Science.gov

Sample records for mri gradient coils

  1. Intra-coil interactions in split gradient coils in a hybrid MRI-LINAC system

    NASA Astrophysics Data System (ADS)

    Tang, Fangfang; Freschi, Fabio; Sanchez Lopez, Hector; Repetto, Maurizio; Liu, Feng; Crozier, Stuart

    2016-04-01

    An MRI-LINAC system combines a magnetic resonance imaging (MRI) system with a medical linear accelerator (LINAC) to provide image-guided radiotherapy for targeting tumors in real-time. In an MRI-LINAC system, a set of split gradient coils is employed to produce orthogonal gradient fields for spatial signal encoding. Owing to this unconventional gradient configuration, eddy currents induced by switching gradient coils on and off may be of particular concern. It is expected that strong intra-coil interactions in the set will be present due to the constrained return paths, leading to potential degradation of the gradient field linearity and image distortion. In this study, a series of gradient coils with different track widths have been designed and analyzed to investigate the electromagnetic interactions between coils in a split gradient set. A driving current, with frequencies from 100 Hz to 10 kHz, was applied to study the inductive coupling effects with respect to conductor geometry and operating frequency. It was found that the eddy currents induced in the un-energized coils (hereby-referred to as passive coils) positively correlated with track width and frequency. The magnetic field induced by the eddy currents in the passive coils with wide tracks was several times larger than that induced by eddy currents in the cold shield of cryostat. The power loss in the passive coils increased with the track width. Therefore, intra-coil interactions should be included in the coil design and analysis process.

  2. New directions in the design of MRI gradient coils

    NASA Astrophysics Data System (ADS)

    Baig, Tanvir Noor

    In this dissertation new designs for gradient coils are presented. The principal work is on better shielding for fringe field reduction. Fringe fields from gradient coils produce eddy currents in surrounding metal structures. Such eddy currents can degrade image quality and lead to acoustic noise. The acoustic effects are magnified for high-field Magnetic Resonance Imaging (MRI) scanners because of increased Lorentz forces. Conventional actively shielded gradient assemblies consist of primary and secondary coils in the shape of cylindrical shells surrounding the imaging volume. One of the principal regions of field leakage is at the ends of the gradient structure, and these fields are responsible for substantial eddy current generation. Our new shielded gradient coil designs that feature the inclusion of an endcap have significantly reduced fringe field at the cryostat inner bore. We discuss the degree to which the suppression of peak fringe fields corresponds to a reduction in the acoustic noise generated near the end of the warm bore. Energy efficient capped actively shielded elliptical gradient coils are also designed. In comparison with traditional uncapped elliptical designs the newly proposed design substantially reduces the fringe field at the inner cryostat bore. And compared to a cylindrical design (with a diameter matched to the elliptical semi-major axis), a good reduction in magnetic energy is observed. In addition, a design for a very short, symmetrical, and winged X-gradient insertable head coil is presented. With a smaller radius, an insertable head gradient coil has the advantage of less stored magnetic energy. The corresponding smaller inductance leads to higher slew rates. Lower torque from Lorentz forces is another advantage for these coils. When designing an insertable head coil one must remember the geometry is impacted by the shoulders. In consequence, asymmetric unshielded and shielded designs have been developed. Gradient designs with a

  3. Mitigation of Intra-coil Eddy Currents in Split Gradient Coils in a Hybrid MRI-LINAC System.

    PubMed

    Tang, Fangfang; Freschi, Fabio; Repetto, Maurizio; Li, Yu; Liu, Feng; Crozier, Stuart

    2017-03-01

    The aim of this study is to mitigate intra-gradient coil eddy currents in a hybrid MRI-LINAC system. The tracks of the gradient coils are modified by cutting slits along the current flow direction. The electromagnetic model developed was first experimentally validated and then used to study the impacts of the slit conductors on the energized and surrounding coils. In this study, gradient coils were slit with different numbers of sub-tracks and driven by a current with frequencies ranging from 100 Hz to 10 kHz. The proposed configuration was assessed by evaluating a number of system parameters, such as the gradient magnetic field, the power loss generated in the surrounding unenergized coil (hereafter referred to as passive coils), and the performance of the energized coil. It was found that at a typical operating frequency of 1 kHz and compared with a conventional (no cut) split coil structure, the new coil pattern (with four slits) offered improved coil parameters. 1) The average power loss dissipated in the surrounding passive coil was significantly reduced by 85%, 2) the cuts largely reduced the secondary field generated by the eddy currents in the passive coil, which was reduced to about 4% of that produced by the uncut coil and, 3) the performance of the energized coil with slit tracks was significantly improved. Some typical gradient coil parameters, such as the figure of merit, efficiency (η), and η(2)/R (where η is the efficiency and R is the resistance), were improved by 8.0%, 11.9%, and 45.7%, respectively. The new slit coil structure is effective in mitigating intra-coil eddy current effects, which is an important issue in the MRI-LINAC system.

  4. Model gradient coil employing active acoustic control for MRI.

    PubMed

    Haywood, B; Chapman, B; Mansfield, P

    2007-12-01

    Results are presented for a model three-axis gradient coil incorporating active acoustic control which is applied to the switched read gradient during a single-shot rapid echo-planar imaging (EPI) sequence at a field strength of 3.0 T. The total imaging acquisition time was 10.6 ms. Substantial noise reduction is achieved both within the magnet bore and outside the magnet. Typical internal noise reduction over the specimen area is 40 dB(A) whereas outside the acoustic chamber the noise level is reduced by 60-67 dB(A). However these results are relative to a control winding which is switched in phase, adding 6 dB(A) in its non-optimized mode, which is included in the quoted figures.

  5. Simulation of concomitant magnetic fields on fast switched gradient coils used in advanced application of MRI

    NASA Astrophysics Data System (ADS)

    Salinas-Muciño, G.; Torres-García, E.; Hidalgo-Tobon, S.

    2012-10-01

    The process to produce an MR image includes nuclear alignment, RF excitation, spatial encoding, and image formation. To form an image, it is necessary to perform spatial localization of the MR signals, which is achieved using gradient coils. MRI requires the use of gradient coils that generate magnetic fields, which vary linearly with position over the imaging volume. Safety issues have been a motivation to study deeply the relation between the interaction of gradient magnetic field and the peripheral nerve stimulation. In this work is presented a numerical modeling between the concomitant magnetic fields produced by the gradient coils and the electric field induced in a cube with σ conductivity by the gradient field switching in pulse sequences as Eco planar Imaging (EPI), due to this kind of sequence is the most used in advance applications of magnetic resonance imaging as functional MRI, cardiac imaging or diffusion.

  6. Finite element analysis of gradient z-coil induced eddy currents in a permanent MRI magnet.

    PubMed

    Li, Xia; Xia, Ling; Chen, Wufan; Liu, Feng; Crozier, Stuart; Xie, Dexin

    2011-01-01

    In permanent magnetic resonance imaging (MRI) systems, pulsed gradient fields induce strong eddy currents in the conducting structures of the magnet body. The gradient field for image encoding is perturbed by these eddy currents leading to MR image distortions. This paper presents a comprehensive finite element (FE) analysis of the eddy current generation in the magnet conductors. In the proposed FE model, the hysteretic characteristics of ferromagnetic materials are considered and a scalar Preisach hysteresis model is employed. The developed FE model was applied to study gradient z-coil induced eddy currents in a 0.5 T permanent MRI device. The simulation results demonstrate that the approach could be effectively used to investigate eddy current problems involving ferromagnetic materials. With the knowledge gained from this eddy current model, our next step is to design a passive magnet structure and active gradient coils to reduce the eddy current effects.

  7. Electromagnetic fields in the human body due to switched transverse gradient coils in MRI.

    PubMed

    While, Peter T; Forbes, Larry K

    2004-07-07

    Magnetic resonance imaging scans impose large gradient magnetic fields on the patient. Modern imaging techniques require this magnetic field to be switched rapidly for good resolution. However, it is believed that this can also lead to the unwanted side effect of peripheral nerve stimulation, which proves to be a limiting factor to the advancement of MRI technology. This paper establishes an analytical model for the fields produced within an MRI scanner by transverse gradient coils of known current density. Expressions are obtained for the magnetic induction vector and the electric field vector, as well as for the surface charge and current densities that are induced on the patient's body. The expressions obtained are general enough to allow the study of any combination of gradient coils whose behaviour can be approximated by Fourier series. For a realistic example coil current density and switching function, it is found that spikes of surface charge density are induced on the patient's body as the gradient field is switched, as well as loops of surface current density that mimic the coil current density. For a 10 mT m(-1) gradient field with a rise time of 100 micros, the magnitude of the radial electric field at the body is found to be 10.3 V m(-1). It is also found that there is a finite limit to radial electric field strength as rise time approaches zero.

  8. A simulation study on the design of gradient coils in MRI for the imaging area above the patient bed

    NASA Astrophysics Data System (ADS)

    Hu, Yang; Wang, Qiuliang; Hu, Xinning; Zhu, Xuchen; Crozier, Stuart; Wang, Yaohui; Liu, Feng

    2017-03-01

    A novel method is proposed for the simulation study the design of gradient coils in a magnetic resonance imaging (MRI) system which generate linear magnetic field gradients only in the region above the patient’s bed. In MRI, the gradient coils are usually designed to create linear-varying magnetic gradient fields in a region that is typically described as a diameter of spherical volume (DSV). In practice, the space under the patient’s bed is not used for imaging, but is still treated as part of the design target in conventional approaches. This work proposes a new design scheme in which only the DSV space above the patient’s bed is considered. In the simulation study, the coil patterns have been obtained using a boundary element method (BEM). Compared to conventional gradient coil design methods, the new scheme produces similar fields above the patient’s bed with much sparser wire spacing (for the case tested: the primary layer and shielding layer have 36%/10% and 6%/17% larger wire spacing for X- and Y-gradient coils, respectively). The new design therefore has reduced inductance compared to conventional coils; a reduction of approximately 23% and 11% for the X- and Y-gradient coils, respectively. The resistances of the coils are also reduced. Based on an acoustic analysis, the new gradient coils are slightly quieter (3 dB for the typical operating frequency) than conventional gradient systems.

  9. A cradle-shaped gradient coil to expand the clear-bore width of an animal MRI scanner.

    PubMed

    Gilbert, K M; Gati, J S; Klassen, L M; Menon, R S

    2010-01-21

    The never ending quest for higher magnetic field strengths in MRI and MRS has led to small and medium bore scanners at 9.4 T and above for both human and animal use; however, these bore diameters restrict the size of object that can be accommodated when using a conventional gradient coil. By replacing a cylindrical gradient-coil insert with a single-sided gradient coil, the scanner's functionality can be extended to include localized imaging of wider samples. As a prototype, a three-axis, cradle-shaped gradient coil was designed, fabricated and implemented in a 9.4 T animal MRI scanner. Since gradient fields are required only to be monotonic over the desired field of view, the cradle gradient coil was designed to produce high gradient efficiencies (up to 2.25 mT m(-1) A(-1) over a 5 cm imaging region) at the expense of gradient linearity. A dedicated three-dimensional algorithm was developed to correct the resultant image distortion. Preliminary images of a grid phantom and a mouse demonstrated the fidelity of the algorithm in correcting image distortion of greater than 200%. Eddy currents were measured along each gradient axis. A large 65.2 (Hz mT(-1) m) B(0) eddy current was produced by the y-axis, suggesting potential limitations of single-sided gradient coils.

  10. An improved asymmetric gradient coil design for high-resolution MRI head imaging.

    PubMed

    Tang, Fangfang; Liu, Feng; Freschi, Fabio; Li, Yu; Repetto, Maurizio; Giaccone, Luca; Wang, Yaohui; Crozier, Stuart

    2016-12-21

    For head magnetic resonance imaging, local gradient coils are often used to achieve high solution images. To accommodate the human head and shoulder, the head gradient coils are usually designed in an asymmetric configuration, allowing the region-of-uniformity (ROU) close to the coil's patient end. However, the asymmetric configuration leads to technical difficulties in maintaining a high gradient performance for the insertable head coil with very limited space. In this work, we present a practical design configuration of an asymmetric insertable gradient head coil offering an improved performance. In the proposed design, at the patient end, the primary and secondary coils are connected using an additional radial surface, thus allowing the coil conductors distributed on the flange to ensure an improvement in the coil performance. At the service end, the primary and shielding coils are not connected, to permit access to shim trays, cooling system piping, cabling, and so on. The new designs are compared with conventional coil configurations and the simulation results show that, with a similar field quality in the ROU, the proposed coil pattern has improved construction characteristics (open service end, well-distributed wire pattern) and offers a better coil performance (lower inductance, higher efficiency, etc) than conventional head coil configurations.

  11. 2D Imaging in a Lightweight Portable MRI Scanner without Gradient Coils

    PubMed Central

    Cooley, Clarissa Zimmerman; Stockmann, Jason P.; Armstrong, Brandon D.; Sarracanie, Mathieu; Lev, Michael H.; Rosen, Matthew S.; Wald, Lawrence L.

    2014-01-01

    Purpose As the premiere modality for brain imaging, MRI could find wider applicability if lightweight, portable systems were available for siting in unconventional locations such as Intensive Care Units, physician offices, surgical suites, ambulances, emergency rooms, sports facilities, or rural healthcare sites. Methods We construct and validate a truly portable (<100kg) and silent proof-of-concept MRI scanner which replaces conventional gradient encoding with a rotating lightweight cryogen-free, low-field magnet. When rotated about the object, the inhomogeneous field pattern is used as a rotating Spatial Encoding Magnetic field (rSEM) to create generalized projections which encode the iteratively reconstructed 2D image. Multiple receive channels are used to disambiguate the non-bijective encoding field. Results The system is validated with experimental images of 2D test phantoms. Similar to other non-linear field encoding schemes, the spatial resolution is position dependent with blurring in the center, but is shown to be likely sufficient for many medical applications. Conclusion The presented MRI scanner demonstrates the potential for portability by simultaneously relaxing the magnet homogeneity criteria and eliminating the gradient coil. This new architecture and encoding scheme shows convincing proof of concept images that are expected to be further improved with refinement of the calibration and methodology. PMID:24668520

  12. An improved asymmetric gradient coil design for high-resolution MRI head imaging

    NASA Astrophysics Data System (ADS)

    Tang, Fangfang; Liu, Feng; Freschi, Fabio; Li, Yu; Repetto, Maurizio; Giaccone, Luca; Wang, Yaohui; Crozier, Stuart

    2016-12-01

    For head magnetic resonance imaging, local gradient coils are often used to achieve high solution images. To accommodate the human head and shoulder, the head gradient coils are usually designed in an asymmetric configuration, allowing the region-of-uniformity (ROU) close to the coil’s patient end. However, the asymmetric configuration leads to technical difficulties in maintaining a high gradient performance for the insertable head coil with very limited space. In this work, we present a practical design configuration of an asymmetric insertable gradient head coil offering an improved performance. In the proposed design, at the patient end, the primary and secondary coils are connected using an additional radial surface, thus allowing the coil conductors distributed on the flange to ensure an improvement in the coil performance. At the service end, the primary and shielding coils are not connected, to permit access to shim trays, cooling system piping, cabling, and so on. The new designs are compared with conventional coil configurations and the simulation results show that, with a similar field quality in the ROU, the proposed coil pattern has improved construction characteristics (open service end, well-distributed wire pattern) and offers a better coil performance (lower inductance, higher efficiency, etc) than conventional head coil configurations.

  13. Skin and proximity effects in the conductors of split gradient coils for a hybrid Linac-MRI scanner

    NASA Astrophysics Data System (ADS)

    Tang, Fangfang; Lopez, Hector Sanchez; Freschi, Fabio; Smith, Elliot; Li, Yu; Fuentes, Miguel; Liu, Feng; Repetto, Maurizio; Crozier, Stuart

    2014-05-01

    In magnetic resonance imaging (MRI), rapidly changing gradient fields are applied to encode the magnetic resonance signal with spatial position; however eddy currents are induced in the surrounding conducting structures depending on the geometry of the conductor and the excitation waveform. These alternating fields change the spatial profile of the current density within the coil track with the applied frequencies of the input waveform and by their proximity to other conductors. In this paper, the impact of the conductor width and the excited frequency over the parameters that characterise the performance of split transverse and longitudinal gradient coils are studied. Thirty x-gradient coils were designed using a “free-surface” coil design method and the track width was varied from 1 mm to 30 mm with an increment value of 1 mm; a frequency sweep analysis in the range of 100 Hz to 10 kHz was performed using the multi-layer integral method (MIM) and parameters such as power loss produced by the coil and generated in the cryostat, inductance, coil efficiency (field strength/operating current), magnetic field profile produced by the coil and the eddy currents were studied. An experimental validation of the theoretical model was performed on an example coil. Coils with filamentary conductor segments were also studied to compare the simulated parameters with those produced by coils with a finite track. There was found to be a significant difference between the parameters calculated using filamentary coils and those obtained when the coil is simulated using finite size tracks. A wider track width produces coil with superior efficiency and low resistance; however, due to the skin effect, the power loss increases faster in wider tracks than in those generated in coils with narrow tracks. It was demonstrated that rapidly changing current paths must be avoided in order to mitigate the power loss and the spatial asymmetry in the current density profile. The decision of

  14. Magnetic steering of iron oxide microparticles using propulsion gradient coils in MRI.

    PubMed

    Mathieu, Jean-Baptiste; Martel, Sylvain

    2006-01-01

    Steering micro-carriers being tracked by an MRI system may be very attractive in oncology. Here, iron oxide microparticles have been steered in a Y-shaped microchannel placed between a Maxwell pair (dB/dz=443 mT/m) located in the center of an MRI bore. A suspension of 10.82 microm iron oxide particles was injected into the channel and a magnetic gradient generated by the Maxwell pair was used to deflect their trajectory. The experimental results based on the percentage of particles retrieved at the targeted outlet during the experiments show that magnetic gradient steering in the human cardiovascular system within an MRI bore can be envisioned.

  15. Simulation and analysis of the interactions between split gradient coils and a split magnet cryostat in an MRI-PET system.

    PubMed

    Liu, Limei; Sanchez-Lopez, Hector; Poole, Michael; Liu, Feng; Crozier, Stuart

    2012-09-01

    Splitting a magnetic resonance imaging (MRI) magnet into two halves can provide a central region to accommodate other modalities, such as positron emission tomography (PET). This approach, however, produces challenges in the design of the gradient coils in terms of gradient performance and fabrication. In this paper, the impact of a central gap in a split MRI system was theoretically studied by analysing the performance of split, actively-shielded transverse gradient coils. In addition, the effects of the eddy currents induced in the cryostat on power loss, mechanical vibration and magnetic field harmonics were also investigated. It was found, as expected, that the gradient performance tended to decrease as the central gap increased. Furthermore, the effects of the eddy currents were heightened as a consequence of splitting the gradient assembly into two halves. An optimal central gap size was found, such that the split gradient coils designed with this central gap size could produce an engineering solution with an acceptable trade-off between gradient performance and eddy current effects. These investigations provide useful information on the inherent trade-offs in hybrid MRI imaging systems.

  16. B0 concomitant field compensation for MRI systems employing asymmetric transverse gradient coils.

    PubMed

    Weavers, Paul T; Tao, Shengzhen; Trzasko, Joshua D; Frigo, Louis M; Shu, Yunhong; Frick, Matthew A; Lee, Seung-Kyun; Foo, Thomas K-F; Bernstein, Matt A

    2017-06-21

    Imaging gradients result in the generation of concomitant fields, or Maxwell fields, which are of increasing importance at higher gradient amplitudes. These time-varying fields cause additional phase accumulation, which must be compensated for to avoid image artifacts. In the case of gradient systems employing symmetric design, the concomitant fields are well described with second-order spatial variation. Gradient systems employing asymmetric design additionally generate concomitant fields with global (zeroth-order or B0 ) and linear (first-order) spatial dependence. This work demonstrates a general solution to eliminate the zeroth-order concomitant field by applying the correct B0 frequency shift in real time to counteract the concomitant fields. Results are demonstrated for phase contrast, spiral, echo-planar imaging (EPI), and fast spin-echo imaging. A global phase offset is reduced in the phase-contrast exam, and blurring is virtually eliminated in spiral images. The bulk image shift in the phase-encode direction is compensated for in EPI, whereas signal loss, ghosting, and blurring are corrected in the fast-spin echo images. A user-transparent method to compensate the zeroth-order concomitant field term by center frequency shifting is proposed and implemented. This solution allows all the existing pulse sequences-both product and research-to be retained without any modifications. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Oval gradient coils for an open magnetic resonance imaging system with a vertical magnetic field

    NASA Astrophysics Data System (ADS)

    Matsuzawa, Koki; Abe, Mitsushi; Kose, Katsumi; Terada, Yasuhiko

    2017-05-01

    Existing open magnetic resonance imaging (MRI) systems use biplanar gradient coils for the spatial encoding of signals. We propose using novel oval gradient coils for an open vertical-field MRI. We designed oval gradients for a 0.3 T open MRI system and showed that such a system could outperform a traditional biplanar gradient system while maintaining adequate gradient homogeneity and subject accessibility. Such oval gradient coils would exhibit high efficiency, low inductance and resistance, and high switching capability. Although the designed oval Y and Z coils showed more heat dissipation and less cooling capability than biplanar coils with the same gap, they showed an efficient heat-dissipation path to the surrounding air, which would alleviate the heat problem. The performance of the designed oval-coil system was demonstrated experimentally by imaging a human hand.

  18. A real-time data acquisition and control of gradient coil noise for fMRI identification of hearing disorder in children with history of ear infection

    PubMed Central

    Lee, Jaeseung; Holte, James

    2013-01-01

    Early ear infection and trauma, from birth to age 12 are known to have a significant effect on sensory and cognitive development. This effect can be demonstrated through the fMRI study of children who have a history of ear infection compared to a control group. A second research question is the extent to which brain plasticity at an early age can reduce the impact of infection on hearing and cognitive development. Functional Magnetic Resonance Imaging (fMRI) provides a mapping of brain activity in cognitive and sensory regions by recording the oxygenation state of the local cerebral blood flow. The gradient coils of fMRI scanners generate intense acoustic noise (GCN) - to which the subject is in close proximity - in the range of 90 to 140 db SPL during the imaging process. Clearly this noise will impress its signature on low level brain response patterns. An Active Noise Canceller (ANC) system can suppress the effect of GCN on the subject’s perception of a phonetic stimulus at the phoneme, word or phrase level. Due to a superimposition of the frequency and time domain components of the test signal and GCN for MR test, the ANC filtering system performs its function in real time - we must capture the brain’s response to the test signal AFTER the noise has been removed. This goal is achieved through the application of field programmable gate array (FPGA) technology of NI LabVIEW. The presentation (in the noisy fMRI environment) of test words and phrases to hearing impaired children can identify sources of distortion to their perceptual processes associated with GCN. Once this distortion has been identified, learning strategies may be introduced to replace the hearing function distorted by early infection as well as the short term effect of GCN. The study of speech cognition without the confounding effect of GCN and with the varying level of GCN for a repeated test signal at later age can be allowed to a measure of recovery through brain plasticity. PMID:23482910

  19. A real-time data acquisition and control of gradient coil noise for fMRI identification of hearing disorder in children with history of ear infection.

    PubMed

    Lee, Jaeseung; Holte, James; Ritenour, E Russell

    2013-02-01

    Early ear infection and trauma, from birth to age 12 are known to have a significant effect on sensory and cognitive development. This effect can be demonstrated through the fMRI study of children who have a history of ear infection compared to a control group. A second research question is the extent to which brain plasticity at an early age can reduce the impact of infection on hearing and cognitive development. Functional Magnetic Resonance Imaging (fMRI) provides a mapping of brain activity in cognitive and sensory regions by recording the oxygenation state of the local cerebral blood flow. The gradient coils of fMRI scanners generate intense acoustic noise (GCN) - to which the subject is in close proximity - in the range of 90 to 140 db SPL during the imaging process. Clearly this noise will impress its signature on low level brain response patterns. An Active Noise Canceller (ANC) system can suppress the effect of GCN on the subject's perception of a phonetic stimulus at the phoneme, word or phrase level. Due to a superimposition of the frequency and time domain components of the test signal and GCN for MR test, the ANC filtering system performs its function in real time - we must capture the brain's response to the test signal AFTER the noise has been removed. This goal is achieved through the application of field programmable gate array (FPGA) technology of NI LabVIEW. The presentation (in the noisy fMRI environment) of test words and phrases to hearing impaired children can identify sources of distortion to their perceptual processes associated with GCN. Once this distortion has been identified, learning strategies may be introduced to replace the hearing function distorted by early infection as well as the short term effect of GCN. The study of speech cognition without the confounding effect of GCN and with the varying level of GCN for a repeated test signal at later age can be allowed to a measure of recovery through brain plasticity.

  20. Performance evaluation of matrix gradient coils.

    PubMed

    Jia, Feng; Schultz, Gerrit; Testud, Frederik; Welz, Anna Masako; Weber, Hans; Littin, Sebastian; Yu, Huijun; Hennig, Jürgen; Zaitsev, Maxim

    2016-02-01

    In this paper, we present a new performance measure of a matrix coil (also known as multi-coil) from the perspective of efficient, local, non-linear encoding without explicitly considering target encoding fields. An optimization problem based on a joint optimization for the non-linear encoding fields is formulated. Based on the derived objective function, a figure of merit of a matrix coil is defined, which is a generalization of a previously known resistive figure of merit for traditional gradient coils. A cylindrical matrix coil design with a high number of elements is used to illustrate the proposed performance measure. The results are analyzed to reveal novel features of matrix coil designs, which allowed us to optimize coil parameters, such as number of coil elements. A comparison to a scaled, existing multi-coil is also provided to demonstrate the use of the proposed performance parameter. The assessment of a matrix gradient coil profits from using a single performance parameter that takes the local encoding performance of the coil into account in relation to the dissipated power.

  1. Momentum-weighted conjugate gradient descent algorithm for gradient coil optimization.

    PubMed

    Lu, Hanbing; Jesmanowicz, Andrzej; Li, Shi-Jiang; Hyde, James S

    2004-01-01

    MRI gradient coil design is a type of nonlinear constrained optimization. A practical problem in transverse gradient coil design using the conjugate gradient descent (CGD) method is that wire elements move at different rates along orthogonal directions (r, phi, z), and tend to cross, breaking the constraints. A momentum-weighted conjugate gradient descent (MW-CGD) method is presented to overcome this problem. This method takes advantage of the efficiency of the CGD method combined with momentum weighting, which is also an intrinsic property of the Levenberg-Marquardt algorithm, to adjust step sizes along the three orthogonal directions. A water-cooled, 12.8 cm inner diameter, three axis torque-balanced gradient coil for rat imaging was developed based on this method, with an efficiency of 2.13, 2.08, and 4.12 mT.m(-1).A(-1) along X, Y, and Z, respectively. Experimental data demonstrate that this method can improve efficiency by 40% and field uniformity by 27%. This method has also been applied to the design of a gradient coil for the human brain, employing remote current return paths. The benefits of this design include improved gradient field uniformity and efficiency, with a shorter length than gradient coil designs using coaxial return paths.

  2. Integration of biaxial planar gradient coils and an RF microcoil for NMR flow imaging

    NASA Astrophysics Data System (ADS)

    Goloshevsky, A. G.; Walton, J. H.; Shutov, M. V.; de Ropp, J. S.; Collins, S. D.; McCarthy, M. J.

    2005-02-01

    A package of two planar gradient coils combined with an RF coil was microfabricated for low-field MRI measurements of velocity flow profiles. The package generates orthogonal gradients in the radial and velocity encoding directions for standard flow imaging experiments. A commercial 0.6 T superconductive magnet was used to test coil performance. For comparison flow imaging was also performed using a commercial set of gradient coils. Velocity profiles were obtained for several volumetric flow rates of water in tubes with inner diameters of 1.02 mm and 1.4 mm. Velocity resolution was 0.13 mm s-1, comparable to that achieved with commercial gradient coils. The quality of the velocity profile was sufficient for viscosity calculations, and thus permits future utilization of this coil package in the design of a portable MRI viscometer.

  3. Superelliptical Insert Gradient Coil with a Field Modifying Layer for Breast Imaging

    PubMed Central

    Moon, Sung M.; Goodrich, K. Craig; Hadley, J. Rock; Kim, Seong-Eun; Zeng, Gengsheng L.; Morrell, Glen R.; McAlpine, Matthew A.; Chronik, Blaine A.; Parker, Dennis L.

    2010-01-01

    Many Magnetic Resonance Imaging (MRI) applications such as Dynamic Contrast Enhanced MRI (DCE-MRI) of the breast require high spatial and temporal resolution, and can benefit from improved gradient performance, e.g. increased gradient strength, and reduced gradient rise time. The improved gradient performance required to achieve high spatial and temporal resolution for this application may be achieved by using local insert gradients specifically designed for a target anatomy. Current flat gradient systems cannot create an imaging volume large enough to accommodate both breasts, further, their gradient fields are not homogeneous, dropping off rapidly with distance from the gradient coil surface. To attain an imaging volume adequate for bilateral breast MRI, a planar local gradient system design has been modified into a superellipse shape, creating homogeneous gradient volumes (HGVs) that are 182% (Gx), 57% (Gy), and 75% (Gz) wider (left/right direction) than those of the corresponding standard planar gradient. Adding an additional field-modifying (FM) gradient winding results in an additional improvement of the homogeneous gradient field near the gradient coil surface over the already enlarged HGVs of the superelliptical gradients (67%, 89%, and 214% for Gx, Gy, and Gz respectively). A prototype y-gradient insert has been built to demonstrate imaging and implementation characteristics of the superellipse gradient in a 3T MRI system. PMID:20939085

  4. An iterative method for coil sensitivity estimation in multi-coil MRI systems.

    PubMed

    Ling, Qiang; Li, Zhaohui; Song, Kaikai; Li, Feng

    2014-12-01

    This paper presents an iterative coil sensitivity estimation method for multi-coil MRI systems. The proposed method works with coil images in the magnitude image domain. It determines a region of support (RoS), a region being composed of the same type of tissues, by a region growing algorithm, which makes use of both intensities and intensity gradients of pixels. By repeating this procedure, it can determine multiple regions of support, which together cover most of the concerned image area. The union of these regions of support provides a rough estimate of the sensitivity of each coil through dividing the intensities of pixels by the average intensity inside every region of support. The obtained rough coil sensitivity estimate is further approached with the product of multiple low-order polynomials, rather than a single one. The product of these polynomials provides a smooth estimate of the sensitivity of each coil. With the obtained sensitivities of coils, it can produce a better reconstructed image, which determines more correct regions of support and yields preciser estimates of the sensitivities of coils. In other words, the method can be iteratively implemented to improve the estimation performance. The proposed method was verified through both simulated data and clinical data from different body parts. The experimental results confirm the superiority of our method to some conventional methods.

  5. An improved equivalent magnetization current method applied to the design of local breast gradient coils

    NASA Astrophysics Data System (ADS)

    Lopez, Hector Sanchez; Poole, Michael; Crozier, Stuart

    2009-07-01

    Magnetic resonance imaging (MRI) is an important tool in the diagnosis of breast cancer. Increased gradient strengths and slew rates assist in terms of the potential to image with increased spatial and/or temporal resolution. Strong gradients also facilitate diffusion studies; one well-known method of increasing gradient strength is to design local gradient coils, those with reduced diameter where the gradient conductors are closer to the region of interest. In the case of breast imaging, this necessitates the use of coil geometries that lack the symmetry (e.g. cylindrical) required by some standard coil design techniques. Therefore a symmetry-free, inverse boundary element method (BEM) was employed to design a set of local breast gradient coils which would allow simultaneous imaging of both breasts. This BEM is a modified version of a previously reported equivalent magnetisation current method that now incorporates a piecewise-linear magnetisation rather than piecewise-constant. It is demonstrated that coil geometries more closely encompassing the sample shape, hence possessing wire windings located close the sample, produce superior coil performances. The use of two regions of interest instead one that covers the two samples produces superior high performance breast gradient coils. Additionally, it was demonstrated that this inverse BEM produced standard cylindrical coils with comparable properties and that the method is robust when challenged with difficult coil design problems in two other examples.

  6. Dental MRI using wireless intraoral coils

    NASA Astrophysics Data System (ADS)

    Ludwig, Ute; Eisenbeiss, Anne-Katrin; Scheifele, Christian; Nelson, Katja; Bock, Michael; Hennig, Jürgen; von Elverfeldt, Dominik; Herdt, Olga; Flügge, Tabea; Hövener, Jan-Bernd

    2016-03-01

    Currently, the gold standard for dental imaging is projection radiography or cone-beam computed tomography (CBCT). These methods are fast and cost-efficient, but exhibit poor soft tissue contrast and expose the patient to ionizing radiation (X-rays). The need for an alternative imaging modality e.g. for soft tissue management has stimulated a rising interest in dental magnetic resonance imaging (MRI) which provides superior soft tissue contrast. Compared to X-ray imaging, however, so far the spatial resolution of MRI is lower and the scan time is longer. In this contribution, we describe wireless, inductively-coupled intraoral coils whose local sensitivity enables high resolution MRI of dental soft tissue. In comparison to CBCT, a similar image quality with complementary contrast was obtained ex vivo. In-vivo, a voxel size of the order of 250•250•500 μm3 was achieved in 4 min only. Compared to dental MRI acquired with clinical equipment, the quality of the images was superior in the sensitive volume of the coils and is expected to improve the planning of interventions and monitoring thereafter. This method may enable a more accurate dental diagnosis and avoid unnecessary interventions, improving patient welfare and bringing MRI a step closer to becoming a radiation-free alternative for dental imaging.

  7. Dental MRI using wireless intraoral coils

    PubMed Central

    Ludwig, Ute; Eisenbeiss, Anne-Katrin; Scheifele, Christian; Nelson, Katja; Bock, Michael; Hennig, Jürgen; von Elverfeldt, Dominik; Herdt, Olga; Flügge, Tabea; Hövener, Jan-Bernd

    2016-01-01

    Currently, the gold standard for dental imaging is projection radiography or cone-beam computed tomography (CBCT). These methods are fast and cost-efficient, but exhibit poor soft tissue contrast and expose the patient to ionizing radiation (X-rays). The need for an alternative imaging modality e.g. for soft tissue management has stimulated a rising interest in dental magnetic resonance imaging (MRI) which provides superior soft tissue contrast. Compared to X-ray imaging, however, so far the spatial resolution of MRI is lower and the scan time is longer. In this contribution, we describe wireless, inductively-coupled intraoral coils whose local sensitivity enables high resolution MRI of dental soft tissue. In comparison to CBCT, a similar image quality with complementary contrast was obtained ex vivo. In-vivo, a voxel size of the order of 250∙250∙500 μm3 was achieved in 4 min only. Compared to dental MRI acquired with clinical equipment, the quality of the images was superior in the sensitive volume of the coils and is expected to improve the planning of interventions and monitoring thereafter. This method may enable a more accurate dental diagnosis and avoid unnecessary interventions, improving patient welfare and bringing MRI a step closer to becoming a radiation-free alternative for dental imaging. PMID:27021387

  8. B1 transmit phase gradient coil for single-axis TRASE RF encoding.

    PubMed

    Deng, Qunli; King, Scott B; Volotovskyy, Vyacheslav; Tomanek, Boguslaw; Sharp, Jonathan C

    2013-07-01

    TRASE (Transmit Array Spatial Encoding) MRI uses RF transmit phase gradients instead of B0 field gradients for k-space traversal and high-resolution MR image formation. Transmit coil performance is a key determinant of TRASE image quality. The purpose of this work is to design an optimized RF transmit phase gradient array for spatial encoding in a transverse direction (x- or y- axis) for a 0.2T vertical B0 field MRI system, using a single transmitter channel. This requires the generation of two transmit B1 RF fields with uniform amplitude and positive and negative linear phase gradients respectively over the imaging volume. A two-element array consisting of a double Maxwell-type coil and a Helmholtz-type coil was designed using 3D field simulations. The phase gradient polarity is set by the relative phase of the RF signals driving the simultaneously energized elements. Field mapping and 1D TRASE imaging experiments confirmed that the constructed coil produced the fields and operated as designed. A substantially larger imaging volume relative to that obtainable from a non-optimized Maxwell-Helmholtz design was achieved. The Maxwell (sine)-Helmholtz (cosine) approach has proven successful for a horizontal phase gradient coil. A similar approach may be useful for other phase-gradient coil designs. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Flat RF coils in static field gradient nuclear magnetic resonance.

    PubMed

    Stork, H; Gädke, A; Nestle, N; Fujara, F

    2009-10-01

    The use of flat RF coils allows considerable gains in the sensitivity of static field gradient (SFG) nuclear magnetic resonance (NMR) experiments. In this article, this effect is studied theoretically as well as experimentally. Additionally, the flat coil geometry has been studied theoretically depending on magnetic field gradient, pulse sequence and amplifier power. Moreover, detecting the signal directly from the free induction decay (FID) turned out to be quite attractive for STRAFI-like microimaging experiments, especially when using flat coils. In addition to wound rectangular flat coils also spiral flat coils have been developed which can be manufactured by photolithography from printed circuit boards.

  10. Design of a shielded coil element of a matrix gradient coil

    NASA Astrophysics Data System (ADS)

    Jia, Feng; Littin, Sebastian; Layton, Kelvin J.; Kroboth, Stefan; Yu, Huijun; Zaitsev, Maxim

    2017-08-01

    The increasing interest in spatial encoding with non-linear magnetic fields has intensified the need for coils that generates such fields. Matrix coils consisting of multiple coil elements appear to offer a high flexibility in generating customized encoding fields and are particularly promising for localized high resolution imaging applications. However, coil elements of existing matrix coils were primarily designed and constructed for better shimming and therefore are not expected to achieve an optimal performance for local spatial encoding. Moreover, eddy current properties of such coil elements were not fully explored. In this work, an optimization problem is formulated based on the requirement of local non-linear encoding and eddy current reduction that results in novel designs of coil elements for an actively-shielded matrix gradient coil. Two metrics are proposed to assess the performance of different coil element designs. The results are analyzed to reveal new insights into coil element design.

  11. Asymmetric gradient coil design for use in a short, open bore magnetic resonance imaging scanner

    NASA Astrophysics Data System (ADS)

    Wang, Yaohui; Liu, Feng; Li, Yu; Tang, Fangfang; Crozier, Stuart

    2016-08-01

    A conventional cylindrical whole-body MRI scanner has a long bore that may cause claustrophobia for some patients in addition to being inconvenient for healthcare workers accessing the patient. A short-bore scanner usually offers a small sized imaging area, which is impractical for imaging some body parts, such as the torso. This work proposes a novel asymmetric gradient coil design that offers a full-sized imaging area close to one end of the coil. In the new design, the primary and shielding coils are connected at one end whilst separated at the other, allowing the installation of the cooling system and shim trays. The proposed coils have a larger wire gap, higher efficiency, lower inductance, less resistance and a higher figure of merit than the non-connected coils. This half-connected coil structure not only improves the coils' electromagnetic performance, but also slightly attenuates acoustic radiation at most frequencies when compared to a non-connected gradient coil. It is also quieter in some frequency bands than a conventional symmetric gradient coil.

  12. Asymmetric gradient coil design for use in a short, open bore magnetic resonance imaging scanner.

    PubMed

    Wang, Yaohui; Liu, Feng; Li, Yu; Tang, Fangfang; Crozier, Stuart

    2016-08-01

    A conventional cylindrical whole-body MRI scanner has a long bore that may cause claustrophobia for some patients in addition to being inconvenient for healthcare workers accessing the patient. A short-bore scanner usually offers a small sized imaging area, which is impractical for imaging some body parts, such as the torso. This work proposes a novel asymmetric gradient coil design that offers a full-sized imaging area close to one end of the coil. In the new design, the primary and shielding coils are connected at one end whilst separated at the other, allowing the installation of the cooling system and shim trays. The proposed coils have a larger wire gap, higher efficiency, lower inductance, less resistance and a higher figure of merit than the non-connected coils. This half-connected coil structure not only improves the coils' electromagnetic performance, but also slightly attenuates acoustic radiation at most frequencies when compared to a non-connected gradient coil. It is also quieter in some frequency bands than a conventional symmetric gradient coil.

  13. New head gradient coil design and construction techniques.

    PubMed

    Handler, William B; Harris, Chad T; Scholl, Timothy J; Parker, Dennis L; Goodrich, K Craig; Dalrymple, Brian; Van Sass, Frank; Chronik, Blaine A

    2014-05-01

    To design and build a head insert gradient coil to use in conjunction with body gradients for superior imaging. The use of the boundary element method to solve for a gradient coil wire pattern on an arbitrary surface allowed us to incorporate engineering changes into the electromagnetic design of a gradient coil directly. Improved wire pattern design was combined with robust manufacturing techniques and novel cooling methods. The finished coil had an efficiency of 0.15 mT/m/A in all three axes and allowed the imaging region to extend across the entire head and upper part of the neck. The ability to adapt an electromagnetic design to necessary changes from an engineering perspective leads to superior coil performance. Copyright © 2013 Wiley Periodicals, Inc.

  14. New head gradient coil design and construction techniques

    PubMed Central

    Handler, William B; Harris, Chad T; Scholl, Timothy J; Parker, Dennis L; Goodrich, K Craig; Dalrymple, Brian; Van Sass, Frank; Chronik, Blaine A

    2013-01-01

    Purpose To design and build a head insert gradient coil to use in conjunction with body gradients for superior imaging. Materials and Methods The use of the Boundary Element Method to solve for a gradient coil wire pattern on an arbitrary surface has allowed us to incorporate engineering changes into the electromagnetic design of a gradient coil directly. Improved wire pattern design has been combined with robust manufacturing techniques and novel cooling methods. Results The finished coil had an efficiency of 0.15 mT/m/A in all three axes and allowed the imaging region to extend across the entire head and upper part of the neck. Conclusion The ability to adapt your electromagnetic design to necessary changes from an engineering perspective leads to superior coil performance. PMID:24123485

  15. Optimization of gradient coil technology for human magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Chronik, Blaine Alexander

    The general problem of identifying the optimal gradient coil design for any given application is addressed in this thesis. The problem is divided into stages. The first step is the development of an optimal mathematical solution for single designs conforming to some set of constraints. The second step is the systematic implementation of the mathematical algorithm to search for the optimal set of design constraints for an intended application, two examples of which are investigated. The final step is the consideration of gradient coil dependent physiological limits specific to the application of strong gradient fields in human subjects. A modified minimum inductance target field method that allows the placement of a set of constraints on the final current density is developed. This constrained current minimum inductance (CCMI) method is derived in the context of previous target field methods. The method has been fully implemented on computer and applied to the design of both central and edge uniformity gradient coils. A three axis gradient coil set that utilizes interleaved, multilayer axes to achieve maximum gradient strengths of over 2000mT/m in rise times of less than 50μs with an inner coil diameter of 5cm was designed. Water cooling was incorporated into the coil to assist in thermal management. The duty cycle for the most extreme cases of single shot EPI is limited by the thermal response and expressions for maximum rates of image collection are given for burst and continuous modes of operation. A three axis gradient coil set with an imaging region extending outside the physical edge of the coil was designed, constructed, and tested. The configuration is compatible with both neck and brain imaging in humans. The coil produces a cylindrical imaging region 16cm in diameter and 16cm in length. The coil axes produce gradient strengths between 80mT/m and 100mT/m at 250A peak current, with minimum rise times of approximately 400μs. Heating tests were performed

  16. Investigation, design, and integration of insert gradient coils in magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Feldman, Rebecca E.

    three imaging axes. Both resistive and inductive merits were investigated. Of these, inductive values proved to be the limiting factor when designing coils sized to perform in a full body MRI system. Optimal merit and gradient strength were obtained from a butterfly design, and planar coils provided localized strength over a larger region. A butterfly coil was constructed with hollow copper wiring and powered to produce diffusion weighting during MRI. Diffusion contrast b=1300 s/mm2 was obtained using the insert with significant time and signal to noise ratio improvements. Keywords: butterfly coil, magnetic resonance imaging, electric field, gradient coil, inductive merit, nerve stimulation threshold, optimization, peripheral nerve stimulation, planar gradient, resistive merit, scalar potential, simulation, stimulation, vector potential, optimization.

  17. Development and implementation of an 84-channel matrix gradient coil.

    PubMed

    Littin, Sebastian; Jia, Feng; Layton, Kelvin J; Kroboth, Stefan; Yu, Huijun; Hennig, Jürgen; Zaitsev, Maxim

    2017-04-25

    Design, implement, integrate, and characterize a customized coil system that allows for generating spatial encoding magnetic fields (SEMs) in a highly-flexible fashion. A gradient coil with a high number of individual elements was designed. Dimensions of the coil were chosen to mimic a whole-body gradient system, scaled down to a head insert. Mechanical shape and wire layout of each element were optimized to increase the local gradient strength while minimizing eddy current effects and simultaneously considering manufacturing constraints. Resulting wire layout and mechanical design is presented. A prototype matrix gradient coil with 12 × 7 = 84 elements consisting of two element types was realized and characterized. Measured eddy currents are <1% of the original field. The coil is shown to be capable of creating nonlinear, and linear SEMs. In a DSV of 0.22 m gradient strengths between 24 mT∕m and 78 mT∕m could be realized locally with maximum currents of 150 A. Initial proof-of-concept imaging experiments using linear and nonlinear encoding fields are demonstrated. A shielded matrix gradient coil setup capable of generating encoding fields in a highly-flexible manner was designed and implemented. The presented setup is expected to serve as a basis for validating novel imaging techniques that rely on nonlinear spatial encoding fields. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  18. Modeling Endovascular MRI Coil Coupling with Transmit RF Excitation

    PubMed Central

    Venkateswaran, Madhav; Unal, Orhan; Hurley, Samuel; Samsonov, Alexey; Wang, Peng; Fain, Sean; Kurpad, Krishna

    2016-01-01

    Objective To model inductive coupling of endovascular coils with transmit RF excitation for selecting coils for MRI-guided interventions. Methods Independent and computationally efficient FEM models are developed for the endovascular coil, cable, transmit excitation and imaging domain. Electromagnetic and circuit solvers are coupled to simulate net B1+ fields and induced currents and voltages. Our models are validated using the Bloch Siegert B1+ mapping sequence for a series-tuned multimode coil, capable of tracking, wireless visualization and high resolution endovascular imaging. Results Validation shows good agreement at 24, 28 and 34 μT background RF excitation within experimental limitations. Quantitative coil performance metrics agree with simulation. A parametric study demonstrates trade off in coil performance metrics when varying number of coil turns. Tracking, imaging and wireless marker multimode coil features and their integration is demonstrated in a pig study. Conclusion Developed models for the multimode coil were successfully validated. Modeling for geometric optimization and coil selection serves as a precursor to time-consuming and expensive experiments. Specific applications demonstrated include parametric optimization, coil selection for a cardiac intervention and an animal imaging experiment. Significance Our modular, adaptable and computationally efficient modeling approach enables rapid comparison, selection and optimization of inductively-coupled coils for MRI-guided interventions. PMID:26960218

  19. A fourth gradient to overcome slice dependent phase effects of voxel-sized coils in planar arrays.

    PubMed

    Bosshard, John C; Eigenbrodt, Edwin P; McDougall, Mary P; Wright, Steven M

    2010-01-01

    The signals from an array of densely spaced long and narrow receive coils for MRI are complicated when the voxel size is of comparable dimension to the coil size. The RF coil causes a phase gradient across each voxel, which is dependent on the distance from the coil, resulting in a slice dependent shift of k-space. A fourth gradient coil has been implemented and used with the system's gradient set to create a gradient field which varies with slice. The gradients are pulsed together to impart a slice dependent phase gradient to compensate for the slice dependent phase due to the RF coils. However the non-linearity in the fourth gradient which creates the desired slice dependency also results in a through-slice phase ramp, which disturbs normal slice refocusing and leads to additional signal cancelation and reduced field of view. This paper discusses the benefits and limitations of using a fourth gradient coil to compensate for the phase due to RF coils.

  20. Microstrip RF surface coil design for extremely high-field MRI and spectroscopy.

    PubMed

    Zhang, X; Ugurbil, K; Chen, W

    2001-09-01

    A new type of high-frequency RF surface coil was developed for in vivo proton or other nuclei NMR applications at 7T. This is a purely distributed-element and transmission line design. The coil consists of a thin strip conductor (copper or silver) and a ground plane separated by a low-loss dielectric material with a thickness (H). Due to its specific semi-open transmission line structure, substantial electromagnetic energy is stored in the dielectric material between the thin conductor and the ground plane, which results in a reduced radiation loss and a reduced perturbation of sample loading to the RF coil compared to conventional surface coils. The coil is characterized by a high Q factor, no RF shielding, small physical coil size, lower cost, and easy fabrication. A brief theoretical description of the microstrip RF coil is given that can be used to guide the coil designs. A set of gradient-recalled echo images were acquired by using the single- and two-turn microstrip RF surface coils from both phantom and human brain at 7T, which show good penetration and sensitivity. The two-turn coil design significantly improves the B1 symmetry as predicted by the microstrip theory. The optimum H for microstrip surface coils is approximately 7 mm. This coil geometry yields a B1 penetration similar to that of conventional surface coils. SNR comparison was made between the microstrip coil and conventional surface coils with and without RF shielding. The results reveal that the novel surface coil design based on the microstrip concept makes very high-field MRI/MRS more convenient and efficient in research and future clinics.

  1. A MRI rotary phased array head coil.

    PubMed

    Li, Bing Keong; Weber, Ewald; Crozier, Stuart

    2013-08-01

    A new rotary phased array (RPA) head coil that can provide homogenous brain images comparable to volumetric radiofrequency coils is proposed for magnetic resonance brain imaging applications. The design of the RPA head coil is a departure from conventional circumferential array design method, as coil elements of the RPA head coil have a "paddle-like" structure consisting of a pair of main conductors located on opposite sides, inserted equi-angularly around and over the head. A prototype 2T receive-only 4-element RPA head coil was constructed and experimentally tested against a conventional receive-only 4-element phased array head coil and a commercial receive-only quadrature birdcage head coil. Homogenous phantom images acquired by the RPA head coil show that signal intensity deep at the center of the phantom was improved as compared to the conventional phased array head coil and this improvement allow the RPA head coil to acquire homogenous brain images similar to brain images acquired with the birdcage head coil. In addition, partial parallel imaging was used in conjunction with the RPA head coil to enable rapid imaging.

  2. Gradient-Modulated PETRA MRI.

    PubMed

    Kobayashi, Naoharu; Goerke, Ute; Wang, Luning; Ellermann, Jutta; Metzger, Gregory J; Garwood, Michael

    2015-12-01

    Image blurring due to off-resonance and fast T 2(*) signal decay is a common issue in radial ultrashort echo time MRI sequences. One solution is to use a higher readout bandwidth, but this may be impractical for some techniques like pointwise encoding time reduction with radial acquisition (PETRA), which is a hybrid method of zero echo time and single point imaging techniques. Specifically, PETRA has severe specific absorption rate (SAR) and radiofrequency (RF) pulse peak power limitations when using higher bandwidths in human measurements. In this study, we introduce gradient modulation (GM) to PETRA to reduce image blurring artifacts while keeping SAR and RF peak power low. Tolerance of GM-PETRA to image blurring was evaluated in simulations and experiments by comparing with the conventional PETRA technique. We performed inner ear imaging of a healthy subject at 7T. GM-PETRA showed significantly less image blurring due to off-resonance and fast T2(*) signal decay compared to PETRA. In in vivo imaging, GM-PETRA nicely captured complex structures of the inner ear such as the cochlea and semicircular canals. Gradient modulation can improve the PETRA image quality and mitigate SAR and RF peak power limitations without special hardware modification in clinical scanners.

  3. Minimax current density gradient coils: analysis of coil performance and heating.

    PubMed

    Poole, Michael S; While, Peter T; Lopez, Hector Sanchez; Crozier, Stuart

    2012-08-01

    Standard gradient coils are designed by minimizing the inductance or resistance for an acceptable level of gradient field nonlinearity. Recently, a new method was proposed to minimize the maximum value of the current density in a coil additionally. The stated aim of that method was to increase the minimum wire spacing and to reduce the peak temperature in a coil for fixed efficiency. These claims are tested in this study with experimental measurements of magnetic field and temperature as well as simulations of the performance of many coils. Experimental results show a 90% increase in minimum wire spacing and 40% reduction in peak temperature for equal coil efficiency and field linearity. Simulations of many more coils indicate increase in minimum wire spacing of between 50 and 340% for the coils studied here. This method is shown to be able to increase coil efficiency when constrained by minimum wire spacing rather than switching times or total power dissipation. This increase in efficiency could be used to increase gradient strength, duty cycle, or buildability.

  4. Shaping and timing gradient pulses to reduce MRI acoustic noise.

    PubMed

    Segbers, Marcel; Rizzo Sierra, Carlos V; Duifhuis, Hendrikus; Hoogduin, Johannes M

    2010-08-01

    A method to reduce the acoustic noise generated by gradient systems in MRI has been recently proposed; such a method is based on the linear response theory. Since the physical cause of MRI acoustic noise is the time derivative of the gradient current, a common trapezoid current shape produces an acoustic gradient coil response mainly during the rising and falling edge. In the falling edge, the coil acoustic response presents a 180 degrees phase difference compared to the rising edge. Therefore, by varying the width of the trapezoid and keeping the ramps constant, it is possible to suppress one selected frequency and its higher harmonics. This value is matched to one of the prominent resonance frequencies of the gradient coil system. The idea of cancelling a single frequency is extended to a second frequency, using two successive trapezoid-shaped pulses presented at a selected interval. Overall sound pressure level reduction of 6 and 10 dB is found for the two trapezoid shapes and a single pulse shape, respectively. The acoustically optimized pulse shape proposed is additionally tested in a simulated echo planar imaging readout train, obtaining a sound pressure level reduction of 12 dB for the best case.

  5. Radiation induced currents in MRI RF coils: application to linac/MRI integration

    PubMed Central

    Burke, B; Fallone, B G; Rathee, S

    2010-01-01

    The integration of medical linear accelerators (linac) with magnetic resonance imaging (MRI) systems is advancing the current state of image-guided radiotherapy. The MRI in these integrated units will provide real-time, accurate tumor locations for radiotherapy treatment, thus decreasing geometric margins around tumors and reducing normal tissue damage. In the real-time operation of these integrated systems, the radiofrequency (RF) coils of MRI will be irradiated with radiation pulses from the linac. The effect of pulsed radiation on MRI radio frequency (RF) coils is not known and must be studied. The instantaneous radiation induced current (RIC) in two different MRI RF coils were measured and presented. The frequency spectra of the induced currents were calculated. Some basic characterization of the RIC was also done: isolation of the RF coil component responsible for RIC, dependence of RIC on dose rate, and effect of wax buildup placed on coil on RIC. Both the time and frequency characteristics of the RIC were seen to vary with the MRI RF coil used. The copper windings of the RF coils were isolated as the main source of RIC. A linear dependence on dose rate was seen. The RIC was decreased with wax buildup, suggesting an electronic disequilibrium as the cause of RIC. This study shows a measurable RIC present in MRI RF coils. This unwanted current could be possibly detrimental to the signal to noise ratio in MRI and produce image artifacts. PMID:20071754

  6. An introduction to coil array design for parallel MRI.

    PubMed

    Ohliger, Michael A; Sodickson, Daniel K

    2006-05-01

    The basic principles of radiofrequency coil array design for parallel MRI are described from both theoretical and practical perspectives. Because parallel MRI techniques rely on coil array sensitivities to provide spatial information about the sample, a careful choice of array design is essential. The concepts of coil array spatial encoding are first discussed from four qualitative perspectives. These qualitative descriptions include using coil arrays to emulate spatial harmonics, choosing coils with selective sensitivities to aliased pixels, using coil sensitivities with broad k-space reception profiles, and relying on detector coils to provide a set of generalized projections of the sample. This qualitative discussion is followed by a quantitative analysis of coil arrays, which is discussed in terms of the baseline SNR of the received images as well as the noise amplifications (g-factor) in the reconstructed data. The complications encountered during the experimental evaluation of coil array SNR are discussed, and solutions are proposed. A series of specific array designs are reviewed, with an emphasis on the general design considerations that motivate each approach. Finally, a set of special topics is discussed, which reflect issues that have become important, especially as arrays are being designed for more high-performance applications of parallel MRI. These topics include concerns about the depth penetration of arrays composed of small elements, the use of adaptive arrays for systems with limited receiver channels, the management of inductive coupling between array elements, and special considerations required at high field strengths. The fundamental limits of spatial encoding using coil arrays are discussed, with a primary emphasis on how the determination of these limits impacts the design of optimized arrays. This review is intended to provide insight into how arrays are currently used for parallel MRI and to place into context the new innovations that are

  7. A novel acoustically quiet coil for neonatal MRI system.

    PubMed

    Ireland, Christopher M; Giaquinto, Randy O; Loew, Wolfgang; Tkach, Jean A; Pratt, Ronald G; Kline-Fath, Beth M; Merhar, Stephanie L; Dumoulin, Charles L

    2015-08-01

    MRI acoustic exposure has the potential to elicit physiological distress and impact development in preterm and term infants. To mitigate this risk, a novel acoustically quiet coil was developed to reduce the sound pressure level experienced by neonates during MR procedures. The new coil has a conventional high-pass birdcage RF design, but is built on a framework of sound abating material. We evaluated the acoustic and MR imaging performance of the quiet coil and a conventional body coil on two small footprint NICU MRI systems. Sound pressure level and frequency response measurements were made for six standard clinical MR imaging protocols. The average sound pressure level, reported for all six imaging pulse sequences, was 82.2 dBA for the acoustically quiet coil, and 91.1 dBA for the conventional body coil. The sound pressure level values measured for the acoustically quiet coil were consistently lower, 9 dBA (range 6-10 dBA) quieter on average. The acoustic frequency response of the two coils showed a similar harmonic profile for all imaging sequences. However, the amplitude was lower for the quiet coil, by as much as 20 dBA.

  8. A novel acoustically quiet coil for neonatal MRI system

    PubMed Central

    Ireland, Christopher M.; Giaquinto, Randy O.; Loew, Wolfgang; Tkach, Jean A.; Pratt, Ronald G.; Kline-Fath, Beth M.; Merhar, Stephanie L.; Dumoulin, Charles L.

    2015-01-01

    MRI acoustic exposure has the potential to elicit physiological distress and impact development in preterm and term infants. To mitigate this risk, a novel acoustically quiet coil was developed to reduce the sound pressure level experienced by neonates during MR procedures. The new coil has a conventional high-pass birdcage RF design, but is built on a framework of sound abating material. We evaluated the acoustic and MR imaging performance of the quiet coil and a conventional body coil on two small footprint NICU MRI systems. Sound pressure level and frequency response measurements were made for six standard clinical MR imaging protocols. The average sound pressure level, reported for all six imaging pulse sequences, was 82.2 dBA for the acoustically quiet coil, and 91.1 dBA for the conventional body coil. The sound pressure level values measured for the acoustically quiet coil were consistently lower, 9 dBA (range 6-10 dBA) quieter on average. The acoustic frequency response of the two coils showed a similar harmonic profile for all imaging sequences. However, the amplitude was lower for the quiet coil, by as much as 20 dBA. PMID:26457072

  9. Gradient and RF Coil Issues in Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Martens, Michael Alan

    Techniques are presented for new analysis of coils in magnetic resonance imaging that should lead to faster and more accurate pictures of humans. Insertable planar, cylindrical or elliptical gradient coils offer the potential for significant performance increases in magnetic resonance imaging. Using variational methods to minimize inductance and thereby optimize switching speeds, we have analyzed coils with these three geometries. In the interest of improving image quality by reducing eddy current artifacts, the same methods are used to design a set of self-shielded gradient coils. In the cylindrical and planar cases, scale models of the new coils have been constructed and tested. In the elliptical case, the theory and mathematics necessary to design elliptic gradient coils is presented. This includes the development of a Green function expansion in elliptic cylinder coordinates. The expansion is in terms of cosine -elliptic and Mathieu functions. Improvements in the field uniformity of rf coils results in improved image quality in magnetic resonance imaging. Using a waveguide structure instead of traditional coil designs leads to the possibility of generating more uniform fields at higher frequencies. A new conformal transformation is developed in order to analyze TEM excitations of microstrips and coupled microstrips with circular and elliptical cross-sections. This new transformation is derived by expressing a Schwarz-Christoffel transformation in terms of elliptic integrals of the first and third kind. Exact solutions for the complex potential of these geometries are presented for the first time. The uniformity of the magnetic field inside slotted tube transmission lines is examined using the newly developed conformal mapping technique. The degree to which the transmission lines with elliptical cross-sections provide more uniform magnetic fields than those with the circular cross-sections is investigated.

  10. Screen-printed flexible MRI receive coils

    PubMed Central

    Corea, Joseph R.; Flynn, Anita M.; Lechêne, Balthazar; Scott, Greig; Reed, Galen D.; Shin, Peter J.; Lustig, Michael; Arias, Ana C.

    2016-01-01

    Magnetic resonance imaging is an inherently signal-to-noise-starved technique that limits the spatial resolution, diagnostic image quality and results in typically long acquisition times that are prone to motion artefacts. This limitation is exacerbated when receive coils have poor fit due to lack of flexibility or need for padding for patient comfort. Here, we report a new approach that uses printing for fabricating receive coils. Our approach enables highly flexible, extremely lightweight conforming devices. We show that these devices exhibit similar to higher signal-to-noise ratio than conventional ones, in clinical scenarios when coils could be displaced more than 18 mm away from the body. In addition, we provide detailed material properties and components performance analysis. Prototype arrays are incorporated within infant blankets for in vivo studies. This work presents the first fully functional, printed coils for 1.5- and 3-T clinical scanners. PMID:26961073

  11. Screen-printed flexible MRI receive coils.

    PubMed

    Corea, Joseph R; Flynn, Anita M; Lechêne, Balthazar; Scott, Greig; Reed, Galen D; Shin, Peter J; Lustig, Michael; Arias, Ana C

    2016-03-10

    Magnetic resonance imaging is an inherently signal-to-noise-starved technique that limits the spatial resolution, diagnostic image quality and results in typically long acquisition times that are prone to motion artefacts. This limitation is exacerbated when receive coils have poor fit due to lack of flexibility or need for padding for patient comfort. Here, we report a new approach that uses printing for fabricating receive coils. Our approach enables highly flexible, extremely lightweight conforming devices. We show that these devices exhibit similar to higher signal-to-noise ratio than conventional ones, in clinical scenarios when coils could be displaced more than 18 mm away from the body. In addition, we provide detailed material properties and components performance analysis. Prototype arrays are incorporated within infant blankets for in vivo studies. This work presents the first fully functional, printed coils for 1.5- and 3-T clinical scanners.

  12. RF Coil Considerations for Short-T2 MRI

    PubMed Central

    Horch, R. Adam; Wilkens, Ken; Gochberg, Daniel F.; Does, Mark D.

    2010-01-01

    With continuing hardware and pulse sequence advancements, modern MRI is gaining sensitivity to signals from short-T2 1H species under practical experimental conditions. However, conventional MRI coils are typically not designed for this type of application they often contain proton-rich construction materials which may contribute confounding 1H background signal during short-T2 measurements. An example of this is shown herein. Separately, a loop-gap style coil was used to compare different coil construction materials and configurations with respect to observed 1H background signal sizes in a small animal imaging system. Background signal sources were spatially identified and quantified in a number of different coil configurations. It was found that the type and placement of structural coil materials around the loop-gap resonator, as well as the coil’s shielding configuration, are critical determinants of the coil’s background signal size. Although this study employed a loop-gap resonator design, these findings are directly relevant to standard volume coils commonly used for MRI. PMID:20665825

  13. Simulated Design Strategies for SPECT Collimators to Reduce the Eddy Currents Induced by MRI Gradient Fields

    NASA Astrophysics Data System (ADS)

    Samoudi, Amine M.; Van Audenhaege, Karen; Vermeeren, Günter; Verhoyen, Gregory; Martens, Luc; Van Holen, Roel; Joseph, Wout

    2015-10-01

    Combining single photon emission computed tomography (SPECT) with magnetic resonance imaging (MRI) requires the insertion of highly conductive SPECT collimators inside the MRI scanner, resulting in an induced eddy current disturbing the combined system. We reduced the eddy currents due to the insert of a novel tungsten collimator inside transverse and longitudinal gradient coils. The collimator was produced with metal additive manufacturing, that is part of a microSPECT insert for a preclinical SPECT/MRI scanner. We characterized the induced magnetic field due to the gradient field and adapted the collimators to reduce the induced eddy currents. We modeled the x-, y-, and z-gradient coil and the different collimator designs and simulated them with FEKO, a three-dimensional method of moments / finite element methods (MoM/FEM) full-wave simulation tool. We used a time analysis approach to generate the pulsed magnetic field gradient. Simulation results show that the maximum induced field can be reduced by 50.82% in the final design bringing the maximum induced magnetic field to less than 2% of the applied gradient for all the gradient coils. The numerical model was validated with measurements and was proposed as a tool for studying the effect of a SPECT collimator within the MRI gradient coils.

  14. High-resolution MRI encoding using radiofrequency phase gradients.

    PubMed

    Sharp, Jonathan C; King, Scott B; Deng, Qunli; Volotovskyy, Vyacheslav; Tomanek, Boguslaw

    2013-11-01

    Although MRI offers highly diagnostic medical imagery, patient access to this modality worldwide is very limited when compared with X-ray or ultrasound. One reason for this is the expense and complexity of the equipment used to generate the switched magnetic fields necessary for MRI encoding. These field gradients are also responsible for intense acoustic noise and have the potential to induce nerve stimulation. We present results with a new MRI encoding principle which operates entirely without the use of conventional B0 field gradients. This new approach--'Transmit Array Spatial Encoding' (TRASE)--uses only the resonant radiofrequency (RF) field to produce Fourier spatial encoding equivalent to conventional MRI. k-space traversal (image encoding) is achieved by spin refocusing with phase gradient transmit fields in spin echo trains. A transmit coil array, driven by just a single transmitter channel, was constructed to produce four phase gradient fields, which allows the encoding of two orthogonal spatial axes. High-resolution two-dimensional-encoded in vivo MR images of hand and wrist were obtained at 0.2 T. TRASE exploits RF field phase gradients, and offers the possibility of very low-cost diagnostics and novel experiments exploiting unique capabilities, such as imaging without disturbance of the main B0 magnetic field. Lower field imaging (<1 T) and micro-imaging are favorable application domains as, in both cases, it is technically easier to achieve the short RF pulses desirable for long echo trains, and also to limit RF power deposition. As TRASE is simply an alternative mechanism (and technology) of moving through k space, there are many close analogies between it and conventional B0 -encoded techniques. TRASE is compatible with both B0 gradient encoding and parallel imaging, and so hybrid sequences containing all three spatial encoding approaches are possible.

  15. The noise factor of receiver coil matching networks in MRI.

    PubMed

    Cao, Xueming; Fischer, Elmar; Gruschke, Oliver; Korvink, Jan G; Hennig, Jürgen; Maunder, Adam M; De Zanche, Nicola; Zaitsev, Maxim

    2017-04-01

    In typical MRI applications the dominant noise sources in the received signal are the sample, the coil loop and the preamplifier. We hypothesize that in some cases (e.g. for very small receiver coils) the matching network noise has to be considered explicitly. Considering the difficulties of direct experimental determinations of the noise factor of matching networks with sufficient accuracy, it is helpful to estimate the noise factor by calculation. A useful formula of the coil matching network is obtained by separating commonly used coil matching network into different stages and calculating their noise factor analytically by a combination of the noise from these stages. A useful formula of the coil matching network is obtained. ADS simulations are performed to verify the theoretical predictions. Thereafter carefully-designed proof-of-concept phantom experiments are carried out to qualitatively confirm the predicted SNR behavior. The matching network noise behavior is further theoretically investigated for a variety of scenarios. It is found that in practice the coil matching network noise can be improved by adjusting the coil open port resonant frequency.

  16. Efficient gradient calibration based on diffusion MRI

    PubMed Central

    Teh, Irvin; Maguire, Mahon L.

    2016-01-01

    Purpose To propose a method for calibrating gradient systems and correcting gradient nonlinearities based on diffusion MRI measurements. Methods The gradient scaling in x, y, and z were first offset by up to 5% from precalibrated values to simulate a poorly calibrated system. Diffusion MRI data were acquired in a phantom filled with cyclooctane, and corrections for gradient scaling errors and nonlinearity were determined. The calibration was assessed with diffusion tensor imaging and independently validated with high resolution anatomical MRI of a second structured phantom. Results The errors in apparent diffusion coefficients along orthogonal axes ranged from −9.2% ± 0.4% to + 8.8% ± 0.7% before calibration and −0.5% ± 0.4% to + 0.8% ± 0.3% after calibration. Concurrently, fractional anisotropy decreased from 0.14 ± 0.03 to 0.03 ± 0.01. Errors in geometric measurements in x, y and z ranged from −5.5% to + 4.5% precalibration and were likewise reduced to −0.97% to + 0.23% postcalibration. Image distortions from gradient nonlinearity were markedly reduced. Conclusion Periodic gradient calibration is an integral part of quality assurance in MRI. The proposed approach is both accurate and efficient, can be setup with readily available materials, and improves accuracy in both anatomical and diffusion MRI to within ±1%. Magn Reson Med 77:170–179, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. PMID:26749277

  17. Theoretical design of gradient coils with minimum power dissipation: Accounting for the discretization of current density into coil windings

    NASA Astrophysics Data System (ADS)

    While, Peter T.; Korvink, Jan G.; Shah, N. Jon; Poole, Michael S.

    2013-10-01

    Gradient coil windings are typically constructed from either variable width copper tracks or fixed width wires. Excessive power dissipation within these windings during gradient coil operation limits the maximum drive current or duty cycle of the coil. It is common to design gradient coils in terms of a continuous minimum power current density and to perform a discretization to obtain the locations of the coil tracks or wires. However, the existence of finite gaps between these conductors and a maximum conductor width leads to an underestimation of coil resistance when calculated using the continuous current density. Put equivalently, the actual current density within the tracks or wires is higher than that used in the optimization and this departure results in suboptimal coil designs. In this work, a mapping to an effective current density is proposed to account for these effects and provide the correct contribution to the power dissipation. This enables the design of gradient coils that are genuinely optimal in terms of power minimization, post-discretization. The method was applied to the theoretical design of a variety of small x- and z-gradient coils for use in small animal imaging and coils for human head imaging. Computer-driven comparisons were made between coils designed with and without the current density mapping, in terms of simulated power dissipation. For coils to be built using variable width tracks, the method provides slight reductions in power dissipation in most cases and substantial gains only in cases where the minimum separation between track centre-lines is less than twice the gap size. However, for coils to be built using fixed width wires, very considerable reductions in dissipated power are consistently attainable (up to 60%) when compared to standard approaches of coil optimization.

  18. Gradiometer pick-up coil design for a low field SQUID-MRI system.

    PubMed

    Seton, H C; Hutchison, J M; Bussell, D M

    1999-05-01

    We describe the use of liquid helium-cooled (4.2 K) gradiometer coils and a DC superconducting quantum interference device (SQUID) preamplifier to improve the SNR of magnetic resonance imaging (MRI) at 0.01 T. Gradiometer windings are used both to reduce lossy interactions with the MRI system's room temperature magnet and gradient coils and also to reject interference from more distant sources, which reduces the need for RF shielding. We have tested both axial and planar (figure-of-eight) gradiometer configurations. The figure-of-eight gradiometer has a more rapid fall-off in sensitivity with increasing distance from its windings than the axial gradiometer, but this is compensated for by reduced lossy interactions and improved interference rejection. We have used the system to image the human arm.

  19. Analytic approach to the design of transverse gradient coils with co-axial return paths.

    PubMed

    Bowtell, R; Peters, A

    1999-03-01

    Transverse gradient coils with co-axial return paths offer reduced acoustic noise compared with standard cylindrical gradient coils, due to local force balancing, and can also easily be made to have a length to diameter ratio that is less than one. Analytic expressions for the magnetic field and vector potential generated by this type of coil are described here, along with a formula for calculating the coil inductance. It is shown that these expressions allow the implementation of powerful analytic methods of coil design, as well as the incorporation of active magnetic screening. It is also demonstrated how the mathematics specifies the best parameters to use when designing coils with small numbers of elements. A head gradient coil for use at 3.0 T has been designed using the analytic approach described here. The process of coil design and construction is outlined and the performance of the coil in comparison with a similar standard cylindrical coil is described.

