of five 3D T1-weighted gradient echo sequences with different flip angles (alpha = 2 degrees, 5 degrees, 10 degrees, 20 degrees, 30 degrees): TE, 0.88 milliseconds; TR, 2.65 milliseconds; slice thickness, 8.8 mm for 4 slices; acquisition matrix, 128 x 128; and acquisitions, 4. These data served to calculate 3D intrinsic longitudinal relaxation rate maps (R10) and magnetization (M0). Immediately after these images, the dynamic 3D T1-weighted gradient echo images were acquired with the same parameters and a constant alpha = 30 degrees, half Fourier, 1 acquisition, 64 frames, a time interval of 1.65 seconds between each frame, and a total duration of 105.6. Three milliliters of an albumin-binding blood pool contrast agent (0.25 mmol/mL gadofosveset trisodium, Vasovist, Bayer Schering Pharma AG, Berlin, Germany) was injected at a rate of 3 mL/s. Perfusion was calculated using the arterial input function from the aorta, which was extracted from the dynamic relaxation rate change maps and perfusion images were calculated on a voxel-by-voxel basis using a singular value decomposition. In 11 pigs, 4 different perfusion states were investigated sequentially. The reduced kidney perfusion measured by ultrasound highly correlated with total renal blood flow determined by DCE-MRI, P < 0.001. The correlation coefficient between both measurements was 0.843. Regional cortical and medullary renal flow was also highly correlated (r = 0.77/0.78, P < 0.001) with the degree of flow reduction. Perfusion values smaller than 50 mL/min/100 cm were overestimated by MRI, high perfusion values slightly underestimated. DCE-MRI using a blood pool contrast agent allows absolute quantification of total kidney perfusion as well as separate determination of cortical and medullary flow. The results show that our technique has sufficient accuracy and reproducibility to be transferred to the clinical setting.
Observation of cardiogenic flow oscillations in healthy subjects with hyperpolarized 3He MRI.
Collier, Guilhem J; Marshall, Helen; Rao, Madhwesha; Stewart, Neil J; Capener, David; Wild, Jim M
2015-11-01
Recently, dynamic MRI of hyperpolarized (3)He during inhalation revealed an alternation of the image intensity between left and right lungs with a cardiac origin (Sun Y, Butler JP, Ferrigno M, Albert MS, Loring SH. Respir Physiol Neurobiol 185: 468-471, 2013). This effect is investigated further using dynamic and phase-contrast flow MRI with inhaled (3)He during slow inhalations (flow rate ∼100 ml/s) to elucidate airflow dynamics in the main lobes in six healthy subjects. The ventilation MR signal and gas inflow in the left lower lobe (LLL) of the lungs were found to oscillate clearly at the cardiac frequency in all subjects, whereas the MR signals in the other parts of the lungs had a similar oscillatory behavior but were smaller in magnitude and in anti-phase to the signal in the left lower lung. The airflow in the main bronchi showed periodic oscillations at the frequency of the cardiac cycle. In four of the subjects, backflows were observed for a short period of time of the cardiac cycle, demonstrating a pendelluft effect at the carina bifurcation between the left and right lungs. Additional (1)H structural MR images of the lung volume and synchronized ECG recording revealed that maximum inspiratory flow rates in the LLL of the lungs occurred during systole when the corresponding left lung volume increased, whereas the opposite effect was observed during diastole, with gas flow redirected to the other parts of the lung. In conclusion, cardiogenic flow oscillations have a significant effect on regional gas flow and distribution within the lungs. Copyright © 2015 the American Physiological Society.
Jiang, Xi; Li, Xiang; Lv, Jinglei; Zhao, Shijie; Zhang, Shu; Zhang, Wei; Zhang, Tuo; Han, Junwei; Guo, Lei; Liu, Tianming
2018-06-01
Various studies in the brain mapping field have demonstrated that there exist multiple concurrent functional networks that are spatially overlapped and interacting with each other during specific task performance to jointly realize the total brain function. Assessing such spatial overlap patterns of functional networks (SOPFNs) based on functional magnetic resonance imaging (fMRI) has thus received increasing interest for brain function studies. However, there are still two crucial issues to be addressed. First, the SOPFNs are assessed over the entire fMRI scan assuming the temporal stationarity, while possibly time-dependent dynamics of the SOPFNs is not sufficiently explored. Second, the SOPFNs are assessed within individual subjects, while group-wise consistency of the SOPFNs is largely unknown. To address the two issues, we propose a novel computational framework of group-wise sparse representation of whole-brain fMRI temporal segments to assess the temporal dynamic spatial patterns of SOPFNs that are consistent across different subjects. Experimental results based on the recently publicly released Human Connectome Project grayordinate task fMRI data demonstrate that meaningful SOPFNs exhibiting dynamic spatial patterns across different time periods are effectively and robustly identified based on the reconstructed concurrent functional networks via the proposed framework. Specifically, those SOPFNs locate significantly more on gyral regions than on sulcal regions across different time periods. These results reveal novel functional architecture of cortical gyri and sulci. Moreover, these results help better understand functional dynamics mechanisms of cerebral cortex in the future.
Cutajar, Marica; Hilton, Rachel; Olsburgh, Jonathon; Marks, Stephen D; Thomas, David L; Banks, Tina; Clark, Christopher A; Gordon, Isky
2015-08-01
Renal plasma flow (RPF) (derived from renal blood flow, RBF) and glomerular filtration rate (GFR) allow the determination of the filtration fraction (FF), which may have a role as a non-invasive renal biomarker. This is a hypothesis-generating pilot study assessing the effect of nephrectomy on renal function in healthy kidney donors. Eight living kidney donors underwent arterial spin labelling (ASL) magnetic resonance imaging (MRI) and GFR measurement prior to and 1 year after nephrectomy. Chromium-51 labelled ethylenediamine tetraacetic acid ((51)Cr-EDTA) with multi-blood sampling was undertaken and GFR calculated. The RBF and GFR obtained were used to calculate FF. All donors showed an increase in single kidney GFR of 24 - 75 %, and all but two showed an increase in FF (-7 to +52 %) after nephrectomy. The increase in RBF, and hence RPF, post-nephrectomy was not as great as the increase in GFR in seven out of eight donors. As with any pilot study, the small number of donors and their relatively narrow age range are potential limiting factors. The ability to measure RBF, and hence RPF, non-invasively, coupled with GFR measurement, allows calculation of FF, a biomarker that might provide a sensitive indicator of loss of renal reserve in potential donors. • Non-invasive MRI measured renal blood flow and calculated renal plasma flow. • Effect of nephrectomy on blood flow and filtration in donors is presented. • Calculated filtration fraction may be a useful new kidney biomarker.
Yiallourou, Theresia I.; Kröger, Jan Robert; Stergiopulos, Nikolaos; Maintz, David
2012-01-01
Cerebrospinal fluid (CSF) dynamics in the cervical spinal subarachnoid space (SSS) have been thought to be important to help diagnose and assess craniospinal disorders such as Chiari I malformation (CM). In this study we obtained time-resolved three directional velocity encoded phase-contrast MRI (4D PC MRI) in three healthy volunteers and four CM patients and compared the 4D PC MRI measurements to subject-specific 3D computational fluid dynamics (CFD) simulations. The CFD simulations considered the geometry to be rigid-walled and did not include small anatomical structures such as nerve roots, denticulate ligaments and arachnoid trabeculae. Results were compared at nine axial planes along the cervical SSS in terms of peak CSF velocities in both the cranial and caudal direction and visual interpretation of thru-plane velocity profiles. 4D PC MRI peak CSF velocities were consistently greater than the CFD peak velocities and these differences were more pronounced in CM patients than in healthy subjects. In the upper cervical SSS of CM patients the 4D PC MRI quantified stronger fluid jets than the CFD. Visual interpretation of the 4D PC MRI thru-plane velocity profiles showed greater pulsatile movement of CSF in the anterior SSS in comparison to the posterior and reduction in local CSF velocities near nerve roots. CFD velocity profiles were relatively uniform around the spinal cord for all subjects. This study represents the first comparison of 4D PC MRI measurements to CFD of CSF flow in the cervical SSS. The results highlight the utility of 4D PC MRI for evaluation of complex CSF dynamics and the need for improvement of CFD methodology. Future studies are needed to investigate whether integration of fine anatomical structures and gross motion of the brain and/or spinal cord into the computational model will lead to a better agreement between the two techniques. PMID:23284970
The role of fMRI in cognitive neuroscience: where do we stand?
Poldrack, Russell A
2008-04-01
Functional magnetic resonance imaging (fMRI) has quickly become the most prominent tool in cognitive neuroscience. In this article, I outline some of the limits on the kinds of inferences that can be supported by fMRI, focusing particularly on reverse inference, in which the engagement of specific mental processes is inferred from patterns of brain activation. Although this form of inference is weak, newly developed methods from the field of machine learning offer the potential to formalize and strengthen reverse inferences. I conclude by discussing the increasing presence of fMRI results in the popular media and the ethical implications of the increasing predictive power of fMRI.
Gottlieb, Josh; Princenthal, Robert; Cohen, Martin I
2017-07-01
To evaluate the multi-parametric MRI (mpMRI) findings in patients with biopsy-proven granulomatous prostatitis and prior Bacillus Calmette-Guérin (BCG) exposure. MRI was performed in six patients with pathologically proven granulomatous prostatitis and a prior history of bladder cancer treated with intravesical BCG therapy. Multi-parametric prostate MRI images were recorded on a GE 750W or Philips Achieva 3.0 Tesla MRI scanner with high-resolution, small-field-of-view imaging consisting of axial T2, axial T1, coronal T2, sagittal T2, axial multiple b-value diffusion (multiple values up to 1200 or 1400), and dynamic contrast-enhanced 3D axial T1 with fat suppression sequence. Two different patterns of MR findings were observed. Five of the six patients had a low mean ADC value <1000 (decreased signal on ADC map images) and isointense signal on high-b-value imaging (b = 1200 or 1400), consistent with nonspecific granulomatous prostatitis. The other pattern seen in one of the six patients was decreased signal on the ADC map images with increased signal on the high-b-value sequence, revealing true restricted diffusion indistinguishable from aggressive prostate cancer. This patient had biopsy-confirmed acute BCG prostatitis. Our study suggests that patients with known BCG exposure and PI-RADS v2 scores ≤3, showing similar mpMRI findings as demonstrated, may not require prostate biopsy.
PyMVPA: A python toolbox for multivariate pattern analysis of fMRI data.
Hanke, Michael; Halchenko, Yaroslav O; Sederberg, Per B; Hanson, Stephen José; Haxby, James V; Pollmann, Stefan
2009-01-01
Decoding patterns of neural activity onto cognitive states is one of the central goals of functional brain imaging. Standard univariate fMRI analysis methods, which correlate cognitive and perceptual function with the blood oxygenation-level dependent (BOLD) signal, have proven successful in identifying anatomical regions based on signal increases during cognitive and perceptual tasks. Recently, researchers have begun to explore new multivariate techniques that have proven to be more flexible, more reliable, and more sensitive than standard univariate analysis. Drawing on the field of statistical learning theory, these new classifier-based analysis techniques possess explanatory power that could provide new insights into the functional properties of the brain. However, unlike the wealth of software packages for univariate analyses, there are few packages that facilitate multivariate pattern classification analyses of fMRI data. Here we introduce a Python-based, cross-platform, and open-source software toolbox, called PyMVPA, for the application of classifier-based analysis techniques to fMRI datasets. PyMVPA makes use of Python's ability to access libraries written in a large variety of programming languages and computing environments to interface with the wealth of existing machine learning packages. We present the framework in this paper and provide illustrative examples on its usage, features, and programmability.
PyMVPA: A Python toolbox for multivariate pattern analysis of fMRI data
Hanke, Michael; Halchenko, Yaroslav O.; Sederberg, Per B.; Hanson, Stephen José; Haxby, James V.; Pollmann, Stefan
2009-01-01
Decoding patterns of neural activity onto cognitive states is one of the central goals of functional brain imaging. Standard univariate fMRI analysis methods, which correlate cognitive and perceptual function with the blood oxygenation-level dependent (BOLD) signal, have proven successful in identifying anatomical regions based on signal increases during cognitive and perceptual tasks. Recently, researchers have begun to explore new multivariate techniques that have proven to be more flexible, more reliable, and more sensitive than standard univariate analysis. Drawing on the field of statistical learning theory, these new classifier-based analysis techniques possess explanatory power that could provide new insights into the functional properties of the brain. However, unlike the wealth of software packages for univariate analyses, there are few packages that facilitate multivariate pattern classification analyses of fMRI data. Here we introduce a Python-based, cross-platform, and open-source software toolbox, called PyMVPA, for the application of classifier-based analysis techniques to fMRI datasets. PyMVPA makes use of Python's ability to access libraries written in a large variety of programming languages and computing environments to interface with the wealth of existing machine-learning packages. We present the framework in this paper and provide illustrative examples on its usage, features, and programmability. PMID:19184561
Imaging patterns and focal lesions in fatty liver: a pictorial review.
Venkatesh, Sudhakar K; Hennedige, Tiffany; Johnson, Geoffrey B; Hough, David M; Fletcher, Joel G
2017-05-01
Non-alcoholic fatty liver disease is the most common cause of chronic liver disease and affects nearly one-third of US population. With the increasing trend of obesity in the population, associated fatty change in the liver will be a common feature observed in imaging studies. Fatty liver causes changes in liver parenchyma appearance on imaging modalities including ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI) and may affect the imaging characteristics of focal liver lesions (FLLs). The imaging characteristics of FLLs were classically described in a non-fatty liver. In addition, focal fatty change and focal fat sparing may also simulate FLLs. Knowledge of characteristic patterns of fatty change in the liver (diffuse, geographical, focal, subcapsular, and perivascular) and their impact on the detection and characterization of FLL is therefore important. In general, fatty change may improve detection of FLLs on MRI using fat suppression sequences, but may reduce sensitivity on a single-phase (portal venous) CT and conventional ultrasound. In patients with fatty liver, MRI is generally superior to ultrasound and CT for detection and characterization of FLL. In this pictorial essay, we describe the imaging patterns of fatty change in the liver and its effect on detection and characterization of FLLs on ultrasound, CT, MRI, and PET.
Georgiadis, Pantelis; Cavouras, Dionisis; Kalatzis, Ioannis; Glotsos, Dimitris; Athanasiadis, Emmanouil; Kostopoulos, Spiros; Sifaki, Koralia; Malamas, Menelaos; Nikiforidis, George; Solomou, Ekaterini
2009-01-01
Three-dimensional (3D) texture analysis of volumetric brain magnetic resonance (MR) images has been identified as an important indicator for discriminating among different brain pathologies. The purpose of this study was to evaluate the efficiency of 3D textural features using a pattern recognition system in the task of discriminating benign, malignant and metastatic brain tissues on T1 postcontrast MR imaging (MRI) series. The dataset consisted of 67 brain MRI series obtained from patients with verified and untreated intracranial tumors. The pattern recognition system was designed as an ensemble classification scheme employing a support vector machine classifier, specially modified in order to integrate the least squares features transformation logic in its kernel function. The latter, in conjunction with using 3D textural features, enabled boosting up the performance of the system in discriminating metastatic, malignant and benign brain tumors with 77.14%, 89.19% and 93.33% accuracy, respectively. The method was evaluated using an external cross-validation process; thus, results might be considered indicative of the generalization performance of the system to "unseen" cases. The proposed system might be used as an assisting tool for brain tumor characterization on volumetric MRI series.
Croal, Paula L; Leung, Jackie; Kosinski, Przemyslaw; Shroff, Manohar; Odame, Isaac; Kassner, Andrea
2017-11-01
Transcranial Doppler ultrasonography (TCD) is a clinical tool for stratifying ischemic stroke risk by identifying abnormal elevations in blood flow velocity (BFV) in the middle cerebral artery (MCA). However, TCD is not effective at screening for subtle neurologic injury such as silent cerebral infarcts. To better understand this disparity, we compared TCD measures of BFV with tissue-level cerebral blood flow (CBF) using arterial spin-labeling MRI in children with and without sickle cell disease, and correlated these measurements against clinical hematologic measures of disease severity. TCD and MRI assessment were performed in 13 pediatric sickle cell disease patients and eight age-matched controls. Using MRI measures of MCA diameter and territory weight, TCD measures of BFV in the MCA [cm/s] were converted into units of CBF [ml min -1 100 g -1 ] for comparison. There was no significant association between TCD measures of BFV in the MCA and corresponding MRI measures of CBF in patients ( r = .28, p = .39) or controls ( r = .10, p = .81). After conversion from BFV into units of CBF, a strong association was observed between TCD and MRI measures ( r = .67, p = .017 in patients, r = .86, p = .006 in controls). While BFV in the MCA showed a lack of correlation with arterial oxygen content, an inverse association was observed for CBF measurements. This study demonstrates that BFV in the MCA cannot be used as a surrogate marker for tissue-level CBF in children with sickle cell disease. Therefore, TCD alone may not be sufficient for understanding and predicting subtle pathophysiology in this population, highlighting the potential clinical value of tissue-level CBF.
Fernandez, Bruno; Cardebat, Dominique; Demonet, Jean-François; Joseph, Pierre Alain; Mazaux, Jean-Michel; Barat, Michel; Allard, Michèle
2004-09-01
The goal of this study was to develop a functional MRI (fMRI) paradigm robust and reproducible enough in healthy subjects to be adapted for a follow-up study aiming at evaluating the anatomical substratum of recovery in poststroke aphasia. Ten right-handed subjects were studied longitudinally using fMRI (7 of them being scanned twice) and compared with a patient with conduction aphasia during the first year of stroke recovery. Controls exhibited reproducible activation patterns between subjects and between sessions during language tasks. In contrast, the patient exhibited dynamic changes in brain activation pattern, particularly in the phonological task, during the 2 fMRI sessions. At 1 month after stroke, language homotopic right areas were recruited, whereas large perilesional left involvement occurred later (12 months). We first demonstrate intersubject robustness and intrasubject reproducibility of our paradigm in 10 healthy subjects and thus its validity in a patient follow-up study over a stroke recovery time course. Indeed, results suggest a spatiotemporal poststroke brain reorganization involving both hemispheres during the recovery course, with an early implication of a new contralateral functional neural network and a later implication of an ipsilateral one.
Differential responses in dorsal visual cortex to motion and disparity depth cues
Arnoldussen, David M.; Goossens, Jeroen; van den Berg, Albert V.
2013-01-01
We investigated how interactions between monocular motion parallax and binocular cues to depth vary in human motion areas for wide-field visual motion stimuli (110 × 100°). We used fMRI with an extensive 2 × 3 × 2 factorial blocked design in which we combined two types of self-motion (translational motion and translational + rotational motion), with three categories of motion inflicted by the degree of noise (self-motion, distorted self-motion, and multiple object-motion), and two different view modes of the flow patterns (stereo and synoptic viewing). Interactions between disparity and motion category revealed distinct contributions to self- and object-motion processing in 3D. For cortical areas V6 and CSv, but not the anterior part of MT+ with bilateral visual responsiveness (MT+/b), we found a disparity-dependent effect of rotational flow and noise: When self-motion perception was degraded by adding rotational flow and moderate levels of noise, the BOLD responses were reduced compared with translational self-motion alone, but this reduction was cancelled by adding stereo information which also rescued the subject's self-motion percept. At high noise levels, when the self-motion percept gave way to a swarm of moving objects, the BOLD signal strongly increased compared to self-motion in areas MT+/b and V6, but only for stereo in the latter. BOLD response did not increase for either view mode in CSv. These different response patterns indicate different contributions of areas V6, MT+/b, and CSv to the processing of self-motion perception and the processing of multiple independent motions. PMID:24339808
Lee, Tae-Ho; Qu, Yang; Telzer, Eva H
2017-12-01
The current study aimed to capture empathy processing in an interpersonal context. Mother-adolescent dyads (N = 22) each completed an empathy task during fMRI, in which they imagined the target person in distressing scenes as either themselves or their family (i.e. child for the mother, mother for the child). Using multi-voxel pattern approach, we compared neural pattern similarity for the self and family conditions and found that mothers showed greater perceptual similarity between self and child in the fusiform face area (FFA), representing high self-child overlap, whereas adolescents showed significantly less self-mother overlap. Adolescents' pattern similarity was dependent upon family relationship quality, such that they showed greater self-mother overlap with higher relationship quality, whereas mothers' pattern similarity was independent of relationship quality. Furthermore, adolescents' perceptual similarity in the FFA was associated with increased social brain activation (e.g. temporal parietal junction). Mediation analyses indicated that high relationship quality was associated with greater social brain activation, which was mediated by greater self-mother overlap in the FFA. Our findings suggest that adolescents show more distinct neural patterns in perceiving their own vs their mother's distress, and such distinction is sensitive to mother-child relationship quality. In contrast, mothers' perception for their own and child's distress is highly similar and unconditional. © The Author (2017). Published by Oxford University Press.
Qu, Yang
2017-01-01
Abstract The current study aimed to capture empathy processing in an interpersonal context. Mother–adolescent dyads (N = 22) each completed an empathy task during fMRI, in which they imagined the target person in distressing scenes as either themselves or their family (i.e. child for the mother, mother for the child). Using multi-voxel pattern approach, we compared neural pattern similarity for the self and family conditions and found that mothers showed greater perceptual similarity between self and child in the fusiform face area (FFA), representing high self–child overlap, whereas adolescents showed significantly less self–mother overlap. Adolescents’ pattern similarity was dependent upon family relationship quality, such that they showed greater self–mother overlap with higher relationship quality, whereas mothers’ pattern similarity was independent of relationship quality. Furthermore, adolescents’ perceptual similarity in the FFA was associated with increased social brain activation (e.g. temporal parietal junction). Mediation analyses indicated that high relationship quality was associated with greater social brain activation, which was mediated by greater self–mother overlap in the FFA. Our findings suggest that adolescents show more distinct neural patterns in perceiving their own vs their mother’s distress, and such distinction is sensitive to mother–child relationship quality. In contrast, mothers’ perception for their own and child’s distress is highly similar and unconditional. PMID:29069521
Nasrallah, Fatima A; Lee, Eugene L Q; Chuang, Kai-Hsiang
2012-11-01
Arterial spin labeling (ASL) MRI provides a noninvasive method to image perfusion, and has been applied to map neural activation in the brain. Although pulsed labeling methods have been widely used in humans, continuous ASL with a dedicated neck labeling coil is still the preferred method in rodent brain functional MRI (fMRI) to maximize the sensitivity and allow multislice acquisition. However, the additional hardware is not readily available and hence its application is limited. In this study, flow-sensitive alternating inversion recovery (FAIR) pulsed ASL was optimized for fMRI of rat brain. A practical challenge of FAIR is the suboptimal global inversion by the transmit coil of limited dimensions, which results in low effective labeling. By using a large volume transmit coil and proper positioning to optimize the body coverage, the perfusion signal was increased by 38.3% compared with positioning the brain at the isocenter. An additional 53.3% gain in signal was achieved using optimized repetition and inversion times compared with a long TR. Under electrical stimulation to the forepaws, a perfusion activation signal change of 63.7 ± 6.3% can be reliably detected in the primary somatosensory cortices using single slice or multislice echo planar imaging at 9.4 T. This demonstrates the potential of using pulsed ASL for multislice perfusion fMRI in functional and pharmacological applications in rat brain. Copyright © 2012 John Wiley & Sons, Ltd.
