Revision surgery due to magnet dislocation in cochlear implant patients: an emerging complication.
Hassepass, Frederike; Stabenau, Vanessa; Maier, Wolfgang; Arndt, Susan; Laszig, Roland; Beck, Rainer; Aschendorff, Antje
2014-01-01
To analyze the cause and effect of magnet dislocation in cochlear implant (CI) recipients requiring magnet revision surgery for treatment. Retrospective study. Tertiary referral center. Case reports from 1,706 CI recipients consecutively implanted from January 2000 to December 2011 were reviewed. The number of cases requiring magnet revision surgery was assessed. Revision surgery involving magnet removal or replacement was indicated in 1.23% (21/1,706), of all CI recipients. Magnet dislocation occurring during magnetic resonance tomography (MRI), at 1.5 Tesla (T), with the magnet in place and with the application of compression bandaging around the head, was the main cause for revision surgery in 47.62% (10/21) of the affected cases. All 10 cases were implanted with Cochlear Nucleus cochlear implants. These events occurred, despite adherence to current recommendations of the manufacturer. The present study underlines that MRI examination is the main cause of magnet dislocation. The use of compressive bandaging when using 1.5-T MRI does not eliminate the risk of magnet dislocation. Additional cautionary measures are for required for conditional MRI. We recommend X-ray examination after MRI to determine magnet dislocation and avoid major complications in all cases reporting pain during or after MRI. Additional research regarding silicon magnet pocket design for added retention is needed. Effective communication of guidelines for precautionary measures during MRI examination in CI patients is mandatory for all clinicians involved. MRI in CI recipients should be indicated with caution.
Ahn, C Y; DeBruhl, N D; Gorczyca, D P; Shaw, W W; Bassett, L W
1994-10-01
With the current controversy regarding the safety of silicone implants, the detection and evaluation of implant rupture are causing concern for both plastic surgeons and patients. Our study obtained comparative value analysis of mammography, sonography, and magnetic resonance imaging (MRI) in the detection of silicone implant rupture. Twenty-nine symptomatic patients (total of 59 silicone implants) were entered into the study. Intraoperative findings revealed 21 ruptured implants (36 percent). During physical examination, a positive "squeeze test" was highly suggestive of implant rupture. Mammograms were obtained of 51 implants (sensitivity 11 percent, specificity 89 percent). Sonography was performed on 57 implants (sensitivity 70 percent, specificity 92 percent). MRI was performed on 55 implants (sensitivity 81 percent, specificity 92 percent). Sonographically, implant rupture is demonstrated by the "stepladder sign." Double-lumen implants may appear as false-positive results for rupture on sonography. On MRI, the "linguine sign" represents disrupted fragments of a ruptured implant. The most reliable imaging modality for implant rupture detection is MRI, followed by sonogram. Mammogram is the least reliable. Our study supports the clinical indication and diagnostic value of sonogram and MRI in the evaluation of symptomatic breast implant patients.
Automated extraction of subdural electrode grid from post-implant MRI scans for epilepsy surgery
NASA Astrophysics Data System (ADS)
Pozdin, Maksym A.; Skrinjar, Oskar
2005-04-01
This paper presents an automated algorithm for extraction of Subdural Electrode Grid (SEG) from post-implant MRI scans for epilepsy surgery. Post-implant MRI scans are corrupted by the image artifacts caused by implanted electrodes. The artifacts appear as dark spherical voids and given that the cerebrospinal fluid is also dark in T1-weigthed MRI scans, it is a difficult and time-consuming task to manually locate SEG position relative to brain structures of interest. The proposed algorithm reliably and accurately extracts SEG from post-implant MRI scan, i.e. finds its shape and position relative to brain structures of interest. The algorithm was validated against manually determined electrode locations, and the average error was 1.6mm for the three tested subjects.
Analysis of 30 breast implant rupture cases.
Tark, Kwan Chul; Jeong, Hii Sun; Roh, Tae Suk; Choi, Jong Woo
2005-01-01
Breast implants used for augmentation mammoplasty or breast reconstruction could rupture from various causes such as trauma or spontaneous failure. The objectives of this study were to investigate the relationships between the causes of implant rupture and the degree of capsular contracture, and then to evaluate the relative efficacies of specific signs on magnetic resonance imaging (MRI) known to be beneficial for diagnosing the rupture. A retrospective review identified patients with prosthetic implant rupture or impending rupture treated by the senior author. The 30 cases of implant rupture available for review were classified into two groups: intracapsular and extracapsular ruptures. The 30 cases of breast implant ruptures were analyzed with respect to the clinical symptoms and signs, the causes of rupture, the degree of capsular contracture, and therapeutic plans. Among the 30 cases, 14 patients who had undergone MRI during the diagnostic period were analyzed with respect to the relationships between MRI readings and operative findings. Spontaneous rupture of membranes was most common (80%), followed by failure because of trauma (7%) and valve or implant base (4%). The symptoms during implant rupture were contour deformity, palpated mass-like lesions, pain, and focal inflammation. According to the analysis of specific MRI signs, the sensitivity and specificity of the linguine sign were 87% and 100%, respectively, for intracapsular rupture. For extracapsular rupture, the sensitivity and specificity of the linguine sign were, respectively, 67% and 75%. The sensitivity and specificity of the rat-tail sign and tear drop sign were 14% and 50%, respectively. Breast implant rupture was correlated with the degree of capsular contracture in our study. Among the various specific MRI signs used in diagnosing the rupture, the linguine sign was reliable and had a high sensitivity and specificity, especially in cases of intracapsular rupture. On the other hand, the rat-tail and tear drop signs were nonspecific signs for diagnosing the rupture of breast implant.
Metallic artifact in MRI after removal of orthopedic implants.
Bagheri, Mohammad Hadi; Hosseini, Mehrdad Mohammad; Emami, Mohammad Jafar; Foroughi, Amin Aiboulhassani
2012-03-01
The aim of the present study was to evaluate the metallic artifacts in MRI of the orthopedic patients after removal of metallic implants. From March to August 2009, 40 orthopedic patients operated for removal of orthopedic metallic implants were studied by post-operative MRI from the site of removal of implants. A grading scale of 0-3 was assigned for artifact in MR images whereby 0 was considered no artifact; and I-III were considered mild, moderate, and severe metallic artifacts, respectively. These grading records were correlated with other variables including the type, size, number, and composition of metallic devices; and the site and duration of orthopedic devices stay in the body. Metallic susceptibly artifacts were detected in MRI of 18 of 40 cases (45%). Screws and pins in removed hardware were the most important factors for causing artifacts in MRI. The artifacts were found more frequently in the patients who had more screws and pins in the removed implants. Gender, age, site of implantation of the device, length of the hardware, composition of the metallic implants (stainless steel versus titanium), and duration of implantation of the hardware exerted no effect in producing metallic artifacts after removal of implants. Short TE sequences of MRI (such as T1 weighted) showed fewer artifacts. Susceptibility of metallic artifacts is a frequent phenomenon in MRI of patients upon removal of metallic orthopedic implants. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Griffin, John F; Archambault, Nicholas S; Mankin, Joseph M; Wall, Corey R; Thompson, James A; Padua, Abraham; Purdy, David; Kerwin, Sharon C
2013-11-15
Laboratory investigation, ex vivo. Postoperative complications are common after spinal implantation procedures, and magnetic resonance imaging (MRI) would be the ideal modality to image these patients. Unfortunately, the implants cause artifacts that can render MRI nondiagnostic. The WARP-turbo spin echo (TSE) sequence has been developed to mitigate artifacts caused by metal. The objective of this investigation was to evaluate the performance of the WARP-TSE sequence in canine cadaver specimens after implantation with metallic vertebral implants. Magnetic field strength, implant type, and MRI acquisition technique all play a role in the severity of susceptibility artifacts. The WARP-TSE sequence uses increased bandwidth, view angle tilting, and SEMAC (slice-encoding metal artifact correction) to correct for susceptibility artifact. The WARP-TSE technique has outperformed conventional techniques in patients, after total hip arthroplasty. However, published reports of its application in subjects with vertebral column implants are lacking. Ex vivo anterior stabilization of the atlantoaxial joint was performed on 6 adult small breed (<8 kg) cadaver dogs using stainless steel screws and polymethylmethacrylate. Axial and sagittal T2-weighted and short tau inversion recovery MRI was performed using conventional pulse sequences and WARP-TSE sequences at 3 T. Images were assessed qualitatively and quantitatively. Images made with the WARP-TSE sequence had smaller susceptibility artifacts and superior spinal cord margin depiction. WARP-TSE sequences reduced the length over which susceptibility artifacts caused spinal cord margin depiction interference by 24.9% to 71.5% with scan times of approximately 12 to 16 minutes. The WARP-TSE sequence is a viable option for evaluating the vertebral column after implantation with stainless steel implants. N/A.
Öztürk, Erkan; Doruk, Can; Orhan, Kadir Serkan; Çelik, Mehmet; Polat, Beldan; Güldiken, Yahya
2017-06-01
Cochlear implants are mechanical devices used for patients with severe sensory-neural hearing loss, which has an inner magnet. It is proven that 1.5 Tesla magnetic resonance imaging (MRI) scanners are safe to use in patients with cochlear implant. In our patient, the authors aim to introduce a rare complication caused after a 1.5 Tesla MRI scanning and the management of this situation; the reversion of the magnet of the implant without displacement and significance of surgery in management.
Rella, L; Telegrafo, M; Nardone, A; Milella, A; Stabile Ianora, A A; Lioce, M; Angelelli, G; Moschetta, M
2015-09-01
To evaluate the effect of post-mastectomy radiation therapy (RT) on breast implants as detected by magnetic resonance imaging (MRI) searching for short-term complications. One hundred and forty patients (total of 144 implants) were evaluated by MRI; 80 (group 1) had undergone RT, whereas the remaining 60 patients (group 2) underwent mastectomy with implant reconstruction without RT. Two radiologists evaluated MRI images searching for implant rupture signs, sub-capsular seromas, capsular contracture, soft-tissue oedema, peri-implant fluid collections. Implant ruptures were classified as severe complications; seromas and capsular contractures as moderate complications; oedema and fluid collections as mild complications. The prevalence of MRI findings in the two groups was calculated and compared by unpaired t-test. Cohen's kappa statistics was used to assess interobserver agreement. Sixty-nine out of 144 (48%) implants presented pathological findings at MRI with complication rates of 47.5 and 48.4 for groups 1 and 2, respectively. Two (5%) severe complications, 10 (26%) moderate complications, and 26 (69%) mild complications occurred in group 1 and surgical treatment was performed in 10 cases. Two (6%) severe complications, seven (23%) moderate complications, and 22 (71%) mild complications occurred in group 2 and surgical treatment was performed in eight cases. No significant difference between the two groups was found (p>0.1). Almost perfect agreement between the two radiologists was found for MRI image detection (k=0.86). RT does not seem to cause a significant effect on breast implants in terms of complication rate in patients undergoing implant-based breast reconstruction. One-stage immediate implant-based breast reconstruction performed at the same time as mastectomy could be proposed. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
[How do metallic middle ear implants behave in the MRI?].
Kwok, P; Waldeck, A; Strutz, J
2003-01-01
Magnetic resonance imaging (MRI) has gained in frequency and importance as a diagnostic procedure. In respect to the close anatomical relationship in the temporal bone it is necessary to know whether it is hazardous to patients with metallic middle ear implants regarding displacement and rise in temperature. For the MR image quality artefacts caused by metallic prostheses should be low. Four different stapes prostheses made from titanium, gold, teflon/platinum and teflon/steel, a titanium total ossicular reconstruction prosthesis (TORP) and two ventilation tubes (made from titanium and gold) were tested in a 1.5 Tesla MRI machine regarding their displacement. All objects were first placed in a petri dish, then suspended from a thread and finally immersed in a dish filled with Gadolinium. Temperature changes of the implants were recorded by a pyrometer. None of the implants moved when they were placed in the petri dish or suspended from the thread. On the water surface the teflon/platinum and the teflon/steel pistons adjusted their direction with their axis longitudinally to the MRI scanner opening and the teflon/steel piston floated towards the MRI-machine when put close enough to the scanner opening. No rise in temperature was recorded. All implants showed as little artefacts that would still make an evaluation of the surrounding tissue possible. Patients with any of the metallic middle ear implants that were examined in this study may undergo MRI-investigations without significant adverse effects.
SU-E-J-257: Image Artifacts Caused by Implanted Calypso Beacons in MRI Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amro, H; Chetty, I; Gordon, J
2014-06-01
Purpose: The presence of Calypso Beacon-transponders in patients can cause artifacts during MRI imaging studies. This could be a problem for post-treatment follow up of cancer patients using MRI studies to evaluate metastasis and for functional imaging studies.This work assesses (1) the volume immediately surrounding the transponders that will not be visualized by the MRI due to the beacons, and (2) the dependence of the non-visualized volume on beacon orientation, and scanning techniques. Methods: Two phantoms were used in this study (1) water filled box, (2) and a 2300 cc block of pork meat. Calypso beacons were implanted in themore » phantoms both in parallel and perpendicular orientations with respect to the MR scanner magnetic field. MR image series of the phantom were obtained with on a 1.0T high field open MR-SIM with multiple pulse sequences, for example, T1-weighted fast field echo and T2-weighted turbo spin echo. Results: On average, a no-signal region with 2 cm radius and 3 cm length was measured. Image artifacts are more significant when beacons are placed parallel to scanner magnetic field; the no-signal area around the beacon was about 0.5 cm larger in orthogonal orientation. The no-signal region surrounding the beacons slightly varies in dimension for the different pulse sequences. Conclusion: The use of Calypso beacons can prohibit the use of MRI studies in post-treatment assessments, especially in the immediate region surrounding the implanted beacon. A characterization of the MR scanner by identifying the no-signal regions due to implanted beacons is essential. This may render the use of Calypso beacons useful for some cases and give the treating physician a chance to identify those patients prior to beacon implantation.« less
Preparation of an Au-Pt alloy free from artifacts in magnetic resonance imaging.
Kodama, Tomonobu; Nakai, Ryusuke; Goto, Kenji; Shima, Kunihiro; Iwata, Hiroo
2017-12-01
When magnetic resonance imaging (MRI) is performed on patients carrying metallic implants, artifacts can disturb the images around the implants, often making it difficult to interpret them appropriately. However, metallic materials are and will be indispensable as raw materials for medical devices because of their electric conductivity, visibility under X-ray fluoroscopy, and other favorable features. What is now desired is to develop a metallic material which causes no artifacts during MRI. In the present study, we prepared a single-phase and homogeneous Au-Pt alloys (Au; diamagnetic metal, and Pt; paramagnetic metal) by the processing of thermal treatment. Volume magnetic susceptibility was measured with a SQUID Flux Meter and MRI artifact was evaluated using a 1.5-T scanner. After final thermal treatment, an entirely recrystallized homogeneous organization was noted. The Au-35Pt alloy was shown to have a volume magnetic susceptibility of -8.8ppm, causing almost free from artifacts during MRI. We thus prepared an Au-35Pt alloy which had a magnetic susceptibility very close to that of living tissue and caused much fewer artifacts during MRI. It is promising as a material for spinal cages, intracranial electrodes, cerebral aneurysm embolization coils, markers for MRI and so on. Copyright © 2017 Elsevier Inc. All rights reserved.
Artifacts Quantification of Metal Implants in MRI
NASA Astrophysics Data System (ADS)
Vrachnis, I. N.; Vlachopoulos, G. F.; Maris, T. G.; Costaridou, L. I.
2017-11-01
The presence of materials with different magnetic properties, such as metal implants, causes distortion of the magnetic field locally, resulting in signal voids and pile ups, i.e. susceptibility artifacts in MRI. Quantitative and unbiased measurement of the artifact is prerequisite for optimization of acquisition parameters. In this study an image gradient based segmentation method is proposed for susceptibility artifact quantification. The method captures abrupt signal alterations by calculation of the image gradient. Then the artifact is quantified in terms of its extent by an automated cross entropy thresholding method as image area percentage. The proposed method for artifact quantification was tested in phantoms containing two orthopedic implants with significantly different magnetic permeabilities. The method was compared against a method proposed in the literature, considered as a reference, demonstrating moderate to good correlation (Spearman’s rho = 0.62 and 0.802 in case of titanium and stainless steel implants). The automated character of the proposed quantification method seems promising towards MRI acquisition parameter optimization.
Evaluation of 39 medical implants at 7.0 T
Feng, David X; McCauley, Joseph P; Morgan–Curtis, Fea K; Salam, Redoan A; Pennell, David R; Loveless, Mary E
2015-01-01
Objective: With increased signal to noise ratios, 7.0-T MRI has the potential to contribute unique information regarding anatomy and pathophysiology of a disease. However, concerns for the safety of subjects with metallic medical implants have hindered advancement in this field. The purpose of the present research was to evaluate the MRI safety for 39 commonly used medical implants at 7.0 T. Methods: Selected metallic implants were tested for magnetic field interactions, radiofrequency-induced heating and artefacts using standardized testing techniques. Results: 5 of the 39 implants tested may be unsafe for subjects undergoing MRI at 7.0 T. Conclusion: Implants were deemed either “MR Conditional” or “MR Unsafe” for the 7.0-T MRI environment. Further research is needed to expand the existing database categorizing implants that are acceptable for patients referred for MRI examinations at 7.0 T. Advances in knowledge: Lack of MRI testing for common metallic medical implants limits the translational potential of 7.0-T MRI. For safety reasons, patients with metallic implants are not allowed to undergo a 7.0-T MRI scan, precluding part of the population that can benefit from the detailed resolution of ultra-high-field MRIs. This investigation provides necessary MRI testing of common medical implants at 7.0 T. PMID:26481696
Lindenblatt, Nicole; El-Rabadi, Karem; Helbich, Thomas H; Czembirek, Heinrich; Deutinger, Maria; Benditte-Klepetko, Heike
2014-01-01
Silicone gel breast implants may silently rupture without detection. This has been the main reason for magnetic resonance imaging (MRI) of the augmented or reconstructed breast. The aim of the present study was to investigate the accuracy of MRI for implant rupture. Fifty consecutive patients with 85 silicone gel implants were included in the study. The mean age of the patients was 51 (range 21-72) years, with a mean duration of implantation of 3.8 (range 1-28) years. All patients underwent clinical examination and breast MRI. Intraoperative implant rupture was diagnosed by the operating surgeon. Nineteen of the 50 patients suffered from clinical symptoms. An implant rupture was diagnosed by MRI in 22 of 85 implants (26%). In seven of 17 removed implants (41%), the intraoperative diagnosis corresponded with the positive MRI result. However, only 57% of these patients were symptomatic. Ultrasound imaging of the harvested implants showed signs of interrupted inner layers of the implant despite integrity of the outer shell. By microsurgical separation of the different layers of the implant shell, we were able to reproduce this phenomenon and to produce signs of implant rupture on MRI. Our results show that rupture of only the inner layers of the implant shell with integrity of the outer shell leads to a misdiagnosis on MRI. Correlation with clinical symptoms and the specific wishes of the patient should guide the indication for implant removal.
Lindenblatt, Nicole; El-Rabadi, Karem; Helbich, Thomas H; Czembirek, Heinrich; Deutinger, Maria; Benditte-Klepetko, Heike
2014-01-01
Background Silicone gel breast implants may silently rupture without detection. This has been the main reason for magnetic resonance imaging (MRI) of the augmented or reconstructed breast. The aim of the present study was to investigate the accuracy of MRI for implant rupture. Methods Fifty consecutive patients with 85 silicone gel implants were included in the study. The mean age of the patients was 51 (range 21–72) years, with a mean duration of implantation of 3.8 (range 1–28) years. All patients underwent clinical examination and breast MRI. Intraoperative implant rupture was diagnosed by the operating surgeon. Results Nineteen of the 50 patients suffered from clinical symptoms. An implant rupture was diagnosed by MRI in 22 of 85 implants (26%). In seven of 17 removed implants (41%), the intraoperative diagnosis corresponded with the positive MRI result. However, only 57% of these patients were symptomatic. Ultrasound imaging of the harvested implants showed signs of interrupted inner layers of the implant despite integrity of the outer shell. By microsurgical separation of the different layers of the implant shell, we were able to reproduce this phenomenon and to produce signs of implant rupture on MRI. Conclusion Our results show that rupture of only the inner layers of the implant shell with integrity of the outer shell leads to a misdiagnosis on MRI. Correlation with clinical symptoms and the specific wishes of the patient should guide the indication for implant removal. PMID:25114595
Nölte, I; Gorbey, S; Boll, H; Figueiredo, G; Groden, C; Lemmer, B; Brockmann, M A
2011-12-01
Radiotelemetric sensors for in vivo assessment of blood pressure and heart rate are widely used in animal research. MRI with implanted sensors is regarded as contraindicated as transmitter malfunction and injury of the animal may be caused. Moreover, artefacts are expected to compromise image evaluation. In vitro, the function of a radiotelemetric sensor (TA11PA-C10, Data Sciences International) after exposure to MRI up to 9.4 T was assessed. The magnetic force of the electromagnetic field on the sensor as well as radiofrequency (RF)-induced sensor heating was analysed. Finally, MRI with an implanted sensor was performed in a rat. Imaging artefacts were analysed at 3.0 and 9.4 T ex vivo and in vivo. Transmitted 24 h blood pressure and heart rate were compared before and after MRI to verify the integrity of the telemetric sensor. The function of the sensor was not altered by MRI up to 9.4 T. The maximum force exerted on the sensor was 273 ± 50 mN. RF-induced heating was ruled out. Artefacts impeded the assessment of the abdomen and thorax in a dead rat, but not of the head and neck. MRI with implanted radiotelemetric sensors is feasible in principal. The tested sensor maintains functionality up to 9.4 T. Artefacts hampered abdominal and throacic imaging in rats, while assessment of the head and neck is possible.
Hassepass, F; Stabenau, V; Arndt, S; Beck, R; Bulla, S; Grauvogel, T; Aschendorff, A
2014-07-01
Cochlear implantation (CI) represents the gold standard in the treatment of children born deaf and postlingually deafened adults. Initial magnetic resonance imaging (MRI) was contraindicated in CI users. Meanwhile, there are specific recommendations concerning MRI compatibility depending on the type of CI system and the device manufacturer. Some CI systems are even approved for MRI with the internal magnet left in place. The aim of this study was to analyze all magnet revision surgeries in CI patients at one CI center and the relationship to MRI scans over time. Between 2000 and 2013, a total of 2027 CIs were implanted. The number of magnet dislocation (MD) surgeries and their causes was assessed retrospectively. In total 12 cases of MD resulting from an MRI scan (0.59 %) were observed, accounting for 52.2 % of all magnetic revision surgeries. As per the labeling, it was considered safe to leave the internal magnet in place during MRI while following specific manufacturer recommendations: MRI intensity of 1.5 Tesla (T) and compression head bandage during examination. A compression head bandage in a 1.5 T MRI unit does not safely prevent MD and the related serious complications in CI recipients. We recommend a Stenvers view radiograph after MRI with the internal magnet in place for early identification of MD, at least in the case of pain during or after MRI examination. MRI in CI patients should be indicated with restraint and patients should be explicitly informed about the possible risks. Recommendations regarding MRI compatibility and the handling of CI patients issued with MRI for the most common CI systems are summarized. © Georg Thieme Verlag KG Stuttgart · New York.
MRI information for commonly used otologic implants: review and update.
Azadarmaki, Roya; Tubbs, Rhonda; Chen, Douglas A; Shellock, Frank G
2014-04-01
To review information on magnetic resonance imaging (MRI) issues for commonly used otologic implants. Manufacturing companies, National Library of Medicine's online database, and an additional online database (www.MRIsafety.com). A literature review of the National Library of Medicine's online database with focus on MRI issues for otologic implants was performed. The MRI information on implants provided by manufacturers was reviewed. Baha and Ponto Pro osseointegrated implants' abutment and fixture and the implanted magnet of the Sophono Alpha 1 and 2 abutment-free systems are approved for 3-Tesla magnetic resonance (MR) systems. The external processors of these devices are MR Unsafe. Of the implants tested, middle ear ossicular prostheses, including stapes prostheses, except for the 1987 McGee prosthesis, are MR Conditional for 1.5-Tesla (and many are approved for 3-Tesla) MR systems. Cochlear implants with removable magnets are approved for patients undergoing MRI at 1.5 Tesla after magnet removal. The MED-EL PULSAR, SONATA, CONCERT, and CONCERT PIN cochlear implants can be used in patients undergoing MRI at 1.5 Tesla with application of a protective bandage. The MED-EL COMBI 40+ can be used in 0.2-Tesla MR systems. Implants made from nonmagnetic and nonconducting materials are MR Safe. Knowledge of MRI guidelines for commonly used otologic implants is important. Guidelines on MRI issues approved by the US Food and Drug Administration are not always the same compared with other parts of the world. This monograph provides a current reference for physicians on MRI issues for commonly used otologic implants.
Brown, James E; Qiang, Rui; Stadnik, Paul J; Stotts, Larry J; Von Arx, Jeffrey A
2017-01-01
Magnetic resonance imaging (MRI) is the preferred modality for soft tissue imaging because of its nonionizing radiation and lack of contrast agent. Due to interactions between the MR system and active implantable medical devices (AIMDs), patients with implants such as pacemakers are generally denied access to MRI, which presents a detriment to that population. It has been estimated that 50-75% of patients with a cardiac device were denied access to MRI scanning and, moreover, that 17% of pacemaker patients need an MRI within 12 months of implantation [1]. In recent years, AIMD manufacturers, such as Biotronik, have assessed the conditional safety of devices in MRI.
Marinskis, Germanas; Bongiorni, Maria Grazia; Dagres, Nikolaos; Dobreanu, Dan; Lewalter, Thorsten; Blomström-Lundqvist, Carina
2012-12-01
The purpose of our survey was to evaluate the experience, current practice and attitudes of performing magnetic resonance imaging (MRI) studies in patients with cardiac implantable electronic devices. Fifty-one centre-members of European Heart Rhythm Association Research network have responded to the survey. According to the obtained data, 55.2% of responding centres do not perform MRI scans in patients with non-MRI-certified pacemakers and 65.8% in patients with such implantable cardioverter defibrillators (ICDs). Reported complication rate in patients with non-MRI-certified devices is low and conforms to the literature data. Experience with newer MRI-compatible pacemakers and ICDs is limited to single cases in most centres. This survey shows limited experience with performing MRI studies in patients with implanted pacemakers and ICDs. In concordance with available guidelines, most centres limit MRI scans in patients with non-MRI-certified devices. The implant numbers for MRI-certified devices and experience with performing MRI scans in these patients are still low.
[Magnetic resonance imaging study and cochlear implantation in post-meningitic deaf patients].
Liu, Xiuli; Yao, Yiwen; He, Guili; Zhai, Lijie
2004-07-01
To investigate the clinical application of magnetic resonance imaging (MRI) in post-meningitic patients and its impact on surgical decision. The pre-operative MRI data and auditory brainstem response (ABR) examination of five post-meningitic patients were studied. They were implanted with cochleas. The interval between the onset of bacterial meningitis and the hearing loss was (15.8 +/- 15.0)d and it was longer in children than adults. Five ears showed membranous cochlear labyrinth abnormality; 3 ears had vestibule vestibule abnormality; 8 ears demonstrated semicircular canal abnormality on MRI examinations in totally 10 ears. The mean hearing threshold of 10 ears was (102.0 +/- 7.1)dB HL,that of the operated ears was (98.0 +/- 5.7)dB HL and that of the un-operated ears was (106.0 +/- 6.5)dB HL. It was (15.8 +/- 15.0)d from the bacterial meningitis onset to hearing loss. The interval is longer in children than adults. There were 3 ears that electrodes could not be inserted completely. The bacterial meningitis may cause the abnormalities of inner ears and the MRI before surgery is essential for the pre-operative planning of cochlear implant.
"Power-on resets" in cardiac implantable electronic devices during magnetic resonance imaging.
Higgins, John V; Sheldon, Seth H; Watson, Robert E; Dalzell, Connie; Acker, Nancy; Cha, Yong-Mei; Asirvatham, Samuel J; Kapa, Suraj; Felmlee, Joel P; Friedman, Paul A
2015-03-01
Magnetic resonance imaging (MRI) has been safely performed in some patients with cardiac implantable electronic devices (CIEDs) under careful monitoring and prespecified conditions. Pacemaker-dependent patients are often excluded, partly because of the potential for "power-on reset" (PoR), which can lead to a change from asynchronous to inhibited pacing with consequent inhibition of pacing due to electromagnetic interference during MRI. The purpose of this study was to review risk factors for PoR during MRI. A prospective study was performed between January 2008 and May 2013 in patients with CIEDs undergoing clinically indicated MRI. Eligible patients were not pacemaker dependent. Devices were interrogated before and after MRI, programmed to an asynchronous mode or an inhibition mode with tachyarrhythmia therapies turned off, and reprogrammed to their original settings after MRI. MRI scans (n = 256) were performed in 198 patients with non-MRI-conditional CIEDs between 2008 and 2013 (median age 66 years; interquartile range 57-77 years; 59% men). PoR occurred during 9 MRI scans (3.5%) in 8 patients. PoR was more frequent with Medtronic devices than with other generator brands (n = 9/139 vs 0/117 [6% vs 0%]; P = .005). Devices with PoR were all released before 2002 and were implanted from 1999 to 2004. Effects of PoR included a decrease in heart rate during MRI (n = 4) and transient anomalous battery life indication (n = 1). All devices functioned normally after MRI. PoR occurs infrequently but can cause deleterious changes in pacing mode and heart rate. MRI should not be performed in pacemaker-dependent patients with older at-risk generators. Continuous monitoring during MRI is essential because unrecognized PoR may inhibit pacing or accelerate battery depletion due to high pacing output. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Le, Yuan; Kipfer, Hal D; Majidi, Shadie S; Holz, Stephanie; Lin, Chen
2014-09-01
The purpose of this article is to evaluate and compare the artifacts caused by metal implants in breast MR images acquired with dual-echo Dixon and two conventional fat-suppression techniques. Two types of biopsy markers were embedded into a uniform fat-water emulsion. T1-weighted gradient-echo images were acquired on a clinical 3-T MRI scanner with three different fat-suppression techniques-conventional or quick fat saturation, spectrally selective adiabatic inversion recovery (SPAIR), and dual-echo Dixon-and the 3D volumes of artifacts were measured. Among the subjects of a clinical breast MRI study using the same scanner, five patients were found to have one or more metal implants. The artifacts in Dixon and SPAIR fat-suppressed images were evaluated by three radiologists, and the results were compared with those of the phantom study. In the phantom study, the artifacts appeared as interleaved bright and dark rings on SPAIR and quick-fat-saturation images, whereas they appeared as dark regions with a thin bright rim on Dixon images. The artifacts imaged with the Dixon technique had the smallest total volume. However, the reviewers found larger artifact diameters on patient images using the Dixon sequence because only the central region was recognized as an artifact on the SPAIR images. Metal implants introduce artifacts of different types and sizes, according to the different fat-suppression techniques used. The dual-echo Dixon technique produces a larger central void, allowing the implant to be easily identified, but presents a smaller overall artifact volume by obscuring less area in the image, according to a quantitative phantom study.
Sharon, Jeffrey D; Northcutt, Benjamin G; Aygun, Nafi; Francis, Howard W
2016-10-01
To study the quality and usability of magnetic resonance imaging (MRI) obtained with a cochlear implant magnet in situ. Retrospective chart review. Tertiary care center. All patients who underwent brain MRI with a cochlear implant magnet in situ from 2007 to 2016. None. Grade of view of the ipsilateral internal auditory canal (IAC) and cerebellopontine angle (CPA). Inclusion criteria were met by 765 image sequences in 57 MRI brain scans. For the ipsilateral IAC, significant predictors of a grade 1 (normal) view included: absence of fat saturation algorithm (p = 0.001), nonaxial plane of imaging (p = 0.01), and contrast administration (p = 0.001). For the ipsilateral CPA, significant predictors of a grade 1 view included: absence of fat saturation algorithm (p = 0.001), high-resolution images (p = 0.001), and nonaxial plane of imaging (p = 0.001). Overall, coronal T1 high-resolution images produced the highest percentage of grade 1 views (89%). Fat saturation also caused a secondary ring-shaped distortion artifact, which impaired the view of the contralateral CPA 52.7% of the time, and the contralateral IAC 42.8% of the time. MRI scans without any usable (grade 1) sequences had fewer overall sequences (N = 4.3) than scans with at least one usable sequence (N = 7.1, p = 0.001). MRI image quality with a cochlear implant magnet in situ depends on several factors, which can be modified to maximize image quality in this unique patient population.
Cranial MRI in a young child with cochlear implants after bilateral magnet removal.
Helbig, Silke; Stöver, Timo; Burck, Iris; Kramer, Sabine
2017-12-01
A young bilateral cochlear implant (CI) user required magnetic resonance imaging (MRI) to determine the cause of hydrocephalus. The images obtained with the CIs in place were not diagnostically useful due to large artefacts generated by the CI magnets. We obtained useful images by bilaterally explanting the CI-magnets and replacing them with non-magnetic placeholder dummies then conducted the imaging. The artefact in the new images was greatly reduced and the images were diagnostically useful. Lastly, we explanted the dummies and reimplanted the CI-magnets. This procedure should be useful to obtain useful images in CI users. Copyright © 2017 Elsevier B.V. All rights reserved.
Samar, Huma; Yamrozik, June A; Williams, Ronald B; Doyle, Mark; Shah, Moneal; Bonnet, Christopher A; Biederman, Robert W W
2017-09-01
The objective of this study was to assess the diagnostic usefulness of thoracic and nonthoracic magnetic resonance imaging (MRI) imaging in patients with implantable cardiac devices (permanent pacemaker or implantable cardioverter-defibrillators [ICDs]) to determine if there was a substantial benefit to patients with regard to diagnosis and/or management. MRI is infrequently performed on patients with conventional pacemakers or ICDs. Multiple studies have documented the safety of MRI scans in patients with implanted devices, yet the diagnostic value of this approach has not been established. Evaluation data were acquired in 136 patients with implanted cardiac devices who underwent MRIs during a 10-year period at a single institution. Specific criteria were followed for all patients to objectively define if the diagnosis by MRI enhanced patient care; 4 questions were answered after scan interpretation by both MRI technologists and MRI physicians who performed the scan. 1) Did the primary diagnosis change? 2) Did the MRI provide additional information to the existing diagnosis? 3) Was the pre-MRI (tentative) diagnosis confirmed? 4) Did patient management change? If "Yes" was answered to any of the preceding questions, the MRI scan was considered to be of value to patient diagnosis and/or therapy. In 97% (n = 132) of patients, MR added value to patient diagnosis and management. In 49% (n = 67) of patients, MRI added additional valuable information to the primary diagnosis, and in 30% (n = 41) of patients, MRI changed the principle diagnosis and subsequent management of the patient. No safety issues were encountered, and no adverse effects of undergoing the MRI scan were noted in any patient. MRI in patients with implanted pacemakers and defibrillators added value to patient diagnosis and management, which justified the risk of the procedure. Published by Elsevier Inc.
Maglia, Giampiero; Curnis, Antonio; Brieda, Marco; Anaclerio, Matteo; Caccavo, Vincenzo; Bonfanti, Paolo; Melissano, Donato; Caravati, Fabrizio; Giovene, Lisa; Gargaro, Alessio
2015-10-01
Despite the fact that magnetic resonance (MR)-conditional pacemaker and lead systems have been introduced more than 5 years ago, it is still not clear whether they have actually facilitated the access of pacemaker patients to this important diagnostic tool. Factors limiting MR scans in daily practice in patients with MR-conditional cardiac implantable electronic device (CIED) systems may be related to organizational, cultural and sometimes legal aspects. The Really ProMRI registry is an ongoing survey designed to assess the annual rate of MR examinations in patients with MR-conditional implants, with either pacemakers or implantable cardioverter defibrillators, and to detect the main factors limiting MRI. The primary endpoint of the Really ProMRI registry is to assess the current access to MRI of patients with MR-conditional pacemaker or implantable cardioverter defibrillator systems during normal practice. Data in the literature reported a 17% annual incidence of medical conditions requiring MRI in CIED patients. The Really ProMRI registry has been designed to detect 4.5% absolute difference with an 80% statistical power, by recruiting 600 patients already implanted with MR-conditional CIED implant. Patients will be followed up for 1 year, during which they will be asked to refer any prescription, execution or denial of an MR examination by patient questionnaires and original source documents. The ongoing Really ProMRI registry will assess the actual rate of and factors limiting the access to MRI for patients with MR-conditional CIEDs.
Russo, Robert J
2013-03-01
Until recently, the presence of a permanent pacemaker or an implantable cardioverter-defibrillator has been a relative contraindication for the performance of magnetic resonance imaging (MRI). A number of small studies have shown that MRI can be performed with minimal risk when patients are properly monitored and device programming is modified appropriately for the procedure. However, the risk of performing MRI for patients with implanted cardiac devices has not been sufficiently evaluated to advocate routine clinical use. The aim of the present protocol is to prospectively determine the rate of adverse clinical events and device parameter changes in patients with implanted non-MRI-conditional cardiac devices undergoing clinically indicated nonthoracic MRI at 1.5 T. The MagnaSafe Registry is a multicenter, prospective cohort study of up to 1500 MRI examinations in patients with pacemakers or implantable cardioverter-defibrillators implanted after 2001 who undergo clinically indicated nonthoracic MRI following a specific protocol to ensure that preventable potential adverse events are mitigated. Adverse events and changes in device parameter measurements that may be associated with the imaging procedure will be documented. Through August 2012, 701 MRI studies have been performed, representing 47% of the total target enrollment. The results of this registry will provide additional documentation of the risk of MRI and will further validate a clinical protocol for screening and the performance of clinically indicated MRI for patients with implanted cardiac devices. Copyright © 2013 Mosby, Inc. All rights reserved.
Gill, Amreeta; Shellock, Frank G
2012-01-09
Metallic skin closure staples and vessel ligation clips should be tested at 3-Tesla to characterize MRI issues in order to ensure patient safety. Therefore, metallic surgical implants were assessed at 3-Tesla for magnetic field interactions, MRI-related heating, and artifacts. A skin closure staple (Visistat Skin Stapler, staple, Polytetrafluoroethylene, PTFE, coated 316L/316LVM stainless steel; Teleflex Medical, Durham, NC) and a vessel ligation clip (Hemoclip Traditional, stainless steel; Teleflex Medical, Durham, NC) that represented the largest metallic sizes made from materials with the highest magnetic susceptibilities (i.e., based on material information) among 61 other surgical implants (52 metallic implants, 9 nonmetallic implants) underwent evaluation for magnetic field interactions, MRI-related heating, and artifacts using standardized techniques. MRI-related heating was assessed by placing each implant in a gelled-saline-filled phantom with MRI performed using a transmit/receive RF body coil at an MR system reported, whole body averaged SAR of 2.9-W/kg for 15-min. Artifacts were characterized using T1-weighted, SE and GRE pulse sequences. Each surgical implant showed minor magnetic field interactions (20- and 27-degrees, which is acceptable from a safety consideration). Heating was not substantial (highest temperature change, ≤ 1.6°C). Artifacts may create issues if the area of interest is in the same area or close to the respective surgical implant. The results demonstrated that it would be acceptable for patients with these metallic surgical implants to undergo MRI at 3-Tesla or less. Because of the materials and dimensions of the surgical implants that underwent testing, these findings pertain to 61 additional similar implants.
2012-01-01
Purpose Metallic skin closure staples and vessel ligation clips should be tested at 3-Tesla to characterize MRI issues in order to ensure patient safety. Therefore, metallic surgical implants were assessed at 3-Tesla for magnetic field interactions, MRI-related heating, and artifacts. Methods A skin closure staple (Visistat Skin Stapler, staple, Polytetrafluoroethylene, PTFE, coated 316L/316LVM stainless steel; Teleflex Medical, Durham, NC) and a vessel ligation clip (Hemoclip Traditional, stainless steel; Teleflex Medical, Durham, NC) that represented the largest metallic sizes made from materials with the highest magnetic susceptibilities (i.e., based on material information) among 61 other surgical implants (52 metallic implants, 9 nonmetallic implants) underwent evaluation for magnetic field interactions, MRI-related heating, and artifacts using standardized techniques. MRI-related heating was assessed by placing each implant in a gelled-saline-filled phantom with MRI performed using a transmit/receive RF body coil at an MR system reported, whole body averaged SAR of 2.9-W/kg for 15-min. Artifacts were characterized using T1-weighted, SE and GRE pulse sequences. Results Each surgical implant showed minor magnetic field interactions (20- and 27-degrees, which is acceptable from a safety consideration). Heating was not substantial (highest temperature change, ≤ 1.6°C). Artifacts may create issues if the area of interest is in the same area or close to the respective surgical implant. Conclusions The results demonstrated that it would be acceptable for patients with these metallic surgical implants to undergo MRI at 3-Tesla or less. Because of the materials and dimensions of the surgical implants that underwent testing, these findings pertain to 61 additional similar implants. PMID:22230200
Magnetic resonance imaging investigation of the bone conduction implant – a pilot study at 1.5 Tesla
Jansson, Karl-Johan Fredén; Håkansson, Bo; Reinfeldt, Sabine; Rigato, Cristina; Eeg-Olofsson, Måns
2015-01-01
Purpose The objective of this pilot study was to investigate if an active bone conduction implant (BCI) used in an ongoing clinical study withstands magnetic resonance imaging (MRI) of 1.5 Tesla. In particular, the MRI effects on maximum power output (MPO), total harmonic distortion (THD), and demagnetization were investigated. Implant activation and image artifacts were also evaluated. Methods and materials One implant was placed on the head of a test person at the position corresponding to the normal position of an implanted BCI and applied with a static pressure using a bandage and scanned in a 1.5 Tesla MRI camera. Scanning was performed both with and without the implant, in three orthogonal planes, and for one spin-echo and one gradient-echo pulse sequence. Implant functionality was verified in-between the scans using an audio processor programmed to generate a sequence of tones when attached to the implant. Objective verification was also carried out by measuring MPO and THD on a skull simulator as well as retention force, before and after MRI. Results It was found that the exposure of 1.5 Tesla MRI only had a minor effect on the MPO, ie, it decreased over all frequencies with an average of 1.1±2.1 dB. The THD remained unchanged above 300 Hz and was increased only at lower frequencies. The retention magnet was demagnetized by 5%. The maximum image artifacts reached a distance of 9 and 10 cm from the implant in the coronal plane for the spin-echo and the gradient-echo sequence, respectively. The test person reported no MRI induced sound from the implant. Conclusion This pilot study indicates that the present BCI may withstand 1.5 Tesla MRI with only minor effects on its performance. No MRI induced sound was reported, but the head image was highly distorted near the implant. PMID:26604836
Jansson, Karl-Johan Fredén; Håkansson, Bo; Reinfeldt, Sabine; Rigato, Cristina; Eeg-Olofsson, Måns
2015-01-01
The objective of this pilot study was to investigate if an active bone conduction implant (BCI) used in an ongoing clinical study withstands magnetic resonance imaging (MRI) of 1.5 Tesla. In particular, the MRI effects on maximum power output (MPO), total harmonic distortion (THD), and demagnetization were investigated. Implant activation and image artifacts were also evaluated. One implant was placed on the head of a test person at the position corresponding to the normal position of an implanted BCI and applied with a static pressure using a bandage and scanned in a 1.5 Tesla MRI camera. Scanning was performed both with and without the implant, in three orthogonal planes, and for one spin-echo and one gradient-echo pulse sequence. Implant functionality was verified in-between the scans using an audio processor programmed to generate a sequence of tones when attached to the implant. Objective verification was also carried out by measuring MPO and THD on a skull simulator as well as retention force, before and after MRI. It was found that the exposure of 1.5 Tesla MRI only had a minor effect on the MPO, ie, it decreased over all frequencies with an average of 1.1±2.1 dB. The THD remained unchanged above 300 Hz and was increased only at lower frequencies. The retention magnet was demagnetized by 5%. The maximum image artifacts reached a distance of 9 and 10 cm from the implant in the coronal plane for the spin-echo and the gradient-echo sequence, respectively. The test person reported no MRI induced sound from the implant. This pilot study indicates that the present BCI may withstand 1.5 Tesla MRI with only minor effects on its performance. No MRI induced sound was reported, but the head image was highly distorted near the implant.
Magnetic Resonance Imaging of Surgical Implants Made from Weak Magnetic Materials
NASA Astrophysics Data System (ADS)
Gogola, D.; Krafčík, A.; Štrbák, O.; Frollo, I.
2013-08-01
Materials with high magnetic susceptibility cause local inhomogeneities in the main field of the magnetic resonance (MR) tomograph. These inhomogeneities lead to loss of phase coherence, and thus to a rapid loss of signal in the image. In our research we investigated inhomogeneous field of magnetic implants such as magnetic fibers, designed for inner suture during surgery. The magnetic field inhomogeneities were studied at low magnetic planar phantom, which was made from four thin strips of magnetic tape, arranged grid-wise. We optimized the properties of imaging sequences with the aim to find the best setup for magnetic fiber visualization. These fibers can be potentially exploited in surgery for internal stitches. Stitches can be visualized by the magnetic resonance imaging (MRI) method after surgery. This study shows that the imaging of magnetic implants is possible by using the low field MRI systems, without the use of complicated post processing techniques (e.g., IDEAL).
Use of (N-1)-D expansions for N-D phase unwrapping in MRI
NASA Astrophysics Data System (ADS)
Bones, Philip J.; King, Laura J.; Millane, Rick P.
2017-09-01
In MRI the presence of metal implants causes severe artifacts in images and interferes with the usual techniques used to separate fat signals from other tissues. In the Dixon method, three images are acquired at different echo times to enable the variation in the magnetic field to be estimated. However, the estimate is represented as the phase of a complex quantity and therefore suffers from wrapping. High field gradients near the metal mean that the phase estimate is undersampled and therefore challenging to unwrap. We have developed POP, phase estimation by onion peeling, an algorithm which unwraps the phase along 1-D paths for a 2-D image obtained with the Dixon method. The unwrapping is initially performed along a closed path enclosing the implant and well separated from it. The recovered phase is expanded using a smooth periodic basis along the path. Then, path-by-path, the estimate is applied to the next path and then the expansion coefficients are estimated to best fit the wrapped measurements. We have successfully tested POP on MRI images of specially constructed phantoms and on a group of patients with hip implants. In principle, POP can be extended to 3-D imaging. In that case, POP would entail representing phase with a suitably smooth basis over a series of surfaces enclosing the implant (the "onion skins"), again beginning the phase estimation well away from the implant. An approach for this is proposed. Results are presented for fat and water separation for 2-D images of phantoms and actual patients. The practicality of the method and its employment in clinical MRI are discussed.
Kempe, Sabine; Metz, Hendrik; Pereira, Priscila G C; Mäder, Karsten
2010-01-01
In the present study, we used benchtop magnetic resonance imaging (BT-MRI) for non-invasive and continuous in vivo studies of in situ forming poly(lactide-co-glycolide) (PLGA) implants without the use of contrast agents. Polyethylene glycol (PEG) 400 was used as an alternative solvent to the clinically used NMP. In addition to BT-MRI, we applied electron paramagnetic resonance (EPR) spectroscopy to characterize implant formation and drug delivery processes in vitro and in vivo. We were able to follow key processes of implant formation by EPR and MRI. Because EPR spectra are sensitive to polarity and mobility, we were able to follow the kinetics of the solvent/non-solvent exchange and the PLGA precipitation. Due to the high water affinity of PEG 400, we observed a transient accumulation of water in the implant neighbourhood. Furthermore, we detected the encapsulation by BT-MRI of the implant as a response of the biological system to the polymer, followed by degradation over a period of two months. We could show that MRI in general has the potential to get new insights in the in vivo fate of in situ forming implants. The study also clearly shows that BT-MRI is a new viable and much less expensive alternative for superconducting MRI machines to monitor drug delivery processes in vivo in small mammals. Copyright 2009 Elsevier B.V. All rights reserved.
Schöllchen, Maximilian; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne
2017-01-01
Objectives: To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium–zirconium alloy dental implants. Methods: Zirconium, titanium and titanium–zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line–distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. Results: While titanium and titanium–zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium–zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium–zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium–zirconium alloy induced more severe artefacts than zirconium and titanium. Conclusions: MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium–zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting. PMID:27910719
Smeets, Ralf; Schöllchen, Maximilian; Gauer, Tobias; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne
2017-02-01
To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium-zirconium alloy dental implants. Zirconium, titanium and titanium-zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line-distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. While titanium and titanium-zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium-zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium-zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium-zirconium alloy induced more severe artefacts than zirconium and titanium. MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium-zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting.
Dislocation of cochlear implant magnet as a complication following MRI.
Murtojärvi, Sarita; Salonen, Jaakko
According to current best knowledge, an MRI scan can be performed for patients with cochlear implants. The warnings and recommendations of the implant manufacturers must be followed strictly to prevent complications, such as overheating, migration or demagnetization of the magnet in the implant. We report on a case of cochlear implant magnet dislocation as a complication for an MRI scan. The patient had a tight bandage around the head to hold the magnet in place as recommended by the manufacturer, but apparently the bandage was not in the correct place.
Capitanio, Jody Filippo; Venier, Alice; Mazzeo, Lucio Aniello; Barzaghi, Lina Raffaella; Acerno, Stefania; Mortini, Pietro
2016-04-01
Exposure to magnetic fields may alter the settings of programmable ventriculoperitoneal shunt valves or even cause permanent damages to these devices. There is little information about this topic, none on live patients. To investigate the effects of 1.5-tesla magnetic resonance imaging (MRI) on Hakim-Codman (HC) pressure programmable valves implanted in our hospital. A single-center prospective study to assess the rate of perturbations of HC programmable valve implanted. One hundred consecutive patients implanted for different clinical reasons between 2008 and 2012 were examined. A conventional skull x-ray before and after a standard MRI on 1.5 tesla. We evaluated before and after results, analyzed modification rate, and verified eventual damages to the implanted devices. Implanted HC valves are extremely handy and durable, even if they are likely to change often due to the exposure to magnetic fields. None of the patients complained of heating effects. Oscillations range from 10-30 mm H2O with a patient who reached 50 mm H2O and 1 who reached 60 mm H2O. Global alteration rate was 40%: 10 patients (10%) experienced a 10 mm H2O change; 14 patients (14%) had a 20 mm H2O change; 6 patients (6%) had a 30 mm H2O change; 8 patients (8%) had a 40 mm H2O change; 1 patient had a 50 mm H2O change; and 1 patient had a 60 mm H2O change. HC valves presented a variable perturbation rate, with an alteration rate of 40% with 1.5-telsa MRI. We have not observed malfunctioning hardware as a result of magnetic influence. We claim a cranial x-ray immediately after the MRI because of a high risk (40%) of decalibration, especially in patients with low ventricles compliance. Copyright © 2016 Elsevier Inc. All rights reserved.
Sun, Yi; Geutjes, Paul; Oosterwijk, Egbert; Heerschap, Arend
2014-12-01
Noninvasive monitoring of implanted scaffolds is important to understand their behavior and role in tissue engineering, in particular to follow their degradation and interaction with host tissue. Magnetic resonance imaging (MRI) is well suited for this goal, but its application is often hampered by the low contrast of scaffolds that are prepared from biomaterials such as type I collagen. The aim of this study was to test iron oxide particles incorporation in improving their MRI contrasts, and to follow their degradation and tissue interactions. Scaffolds with and without iron oxide particles were implanted either subcutaneously or on the bladder of rats. At predetermined time points, in vivo MRI were obtained and tissues were then harvested for histology analysis and transmission electron microscopy. The result showed that the incorporation of iron oxide particles improved MRI contrast of the implants, providing information on their location, shapes, and degradation. Second, the host tissue reaction to the type I collagen implants could be observed in both MRI and histology. Finally, MRI also revealed that the degradation and host tissue reaction of iron particles-loaded scaffolds differed between subcutaneous and bladder implantation, which was substantiated by histology.
Further studies on the effects of magnetic resonance imaging fields on middle ear implants.
Applebaum, E L; Valvassori, G E
1990-10-01
We investigated the effects of magnetic resonance imaging (MRI) fields on 21 stapedectomy prostheses and other middle ear implants and two different receiver-stimulator modules from 22-channel cochlear implants. None of the middle ear implants was displaced by the magnetic field, except for one platinum-stainless steel stapedectomy piston. Magnetism was not induced in any of the middle ear implants subjected to prolonged exposure in the MRI scanner. We conclude that MRI could pose a hazard to patients who have had stapedectomy using certain platinum-stainless steel piston prostheses and to patients with cochlear implants. Magnetic resonance imaging should pose no hazard to patients who have had the other middle ear implants reported on in this and our previous investigation.
Safety of magnetic resonance imaging of stapes prostheses.
Syms, Mark James
2005-03-01
Assess the safety of performing magnetic resonance imaging (MRI) on patients with stapes prostheses. Survey and animal model. A survey regarding implant usage, MRI procedures, and adverse outcomes after MRI in patients previously undergoing stapes procedures. Guinea pigs implanted with ferromagnetic 17 to 4 stainless steel, 316L nonferromagnetic stainless steel, titanium, and fluoroplastic stapes prostheses underwent a MRI in a 4.7 Tesla MR system. : Three adverse outcomes were reported on the clinical survey. One adverse event occurred during an MRI performed on a recalled ferromagnetic prosthesis. The other two adverse events were probably not secondary to MRI exposure. No damage or inflammation was observed in the region of the oval window or vestibule of implanted guinea pigs exposed to a 4.7 Tesla MR system. The combination of prior studies, the clinical survey, and the absence of histopathologic evidence of damage in the guinea pigs is compelling evidence that MRI for patients with stapes prostheses is safe. Implanting physicians should feel comfortable clearing a patient for a MRI in a 1.5 Tesla or 3.0 Tesla MRI. It is imperative for the physician to qualify the field strength when clearing a patient to undergo a MRI.
The interobserver-validated relevance of intervertebral spacer materials in MRI artifacting
Heidrich, G.; Bruening, T.; Krefft, S.; Buchhorn, G.; Klinger, H.M.
2006-01-01
Intervertebral spacers for anterior spine fusion are made of different materials, such as titanium, carbon or cobalt-chrome, which can affect the post-fusion MRI scans. Implant-related susceptibility artifacts can decrease the quality of MRI scans, thwarting proper evaluation. This cadaver study aimed to demonstrate the extent that implant-related MRI artifacting affects the post-fusion evaluation of intervertebral spacers. In a cadaveric porcine spine, we evaluated the post-implantation MRI scans of three intervertebral spacers that differed in shape, material, surface qualities and implantation technique. A spacer made of human cortical bone was used as a control. The median sagittal MRI slice was divided into 12 regions of interest (ROI). No significant differences were found on 15 different MRI sequences read independently by an interobserver-validated team of specialists (P>0.05). Artifact-affected image quality was rated on a score of 0-1-2. A maximum score of 24 points (100%) was possible. Turbo spin echo sequences produced the best scores for all spacers and the control. Only the control achieved a score of 100%. The carbon, titanium and cobalt-chrome spacers scored 83.3, 62.5 and 50%, respectively. Our scoring system allowed us to create an implant-related ranking of MRI scan quality in reference to the control that was independent of artifact dimensions. The carbon spacer had the lowest percentage of susceptibility artifacts. Even with turbo spin echo sequences, the susceptibility artifacts produced by the metallic spacers showed a high degree of variability. Despite optimum sequencing, implant design and material are relevant factors in MRI artifacting. PMID:16463200
Deep brain stimulation with a pre-existing cochlear implant: Surgical technique and outcome.
Eddelman, Daniel; Wewel, Joshua; Wiet, R Mark; Metman, Leo V; Sani, Sepehr
2017-01-01
Patients with previously implanted cranial devices pose a special challenge in deep brain stimulation (DBS) surgery. We report the implantation of bilateral DBS leads in a patient with a cochlear implant. Technical nuances and long-term interdevice functionality are presented. A 70-year-old patient with advancing Parkinson's disease and a previously placed cochlear implant for sensorineural hearing loss was referred for placement of bilateral DBS in the subthalamic nucleus (STN). Prior to DBS, the patient underwent surgical removal of the subgaleal cochlear magnet, followed by stereotactic MRI, frame placement, stereotactic computed tomography (CT), and merging of imaging studies. This technique allowed for successful computational merging, MRI-guided targeting, and lead implantation with acceptable accuracy. Formal testing and programming of both the devices were successful without electrical interference. Successful DBS implantation with high resolution MRI-guided targeting is technically feasible in patients with previously implanted cochlear implants by following proper precautions.
Cochlear implant with a non-removable magnet: preliminary research at 3-T MRI.
Dubrulle, F; Sufana Iancu, A; Vincent, C; Tourrel, G; Ernst, O
2013-06-01
To perform preliminary tests in vitro and with healthy volunteers to determine the 3-T MRI compatibility of a cochlear implant with a non-removable magnet. In the in vitro phase, we tested six implants for temperature changes and internal malfunctioning. We measured the demagnetisation of 65 internal magnets with different tilt angles between the implant's magnetic field (bi) and the main magnetic field (b0). In the in vivo phase, we tested 28 operational implants attached to the scalps of volunteers with the head in three different positions. The study did not find significant temperature changes or electronic malfunction in the implants tested in vitro. We found considerable demagnetisation of the cochlear implant magnets in the in vitro and in vivo testing influenced by the position of the magnet in the main magnetic field. We found that if the bi/b0 angle is <90°, there is no demagnetisation; if the bi/b0 angle is >90°, there is demagnetisation in almost 60 % of the cases. When the angle is around 90°, the risk of demagnetisation is low (6.6 %). The preliminary results on cochlear implants with non-removable magnets indicate the need to maintain the contraindication of passage through 3-T MRI. • Magnetic resonance imaging can affect cochlear implants and vice versa. • Demagnetisation of cochlear implant correlates with the angle between bi and b0. • The position of the head in the MRI influences the demagnetisation. • Three-Tesla MRI for cochlear implants is still contraindicated. • However some future solutions are discussed.
Gaudet, Jeffrey M; Hamilton, Amanda M; Chen, Yuanxin; Fox, Matthew S; Foster, Paula J
2017-08-01
Cellular MRI) was used to detect implanted human mesenchymal stem cells (hMSCs) and the resulting macrophage infiltration that occurs in response to xenotransplantation. Human mesenchymal stem cells were prelabeled with a fluorine-19 ( 19 F) agent prior to implantation, allowing for their visualization and quantification over time. Following implantation of 1 × 10 6 19 F-labeled hMSCs into the mouse hind limb, longitudinal imaging was performed to monitor the stem cell graft. Macrophages were labeled in situ by the intravenous administration of an ultrasmall superparamagentic iron oxide (USPIO), allowing for tracking of the inflammatory response. Quantification of 19 F MRI on day 0 agreed with the implanted number of cells, and 19 F signal decreased over time. By day 14, only 22% ± 11% of the original 19 F signal remained. In a second group, USPIO were administered intravenously after implantation of 19 F-labeled hMSCs. When imaged on day 2, a significant decrease in 19 F signal was observed compared to the first group alongside a large signal void region in the corresponding proton images. Immunohistochemistry confirmed the presence of iron-labeled macrophages in the stem cell tract. A dual-labeling technique was used to noninvasively track two distinct cell populations simultaneously. This information could be used to provide additional insight into the cause of graft failure. Magn Reson Med 78:713-720, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
PIP breast implants: rupture rate and correlation with breast cancer
MOSCHETTA, M.; TELEGRAFO, M.; CORNACCHIA, I.; VINCENTI, L.; RANIERI, V.; CIRILLI, A.; RELLA, L.; IANORA, A.A. STABILE; ANGELELLI, G.
2014-01-01
Aim To evaluate the incidence of Poly Implant Prosthése (PIP) rupture as assessed by magnetic resonance imaging (MRI), the prevalence of the detected signs and the potential correlation with breast carcinoma. Patients and methods 67 patients with silicone breast implants and clinical indications for breast MRI were evaluated for a total of 125 implants: 40 (32%) PIP in 21 patients and 85 non-PIP in 46 patients (68%), the latest considered as control group. A 1.5-T MR imaging device was used in order to assess implant integrity with dedicated sequences and in 6 cases a dynamic study was performed for characterizing breast lesions. Two radiologists with more than 5 years’ experience in the field of MRI evaluated in consensus all MR images searching for the presence of clear signs of intra or extra-capsular implant rupture. Results 20/40 (50%) PIP implants presented signs of intra-capsular rupture: linguine sign in 20 cases (100%), tear-drop sign in 6 (30%). In 12/20 cases (60%), MRI signs of extra-capsular rupture were detected. In the control group, an intra-capsular rupture was diagnosed in 12/85 cases (14%) associated with extra-capsular one in 5/12 cases (42%). Among the six cases with suspected breast lesions, in 2/21 patients with PIP implants (10%) a breast carcinoma was diagnosed (mucinous carcinoma, n=1; invasive ductal carcinoma, n=1). In 4/46 patients (9%) with non-PIP implants, an invasive ductal carcinoma was diagnosed. Conclusion The rupture rate of PIP breast implants is significantly higher than non-PIP (50% vs 14%). MRI represents the most accurate imaging tool for evaluating breast prostheses and the linguine sign is the most common MRI sign to be searched. The incidence of breast carcinoma does not significantly differ between the PIP and non-PIP implants and a direct correlation with breast cancer can not been demonstrated. PMID:25644728
PIP breast implants: rupture rate and correlation with breast cancer.
Moschetta, M; Telegrafo, M; Cornacchia, I; Vincenti, L; Ranieri, V; Cirili, A; Rella, L; Stabile Ianora, A A; Angelelli, G
2014-01-01
To evaluate the incidence of Poly Implant Prosthése (PIP) rupture as assessed by magnetic resonance imaging (MRI), the prevalence of the detected signs and the potential correlation with breast carcinoma. 67 patients with silicone breast implants and clinical indications for breast MRI were evaluated for a total of 125 implants: 40 (32%) PIP in 21 patients and 85 non-PIP in 46 patients (68%), the latest considered as control group. A 1.5-T MR imaging device was used in order to assess implant integrity with dedicated sequences and in 6 cases a dynamic study was performed for characterizing breast lesions. Two radiologists with more than 5 years' experience in the field of MRI evaluated in consensus all MR images searching for the presence of clear signs of intra or extra-capsular implant rupture. 20/40 (50%) PIP implants presented signs of intra-capsular rupture: linguine sign in 20 cases (100%), tear-drop sign in 6 (30%). In 12/20 cases (60%), MRI signs of extra-capsular rupture were detected. In the control group, an intra-capsular rupture was diagnosed in 12/85 cases (14%) associated with extra-capsular one in 5/12 cases (42%). Among the six cases with suspected breast lesions, in 2/21 patients with PIP implants (10%) a breast carcinoma was diagnosed (mucinous carcinoma, n=1; invasive ductal carcinoma, n=1). In 4/46 patients (9%) with non-PIP implants, an invasive ductal carcinoma was diagnosed. The rupture rate of PIP breast implants is significantly higher than non-PIP (50% vs 14%). MRI represents the most accurate imaging tool for evaluating breast prostheses and the linguine sign is the most common MRI sign to be searched. The incidence of breast carcinoma does not significantly differ between the PIP and non-PIP implants and a direct correlation with breast cancer can not been demonstrated.