  20. A volume microstrip RF coil for MRI microscopy.

    PubMed

    Jasiński, Krzysztof; Młynarczyk, Anna; Latta, Peter; Volotovskyy, Vyacheslav; Węglarz, Władyslaw P; Tomanek, Bogusław

    2012-01-01

    Quantitative magnetic resonance imaging (MRI) studies of small samples such as a single cell or cell clusters require application of radiofrequency (RF) coils that provide homogenous B(1) field distribution and high signal-to-noise ratio (SNR). We present a novel design of an MRI RF volume microcoil based on a microstrip structure. The coil consists of two parallel microstrip elements conducting RF currents in the opposite directions, thus creating homogenous RF field within the space between the microstrips. The construction of the microcoil is simple, efficient and cost-effective. Theoretical calculations and finite element method simulations were used to optimize the coil geometry to achieve optimal B(1) and SNR distributions within the sample and predict parameters of the coil. The theoretical calculations were confirmed with MR images of a 1-mm-diameter capillary and a plant obtained with the double microstrip RF microcoil at 11.7 T. The in-plane resolution of MR images was 24 μm × 24 μm.

  1. Application of anatomically shaped surface coils in MRI at 0.5 T.

    PubMed

    Doornbos, J; Grimbergen, H A; Booijen, P E; te Strake, L; Bloem, J L; Vielvoye, G J; Boskamp, E

    1986-04-01

    The construction and application of eight different MRI surface coils is described. The coils consist of an anatomically shaped copper wire loop as an antenna and a printed circuit board containing electronic components for tuning and matching. The electronic device for tuning and matching is interchangeable between the various coils. Surface coils for signal detection yield images with high signal-to-noise ratio in comparison to the usual saddle-shaped head or body coils. The sensitivity of a surface coil decreases with increasing distance between the coil and the object of interest and therefore the coils are constructed to fit the anatomical structure under examination as well as possible. The application of dedicated surface coils for superficial structures in the body extends the possibilities of the MRI system. Photographs of the coils positioned on the body and MR images of volunteers and patients are shown.

  2. Stacked magnetic resonators for MRI RF coils decoupling

    NASA Astrophysics Data System (ADS)

    Georget, Elodie; Luong, Michel; Vignaud, Alexandre; Giacomini, Eric; Chazel, Edouard; Ferrand, Guillaume; Amadon, Alexis; Mauconduit, Franck; Enoch, Stefan; Tayeb, Gérard; Bonod, Nicolas; Poupon, Cyril; Abdeddaim, Redha

    2017-02-01

    Parallel transmission is a very promising method to tackle B1+ field inhomogeneities at ultrahigh field in magnetic resonant imaging (MRI). This technique is however limited by the mutual coupling between the radiating elements. Here we propose to solve this problem by designing a passive magneto-electric resonator that we here refer to as stacked magnetic resonator (SMR). By combining numerical and experimental methodologies, we prove that this novelty passive solution allows an efficient decoupling of elements of a phased-array coil. We demonstrate the ability of this technique to significantly reduce by more than 10 dB the coupling preserving the quality of images compared to ideally isolated linear resonators on a spherical salty agar gel phantom in a 7 T MRI scanner.

  3. Performance Comparison of 1.5 T Endorectal Coil MRI with Non-Endorectal Coil 3.0 T MRI in Patients with Prostate Cancer

    PubMed Central

    Shah, Zarine K.; Elias, Saba N.; Abaza, Ronney; Zynger, Debra L.; DeRenne, Lawrence A.; Knopp, Michael V.; Guo, Beibei; Schurr, Ryan; Heymsfield, Steven B.; Jia, Guang

    2015-01-01

    Rationale and Objectives To compare prostate morphology, image quality, and diagnostic performance of 1.5 T endorectal coil MRI and 3.0 T non-endorectal coil MRI in patients with prostate cancer. Materials and Methods MR images obtained of 83 patients with prostate cancer using 1.5 T MRI systems with an endorectal coil were compared to images collected from 83 patients with a 3.0 T MRI system. Prostate diameters were measured and image quality was evaluated by one ABR-certified radiologist (Reader 1) and one ABR-certified diagnostic medical physicist (Reader 2). The likelihood of the peripheral zone cancer presence in each sextant and local extent were rated and compared with histopathologic findings. Results Prostate anterior-posterior diameter measured by both readers was significantly shorter with 1.5 T endorectal MRI than with 3.0 T MRI. The overall image quality score difference was significant only for Reader 1. Both readers found that the two MRI systems provided similar diagnostic accuracy in cancer localization, extraprostatic extension, and seminal vesicle involvement. Conclusion Non-endorectal coil 3.0 T MRI provides prostate images that are natural in shape and that have comparable image quality to those obtained at 1.5 T with an endorectal coil, but not superior diagnostic performance. These findings suggest an opportunity exists for improving technical aspects of 3.0 T prostate MRI. PMID:25579637

  4. MRI compatibility study of an integrated PET/RF-coil prototype system at 3T.

    PubMed

    Akram, Md Shahadat Hossain; Obata, Takayuki; Suga, Mikio; Nishikido, Fumihiko; Yoshida, Eiji; Saito, Kazuyuki; Yamaya, Taiga

    2017-10-01

    We have been working on the development of a PET insert for existing magnetic resonance imaging (MRI) systems for simultaneous PET/MR imaging, which integrates radiofrequency (RF)-shielded PET detector modules with an RF head coil. In order to avoid interferences between the PET detector circuits and the different MRI-generated electromagnetic fields, PET detector circuits were installed inside eight Cu-shielded fiber-reinforced plastic boxes, and these eight shielded PET modules were integrated in between the eight elements of a 270-mm-diameter and 280-mm-axial-length cylindrical birdcage RF coil, which was designed to be used with a 3-T clinical MRI system. The diameter of the PET scintillators with a 12-mm axial field-of-view became 255mm, which was very close to the imaging region. In this study, we have investigated the effects of this PET/RF-coil integrated system on the performance of MRI, which include the evaluation of static field (Bo) inhomogeneity, RF field (B1) distribution, local specific absorption rate (SAR) distribution, average SAR, and signal-to-noise ratio (SNR). For the central 170-mm-diameter and 80-mm-axial-length of a homogenous cylindrical phantom (with the total diameter of 200mm and axial-length of 100mm), an increase of about a maximum of 3μT in the Bo inhomogeneity was found, both in the central and 40-mm off-centered transverse planes, and a 5 percentage point increase of B1 field inhomogeneity was observed in the central transverse plane (from 84% without PET to 79% with PET), while B1 homogeneity along the coronal plane was almost unchanged (77%) following the integration of PET with the RF head coil. The average SAR and maximum local SAR were increased by 1.21 and 1.62 times, respectively. However, the SNR study for both spin-echo and gradient-echo sequences showed a reduction of about 70% and 60%, respectively, because of the shielded PET modules. The overall results prove the feasibility of this integrated PET/RF-coil system for

  5. A variable splitting based algorithm for fast multi-coil blind compressed sensing MRI reconstruction.

    PubMed

    Bhave, Sampada; Lingala, Sajan Goud; Jacob, Mathews

    2014-01-01

    Recent work on blind compressed sensing (BCS) has shown that exploiting sparsity in dictionaries that are learnt directly from the data at hand can outperform compressed sensing (CS) that uses fixed dictionaries. A challenge with BCS however is the large computational complexity during its optimization, which limits its practical use in several MRI applications. In this paper, we propose a novel optimization algorithm that utilize variable splitting strategies to significantly improve the convergence speed of the BCS optimization. The splitting allows us to efficiently decouple the sparse coefficient, and dictionary update steps from the data fidelity term, resulting in subproblems that take closed form analytical solutions, which otherwise require slower iterative conjugate gradient algorithms. Through experiments on multi coil parametric MRI data, we demonstrate the superior performance of BCS over conventional CS schemes, while achieving convergence speed up factors of over 10 fold over the previously proposed implementation of the BCS algorithm.

  6. High-Resolution MR Imaging with Strong Local "surface" Gradient Coils, and, Optimization of Spgr Techniques for Functional MR Imaging.

    NASA Astrophysics Data System (ADS)

    Jin, Haoran

    In this thesis we discuss two specific topics in magnetic resonance imaging. The first concerns the technical requirements of high resolution MR imaging. Unique local "surface" gradient coils have been designed, constructed, integrated with a whole body MR imaging system, and used to acquire MR images demonstrating higher spatial resolution in three dimensions. The novel gradient coil design generates a strong linear gradient-field in three dimensions near the planar surface of the coil assembly for high resolution MR skin imaging. The rise times of the gradient coils were measured to be less than 250 mus, allowing rapid gradient coil switching. No significant eddy current effects have been found on the images. Images of a phantom and human skin with a field of view 3 cm by 3 cm and matrix size of 512 x 384 were obtained, corresponding to an in-plane resolution of 58 by 78 mu m. The resulting images represent a significant improvement in limiting spatial resolution compared to conventional MR images. The second topic of this thesis is functional MR imaging (FMRI). Functional MR imaging is based on the concept that neural activity in the cerebral cortex causes an increase in blood flow and a decrease in capillary deoxyhemoglobin concentrations, producing a signal enhancement in T2 ^*-weighted pulse sequences. The magnetic susceptibility of blood changes the oxygenation, changing the local T2^*. Spoiled gradient echo (SPGR) techniques both theoretically and experimentally have been optimized for functional MRI of human motor cortex. Experimental measurements have been performed and compared with the theoretical optimizations of signal to noise ratios of subtracted SPGR imaging. The experimental data are in good agreement with theoretical calculations. An FMRI of motor cortex stimulation with more than 5% intensity change has been observed using optimized techniques. Post imaging processing has been employed for displaying signal changes in the functional MR imaging.

  7. Analysis of the noise correlation in MRI coil arrays loaded with metamaterial magnetoinductive lenses.

    PubMed

    Algarin, Jose M; Breuer, Felix; Behr, Volker C; Freire, Manuel J

    2015-05-01

    A numerical method is shown for calculating the noise correlation coefficient in arrays of magnetic resonance imaging (MRI) coils loaded with capacitively-loaded ring metamaterial lenses, and in the presence of a conducting half-space resembling a sample. This numerical method is validated by comparison with experimental results obtained in two different experimental procedures for double check: noise resistance measurements with a network analyzer and noise correlation measurements in an MRI system. It is found that, for practical array configurations such as overlapping coils or capacitively-decoupled coils, the noise correlation coefficient turns negative for coils loaded with metamaterial lenses. In particular, the analysis is carried out with metamaterial structures known as magnetoinductive lenses, which have been demonstrated in previous works to improve the signal-to-noise ratio of MRI coils. Results are also shown to demonstrate that negative noise correlations have as an effect the improvement of the g-factor in coil arrays for parallel MRI.

  8. Simultaneous Acquisition of Gradient Echo / Spin Echo BOLD and Perfusion with a Separate Labeling Coil

    PubMed Central

    Glielmi, C.B.; Xu, Q.; Craddock, R.C.; Hu, X.

    2010-01-01

    Arterial spin labeling (ASL) based cerebral blood flow (CBF) imaging complements blood oxygenation level dependent (BOLD) imaging with a measure that is more quantitative and has better specificity to neuronal activation. Relative to gradient echo (GE) BOLD, spin echo (SE) BOLD has better spatial specificity because it is less biased to large draining veins. While there have been many studies comparing simultaneously acquired CBF data with GE BOLD data in fMRI, there have been few studies comparing CBF with SE BOLD and no study comparing all three. We present a pulse sequence that simultaneously acquires CBF data with a separate labeling coil, GE BOLD and SE BOLD images. Simultaneous acquisition avoids inter-scan variability, allowing more direct assessment and comparison of each contrast’s relative specificity and reproducibility. Furthermore, it facilitates studies that may benefit from multiple complementary measures. PMID:20648682

  9. Feasibility study of a new RF coil design for prostate MRI

    NASA Astrophysics Data System (ADS)

    Ha, Seunghoon; Roeck, Werner W.; Cho, Jaedu; Nalcioglu, Orhan

    2014-09-01

    The combined use of a torso-pelvic RF array coil and endorectal RF coil is the current state-of-the-art in prostate MRI. The endorectal coil provides high detection sensitivity to acquire high-spatial resolution images and spectroscopic data, while the torso-pelvic coil provides large coverage to assess pelvic lymph nodes and pelvic bones for metastatic disease. However, the use of an endorectal coil is an invasive procedure that presents difficulties for both patients and technicians. In this study, we propose a novel non-invasive RF coil design that can provide both image signal to noise ratio and field of view coverage comparable to the combined torso-pelvic and endorectal coil configuration. A prototype coil was constructed and tested using a pelvic phantom. The results demonstrate that this new design is a viable alternative for prostate MRI

  10. RF Heating of MRI-Assisted Catheter Steering Coils for Interventional MRI.

    PubMed

    Settecase, Fabio; Hetts, Steven W; Martin, Alastair J; Roberts, Timothy P L; Bernhardt, Anthony F; Evans, Lee; Malba, Vincent; Saeed, Maythem; Arenson, Ronald L; Kucharzyk, Walter; Wilson, Mark W

    2011-03-01

    The aim of this study was too assess magnetic resonance imaging (MRI) radiofrequency (RF)-related heating of conductive wire coils used in magnetically steerable endovascular catheters. A three-axis microcoil was fabricated onto a 1.8Fr catheter tip. In vitro testing was performed on a 1.5-T MRI system using an agarose gel-filled vessel phantom, a transmit-receive body RF coil, a steady-state free precession pulse sequence, and a fluoroptic thermometry system. Temperature was measured without simulated blood flow at varying distances from the magnet isocenter and at varying flip angles. Additional experiments were performed with laser-lithographed single-axis microcoil-tipped microcatheters in air and in a saline bath with varied grounding of the microcoil wires. Preliminary in vivo evaluation of RF heating was performed in pigs at 1.5 T with coil-tipped catheters in various positions in the common carotid arteries with steady-state free precession pulse sequence on and off and under physiologic-flow and zero-flow conditions. In tissue-mimicking agarose gel, RF heating resulted in a maximal temperature increase of 0.35°C after 15 minutes of imaging, 15 cm from the magnet isocenter. For a single-axis microcoil, maximal temperature increases were 0.73°C to 1.91°C in air and 0.45°C to 0.55°C in saline. In vivo, delayed contrast-enhanced MRI revealed no evidence of vascular injury, and histopathologic sections from the common carotid arteries confirmed the lack of vascular damage. Microcatheter tip microcoils for endovascular catheter steering in MRI experience minimal RF heating under the conditions tested. These data provide the basis for further in vivo testing of this promising technology for endovascular interventional MRI. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.

  11. Correction of Gradient Nonlinearity Artifacts in Prospective Motion Correction for 7T MRI

    PubMed Central

    Yarach, U.; Luengviriya, C.; Danishad, K.A.; Stucht, D.; Godenschweger, F.; Schulze, P.; Speck, O.

    2014-01-01

    Purpose To demonstrate the effect of gradient nonlinearity and develop a method for correction of gradient non-linearity artifacts in prospective motion correction (Mo-Co). Methods Non-linear gradients can induce geometric distortions in MRI, leading to pixel shifts with errors of up to several millimeters, thereby interfering with precise localization of anatomical structures. Prospective Mo-Co has been extended by conventional gradient warp correction applied to individual phase encoding steps/groups during the reconstruction. The gradient-related displacements are approximated using Spherical Harmonic (SPH) functions. In addition, the combination of this method with a retrospective correction of the changes in the coil sensitivity profiles relative to the object (augmented SENSE) was evaluated in simulation and experimental data. Results Prospective Mo-Co under gradient fields and coils sensitivity inconsistencies results in residual blurring, spatial distortion, and coil sensitivity mismatch artifacts. These errors can be considerably mitigated by the proposed method. High image quality with very little remaining artifacts was achieved after a few iterations. The relative image errors decreased from 25.7% to below 17.3% after 10 iterations. Conclusion The combined correction of gradient non-linearity and sensitivity map variation leads to a pronounced reduction of residual motion artifacts in prospectively motion-corrected data. PMID:24798889

  12. Iterative Method for Predistortion of MRI Gradient Waveforms

    PubMed Central

    Harkins, Kevin D.; Does, Mark D.; Grissom, William A.

    2014-01-01

    The purpose of this work is to correct for transient gradient waveform errors in magnetic resonance imaging (MRI), whether from eddy currents, group delay, or gradient amplifier nonlinearities, which are known to affect image quality. An iterative method is proposed to minimize error between desired and measured gradient waveforms, whose success does not depend on accurate knowledge of the gradient system impulse response. The method was applied to half-pulse excitation for 2-D ultra-short echo time (UTE) imaging on a small animal MRI system and to spiral 2-D excitation on a human 7T MRI system. Predistorted gradient waveforms reduced temporal signal variation caused by excitation gradient trajectory errors in 2-D UTE, and improved the quality of excitation patterns produced by spiral excitation pulses. Iterative gradient predistortion is useful for minimizing transient gradient errors without requiring accurate characterization of the gradient system impulse response. PMID:24801945

  13. A 4-channel 3 Tesla phased array receive coil for awake rhesus monkey fMRI and diffusion MRI experiments.

    PubMed

    Khachaturian, Mark Haig

    2010-01-01

    Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4-8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic).

  14. Quadrupole gradient coil design and optimization: a printed circuit board approach.

    PubMed

    Chu, K; Rutt, B K

    1994-06-01

    Three different dual-axis quadrupole gradient coils for quantitative high resolution MR imaging of small animals, phantoms and specimens were designed and built using printed circuit board technology. Numerical optimization of the conductor positions was used to increase the volume of 0.4% gradient uniformity by up to a factor of four. In one coil, the volume of 5% gradient uniformity occupied 88% and 83% of the overall diameter and length of the coil, respectively. A systematic error of 0.5% in the wire placement was shown to cause a reduction in the volume of 0.4% gradient uniformity by a factor of two, though the region of 5% gradient uniformity was not significantly affected. Heat transfer calculations were used to determine maximum peak and root-mean-squared currents that could safely be applied to the coils.

  15. Evaluating passively shielded gradient coil configurations for optimal eddy current compensation

    NASA Astrophysics Data System (ADS)

    Sanchez Lopez, Hector; Poole, Michael; Crozier, Stuart

    2010-05-01

    In magnetic resonance imaging, rapidly switching magnetic fields are used to spatially encode the signal. The temporal change of these fields induces eddy currents in nearby conducting structures of the scanner. These eddy currents, in turn, generate a secondary magnetic field that opposes and distorts the desired gradient field. Eddy current compensation methods are generally applied assuming that the primary and secondary magnetic field gradients possess similar spatial characteristics in the imaging volume (field matching). In this work an optimization method is used to deform the shape of the coil support and/or a highly conductive passive shield in order to improve the field matching and reduce the inductive coupling between the gradient coil and the passive shield. Using the residual field after eddy current compensation as the objective function, the coil support and/or conducting surfaces were deformed to obtain passively shielded x- and z-gradient coils with improved field matching and eddy current compensation. Assuming a single frequency, quasi-static simulation, it was demonstrated that the residual field was reduced up to 24 times by reshaping the coil and passive shield surfaces due to the improved field matching. However, using transient analyses we showed that in the case of the passively shielded x-gradient coil the residual field may only be reduced by five times from a cylindrical coil configuration. A bulge shape is created in the conducting surface as a mechanism of matching the field and at the same time reducing the mutual inductive coupling between the coil and the passive shield. An actively shielded coil with control over the magnetic field produced by the induced current was used as a reference coil that produces the minimal residual field. The actively shielded gradient coil produces minimal residual field for short and long pulses in the transient analyses.

  16. Sub-pixel localisation of passive micro-coil fiducial markers in interventional MRI.

    PubMed

    Rea, Marc; McRobbie, Donald; Elhawary, Haytham; Tse, Zion T H; Lamperth, Michael; Young, Ian

    2009-04-01

    Electromechanical devices enable increased accuracy in surgical procedures, and the recent development of MRI-compatible mechatronics permits the use of MRI for real-time image guidance. Integrated imaging of resonant micro-coil fiducials provides an accurate method of tracking devices in a scanner with increased flexibility compared to gradient tracking. Here we report on the ability of ten different image-processing algorithms to track micro-coil fiducials with sub-pixel accuracy. Five algorithms: maximum pixel, barycentric weighting, linear interpolation, quadratic fitting and Gaussian fitting were applied both directly to the pixel intensity matrix and to the cross-correlation matrix obtained by 2D convolution with a reference image. Using images of a 3 mm fiducial marker and a pixel size of 1.1 mm, intensity linear interpolation, which calculates the position of the fiducial centre by interpolating the pixel data to find the fiducial edges, was found to give the best performance for minimal computing power; a maximum error of 0.22 mm was observed in fiducial localisation for displacements up to 40 mm. The inherent standard deviation of fiducial localisation was 0.04 mm. This work enables greater accuracy to be achieved in passive fiducial tracking.

  17. Interactions between head motion and coil sensitivity in accelerated fMRI.

    PubMed

    Faraji-Dana, Z; Tam, F; Chen, J J; Graham, S J

    2016-09-01

    Parallel imaging is widely adopted to accelerate functional MRI (fMRI) data acquisition, through various strategies that involve multi-channel receiver coils. However, the non-uniform spatial sensitivity of multi-channel receiver coils may introduce unwanted artifacts when head motion occurs during the few-minute long fMRI scans. Although prospective correction provides a promising solution for alleviating the head motion artifacts in fMRI, the relative position of the fixed multi-channel receiver coils moves in the moving reference frame, potentially resulting in artifactual signal. We used numerical simulations to investigate this effect on fMRI using two parallel imaging schemes: sensitivity encoding (SENSE) and generalized autocalibrating partially parallel acquisitions (GRAPPA) with acceleration factors 2 and 4, towards characterizing the regime over which parallel-imaging fMRI with prospective motion correction will benefit from updating coil sensitivities to reflect relative positional change between the head and the receiver coil. Moreover, six subjects were scanned with acceleration factors 2 and 4 while performing a simple finger-tapping task with and without overt head motion. Updating coil sensitivities showed significant positive impact on standard deviation and activation maps in presence of overt head motion compared to that obtained with no overt head motion. The parallel imaging fMRI with updated coil sensitivity maps were compared to that with the coil sensitivity maps acquired at the reference position. Head motion in relation to a fixed multi-channel coil can adversely affect the quality of parallel imaging fMRI data; and updating coil sensitivity map can mitigate this effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A time-harmonic inverse methodology for the design of RF coils in MRI.

    PubMed

    Lawrence, Ben G; Crozier, Stuart; Yau, Desmond D; Doddrell, David M

    2002-01-01

    An inverse methodology is described to assist in the design of radio-frequency (RF) coils for magnetic resonance imaging (MRI) applications. The time-harmonic electromagnetic Green's functions are used to calculate current on the coil and shield cylinders that will generate a specified internal magnetic field. Stream function techniques and the method of moments are then used to implement this theoretical current density into an RF coil. A novel asymmetric coil operating for a 4.5 T MRI machine was designed and constructed using this methodology and the results are presented.

  19. Demonstration of a Conduction Cooled React and Wind MgB2 Coil Segment for MRI Applications

    PubMed Central

    Kim, H. S.; Kovacs, C.; Rindfleisch, M.; Yue, J.; Doll, D.; Tomsic, M.; Sumption, M. D.; Collings, E. W.

    2016-01-01

    This study is a contribution to the development of technology for an MgB2-based, cryogen-free, superconducting magnet for an MRI system. Specifically, we aim to demonstrate that a react and wind coil can be made using high performance in-situ route MgB2 conductor, and that the conductor could be operated in conduction mode with low levels of temperature gradient. In this work, an MgB2 conductor was used for the winding of a sub-size, MRI-like coil segment. The MgB2 coil was wound on a 457 mm ID 101 OFE copper former using a react-and-wind approach. The total length of conductor used was 330 m. The coil was epoxy impregnated and then instrumented for low temperature testing. After the initial cool down (conduction cooling) the coil Ic was measured as a function of temperature (15-30 K), and an Ic of 200 A at 15 K was measured. PMID:27857508

  20. Demonstration of a Conduction Cooled React and Wind MgB2 Coil Segment for MRI Applications.

    PubMed

    Kim, H S; Kovacs, C; Rindfleisch, M; Yue, J; Doll, D; Tomsic, M; Sumption, M D; Collings, E W

    2016-06-01

    This study is a contribution to the development of technology for an MgB2-based, cryogen-free, superconducting magnet for an MRI system. Specifically, we aim to demonstrate that a react and wind coil can be made using high performance in-situ route MgB2 conductor, and that the conductor could be operated in conduction mode with low levels of temperature gradient. In this work, an MgB2 conductor was used for the winding of a sub-size, MRI-like coil segment. The MgB2 coil was wound on a 457 mm ID 101 OFE copper former using a react-and-wind approach. The total length of conductor used was 330 m. The coil was epoxy impregnated and then instrumented for low temperature testing. After the initial cool down (conduction cooling) the coil Ic was measured as a function of temperature (15-30 K), and an Ic of 200 A at 15 K was measured.

  1. Continuous ASL (CASL) perfusion MRI with an array coil and parallel imaging at 3T.

    PubMed

    Wang, Ze; Wang, Jiongjiong; Connick, Thomas J; Wetmore, Gabriel S; Detre, John A

    2005-09-01

    The purpose of this work was to assess the feasibility and efficacy of using an array coil and parallel imaging in continuous arterial spin labeling (CASL) perfusion MRI. An 8-channel receive-only array head coil was used in conjunction with a surrounding detunable volume transmit coil. The signal to noise ratio (SNR), temporal stability, cerebral blood flow (CBF), and perfusion image coverage were measured from steady state CASL scans using: a standard volume coil, array coil, and array coil with 2- and 3-fold accelerated parallel imaging. Compared to the standard volume coil, the array coil provided 3 times the average SNR increase and higher temporal stability for the perfusion weighted images, even with threefold acceleration. Although perfusion images of the array coil were affected by the inhomogeneous coil sensitivities, this effect was invisible in the quantitative CBF images, which showed highly reproducible perfusion values compared to the standard volume coil. The unfolding distortions of parallel imaging were suppressed in the perfusion images by pairwise subtraction, though they sharply degraded the raw EPI images. Moreover, parallel imaging provided the potential of acquiring more slices due to the shortened acquisition time and improved coverage in brain regions with high static field inhomogeneity. Such results highlight the potential utility of array coils and parallel imaging in ASL perfusion MRI. Copyright (c) 2005 Wiley-Liss, Inc.

  2. Impact of magnetic field strength and receiver coil in ocular MRI: a phantom and patient study.

    PubMed

    Erb-Eigner, K; Warmuth, C; Taupitz, M; Willerding, G; Bertelmann, E; Asbach, P

    2013-09-01

    Generally, high-resolution MRI of the eye is performed with small loop surface coils. The purpose of this phantom and patient study was to investigate the influence of magnetic field strength and receiver coils on image quality in ocular MRI. The eyeball and the complex geometry of the facial bone were simulated by a skull phantom with swine eyes. MR images were acquired with two small loop surface coils with diameters of 4 cm and 7 cm and with a multi-channel head coil at 1.5 and 3 Tesla, respectively. Furthermore, MRI of the eye was performed prospectively in 20 patients at 1.5 Tesla (7 cm loop surface coil) and 3 Tesla (head coil). These images were analysed qualitatively and quantitatively and statistical significance was tested using the Wilcoxon-signed-rank test (a p-value of less than 0.05 was considered to indicate statistical significance). The analysis of the phantom images yielded the highest mean signal-to-noise ratio (SNR) at 3 Tesla with the use of the 4 cm loop surface coil. In the phantom experiment as well as in the patient studies the SNR was higher at 1.5 Tesla by applying the 7 cm surface coil than at 3 Tesla by applying the head coil. Concerning the delineation of anatomic structures no statistically significant differences were found. Our results show that the influence of small loop surface coils on image quality (expressed in SNR) in ocular MRI is higher than the influence of the magnetic field strength. The similar visibility of detailed anatomy leads to the conclusion that the image quality of ocular MRI at 3 Tesla remains acceptable by applying the head coil as a receiver coil. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Performance of large-size superconducting coil in 0.21T MRI system.

    PubMed

    Lee, K H; Cheng, M C; Chan, K C; Wong, K K; Yeung, Simon S M; Lee, K C; Ma, Q Y; Yang, Edward S

    2004-11-01

    A high-temperature superconductor (HTS) was used on magnetic resonance imaging (MRI) receiver coils to improve image quality because of its intrinsic low electrical resistivity. Typical HTS coils are surface coils made of HTS thin-film wafers. Their applications are severely limited by the field of view (FOV) of the surface coil configuration, and the improvement in image quality by HTS coil is also reduced as the ratio of sample noise to coil noise increases. Therefore, previous HTS coils are usually used to image small in vitro samples, small animals, or peripheral human anatomies. We used large-size HTS coils (2.5-, 3.5-, and 5.5-in mean diameter) to enhance the FOV and we evaluated their performance through phantom and human MR images. Comparisons were made among HTS surface coils, copper surface coils, and cool copper surface coils in terms of the signal-to-noise ratio (SNR) and sensitivity profile of the images. A theoretical model prediction was also used to compare against the experimental result. We then selected several human body parts, including the wrist, feet, and head, to illustrate the advantage of HTS coil over copper coil when used in human imaging. The results show an SNR gain of 200% for 5.5-in HTS coil versus same size copper coils, while for 2.5- and 3.5-in coils it is 250%. We also address the various factors that affect the performance of large size HTS coils, including the coil-to-sample spacing due to cryogenic probe and the coil-loading effect.

  4. Monte Carlo-based noise compensation in coil intensity corrected endorectal MRI.

    PubMed

    Lui, Dorothy; Modhafar, Amen; Haider, Masoom A; Wong, Alexander

    2015-10-12

    Prostate cancer is one of the most common forms of cancer found in males making early diagnosis important. Magnetic resonance imaging (MRI) has been useful in visualizing and localizing tumor candidates and with the use of endorectal coils (ERC), the signal-to-noise ratio (SNR) can be improved. The coils introduce intensity inhomogeneities and the surface coil intensity correction built into MRI scanners is used to reduce these inhomogeneities. However, the correction typically performed at the MRI scanner level leads to noise amplification and noise level variations. In this study, we introduce a new Monte Carlo-based noise compensation approach for coil intensity corrected endorectal MRI which allows for effective noise compensation and preservation of details within the prostate. The approach accounts for the ERC SNR profile via a spatially-adaptive noise model for correcting non-stationary noise variations. Such a method is useful particularly for improving the image quality of coil intensity corrected endorectal MRI data performed at the MRI scanner level and when the original raw data is not available. SNR and contrast-to-noise ratio (CNR) analysis in patient experiments demonstrate an average improvement of 11.7 and 11.2 dB respectively over uncorrected endorectal MRI, and provides strong performance when compared to existing approaches. Experimental results using both phantom and patient data showed that ACER provided strong performance in terms of SNR, CNR, edge preservation, subjective scoring when compared to a number of existing approaches. A new noise compensation method was developed for the purpose of improving the quality of coil intensity corrected endorectal MRI data performed at the MRI scanner level. We illustrate that promising noise compensation performance can be achieved for the proposed approach, which is particularly important for processing coil intensity corrected endorectal MRI data performed at the MRI scanner level and when the

  5. Method of propulsion of a ferromagnetic core in the cardiovascular system through magnetic gradients generated by an MRI system.

    PubMed

    Mathieu, Jean-Baptiste; Beaudoin, Gilles; Martel, Sylvain

    2006-02-01

    This paper reports the use of a magnetic resonance imaging (MRI) system to propel a ferromagnetic core. The concept was studied for future development of microdevices designed to perform minimally invasive interventions in remote sites accessible through the human cardiovascular system. A mathematical model is described taking into account various parameters such as the size of blood vessels, the velocities and viscous properties of blood, the magnetic properties of the materials, the characteristics of MRI gradient coils, as well as the ratio between the diameter of a spherical core and the diameter of the blood vessels. The concept of magnetic propulsion by MRI is validated experimentally by measuring the flow velocities that magnetized spheres (carbon steel 1010/1020) can withstand inside cylindrical tubes under the different magnetic forces created with a Siemens Magnetom Vision 1.5 T MRI system. The differences between the velocities predicted by the theoretical model and the experiments are approximately 10%. The results indicate that with the technology available today for gradient coils used in clinical MRI systems, it is possible to generate sufficient gradients to propel a ferromagnetic sphere in the larger sections of the arterial system. In other words, the results show that in the larger blood vessels where the diameter of the microdevices could be as large as a couple a millimeters, the few tens of mT/m of gradients required for displacement against the relatively high blood flow rate is well within the limits of clinical MRI systems. On the other hand, although propulsion of a ferromagnetic core with diameter of approximately 600 microm may be possible with existing clinical MRI systems, gradient amplitudes of several T/m would be required to propel a much smaller ferromagnetic core in small vessels such as capillaries and additional gradient coils would be required to upgrade existing MRI systems for operations at such a scale.

  6. Depletion-Mode GaN HEMT Q-Spoil Switches for MRI Coils.

    PubMed

    Lu, Jonathan Y; Grafendorfer, Thomas; Zhang, Tao; Vasanawala, Shreyas; Robb, Fraser; Pauly, John M; Scott, Greig C

    2016-12-01

    Q-spoiling is the process of decoupling an MRI receive coil to protect the equipment and patient. Conventionally, Q-spoiling is performed using a PIN diode switch that draws significant current. In this work, a Q-spoiling technique using a depletion-mode Gallium Nitride HEMT device was developed for coil detuning at both 1.5 T and 3 T MRI. The circuits with conventional PIN diode Q-spoiling and the GaN HEMT device were implemented on surface coils. SNR was measured and compared for all surfaces coils. At both 1.5 T and 3 T, comparable SNR was achieved for all coils with the proposed technique and conventional Q-spoiling. The GaN HEMT device has significantly reduced the required power for Q-spoiling. The GaN HEMT device also provides useful safety features by detuning the coil when unpowered.

  7. A multi-slot surface coil for MRI of dual-rat imaging at 4 T

    NASA Astrophysics Data System (ADS)

    Solis, S. E.; Wang, R.; Tomasi, D.; Rodriguez, A. O.

    2011-06-01

    A slotted surface coil inspired by the hole-and-slot cavity magnetron was developed for magnetic resonance imaging of obese rats at 4 T. Full-wave analysis of the magnetic field was carried out at 170 MHz for both the slotted and circular-shaped coils. The noise figure values of two coils were investigated via the numerical calculation of the quality factors. Fat simulated phantoms to mimic overweight rats were included in the analysis with weights ranging from 300 to 900 g. The noise figures were 1.2 dB for the slotted coil and 2.4 dB for the circular coil when loaded with 600 g of simulated phantom. A slotted surface coil with eight circular slots and a circular coil with similar dimensions were built and operated in the transceiver mode, and their performances were experimentally compared. The imaging tests in phantoms demonstrated that the slotted surface coil has a deeper RF-sensitivity and better field uniformity than the single-loop RF-coil. High quality images of two overweight Zucker rats were acquired simultaneously with the slotted surface coil using standard spin-echo pulse sequences. Experimental results showed that the slotted surface coil outperformed the circular coil for imaging considerably overweight rats. Thus, the slotted surface coil can be a good tool for MRI experiments in rats on a human whole-body 4 T scanner.

  8. A multi-slot surface coil for MRI of dual-rat imaging at 4T

    SciTech Connect

    Solis, S.E.; Tomasi, D.; Solis, S.E.; Wang, R.; Tomasi, D.; Rodriguez, A.O.

    2011-07-01

    A slotted surface coil inspired by the hole-and-slot cavity magnetron was developed for magnetic resonance imaging of obese rats at 4 T. Full-wave analysis of the magnetic field was carried out at 170 MHz for both the slotted and circular-shaped coils. The noise figure values of two coils were investigated via the numerical calculation of the quality factors. Fat simulated phantoms to mimic overweight rats were included in the analysis with weights ranging from 300 to 900 g. The noise figures were 1.2 dB for the slotted coil and 2.4 dB for the circular coil when loaded with 600 g of simulated phantom. A slotted surface coil with eight circular slots and a circular coil with similar dimensions were built and operated in the transceiver mode, and their performances were experimentally compared. The imaging tests in phantoms demonstrated that the slotted surface coil has a deeper RF-sensitivity and better field uniformity than the single-loop RF-coil. High quality images of two overweight Zucker rats were acquired simultaneously with the slotted surface coil using standard spin-echo pulse sequences. Experimental results showed that the slotted surface coil outperformed the circular coil for imaging considerably overweight rats. Thus, the slotted surface coil can be a good tool for MRI experiments in rats on a human whole-body 4 T scanner.

  9. Modular Coils with Low Hydrogen Content Especially for MRI of Dry Solids

    PubMed Central

    Fischer, Elmar; Gröbner, Jens; Göpper, Michael; Eisenbeiss, Anne-Katrin; Flügge, Tabea; Hennig, Jürgen; von Elverfeldt, Dominik; Hövener, Jan-Bernd

    2015-01-01

    Introduction Recent advances have enabled fast magnetic resonance imaging (MRI) of solid materials. This development has opened up new applications for MRI, but, at the same time, uncovered new challenges. Previously, MRI-invisible materials like the housing of MRI detection coils are now readily depicted and either cause artifacts or lead to a decreased image resolution. In this contribution, we present versatile, multi-nuclear single and dual-tune MRI coils that stand out by (1) a low hydrogen content for high-resolution MRI of dry solids without artifacts; (2) a modular approach with exchangeable inductors of variable volumes to optimally enclose the given object; (3) low cost and low manufacturing effort that is associated with the modular approach; (4) accurate sample placement in the coil outside of the bore, and (5) a wide, single- or dual-tune frequency range that covers several nuclei and enables multinuclear MRI without moving the sample. Materials and Methods The inductors of the coils were constructed from self-supporting copper sheets to avoid all plastic materials within or around the resonator. The components that were mounted at a distance from the inductor, including the circuit board, coaxial cable and holder were manufactured from polytetrafluoroethylene. Results and Conclusion Residual hydrogen signal was sufficiently well suppressed to allow 1H-MRI of dry solids with a minimum field of view that was smaller than the sensitive volume of the coil. The SNR was found to be comparable but somewhat lower with respect to commercial, proton-rich quadrature coils, and higher with respect to a linearly-polarized commercial coil. The potential of the setup presented was exemplified by 1H / 23Na high-resolution zero echo time (ZTE) MRI of a model solution and a dried human molar at 9.4 T. A full 3D image dataset of the tooth was obtained, rich in contrast and similar to the resolution of standard cone-beam computed tomography. PMID:26496192

  10. Efficient high-frequency body coil for high-field MRI.

    PubMed

    Vaughan, J T; Adriany, G; Snyder, C J; Tian, J; Thiel, T; Bolinger, L; Liu, H; DelaBarre, L; Ugurbil, K

    2004-10-01

    The use of body coils is favored for homogeneous excitation, and such coils are often paired with surface coils or arrays for sensitive reception in many MRI applications. While the body coil's physical size and resultant electrical length make this circuit difficult to design for any field strength, recent efforts to build efficient body coils for applications at 3T and above have been especially challenging. To meet this challenge, we developed an efficient new transverse electromagnetic (TEM) body coil and demonstrated its use in human studies at field strengths up to 4 T. Head, body, and breast images were acquired within peak power constraints of <8 kW. Bench studies indicate that these body coils are feasible to 8 T. RF shimming was used to remove a high-field-related cardiac imaging artifact in these preliminary studies. P41RR13230

  11. INTERCOMPARISON OF PERFORMANCE OF RF COIL GEOMETRIES FOR HIGH FIELD MOUSE CARDIAC MRI

    PubMed Central

    Constantinides, Christakis; Angeli, S.; Gkagkarellis, S.; Cofer, G.

    2012-01-01

    Multi-turn spiral surface coils are constructed in flat and cylindrical arrangements and used for high field (7.1 T) mouse cardiac MRI. Their electrical and imaging performances, based on experimental measurements, simulations, and MRI experiments in free space, and under phantom, and animal loading conditions, are compared with a commercially available birdcage coil. Results show that the four-turn cylindrical spiral coil exhibits improved relative SNR (rSNR) performance to the flat coil counterpart, and compares fairly well with a commercially available birdcage coil. Phantom experiments indicate a 50% improvement in the SNR for penetration depths ≤ 6.1 mm from the coil surface compared to the birdcage coil, and an increased penetration depth at the half-maximum field response of 8 mm in the 4-spiral cylindrical coil case, in contrast to 2.9 mm in the flat 4-turn spiral case. Quantitative comparison of the performance of the two spiral coil geometries in anterior, lateral, inferior, and septal regions of the murine heart yield maximum mean percentage rSNR increases of the order of 27–167% in vivo post-mortem (cylindrical compared to flat coil). The commercially available birdcage outperforms the cylindrical spiral coil in rSNR by a factor of 3–5 times. The comprehensive approach and methodology adopted to accurately design, simulate, implement, and test radiofrequency coils of any geometry and type, under any loading conditions, can be generalized for any application of high field mouse cardiac MRI. PMID:23204945

  12. A 22-channel receive array with Helmholtz transmit coil for anesthetized macaque MRI at 3 T.

    PubMed

    Janssens, Thomas; Keil, Boris; Serano, Peter; Mareyam, Azma; McNab, Jennifer A; Wald, Lawrence L; Vanduffel, Wim

    2013-11-01

    The macaque monkey is an important model for cognitive and sensory neuroscience that has been used extensively in behavioral, electrophysiological, molecular and, more recently, neuroimaging studies. However, macaque MRI has unique technical differences relative to human MRI, such as the geometry of highly parallel receive arrays, which must be addressed to optimize imaging performance. A 22-channel receive coil array was constructed specifically for rapid high-resolution anesthetized macaque monkey MRI at 3 T. A local Helmholtz transmit coil was used for excitation. Signal-to-noise ratios (SNRs) and noise amplification for parallel imaging were compared with those of single- and four-channel receive coils routinely used for macaque MRI. The 22-channel coil yielded significant improvements in SNR throughout the brain. Using this coil, the SNR in peripheral brain was 2.4 and 1.7 times greater than that obtained with single- or four-channel coils, respectively. In the central brain, the SNR gain was 1.5 times that of both the single- and four-channel coils. Finally, the performance of the array for functional, anatomical and diffusion-weighted imaging was evaluated. For all three modalities, the use of the 22-channel array allowed for high-resolution and accelerated image acquisition. Copyright © 2013 John Wiley & Sons, Ltd.

  13. MRI surface-coil pair with strong inductive coupling.

    PubMed

    Mett, Richard R; Sidabras, Jason W; Hyde, James S

    2016-12-01

    A novel inductively coupled coil pair was used to obtain magnetic resonance phantom images. Rationale for using such a structure is described in R. R. Mett et al. [Rev. Sci. Instrum. 87, 084703 (2016)]. The original rationale was to increase the Q-value of a small diameter surface coil in order to achieve dominant loading by the sample. A significant improvement in the vector reception field (VRF) is also seen. The coil assembly consists of a 3-turn 10 mm tall meta-metallic self-resonant spiral (SRS) of inner diameter 10.4 mm and outer diameter 15.1 mm and a single-loop equalization coil of 25 mm diameter and 2 mm tall. The low-frequency parallel mode was used in which the rf currents on each coil produce magnetic fields that add constructively. The SRS coil assembly was fabricated and data were collected using a tissue-equivalent 30% polyacrylamide phantom. The large inductive coupling of the coils produces phase-coherency of the rf currents and magnetic fields. Finite-element simulations indicate that the VRF of the coil pair is about 4.4 times larger than for a single-loop coil of 15 mm diameter. The mutual coupling between coils influences the current ratio between the coils, which in turn influences the VRF and the signal-to-noise ratio (SNR). Data on a tissue-equivalent phantom at 9.4 T show a total SNR increase of 8.8 over the 15 mm loop averaged over a 25 mm depth and diameter. The experimental results are shown to be consistent with the magnetic resonance theory of the emf induced by spins in a coil, the theory of inductively coupled resonant circuits, and the superposition principle. The methods are general for magnetic resonance and other types of signal detection and can be used over a wide range of operating frequencies.

  14. On the accurate analysis of vibroacoustics in head insert gradient coils.

    PubMed

    Winkler, Simone A; Alejski, Andrew; Wade, Trevor; McKenzie, Charles A; Rutt, Brian K

    2017-10-01

    To accurately analyze vibroacoustics in MR head gradient coils. A detailed theoretical model for gradient coil vibroacoustics, including the first description and modeling of Lorentz damping, is introduced and implemented in a multiphysics software package. Numerical finite-element method simulations were used to establish a highly accurate vibroacoustic model in head gradient coils in detail, including the newly introduced Lorentz damping effect. Vibroacoustic coupling was examined through an additional modal analysis. Thorough experimental studies were used to validate simulations. Average experimental sound pressure levels (SPLs) and accelerations over the 0-3000 Hz frequency range were 97.6 dB, 98.7 dB, and 95.4 dB, as well as 20.6 g, 8.7 g, and 15.6 g for the X-, Y-, and Z-gradients, respectively. A reasonable agreement between simulations and measurements was achieved. Vibroacoustic coupling showed a coupled resonance at 2300 Hz for the Z-gradient that is responsible for a sharp peak and the highest SPL value in the acoustic spectrum. We have developed and used more realistic multiphysics simulation methods to gain novel insights into the underlying concepts for vibroacoustics in head gradient coils, which will permit improved analyses of existing gradient coils and novel SPL reduction strategies for future gradient coil designs. Magn Reson Med 78:1635-1645, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  15. Is Your System Calibrated? MRI Gradient System Calibration for Pre-Clinical, High-Resolution Imaging

    PubMed Central

    O’Callaghan, James; Wells, Jack; Richardson, Simon; Holmes, Holly; Yu, Yichao; Walker-Samuel, Simon

    2014-01-01

    High-field, pre-clinical MRI systems are widely used to characterise tissue structure and volume in small animals, using high resolution imaging. Both applications rely heavily on the consistent, accurate calibration of imaging gradients, yet such calibrations are typically only performed during maintenance sessions by equipment manufacturers, and potentially with acceptance limits that are inadequate for phenotyping. To overcome this difficulty, we present a protocol for gradient calibration quality assurance testing, based on a 3D-printed, open source, structural phantom that can be customised to the dimensions of individual scanners and RF coils. In trials on a 9.4 T system, the gradient scaling errors were reduced by an order of magnitude, and displacements of greater than 100 µm, caused by gradient non-linearity, were corrected using a post-processing technique. The step-by-step protocol can be integrated into routine pre-clinical MRI quality assurance to measure and correct for these errors. We suggest that this type of quality assurance is essential for robust pre-clinical MRI experiments that rely on accurate imaging gradients, including small animal phenotyping and diffusion MR. PMID:24804737

  16. Dental MRI using a dedicated RF-coil at 3 Tesla.

    PubMed

    Prager, Marcel; Heiland, Sabine; Gareis, Daniel; Hilgenfeld, Tim; Bendszus, Martin; Gaudino, Chiara

    2015-12-01

    To assess the benefit of a dedicated surface coil to visualize dental structures in comparison to standard head/neck coil. Measurements were performed using the standard head/neck coil and a dedicated array coil for dental MRI at 3 T. As MRI methods, we used a T1-weighted spin-echo sequence with and without spectral fat saturation, a T2-weighted turbo-spin-echo sequence and a 3-dimensional T2-weighted SPACE sequence. Measurements were performed in a phantom to examine sensitivity profiles. Then the signal gain in dental structures was examined in volunteers and in a patient. As expected for a surface coil, the signal gain of the dental coil was highest at the surface of the phantom and decreased with increasing distance to the coil; it was >120% even at a depth of 30 mm, measured from the centre of the coil. The signal gain within the pulp of the volunteers ranged between 236 and 413%. The dedicated array coil offers a significantly higher signal within the region of interest for dental MR imaging thus allowing for better depiction of pathologies within the periodontium and for delineation and tracking of the branches of the maxillary and mandibular nerves. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  17. Transverse low-field RF coils in MRI.

    PubMed

    Claasen-Vujcić, T; Borsboom, H M; Gaykema, H J; Mehlkopf, T

    1996-07-01

    Imaging at low fields imposes a number of nonstandard requirements on the RF coil. At low fields, coil losses are dominant over patient losses. This means that even more stress is put on the quality factor Q. Furthermore, the low frequency also implies a high inductance L and/or a high capacitance C product. Just increasing the capacitance C results in a difficult optimal matching to the preamplifier as well as increased costs and higher complexity of the resonator construction. Coils with a high quality factor Q and a high inductance are thus required at low fields. Birdcage coils possess a number of advantages over saddle and solenoidal coils. However, the currently used birdcages have inherently low inductances limited by the size of the coil. The problem can be solved by a novel design in which the strip configuration for inductors is abandoned and the inductors are realized as a certain number of turns. The Q factor can be further improved by using Litz wire. Three novel transverse RF coils with high inductances are presented and compared with each other as well as to the standard coils. Both linear and quadrature modes are discussed.

  18. Permanent magnet desktop magnetic resonance imaging system with microfabricated multiturn gradient coils for microflow imaging in capillary tubes

    NASA Astrophysics Data System (ADS)

    Sahebjavaher, Ramin S.; Walus, Konrad; Stoeber, Boris

    2010-02-01

    A prototype for a desktop high-resolution magnetic resonance imaging (MRI) velocimetry instrument to characterize flow fields in a capillary tube is demonstrated. This inexpensive compact system is achieved with a 0.6 T permanent magnetic configuration (Larmor frequency of 25 MHz) and temperature compensation using off-the-shelf NdFeB permanent magnets. A triaxial gradient module with microfabricated copper coils using a lithographic fabrication process has been developed. This gradient module is capable of generating fast-switching gradients (<100 μs) with amplitudes up to 1.7 T/m using custom made current amplifiers, and was optimized for microflow imaging. The radio frequency probe is integrated with the gradient module and is driven by custom electronics. A two-dimensional (2D) cross-sectional static image of the inside of a capillary tube with an inner diameter of 1.67 mm is acquired at an in-plane spatial resolution of better than 40 μm. Time-of-flight flow measurements were also obtained using this MRI system to measure the velocity profile of water flowing at average velocities of above 50 mm/s. The flow profile for slower flow velocities was obtained using phase-encoded techniques, which provides quantitative velocity information in 2D.

  19. Permanent magnet desktop magnetic resonance imaging system with microfabricated multiturn gradient coils for microflow imaging in capillary tubes.

    PubMed

    Sahebjavaher, Ramin S; Walus, Konrad; Stoeber, Boris

    2010-02-01

    A prototype for a desktop high-resolution magnetic resonance imaging (MRI) velocimetry instrument to characterize flow fields in a capillary tube is demonstrated. This inexpensive compact system is achieved with a 0.6 T permanent magnetic configuration (Larmor frequency of 25 MHz) and temperature compensation using off-the-shelf NdFeB permanent magnets. A triaxial gradient module with microfabricated copper coils using a lithographic fabrication process has been developed. This gradient module is capable of generating fast-switching gradients (<100 micros) with amplitudes up to 1.7 T/m using custom made current amplifiers, and was optimized for microflow imaging. The radio frequency probe is integrated with the gradient module and is driven by custom electronics. A two-dimensional (2D) cross-sectional static image of the inside of a capillary tube with an inner diameter of 1.67 mm is acquired at an in-plane spatial resolution of better than 40 microm. Time-of-flight flow measurements were also obtained using this MRI system to measure the velocity profile of water flowing at average velocities of above 50 mm/s. The flow profile for slower flow velocities was obtained using phase-encoded techniques, which provides quantitative velocity information in 2D.

  20. Materials and methods for higher performance screen-printed flexible MRI receive coils.

    PubMed

    Corea, Joseph R; Lechene, P Balthazar; Lustig, Michael; Arias, Ana C

    2017-08-01

    To develop methods for characterizing materials used in screen-printed MRI coils and improve signal-to-noise ratio (SNR) with new lower-loss materials. An experimental apparatus was created to characterize dielectric properties of plastic substrates used in receive coils. Coils were fabricated by screen printing conductive ink onto several plastic substrates. Unloaded and sample loaded quality factor (QUnloaded /QLoaded ) measurements and scans on a 3T scanner were used to characterize coil performance. An experimental method was developed to describe the relationship between a coil's QUnloaded and the SNR it provides in images of a phantom. In addition, 3T scans of a phantom and the head of a volunteer were obtained with a proof-of-concept printed eight-channel array, and the results were compared with a commercial 12-channel array. Printed coils with optimized substrates exhibited up to 97% of the image SNR when compared with a traditional coil on a loading phantom. QUnloaded and the SNR of coils were successfully correlated. The printed array resulted in images comparable to the quality given by the commercial array. Using the proposed methods and materials, the SNR of printed coils approached that of commercial coils while using a new fabrication technique that provided more flexibility and close contact with the patient's body. Magn Reson Med 78:775-783, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  1. Improved SNR for combined TMS-fMRI: A support device for commercially available body array coil.

    PubMed

    Wang, Wen-Tung; Xu, Benjamin; Butman, John A

    2017-09-01

    Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation tool extensively used in clinical and cognitive neuroscience research. TMS has been applied during functional magnetic resonance imaging (i.e., concurrent/interleaved TMS-fMRI) to understand neural mechanisms underlying cognitive functions. However, no advanced commercial multi-channel whole-brain array MR coils can fit the large TMS coil. We developed a low-cost and easy-to-configure setup that takes advantage of the superior signal-to-noise ratio (SNR) performance of commercially available flexible body array coils that can accommodate the TMS coil. Two flexible MRI body array coils (i.e., the Combo coil) were fitted on a simple coil support with a TMS-coil holder. Phantom and in vivo images acquired using the Combo coil with and without a TMS coil were compared with those from a product 12-channel (12CH) form-fit head array coil. Relative to the 12CH head coil, images acquired using the Combo coil were of similar quality, but with increased noise levels, leading to moderately reduced temporal SNR values. A previous study reported that the temporal SNR of a product 12CH head coil was twice that of a transmit/receive volume birdcage coil commonly used in combined TMS-fMRI. Together with the results of the present work, they indicate that the Combo-coil setup improves SNR performance for combined TMS-fMRI acquisition. The inexpensive and easy-to-configure Combo-coil setup offers an effective and likely superior alternative to transmit/receive birdcage coil for combined TMS-fMRI. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Error-tolerant RF litz coils for NMR/MRI.

    PubMed

    Doty, F D; Entzminger, G; Hauck, C D

    1999-09-01

    A new class of NMR RF volume coils is being developed that permits improved tuning range, B(1) homogeneity, tuning stability, and sensitivity compared to birdcages over a wide range of practical conditions, especially for microscopy and wraparound flexible applications. They are denoted litz coils, as their flux transparency and current distribution is obtained from woven foil patterns with insulated crossovers. Contrary to the design criteria of phased arrays, the parallel routes in litz coils use high coupling coefficients to achieve optimal current distribution, which is highly independent of tuning, balancing, and matching adjustments and is compatible with multiple capacitive segmentation. Magnetic filling factors, loaded Q, and inhomogeneity measurements and calculations are presented for a variety of litz coils with frequency-diameter products from 7 to 20 MHz-m and are compared to similar birdcages. Copyright 1999 Academic Press.

  3. Error-Tolerant RF Litz Coils for NMR/MRI

    NASA Astrophysics Data System (ADS)

    Doty, F. David; Entzminger, George; Hauck, Cory D.

    1999-09-01

    A new class of NMR RF volume coils is being developed that permits improved tuning range, B1 homogeneity, tuning stability, and sensitivity compared to birdcages over a wide range of practical conditions, especially for microscopy and wraparound flexible applications. They are denoted litz coils, as their flux transparency and current distribution is obtained from woven foil patterns with insulated crossovers. Contrary to the design criteria of phased arrays, the parallel routes in litz coils use high coupling coefficients to achieve optimal current distribution, which is highly independent of tuning, balancing, and matching adjustments and is compatible with multiple capacitive segmentation. Magnetic filling factors, loaded Q, and inhomogeneity measurements and calculations are presented for a variety of litz coils with frequency-diameter products from 7 to 20 MHz-m and are compared to similar birdcages.

  4. Highly accelerated projection imaging with coil sensitivity encoding for rapid MRI

    PubMed Central

    Ersoz, Ali; Arpinar, Volkan Emre; Muftuler, L. Tugan

    2013-01-01

    Purpose: Rapid magnetic resonance imaging (MRI) acquisition is typically achieved by acquiring all or most lines of k-space after one radio frequency (RF) excitation. Parallel imaging techniques can further accelerate data acquisition by acquiring fewer phase-encoded lines and utilizing the spatial sensitivity information of the RF coil arrays. The goal of this study was to develop a new MRI data acquisition and reconstruction technique that is capable of reconstructing a two-dimensional (2D) image using highly undersampled k-space data without any special hardware. Such a technique would be very efficient, as it would significantly reduce the time wasted during multiple RF excitations or phase encoding and gradient switching periods. Methods: The essence of this new technique is to densely sample a small number of projections, which should be acquired at an angle other than 0° or multiples of 45°. This results in multiple rays passing through a voxel and provides new and independent measurements for each voxel. Then the images are reconstructed using the unique information coming from these projections combined with RF coil sensitivity profiles. The feasibility of this new technique was investigated with realistic simulations and experimental studies using a phantom and compared with conventional nonuniform fast Fourier transform technique. Eigenvalue analysis and error calculations were conducted to find optimal projection angles and minimum requirements for dense sampling. Results: Reconstruction of 64 × 64 images was done using a single projection from simulated data under different noise levels. Simulated reconstruction was also tested with two projections to assess the improvement. Experimental phantom images were reconstructed at higher resolution using 4, 8, and 16 projections. Cross-sectional profiles illustrate that the new technique resolved compartment boundaries clearly. Conclusions: Simulations demonstrated that only a single k-space line might be

  5. A direct modulated optical link for MRI RF receive coil interconnection.

    PubMed

    Yuan, Jing; Wei, Juan; Shen, G X

    2007-11-01

    Optical glass fiber is a promising alternative to traditional coaxial cables for MRI RF receive coil interconnection to avoid any crosstalk and electromagnetic interference between multiple channels. A direct modulated optical link is proposed for MRI coil interconnection in this paper. The link performances of power gain, frequency response and dynamic range are measured. Phantom and in vivo human head images have been demonstrated by the connection of this direct modulated optical link to a head coil on a 0.3T MRI scanner for the first time. Comparable image qualities to coaxial cable link verify the feasibility of using the optical link for imaging with minor modification on the existing scanners. This optical link could also be easily extended for multi-channel array interconnections at high field of 1.5 T.

  6. Motion correction using coil arrays (MOCCA) for free-breathing cardiac cine MRI.

    PubMed

    Hu, Peng; Hong, Susie; Moghari, Mehdi H; Goddu, Beth; Goepfert, Lois; Kissinger, Kraig V; Hauser, Thomas H; Manning, Warren J; Nezafat, Reza

    2011-08-01

    In this study, we present a motion correction technique using coil arrays (MOCCA) and evaluate its application in free-breathing respiratory self-gated cine MRI. Motion correction technique using coil arrays takes advantages of the fact that motion-induced changes in k-space signal are modulated by individual coil sensitivity profiles. In the proposed implementation of motion correction technique using coil arrays self-gating for free-breathing cine MRI, the k-space center line is acquired at the beginning of each k-space segment for each cardiac cycle with 4 repetitions. For each k-space segment, the k-space center line acquired immediately before was used to select one of the 4 acquired repetitions to be included in the final self-gated cine image by calculating the cross correlation between the k-space center line with a reference line. The proposed method was tested on a cohort of healthy adult subjects for subjective image quality and objective blood-myocardium border sharpness. The method was also tested on a cohort of patients to compare the left and right ventricular volumes and ejection fraction measurements with that of standard breath-hold cine MRI. Our data indicate that the proposed motion correction technique using coil arrays method provides significantly improved image quality and sharpness compared with free-breathing cine without respiratory self-gating and provides similar volume measurements compared with breath-hold cine MRI. Copyright © 2011 Wiley-Liss, Inc.

  7. An implanted 8-channel array coil for high-resolution macaque MRI at 3T.

    PubMed

    Janssens, T; Keil, B; Farivar, R; McNab, J A; Polimeni, J R; Gerits, A; Arsenault, J T; Wald, L L; Vanduffel, W

    2012-09-01

    An 8-channel receive coil array was constructed and implanted adjacent to the skull in a male rhesus monkey in order to improve the sensitivity of (functional) brain imaging. The permanent implant was part of an acrylic headpost assembly and only the coil element loop wires were implanted. The tuning, matching, and preamplifier circuitry was connected via a removable external assembly. Signal-to-noise ratio (SNR) and noise amplification for parallel imaging were compared to single-, 4-, and 8-channel external receive-only coils routinely used for macaque fMRI. In vivo measurements showed significantly improved SNR within the brain for the implanted versus the external coils. Within a region-of-interest covering the cerebral cortex, we observed a 5.4-, 3.6-fold, and 3.4-fold increase in SNR compared to the external single-, 4-, and 8-channel coils, respectively. In the center of the brain, the implanted array maintained a 2.4×, 2.5×, and 2.1× higher SNR, respectively compared to the external coils. The array performance was evaluated for anatomical, diffusion tensor and functional brain imaging. This study suggests that a stable implanted phased-array coil can be used in macaque MRI to substantially increase the spatial resolution for anatomical, diffusion tensor, and functional imaging. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. An implanted 8-channel array coil for high-resolution macaque MRI at 3T

    PubMed Central

    Janssens, T.; Keil, B.; Farivar, R.; McNab, J.A.; Polimeni, J. R.; Gerits, A.; Arsenault, J.T.; Wald, L. L.; Vanduffel, W.

    2012-01-01

    An 8-channel receive coil array was constructed and implanted adjacent to the skull in a male rhesus monkey in order to improve the sensitivity of (functional) brain imaging. The permanent implant was part of an acrylic headpost assembly and only the coil element loop wires were implanted. The tuning, matching, and preamplifier circuitry was connected via a removable external assembly. Signal-to-noise ratio (SNR) and noise amplification for parallel imaging were compared to a single-, 4-, and 8-channel external receive-only coil routinely used for macaque fMRI. In vivo measurements showed significantly improved SNR within the brain for the implanted versus the external coils. Within a region-of-interest covering the cerebral cortex, we observed a 5.4-, 3.6-fold, and 3.4-fold increase in SNR compared to the external single-, 4-, and 8-channel coil, respectively. In the center of the brain, the implanted array maintained a 2.4×, 2.5×, and 2.1× higher SNR, respectively compared to the external coils. The array performance was evaluated for anatomical, diffusion tensor and functional brain imaging. This study suggests that a stable implanted phased-array coil can be used in macaque MRI to substantially increase the spatial resolution for anatomical, diffusion tensor, and functional imaging. PMID:22609793

  9. Markless Attenuation Correction for Carotid MRI Surface Receiver Coils in Combined PET/MR Imaging

    PubMed Central

    Eldib, Mootaz; Bini, Jason; Robson, Philip M.; Calcagno, Claudia; Faul, David D.; Tsoumpas, Charalampos; Fayad, Zahi A.

    2015-01-01

    Purpose To evaluate the effect of attenuation of MR coils on quantitative carotid PET/MR exams. Additionally, to develop and evaluate automated attenuation correction method for flexible carotid MR coils was developed and evaluated. Methods The attenuation of the carotid coil was measured by imaging a uniform water phantom injected with 37 MBq of 18F-FDG in a combined PET/MR scanner for 24 minutes with and without the coil. In the same session, an ultra-short echo time (UTE) image of the coil on top of the phantom was acquired. Using a combination of rigid and non-rigid registration, a CT-based attenuation map was registered to the UTE image of the coil for attenuation and scatter correction. After phantom validation, the effect of the carotid coil attenuation and the attenuation correction method were evaluated in five subjects. Results Phantom studies indicated that the overall loss of PET counts due to the coil was 6.3% with local region-of-interest (ROI) errors reaching up to 18.8%. Our registration method to correct for attenuation from the coil decreased the global error and local error (ROI) to 0.8% and 3.8%, respectively. The proposed registration method accurately captured the location and shape of the coil with a maximum spatial error of 2.6 mm. Quantitative analysis in human studies correlated with the phantom findings, but was dependent on the size of the ROI used in the analysis. Conclusions MR coils result in significant error in PET quantification and thus attenuation correction is needed. The proposed strategy provides an operator-free method for attenuation and scatter correction for a flexible MRI carotid surface coil for routine clinical use. PMID:26020273

  10. Markerless attenuation correction for carotid MRI surface receiver coils in combined PET/MR imaging

    NASA Astrophysics Data System (ADS)

    Eldib, Mootaz; Bini, Jason; Robson, Philip M.; Calcagno, Claudia; Faul, David D.; Tsoumpas, Charalampos; Fayad, Zahi A.

    2015-06-01

    The purpose of the study was to evaluate the effect of attenuation of MR coils on quantitative carotid PET/MR exams. Additionally, an automated attenuation correction method for flexible carotid MR coils was developed and evaluated. The attenuation of the carotid coil was measured by imaging a uniform water phantom injected with 37 MBq of 18F-FDG in a combined PET/MR scanner for 24 min with and without the coil. In the same session, an ultra-short echo time (UTE) image of the coil on top of the phantom was acquired. Using a combination of rigid and non-rigid registration, a CT-based attenuation map was registered to the UTE image of the coil for attenuation and scatter correction. After phantom validation, the effect of the carotid coil attenuation and the attenuation correction method were evaluated in five subjects. Phantom studies indicated that the overall loss of PET counts due to the coil was 6.3% with local region-of-interest (ROI) errors reaching up to 18.8%. Our registration method to correct for attenuation from the coil decreased the global error and local error (ROI) to 0.8% and 3.8%, respectively. The proposed registration method accurately captured the location and shape of the coil with a maximum spatial error of 2.6 mm. Quantitative analysis in human studies correlated with the phantom findings, but was dependent on the size of the ROI used in the analysis. MR coils result in significant error in PET quantification and thus attenuation correction is needed. The proposed strategy provides an operator-free method for attenuation and scatter correction for a flexible MRI carotid surface coil for routine clinical use.

  11. Advantageous application of a surface coil to EPR irradiation in overhauser-enhanced MRI.

    PubMed

    Matsumoto, Shingo; Yamada, Kenichi; Hirata, Hiroshi; Yasukawa, Keiji; Hyodo, Fuminori; Ichikawa, Kazuhiro; Utsumi, Hideo

    2007-04-01

    The present study describes the advantageous application of a surface coil to electron paramagnetic resonance (EPR) irradiation in Overhauser-enhanced MRI (OMRI). OMRI is a double-resonance method for imaging free radicals based on the Overhauser effect. Proton NMR images are recorded without and with EPR irradiation of the free radical resonance, which results in a difference proton image that shows signal enhancement in spatial regions that contain the free radical. To obtain good signal enhancement in OMRI, very high RF power and a long EPR irradiation time are required. To improve sensitivity and shorten the image acquisition time, especially for localized (and topical) applications, we developed and tested a surface-coil-type EPR irradiation coil. Theoretical calculations and experimental data showed that EPR irradiation through the surface coil could ameliorate the localized Overhauser enhancement, which was related to the ratio of B(1) surface coil/B(1) volume coil in the region of interest (ROI), as expected. The increased sensitivity could also be converted into a shortened EPR irradiation time, resulting in fast data acquisition. For biomedical applications, the use of a surface coil (as opposed to a conventional volume coil) could decrease the total RF power deposition in the sample required to obtain the same Overhauser enhancement in the ROI.

  12. Stability of gradient field corrections for quantitative diffusion MRI

    NASA Astrophysics Data System (ADS)

    Rogers, Baxter P.; Blaber, Justin; Welch, E. Brian; Ding, Zhaohua; Anderson, Adam W.; Landman, Bennett A.

    2017-03-01

    In magnetic resonance diffusion imaging, gradient nonlinearity causes significant bias in the estimation of quantitative diffusion parameters such as diffusivity, anisotropy, and diffusion direction in areas away from the magnet isocenter. This bias can be substantially reduced if the scanner- and coil-specific gradient field nonlinearities are known. Using a set of field map calibration scans on a large (29 cm diameter) phantom combined with a solid harmonic approximation of the gradient fields, we predicted the obtained b-values and applied gradient directions throughout a typical field of view for brain imaging for a typical 32-direction diffusion imaging sequence. We measured the stability of these predictions over time. At 80 mm from scanner isocenter, predicted b-value was 1-6% different than intended due to gradient nonlinearity, and predicted gradient directions were in error by up to 1 degree. Over the course of one month the change in these quantities due to calibration-related factors such as scanner drift and variation in phantom placement was <0.5% for b-values, and <0.5 degrees for angular deviation. The proposed calibration procedure allows the estimation of gradient nonlinearity to correct b-values and gradient directions ahead of advanced diffusion image processing for high angular resolution data, and requires only a five-minute phantom scan that can be included in a weekly or monthly quality assurance protocol.

  13. Stability of Gradient Field Corrections for Quantitative Diffusion MRI

    PubMed Central

    Rogers, Baxter P.; Blaber, Justin; Welch, E. Brian; Ding, Zhaohua; Anderson, Adam W.; Landman, Bennett A.

    2016-01-01

    In magnetic resonance diffusion imaging, gradient nonlinearity causes significant bias in the estimation of quantitative diffusion parameters such as diffusivity, anisotropy, and diffusion direction in areas away from the magnet isocenter. This bias can be substantially reduced if the scanner- and coil-specific gradient field nonlinearities are known. Using a set of field map calibration scans on a large (29 cm diameter) phantom combined with a solid harmonic approximation of the gradient fields, we predicted the obtained b-values and applied gradient directions throughout a typical field of view for brain imaging for a typical 32-direction diffusion imaging sequence. We measured the stability of these predictions over time. At 80 mm from scanner isocenter, predicted b-value was 1-6% different than intended due to gradient nonlinearity, and predicted gradient directions were in error by up to 1 degree. Over the course of one month the change in these quantities due to calibration-related factors such as scanner drift and variation in phantom placement was <0.5% for b-values, and <0.5 degrees for angular deviation. The proposed calibration procedure allows the estimation of gradient nonlinearity to correct b-values and gradient directions ahead of advanced diffusion image processing for high angular resolution data, and requires only a five-minute phantom scan that can be included in a weekly or monthly quality assurance protocol. PMID:28736467

  14. A virtually 1H-free birdcage coil for zero echo time MRI without background signal.

    PubMed

    Weiger, Markus; Brunner, David O; Schmid, Thomas; Froidevaux, Romain; Rösler, Manuela B; Gross, Simon; Pruessmann, Klaas P

    2017-07-01

    MRI of tissues with rapid transverse relaxation can be performed efficiently using the zero echo time (ZTE) technique. At high bandwidths leading to large relative initial radiofrequency (RF) dead times, the method becomes increasingly sensitive to artifacts related to signal stemming from outside the field of view, particularly from the RF coils. Therefore, in this work, a birdcage coil was designed that is virtually free of 1H signal. A transmit-receive birdcage RF coil for MRI of joints at 7T was designed by rigorously avoiding materials containing 1H nuclei, by using purely mechanical connections without glue, and by spoiling of unwanted signal by application of ferromagnetic materials. The coil was tested for residual 1H signal using ZTE phantom and in vivo joint imaging. In standard ZTE imaging, no 1H signal was detected above noise level. Only at extreme averaging, residual signal was observed close to conductors associated with 1H-containing molecules at adjacent glass surfaces. Phantom images with dead times up to 3.8 Nyquist dwells were obtained with only negligible background artifacts. Furthermore, high-quality ZTE images of human joints were acquired. A virtually 1H-free birdcage coil is presented, thus enabling in vivo ZTE MRI practically free of background signal, even at high bandwidths. Magn Reson Med 78:399-407, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  15. A novel coil array for combined TMS/fMRI experiments at 3 T

    PubMed Central

    Navarro de Lara, Lucia I.; Windischberger, Christian; Kuehne, Andre; Woletz, Michael; Sieg, Jürgen; Bestmann, Sven; Weiskopf, Nikolaus; Strasser, Bernhard; Moser, Ewald

    2014-01-01

    Purpose To overcome current limitations in combined transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) studies by employing a dedicated coil array design for 3 Tesla. Methods The state‐of‐the‐art setup for concurrent TMS/fMRI is to use a large birdcage head coil, with the TMS between the subject's head and the MR coil. This setup has drawbacks in sensitivity, positioning, and available imaging techniques. In this study, an ultraslim 7‐channel receive‐only coil array for 3 T, which can be placed between the subject's head and the TMS, is presented. Interactions between the devices are investigated and the performance of the new setup is evaluated in comparison to the state‐of‐the‐art setup. Results MR sensitivity obtained at the depth of the TMS stimulation is increased by a factor of five. Parallel imaging with an acceleration factor of two is feasible with low g‐factors. Possible interactions between TMS and the novel hardware were investigated and were found negligible. Conclusion The novel coil array is safe, strongly improves signal‐to‐noise ratio in concurrent TMS/fMRI experiments, enables parallel imaging, and allows for flexible positioning of the TMS on the head while ensuring efficient TMS stimulation due to its ultraslim design. Magn Reson Med 74:1492–1501, 2015. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. PMID:25421603

  16. A novel coil array for combined TMS/fMRI experiments at 3 T.

    PubMed

    Navarro de Lara, Lucia I; Windischberger, Christian; Kuehne, Andre; Woletz, Michael; Sieg, Jürgen; Bestmann, Sven; Weiskopf, Nikolaus; Strasser, Bernhard; Moser, Ewald; Laistler, Elmar

    2015-11-01

    To overcome current limitations in combined transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) studies by employing a dedicated coil array design for 3 Tesla. The state-of-the-art setup for concurrent TMS/fMRI is to use a large birdcage head coil, with the TMS between the subject's head and the MR coil. This setup has drawbacks in sensitivity, positioning, and available imaging techniques. In this study, an ultraslim 7-channel receive-only coil array for 3 T, which can be placed between the subject's head and the TMS, is presented. Interactions between the devices are investigated and the performance of the new setup is evaluated in comparison to the state-of-the-art setup. MR sensitivity obtained at the depth of the TMS stimulation is increased by a factor of five. Parallel imaging with an acceleration factor of two is feasible with low g-factors. Possible interactions between TMS and the novel hardware were investigated and were found negligible. The novel coil array is safe, strongly improves signal-to-noise ratio in concurrent TMS/fMRI experiments, enables parallel imaging, and allows for flexible positioning of the TMS on the head while ensuring efficient TMS stimulation due to its ultraslim design. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  17. Dosimetric evaluation for exposure of patient to a z-gradient coil in magnetic resonance imaging

    SciTech Connect

    Lu Mai; Ueno, Shoogo

    2011-04-01

    In magnetic resonance imaging, time-varied gradient magnetic fields may stimulate nerves and muscles by inducing electric fields and currents in patients, which may potentially cause health problems. In this paper, a realistic z-gradient coil was numerically designed and the exposure level in a 3D real human man model was calculated by using the impedance method. It was found that the z-gradient coil produces a magnetic flux density (B-field) with two regions of good homogeneity along the coil length, separated by a very weak B-field in the middle of the coil. The spatially averaged B-field is 281 times greater than that of the International Commission on Non-Ionizing Radiation Protection's (ICNIRP) reference level. The 1-cm{sup 2}-averaged induced current density in the central nervous system is 87 times greater than that of the ICNIRP's basic restriction. The maximum current density in all of the body tissues is above the nerve stimulation threshold.