Magnetic resonance imaging with an optical atomic magnetometer
Xu, Shoujun; Yashchuk, Valeriy V.; Donaldson, Marcus H.; Rochester, Simon M.; Budker, Dmitry; Pines, Alexander
2006-01-01
We report an approach for the detection of magnetic resonance imaging without superconducting magnets and cryogenics: optical atomic magnetometry. This technique possesses a high sensitivity independent of the strength of the static magnetic field, extending the applicability of magnetic resonance imaging to low magnetic fields and eliminating imaging artifacts associated with high fields. By coupling with a remote-detection scheme, thereby improving the filling factor of the sample, we obtained time-resolved flow images of water with a temporal resolution of 0.1 s and spatial resolutions of 1.6 mm perpendicular to the flow and 4.5 mm along the flow. Potentially inexpensive, compact, and mobile, our technique provides a viable alternative for MRI detection with substantially enhanced sensitivity and time resolution for various situations where traditional MRI is not optimal. PMID:16885210
FPGA-based RF interference reduction techniques for simultaneous PET–MRI
Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, P K; Schulz, V
2016-01-01
Abstract The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET–MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling–decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion IID PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector. PMID:27049898
FPGA-based RF interference reduction techniques for simultaneous PET-MRI.
Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, P K; Schulz, V
2016-05-07
The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II (D) PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector.
FPGA-based RF interference reduction techniques for simultaneous PET-MRI
NASA Astrophysics Data System (ADS)
Gebhardt, P.; Wehner, J.; Weissler, B.; Botnar, R.; Marsden, P. K.; Schulz, V.
2016-05-01
The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II D PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector.
Convective transport resistance in the vitreous humor
NASA Astrophysics Data System (ADS)
Penkova, Anita; Sadhal, Satwindar; Ratanakijsuntorn, Komsan; Moats, Rex; Tang, Yang; Hughes, Patrick; Robinson, Michael; Lee, Susan
2012-11-01
It has been established by MRI visualization experiments that the convection of nanoparticles and large molecules with high rate of water flow in the vitreous humor will experience resistance, depending on the respective permeabilities of the injected solute. A set of experiments conducted with Gd-DTPA (Magnevist, Bayer AG, Leverkusen, Germany) and 30 nm gadolinium-based particles (Gado CELLTrackTM, Biopal, Worcester, MA) as MRI contrast agents showed that the degree of convective transport in this Darcy-type porous medium varies between the two solutes. These experiments consisted of injecting a mixture of the two (a 30 μl solution of 2% Magnevist and 1% nanoparticles) at the middle of the vitreous of an ex vivo whole bovine eye and subjecting the vitreous to water flow rate of 100 μl/min. The water (0.9% saline solution) was injected at the top of the eye, and was allowed to drain through small slits cut at the bottom of the eyeball. After 50 minutes of pumping, MRI images showed that the water flow carried the Gd-DTPA farther than the nanoparticles, even though the two solutes, being mixed, were subjected to the same convective flow conditions. We find that the convected solute lags the water flow, depending on the solute permeability. The usual convection term needs to be adjusted to allow for the filtration effect on the larger particles in the form (1- σ) u . ∇ c with important implications for the modeling of such systems.
Yoon, Jong H.; Tamir, Diana; Minzenberg, Michael J.; Ragland, J. Daniel; Ursu, Stefan; Carter, Cameron S.
2009-01-01
Background Multivariate pattern analysis is an alternative method of analyzing fMRI data, which is capable of decoding distributed neural representations. We applied this method to test the hypothesis of the impairment in distributed representations in schizophrenia. We also compared the results of this method with traditional GLM-based univariate analysis. Methods 19 schizophrenia and 15 control subjects viewed two runs of stimuli--exemplars of faces, scenes, objects, and scrambled images. To verify engagement with stimuli, subjects completed a 1-back matching task. A multi-voxel pattern classifier was trained to identify category-specific activity patterns on one run of fMRI data. Classification testing was conducted on the remaining run. Correlation of voxel-wise activity across runs evaluated variance over time in activity patterns. Results Patients performed the task less accurately. This group difference was reflected in the pattern analysis results with diminished classification accuracy in patients compared to controls, 59% and 72% respectively. In contrast, there was no group difference in GLM-based univariate measures. In both groups, classification accuracy was significantly correlated with behavioral measures. Both groups showed highly significant correlation between inter-run correlations and classification accuracy. Conclusions Distributed representations of visual objects are impaired in schizophrenia. This impairment is correlated with diminished task performance, suggesting that decreased integrity of cortical activity patterns is reflected in impaired behavior. Comparisons with univariate results suggest greater sensitivity of pattern analysis in detecting group differences in neural activity and reduced likelihood of non-specific factors driving these results. PMID:18822407
Pedrizzetti, Gianni; Arvidsson, Per M; Töger, Johannes; Borgquist, Rasmus; Domenichini, Federico; Arheden, Håkan; Heiberg, Einar
2017-07-26
Intraventricular pressure gradients or hemodynamic forces, which are their global measure integrated over the left ventricular volume, have a fundamental importance in ventricular function. They may help revealing a sub-optimal cardiac function that is not evident in terms of tissue motion, which is naturally heterogeneous and variable, and can influence cardiac adaptation. However, hemodynamic forces are not utilized in clinical cardiology due to the unavailability of simple non-invasive measurement tools. Hemodynamic forces depend on the intraventricular flow; nevertheless, most of them are imputable to the dynamics of the endocardial flow boundary and to the exchange of momentum across the mitral and aortic orifices. In this study, we introduce a simplified model based on first principles of fluid dynamics that allows estimating hemodynamic forces without knowing the velocity field inside the LV. The model is validated with 3D phase-contrast MRI (known as 4D flow MRI) in 15 subjects, (5 healthy and 10 patients) using the endocardial surface reconstructed from the three standard long-axis projections. Results demonstrate that the model provides consistent estimates for the base-apex component (mean correlation coefficient r=0.77 for instantaneous values and r=0.88 for root mean square) and good estimates of the inferolateral-anteroseptal component (r=0.50 and 0.84, respectively). The present method represents a potential integration to the existing ones quantifying endocardial deformation in MRI and echocardiography to add a physics-based estimation of the corresponding hemodynamic forces. These could help the clinician to early detect sub-clinical diseases and differentiate between different cardiac dysfunctional states. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xu, Nan; Spreng, R. Nathan; Doerschuk, Peter C.
2017-01-01
Resting-state functional MRI (rs-fMRI) is widely used to noninvasively study human brain networks. Network functional connectivity is often estimated by calculating the timeseries correlation between blood-oxygen-level dependent (BOLD) signal from different regions of interest (ROIs). However, standard correlation cannot characterize the direction of information flow between regions. In this paper, we introduce and test a new concept, prediction correlation, to estimate effective connectivity in functional brain networks from rs-fMRI. In this approach, the correlation between two BOLD signals is replaced by a correlation between one BOLD signal and a prediction of this signal via a causal system driven by another BOLD signal. Three validations are described: (1) Prediction correlation performed well on simulated data where the ground truth was known, and outperformed four other methods. (2) On simulated data designed to display the “common driver” problem, prediction correlation did not introduce false connections between non-interacting driven ROIs. (3) On experimental data, prediction correlation recovered the previously identified network organization of human brain. Prediction correlation scales well to work with hundreds of ROIs, enabling it to assess whole brain interregional connectivity at the single subject level. These results provide an initial validation that prediction correlation can capture the direction of information flow and estimate the duration of extended temporal delays in information flow between regions of interest ROIs based on BOLD signal. This approach not only maintains the high sensitivity to network connectivity provided by the correlation analysis, but also performs well in the estimation of causal information flow in the brain. PMID:28559793
Spectrum of MRI brain lesion patterns in neuromyelitis optica spectrum disorder: a pictorial review.
Wang, Kevin Yuqi; Chetta, Justin; Bains, Pavit; Balzer, Anthony; Lincoln, John; Uribe, Tomas; Lincoln, Christie M
2018-06-01
Neuromyelitis optica is a neurotropic autoimmune inflammatory disease of the central nervous system traditionally thought to exclusively involve the optic nerves and spinal cord. With the discovery of the disease-specific aquaporin-4 antibody and the increasing recognition of clinical and characteristic imaging patterns of brain involvement in what is now termed neuromyelitis optica spectrum disorder (NMOSD), MRI now plays a greater role in diagnosis of NMOSD based on the 2015 consensus criteria and in distinguishing it from other inflammatory disorders, particularly multiple sclerosis (MS). Several brain lesion patterns are highly suggestive of NMOSD, whereas others may serve as red flags. Specifically, long corticospinal lesions, hemispheric cerebral white matter lesions and periependymal lesions in the diencephalon, dorsal brainstem and white matter adjacent to lateral ventricles are typical of NMOSD. In contrast, juxtacortical, cortical, or lesions perpendicularly oriented to the surface of the lateral ventricle suggests MS as the diagnosis. Ultimately, a strong recognition of the spectrum of MRI brain findings in NMOSD is essential for accurate diagnosis, and particularly in differentiating from MS. This pictorial review highlights the spectrum of characteristic brain lesion patterns that may be seen in NMOSD and further delineates findings that may help distinguish it from MS.
Liu, Ho-Ling; Chang, Ting-Ting; Yan, Feng-Xian; Li, Cheng-He; Lin, Yu-Shi; Wong, Alex M
2015-06-01
The forward volumetric transfer constant (K(trans)), a physiological parameter extracted from dynamic contrast-enhanced (DCE) MRI, is weighted by vessel permeability and tissue blood flow. The permeability × surface area product per unit mass of tissue (PS) in brain tumors was estimated in this study by combining the blood flow obtained through pseudo-continuous arterial spin labeling (PCASL) and K(trans) obtained through DCE MRI. An analytical analysis and a numerical simulation were conducted to understand how errors in the flow and K(trans) estimates would propagate to the resulting PS. Fourteen pediatric patients with brain tumors were scanned on a clinical 3-T MRI scanner. PCASL perfusion imaging was performed using a three-dimensional (3D) fast-spin-echo readout module to determine blood flow. DCE imaging was performed using a 3D spoiled gradient-echo sequence, and the K(trans) map was obtained with the extended Tofts model. The numerical analysis demonstrated that the uncertainty of PS was predominantly dependent on that of K(trans) and was relatively insensitive to the flow. The average PS values of the whole tumors ranged from 0.006 to 0.217 min(-1), with a mean of 0.050 min(-1) among the patients. The mean K(trans) value was 18% lower than the PS value, with a maximum discrepancy of 25%. When the parametric maps were compared on a voxel-by-voxel basis, the discrepancies between PS and K(trans) appeared to be heterogeneous within the tumors. The PS values could be more than two-fold higher than the K(trans) values for voxels with high K(trans) levels. This study proposes a method that is easy to implement in clinical practice and has the potential to improve the quantification of the microvascular properties of brain tumors. Copyright © 2015 John Wiley & Sons, Ltd.
Anatomic & metabolic brain markers of the m.3243A>G mutation: A multi-parametric 7T MRI study.
Haast, Roy A M; Ivanov, Dimo; IJsselstein, Rutger J T; Sallevelt, Suzanne C E H; Jansen, Jacobus F A; Smeets, Hubert J M; de Coo, Irenaeus F M; Formisano, Elia; Uludağ, Kâmil
2018-01-01
One of the most common mitochondrial DNA (mtDNA) mutations, the A to G transition at base pair 3243, has been linked to changes in the brain, in addition to commonly observed hearing problems, diabetes and myopathy. However, a detailed quantitative description of m.3243A>G patients' brains has not been provided so far. In this study, ultra-high field MRI at 7T and volume- and surface-based data analyses approaches were used to highlight morphology (i.e. atrophy)-, microstructure (i.e. myelin and iron concentration)- and metabolism (i.e. cerebral blood flow)-related differences between patients (N = 22) and healthy controls (N = 15). The use of quantitative MRI at 7T allowed us to detect subtle changes of biophysical processes in the brain with high accuracy and sensitivity, in addition to typically assessed lesions and atrophy. Furthermore, the effect of m.3243A>G mutation load in blood and urine epithelial cells on these MRI measures was assessed within the patient population and revealed that blood levels were most indicative of the brain's state and disease severity, based on MRI as well as on neuropsychological data. Morphometry MRI data showed a wide-spread reduction of cortical, subcortical and cerebellar gray matter volume, in addition to significantly enlarged ventricles. Moreover, surface-based analyses revealed brain area-specific changes in cortical thickness (e.g. of the auditory cortex), and in T 1 , T 2 * and cerebral blood flow as a function of mutation load, which can be linked to typically m.3243A>G-related clinical symptoms (e.g. hearing impairment). In addition, several regions linked to attentional control (e.g. middle frontal gyrus), the sensorimotor network (e.g. banks of central sulcus) and the default mode network (e.g. precuneus) were characterized by alterations in cortical thickness, T 1 , T 2 * and/or cerebral blood flow, which has not been described in previous MRI studies. Finally, several hypotheses, based either on vascular, metabolic or astroglial implications of the m.3243A>G mutation, are discussed that potentially explain the underlying pathobiology. To conclude, this is the first 7T and also the largest MRI study on this patient population that provides macroscopic brain correlates of the m.3243A>G mutation indicating potential MRI biomarkers of mitochondrial diseases and might guide future (longitudinal) studies to extensively track neuropathological and clinical changes.
Value of MRI in diagnostics and evaluation of myositis.
Pipitone, Nicolò
2016-11-01
This review aims at covering the role of muscle MRI in supporting the diagnosis of myositis, in aiding to differentiate it from other muscle disorders, and in monitoring myositis patients over time by assessing response to treatment and by discriminating between muscle inflammation and chronic damage. MRI can assist in 'pattern recognition' of muscle involvement across numerous myopathies, including myositis. Novel applications of magnetic resonance such as cardiac MRI, MR elastography and blood oxigenation level-dependent magnetic resonance can shed light on different aspects of myositis and usefully complement conventional MRI in assessing patients with myositis. MRI can guide therapy by determining whether muscle weakness is related to edema (active inflammation) or muscle atrophy/fat replacement (chronic damage). There is a need to better standardize the assessment of MRI findings in myositis to provide defined outcome measures for use in clinical trials. VIDEO ABSTRACT.
MRI-visible perivascular spaces in cerebral amyloid angiopathy and hypertensive arteriopathy
Boulouis, Gregoire; Pasi, Marco; Auriel, Eitan; van Etten, Ellis S.; Haley, Kellen; Ayres, Alison; Schwab, Kristin M.; Martinez-Ramirez, Sergi; Goldstein, Joshua N.; Rosand, Jonathan; Viswanathan, Anand; Greenberg, Steven M.; Gurol, M. Edip
2017-01-01
Objective: To assess MRI-visible enlarged perivascular spaces (EPVS) burden and different topographical patterns (in the centrum semiovale [CSO] and basal ganglia [BG]) in 2 common microangiopathies: cerebral amyloid angiopathy (CAA) and hypertensive arteriopathy (HA). Methods: Consecutive patients with spontaneous intracerebral hemorrhage (ICH) from a prospective MRI cohort were included. Small vessel disease MRI markers, including cerebral microbleeds (CMBs), cortical superficial siderosis (cSS), and white matter hyperintensities (WMH), were rated. CSO-EPVS/BG-EPVS were assessed on a validated 4-point visual rating scale (0 = no EPVS, 1 = <10, 2 = 11–20, 3 = 21–40, and 4 = >40 EPVS). We tested associations of predefined high-degree (score >2) CSO-EPVS and BG-EPVS with other MRI markers in multivariable logistic regression. We subsequently evaluated associations with CSO-EPVS predominance (i.e., CSO-EPVS > BG-EPVS) and BG-EPVS predominance pattern (i.e., BG-EPVS > CSO-EPVS) in adjusted multinomial logistic regression (reference group, BG-EPVS = CSO-EPVS). Results: We included 315 patients with CAA-ICH and 137 with HA-ICH. High-degree CSO-EPVS prevalence was greater in CAA-related ICH vs HA-related ICH (43.8% vs 17.5%, p < 0.001). In multivariable logistic regression, high-degree CSO-EPVS was associated with lobar CMB (odds ratio [OR] 1.33, 95% confidence interval [CI] 1.10–1.61, p = 0.003) and cSS (OR 2.08, 95% CI 1.30–3.32, p = 0.002). Deep CMBs (OR 2.85, 95% CI 1.75–4.64, p < 0.0001) and higher WMH volume (OR 1.02, 95% CI 1.01–1.04, p = 0.010) were predictors of high-degree BG-EPVS. A CSO-EPVS–predominant pattern was more common in CAA-ICH than in HA-ICH (75.9% vs 39.4%, respectively, p < 0.0001). CSO-PVS predominance was associated with lobar CMB burden and cSS, while BG-EPVS predominance was associated with HA-ICH and WMH volumes. Conclusions: Different patterns of MRI-visible EPVS provide insights into the dominant underlying microangiopathy type in patients with spontaneous ICH. PMID:28228568
Multiclass fMRI data decoding and visualization using supervised self-organizing maps.
Hausfeld, Lars; Valente, Giancarlo; Formisano, Elia
2014-08-01
When multivariate pattern decoding is applied to fMRI studies entailing more than two experimental conditions, a most common approach is to transform the multiclass classification problem into a series of binary problems. Furthermore, for decoding analyses, classification accuracy is often the only outcome reported although the topology of activation patterns in the high-dimensional features space may provide additional insights into underlying brain representations. Here we propose to decode and visualize voxel patterns of fMRI datasets consisting of multiple conditions with a supervised variant of self-organizing maps (SSOMs). Using simulations and real fMRI data, we evaluated the performance of our SSOM-based approach. Specifically, the analysis of simulated fMRI data with varying signal-to-noise and contrast-to-noise ratio suggested that SSOMs perform better than a k-nearest-neighbor classifier for medium and large numbers of features (i.e. 250 to 1000 or more voxels) and similar to support vector machines (SVMs) for small and medium numbers of features (i.e. 100 to 600voxels). However, for a larger number of features (>800voxels), SSOMs performed worse than SVMs. When applied to a challenging 3-class fMRI classification problem with datasets collected to examine the neural representation of three human voices at individual speaker level, the SSOM-based algorithm was able to decode speaker identity from auditory cortical activation patterns. Classification performances were similar between SSOMs and other decoding algorithms; however, the ability to visualize decoding models and underlying data topology of SSOMs promotes a more comprehensive understanding of classification outcomes. We further illustrated this visualization ability of SSOMs with a re-analysis of a dataset examining the representation of visual categories in the ventral visual cortex (Haxby et al., 2001). This analysis showed that SSOMs could retrieve and visualize topography and neighborhood relations of the brain representation of eight visual categories. We conclude that SSOMs are particularly suited for decoding datasets consisting of more than two classes and are optimally combined with approaches that reduce the number of voxels used for classification (e.g. region-of-interest or searchlight approaches). Copyright © 2014. Published by Elsevier Inc.
Murphy, Matthew C; Poplawsky, Alexander J; Vazquez, Alberto L; Chan, Kevin C; Kim, Seong-Gi; Fukuda, Mitsuhiro
2016-08-15
Functional MRI (fMRI) is a popular and important tool for noninvasive mapping of neural activity. As fMRI measures the hemodynamic response, the resulting activation maps do not perfectly reflect the underlying neural activity. The purpose of this work was to design a data-driven model to improve the spatial accuracy of fMRI maps in the rat olfactory bulb. This system is an ideal choice for this investigation since the bulb circuit is well characterized, allowing for an accurate definition of activity patterns in order to train the model. We generated models for both cerebral blood volume weighted (CBVw) and blood oxygen level dependent (BOLD) fMRI data. The results indicate that the spatial accuracy of the activation maps is either significantly improved or at worst not significantly different when using the learned models compared to a conventional general linear model approach, particularly for BOLD images and activity patterns involving deep layers of the bulb. Furthermore, the activation maps computed by CBVw and BOLD data show increased agreement when using the learned models, lending more confidence to their accuracy. The models presented here could have an immediate impact on studies of the olfactory bulb, but perhaps more importantly, demonstrate the potential for similar flexible, data-driven models to improve the quality of activation maps calculated using fMRI data. Copyright © 2016 Elsevier Inc. All rights reserved.
Yang, Chen; Lee, Dong-Hoon; Mangraviti, Antonella; Su, Lin; Zhang, Kai; Zhang, Yin; Zhang, Bin; Li, Wenxiao; Tyler, Betty; Wong, John; Wang, Ken Kang-Hsin; Velarde, Esteban; Zhou, Jinyuan; Ding, Kai
2015-08-01
Radiotherapy remains a major treatment method for malignant tumors. Magnetic resonance imaging (MRI) is the standard modality for assessing glioma treatment response in the clinic. Compared to MRI, ultrasound imaging is low-cost and portable and can be used during intraoperative procedures. The purpose of this study was to quantitatively compare contrast-enhanced ultrasound (CEUS) imaging and MRI of irradiated gliomas in rats and to determine which quantitative ultrasound imaging parameters can be used for the assessment of early response to radiation in glioma. Thirteen nude rats with U87 glioma were used. A small thinned skull window preparation was performed to facilitate ultrasound imaging and mimic intraoperative procedures. Both CEUS and MRI with structural, functional, and molecular imaging parameters were performed at preradiation and at 1 day and 4 days postradiation. Statistical analysis was performed to determine the correlations between MRI and CEUS parameters and the changes between pre- and postradiation imaging. Area under the curve (AUC) in CEUS showed significant difference between preradiation and 4 days postradiation, along with four MRI parameters, T2, apparent diffusion coefficient, cerebral blood flow, and amide proton transfer-weighted (APTw) (all p < 0.05). The APTw signal was correlated with three CEUS parameters, rise time (r = - 0.527, p < 0.05), time to peak (r = - 0.501, p < 0.05), and perfusion index (r = 458, p < 0.05). Cerebral blood flow was correlated with rise time (r = - 0.589, p < 0.01) and time to peak (r = - 0.543, p < 0.05). MRI can be used for the assessment of radiotherapy treatment response and CEUS with AUC as a new technique and can also be one of the assessment methods for early response to radiation in glioma.