Wanner, Laura; Ludwig, Ute; Hövener, Jan-Bernd; Nelson, Katja; Flügge, Tabea
2018-04-01
Compared with cone beam computed tomography (CBCT), magnetic resonance imaging (MRI) might be superior for the diagnosis of nerve lesions associated with implant placement. A patient presented with unilateral pain associated with dysesthesia in the region of the right lower lip and chin after implant placement. Conventional orthopantomography could not identify an association between the position of the inferior alveolar nerve and the implant. For 3-dimensional display of the implant in relation to the surrounding anatomy, CBCT was compared with MRI. MRI enabled the precise depiction of the implant position and its spatial relation to the inferior alveolar nerve, whereas the nerve position and its exact course within the mandible could not be directly displayed in CBCT. MRI may be a valuable, radiation-free diagnostic tool for the visualization of intraoral hard and soft tissues, offering an objective assessment of nerve injuries by a direct visualization of the inferior alveolar neurovascular bundle. Copyright © 2018 Elsevier Inc. All rights reserved.
Fully phase-encoded MRI near metallic implants using ultrashort echo times and broadband excitation.
Wiens, Curtis N; Artz, Nathan S; Jang, Hyungseok; McMillan, Alan B; Koch, Kevin M; Reeder, Scott B
2018-04-01
To develop a fully phase-encoded MRI method for distortion-free imaging near metallic implants, in clinically feasible acquisition times. An accelerated 3D fully phase-encoded acquisition with broadband excitation and ultrashort echo times is presented, which uses a broadband radiofrequency pulse to excite the entire off-resonance induced by the metallic implant. Furthermore, fully phase-encoded imaging is used to prevent distortions caused by frequency encoding, and to obtain ultrashort echo times for rapidly decaying signal. Phantom and in vivo acquisitions were used to describe the relationship among excitation bandwidth, signal loss near metallic implants, and T 1 weighting. Shorter radiofrequency pulses captured signal closer to the implant by improving spectral coverage and allowing shorter echo times, whereas longer pulses improved T 1 weighting through larger maximum attainable flip angles. Comparisons of fully phase-encoded acquisition with broadband excitation and ultrashort echo times to T 1 -weighted multi-acquisition with variable resonance image combination selective were performed in phantoms and subjects with metallic knee and hip prostheses. These acquisitions had similar contrast and acquisition efficiency. Accelerated fully phase-encoded acquisitions with ultrashort echo times and broadband excitation can generate distortion free images near metallic implants in clinically feasible acquisition times. Magn Reson Med 79:2156-2163, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Fully Phase-Encoded MRI Near Metallic Implants Using Ultrashort Echo Times and Broadband Excitation
Wiens, Curtis N.; Artz, Nathan S.; Jang, Hyungseok; McMillan, Alan B.; Koch, Kevin M.; Reeder, Scott B.
2017-01-01
Purpose To develop a fully phase-encoded MRI method for distortion-free imaging near metallic implants, in clinically feasible acquisition times. Theory and Methods An accelerated 3D fully phase-encoded acquisition with broadband excitation and ultrashort echo times is presented, which uses a broadband radiofrequency pulse to excite the entire off-resonance induced by the metallic implant. Furthermore, fully phase-encoded imaging is used to prevent distortions caused by frequency encoding, and to obtain ultrashort echo times for rapidly decaying signal. Results Phantom and in vivo acquisitions were used to describe the relationship among excitation bandwidth, signal loss near metallic implants, and T1 weighting. Shorter radiofrequency pulses captured signal closer to the implant by improving spectral coverage and allowing shorter echo times, whereas longer pulses improved T1 weighting through larger maximum attainable flip angles. Comparisons of fully phase-encoded acquisition with broadband excitation and ultrashort echo times to T1-weighted multi-acquisition with variable resonance image combination selective were performed in phantoms and subjects with metallic knee and hip prostheses. These acquisitions had similar contrast and acquisition efficiency. Conclusions Accelerated fully phase-encoded acquisitions with ultrashort echo times and broadband excitation can generate distortion free images near metallic implants in clinically feasible acquisition times. Magn Reson Med 000:000–000, 2017. PMID:28833407
Sommer, Bjoern; Rampp, Stefan; Doerfler, Arnd; Stefan, Hermann; Hamer, Hajo M; Buchfelder, Michael; Roessler, Karl
2018-06-19
One of the main obstacles of electrode implantation in epilepsy surgery is the electrode shift between implantation and the day of explantation. We evaluated this possible electrode displacement using intraoperative MRI (iopMRI) data and CT/MRI reconstruction. Thirteen patients (nine female, four male, median age 26 ± 9.4 years) suffering from drug-resistant epilepsy were examined. After implantation, the position of subdural electrodes was evaluated by 3.0 T-MRI and thin-slice CCT for 3D reconstruction. Localization of electrodes was performed with the volume-rendering technique. Post-implantation and pre-explantation 1.5 T-iopMRI scans were coregistered with the 3D reconstructions to determine the extent of electrode dislocation. Intraoperative MRI at the time of explantation revealed a relevant electrode shift in one patient (8%) of 10 mm. Median electrode displacement was 1.7 ± 2.6 mm with a coregistration error of 1.9 ± 0.7 mm. The median accuracy of the neuronavigation system was 2.2 ± 0.9 mm. Six of twelve patients undergoing resective surgery were seizure free (Engel class 1A, median follow-up 37.5 ± 11.8 months). Comparison of pre-explantation and post-implantation iopMRI scans with CT/MRI data using the volume-rendering technique resulted in an accurate placement of electrodes. In one patient with a considerable electrode dislocation, the surgical approach and extent was changed due to the detected electrode shift. ECoG: electrocorticography; EZ: epileptogenic zone; iEEG: invasive EEG; iopMRI: intraoperative MRI; MEG: magnetoencephalography; PET: positron emission tomography; SPECT: single photon emission computed tomography; 3D: three-dimensional.
Convex optimization of MRI exposure for mitigation of RF-heating from active medical implants.
Córcoles, Juan; Zastrow, Earl; Kuster, Niels
2015-09-21
Local RF-heating of elongated medical implants during magnetic resonance imaging (MRI) may pose a significant health risk to patients. The actual patient risk depends on various parameters including RF magnetic field strength and frequency, MR coil design, patient's anatomy, posture, and imaging position, implant location, RF coupling efficiency of the implant, and the bio-physiological responses associated with the induced local heating. We present three constrained convex optimization strategies that incorporate the implant's RF-heating characteristics, for the reduction of local heating of medical implants during MRI. The study emphasizes the complementary performances of the different formulations. The analysis demonstrates that RF-induced heating of elongated metallic medical implants can be carefully controlled and balanced against MRI quality. A reduction of heating of up to 25 dB can be achieved at the cost of reduced uniformity in the magnitude of the B(1)(+) field of less than 5%. The current formulations incorporate a priori knowledge of clinically-specific parameters, which is assumed to be available. Before these techniques can be applied practically in the broader clinical context, further investigations are needed to determine whether reduced access to a priori knowledge regarding, e.g. the patient's anatomy, implant routing, RF-transmitter, and RF-implant coupling, can be accepted within reasonable levels of uncertainty.
Sviridova, A A
The question of the possibility of MRI scanning in patients with cardiac implantable electronic devices (CIED) appeared simultaneously with the introduction of MRI in clinical practice. A lot of in-vitro, in-vivo and clinical researches were performed to estimate wat going on with CIED in strong magnetic field and is it possible to perform some unified protocol of safe MRI-scanning for these patients. Recommendations were provided, but not for the wide practice. MRI remained strongly contraindicated for CIED patient. To meet the clinical need CIEM manufacturers changed the design of devices to made them MRI-compatible, including reducing of ferromagnetic components, additional filters, new software. Lead coil design was changed as well to minimize lead heating and electrical current induction. Now all leaders of CIED industry have in their portfolio all types of MRI-conditional implanted cardiac rhythm management devices (pacemakers, ICDs, CRTs). "Conditional" means MRI scanning can be done only under specific condition. For MRI device and lead in one system have to be from the same manufacturer. Now, if you need to implant the device, you must proceed from the fact that the patient is more likely to need an MRI in the future and choose the appropriate model, not forgetting that the electrodes should also be MRI-compatible.
Song, Jae W.; Kim, Hyungjin Myra; Bellfi, Lillian T.; Chung, Kevin C.
2010-01-01
Background All silicone breast implant recipients are recommended by the US Food and Drug Administration to undergo serial screening to detect implant rupture with magnetic resonance imaging (MRI). We performed a systematic review of the literature to assess the quality of diagnostic accuracy studies utilizing MRI or ultrasound to detect silicone breast implant rupture and conducted a meta-analysis to examine the effect of study design biases on the estimation of MRI diagnostic accuracy measures. Method Studies investigating the diagnostic accuracy of MRI and ultrasound in evaluating ruptured silicone breast implants were identified using MEDLINE, EMBASE, ISI Web of Science, and Cochrane library databases. Two reviewers independently screened potential studies for inclusion and extracted data. Study design biases were assessed using the QUADAS tool and the STARDS checklist. Meta-analyses estimated the influence of biases on diagnostic odds ratios. Results Among 1175 identified articles, 21 met the inclusion criteria. Most studies using MRI (n= 10 of 16) and ultrasound (n=10 of 13) examined symptomatic subjects. Meta-analyses revealed that MRI studies evaluating symptomatic subjects had 14-fold higher diagnostic accuracy estimates compared to studies using an asymptomatic sample (RDOR 13.8; 95% CI 1.83–104.6) and 2-fold higher diagnostic accuracy estimates compared to studies using a screening sample (RDOR 1.89; 95% CI 0.05–75.7). Conclusion Many of the published studies utilizing MRI or ultrasound to detect silicone breast implant rupture are flawed with methodological biases. These methodological shortcomings may result in overestimated MRI diagnostic accuracy measures and should be interpreted with caution when applying the data to a screening population. PMID:21364405
MR imaging of ectopic pregnancy with an emphasis on unusual implantation sites.
Köroğlu, Mert; Kayhan, Arda; Soylu, Fatma Nur; Erol, Bekir; Schmid-Tannwald, Christine; Gürses, Cemil; Karademir, İbrahim; Ernst, Randy; Yousuf, Ambereen; Oto, Aytekin
2013-02-01
Ectopic pregnancy (EP) is a life-threatening condition and remains the leading cause of death in the first trimester of pregnancy, although the mortality rate has significantly decreased over the past few decades because of earlier diagnoses and great improvements in treatment. EP is most commonly located in the ampullary portion of the fallopian tube and rarely in unusual sites such as the interstitium, cervix, cesarean scar, anomalous rudimentary horn of the uterus and peritoneal abdominal cavity. MRI may confirm or give additional information to ultrasonography, which is the most user-dependent imaging modality. Magnetic resonance imaging can accurately localize the site of abnormal implantation. It could be helpful for EP patient treatment by distinguishing the ruptured and unruptured cases before methotrexate treatment. MRI is quite sensitive to blood and can identify the hemorrhage phase.
Economic Analysis of Screening Strategies for Rupture of Silicone Gel Breast Implants
Chung, Kevin C.; Malay, Sunitha; Shauver, Melissa J.; Kim, H. Myra
2012-01-01
Background In 2006, the U.S. Food and Drug Administration (FDA) recommended screening of all women with silicone gel breast implants with magnetic resonance imaging (MRI) three years after implantation and every two years thereafter to assess their integrity. The cost for these serial examinations over the lifetime of the breast implants is an added burden to insurance payers and to women. We perform an economic analysis to determine the most optimal screening strategies by considering the diagnostic accuracy of the screening tests, the costs of the tests and subsequent implant removal. Methods We determined aggregate/pooled values for sensitivity and specificity of the screening tests ultrasound (US) and MRI in detecting silicone breast implant ruptures from the data obtained from published literature. We compiled costs, based on Medicare reimbursements for 2011, for the following elements: imaging modalities, anesthesia and 3 surgical treatment options for detected ruptures. We used decision tree to compare three alternate screening strategies of US only, MRI only and US followed by MRI in asymptomatic and symptomatic women. Results The cost per rupture of screening and management of rupture with US in asymptomatic women was $1,090, whereas in symptomatic women it was $1,622. Similar cost for MRI in asymptomatic women was $2,067, whereas in symptomatic women it was $2,143. Similar cost for US followed by MRI in asymptomatic women was $637, whereas in symptomatic women it was $2,908. Conclusion Screening with US followed by MRI was optimal for asymptomatic women and screening with US was optimal for symptomatic women. PMID:22743887
In vitro magnetic resonance imaging evaluation of ossicular implants at 3 T.
Shellock, Frank G; Meepos, Lauren N; Stapleton, Matthew R; Valencerina, Sam
2012-07-01
Ossicular implants made from metallic materials may be acceptable or pose hazards for patients referred for magnetic resonance imaging (MRI) examinations, depending on the outcome of proper MRI testing procedures. Using a 3-T MR system, 2 ossicular implants were tested for magnetic field interactions, heating, and artifacts. Two different ossicular implants (Stainless Steel/Fluoroplastic Sanna-Type Piston [6 mm in length] and the Offset ALTO Total Prosthesis [15 mm in length, titanium/silicone]; Grace Medical, Memphis, TN, USA) were selected for testing, which represented the largest metallic mass and materials with the highest magnetic susceptibilities, with the intent of applying the MRI findings to other ossicular implants. The implants were evaluated at 3-T for magnetic field interactions, heating, and artifacts using standard previously described techniques. Each ossicular implant showed relatively minor magnetic field interactions that will not be associated with movement in situ. Heating was not excessive (highest temperature change, ≤ 1.6°C; background temperature change, 1.5°C). Artifacts, although relatively small, may create issues for diagnostic imaging if the area of interest is in the same area or close to these ossicular implants. The results of this investigation demonstrated that it would be acceptable (i.e., "MR conditional" using current terminology) for patients with these ossicular implants to undergo MRI examinations at 3 T or less. In consideration of the materials and dimensions of the implants that underwent testing, these findings pertain to many other similar ossicular implants from the same manufacturer.
Deformable registration of x-ray to MRI for post-implant dosimetry in prostate brachytherapy
NASA Astrophysics Data System (ADS)
Park, Seyoun; Song, Danny Y.; Lee, Junghoon
2016-03-01
Post-implant dosimetric assessment in prostate brachytherapy is typically performed using CT as the standard imaging modality. However, poor soft tissue contrast in CT causes significant variability in target contouring, resulting in incorrect dose calculations for organs of interest. CT-MR fusion-based approach has been advocated taking advantage of the complementary capabilities of CT (seed identification) and MRI (soft tissue visibility), and has proved to provide more accurate dosimetry calculations. However, seed segmentation in CT requires manual review, and the accuracy is limited by the reconstructed voxel resolution. In addition, CT deposits considerable amount of radiation to the patient. In this paper, we propose an X-ray and MRI based post-implant dosimetry approach. Implanted seeds are localized using three X-ray images by solving a combinatorial optimization problem, and the identified seeds are registered to MR images by an intensity-based points-to-volume registration. We pre-process the MR images using geometric and Gaussian filtering. To accommodate potential soft tissue deformation, our registration is performed in two steps, an initial affine transformation and local deformable registration. An evolutionary optimizer in conjunction with a points-to-volume similarity metric is used for the affine registration. Local prostate deformation and seed migration are then adjusted by the deformable registration step with external and internal force constraints. We tested our algorithm on six patient data sets, achieving registration error of (1.2+/-0.8) mm in < 30 sec. Our proposed approach has the potential to be a fast and cost-effective solution for post-implant dosimetry with equivalent accuracy as the CT-MR fusion-based approach.
Convex optimization of MRI exposure for mitigation of RF-heating from active medical implants
NASA Astrophysics Data System (ADS)
Córcoles, Juan; Zastrow, Earl; Kuster, Niels
2015-09-01
Local RF-heating of elongated medical implants during magnetic resonance imaging (MRI) may pose a significant health risk to patients. The actual patient risk depends on various parameters including RF magnetic field strength and frequency, MR coil design, patient’s anatomy, posture, and imaging position, implant location, RF coupling efficiency of the implant, and the bio-physiological responses associated with the induced local heating. We present three constrained convex optimization strategies that incorporate the implant’s RF-heating characteristics, for the reduction of local heating of medical implants during MRI. The study emphasizes the complementary performances of the different formulations. The analysis demonstrates that RF-induced heating of elongated metallic medical implants can be carefully controlled and balanced against MRI quality. A reduction of heating of up to 25 dB can be achieved at the cost of reduced uniformity in the magnitude of the B1+ field of less than 5%. The current formulations incorporate a priori knowledge of clinically-specific parameters, which is assumed to be available. Before these techniques can be applied practically in the broader clinical context, further investigations are needed to determine whether reduced access to a priori knowledge regarding, e.g. the patient’s anatomy, implant routing, RF-transmitter, and RF-implant coupling, can be accepted within reasonable levels of uncertainty.
Open MR imaging in spine surgery: experimental investigations and first clinical experiences.
Verheyden, P; Katscher, S; Schulz, T; Schmidt, F; Josten, C
1999-01-01
The latest open MRI technology allows to perform open and closed surgical procedures under real-time imaging. Before performing spinal trauma surgery preclinical examinations had to be done to evaluate the artifacts caused by the implants. The MRT presented is a prototype developed by GE. Two vertically positioned magnetic coils are installed in an operation theater. By that means two surgeons are able to access the patient between the two coils. Numerous tests regarding the material of instruments and implants were necessary in advance. The specific size of the artifact depending on the pulse sequence and the positioning within the magnetic field had to be examined. The magnifying factors of the artifact in the spin echo sequence regarding titanium are between 1.7 and 3.2, depending on the direction of the magnetic vector. Regarding stainless steel they are between 8.4 and 8.5. In the gradient echo sequence the factors are between 7.5 and 7.7 for titanium and between 16.9 and 18.0 for stainless steel. The tip of an implant is imaged with an accuracy of 0 to 2 mm. Since September 1997 16 patients with unstable fractures of the thoracic and lumbar spine have been treated by dorsal instrumentation in the open MRI. Percutaneous insertion of the internal fixator has proven a successful minimally invasive procedure. The positioning of the screws in the pedicle is secure, the degree of indirect reduction of the posterior wall of the vertebral body can be imaged immediately. The diameter of the spinal canal can be determined in any plane. The open MRI has proven useful in orthopedic and trauma surgery. The size and configuration of the artifacts caused by instruments and implants is predictable. Therefore exact positioning of the implants is achieved more easily. Dorsal instrumentation of unstable thoracolumbar fractures with a percutaneous technique has turned out safe and less traumatic under MR-imaging. Real-time imaging of soft tissue and bone in any plane improves security for the patient and allows the surgeon to work less invasively and more precisely.
Nordbeck, Peter; Ertl, Georg; Ritter, Oliver
2015-01-01
Magnetic resonance imaging (MRI) has long been regarded a general contraindication in patients with cardiovascular implanted electronic devices such as cardiac pacemakers or cardioverter defibrillators (ICDs) due to the risk of severe complications and even deaths caused by interactions of the magnetic resonance (MR) surrounding and the electric devices. Over the last decade, a better understanding of the underlying mechanisms responsible for such potentially life-threatening complications as well as technical advances have allowed an increasing number of pacemaker and ICD patients to safely undergo MRI. This review lists the key findings from basic research and clinical trials over the last 20 years, and discusses the impact on current day clinical practice. With ‘MR-conditional’ devices being the new standard of care, MRI in pacemaker and ICD patients has been adopted to clinical routine today. However, specific precautions and specifications of these devices should be carefully followed if possible, to avoid patient risks which might appear with new MR technology and further increasing indications and patient numbers. PMID:25796053
Chermansky, Christopher J; Krlin, Ryan M; Holley, Thomas D; Woo, Howard H; Winters, J Christian
2011-11-01
We retrospectively assessed patient safety and satisfaction after magnetic resonance imaging (MRI) in patients with an InterStim® unit. The records of all patients implanted with InterStim® between 1998 and 2006 were reviewed. Nine of these patients underwent MRI following InterStim® implantation. The patients' neurologists requested the MRI exams for medical reasons. Both 0.6 Tesla (T) and 1.5 T machines were used. Patient safety, interference of implanted pulse generator (IPG) with radiological interpretation, and patient satisfaction were assessed in these patients. The first patient in the series had IPG failure following MRI. For this patient, the voltage amplitude was set to zero, the IPG was turned off, and the IPG magnetic switch was left on. The patient underwent MRI uneventfully; however, the IPG did not function upon reprogramming. The IPG magnetic switch was turned off for the eight subsequent patients, all of whom underwent MRI safely. In addition, all of their IPGs functioned appropriately following reprogramming. Of the 15 MRIs performed, the lumbar spine was imaged in eight studies, the pelvis was imaged in one study, and the remaining examinations involved imaging the brain or cervical spine. Neither the IPG nor the sacral leads interfered with MRI interpretation. None of the eight patients perceived a change in perception or satisfaction following MRI. Although we don't advocate the routine use of MRI following InterStim® implantation, our experience suggests MRI may be feasible under controlled conditions and without adverse events. Copyright © 2011 Wiley Periodicals, Inc.
Tokaya, Janot P; Raaijmakers, Alexander J E; Luijten, Peter R; van den Berg, Cornelis A T
2018-04-24
We introduce the transfer matrix (TM) that makes MR-based wireless determination of transfer functions (TFs) possible. TFs are implant specific measures for RF-safety assessment of linear implants. The TF relates an incident tangential electric field on an implant to a scattered electric field at its tip that generally governs local heating. The TM extends this concept and relates an incident tangential electric field to a current distribution in the implant therewith characterizing the RF response along the entire implant. The TM is exploited to measure TFs with MRI without hardware alterations. A model of rightward and leftward propagating attenuated waves undergoing multiple reflections is used to derive an analytical expression for the TM. This allows parameterization of the TM of generic implants, e.g., (partially) insulated single wires, in a homogeneous medium in a few unknowns that simultaneously describe the TF. These unknowns can be determined with MRI making it possible to measure the TM and, therefore, also the TF. The TM is able to predict an induced current due to an incident electric field and can be accurately parameterized with a limited number of unknowns. Using this description the TF is determined accurately (with a Pearson correlation coefficient R ≥ 0.9 between measurements and simulations) from MRI acquisitions. The TM enables measuring of TFs with MRI of the tested generic implant models. The MR-based method does not need hardware alterations and is wireless hence making TF determination in more realistic scenarios conceivable. © 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
De Andres, Jose; Villanueva, Vicente; Palmisani, Stefano; Cerda-Olmedo, German; Lopez-Alarcon, Maria Dolores; Monsalve, Vicente; Minguez, Ana; Martinez-Sanjuan, Vicente
2011-05-01
It is common clinical practice to perform magnetic resonance imaging (MRI) in patients with indwelling programmable intrathecal drug delivery (IDD) systems, although the safety of the procedure has never been documented. We performed a single-center, 3-year, prospective evaluation in patients with a programmable implanted IDD to assess patient discomfort, IDD technical failures, and adverse effects during and after exposure to MRI. Forty-three consecutive patients with an implanted programmable IDD system (SynchroMed® EL Implantable Infusion Pump, Model 8626L-18, and SynchroMed® II Model 8637-20, 8637-40; Medtronic, Inc., Minneapolis, MN) requiring a scheduled MRI evaluation were studied during a 3-year period. All MRI scans were performed with a 1.5-tesla clinical use magnet and a specific absorption rate of no more than 0.9 W/kg. Radiograph control was used to confirm postexposure pump rotor movement and detect system dislocations. IDD system failures, patient satisfaction, and discomfort were recorded. None of the patients experienced signs of drug overinfusion that could lead to hemodynamic, respiratory, or neurologic alterations. Radiologic evaluation after MRI revealed no spatial displacements of the intrathecal catheter tip or body pump, and programmer telemetry confirmed the infusion recovery. Patients' satisfaction after the procedure was high. Performing an MRI scan with the proposed protocol in patients with an implanted Medtronic programmable IDD system resulted in virtually no technical or medical complications. © 2011 International Anesthesia Research Society
Reversing the polarity of a cochlear implant magnet after magnetic resonance imaging.
Jeon, Ju Hyun; Bae, Mi Ran; Chang, Jae Won; Choi, Jae Young
2012-08-01
The number of patients with cochlear implant (CI) has been rapidly increasing in recent years, and these patients show a growing need of examination by magnetic resonance imaging (MRI). However, the use of MRI on patients with CI is restricted by the internal magnet of the CI. Many studies have investigated the safety of performing 1.5T MRI on patients with CI, which is now being practiced in a clinical setting. We experienced a case in which the polarity of the cochlear implant magnet was reversed after the patient was examined using 1.5T MRI. The external device was attached to the internal device oppositely. We could not find displacement of the internal device, magnet, or electrode upon radiological evaluation. We came up with two possible mechanisms by which the polarity of the magnet reversed. The first possibility was that the magnetic field of MRI reversed the polarity of the magnet. The second was that the internal magnet was physically realigned while interacting with the MRI. We believe the second hypothesis to be more reliable. A removable magnet and a loose magnet boundary of a CI device may have allowed for physical reorientation of the internal magnet. Therefore, in order to avoid these complications, first, the internal magnet must not be aligned anti-parallel with the magnetic polarity of MRI. In the Siemens MRI, the vector of the magnetic field is downward, so implant site should be placed in facing upwards to minimize demagnetization. In the GE Medical Systems MRI, the vector of the magnetic field is upward, so the implant site should be placed facing downwards. Second, wearing of a commercial mold which is fixed to the internal device before performing MRI can be helpful. In addition, any removable internal magnets in a CI device should be removed before MRI, especially in the trunk. However, to ultimately solve this problem, the pocket of the internal magnet should be redesigned for safety. Copyright © 2011. Published by Elsevier Ireland Ltd.
Metal artifact reduction in MRI-based cervical cancer intracavitary brachytherapy
NASA Astrophysics Data System (ADS)
Rao, Yuan James; Zoberi, Jacqueline E.; Kadbi, Mo; Grigsby, Perry W.; Cammin, Jochen; Mackey, Stacie L.; Garcia-Ramirez, Jose; Goddu, S. Murty; Schwarz, Julie K.; Gach, H. Michael
2017-04-01
Magnetic resonance imaging (MRI) plays an increasingly important role in brachytherapy planning for cervical cancer. Yet, metal tandem, ovoid intracavitary applicators, and fiducial markers used in brachytherapy cause magnetic susceptibility artifacts in standard MRI. These artifacts may impact the accuracy of brachytherapy treatment and the evaluation of tumor response by misrepresenting the size and location of the metal implant, and distorting the surrounding anatomy and tissue. Metal artifact reduction sequences (MARS) with high bandwidth RF selective excitations and turbo spin-echo readouts were developed for MRI of orthopedic implants. In this study, metal artifact reduction was applied to brachytherapy of cervical cancer using the orthopedic metal artifact reduction (O-MAR) sequence. O-MAR combined MARS features with view angle tilting and slice encoding for metal artifact correction (SEMAC) to minimize in-plane and through-plane susceptibility artifacts. O-MAR improved visualization of the tandem tip on T2 and proton density weighted (PDW) imaging in phantoms and accurately represented the diameter of the tandem. In a pilot group of cervical cancer patients (N = 7), O-MAR significantly minimized the blooming artifact at the tip of the tandem in PDW MRI. There was no significant difference observed in artifact reduction between the weak (5 kHz, 7 z-phase encodes) and medium (10 kHz, 13 z-phase encodes) SEMAC settings. However, the weak setting allowed a significantly shorter acquisition time than the medium setting. O-MAR also reduced susceptibility artifacts associated with metal fiducial markers so that they appeared on MRI at their true dimensions.
Gorny, Krzysztof R; Bernstein, Matt A; Watson, Robert E
2010-02-01
To assess safety of clinical MRI of the head in patients with implanted model 100, 102, and 103 vagus nerve stimulation (VNS) Therapy Systems (Cyberonics, Inc., Houston, TX) in 3.0 Tesla MRI (GE Healthcare, Milwaukee, WI). The distributions of the radiofrequency B(1) (+)-field produced by the clinically used transmit/receive (T/R) head coil (Advanced Imaging Research Incorporated, Cleveland, OH) and body coil were measured in a head and shoulders phantom. These measurements were supplemented by temperature measurements on the lead tips and the implantable pulse generator (IPG) of the VNS devices in a head and torso phantom with the same two coils. Clinical 3T MRI head scans were then acquired under highly controlled conditions in a series of 17 patients implanted with VNS. Phantom studies showed only weak B(1) (+) fields at the location of the VNS IPG and leads for MRI scans using the T/R head coil. The MRI-related heating on a VNS scanned in vitro at 3T was also found to be minimal (0.4-0.8 degrees C at the leads, negligible at the IPG). The patient MRI examinations were completed successfully without any adverse incidents. No patient reported any heating, discomfort, or any other unusual sensation. Safe clinical MRI head scanning of patients with implanted VNS is shown to be feasible on a GE Signa Excite 3T MRI system using one specific T/R head coil. These results apply to this particular MRI system configuration. Extrapolation or generalization of these results to more general or less controlled imaging situations without supporting data of safety is highly discouraged.
Thermo-Acoustic Ultrasound for Detection of RF-Induced Device Lead Heating in MRI.
Dixit, Neerav; Stang, Pascal P; Pauly, John M; Scott, Greig C
2018-02-01
Patients who have implanted medical devices with long conductive leads are often restricted from receiving MRI scans due to the danger of RF-induced heating near the lead tips. Phantom studies have shown that this heating varies significantly on a case-by-case basis, indicating that many patients with implanted devices can receive clinically useful MRI scans without harm. However, the difficulty of predicting RF-induced lead tip heating prior to scanning prevents numerous implant recipients from being scanned. Here, we demonstrate that thermo-acoustic ultrasound (TAUS) has the potential to be utilized for a pre-scan procedure assessing the risk of RF-induced lead tip heating in MRI. A system was developed to detect TAUS signals by four different TAUS acquisition methods. We then integrated this system with an MRI scanner and detected a peak in RF power absorption near the tip of a model lead when transmitting from the scanner's body coil. We also developed and experimentally validated simulations to characterize the thermo-acoustic signal generated near lead tips. These results indicate that TAUS is a promising method for assessing RF implant safety, and with further development, a TAUS pre-scan could allow many more patients to have access to MRI scans of significant clinical value.
Ernstberger, T; Buchhorn, G; Heidrich, G
2010-03-01
Intervertebral spacers are made of different materials, which can affect the postfusion magnetic resonance imaging (MRI) scans. Susceptibility artifacts, especially for metallic implants, can decrease the image quality. This study aimed to determine whether magnesium as a lightweight and biocompatible metal is suitable as a biomaterial for spinal implants based on its MRI artifacting behavior. To compare artifacting behaviors, we implanted into one porcine cadaveric spine different test spacers made of magnesium, titanium, and CFRP. All test spacers were scanned using two T1-TSE MRI sequences. The artifact dimensions were traced on all scans and statistically analyzed. The total artifact volume and median artifact area of the titanium spacers were statistically significantly larger than magnesium spacers (P < 0.001), while magnesium and CFRP spacers produced almost identical artifacting behaviors (P > 0.05). Our results suggest that spinal implants made with magnesium alloys will behave more like CFRP devices in MRI scans.
Traumatic longitudinal splitting of the inferior rectus muscle
Laursen, Jessica; Demer, Joseph L.
2011-01-01
Orbital floor fractures and associated injuries can cause strabismus. We present the case of a 34-year-old man with incomitant strabismus following orbital reconstruction after a high-impact baseball injury. Multipositional, high-resolution magnetic resonance imaging (MRI) revealed extensive longitudinal splitting of the inferior rectus muscle by an orbital floor implant that separated its orbital and global layers. PMID:21463958
Safety of MRI with metallic middle ear implants.
Tohme, Souheil M; Karkas, Alexandre A; Romanos, Bassam H
2003-01-01
Investigation of the effects of magnetic resonance fields on commonly used metallic middle ear implants. Nine middle ear prostheses (seven containing stainless steel and two made of pure gold used as control) were tested in vitro and one stainless steel stapedectomy prosthesis was tested on a cadaveric temporal bone. Each metallic prosthesis was placed in an empty Petri dish and introduced into a 1.5-tesla (T) magnetic resonance imaging (MRI) unit. Most of the prostheses were then placed in a water-filled Petri dish and reintroduced into the MRI unit. Eventual in vitro displacement was assessed visually by two means. In situ testing was done by implanting a piston in a cadaveric temporal bone and performing MR sequences ; any possible displacement was then assessed by CT scan and under microscopic vision. None of the prostheses was displaced in the empty Petri dish. However, while in the water-filled Petri dish, three of these moved with the flux. The implanted piston in the temporal bone did not move. The displacement of three of the prostheses in water is not relevant in real clinical situations. MRI can thus be considered safe in usual clinical settings, as far as our studied implants are concerned.
SU-C-17A-02: Sirius MRI Markers for Prostate Post-Implant Assessment: MR Protocol Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, T; Wang, J; Kudchadker, R
Purpose: Currently, CT is used to visualize prostate brachytherapy sources, at the expense of accurate structure contouring. MRI is superior to CT for anatomical delineation, but the sources appear as voids on MRI images. Previously we have developed Sirius MRI markers (C4 Imaging) to replace spacers to assist source localization on MRI images. Here we develop an MRI pulse sequence protocol that enhances the signal of these markers to enable MRI-only post-implant prostate dosimetric analysis. Methods: To simulate a clinical scenario, a CIRS multi-modality prostate phantom was implanted with 66 markers and 86 sources. The implanted phantom was imaged onmore » both 1.5T and 3.0T GE scanners under various conditions, different pulse sequences (2D fast spin echo [FSE], 3D balanced steadystate free precession [bSSFP] and 3D fast spoiled gradient echo [FSPGR]), as well as varying amount of padding to simulate various patient sizes and associated signal fall-off from the surface coil elements. Standard FSE sequences from the current clinical protocols were also evaluated. Marker visibility, marker size, intra-marker distance, total scan time and artifacts were evaluated for various combinations of echo time, repetition time, flip angle, number of excitations, bandwidth, slice thickness and spacing, fieldof- view, frequency/phase encoding steps and frequency direction. Results: We have developed a 3D FSPGR pulse sequence that enhances marker signal and ensures the integrity of the marker shape while maintaining reasonable scan time. For patients contraindicated for 3.0T, we have also developed a similar sequence for 1.5T scanners. Signal fall-off with distance from prostate to coil can be compensated mainly by decreasing bandwidth. The markers are not visible using standard FSE sequences. FSPGR sequences are more robust for consistent marker visualization as compared to bSSFP sequences. Conclusion: The developed MRI pulse sequence protocol for Sirius MRI markers assists source localization to enable MRIonly post-implant prostate dosimetric analysis. S.J. Frank is a co-founder of C4 Imaging (manufactures the MRI markers)« less
Ernstberger, Thorsten; Heidrich, Gabert; Schultz, Wolfgang; Grabbe, Eckhardt
2007-02-01
Intervertebral spacers for anterior spine fusion are made of different materials, such as titanium and cobalt chromium alloys and carbon fiber-reinforced polymers. Implant-related susceptibility artifacts can decrease the quality of MRI scans. The aim of this cadaveric study was to demonstrate the extent that implant-related MRI artifacting affects the postfusion differentiation of determined regions of interest (ROIs). In six cadaveric porcine spines, we evaluated the postimplantation MRI scans of a titanium, cobalt-chromium and carbon spacer that differed in shape and surface qualities. A spacer made of human cortical bone was used as a control. A defined evaluation unit was divided into ROIs to characterize the spinal canal as well as the intervertebral disc space. Considering 15 different MRI sequences read independently by an interobserver-validated team of specialists the artifact-affected image quality of the median MRI slice was rated on a score of 0-3. A maximum score of 18 points (100%) for the determined ROIs was possible. Turbo spin echo sequences produced the best scores for all spacers and the control. Only the control achieved a score of 100%. For the determined ROI maximum scores for the cobalt-chromium, titanium and carbon spacers were 24%, 32% and 84%, respectively. By using favored T1 TSE sequences the carbon spacer showed a clear advantage in postfusion spinal imaging. Independent of artifact dimensions, the scoring system used allowed us to create an implant-related ranking of MRI scan quality in reference to the bone control.
Magnetic resonance imaging of pelvic endometriosis.
Méndez Fernández, R; Barrera Ortega, J
Endometriosis is common in women of reproductive age; it can cause pelvic pain and infertility. It is important to diagnose endometriosis and to thoroughly evaluate its extension, especially when surgical treatment is being considered. Magnetic resonance imaging (MRI) with careful examination technique and interpretation enables more accurate and complete diagnosis and staging than ultrasonography, especially in cases of deep pelvic endometriosis. Furthermore, MRI can identify implants in sites that can be difficult to access in endoscopic or laparoscopic explorations. In this article, we describe the appropriate MRI protocol for the study of pelvic endometriosis and the MRI signs of pelvic organ involvement. It is necessary to know the subtle findings and to look for them so we can ensure that they are not overlooked. We describe clinical grading systems for endometriosis and review the diagnostic efficacy of MRI in comparison with other imaging techniques and surgery. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.
Wirtz, C R; Bonsanto, M M; Knauth, M; Tronnier, V M; Albert, F K; Staubert, A; Kunze, S
1997-01-01
We report on the first successful intraoperative update of interactive image guidance based on an intraoperatively acquired magnetic resonance imaging (MRI) date set. To date, intraoperative imaging methods such as ultrasound, computerized tomography (CT), or MRI have not been successfully used to update interactive navigation. We developed a method of imaging patients intraoperatively with the surgical field exposed in an MRI scanner (Magnetom Open; Siemens Corp., Erlangen, Germany). In 12 patients, intraoperatively acquired 3D data sets were used for successful recalibration of neuronavigation, accounting for any anatomical changes caused by surgical manipulations. The MKM Microscope (Zeiss Corp., Oberkochen, Germany) was used as navigational system. With implantable fiducial markers, an accuracy of 0.84 +/- 0.4 mm for intraoperative reregistration was achieved. Residual tumor detected on MRI was consequently resected using navigation with the intraoperative data. No adverse effects were observed from intraoperative imaging or the use of navigation with intraoperative images, demonstrating the feasibility of recalibrating navigation with intraoperative MRI.
Lin, Peter; Fang, Zhongnan; Liu, Jia; Lee, Jin Hyung
2016-01-01
The investigation of the functional connectivity of precise neural circuits across the entire intact brain can be achieved through optogenetic functional magnetic resonance imaging (ofMRI), which is a novel technique that combines the relatively high spatial resolution of high-field fMRI with the precision of optogenetic stimulation. Fiber optics that enable delivery of specific wavelengths of light deep into the brain in vivo are implanted into regions of interest in order to specifically stimulate targeted cell types that have been genetically induced to express light-sensitive trans-membrane conductance channels, called opsins. fMRI is used to provide a non-invasive method of determining the brain's global dynamic response to optogenetic stimulation of specific neural circuits through measurement of the blood-oxygen-level-dependent (BOLD) signal, which provides an indirect measurement of neuronal activity. This protocol describes the construction of fiber optic implants, the implantation surgeries, the imaging with photostimulation and the data analysis required to successfully perform ofMRI. In summary, the precise stimulation and whole-brain monitoring ability of ofMRI are crucial factors in making ofMRI a powerful tool for the study of the connectomics of the brain in both healthy and diseased states. PMID:27167840
Linguine sign in musculoskeletal imaging: calf silicone implant rupture.
Duryea, Dennis; Petscavage-Thomas, Jonelle; Frauenhoffer, Elizabeth E; Walker, Eric A
2015-08-01
Imaging findings of breast silicone implant rupture are well described in the literature. On MRI, the linguine sign indicates intracapsular rupture, while the presence of silicone particles outside the fibrous capsule indicates extracapsular rupture. The linguine sign is described as the thin, wavy hypodense wall of the implant within the hyperintense silicone on T2-weighted images indicative of rupture of the implant within the naturally formed fibrous capsule. Hyperintense T2 signal outside of the fibrous capsule is indicative of an extracapsular rupture with silicone granuloma formation. We present a rare case of a patient with a silicone calf implant rupture and discuss the MRI findings associated with this condition.
Kim, Y S; Choi, Y J; Lee, S W; Kwon, O R; Suh, D S; Heo, D B; Koh, Y G
2016-02-01
Cartilage regenerative procedures using the cell-based tissue engineering approach involving mesenchymal stem cells (MSCs) have been receiving increased interest because of their potential for altering the progression of osteoarthritis (OA) by repairing cartilage lesions. The aim of this study was to investigate the clinical and magnetic resonance imaging (MRI) outcomes of MSC implantation in OA knees and to determine the association between clinical and MRI outcomes. Twenty patients (24 knees) who underwent arthroscopic MSC implantation for cartilage lesions in their OA knees were evaluated at 2 years after surgery. Clinical outcomes were evaluated according to the International Knee Documentation Committee (IKDC) score and the Tegner activity scale, and cartilage repair was assessed according to the MRI Osteoarthritis Knee Score (MOAKS) and Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score. The clinical outcomes significantly improved (P < 0.001 for both). The cartilage lesion grades (as described in MOAKS [grades for size of cartilage-loss area and percentage of full-thickness cartilage loss]) at follow-up MRI were significantly better than the preoperative values (P < 0.001 for both). The clinical outcomes at final follow-up were significantly correlated with the MOAKS and MOCART score at follow-up MRI (P < 0.05 for all). Considering the encouraging clinical and MRI outcomes obtained and the significant correlations noted between the clinical and MRI outcomes, MSC implantation seems to be useful for repairing cartilage lesions in OA knees. However, a larger sample size and long-term studies are needed to confirm our findings. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Horvath, Keith A.; Mazilu, Dumitru; Kocaturk, Ozgur; Li, Ming
2010-01-01
Objective Aortic valves have been implanted on self-expanding (SE) and balloon-expandable (BE) stents minimally invasively. We have demonstrated the advantages of transapical aortic valve implantation (tAVI) under real-time magnetic resonance imaging (rtMRI) guidance. Whether there are different advantages to SE or BE stents is unknown. We report rtMRI guided tAVI in a porcine model using both SE and BE stents, and compare the differences between the stents. Methods Twenty-two Yucatan pigs (45-57kgs.) underwent tAVI. Commercially available stentless bioprostheses (21-25mm) were mounted on either BE platinum-iridium stents or SE nitinol stents. rtMRI guidance was employed as the intraoperative imaging. Markers on both types of stents were used to enhance the visualization in rtMRI. Pigs were allowed to survive and had follow-up MRI scans and echocardiography at 1, 3 and 6 months postoperatively. Results rtMRI provided excellent visualization of the aortic valve implantation mounted on both stent types. The implantation times were shorter with the SE stents (60±14 seconds) than BE (74±18s), (p=0.027). Total procedure time was 31 and 37 minutes respectively (p=0.12). It was considerably easier to manipulate the SE stent during deployment without hemodynamic compromise. This was not always the case with the BE stent and its placement occasionally resulted in coronary obstruction and death. Long-term results demonstrated stability of the implants with preservation of myocardial perfusion and function over time for both stents. Conclusions SE stents were easier to position and deploy thus leading to fewer complications during tAVI. Future optimization of SE stent design should improve clinical results. PMID:20971017
Horwood, Laura; Attili, Anil; Luba, Frank; Ibrahim, El-Sayed H; Parmar, Hemant; Stojanovska, Jadranka; Gadoth-Goodman, Sharon; Fette, Carey; Oral, Hakan; Bogun, Frank
2017-05-01
Magnetic resonance imaging (MRI) has been reported to be safe in patients with cardiac implantable electronic devices (CIED) provided a specific protocol is followed. The objective of this study was to assess whether this is also true for patients excluded from published protocols. A total of 160 MRIs were obtained in 142 consecutive patients with CIEDs [106 patients had an implantable cardioverter defibrillator (ICD) and 36 had a pacemaker implanted] using an adapted, pre-specified protocol. A cardiac MRI was performed in 95 patients, and a spinal/brain MRI was performed in 47 patients. Forty-six patients (32%) had either abandoned leads (n = 10), and/or were pacemaker dependent with an implanted ICD (n = 19), had recently implanted CIEDs (n = 1), and/or had a CIED device with battery depletion (n = 2), and/or a component of the CIED was recalled or on advisory (n = 32). No major complications occurred. Some device parameters changed slightly, but significantly, right after or at 1-week post-MRI without requiring any reprogramming. In one patient with an ICD on advisory, the pacing rate changed inexplicably during one of his two MRIs from 90 to 50 b.p.m. Using a pre-specified protocol, cardiac and non-cardiac MRIs were performed in CIED patients with pacemaker dependency, abandoned leads, or depleted batteries without occurrence of major adverse events. Patients with devices on advisory need to be monitored carefully during MRI, especially if they are pacemaker dependent. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
Deshpande, Aniruddha K; Tan, Lirong; Lu, Long J; Altaye, Mekibib; Holland, Scott K
2016-01-01
Despite the positive effects of cochlear implantation, postimplant variability in speech perception and oral language outcomes is still difficult to predict. The aim of this study was to identify neuroimaging biomarkers of postimplant speech perception and oral language performance in children with hearing loss who receive a cochlear implant. The authors hypothesized positive correlations between blood oxygen level-dependent functional magnetic resonance imaging (fMRI) activation in brain regions related to auditory language processing and attention and scores on the Clinical Evaluation of Language Fundamentals-Preschool, Second Edition (CELF-P2) and the Early Speech Perception Test for Profoundly Hearing-Impaired Children (ESP), in children with congenital hearing loss. Eleven children with congenital hearing loss were recruited for the present study based on referral for clinical MRI and other inclusion criteria. All participants were <24 months at fMRI scanning and <36 months at first implantation. A silent background fMRI acquisition method was performed to acquire fMRI during auditory stimulation. A voxel-based analysis technique was utilized to generate z maps showing significant contrast in brain activation between auditory stimulation conditions (spoken narratives and narrow band noise). CELF-P2 and ESP were administered 2 years after implantation. Because most participants reached a ceiling on ESP, a voxel-wise regression analysis was performed between preimplant fMRI activation and postimplant CELF-P2 scores alone. Age at implantation and preimplant hearing thresholds were controlled in this regression analysis. Four brain regions were found to be significantly correlated with CELF-P2 scores. These clusters of positive correlation encompassed the temporo-parieto-occipital junction, areas in the prefrontal cortex and the cingulate gyrus. For the story versus silence contrast, CELF-P2 core language score demonstrated significant positive correlation with activation in the right angular gyrus (r = 0.95), left medial frontal gyrus (r = 0.94), and left cingulate gyrus (r = 0.96). For the narrow band noise versus silence contrast, the CELF-P2 core language score exhibited significant positive correlation with activation in the left angular gyrus (r = 0.89; for all clusters, corrected p < 0.05). Four brain regions related to language function and attention were identified that correlated with CELF-P2. Children with better oral language performance postimplant displayed greater activation in these regions preimplant. The results suggest that despite auditory deprivation, these regions are more receptive to gains in oral language development performance of children with hearing loss who receive early intervention via cochlear implantation. The present study suggests that oral language outcome following cochlear implant may be predicted by preimplant fMRI with auditory stimulation using natural speech.
Peng, Wei; Xu, Liangwei; You, Jia; Fang, Lihua; Zhang, Qing
2016-07-21
Osseointegration refers to the direct connection between living bone and the surface of a load-bearing artificial implant. Porous implants with well-controlled porosity and pore size can enhance osseointegration. However, until recently implants were produced by machining solid core titanium rods. The aim of this study was to develop a multi-rooted dental implant (MRI) with a connected porous surface structure to facilitate osseointegration. MRIs manufactured by selective laser melting (SLM) and commercial implants with resorbable blasting media (RBM)-treated surfaces were inserted into the hind limbs of New Zealand white rabbits. Osseointegration was evaluated periodically over 12 weeks by micro-computerized tomography (CT) scanning, histological analysis, mechanical push-out tests, and torque tests. Bone volume densities were consistently higher in the MRI group than in the RBM group throughout the study period, ultimately resulting in a peak value of 48.41 % for the MRI group. Histological analysis revealed denser surrounding bone growth in the MRIs; after 4 and 8 weeks, bone tissue had grown into the pore structures and root bifurcation areas, respectively. Biomechanics tests indicated binding of the porous MRIs to the neobone tissues, as push-out forces strengthened from 294.7 to 446.5 N and maximum mean torque forces improved from 81.15 to 289.57 N (MRI), versus 34.79 to 87.8 N in the RBM group. MRIs manufactured by SLM possess a connected porous surface structure that improves the osteogenic characteristics of the implant surface.
NASA Astrophysics Data System (ADS)
Virtanen, H.; Keshvari, J.; Lappalainen, R.
2007-03-01
As the use of radiofrequency (RF) electromagnetic (EM) fields has increased along with increased use of wireless communication, the possible related health risks have also been widely discussed. One safety aspect is the interaction of medical implants and RF devices like mobile phones. In the literature, effects on active implants like pacemakers have been discussed but the studies of passive metallic (i.e. conductive) implants are rare. However, some studies have shown that the EM power absorption in tissues may be enhanced due to metallic implants. In this study, the effect of authentic passive metallic implants in the head region was examined. A half-wave dipole antenna was used as an exposure source and the specific absorption rate (SAR, W kg-1) in the near field was studied numerically. The idea was to model the presumably worst cases of most common implants in an accurate MRI-based phantom. As exposure frequencies GSM (900 and 1800 MHz) and UMTS (2450 MHz) regions were considered. The implants studied were skull plates, fixtures, bone plates and ear rings. The results indicate that some of the implants, under very rare exposure conditions, may cause a notable enhancement in peak mass averaged SAR.
Virtanen, H; Keshvari, J; Lappalainen, R
2007-03-07
As the use of radiofrequency (RF) electromagnetic (EM) fields has increased along with increased use of wireless communication, the possible related health risks have also been widely discussed. One safety aspect is the interaction of medical implants and RF devices like mobile phones. In the literature, effects on active implants like pacemakers have been discussed but the studies of passive metallic (i.e. conductive) implants are rare. However, some studies have shown that the EM power absorption in tissues may be enhanced due to metallic implants. In this study, the effect of authentic passive metallic implants in the head region was examined. A half-wave dipole antenna was used as an exposure source and the specific absorption rate (SAR, W kg(-1)) in the near field was studied numerically. The idea was to model the presumably worst cases of most common implants in an accurate MRI-based phantom. As exposure frequencies GSM (900 and 1800 MHz) and UMTS (2450 MHz) regions were considered. The implants studied were skull plates, fixtures, bone plates and ear rings. The results indicate that some of the implants, under very rare exposure conditions, may cause a notable enhancement in peak mass averaged SAR.
Schwitter, Juerg; Gold, Michael R; Al Fagih, Ahmed; Lee, Sung; Peterson, Michael; Ciuffo, Allen; Zhang, Yan; Kristiansen, Nina; Kanal, Emanuel; Sommer, Torsten
2016-05-01
Recently, magnetic resonance (MR)-conditional implantable cardioverter defibrillator (ICD) systems have become available. However, associated cardiac MR image (MRI) quality is unknown. The goal was to evaluate the image quality performance of various cardiac MR sequences in a multicenter trial of patients implanted with an MR-conditional ICD system. The Evera-MRI trial enrolled 275 patients in 42 centers worldwide. There were 263 patients implanted with an Evera-MRI single- or dual-chamber ICD and randomized to controls (n=88) and MRI (n=175), 156 of whom underwent a protocol-required MRI (9-12 weeks post implant). Steady-state-free-precession (SSFP) and fast-gradient-echo (FGE) sequences were acquired in short-axis and horizontal long-axis orientations. Qualitative and quantitative assessment of image quality was performed by using a 7-point scale (grades 1-3: good quality, grades 6-7: nondiagnostic) and measuring ICD- and lead-related artifact size. Good to moderate image quality (grades 1-5) was obtained in 53% and 74% of SSFP and FGE acquisitions, respectively, covering the left ventricle, and in 69% and 84%, respectively, covering the right ventricle. Odds for better image quality were greater for right ventricle versus left ventricle (odds ratio, 1.8; 95% confidence interval, 1.5-2.2; P<0.0001) and greater for FGE versus SSFP (odds ratio, 3.5; 95% confidence interval, 2.5-4.8; P<0.0001). Compared with SSFP, ICD-related artifacts on FGE were smaller (141±65 versus 75±57 mm, respectively; P<0.0001). Lead artifacts were much smaller than ICD artifacts (P<0.0001). FGE yields good to moderate quality in 74% of left ventricle and 84% of right ventricle acquisitions and performs better than SSFP in patients with an MRI-conditional ICD system. In these patients, cardiac MRI can offer diagnostic information in most cases. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02117414. © 2016 American Heart Association, Inc.
Trammell, Terry R; Flint, Kathy; Ramsey, Curtis J
2012-08-15
Magnetic resonance imaging (MRI) and computed tomography (CT) imaging are important postoperative diagnostic and evaluation tools, particularly in patients who have undergone spinal fusions. Advancements in materials and imaging techniques have lessened artifact and improved overall imaging results. Systems that combine titanium alloy and cobalt-chromium components have been introduced to reduce implant profile while maintaining strength. The objective of this study was to determine if there were any differences in the clarity of imaging between two types of implant materials in a lumbar spine construct model. One of two lumbar spine stabilization implant systems, titanium alloy (titanium) or titanium alloy with cobalt-chromium alloy (titanium-cobalt), was placed to simulate a four-level fusion construct in two human cadaveric spine segments, followed by MRI and CT imaging. The implant systems were then removed from each cadaver and implanted in the other cadaver. Nine physician graders from three subspecialties scored the images using a 5-point scale, with higher imaging scores indicating greater clarity of the region of interest. Physician-rated scores were compared across systems and between physician groups. There were no significant differences in the overall mean total scores on the basis of construct material. Overall mean scores were 18.16 for titanium and 17.45 for titanium-cobalt (p = 0.275). Among images of the titanium-cobalt constructs, no significant differences in mean scores were found between specimens with use of MRI (p = 0.883) or with use of CT only (p = 0.274). Among images of the titanium system, a slightly significant difference was found between specimens with use of MRI (p = 0.044) but not with CT imaging (p = 0.837). Overall image clarity scores were not significantly different between titanium and titanium-cobalt implant systems in the lumbar spine. Observation of pertinent anatomy in the regions of interest was not degraded by the presence of either system.
MRI induced torque and demagnetization in retention magnets for a bone conduction implant.
Jansson, Karl-Johan Fredén; Håkansson, Bo; Reinfeldt, Sabine; Taghavi, Hamidreza; Eeg-Olofsson, Måns
2014-06-01
Performing magnetic resonance imaging (MRI) examinations in patients who use implantable medical devices involve safety risks both for the patient and the implant. Hearing implants often use two permanent magnets, one implanted and one external, for the retention of the external transmitter coil to the implanted receiver coil to achieve an optimal signal transmission. The implanted magnet is subjected to both demagnetization and torque, magnetically induced by the MRI scanner. In this paper, demagnetization and a comparison between measured and simulated induced torque is studied for the retention magnet used in a bone conduction implant (BCI) system. The torque was measured and simulated in a uniform static magnetic field of 1.5 T. The magnetic field was generated by a dipole electromagnet and permanent magnets with two different types of coercive fields were tested. Demagnetization and maximum torque for the high coercive field magnets was 7.7% ± 2.5% and 0.20 ± 0.01 Nm, respectively and 71.4% ± 19.1% and 0.18 ± 0.01 Nm for the low coercive field magnets, respectively. The simulated maximum torque was 0.34 Nm, deviating from the measured torque in terms of amplitude, mainly related to an insufficient magnet model. The BCI implant with high coercive field magnets is believed to be magnetic resonance (MR) conditional up to 1.5 T if a compression band is used around the skull to fix the implant. This is not approved and requires further investigations, and if removal of the implant is needed, the surgical operation is expected to be simple.
An implanted 8-channel array coil for high-resolution macaque MRI at 3T
Janssens, T.; Keil, B.; Farivar, R.; McNab, J.A.; Polimeni, J. R.; Gerits, A.; Arsenault, J.T.; Wald, L. L.; Vanduffel, W.
2012-01-01
An 8-channel receive coil array was constructed and implanted adjacent to the skull in a male rhesus monkey in order to improve the sensitivity of (functional) brain imaging. The permanent implant was part of an acrylic headpost assembly and only the coil element loop wires were implanted. The tuning, matching, and preamplifier circuitry was connected via a removable external assembly. Signal-to-noise ratio (SNR) and noise amplification for parallel imaging were compared to a single-, 4-, and 8-channel external receive-only coil routinely used for macaque fMRI. In vivo measurements showed significantly improved SNR within the brain for the implanted versus the external coils. Within a region-of-interest covering the cerebral cortex, we observed a 5.4-, 3.6-fold, and 3.4-fold increase in SNR compared to the external single-, 4-, and 8-channel coil, respectively. In the center of the brain, the implanted array maintained a 2.4×, 2.5×, and 2.1× higher SNR, respectively compared to the external coils. The array performance was evaluated for anatomical, diffusion tensor and functional brain imaging. This study suggests that a stable implanted phased-array coil can be used in macaque MRI to substantially increase the spatial resolution for anatomical, diffusion tensor, and functional imaging. PMID:22609793
Moschetta, Marco; Telegrafo, Michele; Capuano, Giulia; Rella, Leonarda; Scardapane, Arnaldo; Angelelli, Giuseppe; Stabile Ianora, Amato Antonio
2013-10-01
To assess the contribute of intra-prosthetic MRI virtual navigation for evaluating breast implants and detecting implant ruptures. Forty-five breast implants were evaluated by MR examination. Only patients with a clinical indication were assessed. A 1.5-T device equipped with a 4-channel breast coil was used by performing axial TSE-T2, axial silicone-only, axial silicone suppression and sagittal STIR images. The obtained dicom files were also analyzed by using virtual navigation software. Two blinded radiologists evaluated all MR and virtual images. Eight patients for a total of 13 implants underwent surgical replacement. Sensitivity, specificity, accuracy, positive predictive value (PPV) and negative predictive value (NPV) were calculated for both imaging strategies. Intra-capsular rupture was diagnosed in 13 out of 45 (29%) implants by using MRI. Basing on virtual navigation, 9 (20%) cases of intra-capsular rupture were diagnosed. Sensitivity, specificity, accuracy, PPV and NPV values of 100%, 86%, 89%, 62% and 100%, respectively, were found for MRI. Virtual navigation increased the previous values up to 100%, 97%, 98%, 89% and 100%. Intra-prosthetic breast MR virtual navigation can represent an additional promising tool for the evaluation of breast implants being able to reduce false positives and to provide a more accurate detection of intra-capsular implant rupture signs. Copyright © 2013 Elsevier Inc. All rights reserved.
Focused tight dressing does not prevent cochlear implant magnet migration under 1.5 Tesla MRI.
Cuda, D; Murri, A; Succo, G
2013-04-01
We report a retrospective case of inner magnet migration, which occurred after 1.5 Tesla MRI scanning in an adult recipient of a bilateral cochlear implant (CI) despite a focused head dressing. The patient, bilaterally implanted with Nucleus 5 CIs (Cochlear LTD, Sydney, Australia), underwent a 1.5 Tesla cholangio-MRI scan for biliary duct pathology. In subsequent days, a focal skin alteration appeared over the left inner coil. Plain skull radiographs showed partial magnet migration on the left side. Surgical exploration confirmed magnet twisting; the magnet was effectively repositioned. Left CI performance was restored to pre-migration level. The wound healed without complications. Thus, focused dressing does not prevent magnet migration in CI recipients undergoing 1.5 Tesla MRI. All patients should be counselled on this potential complication. A minor surgical procedure is required to reposition the magnet. Nevertheless, timely diagnosis is necessary to prevent skin breakdown and subsequent device contamination. Plain skull radiograph is very effective in identifying magnet twisting; it should be performed systematically after MRI or minimally on all suspected cases.
Measurements of RF heating during 3.0-T MRI of a pig implanted with deep brain stimulator.
Gorny, Krzysztof R; Presti, Michael F; Goerss, Stephan J; Hwang, Sun C; Jang, Dong-Pyo; Kim, Inyong; Min, Hoon-Ki; Shu, Yunhong; Favazza, Christopher P; Lee, Kendall H; Bernstein, Matt A
2013-06-01
To present preliminary, in vivo temperature measurements during MRI of a pig implanted with a deep brain stimulation (DBS) system. DBS system (Medtronic Inc., Minneapolis, MN) was implanted in the brain of an anesthetized pig. 3.0-T MRI was performed with a T/R head coil using the low-SAR GRE EPI and IR-prepped GRE sequences (SAR: 0.42 and 0.39 W/kg, respectively), and the high-SAR 4-echo RF spin echo (SAR: 2.9 W/kg). Fluoroptic thermometry was used to directly measure RF-related heating at the DBS electrodes, and at the implantable pulse generator (IPG). For reference the measurements were repeated in the same pig at 1.5 T and, at both field strengths, in a phantom. At 3.0T, the maximal temperature elevations at DBS electrodes were 0.46 °C and 2.3 °C, for the low- and high-SAR sequences, respectively. No heating was observed on the implanted IPG during any of the measurements. Measurements of in vivo heating differed from those obtained in the phantom. The 3.0-T MRI using GRE EPI and IR-prepped GRE sequences resulted in local temperature elevations at DBS electrodes of no more than 0.46 °C. Although no extrapolation should be made to human exams and much further study will be needed, these preliminary data are encouraging for the future use 3.0-T MRI in patients with DBS. Copyright © 2013 Elsevier Inc. All rights reserved.