  18. Three-dimensional magnetic nanoparticle imaging using small field gradient and multiple pickup coils

    NASA Astrophysics Data System (ADS)

    Sasayama, Teruyoshi; Tsujita, Yuya; Morishita, Manabu; Muta, Masahiro; Yoshida, Takashi; Enpuku, Keiji

    2017-04-01

    We propose a magnetic particle imaging (MPI) method based on third harmonic signal detection using a small field gradient and multiple pickup coils. First, we developed a system using two pickup coils and performed three-dimensional detection of two magnetic nanoparticle (MNP) samples, which were spaced 15 mm apart. In the experiments, an excitation field strength of 1.6 mT was used at an operating frequency of 3 kHz. A DC gradient field with a typical value of 0.2 T/m was also used to produce the so-called field-free line. A third harmonic signal generated by the MNP samples was detected using the two pickup coils, and the samples were then mechanically scanned to obtain field maps. The field maps were subsequently analyzed using the nonnegative least squares method to obtain three-dimensional position information for the MNP samples. The results show that the positions of the two MNP samples were estimated with good accuracy, despite the small field gradient used. Further improvement in MPI performance will be achieved by increasing the number of pickup coils used.

  19. Multi-mode Intravascular RF Coil for MRI-guided Interventions

    PubMed Central

    Kurpad, Krishna N.; Unal, Orhan

    2011-01-01

    Purpose To demonstrate the feasibility of using a single intravascular RF probe connected to the external MRI system via a single coaxial cable to perform active tip tracking and catheter visualization, and high SNR intravascular imaging. Materials and Methods A multi-mode intravascular RF coil was constructed on a 6F balloon catheter and interfaced to a 1.5T MRI scanner via a decoupling circuit. Bench measurements of coil impedances were followed by imaging experiments in saline and phantoms. Results The multi-mode coil behaves as an inductively-coupled transmit coil. Forward looking capability of 6mm is measured. Greater than 3-fold increase in SNR compared to conventional imaging using optimized external coil is demonstrated. Simultaneous active tip tracking and catheter visualization is demonstrated. Conclusions It is feasible to perform 1) active tip tracking, 2) catheter visualization, and 3) high SNR imaging using a single multi-mode intravascular RF coil that is connected to the external system via a single coaxial cable. PMID:21448969

  20. An orthogonal-based decoupling method for MRI phased array coil design.

    PubMed

    Li, Bing Keong; Wang, Hua; Trakic, Adnan; Engstrom, Craig; Weber, Ewald; Crozier, Stuart

    2012-06-01

    A new 2 T 3-element orthogonal knee coil array based on the three-dimensional orthogonality principle was designed, constructed and used in a series of pilot magnetic resonance imaging (MRI) studies on a standardized phantom, and human and pig knees. The coil elements within this new coil array are positioned orthogonal to one another allowing problematic mutual coupling effects to be minimized without the use of any passive mutual decoupling schemes. The proposed method is appropriate for the design of transmit, receive and/or transceive radiofrequency (RF) coil arrays for applications in animal/human MRI and spectroscopic studies. Experimental results demonstrated that the 3-element orthogonal knee coil array could be angled arbitrarily, including at 90°, relative to the main static magnetic field (B(0) ) whilst maintaining normal operation with minimal loss of efficiency and functionality. Initial trials with a pig knee specimen further showed that the greatest signal intensity in the patellar ligament (parallel collagen fibres) was observed when the orthogonal knee coil array and the pig knee specimen were angled at ~55° to B(0) , which may have potential uses in magic angle MR applications. Copyright © 2011 John Wiley & Sons, Ltd.

  1. Active-passive gradient shielding for MRI acoustic noise reduction.

    PubMed

    Edelstein, William A; Kidane, Tesfaye K; Taracila, Victor; Baig, Tanvir N; Eagan, Timothy P; Cheng, Yu-Chung N; Brown, Robert W; Mallick, John A

    2005-05-01

    An important source of MRI acoustic noise-magnet cryostat warm-bore vibrations caused by eddy-current-induced forces-can be mitigated by a passive metal shield mounted on the outside of a vibration-isolated, vacuum-enclosed shielded gradient set. Finite-element (FE) calculations for a z-gradient indicate that a 2-mm-thick Cu layer wrapped on the gradient assembly can decrease mechanical power deposition in the warm bore and reduce warm-bore acoustic noise production by about 25 dB. Eliminating the conducting warm bore and other magnet parts as significant acoustic noise sources could lead to the development of truly quiet, fully functioning MRI systems with noise levels below 70 dB.

  2. Design of a SENSE-optimized high-sensitivity MRI receive coil for brain imaging.

    PubMed

    de Zwart, Jacco A; Ledden, Patrick J; Kellman, Peter; van Gelderen, Peter; Duyn, Jeff H

    2002-06-01

    An 8-channel receive-only detector array was developed for SENSE MRI of human brain. The coil geometry was based on a gapped element design and used ultra-high impedance preamplifiers for mutual decoupling of the elements. Computer simulations of the electric and magnetic fields showed that excellent signal-to-noise ratio (SNR) and SENSE performance could be achieved by placing the coil elements close to the head and maintaining a substantial gap between the elements. Measurements with a 1.5 T prototype coil showed a 2.7-fold improvement of the SNR averaged over the brain compared to a conventional quadrature birdcage receive coil and an average geometrical noise amplification factor (g-value) of 1.06 and 1.38 for rate-2 and rate-3 SENSE, respectively. Published 2002 Wiley-Liss, Inc.

  3. High resolution MRI imaging at 1. 5T using surface coils

    SciTech Connect

    Blinder, R.A.; Herfkens, R.J.; Coleman, R.E.; Johnson, G.A.; Schenck, J.F.; Hart, H.R. Jr.; Foster, T.H.; Edelstein, W.A.

    1985-05-01

    The potential utility of high resolution MRI imaging in various pathologic conditions was explored. As the voxel size of MRI images is decreased the signal per pixel diminishes due to the geometric decrease in volume. In very high resolution images the signal can be small enough to be obscured by Johnson noise. High magnetic field strength (1.5T) coupled with surface coil imaging increases the signal to noise ratio. The surface coils used were single turn coils with diameters of 6 or 11 cm depending on the body part being imaged. A ''clam shell'' crossed coil was used for imaging the knees. Using a 1.5T prototype MRI imaging system we have obtained images with 14.5 cm field of view that are 256 by 256 pixels with a slice thickness of 3 mm. Good signal to noise is obtained using 2DTF imaging with only 2 excitations per phase encoding step (1 average). Images obtained of peripheral joints demonstrate articular cartilage, ligamentous structures, and trabeculae in medullary bone. These exams have demonstrated the changes of rheumatoid arthritis, and the extent of neoplastic involvement in bone. Images of the temporomandibular joint and the neck have been obtained. Parathyroid adenomas have been identified. Surface coil imaging and high magnetic fields allow for high resolution MRI imaging of various anatomic structures. Good signal to noise can be accomplished without extensive signal averaging so that reasonable imaging times and throughput can be realized with voxel dimensions of 0.6 x 0.6 x 3mm.

  4. Correction of concomitant gradient artifacts in experimental microtesla MRI.

    PubMed

    Myers, Whittier R; Mössle, Michael; Clarke, John

    2005-12-01

    Magnetic resonance imaging (MRI) suffers from artifacts caused by concomitant gradients when the product of the magnetic field gradient and the dimension of the sample becomes comparable to the static magnetic field. To investigate and correct for these artifacts at very low magnetic fields, we have acquired MR images of a 165-mm phantom in a 66-microT field using gradients up to 350 microT/m. We prepolarize the protons in a field of about 100 mT, apply a spin-echo pulse sequence, and detect the precessing spins using a superconducting gradiometer coupled to a superconducting quantum interference device (SQUID). Distortion and blurring are readily apparent at the edges of the images; by comparing the experimental images to computer simulations, we show that concomitant gradients cause these artifacts. We develop a non-perturbative, post-acquisition phase correction algorithm that eliminates the effects of concomitant gradients in both the simulated and the experimental images. This algorithm assumes that the switching time of the phase-encoding gradient is long compared to the spin precession period. In a second technique, we demonstrate that raising the precession field during phase encoding can also eliminate blurring caused by concomitant phase-encoding gradients; this technique enables one to correct concomitant gradient artifacts even when the detector has a restricted bandwidth that sets an upper limit on the precession frequency. In particular, the combination of phase correction and precession field cycling should allow one to add MRI capabilities to existing 300-channel SQUID systems used to detect neuronal currents in the brain because frequency encoding could be performed within the 1-2 kHz bandwidth of the readout system.

  5. Occupational exposure measurements of static and pulsed gradient magnetic fields in the vicinity of MRI scanners.

    PubMed

    Kännälä, Sami; Toivo, Tim; Alanko, Tommi; Jokela, Kari

    2009-04-07

    Recent advances in magnetic resonance imaging (MRI) have increased occupational exposure to magnetic fields. In this study, we examined the assessment of occupational exposure to gradient magnetic fields and time-varying magnetic fields generated by motion in non-homogeneous static magnetic fields of MRI scanners. These magnetic field components can be measured simultaneously with an induction coil setup that detects the time rate of change of magnetic flux density (dB/dt). The setup developed was used to measure the field components around two MRI units (1 T open and 3 T conventional). The measured values can be compared with dB/dt reference levels derived from magnetic flux density reference levels given by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The measured motion-induced dB/dt values were above the dB/dt reference levels for both MRI units. The measured values for the gradient fields (echo planar imaging (EPI) and fast field echo (FFE) sequences) also exceeded the dB/dt reference levels in positions where the medical staff may have access during interventional procedures. The highest motion-induced dB/dt values were 0.7 T s(-1) for the 1 T scanner and 3 T s(-1) for the 3 T scanner when only the static field was present. Even higher values (6.5 T s(-1)) were measured for simultaneous exposure to motion-induced and gradient fields in the vicinity of the 3 T scanner.

  6. Use of high-resolution microscopy coil MRI for depicting orbital anatomy.

    PubMed

    Georgouli, Theodora; Chang, Bernard; Nelson, Michael; James, Teifi; Tanner, Steven; Shelley, David; Saldana, Manuel; McGonagle, Dennis

    2008-01-01

    High-resolution MRI (HR-MRI) is a powerful non-invasive tool that provides images of higher spatial resolution and enables visualization of tissues previously unidentified with conventional techniques. The utilization of HR-MRI in the eye and orbit is essential due to the minute structure with great tissue diversity. The purpose of this study is to investigate the use of a novel surface coil and to explore the potential of this approach to depict normal anatomy. MR images were acquired using a commonly available 1.5T scanner. Ten normal volunteers were imaged using a surface microscopy coil of 47 mm inner diameter. T1- and T2-weighting and fat suppression techniques were used. HR-MR images were compared with conventional head coil MR images. Overall exquisite anatomic detail of the eye and orbit is revealed. The in-plane resolution was 312 microm and the displayed pixel dimension 156 microm. Previously unobserved distinction of the globe layers and muscle groups is possible. To our best knowledge, our group was the first to demonstrate Tenon's capsule and the tarsal plate with MRI. The ciliary body and zonules of the lens are clearly visible. The superior muscle group is illustrated, being apparently divided into its components, namely the superior rectus and the levator palpebrae superioris muscles. Finally, the retrobulbar fat and parts of its connective tissue are depicted. High-resolution microscopy coil MRI improves the image resolution dramatically and enables a detailed tissue depiction of the orbital and globe structures. Therefore, its introduction in routine clinical use can facilitate diagnosis and pre-operative planning in challenging cases.

  7. An analysis of the gradient-induced electric fields and current densities in human models when situated in a hybrid MRI-LINAC system.

    PubMed

    Liu, Limei; Trakic, Adnan; Sanchez-Lopez, Hector; Liu, Feng; Crozier, Stuart

    2014-01-06

    MRI-LINAC is a new image-guided radiotherapy treatment system that combines magnetic resonance imaging (MRI) with a linear accelerator (LINAC) in a single unit. One drawback is that the pulsing of the split gradient coils of the system induces an electric field and currents in the patient which need to be predicted and evaluated for patient safety. In this novel numerical study the in situ electric fields and associated current densities were evaluated inside tissue-accurate male and female human voxel models when a number of different split-geometry gradient coils were operated. The body models were located in the MRI-LINAC system along the axial and radial directions in three different body positions. Each model had a region of interest (ROI) suitable for image-guided radiotherapy. The simulation results show that the amplitudes and distributions of the field and current density induced by different split x-gradient coils were similar with one another in the ROI of the body model, but varied outside of the region. The fields and current densities induced by a split classic coil with the surface unconnected showed the largest deviation from those given by the conventional non-split coils. Another finding indicated that the distributions of the peak current densities varied when the body position, orientation or gender changed, while the peak electric fields mainly occurred in the skin and fat tissues.

  8. Fast Electromagnetic Analysis of MRI Transmit RF Coils Based on Accelerated Integral Equation Methods.

    PubMed

    Villena, Jorge Fernandez; Polimeridis, Athanasios G; Eryaman, Yigitcan; Adalsteinsson, Elfar; Wald, Lawrence L; White, Jacob K; Daniel, Luca

    2016-11-01

    A fast frequency domain full-wave electromagnetic simulation method is introduced for the analysis of MRI coils loaded with the realistic human body models. The approach is based on integral equation methods decomposed into two domains: 1) the RF coil array and shield, and 2) the human body region where the load is placed. The analysis of multiple coil designs is accelerated by introducing the precomputed magnetic resonance Green functions (MRGFs), which describe how the particular body model used responds to the incident fields from external sources. These MRGFs, which are precomputed once for a given body model, can be combined with any integral equation solver and reused for the analysis of many coil designs. This approach provides a fast, yet comprehensive, analysis of coil designs, including the port S-parameters and the electromagnetic field distribution within the inhomogeneous body. The method solves the full-wave electromagnetic problem for a head array in few minutes, achieving a speed up of over 150 folds with root mean square errors in the electromagnetic field maps smaller than 0.4% when compared to the unaccelerated integral equation-based solver. This enables the characterization of a large number of RF coil designs in a reasonable time, which is a first step toward an automatic optimization of multiple parameters in the design of transmit arrays, as illustrated in this paper, but also receive arrays.

  9. A 64-channel 3T array coil for accelerated brain MRI.

    PubMed

    Keil, Boris; Blau, James N; Biber, Stephan; Hoecht, Philipp; Tountcheva, Veneta; Setsompop, Kawin; Triantafyllou, Christina; Wald, Lawrence L

    2013-07-01

    A 64-channel brain array coil was developed and compared to a 32-channel array constructed with the same coil former geometry to precisely isolate the benefit of the 2-fold increase in array coil elements. The constructed coils were developed for a standard clinical 3T MRI scanner and used a contoured head-shaped curved former around the occipital pole and tapered in at the neck to both improve sensitivity and patient comfort. Additionally, the design is a compact, split-former design intended for robust daily use. Signal-to-noise ratio and noise amplification (G-factor) for parallel imaging were quantitatively evaluated in human imaging and compared to a size and shape-matched 32-channel array coil. For unaccelerated imaging, the 64-channel array provided similar signal-to-noise ratio in the brain center to the 32-channel array and 1.3-fold more signal-to-noise ratio in the brain cortex. Reduced noise amplification during highly parallel imaging of the 64-channel array provided the ability to accelerate at approximately one unit higher at a given noise amplification compared to the sized-matched 32-channel array. For example, with a 4-fold acceleration rate, the central brain and cortical signal-to-noise ratio of the 64-channel array was 1.2- and 1.4-fold higher, respectively, compared to the 32-channel array. The characteristics of the coil are demonstrated in accelerated brain imaging. Copyright © 2012 Wiley Periodicals, Inc.

  10. A 64-channel 3T array coil for accelerated brain MRI

    PubMed Central

    Keil, Boris; Blau, James N.; Biber, Stephan; Hoecht, Philipp; Tountcheva, Veneta; Setsompop, Kawin; Triantafyllou, Christina; Wald, Lawrence L.

    2012-01-01

    A 64-channel brain array coil was developed and compared to a 32-channel array constructed with the same coil former geometry in order to precisely isolate the benefit of the two-fold increase in array coil elements. The constructed coils were developed for a standard clinical 3T MRI scanner and used a contoured head-shape curved former around the occipital pole and tapered in at the neck to both improve sensitivity and patient comfort. Additionally, the design is a compact, split-former design intended for robust daily use. Signal-to-noise ratio (SNR) and noise amplification (G-factor) for parallel imaging were quantitatively evaluated in human imaging and compared to a size and shape-matched 32-channel array coil. For unaccelerated imaging, the 64-channel array provided similar SNR in the brain center to the 32-channel array and 1.3-fold more SNR in the brain cortex. Reduced noise amplification during highly parallel imaging of the 64-channel array provided the ability to accelerate at approximately one unit higher at a given noise amplification compared to the sized-matched 32-channel array. For example, with a 4-fold acceleration rate, the central brain and cortical SNR of the 64-channel array was 1.2 and 1.4-fold higher, respectively, compared to the 32-channel array. The characteristics of the coil are demonstrated in accelerated brain imaging. PMID:22851312

  11. Interaction of MRI field gradients with the human body.

    PubMed

    Glover, P M

    2009-11-07

    In this review, the effects of low-frequency electromagnetic fields encountered specifically during magnetic resonance imaging (MRI) are examined. The primary biological effect at frequencies of between 100 and 5000 Hz (typical of MRI magnetic field gradient switching) is peripheral nerve stimulation, the result of which can be a mild tingling and muscle twitching to a sensation of pain. The models for nerve stimulation and how they are related to the rate of change of magnetic field are examined. The experimental measurements, and analytic and computational modelling work in this area are reviewed. The review concludes with a discussion of current regulation in this area and current practice as both are applied to MRI.

  12. Black body and transverse electromagnetic resonators operating at 340 MHz: volume RF coils for ultra high field MRI.

    PubMed

    Robitaille, P M

    1999-01-01

    The purpose of this work was to describe the newly formulated black body (BB) resonator with historical perspective and to outline the construction and assembly of the transverse electromagnetic (TEM) RF coil for use in ultra high field MRI (UHFMRI) studies at 340 MHz. TEM and BB resonators were machined from acrylic and Teflon tubing, copper foil, and brass connectors. Tuning was accomplished through adjustable TEM elements. Variable Teflon-based capacitors were utilized to provide matching to the 50 omega line. The TEM resonator operated in quadrature, and the BB resonator operated in linear mode. The final resonators were fully adjustable from 63 to 430 MHz. Quality (Q) values were measured using a network analyzer over this frequency range for the unloaded and loaded coils. Coil performance was also evaluated using gradient and spin echo imaging at 8 T. Both resonators yielded excellent images from mineral oil phantoms, with good homogeneity throughout the imaging volume. The BB resonator was characterized with enhanced signal-to-noise ratio and greatly reduced RF power requirements relative to the TEM resonator. Images obtained from the human head at 8 T with the TEM resonator were also excellent. Tuning remains a tedious process. The TEM resonator provides an excellent RF coil for imaging studies up to 340 MHz. Its homogeneity reliability remains to be improved. In part as a result of its inability to sustain radiative loses, the BB resonator has extremely low RF power requirements. The BB resonator may have important uses in limiting RF power requirements and enhancing signal-to-noise ratio at other frequencies. Larger slightly modified versions may also prove useful in human imaging, depending on tolerances and final quality factors.

  13. An MRI receiver coil produced by inkjet printing directly on to a flexible substrate.

    PubMed

    Mager, Dario; Peter, Andreas; Tin, Laura Del; Fischer, Elmar; Smith, Patrick J; Hennig, Jürgen; Korvink, Jan G

    2010-02-01

    Inkjet printing has been used to produce resonant radio frequency coils that are comparable to those produced by conventional printed circuit board (PCB) methods. The coils, which consist of a conductive loop and in-series capacitors, form part of a receiver circuit that is used for magnetic resonance imaging (MRI). The resonant circuit is selective at the predetermined frequency of 400 MHz. The required electrical components (resistor, capacitor, and inductor) were produced by inkjet printing, with scaling experiments for resistor and capacitor performed before the complete loops with integrated capacitors were printed. Numerical simulation was used to determine the required values for the components. The inkjet printed circuit was combined with a small tuning and matching board before being connected to a network analyzer and the MRI hardware. With a matching of - 38 dB at 400 MHz the achieved results were comparable to those from standard PCB techniques. The performance of the inkjet printed component as a receiver device for nuclear magnetic resonance and MRI was verified by imaging reference phantoms and a whole kiwifruit; it compares favorably to standard MRI devices. Inkjet printing can, therefore, be considered a feasible technique for producing MRI receiver circuits on flexible substrates.

  14. Modular 32-channel transceiver coil array for cardiac MRI at 7.0T.

    PubMed

    Graessl, Andreas; Renz, Wolfgang; Hezel, Fabian; Dieringer, Matthias A; Winter, Lukas; Oezerdem, Celal; Rieger, Jan; Kellman, Peter; Santoro, Davide; Lindel, Tomasz D; Frauenrath, Tobias; Pfeiffer, Harald; Niendorf, Thoralf

    2014-07-01

    To design and evaluate a modular transceiver coil array with 32 independent channels for cardiac MRI at 7.0T. The modular coil array comprises eight independent building blocks, each containing four transceiver loop elements. Numerical simulations were used for B1 (+) field homogenization and radiofrequency (RF) safety validation. RF characteristics were examined in a phantom study. The array's suitability for accelerated high spatial resolution two-dimensional (2D) FLASH CINE imaging of the heart was examined in a volunteer study. Transmission field adjustments and RF characteristics were found to be suitable for the volunteer study. The signal-to-noise intrinsic to 7.0T together with the coil performance afforded a spatial resolution of 1.1 × 1.1 × 2.5 mm(3) for 2D CINE FLASH MRI, which is by a factor of 6 superior to standardized CINE protocols used in clinical practice at 1.5T. The 32-channel transceiver array supports one-dimensional acceleration factors of up to R = 4 without impairing image quality significantly. The modular 32-channel transceiver cardiac array supports accelerated and high spatial resolution cardiac MRI. The array is compatible with multichannel transmission and provides a technological basis for future clinical assessment of parallel transmission techniques at 7.0T. Copyright © 2013 Wiley Periodicals, Inc.

  15. (1) H-(13) C independently tuned radiofrequency surface coil applied for in vivo hyperpolarized MRI.

    PubMed

    Cao, Peng; Zhang, Xiaoliang; Park, Ilwoo; Najac, Chloe; Nelson, Sarah J; Ronen, Sabrina; Larson, Peder E Z

    2016-11-01

    To develop a lump-element double-tuned common-mode-differential-mode (CMDM) radiofrequency (RF) surface coil with independent frequency tuning capacity for MRS and MRI applications. The presented design has two modes that can operate with different current paths, allowing independent frequency adjustment. The coil prototype was tested on the bench and then examined in phantom and in vivo experiments. Standard deviations of frequency and impedance fluctuations measured in one resonator, while changing the tuning capacitor of another resonator, were less than 13 kHz and 0.55 Ω. The unloaded S21 was -36 dB and -41 dB, while the unloaded Q factor was 260 and 287, for (13) C and (1) H, respectively. In vivo hyperpolarized (13) C MR spectroscopy data demonstrated the feasibility of using the CMDM coil to measure the dynamics of lactate, alanine, pyruvate and bicarbonate signal in a normal rat head along with acquiring (1) H anatomical reference images. Independent frequency tuning capacity was demonstrated in the presented lump-element double-tuned CMDM coil. This CMDM coil maintained intrinsically decoupled magnetic fields, which provided sufficient isolation between the two resonators. The results from in vivo experiments demonstrated high sensitivity of both the (1) H and (13) C resonators. Magn Reson Med 76:1612-1620, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.

  16. A 20-Channel Receive-Only Mouse Array Coil for a 3T Clinical MRI System

    PubMed Central

    Keil, Boris; Wiggins, Graham C.; Triantafyllou, Christina; Wald, Lawrence L.; Meise, Florian M.; Schreiber, Laura M.; Klose, Klaus J.; Heverhagen, Johannes T.

    2010-01-01

    A 20-channel phased-array coil for Magnetic Resonance Imaging (MRI) of mice has been designed, constructed and validated with bench measurements and high resolution accelerated imaging. The technical challenges of designing a small, high density array have been overcome using individual small-diameter coil elements arranged on a cylinder in a hexagonal overlapping design with adjacent low impedance preamplifiers to further decouple the array elements. Signal-to-noise ratio (SNR) and noise amplification in accelerated imaging were simulated and quantitatively evaluated in phantoms and in vivo mouse images. Comparison between the 20-channel mouse array and a length-matched quadrature driven small animal birdcage coil showed an SNR increase at the periphery and in the center of the phantom of 3-fold and 1.3-fold, respectively. Comparison to a shorter but SNR-optimized birdcage coil (aspect ratio 1:1 and only half mouse coverage) showed an SNR gain of 2-fold at the edge of the phantom and similar SNR in the center. G-factor measurements indicate that the coil is well suited to acquire highly accelerated images. PMID:21433066

  17. A 20-channel receive-only mouse array coil for a 3 T clinical MRI system.

    PubMed

    Keil, Boris; Wiggins, Graham C; Triantafyllou, Christina; Wald, Lawrence L; Meise, Florian M; Schreiber, Laura M; Klose, Klaus J; Heverhagen, Johannes T

    2011-08-01

    A 20-channel phased-array coil for MRI of mice has been designed, constructed, and validated with bench measurements and high-resolution accelerated imaging. The technical challenges of designing a small, high density array have been overcome using individual small-diameter coil elements arranged on a cylinder in a hexagonal overlapping design with adjacent low impedance preamplifiers to further decouple the array elements. Signal-to-noise ratio (SNR) and noise amplification in accelerated imaging were simulated and quantitatively evaluated in phantoms and in vivo mouse images. Comparison between the 20-channel mouse array and a length-matched quadrature driven small animal birdcage coil showed an SNR increase at the periphery and in the center of the phantom of 3- and 1.3-fold, respectively. Comparison with a shorter but SNR-optimized birdcage coil (aspect ratio 1:1 and only half mouse coverage) showed an SNR gain of twofold at the edge of the phantom and similar SNR in the center. G-factor measurements indicate that the coil is well suited to acquire highly accelerated images. Copyright © 2011 Wiley-Liss, Inc.

  18. Design of an Electrically Automated RF Transceiver Head Coil in MRI

    PubMed Central

    Sohn, Sung-Min; DelaBarre, Lance; Gopinath, Anand; Vaughan, John Thomas

    2015-01-01

    Magnetic resonance imaging (MRI) is a widely used nonionizing and noninvasive diagnostic instrument to produce detailed images of the human body. The radio-frequency (RF) coil is an essential part of MRI hardware as an RF front-end. RF coils transmit RF energy to the subject and receive the returning MR signal. This paper presents an MRI-compatible hardware design of the new automatic frequency tuning and impedance matching system. The system automatically corrects the detuned and mismatched condition that occurs due to loading effects caused by the variable subjects (i.e., different human heads or torsos). An eight-channel RF transceiver head coil with the automatic system has been fabricated and tested at 7 Tesla (T) MRI system. The automatic frequency tuning and impedance matching system uses digitally controlled capacitor arrays with real-time feedback control capability. The hardware design is not only compatible with current MRI scanners in all aspects but also it operates the tuning and matching function rapidly and accurately. The experimental results show that the automatic function increases return losses from 8.4 dB to 23.7 dB (maximum difference) and from 12.7 dB to 19.6 dB (minimum difference) among eight channels within 550 ms. The reflected RF power decrease from 23.1 % to 1.5 % (maximum difference) and from 5.3 % to 1.1 % (minimum difference). Therefore, these results improve signal-to-noise ratio (SNR) in MR images with phantoms. PMID:25361512

  19. Design of an Electrically Automated RF Transceiver Head Coil in MRI.

    PubMed

    Sohn, Sung-Min; DelaBarre, Lance; Gopinath, Anand; Vaughan, John Thomas

    2015-10-01

    Magnetic resonance imaging (MRI) is a widely used nonionizing and noninvasive diagnostic instrument to produce detailed images of the human body. The radio-frequency (RF) coil is an essential part of MRI hardware as an RF front-end. RF coils transmit RF energy to the subject and receive the returning MR signal. This paper presents an MRI-compatible hardware design of the new automatic frequency tuning and impedance matching system. The system automatically corrects the detuned and mismatched condition that occurs due to loading effects caused by the variable subjects (i.e., different human heads or torsos). An eight-channel RF transceiver head coil with the automatic system has been fabricated and tested at 7 Tesla (T) MRI system. The automatic frequency tuning and impedance matching system uses digitally controlled capacitor arrays with real-time feedback control capability. The hardware design is not only compatible with current MRI scanners in all aspects but also it operates the tuning and matching function rapidly and accurately. The experimental results show that the automatic function increases return losses from 8.4 dB to 23.7 dB (maximum difference) and from 12.7 dB to 19.6 dB (minimum difference) among eight channels within 550 ms . The reflected RF power decrease from 23.1% to 1.5% (maximum difference) and from 5.3% to 1.1% (minimum difference). Therefore, these results improve signal-to-noise ratio (SNR) in MR images with phantoms.

  20. WE-G-217A-05: Automatic Method for RF Coil Assessment in Clinical MRI: A Three-Dimensional Approach.

    PubMed

    Peng, Q

    2012-06-01

    MRI RF coil assessment is usually evaluated with region-of-interest (ROI) analysis from a single 2D phantom image. This simple approach has worked well for large volume coils or phased-array coil with large receivers, but not the high density phased-array coils characterized by 3D array arrangement of their multiple receivers. This abstract proposes a novel approach for quantitative coil assessment based on 3D imaging and 3D ROI analysis. To characterize all receivers of the coil of interest, a large uniform phantom (preferably a corresponding anthropometric phantom) and a large 3D geometric coverage fully includes the coil sensitivity volume was applied during MR imaging. After imaging, data from all receivers were used to reconstruct a composite 3D image, and to reconstruct 3D images from each individual receiver, leading to a total of N+1 3D image datasets (where N is the number of coil channels). IDL programs were developed to automatically perform ROI analysis on the composite image and on the individual receiver images. Instead of choosing one single 2D slice out of each 3D dataset, the whole 3D dataset was treated as a 3D image, and 3D ROIs were automatically generated for coil assessment. This 3D coil evaluation approach could be applied to all clinical coils including quadrature body/head coils, and phased-array coils with 2 to 32 channels. 3D sensitivity map could be generated to check receiver function visually. 3D mean SNR, max SNR, and uniformity could be obtained from composite and individual channel 3D images fully automatically. Coil/receiver performance assessment was very fast and straightforward, regardless of the number of receivers of the coil. 3D imaging in combination with 3D automatic ROI analysis is a fast, convenient, and less subjective approach for quantitative coil assessment, particularly for high density phased-array coils. © 2012 American Association of Physicists in Medicine.

  1. Motion Correction using Coil Arrays (MOCCA) for Free-Breathing Cardiac Cine MRI

    PubMed Central

    Hu, Peng; Hong, Susie; Moghari, Mehdi H.; Goddu, Beth; Goepfert, Lois; Kissinger, Kraig V.; Hauser, Thomas H.; Manning, Warren J; Nezafat, Reza

    2014-01-01

    In this study, we present a motion compensation technique based on coil arrays (MOCCA) and evaluate its application in free-breathing respiratory self-gated cine MRI. MOCCA takes advantages of the fact that motion-induced changes in k-space signal are modulated by individual coil sensitivity profiles. In the proposed implementation of MOCCA self-gating for free-breathing cine MRI, the k-space center line is acquired at the beginning of each k-space segment for each cardiac cycle with 4 repetitions. For each k-space segment, the k-space center line acquired immediately before was used to select one of the 4 acquired repetitions to be included in the final self-gated cine image by calculating the cross-correlation between the k-space center line with a reference line. The proposed method was tested on a cohort of healthy adult subjects for subjective image quality and objective blood-myocardium border sharpness. The method was also tested on a cohort of patients to compare the left and right ventricular volumes and ejection fraction measurements with that of standard breath-hold cine MRI. Our data indicate that the proposed MOCCA method provides significantly improved image quality and sharpness compared to free-breathing cine without respiratory self-gating, and provides similar volume measurements compared with breath-hold cine MRI. PMID:21773986

  2. Magnetic wall decoupling method for monopole coil array in ultrahigh field MRI: a feasibility test.

    PubMed

    Yan, Xinqiang; Zhang, Xiaoliang; Wei, Long; Xue, Rong

    2014-04-01

    Ultrahigh field (UHF) MR imaging of deeply located target in high dielectric biological samples faces challenges due to the reduced penetration depth at the corresponding high frequencies. Radiative coils, e.g., dipole and monopole coils, have recently been applied for UHF MRI applications to obtain better signal-noise-ratio (SNR) in the area deep inside the human head and body. However, due to the unique structure of radiative coil elements, electromagnetic (EM) coupling between elements in radiative coil arrays cannot be readily addressed by using traditional decoupling methods such as element overlapping and L/C decoupling network. A new decoupling method based on induced current elimination (ICE) or magnetic wall technique has recently been proposed and has demonstrated feasibility in designing microstrip transmission line (MTL) arrays and L/C loop arrays. In this study, an array of two monopole elements decoupled using magnetic wall decoupling technique was designed, constructed and analyzed numerically and experimentally to investigate the feasibility of the decoupling technique in radiative coil array designs for MR imaging at 7 T. An L-shaped capacitive network was employed as the matching circuit and the reflection coefficients (S11) of the monopole element achieved -30 dB or better. Isolation between the two monopole elements was improved from about -10 dB (without decoupling treatment) to better than -30 dB with the ICE/magnetic wall decoupling method. B1 maps and MR images of the phantom were acquired and SNR maps were measured and calculated to evaluate the performance of the ICE/magnetic wall decoupling method. Compared with the monopole elements without decoupling methods, the ICE-decoupled array demonstrated more independent image profiles from each element and had a higher SNR in the peripheral area of the imaging subject. The experimental and simulation results indicate that the ICE/magnetic wall decoupling technique might be a promising solution

  3. Longitudinal gradient coils with enhanced radial uniformity in restricted diameter: Single-current and multiple-current approaches.

    PubMed

    Romero, Javier A; Domínguez, Gabriela A; Anoardo, Esteban

    2017-03-01

    An important requirement for a gradient coil is that the uniformity of the generated magnetic field gradient should be maximal within the active volume of the coil. For a cylindrical geometry, the radial uniformity of the gradient turns critic, particularly in cases where the gradient-unit has to be designed to fit into the inner bore of a compact magnet of reduced dimensions, like those typically used in fast-field-cycling NMR. In this paper we present two practical solutions aimed to fulfill this requirement. We propose a matrix-inversion optimization algorithm based on the Biot-Savart law, that using a proper cost function, allows maximizing the uniformity of the gradient and power efficiency. The used methodology and the simulation code were validated in a single-current design, by comparing the computer simulated field map with the experimental data measured in a real prototype. After comparing the obtained results with the target field approach, a multiple-element coil driven by independent current sources is discussed, and a real prototype evaluated. Opposed equispaced independent windings are connected in pairs conforming an arrangement of independent anti-Helmholtz units. This last coil seizes 80% of its radial dimension with a gradient uniformity better than 5%. The design also provides an adaptable region of uniformity along with adjustable coil efficiency.

  4. Longitudinal gradient coils with enhanced radial uniformity in restricted diameter: Single-current and multiple-current approaches

    NASA Astrophysics Data System (ADS)

    Romero, Javier A.; Domínguez, Gabriela A.; Anoardo, Esteban

    2017-03-01

    An important requirement for a gradient coil is that the uniformity of the generated magnetic field gradient should be maximal within the active volume of the coil. For a cylindrical geometry, the radial uniformity of the gradient turns critic, particularly in cases where the gradient-unit has to be designed to fit into the inner bore of a compact magnet of reduced dimensions, like those typically used in fast-field-cycling NMR. In this paper we present two practical solutions aimed to fulfill this requirement. We propose a matrix-inversion optimization algorithm based on the Biot-Savart law, that using a proper cost function, allows maximizing the uniformity of the gradient and power efficiency. The used methodology and the simulation code were validated in a single-current design, by comparing the computer simulated field map with the experimental data measured in a real prototype. After comparing the obtained results with the target field approach, a multiple-element coil driven by independent current sources is discussed, and a real prototype evaluated. Opposed equispaced independent windings are connected in pairs conforming an arrangement of independent anti-Helmholtz units. This last coil seizes 80% of its radial dimension with a gradient uniformity better than 5%. The design also provides an adaptable region of uniformity along with adjustable coil efficiency.

  5. An improved hybrid MoM/FDTD technique for MRI RF coils modeling using Huygen's equivalent surface method.

    PubMed

    Li, Bing Keong; Liu, Feng; Weber, Ewald; Padhi, Shantanu; Crozier, Stuart

    2007-01-01

    In this work, an improved hybrid MoM/FDTD algorithm for modeling low to ultra high field MRI RF coil/sample interactions has been proposed. In our previous hybrid MoM/FDTD method, the accuracy of modeling MRI RF coils is generally hindered by two major issues, staircasing errors and rough approximation of the coil current distortions by electromagnetic reflections from sample. In view of this, a Huygen's equivalent surface method has been proposed to effectively bridge MoM and FDTD. In the improved hybrid MoM/FDTD algorithm, staircasing errors are eliminated, and most importantly the complex coil/tissue interactions are explicitly accounted for. The accuracy of the improved hybrid MoM/FDTD method is numerically verified with a well established hybrid Green function/MoM solution and also experimentally underpinned with MR images obtained using a prototype rotary phased array head coil.

  6. An inverse design of an open, head/neck RF coil for MRI.

    PubMed

    Lawrence, Ben G; Crozier, Stuart; Cowin, Gary; Yau, Desmond D

    2002-09-01

    Radio-frequency (RF) coils are a necessary component of magnetic resonance imaging (MRI) systems. When used in transmit operation, they act to generate a homogeneous RF magnetic field within a volume of interest and when in receive operation, they act to receive the nuclear magnetic resonance signal from the RF-excited specimen. This paper outlines a procedure for the design of open RF coils using the time-harmonic inverse method. This method entails the calculation of an ideal current density on a multipaned planar surface that would generate a specified magnetic field within the volume of interest. Because of the averaging effect of the regularization technique in the matrix solution, the specified magnetic field is shaped within an iterative procedure until the generated magnetic field matches the desired magnetic field. The stream-function technique is used to ascertain conductor positions and a method of moments package is then used to finalize the design. An open head/neck coil was designed to operate in a clinical 2T MRI system and the presented results prove the efficacy of this design methodology.

  7. 3D gradient system for two B0 field directions in earth's field MRI.

    PubMed

    Lother, Steffen; Hoelscher, Uvo; Kampf, Thomas; Jakob, Peter; Fidler, Florian

    2013-12-01

    A new gradient system for earth's field magnetic resonance imaging (EFMRI) is presented that can be rotated relatively to the earth's field direction while maintaining the ability to encode images. Orthogonal components of the gradient field are exploited to reduce the number of gradient coils. Two favorable orientations of the gradient system relative to the earth's magnetic field (parallel and perpendicular) are discussed. We introduce the theory for the magnetic fields of the new gradient system and illustrate the design of the coil geometries which were worked out with the help of simulations and a numerical optimization algorithm. Field mapping measurements and imaging experiments in the two different orientations of the gradient system were carried out. Orthogonal components of the gradient field take over the role of the additionally needed gradient fields when the gradient system is rotated relative to the earth's magnetic field. The results from the field mapping and imaging experiments verify the presented theory and show the functionality of the new gradient system. The presented system demonstrates that gradient coils can be used for image encoding in multiple directions. This fact can be exploited to realize an EFMRI setup for parallel and perpendicular prepolarization with a single set of gradient coils.

  8. Potential impact of a 32-channel receiving head coil technology on the results of a functional MRI paradigm.

    PubMed

    Albrecht, J; Burke, M; Haegler, K; Schöpf, V; Kleemann, A M; Paolini, M; Wiesmann, M; Linn, J

    2010-12-01

    The authors investigated the potential of a 32-channel (32ch) receiving head coil for functional magnetic resonance imaging (fMRI) compared to a standard eight-channel (8ch) coil using a motor task. Brain activation was analyzed in 14 healthy right-handed subjects performing finger tapping with the right index finger (block design) during two experimental sessions, one with the 8ch and one with the 32ch coil (applied in a pseudorandomized order). Additionally, a phantom study was performed to compare signal-to-noise ratios (SNRs) of both coils. During both fMRI sessions, analysis of motor conditions resulted in an activation of the left "hand knob" (precentral gyrus). Application of the 32ch coil obtained additional activation clusters in the right cerebellum, left superior frontal gyrus (SMA), left supramarginal gyrus, and left postcentral gyrus. The phantom study revealed a significantly higher SNR for the 32ch coil compared to the 8ch coil in superficial cortical areas located near the surface of the brain. The 32ch technology has a potential impact on fMRI studies, especially in paradigms that result in activation of cortical areas located near the surface of the brain.

  9. Four-dimensional flow-sensitive MRI of the thoracic aorta: 12- versus 32-channel coil arrays.

    PubMed

    Stalder, Aurélien F; Dong, Zhiyuan; Yang, Qi; Bock, Jelena; Hennig, Jürgen; Markl, Michael; Li, Kuncheng

    2012-01-01

    To evaluate the performance of four-dimensional (4D) flow-sensitive MRI in the thoracic aorta using 12- and 32-channel coils and parallel imaging. 4D flow-sensitive MRI was performed in the thoracic aorta of 11 healthy volunteers at 3 Tesla (T) using different coils and parallel imaging (GRAPPA) accelerations (R): (i) 12-channel coil, R = 2; (ii) 12-channel coil, R = 3; (iii) 32-channel coil, R = 3. The quantitative analysis included SNR, residual velocity divergence and length and curvature of traces (streamlines and pathlines) as used for 3D flow visualization. In addition, semi-quantitative image grading was performed to assess quality of phase-contrast angiography and 3D flow visualization. Parallel imaging with an acceleration factor R = 3 allowed to save 19.5 ± 5% measurement time compared with R = 2 (14.2 ± 2.4 min). Acquisition using 12 channels with R = 2 and 32 channels with R = 3 produced data with significantly (P < 0.05) higher quality compared with 12 channels and R = 3. There was no significant difference between 12 channels with R = 2 and 32 channels with R = 3 but for the depiction of supra-aortic branches where the 32-channel coil proved superior. Using 32-channel coils is beneficial for 4D flow-sensitive MRI of the thoracic aorta and can allow for a reduction of total scan time while maintaining overall image quality. Copyright © 2011 Wiley Periodicals, Inc.

  10. A new holder and surface MRI coil for the examination of the newborn infant hip.

    PubMed

    Krasny, R; Casser, H R; Requardt, H; Botschek, A

    1993-01-01

    A special holder was developed for examination of the infant hip joint using MRI. This holder allows the infant hip joint to be examined both in a neutral position and in various defined functional positions. A special integrated surface coil, also developed for this purpose, provides the high spatial resolution required for assessment of the fine joint structures. Thirty infants were examined and the new device has proved useful in advanced hip dysplasia, therapy-resistant subluxation and luxation, and for operative therapy planning (reconstruction of the acetabular roof, redirectional osteotomies). Interpretation errors due to misprojection can be eliminated to a large extent since the holder allows standardized and reproducible positioning.

  11. Comparison of birdcage and phase array coil using FDTD for the B(1) homogeneity in high field MRI.

    PubMed

    Seo, J H; Heo, H Y; Han, B H; Lee, S Y

    2007-01-01

    RF coils play an important role to acquire MR images with the maintenance of high homogeneity in high field MR system more than 3.0 T. Many kinds of RF coils such as birdcage coil, STR, surface coil, and phase array coil have been used, however, the good uniformity of a coil has always been an issue. In this paper, comparison of B(1) homogeneity between birdcage and phase array coil was investigated using FDTD method at 3.0 T MRI in order to develop RF coils with the high uniformity. Three different configurations of the FDTD simulation were performed like as using a free space configuration, water phantom configuration, and head mesh model. B1 homogeneity was calculated to the case of birdcage coil and 8-channel phase array coil in each configuration of simulation. Improvement on the homogeneity of the images and reduction of standing wave effect was achieved with comparing the real MR images with the result from simulation.

  12. Construction and calibration of a 50 T/m z-gradient coil for quantitative diffusion microimaging

    NASA Astrophysics Data System (ADS)

    Wright, A. C.; Bataille, H.; Ong, H. H.; Wehrli, S. L.; Song, H. K.; Wehrli, F. W.

    2007-05-01

    q-Space imaging is capable of providing quantitative geometrical information of structures at cellular resolution. However, the size of restrictions that can be probed hinges on available gradient amplitude and places very high demands on gradient performance. In this work we describe the design and construction of a small, high-amplitude (50 T/m) z-gradient coil, interfaced with a commercial 9.4 T microimaging system. We also describe a method to calibrate the coil for quantitative measurements of molecular diffusion at very high-gradient amplitudes. Calibration showed linear current response up to 50 T/m, with a gain = 1.255 T/m/A. The z-gradient coil was combined with the commercial x- and y-gradients for tri-axial imaging, and its performance was demonstrated by ADC maps of free water and by q-space experiments on water sequestered around polystyrene microspheres (4.5 μm diameter), which showed the expected diffraction peak. In addition, diffusion-weighted images of a fixed mouse spinal cord illustrated the capability of this coil for quantitative imaging of tissue microstructure.

  13. Parallel imaging of head with a dedicated multi-coil on a 0.4T open MRI.

    PubMed

    Takizawa, Masahiro; Shimoda, Takahide; Nonaka, Masayuki; Mochizuki, Hiroyuki; Kawasaki, Shinji; Takeuchi, Hiroyuki; Tachibana, Miki; Takahashi, Tetsuhiko

    2005-01-01

    Parallel imaging is widely used for cylindrical magnetic resonance imaging (MRI); however, few studies apply parallel imaging to open MRI. We previously developed a parallel method called "RAPID" (rapid acquisition through a parallel imaging design) for imaging the heart on a 0.7T open MRI apparatus, and we have now developed a RAPID head coil and shading correction algorithm for imaging the brain with a 0.4T open MRI apparatus. Images acquired with RAPID were compared with those acquired using a conventional quadrature-detection (QD) head coil. The images were acquired using a dedicated 4-channel RF receiving coil consisting of a solenoid coil and surface coils. For MRI of the brain, we developed 2 methods to acquire the necessary calibration data: a pre-scan method that acquires the calibration data before the main scans and a self-calibration method that acquires the calibration data and imaging data simultaneously. We also modified the algorithm for calculating the shading distribution so that it only uses acquired image data and then corrects the shading. RAPID was applied for T1-weighted, T2-weighted, fluid-attenuation inversion recovery (FLAIR), time-of-flight (TOF), and diffusion-weighted echo-planar (DW-EPI) imaging. The RAPID images had no visible unfolded artifacts or motion artifacts. Images with the same contrast as that with a conventional QD coil were acquired using the RAPID coil and shading correction. These preliminary results show that RAPID can be applied to imaging of the head using a 0.4T open MRI apparatus.

  14. An open 8-channel parallel transmission coil for static and dynamic 7T MRI of the knee and ankle joints at multiple postures.

    PubMed

    Jin, Jin; Weber, Ewald; Destruel, Aurelien; O'Brien, Kieran; Henin, Bassem; Engstrom, Craig; Crozier, Stuart

    2017-06-22

    We present the initial in vivo imaging results of an open architecture eight-channel parallel transmission (pTx) transceive radiofrequency (RF) coil array that was designed and constructed for static and dynamic 7T MRI of the knee and ankle joints. The pTx coil has a U-shaped dual-row configuration (200 mm overall length longitudinally) that allows static and dynamic imaging of the knee and ankle joints at various postures and during active movements. This coil structure, in combination with B1 shimming, allows flexible configuration of B1 transmit profiles, with good homogeneity over 120-mm regions of interest. This coil enabled high-resolution gradient echo (e.g., 3D dual-echo steady state [DESS] and 3D multiecho data image combination [MEDIC]) and turbo spin echo (TSE) imaging (e.g., with proton density weighting [PDw], PDw with fat saturation, and T1 and T2 weightings) with local RF energy absorption rates well below regulatory limits. High-resolution 2D and 3D image series (e.g., 0.3 mm in-plane resolution for TSE, 0.47 mm isotropic for DESS and MEDIC) were obtained from the knee and ankle joints with excellent tissue contrast. Dynamic imaging during continuous knee and ankle flexion-extension cycles were successfully acquired. The new open pTx coil array provides versatility for high-quality static and dynamic MRI of the knee and ankle joints at 7T. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  15. Narrowband magnetic nanoparticle imaging using cooled pickup coil and gradient field

    NASA Astrophysics Data System (ADS)

    Enpuku, Keiji; Miyazaki, Takashi; Morishita, Manabu; Tsujita, Yuya; Matsuo, Masaaki; Bai, Shi; Sasayama, Teruyoshi; Yoshida, Takashi

    2015-05-01

    Magnetic particle imaging (MPI) has been extensively studied for in-vivo biomedical diagnosis. We developed a narrowband MPI system utilizing third harmonic detection. The third harmonic signal from the magnetic nanoparticles (MNPs) was detected with a pickup coil cooled to 77 K, and its output was read out with a resonant circuit. The noise of the detection system was S\\text{B}1/2 = 12 fT/Hz1/2 at a signal frequency of 8.79 kHz. We also introduced the so-called gradient field with a field gradient of 0.3 T/m in order to improve the MPI spatial resolution. We first clarified the properties of MNPs, which provided the basis for MPI using the gradient field. Next, we measured the signal-field map generated from the MNPs when an excitation field with a root mean square value of 1.6 mT and frequency of 2.93 kHz was applied. Using a mathematical technique called singular value decomposition (SVD), we reconstructed an image of the MNP distribution from the measured map. We demonstrated the detection of MNP samples as small as 1 µg at a distance of 50 mm. The spatial resolution of the reconstructed MNP distribution was approximately 10 mm. These results will indicate the feasibility of the system for the application to breast cancer detection.

  16. Lipid suppression for brain MRI and MRSI by means of a dedicated crusher coil.

    PubMed

    Boer, Vincent O; van de Lindt, Tessa; Luijten, Peter R; Klomp, Dennis W J

    2015-06-01

    Lipid suppression in MR brain imaging and spectroscopy has been a long-standing problem for which various techniques have been developed. Most methods are based on inversion recovery or spatially or spectrally selective excitation of the lipid signal followed by dephasing. All techniques require additional RF pulses, gradient crushers and delays, which increase the duration and complexity of sequences. In addition, the lipid signal is poorly shimmed, and is composed of different resonance frequencies that have different relaxation properties. In this work, a novel approach for suppression of extra cranial lipids is presented, by means of an outer volume crusher coil. It is based on the principle of surface spoiling gradients, which generate a very local and inhomogeneous magnetic field in the outer layer of the head, and thereby destroys the phase coherence of the extra cranial signals. Dephasing of the signal can be incorporated in almost any sequence because it requires only a short pulse of the coil, and does not require additional RF pulses or delays. Examples of lipid suppression are shown in both gradient echo imaging and spectroscopic imaging. Outer volume crushing allows for simple fat suppression and boosts scanning efficiency, which is particularly beneficial at ultra-high field strengths. © 2014 Wiley Periodicals, Inc.

  17. A Solid Nitrogen Cooled MgB(2) "Demonstration" Coil for MRI Applications.

    PubMed

    Yao, Weijun; Bascuñán, Juan; Kim, Woo-Seok; Hahn, Seungyong; Lee, Haigun; Iwasa, Yukikazu

    2008-01-01

    A 700-mm bore superconducting magnet was built and operated in our laboratory to demonstrate the feasibility of newly developed MgB(2) superconductor wire for fabricating MRI magnets. The magnet, an assembly of 10 coils each wound with a reacted and s-glass insulated wire ~1-km long, was immersed in solid nitrogen rather than in a bath of liquid cryogen. This MgB(2) magnet was designed to operate in the temperature range 10-15 K, maintained by a cryocooler. A combination of this "wide" temperature range and immersion of the winding in solid nitrogen enables this magnet to operate under conditions not possible with a low temperature superconductor (LTS) counterpart. Tested individually at 13 K, each coil could carry current up to 100 A. When assembled into the magnet, some coils, however, became resistive, causing the magnet to prematurely quench at currents ranging from 79 A to 88 A, at which point the magnet generated a center field of 0.54 T. Despite the presence of a large volume (50 liters) of solid nitrogen in the cold body, cooldown from 77 K to 10 K went smoothly.

  18. A Solid Nitrogen Cooled MgB2 “Demonstration” Coil for MRI Applications

    PubMed Central

    Yao, Weijun; Bascuñán, Juan; Kim, Woo-Seok; Hahn, Seungyong; Lee, Haigun; Iwasa, Yukikazu

    2009-01-01

    A 700-mm bore superconducting magnet was built and operated in our laboratory to demonstrate the feasibility of newly developed MgB2 superconductor wire for fabricating MRI magnets. The magnet, an assembly of 10 coils each wound with a reacted and s-glass insulated wire ~1-km long, was immersed in solid nitrogen rather than in a bath of liquid cryogen. This MgB2 magnet was designed to operate in the temperature range 10–15 K, maintained by a cryocooler. A combination of this “wide” temperature range and immersion of the winding in solid nitrogen enables this magnet to operate under conditions not possible with a low temperature superconductor (LTS) counterpart. Tested individually at 13 K, each coil could carry current up to 100 A. When assembled into the magnet, some coils, however, became resistive, causing the magnet to prematurely quench at currents ranging from 79 A to 88 A, at which point the magnet generated a center field of 0.54 T. Despite the presence of a large volume (50 liters) of solid nitrogen in the cold body, cooldown from 77 K to 10 K went smoothly. PMID:20390056

  19. Magnetic wall decoupling method for monopole coil array in ultrahigh field MRI: a feasibility test

    PubMed Central

    Yan, Xinqiang; Zhang, Xiaoliang; Wei, Long

    2014-01-01

    Ultrahigh field (UHF) MR imaging of deeply located target in high dielectric biological samples faces challenges due to the reduced penetration depth at the corresponding high frequencies. Radiative coils, e.g., dipole and monopole coils, have recently been applied for UHF MRI applications to obtain better signal-noise-ratio (SNR) in the area deep inside the human head and body. However, due to the unique structure of radiative coil elements, electromagnetic (EM) coupling between elements in radiative coil arrays cannot be readily addressed by using traditional decoupling methods such as element overlapping and L/C decoupling network. A new decoupling method based on induced current elimination (ICE) or magnetic wall technique has recently been proposed and has demonstrated feasibility in designing microstrip transmission line (MTL) arrays and L/C loop arrays. In this study, an array of two monopole elements decoupled using magnetic wall decoupling technique was designed, constructed and analyzed numerically and experimentally to investigate the feasibility of the decoupling technique in radiative coil array designs for MR imaging at 7 T. An L-shaped capacitive network was employed as the matching circuit and the reflection coefficients (S11) of the monopole element achieved –30 dB or better. Isolation between the two monopole elements was improved from about –10 dB (without decoupling treatment) to better than –30 dB with the ICE/magnetic wall decoupling method. B1 maps and MR images of the phantom were acquired and SNR maps were measured and calculated to evaluate the performance of the ICE/magnetic wall decoupling method. Compared with the monopole elements without decoupling methods, the ICE-decoupled array demonstrated more independent image profiles from each element and had a higher SNR in the peripheral area of the imaging subject. The experimental and simulation results indicate that the ICE/magnetic wall decoupling technique might be a promising

  20. Novel 16-channel receive coil array for accelerated upper airway MRI at 3 Tesla.

    PubMed

    Kim, Yoon-Chul; Hayes, Cecil E; Narayanan, Shrikanth S; Nayak, Krishna S

    2011-06-01

    Upper airway MRI can provide a noninvasive assessment of speech and swallowing disorders and sleep apnea. Recent work has demonstrated the value of high-resolution three-dimensional imaging and dynamic two-dimensional imaging and the importance of further improvements in spatio-temporal resolution. The purpose of the study was to describe a novel 16-channel 3 Tesla receive coil that is highly sensitive to the human upper airway and investigate the performance of accelerated upper airway MRI with the coil. In three-dimensional imaging of the upper airway during static posture, 6-fold acceleration is demonstrated using parallel imaging, potentially leading to capturing a whole three-dimensional vocal tract with 1.25 mm isotropic resolution within 9 sec of sustained sound production. Midsagittal spiral parallel imaging of vocal tract dynamics during natural speech production is demonstrated with 2 × 2 mm(2) in-plane spatial and 84 ms temporal resolution. Copyright © 2010 Wiley-Liss, Inc.

  1. Towards Truly Quiet MRI: animal MRI magnetic field gradients as a test platform for acoustic noise reduction

    NASA Astrophysics Data System (ADS)

    Edelstein, William; El-Sharkawy, Abdel-Monem

    2013-03-01

    Clinical MRI acoustic noise, often substantially exceeding 100 dB, causes patient anxiety and discomfort and interferes with functional MRI (fMRI) and interventional MRI. MRI acoustic noise reduction is a long-standing and difficult technical challenge. The noise is basically caused by large Lorentz forces on gradient windings--surrounding the patient bore--situated in strong magnetic fields (1.5 T, 3 T or higher). Pulsed currents of 300 A or more are switched through the gradient windings in sub-milliseconds. Experimenting with hardware noise reduction on clinical scanners is difficult and expensive because of the large scale and weight of clinical scanner components (gradient windings ~ 1000 kg) that require special handling equipment in large engineering test facilities. Our approach is to produce a Truly Quiet (<70 dB) small-scale animal imager. Results serve as a test platform for acoustic noise reduction measures that can be implemented in clinical scanners. We have so far decreased noise in an animal scale imager from 108 dB to 71 dB, a 37 dB reduction. Our noise reduction measures include: a gradient container that can be evacuated; inflatable antivibration mounts to prevent transmission of vibrations from gradient winding to gradient container; vibration damping of wires going from gradient to the outside world via the gradient container; and a copper passive shield to prevent the generation of eddy currents in the metal cryostat inner bore, which in turn can vibrate and produce noise.

  2. Is the Ellipsoid Formula the New Standard for 3-Tesla MRI Prostate Volume Calculation without Endorectal Coil?

    PubMed

    Haas, Matthias; Günzel, Karsten; Miller, Kurt; Hamm, Bernd; Cash, Hannes; Asbach, Patrick

    2017-01-01

    Prostate volume in multiparametric MRI (mpMRI) is of clinical importance. For 3-Tesla mpMRI without endorectal coil, there is no distinctive standard for volume calculation. We tested the accuracy of the ellipsoid formula with planimetric volume measurements as reference and investigated the correlation of gland volume and cancer detection rate on MRI/ultrasound (MRI/US) fusion-guided biopsy. One hundred forty-three patients with findings on 3-Tesla mpMRI suspicious of cancer and subsequent MRI/US fusion-guided targeted biopsy and additional systematic biopsy were analyzed. T2-weighted images were used for measuring the prostate diameters and for planimetric volume measurement by a segmentation software. Planimetric and calculated prostate volumes were compared with clinical data. The median prostate volume was 48.1 ml (interquartile range (IQR) 36.9-62.1 ml). Volume calculated by the ellipsoid formula showed a strong concordance with planimetric volume, with a tendency to underestimate prostate volume (median volume 43.1 ml (IQR 31.2-58.8 ml); r = 0.903, p < 0.001). There was a moderate, significant inverse correlation of prostate volume to a positive biopsy result (r = -0.24, p = 0.004). The ellipsoid formula gives sufficient approximation of prostate volume on 3-Tesla mpMRI without endorectal coil. It allows a fast, valid volume calculation in prostate MRI datasets.

  3. Field Distribution and Coupling Investigation of an Eight-Channel RF Coil Consisting of Different Dipole Coil Elements for 7 T MRI.

    PubMed

    Chen, Zhichao; Solbach, Klaus; Erni, Daniel; Rennings, Andreas

    2017-06-01

    In this contribution, we investigate the [Formula: see text] distribution and coupling characteristics of a multichannel radio frequency (RF) coil consisting of different dipole coil elements for 7 T MRI, and explore the feasibility to achieve a compromise between field distribution and decoupling by combining different coil elements. Two types of dipole elements are considered here: the meander dipole element with a chip-capacitor-based connection to the RF shield which achieves a sufficient decoupling between the neighboring elements; and the open-ended meander dipole element which exhibits a broader magnetic field distribution. By nesting the open-ended dipole elements in between the ones with end-capacitors, the [Formula: see text] distribution, in terms of field penetration depth and homogeneity, is improved in comparison to the dipole coil consisting only of the elements with end-capacitors, and at the same time, the adjacent elements are less coupled to each other in comparison to the dipole coil consisting only of the open-ended elements. The proposed approach is validated by both full-wave simulation and experimental results.

  4. Functional MRI in conscious rats using a chronically implanted surface coil.

    PubMed

    Martin, Chris J; Kennerley, Aneurin J; Berwick, Jason; Port, Michael; Mayhew, John E W

    2013-09-01

    To establish procedures for functional MRI (fMRI) in rats without the need for anesthetic agents. Rats were trained to habituate to restraint in a harness and scanner noise. Under anesthesia, rats were then prepared with a cranial implant that permitted stabilization of the head during subsequent imaging experiments. The cranial implant included an radiofrequency (RF) coil that was used to transmit and receive radiofrequency signals during imaging. Further training was then conducted to habituate the animals to head fixation whilst in the MR scanner. Using this method, we were able to successfully and repeatedly record BOLD fMRI responses to hypercapnia and whisker stimulation in awake rats. Electrical stimulation of the whisker pad produced a ∼7% increase in BOLD signal in the corresponding barrel cortex as well as adjacent negative BOLD responses, whilst hypercapnia produced larger increases in BOLD signal amplitude. This methodology leaves the face and limbs free from obstruction, making possible a range of behavioral or sensory stimulation protocols. Further development of this animal model could enable traditional behavioral neuroscience techniques to be combined with modern functional neuroimaging. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  5. New coil positioning method for interleaved transcranial magnetic stimulation (TMS)/functional MRI (fMRI) and its validation in a motor cortex study.

    PubMed

    Moisa, Marius; Pohmann, Rolf; Ewald, Lars; Thielscher, Axel

    2009-01-01

    To develop and test a novel method for coil placement in interleaved transcranial magnetic stimulation (TMS)/functional MRI (fMRI) studies. Initially, a desired TMS coil position at the subject's head is recorded using a neuronavigation system. Subsequently, a custom-made holding device is used for coil placement inside the MR scanner. The parameters of the device corresponding to the prerecorded position are automatically determined from a fast structural image acquired directly before the experiment. The spatial accuracy of our method was verified on a phantom. Finally, in a study on five subjects, the coil was placed above the cortical representation of a hand muscle in M1 and the blood oxygenation level-dependent (BOLD) responses to short repetitive TMS (rTMS) trains were assessed using echo-planar imaging (EPI) recordings. The spatial accuracy of our method is in the range of 2.9 +/- 1.3 (SD) mm. Motor cortex stimulation resulted in robust BOLD activations in motor- and auditory related brain areas, with the activation in M1 being localized in the hand knob. We present a user-friendly method for TMS coil positioning in the MR scanner that exhibits good spatial accuracy and speeds up the setup of the experiment. The motor-cortex study proves the viability of the approach and validates our interleaved TMS/fMRI setup.

  6. [Design of high performance DSP-based gradient calculation module for MRI].

    PubMed

    Pan, Wenyu; Zhang, Fu; Luo, Hai; Zhou, Heqin

    2011-05-01

    A gradient calculation module based on high performance DSP was designed to meet the needs of digital MRI spectrometer. According to the requirements of users, this apparatus can achieve rotation transformation, pre-emphasis, shimming and other gradient calculation functions in a single chip of DSP. It then outputs gradient waveform data of channel X, Y, Z and shimming data of channel B0. Experiments show that the design has good versatility and can satisfy the functional, speed and accuracy requirements of MRI gradient calculation. It provides a practical gradient calculation solution for the development of digital spectrometer.

  7. A 4-channel coil array interconnection by analog direct modulation optical link for 1.5-T MRI.

    PubMed

    Yuan, Jing; Wei, Juan; Shen, Gary X

    2008-10-01

    Optical glass fiber shows great advantages over coaxial cables in terms of electromagnetic interference, thus, it should be considered a potential alternative for magnetic resonance imaging (MRI) receive coil interconnection, especially for a large number coil array at high field. In this paper, we propose a 4-channel analog direct modulation optical link for a 1.5-T MRI coil array interconnection. First, a general direct modulated optical link is compared to an external modulated optical link. And then the link performances of the proposed direct modulated optical link, including power gain, frequency response, and dynamic range, are analyzed and measured. Phantom and in vivo head images obtained using this optical link are demonstrated for comparison with those obtained by cable connections. The signal-to-noise (SNR) analysis shows that the optical link achieves 6%-8% SNR a improvement over coaxial cables by elimination of electrical interference between cables during MR signal transmission.

  8. Diagnostic accuracy of surface coil MRI in assessing cartilaginous invasion in laryngeal tumours: Do we need contrast-agent administration?

    PubMed

    Preda, Lorenzo; Conte, Giorgio; Bonello, Luke; Giannitto, Caterina; Tagliabue, Elena; Raimondi, Sara; Ansarin, Mohssen; De Benedetto, Luigi; Cattaneo, Augusto; Maffini, Fausto; Bellomi, Massimo

    2017-05-05

    To assess the diagnostic accuracy of MRI performed using surface coils, with and without contrast medium, in predicting thyroid and cricoid cartilage infiltration in laryngeal tumours, and to investigate whether the radiologist's experience influences diagnostic accuracy. We retrospectively enrolled patients with biopsy-proven laryngeal cancer who had undergone preoperative staging MRI and open surgery. Two radiologists with different experience (senior vs. junior) reviewed the MR images without (session A1) and with contrast medium (session A2) separately. We calculated the accuracy of MRI with and without contrast medium in detecting infiltration of the thyroid and cricoid cartilages. Interobserver agreement was calculated by Cohen's Kappa (k). Forty-two patients were enrolled, for a total of 62 cartilages. In session A1 the senior and junior radiologists showed an accuracy of 85% and 71%, respectively, with k = 0.53 (0.33-0.72). In session A2 the senior and junior radiologists showed an accuracy of 84% and 77%, respectively, with k = 0.68 (0.49-0.86). Staging of laryngeal tumours with surface coil MRI showed good diagnostic accuracy in assessing cartilaginous infiltration. We observed similar values of diagnostic accuracy for the analysis performed with and without contrast medium for the senior radiologist. • Surface coil MRI demonstrated good accuracy in assessing laryngeal cartilage invasion. • The radiologist's experience can influence the diagnostic accuracy. • Gadolinium administration may increase interobserver concordance.

  9. Accelerating free breathing myocardial perfusion MRI using multi coil radial k-t SLR

    PubMed Central

    Lingala, Sajan Goud; DiBella, Edward; Adluru, Ganesh; McGann, Christopher; Jacob, Mathews

    2013-01-01

    The clinical utility of myocardial perfusion MR imaging (MPI) is often restricted by the inability of current acquisition schemes to simultaneously achieve high spatio-temporal resolution, good volume coverage, and high signal to noise ratio. Moreover, many subjects often find it difficult to hold their breath for sufficiently long durations making it difficult to obtain reliable MPI data. Accelerated acquisition of free breathing MPI data can overcome some of these challenges. Recently, an algorithm termed as k − t SLR has been proposed to accelerate dynamic MRI by exploiting sparsity and low rank properties of dynamic MRI data. The main focus of this paper is to further improve k − t SLR and demonstrate its utility in considerably accelerating free breathing MPI. We extend its previous implementation to account for multi-coil radial MPI acquisitions. We perform k − t sampling experiments to compare different radial trajectories and determine the best sampling pattern. We also introduce a novel augmented Lagrangian framework to considerably improve the algorithm's convergence rate. The proposed algorithm is validated using free breathing rest and stress radial perfusion data sets from two normal subjects and one patient with ischemia. k − t SLR was observed to provide faithful reconstructions at high acceleration levels with minimal artifacts compared to existing MPI acceleration schemes such as spatio-temporal constrained reconstruction (STCR) and k − t SPARSE/SENSE. PMID:24077063

  10. Accelerating free breathing myocardial perfusion MRI using multi coil radial k - t SLR

    NASA Astrophysics Data System (ADS)

    Goud Lingala, Sajan; DiBella, Edward; Adluru, Ganesh; McGann, Christopher; Jacob, Mathews

    2013-10-01

    The clinical utility of myocardial perfusion MR imaging (MPI) is often restricted by the inability of current acquisition schemes to simultaneously achieve high spatio-temporal resolution, good volume coverage, and high signal to noise ratio. Moreover, many subjects often find it difficult to hold their breath for sufficiently long durations making it difficult to obtain reliable MPI data. Accelerated acquisition of free breathing MPI data can overcome some of these challenges. Recently, an algorithm termed as k - t SLR has been proposed to accelerate dynamic MRI by exploiting sparsity and low rank properties of dynamic MRI data. The main focus of this paper is to further improve k - t SLR and demonstrate its utility in considerably accelerating free breathing MPI. We extend its previous implementation to account for multi-coil radial MPI acquisitions. We perform k - t sampling experiments to compare different radial trajectories and determine the best sampling pattern. We also introduce a novel augmented Lagrangian framework to considerably improve the algorithm’s convergence rate. The proposed algorithm is validated using free breathing rest and stress radial perfusion data sets from two normal subjects and one patient with ischemia. k - t SLR was observed to provide faithful reconstructions at high acceleration levels with minimal artifacts compared to existing MPI acceleration schemes such as spatio-temporal constrained reconstruction and k - t SPARSE/SENSE.