Elkafrawy, Fatma; Reda, Ihab; Elsirafy, Mohamed; Gawad, Mohamed Saied Abdel; Elnaggar, Alaa; Khalek Abdel Razek, Ahmed Abdel
2017-02-01
To evaluate the role of three-dimensional constructive interference in steady state (3D-CISS) sequences and phase-contrast magnetic resonance imaging (PC-MRI) in patients with arrested hydrocephalus. A prospective study of 20 patients with arrested hydrocephalus was carried out. All patients underwent PC-MRI and 3D-CISS for assessment of the aqueduct. Axial (through-plane), sagittal (in-plane) PC-MRI, and sagittal 3D-CISS were applied to assess the cerebral aqueduct and the spontaneous third ventriculostomy if present. Aqueductal patency was graded using 3D-CISS and PC-MRI. Quantitative analysis of flow through the aqueduct was performed using PC-MRI. The causes of obstruction were aqueductal obstruction in 75% (n = 15), third ventricular obstruction in 5% (n = 1), and fourth ventricular obstruction in 20% (n = 4). The cause of arrest of hydrocephalus was spontaneous third ventriculostomy in 65% (n = 13), endoscopic third ventriculostomy in 10% (n = 2), and ventriculoperitoneal shunt in 5% (n = 1), and no cause could be detected in 20% of patients (n = 4). There is a positive correlation (r = 0.80) and moderate agreement (κ = 0.509) of grading with PC-MRI and 3D-CISS sequences. The mean peak systolic velocity of cerebrospinal fluid was 1.86 ± 2.48 cm/second, the stroke volume was 6.43 ± 13.81 μL/cycle, and the mean flow was 0.21 ± 0.32 mL/minute. We concluded that 3D-CISS and PC-MRI are noninvasive sequences for diagnosis of the level and cause of arrested hydrocephalus. Copyright © 2016 Elsevier Inc. All rights reserved.
Hepatic function imaging using dynamic Gd-EOB-DTPA enhanced MRI and pharmacokinetic modeling.
Ning, Jia; Yang, Zhiying; Xie, Sheng; Sun, Yongliang; Yuan, Chun; Chen, Huijun
2017-10-01
To determine whether pharmacokinetic modeling parameters with different output assumptions of dynamic contrast-enhanced MRI (DCE-MRI) using Gd-EOB-DTPA correlate with serum-based liver function tests, and compare the goodness of fit of the different output assumptions. A 6-min DCE-MRI protocol was performed in 38 patients. Four dual-input two-compartment models with different output assumptions and a published one-compartment model were used to calculate hepatic function parameters. The Akaike information criterion fitting error was used to evaluate the goodness of fit. Imaging-based hepatic function parameters were compared with blood chemistry using correlation with multiple comparison correction. The dual-input two-compartment model assuming venous flow equals arterial flow plus portal venous flow and no bile duct output better described the liver tissue enhancement with low fitting error and high correlation with blood chemistry. The relative uptake rate Kir derived from this model was found to be significantly correlated with direct bilirubin (r = -0.52, P = 0.015), prealbumin concentration (r = 0.58, P = 0.015), and prothrombin time (r = -0.51, P = 0.026). It is feasible to evaluate hepatic function by proper output assumptions. The relative uptake rate has the potential to serve as a biomarker of function. Magn Reson Med 78:1488-1495, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Muscle MRI in Duchenne muscular dystrophy: Evidence of a distinctive pattern.
Polavarapu, Kiran; Manjunath, Mahadevappa; Preethish-Kumar, Veeramani; Sekar, Deepha; Vengalil, Seena; Thomas, PriyaTreesa; Sathyaprabha, Talakad N; Bharath, Rose Dawn; Nalini, Atchayaram
2016-11-01
The purpose of this study was to describe the pattern of muscle involvement using MRI findings and correlate with functional as well as muscle strength measurements. Fifty genetically confirmed DMD children with a mean age of 7.6 ± 2.8 (4-15 years) underwent muscle MRI and qualitative assessment was done for muscle changes using Mercuri staging for fibro-fatty replacement on T1 sequence and Borsato score for myoedema on STIR sequence. Detailed phenotypic characterisation was done with Manual muscle testing (modified MRC grading) and Muscular Dystrophy Functional Rating Scale (MDFRS). Mercuri scoring showed severe fibro-fatty changes in Gluteus medius, minimus and Adductor magnus followed by moderate to severe changes in Gluteus maximus and Quadriceps muscles. Total sparing of Gracilis, Sartorius and Semimembranosus muscles was observed. Superficial posterior and lateral leg muscles were preferentially involved with sparing of deep posterior and anterior leg muscles. Myoedema showed significant inverse correlation with fatty infiltration in thigh muscles. Similarly, significant inverse correlation was observed between Mercuri scores and MRC grading as well as MDFRS scores. A direct linear correlation was observed between duration of illness and fibro-fatty changes in piriformis, quadriceps and superficial posterior leg muscles. There was no correlation between MRI findings and genotypic characteristics. However, this specific pattern of muscle involvement in MRI could aid in proceeding for genetic testing when clinical suspicion is high, thus reducing the need for muscle biopsy. Fibro fatty infiltration as measured by Mercuri scoring can be a useful marker for assessing the disease severity and progression. Copyright © 2016 Elsevier B.V. All rights reserved.
Spatiotemporal Patterns of Tumor Occurrence in Children with Intraocular Retinoblastoma.
King, Benjamin A; Parra, Carlos; Li, Yimei; Helton, Kathleen J; Qaddoumi, Ibrahim; Wilson, Matthew W; Ogg, Robert J
2015-01-01
To accurately map the retinal area covered by tumor in a prospectively enrolled cohort of children diagnosed with retinoblastoma. Orbital MRI in 106 consecutive retinoblastoma patients (44 bilateral) was analyzed. For MRI-visible tumors, the polar angle and angle of eccentricity of points defining tumor perimeter on the retina were determined by triangulation from images in three orthogonal planes. The centroid of the mapped area was calculated to approximate tumor origin, and the location and cumulative tumor burden were analyzed in relation to mutation type (germline vs. somatic), tumor area, and patient age at diagnosis. Location of small tumors undetected by MRI was approximated with fundoscopic images. Mapping was successful for 129 tumors in 91 eyes from 67 patients (39 bilateral, 43 germline mutation). Cumulative tumor burden was highest within the macula and posterior pole and was asymmetrically higher within the inferonasal periphery. Tumor incidence was lowest in the superotemporal periphery. Tumor location varied with age at diagnosis in a complex pattern. Tumor location was concentrated in the macula and superonasal periphery in patients <5.6 months, in the inferotemporal quadrant of the posterior pole in patients 5.6-8.8 months, in the inferonasal quadrant in patients 8.8-13.2 months, and in the nasal and superotemporal periphery in patients >13.2 months. The distribution of MRI-invisible tumors was consistent with the asymmetry of mapped tumors. MRI-based mapping revealed a previously unrecognized pattern of retinoblastoma localization that evolves with age at diagnosis. The structured spatiotemporal distribution of tumors may provide valuable clues about cellular or molecular events associated with tumorigenesis in the developing retina.
NASA Astrophysics Data System (ADS)
Oweis, Khalid J.; Berl, Madison M.; Gaillard, William D.; Duke, Elizabeth S.; Blackstone, Kaitlin; Loew, Murray H.; Zara, Jason M.
2010-03-01
This paper describes the development of novel computer-aided analysis algorithms to identify the language activation patterns at a certain Region of Interest (ROI) in Functional Magnetic Resonance Imaging (fMRI). Previous analysis techniques have been used to compare typical and pathologic activation patterns in fMRI images resulting from identical tasks but none of them analyzed activation topographically in a quantitative manner. This paper presents new analysis techniques and algorithms capable of identifying a pattern of language activation associated with localization related epilepsy. fMRI images of 64 healthy individuals and 31 patients with localization related epilepsy have been studied and analyzed on an ROI basis. All subjects are right handed with normal MRI scans and have been classified into three age groups (4-6, 7-9, 10-12 years). Our initial efforts have focused on investigating activation in the Left Inferior Frontal Gyrus (LIFG). A number of volumetric features have been extracted from the data. The LIFG has been cut into slices and the activation has been investigated topographically on a slice by slice basis. Overall, a total of 809 features have been extracted, and correlation analysis was applied to eliminate highly correlated features. Principal Component analysis was then applied to account only for major components in the data and One-Way Analysis of Variance (ANOVA) has been applied to test for significantly different features between normal and patient groups. Twenty Nine features have were found to be significantly different (p<0.05) between patient and control groups
Lobrano, Mary Beth; Stolier, Alan; L'Hoste, Robert; Luttrell, Carol Anne
2012-01-01
The objective of our study was to investigate the indications for breast magnetic resonance imaging, or MRI, in our community hospital, determine how many probably benign MRI findings were malignant at follow-up, determine how many cancers were identified by MRI in screening patients, and evaluate the utility of MRI for surgical planning and problem-solving. Five hundred twenty-eight contrast-enhanced MRI's of the breast in 434 patients were retrospectively reviewed. MRI images/reports were compared to surgical pathology reports and the results of follow-up studies. Screening was the most common indication for breast MRI in our patient population. Five percent of findings termed "probably benign" on MRI proved to be malignant at follow-up. Eight malignancies were detected in six of 202 screened patients. Ten malignancies were diagnosed in 66 patients referred to MRI for problem-solving. In two of 74 patients with known breast cancer, an unsuspected ipsilateral cancer was identified on MRI. MRI proved useful in the community hospital setting for screening high-risk patients and problem-solving. The rate of malignancy in probably benign MRI findings was higher than the corresponding rate in mammography. The detection of additional ipsilateral and contralateral cancers in pre-operative patients with known breast cancer was not as high as expected, based on prior studies.
Durning, Steven J; Graner, John; Artino, Anthony R; Pangaro, Louis N; Beckman, Thomas; Holmboe, Eric; Oakes, Terrance; Roy, Michael; Riedy, Gerard; Capaldi, Vincent; Walter, Robert; van der Vleuten, Cees; Schuwirth, Lambert
2012-09-01
Clinical reasoning is essential to medical practice, but because it entails internal mental processes, it is difficult to assess. Functional magnetic resonance imaging (fMRI) and think-aloud protocols may improve understanding of clinical reasoning as these methods can more directly assess these processes. The objective of our study was to use a combination of fMRI and think-aloud procedures to examine fMRI correlates of a leading theoretical model in clinical reasoning based on experimental findings to date: analytic (i.e., actively comparing and contrasting diagnostic entities) and nonanalytic (i.e., pattern recognition) reasoning. We hypothesized that there would be functional neuroimaging differences between analytic and nonanalytic reasoning theory. 17 board-certified experts in internal medicine answered and reflected on validated U.S. Medical Licensing Exam and American Board of Internal Medicine multiple-choice questions (easy and difficult) during an fMRI scan. This procedure was followed by completion of a formal think-aloud procedure. fMRI findings provide some support for the presence of analytic and nonanalytic reasoning systems. Statistically significant activation of prefrontal cortex distinguished answering incorrectly versus correctly (p < 0.01), whereas activation of precuneus and midtemporal gyrus distinguished not guessing from guessing (p < 0.01). We found limited fMRI evidence to support analytic and nonanalytic reasoning theory, as our results indicate functional differences with correct vs. incorrect answers and guessing vs. not guessing. However, our findings did not suggest one consistent fMRI activation pattern of internal medicine expertise. This model of employing fMRI correlates offers opportunities to enhance our understanding of theory, as well as improve our teaching and assessment of clinical reasoning, a key outcome of medical education.
Understanding the pathophysiology of reflex epilepsy using simultaneous EEG-fMRI.
Sandhya, Manglore; Bharath, Rose Dawn; Panda, Rajanikant; Chandra, S R; Kumar, Naveen; George, Lija; Thamodharan, A; Gupta, Arun Kumar; Satishchandra, P
2014-03-01
Measuring neuro-haemodynamic correlates in the brain of epilepsy patients using EEG-fMRI has opened new avenues in clinical neuroscience, as these are two complementary methods for understanding brain function. In this study, we investigated three patients with drug-resistant reflex epilepsy using EEG-fMRI. Different types of reflex epilepsy such as eating, startle myoclonus, and hot water epilepsy were included in the study. The analysis of EEG-fMRI data was based on the visual identification of interictal epileptiform discharges on scalp EEG. The convolution of onset time and duration of these epilepsy spikes was estimated, and using these condition-specific effects in a general linear model approach, we evaluated activation of fMRI. Patients with startle myoclonus epilepsy experienced epilepsy in response to sudden sound or touch, in association with increased delta and theta activity with a spike-and-slow-wave pattern of interictal epileptiform discharges on EEG and fronto-parietal network activation pattern on SPECT and EEG-fMRI. Eating epilepsy was triggered by sight or smell of food and fronto-temporal discharges were noted on video-EEG (VEEG). Similarly, fronto-temporo-parietal involvement was noted on SPECT and EEG-fMRI. Hot water epilepsy was triggered by contact with hot water either in the bath or by hand immersion, and VEEG showed fronto-parietal involvement. SPECT and EEG fMRI revealed a similar fronto-parietal-occipital involvement. From these results, we conclude that continuous EEG recording can improve the modelling of BOLD changes related to interictal epileptic activity and this can thus be used to understand the neuro-haemodynamic substrates involved in reflex epilepsy.
Helical magnetorotational instability in magnetized Taylor-Couette flow.
Liu, Wei; Goodman, Jeremy; Herron, Isom; Ji, Hantao
2006-11-01
Hollerbach and Rüdiger have reported a new type of magnetorotational instability (MRI) in magnetized Taylor-Couette flow in the presence of combined axial and azimuthal magnetic fields. The salient advantage of this "helical" MRI (HMRI) is that marginal instability occurs at arbitrarily low magnetic Reynolds and Lundquist numbers, suggesting that HMRI might be easier to realize than standard MRI (axial field only), and that it might be relevant to cooler astrophysical disks, especially those around protostars, which may be quite resistive. We confirm previous results for marginal stability and calculate HMRI growth rates. We show that in the resistive limit, HMRI is a weakly destabilized inertial oscillation propagating in a unique direction along the axis. But we report other features of HMRI that make it less attractive for experiments and for resistive astrophysical disks. Large axial currents are required. More fundamentally, instability of highly resistive flow is peculiar to infinitely long or periodic cylinders: finite cylinders with insulating endcaps are shown to be stable in this limit, at least if viscosity is neglected. Also, Keplerian rotation profiles are stable in the resistive limit regardless of axial boundary conditions. Nevertheless, the addition of a toroidal field lowers thresholds for instability even in finite cylinders.
Callan, Daniel; Mills, Lloyd; Nott, Connie; England, Robert; England, Shaun
2014-01-01
Chronic pain is one of the most prevalent health problems in the world today, yet neurological markers, critical to diagnosis of chronic pain, are still largely unknown. The ability to objectively identify individuals with chronic pain using functional magnetic resonance imaging (fMRI) data is important for the advancement of diagnosis, treatment, and theoretical knowledge of brain processes associated with chronic pain. The purpose of our research is to investigate specific neurological markers that could be used to diagnose individuals experiencing chronic pain by using multivariate pattern analysis with fMRI data. We hypothesize that individuals with chronic pain have different patterns of brain activity in response to induced pain. This pattern can be used to classify the presence or absence of chronic pain. The fMRI experiment consisted of alternating 14 seconds of painful electric stimulation (applied to the lower back) with 14 seconds of rest. We analyzed contrast fMRI images in stimulation versus rest in pain-related brain regions to distinguish between the groups of participants: 1) chronic pain and 2) normal controls. We employed supervised machine learning techniques, specifically sparse logistic regression, to train a classifier based on these contrast images using a leave-one-out cross-validation procedure. We correctly classified 92.3% of the chronic pain group (N = 13) and 92.3% of the normal control group (N = 13) by recognizing multivariate patterns of activity in the somatosensory and inferior parietal cortex. This technique demonstrates that differences in the pattern of brain activity to induced pain can be used as a neurological marker to distinguish between individuals with and without chronic pain. Medical, legal and business professionals have recognized the importance of this research topic and of developing objective measures of chronic pain. This method of data analysis was very successful in correctly classifying each of the two groups.
Callan, Daniel; Mills, Lloyd; Nott, Connie; England, Robert; England, Shaun
2014-01-01
Chronic pain is one of the most prevalent health problems in the world today, yet neurological markers, critical to diagnosis of chronic pain, are still largely unknown. The ability to objectively identify individuals with chronic pain using functional magnetic resonance imaging (fMRI) data is important for the advancement of diagnosis, treatment, and theoretical knowledge of brain processes associated with chronic pain. The purpose of our research is to investigate specific neurological markers that could be used to diagnose individuals experiencing chronic pain by using multivariate pattern analysis with fMRI data. We hypothesize that individuals with chronic pain have different patterns of brain activity in response to induced pain. This pattern can be used to classify the presence or absence of chronic pain. The fMRI experiment consisted of alternating 14 seconds of painful electric stimulation (applied to the lower back) with 14 seconds of rest. We analyzed contrast fMRI images in stimulation versus rest in pain-related brain regions to distinguish between the groups of participants: 1) chronic pain and 2) normal controls. We employed supervised machine learning techniques, specifically sparse logistic regression, to train a classifier based on these contrast images using a leave-one-out cross-validation procedure. We correctly classified 92.3% of the chronic pain group (N = 13) and 92.3% of the normal control group (N = 13) by recognizing multivariate patterns of activity in the somatosensory and inferior parietal cortex. This technique demonstrates that differences in the pattern of brain activity to induced pain can be used as a neurological marker to distinguish between individuals with and without chronic pain. Medical, legal and business professionals have recognized the importance of this research topic and of developing objective measures of chronic pain. This method of data analysis was very successful in correctly classifying each of the two groups. PMID:24905072
NASA Astrophysics Data System (ADS)
Rigaux, G.; Gheran, C. V.; Callewaert, M.; Cadiou, C.; Voicu, S. N.; Dinischiotu, A.; Andry, M. C.; Vander Elst, L.; Laurent, S.; Muller, R. N.; Berquand, A.; Molinari, M.; Huclier-Markai, S.; Chuburu, F.
2017-02-01
Chitosan CS—tripolyphosphate TPP/hyaluronic acid HA nanohydrogels loaded with gadolinium chelates (GdDOTA ⊂ CS-TPP/HA NGs) synthesized by ionic gelation were designed for lymph node (LN) MRI. In order to be efficiently drained to LNs, nanogels (NGs) needed to exhibit a diameter ϕ < 100 nm. For that, formulation parameters were tuned, using (i) CS of two different molecular weights (51 and 37 kDa) and (ii) variable CS/TPP ratio (2 < CS/TPP < 8). Characterization of NG size distribution by dynamic light scattering (DLS) and asymetrical flow-field-flow-fractionation (AF4) showed discrepancies since DLS diameters were consistently above 200 nm while AF4 showed individual nano-objects with ϕ < 100 nm. Such a difference could be correlated to the presence of aggregates inherent to ionic gelation. This point was clarified by atomic force microscopy (AFM) in liquid mode which highlighted the main presence of individual nano-objects in nanosuspensions. Thus, combination of DLS, AF4 and AFM provided a more precise characterization of GdDOTA ⊂ CS-TPP/HA nanohydrogels which, in turn, allowed to select formulations leading to NGs of suitable mean sizes showing good MRI efficiency and negligible toxicity.
Koch, Stefan P.; Hägele, Claudia; Haynes, John-Dylan; Heinz, Andreas; Schlagenhauf, Florian; Sterzer, Philipp
2015-01-01
Functional neuroimaging has provided evidence for altered function of mesolimbic circuits implicated in reward processing, first and foremost the ventral striatum, in patients with schizophrenia. While such findings based on significant group differences in brain activations can provide important insights into the pathomechanisms of mental disorders, the use of neuroimaging results from standard univariate statistical analysis for individual diagnosis has proven difficult. In this proof of concept study, we tested whether the predictive accuracy for the diagnostic classification of schizophrenia patients vs. healthy controls could be improved using multivariate pattern analysis (MVPA) of regional functional magnetic resonance imaging (fMRI) activation patterns for the anticipation of monetary reward. With a searchlight MVPA approach using support vector machine classification, we found that the diagnostic category could be predicted from local activation patterns in frontal, temporal, occipital and midbrain regions, with a maximal cluster peak classification accuracy of 93% for the right pallidum. Region-of-interest based MVPA for the ventral striatum achieved a maximal cluster peak accuracy of 88%, whereas the classification accuracy on the basis of standard univariate analysis reached only 75%. Moreover, using support vector regression we could additionally predict the severity of negative symptoms from ventral striatal activation patterns. These results show that MVPA can be used to substantially increase the accuracy of diagnostic classification on the basis of task-related fMRI signal patterns in a regionally specific way. PMID:25799236
Ishii, Junko; Shishido-Hara, Yukiko; Kawamoto, Michi; Fujiwara, Satoru; Imai, Yukihiro; Nakamichi, Kazuo; Kohara, Nobuo
2018-04-27
A 37-year-old woman with systemic lupus erythematosus (SLE) presented with gait disturbance and cognitive dysfunction. Brain magnetic resonance imaging (MRI) revealed small, punctate, T2-/fluid-attenuated inversion recovery-hyperintense and T1-hypointense lesions without gadolinium enhancement, which is atypical for progressive multifocal leukoencephalopathy (PML). On a pathological examination of biopsied brain tissues, JC virus-infected cells were hardly detected via immunohistochemistry but were certainly detected via in situ hybridization, conclusively verifying the PML diagnosis. After tapering off the immunosuppressant and mefloquine administration, the MRI findings revealed gradual improvement, and she has been stable for over 18 months. A punctate MRI pattern is not specific to natalizumab-associated PML but may be a ubiquitous early sign useful for the early diagnosis of PML.
Steering of aggregating magnetic microparticles using propulsion gradients coils in an MRI Scanner.
Mathieu, Jean-Baptiste; Martel, Sylvain
2010-05-01
Upgraded gradient coils can effectively enhance the MRI steering of magnetic microparticles in a branching channel. Applications of this method include MRI targeting of magnetic embolization agents for oncologic therapy. A magnetic suspension of Fe(3)O(4) magnetic particles was injected inside a y-shaped microfluidic channel. Magnetic gradients of 0, 50, 100, 200, and 400 mT/m were applied to the magnetic particles perpendicularly to the flow by a custom-built gradient coil inside a 1.5-T MRI scanner. Measurement of the steering ratio was performed both by video analyses and quantification of the mass of the particles collected at each outlet of the microfluidic channel, using atomic absorption spectroscopy. Magnetic particles steering ratios of 0.99 and 0.75 were reached with 400 mT/m gradient amplitude and measured by video analyses and atomic absorption spectroscopy, respectively. Experimental data shows that the steering ratio increases with higher magnetic gradients. Moreover, theory suggests that larger particles (or aggregates), higher magnetizations, and lower flows can also be used to improve the steering ratio. The technological limitation of the approach is that an MRI gradient amplitude increase to a few hundred milliteslas per meter is needed. A simple analytical method based on magnetophoretic velocity predictions and geometric considerations is proposed for steering ratio calculation. (c) 2010 Wiley-Liss, Inc.