Measurements of RF Heating during 3.0T MRI of a Pig Implanted with Deep Brain Stimulator
Gorny, Krzysztof R; Presti, Michael F; Goerss, Stephan J; Hwang, Sun C; Jang, Dong-Pyo; Kim, Inyong; Shu, Yunhong; Favazza, Christopher P; Lee, Kendall H; Bernstein, Matt A
2012-01-01
Purpose To present preliminary, in vivo temperature measurements during MRI of a pig implanted with a deep brain stimulation (DBS) system. Materials and Methods DBS system (Medtronic Inc., Minneapolis, MN) was implanted in the brain of an anesthetized pig. 3.0T MRI was performed with a T/R head coil using the low-SAR GRE EPI and IR-prepped GRE sequences (SAR: 0.42 W/kg and 0.39 W/kg, respectively), and the high-SAR 4-echo RF spin echo (SAR: 2.9 W/kg). Fluoroptic thermometry was used to directly measure RF-related heating at the DBS electrodes, and at the implantable pulse generator (IPG). For reference the measurements were repeated in the same pig at 1.5T and, at both field strengths, in a phantom. Results At 3.0T, the maximal temperature elevations at DBS electrodes were 0.46 °C and 2.3 °C, for the low- and high-SAR sequences, respectively. No heating was observed on the implanted IPG during any of the measurements. Measurements of in-vivo heating differed from those obtained in the phantom. Conclusion The 3.0T MRI using GRE EPI and IR-prepped GRE sequences resulted in local temperature elevations at DBS electrodes of no more than 0.46°C. Although no extrapolation should be made to human exams and much further study will be needed, these preliminary data are encouraging for the future use 3.0T MRI in patients with DBS. PMID:23228310
Okamura, Hideo; Padmanabhan, Deepak; Watson, Robert E; Dalzell, Connie; Acker, Nancy; Jondal, Mary; Romme, Abby L; Cha, Yong-Mei; Asirvatham, Samuel J; Felmlee, Joel P; Friedman, Paul A
2017-05-01
Magnetic resonance imaging (MRI) in patients with non-MRI-conditional cardiac implantable electronic devices (CIEDs) has been shown to be safe when performed under closely monitored protocols. However, the safety of MRI in patients with devices with a nearly depleted battery has not been reported. Prospective data were collected between January 2008 and May 2015 in patients with non-MRI-conditional CIEDs undergoing clinically indicated MRI under institutional protocol. Patients who were pacemaker dependent were excluded. Patients whose devices were at elective replacement indicator (ERI) at the time of MRI or close to ERI (ERI or replacement for battery depletion within 3 months of scan) were identified through database review and analyzed for clinical events. MRI scans (n = 569) were performed in 442 patients. Of these, we identified 13 scans performed with a nearly depleted battery in nine patients. All scans with implantable cardioverter defibrillators (ICDs, n = 9) were uneventful. However, two scans with pacemakers close to ERI resulted in a power-on-reset (PoR) event. One scan with a pacemaker close to ERI that was programmed to DOO mode reached ERI during MRI and automatically changed to VVI mode. Additionally, one scan with a pacemaker at ERI did not allow programming. All pacemakers with events were implanted before 2005. Patients with pacemakers and ICDs with a nearly depleted battery can safely undergo MRI when patients are not pacemaker dependent. Attention should be paid because old devices can result in PoR or ERI during MRI, which may lead to oversensing and inhibition of pacing. © 2017 Wiley Periodicals, Inc.
[Factors for Degaussing of a Cochlear Implant Magnet in the MR Scanner].
Koganezawa, Takumi; Uchiyama, Naoko; Teshigawara, Mai; Ogura, Akio
This study examined the conditions influencing degauss of the magnet using magnetic resonance imaging (MRI). Poly methyl methacrylate (PMMA) was used to fix the measurement magnets to the MRI bed at angles from 0° to 180° for the magnetic flux vector of static magnetic field. The PMMA was moved in the MRI magnetic field. Magnetic flux density was measured before and after bed movement, and the rate of degauss was calculated. The contents examined are as follows: (1) the angle of the magnetic flux vector of the measurement magnets for the magnetic flux vector of the static magnetic field, (2) the number of movements, (3) moving velocity, and (4) the movement on the spatial gradient of magnetic field. Mann-Whitney U test was used for statistical analysis of the data. In conclusion, the effect of the angle of the magnetic flux vector of the implant magnet was high under the conditions of degauss in this study. Therefore, during the MRI examination of a patient with a cochlear implant magnet, the operators identified the directions of the magnetic flux vector and static magnetic field of the implant magnet.
Deshpande, Aniruddha K; Tan, Lirong; Lu, Long J; Altaye, Mekibib; Holland, Scott K
2018-05-01
The trends in cochlear implantation candidacy and benefit have changed rapidly in the last two decades. It is now widely accepted that early implantation leads to better postimplant outcomes. Although some generalizations can be made about postimplant auditory and language performance, neural mechanisms need to be studied to predict individual prognosis. The aim of this study was to use functional magnetic resonance imaging (fMRI) to identify preimplant neuroimaging biomarkers that predict children's postimplant auditory and language outcomes as measured by parental observation/reports. This is a pre-post correlational measures study. Twelve possible cochlear implant candidates with bilateral severe to profound hearing loss were recruited via referrals for a clinical magnetic resonance imaging to ensure structural integrity of the auditory nerve for implantation. Participants underwent cochlear implantation at a mean age of 19.4 mo. All children used the advanced combination encoder strategy (ACE, Cochlear Corporation™, Nucleus ® Freedom cochlear implants). Three participants received an implant in the right ear; one in the left ear whereas eight participants received bilateral implants. Participants' preimplant neuronal activation in response to two auditory stimuli was studied using an event-related fMRI method. Blood oxygen level dependent contrast maps were calculated for speech and noise stimuli. The general linear model was used to create z-maps. The Auditory Skills Checklist (ASC) and the SKI-HI Language Development Scale (SKI-HI LDS) were administered to the parents 2 yr after implantation. A nonparametric correlation analysis was implemented between preimplant fMRI activation and postimplant auditory and language outcomes based on ASC and SKI-HI LDS. Statistical Parametric Mapping software was used to create regression maps between fMRI activation and scores on the aforementioned tests. Regression maps were overlaid on the Imaging Research Center infant template and visualized in MRIcro. Regression maps revealed two clusters of brain activation for the speech versus silence contrast and five clusters for the noise versus silence contrast that were significantly correlated with the parental reports. These clusters included auditory and extra-auditory regions such as the middle temporal gyrus, supramarginal gyrus, precuneus, cingulate gyrus, middle frontal gyrus, subgyral, and middle occipital gyrus. Both positive and negative correlations were observed. Correlation values for the different clusters ranged from -0.90 to 0.95 and were significant at a corrected p value of <0.05. Correlations suggest that postimplant performance may be predicted by activation in specific brain regions. The results of the present study suggest that (1) fMRI can be used to identify neuroimaging biomarkers of auditory and language performance before implantation and (2) activation in certain brain regions may be predictive of postimplant auditory and language performance as measured by parental observation/reports. American Academy of Audiology.
Wellmer, Jörg; Parpaley, Yaroslav; von Lehe, Marec; Huppertz, Hans-Jürgen
2010-01-01
Focal cortical dysplasias (FCDs) are highly epileptogenic lesions. Surgical removal is frequently the best treatment option for pharmacoresistant epilepsy. However, subtle FCDs may remain undetected even after high-resolution magnetic resonance imaging (MRI). Morphometric MRI analysis, which compares the individual brain with a normal database, can facilitate the detection of FCDs. We describe how the results of normal database-based MRI postprocessing can be used to guide stereotactic electrode implantation and subsequent resection of lesions that are suspected to be FCDs. A presurgical evaluation was conducted on a 19-year-old woman with pharmacoresistant hypermotor seizures. Conventional high-resolution MRI was classified as negative for epileptogenic lesions. However, morphometric analysis of the spatially normalized MRI revealed abnormal gyration and blurring of the gray-white matter junction, which was suggestive of a small and deeply seated FCD in the left frontal lobe. The brain region highlighted by morphometric analysis was marked as a region of interest, transferred back to the original dimension of the individual MRI, and imported into a neuronavigation system. This allowed the region of interest-targeted stereotactic implantation of 2 depth electrodes, by which seizure onset was confirmed in the lesion. The electrodes also guided the final resection, which rendered the patient seizure-free. The lesion was histologically classified as FCD Palmini and Lüders IIB. Transferring normal database-based MRI postprocessing results into a neuronavigation system is a new and worthwhile extension of multimodal neuronavigation. The combination of resulting regions of interest with functional and anatomic data may facilitate planning of electrode implantation for invasive electroencephalographic recordings and the final resection of small or deeply seated FCDs.
Frolov, Sergey; Prothmann, Sascha; Liepsch, Dieter; Balasso, Andrea; Berg, Philipp; Kaczmarz, Stephan; Kirschke, Jan Stefan
2018-01-01
Cerebral aneurysms are a major risk factor for intracranial bleeding with devastating consequences for the patient. One recently established treatment is the implantation of flow-diverters (FD). Methods to predict their treatment success before or directly after implantation are not well investigated yet. The aim of this work was to quantitatively study hemodynamic parameters in patient-specific models of treated cerebral aneurysms and its correlation with the clinical outcome. Hemodynamics were evaluated using both computational fluid dynamics (CFD) and phase contrast (PC) MRI. CFD simulations and in vitro MRI measurements were done under similar flow conditions and results of both methods were comparatively analyzed. For preoperative and postoperative distribution of hemodynamic parameters, CFD simulations and PC-MRI velocity measurements showed similar results. In both cases where no occlusion of the aneurysm was observed after six months, a flow reduction of about 30-50% was found, while in the clinically successful case with complete occlusion of the aneurysm after 6 months, the flow reduction was about 80%. No vortex was observed in any of the three models after treatment. The results are in agreement with recent studies suggesting that CFD simulations can predict post-treatment aneurysm flow alteration already before implantation of a FD and PC-MRI could validate the predicted hemodynamic changes right after implantation of a FD. PMID:29304062
MR and CT image fusion for postimplant analysis in permanent prostate seed implants.
Polo, Alfredo; Cattani, Federica; Vavassori, Andrea; Origgi, Daniela; Villa, Gaetano; Marsiglia, Hugo; Bellomi, Massimo; Tosi, Giampiero; De Cobelli, Ottavio; Orecchia, Roberto
2004-12-01
To compare the outcome of two different image-based postimplant dosimetry methods in permanent seed implantation. Between October 1999 and October 2002, 150 patients with low-risk prostate carcinoma were treated with (125)I and (103)Pd in our institution. A CT-MRI image fusion protocol was used in 21 consecutive patients treated with exclusive brachytherapy. The accuracy and reproducibility of the method was calculated, and then the CT-based dosimetry was compared with the CT-MRI-based dosimetry using the dose-volume histogram (DVH) related parameters recommended by the American Brachytherapy Society and the American Association of Physicists in Medicine. Our method for CT-MRI image fusion was accurate and reproducible (median shift <1 mm). Differences in prostate volume were found, depending on the image modality used. Quality assurance DVH-related parameters strongly depended on the image modality (CT vs. CT-MRI): V(100) = 82% vs. 88%, p < 0.05. D(90) = 96% vs. 115%, p < 0.05. Those results depend on the institutional implant technique and reflect the importance of lowering inter- and intraobserver discrepancies when outlining prostate and organs at risk for postimplant dosimetry. Computed tomography-MRI fused images allow accurate determination of prostate size, significantly improving the dosimetric evaluation based on DVH analysis. This provides a consistent method to judge a prostate seed implant's quality.
Feichtenschlager, Christian; Gerwing, Martin; Failing, Klaus; Peppler, Christine; Kása, Andreas; Kramer, Martin; von Pückler, Kerstin H
2018-06-02
To determine the effectiveness of magnetic resonance imaging (MRI) in the evaluation of anatomical stifle structures with respect to implant positioning after tibial plateau levelling osteotomy (TPLO) using a titanium plate. Selected sagittal and dorsal sequences of pre- and postoperative MRI (1.0 T scanner) of 13 paired ( n = 26) sound cadaveric stifle joints were evaluated. The effect of susceptibility artifact on adjacent anatomical stifle structures was graded from 0 to 5. The impact of implant positioning regarding assessment score was calculated using Spearman's rank correlation coefficient. Sagittal turbo spin echo (TSE)-acquired images enabled interpretation of most soft tissue, osseous and cartilage structures without detrimental effect of susceptibility artifact distortions. In T2-weighted TSE images, the cranial cruciate ligament and caudal horn of the medial meniscus could be evaluated, independent of implant position, without any susceptibility artifact in all specimens. T2-weighted fast field echo, water selective, balanced fast field echo and short tau inversion recovery were most markedly affected by susceptibility artifact. In selected TSE sequences, MRI allows evaluation of critical intra-articular structures after titanium TPLO plate implantation. Further investigations with confirmed stifle pathologies in dogs are required, to evaluate the accuracy of MRI after TPLO in clinical cases in this context. Schattauer GmbH Stuttgart.
Nordbeck, Peter; Ritter, Oliver; Weiss, Ingo; Warmuth, Marcus; Gensler, Daniel; Burkard, Natalie; Herold, Volker; Jakob, Peter M; Ertl, Georg; Ladd, Mark E; Quick, Harald H; Bauer, Wolfgang R
2011-01-01
Implanted medical devices such as cardiac pacemakers pose a potential hazard in magnetic resonance imaging. Electromagnetic fields have been shown to cause severe radio frequency-induced tissue heating in some cases. Imaging exclusion zones have been proposed as an instrument to reduce patient risk. The purpose of this study was to further assess the impact of the imaging landmark on the risk for unintended implant heating by measuring the radio frequency-induced electric fields in a body phantom under several imaging conditions at 1.5T. The results show that global radio frequency-induced coupling is highest with the torso centered along the superior-inferior direction of the transmit coil. The induced E-fields inside the body shift when changing body positioning, reducing both global and local radio frequency coupling if body and/or conductive implant are moved out from the transmit coil center along the z-direction. Adequate selection of magnetic resonance imaging landmark can significantly reduce potential hazards in patients with implanted medical devices. © 2010 Wiley-Liss, Inc.
Intracapsular implant rupture: MR findings of incomplete shell collapse.
Soo, M S; Kornguth, P J; Walsh, R; Elenberger, C; Georgiade, G S; DeLong, D; Spritzer, C E
1997-01-01
The objective of this study was to determine the frequency and significance of the MR findings of incomplete shell collapse for detecting implant rupture in a series of surgically removed breast prostheses. MR images of 86 breast implants in 44 patients were studied retrospectively and correlated with surgical findings at explantation. MR findings included (a) complete shell collapse (linguine sign), 21 implants; (b) incomplete shell collapse (subcapsular line sign, teardrop sign, and keyhole sign), 33 implants; (c) radial folds, 31 implants; and (d) normal, 1 implant. The subcapsular line sign was seen in 26 implants, the teardrop sign was seen in 27 implants, and the keyhole sign was seen in 23 implants. At surgery, 48 implants were found to be ruptured and 38 were intact. The MR findings of ruptured implants showed signs of incomplete collapse in 52% (n = 25), linguine sign in 44% (n = 21), and radial folds in 4% (n = 2). The linguine sign perfectly predicted implant rupture, but sensitivity was low. Findings of incomplete shell collapse improved sensitivity and negative predictive values, and the subcapsular line sign produced a significant incremental increase in predictive ability. MRI signs of incomplete shell collapse were more common than the linguine sign in ruptured implants and are significant contributors to the high sensitivity and negative predictive values of MRI for evaluating implant integrity.
Yamazaki, Masaru; Ideta, Takahiro; Kudo, Sadahiro; Nakazawa, Masami
2016-06-01
In magnetic resonance imaging (MRI), when radiofrequency (RF) is irradiated to a subject with metallic implant, it can generate heat by RF irradiation. Recently 3 T MRI scanner has spread widely and imaging for any regions of whole body has been conducted. However specific absorption rate (SAR) of 3 T MRI becomes approximately four times as much as the 1.5 T, which can significantly affect the heat generation of metallic implants. So, we evaluated RF heating of artificial hip joints in different shapes and materials in 1.5 T and 3 T MRI. Three types of artificial hip joints made of stainless alloy, titanium alloy and cobalt chrome alloy were embedded in the human body-equivalent phantom respectively and their temperature change were measured for twenty minutes by 1.5 T and 3 T MRI. The maximum temperature rise was observed at the bottom head in all of three types of artificial hip joints, the rise being 12°C for stainless alloy, 11.9°C for titanium alloy and 6.1°C for cobalt chrome alloy in 1.5 T. The temperature rise depended on SAR and the increase of SAR had a good linear relationship with the temperature rise. It was found from the result that the RF heating of metallic implants can take place in various kinds of material and the increase of SAR has a good linear relationship with the temperature rise. This experience shows that reduction of SAR can decrease temperature of metallic implants.
Shellock, Frank G; Valencerina, Samuel
2008-01-01
Purpose To evaluate MRI issues at 3-Tesla for a ventricular assist device (VAD). Methods The AB5000 Ventricle with a prototype Nitinol wire-reinforced In-Flow Cannula and Out-Flow Cannula attached (Abiomed, Inc., Danvers, MA) was evaluated for magnetic field interactions, heating, and artifacts at 3-Tesla. MRI-related heating was assessed with the device in a gelled-saline-filled, head/torso phantom using a transmit/received RF body coil while performing MRI at a whole body averaged SAR of 3-W/kg for 15-min. Artifacts were assessed for the main metallic component of this VAD (atrial cannula) using T1-weighted, spin echo and gradient echo pulse sequences. Results The AB5000 Ventricle with the prototype In-Flow Cannula and Out-Flow Cannula attached showed relatively minor magnetic field interactions that will not cause movement in situ. Heating was not excessive (highest temperature change, +0.8°C). Artifacts may create issues for diagnostic imaging if the area of interest is in the same area or close to the implanted metallic component of this VAD (i.e., the venous cannula). Conclusion The results of this investigation demonstrated that it would be acceptable for a patient with this VAD (AB5000 Ventricle with a prototype Nitinol wire-reinforced In-Flow Cannula and Out-Flow Cannula attached) to undergo MRI at 3-Tesla or less. Notably, it is likely that the operation console for this device requires positioning a suitable distance (beyond the 100 Gauss line or in the MR control room) from the 3-Tesla MR system to ensure proper function of the VAD. PMID:18495028
Magnetic Resonance Imaging With Cochlear Implant Magnet in Place: Safety and Imaging Quality.
Carlson, Matthew L; Neff, Brian A; Link, Michael J; Lane, John I; Watson, Robert E; McGee, Kiaran P; Bernstein, Matt A; Driscoll, Colin L W
2015-07-01
To evaluate the safety and image quality of 1.5-T MRI in patients with cochlear implants and retained internal magnets. Retrospective case series from 2012 to 2014. Single tertiary academic referral center. All cochlear implant recipients undergoing 1.5-T MRI without internal magnet removal. MRI after tight headwrap application. Patient tolerance, complications, and characteristics of imaging artifact. Nineteen ears underwent a total of 34 MRI scans. Two patients did not tolerate imaging with the headwrap in place and required magnet removal before rescanning. One subject experienced two separate episodes of polarity reversal in the same device from physical realignment (i.e., flipping) of the internal magnet requiring surgical repositioning. Three patients were discovered to have canting of the internal magnet after imaging. In all three cases, the magnet could be reseated by applying gentle firm pressure to the scalp until the magnet "popped" back into place. These patients continue to use their device without difficulty and have not required surgical replacement. In patients receiving head MRI, the ipsilateral internal auditory canal and cerebellopontine angle could be visualized without difficulty in 94% of cases. There were no episodes of cochlear implant device failure or soft tissue complications. Under controlled conditions, 1.5-T MRI can be successfully performed in most patients without the need for cochlear implant magnet removal. In nearly all cases, imaging artifact does not impede evaluation of the ipsilateral skull base. Patients should be counseled regarding the risk of internal magnet movement that may occur in up to 15% of cases, even with tight headwrap application. If internal magnet polarity reversal occurs, a trial of reversing the external magnet can be considered. If canting or mild displacement of the internal magnet occurs, an attempt at reseating can be made by applying gentle firm pressure to the scalp over the internal magnet. If conservative measures fail, the magnet should be surgically repositioned to minimize interruption of device use and to prevent scalp complications.
Muscle atrophy and metal-on-metal hip implants: a serial MRI study of 74 hips.
Berber, Reshid; Khoo, Michael; Cook, Erica; Guppy, Andrew; Hua, Jia; Miles, Jonathan; Carrington, Richard; Skinner, John; Hart, Alister
2015-06-01
Muscle atrophy is seen in patients with metal-on-metal (MOM) hip implants, probably because of inflammatory destruction of the musculo-tendon junction. However, like pseudotumors, it is unclear when atrophy occurs and whether it progresses with time. Our objective was to determine whether muscle atrophy associated with MOM hip implants progresses with time. We retrospectively reviewed 74 hips in 56 patients (32 of them women) using serial MRI. Median age was 59 (23-83) years. The median time post-implantation was 83 (35-142) months, and the median interval between scans was 11 months. Hip muscles were scored using the Pfirrmann system. The mean scores for muscle atrophy were compared between the first and second MRI scans. Blood cobalt and chromium concentrations were determined. The median blood cobalt was 6.84 (0.24-90) ppb and median chromium level was 4.42 (0.20-45) ppb. The median Oxford hip score was 34 (5-48). The change in the gluteus minimus mean atrophy score between first and second MRI was 0.12 (p = 0.002). Mean change in the gluteus medius posterior portion (unaffected by surgical approach) was 0.08 (p = 0.01) and mean change in the inferior portion was 0.10 (p = 0.05). Mean pseudotumor grade increased by 0.18 (p = 0.02). Worsening muscle atrophy and worsening pseudotumor grade occur over a 1-year period in a substantial proportion of patients with MOM hip implants. Serial MRI helps to identify those patients who are at risk of developing worsening soft-tissue pathology. These patients should be considered for revision surgery before irreversible muscle destruction occurs.
A prospective study on silicone breast implants and the silicone-related symptom complex.
Contant, C M E; Swaak, A J G; Obdeijn, A I M; van der Holt, B; Tjong Joe Wai, R; van Geel, A N; Eggermont, A M M
2002-06-01
This cohort study prospectively evaluated the prevalence of the silicone-related symptom complex (SRSC) in relation to antinuclear antibodies (ANA) and magnetic resonance imaging (MRI) of silicone breast implants (SBI) 1 year after implantation. A total of 57 women undergoing mastectomy followed by immediate breast reconstruction (IBR) and SBI between March 1995 and March 1997 at the University Hospital Rotterdam/Daniel den Hoed Cancer Centre, were prospectively evaluated. Just before and 1 year after IBR the sera of these women were tested for the presence of ANA and they were screened for the prevalence of SRSC-related symptoms by questionnaire. All prostheses were evaluated by MRI 1 month and 1 year after IBR. Just before operation 11% of the women had a Sjögren score of more than 2, whereas 30% had such a score 1 year after IBR ( P = 0.01). One year postoperatively women had significantly more RA/Raynaud-related complaints: 21% preoperatively versus 40% 1 year after IBR ( P = 0.03). Within the undefined complaints-related group 19% had a score of 2 or more preoperatively and 33% 1 year after IBR ( P = 0.09). There were no new cases of ANA positivity 1 year after IBR. The linguine sign was seen by MRI in three implants: one 1 month after IBR and two 1 year after IBR. There was no relation to changes in SRSC expression and these MRI findings. In conclusion, 1 year after SBI implantation women had more SRSC-related complaints, especially Sjögren's and RA/Raynaud's. Moreover there was no correlation between elevated SRSC expression and changes in the presence of ANA or changes in MRI of the SBI 1 year after IBR.
Poly Implant Prothèse (PIP) incidence of rupture: a retrospective MR analysis in 64 patients.
Scotto di Santolo, Mariella; Cusati, Bianca; Ragozzino, Alfonso; Dell'Aprovitola, Nicoletta; Acquaviva, Alessandra; Altiero, Michele; Accurso, Antonello; Riccardi, Albina; Imbriaco, Massimo
2014-12-01
The purpose of this retrospective study was to describe the magnetic resonance imaging (MRI) features of Poly Implant Prothèse (PIP) hydrogel implants in a group of 64 patients and to assess the incidence of rupture, compared to other clinical trials. In this double-center study, we retrospectively reviewed the data sets of 64 consecutive patients (mean age, 43±9 years, age range, 27-65 years), who underwent breast MRI examinations, between January 2008 and October 2013, with suspected implant rupture on the basis of clinical assessment or after conventional imaging examination (either mammography or ultrasound). All patients had undergone breast operation with bilateral textured cohesive gel PIP implant insertion for aesthetic reasons. The mean time after operation was 8 years (range, 6-14 years). No patients reported history of direct trauma to their implants. At the time of clinical examination, 41 patients were asymptomatic, 16 complained of breast tenderness and 7 had clinical evidence of rupture. Normal findings were observed in 15 patients. In 26 patients there were signs of mild collapse, with associated not significant peri-capsular fluid collections and no evidence of implant rupture; in 23 patients there was suggestion of implant rupture, according to breast MRI leading to an indication for surgery. In particular, 14 patients showed intra-capsular rupture, with associated evidence of the linguine sign in all cases; the keyhole sign and the droplet signs were observed in 6 cases. In 9 patients there was evidence of extra-capsular rupture, with presence of axillary collections (siliconomas) in 7 cases and peri-prosthetic and mediastinal cavity siliconomas, in 5 cases. The results of this double center retrospective study, confirm the higher incidence (36%) of prosthesis rupture observed with the PIP implants, compared to other breast implants.
Dragovic, A S; Stringer, A K; Campbell, L; Shaul, C; O'Leary, S J; Briggs, R J
2018-05-01
To investigate the clinical usefulness and practicality of co-registration of Cone Beam CT (CBCT) with preoperative Magnetic Resonance Imaging (MRI) for intracochlear localization of electrodes after cochlear implantation. Images of 20 adult patients who underwent CBCT after implantation were co-registered with preoperative MRI scans. Time taken for co-registration was recorded. The images were analysed by clinicians of varying levels of expertise to determine electrode position and ease of interpretation. After a short learning curve, the average co-registration time was 10.78 minutes (StdDev 2.37). All clinicians found the co-registered images easier to interpret than CBCT alone. The mean concordance of CBCT vs. co-registered image analysis between consultant otologists was 60% (17-100%) and 86% (60-100%), respectively. The sensitivity and specificity for CBCT to identify Scala Vestibuli insertion or translocation was 100 and 75%, respectively. The negative predictive value was 100%. CBCT should be performed following adult cochlear implantation for audit and quality control of surgical technique. If SV insertion or translocation is suspected, co-registration with preoperative MRI should be performed to enable easier analysis. There will be a learning curve for this process in terms of both the co-registration and the interpretation of images by clinicians.
Tsukimura, Itsuko; Sasaki, Makoto; Endo, Hirooki; Yamabe, Daisuke; Oikawa, Ryosuke; Doita, Minoru
2017-01-01
ABSTRACT The safety of metallic spinal implants in magnetic resonance imaging (MRI) performed using ultrahigh fields has not been established. Hence, we examined whether the displacement forces caused by a static magnetic field and the heating induced by radiofrequency radiation are substantial for spinal implants in a 7 T field. We investigated spinal rods of various lengths and materials, a screw, and a cross‐linking bridge in accordance with the American Society for Testing and Materials guidelines. The displacement forces of the metallic implants in static 7 T and 3 T static magnetic fields were measured and compared. The temperature changes of the implants during 15‐min‐long fast spin‐echo and balanced gradient‐echo image acquisition sequences were measured in the 7 T field. The deflection angles of the metallic spinal materials in the 7 T field were 5.0–21.0° [median: 6.7°], significantly larger than those in the 3 T field (1.0–6.3° [2.2°]). Among the metallic rods, the cobalt–chrome rods had significantly larger deflection angles (17.8–21.0° [19.8°]) than the pure titanium and titanium alloy rods (5.0–7.7° [6.2°]). The temperature changes of the implants, including the cross‐linked rods, were 0.7–1.0°C [0.8°C] and 0.6–1.0°C [0.7°C] during the fast spin‐echo and balanced gradient‐echo sequences, respectively; these changes were slightly larger than those of the controls (0.4–1.1°C [0.5°C] and 0.3–0.9°C [0.6°C], respectively). All of the metallic spinal implants exhibited small displacement forces and minimal heating, indicating that MRI examinations using 7 T fields may be performed safely on patients with these implants. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 35:1831–1837, 2017. PMID:27769107
Tsukimura, Itsuko; Murakami, Hideki; Sasaki, Makoto; Endo, Hirooki; Yamabe, Daisuke; Oikawa, Ryosuke; Doita, Minoru
2017-08-01
The safety of metallic spinal implants in magnetic resonance imaging (MRI) performed using ultrahigh fields has not been established. Hence, we examined whether the displacement forces caused by a static magnetic field and the heating induced by radiofrequency radiation are substantial for spinal implants in a 7 T field. We investigated spinal rods of various lengths and materials, a screw, and a cross-linking bridge in accordance with the American Society for Testing and Materials guidelines. The displacement forces of the metallic implants in static 7 T and 3 T static magnetic fields were measured and compared. The temperature changes of the implants during 15-min-long fast spin-echo and balanced gradient-echo image acquisition sequences were measured in the 7 T field. The deflection angles of the metallic spinal materials in the 7 T field were 5.0-21.0° [median: 6.7°], significantly larger than those in the 3 T field (1.0-6.3° [2.2°]). Among the metallic rods, the cobalt-chrome rods had significantly larger deflection angles (17.8-21.0° [19.8°]) than the pure titanium and titanium alloy rods (5.0-7.7° [6.2°]). The temperature changes of the implants, including the cross-linked rods, were 0.7-1.0°C [0.8°C] and 0.6-1.0°C [0.7°C] during the fast spin-echo and balanced gradient-echo sequences, respectively; these changes were slightly larger than those of the controls (0.4-1.1°C [0.5°C] and 0.3-0.9°C [0.6°C], respectively). All of the metallic spinal implants exhibited small displacement forces and minimal heating, indicating that MRI examinations using 7 T fields may be performed safely on patients with these implants. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 35:1831-1837, 2017. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, Y
Purpose: Heating of patients or burning of biological tissues around medical implants by RF power during MRI scan is a significant patient safety concern. The purpose of this study is to not only measure SAR values, but also RF-induced temperature elevation due to artificial hip joints during MRI scans. Methods: SAR measurement experiment was performed on three discrete manufacturers at 1.5 and 3T. Three MRI RF sequences (T1w TSE, T2w inversion recovery, and T2w TSE) with imaging parameters were selected. A gelled saline phantom mimicking human body tissue was made (Fig.1). FDTD method was utilized to calculate the SAR distributionmore » using Sim4Life software. Based on the results of the simulation, 4 electrical field (E-field) sensors were located around two artificial hip joints inside the phantom. 56 Fiber Bragg Grating (FBG) temperature sensors (28 sensors on each artificial hip joint) were located on both left and right artificial hip joints to measure temperature change during MRI scan (Fig.1). Both E-field and FBG temperature sensors were calibrated with traceability at Korea Research Institute of Standards and Science (KRISS). Results: Simulation shows that high SAR values occur in the head and tail of the implanted artificial hip joints (Fig.1 lower right). 3T MRI scanner shows that the local averaged-SAR values measured by probe 1, 2, and 3 are 2.30, 2.77, and 1.68 W/kg, compared to MRI scanner-reported whole body SAR value (≤1.5 W/kg) for T1w TSE and T2w-IR (Table 1). The maximum temperature elevation measured by FBG sensors is 1.49°C at 1.5 T, 2.0°C at 3 T, and 2.56°C at 3 T for T1w TSE, respectively (Table 2). Conclusion: It is essential to assess the safety of MRI system for patient with medical implant by measuring not only accurate SAR deposited in the body, but also temperature elevation due to the deposited SAR during clinical MRI.« less
Babsky, Andriy M; Hekmatyar, S K; Zhang, Hong; Solomon, James L; Bansal, Navin
2006-07-01
To examine the effects of the alkylating anticancer drug 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) on (23)Na MRI and the water apparent diffusion coefficient (ADC) in subcutaneously- (sc-) implanted 9L glioma in rats. (23)Na MRI and (1)H water ADC measurements were performed on sham-treated control (N = 6) and BCNU-treated (N = 15) Fisher rats one day before BCNU injection and then one, three, and five days after BCNU injection. The BCNU-treated tumors were divided into BCNU-responsive (R(BCNU)) and BCNU-nonresponsive (NR(BCNU)) groups depending on the tumor volume changes that occurred after therapy. The pretreatment (23)Na MRI signal intensity (SI) and water ADC values were higher in R(BCNU) tumors compared to NR(BCNU) tumors. (23)Na MRI SI and water ADC increased with tumor growth in control and NR(BCNU) groups, but these changes were interrupted by BCNU therapy in R(BCNU) group. (23)Na MRI and water ADC measurements may be useful for predicting and monitoring response to chemotherapy in some tumors. However, the changes that occurred in (23)Na MRI SI and water ADC in sc-implanted 9L tumors are in contrast to previously published results for BCNU therapy of orthotopic 9L tumors. This may have important implications for monitoring therapy response in tumors. (c) 2006 Wiley-Liss, Inc.
Uterine DCs are crucial for decidua formation during embryo implantation in mice
Plaks, Vicki; Birnberg, Tal; Berkutzki, Tamara; Sela, Shay; BenYashar, Adi; Kalchenko, Vyacheslav; Mor, Gil; Keshet, Eli; Dekel, Nava; Neeman, Michal; Jung, Steffen
2008-01-01
Implantation is a key stage during pregnancy, as the fate of the embryo is often decided upon its first contact with the maternal endometrium. Around this time, DCs accumulate in the uterus; however, their role in pregnancy and, more specifically, implantation, remains unknown. We investigated the function of uterine DCs (uDCs) during implantation using a transgenic mouse model that allows conditional ablation of uDCs in a spatially and temporally regulated manner. Depletion of uDCs resulted in a severe impairment of the implantation process, leading to embryo resorption. Depletion of uDCs also caused embryo resorption in syngeneic and T cell–deficient pregnancies, which argues against a failure to establish immunological tolerance during implantation. Moreover, even in the absence of embryos, experimentally induced deciduae failed to adequately form. Implantation failure was associated with impaired decidual proliferation and differentiation. Dynamic contrast-enhanced MRI revealed perturbed angiogenesis characterized by reduced vascular expansion and attenuated maturation. We suggest therefore that uDCs directly fine-tune decidual angiogenesis by providing two critical factors, sFlt1 and TGF-β1, that promote coordinated blood vessel maturation. Collectively, uDCs appear to govern uterine receptivity, independent of their predicted role in immunological tolerance, by regulating tissue remodeling and angiogenesis. Importantly, our results may aid in understanding the limited implantation success of embryos transferred following in vitro fertilization. PMID:19033665
Giese, Daniel; Weiss, Kilian; Baeßler, Bettina; Madershahian, Navid; Choi, Yeong-Hoon; Maintz, David; Bunck, Alexander C
2018-02-01
The objective of the current work was to evaluate flow and turbulent kinetic energy in different transcatheter aortic valve implants using highly undersampled time-resolved multi-point 3-directional phase-contrast measurements (4D Flow MRI) in an in vitro setup. A pulsatile flow setup was used with a compliant tubing mimicking a stiff left ventricular outflow tract and ascending aorta. Five different implants were measured using a highly undersampled multi-point 4D Flow MRI sequence. Velocities and turbulent kinetic energy values were analysed and compared. Strong variations of turbulent kinetic energy distributions between the valves were observed. Maximum turbulent kinetic energy values ranged from 100 to over 500 J/m 3 while through-plane velocities were similar between all valves. Highly accelerated 4D Flow MRI for the measurement of velocities and turbulent kinetic energy values allowed for the assessment of hemodynamic parameters in five different implant models. The presented setup, measurement protocol and analysis methods provides an efficient approach to compare different valve implants and could aid future novel valve designs.
Strom, Jordan B; Whelan, Jill B; Shen, Changyu; Zheng, Shuang Qi; Mortele, Koenraad J; Kramer, Daniel B
2017-08-01
Off-label magnetic resonance imaging (MRI) for patients with cardiac implantable electrical devices has been limited owing to concerns about safety and unclear diagnostic and prognostic utility. The purpose of this study was to define major and minor adverse events with off-label MRI scans. We prospectively evaluated patients with non-MRI-conditional cardiac implantable electrical devices referred for MRI scans under a strict clinical protocol. The primary safety outcome was incidence of major adverse events (loss of pacing, inappropriate shock or antitachycardia pacing, need for system revision, or death) or minor adverse events (inappropriate pacing, arrhythmias, power-on-reset events, heating at the generator site, or changes in device parameters at baseline or at 6 months). A total of 189 MRI scans were performed in 123 patients (63.1% [78] men; median age 70 ± 18.5 years; 56.9% [70] patients with implantable cardioverter-defibrillators; 33.3% [41] pacemaker-dependent patients) predominantly for brain or spinal conditions. A minority of scans (22.7% [43]) were performed for urgent or emergent indications. Major adverse events were rare: 1 patient with loss of pacing, no deaths, or system revisions (overall rate 0.5%; 95% confidence interval 0.01-2.91). Minor adverse events were similarly rare (overall rate 1.6%; 95% confidence interval 0.3-4.6). Nearly all studies (98.4% [186]) were interpretable, while 75.1% [142] were determined to change management according to the prespecified criteria. No clinically significant changes were observed in device parameters acutely after MRI or at 6 months as compared with baseline across all patient and device categories. Off-label MRI scans performed under a strict protocol demonstrated excellent short- and medium-term safety while providing interpretable imaging that frequently influenced clinical care. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Strom, Jordan B.; Whelan, Jill B.; Shen, Changyu; Zheng, Shuang Qi; Mortele, Koenraad J.; Kramer, Daniel B.
2017-01-01
BACKGROUND Off-label magnetic resonance imaging (MRI) for patients with cardiac implantable electrical devices has been limited owing to concerns about safety and unclear diagnostic and prognostic utility. OBJECTIVE The purpose of this study was to define major and minor adverse events with off-label MRI scans. METHODS We prospectively evaluated patients with non–MRI-conditional cardiac implantable electrical devices referred for MRI scans under a strict clinical protocol. The primary safety outcome was incidence of major adverse events (loss of pacing, inappropriate shock or antitachycardia pacing, need for system revision, or death) or minor adverse events (inappropriate pacing, arrhythmias, power-on-reset events, heating at the generator site, or changes in device parameters at baseline or at 6 months). RESULTS A total of 189 MRI scans were performed in 123 patients (63.1% [78] men; median age 70 ± 18.5 years; 37.0% [70] patients with implantable cardioverter-defibrillators; 21.8% [41] pacemaker-dependent patients) predominantly for brain or spinal conditions. A minority of scans (22.7% [43]) were performed for urgent or emergent indications. Major adverse events were rare: 1 patient with loss of pacing, no deaths, or system revisions (overall rate 0.5%; 95% confidence interval 0.01–2.91). Minor adverse events were similarly rare (overall rate 1.6%; 95% confidence interval 0.3–4.6). Nearly all studies (98.4% [186]) were interpretable, while 74.9% [142] were determined to change management according to the prespecified criteria. No clinically significant changes were observed in device parameters acutely after MRI or at 6 months as compared with baseline across all patient and device categories. CONCLUSION Off-label MRI scans performed under a strict protocol demonstrated excellent short- and medium-term safety while providing interpretable imaging that frequently influenced clinical care. PMID:28385671
Lu, Kang; Liliang, Po-Chou; Wang, Hao-Kuang; Chen, Jui-Sheng; Chen, Te-Yuan; Huang, Ruyi; Chen, Han-Jung
2016-01-01
Background/objective Internal disk disruption (IDD), an early event of lumbar disk degeneration, is the most common cause of low back pain. Since increased intradiskal pressure (IDP) is associated with symptoms and progression of disk degeneration, unloading a painful disk with an interspinous process device (IPD) is a rational treatment option. The goal of this study was to evaluate the effectiveness of dynamic stabilization with an IPD in the treatment of symptomatic IDD of the lumbar spine. Patients and methods Patients with symptomatic IDD were treated with implantation of an IPD, the device for intervertebral assisted motion (DIAM). Diagnosis of IDD was based on typical MRI finding of posterior annular high-intensity zone and positive provocative test on discography. IDP was analyzed intraoperatively. Axial back and leg pain was evaluated with visual analog scale, functional status with Oswestry Disability Index, and final clinical outcomes with Odom criteria. Data from 34 patients followed up for at least 3 years were collected. Results DIAM implantation significantly reduced IDP (n=11, P<0.0001). All 34 patients reported symptom relief. Thirty-one patients (91%) remained symptom free until the last followups. Three patients (9%) experienced recurrence of pain, of which the causes were unrelated to the IDD or surgery. Disk status at the DIAM-implanted segments remained stable. Segmental flexion/extension mobility was preserved in 27 of 30 patients with preoperative mobility. No proximal or distal adjacent segment degeneration was observed. The final clinical outcomes were excellent/good in 31 and fair/poor in three patients. Conclusion For patients with symptomatic IDD, dynamic stabilization with DIAM provides pain relief and functional improvement. The implantation maintains disk status and prevents progression of disk degeneration, without compromising segmental flexion/extension mobility or causing adjacent segment degeneration. PMID:27826214
Feng, Gangyi; Ingvalson, Erin M; Grieco-Calub, Tina M; Roberts, Megan Y; Ryan, Maura E; Birmingham, Patrick; Burrowes, Delilah; Young, Nancy M; Wong, Patrick C M
2018-01-30
Although cochlear implantation enables some children to attain age-appropriate speech and language development, communicative delays persist in others, and outcomes are quite variable and difficult to predict, even for children implanted early in life. To understand the neurobiological basis of this variability, we used presurgical neural morphological data obtained from MRI of individual pediatric cochlear implant (CI) candidates implanted younger than 3.5 years to predict variability of their speech-perception improvement after surgery. We first compared neuroanatomical density and spatial pattern similarity of CI candidates to that of age-matched children with normal hearing, which allowed us to detail neuroanatomical networks that were either affected or unaffected by auditory deprivation. This information enables us to build machine-learning models to predict the individual children's speech development following CI. We found that regions of the brain that were unaffected by auditory deprivation, in particular the auditory association and cognitive brain regions, produced the highest accuracy, specificity, and sensitivity in patient classification and the most precise prediction results. These findings suggest that brain areas unaffected by auditory deprivation are critical to developing closer to typical speech outcomes. Moreover, the findings suggest that determination of the type of neural reorganization caused by auditory deprivation before implantation is valuable for predicting post-CI language outcomes for young children.
In vitro assessment of MRI issues at 3-Tesla for a breast tissue expander with a remote port.
Linnemeyer, Hannah; Shellock, Frank G; Ahn, Christina Y
2014-04-01
A patient with a breast tissue expander may require a diagnostic assessment using magnetic resonance imaging (MRI). To ensure patient safety, this type of implant must undergo in vitro MRI testing using proper techniques. Therefore, this investigation evaluated MRI issues (i.e., magnetic field interactions, heating, and artifacts) at 3-Tesla for a breast tissue expander with a remote port. A breast tissue expander with a remote port (Integra Breast Tissue Expander, Model 3612-06 with Standard Remote Port, PMT Corporation, Chanhassen, MN) underwent evaluation for magnetic field interactions (translational attraction and torque), MRI-related heating, and artifacts using standardized techniques. Heating was evaluated by placing the implant in a gelled-saline-filled phantom and MRI was performed using a transmit/receive RF body coil at an MR system reported, whole body averaged specific absorption rate of 2.9-W/kg. Artifacts were characterized using T1-weighted and GRE pulse sequences. Magnetic field interactions were not substantial and, thus, will not pose a hazard to a patient in a 3-Tesla or less MRI environment. The highest temperature rise was 1.7°C, which is physiologically inconsequential. Artifacts were large in relation to the remote port and metal connector of the implant but will only present problems if the MR imaging area of interest is where these components are located. A patient with this breast tissue expander with a remote port may safely undergo MRI at 3-Tesla or less under the conditions used for this investigation. These findings are the first reported at 3-Tesla for a tissue expander. Copyright © 2014 Elsevier Inc. All rights reserved.
SU-E-J-232: Feasibility of MRI-Based Preplan On Low Dose Rate Prostate Brachytherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Y; Tward, J; Rassiah-Szegedi, P
Purpose: To investigate the feasibility of using MRI-based preplan for low dose rate prostate brachytherapy. Methods: 12 patients who received transrectal ultrasound (TRUS) guided prostate brachytherapy with Pd-103 were retrospectively studied. Our care-standard of the TRUS-based preplan served as the control. One or more prostate T2-weighted wide and/or narrow-field of view MRIs obtained within the 3 months prior to the implant were imported into the MIM Symphony software v6.3 (MIM Software Inc., Cleveland, OH) for each patient. In total, 37 MRI preplans (10 different image sequences with average thickness of 4.8mm) were generated. The contoured prostate volume and the seedmore » counts required to achieve adequate dosimetric coverage from TRUS and MRI preplans were compared for each patient. The effects of different MRI sequences and image thicknesses were also investigated statistically using Student’s t-test. Lastly, the nomogram from the MRI preplan and TRUS preplan from our historical treatment data were compared. Results: The average prostate volume contoured on the TRUS and MRI were 26.6cc (range: 12.6∼41.3cc), and 27.4 cc (range: 14.3∼50.0cc), respectively. Axial MRI thicknesses (range: 3.5∼8.1mm) did not significantly affect the contoured volume or the number of seeds required on the preplan (R2 = 0.0002 and 0.0012, respectively). Four of the MRI sequences (AX-T2, AX-T2-Whole-Pelvis, AX-T2-FSE, and AXIALT2- Hi-Res) showed statistically significant better prostate volume agreement with TRUS than the other seven sequences (P <0.01). Nomogram overlay between the MRI and TRUS preplans showed good agreement; indicating volumes contoured on MRI preplan scan reliably predict how many seeds are needed for implant. Conclusion: Although MRI does not allow for determination of the actual implant geometry, it can give reliable volumes for seed ordering purposes. Our future work will investigate if MRI is sufficient to reliably replace TRUS preplanning in patients where preplan TRUS may be technically challenging.« less
Customizable cap implants for neurophysiological experimentation.
Blonde, Jackson D; Roussy, Megan; Luna, Rogelio; Mahmoudian, Borna; Gulli, Roberto A; Barker, Kevin C; Lau, Jonathan C; Martinez-Trujillo, Julio C
2018-04-22
Several primate neurophysiology laboratories have adopted acrylic-free, custom-fit cranial implants. These implants are often comprised of titanium or plastic polymers, such as polyether ether ketone (PEEK). Titanium is favored for its mechanical strength and osseointegrative properties whereas PEEK is notable for its lightweight, machinability, and MRI compatibility. Recent titanium/PEEK implants have proven to be effective in minimizing infection and implant failure, thereby prolonging experiments and optimizing the scientific contribution of a single primate. We created novel, customizable PEEK 'cap' implants that contour to the primate's skull. The implants were created using MRI and/or CT data, SolidWorks software and CNC-machining. Three rhesus macaques were implanted with a PEEK cap implant. Head fixation and chronic recordings were successfully performed. Improvements in design and surgical technique solved issues of granulation tissue formation and headpost screw breakage. Primate cranial implants have traditionally been fastened to the skull using acrylic and anchor screws. This technique is prone to skin recession, infection, and implant failure. More recent methods have used imaging data to create custom-fit titanium/PEEK implants with radially extending feet or vertical columns. Compared to our design, these implants are more surgically invasive over time, have less force distribution, and/or do not optimize the utilizable surface area of the skull. Our PEEK cap implants served as an effective and affordable means to perform electrophysiological experimentation while reducing surgical invasiveness, providing increased strength, and optimizing useful surface area. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
Magnetic Resonance Cholangiopancreatography (MRCP)
... metallic items, which can distort MRI images removable dental work pens, pocket knives and eyeglasses body piercings In most cases, an MRI exam is safe for patients with metal implants, except for a few types. ...
Tadenuma, Taku; Uchio, Yuji; Kumahashi, Nobuyuki; Fukuba, Eiji; Kitagaki, Hajime; Iwasa, Junji; Ochi, Mitsuo
2016-10-01
To elucidate the quality of tissue-engineered cartilage after an autologous chondrocyte implantation (ACI) technique with Atelocollagen gel as a scaffold in the knee in the short- to midterm postoperatively, we assessed delayed gadolinium-enhanced magnetic resonance imaging (MRI) of cartilage (dGEMRIC) and T2 mapping and clarified the relationship between T1 and T2 values and clinical results. In this cross-sectional study, T1 and T2 mapping were performed on 11 knees of 8 patients (mean age at ACI, 37.2 years) with a 3.0-T MRI scanner. T1implant and T2implant values were compared with those of the control cartilage region (T1control and T2control). Lysholm scores were also assessed for clinical evaluation. The relationships between the T1 and T2 values and the clinical Lysholm score were also assessed. There were no significant differences in the T1 values between the T1implant (386.64 ± 101.78 ms) and T1control (375.82 ± 62.89 ms) at the final follow-up. The implants showed significantly longer T2 values compared to the control cartilage (53.83 ± 13.89 vs. 38.21 ± 4.43 ms). The postoperative Lysholm scores were significantly higher than the preoperative scores. A significant correlation was observed between T1implant and clinical outcomes, but not between T2implant and clinical outcomes. Third-generation ACI implants might have obtained an almost equivalent glycosaminoglycan concentration compared to the normal cartilage, but they had lower collagen density at least 3 years after transplantation. The T1implant value, but not the T2 value, might be a predictor of clinical outcome after ACI.
Poly Implant Prothèse (PIP) incidence of rupture: a retrospective MR analysis in 64 patients
Scotto di Santolo, Mariella; Cusati, Bianca; Ragozzino, Alfonso; Dell’Aprovitola, Nicoletta; Acquaviva, Alessandra; Altiero, Michele; Accurso, Antonello; Riccardi, Albina
2014-01-01
Aim of the study The purpose of this retrospective study was to describe the magnetic resonance imaging (MRI) features of Poly Implant Prothèse (PIP) hydrogel implants in a group of 64 patients and to assess the incidence of rupture, compared to other clinical trials. Material and methods In this double-center study, we retrospectively reviewed the data sets of 64 consecutive patients (mean age, 43±9 years, age range, 27-65 years), who underwent breast MRI examinations, between January 2008 and October 2013, with suspected implant rupture on the basis of clinical assessment or after conventional imaging examination (either mammography or ultrasound). All patients had undergone breast operation with bilateral textured cohesive gel PIP implant insertion for aesthetic reasons. The mean time after operation was 8 years (range, 6-14 years). No patients reported history of direct trauma to their implants. Results At the time of clinical examination, 41 patients were asymptomatic, 16 complained of breast tenderness and 7 had clinical evidence of rupture. Normal findings were observed in 15 patients. In 26 patients there were signs of mild collapse, with associated not significant peri-capsular fluid collections and no evidence of implant rupture; in 23 patients there was suggestion of implant rupture, according to breast MRI leading to an indication for surgery. In particular, 14 patients showed intra-capsular rupture, with associated evidence of the linguine sign in all cases; the keyhole sign and the droplet signs were observed in 6 cases. In 9 patients there was evidence of extra-capsular rupture, with presence of axillary collections (siliconomas) in 7 cases and peri-prosthetic and mediastinal cavity siliconomas, in 5 cases. Conclusions The results of this double center retrospective study, confirm the higher incidence (36%) of prosthesis rupture observed with the PIP implants, compared to other breast implants. PMID:25525578
Sillay, Karl A; Rusy, Deborah; Buyan-Dent, Laura; Ninman, Nancy L; Vigen, Karl K
2014-12-01
We report results of the initial experience with magnetic resonance image (MRI)-guided implantation of subthalamic nucleus (STN) deep brain stimulating (DBS) electrodes at the University of Wisconsin after having employed frame-based stereotaxy with previously available MR imaging techniques and microelectrode recording for STN DBS surgeries. Ten patients underwent MRI-guided DBS implantation of 20 electrodes between April 2011 and March 2013. The procedure was performed in a purpose-built intraoperative MRI suite configured specifically to allow MRI-guided DBS, using a wide-bore (70 cm) MRI system. Trajectory guidance was accomplished with commercially available system consisting of an MR-visible skull-mounted aiming device and a software guidance system processing intraoperatively acquired iterative MRI scans. A total of 10 patients (5 male, 5 female)-representative of the Parkinson Disease (PD) population-were operated on with standard technique and underwent 20 electrode placements under MRI-guided bilateral STN-targeted DBS placement. All patients completed the procedure with electrodes successfully placed in the STN. Procedure time improved with experience. Our initial experience confirms the safety of MRI-guided DBS, setting the stage for future investigations combining physiology and MRI guidance. Further follow-up is required to compare the efficacy of the MRI-guided surgery cohort to that of traditional frame-based stereotaxy. Copyright © 2014 Elsevier B.V. All rights reserved.
Monllau, Joan C; Poggioli, Francesco; Erquicia, Juan; Ramírez, Eduardo; Pelfort, Xavier; Gelber, Pablo; Torres-Claramunt, Raúl
2018-05-01
To report the magnetic resonance imaging (MRI) and clinical outcomes at a minimum 5-year follow-up in a series of patients with postmeniscectomy syndrome and treated with a polyurethane scaffold. All consecutive patients operated on from September 2008 to February 2011 for either persistent medial or lateral joint line compartmental pain receiving a polyurethane scaffold due to a previous partial meniscus resection with a minimum 5-year follow-up were included. Functional scores (Knee Injury and Osteoarthritis Outcomes Score, International Knee Documentation Committee, Lysholm, and Tegner) were assessed preoperatively and at the last follow-up. The state of the scaffold as well as postoperative scaffold extrusion and the total remaining meniscal volume was also evaluated in MRI. Thirty-two patients were included. The mean follow-up was 70.8 ± 7.5 months. The functionality of the knees improved in all the scores used (P < .001) except for the Tegner score that stayed steady. Most of meniscal implants showed extrusion of 2.4 mm (95% confidence interval [CI], 1.1-3.7) were smaller and a hyperintensity signal was seen in the MRI. Three scaffolds were resorbed at the last follow-up. The meniscal volume, determined by MRI, was 1.14 cm 3 (95% CI, 0.96-1.31) preoperatively and 1.61 cm 3 (95% CI, 1.43-1.7) at the last follow-up. No differences were presented. The use of a polyurethane meniscal scaffold in patients with a symptomatic meniscus deficit had a good functional outcome at 5 years after surgery. However, the implanted scaffolds did not present normal meniscal tissue with MRI, and the implant volume was considerably less than expected. The fact that most of patients included received different concomitant procedures during scaffold implantation introduces a degree of performance bias into the results. Level IV, case series. Copyright © 2018 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Ex-PRESS glaucoma filter: an MRI compatible metallic orbital foreign body imaged at 1.5 and 3T.
Mabray, M C; Uzelac, A; Talbott, J F; Lin, S C; Gean, A D
2015-05-01
To report on the MRI compatibility of the Ex-PRESS glaucoma filtration device, a tiny metallic implant placed into the anterior chamber of the eye that is much smaller than traditional glaucoma shunts, and to educate the radiology community regarding its appearance. Seven patients with Ex-PRESS glaucoma filtration devices were identified that had undergone MRI at San Francisco General Hospital/University of California San Francisco Medical Center by searching and cross-referencing the radiology reporting system and the electronic medical record. MRI images were reviewed for artefact interfering with interpretation. Ophthalmology examinations were reviewed for evidence of complications. Eighteen individual MRI examinations were performed during 12 unique MRI events on these 7 patients. 13/18 individual MRI examinations and 7/12 MRI events were performed at 3 T with the others performed at 1.5 T. Mean time from Ex-PRESS implantation to MRI was 17.5 months. Mean time from MRI to first ophthalmology examination was 1.1 months and from MRI to latest ophthalmology examination was 6.6 months. Susceptibility artefact did not interfere with image interpretation and no complications related to MRI were encountered. The Ex-PRESS glaucoma filtration device appears to be safe for MRI at 1.5 and 3 T and does not produce significant susceptibility artefact to affect diagnostic interpretation adversely. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Parkinson's disease patient preference and experience with various methods of DBS lead placement.
LaHue, Sara C; Ostrem, Jill L; Galifianakis, Nicholas B; San Luciano, Marta; Ziman, Nathan; Wang, Sarah; Racine, Caroline A; Starr, Philip A; Larson, Paul S; Katz, Maya
2017-08-01
Physiology-guided deep brain stimulation (DBS) surgery requires patients to be awake during a portion of the procedure, which may be poorly tolerated. Interventional MRI-guided (iMRI) DBS surgery was developed to use real-time image guidance, obviating the need for patients to be awake during lead placement. All English-speaking adults with PD who underwent iMRI DBS between 2010 and 2014 at our Center were invited to participate. Subjects completed a structured interview that explored perioperative preferences and experiences. We compared these responses to patients who underwent the physiology-guided method, matched for age and gender. Eighty-nine people with PD completed the study. Of those, 40 underwent iMRI, 44 underwent physiology-guided implantation, and five underwent both methods. There were no significant differences in baseline characteristics between groups. The primary reason for choosing iMRI DBS was a preference to be asleep during implantation due to: 1) a history of claustrophobia; 2) concerns about the potential for discomfort during the awake physiology-guided procedure in those with an underlying pain syndrome or severe off-medication symptoms; or 3) non-specific fear about being awake during neurosurgery. Participants were satisfied with both DBS surgery methods. However, identification of the factors associated with a preference for iMRI DBS may allow for optimization of patient experience and satisfaction when choices of surgical methods for DBS implantation are available. Published by Elsevier Ltd.
Golestanirad, Laleh; Keil, Boris; Angelone, Leonardo M.; Bonmassar, Giorgio; Mareyam, Azma; Wald, Lawrence L.
2016-01-01
Purpose MRI of patients with deep brain stimulation (DBS) implants is strictly limited due to safety concerns, including high levels of local specific absorption rate (SAR) of radiofrequency (RF) fields near the implant and related RF-induced heating. This study demonstrates the feasibility of using a rotating linearly polarized birdcage transmitter and a 32-channel close-fit receive array to significantly reduce local SAR in MRI of DBS patients. Methods Electromagnetic simulations and phantom experiments were performed with generic DBS lead geometries and implantation paths. The technique was based on mechanically rotating a linear birdcage transmitter to align its zero electric-field region with the implant while using a close-fit receive array to significantly increase signal to noise ratio of the images. Results It was found that the zero electric-field region of the transmitter is thick enough at 1.5 Tesla to encompass DBS lead trajectories with wire segments that were up to 30 degrees out of plane, as well as leads with looped segments. Moreover, SAR reduction was not sensitive to tissue properties, and insertion of a close-fit 32-channel receive array did not degrade the SAR reduction performance. Conclusion The ensemble of rotating linear birdcage and 32-channel close-fit receive array introduces a promising technology for future improvement of imaging in patients with DBS implants. PMID:27059266
NASA Astrophysics Data System (ADS)
McElcheran, Clare
Deep Brain Stimulation (DBS) is increasingly used to treat a variety of brain diseases by sending electrical impulses to deep brain nuclei through long, electrically conductive leads. Magnetic resonance imaging (MRI) of patients pre- and post-implantation is desirable to target and position the implant, to evaluate possible side-effects and to examine DBS patients who have other health conditions. Although MRI is the preferred modality for pre-operative planning, MRI post-implantation is limited due to the risk of high local power deposition, and therefore tissue heating, at the tip of the lead. The localized power deposition arises from currents induced in the leads caused by coupling with the radiofrequency (RF) transmission field during imaging. In this thesis, parallel RF transmission (pTx) is used to tailor the RF electric field to suppress coupling effects. Three pTx coil configurations with 2-elements, 4-elements, and 8-elements, respectively, were investigated. Optimal input voltages to minimize coupling, while maintaining RF magnetic field homogeneity, were determined using a Nelder-Mead optimization algorithm. Resulting electric and magnetic fields were compared to that of a 16-rung birdcage coil. Experimental validation was performed with a custom-built 4-element pTx coil. Three cases were investigated to develop and evaluate this technique. First, a Proof-of-Concept study was performed to investigate the case of a simple, uniform cylindrical phantom with a straight, perfectly conducting wire. Second, a heterogeneous subject with bilateral, curved implanted wires was investigated. Finally, the third case investigated realistic patient lead-trajectories obtained from intra-operative CT scans. In all three cases, specific absorption rate (SAR), a metric used to quantify power deposition which results in heating, was reduced by over 90%. Maximal reduction in SAR was obtained with the 8-element pTx coil. Magnetic field homogeneity was comparable to the birdcage coil for the 4- and 8-element pTx configurations. Although further research is required before clinical implementation, these initial results suggest that the concept of optimizing pTx to reduce DBS heating effects holds considerable promise.
Lupo, Pierpaolo; Cappato, Riccardo; Di Leo, Giovanni; Secchi, Francesco; Papini, Giacomo D E; Foresti, Sara; Ali, Hussam; De Ambroggi, Guido M G; Sorgente, Antonio; Epicoco, Gianluca; Cannaò, Paola M; Sardanelli, Francesco
2018-06-01
To investigate safety and diagnostic value of 1.5-T MRI in carriers of conventional pacemaker (cPM) or conventional implantable defibrillator (cICD). We prospectively compared cPM/cICD-carriers undergoing MRI (study group, SG), excluding those device-dependent or implanted <6 weeks before enrolment or prior to 01/01/2000, with cPM/cICD-carriers undergoing chest x-ray, CT or follow-up (reference group, RG). 142 MRI (55 cardiac) were performed in 120 patients with cPM (n=71) or cICD (n=71). In the RG 98 measurements were performed in 95 patients with cPM (n=40) or cICD (n=58). No adverse events were observed. No MRI prolonged/interrupted. All cPM/cICD were correctly reprogrammed after MRI without malfunctions. One temporary communication failure was observed in one cPM-carrier. Immediately after MRI, 12/14 device interrogation parameters did not change significantly (clinically negligible changes of battery voltage and cICD charging time), without significant variations for SG versus RG. Three-12 months after MRI, 9/11 device interrogation parameters did not change significantly (clinically negligible changes of battery impedance/voltage). Non-significant changes of three markers of myocardial necrosis. Non-cardiac MRI: 82/87 diagnostic without artefacts; 4/87 diagnostic with artefacts; 1/87 partially diagnostic. Cardiac MRI: in cPM-carriers, 14/15 diagnostic with artefacts, 1/15 partially diagnostic; in cICD-carriers, 9/40 diagnostic with artefacts, 22 partially diagnostic, nine non-diagnostic. A favourable risk-benefit ratio of 1.5-T MRI in cPM/cICD carriers was reported. • Cooperation between radiologists and cardiac electrophysiologists allowed safe 1.5-T MRI in cPM/cICD-carriers. • No adverse events for 142 MRI in 71 cPM-carriers and 71 cICD-carriers. • Ninety-nine per cent (86/87) of non-cardiac MRI in cPM/cICD-carriers were diagnostic. • All cPM-carrier cardiac MRIs had artefacts, 14 examinations diagnostic, 1 partially diagnostic. • Twenty-three per cent (9/40) of cardiac MRI in cICD-carriers were non-diagnostic.