  11. Simplified correction of B1 inhomogeneity for chemical exchange saturation transfer (CEST) MRI measurement with surface transceiver coil

    NASA Astrophysics Data System (ADS)

    Sun, Phillip Z.; Zhou, Iris Y.; Igarashi, Takahiro; Guo, Yingkun; Xiao, Gang; Wu, Renhua

    2015-03-01

    Chemical exchange saturation transfer (CEST) MRI is sensitive to dilute exchangeable protons and local properties such as pH and temperate, yet its susceptibility to field inhomogeneity limits its in vivo applications. Particularly, CEST measurement varies with RF irradiation power, the dependence of which is complex due to concomitant direct RF saturation (RF spillover) effect. Because the volume transmitters provide relatively homogeneous RF field, they have been conventionally used for CEST imaging despite of their elevated specific absorption rate (SAR) and relatively low sensitivity than surface coils. To address this limitation, we developed an efficient B1 inhomogeneity correction algorithm that enables CEST MRI using surface transceiver coils. This is built on recent work that showed the inverse CEST asymmetry analysis (CESTRind) is not susceptible to confounding RF spillover effect. We here postulated that the linear relationship between RF power level and CESTRind can be extended for correcting B1 inhomogeneity induced CEST MRI artifacts. Briefly, we prepared a tissue-like Creatine gel pH phantom and collected multiparametric MRI including relaxation, field map and CEST MRI under multiple RF power levels, using a conventional surface transceiver coil. The raw CEST images showed substantial heterogeneity due to B1 inhomogeneity, with pH contrast to noise ratio (CNR) being 8.8. In comparison, pH MRI CNR of the fieldinhomogeneity corrected CEST MRI was found to be 17.2, substantially higher than that without correction. To summarize, our study validated an efficient field inhomogeneity correction that enables sensitive CEST MRI with surface transceiver, promising for in vivo translation.

  12. Assessing the Electromagnetic Fields Generated by a Radiofrequency MRI Body Coil at 64 MHz: Defeaturing vs. Accuracy

    PubMed Central

    Lucano, Elena; Liberti, Micaela; Mendoza, Gonzalo G.; Lloyd, Tom; Iacono, Maria Ida; Apollonio, Francesca; Wedan, Steve; Kainz, Wolfgang; Angelone, Leonardo M.

    2016-01-01

    Goal This study aims at a systematic assessment of five computational models of a birdcage coil for magnetic resonance imaging (MRI) with respect to accuracy and computational cost. Methods The models were implemented using the same geometrical model and numerical algorithm, but different driving methods (i.e., coil “defeaturing”). The defeatured models were labeled as: specific (S2), generic (G32, G16), and hybrid (H16, H16fr-forced). The accuracy of the models was evaluated using the “Symmetric Mean Absolute Percentage Error” (“SMAPE”), by comparison with measurements in terms of frequency response, as well as electric (||E⃗||) and magnetic (||B⃗||) field magnitude. Results All the models computed the ||B⃗|| within 35 % of the measurements, only the S2, G32, and H16 were able to accurately model the ||E⃗|| inside the phantom with a maximum SMAPE of 16 %. Outside the phantom, only the S2 showed a SMAPE lower than 11 %. Conclusions Results showed that assessing the accuracy of ||B⃗|| based only on comparison along the central longitudinal line of the coil can be misleading. Generic or hybrid coils – when properly modeling the currents along the rings/rungs – were sufficient to accurately reproduce the fields inside a phantom while a specific model was needed to accurately model ||E⃗|| in the space between coil and phantom. Significance Computational modeling of birdcage body coils is extensively used in the evaluation of RF-induced heating during MRI. Experimental validation of numerical models is needed to determine if a model is an accurate representation of a physical coil. PMID:26685220

  13. Correction of gradient nonlinearity artifacts in prospective motion correction for 7T MRI.

    PubMed

    Yarach, Uten; Luengviriya, Chaiya; Danishad, Appu; Stucht, Daniel; Godenschweger, Frank; Schulze, Peter; Speck, Oliver

    2015-04-01

    To demonstrate the effect of gradient nonlinearity and develop a method for correction of gradient nonlinearity artifacts in prospective motion correction (Mo-Co). Nonlinear gradients can induce geometric distortions in magnetic resonance imaging, leading to pixel shifts with errors of up to several millimeters, thereby interfering with precise localization of anatomical structures. Prospective Mo-Co has been extended by conventional gradient warp correction applied to individual phase encoding steps/groups during the reconstruction. The gradient-related displacements are approximated using spherical harmonic functions. In addition, the combination of this method with a retrospective correction of the changes in the coil sensitivity profiles relative to the object (augmented sensitivity encoding (SENSE) reconstruction) was evaluated in simulation and experimental data. Prospective Mo-Co under gradient fields and coils sensitivity inconsistencies results in residual blurring, spatial distortion, and coil sensitivity mismatch artifacts. These errors can be considerably mitigated by the proposed method. High image quality with very little remaining artifacts was achieved after a few iterations. The relative image errors decreased from 25.7% to below 17.3% after 10 iterations. The combined correction of gradient nonlinearity and sensitivity map variation leads to a pronounced reduction of residual motion artifacts in prospectively motion-corrected data. © 2014 Wiley Periodicals, Inc.

  14. Pushing the limits of high-resolution functional MRI using a simple high-density multi-element coil design.

    PubMed

    Petridou, N; Italiaander, M; van de Bank, B L; Siero, J C W; Luijten, P R; Klomp, D W J

    2013-01-01

    Recent studies have shown that functional MRI (fMRI) can be sensitive to the laminar and columnar organization of the cortex based on differences in the spatial and temporal characteristics of the blood oxygenation level-dependent (BOLD) signal originating from the macrovasculature and the neuronal-specific microvasculature. Human fMRI studies at this scale of the cortical architecture, however, are very rare because the high spatial/temporal resolution required to explore these properties of the BOLD signal are limited by the signal-to-noise ratio. Here, we show that it is possible to detect BOLD signal changes at an isotropic spatial resolution as high as 0.55 mm at 7 T using a high-density multi-element surface coil with minimal electronics, which allows close proximity to the head. The coil comprises of very small, 1 × 2-cm(2) , elements arranged in four flexible modules of four elements each (16-channel) that can be positioned within 1 mm from the head. As a result of this proximity, tissue losses were five-fold greater than coil losses and sufficient to exclude preamplifier decoupling. When compared with a standard 16-channel head coil, the BOLD sensitivity was approximately 2.2-fold higher for a high spatial/temporal resolution (1 mm isotropic/0.4 s), multi-slice, echo planar acquisition, and approximately three- and six-fold higher for three-dimensional echo planar images acquired with isotropic resolutions of 0.7 and 0.55 mm, respectively. Improvements in parallel imaging performance (geometry factor) were up to around 1.5-fold with increasing acceleration factor, and improvements in fMRI detectability (temporal signal-to-noise ratio) were up to around four-fold depending on the distance to the coil. Although deeper lying structures may not benefit from the design, most fMRI questions pertain to the neocortex which lies within approximately 4 cm from the surface. These results suggest that the resolution of fMRI (at 7 T) can approximate levels that are

  15. Analysis of an integrated 8-channel Tx/Rx body array for use as a body coil in 7-Tesla MRI

    NASA Astrophysics Data System (ADS)

    Orzada, Stephan; Bitz, Andreas K.; Johst, Sören; Gratz, Marcel; Völker, Maximilian N.; Kraff, Oliver; Abuelhaija, Ashraf; Fiedler, Thomas M.; Solbach, Klaus; Quick, Harald H.; Ladd, Mark E.

    2017-06-01

    Object In this work an 8-channel array integrated into the gap between the gradient coil and bore liner of a 7-Tesla whole-body magnet is presented that would allow a workflow closer to that of systems at lower magnetic fields that have a built-in body coil; this integrated coil is compared to a local 8-channel array built from identical elements placed directly on the patient. Materials and Methods SAR efficiency and the homogeneity of the right-rotating B1 field component (B_1^+) are investigated numerically and compared to the local array. Power efficiency measurements are performed in the MRI System. First in vivo gradient echo images are acquired with the integrated array. Results While the remote array shows a slightly better performance in terms of B_1^+ homogeneity, the power efficiency and the SAR efficiency are inferior to those of the local array: the transmit voltage has to be increased by a factor of 3.15 to achieve equal flip angles in a central axial slice. The g-factor calculations show a better parallel imaging g-factor for the local array. The field of view of the integrated array is larger than that of the local array. First in vivo images with the integrated array look subjectively promising. Conclusion Although some RF performance parameters of the integrated array are inferior to a tight-fitting local array, these disadvantages might be compensated by the use of amplifiers with higher power and the use of local receive arrays. In addition, the distant placement provides the potential to include more elements in the array design.

  16. Routine pelvic MRI using phased-array coil for detection of extraprostatic tumour extension: accuracy and clinical significance.

    PubMed

    Hole, Knut Håkon; Axcrona, Karol; Lie, Agnes Kathrine; Vlatkovic, Ljiljana; Geier, Oliver Marcel; Brennhovd, Bjørn; Knutstad, Kjetil; Olsen, Dag Rune; Seierstad, Therese

    2013-04-01

    To determine the accuracy and assess the clinical significance of surface-coil 1.5-T magnetic resonance imaging (MRI) for the detection of locally advanced prostate cancer (PCa). Between December 2007 and January 2010, we examined 209 PCa patients (mean age = 62.5 years) who were consecutively treated with robot-assisted laparoscopic prostatectomy and prospectively staged by MRI. One hundred and thirty-five patients (64.6 %) had locally advanced disease. Conventional clinical tumour stage and MRI-assessed tumour stage were compared with histopathological tumour stage (pT). Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and overall accuracy (OA) were calculated using pT as the "gold standard". Overstaged and understaged cases at MRI were reviewed. Sensitivity, specificity, PPV, NPV and OA for the detection of locally advanced disease were 25.9, 95.9, 92.1, 41.2 and 50.5 % and 56.3, 82.2, 85.4, 50.4 and 65.4 % for clinical staging and MRI, respectively. Among patients understaged at MRI, the resection margins were free in 64.4 % of the cases (38/59). Although the accuracy was limited, the detection of locally advanced disease improved substantially when MRI was added to routine clinical staging. The majority of the understaged patients nevertheless achieved free margins. When assessing the clinical significance of MRI staging the extent of extraprostatic extension has to be considered.

  17. High-sensitivity TMS/fMRI of the Human Motor Cortex Using a Dedicated Multichannel MR Coil.

    PubMed

    Navarro de Lara, Lucia I; Tik, Martin; Woletz, Michael; Frass-Kriegl, Roberta; Moser, Ewald; Laistler, Elmar; Windischberger, Christian

    2017-04-15

    To validate a novel setup for concurrent TMS/fMRI in the human motor cortex based on a dedicated, ultra-thin, multichannel receive MR coil positioned between scalp and TMS system providing greatly enhanced sensitivity compared to the standard birdcage coil setting. A combined TMS/fMRI design was applied over the primary motor cortex based on 1Hz stimulation with stimulation levels of 80%, 90%, 100%, and 110% of the individual active motor threshold, respectively. Due to the use of a multichannel receive coil we were able to use multiband-accelerated (MB=2) EPI sequences for the acquisition of functional images. Data were analysed with SPM12 and BOLD-weighted signal intensity time courses were extracted in each subject from two local maxima (individual functional finger tapping localiser, fixed MNI coordinate of the hand knob) next to the hand area of the primary motor cortex (M1) and from the global maximum. We report excellent image quality without noticeable signal dropouts or image distortions. Parameter estimates in the three peak voxels showed monotonically ascending activation levels over increasing stimulation intensities. Across all subjects, mean BOLD signal changes for 80%, 90%, 100%, 110% of the individual active motor threshold were 0.43%, 0.63%, 1.01%, 2.01% next to the individual functional finger tapping maximum, 0.73%, 0.91%, 1.34%, 2.21% next to the MNI-defined hand knob and 0.88%, 1.09%, 1.65%, 2.77% for the global maximum, respectively. Our results show that the new setup for concurrent TMS/fMRI experiments using a dedicated MR coil array allows for high-sensitivity fMRI particularly at the site of stimulation. Contrary to the standard birdcage approach, the results also demonstrate that the new coil can be successfully used for multiband-accelerated EPI acquisition. The gain in flexibility due to the new coil can be easily combined with neuronavigation within the MR scanner to allow for accurate targeting in TMS/fMRI experiments. Copyright

  18. Peripheral nerve stimulation characteristics of an asymmetric head-only gradient coil compatible with a high-channel-count receiver array.

    PubMed

    Lee, Seung-Kyun; Mathieu, Jean-Baptiste; Graziani, Dominic; Piel, Joseph; Budesheim, Eric; Fiveland, Eric; Hardy, Christopher J; Tan, Ek Tsoon; Amm, Bruce; Foo, Thomas K-F; Bernstein, Matt A; Huston, John; Shu, Yunhong; Schenck, John F

    2016-12-01

    To characterize peripheral nerve stimulation (PNS) of an asymmetric head-only gradient coil that is compatible with a commercial high-channel-count receive-only array. Two prototypes of an asymmetric head-only gradient coil set with a 42-cm inner diameter were constructed for brain imaging at 3T with maximum performance specifications of up to 85 mT/m and 708 T/m/s. Tests were performed in 24 volunteers to measure PNS thresholds with the transverse (x = left-right; y = anterior-posterior [A/P]) gradient coils of both prototypes. Fourteen of these 24 volunteers were also tested for the z-gradient PNS in the second prototype and were scanned with high-slew-rate echo planar imaging (EPI) immediately after the PNS tests. For both prototypes, the y-gradient PNS threshold was markedly higher than the x-gradient threshold. The z-gradient threshold was intermediate between those for the x- and y-coils. Of the 24 volunteers, only two experienced y-gradient PNS at 80 mT/m and 500 T/m/s. All volunteers underwent the EPI scan without PNS when the readout direction was set to A/P. Measured PNS characteristics of asymmetric head-only gradient coil prototypes indicate that such coils, especially in the A/P direction, can be used for fast EPI readout in high-performance neuroimaging scans with substantially reduced PNS concerns compared with conventional whole body gradient coils. Magn Reson Med 76:1939-1950, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.

  19. Influence of gradient acoustic noise on fMRI response in the human visual cortex.

    PubMed

    Zhang, Nanyin; Zhu, Xiao-Hong; Chen, Wei

    2005-08-01

    A paired-stimuli paradigm combined with fMRI was utilized to study the effect of gradient acoustic noise on fMRI response in the human primary visual cortex (V1) in terms of the auditory-visual cross-modal neural interaction. The gradient noise generated during the fMRI acquisition was used as the primary stimulus, and a single flashing light was used as the secondary stimulus. An interstimulus interval (ISI) separated the two. Six tasks were designed with different ISIs ranging from 50 to 700 ms. Both BOLD signal intensity and the number of activated pixels in V1 were analyzed and examined, and they showed a significant reduction when the gradient noise preceded the flashing light by approximately 300 ms. These results indicate that the gradient acoustic noise generated during fMRI acquisitions does interfere with neural behavior and the BOLD signal in the human visual cortex. This interference is modulated by the delay between the gradient noise and visual stimulation, and it can be studied quantitatively when the stimulation paradigm is designed appropriately. This study provides evidence of the auditory-visual interaction during fMRI studies, and the results should have an impact on fMRI applications.

  20. Construction and modeling of a reconfigurable MRI coil for lowering SAR in patients with deep brain stimulation implants.

    PubMed

    Golestanirad, Laleh; Iacono, Maria Ida; Keil, Boris; Angelone, Leonardo M; Bonmassar, Giorgio; Fox, Michael D; Herrington, Todd; Adalsteinsson, Elfar; LaPierre, Cristen; Mareyam, Azma; Wald, Lawrence L

    2017-02-15

    Post-operative MRI of patients with deep brain simulation (DBS) implants is useful to assess complications and diagnose comorbidities, however more than one third of medical centers do not perform MRIs on this patient population due to stringent safety restrictions and liability risks. A new system of reconfigurable magnetic resonance imaging head coil composed of a rotatable linearly-polarized birdcage transmitter and a close-fitting 32-channel receive array is presented for low-SAR imaging of patients with DBS implants. The novel system works by generating a region with low electric field magnitude and steering it to coincide with the DBS lead trajectory. We demonstrate that the new coil system substantially reduces the SAR amplification around DBS electrodes compared to commercially available circularly polarized coils in a cohort of 9 patient-derived realistic DBS lead trajectories. We also show that the optimal coil configuration can be reliably identified from the image artifact on B1(+) field maps. Our preliminary results suggest that such a system may provide a viable solution for high-resolution imaging of DBS patients in the future. More data is needed to quantify safety limits and recommend imaging protocols before the novel coil system can be used on patients with DBS implants.

  1. Poster - Thur Eve - 13: Quantifying specific absorption rate of shielded RF coils through electromagnetic simulations for 7-T MRI.

    PubMed

    Belliveau, J-G; Gilbert, K M; Abou-Khousa, M; Menon, R S

    2012-07-01

    Ultra-high field MRI has many advantages such as increasing spatial resolution and exploiting contrast never before seen in-vivo. This contrast has been shown to be beneficial for many applications such as monitoring early and late effect to radiation therapy and transient changes during disease to name a few. However, at higher field strengths the RF wave, needed to for transmitting and receiving signal, approaches that of the head. This leads to constructive and deconstructive interference and a non -uniform flip angle over the volume being imaged. A transmit or transceive RF surface coil arrays is currently a method of choice to overcome this problem; however, mutual inductance between elements poses a significant challenge for the designer. A method to decouple elements in such an array is by using circumferential shielding; however, the potential benefits and/or disadvantages have not been investigated. This abstract primarily focuses on understanding power deposition - measured through Specific Absorption Rate - in the sample using circumferentially shielded RF coils. Various geometries of circumferentially shielded coils are explored to determine the behaviour of shield width and its effect on required transmit power and power deposition to the sample. Our results indicate that there is an optimization on shield width depending on the imaging depth. Additionally, the circumferential shield focuses the field more than unshielded coils, meaning that slight SAR may even be lower for circumferential shielded RF coils in array. © 2012 American Association of Physicists in Medicine.

  2. An inverse methodology for high frequency RF head coil design with preemphasized B/sub 1/ field in MRI.

    PubMed

    Xu, B; Crozier, S; Li, B K; Wei, Q; Liu, F

    2004-01-01

    An inverse methodology to assist in the design of radio-frequency (RF) head coils for high field MRI application is described in this work. Free space time-harmonic electromagnetic Green's functions and preemphasized B/sub 1/ field are used to calculate the current density on the coil cylinder. With B/sub 1/ field preemphasized and lowered in the middle of the RF transverse plane, the calculated current distribution can generate an internal magnetic field that can reduce the EM field/tissue interactions at high frequencies. The current distribution of a head coil operating at 4 T is calculated using inverse methodology with preemphasized B/sub 1/ fields. FDTD is employed to calculate B/sub 1/ field and signal intensity inside a homogenous cylindrical phantom and human head. A comparison with conventional RF birdcage coil is reported here and demonstrated that inverse-method designed coil with preemphasized B/sub 1/ field can help in decreasing the notorious bright region caused by EM field/tissue interactions in the human head images at 4 T.

  3. Actively Decoupled Transmit-Receive Coil-Pair for Mouse Brain MRI.

    PubMed

    Garbow, Joel R; McIntosh, Charlie; Conradi, Mark S

    2008-10-01

    A low-cost, high performance RF coil-pair for MR imaging of mouse brain is described. A surface receiving coil is used for high spin-sensitivity, while a larger transmit coil, located outside the mouse holder, delivers good B1 uniformity across the brain with reasonable efficiency. The volume coil is constructed with an open architecture, making experimental setup easy and providing clear access to the head of the mouse. Each coil is switched between active and inactive modes using PIN diodes driven by a small amplifier external to the spectrometer. Because of this active decoupling, there is no requirement for orthogonal orientation of the coils. The coil pair is platform independent, requiring only a transmit/receive (T/R) signal to switch the amplifier that drives the PIN diodes, and can therefore be used with virtually any commercial or home-built MR scanner.

  4. Development of a patch antenna array RF coil for ultra-high field MRI.

    PubMed

    Nakajima, Manabu; Nakajima, Iwao; Obayashi, Shigeru; Nagai, Yuji; Obata, Takayuki; Hirano, Yoshiyuki; Ikehira, Hiroo

    2007-01-01

    In radiofrequency (RF) coil design for ultra-high-field magnetic resonance (MR) imaging, short RF wavelengths present various challenges to creating a big volume coil. When imaging a human body using an ultra-high magnetic field MR imaging system (magnetic flux density of 7 Tesla or more), short wavelength may induce artifacts from dielectric effect and other factors. To overcome these problems, we developed a patch antenna array coil (PAAC), which is a coil configured as a combination of patch antennas. We prototyped this type of coil for 7T proton MR imaging, imaged a monkey brain, and confirmed the coil's utility as an RF coil for ultra-high-field MR imaging.

  5. Development of double-layer coupled coil for improving S/N in 7 T small-animal MRI.

    PubMed

    Kim, Kyoung-Nam; Seo, Jeung-Hoon; Han, Sang-Doc; Heo, Phil; Im, Geun Ho; Lee, Jung Hee

    2015-01-01

    The purpose of this study was to develop a new double-layer coupled (DLC) surface radiofrequency (RF) coil using a combination of single-layer planar (SLP) and single-layer circular (SLC) coils, for enhancement of magnetic flux (B1 ) sensitivity and RF penetration in 7 T rat-body magnetic resonance imaging (MRI). The proposed DLC surface coil was fabricated according to an electromagnetic (EM) simulation and validated based on the B1 distribution and bench measurements. The DLC coil performance was quantitatively evaluated based on the signal-to-noise ratio (S/N) and coil-response signal intensity curves in phantom and in vivo rat-body images. In the computational EM calculation and 7 T in vivo experimental results, the DLC surface coil clearly showed an increased S/N and higher RF transmit (B1 (+) ) profiles, compared to those of the SLP and SLC coils. While all surface coils displayed a rapid decrease in the MR signal from the near-coil region to the subject, the results reveal that the DLC coil concept may be used to provide sufficient RF penetration and high S/N and degrees of freedom for use in partial body imaging for 7 T ultra-high-field small-animal MRI.

  6. A 128-Channel Receive-Only Cardiac Coil for Highly Accelerated Cardiac MRI at 3 Tesla

    PubMed Central

    Schmitt, Melanie; Potthast, Andreas; Sosnovik, David E.; Polimeni, Jonathan R.; Wiggins, Graham C.; Triantafyllou, Christina; Wald, Lawrence L.

    2008-01-01

    A 128-channel receive-only array coil is described and tested for cardiac imaging at 3T. The coil is closely contoured to the body with a “clam-shell” geometry with 68 posterior and 60 anterior elements, each 75 mm in diameter, and arranged in a continuous overlapped array of hexagonal symmetry to minimize nearest neighbor coupling. Signal-to-noise ratio (SNR) and noise amplification for parallel imaging (G-factor) were evaluated in phantom and volunteer experiments. These results were compared to those of commercially available 24-channel and 32-channel coils in routine use for cardiac imaging. The in vivo measurements with the 128-channel coil resulted in SNR gains compared to the 24-channel coil (up to 2.2-fold in the apex). The 128- and 32-channel coils showed similar SNR in the heart, likely dominated by the similar element diameters of these coils. The maximum G-factor values were up to seven times better for a seven-fold acceleration factor (R = 7) compared to the 24-channel coil and up to two-fold improved compared to the 32-channel coil. The ability of the 128-channel coil to facilitate highly accelerated cardiac imaging was demonstrated in four volunteers using acceleration factors up to seven-fold (R = 7) in a single spatial dimension. PMID:18506789

  7. EEG-fMRI Gradient Artifact Correction by Multiple Motion-Related Templates.

    PubMed

    LeVan, Pierre; Zhang, Shuoyue; Knowles, Benjamin; Zaitsev, Maxim; Hennig, Jurgen

    2016-12-01

    In simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), artifacts on the EEG arise from the switching of magnetic field gradients in the MR scanner. These artifacts depend on head position, and are, therefore, difficult to remove in the presence of subject motion. In this study, gradient artifacts are modeled by multiple templates extracted from externally recorded motion information. Gradient artifact correction was performed in EEG-fMRI recordings by estimating artifactual templates modulated by slowly varying splines, as well as head position information. The EEG signal quality was then compared following two common methods: averaged artifact subtraction (AAS) and optimal basis sets (OBS). Artifact correction using multiple templates estimated from splines or motion time courses outperformed the existing AAS and OBS approaches, as quantified by root-mean-square power across gradient epochs. Improvements were mostly seen in posterior EEG channels, where most of the residual artifacts are seen following the AAS and OBS methods. Residual spectral power was comparable to that of EEG signals recorded without fMRI scanning. Gradient artifacts can be well modeled by multiple templates estimated from head position information, resulting in an effective artifact removal. This method can facilitate EEG-fMRI of uncooperative subjects in whom motion is inevitable, for example, to investigate high-frequency EEG activity in which gradient artifacts are particularly prominent.

  8. A Switched-Mode Breast Coil for 7 T MRI Using Forced-Current Excitation

    PubMed Central

    Bosshard, John C.; Rispoli, Joseph V.; Dimitrov, Ivan E.; Cheshkov, Sergey; McDougall, Mary Preston; Malloy, Craig; Wright, Steven M.

    2015-01-01

    In high-field magnetic resonance imaging, the radio frequency wavelength within the human body is comparable to anatomical dimensions, resulting in B1 inhomogeneity and nonuniform sensitivity patterns. Thus, this relatively short wavelength presents engineering challenges for RF coil design. In this study, a bilateral breast coil for 1H imaging at 7 T was designed and constructed using forced-current excitation. By forcing equal current through the coil elements, we reduce the effects of coupling between the elements to simplify tuning and to ensure a uniform field across both breasts. To combine the benefits of the higher power efficiency of a unilateral coil with the bilateral coverage of a bilateral coil, a switching circuit was implemented to allow the coil to be reconfigured for imaging the left, right, or both breasts. PMID:25706501

  9. [Decoupling of multi-channel RF coil and its application in the intraoperative MRI].

    PubMed

    Xin, Xuegang; Han, Jijun; Feng, Yanqiu; Chen, Wufan

    2011-04-01

    The coupling from different elements of the multi-channel coil leads to the splitting of the resonance frequency and deviation from the Lamor frequency. Decoupling between different elements is the key technology in the design of the radiofrequency (RF) coil. The electrical decoupling circuits should vary with different arrangements of the elements. A novel method of decoupling for the RF coil used in the intraoperative MR-guided focused ultrasound system is reported in the paper. The prototype RF coil was made according to the proposed decoupling method. The bench test of the prototype showed that the performance of the decoupling of the coil was excellent. The images in vivo were acquired with the designed prototype RF coil.

  10. Implanted, inductively-coupled, radiofrequency coils fabricated on flexible polymeric material: Application to in vivo rat brain MRI at 7 T

    NASA Astrophysics Data System (ADS)

    Ginefri, J.-C.; Rubin, A.; Tatoulian, M.; Woytasik, M.; Boumezbeur, F.; Djemaï, B.; Poirier-Quinot, M.; Lethimonnier, F.; Darrasse, L.; Dufour-Gergam, E.

    2012-11-01

    Combined with high-field MRI scanners, small implanted coils allow for high resolution imaging with locally improved SNR, as compared to external coils. Small flexible implantable coils dedicated to in vivo MRI of the rat brain at 7 T were developed. Based on the Multi-turn Transmission Line Resonator design, they were fabricated with a Teflon substrate using copper micromolding process and a specific metal-polymer adhesion treatment. The implanted coils were made biocompatible by PolyDimethylSiloxane (PDMS) encapsulation. The use of low loss tangent material achieves low dielectric losses within the substrate and the use of the PDMS layer reduces the parasitic coupling with the surrounding media. An implanted coil was implemented in a 7 T MRI system using inductive coupling and a dedicated external pick-up coil for signal transmission. In vivo images of the rat brain acquired with in plane resolution of (150 μm)2 thanks to the implanted coil revealed high SNR near the coil, allowing for the visualization of fine cerebral structures.

  11. A time-harmonic target-field method for designing unshielded RF coils in MRI

    NASA Astrophysics Data System (ADS)

    While, Peter T.; Forbes, Larry K.; Crozier, Stuart

    2005-04-01

    Time-harmonic methods are required in the accurate design of RF coils as operating frequency increases. This paper presents such a method to find a current density solution on the coil that will induce some desired magnetic field upon an asymmetrically located target region within. This inverse method appropriately considers the geometry of the coil via a Fourier series expansion, and incorporates some new regularization penalty functions in the solution process. A new technique is introduced by which the complex, time-dependent current density solution is approximated by a static coil winding pattern. Several winding pattern solutions are given, with more complex winding patterns corresponding to more desirable induced magnetic fields.

  12. High-performance radiofrequency coils for (23)Na MRI: brain and musculoskeletal applications.

    PubMed

    Wiggins, Graham C; Brown, Ryan; Lakshmanan, Karthik

    2016-02-01

    (23)Na RF coil design for brain and MSK applications presents a number of challenges, including poor coil loading for arrays of small coils and SNR penalties associated with providing (1)H capability with the same coil. The basics of RF coil design are described, as well as a review of historical approaches to dual tuning. There follows a review of published high performance coil designs for MSK and brain imaging. Several coil designs have been demonstrated at 7T and 3T which incorporate close-fitting receive arrays and in some cases design features which provide (1)H imaging with little penalty to (23)Na sensitivity. The "nested coplanar loop" approach is examined, in which small transmit-receive (1)H elements are placed within each (23)Na loop, presenting only a small perturbation to (23)Na performance and minimizing RF shielding issues. Other designs incorporating transmit-receive arrays for (23)Na and (1)H are discussed including a 9.4 T (23)Na/(1)H brain coil. Great gains in (23)Na SNR have been made with many of these designs, but simultaneously achieving high performance for 1H remains elusive.

  13. Electric fields induced in the human body by time-varying magnetic field gradients in MRI: numerical calculations and correlation analysis.

    PubMed

    Bencsik, Martin; Bowtell, Richard; Bowley, Roger

    2007-05-07

    The spatial distributions of the electric fields induced in the human body by switched magnetic field gradients in MRI have been calculated numerically using the commercial software package, MAFIA, and the three-dimensional, HUGO body model that comprises 31 different tissue types. The variation of |J|, |E| and |B| resulting from exposure of the body model to magnetic fields generated by typical whole-body x-, y- and z-gradient coils has been analysed for three different body positions (head-, heart- and hips-centred). The magnetic field varied at 1 kHz, so as to produce a rate of change of gradient of 100 T m(-1) s(-1) at the centre of each coil. A highly heterogeneous pattern of induced electric field and current density was found to result from the smoothly varying magnetic field in all cases, with the largest induced electric fields resulting from application of the y-gradient, in agreement with previous studies. By applying simple statistical analysis to electromagnetic quantities within axial planes of the body model, it is shown that the induced electric field is strongly correlated to the local value of resistivity, and the induced current density exhibits even stronger correlation with the local conductivity. The local values of the switched magnetic field are however shown to bear little relation to the local values of the induced electric field or current density.

  14. RF Head Coil Design with Improved RF Magnetic Near-Fields Uniformity for Magnetic Resonance Imaging (MRI) Systems.

    PubMed

    Sohn, Sung-Min; DelaBarre, Lance; Gopinath, Anand; Vaughan, John Thomas

    2014-08-01

    Higher magnetic field strength in magnetic resonance imaging (MRI) systems offers higher signal-to-noise ratio (SNR), contrast, and spatial resolution in MR images. However, the wavelength in ultra-high fields (7 tesla and beyond) becomes shorter than the human body at the Larmor frequency with increasing static magnetic field (B0) of MRI system. At short wavelengths, interference effect appears resulting in non- uniformity of the RF magnetic near-field (B1) over the subject and MR images may have spatially anomalous contrast. The B1 near-field generated by the transverse electromagnetic (TEM) RF coil's microstrip line element has a maximum near the center of its length and falls off towards both ends. In this study, a double trapezoidal shaped microstrip transmission line element is proposed to obtain uniform B1 field distribution by gradual impedance variation. Two multi-channel RF head coils with uniform and trapezoidal shape elements were built and tested with a phantom at 7T MRI scanner for comparison. The simulation and experimental results show stronger and more uniform B1(+) near-field with the trapezoidal shape.

  15. Evaluation of a 32-channel versus a 12-channel head coil for high-resolution post-contrast MRI in giant cell arteritis (GCA) at 3T.

    PubMed

    Franke, Philipp; Markl, Michael; Heinzelmann, Sonja; Vaith, Peter; Bürk, Jonas; Langer, Mathias; Geiger, J

    2014-10-01

    The aim of this study was to evaluate the diagnostic value of a 32-channel head coil for the characterization of mural inflammation patterns in the superficial cranial arteries in patients with giant cell arteritis (GCA) compared to a standard 12-channel coil at 3T MRI. 55 patients with suspected GCA underwent high resolution T1-weighted post-contrast MRI at 3T to detect inflammation related vessel wall enhancement using both coils. To account for different time delays between contrast agent injection and sequence acquisition, the patients were divided into two cohorts: 27 patients were examined with the 32-channel coil first and 28 patients with the 12-channel coil first. Images were evaluated by two blinded readers with regard to image quality, artifact level and arteries' inflammation according to a standardized ranking scale; furthermore signal-to-noise ratio (SNR) measurements were performed at three locations. Identification of arteries' inflammation was achieved with both coils with excellent inter-observer agreement (κ=0.89 for 12-channel and κ=0.96 for 32-channel coil). Regarding image grading, the inter-observer variability was moderate for the 12-channel (κ=0.5) and substantial for the 32-channel coil (κ=0.63). Significantly higher SNR and improved image quality (p<0.01) were obtained with the 32-channel coil in either coil order. Image quality for depiction of the superficial cranial arteries was superior for the 32-channel coil. For standardized GCA diagnosis, the 12-channel coil was sufficient.

  16. Optimized parallel transmit and receive radiofrequency coil for ultrahigh-field MRI of monkeys.

    PubMed

    Gilbert, Kyle M; Gati, Joseph S; Barker, Kevin; Everling, Stefan; Menon, Ravi S

    2016-01-15

    Monkeys are a valuable model for investigating the structure and function of the brain. To attain the requisite resolution to resolve fine anatomical detail and map localized brain activation requires radiofrequency (RF) coils that produce high signal-to-noise ratios (SNRs) both spatially (image SNR) and temporally. Increasing the strength of the static magnetic field is an effective method to improve SNR, yet this comes with commensurate challenges in RF coil design. First, at ultrahigh field strengths, the magnetic field produced by a surface coil in a dielectric medium is asymmetric. In neuroimaging of rhesus macaques, this complex field pattern is compounded by the heterogeneous structure of the head. The confluence of these effects results in a non-uniform flip angle, but more markedly, a suboptimal circularly polarized mode with reduced transmit efficiency. Secondly, susceptibility-induced geometric distortions are exacerbated when performing echo-planar imaging (EPI), which is a standard technique in functional studies. This requires receive coils capable of parallel imaging with low noise amplification during image reconstruction. To address these challenges at 7T, this study presents a parallel (8-channel) transmit coil developed for monkey imaging, along with a highly parallel (24-channel) receive coil. RF shimming with the parallel-transmit coil produced significant advantages-the transmit field was 38% more uniform than a traditional circularly polarized mode and 54% more power-efficient, demonstrating that parallel-transmit coils should be used for monkey imaging at ultrahigh field strengths. The receive coil had the ability to accelerate along an arbitrary axis with at least a three-fold reduction factor, thereby reducing geometric distortions in whole-brain EPI.

  17. Reducing the gradient artefact in simultaneous EEG-fMRI by adjusting the subject's axial position.

    PubMed

    Mullinger, Karen J; Yan, Winston X; Bowtell, Richard

    2011-02-01

    Large artefacts that compromise EEG data quality are generated when electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are carried out concurrently. The gradient artefact produced by the time-varying magnetic field gradients is the largest of these artefacts. Although average artefact correction (AAS) and related techniques can remove the majority of this artefact, the need to avoid amplifier saturation necessitates the use of a large dynamic range and strong low-pass filtering in EEG recording. Any intrinsic reduction in the gradient artefact amplitude would allow data with a higher bandwidth to be acquired without amplifier saturation, thus increasing the frequency range of neuronal activity that can be investigated using combined EEG-fMRI. Furthermore, gradient artefact correction methods assume a constant artefact morphology over time, so their performance is compromised by subject movement. Since the resulting, residual gradient artefacts can easily swamp signals from brain activity, any reduction in their amplitude would be highly advantageous for simultaneous EEG-fMRI studies. The aim of this work was to investigate whether adjustment of the subject's axial position in the MRI scanner can reduce the amplitude of the induced gradient artefact, before and after artefact correction using AAS. The variation in gradient artefact amplitude as a function of the subject's axial position was first investigated in six subjects by applying gradient pulses along the three Cartesian axes. The results of this study showed that a significant reduction in the gradient artefact magnitude can be achieved by shifting the subject axially by 4 cm towards the feet relative to the standard subject position (nasion at iso-centre). In a further study, the 4-cm shift was shown to produce a 40% reduction in the RMS amplitude (and a 31% reduction in the range) of the gradient artefact generated during the execution of a standard multi-slice, EPI sequence. By

  18. Normalized gradient fields for nonlinear motion correction of DCE-MRI time series.

    PubMed

    Hodneland, Erlend; Lundervold, Arvid; Rørvik, Jarle; Munthe-Kaas, Antonella Z

    2014-04-01

    Dynamic MR image recordings (DCE-MRI) of moving organs using bolus injections create two different types of dynamics in the images: (i) spatial motion artifacts due to patient movements, breathing and physiological pulsations that we want to counteract and (ii) signal intensity changes during contrast agent wash-in and wash-out that we want to preserve. Proper image registration is needed to counteract the motion artifacts and for a reliable assessment of physiological parameters. In this work we present a partial differential equation-based method for deformable multimodal image registration using normalized gradients and the Fourier transform to solve the Euler-Lagrange equations in a multilevel hierarchy. This approach is particularly well suited to handle the motion challenges in DCE-MRI time series, being validated on ten DCE-MRI datasets from the moving kidney. We found that both normalized gradients and mutual information work as high-performing cost functionals for motion correction of this type of data. Furthermore, we demonstrated that normalized gradients have improved performance compared to mutual information as assessed by several performance measures. We conclude that normalized gradients can be a viable alternative to mutual information regarding registration accuracy, and with promising clinical applications to DCE-MRI recordings from moving organs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Development of a new RF coil and γ-ray radiation shielding assembly for improved MR image quality in SPECT/MRI

    NASA Astrophysics Data System (ADS)

    Ha, Seunghoon; Hamamura, Mark J.; Roeck, Werner W.; Tugan Muftuler, L.; Nalcioglu, Orhan

    2010-05-01

    Magnetic resonance (MR)-based multimodality imaging systems, such as single-photon emission tomography (SPECT)/magnetic resonance imaging (MRI) or positron emission tomography (PET)/MRI, face many difficulties because of problems with the compatibility of the nuclear detector system with the MR system. However, several studies have reported on the design considerations of MR-compatible nuclear detectors for combined SPECT/MRI. In this study, we developed a new radiofrequency (RF) coil and γ-ray radiation shielding assembly to advance the practical implementation of SPECT/MRI in providing high sensitivity while minimizing the interference between the MRI and SPECT systems. The proposed assembly consists of a three-channel receive-only RF coil and γ-ray radiation shields made of a specialized lead composite powder designed to reduce conductivity and thus minimizing any effect on the magnetic field arising from the induced eddy currents. A conventional birdcage RF coil was also tested for comparison with the proposed RF coil. Quality (Q)-factors were measured using both RF coils without any shielding, with solid lead shielding, and with our composite lead shielding. Signal-to-noise ratios (SNRs) were calculated using 4 T MR images of phantoms both with and without the new γ-ray radiation shields. The Q-factor and SNR measurements demonstrate the improved MRI performance due to the new RF coil/γ-ray radiation shield assembly designed for SPECT/MRI, making it a useful addition to multimodality imaging technology not only for animal studies but also for in vivo study of humans.

  20. Development of a new RF coil and gamma-ray radiation shielding assembly for improved MR image quality in SPECT/MRI.

    PubMed

    Ha, Seunghoon; Hamamura, Mark J; Roeck, Werner W; Muftuler, L Tugan; Nalcioglu, Orhan

    2010-05-07

    Magnetic resonance (MR)-based multimodality imaging systems, such as single-photon emission tomography (SPECT)/magnetic resonance imaging (MRI) or positron emission tomography (PET)/MRI, face many difficulties because of problems with the compatibility of the nuclear detector system with the MR system. However, several studies have reported on the design considerations of MR-compatible nuclear detectors for combined SPECT/MRI. In this study, we developed a new radiofrequency (RF) coil and gamma-ray radiation shielding assembly to advance the practical implementation of SPECT/MRI in providing high sensitivity while minimizing the interference between the MRI and SPECT systems. The proposed assembly consists of a three-channel receive-only RF coil and gamma-ray radiation shields made of a specialized lead composite powder designed to reduce conductivity and thus minimizing any effect on the magnetic field arising from the induced eddy currents. A conventional birdcage RF coil was also tested for comparison with the proposed RF coil. Quality (Q)-factors were measured using both RF coils without any shielding, with solid lead shielding, and with our composite lead shielding. Signal-to-noise ratios (SNRs) were calculated using 4 T MR images of phantoms both with and without the new gamma-ray radiation shields. The Q-factor and SNR measurements demonstrate the improved MRI performance due to the new RF coil/gamma-ray radiation shield assembly designed for SPECT/MRI, making it a useful addition to multimodality imaging technology not only for animal studies but also for in vivo study of humans.

  1. Polynomial regularization for robust MRI-based estimation of blood flow velocities and pressure gradients.

    PubMed

    Delles, Michael; Rengier, Fabian; Ley, Sebastian; von Tengg-Kobligk, Hendrik; Kauczor, Hans-Ulrich; Dillmann, Rüdiger; Unterhinninghofen, Roland

    2011-01-01

    In cardiovascular diagnostics, phase-contrast MRI is a valuable technique for measuring blood flow velocities and computing blood pressure values. Unfortunately, both velocity and pressure data typically suffer from the strong image noise of velocity-encoded MRI. In the past, separate approaches of regularization with physical a-priori knowledge and data representation with continuous functions have been proposed to overcome these drawbacks. In this article, we investigate polynomial regularization as an exemplary specification of combining these two techniques. We perform time-resolved three-dimensional velocity measurements and pressure gradient computations on MRI acquisitions of steady flow in a physical phantom. Results based on the higher quality temporal mean data are used as a reference. Thereby, we investigate the performance of our approach of polynomial regularization, which reduces the root mean squared errors to the reference data by 45% for velocities and 60% for pressure gradients.

  2. Full automatic fiducial marker detection on coil arrays for accurate instrumentation placement during MRI guided breast interventions

    NASA Astrophysics Data System (ADS)

    Filippatos, Konstantinos; Boehler, Tobias; Geisler, Benjamin; Zachmann, Harald; Twellmann, Thorsten

    2010-02-01

    With its high sensitivity, dynamic contrast-enhanced MR imaging (DCE-MRI) of the breast is today one of the first-line tools for early detection and diagnosis of breast cancer, particularly in the dense breast of young women. However, many relevant findings are very small or occult on targeted ultrasound images or mammography, so that MRI guided biopsy is the only option for a precise histological work-up [1]. State-of-the-art software tools for computer-aided diagnosis of breast cancer in DCE-MRI data offer also means for image-based planning of biopsy interventions. One step in the MRI guided biopsy workflow is the alignment of the patient position with the preoperative MR images. In these images, the location and orientation of the coil localization unit can be inferred from a number of fiducial markers, which for this purpose have to be manually or semi-automatically detected by the user. In this study, we propose a method for precise, full-automatic localization of fiducial markers, on which basis a virtual localization unit can be subsequently placed in the image volume for the purpose of determining the parameters for needle navigation. The method is based on adaptive thresholding for separating breast tissue from background followed by rigid registration of marker templates. In an evaluation of 25 clinical cases comprising 4 different commercial coil array models and 3 different MR imaging protocols, the method yielded a sensitivity of 0.96 at a false positive rate of 0.44 markers per case. The mean distance deviation between detected fiducial centers and ground truth information that was appointed from a radiologist was 0.94mm.

  3. Physiological noise and signal-to-noise ratio in fMRI with multi-channel array coils.

    PubMed

    Triantafyllou, Christina; Polimeni, Jonathan R; Wald, Lawrence L

    2011-03-15

    Sensitivity in BOLD fMRI is characterized by the signal to noise ratio (SNR) of the time-series (tSNR), which contains fluctuations from thermal and physiological noise sources. Alteration of an acquisition parameter can affect the tSNR differently depending on the relative magnitude of the physiological and thermal noise, therefore knowledge of this ratio is essential for optimizing fMRI acquisitions. In this study, we compare image and time-series SNR from array coils at 3T with and without parallel imaging (GRAPPA) as a function of image resolution and acceleration. We use the "absolute unit" SNR method of Kellman and McVeigh to calculate the image SNR (SNR(0)) in a way that renders it comparable to tSNR, allowing determination of the thermal to physiological noise ratio, and the pseudo-multiple replica method to quantify the image noise alterations due to the GRAPPA reconstruction. The Kruger and Glover noise model, in which the physiological noise standard deviation is proportional to signal strength, was found to hold for the accelerated and non-accelerated array coil data. Thermal noise dominated the EPI time-series for medium to large voxel sizes for single-channel and 12-channel head coil configurations, but physiological noise dominated the 32-channel array acquisition even at 1 mm × 1mm × 3 mm resolution. At higher acceleration factors, image SNR is reduced and the time-series becomes increasingly thermal noise dominant. However, the tSNR reduction is smaller than the reduction in image SNR due to the presence of physiological noise. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. A Specialized Multi-Transmit Head Coil for High Resolution fMRI of the Human Visual Cortex at 7T.

    PubMed

    Sengupta, Shubharthi; Roebroeck, Alard; Kemper, Valentin G; Poser, Benedikt A; Zimmermann, Jan; Goebel, Rainer; Adriany, Gregor

    2016-01-01

    To design, construct and validate radiofrequency (RF) transmit and receive phased array coils for high-resolution visual cortex imaging at 7 Tesla. A 4 channel transmit and 16 channel receive array was constructed on a conformal polycarbonate former. Transmit field efficiency and homogeneity were simulated and validated, along with the Specific Absorption Rate, using [Formula: see text] mapping techniques and electromagnetic simulations. Receiver signal-to-noise ratio (SNR), temporal SNR (tSNR) across EPI time series, g-factors for accelerated imaging and noise correlations were evaluated and compared with a commercial 32 channel whole head coil. The performance of the coil was further evaluated with human subjects through functional MRI (fMRI) studies at standard and submillimeter resolutions of upto 0.8mm isotropic. The transmit and receive sections were characterized using bench tests and showed good interelement decoupling, preamplifier decoupling and sample loading. SNR for the 16 channel coil was ∼ 1.5 times that of the commercial coil in the human occipital lobe, and showed better g-factor values for accelerated imaging. fMRI tests conducted showed better response to Blood Oxygen Level Dependent (BOLD) activation, at resolutions of 1.2mm and 0.8mm isotropic. The 4 channel phased array transmit coil provides homogeneous excitation across the visual cortex, which, in combination with the dual row 16 channel receive array, makes for a valuable research tool for high resolution anatomical and functional imaging of the visual cortex at 7T.

  5. An embedded four-channel receive-only RF coil array for fMRI experiments of the somatosensory pathway in conscious awake marmosets.

    PubMed

    Papoti, Daniel; Yen, Cecil Chern-Chyi; Mackel, Julie B; Merkle, Hellmut; Silva, Afonso C

    2013-11-01

    fMRI has established itself as the main research tool in neuroscience and brain cognitive research. The common marmoset (Callithrix jacchus) is a non-human primate model of increasing interest in biomedical research. However, commercial MRI coils for marmosets are not generally available. The present work describes the design and construction of a four-channel receive-only surface RF coil array with excellent signal-to-noise ratio (SNR) specifically optimized for fMRI experiments in awake marmosets in response to somatosensory stimulation. The array was designed as part of a helmet-based head restraint system used to prevent motion during the scans. High SNR was obtained by building the coil array using a thin and flexible substrate glued to the inner surface of the restraint helmet, so as to minimize the distance between the array elements and the somatosensory cortex. Decoupling between coil elements was achieved by partial geometrical overlapping and by connecting them to home-built low-input-impedance preamplifiers. In vivo images show excellent coverage of the brain cortical surface with high sensitivity near the somatosensory cortex. Embedding the coil elements within the restraint helmet allowed fMRI data in response to somatosensory stimulation to be collected with high sensitivity and reproducibility in conscious, awake marmosets. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  6. An Embedded 4-Channel Receive-Only RF Coil Array for fMRI Experiments of the Somatosensory Pathway in Conscious Awake Marmosets at 7T

    PubMed Central

    Papoti, Daniel; Yen, Cecil Chern-Chyi; Mackel, Julie B.; Merkle, Hellmut; Silva, Afonso C.

    2014-01-01

    Functional Magnetic Resonance Imaging (fMRI) has established itself as the main research tool in neuroscience and brain cognitive research. The common marmoset (Callithrix jacchus) is a non-human primate model of increasing interest in biomedical research. However, commercial MRI coils for marmosets are not generally available. The present work describes the design and construction of a 4-channel receive-only surface RF coil array with excellent signal-to-noise ratio (SNR) specifically optimized for fMRI experiments in awake marmosets in response to somatosensory stimulation. The array was designed as part of a helmet-based head restraint system used to prevent motion during the scans. High SNR was obtained by building the coil array using a thin and flexible substrate glued to the inner surface of the restraint helmet, so as to minimize the distance between the array elements and the somatosensory cortex. Decoupling between coil elements was achieved by partial geometrical overlapping and by connecting them to home-built low input impedance preamplifiers. In vivo images show excellent coverage of the brain cortical surface with high sensitivity near the somatosensory cortex. Embedding the coil elements within the restraint helmet allowed fMRI data in response to somatosensory stimulation to be collected with high sensitivity and reproducibility in conscious, awake marmosets. PMID:23696219

  7. Multi-channel MRI segmentation with graph cuts using spectral gradient and multidimensional Gaussian mixture model

    NASA Astrophysics Data System (ADS)

    Lecoeur, Jérémy; Ferré, Jean-Christophe; Collins, D. Louis; Morrisey, Sean P.; Barillot, Christian

    2009-02-01

    A new segmentation framework is presented taking advantage of multimodal image signature of the different brain tissues (healthy and/or pathological). This is achieved by merging three different modalities of gray-level MRI sequences into a single RGB-like MRI, hence creating a unique 3-dimensional signature for each tissue by utilising the complementary information of each MRI sequence. Using the scale-space spectral gradient operator, we can obtain a spatial gradient robust to intensity inhomogeneity. Even though it is based on psycho-visual color theory, it can be very efficiently applied to the RGB colored images. More over, it is not influenced by the channel assigment of each MRI. Its optimisation by the graph cuts paradigm provides a powerful and accurate tool to segment either healthy or pathological tissues in a short time (average time about ninety seconds for a brain-tissues classification). As it is a semi-automatic method, we run experiments to quantify the amount of seeds needed to perform a correct segmentation (dice similarity score above 0.85). Depending on the different sets of MRI sequences used, this amount of seeds (expressed as a relative number in pourcentage of the number of voxels of the ground truth) is between 6 to 16%. We tested this algorithm on brainweb for validation purpose (healthy tissue classification and MS lesions segmentation) and also on clinical data for tumours and MS lesions dectection and tissues classification.

  8. Removing Signal Intensity Inhomogeneity From Surface Coil MRI Using Discrete Wavelet Transform and Wavelet Packet

    DTIC Science & Technology

    2001-10-25

    We evaluate a combined discrete wavelet transform (DWT) and wavelet packet algorithm to improve the homogeneity of magnetic resonance imaging when a...image and uses this information to normalize the image intensity variations. Estimation of the coil sensitivity profile based on the wavelet transform of

  9. RF Head Coil Design with Improved RF Magnetic Near-Fields Uniformity for Magnetic Resonance Imaging (MRI) Systems

    PubMed Central

    Sohn, Sung-Min; DelaBarre, Lance; Gopinath, Anand; Vaughan, John Thomas

    2015-01-01

    Higher magnetic field strength in magnetic resonance imaging (MRI) systems offers higher signal-to-noise ratio (SNR), contrast, and spatial resolution in MR images. However, the wavelength in ultra-high fields (7 tesla and beyond) becomes shorter than the human body at the Larmor frequency with increasing static magnetic field (B0) of MRI system. At short wavelengths, interference effect appears resulting in non- uniformity of the RF magnetic near-field (B1) over the subject and MR images may have spatially anomalous contrast. The B1 near-field generated by the transverse electromagnetic (TEM) RF coil’s microstrip line element has a maximum near the center of its length and falls off towards both ends. In this study, a double trapezoidal shaped microstrip transmission line element is proposed to obtain uniform B1 field distribution by gradual impedance variation. Two multi-channel RF head coils with uniform and trapezoidal shape elements were built and tested with a phantom at 7T MRI scanner for comparison. The simulation and experimental results show stronger and more uniform B1+ near-field with the trapezoidal shape. PMID:25892746

  10. TOPICAL REVIEW: Interaction of MRI field gradients with the human body

    NASA Astrophysics Data System (ADS)

    Glover, P. M.

    2009-11-01

    In this review, the effects of low-frequency electromagnetic fields encountered specifically during magnetic resonance imaging (MRI) are examined. The primary biological effect at frequencies of between 100 and 5000 Hz (typical of MRI magnetic field gradient switching) is peripheral nerve stimulation, the result of which can be a mild tingling and muscle twitching to a sensation of pain. The models for nerve stimulation and how they are related to the rate of change of magnetic field are examined. The experimental measurements, and analytic and computational modelling work in this area are reviewed. The review concludes with a discussion of current regulation in this area and current practice as both are applied to MRI.

  11. Development of a full-ring ;add-on PET; prototype: A head coil with DOI-PET detectors for integrated PET/MRI

    NASA Astrophysics Data System (ADS)

    Nishikido, F.; Fujiwara, M.; Tashima, H.; Akram, M. S. H.; Suga, M.; Obata, T.; Yamaya, T.

    2017-08-01

    We developed a full-ring ;add-on PET; prototype which is brain-dedicated and consists of a RF-head coil with four-layer depth-of-interaction (DOI) PET detectors for integrated PET/MRI in order to evaluate performance of our previously proposed add-on PET system and to investigate the mutual influences between the individual PET and MRI modalities when they are integrated in simultaneous measurements. In this add-on PET prototype, the DOI detectors are mounted on the head coil and close to the patient head. As a result, higher sensitivity and higher spatial resolution can be achieved for the integrated PET/MRI, compared with conventional whole body PET/MRI systems. In addition, implementation cost can be reduced, tuning of the RF-coil can be optimized and PET and MRI images can be obtained simultaneously in exactly the same positions. Specifically, the full-ring prototype consists of eight DOI-PET detectors and a birdcage type head coil of a 3T MRI. The radius of the PET ring is 123.9 mm. The distance from the center to the RF-coil elements is 130.5 mm. The scintillator blocks consist of lutetium-yttrium oxyorthosilicate scintillators arranged in 19×6×4 layers with reflectors inserted between them. The size of each crystal element is 2.0 mm×2.0 mm ×5.0 mm. We evaluated performance of the full-ring prototype in simultaneous measurements of the integrated PET/MRI. We obtained spatial resolutions of 2.3 mm at the center of the field-of-view (FOV) and lower than 3.5 mm in the whole FOV. The energy resolution of 19.4% was obtained for 511 keV gamma-rays. In addition, we observed no degradation of PET performance caused by the MRI measurement. The signal-to-noise ratio (SNR) of the MRI image was 209.4 in simultaneous measurements with the PET. The maximum ΔB0 and maximum difference of the secondary magnetic field due to the eddy current effect were smaller than 0.8 ppm and ±5.0 μT, respectively. We concluded that sufficient spatial resolution and detector

  12. Concurrent recording of RF pulses and gradient fields - comprehensive field monitoring for MRI.

    PubMed

    Brunner, David O; Dietrich, Benjamin E; Çavuşoğlu, Mustafa; Wilm, Bertram J; Schmid, Thomas; Gross, Simon; Barmet, Christoph; Pruessmann, Klaas P

    2016-09-01

    Reconstruction of MRI data is based on exact knowledge of all magnetic field dynamics, since the interplay of RF and gradient pulses generates the signal, defines the contrast and forms the basis of resolution in spatial and spectral dimensions. Deviations caused by various sources, such as system imperfections, delays, eddy currents, drifts or externally induced fields, can therefore critically limit the accuracy of MRI examinations. This is true especially at ultra-high fields, because many error terms scale with the main field strength, and higher available SNR renders even smaller errors relevant. Higher baseline field also often requires higher acquisition bandwidths and faster signal encoding, increasing hardware demands and the severity of many types of hardware imperfection. To address field imperfections comprehensively, in this work we propose to expand the concept of magnetic field monitoring to also encompass the recording of RF fields. In this way, all dynamic magnetic fields relevant for spin evolution are covered, including low- to audio-frequency magnetic fields as produced by main magnets, gradients and shim systems, as well as RF pulses generated with single- and multiple-channel transmission systems. The proposed approach permits field measurements concurrently with actual MRI procedures on a strict common time base. The combined measurement is achieved with an array of miniaturized field probes that measure low- to audio-frequency fields via (19) F NMR and simultaneously pick up RF pulses in the MRI system's (1) H transmit band. Field recordings can form the basis of system calibration, retrospective correction of imaging data or closed-loop feedback correction, all of which hold potential to render MRI more robust and relax hardware requirements. The proposed approach is demonstrated for a range of imaging methods performed on a 7 T human MRI system, including accelerated multiple-channel RF pulses. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Simple analytical dual-band spectral-spatial RF pulses for B(1) + and susceptibility artifact reduction in gradient echo MRI.

    PubMed

    Yang, Cungeng; Deng, Weiran; Stenger, V Andrew

    2011-02-01

    Susceptibility artifacts and transmission radio frequency (RF) field (B(1) +) inhomogeneity are major limitations in high-field gradient echo MRI. Previously proposed numerical 2D spectral-spatial RF pulses have been shown to be promising for reducing the through-plane signal loss susceptibility artifact by incorporating a frequency-dependent through-plane phase correction. This method has recently been extended to 4D spectral-spatial RF pulse designs for reducing B(1) + inhomogeneity as well as the signal loss. In this manuscript, we present simple analytical pulse designs for constructing 2D and 4D spectral-spatial RF pulses as an alternative to the numerical approaches. The 2D pulse capable of exciting slices with reduced signal loss and is lipid suppressing. The 4D pulse simultaneously corrects signal loss as well as the B(1) + inhomogeneity from a body coil transmitter. The pulses are demonstrated with simulations and with gradient echo phantom and brain images at 3T using a standard RF body coil. The pulses were observed to work well for multiple slices and several volunteers. Copyright © 2010 Wiley-Liss, Inc.

  14. Comparison of prostate cancer detection at 3-T MRI with and without an endorectal coil: A prospective, paired-patient study.

    PubMed

    Costa, Daniel N; Yuan, Qing; Xi, Yin; Rofsky, Neil M; Lenkinski, Robert E; Lotan, Yair; Roehrborn, Claus G; Francis, Franto; Travalini, Debbie; Pedrosa, Ivan

    2016-06-01

    To compare the sensitivity of 2 different non-endorectal coil strategies vs. endorectal coil (ERC) magnetic resonance imaging (MRI) for detection of prostate cancer (PCa). In this prospective, single-center, paired-patient, paired-reader study, 49 men with a clinical indication for MRI underwent non-ERC (phased-array coil only) T2-weighted imaging and diffusion-weighted imaging followed by the same sequences using both ERC and phased-array coils (ERC Protocol). Patients were randomized into 1 of 2 arms: standard non-ERC protocol and augmented non-ERC protocol. Lesions with Likert score≥3 were defined as suspicious for cancer. Radical prostatectomy specimen or combined systematic plus targeted biopsies served as the standard of reference. Cancers were stratified into risk groups according to the National Comprehensive Cancer Network guidelines. Generalized estimating equations with Bonferroni correction were used for comparisons. The level of reader confidence was inferred by the Likert scores assigned to index lesions. The ERC protocol provided sensitivity (78%) superior to MRI without ERC for PCa detection, both with a standard (43%) (P<0.0001) or augmented (60%) (P<0.01) protocol. The ERC MRI missed less-intermediate or high-risk index lesions (4%) than standard non-ERC (42%) (P = 0.02) and augmented non-ERC MRI (25%), although the latter did not reach significance (P = 0.09). The ERC improved radiologist confidence for the detection of PCa (average Likert score = 4.2±1.4) compared to standard (2.3±2.3) and augmented (2.9±2.1) non-ERC (P = 0.001). The use of combined ERC and pelvic phased-array coil for T2-weighted imaging and diffusion-weighted imaging provides superior sensitivity for the detection of PCa compared to an examination performed without the ERC. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Practical design of a 4 Tesla double-tuned RF surface coil for interleaved 1H and 23Na MRI of rat brain

    NASA Astrophysics Data System (ADS)

    Alecci, M.; Romanzetti, S.; Kaffanke, J.; Celik, A.; Wegener, H. P.; Shah, N. J.

    2006-08-01

    MRI is proving to be a very useful tool for sodium quantification in animal models of stroke, ischemia, and cancer. In this work, we present the practical design of a dual-frequency RF surface coil that provides 1H and 23Na images of the rat head at 4 T. The dual-frequency RF surface coil comprised of a large loop tuned to the 1H frequency and a smaller co-planar loop tuned to the 23Na frequency. The mutual coupling between the two loops was eliminated by the use of a trap circuit inserted in the smaller coil. This independent-loop design was versatile since it enabled a separate optimisation of the sensitivity and RF field distributions of the two coils. To allow for an easy extension of this simple double-tuned coil design to other frequencies (nuclei) and dimensions, we describe in detail the practical aspects of the workbench design and MRI testing using a phantom that mimics in vivo conditions. A comparison between our independent-loop, double-tuned coil and a single-tuned 23Na coil of equal size obtained with a phantom matching in vivo conditions, showed a reduction of the 23Na sensitivity (about 28 %) because of signal losses in the trap inductance. Typical congruent 1H and 23Na rat brain images showing good SNR ( 23Na: brain 7, ventricular cerebrospinal fluid 11) and spatial resolution ( 23Na: 1.25 × 1.25 × 5 mm 3) are also reported. The in vivo SNR values obtained with this coil were comparable to, if not better than, other contemporary designs in the literature.

  16. Lung Motion and Volume Measurement by Dynamic 3D MRI Using a 128-Channel Receiver Coil1

    PubMed Central

    Tokuda, Junichi; Schmitt, Melanie; Sun, Yanping; Patz, Samuel; Tang, Yi; Mountford, Carolyn E.; Hata, Nobuhiko; Wald, Lawrence L.; Hatabu, Hiroto

    2009-01-01

    Rationale and Objectives The authors present their initial experience using a 3-T whole-body scanner equipped with a 128-channel coil applied to lung motion assessment. Recent improvements in fast magnetic resonance imaging (MRI) technology have enabled several trials of free-breathing three-dimensional (3D) imaging of the lung. A large number of image frames necessarily increases the difficulty of image analysis and therefore warrants automatic image processing. However, the intensity homogeneities of images of prior dynamic 3D lung MRI studies have been insufficient to use such methods. In this study, initial data were obtained at 3 T with a 128-channel coil that demonstrate the feasibility of acquiring multiple sets of 3D pulmonary scans during free breathing and that have sufficient quality to be amenable to automatic segmentation. Materials and Methods Dynamic 3D images of the lungs of two volunteers were acquired with acquisition times of 0.62 to 0.76 frames/s and an image matrix of 128 × 128, with 24 to 30 slice encodings. The volunteers were instructed to take shallow and deep breaths during the scans. The variation of lung volume was measured from the segmented images. Results Dynamic 3D images were successfully acquired for both respiratory conditions for each subject. The images showed whole-lung motion, including lifting of the chest wall and the displacement of the diaphragm, with sufficient contrast to distinguish these structures from adjacent tissues. The average time to complete segmentation for one 3D image was 4.8 seconds. The tidal volume measured was consistent with known tidal volumes for healthy subjects performing deep-breathing maneuvers. The temporal resolution was insufficient to measure tidal volumes for shallow breathing. Conclusion This initial experience with a 3-T whole-body scanner and a 128-channel coil showed that the scanner and imaging protocol provided dynamic 3D images with spatial and temporal resolution sufficient to

  17. Comparison and evaluation of mouse cardiac MRI acquired with open birdcage, single loop surface and volume birdcage coils.

    PubMed

    Fan, Xiaobing; Markiewicz, Erica J; Zamora, Marta; Karczmar, Gregory S; Roman, Brian B

    2006-12-21

    Although the quality and speed of MR images have vastly improved with the development of novel RF coil technologies, the engineering expertise required to implement them is often not available in many animal in vivo MR laboratories. We present here an open birdcage coil design which is easily constructed with basic RF coil expertise and produces high quality images. The quality and advantages of mouse cardiac MR images acquired with open birdcage coils were evaluated and compared to images acquired with a bent single loop surface, and standard birdcage coils acquired at 4.7 Tesla. Two low pass open birdcage coils, two single loop surface coils, and a low pass volume birdcage coil were constructed and their B(1) distributions were evaluated and compared. The calculated average signal-to-noise ratio for the left ventricular wall was 10, 23 and 32 for the volume birdcage coil, single loop surface coil and open birdcage coil, respectively. The results demonstrate that the open birdcage coil provides greater sensitivity than the volume coil and a higher signal/contrast-to-noise ratio and B(1) homogeneity than the single loop surface coil. The open birdcage coil offers easy access and better quality mouse cardiac imaging than both the single loop surface coil and volume birdcage coil and does not require extensive RF engineering expertise to construct.

  18. NOTE: Comparison and evaluation of mouse cardiac MRI acquired with open birdcage, single loop surface and volume birdcage coils

    NASA Astrophysics Data System (ADS)

    Fan, Xiaobing; Markiewicz, Erica J.; Zamora, Marta; Karczmar, Gregory S.; Roman, Brian B.

    2006-12-01

    Although the quality and speed of MR images have vastly improved with the development of novel RF coil technologies, the engineering expertise required to implement them is often not available in many animal in vivo MR laboratories. We present here an open birdcage coil design which is easily constructed with basic RF coil expertise and produces high quality images. The quality and advantages of mouse cardiac MR images acquired with open birdcage coils were evaluated and compared to images acquired with a bent single loop surface, and standard birdcage coils acquired at 4.7 Tesla. Two low pass open birdcage coils, two single loop surface coils, and a low pass volume birdcage coil were constructed and their B1 distributions were evaluated and compared. The calculated average signal-to-noise ratio for the left ventricular wall was 10, 23 and 32 for the volume birdcage coil, single loop surface coil and open birdcage coil, respectively. The results demonstrate that the open birdcage coil provides greater sensitivity than the volume coil and a higher signal/contrast-to-noise ratio and B1 homogeneity than the single loop surface coil. The open birdcage coil offers easy access and better quality mouse cardiac imaging than both the single loop surface coil and volume birdcage coil and does not require extensive RF engineering expertise to construct.

  19. Feasibility of Imaging Tissue Electrical Conductivity by Switching Field Gradients with MRI.

    PubMed

    Gibbs, Eric; Liu, Chunlei

    2015-12-01

    Tissue conductivity is a biophysical marker of tissue structure and physiology. Present methods of measuring tissue conductivity are limited. Electrical impedance tomography, and magnetic resonance electrical impedance tomography rely on passing external current through the object being imaged, which prevents its use in most human imaging. Recently, the RF field used for MR excitation has been used to non-invasively measure tissue conductivity. This technique is promising, but conductivity at higher frequencies is less sensitive to tissue structure. Measuring tissue conductivity non-invasively at low frequencies remains elusive. It has been proposed that eddy currents generated during the rise and decay of gradient pulses could act as a current source to map low-frequency conductivity. This work centers on a gradient echo pulse sequence that uses large gradients prior to excitation to create eddy currents. The electric and magnetic fields during a gradient pulse are simulated by a finite-difference time-domain simulation. The sequence is also tested with a phantom and an animal MRI scanner equipped with gradients of high gradient strengths and slew rate. The simulation demonstrates that eddy currents in materials with conductivity similar to biological tissue decay with a half-life on the order of nanoseconds and any eddy currents generated prior to excitation decay completely before influencing the RF signal. Gradient-induced eddy currents can influence phase accumulation after excitation but the effect is too small to image. The animal scanner images show no measurable phase accumulation. Measuring low-frequency conductivity by gradient-induced eddy currents is presently unfeasible.

  20. Feasibility of Imaging Tissue Electrical Conductivity by Switching Field Gradients with MRI

    PubMed Central

    Gibbs, Eric; Liu, Chunlei

    2016-01-01

    Tissue conductivity is a biophysical marker of tissue structure and physiology. Present methods of measuring tissue conductivity are limited. Electrical impedance tomography, and magnetic resonance electrical impedance tomography rely on passing external current through the object being imaged, which prevents its use in most human imaging. Recently, the RF field used for MR excitation has been used to non-invasively measure tissue conductivity. This technique is promising, but conductivity at higher frequencies is less sensitive to tissue structure. Measuring tissue conductivity non-invasively at low frequencies remains elusive. It has been proposed that eddy currents generated during the rise and decay of gradient pulses could act as a current source to map low-frequency conductivity. This work centers on a gradient echo pulse sequence that uses large gradients prior to excitation to create eddy currents. The electric and magnetic fields during a gradient pulse are simulated by a finite-difference time-domain simulation. The sequence is also tested with a phantom and an animal MRI scanner equipped with gradients of high gradient strengths and slew rate. The simulation demonstrates that eddy currents in materials with conductivity similar to biological tissue decay with a half-life on the order of nanoseconds and any eddy currents generated prior to excitation decay completely before influencing the RF signal. Gradient-induced eddy currents can influence phase accumulation after excitation but the effect is too small to image. The animal scanner images show no measurable phase accumulation. Measuring low-frequency conductivity by gradient-induced eddy currents is presently unfeasible. PMID:26844302

  1. Detection and quantification of regional cortical gray matter damage in multiple sclerosis utilizing gradient echo MRI.

    PubMed

    Wen, Jie; Yablonskiy, Dmitriy A; Luo, Jie; Lancia, Samantha; Hildebolt, Charles; Cross, Anne H

    2015-01-01

    Cortical gray matter (GM) damage is now widely recognized in multiple sclerosis (MS). The standard MRI does not reliably detect cortical GM lesions, although cortical volume loss can be measured. In this study, we demonstrate that the gradient echo MRI can reliably and quantitatively assess cortical GM damage in MS patients using standard clinical scanners. High resolution multi-gradient echo MRI was used for regional mapping of tissue-specific MRI signal transverse relaxation rate values (R2(*)) in 10 each relapsing-remitting, primary-progressive and secondary-progressive MS subjects. A voxel spread function method was used to correct artifacts induced by background field gradients. R2(*) values from healthy controls (HCs) of varying ages were obtained to establish baseline data and calculate ΔR2(*) values - age-adjusted differences between MS patients and HC. Thickness of cortical regions was also measured in all subjects. In cortical regions, ΔR2(*) values of MS patients were also adjusted for changes in cortical thickness. Symbol digit modalities (SDMT) and paced auditory serial addition (PASAT) neurocognitive tests, as well as Expanded Disability Status Score, 25-foot timed walk and nine-hole peg test results were also obtained on all MS subjects. We found that ΔR2(*) values were lower in multiple cortical GM and normal appearing white matter (NAWM) regions in MS compared with HC. ΔR2(*) values of global cortical GM and several specific cortical regions showed significant (p < 0.05) correlations with SDMT and PASAT scores, and showed better correlations than volumetric measures of the same regions. Neurological tests not focused on cognition (Expanded Disability Status Score, 25-foot timed walk and nine-hole peg tests) showed no correlation with cortical GM ΔR2(*) values. The technique presented here is robust and reproducible. It requires less than 10 min and can be implemented on any MRI scanner. Our results show that quantitative tissue-specific R2

  2. Cardiac MRI in mice at 9.4 Tesla with a transmit-receive surface coil and a cardiac-tailored intensity-correction algorithm.