Heijtel, D F R; Petersen, E T; Mutsaerts, H J M M; Bakker, E; Schober, P; Stevens, M F; van Berckel, B N M; Majoie, C B L M; Booij, J; van Osch, M J P; van Bavel, E T; Boellaard, R; Lammertsma, A A; Nederveen, A J
2016-04-01
The purpose of this study was to assess whether there was an agreement between quantitative cerebral blood flow (CBF) and arterial cerebral blood volume (CBVA) measurements by [(15)O]H2O positron emission tomography (PET) and model-free QUASAR MRI. Twelve healthy subjects were scanned within a week in separate MRI and PET imaging sessions, after which quantitative and qualitative agreement between both modalities was assessed for gray matter, white matter and whole brain region of interests (ROI). The correlation between CBF measurements obtained with both modalities was moderate to high (r(2): 0.28-0.60, P < 0.05), although QUASAR significantly underestimated CBF by 30% (P < 0.001). CBVA was moderately correlated (r(2): 0.28-0.43, P < 0.05), with QUASAR yielding values that were only 27% of the [(15)O]H2O-derived values (P < 0.001). Group-wise voxel statistics identified minor areas with significant contrast differences between [(15)O]H2O PET and QUASAR MRI, indicating similar qualitative CBVA and CBF information by both modalities. In conclusion, the results of this study demonstrate that QUASAR MRI and [(15)O]H2O PET provide similar CBF and CBVA information, but with systematic quantitative discrepancies. Copyright © 2016 John Wiley & Sons, Ltd.
Evaluation of MRI Models in the Measurement of CMRO2 and Its Relationship With CBF
Lin, Ai-Ling; Fox, Peter T.; Yang, Yihong; Lu, Hanzhang; Tan, Li-Hai; Gao, Jia-Hong
2008-01-01
The aim of this study was to investigate the various MRI biophysical models in the measurements of local cerebral metabolic rate of oxygen (CMRO2) and the corresponding relationship with cerebral blood flow (CBF) during brain activation. This aim was addressed by simultaneously measuring the relative changes in CBF, cerebral blood volume (CBV), and blood oxygen level dependent (BOLD) MRI signals in the human visual cortex during visual stimulation. A radial checkerboard delivered flash stimulation at five different frequencies. Two MRI models, the single-compartment model (SCM) and the multi-compartment model (MCM), were used to determine the relative changes in CMRO2 using three methods: [1] SCM with parameters identical to those used in a prior MRI study (M = 0.22; α = 0.38); [2] SCM with directly measured parameters (M from hypercapnia and α from measured δCBV and δCBF); and [3] MCM. The magnitude of relative changes in CMRO2 and the nonlinear relationship between CBF and CMRO2 obtained with Methods [2] and [3] were not in agreement with those obtained using Method [1]. However, the results of Methods [2] and [3] were aligned with positron emission tomography findings from the literature. Our results indicate that if appropriate parameters are used, the SCM and MCM models are equivalent for quantifying the values of CMRO2 and determining the flow-metabolism relationship. PMID:18666102
Gawryluk, Jodie R.; Mazerolle, Erin L.; D'Arcy, Ryan C. N.
2014-01-01
Functional magnetic resonance imaging (fMRI) is a non-invasive technique that allows for visualization of activated brain regions. Until recently, fMRI studies have focused on gray matter. There are two main reasons white matter fMRI remains controversial: (1) the blood oxygen level dependent (BOLD) fMRI signal depends on cerebral blood flow and volume, which are lower in white matter than gray matter and (2) fMRI signal has been associated with post-synaptic potentials (mainly localized in gray matter) as opposed to action potentials (the primary type of neural activity in white matter). Despite these observations, there is no direct evidence against measuring fMRI activation in white matter and reports of fMRI activation in white matter continue to increase. The questions underlying white matter fMRI activation are important. White matter fMRI activation has the potential to greatly expand the breadth of brain connectivity research, as well as improve the assessment and diagnosis of white matter and connectivity disorders. The current review provides an overview of the motivation to investigate white matter fMRI activation, as well as the published evidence of this phenomenon. We speculate on possible neurophysiologic bases of white matter fMRI signals, and discuss potential explanations for why reports of white matter fMRI activation are relatively scarce. We end with a discussion of future basic and clinical research directions in the study of white matter fMRI. PMID:25152709
Ogihara, Yukihiro; Ashizawa, Kazuto; Hayashi, Hideyuki; Nagayasu, Takeshi; Hayashi, Tomayoshi; Honda, Sumihisa; Uetani, Masataka
2018-01-01
Background It is occasionally difficult to distinguish progressive massive fibrosis (PMF) from lung cancer on computed tomography (CT) in patients with pneumoconiosis. Purpose To evaluate the magnetic resonance imaging (MRI) features of PMF and to assess its ability to differentiate PMF from lung cancer. Material and Methods Between 2000 and 2014, 40 pulmonary lesions suspected to be lung cancer on the basis of CT in 28 patients with known pneumoconiosis were evaluated. Twenty-four of the 40 lesions were pathologically or clinically diagnosed as PMF. The signal pattern on T2-weighted (T2W) images, post-contrast enhancement pattern on T1-weighted (T1W) images, and the pattern of the time intensity curve (TIC) on contrast-enhanced dynamic studies were evaluated. All images were analyzed independently by two chest radiologists. Results All 24 PMF lesions showed low signal intensity (SI) on T2W images (sensitivity, 100%), while 15 of 16 lung cancer lesions showed intermediate or high SI on T2W images (specificity, 94%) when PMF was regarded as a positive result. Six of 17 PMF lesions showed a homogeneous enhancement pattern (sensitivity, 35%), and 4/9 lung cancer lesions showed an inhomogeneous or a ring-like enhancement pattern (specificity, 44%). Six of 16 PMF lesions showed a gradually increasing enhancement pattern (sensitivity, 38%), and 7/9 lung cancer lesions showed rapid enhancement pattern (specificity, 78%). Conclusion When differentiation between PMF and lung cancer in patients with pneumoconiosis is difficult on CT, an additional MRI study, particularly the T2W imaging sequence, may help differentiate between the two.
Sridharan, Ramesh; Vul, Edward; Hsieh, Po-Jang; Kanwisher, Nancy; Golland, Polina
2012-01-01
Functional MRI studies have uncovered a number of brain areas that demonstrate highly specific functional patterns. In the case of visual object recognition, small, focal regions have been characterized with selectivity for visual categories such as human faces. In this paper, we develop an algorithm that automatically learns patterns of functional specificity from fMRI data in a group of subjects. The method does not require spatial alignment of functional images from different subjects. The algorithm is based on a generative model that comprises two main layers. At the lower level, we express the functional brain response to each stimulus as a binary activation variable. At the next level, we define a prior over sets of activation variables in all subjects. We use a Hierarchical Dirichlet Process as the prior in order to learn the patterns of functional specificity shared across the group, which we call functional systems, and estimate the number of these systems. Inference based on our model enables automatic discovery and characterization of dominant and consistent functional systems. We apply the method to data from a visual fMRI study comprised of 69 distinct stimulus images. The discovered system activation profiles correspond to selectivity for a number of image categories such as faces, bodies, and scenes. Among systems found by our method, we identify new areas that are deactivated by face stimuli. In empirical comparisons with perviously proposed exploratory methods, our results appear superior in capturing the structure in the space of visual categories of stimuli. PMID:21884803
Patient-specific connectivity pattern of epileptic network in frontal lobe epilepsy
Luo, Cheng; An, Dongmei; Yao, Dezhong; Gotman, Jean
2014-01-01
There is evidence that focal epilepsy may involve the dysfunction of a brain network in addition to the focal region. To delineate the characteristics of this epileptic network, we collected EEG/fMRI data from 23 patients with frontal lobe epilepsy. For each patient, EEG/fMRI analysis was first performed to determine the BOLD response to epileptic spikes. The maximum activation cluster in the frontal lobe was then chosen as the seed to identify the epileptic network in fMRI data. Functional connectivity analysis seeded at the same region was also performed in 63 healthy control subjects. Nine features were used to evaluate the differences of epileptic network patterns in three connection levels between patients and controls. Compared with control subjects, patients showed overall more functional connections between the epileptogenic region and the rest of the brain and higher laterality. However, the significantly increased connections were located in the neighborhood of the seed, but the connections between the seed and remote regions actually decreased. Comparing fMRI runs with interictal epileptic discharges (IEDs) and without IEDs, the patient-specific connectivity pattern was not changed significantly. These findings regarding patient-specific connectivity patterns of epileptic networks in FLE reflect local high connectivity and connections with distant regions differing from those of healthy controls. Moreover, the difference between the two groups in most features was observed in the strictest of the three connection levels. The abnormally high connectivity might reflect a predominant attribute of the epileptic network, which may facilitate propagation of epileptic activity among regions in the network. PMID:24936418
Monkul, E Serap; Silva, Leandro A P; Narayana, Shalini; Peluso, Marco A M; Zamarripa, Frank; Nery, Fabiano G; Najt, Pablo; Li, John; Lancaster, Jack L; Fox, Peter T; Lafer, Beny; Soares, Jair C
2012-02-01
We investigated the differences in the resting state corticolimbic blood flow between 20 unmedicated depressed patients and 21 healthy comparisons. Resting state cerebral blood flow (CBF) was measured with H(2)(15)O PET. Anatomical MRI scans were performed on an Elscint 1.9 T Prestige system for PET-MRI coregistration. Significant changes in cerebral blood flow indicating neural activity were detected using an ROI-free image subtraction strategy. In addition, the resting blood flow in patients was correlated with the severity of depression as measured by HAM-D scores. Depressed patients showed decreases in blood flow in right anterior cingulate (Brodmann areas 24 and 32) and increased blood flow in left and right posterior cingulate (Brodmann areas 23, 29, 30), left parahippocampal gyrus (Brodmann area 36), and right caudate compared with healthy volunteers. The severity of depression was inversely correlated with the left middle and inferior frontal gyri (Brodmann areas 9 and 47) and right medial frontal gyrus (Brodmann area 10) and right anterior cingulate (Brodmann areas 24, 32) blood flow, and directly correlated with the right thalamus blood flow. These findings support previous reports of abnormalities in the resting state blood flow in the limbic-frontal structures in depressed patients compared to healthy volunteers. Copyright © 2011 Wiley Periodicals, Inc.
Sharma, Ashwani Kumar; Gaikwad, Shailesh; Gupta, Vipul; Garg, Ajay; Mishra, Nalini K
2008-04-01
Since it was first described, normal pressure hydrocephalus (NPH) and its treatment by means of cerebrospinal fluid (CSF) shunting have been the focus of much investigation. Whatever be the cause of NPH, it has been hypothesized that in this disease there occurs decreased arterial expansion and an increased brain expansion leading to increased transmantle pressure. We cannot measure the latter, but fortunately the effect of these changes (increased peak flow velocity through the aqueduct) can be quantified with cine phase-contrast magnetic resonance imaging (MRI). This investigation was thus undertaken to characterize and measure CSF peak flow velocity at the level of the aqueduct, before and after lumbar CSF drainage, by means of a phase-contrast cine MRI and determine its role in selecting cases for shunt surgery. 37 patients with clinically suspected NPH were included in the study. Changes in the hyperdynamic peak CSF flow velocity with 50 ml lumbar CSF drainage (mimicking shunt) were evaluated in them for considering shunt surgery. 14 out of 15 patients who were recommended for shunt surgery, based on changes peak flow velocity after lumbar CSF drainage, improved after shunt surgery. None of the cases which were not recommended for shunt surgery, based on changes in CSF peak flow velocity after lumbar CSF drainage, improved after shunt surgery (2 out of 22 cases). The study concluded that the phase-contrast MR imaging, done before and after CSF drainage, is a sensitive method to support the clinical diagnosis of normal pressure hydrocephalus, selecting patients of NPH who are likely to benefit from shunt surgery, and to select patients of NPH who are not likely to benefit from shunt surgery.
A feasibility study for compressed sensing combined phase contrast MR angiography reconstruction
NASA Astrophysics Data System (ADS)
Lee, Dong-Hoon; Hong, Cheol-Pyo; Lee, Man-Woo; Han, Bong-Soo
2012-02-01
Phase contrast magnetic resonance angiography (PC MRA) is a technique for flow velocity measurement and vessels visualization, simultaneously. The PC MRA takes long scan time because each flow encoding gradients which are composed bipolar gradient type need to reconstruct the angiography image. Moreover, it takes more image acquisition time when we use the PC MRA at the low-tesla MRI system. In this study, we studied and evaluation of feasibility for CS MRI reconstruction combined PC MRA which data acquired by low-tesla MRI system. We used non-linear reconstruction algorithm which named Bregman iteration for CS image reconstruction and validate the usefulness of CS combined PC MRA reconstruction technique. The results of CS reconstructed PC MRA images provide similar level of image quality between fully sampled reconstruction data and sparse sampled reconstruction using CS technique. Although our results used half of sampling ratio and do not used specification hardware device or performance which are improving the temporal resolution of MR image acquisition such as parallel imaging reconstruction using phased array coil or non-cartesian trajectory, we think that CS combined PC MRA technique will be helpful to increase the temporal resolution and at low-tesla MRI system.
Posterior Parietal Cortex Drives Inferotemporal Activations During Three-Dimensional Object Vision.
Van Dromme, Ilse C; Premereur, Elsie; Verhoef, Bram-Ernst; Vanduffel, Wim; Janssen, Peter
2016-04-01
The primate visual system consists of a ventral stream, specialized for object recognition, and a dorsal visual stream, which is crucial for spatial vision and actions. However, little is known about the interactions and information flow between these two streams. We investigated these interactions within the network processing three-dimensional (3D) object information, comprising both the dorsal and ventral stream. Reversible inactivation of the macaque caudal intraparietal area (CIP) during functional magnetic resonance imaging (fMRI) reduced fMRI activations in posterior parietal cortex in the dorsal stream and, surprisingly, also in the inferotemporal cortex (ITC) in the ventral visual stream. Moreover, CIP inactivation caused a perceptual deficit in a depth-structure categorization task. CIP-microstimulation during fMRI further suggests that CIP projects via posterior parietal areas to the ITC in the ventral stream. To our knowledge, these results provide the first causal evidence for the flow of visual 3D information from the dorsal stream to the ventral stream, and identify CIP as a key area for depth-structure processing. Thus, combining reversible inactivation and electrical microstimulation during fMRI provides a detailed view of the functional interactions between the two visual processing streams.
Posterior Parietal Cortex Drives Inferotemporal Activations During Three-Dimensional Object Vision
Van Dromme, Ilse C.; Premereur, Elsie; Verhoef, Bram-Ernst; Vanduffel, Wim; Janssen, Peter
2016-01-01
The primate visual system consists of a ventral stream, specialized for object recognition, and a dorsal visual stream, which is crucial for spatial vision and actions. However, little is known about the interactions and information flow between these two streams. We investigated these interactions within the network processing three-dimensional (3D) object information, comprising both the dorsal and ventral stream. Reversible inactivation of the macaque caudal intraparietal area (CIP) during functional magnetic resonance imaging (fMRI) reduced fMRI activations in posterior parietal cortex in the dorsal stream and, surprisingly, also in the inferotemporal cortex (ITC) in the ventral visual stream. Moreover, CIP inactivation caused a perceptual deficit in a depth-structure categorization task. CIP-microstimulation during fMRI further suggests that CIP projects via posterior parietal areas to the ITC in the ventral stream. To our knowledge, these results provide the first causal evidence for the flow of visual 3D information from the dorsal stream to the ventral stream, and identify CIP as a key area for depth-structure processing. Thus, combining reversible inactivation and electrical microstimulation during fMRI provides a detailed view of the functional interactions between the two visual processing streams. PMID:27082854
Layer-specific blood-flow MRI of retinitis pigmentosa in RCS rats☆
Li, Guang; Garza, Bryan De La; Shih, Yen-Yu I.; Muir, Eric R.; Duong, Timothy Q.
2013-01-01
The Royal College of Surgeons (RCS) rat is an established animal model of retinitis pigmentosa, a family of inherited retinal diseases which starts with loss of peripheral vision and progresses to eventual blindness. Blood flow (BF), an important physiological parameter, is intricately coupled to metabolic function under normal physiological conditions and is perturbed in many neurological and retinal diseases. This study reports non-invasive high-resolution MRI (44 × 44 × 600 μm) to image quantitative retinal and choroidal BF and layer-specific retinal thicknesses in RCS rat retinas at different stages of retinal degeneration compared with age-matched controls. The unique ability to separate retinal and choroidal BF was made possible by the depth-resolved MRI technique. RBF decreased with progressive retinal degeneration, but ChBF did not change in RCS rats up to post-natal day 90. We concluded that choroidal and retinal circulations have different susceptibility to progressive retinal degeneration in RCS rats. Layer-specific retinal thickness became progressively thinner and was corroborated by histological analysis in the same animals. MRI can detect progressive anatomical and BF changes during retinal degeneration with laminar resolution. PMID:22721720
Layer-specific blood-flow MRI of retinitis pigmentosa in RCS rats.
Li, Guang; De La Garza, Bryan; Shih, Yen-Yu I; Muir, Eric R; Duong, Timothy Q
2012-08-01
The Royal College of Surgeons (RCS) rat is an established animal model of retinitis pigmentosa, a family of inherited retinal diseases which starts with loss of peripheral vision and progresses to eventual blindness. Blood flow (BF), an important physiological parameter, is intricately coupled to metabolic function under normal physiological conditions and is perturbed in many neurological and retinal diseases. This study reports non-invasive high-resolution MRI (44 × 44 × 600 μm) to image quantitative retinal and choroidal BF and layer-specific retinal thicknesses in RCS rat retinas at different stages of retinal degeneration compared with age-matched controls. The unique ability to separate retinal and choroidal BF was made possible by the depth-resolved MRI technique. RBF decreased with progressive retinal degeneration, but ChBF did not change in RCS rats up to post-natal day 90. We concluded that choroidal and retinal circulations have different susceptibility to progressive retinal degeneration in RCS rats. Layer-specific retinal thickness became progressively thinner and was corroborated by histological analysis in the same animals. MRI can detect progressive anatomical and BF changes during retinal degeneration with laminar resolution. Copyright © 2012 Elsevier Ltd. All rights reserved.
Linked Sex Differences in Cognition and Functional Connectivity in Youth.
Satterthwaite, Theodore D; Wolf, Daniel H; Roalf, David R; Ruparel, Kosha; Erus, Guray; Vandekar, Simon; Gennatas, Efstathios D; Elliott, Mark A; Smith, Alex; Hakonarson, Hakon; Verma, Ragini; Davatzikos, Christos; Gur, Raquel E; Gur, Ruben C
2015-09-01
Sex differences in human cognition are marked, but little is known regarding their neural origins. Here, in a sample of 674 human participants ages 9-22, we demonstrate that sex differences in cognitive profiles are related to multivariate patterns of resting-state functional connectivity MRI (rsfc-MRI). Males outperformed females on motor and spatial cognitive tasks; females were faster in tasks of emotion identification and nonverbal reasoning. Sex differences were also prominent in the rsfc-MRI data at multiple scales of analysis, with males displaying more between-module connectivity, while females demonstrated more within-module connectivity. Multivariate pattern analysis using support vector machines classified subject sex on the basis of their cognitive profile with 63% accuracy (P < 0.001), but was more accurate using functional connectivity data (71% accuracy; P < 0.001). Moreover, the degree to which a given participant's cognitive profile was "male" or "female" was significantly related to the masculinity or femininity of their pattern of brain connectivity (P = 2.3 × 10(-7)). This relationship was present even when considering males and female separately. Taken together, these results demonstrate for the first time that sex differences in patterns of cognition are in part represented on a neural level through divergent patterns of brain connectivity. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Taghon, Thomas A; Masunga, Abigail N; Small, Robert H; Kashou, Nasser H
2015-03-01
Functional magnetic resonance imaging (fMRI) has been used to evaluate the long-term consequences of early exposure to neurotoxic agents. fMRI shows that different patterns of brain activation occur in ethanol-exposed subjects performing a go/no-go response inhibition task. Pharmacologically, ethanol and general anesthetics have similar receptor-level activity in the brain. This study utilizes fMRI to examine brain activation patterns in children exposed to general anesthesia and surgery during early brain development. After obtaining Nationwide Children's Hospital IRB approval, a surgical database was utilized to identify children aged 10-17 years with a history of at least 1 h of exposure to general anesthetics and surgery when they were between 0 and 24 months of age. Age- and gender-matched children without anesthesia exposure were recruited as a control group. All subjects were scanned while being presented with a go/no-go response inhibition task. Reaction time and accuracy data were acquired, and the blood-oxygen-level-dependent (BOLD) fMRI signal was measured as a biomarker for regional neuronal activity. There were no differences in terms of performance accuracy and response time. The analysis did not reveal any significant activation differences in the primary region of interest (prefrontal cortex and caudate nucleus); however, activation differences were seen in other structures, including the cerebellum, cingulate gyrus, and paracentral lobule. Early anesthetic exposure and surgery did not affect accuracy, response time, or activation patterns in the primary region of interest during performance of the task. Intergroup differences in activation patterns in other areas of the brain were observed, and the significance of these findings is unknown. fMRI appears to be a useful tool in evaluating the long-term effects of early exposure to general anesthesia. © 2015 John Wiley & Sons Ltd.
Distinctive time-lagged resting-state networks revealed by simultaneous EEG-fMRI.
Feige, Bernd; Spiegelhalder, Kai; Kiemen, Andrea; Bosch, Oliver G; Tebartz van Elst, Ludger; Hennig, Jürgen; Seifritz, Erich; Riemann, Dieter
2017-01-15
Functional activation as evidenced by blood oxygen level-dependent (BOLD) functional MRI changes or event-related EEG is known to closely follow patterns of stimulation or self-paced action. Any lags are compatible with axonal conduction velocities and neural integration times. The important analysis of resting state networks is generally based on the assumption that these principles also hold for spontaneous fluctuations in brain activity. Previous observations using simultaneous EEG and fMRI indicate that slower processes, with delays in the seconds range, determine at least part of the relationship between spontaneous EEG and fMRI. To assess this relationship systematically, we used deconvolution analysis of EEG-fMRI during the resting state, assessing the relationship between EEG frequency bands and fMRI BOLD across the whole brain while allowing for time lags of up to 10.5s. Cluster analysis, identifying similar BOLD time courses in relation to EEG band power peaks, showed a clear segregation of functional subsystems of the brain. Our analysis shows that fMRI BOLD increases commonly precede EEG power increases by seconds. Most zero-lag correlations, on the other hand, were negative. This indicates two main distinct neuromodulatory mechanisms: an "idling" mechanism of simultaneous electric and metabolic network anticorrelation and a "regulatory" mechanism in which metabolic network activity precedes increased EEG power by some seconds. This has to be taken into consideration in further studies which address the causal and functional relationship of metabolic and electric brain activity patterns. Copyright © 2016 Elsevier Inc. All rights reserved.
Correct diagnosis of Warthin tumor in the parotid gland with dynamic MRI.