Muranaka, Hiroyuki; Nakamura, Osamu; Usui, Shuji; Ueda, Yoshitake; Morikawa, Kaoru
2005-07-20
It is increasingly the case that patients who have implants feel pain during high-field MRI examinations. A probable reason for the pain is the generation by irradiation of RF pulses and changing of the magnetic field gradient. As a fundamental study on the effect of implants on the human body under MRI procedures, temperature measurements were obtained from metal balls incorporated into gel-filled phantoms by using two kinds of measuring instruments, a copper-constantan thermocouple and a fluorescence fiber thermometer. At first we pursued a correlation between a copper-constantan thermocouple (absolute measurement) and fluoroptic thermometer and confirmed the precision and stability of the fluoroptic thermometer under MRI procedures. When a stainless steel ball with or without a loop antenna was used, only in the former case did the temperature rise during RF pulse irradiation. There was no significant difference between the magnetic field gradient ON and OFF. Furthermore, differences in metal (steel, aluminum, brass, stainless steel, copper) and size (5, 10, 20 mmPhi) were affected according to the increase of temperature. In conclusion, both RF pulse irradiation and a loop antenna are necessary for heat generation on the surface of metals.
Nakae, Shunsuke; Murayama, Kazuhiro; Adachi, Kazuhide; Kumai, Tadashi; Abe, Masato; Hirose, Yuichi
2018-01-01
Although a subdural fluid collection frequently is observed, diagnostic methods that differentiate between the subdural collection caused by external hydrocephalus and that caused by subdural hygroma have not been established. Here, we report a case of external hydrocephalus caused by Gliadel-induced eosinophilic meningitis that has been previously reported in only 1 case and can be diagnosed by time-spatial labeling inversion pulse magnetic resonance imaging (time-SLIP MRI). A tumor located in the left temporal was detected incidentally in an 81-year-old man by examination of a head injury. The tumor was surgically resected and diagnosed as a high-grade glioma during the surgery; Gliadel wafers subsequently were implanted. Three weeks after the resection, the patient showed disturbed consciousness, and computed tomography revealed a subdural fluid collection. The out-flow of cerebrospinal through the resection cavity was detected by time-SLIP MRI. Cerebrospinal tests indicated high white blood cell counts and high protein levels, with more than 90% of the white blood cell count comprising eosinophils. Therefore, we suspected that the subdural fluid collection was caused by external hydrocephalus because of Gliadel-induced eosinophilic meningitis. We surgically removed the Gliadel wafers and subsequently performed a surgery to insert a ventriculoperitoneal shunt. Histologic examination indicated eosinophilic accumulation around the Gliadel wafers. The patient's symptoms improved after the insertion of a ventriculoperitoneal shunt. In the present case, time-SLIP MRI was a useful and noninvasive method for diagnosing external hydrocephalus which was caused by eosinophilic meningitis because of Gliadel-induced eosinophilic meningitis. Copyright © 2017 Elsevier Inc. All rights reserved.
Walsh, Kevin M; Machado, Andre G; Krishnaney, Ajit A
2015-08-01
There is currently no consensus on appropriate perioperative management of patients with spinal cord stimulator implants. Magnetic resonance imaging (MRI) is considered safe under strict labeling conditions. Electrocautery is generally not recommended in these patients but sometimes used despite known risks. The aim was to discuss the perioperative evaluation and management of patients with spinal cord stimulator implants. A literature review, summary of device labeling, and editorial were performed, regarding the safety of spinal cord stimulator devices in the perioperative setting. A literature review was performed, and the labeling of each Food and Drug Administration (FDA)-approved spinal cord stimulation system was reviewed. The literature review was performed using PubMed and the FDA website (www.fda.gov). Magnetic resonance imaging safety recommendations vary between the models. Certain systems allow for MRI of the brain to be performed, and only one system allows for MRI of the body to be performed, both under strict labeling conditions. Before an MRI is performed, it is imperative to ascertain that the system is intact, without any lead breaks or low impedances, as these can result in heating of the spinal cord stimulation (SCS) and injury to the patient. Monopolar electrocautery is generally not recommended for patients with SCS; however, in some circumstances, it is used when deemed required by the surgeon. When cautery is necessary, bipolar electrocautery is recommended. Modern electrocautery units are to be used with caution as there remains a risk of thermal injury to the tissue in contact with the SCS. As with MRI, electrocautery usage in patients with SCS systems with suspected breaks or abnormal impedances is unsafe and may cause injury to the patient. Spinal cord stimulation is increasingly used in patients with pain of spinal origin, particularly to manage postlaminectomy syndrome. Knowledge of the safety concerns of SCS and appropriate perioperative evaluation and management of the SCS system can reduce risks and improve surgical planning. Copyright © 2015 Elsevier Inc. All rights reserved.
Westerhof, J P; Rademaker, J; Weber, B P; Becker, H
2001-01-01
The purpose of this work was to study the diagnostic value of CT and MRI in children with sensorineural hearing loss and to analyze anatomic abnormalities of the inner ear and the vestibulocochlear nerve in this patient group. We evaluated 42 inner ears in 21 children with congenital deafness who had congenital inner ear malformations and who were candidates for cochlear implants. All patients were studied with high resolution MR and helical CT examinations. The MR study included a T2-weighted 3D fast SE sequence. We describe and tabulate the anatomic abnormalities. Special attention was given to abnormalities of the vestibulocochlear nerve. The field of view in the plane according to the length axis of the internal auditory canal (IAC) was 4 cm. Additional continuous parasagittal reformations perpendicular to the length axis of the IAC were studied with a field of view of 3 cm. CT and MRI allowed accurate identification of malformations of the inner ear in children with congenital deafness. We identified 99 malformations, with a majority of patients demonstrating multiple abnormalities. Common imaging findings were Mondini abnormality and Mondini variants (12/42) and fusion of the lateral or superior semicircular canal with the vestibule (12/42). MRI demonstrated in 9 of 21 patients a rudimentary or absent vestibulocochlear nerve in the auditory canal. CT and MRI are important modalities to analyze the inner ear in children who are candidates for cochlear implants. MRI with an extremely small field of view should be used to study possible abnormalities of the vestibulocochlear nerves. This may alter clinical care and allow cochlear implant placement in patients whose electrodiagnostic studies suggest that the implant should not be performed. The detailed analysis of abnormalities of the inner ear might establish prognostic factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyagi, N; Sutton, E; Hunt, M
Purpose: Capsular contracture (CC) is a serious complication in patients receiving implant-based reconstruction for breast cancer. The goal of this study was to identify image-based correlates of CC using MRI imaging in breast cancer patients who received both MRI and clinical evaluation following reconstructive surgery. Methods: We analyzed a retrospective dataset of 50 patients who had both a diagnostic MR and a plastic surgeon’s evaluations of CC score (Baker’s score) within a six month period following mastectomy and reconstructive surgery. T2w sagittal MRIs (TR/TE = 3500/102 ms, slice thickness = 4 mm) were used for morphological shape features (roundness, eccentricity,more » solidity, extent and ratio-length) and histogram features (median, skewness and kurtosis) of the implant and the pectoralis muscle overlying the implant. Implant and pectoralis muscles were segmented in 3D using Computation Environment for Radiological Research (CERR) and shape and histogram features were calculated as a function of Baker’s score. Results: Shape features such as roundness and eccentricity were statistically significant in differentiating grade 1 and grade 2 (p = 0.009; p = 0.06) as well as grade 1 and grade 3 CC (p = 0.001; p = 0.006). Solidity and extent were statistically significant in differentiating grade 1 and grade 3 CC (p = 0.04; p = 0.04). Ratio-length was statistically significant in differentiating all grades of CC except grade 2 and grade 3 that showed borderline significance (p = 0.06). The muscle thickness, median intensity and kurtosis were significant in differentiating between grade 1 and grade 3 (p = 0.02), grade 1 and grade 2 (p = 0.03) and grade 1 and grade 3 (p = 0.01) respectively. Conclusion: Morphological shape features described on MR images were associated with the severity of CC. MRI may be important in objectively evaluating outcomes in breast cancer patients who undergo implant reconstruction.« less
Tan, Lirong; Holland, Scott K; Deshpande, Aniruddha K; Chen, Ye; Choo, Daniel I; Lu, Long J
2015-12-01
We developed a machine learning model to predict whether or not a cochlear implant (CI) candidate will develop effective language skills within 2 years after the CI surgery by using the pre-implant brain fMRI data from the candidate. The language performance was measured 2 years after the CI surgery by the Clinical Evaluation of Language Fundamentals-Preschool, Second Edition (CELF-P2). Based on the CELF-P2 scores, the CI recipients were designated as either effective or ineffective CI users. For feature extraction from the fMRI data, we constructed contrast maps using the general linear model, and then utilized the Bag-of-Words (BoW) approach that we previously published to convert the contrast maps into feature vectors. We trained both supervised models and semi-supervised models to classify CI users as effective or ineffective. Compared with the conventional feature extraction approach, which used each single voxel as a feature, our BoW approach gave rise to much better performance for the classification of effective versus ineffective CI users. The semi-supervised model with the feature set extracted by the BoW approach from the contrast of speech versus silence achieved a leave-one-out cross-validation AUC as high as 0.97. Recursive feature elimination unexpectedly revealed that two features were sufficient to provide highly accurate classification of effective versus ineffective CI users based on our current dataset. We have validated the hypothesis that pre-implant cortical activation patterns revealed by fMRI during infancy correlate with language performance 2 years after cochlear implantation. The two brain regions highlighted by our classifier are potential biomarkers for the prediction of CI outcomes. Our study also demonstrated the superiority of the semi-supervised model over the supervised model. It is always worthwhile to try a semi-supervised model when unlabeled data are available.
MRI/TRUS data fusion for prostate brachytherapy. Preliminary results.
Reynier, Christophe; Troccaz, Jocelyne; Fourneret, Philippe; Dusserre, André; Gay-Jeune, Cécile; Descotes, Jean-Luc; Bolla, Michel; Giraud, Jean-Yves
2004-06-01
Prostate brachytherapy involves implanting radioactive seeds (I125 for instance) permanently in the gland for the treatment of localized prostate cancers, e.g., cT1c-T2a N0 M0 with good prognostic factors. Treatment planning and seed implanting are most often based on the intensive use of transrectal ultrasound (TRUS) imaging. This is not easy because prostate visualization is difficult in this imaging modality particularly as regards the apex of the gland and from an intra- and interobserver variability standpoint. Radioactive seeds are implanted inside open interventional MR machines in some centers. Since MRI was shown to be sensitive and specific for prostate imaging whilst open MR is prohibitive for most centers and makes surgical procedures very complex, this work suggests bringing the MR virtually in the operating room with MRI/TRUS data fusion. This involves providing the physician with bi-modality images (TRUS plus MRI) intended to improve treatment planning from the data registration stage. The paper describes the method developed and implemented in the PROCUR system. Results are reported for a phantom and first series of patients. Phantom experiments helped characterize the accuracy of the process. Patient experiments have shown that using MRI data linked with TRUS data improves TRUS image segmentation especially regarding the apex and base of the prostate. This may significantly modify prostate volume definition and have an impact on treatment planning.
Dandamudi, Sanjay; Collins, Jeremy D; Carr, James C; Mongkolwat, Pat; Rahsepar, Amir A; Tomson, Todd T; Verma, Nishant; Arora, Rishi; Chicos, Alex B; Kim, Susan S; Lin, Albert C; Passman, Rod S; Knight, Bradley P
2016-12-01
Studies reporting the safety of magnetic resonance imaging (MRI) in patients with a cardiac implantable electronic device (CIED) have mostly excluded examinations with the device in the magnet isocenter. The purpose of this study was to describe the safety of cardiac and thoracic spine MRI in patients with a CIED. The medical records of patients with a CIED who underwent a cardiac or thoracic spine MRI between January 2011 and December 2014 were reviewed. Devices were interrogated before and after imaging with reprogramming to asynchronous pacing in pacemaker-dependent patients. The clinical interpretability of the MRI and peak and average specific absorption rates (SARs, W/kg) achieved were determined. Fifty-eight patients underwent 51 cardiac and 11 thoracic spine MRI exams. Twenty-nine patients had a pacemaker and 29 had an implantable cardioverter defibrillator. Seventeen percent (n = 10) were pacemaker dependent. Fifty-one patients (89%) had non-MRI-conditional devices. There were no clinically significant changes in atrial and ventricular sensing, impedance, and threshold measurements. There were no episodes of device mode changes, arrhythmias, therapies delivered, electrical reset, or battery depletion. One study was prematurely discontinued due to a patient complaint of chest pain of which the etiology was not determined. Across all examinations, the average peak SAR was 2.0 ± 0.85 W/kg with an average SAR of 0.35 ± 0.37 W/kg. Artifact significantly limiting the clinical interpretation of the study was present in 33% of cardiac MRI studies. When a comprehensive CIED magnetic resonance safety protocol is followed, the risk of performing 1.5-T magnetic resonance studies with the device in the magnet isocenter, including in patients who are pacemaker dependent, is low. Copyright © 2016. Published by Elsevier Inc.
Kon, Elizaveta; Robinson, Dror; Verdonk, Peter; Drobnic, Matej; Patrascu, Jenel Mariano; Dulic, Oliver; Gavrilovic, Gordon; Filardo, Giuseppe
2016-12-01
Chondral and osteochondral lesions represent a debilitating disease. Untreated lesions remain a risk factor for more extensive joint damage. The objective of this clinical study is to evaluate safety and early results of an aragonite-based scaffold used for osteochondral unit repair, by analysing both clinical outcome and MRI results, as well as the benefits of the procedure optimization through novel tapered shaped implants. A crystalline aragonite bi-phasic scaffold was implanted in patients affected by focal chondral-osteochondral knee lesions of the condyle and trochlea. Twenty-one patients (17 men, 4 women with a mean age of 31.0 ± 8.6 years) without severe OA received tapered shaped implants for the treatment of 2.5 ±1.7 cm 2 sized defects. The control group consisted of 76 patients selected according to the same criteria from a database of patients who previously underwent implantation of cylindrical-shaped implants. The clinical outcome of all patients was evaluated with the IKDC subjective score, the Lysholm score, and all 5 KOOS subscales administered preoperatively and at 6 and 12 months after surgery, while MRI evaluation was performed at the 12 month follow-up. A statistically significant improvement in all clinical scores was documented both in the tapered implants and the cylindrical group. No difference could be detected in the comparison between the improvement obtained with the two implant types, neither in the clinical nor in imaging evaluations. A difference could be detected instead in terms of revision rate, which was lower in the tapered implant group with no implant removal - 0% vs 8/76-10.5% failures in the cylindrical implants. This study highlighted both safety and potential of a novel aragonite-based scaffold for the treatment of chondral and osteochondral lesions in humans. A tapered shape relative to the cylindrical shaped implant design, improved the scaffold's safety profile. Tapered scaffolds maintain the clinical improvement observed in cylindrical implants while reducing the postoperative risk of revision surgery. This aragonite-based implant was associated with a significant clinical improvement at the 12 month follow-up. Moreover, MRI findings revealed graft integration with good bone and cartilage formation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gold, Michael R; Sommer, Torsten; Schwitter, Juerg; Kanal, Emanuel; Bernabei, Matthew A; Love, Charles J; Surber, Ralf; Ramza, Brian; Cerkvenik, Jeffrey; Merkely, Béla
2016-08-01
Studies have shown that magnetic resonance imaging (MRI) conditional pacemakers experience no significant effect from MRI on device function, sensing, or pacing. More recently, similar safety outcomes were demonstrated with MRI conditional defibrillators (implantable cardioverter-defibrillator [ICD]), but the impact on ventricular arrhythmias has not been assessed. The purpose of this study was to assess the effect of MRI on ICD sensing and treatment of ventricular tachyarrhythmias. The Evera MRI Study was a worldwide trial of 156 patients implanted with an ICD designed to be MRI conditional. Device-detected spontaneous and induced ventricular tachycardia/ventricular fibrillation (VT/VF) episodes occurring before and after whole body MRI were evaluated by a blinded episode review committee. Detection delay was computed as the sum of RR intervals of undersensed beats. A ≥5-second delay in detection due to undersensing was prospectively defined as clinically significant. Post-MRI, there were 22 polymorphic VT/VF episodes in 21 patients, with 16 of these patients having 17 VT/VF episodes pre-MRI. Therapy was successful for all episodes, with no failures to treat or terminate arrhythmias. The mean detection delay due to undersensing pre- and post-MRI was 0.60 ± 0.59 and 0.33 ± 0.63 seconds, respectively (P = .17). The maximum detection delay was 2.19 seconds pre-MRI and 2.87 seconds post-MRI. Of the 17 pre-MRI episodes, 14 (82%) had some detection delay as compared with 11 of 22 (50%) post-MRI episodes (P = .03); no detection delay was clinically significant. Detection and treatment of VT/VF was excellent, with no detection delays or significant impact of MRI observed. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Busch, Martin H J; Vollmann, Wolfgang; Schnorr, Jörg; Grönemeyer, Dietrich H W
2005-04-08
Active Magnetic Resonance Imaging implants are constructed as resonators tuned to the Larmor frequency of a magnetic resonance system with a specific field strength. The resonating circuit may be embedded into or added to the normal metallic implant structure. The resonators build inductively coupled wireless transmit and receive coils and can amplify the signal, normally decreased by eddy currents, inside metallic structures without affecting the rest of the spin ensemble. During magnetic resonance imaging the resonators generate heat, which is additional to the usual one described by the specific absorption rate. This induces temperature increases of the tissue around the circuit paths and inside the lumen of an active implant and may negatively influence patient safety. This investigation provides an overview of the supplementary power absorbed by active implants with a cylindrical geometry, corresponding to vessel implants such as stents, stent grafts or vena cava filters. The knowledge of the overall absorbed power is used in a finite volume analysis to estimate temperature maps around different implant structures inside homogeneous tissue under worst-case assumptions. The "worst-case scenario" assumes thermal heat conduction without blood perfusion inside the tissue around the implant and mostly without any cooling due to blood flow inside vessels. The additional power loss of a resonator is proportional to the volume and the quality factor, as well as the field strength of the MRI system and the specific absorption rate of the applied sequence. For properly working devices the finite volume analysis showed only tolerable heating during MRI investigations in most cases. Only resonators transforming a few hundred mW into heat may reach temperature increases over 5 K. This requires resonators with volumes of several ten cubic centimeters, short inductor circuit paths with only a few 10 cm and a quality factor above ten. Using MR sequences, for which the MRI system manufacturer declares the highest specific absorption rate of 4 W/kg, vascular implants with a realistic construction, size and quality factor do not show temperature increases over a critical value of 5 K. The results show dangerous heating for the assumed "worst-case scenario" only for constructions not acceptable for vascular implants. Realistic devices are safe with respect to temperature increases. However, this investigation discusses only properly working devices. Ruptures or partial ruptures of the wires carrying the electric current of the resonance circuits or other defects can set up a power source inside an extremely small volume. The temperature maps around such possible "hot spots" should be analyzed in an additional investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soliman, A; Elzibak, A; Fatemi, A
Purpose: To propose a novel framework for accurate model-based dose calculations using only MR images for LDR prostate and breast seed implant brachytherapy. Methods: Model-based dose calculation methodologies recommended by TG-186 require further knowledge about specific tissue composition, which is challenging with MRI. However, relying on MRI-only for implant dosimetry would reduce the soft tissue delineation uncertainty, costs, and uncertainties associated with multi-modality registration and fusion processes. We propose a novel framework to address this problem using quantitative MRI acquisitions and reconstruction techniques. The framework includes three steps: (1) Identify the locations of seeds(2) Identify the presence (or absence) ofmore » calcification(s)(3) Quantify the water and fat content in the underlying tissueSteps (1) and (2) consider the sources that limit patient dosimetry, particularly the inter-seed attenuation and the calcified regions; while step (3) targets the quantification of the tissue composition to consider the heterogeneities in the medium. Our preliminary work has shown that the seeds and the calcifications can be identified with MRI using both the magnitude and the phase images. By employing susceptibility-weighted imaging with specific post-processing techniques, the phase images can be further explored to distinguish the seeds from the calcifications. Absolute quantification of tissue, water, and fat content is feasible and was previously demonstrated in phantoms and in-vivo applications, particularly for brain diseases. The approach relies on the proportionality of the MR signal to the number of protons in an image volume. By employing appropriate correction algorithms for T1 - and T2*-related biases, B1 transmit and receive field inhomogeneities, absolute water/fat content can be determined. Results: By considering calcification and interseed attenuation, and through the knowledge of water and fat mass density, accurate patient-specific implant dosimetry can be achieved with MRI-only. Conclusion: The proposed framework showed that model-based dose calculation is feasible using MRI-only state-of-the-art techniques.« less
Ensuring safety of implanted devices under MRI using reversed RF polarization.
Overall, William R; Pauly, John M; Stang, Pascal P; Scott, Greig C
2010-09-01
Patients with long-wire medical implants are currently prevented from undergoing magnetic resonance imaging (MRI) scans due to the risk of radio frequency (RF) heating. We have developed a simple technique for determining the heating potential for these implants using reversed radio frequency (RF) polarization. This technique could be used on a patient-to-patient basis as a part of the standard prescan procedure to ensure that the subject's device does not pose a heating risk. By using reversed quadrature polarization, the MR scan can be sensitized exclusively to the potentially dangerous currents in the device. Here, we derive the physical principles governing the technique and explore the primary sources of inaccuracy. These principles are verified through finite-difference simulations and through phantom scans of implant leads. These studies demonstrate the potential of the technique for sensitively detecting potentially dangerous coupling conditions before they can do any harm. 2010 Wiley-Liss, Inc.
Quantification of tumor mobility during the breathing cycle using 3D dynamic MRI
NASA Astrophysics Data System (ADS)
Schoebinger, Max; Plathow, Christian; Wolf, Ivo; Kauczor, Hans-Ulrich; Meinzer, Hans-Peter
2006-03-01
Respiration causes movement and shape changes in thoracic tumors, which has a direct influence on the radio-therapy planning process. Current methods for the estimation of tumor mobility are either two-dimensional (fluoroscopy, 2D dynamic MRI) or based on radiation (3D (+t) CT, implanted gold markers). With current advances in dynamic MRI acquisition, 3D+t image sequences of the thorax can be acquired covering the thorax over the whole breathing cycle. In this work, methods are presented for the interactive segmentation of tumors in dynamic images, the calculation of tumor trajectories, dynamic tumor volumetry and dynamic tumor rotation/deformation based on 3D dynamic MRI. For volumetry calculation, a set of 21 related partial volume correcting volumetry algorithms has been evaluated based on tumor surrogates. Conventional volumetry based on voxel counting yielded a root mean square error of 29% compared to a root mean square error of 11% achieved by the algorithm performing best among the different volumetry methods. The new workflow has been applied to a set of 26 patients. Preliminary results indicate, that 3D dynamic MRI reveals important aspects of tumor behavior during the breathing cycle. This might imply the possibility to further improve high-precision radiotherapy techniques.
Bailey, William M; Rosenthal, Lawrence; Fananapazir, Lameh; Gleva, Marye; Mazur, Alexander; Rinaldi, C A; Kypta, Alexander; Merkely, Béla; Woodard, Pamela K
2015-06-01
Permanent cardiac pacemakers have historically been considered a contraindication to magnetic resonance imaging (MRI). The purpose of the ProMRI/ProMRI AFFIRM Study, which was a multicenter, prospective, single-arm, nonrandomized study, was to evaluate the clinical safety of the Biotronik ProMRI Pacemaker System under specific MRI conditions. The ProMRI Study (in the United States) and the ProMRI AFFIRM study (outside the United States) with identical design enrolled 272 patients with stable baseline pacing indices implanted with an Entovis or Evia pacemaker (DR-T or SR-T) and Setrox or Safio 53-cm or 60-cm lead. Device interrogation was performed at enrollment, pre-MRI and post-MRI scan, and 1 and 3 months post-MRI. End-points were (1) freedom from MRI- and pacing system-related serious adverse device effects (SADEs) through 1 month post-MRI, (2) freedom from atrial and ventricular MRI-induced pacing threshold increase (>0.5 V), and (3) freedom from P- and R-wave amplitude attenuation (<50%), or P wave <1.5 mV, or R wave <5.0 mV at 1 month post-MRI. Two hundred twenty-six patients completed the MRI and 1-month post-MRI follow-up. No adverse events related to the implanted system and the MRI procedure occurred, resulting in an SADE-free rate of 100.0% (229/229, P <.001). Freedom from atrial and ventricular pacing threshold increase was 99.0% (189/191, P = .003) and 100% (217/217, P <.001), respectively. Freedom from P- and R- wave amplitude attenuation was 99.4% (167/168, P <.001) and 99.5% (193/194, P <.001), respectively. The results of the ProMRI/ProMRI AFFIRM studies demonstrate the clinical safety and efficacy of the ProMRI pacemaker system in patients subjected to head and lower lumbar MRI conditions. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Ahlawat, Shivani; Stern, Steven E; Belzberg, Allan J; Fritz, Jan
2017-07-01
To assess the quality and accuracy of metal artifact reduction sequence (MARS) magnetic resonance imaging (MRI) for the diagnosis of lumbosacral neuropathies in patients with metallic implants in the pelvis. Twenty-two subjects with lumbosacral neuropathy following pelvic instrumentation underwent 1.5-T MARS MRI including optimized axial intermediate-weighted and STIR turbo spin echo sequences extending from L5 to the ischial tuberosity. Two readers graded the visibility of the lumbosacral trunk, sciatic, femoral, lateral femoral cutaneous, and obturator nerves and the nerve signal intensity of nerve, architecture, caliber, course, continuity, and skeletal muscle denervation. Clinical examination and electrodiagnostic studies were used as the standard of reference. Descriptive, agreement, and diagnostic performance statistics were applied. Lumbosacral plexus visibility on MARS MRI was good (4) or very good (3) in 92% of cases with 81% exact agreement and a Kendall's W coefficient of 0.811. The obturator nerve at the obturator foramen and the sciatic nerve posterior to the acetabulum had the lowest visibility, with good or very good ratings in only 61% and 77% of cases respectively. The reader agreement for nerve abnormalities on MARS MRI was excellent, ranging from 95.5 to 100%. MARS MRI achieved a sensitivity of 86%, specificity of 67%, positive predictive value of 95%, and negative predictive value of 40%, and accuracy of 83% for the detection of neuropathy. MARS MRI yields high image quality and diagnostic accuracy for the assessment of lumbosacral neuropathies in patients with metallic implants of the pelvis and hips.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neustadter, David, E-mail: david.n@navotek.co; Tune, Michal; Zaretsky, Asaph
Purpose: To analyze the stability, visibility, and histology of a novel implantable soft-tissue marker (nonradioactive and radioactive) implanted in dog prostate and rabbit liver. Methods and Materials: A total of 34 nonradioactive and 35 radioactive markers were implanted in 1 dog and 16 rabbits. Stability was assessed by measuring intermarker distance (IMD) variation relative to IMDs at implantation. The IMDs were measured weekly for 4 months in the dog and biweekly for 2-4 weeks in the rabbits. Ultrasound and X-ray imaging were performed on all subjects. Computed tomography and MRI were performed on the dog. Histologic analysis was performed onmore » the rabbits after 2 or 4 months. Results: A total of 139 measurements had a mean ({+-} SD) absolute IMD variation of 1.1 {+-} 1.1 mm. These IMD variations are consistent with those reported in the literature as due to random organ deformation. The markers were visible, identifiable, and induced minimal or no image artifacts in all tested imaging modalities. Histologic analysis revealed that all pathologic changes were highly localized and not expected to be clinically significant. Conclusions: The markers were stable from the time of implantation. The markers were found to be compatible with all common medical imaging modalities. The markers caused no significant histologic effects. With respect to marker stability, visibility, and histologic analysis these implanted fiducials are appropriate for soft-tissue target positioning in radiotherapy.« less
Duffy, Ben A; Choy, ManKin; Chuapoco, Miguel R; Madsen, Michael; Lee, Jin Hyung
2017-01-01
In preclinical studies, implanted electrodes can cause severe degradation of MRI images and hence are seldom used for chronic studies employing functional magnetic resonance imaging. In this study, we developed carbon fiber optrodes (optical fiber and electrode hybrid devices), which can be utilised in chronic longitudinal studies aiming to take advantage of emerging optogenetic technologies, and compared them with the more widely used tungsten optrodes. We find that optrodes constructed using small diameter (~130 μm) carbon fiber electrodes cause significantly reduced artifact on functional MRI images compared those made with 50 μm diameter tungsten wire and at the same time the carbon electrodes have lower impedance, which leads to higher quality intracranial LFP recordings. In order to validate this approach, we use these devices to study optogenetically-induced seizure-like afterdischarges in rats sedated with dexmedetomidine and compare these to sub (seizure) threshold stimulations in the same animals. The results indicate that seizure-like afterdischarges involve several extrahippocampal brain regions that are not recruited by subthreshold optogenetic stimulation of the hippocampus at 20 Hz. Subthreshold stimulation led to activation of the entire ipsilateral hippocampus, whereas afterdischarges additionally produced activations in the contralateral hippocampal formation, septum, neocortex, cerebellum, nucleus accumbens, and thalamus. Although we demonstrate just one application, given the ease of fabrication, we anticipate that carbon fiber optrodes could be utilised in a variety of studies that could benefit from longitudinal optogenetic functional magnetic resonance imaging. PMID:26208873
Kosami, Koki; Kenzaka, Tsuneaki; Sagara, Yuka; Minami, Kensuke; Matsumura, Masami
2016-04-18
Clinically mild encephalitis/encephalopathy with a reversible splenial lesion (MERS) is a mild encephalopathy caused by various pathological processes, but encephalopathy due to bacteria is rare. We report the case of a 45-year-old Japanese woman who on receiving chemotherapy for advanced breast cancer developed an altered mental status and dysarthria soon after fever from infection of a subcutaneous implantable port. Staphylococcus aureus was detected in her blood cultures. Magnetic resonance imaging (MRI) revealed an ovoid lesion in the central portion of the splenium of the corpus callosum (SCC). Although hypotension was not observed, we diagnosed probable toxic shock syndrome (TSS) based on fever (temperature: >38.9 °C), altered mental status, erythema, desquamation, thrombocytopenia, liver dysfunction, and creatine phosphokinase elevation. We administered antimicrobial therapy and her neurological symptoms improved gradually. The lesion in the SCC completely disappeared on MRI 7 days after disease onset. We diagnosed this case as MERS caused by S. aureus bacteremia with TSS. This is the first report of such a case, and we suggest that when a TSS patient presents with neurological symptoms, the possibility of MERS should be considered.
Visualisation of the Bonebridge by means of CT and CBCT
2013-01-01
Background With the Bonebridge, a new bone-anchored hearing aid has been available since March 2012. The objective of the study was to analyse the visualisation of the implant itself as well as its impact on the representation of the bony structures of the petrosal bone in CT, MRI and cone beam CT (CBCT). Methods The Bonebridge was implanted unilaterally in two completely prepared human heads. The radiological imaging by means of CBCT, 64-slice CT, 1.5-T and 3.0-T MRI was conducted both preoperatively and postoperatively. The images were subsequently evaluated from both the ENT medical and nd radiological perspectives. Results As anticipated, no visualisation of the implant or of the petrosal bones could be realised on MRI because of the interactive technology and the magnet artefact. In contrast, an excellent evaluability of the implant itself as well as of the surrounding neurovascular structures (sinus sigmoideus, skull base, middle ear, inner ear, inner auditory canal) was exhibited in both the CT and in the CBCT. Conclusion The Bonebridge can be excellently imaged with the radiological imaging technologies of CT and CBCT. In the process, CBCT shows discrete advantages in comparison with CT. No relevant restrictions in image quality in the evaluation of the bony structures of the petrosal bones could be seen. PMID:24004903
Sutherland-Smith, James; Tilley, Brenda
2012-01-01
Magnetic resonance imaging (MRI) artifacts secondary to metallic implants and foreign bodies are well described. Herein, we provide quantitative data from veterinary implants including total hip arthroplasty implants, cranial cruciate repair implants, surgical screws, a skin staple, ligation clips, an identification microchip, ameroid constrictor, and potential foreign bodies including air gun and BB projectiles and a sewing needle. The objects were scanned in a gelatin phantom with plastic grid using standardized T2-weighted turbo-spin echo (TSE), T1-weighted spin echo, and T2*-weighted gradient recalled echo (GRE) image acquisitions at 1.5 T. Maximum linear dimensions and areas of signal voiding and grid distortion were calculated using a DICOM workstation for each sequence and object. Artifact severity was similar between the T2-weighted TSE and T1-weighted images, while the T2*-weighted images were most susceptible to artifact. Metal type influenced artifact size with the largest artifacts arising from steel objects followed by surgical stainless steel, titanium, and lead. For animals with metallic surgical implants or foreign bodies, the quantification of the artifact size will help guide clinicians on the viability of MRI. © 2012 Veterinary Radiology & Ultrasound.
On the estimation of the worst-case implant-induced RF-heating in multi-channel MRI.
Córcoles, Juan; Zastrow, Earl; Kuster, Niels
2017-06-21
The increasing use of multiple radiofrequency (RF) transmit channels in magnetic resonance imaging (MRI) systems makes it necessary to rigorously assess the risk of RF-induced heating. This risk is especially aggravated with inclusions of medical implants within the body. The worst-case RF-heating scenario is achieved when the local tissue deposition in the at-risk region (generally in the vicinity of the implant electrodes) reaches its maximum value while MRI exposure is compliant with predefined general specific absorption rate (SAR) limits or power requirements. This work first reviews the common approach to estimate the worst-case RF-induced heating in multi-channel MRI environment, based on the maximization of the ratio of two Hermitian forms by solving a generalized eigenvalue problem. It is then shown that the common approach is not rigorous and may lead to an underestimation of the worst-case RF-heating scenario when there is a large number of RF transmit channels and there exist multiple SAR or power constraints to be satisfied. Finally, this work derives a rigorous SAR-based formulation to estimate a preferable worst-case scenario, which is solved by casting a semidefinite programming relaxation of this original non-convex problem, whose solution closely approximates the true worst-case including all SAR constraints. Numerical results for 2, 4, 8, 16, and 32 RF channels in a 3T-MRI volume coil for a patient with a deep-brain stimulator under a head imaging exposure are provided as illustrative examples.
On the estimation of the worst-case implant-induced RF-heating in multi-channel MRI
NASA Astrophysics Data System (ADS)
Córcoles, Juan; Zastrow, Earl; Kuster, Niels
2017-06-01
The increasing use of multiple radiofrequency (RF) transmit channels in magnetic resonance imaging (MRI) systems makes it necessary to rigorously assess the risk of RF-induced heating. This risk is especially aggravated with inclusions of medical implants within the body. The worst-case RF-heating scenario is achieved when the local tissue deposition in the at-risk region (generally in the vicinity of the implant electrodes) reaches its maximum value while MRI exposure is compliant with predefined general specific absorption rate (SAR) limits or power requirements. This work first reviews the common approach to estimate the worst-case RF-induced heating in multi-channel MRI environment, based on the maximization of the ratio of two Hermitian forms by solving a generalized eigenvalue problem. It is then shown that the common approach is not rigorous and may lead to an underestimation of the worst-case RF-heating scenario when there is a large number of RF transmit channels and there exist multiple SAR or power constraints to be satisfied. Finally, this work derives a rigorous SAR-based formulation to estimate a preferable worst-case scenario, which is solved by casting a semidefinite programming relaxation of this original non-convex problem, whose solution closely approximates the true worst-case including all SAR constraints. Numerical results for 2, 4, 8, 16, and 32 RF channels in a 3T-MRI volume coil for a patient with a deep-brain stimulator under a head imaging exposure are provided as illustrative examples.
A Review of Numerical Simulation and Analytical Modeling for Medical Devices Safety in MRI
Kabil, J.; Belguerras, L.; Trattnig, S.; Pasquier, C.; Missoffe, A.
2016-01-01
Summary Objectives To review past and present challenges and ongoing trends in numerical simulation for MRI (Magnetic Resonance Imaging) safety evaluation of medical devices. Methods A wide literature review on numerical and analytical simulation on simple or complex medical devices in MRI electromagnetic fields shows the evolutions through time and a growing concern for MRI safety over the years. Major issues and achievements are described, as well as current trends and perspectives in this research field. Results Numerical simulation of medical devices is constantly evolving, supported by calculation methods now well-established. Implants with simple geometry can often be simulated in a computational human model, but one issue remaining today is the experimental validation of these human models. A great concern is to assess RF heating on implants too complex to be traditionally simulated, like pacemaker leads. Thus, ongoing researches focus on alternative hybrids methods, both numerical and experimental, with for example a transfer function method. For the static field and gradient fields, analytical models can be used for dimensioning simple implants shapes, but limited for complex geometries that cannot be studied with simplifying assumptions. Conclusions Numerical simulation is an essential tool for MRI safety testing of medical devices. The main issues remain the accuracy of simulations compared to real life and the studies of complex devices; but as the research field is constantly evolving, some promising ideas are now under investigation to take up the challenges. PMID:27830244
Safety evaluation of a leadless transcatheter pacemaker for magnetic resonance imaging use.
Soejima, Kyoko; Edmonson, Jonathan; Ellingson, Michael L; Herberg, Ben; Wiklund, Craig; Zhao, Jing
2016-10-01
Increased magnetic resonance imaging (MRI) adoption and demand are driving the need for device patients to have safe access to MRI. The aim of this study was to address the interactions of MRI with the Micra transcatheter pacemaker system. A strategy was developed to evaluate potential MRI risks including device heating, unintended cardiac stimulation, force, torque, vibration, and device malfunction. Assessment of MRI-induced device heating was conducted using a phantom containing gelled saline, and Monte Carlo simulations incorporating these results were conducted to simulate numerous combinations of human body models, position locations in the MRI scanner bore, and a variety of coil designs. Lastly, a patient with a Micra pacemaker who underwent a clinically indicated MRI scan is presented. Compared to traditional MRI conditional pacemakers, the overall risk with Micra was greatly reduced because of the small size of the device and the absence of a lead. The modeling results predicted that the nonperfused temperature rise of the device would be less than 0.4°C at 1.5 T and 0.5°C at 3 T and that the risk of device heating with multiple device implants was not increased as compared with a single device. The clinical case study revealed no MRI-related complications. The MRI safety assessment tests conducted for the Micra pacemaker demonstrate that patients with a single device or multiple devices can safely undergo MRI scans in both 1.5- and 3-T MRI scanners. No MRI-related complications were observed in a patient implanted with a Micra pacemaker undergoing a clinically indicated scan. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Bailey, William M; Mazur, Alexander; McCotter, Craig; Woodard, Pamela K; Rosenthal, Lawrence; Johnson, Whitney; Mela, Theofanie
2016-02-01
Permanent cardiac pacemakers have historically been considered a contraindication to magnetic resonance imaging (MRI). The purpose of the ProMRI Phase B Study, a multicenter, prospective, single-arm, nonrandomized study, was to evaluate the clinical safety of the Biotronik ProMRI pacemaker system in patients undergoing thoracic spine and cardiac MRI. The ProMRI Phase B study enrolled 245 patients with stable baseline pacing indices implanted with an Entovis pacemaker (DR-T or SR-T) and Setrox 53-cm and/or 60-cm lead(s). Device interrogation was performed at enrollment, pre- and post-MRI scan, and 1 and 3 months post-MRI. End-points were (1) freedom from MRI- and pacing system-related serious adverse device effects through 1 month post-MRI; (2) freedom from atrial and ventricular MRI-induced pacing threshold increase (>0.5 V); and (3) freedom from P- and R-wave amplitude attenuation (<50%), or P wave <1.5 mV, or R wave <5.0 mV at 1 month post-MRI. In total, 216 patients completed the MRI and 1-month post-MRI follow-up. One adverse event possibly related to the implanted system and the MRI procedure occurred, resulting in a serious adverse device effect-free rate of 99.6% (220/221; P < .0001. Freedom from atrial and ventricular pacing threshold increase was 100% (194/194, P < .001) and 100% (206/206, P < .001) respectively. Freedom from P- and R-wave amplitude attenuation was 98.2% (167/170, P < .001) and 100% (188/188, P < .001) respectively. The results of the ProMRI Phase B study demonstrate the clinical safety and efficacy of the ProMRI pacemaker system in patients subjected to thoracic spine and cardiac MRI conditions. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Thomas, Carole D.; Walczak, Christine; Kaffy, Julia; Pontikis, Renée; Jouanneau, Jacqueline; Volk, Andreas
2006-01-01
Abstract Combretastatin A4 phosphate (CA4P) causes rapid disruption of the tumor vasculature and is currently being evaluated for antivascular therapy. We describe the initial results obtained with a noninvasive multi-parametric magnetic resonance imaging (MRI) approach to assess the early effects of CA4P on rat bladder tumors implanted on nude mice. MRI (4.7 T) comprised a fast spin-echo sequence for growth curve assessment; a multislice multiecho sequence for T2 measurement before, 15 minutes after, and 24 hours after CA4P (100 mg/kg); and a fast T2w* gradient-echo sequence to assess MR signal modification under carbogen breathing before, 35 minutes after, and 24 hours after CA4P. The tumor fraction with increased T2w* signal intensity under carbogen (T+) was used to quantify CA4P effect on functional vasculature. CA4P slowed tumor growth over 24 hours and accelerated necrosis development. T+ decrease was observed already at 35 minutes post-CA4P. Early T2 increase was observed in regions becoming necrotic at 24 hours post-CA4P, as confirmed by high T2 and histology. These regions exhibited, under carbogen, a switch from T2w* signal increase before CA4P to a decrease post-CA4P. The combination of carbogen-based functional MRI and T2 measurement may be useful for the early follow-up of antivascular therapy without the administration of contrast agents. PMID:16867221
Thomas, Carole D; Walczak, Christine; Kaffy, Julia; Pontikis, Renée; Jouanneau, Jacqueline; Volk, Andreas
2006-07-01
Combretastatin A4 phosphate (CA4P) causes rapid disruption of the tumor vasculature and is currently being evaluated for antivascular therapy. We describe the initial results obtained with a noninvasive multiparametric magnetic resonance imaging (MRI) approach to assess the early effects of CA4P on rat bladder tumors implanted on nude mice. MRI (4.7 T) comprised a fast spin-echo sequence for growth curve assessment; a multislice multiecho sequence for T2 measurement before, 15 minutes after, and 24 hours after CA4P (100 mg/kg); and a fast T2w* gradient-echo sequence to assess MR signal modification under carbogen breathing before, 35 minutes after, and 24 hours after CA4P. The tumor fraction with increased T2w* signal intensity under carbogen (T+) was used to quantify CA4P effect on functional vasculature. CA4P slowed tumor growth over 24 hours and accelerated necrosis development. T+ decrease was observed already at 35 minutes post-CA4P. Early T2 increase was observed in regions becoming necrotic at 24 hours post-CA4P, as confirmed by high T2 and histology. These regions exhibited, under carbogen, a switch from T2w* signal increase before CA4P to a decrease postCA4P. The combination of carbogen-based functional MRI and T2 measurement may be useful for the early follow-up of antivascular therapy without the administration of contrast agents.
Kim, Hyuncheol; Lizak, Martin J; Tansey, Ginger; Csaky, Karl G; Robinson, Michael R; Yuan, Peng; Wang, Nam Sun; Lutz, Robert J
2005-02-01
Ensuring optimum delivery of therapeutic agents in the eye requires detailed information about the transport mechanisms and elimination pathways available. This knowledge can guide the development of new drug delivery devices. In this study, we investigated the movement of a drug surrogate, Gd-DTPA (Magnevist) released from a polymer-based implant in rabbit vitreous using T1-weighted magnetic resonance imaging (MRI). Intensity values in the MRI data were converted to concentration by comparison with calibration samples. Concentration profiles approaching pseudosteady state showed gradients from the implant toward the retinal surface, suggesting that diffusion was occurring into the retinal-choroidal-scleral (RCS) membrane. Gd-DTPA concentration varied from high values near the implant to lower values distal to the implant. Such regional concentration differences throughout the vitreous may have clinical significance when attempting to treat ubiquitous eye diseases using a single positional implant. We developed a finite element mathematical model of the rabbit eye and compared the MRI experimental concentration data with simulation concentration profiles. The model utilized a diffusion coefficient of Gd-DTPA in the vitreous of 2.8 x 10(-6) cm2 s(-1) and yielded a diffusion coefficient for Gd-DTPA through the simulated composite posterior membrane (representing the retina-choroidsclera membrane) of 6.0 x 10(-8) cm2 s(-1). Since the model membrane was 0.03-cm thick, this resulted in an effective membrane permeability of 2.0 x 10(-6) cm s(-1). Convective movement of Gd-DTPA was shown to have minimal effect on the concentration profiles since the Peclet number was 0.09 for this system.
Busch, Martin HJ; Vollmann, Wolfgang; Schnorr, Jörg; Grönemeyer, Dietrich HW
2005-01-01
Background Active Magnetic Resonance Imaging implants are constructed as resonators tuned to the Larmor frequency of a magnetic resonance system with a specific field strength. The resonating circuit may be embedded into or added to the normal metallic implant structure. The resonators build inductively coupled wireless transmit and receive coils and can amplify the signal, normally decreased by eddy currents, inside metallic structures without affecting the rest of the spin ensemble. During magnetic resonance imaging the resonators generate heat, which is additional to the usual one described by the specific absorption rate. This induces temperature increases of the tissue around the circuit paths and inside the lumen of an active implant and may negatively influence patient safety. Methods This investigation provides an overview of the supplementary power absorbed by active implants with a cylindrical geometry, corresponding to vessel implants such as stents, stent grafts or vena cava filters. The knowledge of the overall absorbed power is used in a finite volume analysis to estimate temperature maps around different implant structures inside homogeneous tissue under worst-case assumptions. The "worst-case scenario" assumes thermal heat conduction without blood perfusion inside the tissue around the implant and mostly without any cooling due to blood flow inside vessels. Results The additional power loss of a resonator is proportional to the volume and the quality factor, as well as the field strength of the MRI system and the specific absorption rate of the applied sequence. For properly working devices the finite volume analysis showed only tolerable heating during MRI investigations in most cases. Only resonators transforming a few hundred mW into heat may reach temperature increases over 5 K. This requires resonators with volumes of several ten cubic centimeters, short inductor circuit paths with only a few 10 cm and a quality factor above ten. Using MR sequences, for which the MRI system manufacturer declares the highest specific absorption rate of 4 W/kg, vascular implants with a realistic construction, size and quality factor do not show temperature increases over a critical value of 5 K. Conclusion The results show dangerous heating for the assumed "worst-case scenario" only for constructions not acceptable for vascular implants. Realistic devices are safe with respect to temperature increases. However, this investigation discusses only properly working devices. Ruptures or partial ruptures of the wires carrying the electric current of the resonance circuits or other defects can set up a power source inside an extremely small volume. The temperature maps around such possible "hot spots" should be analyzed in an additional investigation. PMID:15819973
Ranjan, Ravi; McGann, Christopher J.; Jeong, Eun-Kee; Hong, KyungPyo; Kholmovski, Eugene G.; Blauer, Josh; Wilson, Brent D.; Marrouche, Nassir F.; Kim, Daniel
2015-01-01
Aim Late gadolinium enhanced (LGE) magnetic resonance imaging (MRI) is a useful tool for facilitating ventricular tachycardia (VT) ablation. Unfortunately, most VT ablation candidates often have prophylactic implantable cardioverter-defibrillator (ICD) and do not undergo cardiac MRI largely due to image artefacts generated by ICD. A prior study has reported success of ‘wideband’ LGE MRI for imaging myocardial scar without image artefacts induced by ICD at 1.5T. The purpose of this study was to widen the availability of wideband LGE MRI to 3T, since it has the potential to achieve higher spatial resolution than 1.5T. Methods and results We compared the performance of standard and wideband LGE MRI pulse sequences in phantoms and canines with myocardial lesions created by radiofrequency ablation. Standard LGE MRI produced image artefacts induced by ICD and 49% accuracy in detecting 97 myocardial scars examined in this study, whereas wideband LGE MRI produced artefact-free images and 94% accuracy in detecting scars. The mean image quality score (1 = nondiagnostic, 2 = poor, 3 = adequate, 4 = good, 5 = excellent) was significantly (P < 0.001) higher for wideband (3.7 ± 0.8) than for standard LGE MRI (2.1 ± 0.7). The mean artefact level score (1 = minimal, 2 = mild, 3 = moderate, 4 = severe, 5 = nondiagnostic) was significantly (P < 0.001) lower for wideband (2.1 ± 0.8) than for standard LGE MRI (4.0 ± 0.6). Wideband LGE MRI agreed better with gross pathology than standard LGE MRI. Conclusion This study demonstrates the feasibility of wideband LGE MRI for suppression of image artefacts induced by ICD at 3T. PMID:25336666
Cochlear Implant Outcomes and Genetic Mutations in Children with Ear and Brain Anomalies
Busi, Micol; Rosignoli, Monica; Minazzi, Federica; Trevisi, Patrizia; Aimoni, Claudia; Calzolari, Ferdinando; Martini, Alessandro
2015-01-01
Background. Specific clinical conditions could compromise cochlear implantation outcomes and drastically reduce the chance of an acceptable development of perceptual and linguistic capabilities. These conditions should certainly include the presence of inner ear malformations or brain abnormalities. The aims of this work were to study the diagnostic value of high resolution computed tomography (HRCT) and magnetic resonance imaging (MRI) in children with sensorineural hearing loss who were candidates for cochlear implants and to analyse the anatomic abnormalities of the ear and brain in patients who underwent cochlear implantation. We also analysed the effects of ear malformations and brain anomalies on the CI outcomes, speculating on their potential role in the management of language developmental disorders. Methods. The present study is a retrospective observational review of cochlear implant outcomes among hearing-impaired children who presented ear and/or brain anomalies at neuroimaging investigations with MRI and HRCT. Furthermore, genetic results from molecular genetic investigations (GJB2/GJB6 and, additionally, in selected cases, SLC26A4 or mitochondrial-DNA mutations) on this study group were herein described. Longitudinal and cross-sectional analysis was conducted using statistical tests. Results. Between January 1, 1996 and April 1, 2012, at the ENT-Audiology Department of the University Hospital of Ferrara, 620 cochlear implantations were performed. There were 426 implanted children at the time of the present study (who were <18 years). Among these, 143 patients (64 females and 79 males) presented ear and/or brain anomalies/lesions/malformations at neuroimaging investigations with MRI and HRCT. The age of the main study group (143 implanted children) ranged from 9 months and 16 years (average = 4.4; median = 3.0). Conclusions. Good outcomes with cochlear implants are possible in patients who present with inner ear or brain abnormalities, even if central nervous system anomalies represent a negative prognostic factor that is made worse by the concomitant presence of cochlear malformations. Common cavity and stenosis of the internal auditory canal (less than 2 mm) are negative prognostic factors even if brain lesions are absent. PMID:26236732
Cochlear Implant Outcomes and Genetic Mutations in Children with Ear and Brain Anomalies.
Busi, Micol; Rosignoli, Monica; Castiglione, Alessandro; Minazzi, Federica; Trevisi, Patrizia; Aimoni, Claudia; Calzolari, Ferdinando; Granieri, Enrico; Martini, Alessandro
2015-01-01
Specific clinical conditions could compromise cochlear implantation outcomes and drastically reduce the chance of an acceptable development of perceptual and linguistic capabilities. These conditions should certainly include the presence of inner ear malformations or brain abnormalities. The aims of this work were to study the diagnostic value of high resolution computed tomography (HRCT) and magnetic resonance imaging (MRI) in children with sensorineural hearing loss who were candidates for cochlear implants and to analyse the anatomic abnormalities of the ear and brain in patients who underwent cochlear implantation. We also analysed the effects of ear malformations and brain anomalies on the CI outcomes, speculating on their potential role in the management of language developmental disorders. The present study is a retrospective observational review of cochlear implant outcomes among hearing-impaired children who presented ear and/or brain anomalies at neuroimaging investigations with MRI and HRCT. Furthermore, genetic results from molecular genetic investigations (GJB2/GJB6 and, additionally, in selected cases, SLC26A4 or mitochondrial-DNA mutations) on this study group were herein described. Longitudinal and cross-sectional analysis was conducted using statistical tests. Between January 1, 1996 and April 1, 2012, at the ENT-Audiology Department of the University Hospital of Ferrara, 620 cochlear implantations were performed. There were 426 implanted children at the time of the present study (who were <18 years). Among these, 143 patients (64 females and 79 males) presented ear and/or brain anomalies/lesions/malformations at neuroimaging investigations with MRI and HRCT. The age of the main study group (143 implanted children) ranged from 9 months and 16 years (average = 4.4; median = 3.0). Good outcomes with cochlear implants are possible in patients who present with inner ear or brain abnormalities, even if central nervous system anomalies represent a negative prognostic factor that is made worse by the concomitant presence of cochlear malformations. Common cavity and stenosis of the internal auditory canal (less than 2 mm) are negative prognostic factors even if brain lesions are absent.
Gold, Michael R; Kanal, Emanuel; Schwitter, Juerg; Sommer, Torsten; Yoon, Hyun; Ellingson, Michael; Landborg, Lynn; Bratten, Tara
2015-03-01
Many patients with an implantable cardioverter-defibrillator (ICD) have indications for magnetic resonance imaging (MRI). However, MRI is generally contraindicated in ICD patients because of potential risks from hazardous interactions between the MRI and ICD system. The purpose of this study was to use preclinical computer modeling, animal studies, and bench and scanner testing to demonstrate the safety of an ICD system developed for 1.5-T whole-body MRI. MRI hazards were assessed and mitigated using multiple approaches: design decisions to increase safety and reliability, modeling and simulation to quantify clinical MRI exposure levels, animal studies to quantify the physiologic effects of MRI exposure, and bench testing to evaluate safety margin. Modeling estimated the incidence of a chronic change in pacing capture threshold >0.5 V and 1.0 V to be less than 1 in 160,000 and less than 1 in 1,000,000 cases, respectively. Modeling also estimated the incidence of unintended cardiac stimulation to occur in less than 1 in 1,000,000 cases. Animal studies demonstrated no delay in ventricular fibrillation detection and no reduction in ventricular fibrillation amplitude at clinical MRI exposure levels, even with multiple exposures. Bench and scanner testing demonstrated performance and safety against all other MRI-induced hazards. A preclinical strategy that includes comprehensive computer modeling, animal studies, and bench and scanner testing predicts that an ICD system developed for the magnetic resonance environment is safe and poses very low risks when exposed to 1.5-T normal operating mode whole-body MRI. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Optimization of dental implantation
NASA Astrophysics Data System (ADS)
Dol, Aleksandr V.; Ivanov, Dmitriy V.
2017-02-01
Modern dentistry can not exist without dental implantation. This work is devoted to study of the "bone-implant" system and to optimization of dental prostheses installation. Modern non-invasive methods such as MRI an 3D-scanning as well as numerical calculations and 3D-prototyping allow to optimize all of stages of dental prosthetics. An integrated approach to the planning of implant surgery can significantly reduce the risk of complications in the first few days after treatment, and throughout the period of operation of the prosthesis.
Application of 23Na MRI to Monitor Chemotherapeutic Response in RIF-1 Tumors1
Babsky, Andriy M; Hekmatyar, Shahryar K; Zhang, Hong; Solomon, James L; Bansal, Navin
2005-01-01
Abstract Effects of an alkylating anticancer drug, cyclophosphamide (Cp), on 23Na signal intensity (23Na SI) and water apparent diffusion coefficient (ADC) were examined in subcutaneously-implanted radiation-induced fibrosarcoma (RIF-1) tumors by in vivo 23Na and 1H magnetic resonance imaging (MRI). MRI experiments were performed on untreated control (n = 5) and Cp-treated (n = 6) C3H mice, once before Cp injection (300 mg/kg) then daily for 3 days after treatment. Tumor volumes were significantly lower in treated animals 2 and 3 days posttreatment. At the same time points, MRI experiments showed an increase in both 23Na SI and water ADC in treated tumors, whereas control tumors did not show any significant changes. The correlation between 23Na SI and water ADC changes was dramatically increased in the Cp-treated group, suggesting that the observed increases in 23Na SI and water ADC were caused by the same mechanism. Histologic sections showed decreased cell density in the regions of increased 23Na and water ADC SI. Destructive chemical analysis showed that Cp treatment increased the relative extracellular space and tumor [Na+]. We conclude that the changes in water ADC and 23Na SI were largely due to an increase in extracellular space. 23Na MRI and 1H water ADC measurements may provide valuable noninvasive techniques for monitoring chemotherapeutic responses. PMID:16026645
Saldanha, Karl J; Doan, Ryan P; Ainslie, Kristy M; Desai, Tejal A; Majumdar, Sharmila
2011-01-01
To examine mesenchymal stem cell (MSC) labeling with micrometer-sized iron oxide particles (MPIOs) for magnetic resonance imaging (MRI)-based tracking and its application to monitoring articular cartilage regeneration. Rabbit MSCs were labeled using commercial MPIOs. In vitro MRI was performed with gradient echo (GRE) and spin echo (SE) sequences at 3T and quantitatively characterized using line profile and region of interest analysis. Ex vivo MRI of hydrogel-encapsulated labeled MSCs implanted within a bovine knee was performed with spoiled GRE (SPGR) and T(1ρ) sequences. Fluorescence microscopy, labeling efficiency, and chondrogenesis of MPIO-labeled cells were also examined. MPIO labeling results in efficient contrast uptake and signal loss that can be visualized and quantitatively characterized via MRI. SPGR imaging of implanted cells results in ex vivo detection within native tissue, and T(1ρ) imaging is unaffected by the presence of labeled cells immediately following implantation. MPIO labeling does not affect quantitative glycosaminoglycan production during chondrogenesis, but iron aggregation hinders extracellular matrix visualization. This aggregation may result from excess unincorporated particles following labeling and is an issue that necessitates further investigation. This study demonstrates the promise of MPIO labeling for monitoring cartilage regeneration and highlights its potential in the development of cell-based tissue engineering strategies. Published by Elsevier Inc.
Tracking cells implanted into cynomolgus monkeys (Macaca fascicularis) using MRI
Ito-Fujishiro, Yasuyo; Koie, Hiroshi; Shibata, Hiroaki; Okabayashi, Sachi; Katakai, Yuko; Ohno, Chieko; Kanayama, Kiichi; Yasutomi, Yasuhiro; Ageyama, Naohide
2016-01-01
Regenerative therapy with stem cell transplantation is used to treat various diseases such as coronary syndrome and Buerger’s disease. For instance, stem-cell transplantation into the infarcted myocardium is an innovative and promising strategy for treating heart failure due to ischemic heart disease. Basic studies using small animals have shown that transplanted cells improve blood flow in the infarcted region. Magnetic resonance imaging (MRI) can noninvasively identify and track transplanted cells labeled with superparamagnetic iron oxide (SPIO). Although clinical regenerative therapies have been clinically applied to patients, the fate of implanted cells remains unknown. In addition, follow-up studies have shown that some adverse events can occur after recovery. Therefore, the present study evaluated the ability of MRI using a 3T scanner to track implanted peripheral blood mononuclear cells labeled with SPIO on days 0 and 7 after intramuscular (i.m.) and intravenous (i.v.) injection into a cynomolgus monkey. Labeled cells were visualized at the liver and triceps surae muscle on MR images using T1- and T2-weighted sequences and histologically localized by Prussian blue staining. The transplanted cells were tracked without abnormal clinical manifestations throughout this study. Hence, MRI of cynomolgus monkey transplanted SPIO-labeled cells is a safe and efficient method of tracking labeled cells that could help to determine the mechanisms involved in regenerative therapy. PMID:27062993
Roguin, Ariel; Zviman, Menekhem M.; Meininger, Glenn R.; Rodrigues, E. Rene; Dickfeld, Timm M.; Bluemke, David A.; Lardo, Albert; Berger, Ronald D.; Calkins, Hugh; Halperin, Henry R.