    PubMed

    Sosnovik, David E; Dai, Guangping; Nahrendorf, Matthias; Rosen, Bruce R; Seethamraju, Ravi

    2007-08-01

    To evaluate the use of a transmit-receive surface (TRS) coil and a cardiac-tailored intensity-correction algorithm for cardiac MRI in mice at 9.4 Tesla (9.4T). Fast low-angle shot (FLASH) cines, with and without delays alternating with nutations for tailored excitation (DANTE) tagging, were acquired in 13 mice. An intensity-correction algorithm was developed to compensate for the sensitivity profile of the surface coil, and was tailored to account for the unique distribution of noise and flow artifacts in cardiac MR images. Image quality was extremely high and allowed fine structures such as trabeculations, valve cusps, and coronary arteries to be clearly visualized. The tag lines created with the surface coil were also sharp and clearly visible. Application of the intensity-correction algorithm improved signal intensity, tissue contrast, and image quality even further. Importantly, the cardiac-tailored properties of the correction algorithm prevented noise and flow artifacts from being significantly amplified. The feasibility and value of cardiac MRI in mice with a TRS coil has been demonstrated. In addition, a cardiac-tailored intensity-correction algorithm has been developed and shown to improve image quality even further. The use of these techniques could produce significant potential benefits over a broad range of scanners, coil configurations, and field strengths. (c) 2007 Wiley-Liss, Inc.

  3. Integration of D-shaped gradient coils in a Bruker TM circular cavity for X-band electron spin resonance imaging

    NASA Astrophysics Data System (ADS)

    Gualtieri, G.; Placidi, G.; Sotgiu, A.; Del Monaco, S.

    1995-06-01

    A very compact design for the coil assembly of an X-band imaging apparatus is described. The design is based on D-shaped coils obtained by cutting a circular current distribution by two parallel chords. The coils make the best possible use of the space available within the particular geometry of a cylindrical Bruker TM110 cavity. Its compact design results in a maximum width of 45 mm, which is available in most electromagnets used for electron paramagnetic resonance (EPR) spectroscopy. Using nitroxide free radicals of 60 mT in linewidth and field gradients of 1.5 mT/cm, a resolution of 100 μm was obtained.

  4. High-resolution small field-of-view magnetic resonance image acquisition system using a small planar coil and a pneumatic manipulator in an open MRI scanner.

    PubMed

    Miki, Kohei; Masamune, Ken

    2015-10-01

    Low-field open magnetic resonance imaging (MRI) is frequently used for performing image-guided neurosurgical procedures. Intraoperative magnetic resonance (MR) images are useful for tracking brain shifts and verifying residual tumors. However, it is difficult to precisely determine the boundary of the brain tumors and normal brain tissues because the MR image resolution is low, especially when using a low-field open MRI scanner. To overcome this problem, a high-resolution MR image acquisition system was developed and tested. An MR-compatible manipulator with pneumatic actuators containing an MR signal receiver with a small radiofrequency (RF) coil was developed. The manipulator had five degrees of freedom for position and orientation control of the RF coil. An 8-mm planar RF coil with resistance and inductance of 2.04 [Formula: see text] and 1.00 [Formula: see text] was attached to the MR signal receiver at the distal end of the probe. MR images of phantom test devices were acquired using the MR signal receiver and normal head coil for signal-to-noise ratio (SNR) testing. The SNR of MR images acquired using the MR signal receiver was 8.0 times greater than that of MR images acquired using the normal head coil. The RF coil was moved by the manipulator, and local MR images of a phantom with a 2-mm grid were acquired using the MR signal receiver. A wide field-of-view MR image was generated from a montage of local MR images. A small field-of-view RF system with a pneumatic manipulator was integrated in a low-field MRI scanner to allow acquisition of both wide field-of-view and high-resolution MR images. This system is promising for image-guided neurosurgery as it may allow brain tumors to be observed more clearly and removed precisely.

  5. A Specialized Multi-Transmit Head Coil for High Resolution fMRI of the Human Visual Cortex at 7T

    PubMed Central

    Sengupta, Shubharthi; Roebroeck, Alard; Kemper, Valentin G.; Poser, Benedikt A.; Zimmermann, Jan; Goebel, Rainer; Adriany, Gregor

    2016-01-01

    Purpose To design, construct and validate radiofrequency (RF) transmit and receive phased array coils for high-resolution visual cortex imaging at 7 Tesla. Methods A 4 channel transmit and 16 channel receive array was constructed on a conformal polycarbonate former. Transmit field efficiency and homogeneity were simulated and validated, along with the Specific Absorption Rate, using B1+ mapping techniques and electromagnetic simulations. Receiver signal-to-noise ratio (SNR), temporal SNR (tSNR) across EPI time series, g-factors for accelerated imaging and noise correlations were evaluated and compared with a commercial 32 channel whole head coil. The performance of the coil was further evaluated with human subjects through functional MRI (fMRI) studies at standard and submillimeter resolutions of upto 0.8mm isotropic. Results The transmit and receive sections were characterized using bench tests and showed good interelement decoupling, preamplifier decoupling and sample loading. SNR for the 16 channel coil was ∼ 1.5 times that of the commercial coil in the human occipital lobe, and showed better g-factor values for accelerated imaging. fMRI tests conducted showed better response to Blood Oxygen Level Dependent (BOLD) activation, at resolutions of 1.2mm and 0.8mm isotropic. Conclusion The 4 channel phased array transmit coil provides homogeneous excitation across the visual cortex, which, in combination with the dual row 16 channel receive array, makes for a valuable research tool for high resolution anatomical and functional imaging of the visual cortex at 7T. PMID:27911950

  6. MRI Slice Segmentation and 3D Modelling of Temporomandibular Joint Measured by Microscopic Coil

    NASA Astrophysics Data System (ADS)

    Smirg, O.; Liberda, O.; Smekal, Z.; Sprlakova-Pukova, A.

    2012-01-01

    The paper focuses on the segmentation of magnetic resonance imaging (MRI) slices and 3D modelling of the temporomandibular joint disc in order to help physicians diagnose patients with dysfunction of the temporomandibular joint (TMJ). The TMJ is one of the most complex joints in the human body. The most common joint dysfunction is due to the disc. The disc is a soft tissue, which in principle cannot be diagnosed by the CT method. Therefore, a 3D model is made from the MRI slices, which can image soft tissues. For the segmentation of the disc in individual slices a new method is developed based on spatial distribution and anatomical TMJ structure with automatic thresholding. The thresholding is controlled by a genetic algorithm. The 3D model is realized using the marching cube method.

  7. Functional Laterality of Task-Evoked Activation in Sensorimotor Cortex of Preterm Infants: An Optimized 3 T fMRI Study Employing a Customized Neonatal Head Coil.

    PubMed

    Scheef, Lukas; Nordmeyer-Massner, Jurek A; Smith-Collins, Adam Pr; Müller, Nicole; Stegmann-Woessner, Gaby; Jankowski, Jacob; Gieseke, Jürgen; Born, Mark; Seitz, Hermann; Bartmann, Peter; Schild, Hans H; Pruessmann, Klaas P; Heep, Axel; Boecker, Henning

    2017-01-01

    Functional magnetic resonance imaging (fMRI) in neonates has been introduced as a non-invasive method for studying sensorimotor processing in the developing brain. However, previous neonatal studies have delivered conflicting results regarding localization, lateralization, and directionality of blood oxygenation level dependent (BOLD) responses in sensorimotor cortex (SMC). Amongst the confounding factors in interpreting neonatal fMRI studies include the use of standard adult MR-coils providing insufficient signal to noise, and liberal statistical thresholds, compromising clinical interpretation at the single subject level. Here, we employed a custom-designed neonatal MR-coil adapted and optimized to the head size of a newborn in order to improve robustness, reliability and validity of neonatal sensorimotor fMRI. Thirteen preterm infants with a median gestational age of 26 weeks were scanned at term-corrected age using a prototype 8-channel neonatal head coil at 3T (Achieva, Philips, Best, NL). Sensorimotor stimulation was elicited by passive extension/flexion of the elbow at 1 Hz in a block design. Analysis of temporal signal to noise ratio (tSNR) was performed on the whole brain and the SMC, and was compared to data acquired with an 'adult' 8 channel head coil published previously. Task-evoked activation was determined by single-subject SPM8 analyses, thresholded at p < 0.05, whole-brain FWE-corrected. Using a custom-designed neonatal MR-coil, we found significant positive BOLD responses in contralateral SMC after unilateral passive sensorimotor stimulation in all neonates (analyses restricted to artifact-free data sets = 8/13). Improved imaging characteristics of the neonatal MR-coil were evidenced by additional phantom and in vivo tSNR measurements: phantom studies revealed a 240% global increase in tSNR; in vivo studies revealed a 73% global and a 55% local (SMC) increase in tSNR, as compared to the 'adult' MR-coil. Our findings strengthen the importance of

  8. Functional Laterality of Task-Evoked Activation in Sensorimotor Cortex of Preterm Infants: An Optimized 3 T fMRI Study Employing a Customized Neonatal Head Coil

    PubMed Central

    Smith-Collins, Adam PR; Müller, Nicole; Stegmann-Woessner, Gaby; Jankowski, Jacob; Gieseke, Jürgen; Born, Mark; Seitz, Hermann; Bartmann, Peter; Schild, Hans H.; Pruessmann, Klaas P.; Boecker, Henning

    2017-01-01

    Background Functional magnetic resonance imaging (fMRI) in neonates has been introduced as a non-invasive method for studying sensorimotor processing in the developing brain. However, previous neonatal studies have delivered conflicting results regarding localization, lateralization, and directionality of blood oxygenation level dependent (BOLD) responses in sensorimotor cortex (SMC). Amongst the confounding factors in interpreting neonatal fMRI studies include the use of standard adult MR-coils providing insufficient signal to noise, and liberal statistical thresholds, compromising clinical interpretation at the single subject level. Patients / methods Here, we employed a custom-designed neonatal MR-coil adapted and optimized to the head size of a newborn in order to improve robustness, reliability and validity of neonatal sensorimotor fMRI. Thirteen preterm infants with a median gestational age of 26 weeks were scanned at term-corrected age using a prototype 8-channel neonatal head coil at 3T (Achieva, Philips, Best, NL). Sensorimotor stimulation was elicited by passive extension/flexion of the elbow at 1 Hz in a block design. Analysis of temporal signal to noise ratio (tSNR) was performed on the whole brain and the SMC, and was compared to data acquired with an ‘adult’ 8 channel head coil published previously. Task-evoked activation was determined by single-subject SPM8 analyses, thresholded at p < 0.05, whole-brain FWE-corrected. Results Using a custom-designed neonatal MR-coil, we found significant positive BOLD responses in contralateral SMC after unilateral passive sensorimotor stimulation in all neonates (analyses restricted to artifact-free data sets = 8/13). Improved imaging characteristics of the neonatal MR-coil were evidenced by additional phantom and in vivo tSNR measurements: phantom studies revealed a 240% global increase in tSNR; in vivo studies revealed a 73% global and a 55% local (SMC) increase in tSNR, as compared to the ‘adult’ MR-coil

  9. A robust method for suppressing motion-induced coil sensitivity variations during prospective correction of head motion in fMRI.

    PubMed

    Faraji-Dana, Zahra; Tam, Fred; Chen, J Jean; Graham, Simon J

    2016-10-01

    Prospective motion correction is a promising candidate solution to suppress the effects of head motion during fMRI, ideally allowing the imaging plane to remain fixed with respect to the moving head. Residual signal artifacts may remain, however, because head motion in relation to a fixed multi-channel receiver coil (with non-uniform sensitivity maps) can potentially introduce unwanted signal variations comparable to the weak fMRI BOLD signal (~1%-4% at 1.5-3.0T). The present work aimed to investigate the magnitude of these residual artifacts, and characterize the regime over which prospective motion correction benefits from adjusting sensitivity maps to reflect relative positional change between the head and the coil. Numerical simulations were used to inform human fMRI experiments. The simulations indicated that for axial imaging within a commonly used 12-channel head coil, 5° of head rotation in-plane produced artifact signal changes of ~3%. Subsequently, six young adults were imaged with and without overt head motions of approximately this extent, with and without prospective motion correction using the Prospective Acquisition CorrEction (PACE) method, and with and without sensitivity map adjustments. Sensitivity map adjustments combined with PACE strongly protected against the artifacts of interest, as indicated by comparing three metrics of data quality (number of activated voxels, Dice coefficient of activation overlap, temporal standard deviation of baseline fMRI timeseries data) across the different experimental conditions. It is concluded that head motion in relation to a fixed multi-channel coil can adversely affect fMRI with prospective motion correction, and that sensitivity map adjustment can mitigate this effect at 3.0T. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Gaussian phase distribution approximations for oscillating gradient spin echo diffusion MRI

    NASA Astrophysics Data System (ADS)

    Ianuş, Andrada; Siow, Bernard; Drobnjak, Ivana; Zhang, Hui; Alexander, Daniel C.

    2013-02-01

    Oscillating gradients provide an optimal probe of small pore sizes in diffusion MRI. While sinusoidal oscillations have been popular for some time, recent work suggests additional benefits of square or trapezoidal oscillating waveforms. This paper presents analytical expressions of the free and restricted diffusion signal for trapezoidal and square oscillating gradient spin echo (OGSE) sequences using the Gaussian phase distribution (GPD) approximation and generalises existing similar expressions for sinusoidal OGSE. Accurate analytical models are necessary for exploitation of these pulse sequences in imaging studies, as they allow model fitting and parameter estimation in reasonable computation times. We evaluate the accuracy of the approximation against synthesised data from the Monte Carlo (MC) diffusion simulator in Camino and Callaghan's matrix method and we show that the accuracy of the approximation is within a few percent of the signal, while providing several orders of magnitude faster computation. Moreover, since the expressions for trapezoidal wave are complex, we test sine and square wave approximations to the trapezoidal OGSE signal. The best approximations depend on the gradient amplitude and the oscillation frequency and are accurate to within a few percent. Finally, we explore broader applications of trapezoidal OGSE, in particular for non-model based applications, such as apparent diffusion coefficient estimation, where only sinusoidal waveforms have been considered previously. We show that with the right apodisation, trapezoidal waves also have benefits by virtue of the higher diffusion weighting they provide compared to sinusoidal gradients.

  11. Gaussian phase distribution approximations for oscillating gradient spin echo diffusion MRI.

    PubMed

    Ianuş, Andrada; Siow, Bernard; Drobnjak, Ivana; Zhang, Hui; Alexander, Daniel C

    2013-02-01

    Oscillating gradients provide an optimal probe of small pore sizes in diffusion MRI. While sinusoidal oscillations have been popular for some time, recent work suggests additional benefits of square or trapezoidal oscillating waveforms. This paper presents analytical expressions of the free and restricted diffusion signal for trapezoidal and square oscillating gradient spin echo (OGSE) sequences using the Gaussian phase distribution (GPD) approximation and generalises existing similar expressions for sinusoidal OGSE. Accurate analytical models are necessary for exploitation of these pulse sequences in imaging studies, as they allow model fitting and parameter estimation in reasonable computation times. We evaluate the accuracy of the approximation against synthesised data from the Monte Carlo (MC) diffusion simulator in Camino and Callaghan's matrix method and we show that the accuracy of the approximation is within a few percent of the signal, while providing several orders of magnitude faster computation. Moreover, since the expressions for trapezoidal wave are complex, we test sine and square wave approximations to the trapezoidal OGSE signal. The best approximations depend on the gradient amplitude and the oscillation frequency and are accurate to within a few percent. Finally, we explore broader applications of trapezoidal OGSE, in particular for non-model based applications, such as apparent diffusion coefficient estimation, where only sinusoidal waveforms have been considered previously. We show that with the right apodisation, trapezoidal waves also have benefits by virtue of the higher diffusion weighting they provide compared to sinusoidal gradients. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. MRI of the Wrist at 7 Tesla using an 8 Channel Array Coil Combined with Parallel Imaging: Preliminary Results

    PubMed Central

    Chang, Gregory; Friedrich, Klaus M.; Wang, Ligong; Vieira, Renata L.R.; Schweitzer, Mark E.; Recht, Michael P.; Wiggins, Graham C.; Regatte, Ravinder R.

    2010-01-01

    PURPOSE To determine the feasibility of performing MRI of the wrist at 7 Tesla with parallel imaging and to evaluate how acceleration factors(AF) affect signal-to-noise ratio(SNR), contrast-to-noise ratio(CNR), and image quality. MATERIALS AND METHODS This study had institutional review board approval. A 4-transmit 8-receive channel array coil was constructed in–house. Nine healthy subjects were scanned on a 7T whole-body MR scanner. Coronal and axial images of cartilage and trabecular bone micro-architecture(3D-Fast Low Angle Shot(FLASH) with and without fat suppression, TR/TE=20ms/4.5ms, flip angle=10°, 0.169–0.195×0.169–0.195 mm, 0.5–1 mm slice thickness) were obtained with AF 1, 2, 3, 4. T1-weighted fast spin-echo(FSE), proton density-weighted FSE, and multiple-echo data image combination(MEDIC) sequences were also performed. SNR and CNR were measured. Three musculoskeletal radiologists rated image quality. Linear correlation analysis and paired t-tests were performed. RESULTS At higher AF, SNR and CNR decreased linearly for cartilage, muscle, and trabecular bone(r<−0.98). At AF 4, reductions in SNR/CNR were:52%/60%(cartilage), 72%/63%(muscle), 45%/50%(trabecular bone). Radiologists scored images with AF 1 and 2 as near-excellent, AF 3 as good-to-excellent(p=0.075), and AF 4 as average-to-good(p=0.11). CONCLUSION It is feasible to perform high resolution 7 Tesla MRI of the wrist with parallel imaging. SNR and CNR decrease with higher AF, but image quality remains above-average. PMID:20187221

  13. MRI of the wrist at 7 tesla using an eight-channel array coil combined with parallel imaging: preliminary results.

    PubMed

    Chang, Gregory; Friedrich, Klaus M; Wang, Ligong; Vieira, Renata L R; Schweitzer, Mark E; Recht, Michael P; Wiggins, Graham C; Regatte, Ravinder R

    2010-03-01

    To determine the feasibility of performing MRI of the wrist at 7 Tesla (T) with parallel imaging and to evaluate how acceleration factors (AF) affect signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and image quality. This study had institutional review board approval. A four-transmit eight-receive channel array coil was constructed in-house. Nine healthy subjects were scanned on a 7T whole-body MR scanner. Coronal and axial images of cartilage and trabecular bone micro-architecture (3D-Fast Low Angle Shot (FLASH) with and without fat suppression, repetition time/echo time = 20 ms/4.5 ms, flip angle = 10 degrees , 0.169-0.195 x 0.169-0.195 mm, 0.5-1 mm slice thickness) were obtained with AF 1, 2, 3, 4. T1-weighted fast spin-echo (FSE), proton density-weighted FSE, and multiple-echo data image combination (MEDIC) sequences were also performed. SNR and CNR were measured. Three musculoskeletal radiologists rated image quality. Linear correlation analysis and paired t-tests were performed. At higher AF, SNR and CNR decreased linearly for cartilage, muscle, and trabecular bone (r < -0.98). At AF 4, reductions in SNR/CNR were:52%/60% (cartilage), 72%/63% (muscle), 45%/50% (trabecular bone). Radiologists scored images with AF 1 and 2 as near-excellent, AF 3 as good-to-excellent (P = 0.075), and AF 4 as average-to-good (P = 0.11). It is feasible to perform high resolution 7T MRI of the wrist with parallel imaging. SNR and CNR decrease with higher AF, but image quality remains above-average.

  14. A 0.6 T/650 mm RT Bore Solid Nitrogen Cooled MgB2 Demonstration Coil for MRI-a Status Report.

    PubMed

    Bascuñán, Juan; Lee, Haigunan; Bobrov, Emmanuel S; Hahn, Seungyong; Iwasa, Yukikazu; Tomsic, Mike; Rindfleisch, Matt

    2006-06-01

    Aiming to demonstrate feasibility and practicality of a low cost superconducting MRI magnet system targeted for use in small hospitals, rural communities and underdeveloped countries, MIT-Francis Bitter Magnet Laboratory has developed a 0.6 T/650 mm room temperature bore demonstration coil wound with multifilament MgB2 conductor and cooled via an innovative cryogenic design/operation. The coil is to be maintained cold by solid nitrogen kept in the solid state by a cryocooler. In the event of a power failure the cryocooler is automatically thermally decoupled from the system. In this paper we present details of the MgB2 conductor, winding process, and preliminary theoretical analysis of the current-carrying performance of the conductively cooled coils in zero background field and over the 10-30 K temperature range.

  15. Effects of random subject rotation on optimised diffusion gradient sampling schemes in diffusion tensor MRI.

    PubMed

    Muñoz Maniega, Susana; Bastin, Mark E; Armitage, Paul A

    2008-05-01

    The choice of the number (N) and orientation of diffusion sampling gradients required to measure accurately the water diffusion tensor remains contentious. Monte Carlo studies have suggested that between 20 and 30 uniformly distributed sampling orientations are required to provide robust estimates of water diffusions parameters. These simulations have not, however, taken into account what effect random subject motion, specifically rotation, might have on optimised gradient schemes, a problem which is especially relevant to clinical diffusion tensor MRI (DT-MRI). Here this question is investigated using Monte Carlo simulations of icosahedral sampling schemes and in vivo data. These polyhedra-based schemes, which have the advantage that large N can be created from optimised subsets of smaller N, appear to be ideal for the study of restless subjects since if scanning needs to be prematurely terminated it should be possible to identify a subset of images that have been acquired with a near optimised sampling scheme. The simulations and in vivo data show that as N increases, the rotational variance of fractional anisotropy (FA) estimates becomes progressively less dependent on the magnitude of subject rotation (alpha), while higher FA values are progressively underestimated as alpha increases. These data indicate that for large subject rotations the B-matrix should be recalculated to provide accurate diffusion anisotropy information.

  16. Decoupling capabilities of split-loop resonator structure for 7 Tesla MRI surface array coils

    NASA Astrophysics Data System (ADS)

    Hurshkainen, A.; Kurdjumov, S.; Simovski, C.; Glybovski, S.; Melchakova, I.; van den Berg, C. A. T.; Raaijmakers, A.; Belov, P.

    2017-09-01

    In this work we studied electromagnetic properties of one-dimentional periodic structures composed of split-loop res-onators (SLRs) and investigated their capabilities in decoupling of two dipole antennas for full-body magnetic resonance imaging (MRI). Two different finite structures comprising a single-SLR and a double-SLR constitutive elements were studied. Numerical simulations of the structures were performed to evaluate their decoupling capabilities. As it was demonstrated two dipole antennas equipped with either a single or a double-SLR structure exhibit high isolation even for an electrically short distance between the dipoles. Double-SLR structure while dramatically improving isolation of the dipoles keeps the field created by each of the decoupled dipoles comparable with one of a single dipole inside the target area.

  17. MR Spectroscopic Imaging of Peripheral Zone in Prostate Cancer Using a 3T MRI Scanner: Endorectal versus External Phased Array Coils.

    PubMed

    Nagarajan, Rajakumar; Margolis, Daniel Ja; Raman, Steven S; Ouellette, David; Sarma, Manoj K; Reiter, Robert E; Thomas, M Albert

    2013-01-01

    Magnetic resonance spectroscopic imaging (MRSI) detects alterations in major prostate metabolites, such as citrate (Cit), creatine (Cr), and choline (Ch). We evaluated the sensitivity and accuracy of three-dimensional MRSI of prostate using an endorectal compared to an external phased array "receive" coil on a 3T MRI scanner. Eighteen patients with prostate cancer (PCa) who underwent endorectal MR imaging and proton (1H) MRSI were included in this study. Immediately after the endorectal MRSI scan, the PCa patients were scanned with the external phased array coil. The endorectal coil-detected metabolite ratio [(Ch+Cr)/Cit] was significantly higher in cancer locations (1.667 ± 0.663) compared to non-cancer locations (0.978 ± 0.420) (P < 0.001). Similarly, for the external phased array, the ratio was significantly higher in cancer locations (1.070 ± 0.525) compared to non-cancer locations (0.521 ± 0.310) (P < 0.001). The sensitivity and accuracy of cancer detection were 81% and 78% using the endorectal 'receive' coil, and 69% and 75%, respectively using the external phased array 'receive' coil.

  18. Two-dimensional sixteen channel transmit/receive coil array for cardiac MRI at 7.0 T: design, evaluation, and application.

    PubMed

    Thalhammer, Christof; Renz, Wolfgang; Winter, Lukas; Hezel, Fabian; Rieger, Jan; Pfeiffer, Harald; Graessl, Andreas; Seifert, Frank; Hoffmann, Werner; von Knobelsdorff-Brenkenhoff, Florian; Tkachenko, Valeriy; Schulz-Menger, Jeanette; Kellman, Peter; Niendorf, Thoralf

    2012-10-01

    To design, evaluate, and apply a 2D 16-channel transmit/receive (TX/RX) coil array tailored for cardiac magnetic resonance imaging (MRI) at 7.0 T. The cardiac coil array consists of two sections each using eight elements arranged in a 2 × 4 array. Radiofrequency (RF) safety was validated by specific absorption rate (SAR) simulations. Cardiac imaging was performed using 2D CINE FLASH imaging, T 2 mapping, and fat-water separation imaging. The characteristics of the coil array were analyzed including parallel imaging performance, left ventricular chamber quantification, and overall image quality. RF characteristics were found to be appropriate for all subjects included in the study. The SAR values derived from the simulations fall well within the limits of legal guidelines. The baseline signal-to-noise ratio (SNR) advantage at 7.0 T was put to use to acquire 2D CINE images of the heart with a very high spatial resolution of (1 × 1 × 4) mm(3) . The proposed coil array supports 1D acceleration factors of up to R = 4 without significantly impairing image quality. The 16-channel TX/RX coil has the capability to acquire high contrast and high spatial resolution images of the heart at 7.0 T. Copyright © 2012 Wiley Periodicals, Inc.

  19. Design and performance issues of RF coils utilized in ultra high field MRI: experimental and numerical evaluations.

    PubMed

    Ibrahim, Tamer S; Kangarlu, Alayar; Chakeress, Donald W

    2005-07-01

    In this paper, two TEM resonators were evaluated experimentally and numerically at 8 tesla (T) (340 MHz for 1H imaging). The coils were constructed to be 21.2-cm long (standard) and 11-cm long (a proposed less claustrophobic design). The experimental evaluation was done on a single cadaver using an ultra high field, 8 T, whole-body magnet. The numerical modeling was performed using an in-house finite difference time domain packagethat treats the coil and the load (anatomically detailed human head model) as a single system. The coils were tested with quadrature excitation at different coil alignment positions with respect to human head. For head imaging at 8 T, the overall numerical and experimental results demonstrated that when compared to the longer coil, the shorter coil provides superior signal-to-noise ratio, coil sensitivity, and excite field in the biological regions that lie within both of the coils' structures. A study of the RF (excite/receive fields) homogeneity showed variations in the performance of both coils that are mostly dependant on the region of interest and the position of coil with respect to the head. As such, depending on the application, the shorter coil could be effectively utilized.

  20. Pore Diameter Mapping Using Double Pulsed-Field Gradient MRI and its Validation Using a Novel Glass Capillary Array Phantom

    PubMed Central

    Komlosh, Michal E.; Özarslan, Evren; Lizak, Martin J.; Horkay, Ferenc; Schram, Vincent; Shemesh, Noam; Cohen, Yoram; Basser, Peter J.

    2010-01-01

    Double Pulsed Field Gradient (d-PFG) MRI can provide quantitative maps of microstructural quantities and features within porous media and tissues. We propose and describe a novel MRI phantom, consisting of wafers of highly ordered glass capillary arrays (GCA), and its use to validate and calibrate a d-PFG MRI method to measure and map the local pore diameter. Specifically, we employ d-PFG Spin-Echo Filtered MRI in conjunction with a recently introduced theoretical framework, to estimate a mean pore diameter in each voxel within the imaging volume. This simulation scheme accounts for all diffusion and imaging gradients within the diffusion weighted MRI (DWI) sequence, and admits the violation of the short gradient pulse approximation. These diameter maps agree well with pore sizes measured using both optical microscopy and single PFG diffusion diffraction NMR spectroscopy using the same phantom. Pixel-by-pixel analysis shows that the local pore diameter can be mapped precisely and accurately within a specimen using d-PFG MRI. PMID:21084204

  1. Pore diameter mapping using double pulsed-field gradient MRI and its validation using a novel glass capillary array phantom.

    PubMed

    Komlosh, Michal E; Özarslan, Evren; Lizak, Martin J; Horkay, Ferenc; Schram, Vincent; Shemesh, Noam; Cohen, Yoram; Basser, Peter J

    2011-01-01

    Double pulsed-field gradient (d-PFG) MRI can provide quantitative maps of microstructural quantities and features within porous media and tissues. We propose and describe a novel MRI phantom, consisting of wafers of highly ordered glass capillary arrays (GCA), and its use to validate and calibrate a d-PFG MRI method to measure and map the local pore diameter. Specifically, we employ d-PFG Spin-Echo Filtered MRI in conjunction with a recently introduced theoretical framework, to estimate a mean pore diameter in each voxel within the imaging volume. This simulation scheme accounts for all diffusion and imaging gradients within the diffusion weighted MRI (DWI) sequence, and admits the violation of the short gradient pulse approximation. These diameter maps agree well with pore sizes measured using both optical microscopy and single PFG diffusion diffraction NMR spectroscopy using the same phantom. Pixel-by-pixel analysis shows that the local pore diameter can be mapped precisely and accurately within a specimen using d-PFG MRI. Copyright © 2010. Published by Elsevier Inc.

  2. Gradient Artefact Correction and Evaluation of the EEG Recorded Simultaneously with fMRI Data Using Optimised Moving-Average

    PubMed Central

    Wu, Yan; Besseling, René M. H.; Lamerichs, Rolf; Aarts, Ronald M.

    2016-01-01

    Over the past years, coregistered EEG-fMRI has emerged as a powerful tool for neurocognitive research and correlated studies, mainly because of the possibility of integrating the high temporal resolution of the EEG with the high spatial resolution of fMRI. However, additional work remains to be done in order to improve the quality of the EEG signal recorded simultaneously with fMRI data, in particular regarding the occurrence of the gradient artefact. We devised and presented in this paper a novel approach for gradient artefact correction based upon optimised moving-average filtering (OMA). OMA makes use of the iterative application of a moving-average filter, which allows estimation and cancellation of the gradient artefact by integration. Additionally, OMA is capable of performing the attenuation of the periodic artefact activity without accurate information about MRI triggers. By using our proposed approach, it is possible to achieve a better balance than the slice-average subtraction as performed by the established AAS method, regarding EEG signal preservation together with effective suppression of the gradient artefact. Since the stochastic nature of the EEG signal complicates the assessment of EEG preservation after application of the gradient artefact correction, we also propose a simple and effective method to account for it. PMID:27446943

  3. Characteristics of Detected and Missed Prostate Cancer Foci on 3-T Multiparametric MRI Using an Endorectal Coil Correlated With Whole-Mount Thin-Section Histopathology

    PubMed Central

    Tan, Nelly; Margolis, Daniel J.; Lu, David Y.; King, Kevin G.; Huang, Jiaoti; Reiter, Robert E.; Raman, Steven S.

    2016-01-01

    OBJECTIVE The objective of this study was to determine the characteristics of prostate cancer foci missed on 3-T multiparametric MRI performed with an endorectal coil. MATERIALS AND METHODS The MRI examinations of 122 patients who underwent 3-T multiparametric MRI of the prostate with an endorectal coil were compared with whole-mount histopathology obtained after radical prostatectomy. The mean age of the patients was 60.6 years (SD, 7.6 years), and the mean prostate-specific antigen value was 7.2 ng/mL (SD, 5.9 ng/mL). The clinical, multiparametric MRI (i.e., T2-weighted imaging, diffusion-weighted imaging, and dynamic contrast-enhanced imaging), and histopathologic features were obtained. After an independent review, two blinded genitourinary radiologists matched each case with a genitourinary pathologist. A structured reporting system was used to classify the multiparametric MRI features of each MRI-detected lesion. A chi-square analysis was performed for categoric variables, and the t test was performed for continuous variables. RESULTS On whole-mount histopathology, 285 prostate cancer foci were detected in 122 patients. Of the 285 cancer foci detected at histopathology, 153 (53.3%) were missed on MRI and 132 (46.7%) were detected on MRI. Of the missed lesions, 75.2% were low-grade prostate cancer. Multiparametric MRI had a significantly higher sensitivity for prostate cancer foci 1 cm or larger than for subcentimeter foci (81.1% vs 18.9%, respectively; p < 0.001), for lesions with a Gleason score of 7 or greater than for lesions with a Gleason score of 6 (72.7% vs 27.3%; p < 0.01), and for index lesions than for satellite lesions (80.3% vs 20.8%; p < 0.01). The 3-T multiparametric MRI examinations showed a higher detection rate for lesions in the midgland or base of the gland compared with lesions in the apex (52.3% vs 22.0%, respectively; p < 0.01). CONCLUSION Compared with the prostate cancer lesions that were detected on multiparametric MRI, the prostate

  4. Design of a loop resonator with a split-ring-resonator (SRR) for a human-body coil in 3 T MRI systems

    NASA Astrophysics Data System (ADS)

    Son, Hyeok Woo; Cho, Young Ki; Kim, Byung Mun; Back, Hyun Man; Yoo, Hyoungsuk

    2016-04-01

    A new radio-frequency (RF) resonator for Nuclear Magnetic Resonance (NMR) imaging at clinical magnetic resonance imaging (MRI) systems is proposed in this paper. An approach based on the effects of the properties of metamaterials in split-ring resonators (SRRs) is used to design a new loop resonator with a SRR for NMR imaging. This loop resonator with a SRR is designed for NMR imaging at 3 T MRI systems. The 3D electromagnetic simulation was used to optimize the design of the proposed RF resonator and analyze it's performance at 3 T MRI systems. The proposed RF resonator provides strong penetrating magnetic fields at the center of the human phantom model, approximately 10%, as compared to the traditional loop-type RF resonator used for NMR imaging at clinical MRI systems. We also designed an 8-channel body coil for human-body NMR imaging by using the proposed loop resonator with a SRR. This body coil also produces more homogeneous and highly penetrating magnetic fields into the human phantom model.

  5. Quiet Technology of MRI.

    PubMed

    Yamashita, Yuichi

    A number of clinical applications for MRI have been developed in accordance with the advancement in imaging technology. Recently, medical checkup of brain or heart are becoming popular. In this situation, there is a growing need for performance improvement of MRI and thus acoustic noise during examinations tends to become louder with the use of higher static magnetic field and higher gradient performance. Noise reduction measures for MRI are classified into two categories, pulse sequence optimization and hardware renovation. For pulse sequence, noise is reduced by decreasing the changes of the current applied for gradient coil. Since there exist solid-borne sound and airborne sound, for hardware measure, not only making gradient coil itself vibration suppressed structure but also controlling vibration to prevent propagation of sounds to the other structure is required. Pianissimo(TM) mechanism employs both solid-borne sound suppression and airborne sound suppression by vacuum-encapsulating the gradient coil, and realizes 33 dB noise reduction. Pianissimo(TM) mechanism, in contrast to the noise reduction by pulse sequence modification, reduces the acoustic noise produced by scans of all kinds and can be readily adapted to the newly developed applications regardless of imaging technique.

  6. A six-channel pediatric coil array for detection of children spinal pathologies by MRI at 1.5 Tesla

    SciTech Connect

    López Terrones, Marcos Alonso; Solís-Nájera, Sergio Enrique

    2014-11-07

    Nowadays, magnetic resonance (MR) in Mexico has become a standard technique for clinical imaging. Although most of the times the MR systems contain only coils oriented for adults. Radiologists use these coils for children studies due to the non-availability of pediatric coils. Image quality is decreased due to the low signal to noise ratio delivered to the system. The development of RF coils is always focused towards increasing SNR and optimizing the RF penetration into the sample. Moreover, spinal pathologies in children, which are an important topic in pediatric care, cover congenital and neuromuscular disorders that occur in childhood. In this work, the design of a dedicated six-channel coil for detection of spinal pathologies at 1.5 Tesla is addressed. Numerical electromagnetic simulations were performed in order to evaluate their magnetic field performance at (63.6 MHz) 1.5 Tesla. The magnetic field uniformity as well as the RF penetration depth of the coil configurations was evaluated in order to find the best/optimized coil array configuration. The coil is comprised of three rows, one with 4 coil elements and two with only one coil element. Phantom and in vivo images were acquired with the six-channel pediatric coil array. The phantom images agree with the simulated data. In vivo images acquired with the 6-channel pediatric coil array have shown very good penetration depth and homogeneity, which allow better image quality throughout the whole FOV. In addition, the parallel imaging capabilities of the array allow the acceleration of the experiments avoiding possible motion artifacts.

  7. A six-channel pediatric coil array for detection of children spinal pathologies by MRI at 1.5 Tesla

    NASA Astrophysics Data System (ADS)

    López Terrones, Marcos Alonso; Solís-Nájera, Sergio Enrique

    2014-11-01

    Nowadays, magnetic resonance (MR) in Mexico has become a standard technique for clinical imaging. Although most of the times the MR systems contain only coils oriented for adults. Radiologists use these coils for children studies due to the non-availability of pediatric coils. Image quality is decreased due to the low signal to noise ratio delivered to the system. The development of RF coils is always focused towards increasing SNR and optimizing the RF penetration into the sample. Moreover, spinal pathologies in children, which are an important topic in pediatric care, cover congenital and neuromuscular disorders that occur in childhood. In this work, the design of a dedicated six-channel coil for detection of spinal pathologies at 1.5 Tesla is addressed. Numerical electromagnetic simulations were performed in order to evaluate their magnetic field performance at (63.6 MHz) 1.5 Tesla. The magnetic field uniformity as well as the RF penetration depth of the coil configurations was evaluated in order to find the best/optimized coil array configuration. The coil is comprised of three rows, one with 4 coil elements and two with only one coil element. Phantom and in vivo images were acquired with the six-channel pediatric coil array. The phantom images agree with the simulated data. In vivo images acquired with the 6-channel pediatric coil array have shown very good penetration depth and homogeneity, which allow better image quality throughout the whole FOV. In addition, the parallel imaging capabilities of the array allow the acceleration of the experiments avoiding possible motion artifacts.

  8. Coil-to-coil physiological noise correlations and their impact on functional MRI time-series signal-to-noise ratio.

    PubMed

    Triantafyllou, Christina; Polimeni, Jonathan R; Keil, Boris; Wald, Lawrence L

    2016-12-01

    Physiological nuisance fluctuations ("physiological noise") are a major contribution to the time-series signal-to-noise ratio (tSNR) of functional imaging. While thermal noise correlations between array coil elements have a well-characterized effect on the image Signal to Noise Ratio (SNR0 ), the element-to-element covariance matrix of the time-series fluctuations has not yet been analyzed. We examine this effect with a goal of ultimately improving the combination of multichannel array data. We extend the theoretical relationship between tSNR and SNR0 to include a time-series noise covariance matrix Ψt , distinct from the thermal noise covariance matrix Ψ0 , and compare its structure to Ψ0 and the signal coupling matrix SS(H) formed from the signal intensity vectors S. Inclusion of the measured time-series noise covariance matrix into the model relating tSNR and SNR0 improves the fit of experimental multichannel data and is shown to be distinct from Ψ0 or SS(H) . Time-series noise covariances in array coils are found to differ from Ψ0 and more surprisingly, from the signal coupling matrix SS(H) . Correct characterization of the time-series noise has implications for the analysis of time-series data and for improving the coil element combination process. Magn Reson Med 76:1708-1719, 2016. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  9. Helmholtz-pair transmit coil with integrated receive array for high-resolution MRI of trabecular bone in the distal tibia at 7 T

    NASA Astrophysics Data System (ADS)

    Wright, Alexander C.; Lemdiasov, Rostislav; Connick, Thomas J.; Bhagat, Yusuf A.; Magland, Jeremy F.; Song, Hee Kwon; Toddes, Steven P.; Ludwig, Reinhold; Wehrli, Felix W.

    2011-05-01

    A Helmholtz-pair local transmit RF coil with an integrated four-element receive array RF coil and foot immobilization platform was designed and constructed for imaging the distal tibia in a whole-body 7 T MRI scanner. Simulations and measurements of the B1 field distribution of the transmit coil are described, along with SAR considerations for operation at 7 T. Results of imaging the trabecular bone of three volunteers at 1.5 T, 3 T and 7 T are presented, using identical 1.5 T and 3 T versions of the 7 T four-element receive array. The spatially registered images reveal improved visibility for individual trabeculae and show average gains in SNR of 2.8× and 4.9× for imaging at 7 T compared to 3 T and 1.5 T, respectively. The results thus display an approximately linear dependence of SNR with field strength and enable the practical utility of 7 T scanners for micro-MRI of trabecular bone.

  10. Multiple gradient echo propeller (MGREP) MRI: Technical development and potential applications

    NASA Astrophysics Data System (ADS)

    Poonawalla, Aziz Hatim

    The PROPELLER (Periodically Rotated Overlapping Parallel Lines with Enhanced Reconstruction) magnetic resonance imaging (MRI) technique has inherent advantages over other fast imaging methods, including robust motion correction, reduced image distortion, and resistance to off-resonance effects. These features make PROPELLER highly desirable for T2*-sensitive imaging, high-resolution diffusion imaging, and many other applications. However, PROPELLER has been predominantly implemented as a fast spin-echo (FSE) technique, which is insensitive to T2* contrast, and requires time-inefficient signal averaging to achieve adequate signal-to-noise ratio (SNR) for many applications. These issues presently constrain the potential clinical utility of FSE-based PROPELLER. In this research, our aim was to extend and enhance the potential applications of PROPELLER MRI by developing a novel multiple gradient echo PROPELLER (MGREP) technique that can overcome the aforementioned limitations. The MGREP pulse sequence was designed to acquire multiple gradient-echo images simultaneously, without any increase in total scan time or RF energy deposition relative to FSE-based PROPELLER. A new parameter was also introduced for direct user-control over gradient echo spacing, to allow variable sensitivity to T2* contrast. In parallel to pulse sequence development, an improved algorithm for motion correction was also developed and evaluated against the established method through extensive simulations. The potential advantages of MGREP over FSE-based PROPELLER were illustrated via three specific applications: (1) quantitative T2* measurement, (2) time-efficient signal averaging, and (3) high-resolution diffusion imaging. Relative to the FSE-PROPELLER method, the MGREP sequence was found to yield quantitative T2* values, increase SNR by ˜40% without any increase in acquisition time or RF energy deposition, and noticeably improve image quality in high-resolution diffusion maps. In addition, the

  11. Quadrature RF Coil for In Vivo Brain MRI of a Macaque Monkey in a Stereotaxic Head Frame

    PubMed Central

    ROOPNARIANE, COLIN A.; RYU, YEUN-CHUL; TOFIGHI, MOHAMMAD-REZA; MILLER, PATTI A.; OH, SUKHOON; WANG, JIANLI; PARK, BU SIK; ANSEL, LUKAS; LIEU, CHRISTOPHER A.; SUBRAMANIAN, THYAGARAJAN; YANG, QING X.; COLLINS, CHRISTOPHER M.

    2012-01-01

    We present a quadrature volume coil designed for brain imaging of a macaque monkey fixed in a sphinx position (facing down the bore) within a stereotactic frame at 3 T, where the position of the monkey and presence of the frame preclude use of existing coils. Requirements include the ability to position and remove the coil without disturbing the position of the monkey in the frame. A saddle coil and a solenoid were combined on a modified cylindrical former and connected in quadrature as to produce a homogeneous circularly polarized field throughout the brain. To allow the loops of the saddle coil to encompass the ear posts, partial disassembly and reassembly were facilitated by embedding pin and socket contacts into separate pieces of the former. Coil design included simulation of the electromagnetic fields for the coil containing a 3D model of a monkey’s head. The resulting coil produced adequate homogeneity and signal-to-noise ratio throughout the brain. PMID:22611340

  12. Comparison of radiofrequency body coils for MRI at 3 Tesla: a simulation study using parallel transmission on various anatomical targets

    PubMed Central

    Wu, Xiaoping; Zhang, Xiaotong; Tian, Jinfeng; Schmitter, Sebastian; Hanna, Brian; Strupp, John; Pfeuffer, Josef; Hamm, Michael; Wang, Dingxin; Nistler, Juergen; He, Bin; Vaughan, J. Thomas; Ugurbil, Kamil; Van de Moortele, Pierre-Francois

    2015-01-01

    The performance of multichannel transmit coil layouts and parallel transmission (pTx) radiofrequency (RF) pulse design was evaluated with respect to transmit B1 (B1+) homogeneity and Specific Absorption Rate (SAR) at 3 Tesla for a whole body coil. Five specific coils were modeled and compared: a 32-rung birdcage body coil (driven either in a fixed quadrature mode or a two-channel transmit mode), two single-ring stripline arrays (with either 8 or 16 elements), and two multi-ring stripline arrays (with 2 or 3 identical rings, stacked in the z-axis and each comprising eight azimuthally distributed elements). Three anatomical targets were considered, each defined by a 3D volume representative of a meaningful region of interest (ROI) in routine clinical applications. For a given anatomical target, global or local SAR controlled pTx pulses were designed to homogenize RF excitation within the ROI. At the B1+ homogeneity achieved by the quadrature driven birdcage design, pTx pulses with multichannel transmit coils achieved up to ~8 fold reduction in local and global SAR. When used for imaging head and cervical spine or imaging thoracic spine, the double-ring array outperformed all coils including the single-ring arrays. While the advantage of the double-ring array became much less pronounced for pelvic imaging with a substantially larger ROI, the pTx approach still provided significant gains over the quadrature birdcage coil. For all design scenarios, using the 3-ring array did not necessarily improve the RF performance. Our results suggest that pTx pulses with multichannel transmit coils can reduce local and global SAR substantially for body coils while attaining improved B1+ homogeneity, particularly for a “z-stacked” double-ring design with coil elements arranged on two transaxial rings. PMID:26332290

  13. Numerically-simulated induced electric field and current density within a human model located close to a z-gradient coil.

    PubMed

    Li, Yan; Hand, Jeff W; Wills, Tim; Hajnal, Jo V

    2007-11-01

    To simulate exposure (e.g., during interventional procedures) of a worker close to an operating MR scanner by calculating electric fields and current density within an anatomically realistic body model due to a z-gradient coil and to compare results with safety guidelines and European Directive 2004/40/EC. Electric field and current density in an adult male model located at three positions within the range 0.19-0.44 m from the end of a generic z-gradient coil were calculated using the time-domain finite integration technique (FIT). Frequency scaling was used in which quasistatic conditions were assumed and results obtained at 1 MHz (assuming tissue conductivity values at 1 kHz) were scaled to 1 kHz. Current density (averaged over 1 cm(2)) in central nervous system (CNS) tissues up to 20.6 mA m(-2) and electric fields (averaged over 5 mm) up to 4.1 V m(-1) were predicted for a gradient of 10 mT m(-1) and slew rate of 10 T m(-1) second(-1). Compliance with 2004/40/EC, and with basic restriction values of Institute of Electrical and Electronics Engineers (IEEE) C95.6-2002, was predicted only at impracticably low gradients/slew rates in the ranges 4.9-9.1 mT m(-1)/4.9-9.1 T m(-1) second(-1) and 5-21 mT m(-1)/5-21 T m(-1) second(-1), respectively.

  14. Impact of the use of an endorectal coil for 3 T prostate MRI on image quality and cancer detection rate

    NASA Astrophysics Data System (ADS)

    Gawlitza, Josephin; Reiss-Zimmermann, Martin; Thörmer, Gregor; Schaudinn, Alexander; Linder, Nicolas; Garnov, Nikita; Horn, Lars-Christian; Minh, Do Hoang; Ganzer, Roman; Stolzenburg, Jens-Uwe; Kahn, Thomas; Moche, Michael; Busse, Harald

    2017-02-01

    This work aims to assess the impact of an additional endorectal coil on image quality and cancer detection rate within the same patients. At a single academic medical center, this transversal study included 41 men who underwent T2- and diffusion-weighted imaging at 3 T using surface coils only or in combination with an endorectal coil in the same session. Two blinded readers (A and B) randomly evaluated all image data in separate sessions. Image quality with respect to localization and staging was rated on a five-point scale. Lesions were classified according to their prostate imaging reporting and data system (PIRADS) score version 1. Standard of reference was provided by whole-mount step-section analysis. Mean image quality scores averaged over all localization-related items were significantly higher with additional endorectal coil for both readers (p < 0.001), corresponding staging-related items were only higher for reader B (p < 0.001). With an endorectal coil, the rate of correctly detecting cancer per patient was significantly higher for reader B (p < 0.001) but not for reader A (p = 0.219). The numbers of histologically confirmed tumor lesions were rather similar for both settings. The subjectively rated 3-T image quality was improved with an endorectal coil. In terms of diagnostic performance, the use of an additional endorectal coil was not superior.

  15. Impact of the use of an endorectal coil for 3 T prostate MRI on image quality and cancer detection rate

    PubMed Central

    Gawlitza, Josephin; Reiss-Zimmermann, Martin; Thörmer, Gregor; Schaudinn, Alexander; Linder, Nicolas; Garnov, Nikita; Horn, Lars-Christian; Minh, Do Hoang; Ganzer, Roman; Stolzenburg, Jens-Uwe; Kahn, Thomas; Moche, Michael; Busse, Harald

    2017-01-01

    This work aims to assess the impact of an additional endorectal coil on image quality and cancer detection rate within the same patients. At a single academic medical center, this transversal study included 41 men who underwent T2- and diffusion-weighted imaging at 3 T using surface coils only or in combination with an endorectal coil in the same session. Two blinded readers (A and B) randomly evaluated all image data in separate sessions. Image quality with respect to localization and staging was rated on a five-point scale. Lesions were classified according to their prostate imaging reporting and data system (PIRADS) score version 1. Standard of reference was provided by whole-mount step-section analysis. Mean image quality scores averaged over all localization-related items were significantly higher with additional endorectal coil for both readers (p < 0.001), corresponding staging-related items were only higher for reader B (p < 0.001). With an endorectal coil, the rate of correctly detecting cancer per patient was significantly higher for reader B (p < 0.001) but not for reader A (p = 0.219). The numbers of histologically confirmed tumor lesions were rather similar for both settings. The subjectively rated 3-T image quality was improved with an endorectal coil. In terms of diagnostic performance, the use of an additional endorectal coil was not superior. PMID:28145525

  16. Improving the spatial accuracy in functional magnetic resonance imaging (fMRI) based on the blood oxygenation level dependent (BOLD) effect: benefits from parallel imaging and a 32-channel head array coil at 1.5 Tesla.

    PubMed

    Fellner, C; Doenitz, C; Finkenzeller, T; Jung, E M; Rennert, J; Schlaier, J

    2009-01-01

    Geometric distortions and low spatial resolution are current limitations in functional magnetic resonance imaging (fMRI). The aim of this study was to evaluate if application of parallel imaging or significant reduction of voxel size in combination with a new 32-channel head array coil can reduce those drawbacks at 1.5 T for a simple hand motor task. Therefore, maximum t-values (tmax) in different regions of activation, time-dependent signal-to-noise ratios (SNR(t)) as well as distortions within the precentral gyrus were evaluated. Comparing fMRI with and without parallel imaging in 17 healthy subjects revealed significantly reduced geometric distortions in anterior-posterior direction. Using parallel imaging, tmax only showed a mild reduction (7-11%) although SNR(t) was significantly diminished (25%). In 7 healthy subjects high-resolution (2 x 2 x 2 mm3) fMRI was compared with standard fMRI (3 x 3 x 3 mm3) in a 32-channel coil and with high-resolution fMRI in a 12-channel coil. The new coil yielded a clear improvement for tmax (21-32%) and SNR(t) (51%) in comparison with the 12-channel coil. Geometric distortions were smaller due to the smaller voxel size. Therefore, the reduction in tmax (8-16%) and SNR(t) (52%) in the high-resolution experiment seems to be tolerable with this coil. In conclusion, parallel imaging is an alternative to reduce geometric distortions in fMRI at 1.5 T. Using a 32-channel coil, reduction of the voxel size might be the preferable way to improve spatial accuracy.

  17. Size Distribution Imaging by Non-Uniform Oscillating-Gradient Spin Echo (NOGSE) MRI

    PubMed Central

    Shemesh, Noam; Álvarez, Gonzalo A.; Frydman, Lucio

    2015-01-01

    Objects making up complex porous systems in Nature usually span a range of sizes. These size distributions play fundamental roles in defining the physicochemical, biophysical and physiological properties of a wide variety of systems – ranging from advanced catalytic materials to Central Nervous System diseases. Accurate and noninvasive measurements of size distributions in opaque, three-dimensional objects, have thus remained long-standing and important challenges. Herein we describe how a recently introduced diffusion-based magnetic resonance methodology, Non-Uniform-Oscillating-Gradient-Spin-Echo (NOGSE), can determine such distributions noninvasively. The method relies on its ability to probe confining lengths with a (length)6 parametric sensitivity, in a constant-time, constant-number-of-gradients fashion; combined, these attributes provide sufficient sensitivity for characterizing the underlying distributions in μm-scaled cellular systems. Theoretical derivations and simulations are presented to verify NOGSE’s ability to faithfully reconstruct size distributions through suitable modeling of their distribution parameters. Experiments in yeast cell suspensions – where the ground truth can be determined from ancillary microscopy – corroborate these trends experimentally. Finally, by appending to the NOGSE protocol an imaging acquisition, novel MRI maps of cellular size distributions were collected from a mouse brain. The ensuing micro-architectural contrasts successfully delineated distinctive hallmark anatomical sub-structures, in both white matter and gray matter tissues, in a non-invasive manner. Such findings highlight NOGSE’s potential for characterizing aberrations in cellular size distributions upon disease, or during normal processes such as development. PMID:26197220

  18. Multi-port-driven birdcage coil for multiple-mouse MR imaging at 7 T.

    PubMed

    Heo, Phil; Seo, Jeung-Hoon; Han, Sang-Doc; Ryu, Yeunchul; Byun, Jong-Deok; Kim, Kyoung-Nam; Lee, Jung Hee

    2016-11-01

    In ultra-high field (UHF) imaging environments, it has been demonstrated that multiple-mouse magnetic resonance imaging (MM-MRI) is dependent on key factors such as the radiofrequency (RF) coil hardware, imaging protocol, and experimental setup for obtaining high-resolution MR images. A key aspect is the RF coil, and a number of MM-MRI studies have investigated the application of single-channel RF transmit (Tx)/receive (Rx) coils or multi-channel phased array (PA) coil configurations under a single gradient coil set. However, despite applying a variety of RF coils, Tx (|B1(+) |)-field inhomogeneity still remains a major problem due to the relative shortening of the effective RF wavelength in the UHF environment. To address this issue, we propose a relatively smaller size of individual Tx-only coils in a multiple birdcage (MBC) coil for MM-MRI to image up to three mice. We use electromagnetic (EM) simulations in the finite-difference time-domain (FDTD) environment to obtain the |B1 |-field distribution. Our results clearly show that the single birdcage (SBC) high-pass filter (HPF) configuration, which is referred to as the SBCHPF , under the absence of an RF shield exhibits a high |B1 |-field intensity in comparison with other coil configurations such as the low-pass filter (LPF) and band-pass filter (BPF) configurations. In a 7-T MRI experiment, the signal-to-noise ratio (SNR) map of the SBCHPF configuration shows the highest coil performance compared to other coil configurations. The MBCHPF coil, which is comprised of a triple-SBCHPF configuration combined with additional decoupling techniques, is developed for simultaneous image acquisition of three mice. SCANNING 38:747-756, 2016. © 2016 Wiley Periodicals, Inc.

  19. Accuracy of Diffusion Weighted Images and MR Spectroscopy in Prostate Lesions - Our Experience with Endorectal Coil on 1.5 T MRI.

    PubMed

    Jagannathan, Devimeenal; Indiran, Venkatraman

    2017-05-01

    Prostatic cancer is most commonly seen in individuals greater than 65 years of age. The incidence rates are constantly increasing. To assess the accuracy of the non-contrast sequences {Diffusion Weighted Imaging (DWI) and Magnetic Resonance Spectroscopy (MRS)} in the multiparametric Magnetic Resonance Imaging (mp-MRI) in identifying and differentiating benign and malignant prostate lesions using endorectal coil on 1.5 T MRI. Twenty-six patients with clinical indications for prostate lesions were evaluated using endorectal coil on 1.5 T MRI. DWI and MRS were obtained in all the lesions. Signal change on T2 weighted images, Apparent Diffusion Coefficient (ADC) values and choline + creatinine to citrate ratios (Cho+Cr/Ci) of the lesions were obtained for all the patients. All the patients underwent Transrectal Ultrasound (TRUS) guided biopsy within one week of MRI study. Signal change on T2 weighted images, DWI and Cho+Cr/Ci ratios were correlated with the histopathological findings using appropriate statistical analysis (Wilson score). Of the 26 patients, seven had benign pathology and 19 had malignant pathology on the histopathological examination. Sensitivity and specificity (89.5% and 85.7% respectively) of the diagnosis of malignancy based on DWI were quite good. Positive and negative predictive values were also very much acceptable (94.4% and 75% respectively). Though, MRS had good sensitivity and Positive Predictive Value (PPV) (84.2% and 76.2% respectively), specificity and Negative Predictive Value (NPV) were poor (28.6% and 40% respectively). Accuracy of imaging diagnosis based on combining T2, DWI and MRS was same as that of results based on T2 signal alone (80.8%) and had higher sensitivity and lower specificity than DWI alone (94.7% and 42.9% respectively). Receiver Operating Characteristic (ROC) curves were calculated for ADC values and Cho+Cr/Ci ratios. The Area Under the Curve (AUC) for ADC is 0.74 and for Cho+Cr/Ci is 0.70. Comparing the accuracy of

  20. Accuracy of Diffusion Weighted Images and MR Spectroscopy in Prostate Lesions – Our Experience with Endorectal Coil on 1.5 T MRI

    PubMed Central

    Indiran, Venkatraman

    2017-01-01

    Introduction Prostatic cancer is most commonly seen in individuals greater than 65 years of age. The incidence rates are constantly increasing. Aim To assess the accuracy of the non-contrast sequences {Diffusion Weighted Imaging (DWI) and Magnetic Resonance Spectroscopy (MRS)} in the multiparametric Magnetic Resonance Imaging (mp-MRI) in identifying and differentiating benign and malignant prostate lesions using endorectal coil on 1.5 T MRI. Materials and Methods Twenty-six patients with clinical indications for prostate lesions were evaluated using endorectal coil on 1.5 T MRI. DWI and MRS were obtained in all the lesions. Signal change on T2 weighted images, Apparent Diffusion Coefficient (ADC) values and choline + creatinine to citrate ratios (Cho+Cr/Ci) of the lesions were obtained for all the patients. All the patients underwent Transrectal Ultrasound (TRUS) guided biopsy within one week of MRI study. Signal change on T2 weighted images, DWI and Cho+Cr/Ci ratios were correlated with the histopathological findings using appropriate statistical analysis (Wilson score). Results Of the 26 patients, seven had benign pathology and 19 had malignant pathology on the histopathological examination. Sensitivity and specificity (89.5% and 85.7% respectively) of the diagnosis of malignancy based on DWI were quite good. Positive and negative predictive values were also very much acceptable (94.4% and 75% respectively). Though, MRS had good sensitivity and Positive Predictive Value (PPV) (84.2% and 76.2% respectively), specificity and Negative Predictive Value (NPV) were poor (28.6% and 40% respectively). Accuracy of imaging diagnosis based on combining T2, DWI and MRS was same as that of results based on T2 signal alone (80.8%) and had higher sensitivity and lower specificity than DWI alone (94.7% and 42.9% respectively). Receiver Operating Characteristic (ROC) curves were calculated for ADC values and Cho+Cr/Ci ratios. The Area Under the Curve (AUC) for ADC is 0.74 and for

  1. Gradient induced artifacts in simultaneous EEG-fMRI: Effect of synchronization on spiral and EPI k-space trajectories.

    PubMed

    Solana, A B; Hernández-Tamames, J A; Manzanedo, E; García-Álvarez, R; Zelaya, F O; del Pozo, F

    2014-07-01

    The nature of the gradient induced electroencephalography (EEG) artifact is analyzed and compared for two functional magnetic resonance imaging (fMRI) pulse sequences with different k-space trajectories: echo planar imaging (EPI) and spiral. Furthermore, the performance of the average artifact subtraction algorithm (AAS) to remove the gradient artifact for both sequences is evaluated. The results show that the EEG gradient artifact for spiral sequences is one order of magnitude higher than for EPI sequences due to the chirping spectrum of the spiral sequence and the dB/dt of its crusher gradients. However, in the presence of accurate synchronization, the use of AAS yields the same artifact suppression efficiency for both pulse sequences below 80Hz. The quality of EEG signal after AAS is demonstrated for phantom and human data. EEG spectrogram and visual evoked potential (VEP) are compared outside the scanner and use both EPI and spiral pulse sequences. MR related artifact residues affect the spectra over 40Hz (less than 0.2 μV up to 120Hz) and modify the amplitude of P1, N2 and P300 in the VEP. These modifications in the EEG signal have to be taken into account when interpreting EEG data acquired in simultaneous EEG-fMRI experiments.

  2. In Vivo Lung Morphometry With Hyperpolarized 3He Diffusion MRI: Reproducibility and the Role of Diffusion Sensitizing Gradient Direction

    PubMed Central

    Quirk, James D.; Chang, Yulin V.; Yablonskiy, Dmitriy A.

    2014-01-01

    Purpose Lung morphometry with hyperpolarized gas diffusion MRI is a highly sensitive technique for the non-invasive measurement of acinar microstructural parameters traditionally only accessible by histology. The goal of this work is to establish the reproducibility of these measurements in healthy volunteers and their dependence upon the direction of the applied diffusion-sensitizing gradient. Methods Helium-3 lung morphometry MRI was performed on a total of five healthy subjects. Two subjects received duplicate imaging on the same day and three after a four or twenty-seven month delay to assess reproducibility. Four subjects repeated the measurement during the same session with different diffusion-sensitizing gradient directions to determine the effect on the parameter estimates. Results The helium-3 lung morphometry measurements were reproducible over the short and long term (e.g. % coefficient of variation (CV) of mean chord length, Lm = 2.1% and 2.9% respectively) and across different diffusion gradient directions (Lm % CV = 2.6%). Results also show independence of field inhomogeneity effects at 1.5T. Conclusion Helium-3 lung morphometry is a reproducible technique for measuring acinar microstructure and is effectively independent of the choice of diffusion gradient direction. This provides confidence for the use of this technique to compare populations and treatment efficacy. PMID:24752926

  3. Arterial spin labeling for motor activation mapping at 3T with a 32-channel coil: reproducibility and spatial accuracy in comparison with BOLD fMRI.

    PubMed

    Raoult, Hélène; Petr, Jan; Bannier, Elise; Stamm, Aymeric; Gauvrit, Jean-Yves; Barillot, Christian; Ferré, Jean-Christophe

    2011-09-01

    Functional arterial spin labeling (fASL) is an innovative biomarker of neuronal activation that allows direct and absolute quantification of activation-related CBF and is less sensitive to venous contamination than BOLD fMRI. This study evaluated fASL for motor activation mapping in comparison with BOLD fMRI in terms of involved anatomical area localization, intra-individual reproducibility of location, quantification of neuronal activation, and spatial accuracy. Imaging was performed at 3T with a 32-channel coil and dedicated post-processing tools were used. Twelve healthy right-handed subjects underwent fASL and BOLD fMRI while performing a right hand motor activation task. Three sessions were performed 7days apart in similar physiological conditions. Our results showed an activation in the left primary hand motor area for all 36 sessions in both fASL and BOLD fMRI. The individual functional maps for fASL demonstrated activation in ipsilateral secondary motor areas more often than the BOLD fMRI maps. This finding was corroborated by the group maps. In terms of activation location, fASL reproducibility was comparable to BOLD fMRI, with a distance between activated volumes of 2.1mm and an overlap ratio for activated volumes of 0.76, over the 3 sessions. In terms of activation quantification, fASL reproducibility was higher, although not significantly, with a CVintra of 11.6% and an ICC value of 0.75. Functional ASL detected smaller activation volumes than BOLD fMRI but the areas had a high degree of co-localization. In terms of spatial accuracy in detecting activation in the hand motor area, fASL had a higher specificity (43.5%) and a higher positive predictive value (69.8%) than BOLD fMRI while maintaining high sensitivity (90.7%). The high intra-individual reproducibility and spatial accuracy of fASL revealed in the present study will subsequently be applied to pathological subjects. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. A three-coil RF probe-head at 2.35 T: Potential applications to the (23)Na and to the hyperpolarized (129)Xe MRI in small animals.

    PubMed

    Asfour, Aktham

    2010-01-01

    We present in this paper a dedicated home-built RF probe-head for the MRI of rat brain at 2.35 T. This probe consists of an association of three coils: a double-tuned birdcage coil, which could be used for both transmitting and receiving, and a single-tuned surface coil that is used for the only receiving. This single-tuned coil is actively decoupled from the double-tuned volume coil. The active decoupling is based on the pole insertion technique using PIN diodes circuitry. This development was initially motivated by its potential and future application to the brain perfusion measurements by the MRI of hyperpolarized xenon-129 (HP (129)Xe). However, one of underlying ideas behind this work is to proceed well beyond this specific application. Particularly, the developed coil could also be dedicated for the sodium-23 ((23)Na) MRI in the rat brain. Indeed we tried to make the design versatile, simple and easy to replicate by other research groups, with a low cost, minimum development time and accepted performances. We believe that this design could by useful for groups who consider building own hardware. This is why we describe in some details the practical aspects of the workbench design as well as the coil characterization. For simplicity reasons, the first results of developed prototype were obtained at 100 MHz and 26.4 MHz (proton and sodium-23 frequencies at 2.35 T). MR images of phantoms were realized. In-vivo (1)H images and (23)Na spectra of the rat brain were also obtained. Future validation would concern the MRI of HP (129)Xe.

  5. Newly developed surface coil for endoluminal MRI, depiction of pig gastric wall layers and vascular architecture in ex vivo study.

    PubMed

    Morita, Yoshinori; Kutsumi, Hiromu; Yoshinaka, Hayato; Matsuoka, Yuichiro; Kuroda, Kagayaki; Gotanda, Masakazu; Sekino, Naomi; Kumamoto, Etsuko; Yoshida, Masaru; Inokuchi, Hideto; Azuma, Takeshi

    2009-01-01

    The purpose of this study was to visualize the gastric wall layers and to depict the vascular architecture in vitro by using resected porcine stomachs studied with high-spatial resolution magnetic resonance (MR) imaging. Normal dissected porcine stomach samples (n = 4) were examined with a 3 Tesla MR system using a newly developed surface coil. MR images were obtained by the surface coil as receiver and a head coil as transmitter. High-spatial-resolution spin-echo MR images were obtained with a field of view of 8 x 8 cm, a matrix of 256 x 128 and slice thicknesses of 3 and 5 mm. T1 and T2-weighted MR images clearly depicted the normal porcine gastric walls as consisting of four distinct layers. In addition, vascular architectures in proper muscle layers were also visualized, which were confirmed by histological examinations to correspond to blood vessels. High-spatial-resolution MR imaging using a surface coil placed closely to the gastric wall enabled the differentiation of porcine gastric wall layers and the depiction of the blood vessels in proper muscle layer in this experimental study.

  6. An inverse methodology for high-frequency RF coil design for MRI with de-emphasized B1 fields.

    PubMed

    Xu, Bin; Wei, Qing; Liu, Feng; Crozier, Stuart

    2005-09-01

    An inverse methodology for the design of biologically loaded radio-frequency (RF) coils for magnetic resonance imaging applications is described. Free space time-harmonic electromagnetic Green's functions and de-emphasized B1 target fields are used to calculate the current density on the coil cylinder. In theory, with the B1 field de-emphasized in the middle of the RF transverse plane, the calculated current distribution can generate an internal magnetic field that can reduce the central overemphasis effect caused by field/tissue interactions at high frequencies. The current distribution of a head coil operating at 4 T (170 MHz) is calculated using an inverse methodology with de-emphasized B1 target fields. An in-house finite-difference time-domain routine is employed to evaluate B1 field and signal intensity inside a homogenous cylindrical phantom and then a complete human head model. A comparison with a conventional RF birdcage coil is carried out and demonstrates that this method can help in decreasing the normal bright region caused by field/tissue interactions in head images at 170 MHz and higher field strengths.

  7. Mixed model phase evolution for correction of magnetic field inhomogeneity effects in 3D quantitative gradient echo-based MRI.

    PubMed

    Fatnassi, Chemseddine; Boucenna, Rachid; Zaidi, Habib

    2017-07-01

    In 3D gradient echo magnetic resonance imaging (MRI), strong field gradients B0macro are visually observed at air/tissue interfaces. At low spatial resolution in particular, the respective field gradients lead to an apparent increase in intravoxel dephasing, and subsequently, to signal loss or inaccurate R2* estimates. If the strong field gradients are measured, their influence can be removed by postprocessing. Conventional corrections usually assume a linear phase evolution with time. For high macroscopic gradient inhomogeneities near the edge of the brain and at the paranasal sinuses, however, this assumption is often broken. Herein, we explored a novel model that considers both linear and stochastic dependences of the phase evolution with echo time in the presence of weak and strong macroscopic field inhomogeneities. We tested the performance of the model at large field gradients using simulation, phantom, and human in vivo studies. The performance of the proposed approach was markedly better than the standard correction method, providing a correction equivalent to that of the conventional approach in regions with high signal to noise ratio (SNR > 10), but appearing more robust in regions with low SNR (SNR < 4). The proposed technique shows promise to improve R2* measurements in regions of large susceptibilities. The clinical and research applications still require further investigation. © 2017 American Association of Physicists in Medicine.

  8. Magnetic Field Modeling with a Set of Individual Localized Coils

    PubMed Central

    Juchem, Christoph; Nixon, Terence W.; McIntyre, Scott; Rothman, Douglas L.; de Graaf, Robin A.

    2010-01-01

    A set of generic, circular individual coils is shown to be capable of generating highly complex magnetic field distributions in a flexible fashion. Arbitrarily oriented linear field gradients can be generated in three-dimensional as well as sliced volumes at amplitudes that allow imaging applications. The multi-coil approach permits the simultaneous generation of linear MRI encoding fields and complex shim fields by the same setup, thereby reducing system complexity. The choice of the sensitive volume over which the magnetic fields are optimized remains temporally and spatially variable at all times. The restriction of the field synthesis to experimentally relevant, smaller volumes such as single slices directly translates into improved efficiency, i.e. higher magnetic field amplitudes and/or reduced coil currents. For applications like arterial spin labeling, signal spoiling and diffusion weighting, perfect linearity of the gradient fields is not required and reduced demands on accuracy can also be readily translated into improved efficiency. The first experimental realization was achieved for mouse head MRI with 24 coils that were mounted on the surface of a cylindrical former. Oblique linear field gradients of 20 kHz/cm (47 mT/m) were generated with a maximum current of 1.4 A which allowed radial imaging of a mouse head. The potential of the new approach for generating arbitrary magnetic field shapes is demonstrated by synthesizing the more complex, higher order spherical harmonic magnetic field distributions X2-Y2, Z2 and Z2X. The new multi-coil approach provides the framework for the integration of conventional imaging and shim coils into a single multi-coil system in which shape, strength, accuracy and spatial coverage of the magnetic field can be specifically optimized for the application at hand. PMID:20347360

  9. Thin film MRI-high resolution depth imaging with a local surface coil and spin echo SPI.

    PubMed

    Ouriadov, Alexei V; MacGregor, Rodney P; Balcom, Bruce J

    2004-07-01

    A multiple echo, single point imaging technique, employing a local surface coil probe, is presented for examination of thin film samples. Depth images with a nominal resolution of 5 microm were acquired with acquisition times on the order of 10 min. The method may be used to observe dynamic phenomenon such as polymerization, wetting, and drying in thin film samples. It is readily adapted to spatially resolved diffusion coefficient and T2 relaxation time mapping.