Ogawa, Takenori; Suzuki, Takahiro; Sakamoto, Maya; Watanabe, Mika; Tateda, Yutaka; Oshima, Takeshi; Kato, Kengo; Sagai, Shun; Kobayashi, Toshimitsu; Shiga, Kiyoto
2012-05-01
Warthin tumor (WT) is a benign tumor of the salivary gland primarily affecting middle-aged men. WT is almost exclusively located in the parotid gland and tend to grow slowly without symptoms. Although fine needle aspiration cytology (FNAC) often correctly diagnoses these tumors, they are occasionally misdiagnosed as malignant. Our study sought to distinguish between WT and non-WT using dynamic MRI. In dynamic MRI, a series of images are taken over time measuring the intensity of gadolinium uptake by the parotid. We examined two patients for this study. The first was a 53-year old male, heavy smoker, experiencing manic-depressive episodes. He received a brain MRI at which time his parotid tumor was discovered. Parotid FNAC indicated a squamous cell carcinoma. The second patient was a 76-year old male, moderate smoker and drinker, who had been complaining about swelling in the neck. FNAC of the parotid indicated acinic cell carcinoma and gadolinium-enhanced MRI suggested the tumor was malignant. Prior to surgically extracting of these masses, we performed dynamic MRI on each patient. Both tumors exhibited a pattern consisting of rapid enhancement and rapid attenuation, the pattern of which is characteristic of WT. The surgical specimens confirmed that both were WTs without malignant transformation. Our findings indicate that dynamic MRI is a useful tool for preoperative diagnosis of WT, where other examinations indicate malignancy. Early and correct diagnosis of WT can minimize the use of invasive procedures, and eliminate the stress placed on the patient from a diagnosis of cancer.
The future of fMRI in cognitive neuroscience.
Poldrack, Russell A
2012-08-15
Over the last 20 years, fMRI has revolutionized cognitive neuroscience. Here I outline a vision for what the next 20 years of fMRI in cognitive neuroscience might look like. Some developments that I hope for include increased methodological rigor, an increasing focus on connectivity and pattern analysis as opposed to "blobology", a greater focus on selective inference powered by open databases, and increased use of ontologies and computational models to describe underlying processes. Copyright © 2011 Elsevier Inc. All rights reserved.
Co-activation patterns in resting-state fMRI signals.
Liu, Xiao; Zhang, Nanyin; Chang, Catie; Duyn, Jeff H
2018-02-08
The brain is a complex system that integrates and processes information across multiple time scales by dynamically coordinating activities over brain regions and circuits. Correlations in resting-state functional magnetic resonance imaging (rsfMRI) signals have been widely used to infer functional connectivity of the brain, providing a metric of functional associations that reflects a temporal average over an entire scan (typically several minutes or longer). Not until recently was the study of dynamic brain interactions at much shorter time scales (seconds to minutes) considered for inference of functional connectivity. One method proposed for this objective seeks to identify and extract recurring co-activation patterns (CAPs) that represent instantaneous brain configurations at single time points. Here, we review the development and recent advancement of CAP methodology and other closely related approaches, as well as their applications and associated findings. We also discuss the potential neural origins and behavioral relevance of CAPs, along with methodological issues and future research directions in the analysis of fMRI co-activation patterns. Copyright © 2018 Elsevier Inc. All rights reserved.
Human inferior colliculus activity relates to individual differences in spoken language learning
Chandrasekaran, Bharath; Kraus, Nina
2012-01-01
A challenge to learning words of a foreign language is encoding nonnative phonemes, a process typically attributed to cortical circuitry. Using multimodal imaging methods [functional magnetic resonance imaging-adaptation (fMRI-A) and auditory brain stem responses (ABR)], we examined the extent to which pretraining pitch encoding in the inferior colliculus (IC), a primary midbrain structure, related to individual variability in learning to successfully use nonnative pitch patterns to distinguish words in American English-speaking adults. fMRI-A indexed the efficiency of pitch representation localized to the IC, whereas ABR quantified midbrain pitch-related activity with millisecond precision. In line with neural “sharpening” models, we found that efficient IC pitch pattern representation (indexed by fMRI) related to superior neural representation of pitch patterns (indexed by ABR), and consequently more successful word learning following sound-to-meaning training. Our results establish a critical role for the IC in speech-sound representation, consistent with the established role for the IC in the representation of communication signals in other animal models. PMID:22131377
Studying brain organization via spontaneous fMRI signal
Power, Jonathan D; Schlaggar, Bradley L; Petersen, Steven E
2014-01-01
In recent years, some substantial advances in understanding human (and non-human) brain organization have emerged from a relatively unusual approach: the observation of spontaneous activity, and correlated patterns in spontaneous activity, in the “resting” brain. Most commonly, spontaneous neural activity is measured indirectly via fMRI signal in subjects who are lying quietly in the scanner, the so-called “resting state”. This Primer introduces the fMRI-based study of spontaneous brain activity, some of the methodological issues active in the field, and some ways in which resting state fMRI has been used to delineate aspects of area-level and supra-areal brain organization. PMID:25459408
WE-B-BRD-00: MRI for Radiation Oncology
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The use of MRI in radiation therapy is rapidly increasing. Applications vary from the MRI simulator, to the MRI fused with CT, and to the integrated MRI+RT system. Compared with the standard MRI QA, a broader scope of QA features has to be defined in order to maximize the benefits of using MRI in radiation therapy. These QA features include geometric fidelity, image registration, motion management, cross-system alignment, and hardware interference. Advanced MRI techniques require a specific type of QA, as they are being widely used in radiation therapy planning, dose calculations, post-implant dosimetry, and prognoses. A vigorous and adaptivemore » QA program is crucial to defining the responsibility of the entire radiation therapy group and detecting deviations from the performance of high-quality treatment. As a drastic departure from CT simulation, MRI simulation requires changes in the work flow of treatment planning and image guidance. MRI guided radiotherapy platforms are being developed and commercialized to take the advantage of the advance in knowledge, technology and clinical experience. This symposium will from an educational perspective discuss the scope and specific issues related to MRI guided radiotherapy. Learning Objectives: Understand the difference between a standard and a radiotherapy-specific MRI QA program. Understand the effects of MRI artifacts (geometric distortion and motion) on radiotherapy. Understand advanced MRI techniques (ultrashort echo, fast MRI including dynamic MRI and 4DMRI, diffusion, perfusion, and MRS) and related QA. Understand the methods to prepare MRI for treatment planning (electron density assignment, multimodality image registration, segmentation and motion management). Current status of MRI guided treatment platforms. Dr. Jihong Wang has a research grant with Elekta-MRL project. Dr. Ke Sheng receives research grants from Varian Medical systems.« less
The first week after concussion: Blood flow, brain function and white matter microstructure.
Churchill, Nathan W; Hutchison, Michael G; Richards, Doug; Leung, General; Graham, Simon J; Schweizer, Tom A
2017-01-01
Concussion is a major health concern, associated with short-term deficits in physical function, emotion and cognition, along with negative long-term health outcomes. However, we remain in the early stages of characterizing MRI markers of concussion, particularly during the first week post-injury when symptoms are most severe. In this study, 52 varsity athletes were scanned using Magnetic Resonance Imaging (MRI), including 26 athletes with acute concussion (scanned 1-7 days post-injury) and 26 matched control athletes. A comprehensive set of functional and structural MRI measures were analyzed, including cerebral blood flow (CBF) and global functional connectivity (Gconn) of grey matter, along with fractional anisotropy (FA) and mean diffusivity (MD) of white matter. An analysis comparing acutely concussed athletes and controls showed limited evidence for reliable mean effects of acute concussion, with only MD showing spatially extensive differences between groups. We subsequently demonstrated that the number of days post-injury explained a significant proportion of inter-subject variability in MRI markers of acutely concussed athletes. Athletes scanned at early acute injury (1-3 days) had elevated CBF and Gconn and reduced FA, but those scanned at late acute injury (5-7 days) had the opposite response. In contrast, MD showed a more complex, spatially-dependent relationship with days post-injury. These novel findings highlight the variability of MRI markers during the acute phase of concussion and the critical importance of considering the acute injury time interval, which has significant implications for studies relating acute MRI data to concussion outcomes.
Event-Related fMRI of Category Learning: Differences in Classification and Feedback Networks
ERIC Educational Resources Information Center
Little, Deborah M.; Shin, Silvia S.; Sisco, Shannon M.; Thulborn, Keith R.
2006-01-01
Eighteen healthy young adults underwent event-related (ER) functional magnetic resonance imaging (fMRI) of the brain while performing a visual category learning task. The specific category learning task required subjects to extract the rules that guide classification of quasi-random patterns of dots into categories. Following each classification…
ERIC Educational Resources Information Center
Church, Jessica A.; Fair, Damien A.; Dosenbach, Nico U. F.; Cohen, Alexander L.; Miezin, Francis M.; Petersen, Steven E.; Schlaggar, Bradley L.
2009-01-01
Tourette syndrome (TS) is a developmental disorder characterized by unwanted, repetitive behaviours that manifest as stereotyped movements and vocalizations called "tics". Operating under the hypothesis that the brain's control systems may be impaired in TS, we measured resting-state functional connectivity MRI (rs-fcMRI) between 39 previously…
Brain activation patterns elicited by the 'Faces Symbol Test' -- a pilot fMRI study.
Grabner, Rh; Popotnig, F; Ropele, S; Neuper, C; Gorani, F; Petrovic, K; Ebner, F; Strasser-Fuchs, S; Fazekas, F; Enzinger, C
2008-04-01
The Faces Symbol Test (FST) has recently been proposed as a brief and patient-friendly screening instrument for the assessment of cognitive dysfunction in patients with multiple sclerosis (MS). However, in contrast to well-established MS screening tests such as the Paced Auditory Serial Addition Test, the neural correlates of the FST have not been investigated so far. In the present study, we developed a functional MRI (fMRI) version of the FST to provide first data on brain regions and networks involved in this test. A sample of 19 healthy participants completed a version of the FST adapted for fMRI, requiring matching of faces and symbols in a multiple choice test and two further experimental conditions drawing on cognitive subcomponents (face matching and symbol matching). Imaging data showed a differential involvement of a fronto-parieto-occipital network in the three conditions. The most demanding FST condition elicited brain activation patterns related with sustained attention and executive control. These results suggest that the FST recruits brain networks critical for higher-order cognitive functions often impaired in MS patients.
Resting State Network Topology of the Ferret Brain
Zhou, Zhe Charles; Salzwedel, Andrew P.; Radtke-Schuller, Susanne; Li, Yuhui; Sellers, Kristin K.; Gilmore, John H.; Shih, Yen-Yu Ian; Fröhlich, Flavio; Gao, Wei
2016-01-01
Resting state functional magnetic resonance imaging (rsfMRI) has emerged as a versatile tool for non-invasive measurement of functional connectivity patterns in the brain. RsfMRI brain dynamics in rodents, non-human primates, and humans share similar properties; however, little is known about the resting state functional connectivity patterns in the ferret, an animal model with high potential for developmental and cognitive translational study. To address this knowledge-gap, we performed rsfMRI on anesthetized ferrets using a 9.4 tesla MRI scanner, and subsequently performed group-level independent component analysis (gICA) to identify functionally connected brain networks. Group-level ICA analysis revealed distributed sensory, motor, and higher-order networks in the ferret brain. Subsequent connectivity analysis showed interconnected higher-order networks that constituted a putative default mode network (DMN), a network that exhibits altered connectivity in neuropsychiatric disorders. Finally, we assessed ferret brain topological efficiency using graph theory analysis and found that the ferret brain exhibits small-world properties. Overall, these results provide additional evidence for pan-species resting-state networks, further supporting ferret-based studies of sensory and cognitive function. PMID:27596024
Semi-supervised clustering for parcellating brain regions based on resting state fMRI data
NASA Astrophysics Data System (ADS)
Cheng, Hewei; Fan, Yong
2014-03-01
Many unsupervised clustering techniques have been adopted for parcellating brain regions of interest into functionally homogeneous subregions based on resting state fMRI data. However, the unsupervised clustering techniques are not able to take advantage of exiting knowledge of the functional neuroanatomy readily available from studies of cytoarchitectonic parcellation or meta-analysis of the literature. In this study, we propose a semi-supervised clustering method for parcellating amygdala into functionally homogeneous subregions based on resting state fMRI data. Particularly, the semi-supervised clustering is implemented under the framework of graph partitioning, and adopts prior information and spatial consistent constraints to obtain a spatially contiguous parcellation result. The graph partitioning problem is solved using an efficient algorithm similar to the well-known weighted kernel k-means algorithm. Our method has been validated for parcellating amygdala into 3 subregions based on resting state fMRI data of 28 subjects. The experiment results have demonstrated that the proposed method is more robust than unsupervised clustering and able to parcellate amygdala into centromedial, laterobasal, and superficial parts with improved functionally homogeneity compared with the cytoarchitectonic parcellation result. The validity of the parcellation results is also supported by distinctive functional and structural connectivity patterns of the subregions and high consistency between coactivation patterns derived from a meta-analysis and functional connectivity patterns of corresponding subregions.
Zhang, Shu; Li, Xiang; Lv, Jinglei; Jiang, Xi; Guo, Lei; Liu, Tianming
2016-03-01
A relatively underexplored question in fMRI is whether there are intrinsic differences in terms of signal composition patterns that can effectively characterize and differentiate task-based or resting state fMRI (tfMRI or rsfMRI) signals. In this paper, we propose a novel two-stage sparse representation framework to examine the fundamental difference between tfMRI and rsfMRI signals. Specifically, in the first stage, the whole-brain tfMRI or rsfMRI signals of each subject were composed into a big data matrix, which was then factorized into a subject-specific dictionary matrix and a weight coefficient matrix for sparse representation. In the second stage, all of the dictionary matrices from both tfMRI/rsfMRI data across multiple subjects were composed into another big data-matrix, which was further sparsely represented by a cross-subjects common dictionary and a weight matrix. This framework has been applied on the recently publicly released Human Connectome Project (HCP) fMRI data and experimental results revealed that there are distinctive and descriptive atoms in the cross-subjects common dictionary that can effectively characterize and differentiate tfMRI and rsfMRI signals, achieving 100% classification accuracy. Moreover, our methods and results can be meaningfully interpreted, e.g., the well-known default mode network (DMN) activities can be recovered from the very noisy and heterogeneous aggregated big-data of tfMRI and rsfMRI signals across all subjects in HCP Q1 release.
Henry, Michael E; Lauriat, Tara L; Lowen, Steven B; Churchill, Jeffrey H; Hodgkinson, Colin A; Goldman, David; Renshaw, Perry F
2013-09-30
This study was designed to assess whether functional magnetic resonance imaging (fMRI) following antidepressant administration (pharmaco-fMRI) is sufficiently sensitive to detect differences in patterns of activation between enantiomers of the same compound. Healthy adult males (n=11) participated in a randomized, double-blind, cross-over trial with three medication periods during which they received citalopram (racemic mixture), escitalopram (S-citalopram alone), or placebo for 2 weeks. All participants had high expression serotonin transporter genotypes. An fMRI scan that included passive viewing of overt and covert affective faces and affective words was performed after each medication period. Activation in response to overt faces was greater following escitalopram than following citalopram in the right insula, thalamus, and putamen when the faces were compared with a fixation stimulus. For the rapid covert presentation, a greater response was observed in the left middle temporal gyrus in the happy versus fearful contrast following escitalopram than following citalopram. Thus, the combination of genomics and fMRI was successful in discriminating between two very similar drugs. However, the pattern of activation observed suggests that further studies are indicated to understand how to optimally combine the two techniques. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Henry, Michael E.; Lauriat, Tara L.; Lowen, Steven B.; Churchill, Jeffrey H.; Hodgkinson, Colin A.; Goldman, David; Renshaw, Perry F.
2015-01-01
This study was designed to assess whether functional magnetic resonance imaging (fMRI) following antidepressant administration (pharmaco-fMRI) is sufficiently sensitive to detect differences in patterns of activation between enantiomers of the same compound. Healthy adult males (n = 11) participated in a randomized, double-blind, cross-over trial with three medication periods during which they received citalopram (racemic mixture), escitalopram (S-citalopram alone), or placebo for 2 weeks. All participants had high expression serotonin transporter genotypes. An fMRI scan that included passive viewing of overt and covert affective faces and affective words was performed after each medication period. Activation in response to overt faces was greater following escitalopram than following citalopram in the right insula, thalamus, and putamen when the faces were compared with a fixation stimulus. For the rapid covert presentation, a greater response was observed in the left middle temporal gyrus in the happy versus fearful contrast following escitalopram than following citalopram. Thus, the combination of genomics and fMRI was successful in discriminating between two very similar drugs. However, the pattern of activation observed suggests that further studies are indicated to understand how to optimally combine the two techniques. PMID:23845563
Zou, Qihong; Gu, Hong; Wang, Danny J J; Gao, Jia-Hong; Yang, Yihong
2011-04-01
Brain activation and deactivation induced by N-back working memory tasks and their load effects have been extensively investigated using positron emission tomography (PET) and blood-oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI). However, the underlying mechanisms of BOLD fMRI are still not completely understood and PET imaging requires injection of radioactive tracers. In this study, a pseudo-continuous arterial spin labeling (pCASL) perfusion imaging technique was used to quantify cerebral blood flow (CBF), a well understood physiological index reflective of cerebral metabolism, in N-back working memory tasks. Using pCASL, we systematically investigated brain activation and deactivation induced by the N-back working memory tasks and further studied the load effects on brain activity based on quantitative CBF. Our data show increased CBF in the fronto-parietal cortices, thalamus, caudate, and cerebellar regions, and decreased CBF in the posterior cingulate cortex and medial prefrontal cortex, during the working memory tasks. Most of the activated/deactivated brain regions show an approximately linear relationship between CBF and task loads (0, 1, 2 and 3 back), although several regions show non-linear relationships (quadratic and cubic). The CBF-based spatial patterns of brain activation/deactivation and load effects from this study agree well with those obtained from BOLD fMRI and PET techniques. These results demonstrate the feasibility of ASL techniques to quantify human brain activity during high cognitive tasks, suggesting its potential application to assessing the mechanisms of cognitive deficits in neuropsychiatric and neurological disorders.
Oblak, Ethan F; Lewis-Peacock, Jarrod A; Sulzer, James S
2017-07-01
Direct manipulation of brain activity can be used to investigate causal brain-behavior relationships. Current noninvasive neural stimulation techniques are too coarse to manipulate behaviors that correlate with fine-grained spatial patterns recorded by fMRI. However, these activity patterns can be manipulated by having people learn to self-regulate their own recorded neural activity. This technique, known as fMRI neurofeedback, faces challenges as many participants are unable to self-regulate. The causes of this non-responder effect are not well understood due to the cost and complexity of such investigation in the MRI scanner. Here, we investigated the temporal dynamics of the hemodynamic response measured by fMRI as a potential cause of the non-responder effect. Learning to self-regulate the hemodynamic response involves a difficult temporal credit-assignment problem because this signal is both delayed and blurred over time. Two factors critical to this problem are the prescribed self-regulation strategy (cognitive or automatic) and feedback timing (continuous or intermittent). Here, we sought to evaluate how these factors interact with the temporal dynamics of fMRI without using the MRI scanner. We first examined the role of cognitive strategies by having participants learn to regulate a simulated neurofeedback signal using a unidimensional strategy: pressing one of two buttons to rotate a visual grating that stimulates a model of visual cortex. Under these conditions, continuous feedback led to faster regulation compared to intermittent feedback. Yet, since many neurofeedback studies prescribe implicit self-regulation strategies, we created a computational model of automatic reward-based learning to examine whether this result held true for automatic processing. When feedback was delayed and blurred based on the hemodynamics of fMRI, this model learned more reliably from intermittent feedback compared to continuous feedback. These results suggest that different self-regulation mechanisms prefer different feedback timings, and that these factors can be effectively explored and optimized via simulation prior to deployment in the MRI scanner.
Sulzer, James S.
2017-01-01
Direct manipulation of brain activity can be used to investigate causal brain-behavior relationships. Current noninvasive neural stimulation techniques are too coarse to manipulate behaviors that correlate with fine-grained spatial patterns recorded by fMRI. However, these activity patterns can be manipulated by having people learn to self-regulate their own recorded neural activity. This technique, known as fMRI neurofeedback, faces challenges as many participants are unable to self-regulate. The causes of this non-responder effect are not well understood due to the cost and complexity of such investigation in the MRI scanner. Here, we investigated the temporal dynamics of the hemodynamic response measured by fMRI as a potential cause of the non-responder effect. Learning to self-regulate the hemodynamic response involves a difficult temporal credit-assignment problem because this signal is both delayed and blurred over time. Two factors critical to this problem are the prescribed self-regulation strategy (cognitive or automatic) and feedback timing (continuous or intermittent). Here, we sought to evaluate how these factors interact with the temporal dynamics of fMRI without using the MRI scanner. We first examined the role of cognitive strategies by having participants learn to regulate a simulated neurofeedback signal using a unidimensional strategy: pressing one of two buttons to rotate a visual grating that stimulates a model of visual cortex. Under these conditions, continuous feedback led to faster regulation compared to intermittent feedback. Yet, since many neurofeedback studies prescribe implicit self-regulation strategies, we created a computational model of automatic reward-based learning to examine whether this result held true for automatic processing. When feedback was delayed and blurred based on the hemodynamics of fMRI, this model learned more reliably from intermittent feedback compared to continuous feedback. These results suggest that different self-regulation mechanisms prefer different feedback timings, and that these factors can be effectively explored and optimized via simulation prior to deployment in the MRI scanner. PMID:28753639
Quantitative framework for prospective motion correction evaluation.
Pannetier, Nicolas A; Stavrinos, Theano; Ng, Peter; Herbst, Michael; Zaitsev, Maxim; Young, Karl; Matson, Gerald; Schuff, Norbert
2016-02-01
Establishing a framework to evaluate performances of prospective motion correction (PMC) MRI considering motion variability between MRI scans. A framework was developed to obtain quantitative comparisons between different motion correction setups, considering that varying intrinsic motion patterns between acquisitions can induce bias. Intrinsic motion was considered by replaying in a phantom experiment the recorded motion trajectories from subjects. T1-weighted MRI on five volunteers and two different marker fixations (mouth guard and nose bridge fixations) were used to test the framework. Two metrics were investigated to quantify the improvement of the image quality with PMC. Motion patterns vary between subjects as well as between repeated scans within a subject. This variability can be approximated by replaying the motion in a distinct phantom experiment and used as a covariate in models comparing motion corrections. We show that considering the intrinsic motion alters the statistical significance in comparing marker fixations. As an example, two marker fixations, a mouth guard and a nose bridge, were evaluated in terms of their effectiveness for PMC. A mouth guard achieved better PMC performance. Intrinsic motion patterns can bias comparisons between PMC configurations and must be considered for robust evaluations. A framework for evaluating intrinsic motion patterns in PMC is presented. © 2015 Wiley Periodicals, Inc.
Replicability of time-varying connectivity patterns in large resting state fMRI samples.