2011-01-01
Background MRI has unparalleled soft-tissue imaging capabilities. The presence of devices such as pacemakers and implantable cardioverter/defibrillators (ICDs), however, is historically considered a contraindication to MRI. These devices are now smaller, with less magnetic material and improved electromagnetic interference protection. Our aim was to determine whether these modern systems can be used in an MR environment. Methods and Results We tested in vitro and in vivo lead heating, device function, force acting on the device, and image distortion at 1.5 T. Clinical MR protocols and in vivo measurements yielded temperature changes <0.5°C. Older (manufactured before 2000) ICDs were damaged by the MR scans. Newer ICD systems and most pacemakers, however, were not. The maximal force acting on newer devices was <100 g. Modern (manufactured after 2000) ICD systems were implanted in dogs (n=18), and after 4 weeks, 3- to 4-hour MR scans were performed (n=15). No device dysfunction occurred. The images were of high quality with distortion dependent on the scan sequence and plane. Pacing threshold and intracardiac electrogram amplitude were unchanged over the 8 weeks, except in 1 animal that, after MRI, had a transient (<12 hours) capture failure. Pathological data of the scanned animals revealed very limited necrosis or fibrosis at the tip of the lead area, which was not different from controls (n=3) not subjected to MRI. Conclusions These data suggest that certain modern pacemaker and ICD systems may indeed be MRI safe. This may have major clinical implications for current imaging practices. PMID:15277324
Sabzevari, Kian; Oldman, James; Herrey, Anna S; Moon, James C; Kydd, Anna C; Manisty, Charlotte
2017-03-01
Increasing need for magnetic resonance imaging (MRI) has driven the development of MR-conditional cardiac implantable electronic devices (CIEDs; pacemakers and defibrillators); however, patients still report difficulties obtaining scans. We sought to establish current provision for MRI scanning of patients with CIEDs in England. A survey was distributed to all hospitals in England with MRI, to assess current practice. Information requested included whether hospitals currently offer MRI to this patient group, the number and type of scans acquired, local safety considerations, complications experienced and perceived obstacles to service provision in those departments not currently offering it. Responses were received from 195 of 227 (86%) of hospitals surveyed. Although 98% of departments were aware of MR-conditional devices, only 46% (n = 89) currently offer MRI scans to patients with CIED's; of these, 85% of departments perform ≤10 scans per year. No major complications were reported from MRI scanning in patients with MR-conditional devices. Current barriers to service expansion include perceived concerns regarding potential risk, lack of training, logistical difficulties, and lack of cardiology support. Provision of MRI for patients with CIEDs is currently poor, despite increasing numbers of patients with MR-conditional devices and extremely low reported complication rates. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
De Coninck, Tineke; Elsner, Jonathan J; Linder-Ganz, Eran; Cromheecke, Michiel; Shemesh, Maoz; Huysse, Wouter; Verdonk, René; Verstraete, Koenraad; Verdonk, Peter
2014-09-01
In this pilot study we wanted to evaluate the kinematics of a knee implanted with an artificial polycarbonate-urethane meniscus device, designed for medial meniscus replacement. The static kinematic behavior of the implant was compared to the natural medial meniscus of the non-operated knee. A second goal was to evaluate the motion pattern, the radial displacement and the deformation of the meniscal implant. Three patients with a polycarbonate-urethane implant were included in this prospective study. An open-MRI was used to track the location of the implant during static weight-bearing conditions, within a range of motion of 0° to 120° knee flexion. Knee kinematics were evaluated by measuring the tibiofemoral contact points and femoral roll-back. Meniscus measurements (both natural and artificial) included anterior-posterior meniscal movement, radial displacement, and meniscal height. No difference (P>0.05) was demonstrated in femoral roll-back and tibiofemoral contact points during knee flexion between the implanted and the non-operated knees. Meniscal measurements showed no significant difference in radial displacement and meniscal height (P>0.05) at all flexion angles, in both the implanted and non-operated knees. A significant difference (P ≤ 0.05) in anterior-posterior movement during flexion was observed between the two groups. In this pilot study, the artificial polycarbonate-urethane implant, indicated for medial meniscus replacement, had no influence on femoral roll-back and tibiofemoral contact points, thus suggesting that the joint maintains its static kinematic properties after implantation. Radial displacement and meniscal height were not different, but anterior-posterior movement was slightly different between the implant and the normal meniscus. Copyright © 2014 Elsevier Ltd. All rights reserved.
Djoudi, Farid
2013-01-01
Two separate themes are presented in this paper. The first theme is to present a graphical modeling approach of human anatomical structures namely, the femur and the tibia. The second theme involves making a finite element analysis of stresses, displacements and deformations in prosthetic implants (the femoral implant and the polyethylene insert). The graphical modeling approach comes in two parts. The first is the segmentation of MRI scanned images, retrieved in DICOM format for edge detection. In the second part, 3D-CAD models are generated from the results of the segmentation stage. The finite element analysis is done by first extracting the prosthetic implants from the reconstructed 3D-CAD model, then do a finite element analysis of these implants under objectively determined conditions such as; forces, allowed displacements, the materials composing implant, and the coefficient of friction. The objective of this work is to implement an interface for exchanging data between 2D MRI images obtained from a medical diagnosis of a patient and the 3D-CAD model used in various applications, such as; the extraction of the implants, stress analysis at the knee joint and can serve as an aid to surgery, also predict the behavior of the prosthetic implants vis-a-vis the forces acting on the knee joints.
Breast augmentation and reconstructive surgery: MR imaging of implant rupture and malignancy.
Herborn, Christoph U; Marincek, Borut; Erfmann, Daniel; Meuli-Simmen, Claudia; Wedler, Volker; Bode-Lesniewska, Beate; Kubik-Huch, Rahel A
2002-09-01
The purpose of this study was to assess the diagnostic accuracy of MRI in detecting prosthesis integrity and malignancy after breast augmentation and reconstruction. Forty-one implants in 25 patients were analyzed by MRI before surgical removal. Imaging results were compared with ex vivo findings. Magnetic resonance imaging of the breast was performed on a 1.5-T system using a dedicated surface breast coil. Axial and sagittal T2-weighted fast spin-echo as well as dynamic contrast-enhanced T1-weighted gradient-recalled-echo sequences were acquired. The linguine sign indicating collapse of the silicone shell or siliconomas indicating free silicone proved implant rupture, whereas early focal contrast enhancement of a lesion was suspicious for malignancy. The sensitivity for detection of implant rupture was 86.7% with a specificity of 88.5%. The positive and negative predictive values were 81.3 and 92.0%, respectively. The linguine sign as a predictor of intracapsular implant rupture had a sensitivity of 80% with a specificity of 96.2%. Magnetic resonance imaging revealed two lesions with suspicious contrast enhancement (one carcinoma, one extra-abdominal fibromatosis). Magnetic resonance imaging is a reliable and reproducible technique for diagnosing both implant rupture and malignant lesions in women after breast augmentation and reconstruction.
Assessing the Risks Associated with MRI in Patients with a Pacemaker or Defibrillator.
Russo, Robert J; Costa, Heather S; Silva, Patricia D; Anderson, Jeffrey L; Arshad, Aysha; Biederman, Robert W W; Boyle, Noel G; Frabizzio, Jennifer V; Birgersdotter-Green, Ulrika; Higgins, Steven L; Lampert, Rachel; Machado, Christian E; Martin, Edward T; Rivard, Andrew L; Rubenstein, Jason C; Schaerf, Raymond H M; Schwartz, Jennifer D; Shah, Dipan J; Tomassoni, Gery F; Tominaga, Gail T; Tonkin, Allison E; Uretsky, Seth; Wolff, Steven D
2017-02-23
The presence of a cardiovascular implantable electronic device has long been a contraindication for the performance of magnetic resonance imaging (MRI). We established a prospective registry to determine the risks associated with MRI at a magnetic field strength of 1.5 tesla for patients who had a pacemaker or implantable cardioverter-defibrillator (ICD) that was "non-MRI-conditional" (i.e., not approved by the Food and Drug Administration for MRI scanning). Patients in the registry were referred for clinically indicated nonthoracic MRI at a field strength of 1.5 tesla. Devices were interrogated before and after MRI with the use of a standardized protocol and were appropriately reprogrammed before the scanning. The primary end points were death, generator or lead failure, induced arrhythmia, loss of capture, or electrical reset during the scanning. The secondary end points were changes in device settings. MRI was performed in 1000 cases in which patients had a pacemaker and in 500 cases in which patients had an ICD. No deaths, lead failures, losses of capture, or ventricular arrhythmias occurred during MRI. One ICD generator could not be interrogated after MRI and required immediate replacement; the device had not been appropriately programmed per protocol before the MRI. We observed six cases of self-terminating atrial fibrillation or flutter and six cases of partial electrical reset. Changes in lead impedance, pacing threshold, battery voltage, and P-wave and R-wave amplitude exceeded prespecified thresholds in a small number of cases. Repeat MRI was not associated with an increase in adverse events. In this study, device or lead failure did not occur in any patient with a non-MRI-conditional pacemaker or ICD who underwent clinically indicated nonthoracic MRI at 1.5 tesla, was appropriately screened, and had the device reprogrammed in accordance with the prespecified protocol. (Funded by St. Jude Medical and others; MagnaSafe ClinicalTrials.gov number, NCT00907361 .).
Benic, Goran I; Elmasry, Moustafa; Hämmerle, Christoph H F
2015-09-01
To examine the literature on novel digital imaging techniques for the assessment of outcomes in oral rehabilitation with dental implants. An electronic search of Medline and Embase databases including studies published prior to 28th December 2014 was performed and supplemented by a manual search. A synthesis of the publications was presented describing the use of computed tomography (CT), magnetic resonance imaging (MRI), ultrasonography, optical scanning, spectrophotometry or optical coherence tomography (OCT) related to the outcome measures in implant therapy. Most of the digital imaging techniques have not yet sufficiently been validated to be used for outcome measures in implant dentistry. In clinical research, cone beam CT (CBCT) is increasingly being used for 3D assessment of bone and soft tissue following augmentation procedures and implant placement. Currently, there are no effective methods for the reduction of artifacts around implants in CBCT. Optical scanning is being used for the 3D assessment of changes in the soft tissue contour. The combination of optical scan with pre-operative CBCT allows the determination of the implant position and its spatial relation to anatomical structures. Spectrophotometry is the method most commonly used to objectively assess the color match of reconstructions and peri-implant mucosa to natural dentition and gingiva. New optical imaging techniques may be considered possible approaches for monitoring peri-implant soft tissue health. MRI and ultrasonography appear promising non-ionizing radiation imaging modalities for the assessment of soft tissue and bone defect morphologies. Optical scanners and OCT may represent efficient clinical methods for accurate assessment of the misfit between the reconstructions and the implants. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Minimally invasive ultrasound thermal therapy with MR thermal monitoring and guidance
NASA Astrophysics Data System (ADS)
Diederich, Chris J.; Stafford, R. Jason; Price, Roger E.; Nau, William H.; Tyreus, Per Daniel; Rivera, Belinda; Schomer, Donald; Olsson, Lars; Hazle, John D.
2001-06-01
In this study both transurethral and interstitial ultrasound thermal therapy were applied to thermally coagulate targeted portions of the canine prostate or brain and implanted TVT tumors while using MRI-based thermal mapping techniques to monitor the therapy. MRI was also used for target definition, positioning of the applicator, and evaluation of target viability post-therapy. The complex phase-difference mapping technique using an iGE-EPI sequence with lipid suppression was used for determining temperature elevations within the in vivo prostate or brain and surrounding structures. Calculated temperature distributions, thermal dose exposures, T2-wieghted & T1-contrast enhanced images, gross inspection, and histology of sectioned prostates and brains were in good agreement with each other in defining destroyed tissue zones. Interstitial and transurethral ultrasound applicators produce directed zones of thermal coagulation within targeted tissue and implanted tumor, which can be accurately monitored and evaluated by MRI.
McElcheran, Clare E.; Yang, Benson; Anderson, Kevan J. T.; Golenstani-Rad, Laleh; Graham, Simon J.
2015-01-01
Deep Brain Stimulation (DBS) is increasingly used to treat a variety of brain diseases by sending electrical impulses to deep brain nuclei through long, electrically conductive leads. Magnetic resonance imaging (MRI) of patients pre- and post-implantation is desirable to target and position the implant, to evaluate possible side-effects and to examine DBS patients who have other health conditions. Although MRI is the preferred modality for pre-operative planning, MRI post-implantation is limited due to the risk of high local power deposition, and therefore tissue heating, at the tip of the lead. The localized power deposition arises from currents induced in the leads caused by coupling with the radiofrequency (RF) transmission field during imaging. In the present work, parallel RF transmission (pTx) is used to tailor the RF electric field to suppress coupling effects. Electromagnetic simulations were performed for three pTx coil configurations with 2, 4, and 8-elements, respectively. Optimal input voltages to minimize coupling, while maintaining RF magnetic field homogeneity, were determined for all configurations using a Nelder-Mead optimization algorithm. Resulting electric and magnetic fields were compared to that of a 16-rung birdcage coil. Experimental validation was performed with a custom-built 4-element pTx coil. In simulation, 95-99% reduction of the electric field at the tip of the lead was observed between the various pTx coil configurations and the birdcage coil. Maximal reduction in E-field was obtained with the 8-element pTx coil. Magnetic field homogeneity was comparable to the birdcage coil for the 4- and 8-element pTx configurations. In experiment, a temperature increase of 2±0.15°C was observed at the tip of the wire using the birdcage coil, whereas negligible increase (0.2±0.15°C) was observed with the optimized pTx system. Although further research is required, these initial results suggest that the concept of optimizing pTx to reduce DBS heating effects holds considerable promise. PMID:26237218
McElcheran, Clare E; Yang, Benson; Anderson, Kevan J T; Golenstani-Rad, Laleh; Graham, Simon J
2015-01-01
Deep Brain Stimulation (DBS) is increasingly used to treat a variety of brain diseases by sending electrical impulses to deep brain nuclei through long, electrically conductive leads. Magnetic resonance imaging (MRI) of patients pre- and post-implantation is desirable to target and position the implant, to evaluate possible side-effects and to examine DBS patients who have other health conditions. Although MRI is the preferred modality for pre-operative planning, MRI post-implantation is limited due to the risk of high local power deposition, and therefore tissue heating, at the tip of the lead. The localized power deposition arises from currents induced in the leads caused by coupling with the radiofrequency (RF) transmission field during imaging. In the present work, parallel RF transmission (pTx) is used to tailor the RF electric field to suppress coupling effects. Electromagnetic simulations were performed for three pTx coil configurations with 2, 4, and 8-elements, respectively. Optimal input voltages to minimize coupling, while maintaining RF magnetic field homogeneity, were determined for all configurations using a Nelder-Mead optimization algorithm. Resulting electric and magnetic fields were compared to that of a 16-rung birdcage coil. Experimental validation was performed with a custom-built 4-element pTx coil. In simulation, 95-99% reduction of the electric field at the tip of the lead was observed between the various pTx coil configurations and the birdcage coil. Maximal reduction in E-field was obtained with the 8-element pTx coil. Magnetic field homogeneity was comparable to the birdcage coil for the 4- and 8-element pTx configurations. In experiment, a temperature increase of 2±0.15°C was observed at the tip of the wire using the birdcage coil, whereas negligible increase (0.2±0.15°C) was observed with the optimized pTx system. Although further research is required, these initial results suggest that the concept of optimizing pTx to reduce DBS heating effects holds considerable promise.
Visual BOLD Response in Late Blind Subjects with Argus II Retinal Prosthesis
Castaldi, E.; Cicchini, G. M.; Cinelli, L.; Rizzo, S.; Morrone, M. C.
2016-01-01
Retinal prosthesis technologies require that the visual system downstream of the retinal circuitry be capable of transmitting and elaborating visual signals. We studied the capability of plastic remodeling in late blind subjects implanted with the Argus II Retinal Prosthesis with psychophysics and functional MRI (fMRI). After surgery, six out of seven retinitis pigmentosa (RP) blind subjects were able to detect high-contrast stimuli using the prosthetic implant. However, direction discrimination to contrast modulated stimuli remained at chance level in all of them. No subject showed any improvement of contrast sensitivity in either eye when not using the Argus II. Before the implant, the Blood Oxygenation Level Dependent (BOLD) activity in V1 and the lateral geniculate nucleus (LGN) was very weak or absent. Surprisingly, after prolonged use of Argus II, BOLD responses to visual input were enhanced. This is, to our knowledge, the first study tracking the neural changes of visual areas in patients after retinal implant, revealing a capacity to respond to restored visual input even after years of deprivation. PMID:27780207
Impact of Focused Ultrasound-enhanced Drug Delivery on Survival in Rats with Glioma
NASA Astrophysics Data System (ADS)
Treat, Lisa Hsu; Zhang, Yongzhi; McDannold, Nathan; Hynynen, Kullervo
2009-04-01
Malignancies of the brain remain difficult to treat with chemotherapy because the selective permeability of the blood-brain barrier (BBB) blocks many potent agents from reaching their target. Previous studies have illustrated the feasibility of drug and antibody delivery across the BBB using MRI-guided focused ultrasound. In this study, we investigated the impact of focused ultrasound-enhanced delivery of doxorubicin on survival in rats with aggressive glioma. Sprague-Dawley rats were implanted with 9 L gliosarcoma cells in the brain. Eight days after implantation, each rat received one of the following: (1) no treatment (control), (2) a single treatment with microbubble-enhanced MRI-guided focused ultrasound (FUS only), (3) a single treatment with i.v. liposomal doxorubicin (DOX only), or (4) a single treatment with microbubble-enhanced MRI-guided focused ultrasound and concurrent i.v. injections of liposomal doxorubicin (FUS+DOX). The survival time from implantation to death or euthanasia was recorded. We observed a modest but significant increase in median survival time in rats treated with combined MRI-guided focused ultrasound chemotherapy, compared to chemotherapy alone (p<0.001). There was no significant improvement in survival between those who received stand-alone chemotherapy and those who did not receive any treatment (p>0.10). Our study demonstrates for the first time a therapeutic benefit achieved with ultrasound-enhanced drug delivery across the blood-brain barrier. This confirmation of efficacy in an in vivo tumor model indicates that targeted drug delivery using MRI-guided focused ultrasound has the potential to have a major impact on the treatment of patients with brain tumors and other neurological disorders.
Becher, Christoph; Ettinger, Max; Ezechieli, Marco; Kaps, Christian; Ewig, Marc; Smith, Tomas
2015-07-01
To analyze magnetic resonance imaging (MRI) at 3T and the clinical outcome in a short-term pilot study after treatment of retropatellar cartilage defects with microfracturing and subsequent covering with the cell-free chondrotissue(®) polyglycolic acid-hyaluronan implant. Five consecutive patients after microfracturing and defect coverage with the chondrotissue(®) implant immersed with autologous serum were included. After a mean follow-up of 21 months (range 11-31 months), defect fill and repair tissue quality was assessed by 3-T MRI followed by applying established MRI scoring systems. The patients' situation was assessed using the Knee injury and Osteoarthritis Outcome Score (KOOS) and a patients' satisfaction questionnaire. Magnetic resonance imaging showed good to excellent defect fill with complete integration. The mean MOCART score was 61 (range 50-75) points. The mean Henderson score was 7 (range 6-9) points. All patients showed subchondral bone alterations. The KOOS showed good values in all sub-categories in 4 out of 5 patients and a mean overall score of 73 (range 40-90) points. Two patients rated the outcome as excellent, two as good and one as fair. All patients would have the procedure again and recommend it. In this small case series, the coverage of symptomatic retropatellar cartilage defects with the chondrotissue(®) implant after microfracturing was safe and feasible with improvement of the patients' situation at short-term follow-up. IV, case series.
Feasibility of 3.0T pelvic MR imaging in the evaluation of endometriosis.
Manganaro, L; Fierro, F; Tomei, A; Irimia, D; Lodise, P; Sergi, M E; Vinci, V; Sollazzo, P; Porpora, M G; Delfini, R; Vittori, G; Marini, M
2012-06-01
Endometriosis represents an important clinical problem in women of reproductive age with high impact on quality of life, work productivity and health care management. The aim of this study is to define the role of 3T magnetom system MRI in the evaluation of endometriosis. Forty-six women, with transvaginal (TV) ultrasound examination positive for endometriosis, with pelvic pain, or infertile underwent an MR 3.0T examination with the following protocol: T2 weighted FRFSE HR sequences, T2 weighted FRFSE HR CUBE 3D sequences, T1 w FSE sequences, LAVA-flex sequences. Pelvic anatomy, macroscopic endometriosis implants, deep endometriosis implants, fallopian tube involvement, adhesions presence, fluid effusion in Douglas pouch, uterus and kidney pathologies or anomalies associated and sacral nervous routes were considered by two radiologists in consensus. Laparoscopy was considered the gold standard. MRI imaging diagnosed deep endometriosis in 22/46 patients, endometriomas not associated to deep implants in 9/46 patients, 15/46 patients resulted negative for endometriosis, 11 of 22 patients with deep endometriosis reported ovarian endometriosis cyst. We obtained high percentages of sensibility (96.97%), specificity (100.00%), VPP (100.00%), VPN (92.86%). Pelvic MRI performed with 3T system guarantees high spatial and contrast resolution, providing accurate information about endometriosis implants, with a good pre-surgery mapping of the lesions involving both bowels and bladder surface and recto-uterine ligaments. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Ten-Year Results From the Natrelle 410 Anatomical Form-Stable Silicone Breast Implant Core Study
Maxwell, G. Patrick; Van Natta, Bruce W.; Bengtson, Bradley P.; Murphy, Diane K.
2015-01-01
Background Silicone breast implants have long been used for breast augmentation and reconstruction. During this time, these medical devices have gone through a number of modifications to improve their safety, quality, and clinical outcome performance. Objectives The authors conducted a 10-year study to determine the safety and effectiveness of Natrelle 410 silicone breast implants. Methods This prospective, multicenter study enrolled 941 subjects who were undergoing either augmentation, augmentation revision, reconstruction, or reconstruction revision. Data on complications, reoperations, explantations, and subject satisfaction were collected at annual clinic visits, and one-third of subjects underwent biennial magnetic resonance imaging (MRI) to screen for implant rupture. The authors used the Kaplan-Meier estimator to calculate risk rates for local complications, reoperations, and explantations. Results Capsular contracture rates increased approximately 1% per year from the previously reported 6-year rates. The rates were significantly lower than those from the Natrelle round gel core study. The overall rate of confirmed ruptured implants in subjects who underwent MRI was 5.7%. Eleven late seromas were reported. The most common reason for explantation was a subject requesting a size or style change. Satisfaction rates remained high through 10 years, with most subjects saying they were somewhat or definitely satisfied with their implants. Conclusions This 10-year prospective trial demonstrated the long-term safety and effectiveness of Natrelle 410 anatomical form-stable implants. The complication rates were low and the satisfaction rates were high. Level of Evidence: 1 Therapeutic PMID:25717116
Thibaut, Aurore; Moissenet, Florent; Di Perri, Carol; Schreiber, Céline; Remacle, Angélique; Kolanowski, Elisabeth; Chantraine, Frédéric; Bernard, Claire; Hustinx, Roland; Tshibanda, Jean-Flory; Filipetti, Paul; Laureys, Steven; Gosseries, Olivia
2017-01-01
Recent studies have shown that stimulation of the peroneal nerve using an implantable 4-channel peroneal nerve stimulator could improve gait in stroke patients. To assess structural cortical and regional cerebral metabolism changes associated with an implanted peroneal nerve electrical stimulator to correct foot drop related to a central nervous system lesion. Two stroke patients presenting a foot drop related to a central nervous system lesion were implanted with an implanted peroneal nerve electrical stimulator. Both patients underwent clinical evaluations before implantation and one year after the activation of the stimulator. Structural magnetic resonance imaging (MRI) and [18F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) were acquired before and one year after the activation of the stimulator. Foot drop was corrected for both patients after the implantation of the stimulator. After one year of treatment, patient 1 improved in three major clinical tests, while patient 2 only improved in one test. Prior to treatment, FDG-PET showed a significant hypometabolism in premotor, primary and supplementary motor areas in both patients as compared to controls, with patient 2 presenting more widespread hypometabolism. One year after the activation of the stimulator, both patients showed significantly less hypometabolism in the damaged motor cortex. No difference was observed on the structural MRI. Clinical improvement of gait under peroneal nerve electrical stimulation in chronic stroke patients presenting foot drop was paralleled to metabolic changes in the damaged motor cortex.
Fritz, Jan; Ahlawat, Shivani; Demehri, Shadpour; Thawait, Gaurav K; Raithel, Esther; Gilson, Wesley D; Nittka, Mathias
2016-10-01
The aim of this study was to prospectively test the hypothesis that a compressed sensing-based slice encoding for metal artifact correction (SEMAC) turbo spin echo (TSE) pulse sequence prototype facilitates high-resolution metal artifact reduction magnetic resonance imaging (MRI) of cobalt-chromium knee arthroplasty implants within acquisition times of less than 5 minutes, thereby yielding better image quality than high-bandwidth (BW) TSE of similar length and similar image quality than lengthier SEMAC standard of reference pulse sequences. This prospective study was approved by our institutional review board. Twenty asymptomatic subjects (12 men, 8 women; mean age, 56 years; age range, 44-82 years) with total knee arthroplasty implants underwent MRI of the knee using a commercially available, clinical 1.5 T MRI system. Two compressed sensing-accelerated SEMAC prototype pulse sequences with 8-fold undersampling and acquisition times of approximately 5 minutes each were compared with commercially available high-BW and SEMAC pulse sequences with acquisition times of approximately 5 minutes and 11 minutes, respectively. For each pulse sequence type, sagittal intermediate-weighted (TR, 3750-4120 milliseconds; TE, 26-28 milliseconds; voxel size, 0.5 × 0.5 × 3 mm) and short tau inversion recovery (TR, 4010 milliseconds; TE, 5.2-7.5 milliseconds; voxel size, 0.8 × 0.8 × 4 mm) were acquired. Outcome variables included image quality, display of the bone-implant interfaces and pertinent knee structures, artifact size, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). Statistical analysis included Friedman, repeated measures analysis of variances, and Cohen weighted k tests. Bonferroni-corrected P values of 0.005 and less were considered statistically significant. Image quality, bone-implant interfaces, anatomic structures, artifact size, SNR, and CNR parameters were statistically similar between the compressed sensing-accelerated SEMAC prototype and SEMAC commercial pulse sequences. There was mild blur on images of both SEMAC sequences when compared with high-BW images (P < 0.001), which however did not impair the assessment of knee structures. Metal artifact reduction and visibility of central knee structures and bone-implant interfaces were good to very good and significantly better on both types of SEMAC than on high-BW images (P < 0.004). All 3 pulse sequences showed peripheral structures similarly well. The implant artifact size was 46% to 51% larger on high-BW images when compared with both types of SEMAC images (P < 0.0001). Signal-to-noise ratios and CNRs of fat tissue, tendon tissue, muscle tissue, and fluid were statistically similar on intermediate-weighted MR images of all 3 pulse sequence types. On short tau inversion recovery images, the SNRs of tendon tissue and the CNRs of fat and fluid, fluid and muscle, as well as fluid and tendon were significantly higher on SEMAC and compressed sensing SEMAC images (P < 0.005, respectively). We accept the hypothesis that prospective compressed sensing acceleration of SEMAC is feasible for high-quality metal artifact reduction MRI of cobalt-chromium knee arthroplasty implants in less than 5 minutes and yields better quality than high-BW TSE and similarly high quality than lengthier SEMAC pulse sequences.
Tyagi, Neelam; Sutton, Elizabeth; Hunt, Margie; Zhang, Jing; Oh, Jung Hun; Apte, Aditya; Mechalakos, James; Wilgucki, Molly; Gelb, Emily; Mehrara, Babak; Matros, Evan; Ho, Alice
2017-02-01
Capsular contracture (CC) is a serious complication in patients receiving implant-based reconstruction for breast cancer. Currently, no objective methods are available for assessing CC. The goal of the present study was to identify image-based surrogates of CC using magnetic resonance imaging (MRI). We analyzed a retrospective data set of 50 patients who had undergone both a diagnostic MRI scan and a plastic surgeon's evaluation of the CC score (Baker's score) within a 6-month period after mastectomy and reconstructive surgery. The MRI scans were assessed for morphologic shape features of the implant and histogram features of the pectoralis muscle. The shape features, such as roundness, eccentricity, solidity, extent, and ratio length for the implant, were compared with the Baker score. For the pectoralis muscle, the muscle width and median, skewness, and kurtosis of the intensity were compared with the Baker score. Univariate analysis (UVA) using a Wilcoxon rank-sum test and multivariate analysis with the least absolute shrinkage and selection operator logistic regression was performed to determine significant differences in these features between the patient groups categorized according to their Baker's scores. UVA showed statistically significant differences between grade 1 and grade ≥2 for morphologic shape features and histogram features, except for volume and skewness. Only eccentricity, ratio length, and volume were borderline significant in differentiating grade ≤2 and grade ≥3. Features with P<.1 on UVA were used in the multivariate least absolute shrinkage and selection operator logistic regression analysis. Multivariate analysis showed a good level of predictive power for grade 1 versus grade ≥2 CC (area under the receiver operating characteristic curve 0.78, sensitivity 0.78, and specificity 0.82) and for grade ≤2 versus grade ≥3 CC (area under the receiver operating characteristic curve 0.75, sensitivity 0.75, and specificity 0.79). The morphologic shape features described on MR images were associated with the severity of CC. MRI has the potential to further improve the diagnostic ability of the Baker score in breast cancer patients who undergo implant reconstruction. Copyright © 2016 Elsevier Inc. All rights reserved.
Doan, Bich-Thuy; Latorre Ossa, Heldmuth; Jugé, Lauriane; Gennisson, Jean-Luc; Tanter, Mickaël; Scherman, Daniel; Chabot, Guy G.; Mignet, Nathalie
2013-01-01
Background and Objectives. To determine the most appropriate technique for tumour followup in experimental therapeutics, we compared ultrasound (US) and magnetic resonance imaging (MRI) to characterize ectopic and orthotopic colon carcinoma models. Methods. CT26 tumours were implanted subcutaneously (s.c.) in Balb/c mice for the ectopic model or into the caecum for the orthotopic model. Tumours were evaluated by histology, spectrofluorescence, MRI, and US. Results. Histology of CT26 tumour showed homogeneously dispersed cancer cells and blood vessels. The visualization of the vascular network using labelled albumin showed that CT26 tumours were highly vascularized and disorganized. MRI allowed high-resolution and accurate 3D tumour measurements and provided additional anatomical and functional information. Noninvasive US imaging allowed good delineation of tumours despite an hypoechogenic signal. Monitoring of tumour growth with US could be accomplished as early as 5 days after implantation with a shorter acquisition time (<5 min) compared to MRI. Conclusion. MRI and US afforded excellent noninvasive imaging techniques to accurately follow tumour growth of ectopic and orthotopic CT26 tumours. These two techniques can be appropriately used for tumour treatment followup, with a preference for US imaging, due to its short acquisition time and simplicity of use. PMID:23936648
Kypta, Alexander; Blessberger, Hermann; Hoenig, Simon; Saleh, Karim; Lambert, Thomas; Kammler, Juergen; Fellner, Franz; Lichtenauer, Michael; Steinwender, Clemens
2016-03-01
The aim of this study was to evaluate the safety and efficacy of the Lumax 740(®) Implantable Cardioverter Defibrillator (ICD) system in patients undergoing a defined 1.5 Tesla (T) MRI. Between November 2013 and April 2014, eighteen patients (age range, 41-78 years; mean age, 64 years) implanted with a Lumax 740(®) ICD system for at least 6 weeks before an MRI were enrolled into this single-center feasibility study. The local ethics committee approved the study before patients gave written informed consent. Patients underwent defined MRI 1.5T of the brain and lower lumbar spine with three safety follow-up evaluations obtained during the 3-month study period. Data were analyzed descriptively. Study endpoints were the absence of either MRI and pacing system related serious adverse device effects (SADE), or of a ventricular pacing threshold increase >0.5V, or of an R-wave amplitude attenuation < 50%, or of an R-wave amplitude < 5.0 mV at 1-month follow-up. The assessment of safety and efficacy was supported by recording of all adverse events, changes in pacing threshold, R-wave sensing, pacing impedances and in battery status. Sixteen patients completed the MRI and the follow-up period. As no SADE occurred, the SADE free rate was 100%. Freedom from ventricular pacing threshold increase was 100% (16/16; 95%CI: 82.9%; 100.0%). There were no significant differences between baseline and follow-up measurements of sensing amplitudes (-0.58 ± 2.07 mV, P = 0.239, -0.41 ± 1.04 mV, P = 0.133, and -0.25 ± 1.36 mV, P = 0.724, for immediately after, 1 month and 3 months after MRI scan, respectively) and pacing thresholds (-0.047 ± 0.18 V, P = 0.317, -0.019 ± 0.11 V, P = 0.490, and 0.075 ± 0.19 V, P = 0.070, for immediately after, 1 month and 3 months after MRI scan, respectively). Lead impedances after the MRI scan were significantly lower as compared with baseline values (-22.8 ± 21.69 Ω, P = 0.001, -21.62 ± 39.71 Ω, P = 0.040, and -33.68 ± 57.73 Ω, P = 0.018, for immediately after, 1 month and 3 months after MRI scan, respectively). MRI scans in patients with MRI conditional ICD system (Lumax 740(®) ) are feasible and can be performed safely under defined conditions in a hospital setting. © 2015 Wiley Periodicals, Inc.
Study of breast implant rupture: MRI versus surgical findings.
Vestito, A; Mangieri, F F; Ancona, A; Minervini, C; Perchinunno, V; Rinaldi, S
2012-09-01
This study evaluated the role of breast magnetic resonance (MR) imaging in the selective study breast implant integrity. We retrospectively analysed the signs of breast implant rupture observed at breast MR examinations of 157 implants and determined the sensitivity and specificity of the technique in diagnosing implant rupture by comparing MR data with findings at surgical explantation. The linguine and the salad-oil signs were statistically the most significant signs for diagnosing intracapsular rupture; the presence of siliconomas/seromas outside the capsule and/or in the axillary lymph nodes calls for immediate explantation. In agreement with previous reports, we found a close correlation between imaging signs and findings at explantation. Breast MR imaging can be considered the gold standard in the study of breast implants.
Presacral abscess as a rare complication of sacral nerve stimulator implantation.
Gumber, A; Ayyar, S; Varia, H; Pettit, S
2017-03-01
A 50-year-old man with intractable anal pain attributed to proctalgia fugax underwent insertion of a sacral nerve stimulator via the right S3 vertebral foramen for pain control with good symptomatic relief. Thirteen months later, he presented with signs of sepsis. Computed tomography (CT) and magnetic resonance imaging (MRI) showed a large presacral abscess. MRI demonstrated increased enhancement along the pathway of the stimulator electrode, indicating that the abscess was caused by infection introduced at the time of sacral nerve stimulator placement. The patient was treated with broad spectrum antibiotics, and the sacral nerve stimulator and electrode were removed. Attempts were made to drain the abscess transrectally using minimally invasive techniques but these were unsuccessful and CT guided transperineal drainage was then performed. Despite this, the presacral abscess progressed, developing enlarging gas locules and extending to the pelvic brim to involve the aortic bifurcation, causing hydronephrosis and radiological signs of impending sacral osteomyelitis. MRI showed communication between the rectum and abscess resulting from transrectal drainage. In view of the progressive presacral sepsis, a laparotomy was performed with drainage of the abscess, closure of the upper rectum and formation of a defunctioning end sigmoid colostomy. Following this, the presacral infection resolved. Presacral abscess formation secondary to an infected sacral nerve stimulator electrode has not been reported previously. Our experience suggests that in a similar situation, the optimal management is to perform laparotomy with drainage of the presacral abscess together with simultaneous removal of the sacral nerve stimulator and electrode.
Presacral abscess as a rare complication of sacral nerve stimulator implantation
Gumber, A; Ayyar, S; Varia, H
2017-01-01
A 50-year-old man with intractable anal pain attributed to proctalgia fugax underwent insertion of a sacral nerve stimulator via the right S3 vertebral foramen for pain control with good symptomatic relief. Thirteen months later, he presented with signs of sepsis. Computed tomography (CT) and magnetic resonance imaging (MRI) showed a large presacral abscess. MRI demonstrated increased enhancement along the pathway of the stimulator electrode, indicating that the abscess was caused by infection introduced at the time of sacral nerve stimulator placement. The patient was treated with broad spectrum antibiotics, and the sacral nerve stimulator and electrode were removed. Attempts were made to drain the abscess transrectally using minimally invasive techniques but these were unsuccessful and CT guided transperineal drainage was then performed. Despite this, the presacral abscess progressed, developing enlarging gas locules and extending to the pelvic brim to involve the aortic bifurcation, causing hydronephrosis and radiological signs of impending sacral osteomyelitis. MRI showed communication between the rectum and abscess resulting from transrectal drainage. In view of the progressive presacral sepsis, a laparotomy was performed with drainage of the abscess, closure of the upper rectum and formation of a defunctioning end sigmoid colostomy. Following this, the presacral infection resolved. Presacral abscess formation secondary to an infected sacral nerve stimulator electrode has not been reported previously. Our experience suggests that in a similar situation, the optimal management is to perform laparotomy with drainage of the presacral abscess together with simultaneous removal of the sacral nerve stimulator and electrode. PMID:28071947
Fluorinated polyurethane scaffolds for 19F magnetic resonance imaging
Rahimi, Khosrow; Shi, Yang; Schulz, Volkmar; Kuehne, Alexander J. C.; Jockenhoevel, Stefan; Kiessling, Fabian
2017-01-01
Polymers are increasingly employed in implant materials. To reduce the incidence of complications, which in the case of vascular grafts include incorrect placement and restenosis, materials are needed which allow for image-guided implantation, as well as for accurate and efficient postoperative implant imaging. We here describe amorphous fluorinated polymers based on thermoplastic polyurethane (19F-TPU), and show that are useful starting materials for developing tissue-engineered vascular grafts which can be detected using 19F MRI. PMID:28413258
Rüegg, Eva; Cheretakis, Alexandre; Modarressi, Ali; Harbarth, Stephan; Pittet-Cuénod, Brigitte
2015-01-01
Introduction. Medical tourism for aesthetic surgery is popular. Nontuberculous mycobacteria (NTM) occasionally cause surgical-site infections. As NTM grow in biofilms, implantations of foreign bodies are at risk. Due to late manifestation, infections occur when patients are back home, where they must be managed properly. Case Report. A 39-year-old healthy female was referred for acute infection of the right gluteal area. Five months before, she had breast implants replacement, abdominal liposuction, and gluteal lipofilling in Mexico. Three months postoperatively, implants were removed for NTM-infection in Switzerland. Adequate antibiotic treatment was stopped after seven days for drug-related hepatitis. At entrance, gluteal puncture for bacterial analysis was performed. MRI showed large subcutaneous collection. Debridement under general anaesthesia was followed by open wound management. Total antibiotic treatment was 20 weeks. Methods. Bacterial analysis of periprosthetic and gluteal liquids included Gram-stain plus acid-fast stain, and aerobic, anaerobic and mycobacterial cultures. Results. In periprosthetic fluid, Mycobacterium abscessus, Propionibacterium, and Staphylococcus epidermidis were identified. The same M. abscessus strain was found gluteally. The gluteal wound healed within six weeks. At ten months' follow-up, gluteal asymmetry persists for deep scarring. Conclusion. This case presents major complications of multisite aesthetic surgery. Surgical-site infections in context of medical tourism need appropriate bacteriological investigations, considering potential NTM-infections. PMID:25893122
Sammet, Steffen
2016-01-01
Magnetic Resonance Imaging (MRI) has a superior soft-tissue contrast compared to other radiological imaging modalities and its physiological and functional applications have led to a significant increase in MRI scans worldwide. A comprehensive MRI safety training to protect patients and other healthcare workers from potential bio-effects and risks of the magnetic fields in an MRI suite is therefore essential. The knowledge of the purpose of safety zones in an MRI suite as well as MRI appropriateness criteria is important for all healthcare professionals who will work in the MRI environment or refer patients for MRI scans. The purpose of this article is to give an overview of current magnetic resonance safety guidelines and discuss the safety risks of magnetic fields in an MRI suite including forces and torque of ferromagnetic objects, tissue heating, peripheral nerve stimulation and hearing damages. MRI safety and compatibility of implanted devices, MRI scans during pregnancy and the potential risks of MRI contrast agents will also be discussed and a comprehensive MRI safety training to avoid fatal accidents in an MRI suite will be presented. PMID:26940331
Nejadnik, Hossein; Ye, Deju; Lenkov, Olga D; Donig, Jessica S; Martin, John E; Castillo, Rostislav; Derugin, Nikita; Sennino, Barbara; Rao, Jianghong; Daldrup-Link, Heike
2015-02-24
About 43 million individuals in the U.S. encounter cartilage injuries due to trauma or osteoarthritis, leading to joint pain and functional disability. Matrix-associated stem cell implants (MASI) represent a promising approach for repair of cartilage defects. However, limited survival of MASI creates a significant bottleneck for successful cartilage regeneration outcomes and functional reconstitution. We report an approach for noninvasive detection of stem cell apoptosis with magnetic resonance imaging (MRI), based on a caspase-3-sensitive nanoaggregation MRI probe (C-SNAM). C-SNAM self-assembles into nanoparticles after hydrolysis by caspase-3, leading to 90% amplification of (1)H MR signal and prolonged in vivo retention. Following intra-articular injection, C-SNAM causes significant MR signal enhancement in apoptotic MASI compared to viable MASI. Our results indicate that C-SNAM functions as an imaging probe for stem cell apoptosis in MASI. This concept could be applied to a broad range of cell transplants and target sites.
Static magnetic susceptibility of radiopaque NiTiPt and NiTiEr
NASA Astrophysics Data System (ADS)
Chovan, Drahomír; Gandhi, Abbasi; Butler, James; Tofail, Syed A. M.
2018-04-01
Magnetic properties of metallic alloys used in biomedical industry are important for the magnetic resonance imaging (MRI). If the alloys were to be used for long term implants or as guiding devices, safety of the patient as well as the medical staff has to be ensured. Strong response to the external magnetic field can cause mechanical damage to the patients body. In this paper we present magnetic susceptibility of nickel rich, ternary NiTiPt and NiTiEr to static magnetic field. We show that the magnetic susceptibility of these radiopaque alloys has values in low paramagnetic region comparable to the binary nickel-titanium. Furthermore, we studied the effect of the thermal and mechanical treatments on magnetic properties. Despite deviation from linear M (H) treated samples spanning small region around H = 0 , the linearity of the M (H) and χ =d M /d H values suggest that these ternary alloys are safe to use under MRI conditions.
Servello, Domenico; Zekaj, Edvin; Saleh, Christian; Pacchetti, Claudio; Porta, Mauro
2016-01-01
Background: Deep brain stimulation (DBS) is an established therapy for movement disorders, such as Parkinson's disease (PD), dystonia, and tremor. The efficacy of DBS depends on the correct lead positioning. The commonly adopted postoperative radiological evaluation is performed with computed tomography (CT) scan and/or magnetic resonance imaging (MRI). Methods: We conducted a retrospective study on 202 patients who underwent DBS from January 2009 to October 2013. DBS indications were PD, progressive supranuclear palsy, tremor, dystonia, Tourette syndrome, obsessive compulsive disorder, depression, and Huntington's disease. Preoperatively, all patients underwent brain MRI and brain CT scan with the stereotactic frame positioned. The lead location was confirmed intraoperatively with CT. The CT images were subsequently transferred to the Stealth Station Medtronic and merged with the preoperative planning. On the first or second day after, implantation we performed a brain MRI to confirm the correct position of the lead. Results: In 14 patients, leads were in suboptimal position after intraoperative CT scan positioning. The cases with alteration in the Z-axis were corrected immediately under fluoroscopic guidance. In all the 14 patients, an immediate repositioning was done. Conclusions: Based on our data, intraoperative CT scan is fast, safe, and a useful tool in the evaluation of the position of the implanted lead. It also reduces the patient's discomfort derived from the transfer of the patient from the operating room to the radiological department. However, intraoperative CT should not be considered as a substitute for postoperative MRI. PMID:27583182
Towards a microcoil for intracranial and intraductal MR microscopy
Strick, Debra S.; Nunnally, Ray L.; Smith, Jolinda C.; Clark, W. Gilbert; Mills, Dixie J.; Cohen, Mark S.; Judy, Jack W.
2011-01-01
Implantable RF-coils have enabled sub-mm resolution magnetic resonance images (MRI) of deep structures. Scaling down the size of RF coils has similarly provided a gain in signal-to-noise ratio in nuclear-magnetic-resonance spectroscopy. By combining both approaches we designed, fabricated, and imaged with an implantable microcoil catheter. While typical implantable catheters use a transverse magneti-zation, the axial magnetization of the microcoil provides improved sensitivity and allows visualization of the tissue beyond the distal end of the catheter. The microcoil catheter was designed with a diameter of 1 mm for future integration with intracranial devices, and for intraductal use in breast oncology. We modified the NMR-microcoil design to allow implantation of the RF coil, by winding the microcoil on medical-grade silicone tubing and incorporating leads on the catheter to connect circuit components. In order to achieve proper turn spacing, we coated copper wire with 25 µm of biocompatible polymer (Parylene C). Tuning and matching circuitry insured that the impedance of the RF coil was approximately 50 Ω at the operating frequency for 3-T proton MR applications. A duplexer was used to enable use of the microcoil catheter as a transceiver. Experimental verification of the coil design was achieved through ex vivo imaging of neural tissue. As expected, the microcoil catheter provided microscale images with 20-µm in-plane-resolution and 170-µm-thick slices. While 3-T MRI typically provides 1 to 30 voxels per-cubic-millimeter, in this paper we report that the MRI microcoil can provide hundreds, and even thousands of voxels in the same volume. PMID:19163097
Southwell, Derek G; Narvid, Jared A; Martin, Alastair J; Qasim, Salman E; Starr, Philip A; Larson, Paul S
2016-01-01
Interventional magnetic resonance imaging (iMRI) allows deep brain stimulator lead placement under general anesthesia. While the accuracy of lead targeting has been described for iMRI systems utilizing 1.5-tesla magnets, a similar assessment of 3-tesla iMRI procedures has not been performed. To compare targeting accuracy, the number of lead targeting attempts, and surgical duration between procedures performed on 1.5- and 3-tesla iMRI systems. Radial targeting error, the number of targeting attempts, and procedure duration were compared between surgeries performed on 1.5- and 3-tesla iMRI systems (SmartFrame and ClearPoint systems). During the first year of operation of each system, 26 consecutive leads were implanted using the 1.5-tesla system, and 23 consecutive leads were implanted using the 3-tesla system. There was no significant difference in radial error (Mann-Whitney test, p = 0.26), number of lead placements that required multiple targeting attempts (Fisher's exact test, p = 0.59), or bilateral procedure durations between surgeries performed with the two systems (p = 0.15). Accurate DBS lead targeting can be achieved with iMRI systems utilizing either 1.5- or 3-tesla magnets. The use of a 3-tesla magnet, however, offers improved visualization of the target structures and allows comparable accuracy and efficiency of placement at the selected targets. © 2016 S. Karger AG, Basel.
Ballyns, Jeffery J; Gleghorn, Jason P; Niebrzydowski, Vicki; Rawlinson, Jeremy J; Potter, Hollis G; Maher, Suzanne A; Wright, Timothy M; Bonassar, Lawrence J
2008-07-01
This study demonstrates for the first time the development of engineered tissues based on anatomic geometries derived from widely used medical imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI). Computer-aided design and tissue injection molding techniques have demonstrated the ability to generate living implants of complex geometry. Due to its complex geometry, the meniscus of the knee was used as an example of this technique's capabilities. MRI and microcomputed tomography (microCT) were used to design custom-printed molds that enabled the generation of anatomically shaped constructs that retained shape throughout 8 weeks of culture. Engineered constructs showed progressive tissue formation indicated by increases in extracellular matrix content and mechanical properties. The paradigm of interfacing tissue injection molding technology can be applied to other medical imaging techniques that render 3D models of anatomy, demonstrating the potential to apply the current technique to engineering of many tissues and organs.
Two decades of dendrimers as versatile MRI agents: a tale with and without metals.
McMahon, Michael T; Bulte, Jeff W M
2018-05-01
Dendrimers or dendritic polymers are a class of compounds with great potential for nanomedical use. Some of their properties, including their rigidity, low polydispersity and the ease with which their surfaces can be modified make them particularly well suited for use as MRI diagnostic or theranostic agents. For the past 20 years, researchers have recognized this potential and refined dendrimer formulations to optimize these nanocarriers for a host of MRI applications, including blood pool imaging agents, lymph node imaging agents, tumor-targeted theranostic agents and cell tracking agents. This review summarizes the various types of dendrimers according to the type of MR contrast they can provide. This includes the metallic T 1 , T 2 and paraCEST imaging agents, and the non-metallic diaCEST and fluorinated ( 19 F) heteronuclear imaging agents. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Implantable Materials and Surgical Technologies > Nanomaterials and Implants. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, T; Wang, J; Frank, S
Purpose: The current CT-based post-implant dosimetry allows precise seed localization but limited anatomical delineation. Switching to MR-based post-implant dosimetry is confounded by imprecise seed localization. One approach is to place positive-contrast markers (Sirius) adjacent to the negative-contrast seeds. This patient study aims to assess the utility of a 3D fast spoiled gradient-recalled echo (FSPGR) sequence to visualize Sirius markers for post-implant dosimetry. Methods: MRI images were acquired in prostate implant patients (n=10) on Day 0 (day-of-implant) and Day 30. The post-implant MR protocol consisted of 3D T2-weighted fast-spin-echo (FSE), T2-weighted 2D-FSE (axial) and T1-weighted 2D-FSE (axial/sagittal/coronal). We incorporated a 3D-FSPGRmore » sequence into the post-implant MR protocol to visualize the Sirius markers. Patients were scanned with different number-of-excitations (6, 8, 10), field-of-view (10cm, 14cm, 18cm), slice thickness (1mm, 0.8mm), flip angle (14 degrees, 20 degrees), bandwidth (122.070 Hz/pixel, 325.508 Hz/pixel, 390.625 Hz/pixel), phase encoding steps (160, 192, 224, 256), frequency-encoding direction (right/left, anterior/posterior), echo-time type (minimum-full, out-of-phase), field strength (1.5T, 3T), contrast (with, without), scanner vendor (Siemens, GE), coil (endorectal-coil only, endorectal-and-torso-coil, torsocoil only), endorectal-coil filling (30cc, 50cc) and endorectal-coil filling type (air, perfluorocarbon [PFC]). For post-implant dosimetric evaluation with greater anatomical detail, 3D-FSE images were fused with 3D-FSPGR images. For comparison with CT-based post-implant dosimetry, CT images were fused with 3D-FSPGR images. Results: The 3D-FSPGR sequence facilitated visualization of markers in patients. Marker visualization helped distinguish signal voids as seeds versus needle tracks for more definitive MR-based post-implant dosimetry. On the CT-MR fused images, the distance between the seed on CT to MR images was 3.2±1.6mm in patients with no endorectal coil, 2.3±0.8mm in patients with 30cc-PFC-filled endorectal-coil and 5.0±1.8mm in patients with 50cc-PFC-filled endorectal-coil. Conclusion: An MR protocol to visualize positive-contrast Sirius markers to assist in the identification of negative-contrast seeds was demonstrated. S Frank is a co-founder of C4 Imaging LLC, the manufacturer of the MRI markers.« less
Real-time sonography to estimate muscle thickness: comparison with MRI and CT.
Dupont, A C; Sauerbrei, E E; Fenton, P V; Shragge, P C; Loeb, G E; Richmond, F J
2001-05-01
We investigated the feasibility of using real-time sonography to measure muscle thickness. Clinically, this technique would be used to measure the thickness of human muscles in which intramuscular microstimulators have been implanted to treat or prevent disuse atrophy. Porcine muscles were implanted with microstimulators and imaged with sonography, MRI, and CT to assess image artifacts created by the microstimulators and to design protocols for image alignment between methods. Sonography and MRI were then used to image the deltoid and supraspinatus muscles of 6 healthy human subjects. Microstimulators could be imaged with all 3 methods, producing only small imaging artifacts. Muscle-thickness measurements agreed well between methods, particularly when external markers were used to precisely align the imaging planes. The correlation coefficients for sonographic and MRI measurements were 0.96 for the supraspinatus and 0.97 for the deltoid muscle. Repeated sonographic measurements had a low coefficient of variation: 2.3% for the supraspinatus and 3.1% for the deltoid muscle. Real-time sonography is a relatively simple and inexpensive method of accurately measuring muscle thickness as long as the operator adheres to a strict imaging protocol and avoids excessive pressure with the transducer. Copyright 2001 John Wiley & Sons, Inc.
Surgical wound monitoring by MRI with a metamaterial-based implanted local coil
NASA Astrophysics Data System (ADS)
Kamel, Hanan; Syms, Richard R. A.; Kardoulaki, Evdokia M.; Rea, Marc
2018-03-01
An implantable sensor for monitoring surgical wounds after bowel reconstruction is proposed. The sensor consists of a coupled pair of 8-element magneto-inductive ring resonators, designed for mounting on a biofragmentable anastomosis ring to give a local increase in signal-to-noise ratio near an annular wound during 1H magnetic resonance imaging. Operation on an anti-symmetric spatial mode is used to avoid coupling to the B1 field during excitation, and a single wired connection is used for MRI signal output. The electrical response and field-of-view are estimated theoretically. Prototypes are constructed from flexible elements designed for operation at 1.5 T, electrical responses are characterized and local SNR enhancement is confirmed using agar gel phantoms.
Gebhard, Harry; Bowles, Robby; Dyke, Jonathan; Saleh, Tatianna; Doty, Stephen; Bonassar, Lawrence; Härtl, Roger
2010-01-01
Study type: Basic science Introduction: Chronic back pain due to degenerative disc disease (DDD) is among the most important medical conditions causing morbidity and significant health care costs. Surgical treatment options include disc replacement or fusion surgery, but are associated with significant short- and long-term risks.1 Biological tissue-engineering of human intervertebral discs (IVD) could offer an important alternative.2 Recent in vitro data from our group have shown successful engineering and growth of ovine intervertebral disc composites with circumferentially aligned collagen fibrils in the annulus fibrosus (AF) (Figure 1).3 Figure 1 Tissue-engineered composite disc a Experimental steps to generate composite tissue-engineered IVDs3 b Example of different AF formulations on collagen alignment in the AF. Second harmonic generation and two-photon excited fluorescence images of seeded collagen gels (for AF) of 1 and 2.5 mg/ml over time. At seeding, cells and collagen were homogenously distributed in the gels. Over time, AF cells elongated and collagen aligned parallel to cells. Less contraction and less alignment is noted after 3 days in the 2.5 mg/mL gel. c Imaging-based creation of a virtual disc model that will serve as template for the engineered disc. Total disc dimensions (AF and NP) were retrieved from micro-computer tomography (CT) (left images), and nucleus pulposus (NP) dimensions alone were retrieved from T2-weighted MRI images (right images). Merging of MRI and micro-CT models revealed a composite disc model (middle image)—Software: Microview, GE Healthcare Inc., Princeton, NJ; and slicOmatic v4.3, TomoVision, Montreal, Canada. d Flow chart describing the process for generating multi-lamellar tissue engineered IVDs. IVDs are produced by allowing cell-seeded collagen layers to contract around a cell-seeded alginate core (NP) over time Objective: The next step is to investigate if biological disc implants survive, integrate, and restore function to the spine in vivo. A model will be developed that allows efficient in vivo testing of tissue-engineered discs of various compositions and characteristics. Methods: Athymic rats were anesthetized and a dorsal approach was chosen to perform a microsurgical discectomy in the rat caudal spine (Fig. 2,Fig. 3). Control group I (n = 6) underwent discectomy only, Control group II (n = 6) underwent discectomy, followed by reimplantation of the autologous disc. Two treatment groups (group III, n = 6, 1 month survival; group IV, n = 6, 6 months survival) received a tissue-engineered composite disc implant. The rodents were followed clinically for signs of infection, pain level and wound healing. X-rays and magnetic resonance imaging (MRI) were assessed postoperatively and up to 6 months after surgery (Fig. 6,Fig. 7). A 7 Tesla MRI (Bruker) was implemented for assessment of the operated level as well as the adjacent disc (hydration). T2-weighted sequences were interpreted by a semiquantitative score (0 = no signal, 1 = weak signal, 2 = strong signal and anatomical features of a normal disc). Histology was performed with staining for proteoglycans (Alcian blue) and collagen (Picrosirius red) (Fig. 4,Fig. 5). Figure 2 Disc replacement surgery a Operative situs with native disc that has been disassociated from both adjacent vertebrae b Native disc (left) and tissue-engineered implant (right) c Implant in situ before wound closureAF: Annulus fi brosus, nP: nucleus pulposus, eP: endplate, M: Muscle, T: Tendon, s: skin, art: artery, GP: Growth plate, B: Bone Figure 3 Disc replacement surgery. Anatomy of the rat caudal disc space a Pircrosirius red stained axial cut of native disc space b Saffranin-O stained sagittal cut of native disc space Figure 4 Histologies of three separate motion segments from three different rats. Animal one = native IVD, Animal two = status after discectomy, Animal three = tissue-engineered implant (1 month) a–c H&E (overall tissue staining for light micrsocopy) d–f Alcian blue (proteoglycans) g–i Picrosirius red (collagen I and II) Figure 5 Histology from one motion segment four months after implantation of a bio-engineered disc construct a Picrosirius red staining (collagen) b Polarized light microscopy showing collagen staining and collagen organization in AF region c Increased Safranin-O staining (proteoglycans) in NP region of the disc implant d Higher magnification of figure 5c: Integration between implanted tissue-engineered total disc replacement and vertebral body bone Figure 6 MRI a Disc space height measurements in flash/T1 sequence (top: implant (714.0 micrometer), bottom: native disc (823.5 micrometer) b T2 sequence, red circle surrounding the implant NP Figure 7 7 Tesla MRI imaging of rat tail IVDs showing axial images (preliminary pilot data) a Diffusion tensor imaging (DTI) on two explanted rat tail discs in Formalin b Higher magnification of a, showing directional alignment of collagen fibers (red and green) when compared to the color ball on top which maps fibers' directional alignment (eg, fibers directing from left to right: red, from top to bottom: blue) c Native IVD in vivo (successful imaging of top and bottom of the IVD (red) d Gradient echo sequence (GE) showing differentiation between NP (light grey) and AF (dark margin) e GE of reimplanted tail IVD at the explantation level f T1Rho sequence demonstrating the NP (grey) within the AF (dark margin), containing the yellow marked region of interest for value acquisition (preliminary data are consistent with values reported in the literature). g T2 image of native IVD in vivo for monitoring of hydration (white: NP) Results: The model allowed reproducible and complete discectomies as well as disc implantation in the rat tail spine without any surgical or postoperative complications. Discectomy resulted in immediate collapse of the disc space. Preliminary results indicate that disc space height was maintained after disc implantation in groups II, III and IV over time. MRI revealed high resolution images of normal intervertebral discs in vivo. Eight out of twelve animals (groups III and IV) showed a positive signal in T2-weighted images after 1 month (grade 0 = 4, grade 1 = 4, grade 2 = 4). Positive staining was seen for collagen as well as proteoglycans at the site of disc implantation after 1 month in each of the six animals with engineered implants (group III). Analysis of group IV showed positive T2 signal in five out of six animals and disc-height preservation in all animals after 6 months. Conclusions: This study demonstrates for the first time that tissue-engineered composite IVDs with circumferentially aligned collagen fibrils survive and integrate with surrounding vertebral bodies when placed in the rat spine for up to 6 months. Tissue-engineered composite IVDs restored function to the rat spine as indicated by maintenance of disc height and vertebral alignment. A significant finding was that maintenance of the composite structure in group III was observed, with increased proteoglycan staining in the nucleus pulposus region (Figure 4d–f). Proteoglycan and collagen matrix as well as disc height preservation and positive T2 signals in MRI are promising parameters and indicate functionality of the implants. PMID:23637671
Gebhard, Harry; Bowles, Robby; Dyke, Jonathan; Saleh, Tatianna; Doty, Stephen; Bonassar, Lawrence; Härtl, Roger
2010-08-01
Basic science Introduction: Chronic back pain due to degenerative disc disease (DDD) is among the most important medical conditions causing morbidity and significant health care costs. Surgical treatment options include disc replacement or fusion surgery, but are associated with significant short- and long-term risks.1 Biological tissue-engineering of human intervertebral discs (IVD) could offer an important alternative.2 Recent in vitro data from our group have shown successful engineering and growth of ovine intervertebral disc composites with circumferentially aligned collagen fibrils in the annulus fibrosus (AF) (Figure 1).3 Figure 1 Tissue-engineered composite disc a Experimental steps to generate composite tissue-engineered IVDs3b Example of different AF formulations on collagen alignment in the AF. Second harmonic generation and two-photon excited fluorescence images of seeded collagen gels (for AF) of 1 and 2.5 mg/ml over time. At seeding, cells and collagen were homogenously distributed in the gels. Over time, AF cells elongated and collagen aligned parallel to cells. Less contraction and less alignment is noted after 3 days in the 2.5 mg/mL gel. c Imaging-based creation of a virtual disc model that will serve as template for the engineered disc. Total disc dimensions (AF and NP) were retrieved from micro-computer tomography (CT) (left images), and nucleus pulposus (NP) dimensions alone were retrieved from T2-weighted MRI images (right images). Merging of MRI and micro-CT models revealed a composite disc model (middle image)-Software: Microview, GE Healthcare Inc., Princeton, NJ; and slicOmatic v4.3, TomoVision, Montreal, Canada. d Flow chart describing the process for generating multi-lamellar tissue engineered IVDs. IVDs are produced by allowing cell-seeded collagen layers to contract around a cell-seeded alginate core (NP) over time Objective: The next step is to investigate if biological disc implants survive, integrate, and restore function to the spine in vivo. A model will be developed that allows efficient in vivo testing of tissue-engineered discs of various compositions and characteristics. Athymic rats were anesthetized and a dorsal approach was chosen to perform a microsurgical discectomy in the rat caudal spine (Fig. 2,Fig. 3). Control group I (n = 6) underwent discectomy only, Control group II (n = 6) underwent discectomy, followed by reimplantation of the autologous disc. Two treatment groups (group III, n = 6, 1 month survival; group IV, n = 6, 6 months survival) received a tissue-engineered composite disc implant. The rodents were followed clinically for signs of infection, pain level and wound healing. X-rays and magnetic resonance imaging (MRI) were assessed postoperatively and up to 6 months after surgery (Fig. 6,Fig. 7). A 7 Tesla MRI (Bruker) was implemented for assessment of the operated level as well as the adjacent disc (hydration). T2-weighted sequences were interpreted by a semiquantitative score (0 = no signal, 1 = weak signal, 2 = strong signal and anatomical features of a normal disc). Histology was performed with staining for proteoglycans (Alcian blue) and collagen (Picrosirius red) (Fig. 4,Fig. 5). Figure 2 Disc replacement surgery a Operative situs with native disc that has been disassociated from both adjacent vertebrae b Native disc (left) and tissue-engineered implant (right) c Implant in situ before wound closureAF: Annulus fi brosus, nP: nucleus pulposus, eP: endplate, M: Muscle, T: Tendon, s: skin, art: artery, GP: Growth plate, B: BoneFigure 3 Disc replacement surgery. Anatomy of the rat caudal disc space a Pircrosirius red stained axial cut of native disc space b Saffranin-O stained sagittal cut of native disc spaceFigure 4 Histologies of three separate motion segments from three different rats. Animal one = native IVD, Animal two = status after discectomy, Animal three = tissue-engineered implant (1 month) a-c H&E (overall tissue staining for light micrsocopy) d-f Alcian blue (proteoglycans) g-i Picrosirius red (collagen I and II)Figure 5 Histology from one motion segment four months after implantation of a bio-engineered disc construct a Picrosirius red staining (collagen) b Polarized light microscopy showing collagen staining and collagen organization in AF region c Increased Safranin-O staining (proteoglycans) in NP region of the disc implant d Higher magnification of figure 5c: Integration between implanted tissue-engineered total disc replacement and vertebral body boneFigure 6 MRI a Disc space height measurements in flash/T1 sequence (top: implant (714.0 micrometer), bottom: native disc (823.5 micrometer) b T2 sequence, red circle surrounding the implant NPFigure 7 7 Tesla MRI imaging of rat tail IVDs showing axial images (preliminary pilot data) a Diffusion tensor imaging (DTI) on two explanted rat tail discs in Formalin b Higher magnification of a, showing directional alignment of collagen fibers (red and green) when compared to the color ball on top which maps fibers' directional alignment (eg, fibers directing from left to right: red, from top to bottom: blue) c Native IVD in vivo (successful imaging of top and bottom of the IVD (red) d Gradient echo sequence (GE) showing differentiation between NP (light grey) and AF (dark margin) e GE of reimplanted tail IVD at the explantation level f T1Rho sequence demonstrating the NP (grey) within the AF (dark margin), containing the yellow marked region of interest for value acquisition (preliminary data are consistent with values reported in the literature). g T2 image of native IVD in vivo for monitoring of hydration (white: NP) Results: The model allowed reproducible and complete discectomies as well as disc implantation in the rat tail spine without any surgical or postoperative complications. Discectomy resulted in immediate collapse of the disc space. Preliminary results indicate that disc space height was maintained after disc implantation in groups II, III and IV over time. MRI revealed high resolution images of normal intervertebral discs in vivo. Eight out of twelve animals (groups III and IV) showed a positive signal in T2-weighted images after 1 month (grade 0 = 4, grade 1 = 4, grade 2 = 4). Positive staining was seen for collagen as well as proteoglycans at the site of disc implantation after 1 month in each of the six animals with engineered implants (group III). Analysis of group IV showed positive T2 signal in five out of six animals and disc-height preservation in all animals after 6 months. This study demonstrates for the first time that tissue-engineered composite IVDs with circumferentially aligned collagen fibrils survive and integrate with surrounding vertebral bodies when placed in the rat spine for up to 6 months. Tissue-engineered composite IVDs restored function to the rat spine as indicated by maintenance of disc height and vertebral alignment. A significant finding was that maintenance of the composite structure in group III was observed, with increased proteoglycan staining in the nucleus pulposus region (Figure 4d-f). Proteoglycan and collagen matrix as well as disc height preservation and positive T2 signals in MRI are promising parameters and indicate functionality of the implants.