  10. Remote detected Low-Field MRI using an optically pumped atomic magnetometer combined with a liquid cooled pre-polarization coil

    NASA Astrophysics Data System (ADS)

    Hilschenz, Ingo; Ito, Yosuke; Natsukawa, Hiroaki; Oida, Takenori; Yamamoto, Tetsuya; Kobayashi, Tetsuo

    2017-01-01

    Superconducting quantum interference devices are widely used in basic and clinical biomagnetic measurements such as low-field magnetic resonance imaging and magnetoencephalography primarily because they exhibit high sensitivity at low frequencies and have a wide bandwidth. The main disadvantage of these devices is that they require cryogenic coolants, which are rather expensive and not easily available. Meanwhile, with the advances in laser technology in the past few years, optically pumped atomic magnetometers (OPAMs) have been shown to be a good alternative as they can have adequate noise levels and are several millimeters in size, which makes them significantly easier to use. In this study, we used an OPAM module operating at a Larmor frequency of 5 kHz to acquire NMR and MRI signals. This study presents these initial results as well as our initial attempts at imaging using this OPAM module. In addition, we have designed a liquid-cooled pre-polarizing coil that reduces the measurement time significantly.

  11. Application of direct virtual coil to dynamic contrast-enhanced MRI and MR angiography with data-driven parallel imaging.

    PubMed

    Wang, Kang; Beatty, Philip J; Nagle, Scott K; Reeder, Scott B; Holmes, James H; Rahimi, Mahdi S; Bell, Laura C; Korosec, Frank R; Brittain, Jean H

    2014-02-01

    To demonstrate the feasibility of direct virtual coil (DVC) in the setting of 4D dynamic imaging used in multiple clinical applications. Three dynamic imaging applications were chosen: pulmonary perfusion, liver perfusion, and peripheral MR angiography (MRA), with 18, 11, and 10 subjects, respectively. After view-sharing, the k-space data were reconstructed twice: once with channel-by-channel (CBC) followed by sum-of-squares coil combination and once with DVC. Images reconstructed using CBC and DVC were compared and scored based on overall image quality by two experienced radiologists using a five-point scale. The CBC and DVC showed similar image quality in image domain. Time course measurements also showed good agreement in the temporal domain. CBC and DVC images were scored as equivalent for all pulmonary perfusion cases, all liver perfusion cases, and four of the 10 peripheral MRA cases. For the remaining six peripheral MRA cases, DVC were scored as slightly better (not clinically significant) than the CBC images by Radiologist A and as equivalent by Radiologist B. For dynamic contrast-enhanced MR applications, it is clinically feasible to reduce image reconstruction time while maintaining image quality and time course measurement using the DVC technique. Copyright © 2013 Wiley Periodicals, Inc.

  12. Mapping axonal density and average diameter using non-monotonic time-dependent gradient-echo MRI

    NASA Astrophysics Data System (ADS)

    Nunes, Daniel; Cruz, Tomás L.; Jespersen, Sune N.; Shemesh, Noam

    2017-04-01

    White Matter (WM) microstructures, such as axonal density and average diameter, are crucial to the normal function of the Central Nervous System (CNS) as they are closely related with axonal conduction velocities. Conversely, disruptions of these microstructural features may result in severe neurological deficits, suggesting that their noninvasive mapping could be an important step towards diagnosing and following pathophysiology. Whereas diffusion based MRI methods have been proposed to map these features, they typically entail the application of powerful gradients, which are rarely available in the clinic, or extremely long acquisition schemes to extract information from parameter-intensive models. In this study, we suggest that simple and time-efficient multi-gradient-echo (MGE) MRI can be used to extract the axon density from susceptibility-driven non-monotonic decay in the time-dependent signal. We show, both theoretically and with simulations, that a non-monotonic signal decay will occur for multi-compartmental microstructures - such as axons and extra-axonal spaces, which were here used as a simple model for the microstructure - and that, for axons parallel to the main magnetic field, the axonal density can be extracted. We then experimentally demonstrate in ex-vivo rat spinal cords that its different tracts - characterized by different microstructures - can be clearly contrasted using the MGE-derived maps. When the quantitative results are compared against ground-truth histology, they reflect the axonal fraction (though with a bias, as evident from Bland-Altman analysis). As well, the extra-axonal fraction can be estimated. The results suggest that our model is oversimplified, yet at the same time evidencing a potential and usefulness of the approach to map underlying microstructures using a simple and time-efficient MRI sequence. We further show that a simple general-linear-model can predict the average axonal diameters from the four model parameters, and

  13. Evaluation of Fat Suppression of Diffusion-weighted Imaging Using Section Select Gradient Reversal Technique on 3 T Breast MRI.

    PubMed

    Takemori, Daichi; Kimura, Daisuke; Yamada, Eiji; Higashida, Mitsuji

    2016-07-01

    This study evaluates fat suppression of diffusion-weighted imaging (DWI) using section select gradient reversal (SSGR) technique in clinical images on 3 T breast MRI. A total of 20 patients with breast cancer were examined at a Philips Ingenia 3 T MRI. We acquired DWI with SPAIR, SSGR-SPAIR, STIR, and SSGR-STIR. We evaluated contrast between the fat region and lesion, the coefficient of variance (CV) of the fat region and the apparent diffusion coefficient (ADC) of normal breast tissue and lesion. The contrast between the fat region and lesion was improved with SSGR technique. The CV of the fattest region did not have any significant difference in SPAIR technique (p>0.05), but it was significantly decreased in the STIR technique using SSGR technique (p<0.05). Positive correlation was observed in ADC value between SPAIR and other fat suppression techniques (SSGR-SPAIR, STIR, SSGR-STIR). DWI using SSGR technique was suggested to be effective on 3 T breast MRI.

  14. Development and evaluation of a multichannel endorectal RF coil for prostate MRI at 7T in combination with an external surface array.

    PubMed

    Ertürk, M Arcan; Tian, Jinfeng; Van de Moortele, Pierre-François; Adriany, Gregor; Metzger, Gregory J

    2016-06-01

    To develop and evaluate a sterilizable multichannel endorectal coil (ERC) for use in combination with an external surface array (ESA) for high-resolution anatomical and functional studies of the prostate at 7T. A two-loop ERC (ERC-2L) and a microstrip-loop ERC (ERC-ML) were compared at 7T in terms of transmit and receive performance. The best-performing ERC was evaluated alone and in combination with the ESA through 1) simulations on both phantom and an anatomically correct numerical human model to assess B1+ transmit and specific absorption rate (SAR) efficiencies, and 2) phantom experiments to calculate B1+ transmit efficiency and signal-to-noise ratio (SNR). Phantom studies were also performed to look at heating when using the ERC as a transmitter and for comparing the new coil against a single-channel balloon-type ERC (ERC-b). High-resolution magnetic resonance imaging (MRI) acquisitions were performed on a single healthy subject using the two-channel ERC combined with the ESA. Compared to the ERC-ML, the ERC-2L demonstrated 20% higher SAR efficiency and higher SNR 3 cm from the coil. The presence of a tuned and detuned ERC-2L did not alter the peak local SAR of the ESA alone; however, the detuned ERC-2L had 45% less peak local SAR around the rectum compared to the tuned ERC-2L. The receive-only version of the ERC-2L improved the SNR 4.7-fold and 1.3-fold compared to the ESA and ERC-b, respectively. In combination with the ESA, the ERC-2L supported in-plane voxel-size of 0.36 × 0.36 mm(2) in T2 -weighted anatomic imaging. The reusable ERC-2L combined with an ESA offers a high SNR imaging platform for translational studies of the prostate at 7T. J. Magn. Reson. Imaging 2016;43:1279-1287. © 2015 Wiley Periodicals, Inc.

  15. The effect of finite diffusion gradient pulse duration on fibre orientation estimation in diffusion MRI.

    PubMed

    Yeh, Chun-Hung; Tournier, J-Donald; Cho, Kuan-Hung; Lin, Ching-Po; Calamante, Fernando; Connelly, Alan

    2010-06-01

    An essential step for fibre-tracking is the accurate estimation of neuronal fibre orientations within each imaging voxel, and a number of methods have been proposed to reconstruct the orientation distribution function based on sampling three-dimensional q-space. In the q-space formalism, very short (infinitesimal) gradient pulses are the basic requirement to obtain the true spin displacement probability density function. On current clinical MR systems however, the diffusion gradient pulse duration (delta) is inevitably finite due to the limit on the achievable gradient intensity. The failure to satisfy the short gradient pulse (SGP) requirement has been a recurrent criticism for fibre orientation estimation based on the q-space approach. In this study, the influence of a finite delta on the DW signal measured as a function of gradient direction is described theoretically and demonstrated through simulations and experimental models. Our results suggest that the current practice of using long delta for DW imaging on human clinical MR scanners, which is enforced by hardware limitations, might in fact be beneficial for estimating fibre orientations. For a given b-value, the prolongation of delta is advantageous for estimating fibre orientations for two reasons: first, it leads to a boost in DW signal in the transverse plane of the fibre. Second, it stretches out the shape of the measured diffusion profile, which improves the contrast between DW orientations. This is especially beneficial for resolving crossing fibres, as this contrast is essential to discriminate between different fibre directions.

  16. Finite difference time domain (FDTD) method for modeling the effect of switched gradients on the human body in MRI.

    PubMed

    Zhao, Huawei; Crozier, Stuart; Liu, Feng

    2002-12-01

    Numerical modeling of the eddy currents induced in the human body by the pulsed field gradients in MRI presents a difficult computational problem. It requires an efficient and accurate computational method for high spatial resolution analyses with a relatively low input frequency. In this article, a new technique is described which allows the finite difference time domain (FDTD) method to be efficiently applied over a very large frequency range, including low frequencies. This is not the case in conventional FDTD-based methods. A method of implementing streamline gradients in FDTD is presented, as well as comparative analyses which show that the correct source injection in the FDTD simulation plays a crucial rule in obtaining accurate solutions. In particular, making use of the derivative of the input source waveform is shown to provide distinct benefits in accuracy over direct source injection. In the method, no alterations to the properties of either the source or the transmission media are required. The method is essentially frequency independent and the source injection method has been verified against examples with analytical solutions. Results are presented showing the spatial distribution of gradient-induced electric fields and eddy currents in a complete body model. Copyright 2002 Wiley-Liss, Inc.

  17. Extended Monopole antenna Array with individual Shield (EMAS) coil: An improved monopole antenna design for brain imaging at 7 tesla MRI.

    PubMed

    Woo, Myung-Kyun; Hong, Suk-Min; Lee, Jongho; Kang, Chang-Ki; Park, Sung-Yeon; Son, Young-Don; Kim, Young-Bo; Cho, Zang-Hee

    2016-06-01

    To propose a new Extended Monopole antenna Array with individual Shields (EMAS) coil that improves the B1 field coverage and uniformity along the z-direction. To increase the spatial coverage of Monopole antenna Array (MA) coil, each monopole antenna was shielded and extended in length. Performance of this new coil, which is referred to as EMAS coil, was compared with the original MA coil and an Extended Monopole antenna Array coil with no shield (EMA). For comparison, flip angle, signal-to-noise ratio (SNR), and receive sensitivity maps were measured at multiple regions of interest (ROIs) in the brain. The EMAS coil demonstrated substantially larger flip angle and receive sensitivity than the MA and EMA coils in the inferior aspect of the brain. In the brainstem ROI, for example, the flip angle in the EMAS coil was increased by 45.5% (or 60.0%) and the receive sensitivity was increased by 26.9% (or 14.9%), resulting in an SNR gain of 84.8% (or 76.3%) when compared with the MA coil (or EMA). The EMAS coil provided 25.7% (or 24.4%) more uniform B1+ field distribution compared with the MA (or EMA) coil in sagittal. The EMAS coil successfully extended the imaging volume in lower part of the brain. Magn Reson Med 75:2566-2572, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  18. Gradient Echo MRI Characterization of Development of Atherosclerosis in the Abdominal Aorta in Watanabe Heritable Hyperlipidemic Rabbits

    SciTech Connect

    Wang, Yi-Xiang J. Kuribayashi, Hideto; Wagberg, Maria; Holmes, Andrew P.; Tessier, Jean J.; Waterton, John C.

    2006-08-15

    Purpose. The Watanabe Heritable Hyperlipidemic (WHHL) rabbit provides an important model of spontaneous atherosclerosis. With a strain of WHHL rabbits which do not develop abdominal aorta lumen stenosis even with advanced atherosclerosis, we studied the MRI-histology correlation, and the natural progression of atherosclerosis in the abdominal aorta. In addition, intra-reader segmentation repeatability and scan-rescan reproducibility were assessed. Methods. Two batches of female WHHL rabbits were used. The first batch of 6 rabbits was scanned at 20 weeks old. A second batch of 17 rabbits was scanned at 50 weeks old and then randomly divided into two subgroups: 8 were killed for histologic investigation; 9 were kept alive for follow-up, with repeat scanning a week later to assess scan-rescan reproducibility, and again at 73 weeks old to assess disease progression. MR images were acquired at 4.7 T using a chemical shift selective fat suppression gradient echo with a saturation band suppressing blood signal within the aortic lumen. Five slices per animal were acquired, centered around the renal artery region of the abdominal aorta, with in-plane resolution of 0.195 mm and slice thickness of 3 mm. Results. The coefficient of variation for intra-reader reproducibility for aortic wall thickness measurements was 2.5% for repeat segmentations of the same scans on the same day, but segmentations of these same scans made 8 months later showed a systematic change, suggesting that intra-reader bias as well as increased variability could compromise assessments made over time. Comparative analyses were therefore performed in one postprocessing session. The coefficient of variation for scan-rescan reproducibility for aortic wall thickness was 5.5% for nine pairs of scans acquired a week apart and segmented on the same day. Good MRI-histology correlation was obtained. The MRI-measured mean aortic wall thickness of animals at 20 weeks of age was 76% that of animals at 50 weeks of

  19. One-step synthesis of gradient gadolinium ironhexacyanoferrate nanoparticles: a new particle design easily combining MRI contrast and photothermal therapy

    NASA Astrophysics Data System (ADS)

    Li, Yichen; Li, Carissa H.; Talham, Daniel R.

    2015-03-01

    A one-step synthesis of Prussian blue nanoparticles possessing a concentration gradient of Gd3+ counterions, g-Gd-PB, has been developed, and the potential for the particles to perform as both MRI positive contrast agents and photothermal therapy agents is demonstrated. The synthesis of potassium/gadolinium ironhexacyanoferrate is performed under increasing concentration of Gd3+ ions forming particles with a higher concentration of gadolinium toward the outer layers. The proton relaxivity (r1) measured for the particles is 12.3 mM-1 s-1, and T1 weighted images of phantoms containing the particles show their potential as MRI contrast agents. In addition, the Prussian blue host can rapidly and efficiently convert energy from near-IR light into thermal energy, allowing g-Gd-PB to be used as a photothermal therapy agent. The photothermal properties are demonstrated by measuring temperature changes of particle suspensions under irradiation and by photothermal ablation of CCRF-CEM cancer cells.A one-step synthesis of Prussian blue nanoparticles possessing a concentration gradient of Gd3+ counterions, g-Gd-PB, has been developed, and the potential for the particles to perform as both MRI positive contrast agents and photothermal therapy agents is demonstrated. The synthesis of potassium/gadolinium ironhexacyanoferrate is performed under increasing concentration of Gd3+ ions forming particles with a higher concentration of gadolinium toward the outer layers. The proton relaxivity (r1) measured for the particles is 12.3 mM-1 s-1, and T1 weighted images of phantoms containing the particles show their potential as MRI contrast agents. In addition, the Prussian blue host can rapidly and efficiently convert energy from near-IR light into thermal energy, allowing g-Gd-PB to be used as a photothermal therapy agent. The photothermal properties are demonstrated by measuring temperature changes of particle suspensions under irradiation and by photothermal ablation of CCRF-CEM cancer

  20. Reducing Inhomogeneity Artifacts in Functional MRI of Human Brain Activation—Thin Sections vs Gradient Compensation

    NASA Astrophysics Data System (ADS)

    Merboldt, Klaus-Dietmar; Finsterbusch, Jürgen; Frahm, Jens

    2000-08-01

    We evaluated two methods for correcting inhomogeneity-induced signal losses in magnetic resonance gradient-echo imaging that either use gradient compensation or simply acquire thin sections. The strategies were tested in the human brain in terms of achievable quality of T2*-weighted images at the level of the hippocampus and of functional activation maps of the visual cortex. Experiments were performed at 2.0 T and based on single-shot echo-planar imaging at 2.0 × 2.0 mm2 resolution, 4 mm section thickness, and 2.0 s temporal resolution. Gradient compensation involved a sequential 16-step variation of the refocusing lobe of the slice-selection gradient (TR/TE = 125/53 ms, flip angle 15°), whereas thin sections divided the 4-mm target plane into either four 1-mm or eight 0.5-mm interleaved multislice acquisitions (TR/TE = 2000/54 ms, flip angle 70°). Both approaches were capable of alleviating the inhomogeneity problem for structures in the base of the brain. When compared to standard 4-mm EPI, functional mapping in the visual cortex was partially compromised because of a lower signal-to-noise ratio of inhomogeneity-corrected images by either method. Relative to each other, consistently better results were obtained with the use of contiguous thin sections, in particular for a thickness of 1 mm. Multislice acquisitions of thin sections require minimal technical adjustments.

  1. Remote detected Low-Field MRI using an optically pumped atomic magnetometer combined with a liquid cooled pre-polarization coil.

    PubMed

    Hilschenz, Ingo; Ito, Yosuke; Natsukawa, Hiroaki; Oida, Takenori; Yamamoto, Tetsuya; Kobayashi, Tetsuo

    2017-01-01

    Superconducting quantum interference devices are widely used in basic and clinical biomagnetic measurements such as low-field magnetic resonance imaging and magnetoencephalography primarily because they exhibit high sensitivity at low frequencies and have a wide bandwidth. The main disadvantage of these devices is that they require cryogenic coolants, which are rather expensive and not easily available. Meanwhile, with the advances in laser technology in the past few years, optically pumped atomic magnetometers (OPAMs) have been shown to be a good alternative as they can have adequate noise levels and are several millimeters in size, which makes them significantly easier to use. In this study, we used an OPAM module operating at a Larmor frequency of 5kHz to acquire NMR and MRI signals. This study presents these initial results as well as our initial attempts at imaging using this OPAM module. In addition, we have designed a liquid-cooled pre-polarizing coil that reduces the measurement time significantly. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Technical Note: Comparison of megavoltage, dual-energy, and single-energy CT-based μ-maps for a four-channel breast coil in PET/MRI.

    PubMed

    Patrick, John C; Terry Thompson, R; So, Aaron; Butler, John; Faul, David; Stodilka, Robert Z; Yartsev, Slav; Prato, Frank S; Gaede, Stewart

    2017-09-01

    The purpose of this study was to describe and evaluate methods for calculating a megavoltage computed tomography (MVCT)-derived MR hardware attenuation map (μ-map) and dual-energy CT (DECT) for 511 keV photons. Phantom measurements were acquired on a whole-body hybrid PET/MRI system, using a four-channel receive-only MR radiofrequency (RF) breast coil. Two acquisitions were performed: with the phantoms positioned in the four-channel RF breast coil, and without the breast coil. PET attenuation from the breast coil was corrected using three different CT-derived hardware μ-maps: (a) Single-energy CT (SECT), (b) DECT, and (c) MVCT. Each attenuation-corrected (AC) PET volume was evaluated and compared with the acquisition performed without the breast coil. The breast coil attenuated PET photons by 10% overall. Threshold values were applied to the SECT μ-map to reduce the effects of metal artifacts, but overcorrection occurred in more highly attenuated regions. The DECT-derived virtual monochromatic image reduced beam-hardening artifacts, but other metal artifacts remained. Despite the remaining metal artifacts in the DECT image, it led to an improvement in the more attenuated regions. The MVCT images appear to be free from metal artifacts leading to an artifact-free μ-map and a further improvement AC-PET images. Our MVCT-based approach for creating μ-maps for MR RF coils greatly reduces artifacts produced by metal in a SECT approach. This eliminates the need for other artifact reduction methods, including the application of a threshold of narrow beam attenuation coefficients, or disassembling hardware to remove high-Z components before imaging with a kilovoltage source. © 2017 American Association of Physicists in Medicine.

  3. MRI endoscopy using intrinsically localized probes

    PubMed Central

    Sathyanarayana, Shashank; Bottomley, Paul A.

    2009-01-01

    Magnetic resonance imaging (MRI) is traditionally performed with fixed externally applied gradient magnetic fields and is hence intrinsically locked to the laboratory frame of reference (FoR). Here a method for high-resolution MRI that employs active, catheter-based, tiny internal probes that utilize the spatial properties of the probe itself for localization is proposed and demonstrated at 3 T. Because these properties are intrinsic to the probe, they move with it, transforming MRI from the laboratory FoR to the FoR of the device itself, analogous to an endoscope. The “MRI endoscope” can utilize loop coils and loopless antennas with modified sensitivity, in combination with adiabatic excitation by the device itself, to restrict the MRI sensitivity to a disk-shaped plane a few mm thick. Excitation with the MRI endoscope limits the eddy currents induced in the sample to an excited volume whose size is orders of magnitude below that excited by a conventional body MRI coil. Heat testing shows maximum local temperature increases of <1 °C during MRI, within regulatory guidelines. The method is demonstrated in a kiwifruit, in intact porcine and rabbit aortas, and in an atherosclerotic human iliac artery specimen, with in-plane resolution as small as 80 μm and 1.5–5 mm slice thickness. PMID:19378751

  4. Optimized quadrature surface coil designs

    PubMed Central

    Kumar, Ananda; Bottomley, Paul A.

    2008-01-01

    Background Quadrature surface MRI/MRS detectors comprised of circular loop and figure-8 or butterfly-shaped coils offer improved signal-to-noise-ratios (SNR) compared to single surface coils, and reduced power and specific absorption rates (SAR) when used for MRI excitation. While the radius of the optimum loop coil for performing MRI at depth d in a sample is known, the optimum geometry for figure-8 and butterfly coils is not. Materials and methods The geometries of figure-8 and square butterfly detector coils that deliver the optimum SNR are determined numerically by the electromagnetic method of moments. Figure-8 and loop detectors are then combined to create SNR-optimized quadrature detectors whose theoretical and experimental SNR performance are compared with a novel quadrature detector comprised of a strip and a loop, and with two overlapped loops optimized for the same depth at 3 T. The quadrature detection efficiency and local SAR during transmission for the three quadrature configurations are analyzed and compared. Results The SNR-optimized figure-8 detector has loop radius r8 ∼ 0.6d, so r8/r0 ∼ 1.3 in an optimized quadrature detector at 3 T. The optimized butterfly coil has side length ∼ d and crossover angle of ≥ 150° at the center. Conclusions These new design rules for figure-8 and butterfly coils optimize their performance as linear and quadrature detectors. PMID:18057975

  5. A novel functional magnetic resonance imaging compatible search-coil eye-tracking system.

    PubMed

    Oeltermann, Axel; Ku, Shih-Pi; Logothetis, Nikos K

    2007-07-01

    Measuring eye movements (EMs) using the search-coil eye-tracking technique is superior to video-based infrared methods [Collewijn H, van der Mark F, Jansen TC. Precise recording of human eye movements. Vision Res 1975;15(3):447-50], which suffer from the instability of pupil size, blinking behavior and lower temporal resolution. However, no conventional functional magnetic resonance imaging (fMRI)-compatible search-coil eye tracker exists. The main problems for such a technique are the interaction between the transmitter coils and the magnetic gradients used for imaging as well as the limited amount of space in a scanner. Here we present an approach to overcome these problems and we demonstrate a method to record EMs in an MRI scanner using a search coil. The system described has a spatial resolution of 0.07 degrees (visual angle) and a high temporal resolution (22 kHz). The transmitter coils are integrated into the visual presentation system and the control/analysis unit is portable, which enables us to integrate the eye tracker with an MRI scanner. Our tests demonstrate low noise in the recorded eye traces and scanning with minimal artifact. Furthermore, the induced current in the search coil caused by the RF pulses does not lead to measurable heating. Altogether, this MR-compatible search-coil eye tracker can be used to precisely monitor EMs with high spatial and temporal resolution during fMRI. It can therefore be of great importance for studies requiring accurate fixation of a target, or measurement and study of the subject's oculomotor system.

  6. Evaluation of the RF field uniformity of a double-tuned 31P/1H birdcage RF coil for spin-echo MRI/MRS of the diabetic foot.

    PubMed

    Greenman, Robert L; Rakow-Penner, Rebecca

    2005-09-01

    To evaluate the B1 field uniformity of a double-tuned birdcage coil designed for (31)P/(1)H MRI/MRS spin-echo (SE) imaging of the metatarsal head region of the foot in neuropathic diabetic patients. A low-pass double-tuned (31)P/(1)H RF birdcage coil was constructed to fit over the adult forefoot. Flip angle (FA) maps were created from B1 data acquired at the 3T (31)P (four normal subjects) and (1)H (five normal subjects) frequencies. T2-weighted (T2-W) (1)H images, (31)P rapid acquisition with relaxation enhancement (RARE) images, and composite SE pulse CSI data were acquired to demonstrate the uniformity of the resulting images and data. The means and standard deviations (SDs) of the range of FAs across the feet of the volunteer subjects indicated good uniformity (the maximum coefficients of variation (CVs) for all of the (31)P and (1)H FA maps were 7.6% and 7.3%, respectively). The FA values across the metatarsal head region indicated a maximum signal intensity variation of +/-3% in a RARE image acquired using an echo train length of 32. A (31)P/(1)H birdcage coil constructed for MRI/MRS studies of the human forefoot provided sufficient signal uniformity of SE data to facilitate accurate (31)P concentration measurements in muscle. (c) 2005 Wiley-Liss, Inc.

  7. Quantitative assessment of microvasculopathy in arcAβ mice with USPIO-enhanced gradient echo MRI

    PubMed Central

    Deistung, Andreas; Ielacqua, Giovanna D; Seuwen, Aline; Kindler, Diana; Schweser, Ferdinand; Vaas, Markus; Kipar, Anja; Reichenbach, Jürgen R; Rudin, Markus

    2015-01-01

    Magnetic resonance imaging employing administration of iron oxide-based contrast agents is widely used to visualize cellular and molecular processes in vivo. In this study, we investigated the ability of R2* and quantitative susceptibility mapping to quantitatively assess the accumulation of ultrasmall superparamagnetic iron oxide (USPIO) particles in the arcAβ mouse model of cerebral amyloidosis. Gradient-echo data of mouse brains were acquired at 9.4 T after injection of USPIO. Focal areas with increased magnetic susceptibility and R2* values were discernible across several brain regions in 12-month-old arcAβ compared to 6-month-old arcAβ mice and to non-transgenic littermates, indicating accumulation of particles after USPIO injection. This was concomitant with higher R2* and increased magnetic susceptibility differences relative to cerebrospinal fluid measured in USPIO-injected compared to non-USPIO-injected 12-month-old arcAβ mice. No differences in R2* and magnetic susceptibility were detected in USPIO-injected compared to non-injected 12-month-old non-transgenic littermates. Histological analysis confirmed focal uptake of USPIO particles in perivascular macrophages adjacent to small caliber cerebral vessels with radii of 2–8 µm that showed no cerebral amyloid angiopathy. USPIO-enhanced R2* and quantitative susceptibility mapping constitute quantitative tools to monitor such functional microvasculopathies. PMID:26661253

  8. Quantitative assessment of microvasculopathy in arcAβ mice with USPIO-enhanced gradient echo MRI.

    PubMed

    Klohs, Jan; Deistung, Andreas; Ielacqua, Giovanna D; Seuwen, Aline; Kindler, Diana; Schweser, Ferdinand; Vaas, Markus; Kipar, Anja; Reichenbach, Jürgen R; Rudin, Markus

    2016-09-01

    Magnetic resonance imaging employing administration of iron oxide-based contrast agents is widely used to visualize cellular and molecular processes in vivo. In this study, we investigated the ability of [Formula: see text] and quantitative susceptibility mapping to quantitatively assess the accumulation of ultrasmall superparamagnetic iron oxide (USPIO) particles in the arcAβ mouse model of cerebral amyloidosis. Gradient-echo data of mouse brains were acquired at 9.4 T after injection of USPIO. Focal areas with increased magnetic susceptibility and [Formula: see text] values were discernible across several brain regions in 12-month-old arcAβ compared to 6-month-old arcAβ mice and to non-transgenic littermates, indicating accumulation of particles after USPIO injection. This was concomitant with higher [Formula: see text] and increased magnetic susceptibility differences relative to cerebrospinal fluid measured in USPIO-injected compared to non-USPIO-injected 12-month-old arcAβ mice. No differences in [Formula: see text] and magnetic susceptibility were detected in USPIO-injected compared to non-injected 12-month-old non-transgenic littermates. Histological analysis confirmed focal uptake of USPIO particles in perivascular macrophages adjacent to small caliber cerebral vessels with radii of 2-8 µm that showed no cerebral amyloid angiopathy. USPIO-enhanced [Formula: see text] and quantitative susceptibility mapping constitute quantitative tools to monitor such functional microvasculopathies.

  9. Design and test of a double-nuclear RF coil for 1H MRI and 13C MRSI at 7 T

    NASA Astrophysics Data System (ADS)

    Rutledge, Omar; Kwak, Tiffany; Cao, Peng; Zhang, Xiaoliang

    2016-06-01

    RF coil operation at the ultrahigh field of 7 T is fraught with technical challenges that limit the advancement of novel human in vivo applications at 7 T. In this work, a hybrid technique combining a microstrip transmission line and a lumped-element L-C loop coil to form a double-nuclear RF coil for proton magnetic resonance imaging and carbon magnetic resonance spectroscopy at 7 T was proposed and investigated. Network analysis revealed a high Q-factor and excellent decoupling between the coils. Proton images and localized carbon spectra were acquired with high sensitivity. The successful testing of this novel double-nuclear coil demonstrates the feasibility of this hybrid design for double-nuclear MR imaging and spectroscopy studies at the ultrahigh field of 7 T.

  10. Design and test of a double-nuclear RF coil for 1H MRI and 13C MRSI at 7T

    PubMed Central

    Rutledge, Omar; Kwak, Tiffany; Cao, Peng; Zhang, Xiaoliang

    2016-01-01

    RF coil operation at the ultrahigh field of 7T is fraught with technical challenges that limit the advancement of novel human in vivo applications at 7T. In this work, a hybrid technique combining a microstrip transmission line and a lumped-element L-C loop coil to form a double-nuclear RF coil for proton magnetic resonance imaging and carbon magnetic resonance spectroscopy at 7T was proposed and investigated. Network analysis revealed a high Q-factor and excellent decoupling between the coils. Proton images and localized carbon spectra were acquired with high sensitivity. The successful testing of this novel double-nuclear coil demonstrates the feasibility of this hybrid design for double-nuclear MR imaging and spectroscopy studies at the ultrahigh field of 7T. PMID:27078089

  11. Design and test of a double-nuclear RF coil for (1)H MRI and (13)C MRSI at 7T.

    PubMed

    Rutledge, Omar; Kwak, Tiffany; Cao, Peng; Zhang, Xiaoliang

    2016-06-01

    RF coil operation at the ultrahigh field of 7T is fraught with technical challenges that limit the advancement of novel human in vivo applications at 7T. In this work, a hybrid technique combining a microstrip transmission line and a lumped-element L-C loop coil to form a double-nuclear RF coil for proton magnetic resonance imaging and carbon magnetic resonance spectroscopy at 7T was proposed and investigated. Network analysis revealed a high Q-factor and excellent decoupling between the coils. Proton images and localized carbon spectra were acquired with high sensitivity. The successful testing of this novel double-nuclear coil demonstrates the feasibility of this hybrid design for double-nuclear MR imaging and spectroscopy studies at the ultrahigh field of 7T.

  12. Eddy current simulation in thick cylinders of finite length induced by coils of arbitrary geometry

    NASA Astrophysics Data System (ADS)

    Sanchez Lopez, Hector; Poole, Michael; Crozier, Stuart

    2010-12-01

    Eddy currents are inevitably induced when time-varying magnetic field gradients interact with the metallic structures of a magnetic resonance imaging (MRI) scanner. The secondary magnetic field produced by this induced current degrades the spatial and temporal performance of the primary field generated by the gradient coils. Although this undesired effect can be minimized by using actively and/or passively shielded gradient coils and current pre-emphasis techniques, a residual eddy current still remains in the MRI scanner structure. Accurate simulation of these eddy currents is important in the successful design of gradient coils and magnet cryostat vessels. Efficient methods for simulating eddy currents are currently restricted to cylindrical-symmetry. The approach presented in this paper divides thick conducting cylinders into thin layers (thinner than the skin depth) and expresses the current density on each as a Fourier series. The coupling between each mode of the Fourier series with every other is modeled with an inductive network method. In this way, the eddy currents induced in realistic cryostat surfaces by coils of arbitrary geometry can be simulated. The new method was validated by simulating a canonical problem and comparing the results against a commercially available software package. An accurate skin depth of 2.76 mm was calculated in 6 min with the new method. The currents induced by an actively shielded x-gradient coil were simulated assuming a finite length cylindrical cryostat consisting of three different conducting materials. Details of the temporal-spatial induced current diffusion process were simulated through all cryostat layers, which could not be efficiently simulated with any other method. With this data, all quantities that depend on the current density, such as the secondary magnetic field, are simply evaluated.

  13. Comparison of RF body coils for MRI at 3  T: a simulation study using parallel transmission on various anatomical targets.

    PubMed

    Wu, Xiaoping; Zhang, Xiaotong; Tian, Jinfeng; Schmitter, Sebastian; Hanna, Brian; Strupp, John; Pfeuffer, Josef; Hamm, Michael; Wang, Dingxin; Nistler, Juergen; He, Bin; Vaughan, Thomas J; Ugurbil, Kamil; Van de Moortele, Pierre-Francois

    2015-10-01

    The performance of multichannel transmit coil layouts and parallel transmission (pTx) RF pulse design was evaluated with respect to transmit B1 (B1 (+)) homogeneity and specific absorption rate (SAR) at 3 T for a whole body coil. Five specific coils were modeled and compared: a 32-rung birdcage body coil (driven either in a fixed quadrature mode or a two-channel transmit mode), two single-ring stripline arrays (with either 8 or 16 elements), and two multi-ring stripline arrays (with two or three identical rings, stacked in the z axis and each comprising eight azimuthally distributed elements). Three anatomical targets were considered, each defined by a 3D volume representative of a meaningful region of interest (ROI) in routine clinical applications. For a given anatomical target, global or local SAR controlled pTx pulses were designed to homogenize RF excitation within the ROI. At the B1 (+) homogeneity achieved by the quadrature driven birdcage design, pTx pulses with multichannel transmit coils achieved up to about eightfold reduction in local and global SAR. When used for imaging head and cervical spine or imaging thoracic spine, the double-ring array outperformed all coils, including the single-ring arrays. While the advantage of the double-ring array became much less pronounced for pelvic imaging, with a substantially larger ROI, the pTx approach still provided significant gains over the quadrature birdcage coil. For all design scenarios, using the three-ring array did not necessarily improve the RF performance. Our results suggest that pTx pulses with multichannel transmit coils can reduce local and global SAR substantially for body coils while attaining improved B1 (+) homogeneity, particularly for a "z-stacked" double-ring design with coil elements arranged on two transaxial rings. Copyright © 2015 John Wiley & Sons, Ltd.

  14. The Role of Endorectal Coil MRI in the management of patients with prostate cancer and in determining radical prostatectomy surgical margin status: A report of a single surgeon's practice

    PubMed Central

    Zhang, Jianqing; Loughlin, Kevin R.; Zou, Kelly H.; Haker, Steven; Tempany, Clare M.C.

    2009-01-01

    Objective To evaluate the role of combination of endorectal coil and external multicoil array MRI in the management of prostate cancer and predicting the surgical margin status in a single surgical practice. Materials and Methods We reviewed all patients referred by a single surgeon from January 1993 to May 2002 for staging prostate MRI prior to selecting treatment. All MRI examinations were performed using 1.5T (Signa; GE Medical Systems) with a combination of endorectal and pelvic multi-coil array. The tumor size, stage and total gland volume on MR, PSA and Gleason grade were all compared with the pathological stage and diagnosis of positive surgical margin (PSM). Result A total of 232 patients were evaluated, of which 110 underwent radical prostatectomy all performed by one surgeon (Group 1), and 122 did not (Group 2). The results showed MRI stage, PSA and age, all significantly different (P<0.001). In Group 1, the results showed a high specificity (99%) and accuracy (91%) of the MRI staging T3. Post-surgical follow up (median 4.5 years) showed 90% of men had PSA levels below 0.1ng/ml. The positive surgical margin (PSM) rate was 16%. There was no significant difference found on MR imaging between PSM group and non-PSM group. A single tumor length above 1.8cm was the cut point above which there was PSM (P=0.002). Conclusion In conclusion, the combined use of clinical data and endorectal MR imaging can help optimize patient management and selection for surgery, and in a single surgeon's practice lead to successful outcomes. PMID:17572201

  15. Dense, shape‐optimized posterior 32‐channel coil for submillimeter functional imaging of visual cortex at 3T

    PubMed Central

    Grigorov, Filip; van der Kouwe, Andre J.; Wald, Lawrence L.; Keil, Boris

    2015-01-01

    Purpose Functional neuroimaging of small cortical patches such as columns is essential for testing computational models of vision, but imaging from cortical columns at conventional 3T fields is exceedingly difficult. By targeting the visual cortex exclusively, we tested whether combined optimization of shape, coil placement, and electronics would yield the necessary gains in signal‐to‐noise ratio (SNR) for submillimeter visual cortex functional MRI (fMRI). Method We optimized the shape of the housing to a population‐averaged atlas. The shape was comfortable without cushions and resulted in the maximally proximal placement of the coil elements. By using small wire loops with the least number of solder joints, we were able to maximize the Q factor of the individual elements. Finally, by planning the placement of the coils using the brain atlas, we were able to target the arrangement of the coil elements to the extent of the visual cortex. Results The combined optimizations led to as much as two‐fold SNR gain compared with a whole‐head 32‐channel coil. This gain was reflected in temporal SNR as well and enabled fMRI mapping at 0.75 mm resolutions using a conventional GRAPPA‐accelerated gradient echo echo planar imaging. Conclusion Integrated optimization of shape, electronics, and element placement can lead to large gains in SNR and empower submillimeter fMRI at 3T. Magn Reson Med 76:321–328, 2016. © 2015 Wiley Periodicals, Inc. PMID:26218835

  16. [Magnetic resonance imaging of the temporomandibular joint in dogs and cats. Effect of different coils on image quality].

    PubMed

    Gäbler, Katrin; Brühschwein, A; Loderstedt, S; Oechtering, G; Ludewig, E

    2011-01-01

    In magnetic resonance imaging (MRI) the image quality is considerably affected by the coil used, particularly when small structures are examined. The purpose of this study was to determine which coil provides the best scanning results for imaging of the temporomandibular joint (TMJ) of dogs and cats. MRI investigations were performed using a standard human knee coil and an 8-cm-diameter surface coil with a low-field MRI-system (field strength 0.5 T). TMJs of two dogs and two cats were examined. The scan protocol consisted of T1-weighted spin echo (T1W/SE), T2-weighted turbo spin echo (T2W/TSE), a proton density-weighted sequence (PDW) (slice thickness: 3 mm each), and gradient echo sequences (slice thickness: 1-1.5 mm) in the sagittal plane. Three observers independently compared the features "contrast resolution", "bone structure", "spatial resolution", and "signal-to-noise ratio" (SNR) using a 5-point scale. Investigators were blinded with respect to the coils used. Approximately 50% of the images obtained by the use of the surface coil were rated superior in comparison with the knee coil in terms of the features "contrast resolution", "bone structure", and "spatial resolution". In approximately 50% of the MRI-images no differences in the ratings were seen. With respect to the criterion "signal-to-noise ratio" 90% of the images acquired with the surface coil were rated better. In 5% of the images an identical quality was recorded. The surface coil proved to be superior both in dogs and cats. Display quality of small structures of the TMJ is dependent on the spatial resolution of the MR images. Therefore, a dedicated coil and a small field of view (FOV) should be used. Results reveal that low-field MRI is able to display subtle anatomic structures of the TMJ in dogs and cats. In principle, the results can be transmitted to other MRI-systems. However, to generate valid scan protocols it is necessary to adapt scan parameters and coil selection specifically.

  17. A comparative numerical study of rotating and stationary RF coils in terms of flip angle and specific absorption rate for 7 T MRI.

    PubMed

    Trakic, A; Jin, J; Li, M Y; McClymont, D; Weber, E; Liu, F; Crozier, S

    2013-11-01

    While high-field magnetic resonance imaging promises improved image quality and faster scan time, it is affected by non-uniform flip angle distributions and unsafe specific absorption rate levels within the patient, as a result of the complicated radiofrequency (RF) field-tissue interactions. This numerical study explored the possibility of using a single mechanically rotating RF coil for RF shimming and specific absorption rate management applications at 7 T. In particular, this new approach (with three different RF coil element arrangements) was compared against both an 8-channel parallel coil array and a birdcage volume coil, with and without RF current optimisation. The evaluation was conducted using an in-house developed and validated finite-difference time-domain method in conjunction with a tissue-equivalent human head model. It was found that, without current optimisation, the rotating RF coil method produced a more uniform flip angle distribution and a lower maximum global and local specific absorption rate compared to the 8-channel parallel coil array and birdcage resonator. In addition, due to the large number of degrees of freedom in the form of rotated sensitivity profiles, the rotating RF coil approach exhibited good RF shimming and specific absorption rate management performance. This suggests that the proposed method can be useful in the development of techniques that address contemporary RF issues associated with high-field magnetic resonance imaging.

  18. A comparative numerical study of rotating and stationary RF coils in terms of flip angle and specific absorption rate for 7 T MRI

    NASA Astrophysics Data System (ADS)

    Trakic, A.; Jin, J.; Li, M. Y.; McClymont, D.; Weber, E.; Liu, F.; Crozier, S.

    2013-11-01

    While high-field magnetic resonance imaging promises improved image quality and faster scan time, it is affected by non-uniform flip angle distributions and unsafe specific absorption rate levels within the patient, as a result of the complicated radiofrequency (RF) field - tissue interactions. This numerical study explored the possibility of using a single mechanically rotating RF coil for RF shimming and specific absorption rate management applications at 7 T. In particular, this new approach (with three different RF coil element arrangements) was compared against both an 8-channel parallel coil array and a birdcage volume coil, with and without RF current optimisation. The evaluation was conducted using an in-house developed and validated finite-difference time-domain method in conjunction with a tissue-equivalent human head model. It was found that, without current optimisation, the rotating RF coil method produced a more uniform flip angle distribution and a lower maximum global and local specific absorption rate compared to the 8-channel parallel coil array and birdcage resonator. In addition, due to the large number of degrees of freedom in the form of rotated sensitivity profiles, the rotating RF coil approach exhibited good RF shimming and specific absorption rate management performance. This suggests that the proposed method can be useful in the development of techniques that address contemporary RF issues associated with high-field magnetic resonance imaging.

  19. Gradient refractive index of the crystalline lens of the Black Oreo Dory (Allocyttus Niger): comparison of magnetic resonance imaging (MRI) and laser ray-trace methods.

    PubMed

    Garner, L F; Smith, G; Yao, S; Augusteyn, R C

    2001-04-01

    The gradient refractive index of the crystalline lens in the Black Oreo Dory (Allocyttus Niger) was determined using two methods; an optimisation program based on finite ray-tracing and the path of laser beams through the lens, and magnetic resonance imaging (MRI) and the linear relationship between refractive index and nuclear transverse relaxation rates. The methods showed good agreement in the cortical zone of the lens, but the lack of free water in the core of the lens made MRI measurement impossible in this region. The laser-optimisation method gave mean values of 1.368 and 1.543 for the surface and core refractive indices respectively, with a radial distribution for the gradient refractive index given by n(r)=1.543-0.121r2-0.033r4-0.021r6.

  20. Measurement of creatine kinase reaction rate in human brain using magnetization transfer image-selected in vivo spectroscopy (MT-ISIS) and a volume ³¹P/¹H radiofrequency coil in a clinical 3-T MRI system.

    PubMed

    Jeong, Eun-Kee; Sung, Young-Hoon; Kim, Seong-Eun; Zuo, Chun; Shi, Xianfeng; Mellon, Eric A; Renshaw, Perry F

    2011-08-01

    High-energy phosphate metabolism, which allows the synthesis and regeneration of adenosine triphosphate (ATP), is a vital process for neuronal survival and activity. In particular, creatine kinase (CK) serves as an energy reservoir for the rapid buffering of ATP levels. Altered CK enzyme activity, reflecting compromised high-energy phosphate metabolism or mitochondrial dysfunction in the brain, can be assessed using magnetization transfer (MT) MRS. MT (31)P MRS has been used to measure the forward CK reaction rate in animal and human brain, employing a surface radiofrequency coil. However, long acquisition times and excessive radiofrequency irradiation prevent these methods from being used routinely for clinical evaluations. In this article, a new MT (31)P MRS method is presented, which can be practically used to measure the CK forward reaction rate constant in a clinical MRI system employing a volume head (31)P coil for spatial localization, without contamination from the scalp muscle, and an acquisition time of 30 min. Other advantages associated with the method include radiofrequency homogeneity within the regions of interest of the brain using a volume coil with image-selected in vivo spectroscopy localization, and reduction of the specific absorption rate using nonadiabatic radiofrequency pulses for MT saturation. The mean value of k(f) was measured as 0.320 ± 0.075 s(-1) from 10 healthy volunteers with an age range of 18-40 years. These values are consistent with those obtained using earlier methods, and the technique may be used routinely to evaluate energetic processes in the brain on a clinical MRI system. Copyright © 2010 John Wiley & Sons, Ltd.

  1. Development of a superconducting bulk magnet for NMR and MRI

    NASA Astrophysics Data System (ADS)

    Nakamura, Takashi; Tamada, Daiki; Yanagi, Yousuke; Itoh, Yoshitaka; Nemoto, Takahiro; Utumi, Hiroaki; Kose, Katsumi

    2015-10-01

    A superconducting bulk magnet composed of six vertically stacked annular single-domain c-axis-oriented Eu-Ba-Cu-O crystals was energized to 4.74 T using a conventional superconducting magnet for high-resolution NMR spectroscopy. Shim coils, gradient coils, and radio frequency coils for high resolution NMR and MRI were installed in the 23 mm-diameter room-temperature bore of the bulk magnet. A 6.9 ppm peak-to-peak homogeneous region suitable for MRI was achieved in the central cylindrical region (6.2 mm diameter, 9.1 mm length) of the bulk magnet by using a single layer shim coil. A 21 Hz spectral resolution that can be used for high resolution NMR spectroscopy was obtained in the central cylindrical region (1.3 mm diameter, 4 mm length) of the bulk magnet by using a multichannel shim coil. A clear 3D MR image dataset of a chemically fixed mouse fetus with (50 μm)3 voxel resolution was obtained in 5.5 h. We therefore concluded that the cryogen-free superconducting bulk magnet developed in this study is useful for high-resolution desktop NMR, MRI and mobile NMR device.

  2. Comprehensive MRI simulation methodology using a dedicated MRI scanner in radiation oncology for external beam radiation treatment planning

    SciTech Connect

    Paulson, Eric S.; Erickson, Beth; Schultz, Chris; Allen Li, X.

    2015-01-15

    Purpose: The use of magnetic resonance imaging (MRI) in radiation oncology is expanding rapidly, and more clinics are integrating MRI into their radiation therapy workflows. However, radiation therapy presents a new set of challenges and places additional constraints on MRI compared to diagnostic radiology that, if not properly addressed, can undermine the advantages MRI offers for radiation treatment planning (RTP). The authors introduce here strategies to manage several challenges of using MRI for virtual simulation in external beam RTP. Methods: A total of 810 clinical MRI simulation exams were performed using a dedicated MRI scanner for external beam RTP of brain, breast, cervix, head and neck, liver, pancreas, prostate, and sarcoma cancers. Patients were imaged in treatment position using MRI-optimal immobilization devices. Radiofrequency (RF) coil configurations and scan protocols were optimized based on RTP constraints. Off-resonance and gradient nonlinearity-induced geometric distortions were minimized or corrected prior to using images for RTP. A multidisciplinary MRI simulation guide, along with window width and level presets, was created to standardize use of MR images during RTP. A quality assurance program was implemented to maintain accuracy and repeatability of MRI simulation exams. Results: The combination of a large bore scanner, high field strength, and circumferentially wrapped, flexible phased array RF receive coils permitted acquisition of thin slice images with high contrast-to-noise ratio (CNR) and image intensity uniformity, while simultaneously accommodating patient setup and immobilization devices. Postprocessing corrections and alternative acquisition methods were required to reduce or correct off-resonance and gradient nonlinearity induced geometric distortions. Conclusions: The methodology described herein contains practical strategies the authors have implemented through lessons learned performing clinical MRI simulation exams. In

  3. The technological future of 7 T MRI hardware.

    PubMed

    Webb, A G; Van de Moortele, P F

    2016-09-01

    In this article we present our projections of future hardware developments on 7 T human MRI systems. These include compact cryogen-light magnets, improved gradient performance, integrated RF-receive and direct current shimming coil arrays, new RF technology with adaptive impedance matching, patient-specific specific absorption rate estimation and monitoring, and increased integration of physiological monitoring systems. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Optimized Geometry for Superconducting Sensing Coils

    NASA Technical Reports Server (NTRS)

    Eom, Byeong Ho; Pananen, Konstantin; Hahn, Inseob

    2008-01-01

    An optimized geometry has been proposed for superconducting sensing coils that are used in conjunction with superconducting quantum interference devices (SQUIDs) in magnetic resonance imaging (MRI), magnetoencephalography (MEG), and related applications in which magnetic fields of small dipoles are detected. In designing a coil of this type, as in designing other sensing coils, one seeks to maximize the sensitivity of the detector of which the coil is a part, subject to geometric constraints arising from the proximity of other required equipment. In MRI or MEG, the main benefit of maximizing the sensitivity would be to enable minimization of measurement time. In general, to maximize the sensitivity of a detector based on a sensing coil coupled with a SQUID sensor, it is necessary to maximize the magnetic flux enclosed by the sensing coil while minimizing the self-inductance of this coil. Simply making the coil larger may increase its self-inductance and does not necessarily increase sensitivity because it also effectively increases the distance from the sample that contains the source of the signal that one seeks to detect. Additional constraints on the size and shape of the coil and on the distance from the sample arise from the fact that the sample is at room temperature but the coil and the SQUID sensor must be enclosed within a cryogenic shield to maintain superconductivity.

  5. Inductively coupled wireless RF coil arrays.

    PubMed

    Bulumulla, S B; Fiveland, E; Park, K J; Foo, T K; Hardy, C J

    2015-04-01

    As the number of coils increases in multi-channel MRI receiver-coil arrays, RF cables and connectors become increasingly bulky and heavy, degrading patient comfort and slowing workflow. Inductive coupling of signals provides an attractive "wireless" approach, with the potential to reduce coil weight and cost while simplifying patient setup. In this work, multi-channel inductively coupled anterior arrays were developed and characterized for 1.5T imaging. These comprised MR receiver coils inductively (or "wirelessly") linked to secondary or "sniffer" coils whose outputs were transmitted via preamps to the MR system cabinet. The induced currents in the imaging coils were blocked by passive diode circuits during RF transmit. The imaging arrays were totally passive, obviating the need to deliver power to the coils, and providing lightweight, untethered signal reception with easily positioned coils. Single-shot fast spin echo images were acquired from 5 volunteers using a 7-element inductively coupled coil array and a conventionally cabled 7-element coil array of identical geometry, with the inductively-coupled array showing a relative signal-to-noise ratio of 0.86 +/- 0.07. The concept was extended to a larger 9-element coil array to demonstrate the effect of coil element size on signal transfer and RF-transmit blocking.

  6. Analysis of the local worst-case SAR exposure caused by an MRI multi-transmit body coil in anatomical models of the human body.

    PubMed

    Neufeld, Esra; Gosselin, Marie-Christine; Murbach, Manuel; Christ, Andreas; Cabot, Eugenia; Kuster, Niels

    2011-08-07

    Multi-transmit coils are increasingly being employed in high-field magnetic resonance imaging, along with a growing interest in multi-transmit body coils. However, they can lead to an increase in whole-body and local specific absorption rate (SAR) compared to conventional body coils excited in circular polarization for the same total incident input power. In this study, the maximum increase of SAR for three significantly different human anatomies is investigated for a large 3 T (128 MHz) multi-transmit body coil using numerical simulations and a (generalized) eigenvalue-based approach. The results demonstrate that the increase of SAR strongly depends on the anatomy. For the three models and normalization to the sum of the rung currents squared, the whole-body averaged SAR increases by up to a factor of 1.6 compared to conventional excitation and the peak spatial SAR (averaged over any 10 cm(3) of tissue) by up to 13.4. For some locations the local averaged SAR goes up as much as 800 times (130 when looking only at regions where it is above 1% of the peak spatial SAR). The ratio of the peak spatial SAR to the whole-body SAR increases by a factor of up to 47 and can reach values above 800. Due to the potentially much larger power deposition, additional, preferably patient-specific, considerations are necessary to avoid injuries by such systems.

  7. Design, evaluation and application of an eight channel transmit/receive coil array for cardiac MRI at 7.0 T.

    PubMed

    Gräßl, Andreas; Winter, Lukas; Thalhammer, Christof; Renz, Wolfgang; Kellman, Peter; Martin, Conrad; von Knobelsdorff-Brenkenhoff, Florian; Tkachenko, Valeriy; Schulz-Menger, Jeanette; Niendorf, Thoralf

    2013-05-01

    The objective of this work is to design, examine and apply an eight channel transmit/receive coil array tailored for cardiac magnetic resonance imaging at 7.0 T that provides image quality suitable for clinical use, patient comfort, and ease of use. The cardiac coil array was designed to consist of a planar posterior section and a modestly curved anterior section. For radio frequency (RF) safety validation, numerical computations of the electromagnetic field (EMF) and the specific absorption rate (SAR) distribution were conducted. In vivo cardiac imaging was performed using a 2D CINE FLASH technique. For signal-to-noise ratio (SNR) assessment reconstructed images were scaled in SNR units. The parallel imaging capabilities of the coil were examined using GRAPPA and SENSE reconstruction with reduction factors of up to R=4. The assessment of the RF characteristics yielded a maximum noise correlation of 0.33. The baseline SNR advantage at 7.0 T was put to use to acquire 2D CINE images of the heart with a spatial resolution of 1 mm × 1 mm × 4 mm. The coil array supports 1D acceleration factors of up to R=3 without impairing image quality significantly. For un-accelerated 2D CINE FLASH acquisitions the results revealed an SNR of approximately 140 for the left ventricular blood pool. Blood/myocardium contrast was found to be approximately 90 for un-accelerated 2D CINE FLASH acquisitions. The proposed 8 channel cardiac transceiver surface coil has the capability to acquire high contrast, high spatial and temporal resolution in vivo images of the heart at 7.0 T. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Contrast-enhanced dynamic MRI protocol with improved spatial and time resolution for in vivo microimaging of the mouse with a 1.5-T body scanner and a superconducting surface coil.

    PubMed

    Ginefri, Jean-Christophe; Poirier-Quinot, Marie; Robert, Philippe; Darrasse, Luc

    2005-02-01

    Magnetic resonance imaging (MRI) is well suited for small animal model investigations to study various human pathologies. However, the assessment of microscopic information requires a high-spatial resolution (HSR) leading to a critical problem of signal-to-noise ratio limitations in standard whole-body imager. As contrast mechanisms are field dependent, working at high field do not allow to derive MRI criteria that may apply to clinical settings done in standard whole-body systems. In this work, a contrast-enhanced dynamic MRI protocol with improved spatial and time resolution was used to perform in vivo tumor model imaging on the mouse at 1.5 T. The needed sensitivity is provided by the use of a 12-mm superconducting surface coil operating at 77 K. High quality in vivo images were obtained and revealed well-defined internal structures of the tumor. A 3-D HSR sequence with voxels of 59x59x300 microm3 encoded within 6.9 min and a 2-D sequence with subsecond acquisition time and isotropic in-plane resolution of 234 microm were used to analyze the contrast enhancement kinetics in tumoral structures at long and short time scales. This work is a first step to better characterize and differentiate the dynamic behavior of tumoral heterogeneities.

  9. Structural-acoustic modal analysis of cylindrical shells: application to MRI scanner systems.

    PubMed

    Li, Gemin; Mechefske, Chris K

    2009-12-01

    The acoustic noise in a magnetic resonance imaging (MRI) scanner bore is mainly introduced by the vibration of gradient coils. The interaction between acoustic modes in the scanner bore and structure modes in the coil structure leads to structural-acoustic coupling. In order to implement quiet MRI design, the structural-acoustic coupling mechanism in MRI machines needs to be fully investigated. Structural analysis was first implemented using Love's classical shell theory. The concept of a "virtually closed cavity" was used in the acoustic modal analysis of the gradient coil duct. The dispersion curves and the number of modes per frequency band were used to reveal modal distribution properties for both structural modes and acoustic modes. Structural-acoustic coupling modes were identified by superposition of the dispersion diagrams of the structural waves and acoustic waves. Experimental validation was implemented separately for the structural analysis and acoustic analysis. Independent structural modes and acoustic modes and their distribution patterns were calculated up to 3000Hz with various boundary conditions. Coupling modes were clearly revealed using the analysis procedures presented in this paper and were found to be in agreement with the ones identified from experimental measurements. These methods are effective for coupled and uncoupled modal analysis of MRI scanner systems and can be used for quiet MRI design or sound absorber design for existing MRI systems.

  10. Magnetic propulsion of a magnetic device using three square-Helmholtz coils and a square-Maxwell coil.

    PubMed

    Ha, Yong H; Han, Byung H; Lee, Soo Y

    2010-02-01

    We introduce a square coil system for remote magnetic navigation of a magnetic device without any physical movements of the coils. We used three square-Helmholtz coils and a square-Maxwell coil for magnetic propulsion of a small magnet along the desired path. All the square coils are mountable on a cubic frame that has an opening to accommodate a living subject. The square-Helmholtz coils control the magnetic propulsion direction by generating uniform magnetic field along the desired direction while the square-Maxwell coil controls the propulsion force by generating magnetic gradient field. We performed magnetic propulsion experiments with a down-scaled coil set and a three-channel coil driver. Experimental results demonstrate that we can use the square coil set for magnetic navigation of a magnetic device without any physical movements of the coils.

  11. Open-Access, Low-Magnetic-Field MRI System for Lung Research

    NASA Technical Reports Server (NTRS)

    Mair, Ross W.; Rosen, Matthew S.; Tsai, Leo L.; Walsworth, Ronald L.; Hrovat, Mirko I.; Patz, Samuel; Ruset, Iullian C.; Hersman, F. William

    2009-01-01

    An open-access magnetic resonance imaging (MRI) system is being developed for use in research on orientational/gravitational effects on lung physiology and function. The open-access geometry enables study of human subjects in diverse orientations. This system operates at a magnetic flux density, considerably smaller than the flux densities of typical other MRI systems, that can be generated by resistive electromagnet coils (instead of the more-expensive superconducting coils of the other systems). The human subject inhales air containing He-3 or Xe-129 atoms, the nuclear spins of which have been polarized by use of a laser beam to obtain a magnetic resonance that enables high-resolution gas space imaging at the low applied magnetic field. The system includes a bi-planar, constant-current, four-coil electromagnet assembly and associated electronic circuitry to apply a static magnetic field of 6.5 mT throughout the lung volume; planar coils and associated circuitry to apply a pulsed magnetic-field-gradient for each spatial dimension; a single, detachable radio-frequency coil and associated circuitry for inducing and detecting MRI signals; a table for supporting a horizontal subject; and electromagnetic shielding surrounding the electromagnet coils.

  12. MRI pulse sequence design with first-order gradient moment nulling in arbitrary directions by solving a polynomial program.

    PubMed

    Majewski, Kurt; Heid, Oliver; Kluge, Thomas

    2010-06-01

    We suggest a polynomial program for the calculation of optimized gradient waveforms for magnetic resonance tomography pulse sequences. Such non-linear mathematical programs can describe gradient system capabilities, meet k-space trajectory specifications, and capture sequence timing conditions. Moreover they allow the incorporation of gradient moment nulling constraints in one or several arbitrary spatial directions, which can reduce flow motion artifacts in the images. We report first experiences in solving such automatic pulse sequence design programs with the interior point solver Ipopt.

  13. Pulse Coil Tester

    NASA Technical Reports Server (NTRS)

    Simon, Richard A.

    1988-01-01

    Set of relays tested easily and repeatedly. Pulse coil tester causes coil under test to generate transient voltage; waveform indicates condition of coil. Tester accommodates assembly of up to four coils at a time.

  14. The Safety of Using Body-Transmit MRI in Patients with Implanted Deep Brain Stimulation Devices

    PubMed Central

    Kahan, Joshua; Papadaki, Anastasia; White, Mark; Mancini, Laura; Yousry, Tarek; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Thornton, John

    2015-01-01

    Background Deep brain stimulation (DBS) is an established treatment for patients with movement disorders. Patients receiving chronic DBS provide a unique opportunity to explore the underlying mechanisms of DBS using functional MRI. It has been shown that the main safety concern with MRI in these patients is heating at the electrode tips – which can be minimised with strict adherence to a supervised acquisition protocol using a head-transmit/receive coil at 1.5T. MRI using the body-transmit coil with a multi-channel receive head coil has a number of potential advantages including an improved signal-to-noise ratio. Study outline We compared the safety of cranial MRI in an in vitro model of bilateral DBS using both head-transmit and body-transmit coils. We performed fibre-optic thermometry at a Medtronic ActivaPC device and Medtronic 3389 electrodes during turbo-spin echo (TSE) MRI using both coil arrangements at 1.5T and 3T, in addition to gradient-echo echo-planar fMRI exposure at 1.5T. Finally, we investigated the effect of transmit-coil choice on DBS stimulus delivery during MRI. Results Temperature increases were consistently largest at the electrode tips. Changing from head- to body-transmit coil significantly increased the electrode temperature elevation during TSE scans with scanner-reported head SAR 0.2W/kg from 0.45°C to 0.79°C (p<0.001) at 1.5T, and from 1.25°C to 1.44°C (p<0.001) at 3T. The position of the phantom relative to the body coil significantly impacted on electrode heating at 1.5T; however, the greatest heating observed in any position tested remained <1°C at this field strength. Conclusions We conclude that (1) with our specific hardware and SAR-limited protocol, body-transmit cranial MRI at 1.5T does not produce heating exceeding international guidelines, even in cases of poorly positioned patients, (2) cranial MRI at 3T can readily produce heating exceeding international guidelines, (3) patients with ActivaPC Medtronic systems are safe

  15. The Safety of Using Body-Transmit MRI in Patients with Implanted Deep Brain Stimulation Devices.

    PubMed

    Kahan, Joshua; Papadaki, Anastasia; White, Mark; Mancini, Laura; Yousry, Tarek; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Thornton, John

    2015-01-01

    Deep brain stimulation (DBS) is an established treatment for patients with movement disorders. Patients receiving chronic DBS provide a unique opportunity to explore the underlying mechanisms of DBS using functional MRI. It has been shown that the main safety concern with MRI in these patients is heating at the electrode tips - which can be minimised with strict adherence to a supervised acquisition protocol using a head-transmit/receive coil at 1.5T. MRI using the body-transmit coil with a multi-channel receive head coil has a number of potential advantages including an improved signal-to-noise ratio. We compared the safety of cranial MRI in an in vitro model of bilateral DBS using both head-transmit and body-transmit coils. We performed fibre-optic thermometry at a Medtronic ActivaPC device and Medtronic 3389 electrodes during turbo-spin echo (TSE) MRI using both coil arrangements at 1.5T and 3T, in addition to gradient-echo echo-planar fMRI exposure at 1.5T. Finally, we investigated the effect of transmit-coil choice on DBS stimulus delivery during MRI. Temperature increases were consistently largest at the electrode tips. Changing from head- to body-transmit coil significantly increased the electrode temperature elevation during TSE scans with scanner-reported head SAR 0.2W/kg from 0.45°C to 0.79°C (p<0.001) at 1.5T, and from 1.25°C to 1.44°C (p<0.001) at 3T. The position of the phantom relative to the body coil significantly impacted on electrode heating at 1.5T; however, the greatest heating observed in any position tested remained <1°C at this field strength. We conclude that (1) with our specific hardware and SAR-limited protocol, body-transmit cranial MRI at 1.5T does not produce heating exceeding international guidelines, even in cases of poorly positioned patients, (2) cranial MRI at 3T can readily produce heating exceeding international guidelines, (3) patients with ActivaPC Medtronic systems are safe to be recruited to future fMRI experiments

  16. Understanding Intentions of Others Reflects Evoked Responses in the Human Mirror Neuron System: Evidence From Combined fMRI and EEG Repetition Suppression

    DTIC Science & Technology

    2008-12-01

    acquisition Functional MRI recordings were conducted using a 3T TIM Trio Siemens Magnetom with a 12 channel phased- array head coil . Foam padding...attend to video-clips displaying hand-on- object actions, and to try to decode “why” actions were being performed. Functional MRI results confirmed...was used for head stabilization. For each functional run, an echo planar gradient-echo imaging sequence sensitive to BOLD contrast was used to

  17. Magnetic Resonance Imaging (MRI): Dynamic Pelvic Floor

    MedlinePlus

    ... The magnetic field is produced by passing an electric current through wire coils in most MRI units. Other ... signals that are detected by the coils. The electric current does not come in contact with the patient. ...

  18. Multi-flux-transformer MRI detection with an atomic magnetometer

    PubMed Central

    Savukov, Igor; Karaulanov, Todor

    2014-01-01

    Recently, anatomical ultra-low field (ULF) MRI has been demonstrated with an atomic magnetometer (AM). A flux-transformer (FT) has been used for decoupling MRI fields and gradients to avoid their negative effects on AM performance. The field of view (FOV) was limited because of the need to compromise between the size of the FT input coil and MRI sensitivity per voxel. Multi-channel acquisition is a well-known solution to increase FOV without significantly reducing sensitivity. In this paper, we demonstrate two-fold FOV increase with the use of three FT input coils. We also show that it is possible to use a single atomic magnetometer and single acquisition channel to acquire three independent MRI signals by applying a frequency-encoding gradient along the direction of the detection array span. The approach can be generalized to more channels and can be critical for imaging applications of non-cryogenic ULF MRI where FOV needs to be large, including head, hand, spine, and whole-body imaging. PMID:25462946

  19. Multi-flux-transformer MRI detection with an atomic magnetometer.

    PubMed

    Savukov, Igor; Karaulanov, Todor

    2014-12-01

    Recently, anatomical ultra-low field (ULF) MRI has been demonstrated with an atomic magnetometer (AM). A flux-transformer (FT) has been used for decoupling MRI fields and gradients to avoid their negative effects on AM performance. The field of view (FOV) was limited because of the need to compromise between the size of the FT input coil and MRI sensitivity per voxel. Multi-channel acquisition is a well-known solution to increase FOV without significantly reducing sensitivity. In this paper, we demonstrate twofold FOV increase with the use of three FT input coils. We also show that it is possible to use a single atomic magnetometer and single acquisition channel to acquire three independent MRI signals by applying a frequency-encoding gradient along the direction of the detection array span. The approach can be generalized to more channels and can be critical for imaging applications of non-cryogenic ULF MRI where FOV needs to be large, including head, hand, spine, and whole-body imaging. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Multi-flux-transformer MRI detection with an atomic magnetometer

    NASA Astrophysics Data System (ADS)

    Savukov, Igor; Karaulanov, Todor

    2014-12-01

    Recently, anatomical ultra-low field (ULF) MRI has been demonstrated with an atomic magnetometer (AM). A flux-transformer (FT) has been used for decoupling MRI fields and gradients to avoid their negative effects on AM performance. The field of view (FOV) was limited because of the need to compromise between the size of the FT input coil and MRI sensitivity per voxel. Multi-channel acquisition is a well-known solution to increase FOV without significantly reducing sensitivity. In this paper, we demonstrate twofold FOV increase with the use of three FT input coils. We also show that it is possible to use a single atomic magnetometer and single acquisition channel to acquire three independent MRI signals by applying a frequency-encoding gradient along the direction of the detection array span. The approach can be generalized to more channels and can be critical for imaging applications of non-cryogenic ULF MRI where FOV needs to be large, including head, hand, spine, and whole-body imaging.

  1. A comparison of a T1 weighted 3D gradient-echo sequence with three different parallel imaging reduction factors, breath hold and free breathing, using a 32 channel coil at 1.5 T. A preliminary study.

    PubMed

    Herédia, V; Dale, B; Op de Campos, R; Ramalho, M; Burke, L B; Sams, C; de Toni, M; Semelka, R C

    2014-01-01

    To investigate whether increasing temporal resolution with higher parallel imaging (PI) reduction factors (RF) in both breath-hold and free breathing approaches, using a non-contrast T1-weighted 3D gradient echo (GRE) sequence and a 32-channel phased array coil, permits diagnostic image quality, with potential application in patients unable to cooperate with breath-hold requirements. The 9 healthy subjects (5 females and 4 males; age range was 20-49, mean 36 yrs) were recruited. A 3D GRE MR imaging of the abdomen was performed on 1.5 T MR system using a 32-element phased-array torso coil with PI RFs of 2, 4 and 6, breath hold and free breathing. Two reviewers retrospectively qualitatively evaluated all sequences for image quality, extent of artifacts, including motion, truncation, aliasing, pixel graininess and signal heterogeneity. The results were compared using Wilcoxon signed rank and a Bonferroni adjustment was applied for multiple comparisons. Image quality and extent of artifacts were better with breath hold than with free breathing acquisitions. The rate of artifacts increased with higher RF. The best quality was acquired with breath hold sequence using RF=2. RF=4 had lower but diagnostic rates (P=.004). The severity of artifacts, mainly pixel graininess (P=.004), rendered sequences with RF=6 non-diagnostic. All sequences were non-diagnostic in free breathing acquisitions. Breath hold sequences with RF=2 had excellent quality and RF=4 had good quality and may be potentially used in partially cooperative patients. None of the sequences was considered diagnostic in free breathing acquisitions. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.

  2. Magnetic Coiling

    NASA Image and Video Library

    2016-07-18

    One broad active region sported a wonderful example of coiled magnetic field lines over almost a four-day period (July 15-18, 2016). The magnetic lines are easily visible in this 171 Angstrom wavelength of extreme ultraviolet light be cause charged particles are spiraling along the lines. The active region is a hotbed of struggling magnetic forces that were pushing out above the sun's surface. http://photojournal.jpl.nasa.gov/catalog/PIA17911

  3. Dynamic contrast-enhanced susceptibility-weighted perfusion MRI (DSC-MRI) in a glioma model of the rat brain using a conventional receive-only surface coil with a inner diameter of 47 mm at a clinical 1.5 T scanner.

    PubMed

    Ulmer, Stephan; Reeh, Matthias; Krause, Joerg; Herdegen, Thomas; Heldt-Feindt, Janka; Jansen, Olav; Rohr, Axel

    2008-07-30

    Magnetic resonance (MR) imaging in animal models is usually performed in expensive dedicated small bore animal scanners of limited availability. In the present study a standard clinical 1.5 T MR scanner was used for morphometric and dynamic contrast-enhanced susceptibility-weighted MR imaging (DSC-MRI) of a glioma model of the rat brain. Ten male Wistar rats were examined with coronal T2-weighted, and T1-weighted images (matrix 128 x 128, FOV 64 mm) after implantation of an intracerebral tumor xenografts (C6) using a conventional surface coil. For DSC-MRI a T2*-weighted sequence (TR/TE=30/14 ms, matrix 64 x 64, FOV 90 mm; slice thickness of 1.5mm) was performed. Regions of interest were defined within the tumor and the non-affected contralateral hemisphere and the mean transit time (MTT) was determined. Tumor dimensions in MR predicted well its real size as proven by histology. The MTT of contrast agent passing through the brain was significantly decelerated in the tumor compared to the unaffected hemisphere (p<0.001, paired t-test), which is most likely due to the leakage of contrast agent through the disrupted blood brain barrier. This setup offers advanced MR imaging of small animals without the need for dedicated animal scanners or dedicated custom-made coils.