Abrol, Anees; Damaraju, Eswar; Miller, Robyn L; Stephen, Julia M; Claus, Eric D; Mayer, Andrew R; Calhoun, Vince D
2017-12-01
The past few years have seen an emergence of approaches that leverage temporal changes in whole-brain patterns of functional connectivity (the chronnectome). In this chronnectome study, we investigate the replicability of the human brain's inter-regional coupling dynamics during rest by evaluating two different dynamic functional network connectivity (dFNC) analysis frameworks using 7 500 functional magnetic resonance imaging (fMRI) datasets. To quantify the extent to which the emergent functional connectivity (FC) patterns are reproducible, we characterize the temporal dynamics by deriving several summary measures across multiple large, independent age-matched samples. Reproducibility was demonstrated through the existence of basic connectivity patterns (FC states) amidst an ensemble of inter-regional connections. Furthermore, application of the methods to conservatively configured (statistically stationary, linear and Gaussian) surrogate datasets revealed that some of the studied state summary measures were indeed statistically significant and also suggested that this class of null model did not explain the fMRI data fully. This extensive testing of reproducibility of similarity statistics also suggests that the estimated FC states are robust against variation in data quality, analysis, grouping, and decomposition methods. We conclude that future investigations probing the functional and neurophysiological relevance of time-varying connectivity assume critical importance. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Replicability of time-varying connectivity patterns in large resting state fMRI samples
Abrol, Anees; Damaraju, Eswar; Miller, Robyn L.; Stephen, Julia M.; Claus, Eric D.; Mayer, Andrew R.; Calhoun, Vince D.
2018-01-01
The past few years have seen an emergence of approaches that leverage temporal changes in whole-brain patterns of functional connectivity (the chronnectome). In this chronnectome study, we investigate the replicability of the human brain’s inter-regional coupling dynamics during rest by evaluating two different dynamic functional network connectivity (dFNC) analysis frameworks using 7 500 functional magnetic resonance imaging (fMRI) datasets. To quantify the extent to which the emergent functional connectivity (FC) patterns are reproducible, we characterize the temporal dynamics by deriving several summary measures across multiple large, independent age-matched samples. Reproducibility was demonstrated through the existence of basic connectivity patterns (FC states) amidst an ensemble of inter-regional connections. Furthermore, application of the methods to conservatively configured (statistically stationary, linear and Gaussian) surrogate datasets revealed that some of the studied state summary measures were indeed statistically significant and also suggested that this class of null model did not explain the fMRI data fully. This extensive testing of reproducibility of similarity statistics also suggests that the estimated FC states are robust against variation in data quality, analysis, grouping, and decomposition methods. We conclude that future investigations probing the functional and neurophysiological relevance of time-varying connectivity assume critical importance. PMID:28916181
Deep Independence Network Analysis of Structural Brain Imaging: Application to Schizophrenia
Castro, Eduardo; Hjelm, R. Devon; Plis, Sergey M.; Dinh, Laurent; Turner, Jessica A.; Calhoun, Vince D.
2016-01-01
Linear independent component analysis (ICA) is a standard signal processing technique that has been extensively used on neuroimaging data to detect brain networks with coherent brain activity (functional MRI) or covarying structural patterns (structural MRI). However, its formulation assumes that the measured brain signals are generated by a linear mixture of the underlying brain networks and this assumption limits its ability to detect the inherent nonlinear nature of brain interactions. In this paper, we introduce nonlinear independent component estimation (NICE) to structural MRI data to detect abnormal patterns of gray matter concentration in schizophrenia patients. For this biomedical application, we further addressed the issue of model regularization of nonlinear ICA by performing dimensionality reduction prior to NICE, together with an appropriate control of the complexity of the model and the usage of a proper approximation of the probability distribution functions of the estimated components. We show that our results are consistent with previous findings in the literature, but we also demonstrate that the incorporation of nonlinear associations in the data enables the detection of spatial patterns that are not identified by linear ICA. Specifically, we show networks including basal ganglia, cerebellum and thalamus that show significant differences in patients versus controls, some of which show distinct nonlinear patterns. PMID:26891483
Reproducibility of EEG-fMRI results in a patient with fixation-off sensitivity.
Formaggio, Emanuela; Storti, Silvia Francesca; Galazzo, Ilaria Boscolo; Bongiovanni, Luigi Giuseppe; Cerini, Roberto; Fiaschi, Antonio; Manganotti, Paolo
2014-07-01
Blood oxygenation level-dependent (BOLD) activation associated with interictal epileptiform discharges in a patient with fixation-off sensitivity (FOS) was studied using a combined electroencephalography-functional magnetic resonance imaging (EEG-fMRI) technique. An automatic approach for combined EEG-fMRI analysis and a subject-specific hemodynamic response function was used to improve general linear model analysis of the fMRI data. The EEG showed the typical features of FOS, with continuous epileptiform discharges during elimination of central vision by eye opening and closing and fixation; modification of this pattern was clearly visible and recognizable. During all 3 recording sessions EEG-fMRI activations indicated a BOLD signal decrease related to epileptiform activity in the parietal areas. This study can further our understanding of this EEG phenomenon and can provide some insight into the reliability of the EEG-fMRI technique in localizing the irritative zone.
Osechinskiy, Sergey; Kruggel, Frithjof
2009-01-01
The architectonic analysis of the human cerebral cortex is presently based on the examination of stained tissue sections. Recent progress in high-resolution magnetic resonance imaging (MRI) promotes the feasibility of an in vivo architectonic analysis. Since the exact relationship between the laminar fine-structure of a cortical MRI signal and histological cyto-and myeloarchitectonic staining patterns is not known, a quantitative study comparing high-resolution MRI to histological ground truth images is necessary for validating a future MRI based architectonic analysis. This communication describes an ongoing study comparing post mortem MR images to a myelin-stained histology of the brain cortex. After establishing a close spatial correspondence between histological sections and MRI using a slice-to-volume nonrigid registration algorithm, transcortical intensity profiles, extracted from both imaging modalities along curved trajectories of a Laplacian vector field, are compared via a cross-correlational analysis.
Lee, Jaeseung; Holte, James; Ritenour, E Russell
2013-02-01
Early ear infection and trauma, from birth to age 12 are known to have a significant effect on sensory and cognitive development. This effect can be demonstrated through the fMRI study of children who have a history of ear infection compared to a control group. A second research question is the extent to which brain plasticity at an early age can reduce the impact of infection on hearing and cognitive development. Functional Magnetic Resonance Imaging (fMRI) provides a mapping of brain activity in cognitive and sensory regions by recording the oxygenation state of the local cerebral blood flow. The gradient coils of fMRI scanners generate intense acoustic noise (GCN) - to which the subject is in close proximity - in the range of 90 to 140 db SPL during the imaging process. Clearly this noise will impress its signature on low level brain response patterns. An Active Noise Canceller (ANC) system can suppress the effect of GCN on the subject's perception of a phonetic stimulus at the phoneme, word or phrase level. Due to a superimposition of the frequency and time domain components of the test signal and GCN for MR test, the ANC filtering system performs its function in real time - we must capture the brain's response to the test signal AFTER the noise has been removed. This goal is achieved through the application of field programmable gate array (FPGA) technology of NI LabVIEW. The presentation (in the noisy fMRI environment) of test words and phrases to hearing impaired children can identify sources of distortion to their perceptual processes associated with GCN. Once this distortion has been identified, learning strategies may be introduced to replace the hearing function distorted by early infection as well as the short term effect of GCN. The study of speech cognition without the confounding effect of GCN and with the varying level of GCN for a repeated test signal at later age can be allowed to a measure of recovery through brain plasticity.
Lee, Jaeseung; Holte, James
2013-01-01
Early ear infection and trauma, from birth to age 12 are known to have a significant effect on sensory and cognitive development. This effect can be demonstrated through the fMRI study of children who have a history of ear infection compared to a control group. A second research question is the extent to which brain plasticity at an early age can reduce the impact of infection on hearing and cognitive development. Functional Magnetic Resonance Imaging (fMRI) provides a mapping of brain activity in cognitive and sensory regions by recording the oxygenation state of the local cerebral blood flow. The gradient coils of fMRI scanners generate intense acoustic noise (GCN) - to which the subject is in close proximity - in the range of 90 to 140 db SPL during the imaging process. Clearly this noise will impress its signature on low level brain response patterns. An Active Noise Canceller (ANC) system can suppress the effect of GCN on the subject’s perception of a phonetic stimulus at the phoneme, word or phrase level. Due to a superimposition of the frequency and time domain components of the test signal and GCN for MR test, the ANC filtering system performs its function in real time - we must capture the brain’s response to the test signal AFTER the noise has been removed. This goal is achieved through the application of field programmable gate array (FPGA) technology of NI LabVIEW. The presentation (in the noisy fMRI environment) of test words and phrases to hearing impaired children can identify sources of distortion to their perceptual processes associated with GCN. Once this distortion has been identified, learning strategies may be introduced to replace the hearing function distorted by early infection as well as the short term effect of GCN. The study of speech cognition without the confounding effect of GCN and with the varying level of GCN for a repeated test signal at later age can be allowed to a measure of recovery through brain plasticity. PMID:23482910
Fronto-Temporal Connectivity Predicts ECT Outcome in Major Depression.
Leaver, Amber M; Wade, Benjamin; Vasavada, Megha; Hellemann, Gerhard; Joshi, Shantanu H; Espinoza, Randall; Narr, Katherine L
2018-01-01
Electroconvulsive therapy (ECT) is arguably the most effective available treatment for severe depression. Recent studies have used MRI data to predict clinical outcome to ECT and other antidepressant therapies. One challenge facing such studies is selecting from among the many available metrics, which characterize complementary and sometimes non-overlapping aspects of brain function and connectomics. Here, we assessed the ability of aggregated, functional MRI metrics of basal brain activity and connectivity to predict antidepressant response to ECT using machine learning. A radial support vector machine was trained using arterial spin labeling (ASL) and blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) metrics from n = 46 (26 female, mean age 42) depressed patients prior to ECT (majority right-unilateral stimulation). Image preprocessing was applied using standard procedures, and metrics included cerebral blood flow in ASL, and regional homogeneity, fractional amplitude of low-frequency modulations, and graph theory metrics (strength, local efficiency, and clustering) in BOLD data. A 5-repeated 5-fold cross-validation procedure with nested feature-selection validated model performance. Linear regressions were applied post hoc to aid interpretation of discriminative features. The range of balanced accuracy in models performing statistically above chance was 58-68%. Here, prediction of non-responders was slightly higher than for responders (maximum performance 74 and 64%, respectively). Several features were consistently selected across cross-validation folds, mostly within frontal and temporal regions. Among these were connectivity strength among: a fronto-parietal network [including left dorsolateral prefrontal cortex (DLPFC)], motor and temporal networks (near ECT electrodes), and/or subgenual anterior cingulate cortex (sgACC). Our data indicate that pattern classification of multimodal fMRI metrics can successfully predict ECT outcome, particularly for individuals who will not respond to treatment. Notably, connectivity with networks highly relevant to ECT and depression were consistently selected as important predictive features. These included the left DLPFC and the sgACC, which are both targets of other neurostimulation therapies for depression, as well as connectivity between motor and right temporal cortices near electrode sites. Future studies that probe additional functional and structural MRI metrics and other patient characteristics may further improve the predictive power of these and similar models.
Smart, Otis; Burrell, Lauren
2014-01-01
Pattern classification for intracranial electroencephalogram (iEEG) and functional magnetic resonance imaging (fMRI) signals has furthered epilepsy research toward understanding the origin of epileptic seizures and localizing dysfunctional brain tissue for treatment. Prior research has demonstrated that implicitly selecting features with a genetic programming (GP) algorithm more effectively determined the proper features to discern biomarker and non-biomarker interictal iEEG and fMRI activity than conventional feature selection approaches. However for each the iEEG and fMRI modalities, it is still uncertain whether the stochastic properties of indirect feature selection with a GP yield (a) consistent results within a patient data set and (b) features that are specific or universal across multiple patient data sets. We examined the reproducibility of implicitly selecting features to classify interictal activity using a GP algorithm by performing several selection trials and subsequent frequent itemset mining (FIM) for separate iEEG and fMRI epilepsy patient data. We observed within-subject consistency and across-subject variability with some small similarity for selected features, indicating a clear need for patient-specific features and possible need for patient-specific feature selection or/and classification. For the fMRI, using nearest-neighbor classification and 30 GP generations, we obtained over 60% median sensitivity and over 60% median selectivity. For the iEEG, using nearest-neighbor classification and 30 GP generations, we obtained over 65% median sensitivity and over 65% median selectivity except one patient. PMID:25580059
Green, Jessica J; Boehler, Carsten N; Roberts, Kenneth C; Chen, Ling-Chia; Krebs, Ruth M; Song, Allen W; Woldorff, Marty G
2017-08-16
Visual spatial attention has been studied in humans with both electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) individually. However, due to the intrinsic limitations of each of these methods used alone, our understanding of the systems-level mechanisms underlying attentional control remains limited. Here, we examined trial-to-trial covariations of concurrently recorded EEG and fMRI in a cued visual spatial attention task in humans, which allowed delineation of both the generators and modulators of the cue-triggered event-related oscillatory brain activity underlying attentional control function. The fMRI activity in visual cortical regions contralateral to the cued direction of attention covaried positively with occipital gamma-band EEG, consistent with activation of cortical regions representing attended locations in space. In contrast, fMRI activity in ipsilateral visual cortical regions covaried inversely with occipital alpha-band oscillations, consistent with attention-related suppression of the irrelevant hemispace. Moreover, the pulvinar nucleus of the thalamus covaried with both of these spatially specific, attention-related, oscillatory EEG modulations. Because the pulvinar's neuroanatomical geometry makes it unlikely to be a direct generator of the scalp-recorded EEG, these covariational patterns appear to reflect the pulvinar's role as a regulatory control structure, sending spatially specific signals to modulate visual cortex excitability proactively. Together, these combined EEG/fMRI results illuminate the dynamically interacting cortical and subcortical processes underlying spatial attention, providing important insight not realizable using either method alone. SIGNIFICANCE STATEMENT Noninvasive recordings of changes in the brain's blood flow using functional magnetic resonance imaging and electrical activity using electroencephalography in humans have individually shown that shifting attention to a location in space produces spatially specific changes in visual cortex activity in anticipation of a stimulus. The mechanisms controlling these attention-related modulations of sensory cortex, however, are poorly understood. Here, we recorded these two complementary measures of brain activity simultaneously and examined their trial-to-trial covariations to gain insight into these attentional control mechanisms. This multi-methodological approach revealed the attention-related coordination of visual cortex modulation by the subcortical pulvinar nucleus of the thalamus while also disentangling the mechanisms underlying the attentional enhancement of relevant stimulus input and those underlying the concurrent suppression of irrelevant input. Copyright © 2017 the authors 0270-6474/17/377803-08$15.00/0.
Day, Jessica; Patel, Sandy; Limaye, Vidya
2017-04-01
Magnetic resonance imaging (MRI) is an important tool in the evaluation of neuromuscular disorders. MRI accurately demonstrates muscle oedema, atrophy, subcutaneous pathology and fatty infiltration and also highlights the distribution of muscle involvement. This review examines the role of MRI in evaluation of the idiopathic inflammatory myopathies (IIMs), a heterogeneous group of autoimmune conditions characterised by muscle inflammation and a variety of extra-muscular manifestations. MRI has a clear role in aiding diagnosis of these conditions, guiding muscle biopsy, differentiating subtypes of IIM using a pattern-based approach, and monitoring disease activity in a longitudinal fashion. Whole body MRI is an emerging technique that offers several advantages over regional MRI, but is not currently widely available. We will also consider newer MRI techniques which provide detailed information regarding the metabolism, function and structure of muscle, although their use is restricted to research purposes at present. Copyright © 2017 Elsevier Inc. All rights reserved.
Detailed Magnetic Resonance Imaging (MRI) Analysis in Infantile Spasms.
Harini, Chellamani; Sharda, Sonal; Bergin, Ann Marie; Poduri, Annapurna; Yuskaitis, Christopher J; Peters, Jurriaan M; Rakesh, Kshitiz; Kapur, Kush; Pearl, Phillip L; Prabhu, Sanjay P
2018-05-01
To evaluate initial magnetic resonance imaging (MRI) abnormalities in infantile spasms, correlate them to clinical characteristics, and describe repeat imaging findings. A retrospective review of infantile spasm patients was conducted, classifying abnormal MRI into developmental, acquired, and nonspecific subgroups. MRIs were abnormal in 52 of 71 infantile spasm patients (23 developmental, 23 acquired, and 6 nonspecific) with no correlation to the clinical infantile spasm characteristics. Both developmental and acquired subgroups exhibited cortical gray and/or white matter abnormalities. Additional abnormalities of deep gray structures, brain stem, callosum, and volume loss occurred in the structural acquired subgroup. Repeat MRI showed better definition of the extent of existing malformations. In structural infantile spasms, developmental/acquired subgroups showed differences in pattern of MRI abnormalities but did not correlate with clinical characteristics.
NASA Astrophysics Data System (ADS)
Yoon, H.; McKenna, S. A.; Hart, D. B.
2010-12-01
Heterogeneity plays an important role in groundwater flow and contaminant transport in natural systems. Since it is impossible to directly measure spatial variability of hydraulic conductivity, predictions of solute transport based on mathematical models are always uncertain. While in most cases groundwater flow and tracer transport problems are investigated in two-dimensional (2D) systems, it is important to study more realistic and well-controlled 3D systems to fully evaluate inverse parameter estimation techniques and evaluate uncertainty in the resulting estimates. We used tracer concentration breakthrough curves (BTCs) obtained from a magnetic resonance imaging (MRI) technique in a small flow cell (14 x 8 x 8 cm) that was packed with a known pattern of five different sands (i.e., zones) having cm-scale variability. In contrast to typical inversion systems with head, conductivity and concentration measurements at limited points, the MRI data included BTCs measured at a voxel scale (~0.2 cm in each dimension) over 13 x 8 x 8 cm with a well controlled boundary condition, but did not have direct measurements of head and conductivity. Hydraulic conductivity and porosity were conceptualized as spatial random fields and estimated using pilot points along layers of the 3D medium. The steady state water flow and solute transport were solved using MODFLOW and MODPATH. The inversion problem was solved with a nonlinear parameter estimation package - PEST. Two approaches to parameterization of the spatial fields are evaluated: 1) The detailed zone information was used as prior information to constrain the spatial impact of the pilot points and reduce the number of parameters; and 2) highly parameterized inversion at cm scale (e.g., 1664 parameters) using singular value decomposition (SVD) methodology to significantly reduce the run-time demands. Both results will be compared to measured BTCs. With MRI, it is easy to change the averaging scale of the observed concentration from point to cross-section. This comparison allows us to evaluate which method best matches experimental results at different scales. To evaluate the uncertainty in parameter estimation, the null space Monte Carlo method will be used to reduce computational burden of the development of calibration-constrained Monte Carlo based parameter fields. This study will illustrate how accurately a well-calibrated model can predict contaminant transport. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security (CFSES), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Magnetic resonance imaging of granular materials
NASA Astrophysics Data System (ADS)
Stannarius, Ralf
2017-05-01
Magnetic Resonance Imaging (MRI) has become one of the most important tools to screen humans in medicine; virtually every modern hospital is equipped with a Nuclear Magnetic Resonance (NMR) tomograph. The potential of NMR in 3D imaging tasks is by far greater, but there is only "a handful" of MRI studies of particulate matter. The method is expensive, time-consuming, and requires a deep understanding of pulse sequences, signal acquisition, and processing. We give a short introduction into the physical principles of this imaging technique, describe its advantages and limitations for the screening of granular matter, and present a number of examples of different application purposes, from the exploration of granular packing, via the detection of flow and particle diffusion, to real dynamic measurements. Probably, X-ray computed tomography is preferable in most applications, but fast imaging of single slices with modern MRI techniques is unmatched, and the additional opportunity to retrieve spatially resolved flow and diffusion profiles without particle tracking is a unique feature.
NASA Astrophysics Data System (ADS)
Li, Yi-hong; Bao, Yan-ping; Wang, Rui; Ma, Li-feng; Liu, Jian-sheng
2018-02-01
A water model and a high-speed video camera were utilized in the 300-t RH equipment to study the effect of steel flow patterns in a vacuum chamber on fast decarburization and a superior flow-pattern map was obtained during the practical RH process. There are three flow patterns with different bubbling characteristics and steel surface states in the vacuum chamber: boiling pattern (BP), transition pattern (TP), and wave pattern (WP). The effect of the liquid-steel level and the residence time of the steel in the chamber on flow patterns and decarburization reaction were investigated, respectively. The liquid-steel level significantly affected the flow-pattern transition from BP to WP, and the residence time and reaction area were crucial to evaluate the whole decarburization process rather than the circulation flow rate and mixing time. A superior flow-pattern map during the practical RH process showed that the steel flow pattern changed from BP to TP quickly, and then remained as TP until the end of decarburization.
Anwar, A R; Muthalib, M; Perrey, S; Galka, A; Granert, O; Wolff, S; Heute, U; Deuschl, G; Raethjen, J; Muthuraman, Muthuraman
2016-09-01
Recently, interest has been growing to understand the underlying dynamic directional relationship between simultaneously activated regions of the brain during motor task performance. Such directionality analysis (or effective connectivity analysis), based on non-invasive electrophysiological (electroencephalography-EEG) and hemodynamic (functional near infrared spectroscopy-fNIRS; and functional magnetic resonance imaging-fMRI) neuroimaging modalities can provide an estimate of the motor task-related information flow from one brain region to another. Since EEG, fNIRS and fMRI modalities achieve different spatial and temporal resolutions of motor-task related activation in the brain, the aim of this study was to determine the effective connectivity of cortico-cortical sensorimotor networks during finger movement tasks measured by each neuroimaging modality. Nine healthy subjects performed right hand finger movement tasks of different complexity (simple finger tapping-FT, simple finger sequence-SFS, and complex finger sequence-CFS). We focused our observations on three cortical regions of interest (ROIs), namely the contralateral sensorimotor cortex (SMC), the contralateral premotor cortex (PMC) and the contralateral dorsolateral prefrontal cortex (DLPFC). We estimated the effective connectivity between these ROIs using conditional Granger causality (GC) analysis determined from the time series signals measured by fMRI (blood oxygenation level-dependent-BOLD), fNIRS (oxygenated-O2Hb and deoxygenated-HHb hemoglobin), and EEG (scalp and source level analysis) neuroimaging modalities. The effective connectivity analysis showed significant bi-directional information flow between the SMC, PMC, and DLPFC as determined by the EEG (scalp and source), fMRI (BOLD) and fNIRS (O2Hb and HHb) modalities for all three motor tasks. However the source level EEG GC values were significantly greater than the other modalities. In addition, only the source level EEG showed a significantly greater forward than backward information flow between the ROIs. This simultaneous fMRI, fNIRS and EEG study has shown through independent GC analysis of the respective time series that a bi-directional effective connectivity occurs within a cortico-cortical sensorimotor network (SMC, PMC and DLPFC) during finger movement tasks.