... your body: Brain aneurysm clips Certain types of artificial heart valves Heart defibrillator or pacemaker Inner ear (cochlear) implants Recently placed artificial joints Certain types of vascular stents Pain pumps ...
SU-F-T-42: MRI and TRUS Image Fusion as a Mode of Generating More Accurate Prostate Contours
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petronek, M; Purysko, A; Balik, S
Purpose: Transrectal Ultrasound (TRUS) imaging is utilized intra-operatively for LDR permanent prostate seed implant treatment planning. Prostate contouring with TRUS can be challenging at the apex and base. This study attempts to improve accuracy of prostate contouring with MRI-TRUS fusion to prevent over- or under-estimation of the prostate volume. Methods: 14 patients with previous MRI guided prostate biopsy and undergone an LDR permanent prostate seed implant have been selected. The prostate was contoured on the MRI images (1 mm slice thickness) by a radiologist. The prostate was also contoured on TRUS images (5 mm slice thickness) during LDR procedure bymore » a urologist. MRI and TRUS images were rigidly fused manually and the prostate contours from MRI and TRUS were compared using Dice similarity coefficient, percentage volume difference and length, height and width differences. Results: The prostate volume was overestimated by 8 ± 18% (range: 34% to −25%) in TRUS images compared to MRI. The mean Dice was 0.77 ± 0.09 (range: 0.53 to 0.88). The mean difference (TRUS-MRI) in the prostate width was 0 ± 4 mm (range: −11 to 5 mm), height was −3 ± 6 mm (range: −13 to 6 mm) and length was 6 ± 6 (range: −10 to 16 mm). Prostate was overestimated with TRUS imaging at the base for 6 cases (mean: 8 ± 4 mm and range: 5 to 14 mm), at the apex for 6 cases (mean: 11 ± 3 mm and range: 5 to 15 mm) and 1 case was underestimated at both base and apex by 4 mm. Conclusion: Use of intra-operative TRUS and MRI image fusion can help to improve the accuracy of prostate contouring by accurately accounting for prostate over- or under-estimations, especially at the base and apex. The mean amount of discrepancy is within a range that is significant for LDR sources.« less
Busch, Martin H J; Vollmann, Wolfgang; Grönemeyer, Dietrich H W
2006-05-26
Active magnetic resonance imaging implants, for example stents, stent grafts or vena cava filters, are constructed as wireless inductively coupled transmit and receive coils. They are built as a resonator tuned to the Larmor frequency of a magnetic resonance system. The resonator can be added to or incorporated within the implant. This technology can counteract the shielding caused by eddy currents inside the metallic implant structure. This may allow getting diagnostic information of the implant lumen (in stent stenosis or thrombosis for example). The electro magnetic rf-pulses during magnetic resonance imaging induce a current in the circuit path of the resonator. A by material fatigue provoked partial rupture of the circuit path or a broken wire with touching surfaces can set up a relatively high resistance on a very short distance, which may behave as a point-like power source, a hot spot, inside the body part the resonator is implanted to. This local power loss inside a small volume can reach (1/4) of the total power loss of the intact resonating circuit, which itself is proportional to the product of the resonator volume and the quality factor and depends as well from the orientation of the resonator with respect to the main magnetic field and the imaging sequence the resonator is exposed to. First an analytical solution of a hot spot for thermal equilibrium is described. This analytical solution with a definite hot spot power loss represents the worst case scenario for thermal equilibrium inside a homogeneous medium without cooling effects. Starting with this worst case assumptions additional conditions are considered in a numerical simulation, which are more realistic and may make the results less critical. The analytical solution as well as the numerical simulations use the experimental experience of the maximum hot spot power loss of implanted resonators with a definite volume during magnetic resonance imaging investigations. The finite volume analysis calculates the time developing temperature maps for the model of a broken linear metallic wire embedded in tissue. Half of the total hot spot power loss is assumed to diffuse into both wire parts at the location of a defect. The energy is distributed from there by heat conduction. Additionally the effect of blood perfusion and blood flow is respected in some simulations because the simultaneous appearance of all worst case conditions, especially the absence of blood perfusion and blood flow near the hot spot, is very unlikely for vessel implants. The analytical solution as worst case scenario as well as the finite volume analysis for near worst case situations show not negligible volumes with critical temperature increases for part of the modeled hot spot situations. MR investigations with a high rf-pulse density lasting below a minute can establish volumes of several cubic millimeters with temperature increases high enough to start cell destruction. Longer exposure times can involve volumes larger than 100 mm3. Even temperature increases in the range of thermal ablation are reached for substantial volumes. MR sequence exposure time and hot spot power loss are the primary factors influencing the volume with critical temperature increases. Wire radius, wire material as well as the physiological parameters blood perfusion and blood flow inside larger vessels reduce the volume with critical temperature increases, but do not exclude a volume with critical tissue heating for resonators with a large product of resonator volume and quality factor. The worst case scenario assumes thermal equilibrium for a hot spot embedded in homogeneous tissue without any cooling due to blood perfusion or flow. The finite volume analysis can calculate the results for near and not close to worst case conditions. For both cases a substantial volume can reach a critical temperature increase in a short time. The analytical solution, as absolute worst case, points out that resonators with a small product of inductance volume and quality factor (Q V(ind) < 2 cm3) are definitely save. Stents for coronary vessels or resonators used as tracking devices for interventional procedures therefore have no risk of high temperature increases. The finite volume analysis shows for sure that also conditions not close to the worst case reach physiologically critical temperature increases for implants with a large product of inductance volume and quality factor (Q V(ind) > 10 cm3). Such resonators exclude patients from exactly the MRI investigation these devices are made for.
Busch, Martin HJ; Vollmann, Wolfgang; Grönemeyer, Dietrich HW
2006-01-01
Background Active magnetic resonance imaging implants, for example stents, stent grafts or vena cava filters, are constructed as wireless inductively coupled transmit and receive coils. They are built as a resonator tuned to the Larmor frequency of a magnetic resonance system. The resonator can be added to or incorporated within the implant. This technology can counteract the shielding caused by eddy currents inside the metallic implant structure. This may allow getting diagnostic information of the implant lumen (in stent stenosis or thrombosis for example). The electro magnetic rf-pulses during magnetic resonance imaging induce a current in the circuit path of the resonator. A by material fatigue provoked partial rupture of the circuit path or a broken wire with touching surfaces can set up a relatively high resistance on a very short distance, which may behave as a point-like power source, a hot spot, inside the body part the resonator is implanted to. This local power loss inside a small volume can reach ¼ of the total power loss of the intact resonating circuit, which itself is proportional to the product of the resonator volume and the quality factor and depends as well from the orientation of the resonator with respect to the main magnetic field and the imaging sequence the resonator is exposed to. Methods First an analytical solution of a hot spot for thermal equilibrium is described. This analytical solution with a definite hot spot power loss represents the worst case scenario for thermal equilibrium inside a homogeneous medium without cooling effects. Starting with this worst case assumptions additional conditions are considered in a numerical simulation, which are more realistic and may make the results less critical. The analytical solution as well as the numerical simulations use the experimental experience of the maximum hot spot power loss of implanted resonators with a definite volume during magnetic resonance imaging investigations. The finite volume analysis calculates the time developing temperature maps for the model of a broken linear metallic wire embedded in tissue. Half of the total hot spot power loss is assumed to diffuse into both wire parts at the location of a defect. The energy is distributed from there by heat conduction. Additionally the effect of blood perfusion and blood flow is respected in some simulations because the simultaneous appearance of all worst case conditions, especially the absence of blood perfusion and blood flow near the hot spot, is very unlikely for vessel implants. Results The analytical solution as worst case scenario as well as the finite volume analysis for near worst case situations show not negligible volumes with critical temperature increases for part of the modeled hot spot situations. MR investigations with a high rf-pulse density lasting below a minute can establish volumes of several cubic millimeters with temperature increases high enough to start cell destruction. Longer exposure times can involve volumes larger than 100 mm3. Even temperature increases in the range of thermal ablation are reached for substantial volumes. MR sequence exposure time and hot spot power loss are the primary factors influencing the volume with critical temperature increases. Wire radius, wire material as well as the physiological parameters blood perfusion and blood flow inside larger vessels reduce the volume with critical temperature increases, but do not exclude a volume with critical tissue heating for resonators with a large product of resonator volume and quality factor. Conclusion The worst case scenario assumes thermal equilibrium for a hot spot embedded in homogeneous tissue without any cooling due to blood perfusion or flow. The finite volume analysis can calculate the results for near and not close to worst case conditions. For both cases a substantial volume can reach a critical temperature increase in a short time. The analytical solution, as absolute worst case, points out that resonators with a small product of inductance volume and quality factor (Q Vind < 2 cm3) are definitely save. Stents for coronary vessels or resonators used as tracking devices for interventional procedures therefore have no risk of high temperature increases. The finite volume analysis shows for sure that also conditions not close to the worst case reach physiologically critical temperature increases for implants with a large product of inductance volume and quality factor (Q Vind > 10 cm3). Such resonators exclude patients from exactly the MRI investigation these devices are made for. PMID:16729878
Continuous intraputamenal convection-enhanced delivery in adult rhesus macaques.
Fan, Xiaotong; Nelson, Brian D; Ai, Yi; Stiles, David K; Gash, Don M; Hardy, Peter A; Zhang, Zhiming
2015-12-01
Assessing the safety and feasibility of chronic delivery of compounds to the brain using convection-enhanced delivery (CED) is important for the further development of this important therapeutic technology. The objective of this study was to follow and model the distribution of a compound delivered by CED into the putamen of rhesus monkeys. The authors sequentially implanted catheters into 4 sites spanning the left and right putamen in each of 6 rhesus monkeys. The catheters were connected to implanted pumps, which were programmed to deliver a 5-mM solution of the MRI contrast agent Gd-DTPA at 0.1 μl/minute for 7 days and 0.3 μl/minute for an additional 7 days. The animals were followed for 28 days per implant cycle during which they were periodically examined with MRI. All animals survived the 4 surgeries with no deficits in behavior. Compared with acute infusion, the volume of distribution (Vd) increased 2-fold with 7 days of chronic infusion. Increasing the flow rate 3-fold over the next week increased the Vd an additional 3-fold. Following withdrawal of the compound, the half-life of Gd-DTPA in the brain was estimated as 3.1 days based on first-order pharmacokinetics. Histological assessment of the brain showed minimal tissue damage limited to the insertion site. These results demonstrate several important features in the development of a chronically implanted pump and catheter system: 1) the ability to place catheters accurately in a predetermined target; 2) the ability to deliver compounds in a chronic fashion to the putamen; and 3) the use of MRI and MR visible tracers to follow the evolution of the infusion volume over time.
... heart valves Heart defibrillator or pacemaker Inner ear (cochlear) implants Kidney disease or are on dialysis (you ... Diagnose abnormal growths in the chest Evaluate blood flow Show lymph nodes and blood vessels Show the ...
Evaluation of MRI issues for a new neurological implant, the Sensor Reservoir.
Shellock, Frank G; Knebel, Jörg; Prat, Angelina D
2013-09-01
A new neurological implant, the Sensor-Reservoir, was developed to provide a relative measurement of ICP, which permits a noninvasive technique to detect and localize occlusions in ventricular drainage systems and, thus, to identify mechanical damage to shunt valves. The "reservoir" of this device can be used to administer medication or a contrast agent, to extract cerebral spinal fluid (CSF), and with the possibility of directly measuring ICP. The Sensor-Reservoir was evaluated to identify possible MRI-related issues at 1.5-T/64-MHz and 3-T/128-MHz. Standard testing techniques were utilized to evaluate magnetic field interactions (i.e., translational attraction and torque), MRI-related heating, and artifacts at 3-T for the Sensor-Reservoir. In addition, 12 samples of the Sensor-Reservoir underwent testing to determine if the function of these devices was affected by exposures to various MRI conditions at 1.5-T/64-MHz and 3-T/128-MHz. Magnetic field interactions for the Sensor-Reservoir were not substantial. The heating results indicated a highest temperature rise of 1.8 °C, which poses no patient risks. Artifacts were relatively small in relation to the size and shape of the Sensor-Reservoir, but may interfere diagnostically if the area of interest is near the device. All devices were unaffected by exposures to MRI conditions at 1.5-T/64-MHz and 3-T/128-MHz. When specific guidelines are followed, the Sensor-Reservoir is "MR conditional" for patients undergoing MRI examinations at 3-T or less. Copyright © 2013 Elsevier Inc. All rights reserved.
Li, S. Kevin; Lizak, Martin J.; Jeong, Eun-Kee
2008-01-01
Conventional pharmacokinetic methods for studying ocular drug delivery are invasive and cannot be conveniently applied to humans. The advancement of MRI technology has provided new opportunities in ocular drug-delivery research. MRI provides a means to non-invasively and continuously monitor ocular drug-delivery systems with a contrast agent or compound labeled with a contrast agent. It is a useful technique in pharmacokinetic studies, evaluation of drug-delivery methods, and drug-delivery device testing. Although the current status of the technology presents some major challenges to pharmaceutical research using MRI, it has a lot of potential. In the past decade, MRI has been used to examine ocular drug delivery via the subconjunctival route, intravitreal injection, intrascleral injection to the suprachoroidal space, episcleral and intravitreal implants, periocular injections, and ocular iontophoresis. In this review, the advantages and limitations of MRI in the study of ocular drug delivery are discussed. Different MR contrast agents and MRI techniques for ocular drug-delivery research are compared. Ocular drug-delivery studies using MRI are reviewed. PMID:18186077
Ahmad, Faiz U; Sidani, Charif; Fourzali, Roberto; Wang, Michael Y
2013-11-01
Cobalt-chromium alloy (CoCr) rods haves some preferred biomechanical properties over titanium rods for spinal fixation. The use of CoCr rods in spinal fusion is relatively new, and there is no study in the existing world literature assessing the artifact caused by these rods in patients undergoing postoperative MRI. The purpose of this study is to compare the amount of imaging artifact caused by these implants and to assess its impact on the visualization of neighboring neural structures. This study investigated MR images in patients who underwent implantation of thoracolumbar instrumentation using 5.5-mm-diameter CoCr rods between November 2009 and March 2011 and images obtained in a comparison group of patients who had 5.5-mm titanium rods implanted during the same time period. Axial measurements of the artifact created by the rods between the screw heads were compared between the groups. Two blinded board-certified radiologists performed the measurements independently. They scored the visualization of the spinal canal using a subjective scoring system of 1-3, with 1 representing very good visualization and 2 and 3 representing reduced (good or suboptimal, respectively) visualization as a result of rod-related artifact. All measurements and scores were independently provided for T1-weighted and T2-weighted fast spin echo sequences (1.5-T magnet, 5-mm slice thickness). A total of 40 levels from the CoCr group (6 patients) and 30 levels from the titanium group (9 patients) were included in the analysis. Visualization of the canal at all levels was rated a score of 1 (very good) by both evaluators for both the CoCr and titanium groups. The average artifact on T1-weighted images measured 11.8 ± 1.8 mm for the CoCr group and 8.5 ± 1.2 mm for the titanium group (p < 0.01). The corresponding measurements on T2-weighted images were 11.0 ± 2.3 mm and 8.3 ± 1.7 mm (p < 0.01), respectively. In a mixed regression model, the mean artifact measurement for the CoCr group was, on average, 3.5 mm larger than for the control group. There was no significant difference between the measurements of the 2 evaluators (p = 0.99). The artifact caused by CoCr rods is approximately 3.5 mm larger than that caused by titanium rods on axial T1- and T2-weighted MRI. However, artifact from either CoCr or titanium was not found to interfere with the evaluation of the spinal canal and surrounding neural elements.
Jech, Robert; Mueller, Karsten; Urgošík, Dušan; Sieger, Tomáš; Holiga, Štefan; Růžička, Filip; Dušek, Petr; Havránková, Petra; Vymazal, Josef; Růžička, Evžen
2012-01-01
Electrode implantation into the subthalamic nucleus for deep brain stimulation in Parkinson's disease (PD) is associated with a temporary motor improvement occurring prior to neurostimulation. We studied this phenomenon by functional magnetic resonance imaging (fMRI) when considering the Unified Parkinson's Disease Rating Scale (UPDRS-III) and collateral oedema. Twelve patients with PD (age 55.9± (SD)6.8 years, PD duration 9-15 years) underwent bilateral electrode implantation into the subthalamic nucleus. The fMRI was carried out after an overnight withdrawal of levodopa (OFF condition): (i) before and (ii) within three days after surgery in absence of neurostimulation. The motor task involved visually triggered finger tapping. The OFF/UPDRS-III score dropped from 33.8±8.7 before to 23.3±4.8 after the surgery (p<0.001), correlating with the postoperative oedema score (p<0.05). During the motor task, bilateral activation of the thalamus and basal ganglia, motor cortex and insula were preoperatively higher than after surgery (p<0.001). The results became more enhanced after compensation for the oedema and UPDRS-III scores. In addition, the rigidity and axial symptoms score correlated inversely with activation of the putamen and globus pallidus (p<0.0001). One month later, the OFF/UPDRS-III score had returned to the preoperative level (35.8±7.0, p = 0.4).In conclusion, motor improvement induced by insertion of an inactive electrode into the subthalamic nucleus caused an acute microlesion which was at least partially related to the collateral oedema and associated with extensive impact on the motor network. This was postoperatively manifested as lowered movement-related activation at the cortical and subcortical levels and differed from the known effects of neurostimulation or levodopa. The motor system finally adapted to the microlesion within one month as suggested by loss of motor improvement and good efficacy of deep brain stimulation.
Urgošík, Dušan; Sieger, Tomáš; Holiga, Štefan; Růžička, Filip; Dušek, Petr; Havránková, Petra; Vymazal, Josef; Růžička, Evžen
2012-01-01
Electrode implantation into the subthalamic nucleus for deep brain stimulation in Parkinson's disease (PD) is associated with a temporary motor improvement occurring prior to neurostimulation. We studied this phenomenon by functional magnetic resonance imaging (fMRI) when considering the Unified Parkinson's Disease Rating Scale (UPDRS-III) and collateral oedema. Twelve patients with PD (age 55.9± (SD)6.8 years, PD duration 9–15 years) underwent bilateral electrode implantation into the subthalamic nucleus. The fMRI was carried out after an overnight withdrawal of levodopa (OFF condition): (i) before and (ii) within three days after surgery in absence of neurostimulation. The motor task involved visually triggered finger tapping. The OFF/UPDRS-III score dropped from 33.8±8.7 before to 23.3±4.8 after the surgery (p<0.001), correlating with the postoperative oedema score (p<0.05). During the motor task, bilateral activation of the thalamus and basal ganglia, motor cortex and insula were preoperatively higher than after surgery (p<0.001). The results became more enhanced after compensation for the oedema and UPDRS-III scores. In addition, the rigidity and axial symptoms score correlated inversely with activation of the putamen and globus pallidus (p<0.0001). One month later, the OFF/UPDRS-III score had returned to the preoperative level (35.8±7.0, p = 0.4). In conclusion, motor improvement induced by insertion of an inactive electrode into the subthalamic nucleus caused an acute microlesion which was at least partially related to the collateral oedema and associated with extensive impact on the motor network. This was postoperatively manifested as lowered movement-related activation at the cortical and subcortical levels and differed from the known effects of neurostimulation or levodopa. The motor system finally adapted to the microlesion within one month as suggested by loss of motor improvement and good efficacy of deep brain stimulation. PMID:23145068
... aneurysm clips Heart defibrillator or pacemaker Inner ear (cochlear) implants Kidney disease or dialysis (you may not ... test may be used to look at: Blood flow in the abdomen Blood vessels in the abdomen ...
... heart valves Heart defibrillator or pacemaker Inner ear (cochlear) implants Kidney disease or dialysis (you may not ... that remains after surgery or chemotherapy Show blood flow through the breast area Guide a biopsy (not ...
A Case of Orbital Abscess following Porous Orbital Implant Infection
Hong, Seung Woo; Paik, Ji-Sun; Kim, So-Youl
2006-01-01
Purpose We present a case of orbital abscess following porous orbital implant infection in a 73-year-old woman with rheumatoid arthritis. Methods Just one month after a seemingly uncomplicated enucleation and porous polyethylene (Medpor®) orbital implant surgery, implant exposure developed with profuse pus discharge. The patient was unresponsive to implant removal and MRI confirmed the presence of an orbital pus pocket. Despite extirpation of the four rectus muscles, inflammatory granulation debridement and abscess drainage, another new pus pocket developed. Results After partial orbital exenteration, the wound finally healed well without any additional abscess formation. Conclusions A patient who has risk factors for delayed wound healing must be examined thoroughly and extreme care such as exenteration must be taken if there is persistent infection. PMID:17302210
Phase estimation for magnetic resonance imaging near metal prostheses
NASA Astrophysics Data System (ADS)
Bones, Philip J.; King, Laura J.; Millane, Rick P.
2015-09-01
Magnetic resonance imaging (MRI) has the potential to be the best technique for assessing complications in patients with metal orthopedic implants. The presence of fat can obscure definition of the other soft tissues in MRI images, so fat suppression is often required. However, the performance of existing fat suppression techniques is inadequate near implants, due to very significant magnetic field perturbations induced by the metal. The three-point Dixon technique is potentially a method of choice as it is able to suppress fat in the presence of inhomogeneities, but the success of this technique depends on being able to accurately calculate the phase shift. This is generally done using phase unwrapping and/or iterative reconstruction algorithms. Most current phase unwrapping techniques assume that the phase function is slowly varying and phase differences between adjacent points are limited to less than π radians in magnitude. Much greater phase differences can be present near metal implants. We present our experience with two phase unwrapping techniques which have been adapted to use prior knowledge of the implant. The first method identifies phase discontinuities before recovering the phase along paths through the image. The second method employs a transform to find the least squares solution to the unwrapped phase. Simulation results indicate that the methods show promise.
Pietschmann, M F; Horng, A; Glaser, C; Albrecht, D; Bruns, J; Scheffler, S; Marlovits, S; Angele, P; Aurich, M; Bosch, U; Fritz, J; Frosch, K H; Kolombe, T; Richter, W; Petersen, J P; Nöth, U; Niemeyer, P; Jagodzinsky, M; Kasten, P; Ruhnau, K; Müller, P E
2014-03-01
Over the course of the past two decades autologous chondrocyte implantation (ACI) has become an important surgical technique for treating large cartilage defects. The original method using a periostal flap has been improved by using cell-seeded scaffolds for implantation, the matrix-based autologous chondrocyte implantation (mb-ACI) procedure. Uniform nationwide guidelines for post-ACI rehabilitation do not exist. A survey was conducted among the members of the clinical tissue regeneration study group concerning the current rehabilitation protocols and the members of the study group published recommendations for postoperative rehabilitation and treatment after ACI based on the results of this survey. There was agreement on fundamentals concerning a location-specific rehabilitation protocol (femoral condyle vs. patellofemoral joint). With regard to weight bearing and range of motion a variety of different protocols exist. Similar to this total agreement on the role of magnetic resonance imaging (MRI) for postsurgical care was found but again a great variety of different protocols exist. This manuscript summarizes the recommendations of the members of the German clinical tissue regeneration study group on postsurgical rehabilitation and MRI assessment after ACI (level IVb/EBM).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acikel, Volkan, E-mail: vacik@ee.bilkent.edu.tr; Atalar, Ergin; Uslubas, Ali
Purpose: The authors’ purpose is to model the case of an implantable pulse generator (IPG) and the electrode of an active implantable medical device using lumped circuit elements in order to analyze their effect on radio frequency induced tissue heating problem during a magnetic resonance imaging (MRI) examination. Methods: In this study, IPG case and electrode are modeled with a voltage source and impedance. Values of these parameters are found using the modified transmission line method (MoTLiM) and the method of moments (MoM) simulations. Once the parameter values of an electrode/IPG case model are determined, they can be connected tomore » any lead, and tip heating can be analyzed. To validate these models, both MoM simulations and MR experiments were used. The induced currents on the leads with the IPG case or electrode connections were solved using the proposed models and the MoTLiM. These results were compared with the MoM simulations. In addition, an electrode was connected to a lead via an inductor. The dissipated power on the electrode was calculated using the MoTLiM by changing the inductance and the results were compared with the specific absorption rate results that were obtained using MoM. Then, MRI experiments were conducted to test the IPG case and the electrode models. To test the IPG case, a bare lead was connected to the case and placed inside a uniform phantom. During a MRI scan, the temperature rise at the lead was measured by changing the lead length. The power at the lead tip for the same scenario was also calculated using the IPG case model and MoTLiM. Then, an electrode was connected to a lead via an inductor and placed inside a uniform phantom. During a MRI scan, the temperature rise at the electrode was measured by changing the inductance and compared with the dissipated power on the electrode resistance. Results: The induced currents on leads with the IPG case or electrode connection were solved for using the combination of the MoTLiM and the proposed lumped circuit models. These results were compared with those from the MoM simulations. The mean square error was less than 9%. During the MRI experiments, when the IPG case was introduced, the resonance lengths were calculated to have an error less than 13%. Also the change in tip temperature rise at resonance lengths was predicted with less than 4% error. For the electrode experiments, the value of the matching impedance was predicted with an error less than 1%. Conclusions: Electrical models for the IPG case and electrode are suggested, and the method is proposed to determine the parameter values. The concept of matching of the electrode to the lead is clarified using the defined electrode impedance and the lead Thevenin impedance. The effect of the IPG case and electrode on tip heating can be predicted using the proposed theory. With these models, understanding the tissue heating due to the implants becomes easier. Also, these models are beneficial for implant safety testers and designers. Using these models, worst case conditions can be determined and the corresponding implant test experiments can be planned.« less
Al-Wakeel, Nadya; O h-Ici, Darach; Schmitt, Katharina R; Messroghli, Daniel R; Riesenkampff, Eugénie; Berger, Felix; Kuehne, Titus; Peters, Bjoern
2016-02-01
In patients with CHD, cardiac MRI is often indicated for functional and anatomical assessment. With the recent introduction of MRI-conditional pacemaker systems, cardiac MRI has become accessible for patients with pacemakers. The present clinical study aims to evaluate safety, susceptibility artefacts, and image reading of cardiac MRI in patients with CHD and MRI-conditional pacemaker systems. Material and methods CHD patients with MRI-conditional pacemaker systems and a clinical need for cardiac MRI were examined with a 1.5-T MRI system. Lead function was tested before and after MRI. Artefacts and image readings were evaluated using a four-point grading scale. A total of nine patients with CHD (mean age 34.0 years, range 19.5-53.6 years) received a total of 11 cardiac MRI examinations. Owing to clinical indications, seven patients had previously been converted from conventional to MRI-conditional pacemaker systems. All MRI examinations were completed without adverse effects. Device testing immediately after MRI and at follow-up showed no alteration of pacemaker device and lead function. Clinical questions could be addressed and answered in all patients. Cardiac MRI can be performed safely with high certainty of diagnosis in CHD patients with MRI-conditional pacemaker systems. In case of clinically indicated lead and box changing, CHD patients with non-MRI-conditional pacemaker systems should be considered for complete conversion to MRI-conditional systems.
Magnetic resonance imaging appearance of oxidized regenerated cellulose in breast cancer surgery.
Giuliani, Michela; Rella, Rossella; Fubelli, Rita; Patrolecco, Federica; Di Giovanni, Silvia Eleonora; Buccheri, Chiara; Padovano, Federico; Belli, Paolo; Romani, Maurizio; Rinaldi, Pierluigi; Bufi, Enida; Franceschini, Gianluca; Bonomo, Lorenzo
2016-09-01
To describe magnetic resonance imaging (MRI) findings in patients who underwent breast-conserving surgery followed by oxidized regenerated cellulose (ORC) implantation in surgical cavity. We retrospectively reviewed 51 MRI examinations performed between January 2009 and January 2014 in 51 patients who underwent BCS with ORC implantation. In 29/51 (57 %) cases, MRIs showed abnormal findings with three main MRI patterns: (1) complex masses: hyperintense collections on T2-weighted (w) images with internal round hypointense nodules without contrast enhancement (55 %); (2) completely hyperintense collections (17 %); and (3) completely hypointense lesions (28 %). All lesions showed rim enhancement on T1w images obtained in the late phase of the dynamic study with a type 1 curve. Diffusion-weighted imaging was negative in all MRIs and, in particular, 22/29 (76 %) lesions were hyperintense but showing ADC values >1.4 × 10(-3) mm(2)/s, while the remaining 7/29 (24 %) lesions were hypointense. In four cases, linear non-mass-like enhancement was detected at the periphery of surgical cavity; these patients were addressed to a short-term follow-up, and the subsequent examinations showed the resolution of these findings. When applied to surgical residual cavity, ORC can lead alterations in surgical scar. This could induce radiologists to misinterpret ultrasonographic and mammographic findings, addressing patients to MRI or biopsy; so knowledge of MRI specific features of ORC, it is essential to avoid misdiagnosis of recurrence.
NASA Astrophysics Data System (ADS)
Mohammad Sadeghi, Majid; Kececi, Emin Faruk; Bilsel, Kerem; Aralasmak, Ayse
2017-03-01
Medical imaging has great importance in earlier detection, better treatment and follow-up of diseases. 3D Medical image analysis with CT Scan and MRI images has also been used to aid surgeries by enabling patient specific implant fabrication, where having a precise three dimensional model of associated body parts is essential. In this paper, a 3D image processing methodology for finding the plane on which the glenoid surface has a maximum surface area is proposed. Finding this surface is the first step in designing patient specific shoulder joint implant.
... the test, tell your provider if you have: Artificial heart valves Brain aneurysm clips Heart defibrillator or pacemaker Inner ear (cochlear) implants Kidney disease or dialysis (you may not ... artificial joints Vascular stents Worked with sheet metal in ...
Sea urchin puncture resulting in PIP joint synovial arthritis: case report and MRI study.
Liram, N; Gomori, M; Perouansky, M
2000-01-01
Of the 600 species of sea urchins, approximately 80 may be venomous to humans. The long spined or black sea urchin, Diadema setosum may cause damage by the breaking off of its brittle spines after they penetrate the skin. Synovitis followed by arthritis may be an unusual but apparently not a rare sequel to such injury, when implantation occurs near a joint. In this case report, osseous changes were not seen by plain x-rays. Magnetic resonance imaging (MRI) was used to expose the more salient features of both soft tissue and bone changes of black sea urchin puncture injury 30 months after penetration. In all likelihood, this type of injury may be more common than the existing literature at present suggests. It is believed to be the first reported case in this part of the world as well as the first MRI study describing this type of joint pathology. Local and systemic reactions to puncture injuries from sea urchin spines have been described previously. These may range from mild, local irritation lasting a few days to granuloma formation, infection and on occasions systemic illness. The sea urchin spines are composed of calcium carbonate with proteinaceous covering. The covering tends to cause immune reactions of variable presentation. There are only a handful of reported cases with sea urchin stings on record, none of them from the Red Sea. However, this condition is probably more common than is thought and can present difficulty in diagnosis. In this case report, the inflammation responded well to heat treatment, mobilization and manipulation of the joint in its post acute and chronic stages. As some subtle changes in soft tissues and the changes in bone were not seen either on plain x-rays or ultrasound scan, gadolinium-enhanced MRI was used to unveil the marked changes in the joint.
Implanting Glioblastoma Spheroids into Rat Brains and Monitoring Tumor Growth by MRI Volumetry.
Löhr, Mario; Linsenmann, Thomas; Jawork, Anna; Kessler, Almuth F; Timmermann, Nils; Homola, György A; Ernestus, Ralf-Ingo; Hagemann, Carsten
2017-01-01
The outcome of patients suffering from glioblastoma multiforme (GBM) remains poor with a median survival of less than 15 months. To establish innovative therapeutical approaches or to analyze the effect of protein overexpression or protein knockdown by RNA interference in vivo, animal models are mandatory. Here, we describe the implantation of C6 glioma spheroids into the rats' brain and how to follow tumor growth by MRI scans. We show that C6 cells grown in Sprague-Dawley rats share several morphologic features of human glioblastoma like pleomorphic cells, areas of necrosis, vascular proliferation, and tumor cell invasion into the surrounding brain tissue. In addition, we describe a method for tumor volumetry utilizing the CISS 3D- or contrast-enhanced T1-weighted 3D sequence and freely available post-processing software.
Shakir, Shakir I; Udrescu, Corina; Enachescu, Ciprian; Rouviere, Olivier; Arion, Simona; Caraivan, Ionela; Chapet, Olivier
2016-11-01
The objective of the study was to verify the stability of gold markers in the prostatic bed (PB) during salvage radiotherapy. Seven patients, diagnosed with a macroscopic nodule visible on MRI, underwent targeted MRI-guided biopsies. Three gold markers were implanted into the PB close to the relapsing nodule for CT/MRI fusion. A dose of 60Gy was delivered using IMRT to the PB followed by a dose escalation up to 72Gy to the macroscopic nodule. Daily anterior and left-lateral kV-images were acquired for repositioning. The coordinates of the center of each marker were measured on the two kV-images. The distance variations (Dvar) of the markers in the first session and the subsequent ones were compared. No marker was lost during treatment. The average distance between markers was 7.8mm. The average Dvar was 0.8mm, in absolute value. A total of 380/528 (72%) Dvar were ⩽1mm. A Dvar greater than 2mm was observed in 5.7% of measurements, with a maximum value of 4.8mm. Despite the absence of the prostate, the implantation of gold markers in the PB remains feasible, with Dvar often less than 2mm, and could be used to develop new approaches of salvage focal radiotherapy on the macroscopic relapse after prostatectomy. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
MO-B-BRC-04: MRI-Based Prostate HDR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mourtada, F.
2016-06-15
Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR ismore » U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.« less
Prototype of a silicon nitride ceramic-based miniplate osteofixation system for the midface.
Neumann, Andreas; Unkel, Claus; Werry, Christoph; Herborn, Christoh U; Maier, Horst R; Ragoss, Christian; Jahnke, Klaus
2006-06-01
The favorable properties of silicon nitride (Si3N4) ceramics, such as high mean strength level and fracture toughness, suggest biomedical use as an implant material. Minor reservations about the biocompatibility of Si3N4 ceramics were cleared up by previous in vitro and in vivo investigations. A Si3N4 prototype minifixation system was manufactured and implanted for osteosynthesis of artificial frontal bone defects in 3 minipigs. After 3 months, histological sections, computed tomography (CT) scans, and magnetic resonance imaging (MRI) scans were obtained. Finite element modeling (FEM) was used to simulate stresses and strains on Si3N4 miniplates and screws to calculate survival probabilities. Si3N4 miniplates and screws showed satisfying intraoperative workability. There was no implant loss, displacement, or fracture. Bone healing was complete in all animals. The formation of new bone was observed in direct contact to the implants. The implants showed no artifacts on CT and MRI scanning. FEM simulation confirmed the mechanical reliability of the screws, whereas simulated plate geometries regarding pullout forces at maximum load showed limited safety in a bending situation. Si3N4 ceramics show a good biocompatibility outcome both in vitro and in vivo. In ENT surgery, this ceramic may serve as a biomaterial for osteosynthesis (eg, of the midface including reconstruction the floor of the orbit and the skull base). To our knowledge, this is the first introduction of a ceramic-based miniplate-osteofixation system. Advantages compared with titanium are no risk of implantation to bone with mucosal attachment, no need for explantation, and no interference with radiologic imaging. Disadvantages include the impossibility of individual bending of the miniplates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, X; Chen, L; Hensley, H
2014-06-15
Purpose: Magnetic resonance spectroscopic (MRS) imaging may provide important bio-markers to distinguish normal/cancerous prostate tissue. While MRS imaging requires a high uniform magnetic field, the ability of a clinical 1.5T MRI to achieve a comparable MRS signal is of interest for radiation treatment planning/assessment. This study is to evaluate the MRS imaging of a 1.5T clinical MRI for prostate cancers by comparing with a small animal 7T MRS scanner. Methods: A tumor model was developed by implanting LNCaP tumor cells in nude mice prostates. Tumor was monitored 3 weeks after implantation using MRI, and MRS imaging was performed on themore » tumor area when the tumor reached around 1cm in diameter. The 1.5T GE clinical MR scanner and the 7T Bruker small animal MR scanner were used for each mouse. MR spectrums acquired with these scanners were analyzed and compared. The signals of Choline and Citrate were considered. Results: The prostate tumor MR spectrum under the 1.5T clinical MRI showed a similar spectrum pattern to that acquired using the 7T animal MRI. The Choline signal (3.2ppm) is clear and there is no clear peak for Citrate (2.6ppm). However, the signal magnitude for Choline is not dominant compared to the background signal under 1.5T MRI. Typical cancerous prostate tissue MR spectrum with an increased Choline signal and a reduced Citrate signal was observed. In addition, signal variation is noticeable between repeated spectrum scans. The average of these scans showed a comparable and consistent spectrum to those under 7T MRI. Conclusion: The clinical 1.5T MRI is able to acquire a MR spectrum for prostate cancer comparable to those acquired using a dedicated 7T MRS scanner. However, to achieve a consistent and reliable spectrum, multiple repeated scans were necessary to get a statistical result and reduce the noise-induced artifact. This work was supported in part by the National Cancer Institute Grant R21 CA131979 and R01CA172638.« less
NASA Astrophysics Data System (ADS)
Ruggera, P. S.; Witters, D. M.; von Maltzahn, G.; Bassen, H. I.
2003-09-01
A patient with bilateral implanted neurostimulators suffered significant brain tissue damage, and subsequently died, following diathermy treatment to hasten recovery from teeth extraction. Subsequent MRI examinations showed acute deterioration of the tissue near the deep brain stimulator (DBS) lead's electrodes which was attributed to excessive tissue heating induced by the diathermy treatment. Though not published in the open literature, a second incident was reported for a patient with implanted neurostimulators for the treatment of Parkinson's disease. During a diathermy treatment for severe kyphosis, the patient had a sudden change in mental status and neurological deficits. The diathermy was implicated in causing damage to the patient's brain tissue. To investigate if diathermy induced excessive heating was possible with other types of implantable lead systems, or metallic implants in general, we conducted a series of in vitro laboratory tests. We obtained a diathermy unit and also assembled a controllable laboratory exposure system. Specific absorption rate (SAR) measurements were performed using fibre optic thermometry in proximity to the implants to determine the rate of temperature rise using typical diathermy treatment power levels. Comparisons were made of the SAR measurements for a spinal cord stimulator (SCS) lead, a pacemaker lead and three types of bone prosthesis (screws, rods and a plate). Findings indicate that temperature changes of 2.54 and 4.88 °C s-1 with corresponding SAR values of 9129 and 17 563 W kg-1 near the SCS and pacemaker electrodes are significantly higher than those found in the proximity of the other metallic implants which ranged from 0.04 to 0.69 °C s-1 (129 to 2471 W kg-1). Since the DBS leads that were implanted in the reported human incidents have one-half the electrode surface area of the tested SCS lead, these results imply that tissue heating at rates at least equal to or up to twice as much as those reported here for the SCS lead could occur for the DBS leads.
Magnetic resonance imaging. Application to family practice.
Goh, R H; Somers, S; Jurriaans, E; Yu, J
1999-09-01
To review indications, contraindications, and risks of using magnetic resonance imaging (MRI) in order to help primary care physicians refer patients appropriately for MRI, screen for contraindications to using MRI, and educate patients about MRI. Recommendations are based on classic textbooks, the policies of our MRI group, and a literature search using MEDLINE with the MeSH headings magnetic resonance imaging, brain, musculoskeletal, and spine. The search was limited to human, English-language, and review articles. Evidence in favour of using MRI for imaging the head, spine, and joints is well established. For cardiac, abdominal, and pelvic conditions, MRI has been shown useful for certain indications, usually to complement other modalities. For demonstrating soft tissue conditions, MRI is better than computed tomography (CT), but CT shows bone and acute bleeding better. Therefore, patients with trauma or suspected intracranial bleeding should have CT. Tumours, congenital abnormalities, vascular structures, and the cervical or thoracic spine show better on MRI. Either modality can be used for lower back pain. Cardiac, abdominal, and pelvic abnormalities should be imaged with ultrasound or CT before MRI. Contraindications for MRI are mainly metallic implants or shrapnel, severe claustrophobia, or obesity. With the increasing availability of MRI scanners in Canada, better understanding of the indications, contraindications, and risks will be helpful for family physicians and their patients.
Sano, Ichiya; Tanito, Masaki; Uchida, Koji; Katsube, Takashi; Kitagaki, Hajime; Ohira, Akihiro
2015-01-01
To evaluate ocular fluid filtration and endplate positioning in glaucomatous eyes with long-tube glaucoma drainage devices (GDDs) using magnetic resonance imaging (MRI) and the effects of various factors on postoperative intraocular pressure (IOP). This observational case series included 27 consecutive glaucomatous eyes (18 men, 7 women; mean age ± standard error, 63.0±2.0 years) who underwent GDD implantation (n = 8 Ahmed Glaucoma Valves [AGV] and n = 19 Baerveldt Glaucoma Implants [BGI]). Tubes were inserted into the pars plana in 23 eyes and anterior chamber in 4 eyes. Six months postoperatively, high-resolution orbital images were obtained using 3-Tesla MRI with head-array coils, and the filtering bleb volume, bleb height, and distances between the anterior endplate edge and corneal center or limbus or between the endplate and orbital wall were measured. In MR images obtained by three-dimensional fast imaging employing steady-state acquisition (3D-FIESTA) sequences, the shunt endplate was identified as low-intensity signal, and the filtering bleb was identified as high-intensity signals above and below the endplate in all eyes. The 6-month-postoperative IOP level was correlated negatively with bleb volume (r = -0.4510, P = 0.0182) and bleb height (r = -0.3954, P = 0.0412). The postoperative IOP was significantly (P = 0.0026) lower in BGI-implanted eyes (12.2±0.7 mmHg) than AGV-implanted eyes (16.7±1.2 mmHg); bleb volume was significantly (P = 0.0093) larger in BGI-implanted eyes (478.8±84.2 mm3) than AGV-implanted eyes (161.1±52.3 mm3). Other parameters did not differ. The presence of intraorbital/periocular accumulation of ocular fluid affects postoperative IOP levels in eyes implanted with long-tube GDDs. Larger filtering blebs after BGI than AGI implantations explain lower postoperative IOP levels achieved with BGI than AGV. The findings will contribute to better understanding of IOP reducing mechanism of long-tube GDDs.
Rodriguez, Fatima; Degnan, Kathleen O; Seidman, Christine E; Mangion, Judy R
2014-08-01
We report the case of a 67-year-old man with hypertrophic cardiomyopathy who presented for a second opinion about implantable cardio-defibrillator (ICD) placement after a witnessed syncopal episode. Despite his older age, being mutation-negative, and having a maximal septal thickness of 2.2 cm on echocardiography, he demonstrated rapid progression of myocardial fibrosis on cardiac MRI, correlating to ventricular tachyarrhythmias and syncope. We review the role of echocardiography and cardiac MRI in optimizing medical care for such patients who may not otherwise meet criteria for an ICD placement or further interventions. © 2014, Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Vitanovski, Dime; Tsymbal, Alexey; Ionasec, Razvan; Georgescu, Bogdan; Zhou, Shaohua K.; Hornegger, Joachim; Comaniciu, Dorin
2011-03-01
Congenital heart defect (CHD) is the most common birth defect and a frequent cause of death for children. Tetralogy of Fallot (ToF) is the most often occurring CHD which affects in particular the pulmonary valve and trunk. Emerging interventional methods enable percutaneous pulmonary valve implantation, which constitute an alternative to open heart surgery. While minimal invasive methods become common practice, imaging and non-invasive assessment tools become crucial components in the clinical setting. Cardiac computed tomography (CT) and cardiac magnetic resonance imaging (cMRI) are techniques with complementary properties and ability to acquire multiple non-invasive and accurate scans required for advance evaluation and therapy planning. In contrary to CT which covers the full 4D information over the cardiac cycle, cMRI often acquires partial information, for example only one 3D scan of the whole heart in the end-diastolic phase and two 2D planes (long and short axes) over the whole cardiac cycle. The data acquired in this way is called sparse cMRI. In this paper, we propose a regression-based approach for the reconstruction of the full 4D pulmonary trunk model from sparse MRI. The reconstruction approach is based on learning a distance function between the sparse MRI which needs to be completed and the 4D CT data with the full information used as the training set. The distance is based on the intrinsic Random Forest similarity which is learnt for the corresponding regression problem of predicting coordinates of unseen mesh points. Extensive experiments performed on 80 cardiac CT and MR sequences demonstrated the average speed of 10 seconds and accuracy of 0.1053mm mean absolute error for the proposed approach. Using the case retrieval workflow and local nearest neighbour regression with the learnt distance function appears to be competitive with respect to "black box" regression with immediate prediction of coordinates, while providing transparency to the predictions made.
Edlinger, Christoph; Granitz, Marcel; Paar, Vera; Jung, Christian; Pfeil, Alexander; Eder, Sarah; Wernly, Bernhard; Kammler, Jürgen; Hergan, Klaus; Hoppe, Uta C; Steinwender, Clemens; Lichtenauer, Michael; Kypta, Alexander
2018-05-23
Leadless pacemaker systems are an important upcoming device in clinical rhythmology. Currently two different products are available with the Micra system (Medtronic) being the most used in the clinical setting to date. The possibility to perform magnetic resonance imaging (MRI) is an important feature of modern pacemaker devices. Even though the Micra system is suitable for MRI, little is yet known about its impact on artifacts within the images. The aim of our ex vivo study was to perform cardiac MRI to quantify the artifacts and to evaluate if artifacts limit or inhibit the assessment of the surrounding myocardium. After ex vivo implantation of the leadless pacemaker (LP) in a porcine model, hearts were filled with saline solution and fixed on wooden sticks on a plastic container. The model was examined at 1.5 T and at 3 T using conventional sequences and T2 mapping sequences. In addition, conventional X‑rays and computed tomography (CT) scans were performed. Correct implantation of the LP could be performed in all hearts. In almost all MRI sequences the right ventricle and the septal region surrounding the (LP) were altered by an artifact and therefore would sustain limited assessment; however, the rest of the myocardium remained free of artifacts and evaluable for common radiologic diagnoses. A characteristic shamrock-shaped artifact was generated which appeared to be even more intense in magnitude and brightness when using 3 T compared to 1.5 T. The use of the Micra system in cardiac MRI appeared to be feasible. In our opinion, it will still be possible to make important clinical cardiac MRI diagnoses (the detection of major ischemic areas or inflammatory processes) in patients using the Micra system. We suggest the use of 1.5 T as the preferred method in clinical practice.
Goto, Masami; Abe, Osamu; Hata, Junichi; Fukunaga, Issei; Shimoji, Keigo; Kunimatsu, Akira; Gomi, Tsutomu
2017-02-01
Background Diffusion tensor imaging (DTI) is a magnetic resonance imaging (MRI) technique that reflects the Brownian motion of water molecules constrained within brain tissue. Fractional anisotropy (FA) is one of the most commonly measured DTI parameters, and can be applied to quantitative analysis of white matter as tract-based spatial statistics (TBSS) and voxel-wise analysis. Purpose To show an association between metallic implants and the results of statistical analysis (voxel-wise group comparison and TBSS) for fractional anisotropy (FA) mapping, in DTI of healthy adults. Material and Methods Sixteen healthy volunteers were scanned with 3-Tesla MRI. A magnetic keeper type of dental implant was used as the metallic implant. DTI was acquired three times in each participant: (i) without a magnetic keeper (FAnon1); (ii) with a magnetic keeper (FAimp); and (iii) without a magnetic keeper (FAnon2) as reproducibility of FAnon1. Group comparisons with paired t-test were performed as FAnon1 vs. FAnon2, and as FAnon1 vs. FAimp. Results Regions of significantly reduced and increased local FA values were revealed by voxel-wise group comparison analysis (a P value of less than 0.05, corrected with family-wise error), but not by TBSS. Conclusion Metallic implants existing outside the field of view produce artifacts that affect the statistical analysis (voxel-wise group comparisons) for FA mapping. When statistical analysis for FA mapping is conducted by researchers, it is important to pay attention to any dental implants present in the mouths of the participants.
... you have: Brain aneurysm clips Certain types of artificial heart valves Heart defibrillator or pacemaker Inner ear (cochlear) implants Kidney disease or dialysis (you may not be able to receive contrast) Recently placed artificial joints Certain types of vascular stents Worked with ...
... you have: Brain aneurysm clips Certain types of artificial heart valves Heart defibrillator or pacemaker Inner ear (cochlear) implants Kidney disease or dialysis (you may not be able to receive contrast) Recently placed artificial joints Certain types of vascular stents Worked with ...
... you have: Brain aneurysm clips Certain types of artificial heart valves Heart defibrillator or pacemaker Inner ear (cochlear) implants Kidney disease or dialysis (you may not be able to receive contrast) Recently placed artificial joints Certain types of vascular stents Worked with ...
Augmented reality for breast imaging.
Rancati, Alberto; Angrigiani, Claudio; Nava, Maurizio B; Catanuto, Giuseppe; Rocco, Nicola; Ventrice, Fernando; Dorr, Julio
2018-06-01
Augmented reality (AR) enables the superimposition of virtual reality reconstructions onto clinical images of a real patient, in real time. This allows visualization of internal structures through overlying tissues, thereby providing a virtual transparency vision of surgical anatomy. AR has been applied to neurosurgery, which utilizes a relatively fixed space, frames, and bony references; the application of AR facilitates the relationship between virtual and real data. Augmented breast imaging (ABI) is described. Breast MRI studies for breast implant patients with seroma were performed using a Siemens 3T system with a body coil and a four-channel bilateral phased-array breast coil as the transmitter and receiver, respectively. Gadolinium was injected as a contrast agent (0.1 mmol/kg at 2 mL/s) using a programmable power injector. Dicom formatted images data from 10 MRI cases of breast implant seroma and 10 MRI cases with T1-2 N0 M0 breast cancer, were imported and transformed into augmented reality images. ABI demonstrated stereoscopic depth perception, focal point convergence, 3D cursor use, and joystick fly-through. ABI can improve clinical outcomes, providing an enhanced view of the structures to work on. It should be further studied to determine its utility in clinical practice.
Biasibetti, Elena; Valazza, Alberto; Capucchio, Maria T; Annovazzi, Laura; Battaglia, Luigi; Chirio, Daniela; Gallarate, Marina; Mellai, Marta; Muntoni, Elisabetta; Peira, Elena; Riganti, Chiara; Schiffer, Davide; Panciani, Pierpaolo; Lanotte, Michele
2017-03-01
Research in neurooncology traditionally requires appropriate in vivo animal models, on which therapeutic strategies are tested before human trials are designed and proceed. Several reproducible animal experimental models, in which human physiologic conditions can be mimicked, are available for studying glioblastoma multiforme. In an ideal rat model, the tumor is of glial origin, grows in predictable and reproducible patterns, closely resembles human gliomas histopathologically, and is weakly or nonimmunogenic. In the current study, we used MRI and histopathologic evaluation to compare the most widely used allogeneic rat glioma model, C6-Wistar, with the F98-Fischer syngeneic rat glioma model in terms of percentage tumor growth or regression and growth rate. In vivo MRI demonstrated considerable variation in tumor volume and frequency between the 2 rat models despite the same stereotactic implantation technique. Faster and more reproducible glioma growth occurred in the immunoresponsive environment of the F98-Fischer model, because the immune response is minimized toward syngeneic cells. The marked inability of the C6-Wistar allogeneic system to generate a reproducible model and the episodes of spontaneous tumor regression with this system may have been due to the increased humoral and cellular immune responses after tumor implantation.
RF induced energy for partially implanted catheters: a computational study
Lucano, Elena; Liberti, Micaela; Lloyd, Tom; Apollonio, Francesca; Wedan, Steve; Kainz, Wolfgang; Angelone, Leonardo M.
2018-01-01
Magnetic Resonance Imaging (MRI) is a radiological imaging technique widely used in clinical practice. MRI has been proposed to guide the catheters for interventional procedures, such as cardiac ablation. However, there are risks associated with this procedure, such as RF-induced heating of tissue near the catheters. The aim of this study is to develop a quantitative RF-safety method for patients with partially implanted leads at 64 MHz. RF-induced heating is related to the electric field incident along the catheter, which in turns depends on several variables, including the position of the RF feeding sources and the orientation of the polarization, which are however often unknown. This study evaluates the electric field profile along the lead trajectory using simulations with an anatomical human model landmarked at the heart. The energy absorbed in the volume near the tip of ageneric partially implanted lead was computed for all source positions and field orientation. The results showed that varying source positions and field orientation may result in changes of up to 18% for the E-field magnitude and up to 60% for the 10g-averaged specific absorption rate (SAR) in the volume surrounding the tip of the lead. PMID:28268553
Definitive diagnosis of breast implant rupture using magnetic resonance imaging.
Ahn, C Y; Shaw, W W; Narayanan, K; Gorczyca, D P; Sinha, S; Debruhl, N D; Bassett, L W
1993-09-01
Breast implant rupture is an important complication of augmented and reconstructed breasts. Although several techniques such as mammography, xeromammography, ultrasound, thermography, and computed tomographic (CT) scanning have been proven to be useful to detect implant rupture, they have several disadvantages and lack specificity. In the current study, we have established magnetic resonance imaging (MRI) as a definitive, reliable, and reproducible technique to diagnose both intracapsular and extracapsular ruptures. The study was conducted in 100 symptomatic patients. Our imaging parameters were able to identify ruptures in implants with silicone shells. All the ruptures showed the presence of wavy lines, free-floating silicone shell within the gel ("free-floating loose-thread sign" or "linguine sign"). We had a 3.75 percent incidence of false-positive and false-negative results. The sensitivity for detection of silicone implant rupture was 76 percent, with a specificity of 97 percent. In addition, we also were able to identify the artifacts that may interfere with the definitive diagnosis of implant rupture.
Mäder, K; Crémmilleux, Y; Domb, A J; Dunn, J F; Swartz, H M
1997-06-01
The purpose of this study was to compare drug release and polymer erosion from biodegradable P(FAD-SA) polyanhydrides in vitro and in vivo in real time and with minimal disturbance of the investigated system. P(FAD-SA) 20:80 and P(FAD-SA) 50:50 polymer tablets were loaded with the spin probe 3-carboxy-2,2,5,5-tetramethyl-pyrrollidine-1-oxyl (PCA) and implanted subcutaneously in the neck of rats or placed in 0.1 M phosphate buffer. 1.1 GHz EPR spectroscopy experiments and 7T MRI studies (T1 and T2 weighted) were performed. A front of water penetration was visible by MRI in vitro in the case of P(FAD-SA) 20:80, but not for P(FAD-SA) 50:50. For both polymers, the thickness of the tablets decreased with time and a insoluble, easy deformable residue remained. Important processes such as edema, deformation of the implant, encapsulation and bioresorption were observable by MRI in vivo. P(FAD-SA) 50:50 was almost entirely absorbed by day 44, whereas an encapsulated residue was found for P(FAD-SA) 20:80 after 65 days. The EPR studies gave direct evidence of a water penetration induced changes of the microenvironment inside the tablet. EPR signals were still detectable in P(FAD-SA) 20:80 implants after 65 days, while the nitroxide was released in vitro within 16 days. Important parameters and processes such as edema, deformation of the tablet, microviscosity inside the tablet and encapsulation can be monitored in real time by the combined use of the noninvasive techniques MRI and EPR leading to better understanding of the differences between the in vitro and in vivo situation.
Miyata, K; Hasegawa, M; Abe, Y; Tabuchi, T; Namiki, T; Ishigami, T
2012-01-01
Objective The aim of this study was to estimate the risk of injury from dental magnetic attachments due to their radiofrequency (RF) heating and magnetically induced displacement during 3.0 T MRI. Methods To examine the magnetic attachments, we adopted the American Society for Testing and Materials F2182-02a and F2052-06 standards in two MRI systems (Achieva 3.0 T Nova Dual; Philips, Tokyo, Japan, and Signa HDxt 3.0 T; GE Healthcare, Milwaukee, WI). The temperature change was measured in a cylindrical keeper (GIGAUSS D600; GC, Tokyo, Japan) with coping of the casting alloy and a keeper with a dental implant at the maximum specific absorption rate (SAR) for 20 min. To measure the magnetically induced displacement force, three sizes of keepers (GIGAUSS D400, D600 and D1000) were used in deflection angle tests conducted at the point of the maximum magnetic field strength. Results Temperature elevations of both coping and implant were higher in the Signa system than in the Achieva system. The highest temperature changes in the keeper with implant and keeper with coping were 0.6 °C and 0.8 °C in the Signa system, respectively. The temperature increase did not exceed 1.0 °C at any location. The deflection angle (α) was not measurable because it exceeded 90°. GIGAUSS D400 required an extra 3.0 g load to constrain the deflection angle to less than 45°; GIGAUSS D600 and D1000 required 5.0 and 9.0 g loads, respectively. Conclusions Dental magnetic attachments pose no risk due to RF heating and magnetically induced displacement at 3.0 T MRI. However, it is necessary to confirm that these keepers are securely attached to the prosthesis before imaging. PMID:22499128
Atar, İlyas; Bal, Uğur; Ertan, Çağatay; Özin, Bülent; Müderrisoğlu, Haldun
2016-01-01
Presence of a cardiac pacemaker or implantable cardioverter defibrillator (ICD) is a relative contraindication to magnetic resonance imaging (MRI). Biventricular ICDs are often used in the treatment of advanced heart failure; however, reports on experience with biventricular ICDs are lacking in the literature. In this case report, we describe a pacemaker-dependent patient with a biventricular ICD on whom an MRI of the lumbar spine was performed without having realized the presence of the ICD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Charles C., E-mail: hsucc@radonc.ucsf.edu; Hsu, Howard; Pickett, Barby
Purpose: To assess the feasibility of magnetic resonance imaging (MRI)-planned partial salvage permanent prostate implant (psPPI) among patients with biopsy-proven local recurrence after initial PPI without evidence of distant disease. Methods and Materials: From 2003-2009, 15 patients underwent MRI/magnetic resonance spectroscopy (MRS) planning for salvage brachytherapy (psPPI, I-125 [n=14; 144 Gy]; Pd-103 [n=1; 125 Gy]) without hormone therapy. Full dose was prescribed to areas of recurrence and underdosage, without entire prostate implantation. Limiting urethral and rectal toxicity was prioritized. Follow-up was from salvage date to prostate-specific antigen (PSA) concentration failure (Phoenix criteria = nadir + 2.0; ASTRO = 3 consecutivemore » rises), recurrence, distant metastases, or last follow-up PSA level. Progression-free survival (PFS) was defined as no PSA failure or biopsy-proven recurrence without all-cause mortality. Toxicity was scored using Common Terminology Criteria for Adverse Events version 4.0. Results: At salvage, median age was 68 years, and PSA concentration was 3.5 ng/mL (range, 0.9-5.6 ng/mL). Abnormal MRI/MRS findings were evident in 40% of patients. Biopsy-proven recurrences consisted of a single focus (80%) or 2 foci (20%). At recurrence, Gleason score was 6 (67%) or {>=}7 (27%). Median interval between initial and salvage implantation was 69 months (range, 28-132 months). psPPI planning characteristics limited doses to the rectum (mean V100 = 0.5% [0.07 cc]) and urethra (V100 = 12% [0.3 cc]). At median follow-up (23.3 months; range, 8-88 months), treatment failure (n=2) resulted only in localized recurrence; both patients underwent second psPPI with follow-up PSA tests at 12 and 26 months, resulting in 0.6 and 0.7 ng/mL, respectively. American Society for Radiation Oncology PFS rates at 1, 2, and 3 years were 86.7%, 78.4%, and 62.7%, respectively, with 5 patients for whom treatment failed (n=3 with negative transrectal ultrasound-guided biopsy results). Phoenix PFS rates at 1, 2, and 3 years were 100%, 100%, and 71.4%. 73%, respectively; achieved PSA nadir of <0.5 ng/mL; and 47% of patients had a nadir of <0.1 ng/mL. Treatment-related toxicity was minimal, with no operative interventions, fistulas, or other grade {>=}3 gastrointestinal (GI)/genitourinary (GU) toxicity. Thirteen percent had grade 1 GI and 33% had grade 2 GU toxicities. Postsalvage, 20% of patients had no erectile dysfunction, 67% of patients had medication-responsive erectile dysfunction, and 13% of patients had erectile dysfunction refractory to medication. Conclusions: Focal psPPI with MR-planning in highly selected patients is feasible with short-term control comparable to conventional salvage, with less toxicity. Longer follow-up is needed to confirm its impact on quality of life and treatment.« less
Mattei, E; Calcagnini, G; Triventi, M; Delogu, A; Del Guercio, M; Angeloni, A; Bartolini, P
2013-01-01
The time-varying gradient fields generated during Magnetic Resonance Imaging (MRI) procedures have the potential to induce electrical current on implanted endocardial leads. Whether this current can result in undesired cardiac stimulation is unknown. This paper presents an optically coupled system with the potential to quantitatively measure the currents induced by the gradient fields into endocardial leads during MRI procedures. Our system is based on a microcontroller that works as analog-to-digital (A/D) converter and sends the current signal acquired from the lead to an optical high-speed light-emitting-diode transmitter. Plastic fiber guides the light outside the MRI chamber, to a photodiode receiver and then to an acquisition board connected to a PC. The preliminary characterization of the performances of the system is also presented.