  4. An eight-channel T/R head coil for parallel transmit MRI at 3T using ultra-low output impedance amplifiers.

    PubMed

    Moody, Katherine Lynn; Hollingsworth, Neal A; Zhao, Feng; Nielsen, Jon-Fredrik; Noll, Douglas C; Wright, Steven M; McDougall, Mary Preston

    2014-09-01

    Parallel transmit is an emerging technology to address the technical challenges associated with MR imaging at high field strengths. When developing arrays for parallel transmit systems, one of the primary factors to be considered is the mechanism to manage coupling and create independently operating channels. Recent work has demonstrated the use of amplifiers to provide some or all of the channel-to-channel isolation, reducing the need for on-coil decoupling networks in a manner analogous to the use of isolation preamplifiers with receive coils. This paper discusses an eight-channel transmit/receive head array for use with an ultra-low output impedance (ULOI) parallel transmit system. The ULOI amplifiers eliminated the need for a complex lumped element network to decouple the eight-rung array. The design and construction details of the array are discussed in addition to the measurement considerations required for appropriately characterizing an array when using ULOI amplifiers. B1 maps and coupling matrices are used to verify the performance of the system.

  5. An eight-channel T/R head coil for parallel transmit MRI at 3T using ultra-low output impedance amplifiers

    PubMed Central

    Moody, Katherine Lynn; Hollingsworth, Neal A.; Zhao, Feng; Nielsen, Jon-Fredrik; Noll, Douglas C.; Wright, Steven M.; McDougall, Mary Preston

    2014-01-01

    Parallel transmit is an emerging technology to address the technical challenges associated with MR imaging at high field strengths. When developing arrays for parallel transmit systems, one of the primary factors to be considered is the mechanism to manage coupling and create independently operating channels. Recent work has demonstrated the use of amplifiers to provide some or all of the channel-to-channel isolation, reducing the need for on-coil decoupling networks in a manner analogous to the use of isolation preamplifiers with receive coils. This paper discusses an eight-channel transmit/receive head array for use with an ultra-low output impedance (ULOI) parallel transmit system. The ULOI amplifiers eliminated the need for a complex lumped element network to decouple the eight rung array. The design and construction details of the array are discussed in addition to the measurement considerations required for appropriately characterizing an array when using ULOI amplifiers. B1 maps and coupling matrices are used to verify the performance of the system. PMID:25072190

  6. An eight-channel T/R head coil for parallel transmit MRI at 3T using ultra-low output impedance amplifiers

    NASA Astrophysics Data System (ADS)

    Moody, Katherine Lynn; Hollingsworth, Neal A.; Zhao, Feng; Nielsen, Jon-Fredrik; Noll, Douglas C.; Wright, Steven M.; McDougall, Mary Preston

    2014-09-01

    Parallel transmit is an emerging technology to address the technical challenges associated with MR imaging at high field strengths. When developing arrays for parallel transmit systems, one of the primary factors to be considered is the mechanism to manage coupling and create independently operating channels. Recent work has demonstrated the use of amplifiers to provide some or all of the channel-to-channel isolation, reducing the need for on-coil decoupling networks in a manner analogous to the use of isolation preamplifiers with receive coils. This paper discusses an eight-channel transmit/receive head array for use with an ultra-low output impedance (ULOI) parallel transmit system. The ULOI amplifiers eliminated the need for a complex lumped element network to decouple the eight-rung array. The design and construction details of the array are discussed in addition to the measurement considerations required for appropriately characterizing an array when using ULOI amplifiers. B1 maps and coupling matrices are used to verify the performance of the system.

  7. Prospective motion correction using tracking coils.

    PubMed

    Qin, Lei; Schmidt, Ehud J; Tse, Zion Tsz Ho; Santos, Juan; Hoge, William S; Tempany-Afdhal, Clare; Butts-Pauly, Kim; Dumoulin, Charles L

    2013-03-01

    Intracavity imaging coils provide higher signal-to-noise than surface coils and have the potential to provide higher spatial resolution in shorter acquisition times. However, images from these coils suffer from physiologically induced motion artifacts, as both the anatomy and the coils move during image acquisition. We developed prospective motion-correction techniques for intracavity imaging using an array of tracking coils. The system had <50 ms latency between tracking and imaging, so that the images from the intracavity coil were acquired in a frame of reference defined by the tracking array rather than by the system's gradient coils. Two-dimensional gradient-recalled and three-dimensional electrocardiogram-gated inversion-recovery-fast-gradient-echo sequences were tested with prospective motion correction using ex vivo hearts placed on a moving platform simulating both respiratory and cardiac motion. Human abdominal tests were subsequently conducted. The tracking array provided a positional accuracy of 0.7 ± 0.5 mm, 0.6 ± 0.4 mm, and 0.1 ± 0.1 mm along the X, Y, and Z directions at a rate of 20 frames-per-second. The ex vivo and human experiments showed significant image quality improvements for both in-plane and through-plane motion correction, which although not performed in intracavity imaging, demonstrates the feasibility of implementing such a motion-correction system in a future design of combined tracking and intracavity coil. Copyright © 2012 Wiley Periodicals, Inc.

  8. Toward MRI microimaging of single biological cells

    NASA Astrophysics Data System (ADS)

    Seeber, Derek Allan

    There is a great advantage in signal to noise ratio (SNR) that can be obtained in nuclear magnetic resonance (NMR) on very small samples (having spatial dimensions ˜100 mum or less) if one employs NMR "microcoils" that are of similarly small dimensions. These gains in SNR could enable magnetic resonance imaging (MRI) microscopy with spatial resolutions of ˜1--2 mum, much better than currently available. We report the design and testing of a NMR microcoil receiver apparatus, employing solenoidal microcoils of dimensions of tens to hundreds of microns, using an applied field of 9 Tesla (proton frequency 383 MHz). For the smallest receiver coils we attain sensitivity sufficient to observe proton NMR with SNR one in a single scan applied to ˜10 mum3 (10 fl) water sample, containing 7 x 1011 total proton spins. In addition to the NMR applications, microcoils have been applied to MRI producing images with spatial resolutions as low as 2 mum x 3.5 mum x 14.8 mum on phantom images of rods and beads. This resolution can be further improved. MRI imaging of small sample volumes requires significant hardware modifications and improvements, all of which are discussed. Specifically, MRI microscopy requires very strong (>10 T/m), rapidly switchable triaxial magnetic field gradients. We report the design and construction of such a triaxial gradient system, producing gradient substantially greater than 15 T/m in all three directions, x, y, and z (as high as 50 T/m for the x direction). The gradients are power by a custom designed power supply capable of providing currents in excess of 200 amps and switching times of less than 5 mus corresponding to slew rates of greater that 107 T/m/s. The gradients are adequately uniform (within 5% over a volume of 600 mum3) and sufficient for microcoil MRI of small samples.

  9. MRI from 400 gauss to 1.5 tesla and beyond

    NASA Astrophysics Data System (ADS)

    Edelstein, William

    2006-03-01

    Magnetic Resonance Imaging (MRI) is arguably the most novel and important medical imaging modality since the advent of the X-ray. MRI grew out of the long development of atomic spectroscopy, atomic and molecular beam resonance and, finally, nuclear magnetic resonance (NMR) in condensed matter. The operation and economics of MRI systems depend on the performance of magnets, pulsed magnetic field gradient windings and rf (radiofrequency) coils. Physics and physicists have made critical contributions to these technologies. Superconducting magnets have come to be the magnet of choice. Magnetic gradient windings present theoretical electromagnetic and practical challenges. The need for rf antennas that resonate at high frequencies while surrounding sizable spatial regions inspired large coils producing uniform rf magnetic fields while minimizing electric field interactions with the imaging subject. This development enabled MRI at high magnetic fields. Additionally it is possible to use arrays of small rf coils to obtain MRI images with the high signal-to-noise ratio of a small surface coil and the field of view of a large coil. We recently investigated the intense acoustic noise (110 dB or more) produced in MRI scanners. Surprisingly, eddy currents induced in the magnet cryostat inner bore make a major contribution to this noise. Calculations indicate that a thin layer of Cu on the outside of the gradient assembly could substantially decrease eddy currents and help reduce noise. GE R&D work was focused on the science underlying MRI, MRI technology and the MRI product. Corporate management sometimes discourages technical publication related to evolving products because it might help rivals. Our practice of extensive publication and participation in open scientific exchange---after filing appropriate patent applications---served as quality control for company science and technology. GE conference presentations and journal publications helped establish technical leadership

  10. Design and evaluation of a detunable water-based quadrature HEM11 mode dielectric resonator as a new type of volume coil for high field MRI.

    PubMed

    Aussenhofer, Sebastian A; Webb, Andrew G

    2012-10-01

    An annular dielectric resonator made from distilled water has been designed to operate in degenerate quadrature HEM11 modes at 298.1 MHz (7 Tesla). The circularly polarized B1+ field has a high degree of homogeneity throughout a sample placed within the annulus. The sensitivity of the resonator was measured to be essentially identical to that of an eight-rung high-pass birdcage resonator with the same physical dimensions. High resolution in vivo images have been obtained from the human wrist. A new method of electronically detuning the resonator has also been evaluated. The design is extremely simple and rapid to build, with direct applicability to very high field imaging and also potential integration into human and animal hybrid position emission tomography (PET)/MRI and single-photon emission computed tomography (SPECT)/MRI systems due to the lack of conductor attenuation-induced artifacts in the reconstructed nuclear medicine images.

  11. Practical Aspects of Birdcage Coils

    NASA Astrophysics Data System (ADS)

    Doty, F. David; Entzminger, George; Hauck, Cory D.; Staab, John P.

    1999-05-01

    Numerical modeling and experimental results are presented for a variety of birdcages for high-field MRI microscopy. The data include the first published numerical calculations and experimental measurements of magnetic filling factors of birdcages or other MRI coils. Fast, 3D calculations for shielded coils are demonstrated using the Biot-Savart law along with energy minimization. It is shown that the near-field, higher-order inhomogeneity effects remaining after a first-order, asymmetry correction may easily exceed 20% in situations where it is desirable to maximize filling factor. It is also found that an order-of-magnitude improvement in the accuracy of predicted capacitor values may be achieved by using a more detailed circuit model of the birdcage resonator.

  12. Practical aspects of birdcage coils.

    PubMed

    Doty, F D; Entzminger, G; Hauck, C D; Staab, J P

    1999-05-01

    Numerical modeling and experimental results are presented for a variety of birdcages for high-field MRI microscopy. The data include the first published numerical calculations and experimental measurements of magnetic filling factors of birdcages or other MRI coils. Fast, 3D calculations for shielded coils are demonstrated using the Biot-Savart law along with energy minimization. It is shown that the near-field, higher-order inhomogeneity effects remaining after a first-order, asymmetry correction may easily exceed 20% in situations where it is desirable to maximize filling factor. It is also found that an order-of-magnitude improvement in the accuracy of predicted capacitor values may be achieved by using a more detailed circuit model of the birdcage resonator.

  13. RF Magnetic Field Uniformity of Rectangular Planar Coils for Resonance Imaging

    DTIC Science & Technology

    2016-02-04

    which can also be applied to Magnetic Resonance Imaging ( MRI ). Index Terms—NQR, NMR, rectangle coil, planar coil, overlap, tuning, decoupling, RF...related to nuclear magnetic resonance (NMR) and its offspring, magnetic resonance imaging ( MRI ). One significant advantage of NQR is the absence...pulsed RF excitation [1]. These observed signals are usually detected using a surface coil. Surface coil arrays are used in unilateral NMR scans

  14. Coiled-Coil Design: Updated and Upgraded.

    PubMed

    Woolfson, Derek N

    2017-01-01

    α-Helical coiled coils are ubiquitous protein-folding and protein-interaction domains in which two or more α-helical chains come together to form bundles. Through a combination of bioinformatics analysis of many thousands of natural coiled-coil sequences and structures, plus empirical protein engineering and design studies, there is now a deep understanding of the sequence-to-structure relationships for this class of protein architecture. This has led to considerable success in rational design and what might be termed in biro de novo design of simple coiled coils, which include homo- and hetero-meric parallel dimers, trimers and tetramers. In turn, these provide a toolkit for directing the assembly of both natural proteins and more complex designs in protein engineering, materials science and synthetic biology. Moving on, the increased and improved use of computational design is allowing access to coiled-coil structures that are rare or even not observed in nature, for example α-helical barrels, which comprise five or more α-helices and have central channels into which different functions may be ported. This chapter reviews all of these advances, outlining improvements in our knowledge of the fundamentals of coiled-coil folding and assembly, and highlighting new coiled coil-based materials and applications that this new understanding is opening up. Despite considerable progress, however, challenges remain in coiled-coil design, and the next decade promises to be as productive and exciting as the last.

  15. Surface Coil Intensity Correction in Magnetic Resonance Imaging in Spinal Metastases.

    PubMed

    Ren, Hong; Lin, Wei; Ding, Xianjun

    2017-01-01

    To evaluate the clinical application of phased-array surface coil intensity correction in magnetic resonance imaging (MRI) in spinal metastases. 3 phantoms and 50 patients with a corresponding total number of 80 spinal metastases were included in this study. Fast spin echo T1- and T2- weighted MRI with and without surface coil intensity correction was routinely performed for all phantoms and patients. Phantoms were evaluated by means of variance to mean ratio of signal intensity on both T1- and T2- weighted MRI obtained with and without surface coil intensity correction. Spinal metastases were evaluated by image quality scores; reading time per case on both T1- and T2- weighted MRI obtained with and without surface coil intensity correction. Spinal metastases were diagnosed more successfully on MRI with surface coil intensity correction than on MRI with conventional surface coil technique. The variance to mean ratio of signal intensity was 53.36% for original T1-weighted MRI and 53.58% for original T2-weighted MRI. The variance to mean ratio of signal intensity was reduced to 18.99% for T1-weighted MRI with surface coil intensity correction and 22.77% for T2-weighted MRI with surface coil intensity correction. The overall image quality scores (interface conspicuity of lesion and details of lesion) were significantly higher than those of the original MRI. The reading time per case was shorter for MRI with surface coil intensity correction than for MRI without surface coil intensity correction. Phased-array surface coil intensity correction in MRIs of spinal metastases provides improvements in image quality that leads to more successfully detection and assessment of spinal metastases than original MRI.

  16. Parcellation of Human and Monkey Core Auditory Cortex with fMRI Pattern Classification and Objective Detection of Tonotopic Gradient Reversals.

    PubMed

    Schönwiesner, Marc; Dechent, Peter; Voit, Dirk; Petkov, Christopher I; Krumbholz, Katrin

    2015-10-01

    Auditory cortex (AC) contains several primary-like, or "core," fields, which receive thalamic input and project to non-primary "belt" fields. In humans, the organization and layout of core and belt auditory fields are still poorly understood, and most auditory neuroimaging studies rely on macroanatomical criteria, rather than functional localization of distinct fields. A myeloarchitectonic method has been suggested recently for distinguishing between core and belt fields in humans (Dick F, Tierney AT, Lutti A, Josephs O, Sereno MI, Weiskopf N. 2012. In vivo functional and myeloarchitectonic mapping of human primary auditory areas. J Neurosci. 32:16095-16105). We propose a marker for core AC based directly on functional magnetic resonance imaging (fMRI) data and pattern classification. We show that a portion of AC in Heschl's gyrus classifies sound frequency more accurately than other regions in AC. Using fMRI data from macaques, we validate that the region where frequency classification performance is significantly above chance overlaps core auditory fields, predominantly A1. Within this region, we measure tonotopic gradients and estimate the locations of the human homologues of the core auditory subfields A1 and R. Our results provide a functional rather than anatomical localizer for core AC. We posit that inter-individual variability in the layout of core AC might explain disagreements between results from previous neuroimaging and cytological studies.

  17. Long-term follow-up results of linear accelerator-based radiosurgery for vestibular schwannoma using serial three-dimensional spoiled gradient-echo MRI.

    PubMed

    Matsuo, Takayuki; Okunaga, Tomohiro; Kamada, Kensaku; Izumo, Tsuyoshi; Hayashi, Nobuyuki; Nagata, Izumi

    2015-02-01

    We examined the characteristic changes in vestibular schwannoma (VS) volume after treatment with linear accelerator-based radiosurgery (LBRS) and the long-term therapeutic effects, by performing three-dimensional (3D) MRI evaluations of tumor volumes. We included 44 patients in whom tumor volume changes could be observed using 3D-spoiled gradient-echo MRI for at least 5 years. Examinations were performed every 3-4 months for the first 2 years after treatment and every 6-12 months thereafter. Enlargement or shrinkage was determined as a change of at least 20% from the volume at the time of treatment. The median observation period was 13.8 years (range, 5.5-19.5 years). The tumor control rates at 5 and 10 years after treatment and at the final MRI were 90.9%, 90.0%, and 88.6%, respectively. Tumor volume changes were categorized into the following four patterns: enlargement, five patients (11.4%); stable, three patients (6.8%); transient enlargement, 24 patients (54.5%); and direct shrinkage, 12 patients (27.3%). Bimodal peaks were observed in three of the 24 patients with transient enlargement. Tumor volume changes from 5 and 10 years post-LBRS to the final observation point were observed in 27 (64.2%) and 10 patients (33.3%), respectively. The long-term tumor volume changes observed after LBRS suggest that radiation exerts long-term effects on tumors. Furthermore, while transient enlargements in tumor volume were characteristic, true tumor enlargements should be characterized by increased volumes of more than two-fold and continued growth for at least 2 years. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Assessment of a combined spin- and gradient-echo (SAGE) DSC-MRI method for preclinical neuroimaging.

    PubMed

    Stokes, Ashley M; Skinner, Jack T; Quarles, C Chad

    2014-12-01

    The goal of this study was to optimize and validate a combined spin- and gradient-echo (SAGE) sequence for dynamic susceptibility-contrast magnetic resonance imaging to obtain hemodynamic parameters in a preclinical setting. The SAGE EPI sequence was applied in phantoms and in vivo rat brain (normal, tumor, and stroke tissue). Partial and full Fourier encoding schemes were implemented and characterized. Maps of cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), vessel size index (VSI), volume transfer constant (K(trans)), and volume fraction of the extravascular extracellular space (ve) were obtained. Partial Fourier encoding provided shortened echo times with acceptable signal-to-noise ratio and temporal stability, thus enabling reliable characterization of T2, T2(*) and T1 in both phantoms and rat brain. The hemodynamic parameters CBV, CBF, and MTT for gradient-echo and spin-echo contrast were determined in tumor and stroke; VSI, K(trans), and ve were also computed in tumor tissue. The SAGE EPI sequence allows the acquisition of multiple gradient- and spin-echoes, from which measures of perfusion, permeability, and vessel size can be obtained in a preclinical setting. Partial Fourier encoding can be used to minimize SAGE echo times and reliably quantify dynamic T2 and T2(*) changes. This acquisition provides a more comprehensive assessment of hemodynamic status in brain tissue with vascular and perfusion abnormalities.

  19. Dual Optimization Method of RF and Quasi-Static Field Simulations for Reduction of Eddy Currents Generated on 7T RF Coil Shielding

    PubMed Central

    Zhao, Yujuan; Zhao, Tiejun; Raval, Shailesh B.; Krishnamurthy, Narayanan; Zheng, Hai; Harris, Chad T.; Handler, William B.; Chronik, Blaine A.; Ibrahim, Tamer S.

    2015-01-01

    Purpose To optimize the design of radiofrequency (RF) shielding of transmit coils at 7T and reduce eddy currents generated on the RF shielding when imaging with rapid gradient waveforms. Methods One set of a four-element, 2×2 Tic-Tac-Toe (TTT) head coil structure is selected and constructed to study eddy currents on the RF coil shielding. The generated eddy currents are quantitatively studied in the time and frequency domains. The RF characteristics are studied using the finite-difference time-domain (FDTD) method. Five different kinds of RF shielding were tested on a 7T MRI scanner with phantoms and in-vivo human subjects. Results The eddy current simulation method is verified by the measurement results. Eddy currents induced by solid/intact and simple-structured slotted RF shielding can significantly distort the gradient fields. EPI images, B1+ maps and S matrix measurements verified that the proposed slot pattern can suppress the eddy currents while maintaining the RF characteristics of the transmit coil. Conclusion The presented dual-optimization method could be used to design the RF shielding and reduce the gradient field-induced eddy currents while maintaining the RF characteristics of the transmit coil. PMID:25367703

  20. Dense, shape-optimized posterior 32-channel coil for submillimeter functional imaging of visual cortex at 3T.

    PubMed

    Farivar, Reza; Grigorov, Filip; van der Kouwe, Andre J; Wald, Lawrence L; Keil, Boris

    2016-07-01

    Functional neuroimaging of small cortical patches such as columns is essential for testing computational models of vision, but imaging from cortical columns at conventional 3T fields is exceedingly difficult. By targeting the visual cortex exclusively, we tested whether combined optimization of shape, coil placement, and electronics would yield the necessary gains in signal-to-noise ratio (SNR) for submillimeter visual cortex functional MRI (fMRI). We optimized the shape of the housing to a population-averaged atlas. The shape was comfortable without cushions and resulted in the maximally proximal placement of the coil elements. By using small wire loops with the least number of solder joints, we were able to maximize the Q factor of the individual elements. Finally, by planning the placement of the coils using the brain atlas, we were able to target the arrangement of the coil elements to the extent of the visual cortex. The combined optimizations led to as much as two-fold SNR gain compared with a whole-head 32-channel coil. This gain was reflected in temporal SNR as well and enabled fMRI mapping at 0.75 mm resolutions using a conventional GRAPPA-accelerated gradient echo echo planar imaging. Integrated optimization of shape, electronics, and element placement can lead to large gains in SNR and empower submillimeter fMRI at 3T. Magn Reson Med 76:321-328, 2016. © 2015 Wiley Periodicals, Inc. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  1. MRI of the abnormal cervical spinal cord using 2D spoiled gradient echo multiecho sequence (MEDIC) with magnetization transfer saturation pulse. A T2* weighted feasibility study.

    PubMed

    Held, P; Dorenbeck, U; Seitz, J; Fründ, R; Albrich, H

    2003-03-01

    The aim of this study was to assess the potential of heavily T2* weighted 2D spoiled gradient echo multiecho sequence MEDIC (multi echo data image combination) with magnetization transfer saturation pulse (MTS) for detecting abnormality of the cervical spinal cord. 11 patients, 5 women and 6 men aged from 14 to 79 years (mean age 51.18 years), with traumatic, hemolytic-hemorrhagic or neoplastic diseases of the cervical spinal cord were examined with MRI. In cases with suspected myelopathy, the feasibility of the 2D spoiled gradient echo multiecho sequence MEDIC with MTS was evaluated in comparison with the results of spin echo T1W, spin echo T2W, multi echo (TSE in our case) and spin-echo multi-echo technique with magnetization preparation (turbo inversion recovery--TIR--in our case) sequences. Distortion of the "H" sign was found in all but one case. Hemorrhage was best shown by MEDIC, massive edema was very well visible using MEDIC, TIR and TSE T2W, whereas mild edema was visible with MEDIC only. Our preliminary experience in 11 patients shows that MEDIC can be used for the diagnosis of cervical spinal cord pathology.

  2. Method and apparatus for magnetic resonance imaging and spectroscopy using microstrip transmission line coils

    DOEpatents

    Zhang, Xiaoliang; Ugurbil, Kamil; Chen, Wei

    2006-04-04

    Apparatus and method for MRI imaging using a coil constructed of microstrip transmission line (MTL coil) are disclosed. In one method, a target is positioned to be imaged within the field of a main magnetic field of a magnet resonance imaging (MRI) system, a MTL coil is positioned proximate the target, and a MRI image is obtained using the main magnet and the MTL coil. In another embodiment, the MRI coil is used for spectroscopy. MRI imaging and spectroscopy coils are formed using microstrip transmission line. These MTL coils have the advantageous property of good performance while occupying a relatively small space, thus allowing MTL coils to be used inside restricted areas more easily than some other prior art coils. In addition, the MTL coils are relatively simple to construct of inexpensive components and thus relatively inexpensive compared to other designs. Further, the MTL coils of the present invention can be readily formed in a wide variety of coil configurations, and used in a wide variety of ways. Further, while the MTL coils of the present invention work well at high field strengths and frequencies, they also work at low frequencies and in low field strengths as well.

  3. High slew-rate head-only gradient for improving distortion in echo planar imaging: Preliminary experience.

    PubMed

    Tan, Ek T; Lee, Seung-Kyun; Weavers, Paul T; Graziani, Dominic; Piel, Joseph E; Shu, Yunhong; Huston, John; Bernstein, Matt A; Foo, Thomas K F

    2016-09-01

    To investigate the effects on echo planar imaging (EPI) distortion of using high gradient slew rates (SR) of up to 700 T/m/s for in vivo human brain imaging, with a dedicated, head-only gradient coil. Simulation studies were first performed to determine the expected echo spacing and distortion reduction in EPI. A head gradient of 42-cm inner diameter and with asymmetric transverse coils was then installed in a whole-body, conventional 3T magnetic resonance imaging (MRI) system. Human subject imaging was performed on five subjects to determine the effects of EPI on echo spacing and signal dropout at various gradient slew rates. The feasibility of whole-brain imaging at 1.5 mm-isotropic spatial resolution was demonstrated with gradient-echo and spin-echo diffusion-weighted EPI. As compared to a whole-body gradient coil, the EPI echo spacing in the head-only gradient coil was reduced by 48%. Simulation and in vivo results, respectively, showed up to 25-26% and 19% improvement in signal dropout. Whole-brain imaging with EPI at 1.5 mm spatial resolution provided good whole-brain coverage, spatial linearity, and low spatial distortion effects. Our results of human brain imaging with EPI using the compact head gradient coil at slew rates higher than in conventional whole-body MR systems demonstrate substantially improved image distortion, and point to a potential for benefits to non-EPI pulse sequences. J. Magn. Reson. Imaging 2016;44:653-664. © 2016 International Society for Magnetic Resonance in Medicine.

  4. MRI acoustic noise: sound pressure and frequency analysis.

    PubMed

    Counter, S A; Olofsson, A; Grahn, H F; Borg, E

    1997-01-01

    The large gradient coils used in MRI generate, simultaneously with the pulsed radiofrequency (RF) wave, acoustic noise of high intensity that has raised concern regarding hearing safety. The sound pressure levels (SPLs) and power spectra of MRI acoustic noise were measured at the position of the human head in the isocenter of five MRI systems and with 10 different pulse sequences used in clinical MR scanning. Each protocol, including magnetization-prepared rapid gradient echo (MP-RAGE; 113 dB SPL linear), fast gradient echo turbo (114 dB SPL linear), and spin echo T1/2 mm (117 dB SPL linear), was found to have the high SPLs, rapid pulse rates, amplitude-modulated pulse envelopes, and multipeaked spectra. Since thickness and SPL were inversely related, the T1-weighted images generated more intense acoustic noise than the proton-dense T2-weighted measures. The unfiltered linear peak values provided more accurate measurements of the SPL and spectral content of the MRI acoustic noise than the commonly used dB A-weighted scale, which filters out the predominant low frequency components. Fourier analysis revealed predominantly low frequency energy peaks ranging from .05 to approximately 1 kHz, with a steep high frequency cutoff for each pulse sequence. Ear protectors of known attenuation ratings are recommended for all patients during MRI testing.

  5. Phase reconstruction from multiple coil data using a virtual reference coil.

    PubMed

    Parker, Dennis L; Payne, Allison; Todd, Nick; Hadley, J Rock

    2014-08-01

    This study develops a method to obtain optimal estimates of absolute magnetization phase from multiple-coil MRI data. The element-specific phases of a multi-element receiver coil array are accounted for by using the phase of a real or virtual reference coil that is sensitive over the entire imaged volume. The virtual-reference coil is generated as a weighted combination of measurements from all receiver coils. The phase-corrected multiple coil complex images are combined using the inverse covariance matrix. These methods are tested on images of an agar phantom, an in vivo breast, and an anesthetized rabbit obtained using combinations of four, nine, and three receiver channels, respectively. The four- and three-channel acquisitions require formation of a virtual-reference receiver coil while one channel of the nine-channel receive array has a sensitivity profile covering the entire imaged volume. Referencing to a real or virtual coil gives receiver phases that are essentially identical except for the individual receiver channel noise. The resulting combined images, which account for receiver channel noise covariance, show the expected reduction in phase variance. The proposed virtual reference coil method determines a phase distribution for each coil from which an optimal phase map can be obtained. Copyright © 2013 Wiley Periodicals, Inc.

  6. Phase reconstruction from multiple coil data using a virtual reference coil

    PubMed Central

    Parker, Dennis L.; Payne, Allison; Todd, Nick; Hadley, J. Rock

    2013-01-01

    Purpose This paper develops a method to obtain optimal estimates of absolute magnetization phase from multiple-coil MRI data. Methods The element-specific phases of a multi-element receiver coil array are accounted for by using the phase of a real or virtual reference coil that is sensitive over the entire imaged volume. The virtual-reference coil is generated as a weighted combination of measurements from all receiver coils. The phase-corrected multiple coil complex images are combined using the inverse covariance matrix. These methods are tested on images of an agar phantom, an in vivo breast, and an anesthetized rabbit obtained using combinations of four, nine, and three receiver channels, respectively. Results The four- and three- channel acquisitions require formation of a virtual-reference receiver coil while one channel of the nine-channel receive array has a sensitivity profile covering the entire imaged volume. Referencing to a real or virtual coil gives receiver phases that are essentially identical except for the individual receiver channel noise. The resulting combined images, which account for receiver channel noise covariance, show the expected reduction in phase variance. Conclusions The proposed virtual reference coil method determines a phase distribution for each coil from which an optimal phase map can be obtained. PMID:24006172

  7. Magnetic microparticle steering within the constraints of an MRI system: proof of concept of a novel targeting approach.

    PubMed

    Mathieu, Jean-Baptiste; Martel, Sylvain

    2007-12-01

    This paper presents a magnetic microparticle steering approach that relies on improved gradient coils for Magnetic Resonance Imaging (MRI) systems. A literature review exposes the motivation and advantages of this approach and leads to a description of the requirements for a set of dedicated steering gradient coils in comparison to standard imaging coils. An experimental set-up was developed to validate the mathematical models and the hypotheses arising from this targeting modality. Magnetite Fe(3)O(4) microparticles (dia. 10.9 microm) were steered in a Y-shaped 100 microm diameter microchannel between a Maxwell pair (dB/dz = 443 mT/m) located in the center of an MRI bore with 0.525 m/s mean fluid velocity (ten times faster than in arterioles with same diameter). Experimental results based on the percentage of particles retrieved at the targeted outlet show that the mathematical models developed provide an order of magnitude estimate of the magnetic gradient strengths required. Furthermore, these results establish a proof of concept of microparticle steering using magnetic gradients within an MRI bore for applications in the human cardiovascular system.

  8. Effects of b-value and number of gradient directions on diffusion MRI measures obtained with Q-ball imaging

    NASA Astrophysics Data System (ADS)

    Schilling, Kurt G.; Nath, Vishwesh; Blaber, Justin; Harrigan, Robert L.; Ding, Zhaohua; Anderson, Adam W.; Landman, Bennett A.

    2017-02-01

    High-angular-resolution diffusion-weighted imaging (HARDI) MRI acquisitions have become common for use with higher order models of diffusion. Despite successes in resolving complex fiber configurations and probing microstructural properties of brain tissue, there is no common consensus on the optimal b-value and number of diffusion directions to use for these HARDI methods. While this question has been addressed by analysis of the diffusion-weighted signal directly, it is unclear how this translates to the information and metrics derived from the HARDI models themselves. Using a high angular resolution data set acquired at a range of b-values, and repeated 11 times on a single subject, we study how the b-value and number of diffusion directions impacts the reproducibility and precision of metrics derived from Q-ball imaging, a popular HARDI technique. We find that Q-ball metrics associated with tissue microstructure and white matter fiber orientation are sensitive to both the number of diffusion directions and the spherical harmonic representation of the Q-ball, and often are biased when under sampled. These results can advise researchers on appropriate acquisition and processing schemes, particularly when it comes to optimizing the number of diffusion directions needed for metrics derived from Q-ball imaging.

  9. Triaxial magnetic field gradient system for microcoil magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Seeber, D. A.; Hoftiezer, J. H.; Daniel, W. B.; Rutgers, M. A.; Pennington, C. H.

    2000-11-01

    There is a great advantage in signal to noise ratio (S/N) that can be obtained in nuclear magnetic resonance (NMR) experiments on very small samples (having spatial dimensions ˜100 μm or less) if one employs NMR "micro" receiver coils, "microcoils," which are of similarly small dimensions. The gains in S/N could enable magnetic resonance imaging (MRI) microscopy with spatial resolution of ˜1-2 μm, much better than currently available. Such MRI microscopy however requires very strong (>10 T/m), rapidly switchable triaxial magnetic field gradients. Here, we report the design and construction of such a triaxial gradient system, producing gradients substantially greater than 15 T/m in all three directions, x, y, and z (and as high as 50 T/m for the x direction). The gradients are switchable within time ˜10 μs and adequately uniform (within 5% over a volume of [600μm3] for microcoil MRI of small samples.

  10. Integrated Image Reconstruction and Gradient Nonlinearity Correction

    PubMed Central

    Tao, Shengzhen; Trzasko, Joshua D.; Shu, Yunhong; Huston, John; Bernstein, Matt A.

    2014-01-01

    Purpose To describe a model-based reconstruction strategy for routine magnetic resonance imaging (MRI) that accounts for gradient nonlinearity (GNL) during rather than after transformation to the image domain, and demonstrate that this approach reduces the spatial resolution loss that occurs during strictly image-domain GNL-correction. Methods After reviewing conventional GNL-correction methods, we propose a generic signal model for GNL-affected MRI acquisitions, discuss how it incorporates into contemporary image reconstruction platforms, and describe efficient non-uniform fast Fourier transform (NUFFT)-based computational routines for these. The impact of GNL-correction on spatial resolution by the conventional and proposed approaches is investigated on phantom data acquired at varying offsets from gradient isocenter, as well as on fully-sampled and (retrospectively) undersampled in vivo acquisitions. Results Phantom results demonstrate that resolution loss that occurs during GNL-correction is significantly less for the proposed strategy than for the standard approach at distances >10 cm from isocenter with a 35 cm FOV gradient coil. The in vivo results suggest that the proposed strategy better preserves fine anatomical detail than retrospective GNL-correction while offering comparable geometric correction. Conclusion Accounting for GNL during image reconstruction allows geometric distortion to be corrected with less spatial resolution loss than is typically observed with the conventional image domain correction strategy. PMID:25298258

  11. Impact of different coils on biochemical T2 and T2* relaxation time mapping of articular patella cartilage.

    PubMed

    Pachowsky, Milena L; Trattnig, Siegfried; Apprich, Sebastian; Mauerer, Andreas; Zbyn, Stephan; Welsch, Goetz H

    2013-11-01

    The purpose of our study was to assess T2 and T2* relaxation time values of patella cartilage in healthy volunteers using three different coils at 3.0 Tesla MRI and their influence on the quantitative values. Fifteen volunteers were examined on the same 3-Tesla MR unit using three different coils: (i) a dedicated eight-channel knee phased-array coil; (ii) an eight-channel multi-purpose coil, and (iii) a one-channel 1H surface coil. T2 and T2* relaxation time measurements were prepared by a multi-echo spinecho respectively a gradient-echo sequence. A semi-automatic region-of-interest analysis was performed for patella cartilage. To allow stratification, a subregional analysis was carried out (deep-superficial cartilage layer). Statistical analysis-of-variance was performed. The mean quantitative T2 values showed statistically significant differences in all comparison combinations. The differences between the mean quantitative T2* values were slightly less pronounced than the T2 evaluation and only the comparison between (i) and (ii) showed a significant difference. The results of T2 and T2* values showed, independent of the used coil, higher values in the superficial zone compared to the deep zone (p < 0.05). Looking at the signal alterations, all coils showed clearly higher values (and thus more signal alterations as a sign of noise) in the deep layer. The validation of the reliability showed a high intra-class correlation coefficient and hence a very high plausibility (ICC was between 0.870 and 0.905 for T2 mapping and between 0.879 and 0.888 for T2* mapping). The present results demonstrate that biochemical T2 and T2* mapping is significantly dependent on the utilized coil.

  12. Optimal Coil Orientation for Transcranial Magnetic Stimulation

    PubMed Central

    Richter, Lars; Neumann, Gunnar; Oung, Stephen; Schweikard, Achim; Trillenberg, Peter

    2013-01-01

    We study the impact of coil orientation on the motor threshold (MT) and present an optimal coil orientation for stimulation of the foot. The result can be compared to results of models that predict this orientation from electrodynamic properties of the media in the skull and from orientations of cells, respectively. We used a robotized TMS system for precise coil placement and recorded motor-evoked potentials with surface electrodes on the abductor hallucis muscle of the right foot in 8 healthy control subjects. First, we performed a hot-spot search in standard (lateral) orientation and then rotated the coil in steps of 10° or 20°. At each step we estimated the MT. For navigated stimulation and for correlation with the underlying anatomy a structural MRI scan was obtained. Optimal coil orientation was 33.1±18.3° anteriorly in relation to the standard lateral orientation. In this orientation the threshold was 54±18% in units of maximum stimulator output. There was a significant difference of 8.0±5.9% between the MTs at optimal and at standard orientation. The optimal coil orientations were significantly correlated with the direction perpendicular to the postcentral gyrus (). Robotized TMS facilitates sufficiently precise coil positioning and orientation to study even small variations of the MT with coil orientation. The deviations from standard orientation are more closely matched by models based on field propagation in media than by models based on orientations of pyramidal cells. PMID:23593200

  13. Evolutionary Patterns in Coiled-Coils

    PubMed Central

    Surkont, Jaroslaw; Pereira-Leal, Jose B.

    2015-01-01

    Models of protein evolution are used to describe evolutionary processes, for phylogenetic analyses and homology detection. Widely used general models of protein evolution are biased toward globular domains and lack resolution to describe evolutionary processes for other protein types. As three-dimensional structure is a major constraint to protein evolution, specific models have been proposed for other types of proteins. Here, we consider evolutionary patterns in coiled-coil forming proteins. Coiled-coils are widespread structural domains, formed by a repeated motif of seven amino acids (heptad repeat). Coiled-coil forming proteins are frequently rods and spacers, structuring both the intracellular and the extracellular spaces that often form protein interaction interfaces. We tested the hypothesis that due to their specific structure the associated evolutionary constraints differ from those of globular proteins. We showed that substitution patterns in coiled-coil regions are different than those observed in globular regions, beyond the simple heptad repeat. Based on these substitution patterns we developed a coiled-coil specific (CC) model that in the context of phylogenetic reconstruction outperforms general models in tree likelihood, often leading to different topologies. For multidomain proteins containing both a coiled-coil region and a globular domain, we showed that a combination of the CC model and a general one gives higher likelihoods than a single model. Finally, we showed that the model can be used for homology detection to increase search sensitivity for coiled-coil proteins. The CC model, software, and other supplementary materials are available at http://www.evocell.org/cgl/resources (last accessed January 29, 2015). PMID:25577198

  14. Coil Welding Aid

    NASA Technical Reports Server (NTRS)

    Wiesenbach, W. T.; Clark, M. C.

    1983-01-01

    Positioner holds coil inside cylinder during tack welding. Welding aid spaces turns of coil inside cylinder and applies contact pressure while coil is tack-welded to cylinder. Device facilitates fabrication of heat exchangers and other structures by eliminating hand-positioning and clamping of individual coil turns.

  15. Coil Welding Aid

    NASA Technical Reports Server (NTRS)

    Wiesenbach, W. T.; Clark, M. C.

    1983-01-01

    Positioner holds coil inside cylinder during tack welding. Welding aid spaces turns of coil inside cylinder and applies contact pressure while coil is tack-welded to cylinder. Device facilitates fabrication of heat exchangers and other structures by eliminating hand-positioning and clamping of individual coil turns.

  16. An analysis of the uncertainty and bias in DCE-MRI measurements using the spoiled gradient-recalled echo pulse sequence

    SciTech Connect

    Subashi, Ergys; Choudhury, Kingshuk R.; Johnson, G. Allan

    2014-03-15

    Purpose: The pharmacokinetic parameters derived from dynamic contrast-enhanced (DCE) MRI have been used in more than 100 phase I trials and investigator led studies. A comparison of the absolute values of these quantities requires an estimation of their respective probability distribution function (PDF). The statistical variation of the DCE-MRI measurement is analyzed by considering the fundamental sources of error in the MR signal intensity acquired with the spoiled gradient-echo (SPGR) pulse sequence. Methods: The variance in the SPGR signal intensity arises from quadrature detection and excitation flip angle inconsistency. The noise power was measured in 11 phantoms of contrast agent concentration in the range [0–1] mM (in steps of 0.1 mM) and in onein vivo acquisition of a tumor-bearing mouse. The distribution of the flip angle was determined in a uniform 10 mM CuSO{sub 4} phantom using the spin echo double angle method. The PDF of a wide range of T1 values measured with the varying flip angle (VFA) technique was estimated through numerical simulations of the SPGR equation. The resultant uncertainty in contrast agent concentration was incorporated in the most common model of tracer exchange kinetics and the PDF of the derived pharmacokinetic parameters was studied numerically. Results: The VFA method is an unbiased technique for measuringT1 only in the absence of bias in excitation flip angle. The time-dependent concentration of the contrast agent measured in vivo is within the theoretically predicted uncertainty. The uncertainty in measuring K{sup trans} with SPGR pulse sequences is of the same order, but always higher than, the uncertainty in measuring the pre-injection longitudinal relaxation time (T1{sub 0}). The lowest achievable bias/uncertainty in estimating this parameter is approximately 20%–70% higher than the bias/uncertainty in the measurement of the pre-injection T1 map. The fractional volume parameters derived from the extended Tofts model

  17. The NIH experience in first advancing fMRI.

    PubMed

    Turner, Robert

    2012-08-15

    The introduction of functional MRI at NIH in 1992 was the outcome of research goals first formulated by Turner in 1983. Between 1988 and 1990, Turner worked at NIH on actively-shielded gradient coils and the implementation of EPI-based techniques, especially diffusion-weighted EPI. His work on hypoxia in cat brain in 1990 directly inspired Ken Kwong's demonstration of BOLD contrast in humans at MGH in May 1991. Turner collaborated actively with this MGH team, the first group to map entirely noninvasively human brain activity due to visual stimulation. He introduced BOLD fMRI at NIH in February 1992. This paper reviews the steps that led up to BOLD EPI, and Turner's initial applications of BOLD fMRI at NIH.

  18. Acoustic noise reduction in a 4 T MRI scanner.

    PubMed

    Mechefske, Chris K; Geris, Ryan; Gati, Joseph S; Rutt, Brian K

    2002-01-01

    High-field, high-speed magnetic resonance imaging (MRI) can generate high levels of noise. There is ongoing concern in the medical and imaging research communities regarding the detrimental effects of high acoustic levels on auditory function, patient anxiety, verbal communication between patients and health care workers and ultimately MR image quality. In order to effectively suppress the noise levels inside MRI scanners, the sound field needs to be accurately measured and characterized. This paper presents the results of measurements of the sound radiation from a gradient coil cylinder within a 4 T MRI scanner under a variety of conditions. These measurement results show: (1) that noise levels can be significantly reduced through the use of an appropriately designed passive acoustic liner; and (2) the true noise levels that are experienced by patients during echo planar imaging.

  19. A unified canonical correlation analysis-based framework for removing gradient artifact in concurrent EEG/fMRI recording and motion artifact in walking recording from EEG signal.

    PubMed

    Li, Junhua; Chen, Yu; Taya, Fumihiko; Lim, Julian; Wong, Kianfoong; Sun, Yu; Bezerianos, Anastasios

    2017-02-09

    Artifacts cause distortion and fuzziness in electroencephalographic (EEG) signal and hamper EEG analysis, so it is necessary to remove them prior to the analysis. Particularly, artifact removal becomes a critical issue in experimental protocols with significant inherent recording noise, such as mobile EEG recordings and concurrent EEG-fMRI acquisitions. In this paper, we proposed a unified framework based on canonical correlation analysis for artifact removal. Raw signals were reorganized to construct a pair of matrices, based on which sources were sought through maximizing autocorrelation. Those sources related to artifacts were then removed by setting them as zeros, and the remaining sources were used to reconstruct artifact-free EEG. Both simulated and real recorded data were utilized to assess the proposed framework. Qualitative and quantitative results showed that the proposed framework was effective to remove artifacts from EEG signal. Specifically, the proposed method outperformed independent component analysis method for mitigating motion-related artifacts and had advantages for removing gradient artifact compared to the classical method (average artifacts subtraction) and the state-of-the-art method (optimal basis set) in terms of the combination of performance and computational complexity.

  20. Closed-form expressions for flip angle variation that maximize total signal in T1-weighted rapid gradient echo MRI.

    PubMed

    Drobnitzky, Matthias; Klose, Uwe

    2017-03-01

    Magnetization-prepared rapid gradient-echo (MPRAGE) sequences are commonly employed for T1-weighted structural brain imaging. Following a contrast preparation radiofrequency (RF) pulse, the data acquisition proceeds under nonequilibrium conditions of the relaxing longitudinal magnetization. Variation of the flip angle can be used to maximize total available signal. Simulated annealing or greedy algorithms have so far been published to numerically solve this problem, with signal-to-noise ratios optimized for clinical imaging scenarios by adhering to a predefined shape of the signal evolution. We propose an unconstrained optimization of the MPRAGE experiment that employs techniques from resource allocation theory. A new dynamic programming solution is introduced that yields closed-form expressions for optimal flip angle variation. Flip angle series are proposed that maximize total transverse magnetization (Mxy) for a range of physiologic T1 values. A 3D MPRAGE sequence is modified to allow for a controlled variation of the excitation angle. Experiments employing a T1 contrast phantom are performed at 3T. 1D acquisitions without phase encoding permit measurement of the temporal development of Mxy. Image mean signal and standard deviation for reference flip angle trains are compared in 2D measurements. Signal profiles at sharp phantom edges are acquired to access image blurring related to nonuniform Mxy development. A novel closed-form expression for flip angle variation is found that constitutes the optimal policy to reach maximum total signal. It numerically equals previously published results of other authors when evaluated under their simplifying assumptions. Longitudinal magnetization (Mz) is exhaustively used without causing abrupt changes in the measured MR signal, which is a prerequisite for artifact free images. Phantom experiments at 3T verify the expected benefit for total accumulated k-space signal when compared with published flip angle series. Describing

  1. Prospective motion correction using tracking coils

    PubMed Central

    Qin, Lei; Schmidt, Ehud J; Tse, Zion Tsz Ho; Santos, Juan; Hoge, William S.; Tempany-Afdhal, Clare; Butts-Pauly, Kim; Dumoulin, Charles L

    2012-01-01

    Intra-cavity imaging coils provide higher signal-to-noise than surface coils, and have the potential to provide higher spatial resolution in shorter acquisition times. However, images from these coils suffer from physiologically-induced motion artifacts, since both the anatomy and the coils move during image acquisition. We developed prospective motion correction techniques for intra-cavity imaging using an array of tracking coils. The system had <50ms latency between tracking and imaging, so that the images from the intra-cavity coil were acquired in a frame of reference defined by the tracking array rather than by the system’s gradient coils. 2D Gradient-Recalled (GRASS) and 3D ECG-gated Inversion-Recovery-Fast-Gradient-Echo (IR-FGRE) sequences were tested with prospective motion correction using ex-vivo hearts placed on a moving platform simulating both respiratory and cardiac motion. Human abdominal tests were subsequently conducted. The tracking array provided a positional accuracy of 0.7±0.5mm, 0.6±0.4mm, and 0.1±0.1mm along the X, Y and Z directions at a rate of 20 frames-per-second. The ex-vivo and human experiments showed significant image quality improvements for both in-plane and through-plane motion correction, which although not performed in intra-cavity imaging, demonstrates the feasibility of implementing such a motion correction system in a future design of combined tracking and intra-cavity coil. PMID:22565377

  2. Protective link for superconducting coil

    DOEpatents

    Umans, Stephen D.

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  3. Coiling of viscous jets

    NASA Astrophysics Data System (ADS)

    Ribe, Neil M.

    2004-11-01

    A stream of viscous fluid falling from a sufficient height onto a surface forms a series of regular coils. I use a numerical model for a deformable fluid thread to predict the coiling frequency as a function of the thread's radius, the flow rate, the fall height, and the fluid viscosity. Three distinct modes of coiling can occur: viscous (e.g. toothpaste), gravitational (honey falling from a moderate height) and inertial (honey falling from a great height). When inertia is significant, three states of steady coiling with different frequencies can exist over a range of fall heights. The numerically predicted coiling frequencies agree well with experimental measurements in the inertial coiling regime.

  4. Feasibility of dynamic susceptibility contrast perfusion MR imaging at 3T using a standard quadrature head coil and eight-channel phased-array coil with and without SENSE reconstruction.

    PubMed

    Lupo, Janine M; Lee, Michael C; Han, Eric T; Cha, Soonmee; Chang, Susan M; Berger, Mitchel S; Nelson, Sarah J

    2006-09-01

    To investigate changes in image and dynamic signal-to-noise ratios (SNRs) of the DeltaR2* curve, as well as magnetic susceptibility-induced artifacts between a standard quadrature head coil and an eight-channel phased-array coil with and without sensitivity-encoding (SENSE) at 3T, compared to the current clinical standard head coil acquisition at 1.5T. Dynamic susceptibility contrast (DSC) perfusion MRI was performed on 80 brain tumor patients using a gradient-echo, echo-planar imaging (EPI) sequence. Image and dynamic SNR were compared between 1.5T and 3T field strengths, a quadrature and eight-channel phased-array coil, and a conventional vs. partially parallel EPI acquisition with SENSE reconstruction. The amount of geometric distortion and signal dropout was quantified and compared between conventional and SENSE EPI acquisitions within the same exam at 3T. An initial 2.6-fold elevation in dynamic SNR was observed in normal-appearing white matter when doubling the field strength (P < 0.001), with an additional 1.7-fold increase found when employing an eight-channel phased-array coil (P < 0.002). Compared to the standard 3T eight-channel coil acquisition, the implementation of SENSE reduced the number of voxels experiencing large anterior shifts in the phase-encode direction, lowered the volume of signal dropout by 2.0-11.5%, and allowed a 1.4-fold increase in slice coverage, while only decreasing the dynamic SNR by 22%. SENSE EPI at 3T yielded a significant improvement in dynamic SNR over the 1.5T acquisitions. A significant reduction in magnetic susceptibility-induced artifacts was achieved with SENSE EPI compared to the standard EPI eight-channel coil acquisition at 3T.

  5. Repeatability of a dual gradient-recalled echo MRI method for monitoring post-isometric contraction blood volume and oxygenation changes.

    PubMed

    Sanchez, O A; Louie, E A; Copenhaver, E A; Damon, B M

    2009-08-01

    The purpose of this study was to assess the repeatability of a dual gradient-recalled echo (GRE) muscle functional MRI technique. On 2 days, subjects (n = 8) performed 10 s isometric dorsiflexion contractions under conditions of: (1) maximal voluntary contraction (MVC), (2) 50% MVC (50% MVC), or (3) 50% MVC with concurrent proximal arterial cuff occlusion (50% MVC(cuff)). Functional MRI data were acquired using single-slice dual GRE (TR/TE = 1000/6, 46 ms)-echo planar imaging for 20 s before, during, and for 180 s after each contraction. The mean signal intensity (SI) time courses at each TE (SI(6) and SI(46), reflecting variations in blood volume and %HbO(2), respectively) from the tibialis anterior (TA) and extensor digitorum longus (EDL) muscles were characterized with the post-contraction change in SI and the time-to-peak SI (DeltaSI and TTP, respectively). DeltaSI(6) following an MVC was 36% higher than that obtained after a 50% MVC (p = 0.048). For DeltaSI(6), the highest intraclass correlation coefficients (ICCs) were observed for the TA muscle in the 50% MVC and MVC conditions, with values of 0.83 (p = 0.01) and 0.88 (p = 0.005), respectively. Bland-Altman plots revealed repeatability coefficients (RCs) for the 50% MVC and MVC conditions in the TA muscle of 1.9 and 1.4, respectively. The most repeatable measures for DeltaSI(46) were obtained for the 50% MVC and MVC conditions in the EDL muscle (p = 0.01 and p = 0.04, respectively). Bland-Altman plots revealed RC's for 50% MVC and MVC conditions in the EDL muscle of 3.9 and 5.7, respectively. DeltaSI(6) and DeltaSI(46) increased as a function of the contraction intensity. The repeatability of the method depends on the muscle and contraction condition being evaluated, and in general, is higher following an MVC. 2009 John Wiley & Sons, Ltd.

  6. Repeatability of a Dual Gradient-Recalled Echo MRI Method for Monitoring Post-Isometric Contraction Blood Volume and Oxygenation Changes

    PubMed Central

    Sanchez, O.A.; Louie, E.A.; Copenhaver, E.A.; Damon, B.M.

    2015-01-01

    The purpose of this study was to assess the repeatability of a dual gradient-recalled echo (GRE) muscle functional MRI technique. On two days, subjects (n=8) performed 10 s isometric dorsiflexion contractions under conditions of: 1) maximal voluntary contraction (MVC), 2) 50% MVC (50%MVC) or 3) 50% MVC with concurrent proximal arterial cuff occlusion (50%MVCcuff). Functional MRI data were acquired using single-slice dual GRE (TR/TE=1000/6, 46 ms) EPI for 20 seconds before, during, and for 180 seconds after each contraction. The mean signal intensity (SI) time courses at each TE (SI6 and SI46, reflecting variations in blood volume and %HbO2, respectively) from the tibialis anterior (TA) and extensor digitorum (EDL) muscles were characterized with the post-contraction change in SI and the time to peak SI (ΔSI and TTP, respectively). ΔSI6 and ΔSI46 were 36% and 31% higher following an MVC than after a 50%MVC (p = 0.05 and p = 0.07 respectively). For ΔSI6 the highest intraclass correlation coefficients (ICC) were observed for the TA muscle at the 50%MVC and MVC condition, with values of 0.83 (p = 0.01) and 0.88 (p = 0.005), respectively. Bland-Altman plots revealed repeatability coefficients (RC) for the 50%MVC and MVC conditions in the TA muscle of 1.9 and 1.4, respectively. The most repeatable measures for ΔSI46 were obtained for the 50%MVC and MVC conditions in the EDL muscle (p = 0.01 and p = 0.04, respectively). Bland-Altman plots revealed RC’s for 50%MVC and MVC conditions in the EDL muscle of 3.9 and 5.7, respectively. ΔSI6 and ΔSI46 increased as a function of contraction intensity. The repeatability of the method depends on the muscle and contraction condition being evaluated, and in general, is higher following an MVC. PMID:19382156

  7. Very-low-field MRI of laser polarized xenon-129

    NASA Astrophysics Data System (ADS)

    Zheng, Yuan; Cates, Gordon D.; Tobias, William A.; Mugler, John P.; Miller, G. Wilson

    2014-12-01

    We describe a homebuilt MRI system for imaging laser-polarized xenon-129 at a very low holding field of 2.2 mT. A unique feature of this system was the use of Maxwell coils oriented at so-called "magic angles" to generate the transverse magnetic field gradients, which provided a simple alternative to Golay coils. We used this system to image a laser-polarized xenon-129 phantom with both a conventional gradient-echo and a fully phase-encoded pulse sequence. In other contexts, a fully phase-encoded acquisition, also known as single-point or constant-time imaging, has been used to enable distortion-free imaging of short-T2∗ species. Here we used this technique to overcome imperfections associated with our homebuilt MRI system while also taking full advantage of the long T2∗ available at very low field. Our results demonstrate that xenon-129 image quality can be dramatically improved at low field by combining a fully phase-encoded k-space acquisition with auxiliary measurements of system imperfections including B0 field drift and gradient infidelity.

  8. Very-low-field MRI of laser polarized xenon-129.

    PubMed

    Zheng, Yuan; Cates, Gordon D; Tobias, William A; Mugler, John P; Miller, G Wilson

    2014-12-01

    We describe a homebuilt MRI system for imaging laser-polarized xenon-129 at a very low holding field of 2.2mT. A unique feature of this system was the use of Maxwell coils oriented at so-called "magic angles" to generate the transverse magnetic field gradients, which provided a simple alternative to Golay coils. We used this system to image a laser-polarized xenon-129 phantom with both a conventional gradient-echo and a fully phase-encoded pulse sequence. In other contexts, a fully phase-encoded acquisition, also known as single-point or constant-time imaging, has been used to enable distortion-free imaging of short-T2(∗) species. Here we used this technique to overcome imperfections associated with our homebuilt MRI system while also taking full advantage of the long T2(∗) available at very low field. Our results demonstrate that xenon-129 image quality can be dramatically improved at low field by combining a fully phase-encoded k-space acquisition with auxiliary measurements of system imperfections including B0 field drift and gradient infidelity. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Immune responses to coiled coil supramolecular biomaterials.

    PubMed

    Rudra, Jai S; Tripathi, Pulak K; Hildeman, David A; Jung, Jangwook P; Collier, Joel H

    2010-11-01

    Self-assembly has been increasingly utilized in recent years to create peptide-based biomaterials for 3D cell culture, tissue engineering, and regenerative medicine, but the molecular determinants of these materials' immunogenicity have remained largely unexplored. In this study, a set of molecules that self-assembled through coiled coil oligomerization was designed and synthesized, and immune responses against them were investigated in mice. Experimental groups spanned a range of oligomerization behaviors and included a peptide from the coiled coil region of mouse fibrin that did not form supramolecular structures, an engineered version of this peptide that formed coiled coil bundles, and a peptide-PEG-peptide triblock bioconjugate that formed coiled coil multimers and supramolecular aggregates. In mice, the native peptide and engineered peptide did not produce any detectable antibody response, and none of the materials elicited detectable peptide-specific T cell responses, as evidenced by the absence of IL-2 and interferon-gamma in cultures of peptide-challenged splenocytes or draining lymph node cells. However, specific antibody responses were elevated in mice injected with the multimerizing peptide-PEG-peptide. Minimal changes in secondary structure were observed between the engineered peptide and the triblock peptide-PEG-peptide, making it possible that the triblock's multimerization was responsible for this antibody response.

  10. Stacked phased array coils for increasing the signal-to-noise ratio in magnetic resonance imaging.

    PubMed

    Dandan Liang; Hon Tat Hui; Tat Soon Yeo; Bing Keong Li

    2013-02-01

    A new concept of using a stacked phased coil array to increase the signal-to-circuit noise ratio (SCNR) in magnetic resonance imaging (MRI) is introduced. Unlike conventional phased coil arrays, the proposed stacked phased coil array is constructed by stacking the coil elements closely together in the vertical direction. Through a proper combination of the coil terminal voltages, the SCNR is shown to increase with the square root of the number of coil elements. A prototype two-element array is constructed and an experimental method is designed to determine the combiner coefficients in a simulated MRI electromagnetic field environment. The experimental results show that the mutual coupling effect among the array coils can be totally removed and the combiner output voltage increases with the number of coil elements. This demonstrates the feasibility of the proposed method.

  11. Exploring functional connectivity networks with multichannel brain array coils.

    PubMed

    Anteraper, Sheeba Arnold; Whitfield-Gabrieli, Susan; Keil, Boris; Shannon, Steven; Gabrieli, John D; Triantafyllou, Christina

    2013-01-01

    The use of multichannel array head coils in functional and structural magnetic resonance imaging (MRI) provides increased signal-to-noise ratio (SNR), higher sensitivity, and parallel imaging capabilities. However, their benefits remain to be systematically explored in the context of resting-state functional connectivity MRI (fcMRI). In this study, we compare signal detectability within and between commercially available multichannel brain coils, a 32-Channel (32Ch), and a 12-Channel (12Ch) at 3T, in a high-resolution regime to accurately map resting-state networks. We investigate whether the 32Ch coil can extract and map fcMRI more efficiently and robustly than the 12Ch coil using seed-based and graph-theory-based analyses. Our findings demonstrate that although the 12Ch coil can be used to reveal resting-state connectivity maps, the 32Ch coil provides increased detailed functional connectivity maps (using seed-based analysis) as well as increased global and local efficiency, and cost (using graph-theory-based analysis), in a number of widely reported resting-state networks. The exploration of subcortical networks, which are scarcely reported due to limitations in spatial-resolution and coil sensitivity, also proved beneficial with the 32Ch coil. Further, comparisons regarding the data acquisition time required to successfully map these networks indicated that scan time can be significantly reduced by 50% when a coil with increased number of channels (i.e., 32Ch) is used. Switching to multichannel arrays in resting-state fcMRI could, therefore, provide both detailed functional connectivity maps and acquisition time reductions, which could further benefit imaging special subject populations, such as patients or pediatrics who have less tolerance in lengthy imaging sessions.

  12. Experimental development of a petal resonator surface coil.

    PubMed

    Rodríguez, Alfredo Odon; Hidalgo, Sandra Silvia; Rojas, Rafael; Barrios, Fernando Alejandro

    2005-12-01

    A surface coil for MRI was designed and built based on the principles of the petal resonator proposed by Mansfield [J Phys D Appl Phys 21 (1988) 1643]. This resonator coil design was named the petal resonator surface (PERES) coil and is composed of an eight-petal coil array and a central circular coil. A minimum separation of three times the petal coil radius is necessary to significantly decrease the mutual inductance. An analytical function for the PERES Signal-to-noise ratio (SNR) is obtained based on the quasistatic method. Theoretical plots of SNR enhancement yielded 26% and 35% more SNR over the circular coil and phased-array coils. Imaging experiments were first performed using a spectroscopy phantom on a 1.5-T commercial imager. Subsequently, brain images of healthy volunteers were obtained. Clinical MR imager compatibility allows this resonator coil to be used with conventional pulse sequences and imaging protocols. This coil design offers a new alternative to existing surface coils because it significantly increases the SNR.

  13. An iterative reconstruction method of complex images using expectation maximization for radial parallel MRI

    NASA Astrophysics Data System (ADS)

    Choi, Joonsung; Kim, Dongchan; Oh, Changhyun; Han, Yeji; Park, HyunWook

    2013-05-01

    In MRI (magnetic resonance imaging), signal sampling along a radial k-space trajectory is preferred in certain applications due to its distinct advantages such as robustness to motion, and the radial sampling can be beneficial for reconstruction algorithms such as parallel MRI (pMRI) due to the incoherency. For radial MRI, the image is usually reconstructed from projection data using analytic methods such as filtered back-projection or Fourier reconstruction after gridding. However, the quality of the reconstructed image from these analytic methods can be degraded when the number of acquired projection views is insufficient. In this paper, we propose a novel reconstruction method based on the expectation maximization (EM) method, where the EM algorithm is remodeled for MRI so that complex images can be reconstructed. Then, to optimize the proposed method for radial pMRI, a reconstruction method that uses coil sensitivity information of multichannel RF coils is formulated. Experiment results from synthetic and in vivo data show that the proposed method introduces better reconstructed images than the analytic methods, even from highly subsampled data, and provides monotonic convergence properties compared to the conjugate gradient based reconstruction method.

  14. TPX correction coil studies

    SciTech Connect

    Hanson, J.D.

    1994-11-03

    Error correction coils are planned for the TPX (Tokamak Plasma Experiment) in order to avoid error field induced locked modes and disruption. The FT (Fix Tokamak) code is used to evaluate the ability of these correction coils to remove islands caused by symmetry breaking magnetic field errors. The proposed correction coils are capable of correcting a variety of error fields.

  15. High-resolution microscopy coil MR-Eye.

    PubMed

    Georgouli, T; James, T; Tanner, S; Shelley, D; Nelson, M; Chang, B; Backhouse, O; McGonagle, D

    2008-08-01

    The eye is involved in several pathologies where precise identification of the underlying condition is essential for the optimal patient care. This preliminary report presents the potential of high-resolution microscopy coil magnetic resonance imaging (HR-MRI) to undertake this task being actively used in the clinical setting. We used a commercially available MRI scanner and a microscopy surface coil. Exquisite anatomic detail of the eye and orbit with depiction of previously unobserved structures and clear demonstration of the underlying pathology was achieved. This report supports the idea that orbital imaging can be revolutionized with the introduction of HR-MRI with broad clinical implications.

  16. Effects of MR surface coils on PET quantification

    PubMed Central

    MacDonald, Lawrence R.; Kohlmyer, Steve; Liu, Chi; Lewellen, Thomas K.; Kinahan, Paul E.

    2011-01-01

    Purpose: The goal of this work was to investigate the effects of MRI surface coils on attenuation-corrected PET emission data. The authors studied the cases where either an MRI or a CT scan would be used to provide PET attenuation correction (AC). Combined MR∕PET scanners that use the MRI for PET AC (MR-AC) face the challenge of absent surface coils in MR images and thus cannot directly account for attenuation in the coils. Combining MR and PET images could be achieved by transporting the subject on a stereotactically registered table between independent MRI and PET scanners. In this case, conventional PET CT-AC methods could be used. A challenge here is that high atomic number materials within MR coils cause artifacts in CT images and CT based AC is typically not validated for coil materials. Methods: The authors evaluated PET artifacts when MR coils were absent from AC data (MR-AC), or when coil attenuation was measured by CT scanning (CT-AC). They scanned PET phantoms with MR surface coils on a clinical PET∕CT system and used CT-AC to reconstruct PET data. The authors then omitted the coil from the CT-AC image to mimic the MR-AC scenario. Images were acquired using cylinder and anthropomorphic phantoms. They evaluated and compared the following five scenarios: (1) A uniform cylinder phantom and head coil scanned and reconstructed using CT-AC; (2) similar emission data (with head coil present) were reconstructed without the head coil in the AC data; (3) the same cylinder scanned without the head coil present (reference scan); (4) a PET torso phantom with a full MR torso coil present in both PET and CT; (5) only half of the separable torso coil present in the PET∕CT acquisition. The authors also performed analytic simulations of the first three scenarios. Results: Streak artifacts were present in CT images containing MR surface coils due to metal components. These artifacts persisted after the CT images were converted for PET AC. The artifacts were

  17. Effects of MR surface coils on PET quantification.

    PubMed

    MacDonald, Lawrence R; Kohlmyer, Steve; Liu, Chi; Lewellen, Thomas K; Kinahan, Paul E

    2011-06-01

    The goal of this work was to investigate the effects of MRI surface coils on attenuation-corrected PET emission data. The authors studied the cases where either an MRI or a CT scan would be used to provide PET attenuation correction (AC). Combined MR/PET scanners that use the MRI for PET AC (MR-AC) face the challenge of absent surface coils in MR images and thus cannot directly account for attenuation in the coils. Combining MR and PET images could be achieved by transporting the subject on a stereotactically registered table between independent MRI and PET scanners. In this case, conventional PET CT-AC methods could be used. A challenge here is that high atomic number materials within MR coils cause artifacts in CT images and CT based AC is typically not validated for coil materials. The authors evaluated PET artifacts when MR coils were absent from AC data (MR-AC), or when coil attenuation was measured by CT scanning (CT-AC). They scanned PET phantoms with MR surface coils on a clinical PET/CT system and used CT-AC to reconstruct PET data. The authors then omitted the coil from the CT-AC image to mimic the MR-AC scenario. Images were acquired using cylinder and anthropomorphic phantoms. They evaluated and compared the following five scenarios: (1) A uniform cylinder phantom and head coil scanned and reconstructed using CT-AC; (2) similar emission data (with head coil present) were reconstructed without the head coil in the AC data; (3) the same cylinder scanned without the head coil present (reference scan); (4) a PET torso phantom with a full MR torso coil present in both PET and CT; (5) only half of the separable torso coil present in the PET/CT acquisition. The authors also performed analytic simulations of the first three scenarios. Streak artifacts were present in CT images containing MR surface coils due to metal components. These artifacts persisted after the CT images were converted for PET AC. The artifacts were significantly reduced when half of the

  18. Designs for an asymmetric gradient set and a compact superconducting magnet for neural magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Crozier, Stuart; Luescher, Kurt; Hinds, Gavin; Roffmann, Wolfgang U.; Doddrell, David M.

    1999-10-01

    Imaging of the head and neck is the most commonly performed clinical magnetic resonance imaging (MRI) examination [R. G. Evans and J. R. G. Evans, AJR 157, 603 (1991)]. This is usually undertaken in a generalist MRI instrument containing superconducting magnet system capable of imaging all organs. These generalist instruments are large, typically having a bore of 0.9-1.0 m and a length of 1.7-2.5 m and therefore are expensive to site, somewhat claustrophobic to the patient, and offer little access by attending physicians. In this article, we present the design of a compact, superconducting MRI magnet for head and neck imaging that is less than 0.8 m in length and discuss in detail the design of an asymmetric gradient coil set, tailored to the magnet profile. In particular, the introduction of a radio-frequency FM modulation scheme in concert with a gradient sequence allows the epoch of the linear region of the gradient set to be much closer to the end of the gradient structure than was previously possible. Images from a prototype gradient set demonstrate the effectiveness of the designs.

  19. NCSX Trim Coil Design

    SciTech Connect

    M. Kalish, A. Brooks, J. Rushinski, R. Upcavage

    2009-05-29

    The National Compact Stellarator Experiment (NCSX) was being constructed at the Princeton Plasma Physics Laboratory in partnership with Oak Ridge National Laboratory before work was stopped in 2008. The objective of this experiment was to develop the stellarator concept and evaluate it's potential as a model for future fusion power plants. Stellarator design requires very precisely positioned Modular Coils of complex shape to form 3D plasmas. In the design of NCSX, Trim Coils were required to compensate for both the positioning of the coils during assembly and the fabrication tolerances of the Modular Coils. Use of the Trim Coils allowed for larger tolerances increasing ease of assembly and decreasing overall cost. A set of Trim coils was developed to suppress the toroidal flux in island regions due to misalignment, magnetic materials, and eddy currents. The requirement imposed upon the design forced the toroidal flux in island regions below 10% of the total toroidal flux in the plasma. An analysis was first performed to evaluate candidate Trim Coil configurations iterating both the size, number, and position of the coils. The design was optimized considering both performance and cost while staying within the tight restraints presented by the space limited geometry. The final design of the Trim Coils incorporated a 48 Coil top bottom symmetric set. Fabrication costs were minimized by having only two coil types and using a planar conventional design with off the shelf commercial conductor. The Trim Coil design incorporated supports made from simple structural shapes assembled together in a way which allowed for adjustment as well as accommodation for the tolerance build up on the mating surfaces. This paper will summarize the analysis that led to the optimization of the Trim Coils set, the trim coil mechanical design, thermal and stress analysis, and the design of the supporting Trim Coil structure.

  20. Eight channel transmit array volume coil using on-coil radiofrequency current sources

    PubMed Central

    Kurpad, Krishna N.; Boskamp, Eddy B.

    2014-01-01

    Background At imaging frequencies associated with high-field MRI, the combined effects of increased load-coil interaction and shortened wavelength results in degradation of circular polarization and B1 field homogeneity in the imaging volume. Radio frequency (RF) shimming is known to mitigate the problem of B1 field inhomogeneity. Transmit arrays with well decoupled transmitting elements enable accurate B1 field pattern control using simple, non-iterative algorithms. Methods An eight channel transmit array was constructed. Each channel consisted of a transmitting element driven by a dedicated on-coil RF current source. The coil current distributions of characteristic transverse electromagnetic (TEM) coil resonant modes were non-iteratively set up on each transmitting element and 3T MRI images of a mineral oil phantom were obtained. Results B1 field patterns of several linear and quadrature TEM coil resonant modes that typically occur at different resonant frequencies were replicated at 128 MHz without having to retune the transmit array. The generated B1 field patterns agreed well with simulation in most cases. Conclusions Independent control of current amplitude and phase on each transmitting element was demonstrated. The transmit array with on-coil RF current sources enables B1 field shimming in a simple and predictable manner. PMID:24834418

  1. Eight channel transmit array volume coil using on-coil radiofrequency current sources.

    PubMed

    Kurpad, Krishna N; Boskamp, Eddy B; Wright, Steven M

    2014-04-01

    At imaging frequencies associated with high-field MRI, the combined effects of increased load-coil interaction and shortened wavelength results in degradation of circular polarization and B1 field homogeneity in the imaging volume. Radio frequency (RF) shimming is known to mitigate the problem of B1 field inhomogeneity. Transmit arrays with well decoupled transmitting elements enable accurate B1 field pattern control using simple, non-iterative algorithms. An eight channel transmit array was constructed. Each channel consisted of a transmitting element driven by a dedicated on-coil RF current source. The coil current distributions of characteristic transverse electromagnetic (TEM) coil resonant modes were non-iteratively set up on each transmitting element and 3T MRI images of a mineral oil phantom were obtained. B1 field patterns of several linear and quadrature TEM coil resonant modes that typically occur at different resonant frequencies were replicated at 128 MHz without having to retune the transmit array. The generated B1 field patterns agreed well with simulation in most cases. Independent control of current amplitude and phase on each transmitting element was demonstrated. The transmit array with on-coil RF current sources enables B1 field shimming in a simple and predictable manner.