Hoscheidt, Siobhan M; Kellawan, J Mikhail; Berman, Sara E; Rivera-Rivera, Leonardo A; Krause, Rachel A; Oh, Jennifer M; Beeri, Michal S; Rowley, Howard A; Wieben, Oliver; Carlsson, Cynthia M; Asthana, Sanjay; Johnson, Sterling C; Schrage, William G
2016-01-01
Insulin resistance (IR) is associated with poor cerebrovascular health and increased risk for dementia. Little is known about the unique effect of IR on both micro- and macrovascular flow particularly in midlife when interventions against dementia may be most effective. We examined the effect of IR as indexed by the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) on cerebral blood flow in macro- and microvessels utilizing magnetic resonance imaging (MRI) among cognitively asymptomatic middle-aged individuals. We hypothesized that higher HOMA-IR would be associated with reduced flow in macrovessels and lower cortical perfusion. One hundred and twenty cognitively asymptomatic middle-aged adults (57 ± 5 yrs) underwent fasting blood draw, phase contrast-vastly undersampled isotropic projection reconstruction (PC VIPR) MRI, and arterial spin labeling (ASL) perfusion. Higher HOMA-IR was associated with lower arterial blood flow, particularly within the internal carotid arteries (ICAs), and lower cerebral perfusion in several brain regions including frontal and temporal lobe regions. Higher blood flow in bilateral ICAs predicted greater cortical perfusion in individuals with lower HOMA-IR, a relationship not observed among those with higher HOMA-IR. Findings provide novel evidence for an uncoupling of macrovascular blood flow and microvascular perfusion among individuals with higher IR in midlife. PMID:27488909
Improved brain tumor segmentation by utilizing tumor growth model in longitudinal brain MRI
NASA Astrophysics Data System (ADS)
Pei, Linmin; Reza, Syed M. S.; Li, Wei; Davatzikos, Christos; Iftekharuddin, Khan M.
2017-03-01
In this work, we propose a novel method to improve texture based tumor segmentation by fusing cell density patterns that are generated from tumor growth modeling. To model tumor growth, we solve the reaction-diffusion equation by using Lattice-Boltzmann method (LBM). Computational tumor growth modeling obtains the cell density distribution that potentially indicates the predicted tissue locations in the brain over time. The density patterns is then considered as novel features along with other texture (such as fractal, and multifractal Brownian motion (mBm)), and intensity features in MRI for improved brain tumor segmentation. We evaluate the proposed method with about one hundred longitudinal MRI scans from five patients obtained from public BRATS 2015 data set, validated by the ground truth. The result shows significant improvement of complete tumor segmentation using ANOVA analysis for five patients in longitudinal MR images.
Improved brain tumor segmentation by utilizing tumor growth model in longitudinal brain MRI.
Pei, Linmin; Reza, Syed M S; Li, Wei; Davatzikos, Christos; Iftekharuddin, Khan M
2017-02-11
In this work, we propose a novel method to improve texture based tumor segmentation by fusing cell density patterns that are generated from tumor growth modeling. In order to model tumor growth, we solve the reaction-diffusion equation by using Lattice-Boltzmann method (LBM). Computational tumor growth modeling obtains the cell density distribution that potentially indicates the predicted tissue locations in the brain over time. The density patterns is then considered as novel features along with other texture (such as fractal, and multifractal Brownian motion (mBm)), and intensity features in MRI for improved brain tumor segmentation. We evaluate the proposed method with about one hundred longitudinal MRI scans from five patients obtained from public BRATS 2015 data set, validated by the ground truth. The result shows significant improvement of complete tumor segmentation using ANOVA analysis for five patients in longitudinal MR images.
Puberty and structural brain development in humans.
Herting, Megan M; Sowell, Elizabeth R
2017-01-01
Adolescence is a transitional period of physical and behavioral development between childhood and adulthood. Puberty is a distinct period of sexual maturation that occurs during adolescence. Since the advent of magnetic resonance imaging (MRI), human studies have largely examined neurodevelopment in the context of age. A breadth of animal findings suggest that sex hormones continue to influence the brain beyond the prenatal period, with both organizational and activational effects occurring during puberty. Given the animal evidence, human MRI research has also set out to determine how puberty may influence otherwise known patterns of age-related neurodevelopment. Here we review structural-based MRI studies and show that pubertal maturation is a key variable to consider in elucidating sex- and individual- based differences in patterns of human brain development. We also highlight the continuing challenges faced, as well as future considerations, for this vital avenue of research. Copyright © 2016. Published by Elsevier Inc.
Puberty and structural brain development in humans
Herting, Megan M.; Sowell, Elizabeth R.
2017-01-01
Adolescence is a transitional period of physical and behavioral development between childhood and adulthood. Puberty is a distinct period of sexual maturation that occurs during adolescence. Since the advent of magnetic resonance imaging (MRI), human studies have largely examined neurodevelopment in the context of age. A breadth of animal findings suggest that sex hormones continue to influence the brain beyond the prenatal period, with both organizational and activational effects occurring during puberty. Given the animal evidence, human MRI research has also set out to determine how puberty may influence otherwise known patterns of age-related neurodevelopment. Here we review structural-based MRI studies and show that pubertal maturation is a key variable to consider in elucidating sex- and individual-based differences in patterns of human brain development. We also highlight the continuing challenges faced, as well as future considerations, for this vital avenue of research. PMID:28007528
Single-task fMRI overlap predicts concurrent multitasking interference.
Nijboer, Menno; Borst, Jelmer; van Rijn, Hedderik; Taatgen, Niels
2014-10-15
There is no consensus regarding the origin of behavioral interference that occurs during concurrent multitasking. Some evidence points toward a multitasking locus in the brain, while other results imply that interference is the consequence of task interactions in several brain regions. To investigate this issue, we conducted a functional MRI (fMRI) study consisting of three component tasks, which were performed both separately and in combination. The results indicated that no specific multitasking area exists. Instead, different patterns of activation across conditions could be explained by assuming that the interference is a result of task interactions. Additionally, similarity in single-task activation patterns correlated with a decrease in accuracy during dual-task conditions. Taken together, these results support the view that multitasking interference is not due to a bottleneck in a single "multitasking" brain region, but is a result of interactions between concurrently running processes. Copyright © 2014 Elsevier Inc. All rights reserved.
A Simple fMRI Compatible Robotic Stimulator to Study the Neural Mechanisms of Touch and Pain.
Riillo, F; Bagnato, C; Allievi, A G; Takagi, A; Fabrizi, L; Saggio, G; Arichi, T; Burdet, E
2016-08-01
This paper presents a simple device for the investigation of the human somatosensory system with functional magnetic imaging (fMRI). PC-controlled pneumatic actuation is employed to produce innocuous or noxious mechanical stimulation of the skin. Stimulation patterns are synchronized with fMRI and other relevant physiological measurements like electroencephalographic activity and vital physiological parameters. The system allows adjustable regulation of stimulation parameters and provides consistent patterns of stimulation. A validation experiment demonstrates that the system safely and reliably identifies clusters of functional activity in brain regions involved in the processing of pain. This new device is inexpensive, portable, easy-to-assemble and customizable to suit different experimental requirements. It provides robust and consistent somatosensory stimulation, which is of crucial importance to investigating the mechanisms of pain and its strong connection with the sense of touch.
Imaging Patterns of Muscle Atrophy.
Weber, Marc-André; Wolf, Marcel; Wattjes, Mike P
2018-07-01
The role of muscle imaging in the diagnosis of inherited and acquired muscle diseases has gained clinical relevance. In particular, magnetic resonance imaging (MRI) is increasingly being used for diagnostic purposes, especially with its capability of whole-body musculature assessment. The assessment and quantification of muscle involvement in muscle diseases can be of diagnostic value by identifying a certain involvement pattern and thus narrowing the differential diagnosis and supporting the clinical diagnosis. In addition, more recently the role of imaging has gone beyond diagnostic purposes and includes disease as well as treatment monitoring. Conventional and quantitative muscle MRI techniques allow for the detection of subclinical disease progression (e.g., in muscular dystrophies) and is a powerful surrogate outcome measure in clinical trials. We present and discuss recent data on the role of conventional and quantitative MRI in the diagnosis and monitoring of inherited dystrophic muscle diseases as well as muscle denervation. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Schabel, M C; Roberts, V H J; Lo, J O; Platt, S; Grant, K A; Frias, A E; Kroenke, C D
2016-11-01
To characterize spatial patterns of T2* in the placenta of the rhesus macaque (Macaca mulatta), to correlate these patterns with placental perfusion determined using dynamic contrast-enhanced MRI (DCE-MRI), and to evaluate the potential for using the blood oxygen level-dependent effect to quantify placental perfusion without the use of exogenous contrast reagent. MRI was performed on three pregnant rhesus macaques at gestational day 110. Multiecho spoiled gradient echo measurements were used to compute maps of T2*. Spatial maxima in these maps were compared with foci of early enhancement determined by DCE-MRI. Local maxima in T2* maps were strongly correlated with spiral arteries identified by DCE-MRI, with mean spatial separations ranging from 2.34 to 6.11 mm in the three animals studied. Spatial patterns of R2* ( = 1/ T2*) within individual placental lobules can be quantitatively analyzed using a simple model to estimate fetal arterial oxyhemoglobin concentration [Hbo,f] and a parameter viPS/Φ, reflecting oxygen transport to the fetus. Estimated mean values of [Hbo,f] ranged from 4.25 mM to 4.46 mM, whereas viPS/Φ ranged from 2.80 × 10 5 cm -3 to 1.61 × 10 6 cm -3 . Maternal spiral arteries show strong spatial correlation with foci of extended T2* observed in the primate placenta. A simple model of oxygen transport accurately describes the spatial dependence of R2* within placental lobules and enables assessment of placental function and oxygenation without requiring administration of an exogenous contrast reagent. Magn Reson Med 76:1551-1562, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.
Wang, Lin; Du, Jing; Li, Feng-Hua; Fang, Hua; Hua, Jia; Wan, Cai-Feng
2013-10-01
The purpose of this study was to evaluate the diagnostic efficacy of contrast-enhanced sonography for differentiation of breast lesions by combined qualitative and quantitative analyses in comparison to magnetic resonance imaging (MRI). Fifty-six patients with American College of Radiology Breast Imaging Reporting and Data System category 3 to 5 breast lesions on conventional sonography were evaluated by contrast-enhanced sonography and MRI. A comparative analysis of diagnostic results between contrast-enhanced sonography and MRI was conducted in light of the pathologic findings. Pathologic analysis showed 26 benign and 30 malignant lesions. The predominant enhancement patterns of the benign lesions on contrast-enhanced sonography were homogeneous, centrifugal, and isoenhancement or hypoenhancement, whereas the patterns of the malignant lesions were mainly heterogeneous, centripetal, and hyperenhancement. The detection rates for perfusion defects and peripheral radial vessels in the malignant group were much higher than those in the benign group (P < .05). As to quantitative analysis, statistically significant differences were found in peak and time-to-peak values between the groups (P < .05). With pathologic findings as the reference standard, the sensitivity, specificity, and accuracy of contrast-enhanced sonography and MRI were 90.0%, 92.3%, 91.1% and 96.7%, 88.5%, and 92.9%, respectively. The two methods had a concordant rate of 87.5% (49 of 56), and the concordance test gave a value of κ = 0.75, indicating that there was high concordance in breast lesion assessment between the two diagnostic modalities. Contrast-enhanced sonography provided typical enhancement patterns and valuable quantitative parameters, which showed good agreement with MRI in diagnostic efficacy and may potentially improve characterization of breast lesions.
Duarte, João Valente; Faustino, Ricardo; Lobo, Mercês; Cunha, Gil; Nunes, César; Ferreira, Carlos; Januário, Cristina; Castelo-Branco, Miguel
2016-10-01
Machado-Joseph Disease, inherited type 3 spinocerebellar ataxia (SCA3), is the most common form worldwide. Neuroimaging and neuropathology have consistently demonstrated cerebellar alterations. Here we aimed to discover whole-brain functional biomarkers, based on parametric performance-level-dependent signals. We assessed 13 patients with early SCA3 and 14 healthy participants. We used a combined parametric behavioral/functional neuroimaging design to investigate disease fingerprints, as a function of performance levels, coupled with structural MRI and voxel-based morphometry. Functional magnetic resonance imaging (fMRI) was designed to parametrically analyze behavior and neural responses to audio-paced bilateral thumb movements at temporal frequencies of 1, 3, and 5 Hz. Our performance-level-based design probing neuronal correlates of motor coordination enabled the discovery that neural activation and behavior show critical loss of parametric modulation specifically in SCA3, associated with frequency-dependent cortico/subcortical activation/deactivation patterns. Cerebellar/cortical rate-dependent dissociation patterns could clearly differentiate between groups irrespective of grey matter loss. Our findings suggest functional reorganization of the motor network and indicate a possible role of fMRI as a tool to monitor disease progression in SCA3. Accordingly, fMRI patterns proved to be potential biomarkers in early SCA3, as tested by receiver operating characteristic analysis of both behavior and neural activation at different frequencies. Discrimination analysis based on BOLD signal in response to the applied parametric finger-tapping task significantly often reached >80% sensitivity and specificity in single regions-of-interest.Functional fingerprints based on cerebellar and cortical BOLD performance dependent signal modulation can thus be combined as diagnostic and/or therapeutic targets in hereditary ataxia. Hum Brain Mapp 37:3656-3668, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Liegeois, Frederique; Connelly, Alan; Baldeweg, Torsten; Vargha-Khadem, Faraneh
2008-01-01
Speech-related fMRI activation was examined in six hemispherectomy patients (three left LX, three right RX, four with congenital and two with late-acquired hemiplegia) operated in childhood for the relief of drug-resistant epilepsy. Although the temporal and sensorimotor pattern of activation was similar to that found in neurologically intact…
Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals.
Kim, Seong-Gi; Ogawa, Seiji
2012-07-01
After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the origins of BOLD fMRI signals, including the topics of (1) effects of spin density, volume fraction, inflow, perfusion, and susceptibility as potential contributors to BOLD fMRI, (2) intravascular and extravascular contributions to conventional gradient-echo and spin-echo BOLD fMRI, (3) spatial specificity of hemodynamic-based fMRI related to vascular architecture and intrinsic hemodynamic responses, (4) BOLD signal contributions from functional changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of O(2) utilization (CMRO(2)), (5) dynamic responses of BOLD, CBF, CMRO(2), and arterial and venous CBV, (6) potential sources of initial BOLD dips, poststimulus BOLD undershoots, and prolonged negative BOLD fMRI signals, (7) dependence of stimulus-evoked BOLD signals on baseline physiology, and (8) basis of resting-state BOLD fluctuations. These discussions are highly relevant to interpreting BOLD fMRI signals as physiological means.
Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals
Kim, Seong-Gi; Ogawa, Seiji
2012-01-01
After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the origins of BOLD fMRI signals, including the topics of (1) effects of spin density, volume fraction, inflow, perfusion, and susceptibility as potential contributors to BOLD fMRI, (2) intravascular and extravascular contributions to conventional gradient-echo and spin-echo BOLD fMRI, (3) spatial specificity of hemodynamic-based fMRI related to vascular architecture and intrinsic hemodynamic responses, (4) BOLD signal contributions from functional changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of O2 utilization (CMRO2), (5) dynamic responses of BOLD, CBF, CMRO2, and arterial and venous CBV, (6) potential sources of initial BOLD dips, poststimulus BOLD undershoots, and prolonged negative BOLD fMRI signals, (7) dependence of stimulus-evoked BOLD signals on baseline physiology, and (8) basis of resting-state BOLD fluctuations. These discussions are highly relevant to interpreting BOLD fMRI signals as physiological means. PMID:22395207
Advanced hip osteoarthritis: magnetic resonance imaging aspects and histopathology correlations.
Leydet-Quilici, H; Le Corroller, T; Bouvier, C; Giorgi, R; Argenson, J-N; Champsaur, P; Pham, T; de Paula, A Maues; Lafforgue, P
2010-11-01
To correlate magnetic resonance imaging (MRI) aspects of the femoral head with histological findings in advanced hip osteoarthritis (OA), with special emphasis on bone marrow edema (BME). MRI was performed in patients with advanced hip OA scheduled for hip arthroplasty. Coronal T1-, fat-suppressed T2-, T1 with gadolinium intravenous injection sequences were obtained on a 1.5 T MR-scanner within 1 month before surgery. Coronal MR images corresponding to the ligamentum teres plane were analyzed by two independent readers blinded to histological data. Normal bone marrow, subchondral cyst, subchondral fracture, edema-like, necrosis-like, and necrosis MR patterns were reported on a synthesis scheme. After surgery, the femoral heads specimens were cut through the ligamentum teres plane and histologically analyzed for correlations. Twenty-three femoral heads were analyzed (female 56.5%, mean age 64.5 years). Edema-like MR pattern was correlated with histological (H) edema (Kappa (K): 0.77). Necrosis-like MR pattern was correlated with H fibrosis (K: 0.49) and with H necrosis (K: 0.24). Cyst MR pattern was correlated with H bone cysts (K: 0.58). Necrosis MR pattern corresponded to a mixture of histological lesions. Sensitivity and specificity of MRI varied from 26% to 80% and from 86% to 95% respectively. In advanced hip OA, the so-called "BME" MR lesion corresponds to a combination of edema, fibrosis, and necrosis at histopathology. When the classical "BME" is more specifically separated into edema-like and necrosis-like MR patterns, MR Imaging and histological findings show substantial agreement, with edema-like MR pattern mainly corresponding to histological edema. Copyright © 2010 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Rafii, Michael S; Lukic, Ana S; Andrews, Randolph D; Brewer, James; Rissman, Robert A; Strother, Stephen C; Wernick, Miles N; Pennington, Craig; Mobley, William C; Ness, Seth; Matthews, Dawn C
2017-01-01
Adults with Down syndrome (DS) represent an enriched population for the development of Alzheimer's disease (AD), which could aid the study of therapeutic interventions, and in turn, could benefit from discoveries made in other AD populations. 1) Understand the relationship between tau pathology and age, amyloid deposition, neurodegeneration (MRI and FDG PET), and cognitive and functional performance; 2) detect and differentiate AD-specific changes from DS-specific brain changes in longitudinal MRI. Twelve non-demented adults, ages 30 to 60, with DS were enrolled in the Down Syndrome Biomarker Initiative (DSBI), a 3-year, observational, cohort study to demonstrate the feasibility of conducting AD intervention/prevention trials in adults with DS. We collected imaging data with 18F-AV-1451 tau PET, AV-45 amyloid PET, FDG PET, and volumetric MRI, as well as cognitive and functional measures and additional laboratory measures. All amyloid negative subjects imaged were tau-negative. Among the amyloid positive subjects, three had tau in regions associated with Braak stage VI, two at stage V, and one at stage II. Amyloid and tau burden correlated with age. The MRI analysis produced two distinct volumetric patterns. The first differentiated DS from normal (NL) and AD, did not correlate with age or amyloid, and was longitudinally stable. The second pattern reflected AD-like atrophy and differentiated NL from AD. Tau PET and MRI atrophy correlated with several cognitive and functional measures. Tau accumulation is associated with amyloid positivity and age, as well as with progressive neurodegeneration measurable using FDG and MRI. Tau correlates with cognitive decline, as do AD-specific hypometabolism and atrophy.
Power, Jonathan D; Plitt, Mark; Gotts, Stephen J; Kundu, Prantik; Voon, Valerie; Bandettini, Peter A; Martin, Alex
2018-02-27
"Functional connectivity" techniques are commonplace tools for studying brain organization. A critical element of these analyses is to distinguish variance due to neurobiological signals from variance due to nonneurobiological signals. Multiecho fMRI techniques are a promising means for making such distinctions based on signal decay properties. Here, we report that multiecho fMRI techniques enable excellent removal of certain kinds of artifactual variance, namely, spatially focal artifacts due to motion. By removing these artifacts, multiecho techniques reveal frequent, large-amplitude blood oxygen level-dependent (BOLD) signal changes present across all gray matter that are also linked to motion. These whole-brain BOLD signals could reflect widespread neural processes or other processes, such as alterations in blood partial pressure of carbon dioxide (pCO 2 ) due to ventilation changes. By acquiring multiecho data while monitoring breathing, we demonstrate that whole-brain BOLD signals in the resting state are often caused by changes in breathing that co-occur with head motion. These widespread respiratory fMRI signals cannot be isolated from neurobiological signals by multiecho techniques because they occur via the same BOLD mechanism. Respiratory signals must therefore be removed by some other technique to isolate neurobiological covariance in fMRI time series. Several methods for removing global artifacts are demonstrated and compared, and were found to yield fMRI time series essentially free of motion-related influences. These results identify two kinds of motion-associated fMRI variance, with different physical mechanisms and spatial profiles, each of which strongly and differentially influences functional connectivity patterns. Distance-dependent patterns in covariance are nearly entirely attributable to non-BOLD artifacts.
NASA Astrophysics Data System (ADS)
Ogata, Tomomichi; Johnson, Stephanie J.; Schiemann, Reinhard; Demory, Marie-Estelle; Mizuta, Ryo; Yoshida, Kohei; Osamu Arakawa
2017-11-01
In this study, we compare the resolution sensitivity of the Asian Summer Monsoon (ASM) in two Atmospheric General Circulation Models (AGCMs): the MRI-AGCM and the MetUM. We analyze the MetUM at three different resolutions, N96 (approximately 200-km mesh on the equator), N216 (90-km mesh) and N512 (40-km mesh), and the MRI-AGCM at TL95 (approximately 180-km mesh on the equator), TL319 (60-km mesh), and TL959 (20-km mesh). The MRI-AGCM and the MetUM both show decreasing precipitation over the western Pacific with increasing resolution, but their precipitation responses differ over the Indian Ocean. In MRI-AGCM, a large precipitation increase appears off the equator (5-20°N). In MetUM, this off-equatorial precipitation increase is less significant and precipitation decreases over the equator. Moisture budget analysis demonstrates that a changing in moisture flux convergence at higher resolution is related to the precipitation response. Orographic effects, intra-seasonal variability and the representation of the meridional thermal gradient are explored as possible causes of the resolution sensitivity. Both high-resolution AGCMs (TL959 and N512) can represent steep topography, which anchors the rainfall pattern over south Asia and the Maritime Continent. In MRI-AGCM, representation of low pressure systems in TL959 also contributes to the rainfall pattern. Furthermore, the seasonal evolution of the meridional thermal gradient appears to be more accurate at higher resolution, particularly in the MRI-AGCM. These findings emphasize that the impact of resolution is only robust across the two AGCMs for some features of the ASM, and highlights the importance of multi-model studies of GCM resolution sensitivity.