[Influence on flux density of intraoral dental magnets during 1.5 and 3.0 tesla MRI].
Blankenstein, F H; Truong, B; Thomas, A; Boeckler, A; Peroz, I
2011-08-01
When using dental duo-magnet systems, a mini-magnet remains in the jaw after removal of the prosthesis. In some cases, implant-borne magnets may be removed, whereas tooth-borne magnets are irreversibly fixed on a natural tooth root. The goal of this paper is to identify the impacts of the duration and orientation of exposure on these magnets in a 1.5 or 3 Tesla MRI. For this study, 30 SmCo and 60 NdFeB magnets were used. During the first experiment, they were exposed with free orientation for 64 minutes. During the second experiment, the magnets were fixed in position and exposed at 1.5 and 3 Tesla while aligned in a parallel or antiparallel direction. While the duration of exposure in MRI is irrelevant, the orientation is not. The coercive field strength of these NdFeB and SmCo alloys is not sufficient to reliably withstand demagnetization in a 1.5 or 3 T MRI when aligned in an antiparallel direction. At 1.5 T neodymium magnets were reduced to approx. 34 % and samarium magnets to approx. 92 % of their initial values. At 3 T all magnets were reversed. As a precaution, the worst-case scenario, i. e. an antiparallel orientation, should be assumed when using a duo-magnet system. If an MRI can be postponed, the general dentist should remove implant-borne magnets. If there is a vital indication, irreversible damage to the magnets is acceptable in consultation with the patient since the replacement costs are irrelevant given the underlying disease. © Georg Thieme Verlag KG Stuttgart · New York.
Endo, J; Watanabe, A; Sasho, T; Yamaguchi, S; Saito, M; Akagi, R; Muramatsu, Y; Mukoyama, S; Katsuragi, J; Akatsu, Y; Fukawa, T; Okubo, T; Osone, F; Takahashi, K
2015-02-01
To investigate the effectiveness of quantitative Magnetic resonance imaging (MRI) for evaluating the quality of cartilage repair over time following allograft chondrocyte implantation using a three-dimensional scaffold for osteochondral lesions. Thirty knees from 15 rabbits were analyzed. An osteochondral defect (diameter, 4 mm; depth, 1 mm) was created on the patellar groove of the femur in both legs. The defects were filled with a chondrocyte-seeded scaffold in the right knee and an empty scaffold in the left knee. Five rabbits each were euthanized at 4, 8, and 12 weeks and their knees were examined via macroscopic inspection, histological and biochemical analysis, and quantitative MRI (T2 mapping and dGEMRIC) to assess the state of tissue repair following allograft chondrocyte implantation with a three-dimensional scaffold for osteochondral lesions. Comparatively good regenerative cartilage was observed both macroscopically and histologically. In both chondrocyte-seeded and control knees, the T2 values of repair tissues were highest at 4 weeks and showed a tendency to decrease with time. ΔR1 values of dGEMRIC also tended to decrease with time in both groups, and the mean ΔR1 was significantly lower in the CS-scaffold group than in the control group at all time points. ΔR1 = 1/r (R1post - R1pre), where r is the relaxivity of Gd-DTPA(2-), R1 = 1/T1 (longitudinal relaxation time). T2 mapping and dGEMRIC were both effective for evaluating tissue repair after allograft chondrocyte implantation. ΔR1 values of dGEMRIC represented good correlation with histologically and biochemically even at early stages after the implantation. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Dasar, U; Gursoy, S; Akkaya, M; Algin, O; Isik, C; Bozkurt, M
2016-08-01
To compare the microfracture technique with carbon fibre rod implantation for treatment of knee articular cartilage lesions. 10 men and 30 women aged 22 to 56 (mean, 37.4) years underwent microfracture (n=20) or carbon fibre rod implantation (n=20) for International Cartilage Repair Society grade 3 to 4 knee articular cartilage lesions after a mean of 12.2 months of viscosupplementation and physiotherapy. Clinical outcome at 6 and 12 months was assessed using the Tegner-Lysholm score and modified Cincinnati score. Magnetic resonance imaging (MRI) outcome at 12 months was assessed by a radiologist. The modified magnetic resonance observation of cartilage repair tissue (MOCART) score was evaluated. The 2 groups were comparable in terms of age, body mass index, lesion location, lesion size, duration of symptoms, and coexisting pathology. The microfracture group had a higher preoperative Tegner-Lysholm score (39.4±7.3 vs. 34.4±4.9, p=0.015) and modified Cincinnati score (36.4±7.2 vs. 30.4±4.0, p=0.002) than the carbon fibre rod group. At 12 months, change in both scores was significant within each group (p<0.001) and was higher in the microfracture than carbon fibre rod group (p<0.001). MRI showed minimal regenerative tissue. Lobulation, oedema, and hypertrophy were more commonly found in the regeneration tissue after carbon fibre rod implantation than microfracture. At 12 months, the MOCART score was higher in the microfracture than carbon fibre rod group (59 vs. 47, p<0.001). Microfracture is superior to carbon fibre rod implantation in terms of clinical and radiological outcome.
Barua, Neil U; Hopkins, Kirsten; Woolley, Max; O'Sullivan, Stephen; Harrison, Rob; Edwards, Richard J; Bienemann, Alison S; Wyatt, Marcella J; Arshad, Azeem; Gill, Steven S
2016-01-01
Inadequate penetration of the blood-brain barrier (BBB) by systemically administered chemotherapies including carboplatin is implicated in their failure to improve prognosis for patients with glioblastoma. Convection-enhanced delivery (CED) of carboplatin has the potential to improve outcomes by facilitating bypass of the BBB. We report the first use of an implantable CED system incorporating a novel transcutaneous bone-anchored port (TBAP) for intermittent CED of carboplatin in a patient with recurrent glioblastoma. The CED catheter system was implanted using a robot-assisted surgical method. Catheter targeting accuracy was verified by performing intra-operative O-arm imaging. The TBAP was implanted using a skin-flap dermatome technique modeled on bone-anchored hearing aid surgery. Repeated infusions were performed by attaching a needle administration set to the TBAP. Drug distribution was monitored with serial real-time T2-weighted magnetic resonance imaging (MRI). All catheters were implanted to within 1.5 mm of their planned target. Intermittent infusions of carboplatin were performed on three consecutive days and repeated after one month without the need for further surgical intervention. Infused volumes of 27.9 ml per day were well tolerated, with the exception of a single seizure episode. Follow-up MRI at eight weeks demonstrated a significant reduction in the volume of tumor enhancement from 42.6 ml to 24.6 ml, and was associated with stability of the patient's clinical condition. Reduction in the volume of tumor enhancement indicates that intermittent CED of carboplatin has the potential to improve outcomes in glioblastoma. The novel technology described in this report make intermittent CED infusion regimes an achievable treatment strategy.
Role of MRI in differentiating various causes of non-traumatic paraparesis and tetraparesis.
Ahmed, Nisar; Akram, Hamid; Qureshi, Ishtiaq Ahmed
2004-10-01
To assess the frequency of various causes of non-traumatic paraparesis and tetraparesis in adults based only on the findings of magnetic resonance imaging (MRI). Non-interventional descriptive study carried out from May 2001 to October 2002 at Radiology Department, CMH, Rawalpindi. A total of 100 adult patients who presented with non-traumatic paraparesis or tetraparesis, were studied. MRI spine of all the patients and MRI brain of selected patients, was carried out. Based on MRI findings alone causes of non-traumatic paraparesis and tetraparesis were categorized. Paraparesis was more frequent than tetraparesis. Cord compression was found in 72% cases. Neoplastic compression, infective spondylitis and non-compressive myelopathies were the main causes of paraparesis while spondylotic myelopathy was the main cause of tetraparesis. Based upon MRI findings causes of non-traumatic paraparesis or tetraparesis can be subcategorized into spondylotic, infective or neoplastic cord compression and non-compressive myelopathies. Further subcategorization of neoplastic lesions according to their compartment of origin can also be done.
Takahashi, Toshihito; Gonda, Tomoya; Maeda, Yoshinobu
Implant overdentures with attachments have been used in clinical practice and the effect of attachments on implant strain has been frequently reported. However, most studies have focused on mandibular overdentures; there are few reports on maxillary overdentures. The purpose of this study was to examine the influence of attachment type on implant strain in maxillary overdentures under various implant configurations. A maxillary edentulous model with implants and experimental overdentures were fabricated. Four strain gauges were attached to each implant, positioned in anterior, premolar, and molar areas. Three types of unsplinted attachments-ball, locator, and magnet-were set on the implants under various implant configurations. A vertical occlusal load of 98 N was applied through the mandibular complete denture, and implant strain was compared using the Kruskal-Wallis test. Ball attachments caused the greatest amount of strain, while magnet attachments caused the least amount under all conditions. For all attachments, two anterior implants caused significantly more strain than four implants (P < .05). No significant difference was observed between subtypes in four-implant configurations except when using locator attachments. When using unsplinted attachments for maxillary implant overdentures, magnet attachments are recommended to reduce implant stress. Using only two implants, especially two anterior implants, is not recommended regardless of attachment type.
Nazarian, Saman; Hansford, Rozann; Roguin, Ariel; Goldsher, Dorith; Zviman, Menekhem M.; Lardo, Albert C.; Caffo, Brian S.; Frick, Kevin D.; Kraut, Michael A.; Kamel, Ihab R.; Calkins, Hugh; Berger, Ronald D.; Bluemke, David A.; Halperin, Henry R.
2015-01-01
Background Magnetic resonance imaging (MRI) is avoided in most patients with implanted cardiac devices because of safety concerns. Objective To define the safety of a protocol for MRI at the commonly used magnetic strength of 1.5 T in patients with implanted cardiac devices. Design Prospective nonrandomized trial. (ClinicalTrials.gov registration number: NCT01130896) Setting One center in the United States (94% of examinations) and one in Israel. Patients 438 patients with devices (54% with pacemakers and 46% with defibrillators) who underwent 555 MRI studies. Intervention Pacing mode was changed to asynchronous for pacemaker-dependent patients and to demand for others. Tachy-arrhythmia functions were disabled. Blood pressure, electrocardiography, oximetry, and symptoms were monitored by a nurse with experience in cardiac life support and device programming who had immediate backup from an electrophysiologist. Measurements Activation or inhibition of pacing, symptoms, and device variables. Results In 3 patients (0.7% [95% CI, 0% to 1.5%]), the device reverted to a transient back-up programming mode without long-term effects. Right ventricular (RV) sensing (median change, 0 mV [interquartile range {IQR}, −0.7 to 0 V]) and atrial and right and left ventricular lead impedances (median change, −2 Ω[IQR, −13 to 0 Ω], −4 Ω [IQR, −16 to 0 Ω], and −11 Ω [IQR, −40 to 0 Ω], respectively) were reduced immediately after MRI. At long-term follow-up (61% of patients), decreased RV sensing (median, 0 mV, [IQR, −1.1 to 0.3 mV]), decreased RV lead impedance (median, −3 Ω, [IQR, −29 to 15 Ω]), increased RV capture threshold (median, 0 V, IQR, [0 to 0.2 Ω]), and decreased battery voltage (median, −0.01 V, IQR, −0.04 to 0 V) were noted. The observed changes did not require device revision or reprogramming. Limitations Not all available cardiac devices have been tested. Long-term in-person or telephone follow-up was unavailable in 43 patients (10%), and some data were missing. Those with missing long-term capture threshold data had higher baseline right atrial and right ventricular capture thresholds and were more likely to have undergone thoracic imaging. Defibrillation threshold testing and random assignment to a control group were not performed. Conclusion With appropriate precautions, MRI can be done safely in patients with selected cardiac devices. Because changes in device variables and programming may occur, electrophysiologic monitoring during MRI is essential. Primary Funding Source National Institutes of Health. PMID:21969340
Recall management of patients with Rofil Medical breast implants.
Schott, Sarah; Bruckner, Thomas; Golatta, Michael; Wallwiener, Markus; Küffner, Livia; Mayer, Christine; Paringer, Carmen; Domschke, Christoph; Blumenstein, Maria; Schütz, Florian; Sohn, Christof; Heil, Joerg
2014-07-01
Some Rofil Medical breast implants are relabelled Poly Implant Prothèse (PIP) implants, and it is recommended that Rofil implants be managed in the same way as PIP implants. We report the results of a systematic recall of patients who had received Rofil implants. All patients who received Rofil implants at our centre were identified and invited for specialist consultation. In patients who opted for explantation, preoperative and intraoperative work-up was performed in accordance with national guidelines and analysed. In cases suspicious for rupture, an MRI scan was performed. Two-hundred and twenty-five patients (average age 56; range 28-80) received a total of 321 Rofil implants an average of 5.8 (range 1-11) years previously, 225/321 (70%) implants were used for reconstruction after breast cancer. A total of 43 implants were removed prior to 2011, mainly due to capsular contracture (CC). A total of 188 patients were still affected at the time of recall. Of the 188 patients, 115 (61%) attended for specialist consultation, of which 50 (44%) requested immediate implant removal. To date, 72 of 115 (63%) women attending consultation (38% of all affected) have chosen explantation, 66 of 72 (92%) opting for new implants. Of the 108 explanted implants, 25 (23%) had capsular rupture and 57 (53%) had implant bleeding. Preoperative clinical assessment was unreliable for predicting CC or rupture. The majority of patients attended for consultation and requested explantation. The quality of the explanted Rofil implants was comparable to PIP implants, with a higher rupture prevalence compared with other, non-affected implants. Nevertheless, the acceptance of breast implants for reimplantation remained high. Copyright © 2014 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
WE-B-BRD-00: MRI for Radiation Oncology
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The use of MRI in radiation therapy is rapidly increasing. Applications vary from the MRI simulator, to the MRI fused with CT, and to the integrated MRI+RT system. Compared with the standard MRI QA, a broader scope of QA features has to be defined in order to maximize the benefits of using MRI in radiation therapy. These QA features include geometric fidelity, image registration, motion management, cross-system alignment, and hardware interference. Advanced MRI techniques require a specific type of QA, as they are being widely used in radiation therapy planning, dose calculations, post-implant dosimetry, and prognoses. A vigorous and adaptivemore » QA program is crucial to defining the responsibility of the entire radiation therapy group and detecting deviations from the performance of high-quality treatment. As a drastic departure from CT simulation, MRI simulation requires changes in the work flow of treatment planning and image guidance. MRI guided radiotherapy platforms are being developed and commercialized to take the advantage of the advance in knowledge, technology and clinical experience. This symposium will from an educational perspective discuss the scope and specific issues related to MRI guided radiotherapy. Learning Objectives: Understand the difference between a standard and a radiotherapy-specific MRI QA program. Understand the effects of MRI artifacts (geometric distortion and motion) on radiotherapy. Understand advanced MRI techniques (ultrashort echo, fast MRI including dynamic MRI and 4DMRI, diffusion, perfusion, and MRS) and related QA. Understand the methods to prepare MRI for treatment planning (electron density assignment, multimodality image registration, segmentation and motion management). Current status of MRI guided treatment platforms. Dr. Jihong Wang has a research grant with Elekta-MRL project. Dr. Ke Sheng receives research grants from Varian Medical systems.« less
Understanding Magnetic Resonance Imaging of Knee Cartilage Repair: A Focus on Clinical Relevance.
Hayashi, Daichi; Li, Xinning; Murakami, Akira M; Roemer, Frank W; Trattnig, Siegfried; Guermazi, Ali
2017-06-01
The aims of this review article are (a) to describe the principles of morphologic and compositional magnetic resonance imaging (MRI) techniques relevant for the imaging of knee cartilage repair surgery and their application to longitudinal studies and (b) to illustrate the clinical relevance of pre- and postsurgical MRI with correlation to intraoperative images. First, MRI sequences that can be applied for imaging of cartilage repair tissue in the knee are described, focusing on comparison of 2D and 3D fast spin echo and gradient recalled echo sequences. Imaging features of cartilage repair tissue are then discussed, including conventional (morphologic) MRI and compositional MRI techniques. More specifically, imaging techniques for specific cartilage repair surgery techniques as described above, as well as MRI-based semiquantitative scoring systems for the knee cartilage repair tissue-MR Observation of Cartilage Repair Tissue and Cartilage Repair OA Knee Score-are explained. Then, currently available surgical techniques are reviewed, including marrow stimulation, osteochondral autograft, osteochondral allograft, particulate cartilage allograft, autologous chondrocyte implantation, and others. Finally, ongoing research efforts and future direction of cartilage repair tissue imaging are discussed.
Walter, Uwe; Müller, Jan-Uwe; Rösche, Johannes; Kirsch, Michael; Grossmann, Annette; Benecke, Reiner; Wittstock, Matthias; Wolters, Alexander
2016-03-01
A combination of preoperative magnetic resonance imaging (MRI) with real-time transcranial ultrasound, known as fusion imaging, may improve postoperative control of deep brain stimulation (DBS) electrode location. Fusion imaging, however, employs a weak magnetic field for tracking the position of the ultrasound transducer and the patient's head. Here we assessed its feasibility, safety, and clinical relevance in patients with DBS. Eighteen imaging sessions were conducted in 15 patients (7 women; aged 52.4 ± 14.4 y) with DBS of subthalamic nucleus (n = 6), globus pallidus interna (n = 5), ventro-intermediate (n = 3), or anterior (n = 1) thalamic nucleus and clinically suspected lead displacement. Minimum distance between DBS generator and magnetic field transmitter was kept at 65 cm. The pre-implantation MRI dataset was loaded into the ultrasound system for the fusion imaging examination. The DBS lead position was rated using validated criteria. Generator DBS parameters and neurological state of patients were monitored. Magnetic resonance-ultrasound fusion imaging and volume navigation were feasible in all cases and provided with real-time imaging capabilities of DBS lead and its location within the superimposed magnetic resonance images. Of 35 assessed lead locations, 30 were rated optimal, three suboptimal, and two displaced. In two cases, electrodes were re-implanted after confirming their inappropriate location on computed tomography (CT) scan. No influence of fusion imaging on clinical state of patients, or on DBS implantable pulse generator function, was found. Magnetic resonance-ultrasound real-time fusion imaging of DBS electrodes is safe with distinct precautions and improves assessment of electrode location. It may lower the need for repeated CT or MRI scans in DBS patients. © 2015 International Parkinson and Movement Disorder Society.
Comparison of Allogeneic and Syngeneic Rat Glioma Models by Using MRI and Histopathologic Evaluation
Biasibetti, Elena; Valazza, Alberto; Capucchio, Maria T; Annovazzi, Laura; Battaglia, Luigi; Chirio, Daniela; Gallarate, Marina; Mellai, Marta; Muntoni, Elisabetta; Peira, Elena; Riganti, Chiara; Schiffer, Davide; Panciani, Pierpaolo; Lanotte, Michele
2017-01-01
Research in neurooncology traditionally requires appropriate in vivo animal models, on which therapeutic strategies are tested before human trials are designed and proceed. Several reproducible animal experimental models, in which human physiologic conditions can be mimicked, are available for studying glioblastoma multiforme. In an ideal rat model, the tumor is of glial origin, grows in predictable and reproducible patterns, closely resembles human gliomas histopathologically, and is weakly or nonimmunogenic. In the current study, we used MRI and histopathologic evaluation to compare the most widely used allogeneic rat glioma model, C6-Wistar, with the F98-Fischer syngeneic rat glioma model in terms of percentage tumor growth or regression and growth rate. In vivo MRI demonstrated considerable variation in tumor volume and frequency between the 2 rat models despite the same stereotactic implantation technique. Faster and more reproducible glioma growth occurred in the immunoresponsive environment of the F98-Fischer model, because the immune response is minimized toward syngeneic cells. The marked inability of the C6-Wistar allogeneic system to generate a reproducible model and the episodes of spontaneous tumor regression with this system may have been due to the increased humoral and cellular immune responses after tumor implantation. PMID:28381315
Comparative study of fat-suppression techniques for hip arthroplasty MR imaging.
Molière, Sébastien; Dillenseger, Jean-Philippe; Ehlinger, Matthieu; Kremer, Stéphane; Bierry, Guillaume
2017-09-01
The goal of this study was to evaluate different fat-suppressed fluid-sensitive sequences in association with different metal artifacts reduction techniques (MARS) to determine which combination allows better fat suppression around metallic hip implants. An experimental study using an MRI fat-water phantom quantitatively evaluated contrast shift induced by metallic hip implant for different fat-suppression techniques and MARS. Then a clinical study with patients addressed to MRI unit for painful hip prosthesis compared these techniques in terms of fat suppression quality and diagnosis confidence. Among sequences without MARS, both T2 Dixon and short tau inversion recuperation (STIR) had significantly lower contrast shift (p < 0.05), Dixon offering the best fat suppression. Adding MARS (view-angle tilting or slice-encoding for metal artifact correction (SEMAC)) to STIR gave better results than Dixon alone, and also better than SPAIR and fat saturation with MARS (p < 0.05). There were no statistically significant differences between STIR with view-angle tilting and STIR with SEMAC in terms of fat suppression quality. STIR sequence is the preferred fluid-sensitive MR sequence in patients with metal implant. In combination with MARS (view-angle tilting or SEMAC), STIR appears to be the best option for high-quality fat suppression.
Fujiwara, Yasuhiro; Fujioka, Hitoshi; Watanabe, Tomoko; Sekiguchi, Maiko; Murakami, Ryuji
2017-09-01
Confirmation of the magnetic resonance (MR) compatibility of implanted medical devices (IMDs) is mandatory before conducting magnetic resonance imaging (MRI) examinations. In Japan, few such confirmation methods are in use, and they are time-consuming. This study aimed to develop a Web-based searchable MR safety information system to confirm IMD compatibility and to evaluate the usefulness of the system. First, MR safety information for intravascular stents and stent grafts sold in Japan was gathered by interviewing 20 manufacturers. These IMDs were categorized based on the descriptions available on medical package inserts as: "MR Safe," "MR Conditional," "MR Unsafe," "Unknown," and "No Medical Package Insert Available". An MR safety information database for implants was created based on previously proposed item lists. Finally, a Web-based searchable system was developed using this database. A questionnaire was given to health-care personnel in Japan to evaluate the usefulness of this system. Seventy-nine datasets were collected using information provided by 12 manufacturers and by investigating the medical packaging of the IMDs. Although the datasets must be updated by collecting data from other manufacturers, this system facilitates the easy and rapid acquisition of MR safety information for IMDs, thereby improving the safety of MRI examinations.
Evaluation of high-resolution MRI for preoperative screening for cochlear implantation
NASA Astrophysics Data System (ADS)
Madzivire, Mambidzeni; Camp, Jon J.; Lane, John; Witte, Robert J.; Robb, Richard A.
2002-05-01
The success of a cochlear implant is dependent on a functioning auditory nerve. An accurate noninvasive method for screening cochlear implant patients to help determine viability of the auditory nerve would allow physicians to better predict the success of the operation. In this study we measured the size of the auditory nerve relative to the size of the juxtaposed facial nerve and correlated these measurements with audiologic test results. The study involved 15 patients, and three normal volunteers. Noninvasive high-resolution bilateral MRI images were acquired from both 1.5T and 3T scanners. The images were reformatted to obtain an anatomically referenced oblique plane perpendicular to the auditory nerve. The cross- sectional areas of the auditory and facial nerves were determined in this plane. Assessment of the data is encouraging. The ratios of auditory to facial nerve size in the control subjects are close to the expected value of 1.0. Patient data ratios range from 0.73 to 1.3, with numbers significantly less than 1.0 suggesting auditory nerve atrophy. The acoustic nerve area correlated to audiologic test findings, particularly (R2equals0.68) to the count of words understood from a list of 100 words. These preliminary analyses suggest that a threshold of size may be determined to differentiate functional from nonfunctional auditory nerves.
Xia, Xianping; Xie, Changsheng; Zhu, Changhong; Cai, Shuizhou; Yang, Xiangliang
2007-08-01
To investigate the damage of endometrium caused by the implanted Cu/low-density polyethylene (LDPE) nanocomposite and the contraceptive effect of this novel copper-containing intrauterine device material. Experimental animal study. TongJi Medical College of Huazhong University of Science and Technology. Sixty healthy female mice. Twenty mice received no implants, 20 mice received the Cu/LDPE nanocomposite, and 20 mice received bulk copper. Morphologic features of the endometrium, contraceptive effect, and surface condition of the implanted implants. The contraceptive effect of both the Cu/LDPE nanocomposite and bulk copper is 100%, the damage of the endometrium caused by the Cu/LDPE nanocomposite is much less than that caused by bulk copper, and the surface of the implanted Cu/LDPE nanocomposite is much smoother and much softer than that of the implanted bulk copper. The contraceptive effect of the Cu/LDPE nanocomposite is comparable with that of bulk copper, and the damage of the endometrium caused by the Cu/LDPE nanocomposite is much less than that caused by bulk copper. The endometrium injury is related to the surface condition of the implanted intrauterine device material.
7T: Physics, safety, and potential clinical applications.
Kraff, Oliver; Quick, Harald H
2017-12-01
With more than 60 installed magnetic resonance imaging (MRI) systems worldwide operating at a magnetic field strength of 7T or higher, ultrahigh-field (UHF) MRI has been established as a platform for clinically oriented research in recent years. Profound technical and methodological developments have helped overcome the inherent physical challenges of UHF radiofrequency (RF) signal homogenization in the human body. The ongoing development of dedicated RF coil arrays was pivotal in realizing UHF body MRI, beyond mere brain imaging applications. Another precondition to clinical application of 7T MRI is the safety testing of implants and the establishment of safety concepts. Against this backdrop, 7T MRI and MR spectroscopy (MRS) recently have demonstrated capabilities and potentials for clinical diagnostics in a variety of studies. This article provides an overview of the immanent physical challenges of 7T UHF MRI and discusses recent technical solutions and safety concepts. Furthermore, recent clinically oriented studies are highlighted that span a broad application spectrum from 7T UHF brain to body MRI. 4 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1573-1589. © 2017 International Society for Magnetic Resonance in Medicine.
Chen, Ying-Chuan; Li, Jun-Ju; Zhu, Guan-Yu; Shi, Lin; Yang, An-Chao; Jiang, Yin; Zhang, Xin; Zhang, Jian-Guo
2017-03-01
Nowadays, the patients with deep brain stimulation (DBS) devices are restricted to undertake 1.5T magnetic resonance imaging (MRI) according to the guideline. Nevertheless, we conducted an experiment to test pathological change near the leads in different field-strength MRI. Twenty-four male New Zealand rabbits were assigned to Group 1 (G1, n = 6, 7.0T, DBS), Group 2 (G2, n = 6, 3.0T, DBS), Group 3 (G3, n = 6, 1.5T, DBS), and Group 4 (G4, n = 6, 1.5T, paracentesis). DBS leads were implanted in G1, G2 and G3, targeting left nucleus ventralis posterior thalami. Paracentesis was performed in G4. 24 h after MRI scan, all animals were killed for examining pathological alternation (at different distance from lead) via transmission electron microscopy. Our results suggest that the severity of tissue injury correlates with the distance to electrode instead of field strength of MRI. Up to now, the reason for the restriction of MRI indicated no significantly different pathological change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, D; Mills, M; Wang, B
Purpose: Carbon fiber materials have been increasingly used clinically, mainly in orthopedics, as an alternative to metallic implants because of their minimal artifacts on CT and MRI images. This study characterizes the transmission and backscatter property of carbon fiber plates (CarboFix Orthopedics, Herzeliya, Israel) with measurements for radiation therapy applications, and compares them to traditional Stainless Steel (SS) and Titanium (Ti) metal materials. Methods: For the transmission measurements, 1-mm-thick test plate was placed upstream from a plane parallel Markus chamber, separated by various thicknesses of polystyrene plates in 0.5 cm increments between 0 and 5 cm. With this setup, wemore » quantified the radiation transmission as a function of distance to the inhomogeneity interface. The LINAC source to detector distance was maintained at 100 cm and 200 MU was delivered for each measurement. Two 3-cm solid water phantoms were placed at the top and bottom to provide build up. All the measurements were performed for 6 MV and 18 MV photons. The backscatter measurements had the identical setup, except that the test plate was downstream of the chamber from radiation. Results: The carbon fiber plates did not introduce any measureable inhomogeneity effect on the transmission and backscatter factor because of its low atomic number. In contrast, traditional metal implant materials caused up to 15% dose difference at upstream and 25% backscatter at downstream from radiation. Such differences decrease as the distance to the inhomogeneity interface increases and become unmeasurable at distance of 3 cm and 1 cm for upstream and downstream, respectively. Conclusion: A new type of carbon fiber implant plate was evaluated and found to have minimal inhomogeneity effect in MV radiation beams. Patients would benefit from a carbon based implant over metal for radiation therapy due to their minimal backscatter and imaging artifacts.« less
Denervation leads to volume regression in breast cancer.
Kappos, Elisabeth A; Engels, Patricia E; Tremp, Mathias; Sieber, Patricia K; von Felten, Stefanie; Madduri, Srinivas; Meyer Zu Schwabedissen, Moritz; Fischmann, Arne; Schaefer, Dirk J; Kalbermatten, Daniel F
2018-06-01
The nervous system plays a key role in controlling the dynamic functions of multicellular complex organisms. Although peripheral nerves are supposed to play a pivotal role in tumor growth and dissemination, little experimental evidence exists to date. We assessed the effect of denervation on breast cancer growth by magnetic resonance imaging (MRI) in rats. Human breast cancer cells were implanted into adipofascial flaps with intact or surgically excised supplying nerve. Tumor volumes were measured 2 and 8 weeks after implantation by in vivo MRI. Results were validated by histology. Postoperative tumor volumes at 2 and 8 weeks were reduced by 76% (95% CI: 22-93%) in the denervated groups. Tumor area as determined histologically was reduced by 70% (95% CI: 60-78%). Thus, peripheral denervation may be an effective surgical approach for the palliative treatment of locally progressing or uncontrollable breast cancer. Copyright © 2018 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Technical complications of implant-causes and management: A comprehensive review
Gupta, Swati; Gupta, Hemant; Tandan, Amrit
2015-01-01
Given the increasing popularity of dental implants, the number of failures due to late implant fracture is also expected to increase. Hence, the scope for prevention and management needs to be emphasized. The objective of this review article is to analyze the various causes of failure of dental implants due to implant fixture/abutment screw fractures and also to enumerate the management and the preventive options for these failures, thereby aiming to help the clinicians to properly plan the implant-supported prosthesis treatment by considering the important biomechanical aspects of this type of rehabilitation. The present review emphasizes the causes and management of technical complications and not the incidence of such complications. PMID:26668445
Biomedical Imaging in Implantable Drug Delivery Systems
Zhou, Haoyan; Hernandez, Christopher; Goss, Monika; Gawlik, Anna; Exner, Agata A.
2015-01-01
Implantable drug delivery systems (DDS) provide a platform for sustained release of therapeutic agents over a period of weeks to months and sometimes years. Such strategies are typically used clinically to increase patient compliance by replacing frequent administration of drugs such as contraceptives and hormones to maintain plasma concentration within the therapeutic window. Implantable or injectable systems have also been investigated as a means of local drug administration which favors high drug concentration at a site of interest, such as a tumor, while reducing systemic drug exposure to minimize unwanted side effects. Significant advances in the field of local DDS have led to increasingly sophisticated technology with new challenges including quantification of local and systemic pharmacokinetics and implant-body interactions. Because many of these sought-after parameters are highly dependent on the tissue properties at the implantation site, and rarely represented adequately with in vitro models, new nondestructive techniques that can be used to study implants in situ are highly desirable. Versatile imaging tools can meet this need and provide quantitative data on morphological and functional aspects of implantable systems. The focus of this review article is an overview of current biomedical imaging techniques, including magnetic resonance imaging (MRI), ultrasound imaging, optical imaging, X-ray and computed tomography (CT), and their application in evaluation of implantable DDS. PMID:25418857
Oshida, Yoshiki; Tuna, Elif B.; Aktören, Oya; Gençay, Koray
2010-01-01
Among various dental materials and their successful applications, a dental implant is a good example of the integrated system of science and technology involved in multiple disciplines including surface chemistry and physics, biomechanics, from macro-scale to nano-scale manufacturing technologies and surface engineering. As many other dental materials and devices, there are crucial requirements taken upon on dental implants systems, since surface of dental implants is directly in contact with vital hard/soft tissue and is subjected to chemical as well as mechanical bio-environments. Such requirements should, at least, include biological compatibility, mechanical compatibility, and morphological compatibility to surrounding vital tissues. In this review, based on carefully selected about 500 published articles, these requirements plus MRI compatibility are firstly reviewed, followed by surface texturing methods in details. Normally dental implants are placed to lost tooth/teeth location(s) in adult patients whose skeleton and bony growth have already completed. However, there are some controversial issues for placing dental implants in growing patients. This point has been, in most of dental articles, overlooked. This review, therefore, throws a deliberate sight on this point. Concluding this review, we are proposing a novel implant system that integrates materials science and up-dated surface technology to improve dental implant systems exhibiting bio- and mechano-functionalities. PMID:20480036
Evaluation of MRI issues for an access port with a radiofrequency identification (RFID) tag.
Titterington, Blake; Shellock, Frank G
2013-10-01
A medical implant that contains metal, such as an RFID tag, must undergo proper MRI testing to ensure patient safety and to determine that the function of the RFID tag is not compromised by exposure to MRI conditions. Therefore, the objective of this investigation was to assess MRI issues for a new access port that incorporates an RFID tag. Samples of the access port with an RFID tag (Medcomp Power Injectable Port with CertainID; Medcomp, Harleysville, PA) were evaluated using standard protocols to assess magnetic field interactions (translational attraction and torque; 3-T), MRI-related heating (3-T), artifacts (3-T), and functional changes associated with different MRI conditions (nine samples, exposed to different MRI conditions at 1.5-T and 3-T). Magnetic field interactions were not substantial and will pose no hazards to patients. MRI-related heating was minimal (highest temperature change, 1.7°C; background temperature rise, 1.6°C). Artifacts were moderate in size in relation to the device. Exposures to MRI conditions at 1.5-T and 3-T did not alter or damage the functional aspects of the RFID tag. Based on the findings of the test, this new access port with an RFID tag is acceptable (or, MR conditional, using current MRI labeling terminology) for patients undergoing MRI examinations at 1.5-T/64-MHz and 3-T/128-MHz. Copyright © 2013 Elsevier Inc. All rights reserved.
Safety of Magnetic Resonance Imaging in Patients with Cardiac Devices.
Nazarian, Saman; Hansford, Rozann; Rahsepar, Amir A; Weltin, Valeria; McVeigh, Diana; Gucuk Ipek, Esra; Kwan, Alan; Berger, Ronald D; Calkins, Hugh; Lardo, Albert C; Kraut, Michael A; Kamel, Ihab R; Zimmerman, Stefan L; Halperin, Henry R
2017-12-28
Patients who have pacemakers or defibrillators are often denied the opportunity to undergo magnetic resonance imaging (MRI) because of safety concerns, unless the devices meet certain criteria specified by the Food and Drug Administration (termed "MRI-conditional" devices). We performed a prospective, nonrandomized study to assess the safety of MRI at a magnetic field strength of 1.5 Tesla in 1509 patients who had a pacemaker (58%) or an implantable cardioverter-defibrillator (42%) that was not considered to be MRI-conditional (termed a "legacy" device). Overall, the patients underwent 2103 thoracic and nonthoracic MRI examinations that were deemed to be clinically necessary. The pacing mode was changed to asynchronous mode for pacing-dependent patients and to demand mode for other patients. Tachyarrhythmia functions were disabled. Outcome assessments included adverse events and changes in the variables that indicate lead and generator function and interaction with surrounding tissue (device parameters). No long-term clinically significant adverse events were reported. In nine MRI examinations (0.4%; 95% confidence interval, 0.2 to 0.7), the patient's device reset to a backup mode. The reset was transient in eight of the nine examinations. In one case, a pacemaker with less than 1 month left of battery life reset to ventricular inhibited pacing and could not be reprogrammed; the device was subsequently replaced. The most common notable change in device parameters (>50% change from baseline) immediately after MRI was a decrease in P-wave amplitude, which occurred in 1% of the patients. At long-term follow-up (results of which were available for 63% of the patients), the most common notable changes from baseline were decreases in P-wave amplitude (in 4% of the patients), increases in atrial capture threshold (4%), increases in right ventricular capture threshold (4%), and increases in left ventricular capture threshold (3%). The observed changes in lead parameters were not clinically significant and did not require device revision or reprogramming. We evaluated the safety of MRI, performed with the use of a prespecified safety protocol, in 1509 patients who had a legacy pacemaker or a legacy implantable cardioverter-defibrillator system. No long-term clinically significant adverse events were reported. (Funded by Johns Hopkins University and the National Institutes of Health; ClinicalTrials.gov number, NCT01130896 .).
Localizing ECoG electrodes on the cortical anatomy without post-implantation imaging.
Gupta, Disha; Hill, N Jeremy; Adamo, Matthew A; Ritaccio, Anthony; Schalk, Gerwin
2014-01-01
Electrocorticographic (ECoG) grids are placed subdurally on the cortex in people undergoing cortical resection to delineate eloquent cortex. ECoG signals have high spatial and temporal resolution and thus can be valuable for neuroscientific research. The value of these data is highest when they can be related to the cortical anatomy. Existing methods that establish this relationship rely either on post-implantation imaging using computed tomography (CT), magnetic resonance imaging (MRI) or X-Rays, or on intra-operative photographs. For research purposes, it is desirable to localize ECoG electrodes on the brain anatomy even when post-operative imaging is not available or when intra-operative photographs do not readily identify anatomical landmarks. We developed a method to co-register ECoG electrodes to the underlying cortical anatomy using only a pre-operative MRI, a clinical neuronavigation device (such as BrainLab VectorVision), and fiducial markers. To validate our technique, we compared our results to data collected from six subjects who also had post-grid implantation imaging available. We compared the electrode coordinates obtained by our fiducial-based method to those obtained using existing methods, which are based on co-registering pre- and post-grid implantation images. Our fiducial-based method agreed with the MRI-CT method to within an average of 8.24 mm (mean, median = 7.10 mm) across 6 subjects in 3 dimensions. It showed an average discrepancy of 2.7 mm when compared to the results of the intra-operative photograph method in a 2D coordinate system. As this method does not require post-operative imaging such as CTs, our technique should prove useful for research in intra-operative single-stage surgery scenarios. To demonstrate the use of our method, we applied our method during real-time mapping of eloquent cortex during a single-stage surgery. The results demonstrated that our method can be applied intra-operatively in the absence of post-operative imaging to acquire ECoG signals that can be valuable for neuroscientific investigations.
PET/MRI in the Presence of Metal Implants: Completion of the Attenuation Map from PET Emission Data.
Fuin, Niccolo; Pedemonte, Stefano; Catalano, Onofrio A; Izquierdo-Garcia, David; Soricelli, Andrea; Salvatore, Marco; Heberlein, Keith; Hooker, Jacob M; Van Leemput, Koen; Catana, Ciprian
2017-05-01
We present a novel technique for accurate whole-body attenuation correction in the presence of metallic endoprosthesis, on integrated non-time-of-flight (non-TOF) PET/MRI scanners. The proposed implant PET-based attenuation map completion (IPAC) method performs a joint reconstruction of radioactivity and attenuation from the emission data to determine the position, shape, and linear attenuation coefficient (LAC) of metallic implants. Methods: The initial estimate of the attenuation map was obtained using the MR Dixon method currently available on the Siemens Biograph mMR scanner. The attenuation coefficients in the area of the MR image subjected to metal susceptibility artifacts are then reconstructed from the PET emission data using the IPAC algorithm. The method was tested on 11 subjects presenting 13 different metallic implants, who underwent CT and PET/MR scans. Relative mean LACs and Dice similarity coefficients were calculated to determine the accuracy of the reconstructed attenuation values and the shape of the metal implant, respectively. The reconstructed PET images were compared with those obtained using the reference CT-based approach and the Dixon-based method. Absolute relative change (aRC) images were generated in each case, and voxel-based analyses were performed. Results: The error in implant LAC estimation, using the proposed IPAC algorithm, was 15.7% ± 7.8%, which was significantly smaller than the Dixon- (100%) and CT- (39%) derived values. A mean Dice similarity coefficient of 73% ± 9% was obtained when comparing the IPAC- with the CT-derived implant shape. The voxel-based analysis of the reconstructed PET images revealed quantification errors (aRC) of 13.2% ± 22.1% for the IPAC- with respect to CT-corrected images. The Dixon-based method performed substantially worse, with a mean aRC of 23.1% ± 38.4%. Conclusion: We have presented a non-TOF emission-based approach for estimating the attenuation map in the presence of metallic implants, to be used for whole-body attenuation correction in integrated PET/MR scanners. The Graphics Processing Unit implementation of the algorithm will be included in the open-source reconstruction toolbox Occiput.io. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Contacting the brain--aspects of a technology assessment of neural implants.
Decker, Michael; Fleischer, Torsten
2008-12-01
The public interest in neural implants has grown considerably in recent years. Progress within related research areas in combination with increasing--albeit overly optimistic and indiscriminate--mass media coverage have led to the impression that the possibilities of neural prosthetics have grown enormously. But a closer look reveals that the reasons for the intensified interest are varied and cannot be attributed to technical progress alone. Some neural prostheses that have been under development for many years have not left the clinical development phase despite intensive research activities. Other implants, like cardiac pacemakers and cochlea implants, are mature products that have already been implanted in a large number of patients. From the public perspective and in media reports, progress in the development of neural implants is associated with new achievements in other fields of neuroscience. Communications on new applications of functional magnetic resonance imaging (fMRI) may suggest that a number of cognitive functions are now easily accessible with technological means. The fact that the interpretation of the results of fMRI studies depends on many conditions and is partly disputed also within the scientific community has been discussed in many publications but only very limited, in the general media. Besides this, research results and implementations in the area of electroencephalography and magnetoencephalography have sparked further debate on the question of free will, on determinism and indeterminism, and have attracted a large media response. The purpose of this paper is to discuss some societal and ethical aspects of neural implants from a technology assessment perspective. Technology assessment (TA) aims at providing knowledge about impacts and consequences of (new) technologies as well as about political and societal ways of dealing with them. It reflects about implementation conditions of technology and potential technology conflicts. Over the last years, neural implants became a subject for TA since they have gained a higher attention in both the political arena and the general public. Especially the ethical and social implications of technologies that electrically stimulate the brain and the possibilities of changing personality traits, changing moods, and perhaps enhancing human cognitive capabilities are central issues in related discussions. In this paper, we want to briefly summarize some of the key arguments as well as topics for future discussion and research.
Epidermoid cyst of the breast: Mammography, ultrasound, MRI.
Wynne, Elisabeth; Louie, Adeline
2011-01-01
Epidermal cysts are common cysts located cutaneously or subcutaneously in the head, neck, and trunk. However, deep epidermal cysts of the breast are very rare, and are frequently associated with traumatic implantation. We present the case of a 62-year-old woman with a palpable mass in the right breast. The patient was evaluated using mammography, ultrasound, and MRI, which uniquely characterized the mass and revealed a second mass. Histological analysis revealed fragments of an epidermoid cyst. The origin of the cysts and location deep within the breast tissue likely were due to a previous bilateral-reduction mammoplasty.
Ma, Lei; Zhang, Di; Chen, Wei; Shen, Yong; Zhang, Yingze; Ding, Wenyuan; Zhang, Wei; Wang, Linfeng; Yang, Dalong
2014-01-01
Cervical spondylotic myelopathy (CSM) is a common cause of disability in elderly patients. Previous studies have shown that spinal cord cell apoptosis due to spinal cord compression plays an important role in the pathology of myelopathy. Although changes in magnetic resonance imaging (MRI) T2 signal intensity ratio (SIR) are considered to be an indicator of CSM, little information is published supporting the correlation between changes in MRI signal and pathological changes. This study aims to testify the correlation between MRI T2 SIR changes and cell apoptosis using a CSM animal model. Forty-eight rabbits were randomly assigned to four groups: one control group and three experimental chronic compression groups, with each group containing 12 animals. Chronic compression of the cervical spinal cord was implemented in the experimental groups by implanting a screw in the C3 vertebra. The control group underwent sham surgery. Experimental groups were observed for 3, 6, or 9 months after surgery. MRI T2-weighted SIR Tarlov motor scores and cortical somatosensory-evoked potentials (CSEPs) were periodically monitored. At each time point, rabbits from one group were sacrificed to determine the level of apoptosis by histology (n = 6) and Western blotting (n = 6). Tarlov motor scores in the compression groups were lower at all time points than the control group scores, with the lowest score at 9 months (P < 0.001). Electrophysiological testing showed a significantly prolonged latency in CSEP in the compression groups compared with the control group. All rabbits in the compression groups showed higher MRI T2 SIR in the injury epicenter compared with controls, and higher SIR was also found at 9 months compared with 3 or 6 months. Histological analysis showed significant apoptosis in the spinal cord tissue in the compression groups, but not in the control group. There were significant differences in apoptosis degree over time (P < 0.001), with the 9-month group displaying the most severe spinal cord apoptosis. Spearman's rank correlation test showed that there was close relation between MRI SIR and degree of caspase-3 expression in Western blotting (r = 0.824. P < 0.001). Clear apoptosis of spinal cord tissue was observed during chronic focal spinal compression. Changes in MRI T2 SIR may be related to the severity of the apoptosis in cervical spinal cord.
A photovoltaic-driven and energy-autonomous CMOS implantable sensor.
Ayazian, Sahar; Akhavan, Vahid A; Soenen, Eric; Hassibi, Arjang
2012-08-01
An energy-autonomous, photovoltaic (PV)-driven and MRI-compatible CMOS implantable sensor is presented. On-chip P+/N-well diode arrays are used as CMOS-compatible PV cells to harvest μW's of power from the light that penetrates into the tissue. In this 2.5 mm × 2.5 mm sub-μW integrated system, the in-vivo physiological signals are first measured by using a subthreshold ring oscillator-based sensor, the acquired data is then modulated into a frequency-shift keying (FSK) signal, and finally transmitted neuromorphically to the skin surface by using a pair of polarized electrodes.
Barriers to early cochlear implantation.
Dettman, Shani; Choo, Dawn; Dowell, Richard
2016-01-01
Identify variables associated with paediatric access to cochlear implants (CIs). Part 1. Trends over time for age at CI surgery (N = 802) and age at hearing aid (HA) fitting (n = 487) were examined with regard to periods before, during, and after newborn hearing screening (NHS). Part 2. Demographic factors were explored for 417 children implanted under 3 years of age. Part 3. Pre-implant steps for the first 20 children to receive CIs under 12 months were examined. Part 1. Age at HA fitting and CI surgery reduced over time, and were associated with NHS implementation. Part 2. For children implanted under 3 years, earlier age at HA fitting and higher family socio-economic status were associated with earlier CI. Progressive hearing loss was associated with later CIs. Children with a Connexin 26 diagnosis received CIs earlier than children with a premature / low birth weight history. Part 3. The longest pre-CI steps were Step 1: Birth to diagnosis/identification of hearing loss (mean 16.43 weeks), and Step 11: MRI scans to implant surgery (mean 15.05 weeks) for the first 20 infants with CIs under 12 months. NHS implementation was associated with reductions in age at device intervention in this cohort.
NASA Astrophysics Data System (ADS)
Eggers, Georg; Cosgarea, Raluca; Rieker, Marcus; Kress, Bodo; Dickhaus, Hartmut; Mühling, Joachim
2009-02-01
An oral imaging template was developed to address the shortcomings of MR image data for image guided dental implant planning and placement. The template was conctructed as a gadolinium filled plastic shell to give contrast to the dentition and also to be accurately re-attachable for use in image guided dental implant placement. The result of segmentation and modelling of the dentition from MR Image data with the template was compared to plaster casts of the dentition. In a phantom study dental implant placement was performed based on MR image data. MR imaging with the contrast template allowed complete representation of the existing dentition. In the phantom study, a commercially available system for image guided dental implant placement was used. Transformation of the imaging contrast template into a surgical drill guide based on the MR image data resulted in pilot burr hole placement with an accuracy of 2 mm. MRI based imaging of the existing dentition for proper image guided planning is possible with the proposed template. Using the image data and the template resulted in less accurate pilot burr hole placement in comparison to CT-based image guided implant placement.
Image segmentation and 3D visualization for MRI mammography
NASA Astrophysics Data System (ADS)
Li, Lihua; Chu, Yong; Salem, Angela F.; Clark, Robert A.
2002-05-01
MRI mammography has a number of advantages, including the tomographic, and therefore three-dimensional (3-D) nature, of the images. It allows the application of MRI mammography to breasts with dense tissue, post operative scarring, and silicon implants. However, due to the vast quantity of images and subtlety of difference in MR sequence, there is a need for reliable computer diagnosis to reduce the radiologist's workload. The purpose of this work was to develop automatic breast/tissue segmentation and visualization algorithms to aid physicians in detecting and observing abnormalities in breast. Two segmentation algorithms were developed: one for breast segmentation, the other for glandular tissue segmentation. In breast segmentation, the MRI image is first segmented using an adaptive growing clustering method. Two tracing algorithms were then developed to refine the breast air and chest wall boundaries of breast. The glandular tissue segmentation was performed using an adaptive thresholding method, in which the threshold value was spatially adaptive using a sliding window. The 3D visualization of the segmented 2D slices of MRI mammography was implemented under IDL environment. The breast and glandular tissue rendering, slicing and animation were displayed.
Multicontrast multiecho FLASH MRI for targeting the subthalamic nucleus.
Xiao, Yiming; Beriault, Silvain; Pike, G Bruce; Collins, D Louis
2012-06-01
The subthalamic nucleus (STN) is one of the most common stimulation targets for treating Parkinson's disease using deep brain stimulation (DBS). This procedure requires precise placement of the stimulating electrode. Common practice of DBS implantation utilizes microelectrode recording to locate the sites with the correct electrical response after an initial location estimate based on a universal human brain atlas that is linearly scaled to the patient's anatomy as seen on the preoperative images. However, this often results in prolonged surgical time and possible surgical complications since the small-sized STN is difficult to visualize on conventional magnetic resonance (MR) images and its intersubject variability is not sufficiently considered in the atlas customization. This paper proposes a multicontrast, multiecho MR imaging (MRI) method that directly delineates the STN and other basal ganglia structures through five co-registered image contrasts (T1-weighted navigation image, R2 map, susceptibility-weighted imaging (phase, magnitude and fusion image)) obtained within a clinically acceptable time. The image protocol was optimized through both simulation and in vivo experiments to obtain the best image quality. Taking advantage of the multiple echoes and high readout bandwidths, no interimage registration is required since all images are produced in one acquisition, and image distortion and chemical shift are reduced. This MRI protocol is expected to mitigate some of the shortcomings of the state-of-the-art DBS implantation methods. Copyright © 2012 Elsevier Inc. All rights reserved.
Zhang, Chi; Cai, You-Zhi; Lin, Xiang-Jin
2016-05-01
A literature review of the first-, second- and third-generation autologous chondrocyte implantation (ACI) technique for the treatment of large-sized (>4 cm(2)) and full-thickness knee cartilage defects in young adults was conducted, examining the current literature on features, clinical scores, complications, magnetic resonance image (MRI) and histological outcomes, rehabilitation and cost-effectiveness. A literature review was carried out in the main medical databases to evaluate the several studies concerning ACI treatment of large-sized and full-thickness knee cartilage defects in young adults. ACI technique has been shown to relieve symptoms and improve functional assessment in large-sized (>4 cm(2)) and full-thickness knee articular cartilage defect of young adults in short- and medium-term follow-up. Besides, low level of evidence demonstrated its efficiency and durability at long-term follow-up after implantation. Furthermore, MRI and histological evaluations provided the evidence that graft can return back to the previous nearly normal cartilage via ACI techniques. Clinical outcomes tend to be similar in different ACI techniques, but with simplified procedure, low complication rate and better graft quality in the third-generation ACI technique. ACI based on the experience of cell-based therapy, with the high potential to regenerate hyaline-like tissue, represents clinical development in treatment of large-sized and full-thickness knee cartilage defects. IV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zoberi, J.
Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR ismore » U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.« less
Cochlear Patency After Transmastoid Labyrinthectomy for Ménière's Syndrome.
Sargent, Eric W; Liao, Eric; Gonda, Roger L
2016-08-01
Labyrinthectomy is considered the "gold standard" in the treatment of intractable vertigo attacks because of Ménière's Disease (MD) but sacrifices all residual hearing. Interest in auditory rehabilitation has lead to cochlear implantation in some patients. Concern remains that the cochlear lumen may fill with tissue or bone after surgery. This study sought to determine the incidence of obliteration of the cochlea after transmastoid labyrinthectomy. Retrospective observational study. Tertiary referral center. Eighteen patients with intractable vertigo from MD who underwent surgery. Transmastoid labyrinthectomy between 2008 and 2013. Cochleas were imaged with unenhanced, heavily T2-weighted magnetic resonance imaging (MRI). Presence of symmetrical cochlear fluid signals on MRI. There was no loss of fluid signal in the cochleas of operated ear compared with the contralateral, unoperated ear in any subject an average of 3 years (standard deviation [SD]: 1.2) after surgery. Five of 18 patients had the vestibule blocked with bone wax at the time of surgery. Blocking the vestibule with bone wax did not change the cochlear fluid signal. The risk of cochlear obstruction after labyrinthectomy for MD is very low. The significance of this finding is that patients with MD who undergo labyrinthectomy will likely remain candidates for cochlear implantation in the labyrinthectomized ear long after surgery if this becomes needed. Immediate cochlear implantation or placement of a cochlear lumen keeper during labyrinthectomy for MD is probably not necessary.
Breast MRI: EUSOBI recommendations for women's information.
Mann, Ritse M; Balleyguier, Corinne; Baltzer, Pascal A; Bick, Ulrich; Colin, Catherine; Cornford, Eleanor; Evans, Andrew; Fallenberg, Eva; Forrai, Gabor; Fuchsjäger, Michael H; Gilbert, Fiona J; Helbich, Thomas H; Heywang-Köbrunner, Sylvia H; Camps-Herrero, Julia; Kuhl, Christiane K; Martincich, Laura; Pediconi, Federica; Panizza, Pietro; Pina, Luis J; Pijnappel, Ruud M; Pinker-Domenig, Katja; Skaane, Per; Sardanelli, Francesco
2015-12-01
This paper summarizes information about breast MRI to be provided to women and referring physicians. After listing contraindications, procedure details are described, stressing the need for correct scheduling and not moving during the examination. The structured report including BI-RADS® categories and further actions after a breast MRI examination are discussed. Breast MRI is a very sensitive modality, significantly improving screening in high-risk women. It also has a role in clinical diagnosis, problem solving, and staging, impacting on patient management. However, it is not a perfect test, and occasionally breast cancers can be missed. Therefore, clinical and other imaging findings (from mammography/ultrasound) should also be considered. Conversely, MRI may detect lesions not visible on other imaging modalities turning out to be benign (false positives). These risks should be discussed with women before a breast MRI is requested/performed. Because breast MRI drawbacks depend upon the indication for the examination, basic information for the most important breast MRI indications is presented. Seventeen notes and five frequently asked questions formulated for use as direct communication to women are provided. The text was reviewed by Europa Donna-The European Breast Cancer Coalition to ensure that it can be easily understood by women undergoing MRI. • Information on breast MRI concerns advantages/disadvantages and preparation to the examination • Claustrophobia, implantable devices, allergic predisposition, and renal function should be checked • Before menopause, scheduling on day 7-14 of the cycle is preferred • During the examination, it is highly important that the patient keeps still • Availability of prior examinations improves accuracy of breast MRI interpretation.
AlSabaani, Nasser A.; Behrens, Ashley; Jastanieah, Sabah; Al Malki, Salem; Al Jindan, Mohanna; Al Motowa, Saeed
2016-01-01
PURPOSE: The purpose of this study is to evaluate the causes of phakic implantable collamer lens (ICL) explantation/exchange at an eye hospital in Saudi Arabia. MATERIALS AND METHODS: A retrospective chart review was performed for patients who underwent ICL implantation from 2007 to March 2014 and data were collected on cases that underwent ICL explantation. RESULTS: Of the 787 ICL implants, 30 implants (3.8% [95% confidence interval 2.6%; 5.3%]) were explanted. The causes of explantation included incorrect lens size (22), cataract (4), high residual astigmatism (2), rhegmatogenous retinal detachment (1), and intolerable glare (1). Corrective measures mainly included an exchange with an appropriately sized lens (9), ICL explantation (11), with phacoemulsification and posterior chamber intraocular lens implantation (6), or replacement with an ICL of correct power (2). CONCLUSION: Incorrect ICL size was the most common cause of ICL explantation. More accurate sizing methods for ICL are required to reduce the explantation/exchange rate. PMID:27994391
Lim, Lynne H Y
2008-12-01
The objective is to describe the multidisciplinary management programme at the National University Hospital (NUH) in Singapore for children with hearing impairment (HI). Over 99.95% of babies born at NUH have hearing tested with both otoacoustic emission and automated auditory brainstem response tests by 6 weeks of age. The referral rate to Otolaryngology is 0.5%. Acquired causes of congenital HI are decreasing. Thirty percent of patients at NUH with idiopathic congenital sensorineural HI have DFNB1/ GJB6 Connexin 26 HI. CT scan or MRI imaging has a higher diagnostic yield when there is unilateral, fluctuating or non-Connexin 26 related HI. Routine electrocardiogram and Opthalmology evaluations will exclude associations of fatal cardiac rhythm anomaly and retinopathy. Other investigations are directed by history and clinical examination. There is now a very wide range of increasingly sophisticated medication, neuro-otologic external, middle and inner ear surgery, hearing aids, middle ear implants and cochlear implants available to improve hearing. A multidisciplinary team from neonatology, paediatrics, otolaryngology, audiology, auditory verbal and speech therapy, ophthalmology, radiology, and psychology working closely with the child, family and schools is needed to develop a cost-effective and comprehensive management programme for paediatric HI.
Perdisa, Francesco; Filardo, Giuseppe; Sessa, Andrea; Busacca, Maurizio; Zaffagnini, Stefano; Marcacci, Maurilio; Kon, Elizaveta
2017-06-01
The treatment of symptomatic cartilage defects of the patella is particularly challenging, and no gold standard is currently available. To evaluate the clinical results of a biphasic cell-free collagen-hydroxyapatite scaffold and to evaluate osteochondral tissue regeneration with magnetic resonance imaging (MRI). Case series; Level of evidence, 4. Thirty-four patients (18 men and 16 women; mean ± SD: age, 30.0 ± 10 years) were treated by scaffold implantation for knee chondral or osteochondral lesions of the patella (area, 2.1 ± 1 cm 2 ). The clinical evaluation was performed prospectively at 12 and 24 months via the IKDC (International Knee Documentation Committee; objective and subjective) and Tegner scores. MRI evaluation was performed at both follow-ups in 18 lesions through the MOCART score (magnetic resonance observation of cartilage repair tissue) and specific subchondral bone parameters. A statistically significant improvement in all the scores was observed at 12- and 24-month follow-up as compared with the basal evaluation. The IKDC subjective score improved from 39.5 ± 14.5 to 61.9 ± 14.5 at 12 months ( P > .0005) with a further increase to 67.6 ± 17.4 at 24 months of follow-up (12-24 months, P = .020). The MRI evaluation showed a stable value of the MOCART score between 12 and 24 months, with a complete filling of the cartilage in 87.0% of the lesions, complete integration of the graft in 95.7%, and intact repair tissue surface in 69.6% at final follow-up. The presence of osteophytes or more extensive bony overgrowth was documented in 47.8% of the patients of this series, but no correlation was found between MRI findings and clinical outcome. The implantation of a cell-free collagen-hydroxyapatite osteochondral scaffold provided a clinical improvement at short-term follow-up for the treatment of patellar cartilage defects. Women had lower outcomes, and the need for realignment procedures led to a slower recovery. MRI evaluation showed some abnormal findings with the presence of bone overgrowth, but no correlation has been found with the clinical outcome.
The accuracy of ultrashort echo time MRI sequences for medical additive manufacturing.
van Eijnatten, Maureen; Rijkhorst, Erik-Jan; Hofman, Mark; Forouzanfar, Tymour; Wolff, Jan
2016-01-01
Additively manufactured bone models, implants and drill guides are becoming increasingly popular amongst maxillofacial surgeons and dentists. To date, such constructs are commonly manufactured using CT technology that induces ionizing radiation. Recently, ultrashort echo time (UTE) MRI sequences have been developed that allow radiation-free imaging of facial bones. The aim of the present study was to assess the feasibility of UTE MRI sequences for medical additive manufacturing (AM). Three morphologically different dry human mandibles were scanned using a CT and MRI scanner. Additionally, optical scans of all three mandibles were made to acquire a "gold standard". All CT and MRI scans were converted into Standard Tessellation Language (STL) models and geometrically compared with the gold standard. To quantify the accuracy of the AM process, the CT, MRI and gold-standard STL models of one of the mandibles were additively manufactured, optically scanned and compared with the original gold-standard STL model. Geometric differences between all three CT-derived STL models and the gold standard were <1.0 mm. All three MRI-derived STL models generally presented deviations <1.5 mm in the symphyseal and mandibular area. The AM process introduced minor deviations of <0.5 mm. This study demonstrates that MRI using UTE sequences is a feasible alternative to CT in generating STL models of the mandible and would therefore be suitable for surgical planning and AM. Further in vivo studies are necessary to assess the usability of UTE MRI sequences in clinical settings.
The clinical implications of poly implant prothèse breast implants: an overview.