  2. Cavity resonator coil for high field magnetic resonance imaging.

    PubMed

    Solis, S E; Tomasi, D; Rodriguez, A O

    2007-01-01

    A variant coil of the high frequency cavity resonator coil was experimentally developed according to the theoretical frame proposed by Mansfield in 1990. This coil design is similar to the popular birdcage coil but it has the advantage that it can be easily built following the physical principles of the cavity resonators [1]. The equivalent circuit approach was used to compute the resonant frequency of this coil design, and compared the results with those frequency values obtained with theory. A transceiver coil composed of 4 cavities with a rod length of 4.5 cm, and a resonant frequency of 170.29 MHz was built. Phantom images were then acquired to test its viability using standard imaging sequences. The theory facilitates its development for high frequency MRI applications of animal models.

  3. Electromagnetic pump stator coil

    DOEpatents

    Fanning, A.W.; Dahl, L.R.

    1996-06-25

    An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom. 9 figs.

  4. Electromagnetic pump stator coil

    DOEpatents

    Fanning, Alan W.; Dahl, Leslie R.

    1996-01-01

    An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom.

  5. Selective channel combination of MRI signal phase.

    PubMed

    Vegh, Viktor; O'Brien, Kieran; Barth, Markus; Reutens, David C

    2016-11-01

    Signal magnitude can robustly be combined using the sum-of-squares approach. Methods have been developed to combine complex images. However, techniques based only on signal phase have not been developed and evaluated. We performed simulations to demonstrate the effect of noise on coil combination. 32-channel 7 Tesla human gradient echo MRI brain data were collected. We combined phase images based on phase noise leading to spatially selective and coil selective combination of phase images. We compared our selective combination approach to optimal noise distribution and adaptive combination methods. We found that selective combination of signal phases leads to improved phase signal-to-noise ratio. Furthermore, a phase shift can be present in combined phase images introduced by the method used to combine multiple channel phases. Mapping of signal phase from ultra-high field MRI data undoubtedly provides a wealth of information about the ageing brain and the effects of neurodegenerative disorders. Measurement of signal phase is essential in frequency shift mapping and in quantitative susceptibility mapping. The method used to combine signal phase should be informed by an understanding of the noise distribution in signal phase at the individual channel level. Magn Reson Med 76:1469-1477, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.

  6. Engineered coiled-coil protein microfibers.

    PubMed

    Hume, Jasmin; Sun, Jennifer; Jacquet, Rudy; Renfrew, P Douglas; Martin, Jesse A; Bonneau, Richard; Gilchrist, M Lane; Montclare, Jin Kim

    2014-10-13

    The fabrication of de novo proteins able to self-assemble on the nano- to meso-length scales is critical in the development of protein-based biomaterials in nanotechnology and medicine. Here we report the design and characterization of a protein engineered coiled-coil that not only assembles into microfibers, but also can bind hydrophobic small molecules. Under ambient conditions, the protein forms fibers with nanoscale structure possessing large aspect ratios formed by bundles of α-helical homopentameric assemblies, which further assemble into mesoscale fibers in the presence of curcumin through aggregation. Surprisingly, these biosynthesized fibers are able to form in conditions of remarkably low concentrations. Unlike previously designed coiled-coil fibers, these engineered protein microfibers can bind the small molecule curcumin throughout the assembly, serving as a depot for encapsulation and delivery of other chemical agents within protein-based 3D microenvironments.

  7. Coil bobbin for stable superconducting coils

    SciTech Connect

    Kashima, T.; Yamanaka, A.; Nishijima, S.; Okada, T.

    1996-12-31

    The coil bobbin for a.c. coils have been prepared with the high strength polyethylene fiber (DF) reinforced plastics (DFRP) or with hybrid composites reinforced by DF and glass fiber (GF). The coils with the bobbin were found to be markedly stable. The DF has a large negative thermal expansion coefficient and hence the circumferential thermal strain of bobbin can be designed by changing the ratio of DF to GF layer thickness (DF/GF). It was found that the thermal expansion coefficient in the circumferential direction of the outer surface changed from negative to positive with increasing DF/GF and became nearly zero at a DF/GF of approximately 5.1 kA rms class a.c. coils having a bobbin with a negative thermal expansion coefficient or small thermal contraction in the circumferential direction were fabricated and were confirmed to show higher quench current than that with a GFRP bobbin.

  8. Transcranial Magnetic Stimulation-coil design with improved focality

    NASA Astrophysics Data System (ADS)

    Rastogi, P.; Lee, E. G.; Hadimani, R. L.; Jiles, D. C.

    2017-05-01

    Transcranial Magnetic Stimulation (TMS) is a technique for neuromodulation that can be used as a non-invasive therapy for various neurological disorders. In TMS, a time varying magnetic field generated from an electromagnetic coil placed on the scalp is used to induce an electric field inside the brain. TMS coil geometry plays an important role in determining the focality and depth of penetration of the induced electric field responsible for stimulation. Clinicians and basic scientists are interested in stimulating a localized area of the brain, while minimizing the stimulation of surrounding neural networks. In this paper, a novel coil has been proposed, namely Quadruple Butterfly Coil (QBC) with an improved focality over the commercial Figure-8 coil. Finite element simulations were conducted with both the QBC and the conventional Figure-8 coil. The two coil's stimulation profiles were assessed with 50 anatomically realistic MRI derived head models. The coils were positioned on the vertex and the scalp over the dorsolateral prefrontal cortex to stimulate the brain. Computer modeling of the coils has been done to determine the parameters of interest-volume of stimulation, maximum electric field, location of maximum electric field and area of stimulation across all 50 head models for both coils.

  9. An open-access, very-low-field MRI system for posture-dependent 3He human lung imaging

    NASA Astrophysics Data System (ADS)

    Tsai, L. L.; Mair, R. W.; Rosen, M. S.; Patz, S.; Walsworth, R. L.

    2008-08-01

    We describe the design and operation of an open-access, very-low-field, magnetic resonance imaging (MRI) system for in vivo hyperpolarized 3He imaging of the human lungs. This system permits the study of lung function in both horizontal and upright postures, a capability with important implications in pulmonary physiology and clinical medicine, including asthma and obesity. The imager uses a bi-planar B0 coil design that produces an optimized 65 G (6.5 mT) magnetic field for 3He MRI at 210 kHz. Three sets of bi-planar coils produce the x, y, and z magnetic field gradients while providing a 79-cm inter-coil gap for the imaging subject. We use solenoidal Q-spoiled RF coils for operation at low frequencies, and are able to exploit insignificant sample loading to allow for pre-tuning/matching schemes and for accurate pre-calibration of flip angles. We obtain sufficient SNR to acquire 2D 3He images with up to 2.8 mm resolution, and present initial 2D and 3D 3He images of human lungs in both supine and upright orientations. 1H MRI can also be performed for diagnostic and calibration reasons.

  10. An Open-Access, Very-Low-Field MRI System for Posture-Dependent 3He Human Lung Imaging

    PubMed Central

    Tsai, L. L.; Mair, R. W.; Rosen, M. S.; Patz, S.; Walsworth, R. L.

    2008-01-01

    We describe the design and operation of an open-access, very-low-field, magnetic resonance imaging (MRI) system for in-vivo hyperpolarized 3He imaging of the human lungs. This system permits the study of lung function in both horizontal and upright postures, a capability with important implications in pulmonary physiology and clinical medicine, including asthma and obesity. The imager uses a bi-planar B0 coil design that produces an optimized 65 G (6.5 mT) magnetic field for 3He MRI at 210 kHz. Three sets of bi-planar coils produce the x, y, and z magnetic field gradients while providing a 79-cm inter-coil gap for the imaging subject. We use solenoidal Q-spoiled RF coils for operation at low frequencies, and are able to exploit insignificant sample loading to allow for pre-tuning/matching schemes and for accurate pre-calibration of flip angles. We obtain sufficient SNR to acquire 2D 3He images with up to 2.8 mm resolution, and present initial 2D and 3D 3He images of human lungs in both supine and upright orientations. 1H MRI can also be performed for diagnostic and calibration reasons. PMID:18550402

  11. Whole-body MRI using a rolling table platform for the detection of bone metastases.

    PubMed

    Lauenstein, Thomas C; Freudenberg, Lutz S; Goehde, Susanne C; Ruehm, Stefan G; Goyen, Mathias; Bosk, Silke; Debatin, Jörg F; Barkhausen, Jörg

    2002-08-01

    The aim of this study was to compare the results of whole-body MRI using a recently developed rolling table platform with findings of nuclear scintigraphy in patients with bone metastases. Twenty-six patients with known or suspected bone metastases who had undergone radionuclide scintigraphy were examined by MRI. Patients were placed on a rolling table platform with integrated phased-array surface coils [BodySURF (system for unlimited field of view)] capable of pulling the patient through the isocenter of the magnet. Using a five-station approach three different image sets (T1-weighted gradient recalled echo, half-Fourier acquired single-shot turbo spin echo, and short tau inversion recovery) were collected in the coronal plane. In addition, the spine was imaged in the sagittal plane. The MRI findings were compared with the results obtained by scintigraphy. The whole-body MR examination lasting merely 40 min was feasible in all 26 patients. The MRI revealed excellent correlation with scintigraphy regarding metastatic lesions. A total of 60 regions with metastatic lesions were identified on bone scintigraphy. Fifty-three regions were detected on identical locations by MRI. The regions missed by MRI were located mainly in ribs and skull. The MRI could identify additional bone metastases in spine, pelvis, and femur. The MRI screening for bone metastases correlated well with bone scintigraphy. Use of the rolling table platform permits rapid imaging based on three different contrast mechanisms of the entire skeletal system.

  12. An eight-channel transmit/receive multipurpose coil for musculoskeletal MR imaging at 7 T.

    PubMed

    Kraff, Oliver; Bitz, Andreas K; Dammann, Philipp; Ladd, Susanne C; Ladd, Mark E; Quick, Harald H

    2010-12-01

    MRI plays a leading diagnostic role in assessing the musculoskeletal (MSK) system and is well established for most questions at clinically used field strengths (up to 3 T). However, there are still limitations in imaging early stages of cartilage degeneration, very fine tendons and ligaments, or in locating nerve lesions, for example. 7 T MRI of the knee has already received increasing attention in the current published literature, but there is a strong need to develop new radiofrequency (RF) coils to assess more regions of the MSK system. In this work, an eight-channel transmit/receive RF array was built as a multipurpose coil for imaging some of the thus far neglected regions. An extensive coil characterization protocol and first in vivo results of the human wrist, shoulder, elbow, knee, and ankle imaged at 7 T will be presented. Eight surface loop coils with a dimension of 6 x 7 cm2 were machined from FR4 circuit board material. To facilitate easy positioning, two coil clusters, each with four loop elements, were combined to one RF transmit/receive array. An overlapped and shifted arrangement of the coil elements was chosen to reduce the mutual inductance between neighboring coils. A phantom made of body-simulating liquid was used for tuning and matching on the bench. Afterward, the S-parameters were verified on a human wrist, elbow, and shoulder. For safety validation, a detailed compliance test was performed including full wave simulations of the RF field distribution and the corresponding specific absorption rate (SAR) for all joints. In vivo images of four volunteers were assessed with gradient echo and spin echo sequences modified to obtain optimal image contrast, full anatomic coverage, and the highest spatial resolution within a reasonable acquisition time. The performance of the RF coil was additionally evaluated by in vivo B1 mapping. A comparison of B1 per unit power, flip angle distribution, and anatomic images showed a fairly homogeneous excitation

  13. Superconducting magnetic coil

    DOEpatents

    Aized, Dawood; Schwall, Robert E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  14. Superconducting magnetic coil

    DOEpatents

    Aized, D.; Schwall, R.E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil. 15 figs.

  15. Superconducting magnetic coil

    DOEpatents

    Aized, Dawood; Schwall, Robert E.

    1996-06-11

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  16. High-resolution MRI of the intraparotid facial nerve based on a microsurface coil and a 3D reversed fast imaging with steady-state precession DWI sequence at 3T.

    PubMed

    Chu, J; Zhou, Z; Hong, G; Guan, J; Li, S; Rao, L; Meng, Q; Yang, Z

    2013-08-01

    3D high-resolution MR imaging can provide reliable information for defining the exact relationships between the intraparotid facial nerve and adjacent structures. The purpose of this study was to explore the clinical value of using a surface coil combined with a 3D-PSIF-DWI sequence in intraparotid facial nerve imaging. Twenty-one healthy volunteers underwent intraparotid facial nerve scanning at 3T by using the 3D-PSIF-DWI sequence with both the surface coil and the head coil. Source images were processed with MIP and MPR to better delineate the intraparotid facial nerve and its branches. In addition, the SIR of the facial nerve and parotid gland was calculated. The number of facial nerve branches displayed by these 2 methods was calculated and compared. The display rates of the main trunk, divisions (cervicofacial, temporofacial), and secondary branches of the intraparotid facial nerve were 100%, 97.6%, and 51.4% by head coil and 100%, 100%, and 83.8% by surface coil, respectively. The display rate of secondary branches of the intraparotid facial nerve by these 2 methods was significantly different (P < .05). The SIRs of the intraparotid facial nerve/parotid gland in these 2 methods were significantly different (P < .05) at 1.37 ± 1.06 and 1.89 ± 0.87, respectively. The 3D-PSIF-DWI sequence combined with a surface coil can better delineate the intraparotid facial nerve and its divisions than when it is combined with a head coil, providing better image contrast and resolution. The proposed protocol offers a potentially useful noninvasive imaging sequence for intraparotid facial nerve imaging at 3T.

  17. Efficient compressed sensing SENSE parallel MRI reconstruction with joint sparsity promotion and mutual incoherence enhancement.

    PubMed

    Il Yong Chun; Adcock, Ben; Talavage, Thomas M

    2014-01-01

    Magnetic resonance imaging (MRI) is considered a key modality for the future as it offers several advantages, including the use of non-ionizing radiation and having no known side effects on the human body, and has recently begun to serve as a key component of multi-modal neuroimaging. However, two major intrinsic problems exist: slow acquisition and intrusive acoustic noise. Parallel MRI (pMRI) techniques accelerate acquisition by reducing the duration and coverage of conventional gradient encoding. The under-sampled k-space data is detected with several receiver coils surrounding the object, using distinct spatial encoding information for each coil element to reconstruct the image. However, this scanning remains slow compared to typical clinical imaging (e.g. X-ray CT). Compressed Sensing (CS), a sampling theory based on random sub-sampling, has potential to further reduce the sampling used in pMRI, accelerating acquisition further. In this work, we propose a new CS SENSE pMRI reconstruction model promoting joint sparsity across channels and enhancing mutual incoherence to improve reconstruction accuracy from limited k-space data. For fast image reconstruction and fair comparisons, all reconstructions are computed with split-Bregman and variable splitting techniques. Numerical results show that, with the introduced methods, reconstruction performance can be crucially improved with limited amount of k-space data.

  18. Magnetic field sensitivity at 7-T using dual-helmholtz transmit-only coil and 12-channel receive-only bended coil.

    PubMed

    Kim, Kyoung-Nam; Ryu, Yeunchul; Seo, Jeung-Hoon; Kim, Young-Bo

    2016-11-01

    The purpose of this study was to combine a dual-Helmholtz (DH) transmit (Tx)-only coil and 12-channel receive (Rx)-only bended phased array (PA) coil to improve the magnetic flux (|B1 |) sensitivity in the superior-to-inferior (S-I) direction during human brain magnetic resonance imaging (MRI) at 7-T. The proposed coil combination was primarily implemented by electromagnetic (EM) simulation and compared with the 16-leg birdcage coil and 8-channel PA coil, which are generally used for the Tx- and Rx-only modes, respectively. The optimal coil combinations for the proposed structure were determined by |B1 | field calculations using the |BT(+) | and |BR(-) | fields, which are respectively the transmit and receive components of the |B1 | field. The coil performance was then evaluated by a bench test and 7-T MRI experiment. The results of the computational calculations indicated that the |BT(+) | field of the DH coil was distributed similarly to that of the 16-leg birdcage coil despite the fewer conducting legs of the former. However, the 12-channel Rx-only bended PA coil had clearly higher |BR(-) | profiles compared to the 8-channel PA coil. The results of the 7-T in vivo experiment showed that the proposed combination of the DH Tx-only coil and 12-channel Rx-only bended PA coil had better |B1 | field homogeneity in the sagittal slice as well as higher |B1 | field sensitivity during human brain MRI compared to an 8-channel Rx-only PA coil. SCANNING 38:515-524, © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  19. Coiling Viscous Jets

    NASA Astrophysics Data System (ADS)

    Mahadevan, L.

    1996-11-01

    A thin stream of glycerine or other viscous fluid poured onto a horizontal plane from a sufficient height piles up in a regular coil. In its steady state, this motion is analogous to the coiling of a flexible rope (L. Mahadevan and J.B. Keller, Proc. Roy. Soc.(A) to appear.). This analogy is used to solve the nonlinear free-boundary problem for the frequency of coiling and the coil radius. The results are compared with experimental results that go back to the the work of G.I. Taylor (1969).

  20. Coil system for plasmoid thruster

    NASA Technical Reports Server (NTRS)

    Eskridge, Richard H. (Inventor); Lee, Michael H. (Inventor); Martin, Adam K. (Inventor); Fimognari, Peter J. (Inventor)

    2010-01-01

    A coil system for a plasmoid thruster includes a bias coil, a drive coil and field coils. The bias and drive coils are interleaved with one another as they are helically wound about a conical region. A first field coil defines a first passage at one end of the conical region, and is connected in series with the bias coil. A second field coil defines a second passage at an opposing end of the conical region, and is connected in series with the bias coil.

  1. Coil Embolization for Intracranial Aneurysms

    PubMed Central

    2006-01-01

    significant (log-rank p= 0.03). Coil embolization is associated with less frequent MRI-detected superficial brain deficits and ischemic lesions at 1-year. The 1- year rebleeding rate was 2.4% after coil embolization and 1% for surgical clipping. Confirmed rebleeding from the repaired aneurysm after the first year and up to year eight was low and not significantly different between coil embolization and surgical clipping (7 patients for coil embolization vs 2 patients for surgical clipping, log-rank p=0.22). Observational studies showed that patients with SAH and good clinical grade had better 6-month outcomes and lower risk of symptomatic cerebral vasospasm after coil embolization compared to surgical clipping. For unruptured intracranial aneurysms, there were no randomized controlled trials that compared coil embolization to surgical clipping. Large observational studies showed that: The risk of rupture in unruptured aneurysms less than 10 mm in diameter is about 0.05% per year for patients with no pervious history of SAH from another aneurysm. The risk of rupture increases with history of SAH and as the diameter of the aneurysm reaches 10 mm or more. Coil embolization reduced the composite rate of in hospital deaths and discharge to long-term or short-term care facilities compared to surgical clipping (Odds Ratio 2.2, 95% CI 1.6–3.1, p<0.001). The improvement in discharge disposition was highest in people older than 65 years. In-hospital mortality rate following treatment of intracranial aneurysm ranged from 0.5% to 1.7% for coil embolization and from 2.1% to 3.5% for surgical clipping. The overall 1-year mortality rate was 3.1% for coil embolization and 2.3% for surgical clipping. One-year morbidity rate was 6.4% for coil embolization and 9.8% for surgical clipping. It is not clear whether these differences were statistically significant. Coil embolization is associated with shorter hospital stay compared to surgical clipping. For both ruptured and unruptured aneurysms

  2. The Role of Nonlinear Gradients in Parallel Imaging: A k-Space Based Analysis

    PubMed Central

    GALIANA, GIGI; STOCKMANN, JASON P.; TAM, LEO; PETERS, DANA; TAGARE, HEMANT; CONSTABLE, R. TODD

    2015-01-01

    Sequences that encode the spatial information of an object using nonlinear gradient fields are a new frontier in MRI, with potential to provide lower peripheral nerve stimulation, windowed fields of view, tailored spatially-varying resolution, curved slices that mirror physiological geometry, and, most importantly, very fast parallel imaging with multichannel coils. The acceleration for multichannel images is generally explained by the fact that curvilinear gradient isocontours better complement the azimuthal spatial encoding provided by typical receiver arrays. However, the details of this complementarity have been more difficult to specify. We present a simple and intuitive framework for describing the mechanics of image formation with nonlinear gradients, and we use this framework to review some the main classes of nonlinear encoding schemes. PMID:26604857

  3. NMR and MRI apparatus and method

    DOEpatents

    Clarke, John; Kelso, Nathan; Lee, SeungKyun; Moessle, Michael; Myers, Whittier; McDermott, Robert; ten Haken, Bernard; Pines, Alexander; Trabesinger, Andreas

    2007-03-06

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. Additional signal to noise benefits are obtained by use of a low noise polarization coil, comprising litz wire or superconducting materials. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  4. Development of High-Field Permanent Magnetic Circuits for NMRI/MRI and Imaging on Mice.

    PubMed

    Wang, Guangxin; Xie, Huantong; Hou, Shulian; Chen, Wei; Yang, Xiuhong

    2016-01-01

    The high-field permanent magnetic circuits of 1.2 T and 1.5 T with novel magnetic focusing and curved-surface correction are developed. The permanent magnetic circuit comprises a magnetic yoke, main magnetic steel, nonspherical curved-surface magnetic poles, plugging magnetic steel, and side magnetic steel. In this work, a novel shimming method is proposed for the effective correction of base magnetic field (B 0) inhomogeneities, which is based on passive shimming on the telescope aspheric cutting, grinding, and fine processing technology of the nonspherical curved-surface magnetic poles and active shimming adding higher-order gradient coils. Meanwhile, the magnetic resonance imaging dedicated alloy with high-saturation magnetic field induction intensity and high electrical resistivity is developed, and nonspherical curved-surface magnetic poles which are made of the dedicated alloy have very good anti-eddy-current effect. In addition, the large temperature coefficient problem of permanent magnet can be effectively controlled by using a high quality temperature controller and deuterium external locking technique. Combining our patents such as gradient coil, RF coil, and integration computer software, two kinds of small animal Micro-MRI instruments are developed, by which the high quality MRI images of mice were obtained.

  5. Development of High-Field Permanent Magnetic Circuits for NMRI/MRI and Imaging on Mice

    PubMed Central

    Wang, Guangxin; Xie, Huantong; Hou, Shulian; Chen, Wei; Yang, Xiuhong

    2016-01-01

    The high-field permanent magnetic circuits of 1.2 T and 1.5 T with novel magnetic focusing and curved-surface correction are developed. The permanent magnetic circuit comprises a magnetic yoke, main magnetic steel, nonspherical curved-surface magnetic poles, plugging magnetic steel, and side magnetic steel. In this work, a novel shimming method is proposed for the effective correction of base magnetic field (B 0) inhomogeneities, which is based on passive shimming on the telescope aspheric cutting, grinding, and fine processing technology of the nonspherical curved-surface magnetic poles and active shimming adding higher-order gradient coils. Meanwhile, the magnetic resonance imaging dedicated alloy with high-saturation magnetic field induction intensity and high electrical resistivity is developed, and nonspherical curved-surface magnetic poles which are made of the dedicated alloy have very good anti-eddy-current effect. In addition, the large temperature coefficient problem of permanent magnet can be effectively controlled by using a high quality temperature controller and deuterium external locking technique. Combining our patents such as gradient coil, RF coil, and integration computer software, two kinds of small animal Micro-MRI instruments are developed, by which the high quality MRI images of mice were obtained. PMID:27034951

  6. Coil Compression for Accelerated Imaging with Cartesian Sampling

    PubMed Central

    Zhang, Tao; Pauly, John M.; Vasanawala, Shreyas S.; Lustig, Michael

    2012-01-01

    MRI using receiver arrays with many coil elements can provide high signal-to-noise ratio and increase parallel imaging acceleration. At the same time, the growing number of elements results in larger datasets and more computation in the reconstruction. This is of particular concern in 3D acquisitions and in iterative reconstructions. Coil compression algorithms are effective in mitigating this problem by compressing data from many channels into fewer virtual coils. In Cartesian sampling there often are fully sampled k-space dimensions. In this work, a new coil compression technique for Cartesian sampling is presented that exploits the spatially varying coil sensitivities in these non-subsampled dimensions for better compression and computation reduction. Instead of directly compressing in k-space, coil compression is performed separately for each spatial location along the fully-sampled directions, followed by an additional alignment process that guarantees the smoothness of the virtual coil sensitivities. This important step provides compatibility with autocalibrating parallel imaging techniques. Its performance is not susceptible to artifacts caused by a tight imaging fieldof-view. High quality compression of in-vivo 3D data from a 32 channel pediatric coil into 6 virtual coils is demonstrated. PMID:22488589

  7. Development of an outdoor MRI system for measuring flow in a living tree

    NASA Astrophysics Data System (ADS)

    Nagata, Akiyoshi; Kose, Katsumi; Terada, Yasuhiko

    2016-04-01

    An outdoor MRI system for noninvasive, long-term measurements of sap flow in a living tree in its natural environment has been developed. An open-access, 0.2 T permanent magnet with a 160 mm gap was combined with a radiofrequency probe, planar gradient coils, electromagnetic shielding, several electrical units, and a waterproofing box. Two-dimensional cross-sectional images were acquired for a ring-porous tree, and the anatomical structures, including xylem and phloem, were identified. The MRI flow measurements demonstrated the diurnal changes in flow velocity in the stem on a per-pixel basis. These results demonstrate that our outdoor MRI system is a powerful tool for studies of water transport in outdoor trees.

  8. Molecular basis of coiled-coil oligomerization-state specificity.

    PubMed

    Ciani, Barbara; Bjelic, Saša; Honnappa, Srinivas; Jawhari, Hatim; Jaussi, Rolf; Payapilly, Aishwarya; Jowitt, Thomas; Steinmetz, Michel O; Kammerer, Richard A

    2010-11-16

    Coiled coils are extensively and successfully used nowadays to rationally design multistranded structures for applications, including basic research, biotechnology, nanotechnology, materials science, and medicine. The wide range of applications as well as the important functions these structures play in almost all biological processes highlight the need for a detailed understanding of the factors that control coiled-coil folding and oligomerization. Here, we address the important and unresolved question why the presence of particular oligomerization-state determinants within a coiled coil does frequently not correlate with its topology. We found an unexpected, general link between coiled-coil oligomerization-state specificity and trigger sequences, elements that are indispensable for coiled-coil formation. By using the archetype coiled-coil domain of the yeast transcriptional activator GCN4 as a model system, we show that well-established trimer-specific oligomerization-state determinants switch the peptide's topology from a dimer to a trimer only when inserted into the trigger sequence. We successfully confirmed our results in two other, unrelated coiled-coil dimers, ATF1 and cortexillin-1. We furthermore show that multiple topology determinants can coexist in the same trigger sequence, revealing a delicate balance of the resulting oligomerization state by position-dependent forces. Our experimental results should significantly improve the prediction of the oligomerization state of coiled coils. They therefore should have major implications for the rational design of coiled coils and consequently many applications using these popular oligomerization domains.

  9. CC+: a relational database of coiled-coil structures

    PubMed Central

    Testa, Oliver D.; Moutevelis, Efrosini; Woolfson, Derek N.

    2009-01-01

    We introduce the CC+ Database, a detailed, searchable repository of coiled-coil assignments, which is freely available at http://coiledcoils.chm.bris.ac.uk/ccplus. Coiled coils were identified using the program SOCKET, which locates coiled coils based on knobs-into-holes packing of side chains between α-helices. A method for determining the overall sequence identity of coiled-coil sequences was introduced to reduce statistical bias inherent in coiled-coil data sets. There are two points of entry into the CC+ Database: the ‘Periodic Table of Coiled-coil Structures’, which presents a graphical path through coiled-coil space based on manually validated data, and the ‘Dynamic Interface’, which allows queries of the database at different levels of complexity and detail. The latter entry level, which is the focus of this article, enables the efficient and rapid compilation of subsets of coiled-coil structures. These can be created and interrogated with increasingly sophisticated pull-down, keyword and sequence-based searches to return detailed structural and sequence information. Also provided are means for outputting the retrieved coiled-coil data in various formats, including PyMOL and RasMol scripts, and Position-Specific Scoring Matrices (or amino-acid profiles), which may be used, for example, in protein-structure prediction. PMID:18842638

  10. Simultaneous Multiparametric PET/MRI with Silicon Photomultiplier PET and Ultra-High-Field MRI for Small-Animal Imaging.

    PubMed

    Ko, Guen Bae; Yoon, Hyun Suk; Kim, Kyeong Yun; Lee, Min Sun; Yang, Bo Yeun; Jeong, Jae Min; Lee, Dong Soo; Song, In Chan; Kim, Seok-Ki; Kim, Daehong; Lee, Jae Sung

    2016-08-01

    Visualization of biologic processes at molecular and cellular levels has revolutionized the understanding and treatment of human diseases. However, no single biomedical imaging modality provides complete information, resulting in the emergence of multimodal approaches. Combining state-of-the-art PET and MRI technologies without loss of system performance and overall image quality can provide opportunities for new scientific and clinical innovations. Here, we present a multiparametric PET/MR imager based on a small-animal dedicated, high-performance, silicon photomultiplier (SiPM) PET system and a 7-T MR scanner. A SiPM-based PET insert that has the peak sensitivity of 3.4% and center volumetric resolution of 1.92/0.53 mm(3) (filtered backprojection/ordered-subset expectation maximization) was developed. The SiPM PET insert was placed between the mouse body transceiver coil and gradient coil of a 7-T small-animal MRI scanner for simultaneous PET/MRI. Mutual interference between the MRI and SiPM PET systems was evaluated using various MR pulse sequences. A cylindric corn oil phantom was scanned to assess the effects of the SiPM PET on the MR image acquisition. To assess the influence of MRI on the PET imaging functions, several PET performance indicators including scintillation pulse shape, flood image quality, energy spectrum, counting rate, and phantom image quality were evaluated with and without the application of MR pulse sequences. Simultaneous mouse PET/MRI studies were also performed to demonstrate the potential and usefulness of the multiparametric PET/MRI in preclinical applications. Excellent performance and stability of the PET system were demonstrated, and the PET/MRI combination did not result in significant image quality degradation of either modality. Finally, simultaneous PET/MRI studies in mice demonstrated the feasibility of the developed system for evaluating the biochemical and cellular changes in a brain tumor model and facilitating the

  11. Heart MRI

    MedlinePlus

    Magnetic resonance imaging - cardiac; Magnetic resonance imaging - heart; Nuclear magnetic resonance - cardiac; NMR - cardiac; MRI of the heart; Cardiomyopathy - MRI; Heart failure - MRI; Congenital heart disease - MRI

  12. A novel radio frequency coil for veterinary magnetic resonance imaging system

    NASA Astrophysics Data System (ADS)

    Meng, Bin; Huang, Kai-Wen; Wang, Wei-Min

    2010-07-01

    In this article, a novel designed radio frequency (RF) coil is designed and built for the imaging of puppies in a V-shape permanent magnetic resonance imaging (MRI) system. Two sets of Helmholtz coil pairs with a V-shape structure are used to improve the holding of an animal in the coil. The homogeneity and the sensitivity of the RF field in the coil are analysed by theoretical calculation. The size and the shape of the new coil are optimized and validated by simulation through using the finite element method (FEM). Good magnetic resonance (MR) images are achieved on a shepherd dog.

  13. Coiled-coil length: Size does matter.

    PubMed

    Surkont, Jaroslaw; Diekmann, Yoan; Ryder, Pearl V; Pereira-Leal, Jose B

    2015-12-01

    Protein evolution is governed by processes that alter primary sequence but also the length of proteins. Protein length may change in different ways, but insertions, deletions and duplications are the most common. An optimal protein size is a trade-off between sequence extension, which may change protein stability or lead to acquisition of a new function, and shrinkage that decreases metabolic cost of protein synthesis. Despite the general tendency for length conservation across orthologous proteins, the propensity to accept insertions and deletions is heterogeneous along the sequence. For example, protein regions rich in repetitive peptide motifs are well known to extensively vary their length across species. Here, we analyze length conservation of coiled-coils, domains formed by an ubiquitous, repetitive peptide motif present in all domains of life, that frequently plays a structural role in the cell. We observed that, despite the repetitive nature, the length of coiled-coil domains is generally highly conserved throughout the tree of life, even when the remaining parts of the protein change, including globular domains. Length conservation is independent of primary amino acid sequence variation, and represents a conservation of domain physical size. This suggests that the conservation of domain size is due to functional constraints. © 2015 Wiley Periodicals, Inc.

  14. Characterization of signal properties in atherosclerotic plaque components by intravascular MRI.

    PubMed

    Rogers, W J; Prichard, J W; Hu, Y L; Olson, P R; Benckart, D H; Kramer, C M; Vido, D A; Reichek, N

    2000-07-01

    Magnetic resonance imaging (MRI) is capable of distinguishing between atherosclerotic plaque components solely on the basis of biochemical differences. However, to date, the majority of plaque characterization has been performed by using high-field strength units or special coils, which are not clinically applicable. Thus, the purpose of the present study was to evaluate MRI properties in histologically verified plaque components in excised human carotid endarterectomy specimens with the use of a 5F catheter-based imaging coil, standard acquisition software, and a clinical scanner operating at 0.5 T. Human carotid endarterectomy specimens from 17 patients were imaged at 37 degrees C by use of an opposed solenoid intravascular radiofrequency coil integrated into a 5F double-lumen catheter interfaced to a 0.5-T General Electric interventional scanner. Cross-sectional intravascular MRI (156x250 microm in-plane resolution) that used different imaging parameters permitted the calculation of absolute T1and T2, the magnetization transfer contrast ratio, the magnitude of regional signal loss associated with an inversion recovery sequence (inversion ratio), and regional signal loss in gradient echo (gradient echo-to-spin echo ratio) in plaque components. Histological staining included hematoxylin and eosin, Masson's trichrome, Kossa, oil red O, and Gomori's iron stain. X-ray micrographs were also used to identify regions of calcium. Seven plaque components were evaluated: fibrous cap, smooth muscle cells, organizing thrombus, fresh thrombus, lipid, edema, and calcium. The magnetization transfer contrast ratio was significantly less in the fibrous cap (0.62+/-13) than in all other components (P<0.05) The inversion ratio was greater in lipid (0.91+/-0.09) than all other components (P<0.05). Calcium was best distinguished by using the gradient echo-to-spin echo ratio, which was lower in calcium (0.36+/-0.2) than in all plaque components, except for the organizing thrombus (P<0

  15. Numerical simulation of SAR induced around Co-Cr-Mo hip prostheses in situ exposed to RF fields associated with 1.5 and 3 T MRI body coils.

    PubMed

    Powell, John; Papadaki, Annie; Hand, Jeff; Hart, Alister; McRobbie, Donald

    2012-09-01

    When patients with metallic prosthetic implants undergo an MR procedure, the interaction between the RF field and the prosthetic device may lead to an increase in specific absorption rate (SAR) in tissues surrounding the prosthesis. In this work, the distribution of SAR(10g) around bilateral CoCrMo alloy hip prostheses in situ in anatomically realistic voxel models of an adult male and female due to RF fields from a generic birdcage coil driven at 64 or 128 MHz are predicted using a time-domain finite integration technique. Results indicate that the spatial distribution and maximum values of SAR(10g) are dependent on body model, frequency, and the position of the coil relative to the body. Enhancement of SAR(10g) close to the extremities of a prosthesis is predicted. Values of SAR(10g) close to the prostheses are compliant with recommended limits if the prostheses are located outside the coil. However, caution is required when the prostheses are within the coil since the predicted SAR(10g) close to an extremity of a prosthesis exceeds recommended limits when the whole body averaged SAR is 2 W kg(-1) . Compliance with recommended limits is likely to require a reduction in the time averaged input power. Copyright © 2011 Wiley Periodicals, Inc.

  16. Commercial applications for COIL

    NASA Astrophysics Data System (ADS)

    Solomon, Wayne C.; Carroll, David L.; King, D. M.; Fockler, L. A.; Stromberg, D. S.; Sexauer, M.; Milmoe, A.; Sentman, Lee H.

    2000-01-01

    The chemical oxygen-iodine laser (COIL) is a high power, fiber deliverable tool, which can be used for a number of different industrial applications. COIL is of particular interest because of its short fiber deliverable wavelength, high scaleable continuous wave power, and excellent material interaction properties. In past research the University of Illinois at Urbana-Champaign identified and decommissioning and decontamination (DD) of nuclear facilities as a primary focus for COIL technology. DD will be a major challenge in the coming decades. The use of a robotically driven fiber delivered cutting/ablation tool in contaminated areas promises to lower risks to workers for the DD mission. Further, the high cutting speed of COIL will significantly reduce the time required to cut contaminated equipment, reducing costs. The high power of COIL will permit the dismantling of thick stacks of piping and equipment as well as reactor vessels. COIL is very promising for the removal of material from contaminated surfaces, perhaps to depths thicker than an inch. Laser cutting and ablation minimizes dust and fumes, which reduces the required number of high efficiency particulate accumulator filters, thus reducing costly waste disposal. Other potential industrial applications for COIL are shipbuilding, automotive manufacturing, heavy machinery manufacturing, tasks requiring underwater cutting or welding, and there appear to be very promising applications for high powers lasers in the oil industry.

  17. Synthesis, characterisation and applications of coiled carbon nanotubes.

    PubMed

    Hanus, Monica J; Harris, Andrew T

    2010-04-01

    Coiled carbon nanotubes are helical carbon structures formed when heptagonal and pentagonal rings are inserted into the hexagonal backbone of a 'straight' nanotube. Coiled carbon nanotubes have been reported with both regular and irregular helical structures. In this work the structure, growth mechanism(s), synthesis, properties and potential applications of coiled carbon nanotubes are reviewed. Published data suggests that coiled carbon nanotube synthesis occurs due to nonuniform extrusion of carbon from a catalyst surface. To date, coiled carbon nanotubes have been synthesised using catalyst modification techniques including: (i) the addition of S or P containing compounds during synthesis; (ii) the use of binary or ternary metal catalysts; (iii) the use of microwaves to create a local temperature gradient around individual catalyst particles and; (iv) the use of pH control during catalyst preparation. In most instances coiled carbon nanotubes are produced as a by-product; high yield and/or large-scale synthesis of coiled carbon nanotubes remains problematic. The qualitative analysis of coiled carbon nanotubes is currently hindered by the absence of specific characterisation data in the literature, e.g., oxidation profiles measured by thermogravimetric analysis and Raman spectra of pure coiled carbon nanotube samples.

  18. Correction coil cable

    DOEpatents

    Wang, S.T.

    1994-11-01

    A wire cable assembly adapted for the winding of electrical coils is taught. A primary intended use is for use in particle tube assemblies for the Superconducting Super Collider. The correction coil cables have wires collected in wire array with a center rib sandwiched therebetween to form a core assembly. The core assembly is surrounded by an assembly housing having an inner spiral wrap and a counter wound outer spiral wrap. An alternate embodiment of the invention is rolled into a keystoned shape to improve radial alignment of the correction coil cable on a particle tube in a particle tube assembly. 7 figs.

  19. ELECTRICAL COIL STRUCTURE

    DOEpatents

    Baker, W.R.; Hartwig, A.

    1962-09-25

    A compactly wound electrical coil is designed for carrying intense pulsed currents such as are characteristic of controlled thermonuclear reaction devices. A flat strip of conductor is tightly wound in a spiral with a matching flat strip of insulator. To provide for a high fluid coolant flow through the coil with minimum pumping pressure, a surface of the conductor is scored with parallel transverse grooves which form short longitudinal coolant pasaages when the conductor is wound in the spiral configuration. Owing to this construction, the coil is extremely resistant to thermal and magnetic shock from sudden high currents. (AEC)

  20. Coil spring venting arrangement

    DOEpatents

    McCugh, R.M.

    1975-10-21

    A simple venting device for trapped gas pockets in hydraulic systems is inserted through a small access passages, operated remotely, and removed completely. The device comprises a small diameter, closely wound coil spring which is pushed through a guide temporarily inserted in the access passage. The guide has a central passageway which directs the coil spring radially upward into the pocket, so that, with the guide properly positioned for depth and properly oriented, the coil spring can be pushed up into the top of the pocket to vent it. By positioning a seal around the free end of the guide, the spring and guide are removed and the passage is sealed.

  1. Simultaneous electroencephalography-functional MRI at 3 T: an analysis of safety risks imposed by performing anatomical reference scans with the EEG equipment in place.

    PubMed

    Nöth, Ulrike; Laufs, Helmut; Stoermer, Robert; Deichmann, Ralf

    2012-03-01

    To describe heating effects to be expected in simultaneous electroencephalography (EEG) and magnetic resonance imaging (MRI) when deviating from the EEG manufacturer's instructions; to test which anatomical MRI sequences have a sufficiently low specific absorption rate (SAR) to be performed with the EEG equipment in place; and to suggest precautions to reduce the risk of heating. Heating was determined in vivo below eight EEG electrodes, using both head and body coil transmission and sequences covering the whole range of SAR values. Head transmit coil: temperature increases were below 2.2°C for low SAR sequences, but reached 4.6°C (one subject, clavicle) for high SAR sequences; the equilibrium temperature T(eq) remained below 39°C. Body transmit coil: temperature increases were higher and more frequent over subjects and electrodes, with values below 2.6°C for low SAR sequences, reaching 6.9°C for high SAR sequences (T8 electrode) with T(eq) exceeding a critical level of 40°C. Anatomical imaging should be based on T1-weighted sequences (FLASH, MPRAGE, MDEFT) with an SAR below values for functional MRI sequences based on gradient echo planar imaging. Anatomical sequences with a high SAR can pose a significant risk, which is reduced by using head coil transmission. Copyright © 2011 Wiley-Liss, Inc.

  2. Pushing the limits of ultra-high resolution human brain imaging with SMS-EPI demonstrated for columnar level fMRI.

    PubMed

    Feinberg, David A; Vu, An T; Beckett, Alexander

    2017-02-14

    Encoding higher spatial resolution in simultaneous multi-slice (SMS) EPI is highly dependent on gradient performance, high density receiver coil arrays and pulse sequence optimization. We simulate gradient amplitude and slew rate determination of EPI imaging performance in terms of minimum TE, echo spacing (ES) and spatial resolution. We discuss the effects of image zooming in pulse sequences that have been used for sub-millimeter resolutions and the trade-offs in using partial Fourier and parallel imaging to reduce TE, PSF and ES. Using optimizations for SMS EPI pulse sequences with available gradient and receiver hardware, experimental results in ultra-high resolution (UHR) (0.45-0.5mm isotropic) SMS-EPI fMRI and mapping ocular dominance columns (ODC) in human brain at 0.5 mm isotropic resolution are demonstrated. We discuss promising future directions of UHR fMRI.

  3. Coil Knotting during Endovascular Coil Embolization for Ruptured MCA Aneurysm

    PubMed Central

    Kwon, S.C.; Lyo, I.U.; Shin, S.H.; Park, J.B.; Kim, Y.

    2008-01-01

    Summary Complications during coil embolization of cerebral aneurysms include thromboembolic events, hemorrhagic complications related to procedural aneurysmal rupture and parent vessel perforation, and coil-related complications. The present report describes a rare coil-related complication involving spontaneous coil knotting. PMID:20557732

  4. Mid-Range Coil Array for Magnetic Resonance Imaging of Small Animals

    SciTech Connect

    Solis, S. E.; Tomasi, D.; Rodriguez, A. O.

    2008-08-11

    The vast majority of articles on MRI RF coils over the past two decades have focused on large coils, where sample losses dominate, or on micro-coils, where sample and capacitor losses are negligible. Few have addressed the mid-range coils, seen in the majority of small-animal applications, where all the sources of loss are important, for example, mouse brain and body coils from 125 to 750 MHz. We developed a four-saddle coil array for magnetic resonance imaging of small animals. The saddle coil elements in the array were evenly distributed to cover the rat's head. The coil array was tuned to the resonant frequency of 170 MHz. Due to the close proximity of the coil elements, it was necessary to decouple the coil array using nonmagnetic trimmers and, it was operated in the transceiver mode and quadrature-driven. To test the coil array performance at high field, phantom images were acquired with our saddle coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. Ex vivo brain images of a rat were also acquired, and proved the feasibility of the scaled version of a saddle coil array and, its compatibility with standard pulse sequences when used in a high field magnetic resonance imager.

  5. Mid-Range Coil Array for Magnetic Resonance Imaging of Small Animals

    NASA Astrophysics Data System (ADS)

    Solis, S. E.; Tomasi, D.; Rodríguez, A. O.

    2008-08-01

    The vast majority of articles on MRI RF coils over the past two decades have focused on large coils, where sample losses dominate, or on micro-coils, where sample and capacitor losses are negligible. Few have addressed the mid-range coils, seen in the majority of small-animal applications, where all the sources of loss are important, for example, mouse brain and body coils from 125 to 750 MHz. We developed a four-saddle coil array for magnetic resonance imaging of small animals. The saddle coil elements in the array were evenly distributed to cover the rat's head. The coil array was tuned to the resonant frequency of 170 MHz. Due to the close proximity of the coil elements, it was necessary to decouple the coil array using nonmagnetic trimmers and, it was operated in the transceiver mode and quadrature-driven. To test the coil array performance at high field, phantom images were acquired with our saddle coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. Ex vivo brain images of a rat were also acquired, and proved the feasibility of the scaled version of a saddle coil array and, its compatibility with standard pulse sequences when used in a high field magnetic resonance imager.

  6. A periodic table of coiled-coil protein structures.

    PubMed

    Moutevelis, Efrosini; Woolfson, Derek N

    2009-01-23

    Coiled coils are protein structure domains with two or more alpha-helices packed together via interlacing of side chains known as knob-into-hole packing. We analysed and classified a large set of coiled-coil structures using a combination of automated and manual methods. This led to a systematic classification that we termed a "periodic table of coiled coils," which we have made available at http://coiledcoils.chm.bris.ac.uk/ccplus/search/periodic_table. In this table, coiled-coil assemblies are arranged in columns with increasing numbers of alpha-helices and in rows of increased complexity. The table provides a framework for understanding possibilities in and limits on coiled-coil structures and a basis for future prediction, engineering and design studies.

  7. Borehole induction coil transmitter

    DOEpatents

    Holladay, Gale; Wilt, Michael J.

    2002-01-01

    A borehole induction coil transmitter which is a part of a cross-borehole electromagnetic field system that is used for underground imaging applications. The transmitter consists of four major parts: 1) a wound ferrite or mu-metal core, 2) an array of tuning capacitors, 3) a current driver circuit board, and 4) a flux monitor. The core is wound with several hundred turns of wire and connected in series with the capacitor array, to produce a tuned coil. This tuned coil uses internal circuitry to generate sinusoidal signals that are transmitted through the earth to a receiver coil in another borehole. The transmitter can operate at frequencies from 1-200 kHz and supplies sufficient power to permit the field system to operate in boreholes separated by up to 400 meters.

  8. Mitochondrial Proteins Containing Coiled-Coil-Helix-Coiled-Coil-Helix (CHCH) Domains in Health and Disease.

    PubMed

    Modjtahedi, Nazanine; Tokatlidis, Kostas; Dessen, Philippe; Kroemer, Guido

    2016-03-01

    Members of the coiled-coil-helix-coiled-coil-helix (CHCH) domain-containing protein family that carry (CX9C) type motifs are imported into the mitochondrion with the help of the disulfide relay-dependent MIA import pathway. These evolutionarily conserved proteins are emerging as new cellular factors that control mitochondrial respiration, redox regulation, lipid homeostasis, and membrane ultrastructure and dynamics. We discuss recent insights on the activity of known (CX9C) motif-carrying proteins in mammals and review current data implicating the Mia40/CHCHD4 import machinery in the regulation of their mitochondrial import. Recent findings and the identification of disease-associated mutations in specific (CX9C) motif-carrying proteins have highlighted members of this family of proteins as potential therapeutic targets in a variety of human disorders.

  9. Enhancing Induction Coil Reliability

    NASA Astrophysics Data System (ADS)

    Kreter, K.; Goldstein, R.; Yakey, C.; Nemkov, V.

    2014-12-01

    In induction hardening, thermal fatigue is one of the main copper failure modes of induction heat treating coils. There have been papers published that describe this failure mode and others that describe some good design practices. The variables previously identified as the sources of thermal fatigue include radiation from the part surface, frequency, current, concentrator losses, water pressure and coil wall thickness. However, there is very little quantitative data on the factors that influence thermal fatigue in induction coils is available in the public domain. By using finite element analysis software this study analyzes the effect of common design variables of inductor cooling, and quantifies the relative importance of these variables. A comprehensive case study for a single shot induction coil with Fluxtrol A concentrator applied is used for the analysis.

  10. Design considerations and experimental results for MRI systems using HTS magnets

    NASA Astrophysics Data System (ADS)

    Parkinson, Ben

    2017-01-01

    An increasing number of magnetic resonance imaging (MRI) systems using high temperature superconductors (HTS) magnets have been designed and constructed, with detailed results of their performance now available. Features of REBCO and BSCCO conductors are described as they pertain to use in high homogeneity magnets, with emphasis placed on the practical use of these conductors in magnets. Methods of coil winding are discussed, in particular the differences between pancake and layer winding techniques. Design considerations for HTS magnets are presented in light of the difficulties presented by quench in these magnets, but also in terms of the features of HTS magnets afforded by their high operating temperatures, namely robust cryogen free operation and the potential to use unshielded gradient coils. Drawing on two example MRI systems, namely a 3 T BSCCO brain imaging magnet developed in Japan and a 1.5 T REBCO orthopaedic imaging system developed in New Zealand, the report details real-world stability and homogeneity of HTS-MRI systems, in particular with regards to the screening current effects observed in these systems. It is concluded that, apart from conductor cost, there are currently no technical obstacles to use of HTS-MRI systems.

  11. Head MRI

    MedlinePlus

    ... the head; MRI - cranial; NMR - cranial; Cranial MRI; Brain MRI; MRI - brain; MRI - head ... the test, tell your provider if you have: Brain aneurysm clips An artificial heart valves Heart defibrillator ...

  12. Linear Rogowski coil.

    PubMed

    Nassisi, V; Delle Side, D

    2017-02-01

    Nowadays, the employment and development of fast current pulses require sophisticated systems to perform measurements. Rogowski coils are used to diagnose cylindrical shaped beams; therefore, they are designed and built with a toroidal structure. Recently, to perform experiments of radiofrequency biophysical stresses, flat transmission lines have been developed. Therefore, in this work we developed a linear Rogowski coil to detect current pulses inside flat conductors. The system is first approached by means of transmission line theory. We found that, if the pulse width to be diagnosed is comparable with the propagation time of the signal in the detector, it is necessary to impose a uniform current as input pulse, or to use short coils. We further analysed the effect of the resistance of the coil and the influence of its magnetic properties. As a result, the device we developed is able to record pulses lasting for some hundreds of nanoseconds, depending on the inductance, load impedance, and resistance of the coil. Furthermore, its response is characterized by a sub-nanosecond rise time (∼100 ps). The attenuation coefficient depends mainly on the turn number of the coil, while the fidelity of the response depends both on the magnetic core characteristics and on the current distribution along the plane conductors.

  13. Linear Rogowski coil

    NASA Astrophysics Data System (ADS)

    Nassisi, V.; Delle Side, D.

    2017-02-01

    Nowadays, the employment and development of fast current pulses require sophisticated systems to perform measurements. Rogowski coils are used to diagnose cylindrical shaped beams; therefore, they are designed and built with a toroidal structure. Recently, to perform experiments of radiofrequency biophysical stresses, flat transmission lines have been developed. Therefore, in this work we developed a linear Rogowski coil to detect current pulses inside flat conductors. The system is first approached by means of transmission line theory. We found that, if the pulse width to be diagnosed is comparable with the propagation time of the signal in the detector, it is necessary to impose a uniform current as input pulse, or to use short coils. We further analysed the effect of the resistance of the coil and the influence of its magnetic properties. As a result, the device we developed is able to record pulses lasting for some hundreds of nanoseconds, depending on the inductance, load impedance, and resistance of the coil. Furthermore, its response is characterized by a sub-nanosecond rise time (˜100 ps). The attenuation coefficient depends mainly on the turn number of the coil, while the fidelity of the response depends both on the magnetic core characteristics and on the current distribution along the plane conductors.

  14. NCSX Toroidal Field Coil Design

    SciTech Connect

    Kalish, M.; Rushinski, J.; Myatt, L.; Brooks, A.; Dahlgren, F.; Chrzanowski, J.; Reiersen, W.; Freudenberg, K.

    2005-10-07

    The National Compact Stellarator Experiment (NCSX) is an experimental device whose design and construction is underway at the Department of Energy's Princeton Plasma Physics Laboratory (PPPL). The primary coil systems for the NCSX device consist of the twisted plasma-shaping Modular Coils, the Poloidal Field Coils, and the Toroidal Field (TF) Coils. The TF Coils are D-shaped coils wound from hollow copper conductor, and vacuum impregnated with a glass-epoxy resin system. There are 18 identical, equally spaced TF coils providing 1/R field at the plasma. They operate within a cryostat, and are cooled by LN2, nominally, to 80K. Wedge shaped castings are assembled to the inboard face of these coils, so that inward radial loads are reacted via the nesting of each of the coils against their adjacent partners. This paper outlines the TF Coil design methodology, reviews the analysis results, and summarizes how the design and analysis support the design requirements.

  15. Coupled circuit numerical analysis of eddy currents in an open MRI system.

    PubMed

    Akram, Md Shahadat Hossain; Terada, Yasuhiko; Keiichiro, Ishi; Kose, Katsumi

    2014-08-01

    We performed a new coupled circuit numerical simulation of eddy currents in an open compact magnetic resonance imaging (MRI) system. Following the coupled circuit approach, the conducting structures were divided into subdomains along the length (or width) and the thickness, and by implementing coupled circuit concepts we have simulated transient responses of eddy currents for subdomains in different locations. We implemented the Eigen matrix technique to solve the network of coupled differential equations to speed up our simulation program. On the other hand, to compute the coupling relations between the biplanar gradient coil and any other conducting structure, we implemented the solid angle form of Ampere's law. We have also calculated the solid angle for three dimensions to compute inductive couplings in any subdomain of the conducting structures. Details of the temporal and spatial distribution of the eddy currents were then implemented in the secondary magnetic field calculation by the Biot-Savart law. In a desktop computer (Programming platform: Wolfram Mathematica 8.0®, Processor: Intel(R) Core(TM)2 Duo E7500 @ 2.93GHz; OS: Windows 7 Professional; Memory (RAM): 4.00GB), it took less than 3min to simulate the entire calculation of eddy currents and fields, and approximately 6min for X-gradient coil. The results are given in the time-space domain for both the direct and the cross-terms of the eddy current magnetic fields generated by the Z-gradient coil. We have also conducted free induction decay (FID) experiments of eddy fields using a nuclear magnetic resonance (NMR) probe to verify our simulation results. The simulation results were found to be in good agreement with the experimental results. In this study we have also conducted simulations for transient and spatial responses of secondary magnetic field induced by X-gradient coil. Our approach is fast and has much less computational complexity than the conventional electromagnetic numerical simulation

  16. A 3T Sodium and Proton Composite Array Breast Coil

    PubMed Central

    Kaggie, Joshua D.; Hadley, J. Rock; Badal, James; Campbell, John R.; Park, Daniel J.; Parker, Dennis L.; Morrell, Glen; Newbould, Rexford D.; Wood, Ali F.; Bangerter, Neal K.

    2013-01-01

    Purpose The objective of this study was to determine whether a sodium phased array would improve sodium breast MRI at 3T. The secondary objective was to create acceptable proton images with the sodium phased array in place. Methods A novel composite array for combined proton/sodium 3T breast MRI is compared to a coil with a single proton and sodium channel. The composite array consists of a 7-channel sodium receive array, a larger sodium transmit coil, and a 4-channel proton transceive array. The new composite array design utilizes smaller sodium receive loops than typically used in sodium imaging, uses novel decoupling methods between the receive loops and transmit loops, and uses a novel multi-channel proton transceive coil. The proton transceive coil reduces coupling between proton and sodium elements by intersecting the constituent loops to reduce their mutual inductance. The coil used for comparison consists of a concentric sodium and proton loop with passive decoupling traps. Results The composite array coil demonstrates a 2–5x improvement in SNR for sodium imaging and similar SNR for proton imaging when compared to a simple single-loop dual resonant design. Conclusion The improved SNR of the composite array gives breast sodium images of unprecedented quality in reasonable scan times. PMID:24105740

  17. Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI

    NASA Astrophysics Data System (ADS)

    Harsha Maramraju, Sri; Smith, S. David; Junnarkar, Sachin S.; Schulz, Daniela; Stoll, Sean; Ravindranath, Bosky; Purschke, Martin L.; Rescia, Sergio; Southekal, Sudeepti; Pratte, Jean-François; Vaska, Paul; Woody, Craig L.; Schlyer, David J.

    2011-04-01

    We developed a non-magnetic positron-emission tomography (PET) device based on the rat conscious animal PET that operates in a small-animal magnetic resonance imaging (MRI) scanner, thereby enabling us to carry out simultaneous PET/MRI studies. The PET detector comprises 12 detector blocks, each being a 4 × 8 array of lutetium oxyorthosilicate crystals (2.22 × 2.22 × 5 mm3) coupled to a matching non-magnetic avalanche photodiode array. The detector blocks, housed in a plastic case, form a 38 mm inner diameter ring with an 18 mm axial extent. Custom-built MRI coils fit inside the positron-emission tomography (PET) device, operating in transceiver mode. The PET insert is integrated with a Bruker 9.4 T 210 mm clear-bore diameter MRI scanner. We acquired simultaneous PET/MR images of phantoms, of in vivo rat brain, and of cardiac-gated mouse heart using [11C]raclopride and 2-deoxy-2-[18F]fluoro-d-glucose PET radiotracers. There was minor interference between the PET electronics and the MRI during simultaneous operation, and small effects on the signal-to-noise ratio in the MR images in the presence of the PET, but no noticeable visual artifacts. Gradient echo and high-duty-cycle spin echo radio frequency (RF) pulses resulted in a 7% and a 28% loss in PET counts, respectively, due to high PET counts during the RF pulses that had to be gated out. The calibration of the activity concentration of PET data during MR pulsing is reproducible within less than 6%. Our initial results demonstrate the feasibility of performing simultaneous PET and MRI studies in adult rats and mice using the same PET insert in a small-bore 9.4 T MRI.

  18. Small animal simultaneous PET/MRI: initial experiences in a 9.4T microMRI

    SciTech Connect

    Maramraju, S.H.; Schlyer, D.; Maramraju, S.H.; Smith, S.D.; Junnarkar, S.S.; Schulz, D.; Stoll, S.; Ravindranath, B.; Purschke, M.L.; Rescia, S.; Southekal, S.; Pratte, J.-F.; Vaska, P.; Woody, C.L.; Schlyer, D.J.

    2011-03-25

    We developed a non-magnetic positron-emission tomography (PET) device based on the rat conscious animal PET that operates in a small-animal magnetic resonance imaging (MRI) scanner, thereby enabling us to carry out simultaneous PET/MRI studies. The PET detector comprises 12 detector blocks, each being a 4 x 8 array of lutetium oxyorthosilicate crystals (2.22 x 2.22 x 5 mm{sup 3}) coupled to a matching non-magnetic avalanche photodiode array. The detector blocks, housed in a plastic case, form a 38 mm inner diameter ring with an 18 mm axial extent. Custom-built MRI coils fit inside the positron-emission tomography (PET) device, operating in transceiver mode. The PET insert is integrated with a Bruker 9.4 T 210 mm clear-bore diameter MRI scanner. We acquired simultaneous PET/MR images of phantoms, of in vivo rat brain, and of cardiac-gated mouse heart using [{sup 11}C]raclopride and 2-deoxy-2-[{sup 18}F]fluoro-d-glucose PET radiotracers. There was minor interference between the PET electronics and the MRI during simultaneous operation, and small effects on the signal-to-noise ratio in the MR images in the presence of the PET, but no noticeable visual artifacts. Gradient echo and high-duty-cycle spin echo radio frequency (RF) pulses resulted in a 7% and a 28% loss in PET counts, respectively, due to high PET counts during the RF pulses that had to be gated out. The calibration of the activity concentration of PET data during MR pulsing is reproducible within less than 6%. Our initial results demonstrate the feasibility of performing simultaneous PET and MRI studies in adult rats and mice using the same PET insert in a small-bore 9.4 T MRI.

  19. Novel Techniques for Pulsed Field Gradient NMR Measurements

    NASA Astrophysics Data System (ADS)

    Brey, William Wallace

    Pulsed field gradient (PFG) techniques now find application in multiple quantum filtering and diffusion experiments as well as in magnetic resonance imaging and spatially selective spectroscopy. Conventionally, the gradient fields are produced by azimuthal and longitudinal currents on the surfaces of one or two cylinders. Using a series of planar units consisting of azimuthal and radial current elements spaced along the longitudinal axis, we have designed gradient coils having linear regions that extend axially nearly to the ends of the coil and to more than 80% of the inner radius. These designs locate the current return paths on a concentric cylinder, so the coils are called Concentric Return Path (CRP) coils. Coils having extended linear regions can be made smaller for a given sample size. Among the advantages that can accrue from using smaller coils are improved gradient strength and switching time, reduced eddy currents in the absence of shielding, and improved use of bore space. We used an approximation technique to predict the remaining eddy currents and a time-domain model of coil performance to simulate the electrical performance of the CRP coil and several reduced volume coils of more conventional design. One of the conventional coils was designed based on the time-domain performance model. A single-point acquisition technique was developed to measure the remaining eddy currents of the reduced volume coils. Adaptive sampling increases the dynamic range of the measurement. Measuring only the center of the stimulated echo removes chemical shift and B_0 inhomogeneity effects. The technique was also used to design an inverse filter to remove the eddy current effects in a larger coil set. We added pulsed field gradient and imaging capability to a 7 T commercial spectrometer to perform neuroscience and embryology research and used it in preliminary studies of binary liquid mixtures separating near a critical point. These techniques and coil designs will find

  20. An analytical SMASH procedure (ASP) for sensitivity-encoded MRI.

    PubMed

    Lee, R F; Westgate, C R; Weiss, R G; Bottomley, P A

    2000-05-01

    The simultaneous acquisition of spatial harmonics (SMASH) method of imaging with detector arrays can reduce the number of phase-encoding steps, and MRI scan time several-fold. The original approach utilized numerical gradient-descent fitting with the coil sensitivity profiles to create a set of composite spatial harmonics to replace the phase-encoding steps. Here, an analytical approach for generating the harmonics is presented. A transform is derived to project the harmonics onto a set of sensitivity profiles. A sequence of Fourier, Hilbert, and inverse Fourier transform is then applied to analytically eliminate spatially dependent phase errors from the different coils while fully preserving the spatial-encoding. By combining the transform and phase correction, the original numerical image reconstruction method can be replaced by an analytical SMASH procedure (ASP). The approach also allows simulation of SMASH imaging, revealing a criterion for the ratio of the detector sensitivity profile width to the detector spacing that produces optimal harmonic generation. When detector geometry is suboptimal, a group of quasi-harmonics arises, which can be corrected and restored to pure harmonics. The simulation also reveals high-order harmonic modulation effects, and a demodulation procedure is presented that enables application of ASP to a large numbers of detectors. The method is demonstrated on a phantom and humans using a standard 4-channel phased-array MRI system.

  1. Practical estimate of gradient nonlinearity for implementation of ADC bias correction

    PubMed Central

    Malyarenko, Dariya I.; Chenevert, Thomas L.

    2013-01-01

    Purpose This work describes an efficient procedure to empirically characterize gradient nonlinearity and correct for the corresponding ADC bias on a clinical MRI scanner. Methods Spatial nonlinearity scalars for individual gradient coils along superior and right directions were estimated via diffusion measurements of an isotropic ice-water phantom. Digital nonlinearity model from an independent scanner, described in literature, was rescaled by system-specific scalars to approximate three-dimensional bias correction maps. Correction efficacy was assessed by comparison to unbiased ADC values measured at isocenter. Results Empirically estimated nonlinearity scalars were confirmed by geometric distortion measurements of a regular grid phantom. The applied nonlinearity correction for arbitrarily oriented diffusion gradients reduced ADC bias from ~20% down to ~2% at clinically-relevant offsets both for isotropic and anisotropic media. Identical performance was achieved using either corrected DWI intensities or corrected b-values for each direction in brain and ice-water. Direction-average trace image correction was adequate only for isotropic medium. Conclusion Empiric scalar adjustment of an independent gradient nonlinearity model adequately described DWI bias for a clinical scanner. Observed efficiency of implemented ADC bias correction quantitatively agreed with previous theoretical predictions and numerical simulations. The described procedure provides an independent benchmark for nonlinearity bias correction of clinical MRI scanners. PMID:25667948

  2. Coiled coils and SAH domains in cytoskeletal molecular motors.

    PubMed

    Peckham, Michelle

    2011-10-01

    Cytoskeletal motors include myosins, kinesins and dyneins. Myosins move along tracks of actin filaments, whereas kinesins and dyneins move along microtubules. Many of these motors are involved in trafficking cargo in cells. However, myosins are mostly monomeric, whereas kinesins are mostly dimeric, owing to the presence of a coiled coil. Some myosins (myosins 6, 7 and 10) contain an SAH (single α-helical) domain, which was originally thought to be a coiled coil. These myosins are now known to be monomers, not dimers. The differences between SAH domains and coiled coils are described and the potential roles of SAH domains in molecular motors are discussed.

  3. Heterotrimeric Coiled Coils with Core Residue Urea Side Chains

    PubMed Central

    Diss, Maria L.; Kennan, Alan J.

    2009-01-01

    We report several coiled coil heterotrimers with varying core residue buried polar groups, all with Tm values > 43° C. Introduction of new synthetic side chain structures, including some terminating in mono-substituted ureas, diversifies the pool of viable core residue candidates. A study of core charge pairings demonstrates that, unlike dimeric systems, trimeric coiled coils do not tolerate guanidine-guanidine contacts, even in the presence of a compensating carboxylate. Overall, the roster of feasible coiled coil designs is significantly expanded. PMID:19032043

  4. Design of a 3T preamplifier which stability is insensitive to coil loading.

    PubMed

    Cao, Xueming; Fischer, Elmar; Korvink, Jan G; Gruschke, Oliver; Hennig, Jürgen; Zaitsev, Maxim

    2016-04-01

    In MRI (magnetic resonance imaging), preamplifiers are needed to amplify signals obtained from MRI receiver coils. Under various loading conditions of the corresponding receiver coils, preamplifiers see different source impedance at their input and may become unstable. Therefore preamplifiers which stability is not sensitive to coil loading are desirable. In this article, a coil-loading-insensitive preamplifier for MRI is presented, derived from an unstable preamplifier. Different approaches to improve stability were used during this derivation. Since a very low noise factor is essential for MRI preamplifiers, noise contributions from passive components in the MRI preamplifier have to be considered during the stabilization process. As a result, the initially unstable preamplifier became stable with regard to coil loading, while other MRI requirements, as the extremely low noise factor, were still fulfilled. The newly designed preamplifier was manufactured, characterized and tested in the MRI spectrometer. Compared to a commercially available preamplifier, the newly designed preamplifier has similar imaging performance but other advantages like smaller size and better stability. Furthermore, presented stabilization approaches can be generalized to stabilize other unstable low-noise amplifiers.

  5. Safety of Magnetic Resonance Imaging After Implantation of Stainless Steel Embolization Coils.

    PubMed

    Slesnick, Timothy C; Schreier, Jenna; Soriano, Brian D; Kutty, Shelby; Nutting, Arni C; Kim, Dennis W; Powell, Andrew J; Valente, Anne Marie

    2016-01-01

    Stainless steel embolization coils (SSEC) have been used for over four decades for vascular occlusion. Recently, the safety of these coils in a magnetic resonance environment has been called into question, with important ramifications for thousands of patients with existing coils in place. We performed a retrospective chart review at five tertiary care pediatric centers evaluating all children and young adults with implanted SSEC who underwent magnetic resonance imaging (MRI). Data reviewed included demographics, coil implantation, MRI studies, and follow-up evaluations. Complications such as heating, discomfort, or device migration were specifically sought. Two hundred and ninety-seven patients with implanted SSEC underwent 539 MRI examinations. The median age at SSEC implantation was 2.3 years (1 week-23.2 years). The MRI studies were performed a median of 7.4 years (4 days-23.1 years) after implantation. No patients experienced any reported complications associated with their MRI examinations during the study or at median follow-up post-MRI of 4.8 years (1 day-23 years). In this large, retrospective review of patients with implanted SSEC undergoing MRI, there were no reported adverse events. These findings support the recent change by Cook Medical Inc. of their standard embolization coils from a designation of magnetic resonance unsafe to conditional.

  6. Comparison between 2D and 3D gradient-echo sequences for MRI of human lung ventilation with hyperpolarized 3He.

    PubMed

    Wild, Jim M; Woodhouse, Neil; Paley, Martyn N J; Fichele, Stan; Said, Zead; Kasuboski, Larry; van Beek, Edwin J R

    2004-09-01

    Images of hyperpolarized 3He were acquired during breath-hold in four healthy volunteers with the use of an optimized 3D gradient-echo sequence. The images were compared with existing 2D gradient-echo methods. The average SNR from a 13-mm-thick slice in the peripheral lung was 1.4 times greater with 3D. In the airways the average SNR was 1.7 times greater with 3D. The higher SNR of 3D was particularly evident when regions of unimpeded gas diffusion, such as the major airways, were imaged with thin slices. This is because diffusion dephasing due to the slice-encoding gradient is minimized with a 3D sequence. The in vivo experimental findings were substantiated with experiments on phantoms of free gas, which showed more than four times the SNR with 3D compared to 2D. Theoretical simulations of the 2D and 3D k-space filters were also performed to predict the SNR and spatial resolution observed in the experimental images. Copyright 2004 Wiley-Liss, Inc.

  7. Rat brain MRI at 16.4T using a capacitively tunable patch antenna in combination with a receive array.

    PubMed

    Shajan, G; Hoffmann, Jens; Balla, Dávid Z; Deelchand, Dinesh K; Scheffler, Klaus; Pohmann, Rolf

    2012-10-01

    For MRI at 16.4T, with a proton Larmor frequency of 698 MHz, one of the principal RF engineering challenges is to generate a spatially homogeneous transmit field over a larger volume of interest for spin excitation. Constructing volume coils large enough to house a receive array along with the subject and to maintain the quadrature symmetry for different loading conditions is difficult at this frequency. This calls for new approaches to RF coil design for ultra-high field MR systems. A remotely placed capacitively tunable patch antenna, which can easily be adjusted to different loading conditions, was used to generate a relatively homogeneous excitation field covering a large imaging volume with a transversal profile similar to that of a birdcage coil. Since it was placed in front of the animal, this created valuable free space in the narrow magnet bore around the subject for additional hardware. To enhance the reception sensitivity, the patch antenna was combined with an actively detunable 3-channel receive coil array. In addition to increased SNR compared to a quadrature transceive surface coil, we were able to get high quality gradient echo and spin-echo images covering the whole rat brain.

  8. Aneurysm permeability following coil embolization: packing density and coil distribution

    PubMed Central

    Chueh, Ju-Yu; Vedantham, Srinivasan; Wakhloo, Ajay K; Carniato, Sarena L; Puri, Ajit S; Bzura, Conrad; Coffin, Spencer; Bogdanov, Alexei A; Gounis, Matthew J

    2015-01-01

    Background Rates of durable aneurysm occlusion following coil embolization vary widely, and a better understanding of coil mass mechanics is desired. The goal of this study is to evaluate the impact of packing density and coil