Sugita, Reiji; Furuta, Akemi; Yamazaki, Tetsuro; Itoh, Kei; Fujita, Naotaka; Takahashi, Shoki
2014-05-01
The purpose of this study is to prospectively assess whether direct visualization of pancreatic juice flow using an unenhanced MRI technique with spin labeling can aid in the diagnosis of chronic pancreatitis. Ten healthy volunteers and 50 patients who were categorized as having no chronic pancreatitis (n = 11), early chronic pancreatitis (n = 7), or established chronic pancreatitis (n = 32) underwent MRI, including direct pancreatic juice visualization using a flow-out technique with a time-spatial labeling inversion pulse, comprising a nonselective inversion recovery pulse immediately followed by a spatially selective inversion labeling pulse. The mean velocities and volumes of pancreatic juice excretion were also obtained. Variance tests were used to evaluate the clinical groups with respect to the appearance rate and mean velocity; the Kruskal-Wallis test was used for volume. There were no significant differences between healthy volunteers and patients with no chronic pancreatitis. The appearance rate, mean velocity, and volume of pancreatic juice excretion tended to decrease with the degree of chronic pancreatitis. Although the difference in these values was statistically significant between the healthy group and the established chronic pancreatitis group, the values of the early group and other groups were not statistically significant. There was a significant correlation between the appearance rate of pancreatic juice and the clinical groups (τ = -0.4376, p = 0.0015). The measurement of directly visualized pancreatic juice flow may aid in establishing the diagnosis of chronic pancreatitis.
Szaflarski, Jerzy P.; Allendorfer, Jane B.; Banks, Christi; Vannest, Jennifer; Holland, Scott K.
2013-01-01
Purpose Several adult studies have documented the importance of the peri-stroke areas to aphasia recovery. But, studies examining the differences in patterns of cortical participation in language comprehension in patients who have (LMCA-R) or have not recovered (LMCA-NR) from left middle cerebral artery infarction have not been performed up to date. Methods In this study, we compare cortical correlates of language comprehension using fMRI and semantic decision/tone decision task in 9 LMCA-R and 18 LMCA-NR patients matched at the time of stroke for age and handedness. We examine the cortical correlates of language performance by correlating intra- and extra-scanner measures of linguistic performance with fMRI activation and stroke volumes. Results Our analyses show that LMCA-R at least 1 year after stroke show a return to typical fMRI language activation patterns and that there is a compensatory reorganization of language function in LMCA-NR patients with shifts to the right hemispheric brain regions. Further, with increasing strength of the left-hemispheric fMRI signal shift there are associated improvements in performance as tested with standardized linguistic measures. A negative correlation between the size of the stroke and performance on some of the linguistic tests is also observed. Conclusions This right-hemispheric shift as a mechanism of post-stroke recovery in adults appears to be an ineffective mode of language function recovery with increasing right-hemispheric shift associated with lower language performance. Thus, normalization of the post-stroke language activation patterns is needed for better language performance while shifts of the activation patterns to the non-dominant (right) hemisphere and/or large stroke size are associated with decreased linguistic abilities after stroke. PMID:23482065
Resting bold fMRI differentiates dementia with Lewy bodies vs Alzheimer disease
Price, J.L.; Yan, Z.; Morris, J.C.; Sheline, Y.I.
2011-01-01
Objective: Clinicopathologic phenotypes of dementia with Lewy bodies (DLB) and Alzheimer disease (AD) often overlap, making discrimination difficult. We performed resting state blood oxygen level–dependent (BOLD) functional connectivity MRI (fcMRI) to determine whether there were differences between AD and DLB. Methods: Participants (n = 88) enrolled in a longitudinal study of memory and aging underwent 3-T fcMRI. Clinical diagnoses of probable DLB (n = 15) were made according to published criteria. Cognitively normal control participants (n = 38) were selected for the absence of cerebral amyloid burden as imaged with Pittsburgh compound B (PiB). Probable AD cases (n = 35) met published criteria and had appreciable amyloid deposits with PiB imaging. Functional images were collected using a gradient spin-echo sequence sensitive to BOLD contrast (T2* weighting). Correlation maps selected a seed region in the combined bilateral precuneus. Results: Participants with DLB had a functional connectivity pattern for the precuneus seed region that was distinct from AD; both the DLB and AD groups had functional connectivity patterns that differed from the cognitively normal group. In the DLB group, we found increased connectivity between the precuneus and regions in the dorsal attention network and the putamen. In contrast, we found decreased connectivity between the precuneus and other task-negative default regions and visual cortices. There was also a reversal of connectivity in the right hippocampus. Conclusions: Changes in functional connectivity in DLB indicate patterns of activation that are distinct from those seen in AD and may improve discrimination of DLB from AD and cognitively normal individuals. Since patterns of connectivity differ between AD and DLB groups, measurements of BOLD functional connectivity can shed further light on neuroanatomic connections that distinguish DLB from AD. PMID:21525427
Studying brain organization via spontaneous fMRI signal.
Power, Jonathan D; Schlaggar, Bradley L; Petersen, Steven E
2014-11-19
In recent years, some substantial advances in understanding human (and nonhuman) brain organization have emerged from a relatively unusual approach: the observation of spontaneous activity, and correlated patterns in spontaneous activity, in the "resting" brain. Most commonly, spontaneous neural activity is measured indirectly via fMRI signal in subjects who are lying quietly in the scanner, the so-called "resting state." This Primer introduces the fMRI-based study of spontaneous brain activity, some of the methodological issues active in the field, and some ways in which resting-state fMRI has been used to delineate aspects of area-level and supra-areal brain organization. Copyright © 2014 Elsevier Inc. All rights reserved.
Two-phase flow patterns in adiabatic and diabatic corrugated plate gaps
NASA Astrophysics Data System (ADS)
Polzin, A.-E.; Kabelac, S.; de Vries, B.
2016-09-01
Correlations for two-phase heat transfer and pressure drop can be improved considerably, when they are adapted to specific flow patterns. As plate heat exchangers find increasing application as evaporators and condensers, there is a need for flow pattern maps for corrugated plate gaps. This contribution presents experimental results on flow pattern investigations for such a plate heat exchanger background, using an adiabatic visualisation setup as well as a diabatic setup. Three characteristic flow patterns were observed in the considered range of two-phase flow: bubbly flow, film flow and slug flow. The occurrence of these flow patterns is a function of mass flux, void fraction, fluid properties and plate geometry. Two different plate geometries having a corrugation angle of 27° and 63°, respectively and two different fluids (water/air and R365mfc liquid/vapor) have been analysed. A flow pattern map using the momentum flux is presented.
Noninvasive measurement of renal blood flow by magnetic resonance imaging in rats.
Romero, Cesar A; Cabral, Glauber; Knight, Robert A; Ding, Guangliang; Peterson, Edward L; Carretero, Oscar A
2018-01-01
Renal blood flow (RBF) provides important information regarding renal physiology and nephropathies. Arterial spin labeling-magnetic resonance imaging (ASL-MRI) is a noninvasive method of measuring blood flow without exogenous contrast media. However, low signal-to-noise ratio and respiratory motion artifacts are challenges for RBF measurements in small animals. Our objective was to evaluate the feasibility and reproducibility of RBF measurements by ASL-MRI using respiratory-gating and navigator correction methods to reduce motion artifacts. ASL-MRI images were obtained from the kidneys of Sprague-Dawley (SD) rats on a 7-Tesla Varian MRI system with a spin-echo imaging sequence. After 4 days, the study was repeated to evaluate its reproducibility. RBF was also measured in animals under unilateral nephrectomy and in renal artery stenosis (RST) to evaluate the sensitivity in high and low RBF models, respectively. RBF was also evaluated in Dahl salt-sensitive (SS) rats and spontaneous hypertensive rats (SHR). In SD rats, the cortical RBFs (cRBF) were 305 ± 59 and 271.8 ± 39 ml·min -1 ·100 g tissue -1 in the right and left kidneys, respectively. Retest analysis revealed no differences ( P = 0.2). The test-retest reliability coefficient was 92 ± 5%. The cRBFs before and after the nephrectomy were 296.8 ± 30 and 428.2 ± 45 ml·min -1 ·100 g tissue -1 ( P = 0.02), respectively. The kidneys with RST exhibited a cRBF decrease compared with sham animals (86 ± 17.6 vs. 198 ± 33.7 ml·min -1 ·100 g tissue -1 ; P < 0.01). The cRBFs in SD, Dahl-SS, and SHR rats were not different ( P = 0.35). We conclude that ASL-MRI performed with navigator correction and respiratory gating is a feasible and reliable noninvasive method for measuring RBF in rats.
Ovarian torsion: diagnostic features on CT and MRI with pathologic correlation.
Duigenan, Shauna; Oliva, Esther; Lee, Susanna I
2012-02-01
The CT and MRI features of ovarian torsion are illustrated with gross pathologic correlation. Ovarian enlargement with or without an underlying mass is the finding most frequently associated with torsion, but it is nonspecific. A twisted pedicle, although not often detected on imaging, is pathognomonic when seen. Subacute ovarian hemorrhage and abnormal enhancement is usually seen, and both features show characteristic patterns on CT and MRI. Ipsilateral uterine deviation can also be seen. Diagnostic pitfalls that may mimic ovarian torsion and observations for discriminating them are discussed.
Large-scale Granger causality analysis on resting-state functional MRI
NASA Astrophysics Data System (ADS)
D'Souza, Adora M.; Abidin, Anas Zainul; Leistritz, Lutz; Wismüller, Axel
2016-03-01
We demonstrate an approach to measure the information flow between each pair of time series in resting-state functional MRI (fMRI) data of the human brain and subsequently recover its underlying network structure. By integrating dimensionality reduction into predictive time series modeling, large-scale Granger Causality (lsGC) analysis method can reveal directed information flow suggestive of causal influence at an individual voxel level, unlike other multivariate approaches. This method quantifies the influence each voxel time series has on every other voxel time series in a multivariate sense and hence contains information about the underlying dynamics of the whole system, which can be used to reveal functionally connected networks within the brain. To identify such networks, we perform non-metric network clustering, such as accomplished by the Louvain method. We demonstrate the effectiveness of our approach to recover the motor and visual cortex from resting state human brain fMRI data and compare it with the network recovered from a visuomotor stimulation experiment, where the similarity is measured by the Dice Coefficient (DC). The best DC obtained was 0.59 implying a strong agreement between the two networks. In addition, we thoroughly study the effect of dimensionality reduction in lsGC analysis on network recovery. We conclude that our approach is capable of detecting causal influence between time series in a multivariate sense, which can be used to segment functionally connected networks in the resting-state fMRI.
What Neural Substrates Trigger the Adept Scientific Pattern Discovery by Biologists?
ERIC Educational Resources Information Center
Lee, Jun-Ki; Kwon, Yong-Ju
2011-01-01
This study investigated the neural correlates of experts and novices during biological object pattern detection using an fMRI approach in order to reveal the neural correlates of a biologist's superior pattern discovery ability. Sixteen healthy male participants (8 biologists and 8 non-biologists) volunteered for the study. Participants were shown…
Kamphuis, Vivian P; Westenberg, Jos J M; van der Palen, Roel L F; van den Boogaard, Pieter J; van der Geest, Rob J; de Roos, Albert; Blom, Nico A; Roest, Arno A W; Elbaz, Mohammed S M
2018-01-05
The aim of the current study was to assess the scan-rescan reproducibility of left ventricular (LV) kinetic energy (KE), viscous energy loss (EL) and vorticity during diastole from four-dimensional flow magnetic resonance imaging (4D flow MRI) in healthy subjects. Twelve volunteers (age 27 ± 3 years) underwent whole-heart 4D flow MRI twice in one session. In-scan consistency was evaluated by correlation between KE and EL. EL index was computed to measure the amount of EL relative to KE over diastole. Scan-rescan analysis was performed to test reproducibility of volumetric measurements of KE, EL, EL index and vorticity in the LV over early (E) and late (A) diastolic filling. In-scan consistency between KE and EL was strong-excellent (E-filling scan1: r = 0.92, P < 0.001; scan2: ρ = 0.96, P < 0.001 and A-filling scan1: ρ = 0.87, P < 0.001; scan2: r = 0.99, P < 0.001). For the majority of subjects (10 out of 12), KE and EL measures showed good to strong reproducibility. However, with a wide range of agreement [intraclass correlation (ICC): 0.64-0.95] and coefficients of variation (CV) ≤ 25%. EL index showed strong reproducibility for all 12 subjects with a strong ICC (0.94, P < 0.001) and a CV of 9%. Scan-rescan reproducibility of volumetric vorticity showed good-excellent ICCs (0.83-0.95) with CVs ≤ 11%. In conclusion, the current study shows strong-excellent in-scan consistency and overall good agreement between scans for 4D flow MRI assessment of left ventricular kinetic energy, energy loss and vorticity over diastole. However, substantial differences between the scans were also found in some parameters in two out of twelve subjects. Strong reproducibility was found in the dimensionless EL index , which measures the amount of viscous energy loss relative to the average kinetic energy over diastole.
NASA Astrophysics Data System (ADS)
Nasaruddin, N. H.; Yusoff, A. N.; Kaur, S.
2014-11-01
The objective of this multiple-subjects functional magnetic resonance imaging (fMRI) study was to identify the common brain areas that are activated when viewing black-and-white checkerboard pattern stimuli of various shapes, pattern and size and to investigate specific brain areas that are involved in processing static and moving visual stimuli. Sixteen participants viewed the moving (expanding ring, rotating wedge, flipping hour glass and bowtie and arc quadrant) and static (full checkerboard) stimuli during an fMRI scan. All stimuli have black-and-white checkerboard pattern. Statistical parametric mapping (SPM) was used in generating brain activation. Differential analyses were implemented to separately search for areas involved in processing static and moving stimuli. In general, the stimuli of various shapes, pattern and size activated multiple brain areas mostly in the left hemisphere. The activation in the right middle temporal gyrus (MTG) was found to be significantly higher in processing moving visual stimuli as compared to static stimulus. In contrast, the activation in the left calcarine sulcus and left lingual gyrus were significantly higher for static stimulus as compared to moving stimuli. Visual stimulation of various shapes, pattern and size used in this study indicated left lateralization of activation. The involvement of the right MTG in processing moving visual information was evident from differential analysis, while the left calcarine sulcus and left lingual gyrus are the areas that are involved in the processing of static visual stimulus.
Measuring and modeling of a three-dimensional tracer transport in a planted soil column
NASA Astrophysics Data System (ADS)
Schroeder, N.; Javaux, M.; Haber-Pohlmeier, S.; Pohlmeier, A. J.; Huber, K.; Vereecken, H.; Vanderborght, J.
2013-12-01
Water flow from soil to root is driven by the plant transpiration and an important component of the hydrological cycle. The model R-SWMS combines three-dimensional (3D) water flow and solute transport in soil with a detailed description of root structure in three dimensions [1,2]. This model offers the possibility to calculate root water and solute uptake and flow within the roots, which enables explicit studies with respect to the distribution of water and solutes around the roots as well as local processes at the root-soil interface. In this study, we compared measured data from a tracer experiment using Magnetic Resonance Imaging (MRI) with simulations in order to assess the distribution and magnitude of the water uptake of a young lupine plant. An aqueous solution of the Gadolinium-complex (Gd-DTPA2-) was chosen as a tracer, as it behaves conservatively and is ideally suited for MRI. Water flow in the soil towards the roots can thus be visualized by following the change in tracer concentrations over time. The data were obtained by MRI, providing high resolution 3D images of the tracer distribution and root architecture structures by using a spin echo pulse sequence, which is strongly T1- weighted to be tracer sensitive [3], and T2 -weighted for root imaging [4]. This experimental setup was simulated using the 3D high-resolution numerical model R-SWMS. The comparison between MRI data and the simulations showed extensive effects of root architecture parameters on solute spreading. Although the results of our study showed the strength of combining non-invasive measurements and 3D modeling of solute and water flow in soil-root systems, where the derivation of plant hydraulic parameters such as axial and radial root conductivities is possible, current limitations were found with respect to MRI measurements and process description. [1] Javaux, M., T. Schröder, J. Vanderborght, and H. Vereecken (2008), Use of a Three-Dimensional Detailed Modeling Approach for Predicting Root Water Uptake, Vadose Zone Journal, 7(3), 1079-1079. [2] Schröder, N., M. Javaux, J. Vanderborght, B. Steffen, and H. Vereecken (2012), Effect of Root Water and Solute Uptake on Apparent Soil Dispersivity: A Simulation Study, Vadose Zone Journal, 11(3). [3 ]Haber-Pohlmeier, S., Bechtold, M., Stapf, S., and Pohlmeier, A. (2010). Water Flow Monitored by Tracer Transport in Natural Porous Media Using Magnetic Resonance Imaging. Vadose Zone Journal (9),835-845. [4] Stingaciu, L. R., Schulz, H., Pohlmeier, A., Behnke, S., Zilken, H., Vereecken, H., and Javaux, M. (2013). In Situ Root System Architecture Extraction from Magnetic Resonance Imaging for Application to Water Uptake Modeling. Vadose Zone Journal.
Multiparametric imaging of brain hemodynamics and function using gas-inhalation MRI.
Liu, Peiying; Welch, Babu G; Li, Yang; Gu, Hong; King, Darlene; Yang, Yihong; Pinho, Marco; Lu, Hanzhang
2017-02-01
Diagnosis and treatment monitoring of cerebrovascular diseases routinely require hemodynamic imaging of the brain. Current methods either only provide part of the desired information or require the injection of multiple exogenous agents. In this study, we developed a multiparametric imaging scheme for the imaging of brain hemodynamics and function using gas-inhalation MRI. The proposed technique uses a single MRI scan to provide simultaneous measurements of baseline venous cerebral blood volume (vCBV), cerebrovascular reactivity (CVR), bolus arrival time (BAT), and resting-state functional connectivity (fcMRI). This was achieved with a novel, concomitant O 2 and CO 2 gas inhalation paradigm, rapid MRI image acquisition with a 9.3min BOLD sequence, and an advanced algorithm to extract multiple hemodynamic information from the same dataset. In healthy subjects, CVR and vCBV values were 0.23±0.03%/mmHg and 0.0056±0.0006%/mmHg, respectively, with a strong correlation (r=0.96 for CVR and r=0.91 for vCBV) with more conventional, separate acquisitions that take twice the scan time. In patients with Moyamoya syndrome, CVR in the stenosis-affected flow territories (typically anterior-cerebral-artery, ACA, and middle-cerebral-artery, MCA, territories) was significantly lower than that in posterior-cerebral-artery (PCA), which typically has minimal stenosis, flow territories (0.12±0.06%/mmHg vs. 0.21±0.05%/mmHg, p<0.001). BAT of the gas bolus was significantly longer (p=0.008) in ACA/MCA territories, compared to PCA, and the maps were consistent with the conventional contrast-enhanced CT perfusion method. FcMRI networks were robustly identified from the gas-inhalation MRI data after factoring out the influence of CO 2 and O 2 on the signal time course. The spatial correspondence between the gas-data-derived fcMRI maps and those using a separate, conventional fcMRI scan was excellent, showing a spatial correlation of 0.58±0.17 and 0.64±0.20 for default mode network and primary visual network, respectively. These findings suggest that advanced gas-inhalation MRI provides reliable measurements of multiple hemodynamic parameters within a clinically acceptable imaging time and is suitable for patient examinations. Copyright © 2016 Elsevier Inc. All rights reserved.
Multiparametric imaging of brain hemodynamics and function using gas-inhalation MRI
Liu, Peiying; Welch, Babu G.; Li, Yang; Gu, Hong; King, Darlene; Yang, Yihong; Pinho, Marco; Lu, Hanzhang
2016-01-01
Diagnosis and treatment monitoring of cerebrovascular diseases routinely require hemodynamic imaging of the brain. Current methods either only provide part of the desired information or require the injection of multiple exogenous agents. In this study, we developed a multiparametric imaging scheme for the imaging of brain hemodynamics and function using gas-inhalation MRI. The proposed technique uses a single MRI scan to provide simultaneous measurements of baseline venous cerebral blood volume (vCBV), cerebrovascular reactivity (CVR), bolus arrival time (BAT), and resting-state functional connectivity (fcMRI). This was achieved with a novel, concomitant O2 and CO2 gas inhalation paradigm, rapid MRI image acquisition with a 9.3 min BOLD sequence, and an advanced algorithm to extract multiple hemodynamic information from the same dataset. In healthy subjects, CVR and vCBV values were 0.23±0.03 %/mmHg and 0.0056±0.0006 %/mmHg, respectively, with a strong correlation (r=0.96 for CVR and r=0.91 for vCBV) with more conventional, separate acquisitions that take twice the scan time. In patients with Moyamoya syndrome, CVR in the stenosis-affected flow territories (typically anterior-cerebral-artery, ACA, and middle-cerebral-artery, MCA, territories) was significantly lower than that in posterior-cerebral-artery (PCA), which typically has minimal stenosis, flow territories (0.12±0.06 %/mmHg vs. 0.21±0.05 %/mmHg, p<0.001). BAT of the gas bolus was significantly longer (p=0.008) in ACA/MCA territories, compared to PCA, and the maps were consistent with the conventional contrast-enhanced CT perfusion method. FcMRI networks were robustly identified from the gas-inhalation MRI data after factoring out the influence of CO2 and O2 on the signal time course. The spatial correspondence between the gas-data-derived fcMRI maps and those using a separate, conventional fcMRI scan was excellent, showing a spatial correlation of 0.58±0.17 and 0.64±0.20 for default mode network and primary visual network, respectively. These findings suggest that advanced gas-inhalation MRI provides reliable measurements of multiple hemodynamic parameters within a clinically acceptable imaging time and is suitable for patient examinations. PMID:27693197
Sjöberg, Pia; Bidhult, Sebastian; Bock, Jelena; Heiberg, Einar; Arheden, Håkan; Gustafsson, Ronny; Nozohoor, Shahab; Carlsson, Marcus
2018-04-17
Indications for pulmonary valve replacement (PVR) in patients with pulmonary regurgitation (PR) after repaired tetralogy of Fallot (rToF) are debated. We aimed to compare right (RV) and left ventricular (LV) kinetic energy (KE) measured by 4D-flow magnetic resonance imaging (MRI) in patients to controls, to further understand the pathophysiological effects of PR. Fifteen patients with rToF with PR > 20% and 14 controls underwent MRI. Ventricular volumes and KE were quantified from cine MRI and 4D-flow, respectively. Lagrangian coherent structures were used to discriminate KE in the PR. Restrictive RV physiology was defined as end-diastolic forward flow. LV systolic peak KE was lower in rToF, 2.8 ± 1.1 mJ, compared to healthy volunteers, 4.8 ± 1.1 mJ, p < 0.0001. RV diastolic peak KE was higher in rToF (7.7 ± 4.3 mJ vs 3.1 ± 1.3 mJ, p = 0.0001) and the difference most pronounced in patients with non-restrictive RV physiology. KE was primarily located in the PR volume at the time of diastolic peak KE, 64 ± 17%. This is the first study showing disturbed KE in patients with rToF and PR, in both the RV and LV. The role of KE as a potential early marker of ventricular dysfunction to guide intervention needs to be addressed in future studies. • Kinetic energy (KE) reflects ventricular performance • KE is a potential marker of ventricular dysfunction in Fallot patients • KE is disturbed in both ventricles in patients with tetralogy of Fallot • KE contributes to the understanding of the pathophysiology of pulmonary regurgitation • Lagrangian coherent structures enable differentiation of ventricular inflows.