Wazir, Umar; Kasem, Abdul; Mokbel, Kefah
2015-01-01
Mammary implants marketed by Poly Implant Prothèse (PIP) were found to contain industrial grade silicone and this caused heightened anxiety and extensive publicity regarding their safety in humans. These implants were used in a large number of patients worldwide for augmentation or breast reconstruction. We reviewed articles identified by searches of Medline, PubMed, Embase, and Google Scholar databases up to May 2014 using the terms: "PIP", "Poly Implant Prothèse", "breast implants" and "augmentation mammoplasty" "siloxanes" or "silicone". In addition the websites of regulating bodies in Europe, USA, and Australia were searched for reports related to PIP mammary implants. PIP mammary implants are more likely to rupture than other implants and can cause adverse effects in the short to the medium term related to the symptoms of rupture such as pain, lumps in the breast and axilla and anxiety. Based on peer-reviewed published studies we have calculated an overall rupture rate of 14.5% (383/2,635) for PIP implants. However, there is no evidence that PIP implant rupture causes long-term adverse health effects in humans so far. Silicone lymphadenopathy represents a foreign body reaction and should be treated conservatively. The long-term adverse effects usually arise from inappropriate extensive surgery, such as axillary lymph node dissection or extensive resection of breast tissue due to silicone leakage.
The Clinical Implications of Poly Implant Prothèse Breast Implants: An Overview
Wazir, Umar; Kasem, Abdul
2015-01-01
Mammary implants marketed by Poly Implant Prothèse (PIP) were found to contain industrial grade silicone and this caused heightened anxiety and extensive publicity regarding their safety in humans. These implants were used in a large number of patients worldwide for augmentation or breast reconstruction. We reviewed articles identified by searches of Medline, PubMed, Embase, and Google Scholar databases up to May 2014 using the terms: "PIP", "Poly Implant Prothèse", "breast implants" and "augmentation mammoplasty" "siloxanes" or "silicone". In addition the websites of regulating bodies in Europe, USA, and Australia were searched for reports related to PIP mammary implants. PIP mammary implants are more likely to rupture than other implants and can cause adverse effects in the short to the medium term related to the symptoms of rupture such as pain, lumps in the breast and axilla and anxiety. Based on peer-reviewed published studies we have calculated an overall rupture rate of 14.5% (383/2,635) for PIP implants. However, there is no evidence that PIP implant rupture causes long-term adverse health effects in humans so far. Silicone lymphadenopathy represents a foreign body reaction and should be treated conservatively. The long-term adverse effects usually arise from inappropriate extensive surgery, such as axillary lymph node dissection or extensive resection of breast tissue due to silicone leakage. PMID:25606483
Koutsomanis, A; Bruant-Rodier, C; Roedlich, M-N; Bretz-Grenier, M-F; Perrot, P; Bodin, F
2015-12-01
We report the case of a 57-year-old patient who presented radiological images similar to ruptured breast implants one year after the supposed withdrawal of the latter. This woman had benefited for the first time from cosmetic PIP breast implants in 2000. Early in 2014, she requested the removal of the implants without renewal because she was feeling pain and functional discomfort. A few months after the operation, she consulted for breast swelling in the upper pole of the breast. Radiological assessment showed liquid formations compatible with the presence of implants. At our request, the rereading of the MRI by the radiologist definitively concluded on a bilateral seroma within the persistent fibrous capsule. In the absence of symptoms, clinical monitoring had been decided. But at the recrudescence of anaplastic large cell lymphoma cases associated with breast implants, a cytological sampling was intended. In case of cytological abnormality or recurrence of the seroma, a surgical procedure should be performed. In conclusion, the removal of a breast implant without capsulectomy may result in the formation of a seroma whose images resemble those of an implant. It is always worthwhile to provide precise clinical data to the radiologist in order to help him to make informed interpretations. Every serous effusion in a breast lodge having contained a silicone implant must evoke the diagnosis of anaplastic large cell lymphoma. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
MRI-tracking of transplanted human ASC in a SCID mouse model
NASA Astrophysics Data System (ADS)
Siegmund, Birte J.; Kasten, Annika; Kühn, Jens-Peter; Winter, Karsten; Grüttner, Cordula; Frerich, Bernhard
2017-04-01
Additional Prussian blue stain showed iron in all implants. Significant differences between the three groups (significance level p<0.017) were found after twelve days between control group and group 3 (p=0.008) and after 28 days between control group and group 2 and 3 (p=0.011).
Osteochondritis Dessicans- Primary Fixation using Bioabsorbable Implants
Galagali, Anand; Rao, Muralidhar
2012-01-01
Introduction: Osteochondritis dessicans (OCD) is a localized condition where a section of articular cartilage and underlying subchondral bone separate from the joint surface. It is important to diagnose unstable OCD early and fix the fragments primarily as the results of any surgical management at late presentations are guarded. Use of bioabsorbable implants for fixing OCD is recent and we report one such case in grade IV OCD. Case Report: We present a 14 year old girl who came with a history of acute pain, swelling, inability to bear weight on the right knee following a dance practice. MRI showed stage IV osteochondral fragment measuring 20x 8mm lying free. This was primarily fixed with bioabsorbable implants. 10 months follow up showed excellent clinical and functional results. Conclusion: This case highlights the advantages of early primary fixation whenever possible. By far, to our knowledge, this is the first case of successful treatment of stage IV OCD using bioabsorbable implants. PMID:27298854
Stereoscopic Analysis of Silicone Breast Implant Shells Damaged by Surgical Instruments.
Rapp, Derek A; Neaman, Keith C; Hammond, Dennis C
2015-07-01
Iatrogenic shell injury during the implantation and explantation of silicone gel breast implants may lead to eventual device failure. Identification of the patterns of injury caused by surgical instruments is important when attempting to characterize the cause of shell rupture. Understanding the true causes of device failure may help with its prevention. The purpose of this study was to microscopically characterize patterns of shell injury induced by various surgical instruments. Textured and smooth silicone gel implants were intentionally damaged with a variety of surgical instruments. Various scalpels and surgical scissors ranging in fineness were used to create full-thickness injuries in the implant shell. Optical microscopy and scanning electron microscopy were then used to image the injured area to determine patterns of injury. Full-thickness striations across the thickness of the shell could be seen with damage caused by scissors. The density of these striations correlated directly with the fineness of scissors used. No striations were seen with injuries caused by scalpels. Striations were only observed in injuries caused by scissors and suture needles. Striation density correlated with the coarseness of the cutting edge. No such striations were seen in shells damaged by a scalpel even when the angle of approach was changed. This difference can be of assistance in distinguishing between scissors versus scalpel injury of an implant shell.
Multiparametric imaging with heterogeneous radiofrequency fields
NASA Astrophysics Data System (ADS)
Cloos, Martijn A.; Knoll, Florian; Zhao, Tiejun; Block, Kai T.; Bruno, Mary; Wiggins, Graham C.; Sodickson, Daniel K.
2016-08-01
Magnetic resonance imaging (MRI) has become an unrivalled medical diagnostic technique able to map tissue anatomy and physiology non-invasively. MRI measurements are meticulously engineered to control experimental conditions across the sample. However, residual radiofrequency (RF) field inhomogeneities are often unavoidable, leading to artefacts that degrade the diagnostic and scientific value of the images. Here we show that, paradoxically, these artefacts can be eliminated by deliberately interweaving freely varying heterogeneous RF fields into a magnetic resonance fingerprinting data-acquisition process. Observations made based on simulations are experimentally confirmed at 7 Tesla (T), and the clinical implications of this new paradigm are illustrated with in vivo measurements near an orthopaedic implant at 3T. These results show that it is possible to perform quantitative multiparametric imaging with heterogeneous RF fields, and to liberate MRI from the traditional struggle for control over the RF field uniformity.
Fetal tracheolaryngeal airway obstruction: prenatal evaluation by sonography and MRI
Courtier, Jesse; Poder, Liina; Wang, Zhen J.; Westphalen, Antonio C.; Yeh, Benjamin M.
2010-01-01
We reviewed the sonographic and MRI findings of tracheolaryngeal obstruction in the fetus. Conditions that can cause tracheolaryngeal obstruction include extrinsic causes such as lymphatic malformation, cervical teratoma and vascular rings and intrinsic causes such as congenital high airway obstruction syndrome (CHAOS). Accurate distinction of these conditions by sonography or MRI can help facilitate parental counseling and management, including the decision to utilize the ex utero intrapartum treatment (EXIT) procedure. PMID:20737145
Moradi, Babak; Schönit, Eva; Nierhoff, Corinna; Hagmann, Sébastien; Oberle, Doris; Gotterbarm, Tobias; Schmitt, Holger; Zeifang, Felix
2012-12-01
The purpose of this study was to evaluate the overall long-term improvement of autologous chondrocyte implantation (ACI) treatment in terms of patient satisfaction, clinical assessment, and magnetic resonance imaging (MRI) evaluation. Furthermore, we aimed to assess the impact of independent variables on clinical outcomes and patient satisfaction. We evaluated 23 patients (mean age, 30.5 ± 8.2 years) with full-thickness chondral lesions of the distal femur who underwent first-generation ACI with periosteum between 1997 and 2004. The Lysholm score, Tegner activity score, subjective International Knee Documentation Committee score, numeric rating scale score, and Short Form 36 score were used for clinical assessment preoperatively, at 1 year postoperatively, and at 7 to 14 years (mean, 9.9 years) after surgery. MRI was performed to evaluate the cartilage preoperatively and at final follow-up, by use of the Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score. ACI resulted in a substantial improvement in all clinical outcome parameters, even as much as 14 years after implantation, although a small deterioration was noticed between intermediate and final evaluations in some outcome parameters. Of the patients, 73.1% stated that they would undergo the operation again. Younger patients with a shorter duration of preoperative symptoms and smaller defect sizes benefited most. MRI findings confirmed complete defect filling in 52.3% of the patients at final follow-up. Our long-term results confirm that first-generation ACI is an effective treatment for large full-thickness chondral and osteochondral lesions of the knee joint. Younger patients with a shorter duration of preoperative symptoms and smaller defect size benefited most in our study. Level IV, therapeutic case series. Copyright © 2012 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Biophysics of cochlear implant/MRI interactions emphasizing bone biomechanical properties.
Sonnenburg, Robert E; Wackym, Phillip A; Yoganandan, Narayan; Firszt, Jill B; Prost, Robert W; Pintar, Frank A
2002-10-01
The forces exerted during a 1.5-Tesla MRI evaluation on the internal magnet of a cochlear implant (CI) raise concern about the safety for CI recipients. This study determines the magnitude of force required to fracture the floor of a CI receiver bed. Recessed CI beds were drilled to maximum uniform thinness into formalin-fixed and fresh-frozen human calvaria specimens. A Med-El stainless steel CI template mounted to the piston of an electrohydraulic testing device was used to fracture the floor of the implant beds. Force and displacement were measured as a function of time using a digital data acquisition system. Mean force to first failure, displacement to first failure, and minimum thickness, respectively, were: group 1 (formalin-fixed, 0.3-0.4-mm thick [n = 22]), 34.08 N (8.21-59.64 N, standard deviation [SD] 15.41 N), 1.09 mm (0.40-2.16 mm, SD 0.51 mm), 0.36 mm (0.3-0.4 mm, SD 0.05 mm); group 2 (formalin-fixed, 0.5-0.9 mm thick [n = 21]), 52.82 N (20.28-135.53 N, SD 25.29 N), 1.08 mm (0.50-2.28 mm, SD 0.47 mm), 0.58 mm (0.5-0.9 mm, SD 0.12 mm); group 3 (fresh-frozen [n = 9]), 134.13 N (86.44-190.70 N, SD 34.92 N), 1.96 mm (1.47-2.46 mm, SD 0.35 mm), 0.42 mm (0.3-0.6 mm, SD 0.11 mm). The mean magnitude of force required to fracture the floor of a CI bed is significantly greater than those that are generated when a Med-El Combi 40+, CII Bionic Ear CI, or Nucleus Contour CI is placed into a 1.5-Tesla MRI unit.
Synthetic and biogenic magnetite nanoparticles for tracking of stem cells and dendritic cells
NASA Astrophysics Data System (ADS)
Schwarz, Sebastian; Fernandes, Fabiana; Sanroman, Laura; Hodenius, Michael; Lang, Claus; Himmelreich, Uwe; Schmitz-Rode, Thomas; Schueler, Dirk; Hoehn, Mathias; Zenke, Martin; Hieronymus, Thomas
2009-05-01
Accurate delivery of cells to target organs is critical for success of cell-based therapies with stem cells or immune cells such as antigen-presenting dendritic cells (DC). Labeling with contrast agents before implantation provides a powerful means for monitoring cellular migration using magnetic resonance imaging (MRI). In this study, we investigated the uptake of fully synthesized or bacterial magnetic nanoparticles (MNPs) into hematopoietic Flt3 + stem cells and DC from mouse bone marrow. We show that (i) uptake of both synthetic and biogenic nanoparticles into cells endow magnetic activity and (ii) low numbers of MNP-loaded cells are readily detected by MRI.
Tracking stem cells in tissue-engineered organs using magnetic nanoparticles
NASA Astrophysics Data System (ADS)
Hachani, Roxanne; Lowdell, Mark; Birchall, Martin; Thanh, NguyêN. Thi Kim
2013-11-01
The use of human stem cells (SCs) in tissue engineering holds promise in revolutionising the treatment of numerous diseases. There is a pressing need to comprehend the distribution, movement and role of SCs once implanted onto scaffolds. Nanotechnology has provided a platform to investigate this through the development of inorganic magnetic nanoparticles (MNPs). MNPs can be used to label and track SCs by magnetic resonance imaging (MRI) since this clinically available imaging modality has high spatial resolution. In this review, we highlight recent applications of iron oxide and gadolinium based MNPs in SC labelling and MRI; and offer novel considerations for their future development.
Discoloration of the Peri-implant Mucosa Caused by Zirconia and Titanium Implants.
Thoma, Daniel S; Ioannidis, Alexis; Cathomen, Elena; Hämmerle, Christoph H F; Hüsler, Jürg; Jung, Ronald E
2016-01-01
The aim of the present study was to assess the discoloration of the peri-implant mucosa caused by zirconia (Zr) and titanium (Ti) dental implants with and without soft tissue grafting (STG). Zr and Ti implants were inserted in edentulous areas in pig maxillae. Spectrophotometric measurements were performed prior to and after the insertion of the implants, and following the placement of a STG on the buccal side. A significant discoloration of the mucosa was observed with a mean ΔE of 8.05 (± 2.51) (Ti) and 4.93 (± 3.18) (Zr). In conjunction with a STG, ΔE values amounted to 5.31 ± 3.50 (Ti) and 5.95 (± 3.68) (Zr). The placement of Zr implants led to less discoloration of the mucosa than Ti implants without STG.
Zuo, Chun-Guang; Liu, Xia-Jun; Wang, Xin-Hu; Wang, Jian-shun
2013-01-01
To discuss the therapeutic effects of the atlantoaxial pedicle screw system fixation in treatment of atlantoaxial instability. From June 2003 to March 2010, 32 patients with atlantoaxial instability were treated by atlantoaxial pedicle screw system fixation, included 21 males and 11 females wiht an average age of 42.5 years old ranging from 28 to 66 years. Among them, 18 cases were odontoid process fractures, 7 were congenital dissociate odontoid process, 4 were Jefferson fracture combined with odontoid fracture, 3 were rheumatic arthritis causing atlantoaxial instability. All patients suffered from the atlantoaxial subluxation and atlantoaxial instability. The JOA score ranged from 4 to 14 (means 9.1 +/- 0.3) before operation. The patients had some image examination including the X-ray of cervical vertebrae (include of dynamic position film), spiral CT 3D reconstruction and/or MRI. The position of pedicle screw system implantation,the angle of pedicle screw system implantation and screw length were measured. Operating skull traction. Operation undewent general anesthesia, implanted the pedicle screw, reduction and bone fusion under direct vision. The bone was fixated between posterior arch of atlas and lamina of axis by the lateral combination bended to posterior. One hundred and twenty-eight atlantoaxial pedicle screws were implanted in 32 patients. No patient had the injure of spinal cord, nerve root and vertebral artery. All patients were followed-up from 6 to 48 months (averaged 16 months). After operation, the JOA score ranged from 11 to 17 (averaged 15.9 +/- 0.2), improvement rate was 86.1%. The fracture of odontoid process were healing completely. All fusion bone were combinated. The internal fixation wasn't loosening and breaking. The atlantoaxial pedicle screw system fixation was effective method to treat atlantoaxial instability. The method had many advantages, such as provide rigid and short segment fixation, safe and simple, high fusion rate. The method was worth in clinical application.
NASA Astrophysics Data System (ADS)
Zhang, Lu; Wang, Yao; Tang, Yaohui; Jiao, Zheng; Xie, Chengying; Zhang, Haijiao; Gu, Ping; Wei, Xunbin; Yang, Guo-Yuan; Gu, Hongchen; Zhang, Chunfu
2013-05-01
Multifunctional probes with high MRI sensitivity and high efficiency for cell labeling are desirable for MR cell imaging. Herein, we have fabricated fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs) for neural progenitor cell (C17.2) MR imaging. FmSiO4@SPIONs were discrete and uniform in size, and had a clear core-shell structure. The magnetic core size was about 10 nm and the fluorescent mesoporous silica coating layer was around 20 nm. Compared with fluorescent dense silica-coated SPIONs (fdSiO4@SPIONs) with a similar size, fmSiO4@SPIONs demonstrated higher MR sensitivity and cell labeling efficiency. When implanted into the right hemisphere of stroke mice, contralateral to the ischemic territory, a small amount of labeled cells were able to be tracked migrating to the lesion sites using a clinical MRI scanner (3 T). More impressively, even when administered intravenously, the labeled cells could also be monitored homing to the ischemic area. MRI observations were corroborated by histological studies of the brain tissues. Our study demonstrated that fmSiO4@SPIONs are highly effective for cell imaging and hold great promise for MRI cell tracking in future.Multifunctional probes with high MRI sensitivity and high efficiency for cell labeling are desirable for MR cell imaging. Herein, we have fabricated fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs) for neural progenitor cell (C17.2) MR imaging. FmSiO4@SPIONs were discrete and uniform in size, and had a clear core-shell structure. The magnetic core size was about 10 nm and the fluorescent mesoporous silica coating layer was around 20 nm. Compared with fluorescent dense silica-coated SPIONs (fdSiO4@SPIONs) with a similar size, fmSiO4@SPIONs demonstrated higher MR sensitivity and cell labeling efficiency. When implanted into the right hemisphere of stroke mice, contralateral to the ischemic territory, a small amount of labeled cells were able to be tracked migrating to the lesion sites using a clinical MRI scanner (3 T). More impressively, even when administered intravenously, the labeled cells could also be monitored homing to the ischemic area. MRI observations were corroborated by histological studies of the brain tissues. Our study demonstrated that fmSiO4@SPIONs are highly effective for cell imaging and hold great promise for MRI cell tracking in future. Electronic supplementary information (ESI) available: Details of cell internalization of fmSiO4@SPIONs compared with SHU555A, immunofluorescence image of the immature phenotype of labeled C17.2. See DOI: 10.1039/c3nr00119a
Chilosi, A M; Scusa, M F; Comparini, A; Genovese, E; Forli, F; Berrettini, S; Cipriani, P
2012-04-01
Sensorineural hearing loss (SNHL) is complicated by additional disabilities in about 30% of cases, but the epidemiology of associated disorders, in terms of type, frequency and aetiology is still not clearly defined. Additional disabilities in a deaf child have important consequences in assessing and choosing a therapeutic treatment, in particular when considering cochlear implantation (CI) or hearing aids (HA). The aim of this paper was to evaluate frequency, type and severity of additional neurodevelopmental disabilities in children with profound bilateral sensorineural hearing loss and to investigate the relationship between disability and the etiology of deafness. Eighty children with profound bilateral sensorineural hearing loss (mean age 5.4 years) were investigated by means of a diagnostic protocol including clinical, neurodevelopmental, and audiological procedures together with genetic and neurometabolic tests and neuroradiological investigation by brain MRI. Fifty-five percent of the sample exhibited one or more disabilities in addition to deafness, with cognitive, behavioural-emotional and motor disorders being the most frequent. The risk of additional disabilities varied according to aetiology, with a higher incidence in hereditary syndromic deafness, in cases due to pre-perinatal pathology (in comparison to unknown and hereditary non syndromic forms) and in the presence of major brain abnormalities at MRI. Our results suggest that the aetiology of deafness may be a significant risk indicator for the presence of neuropsychiatric disorders. A multidimensional evaluation, including aetiological, neurodevelopmental and MRI investigation is needed for formulating prognosis and for planning therapeutic intervention, especially in those children candidated to cochlear implant.
Ben-Eliezer, Noam; Solomon, Eddy; Harel, Elad; Nevo, Nava; Frydman, Lucio
2012-12-01
An approach has been recently introduced for acquiring arbitrary 2D NMR spectra or images in a single scan, based on the use of frequency-swept RF pulses for the sequential excitation and acquisition of the spins response. This spatiotemporal-encoding (SPEN) approach enables a unique, voxel-by-voxel refocusing of all frequency shifts in the sample, for all instants throughout the data acquisition. The present study investigates the use of this full-refocusing aspect of SPEN-based imaging in the multi-shot MRI of objects, subject to sizable field inhomogeneities that complicate conventional imaging approaches. 2D MRI experiments were performed at 7 T on phantoms and on mice in vivo, focusing on imaging in proximity to metallic objects. Fully refocused SPEN-based spin echo imaging sequences were implemented, using both Cartesian and back-projection trajectories, and compared with k-space encoded spin echo imaging schemes collected on identical samples under equal bandwidths and acquisition timing conditions. In all cases assayed, the fully refocused spatiotemporally encoded experiments evidenced a ca. 50 % reduction in signal dephasing in the proximity of the metal, as compared to analogous results stemming from the k-space encoded spin echo counterparts. The results in this study suggest that SPEN-based acquisition schemes carry the potential to overcome strong field inhomogeneities, of the kind that currently preclude high-field, high-resolution tissue characterizations in the neighborhood of metallic implants.
Technological Advances in Deep Brain Stimulation.
Ughratdar, Ismail; Samuel, Michael; Ashkan, Keyoumars
2015-01-01
Functional and stereotactic neurosurgery has always been regarded as a subspecialty based on and driven by technological advances. However until recently, the fundamentals of deep brain stimulation (DBS) hardware and software design had largely remained stagnant since its inception almost three decades ago. Recent improved understanding of disease processes in movement disorders as well clinician and patient demands has resulted in new avenues of development for DBS technology. This review describes new advances both related to hardware and software for neuromodulation. New electrode designs with segmented contacts now enable sophisticated shaping and sculpting of the field of stimulation, potentially allowing multi-target stimulation and avoidance of side effects. To avoid lengthy programming sessions utilising multiple lead contacts, new user-friendly software allows for computational modelling and individualised directed programming. Therapy delivery is being improved with the next generation of smaller profile, longer-lasting, re-chargeable implantable pulse generators (IPGs). These include IPGs capable of delivering constant current stimulation or personalised closed-loop adaptive stimulation. Post-implantation Magnetic Resonance Imaging (MRI) has long been an issue which has been partially overcome with 'MRI conditional devices' and has enabled verification of DBS lead location. Surgical technique is considering a shift from frame-based to frameless stereotaxy or greater role for robot assisted implantation. The challenge for these contemporary techniques however, will be in demonstrating equivalent safety and accuracy to conventional methods. We also discuss potential future direction utilising wireless technology allowing for miniaturisation of hardware.
MO-B-BRC-01: Introduction [Brachytherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prisciandaro, J.
2016-06-15
Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR ismore » U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.« less
MO-B-BRC-00: Prostate HDR Treatment Planning - Considering Different Imaging Modalities
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2016-06-15
Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR ismore » U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.« less
MO-B-BRC-02: Ultrasound Based Prostate HDR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Z.
2016-06-15
Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR ismore » U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.« less
Woischneck, Dieter; Kapapa, Thomas
2017-02-01
The predictive quality of intracranial pressure (ICP) monitoring has for many years been a matter of debate. We correlate ICP data comparing MRI data with the outcome after severe traumatic brain injury to evaluate their prognostic potency. This study compares the results of ICP monitoring, MRI, coma duration and outcome according to Glasgow Outcome Scale obtained in 32 patients having suffered severe TBI. Level of significance was set to p≤0.05 in statistical tests. The MRI results were closely correlated with coma duration and Glasgow Outcome Scale, but the ICP measurements were not. With the exception of severe, bipontine lesions, there is no other region of the brain in which increased evidence of traumatogenic lesions emerges as the intracranial pressure rises. Just bipontine lesions that proof to be infaust correlate with elevated ICP values. ICP monitoring does not allow individual prognostic conclusions to be made. Implantation of an intracranial pressure sensor alone for making a prognostic estimate is not advisable. The use of intracranial pressure measurements in the retrospective appraisal of disease progress is highly problematic. However, MRI diagnostic in patients with severe TBI improves prognostic potency of clinical parameters. Copyright © 2016 Elsevier Inc. All rights reserved.
Temperature measurement on neurological pulse generators during MR scans
Kainz, Wolfgang; Neubauer, Georg; Überbacher, Richard; Alesch, François; Chan, Dulciana Dias
2002-01-01
According to manufacturers of both magnetic resonance imaging (MRI) machines, and implantable neurological pulse generators (IPGs), MRI is contraindicated for patients with IPGs. A major argument for this restriction is the risk to induce heat in the leads due to the electromagnetic field, which could be dangerous for the surrounding brain parenchyma. The temperature change on the surface of the case of an ITREL-III (Medtronic Inc., Minneapolis, MN) and the lead tip during MRI was determined. An anatomical realistic and a cubic phantom, filled with phantom material mimicking human tissue, and a typical lead configuration were used to imitate a patient who carries an IPG for deep brain stimulation. The measurements were performed in a 1.5 T and a 3.0 T MRI. 2.1°C temperature increases at the lead tip uncovered the lead tip as the most critical part concerning heating problems in IPGs. Temperature increases in other locations were low compared to the one at the lead tip. The measured temperature increase of 2.1°C can not be considered as harmful to the patient. Comparison with the results of other studies revealed the avoidance of loops as a practical method to reduce heating during MRI procedures. PMID:12437766
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Tze Yee
Purpose: For postimplant dosimetric assessment, computed tomography (CT) is commonly used to identify prostate brachytherapy seeds, at the expense of accurate anatomical contouring. Magnetic resonance imaging (MRI) is superior to CT for anatomical delineation, but identification of the negative-contrast seeds is challenging. Positive-contrast MRI markers were proposed to replace spacers to assist seed localization on MRI images. Visualization of these markers under varying scan parameters was investigated. Methods: To simulate a clinical scenario, a prostate phantom was implanted with 66 markers and 86 seeds, and imaged on a 3.0T MRI scanner using a 3D fast radiofrequency-spoiled gradient recalled echo acquisitionmore » with various combinations of scan parameters. Scan parameters, including flip angle, number of excitations, bandwidth, field-of-view, slice thickness, and encoding steps were systematically varied to study their effects on signal, noise, scan time, image resolution, and artifacts. Results: The effects of pulse sequence parameter selection on the marker signal strength and image noise were characterized. The authors also examined the tradeoff between signal-to-noise ratio, scan time, and image artifacts, such as the wraparound artifact, susceptibility artifact, chemical shift artifact, and partial volume averaging artifact. Given reasonable scan time and managable artifacts, the authors recommended scan parameter combinations that can provide robust visualization of the MRI markers. Conclusions: The recommended MRI pulse sequence protocol allows for consistent visualization of the markers to assist seed localization, potentially enabling MRI-only prostate postimplant dosimetry.« less
The accuracy of ultrashort echo time MRI sequences for medical additive manufacturing
Rijkhorst, Erik-Jan; Hofman, Mark; Forouzanfar, Tymour; Wolff, Jan
2016-01-01
Objectives: Additively manufactured bone models, implants and drill guides are becoming increasingly popular amongst maxillofacial surgeons and dentists. To date, such constructs are commonly manufactured using CT technology that induces ionizing radiation. Recently, ultrashort echo time (UTE) MRI sequences have been developed that allow radiation-free imaging of facial bones. The aim of the present study was to assess the feasibility of UTE MRI sequences for medical additive manufacturing (AM). Methods: Three morphologically different dry human mandibles were scanned using a CT and MRI scanner. Additionally, optical scans of all three mandibles were made to acquire a “gold standard”. All CT and MRI scans were converted into Standard Tessellation Language (STL) models and geometrically compared with the gold standard. To quantify the accuracy of the AM process, the CT, MRI and gold-standard STL models of one of the mandibles were additively manufactured, optically scanned and compared with the original gold-standard STL model. Results: Geometric differences between all three CT-derived STL models and the gold standard were <1.0 mm. All three MRI-derived STL models generally presented deviations <1.5 mm in the symphyseal and mandibular area. The AM process introduced minor deviations of <0.5 mm. Conclusions: This study demonstrates that MRI using UTE sequences is a feasible alternative to CT in generating STL models of the mandible and would therefore be suitable for surgical planning and AM. Further in vivo studies are necessary to assess the usability of UTE MRI sequences in clinical settings. PMID:26943179
[Osteosynthesis in facial bones: silicon nitride ceramic as material].
Neumann, A; Unkel, C; Werry, C; Herborn, C U; Maier, H R; Ragoss, C; Jahnke, K
2006-12-01
The favorable properties of silicon nitride (Si3N4) ceramic, such as high stability and biocompatibility suggest its biomedical use as an implant material. The aim of this study was to test its suitability for osteosynthesis. A Si3N4 prototype minifixation system was manufactured and implanted for osteosynthesis of artificial frontal bone defects in three minipigs. After 3 months, histological sections, CT and MRI scans were obtained. Finite element modeling (FEM) was used to simulate stresses and strains on Si3N4 miniplates and screws to calculate survival probabilities. Si3N4 miniplates and screws showed satisfactory intraoperative workability. There was no implant loss, displacement or fracture. Bone healing was complete in all animals and formation of new bone was observed in direct contact to the implants. Si3N4 ceramic showed a good biocompatibility outcome both in vitro and in vivo. This ceramic may serve as biomaterial for osteosynthesis, e.g. of the midface including reconstruction of the floor of the orbit and the skull base. Advantages compared to titanium are no risk of implantation to bone with mucosal attachment, no need for explantation, no interference with radiological imaging.
International consensus on Vibrant Soundbridge® implantation in children and adolescents.
Cremers, Cor W R J; O'Connor, Alec Fitzgerald; Helms, Jan; Roberson, Joseph; Clarós, Pedro; Frenzel, Henning; Profant, Milan; Schmerber, Sébastien; Streitberger, Christian; Baumgartner, Wolf-Dieter; Orfila, Daniel; Pringle, Mike; Cenjor, Carlos; Giarbini, Nadia; Jiang, Dan; Snik, Ad F M
2010-11-01
Active middle ear implants augment hearing in patients with sensorineural, conductive, and mixed hearing losses with great success. However, the application of active middle ear implants has been restricted to compromised ears in adults only. Recently, active middle ear implants have been successfully implanted in patients younger than 18 years of age with all types of hearing losses. The Vibrant Soundbridge (VSB) active middle ear implant has been implanted in more than 60 children and adolescents worldwide by the end of 2008. In October 2008, experts from the field with experience in this population met to discuss VSB implantation in patients below the age of 18. A consensus meeting was organized including a presentation session of cases from worldwide centers and a discussion session in which implantation, precautions, and alternative means of hearing augmentation were discussed. At the end of the meeting, a consensus statement was written by the participating experts. The present consensus paper describes the outcomes and medical/surgical complications: the outcomes are favourable in terms of hearing thresholds, speech intelligibility in quiet and in noise, with a low incidence of intra- and postoperative complications. Taken together, the VSB offers another viable treatment for children and adolescents with compromised hearing. However, other treatment options should also be taken into consideration. The advantages and disadvantages of all possible treatment options should be weighed against each other in the light of each individual case to provide the best solution; counseling should include a.o. surgical issues and MRI compatibility. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Lerch, M; Olender, G; von der Höh, N; Thorey, F; von Lewinski, G; Meyer-Lindenberg, A; Windhagen, H; Hurschler, C
2009-01-01
Microfractures of the femoral head during implantation of the femoral components are suspected to be a cause of fractures at the implant/neck junction which represent a common failure mode in hip resurfacing arthroplasty. Callus formation observed in femoral head retrievals suggests the occurrence of microfractures inside the femoral head, which might be inadvertently caused by the surgeon during implantation. The aim of this biomechanical study was to analyse whether or not the implantation of a cementless femoral component hip resurfacing system causes microfractures in the femoral head. After the preparation of 20 paired human cadaveric femoral heads, the cementless femoral component ESKA Typ BS (ESKA Implants GmbH & Co., Lübeck) was implanted on 9 specimens with an impaction device that generates 4.5 kN impaction force. On 9 specimens the femoral component was implanted by hand. One head was used as a fracture model, 1 specimen served as control without manipulation. The femoral component used for impaction was equipped with hinges to enable its removal without further interfering with the bone stock. Specimens were scanned with a microCT device before and after impaction and the microCT datasets before and after impaction were compared to identify possible microfractures. Twenty strikes per hand or with the impaction device provided sufficient implant seating. Neither the macroscopic examination nor the 2-dimensional microCT analysis revealed any fractures of the femoral heads after impaction. At least macroscopically and in the 2-dimensional microCT analysis, implantation of the cementless hip resurfacing femoral component ESKA Typ BS with 4.5 kN or by hand does not seem to cause fractures of the femoral head. Georg Thieme Verlag KG Stuttgart, New York.
Yilmaz, Zehra; Ucer, Cemal; Scher, Edwin; Suzuki, Jon; Renton, Tara
2016-10-01
Dental implant-related iatrogenic trigeminal nerve (TG) injuries are proportionally increasing with dental implant surgery. This study, which is presented in greater detail over a series of articles, assessed the experience of implant-related TG nerve injuries among UK dentists. Incidence and cause of inferior alveolar nerve (IAN), mental nerve (MN), and lingual nerve (LN) injuries, together with preoperative assessment and the consent process, are presented in this article. A survey was distributed among 405 dentists attending an Association of Dental Implantology congress in the United Kingdom, of which 187 completed the survey. Most responding dentists were full-time general practitioners. Implant dentistry training was predominately through industry-organized courses. Eighty dentists encountered implant-related IAN injuries, whereas 8 encountered LN injuries. Inaccurate radiological identification of the IAN/MN and their anatomical variations (48%) were seen to be the most frequent cause of TG injuries. Disclosure of the relative risk and benefits of alternative implant treatment strategies as part of the informed consent process was not deemed to be essential by 47 (25%) of the participants. Inadequate radiological assessment was the most common cause of TG nerve injury. The use of small field of view cone beam computer tomography (CBCT) is therefore recommended when placing implants in the posterior mandible. Implant surgeons should acquire evidence-based skills in the prevention, diagnosis, and management of TG nerve injury as well as specific training on justification and interpretation of CBCT scans.
Tins, Bernhard
2011-07-01
Metal on metal resurfacing hip implants are known to have complications unique to this type of implant. The case presented adds a further previously not described complication, the dislocation and spontaneous reduction of the pin of the femoral component against the femoral neck. The radiographic and CT findings are demonstrated. The dislocation was aided by bone loss due to an infection with a large periarticular collection. Periarticular collections in hip resurfacings are often due to a hypersensitivity type reaction to metal debris. However in the case presented it was due to infection. MRI was not able to discern the infection from a sterile collection. CT demonstrated bone loss and periosteal reaction suggestive of infection. In addition calcification of the pseudocapsule was seen, this is not a recognized feature of sterile collections. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goltz, Jan Peter, E-mail: janpeter.goltz@uksh.de; Loesaus, Julia; Frydrychowicz, Alex
We report an endovascular technique for the treatment of type Ia endoleak after a plain tubular stentgraft had been implanted for a large common iliac artery aneurysm with an insufficient proximal landing zone and without occlusion of the hypogastric in another hospital. CT follow-up showed an endoleak with continuous sac expansion over 12 months. This was classified as type Ia by means of dynamic contrast-enhanced MRI. Before a bifurcated stentgraft was implanted to relocate the landing zone more proximally, the still perfused ipsilateral hypogastric artery was embolized to prevent a type II endoleak. A guidewire was manipulated alongside the indwelling stentgraft.more » The internal iliac artery could then be selectively intubated followed by successful plug embolization of the vessel’s orifice despite the stentgraft being in place.« less
Goltz, Jan Peter; Loesaus, Julia; Frydrychowicz, Alex; Barkhausen, Jörg; Wiedner, Marcus
2016-02-01
We report an endovascular technique for the treatment of type Ia endoleak after a plain tubular stentgraft had been implanted for a large common iliac artery aneurysm with an insufficient proximal landing zone and without occlusion of the hypogastric in another hospital. CT follow-up showed an endoleak with continuous sac expansion over 12 months. This was classified as type Ia by means of dynamic contrast-enhanced MRI. Before a bifurcated stentgraft was implanted to relocate the landing zone more proximally, the still perfused ipsilateral hypogastric artery was embolized to prevent a type II endoleak. A guidewire was manipulated alongside the indwelling stentgraft. The internal iliac artery could then be selectively intubated followed by successful plug embolization of the vessel's orifice despite the stentgraft being in place.
Buus, Simon; Lizondo, Maria; Hokland, Steffen; Rylander, Susanne; Pedersen, Erik M; Tanderup, Kari; Bentzen, Lise
To quantify needle migration and dosimetric impact in high-dose-rate brachytherapy for prostate cancer and propose a threshold for needle migration. Twenty-four high-risk prostate cancer patients treated with an HDR boost of 2 × 8.5 Gy were included. Patients received an MRI for planning (MRI1), before (MRI2), and after treatment (MRI3). Time from needle insertion to MRI3 was ∼3 hours. Needle migration was evaluated from coregistered images: MRI1-MRI2 and MRI1-MRI3. Dose volume histogram parameters from the treatment plan based on MRI1 were related to parameters based on needle positions in MRI2 or MRI3. Regression was used to model the average needle migration per implant and change in D90 clinical target volume, CTV prostate+3mm . The model fit was used for estimating the dosimetric impact in equivalent dose in 2 Gy fractions for dose levels of 6, 8.5, 10, 15, and 19 Gy. Needle migration was on average 2.2 ± 1.8 mm SD from MRI1-MRI2 and 5.0 ± 3.0 mm SD from MRI1-MRI3. D90 CTV prostate+3mm was robust toward average needle migration ≤3 mm, whereas for migration >3 mm D90 decreased by 4.5% per mm. A 3 mm of needle migration resulted in a decrease of 0.9, 1.7, 2.3, 4.8, and 7.6 equivalent dose in 2 Gy fractions for dose levels of 6, 8.5, 10, 15, and 19 Gy, respectively. Substantial needle migration in high-dose-rate brachytherapy occurs frequently in 1-3 hours following needle insertion. A 3-mm threshold of needle migration is proposed, but 2 mm may be considered for dose levels ≥15 Gy. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Amyotrophic Lateral Sclerosis (ALS)
... Pacing System, which uses implanted electrodes and a battery pack to cause the diaphragm (breathing muscle) to ... Pacing System, which uses implanted electrodes and a battery pack to cause the diaphragm (breathing muscle) to ...
Correction of a malpositioned endosseous implant by a segmental osteotomy: a case report.
Raghoebar, Gerry M; Visser, Anita; Vissink, Arjan
2005-01-01
A mandibular overdenture supported by 2 or 4 endosseous implants has been proven to be a reliable treatment modality for patients suffering from conventional denture problems. However, fabrication of an implant-retained mesostructure to support an overdenture is not possible in all cases. Malpositioning of implants is a common cause of failure in such cases. A case is presented in which a ball attachment caused pain and severe swelling of the floor of the mouth because of the lingual inclination of an endosseous implant. The lingual inclination of the implant was corrected by a segmental osteotomy. Six weeks later, prosthodontic treatment began, and the resultant overdenture supported by a Dolder bar was quite acceptable for the patient.
The implant infection paradox: why do some succeed when others fail? Opinion and discussion paper.
Yue, C; Zhao, B; Ren, Y; Kuijer, R; van der Mei, H C; Busscher, H J; Rochford, E T J
2015-06-05
Biomaterial-implants are frequently used to restore function and form of human anatomy. However, the presence of implanted biomaterials dramatically elevates infection risk. Paradoxically, dental-implants placed in a bacteria-laden milieu experience moderate failure-rates, due to infection (0.0-1.1%), similar to the ones of joint-arthroplasties placed in a near-sterile environment (0.1-1.3%). Transcutaneous bone-fixation pins breach the immune-barrier of the epidermis, exposing underlying sterile-tissue to an unsterile external environment. In contrast to dental-implants, also placed in a highly unsterile environment, these pins give rise to relatively high infection-associated failure-rates of up to 23.0%. Herein, we attempt to identify causes as to why dental-implants so often succeed, where others fail. The major part of all implants considered are metal-made, with similar surface-finishes. Material choice was therefore discarded as underlying the paradox. Antimicrobial activity of saliva has also been suggested as a cause for the success of dental-implants, but was discarded because saliva is the implant-site-fluid from which viable bacteria adhere. Crevicular fluid was discarded as it is largely analogous to serum. Instead, we attribute the relative success of dental-implants to (1) ability of oral tissues to heal rapidly in the continuous presence of commensal bacteria and opportunistic pathogens, and (2) tolerance of the oral immune-system. Inability of local tissue to adhere, spread and grow in presence of bacteria and an intolerant immune-system are identified as the likely main causes explaining the susceptibility of other implants to infection-associated failure. In conclusion, it is the authors' belief that new anti-infection strategies for a wide range of biomaterial-implants may be derived from the relative success of dental-implants.
NASA Astrophysics Data System (ADS)
Li, Xin; Rooney, William D.; Várallyay, Csanád G.; Gahramanov, Seymur; Muldoon, Leslie L.; Goodman, James A.; Tagge, Ian J.; Selzer, Audrey H.; Pike, Martin M.; Neuwelt, Edward A.; Springer, Charles S.
2010-10-01
The accurate mapping of the tumor blood volume (TBV) fraction ( vb) is a highly desired imaging biometric goal. It is commonly thought that achieving this is difficult, if not impossible, when small molecule contrast reagents (CRs) are used for the T1-weighted (Dynamic-Contrast-Enhanced) DCE-MRI technique. This is because angiogenic malignant tumor vessels allow facile CR extravasation. Here, a three-site equilibrium water exchange model is applied to DCE-MRI data from the cerebrally-implanted rat brain U87 glioma, a tumor exhibiting rapid CR extravasation. Analyses of segments of the (and the entire) DCE data time-course with this "shutter-speed" pharmacokinetic model, which admits finite water exchange kinetics, allow TBV estimation from the first-pass segment. Pairwise parameter determinances were tested with grid searches of 2D parametric error surfaces. Tumor blood volume ( vb), as well as ve (the extracellular, extravascular space volume fraction), and Ktrans (a CR extravasation rate measure) parametric maps are presented. The role of the Patlak Plot in DCE-MRI is also considered.
Nanocapsules of perfluorooctyl bromide for theranostics: from formulation to targeting
NASA Astrophysics Data System (ADS)
Diou, O.; Fattal, E.; Payen, T.; Bridal, S. L.; Valette, J.; Tsapis, N.
2014-03-01
The need to detect cancer at its early stages, as well as, to deliver chemotherapy to targeted site motivates many researchers to build theranostic platforms which combine diagnostic and therapy. Among imaging modalities, ultrasonography and Magnetic Resonance Imaging (MRI) are widely available, non invasive and complement each other. Both techniques often require the use of contrast agents. We have developed nanocapsules of perfluorooctyl bromide as dual contrast agent for both imaging modalities. The soft, amorphous polymer shell provides echogenicity, while the high-density perfluorinated liquid core allows detection by 19F MRI. We have used a shell of poly(lactide-co-glycolide) (PLGA) since this polymer is biodegradable, biocompatible and can be loaded with drugs. These capsules were shown to be efficient in vitro as contrast agents for both 19F MRI and ultrasonography. In addition, for in vivo applications a poly(ethyleneglycol) (PEG) coating promotes stability and prolonged circulation. Being stealth, nanocapsule can accumulate passively into implanted tumors by the EPR effect. We will present nanocapsule formulation and characterization, and will show promising in vivo results obtained for both ultrasonography and 19F MRI.
Current management of autosomal dominant polycystic kidney disease.
Akoh, Jacob A
2015-09-06
Autosomal dominant polycystic kidney disease (ADPKD), the most frequent cause of genetic renal disease affecting approximately 4 to 7 million individuals worldwide and accounting for 7%-15% of patients on renal replacement therapy, is a systemic disorder mainly involving the kidney but cysts can also occur in other organs such as the liver, pancreas, arachnoid membrane and seminal vesicles. Though computed tomography and magnetic resonance imaging (MRI) were similar in evaluating 81% of cystic lesions of the kidney, MRI may depict septa, wall thickening or enhancement leading to upgrade in cyst classification that can affect management. A screening strategy for intracranial aneurysms would provide 1.0 additional year of life without neurological disability to a 20-year-old patient with ADPKD and reduce the financial impact on society of the disease. Current treatment strategies include reducing: cyclic adenosine monophosphate levels, cell proliferation and fluid secretion. Several randomised clinical trials (RCT) including mammalian target of rapamycin inhibitors, somatostatin analogues and a vasopressin V2 receptor antagonist have been performed to study the effect of diverse drugs on growth of renal and hepatic cysts, and on deterioration of renal function. Prophylactic native nephrectomy is indicated in patients with a history of cyst infection or recurrent haemorrhage or to those in whom space must be made to implant the graft. The absence of large RCT on various aspects of the disease and its treatment leaves considerable uncertainty and ambiguity in many aspects of ADPKD patient care as it relates to end stage renal disease (ESRD). The outlook of patients with ADPKD is improving and is in fact much better than that for patients in ESRD due to other causes. This review highlights the need for well-structured RCTs as a first step towards trying newer interventions so as to develop updated clinical management guidelines.
Adiseshaiah, Pavan P.; Patel, Nimit L.; Ileva, Lilia V.; Kalen, Joseph D.; Haines, Diana C.; McNeil, Scott E.
2014-01-01
Metastatic spread is the leading cause of death from cancer. Early detection of cancer at primary and metastatic sites by noninvasive imaging modalities would be beneficial for both therapeutic intervention and disease management. Noninvasive imaging modalities such as bioluminescence (optical), positron emission tomography (PET)/X-ray computed tomography (CT), and magnetic resonance imaging (MRI) can provide complementary information and accurately measure tumor growth as confirmed by histopathology. Methods. We validated two metastatic tumor models, MDA-MD-231-Luc and B16-F10-Luc intravenously injected, and 4T1-Luc cells orthotopically implanted into the mammary fat pad. Longitudinal whole body bioluminescence imaging (BLI) evaluated metastasis, and tumor burden of the melanoma cell line (B16-F10-Luc) was correlated with (PET)/CT and MRI. In addition, ex vivo imaging evaluated metastasis in relevant organs and histopathological analysis was used to confirm imaging. Results. BLI revealed successful colonization of cancer cells in both metastatic tumor models over a 4-week period. Furthermore, lung metastasis of B16-F10-Luc cells imaged by PET/CT at week four showed a strong correlation (R 2 = 0.9) with histopathology. The presence and degree of metastasis as determined by imaging correlated (R 2 = 0.7) well with histopathology findings. Conclusions. We validated two metastatic tumor models by longitudinal noninvasive imaging with good histopathology correlation. PMID:24724022
WE-AB-BRA-12: Post-Implant Dosimetry in Prostate Brachytherapy by X-Ray and MRI Fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, S; Song, D; Lee, J
Purpose: For post-implant dosimetric assessment after prostate brachytherapy, CT-MR fusion approach has been advocated due to the superior accuracy on both seeds localization and soft tissue delineation. However, CT deposits additional radiation to the patient, and seed identification in CT requires manual review and correction. In this study, we propose an accurate, low-dose, and cost-effective post-implant dosimetry approach based on X-ray and MRI. Methods: Implanted seeds are reconstructed using only three X-ray fluoroscopy images by solving a combinatorial optimization problem. The reconstructed seeds are then registered to MR images using an intensity-based points-to-volume registration. MR images are first pre-processed bymore » geometric and Gaussian filtering, yielding smooth candidate seed-only images. To accommodate potential soft tissue deformation, our registration is performed in two steps, an initial affine followed by local deformable registrations. An evolutionary optimizer in conjunction with a points-to-volume similarity metric is used for the affine registration. Local prostate deformation and seed migration are then adjusted by the deformable registration step with external and internal force constraints. Results: We tested our algorithm on twenty patient data sets. For quantitative evaluation, we obtained ground truth seed positions by fusing the post-implant CT-MR images. Seeds were semi-automatically extracted from CT and manually corrected and then registered to the MR images. Target registration error (TRE) was computed by measuring the Euclidean distances from the ground truth to the closest registered X-ray seeds. The overall TREs (mean±standard deviation in mm) are 1.6±1.1 (affine) and 1.3±0.8 (affine+deformable). The overall computation takes less than 1 minute. Conclusion: It has been reported that the CT-based seed localization error is ∼1.6mm and the seed localization uncertainty of 2mm results in less than 5% deviation of prostate D90. The average error of 1.3mm with our system outperforms the CT-based approach and is considered well within the clinically acceptable limit. Supported in part by NIH/NCI grant 5R01CA151395. The X-ray-based implant reconstruction method (US patent No. 8,233,686) was licensed to Acoustic MedSystems Inc.« less
Energy harvesting from cerebrospinal fluid pressure fluctuations for self-powered neural implants.
Beker, Levent; Benet, Arnau; Meybodi, Ali Tayebi; Eovino, Ben; Pisano, Albert P; Lin, Liwei
2017-06-01
In this paper, a novel method to generate electrical energy by converting available mechanical energy from pressure fluctuations of the cerebrospinal fluid within lateral ventricles of the brain is presented. The generated electrical power can be supplied to the neural implants and either eliminate their battery need or extend the battery lifespan. A diaphragm type harvester comprised of piezoelectric material is utilized to convert the pressure fluctuations to electrical energy. The pressure fluctuations cause the diaphragm to bend, and the strained piezoelectric materials generate electricity. In the framework of this study, an energy harvesting structure having a diameter of 2.5 mm was designed and fabricated using microfabrication techniques. A 1:1 model of lateral ventricles was 3D-printed from raw MRI images to characterize the harvester. Experimental results show that a maximum power of 0.62 nW can be generated from the harvester under similar physical conditions in lateral ventricles which corresponds to energy density of 12.6 nW/cm 2 . Considering the available area within the lateral ventricles and the size of harvesters that can be built using microfabrication techniques it is possible to amplify to power up to 26 nW. As such, the idea of generating electrical energy by making use of pressure fluctuations within brain is demonstrated in this work via the 3D-printed model system.
Wagner, Franca; Wimmer, Wilhelm; Leidolt, Lars; Vischer, Mattheus; Weder, Stefan; Wiest, Roland; Mantokoudis, Georgios; Caversaccio, Marco D.
2015-01-01
Objective Cochlear implants (CIs) are standard treatment for postlingually deafened individuals and prelingually deafened children. This human cadaver study evaluated diagnostic usefulness, image quality and artifacts in 1.5T and 3T magnetic resonance (MR) brain scans after CI with a removable magnet. Methods Three criteria (diagnostic usefulness, image quality, artifacts) were assessed at 1.5T and 3T in five cadaver heads with CI. The brain magnetic resonance scans were performed with and without the magnet in situ. The criteria were analyzed by two blinded neuroradiologists, with focus on image distortion and limitation of the diagnostic value of the acquired MR images. Results MR images with the magnet in situ were all compromised by artifacts caused by the CI. After removal of the magnet, MR scans showed an unequivocal artifact reduction with significant improvement of the image quality and diagnostic usefulness, both at 1.5T and 3T. Visibility of the brain stem, cerebellopontine angle, and parieto-occipital lobe ipsilateral to the CI increased significantly after magnet removal. Conclusions The results indicate the possible advantages for 1.5T and 3T MR scanning of the brain in CI carriers with removable magnets. Our findings support use of CIs with removable magnets, especially in patients with chronic intracranial pathologies. PMID:26200775
Wagner, Franca; Wimmer, Wilhelm; Leidolt, Lars; Vischer, Mattheus; Weder, Stefan; Wiest, Roland; Mantokoudis, Georgios; Caversaccio, Marco D
2015-01-01
Cochlear implants (CIs) are standard treatment for postlingually deafened individuals and prelingually deafened children. This human cadaver study evaluated diagnostic usefulness, image quality and artifacts in 1.5T and 3T magnetic resonance (MR) brain scans after CI with a removable magnet. Three criteria (diagnostic usefulness, image quality, artifacts) were assessed at 1.5T and 3T in five cadaver heads with CI. The brain magnetic resonance scans were performed with and without the magnet in situ. The criteria were analyzed by two blinded neuroradiologists, with focus on image distortion and limitation of the diagnostic value of the acquired MR images. MR images with the magnet in situ were all compromised by artifacts caused by the CI. After removal of the magnet, MR scans showed an unequivocal artifact reduction with significant improvement of the image quality and diagnostic usefulness, both at 1.5T and 3T. Visibility of the brain stem, cerebellopontine angle, and parieto-occipital lobe ipsilateral to the CI increased significantly after magnet removal. The results indicate the possible advantages for 1.5T and 3T MR scanning of the brain in CI carriers with removable magnets. Our findings support use of CIs with removable magnets, especially in patients with chronic intracranial pathologies.
Tracking of adipose tissue-derived progenitor cells using two magnetic nanoparticle types
NASA Astrophysics Data System (ADS)
Kasten, Annika; Siegmund, Birte J.; Grüttner, Cordula; Kühn, Jens-Peter; Frerich, Bernhard
2015-04-01
Magnetic resonance imaging (MRI) is to be considered as an emerging detection technique for cell tracking experiments to evaluate the fate of transplanted progenitor cells and develop successful cell therapies for tissue engineering. Adipose tissue engineering using adipose tissue-derived progenitor cells has been advocated for the cure of soft tissue defects or for persistent soft tissue augmentation. Adipose tissue-derived progenitor cells were differentiated into the adipogenic lineage and labeled with two different types of magnetic iron oxide nanoparticles in varying concentrations which resulted in a concentration-dependent reduction of gene expression of adipogenic differentiation markers, adiponectin and fatty acid-binding protein 4 (FABP4), whereas the metabolic activity was not altered. As a result, only low nanoparticle concentrations for labeling were used for in vivo experiments. Cells were seeded onto collagen scaffolds and subcutaneously implanted into severe combined immunodeficient (SCID) mice. At 24 h as well as 28 days after implantation, MRI analyses were performed visualizing nanoparticle-labeled cells using T2-weighted sequences. The quantification of absolute volume of the scaffolds revealed a decrease of volume over time in all experimental groups. The distribution of nanoparticle-labeled cells within the scaffolds varied likewise over time.
Imaging approaches for the study of cell based cardiac therapies
Lau, Joe F.; Anderson, Stasia A.; Adler, Eric; Frank, Joseph A.
2009-01-01
Despite promising preclinical data, the treatment of cardiovascular diseases using embryonic, bone-marrow-derived, and skeletal myoblast stem cells has not yet come to fruition within mainstream clinical practice. Major obstacles in cardiac stem cell investigations include the ability to monitor cell engraftment and survival following implantation within the myocardium. Several cellular imaging modalities, including reporter gene and MRI-based tracking approaches, have emerged that provide the means to identify, localize and monitor stem cells longitudinally in vivo following implantation. This Review will examine the various cardiac cellular tracking modalities, including the combinatorial use of several probes in multimodality imaging, with a focus on data from the last five years. PMID:20027188
Zippel, Douglas; Tsehmaister-Abitbol, Vered; Rundstein, Arie; Shalmon, Anat; Zbar, Andrew; Nardini, Gil; Novikov, Ilya; Sklair-Levy, Miri
2015-01-01
We present our use of magnetic resonance (MR) measurement to determine the amount of residual breast tissue (RBT) following total mastectomy with reconstruction. Breast MR images of 45 women who underwent surgery between January and November 2011 were reviewed. The cohort included therapeutic and prophylactic mastectomies. RBT was evaluated at four points with a digital caliper assessing T2-weighted and T1-weighted images. Patients undergoing mastectomy for carcinoma tended to have less RBT than in prophylactic surgery. Greater age and recent surgery both correlated with larger RBT. Variable thickness of RBT is demonstrable following mastectomy and implant reconstruction using MR imaging. Copyright © 2015 Elsevier Inc. All rights reserved.
PECTUS CARINATUM: A NOVEL METHOD OF STERNAL FIXATION.
Taha, Assad; Sfeir, Pierre; Al-Taki, Muhyeddine
2016-01-01
The traditional method for fixing the sternum during surgical repair of pectus carinatum is through the use of a stainless steel bar (Adkin’s strut). In this article we describe a new method of sternal fixation using nonabsorbable sutures which are placed in a transverse and crossed fashion anterior to the sternum. This method provides stable sternal fixation and spares the patient a second operation to remove the steel bar. The absence of metallic implants allows clearer view of the thoracic structures in future X-rays, CT scans and MRI, and is likely to be more acceptable to patients than the implantation of a metallic strut in their chest. In addition, it is less costly.
Real-time magnetic resonance imaging-guided transcatheter aortic valve replacement.
Miller, Justin G; Li, Ming; Mazilu, Dumitru; Hunt, Tim; Horvath, Keith A
2016-05-01
To demonstrate the feasibility of Real-time magnetic resonance imaging (rtMRI) guided transcatheter aortic valve replacement (TAVR) with an active guidewire and an MRI compatible valve delivery catheter system in a swine model. The CoreValve system was minimally modified to be MRI-compatible by replacing the stainless steel components with fluoroplastic resin and high-density polyethylene components. Eight swine weighing 60-90 kg underwent rtMRI-guided TAVR with an active guidewire through a left subclavian approach. Two imaging planes (long-axis view and short-axis view) were used simultaneously for real-time imaging during implantation. Successful deployment was performed without rapid ventricular pacing or cardiopulmonary bypass. Postdeployment images were acquired to evaluate the final valve position in addition to valvular and cardiac function. Our results show that the CoreValve can be easily and effectively deployed through a left subclavian approach using rtMRI guidance, a minimally modified valve delivery catheter system, and an active guidewire. This method allows superior visualization before deployment, thereby allowing placement of the valve with pinpoint accuracy. rtMRI has the added benefit of the ability to perform immediate postprocedural functional assessment, while eliminating the morbidity associated with radiation exposure, rapid ventricular pacing, contrast media renal toxicity, and a more invasive procedure. Use of a commercially available device brings this rtMRI-guided approach closer to clinical reality. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Reichert, M; Morelli, J N; Nittka, M; Attenberger, U; Runge, V M
2015-01-01
Objective: To compare metal artefact reduction in MRI at both 3.0 T and 1.5 T using different sequence strategies. Methods: Metal implants of stainless steel screw and plate within agarose phantoms and tissue specimens as well as three patients with implants were imaged at both 1.5 T and 3.0 T, using view angle tilting (VAT), slice encoding for metal artefact correction with VAT (SEMAC-VAT) and conventional sequence. Artefact reduction in agarose phantoms was quantitatively assessed by artefact volume measurements. Blinded reads were conducted in tissue specimen and human imaging, with respect to artefact size, distortion, blurring and overall image quality. Wilcoxon and Friedman tests for multiple comparisons and intraclass correlation coefficient (ICC) for interobserver agreement were performed with a significant level of p < 0.05. Results: Compared with conventional sequences, SEMAC-VAT significantly reduced metal artefacts by 83% ± 9% for the screw and 89% ± 3% for the plate at 1.5 T; 72% ± 7% for the screw and 38% ± 13% for the plate at 3.0 T (p < 0.05). In qualitative analysis, SEMAC-VAT allowed for better visualization of tissue structures adjacent to the implants and produced better overall image quality with good interobserver agreement for both tissue specimen and human imaging (ICC = 0.80–0.99; p < 0.001). In addition, VAT also markedly reduced metal artefacts compared with conventional sequence, but was inferior to SEMAC-VAT. Conclusion: SEMAC-VAT and VAT techniques effectively reduce artefacts from metal implants relative to conventional imaging at both 1.5 T and 3.0 T. Advances in knowledge: The feasibility of metal artefact reduction with SEMAC-VAT was demonstrated at 3.0-T MR. SEMAC-VAT significantly reduced metal artefacts at both 1.5 and 3.0 T. SEMAC-VAT allowed for better visualization of the tissue structures adjacent to the metal implants. SEMAC-VAT produced consistently better image quality in both tissue specimen and human imaging. PMID:25613398
Hip Implant Modified To Increase Probability Of Retention
NASA Technical Reports Server (NTRS)
Canabal, Francisco, III
1995-01-01
Modification in design of hip implant proposed to increase likelihood of retention of implant in femur after hip-repair surgery. Decreases likelihood of patient distress and expense associated with repetition of surgery after failed implant procedure. Intended to provide more favorable flow of cement used to bind implant in proximal extreme end of femur, reducing structural flaws causing early failure of implant/femur joint.
Comparison of the accuracy rates of 3-T and 1.5-T MRI of the knee in the diagnosis of meniscal tear.
Grossman, Jeffrey W; De Smet, Arthur A; Shinki, Kazuhiko
2009-08-01
The purpose of this study was to compare the accuracy of 3-T MRI with that of 1.5-T MRI of the knee in the diagnosis of meniscal tear and to analyze the causes of diagnostic error. We reviewed the medical records and original MRI interpretations of 100 consecutive patients who underwent 3-T MRI of the knee and of 100 consecutive patients who underwent 1.5-T MRI of the knee to determine the accuracy of diagnoses of meniscal tear. Knee arthroscopy was the reference standard. We retrospectively reviewed all MRI diagnostic errors to determine the cause of the errors. At arthroscopy, 109 medial and 77 lateral meniscal tears were identified in the 200 patients. With two abnormal MR images indicating a meniscal tear, the sensitivity and specificity for medial tear were 92.7% and 82.2% at 1.5-T MRI and 92.6% and 76.1% at 3-T MRI (p = 1.0, p = 0.61). The sensitivity and specificity for lateral tears were 68.4% and 95.2% at 1.5-T MRI and 69.2% and 91.8% at 3-T MRI (p = 1.0, p = 0.49). Of the false-positive diagnoses of medial meniscal tear, five of eight at 1.5 T and seven of 11 at 3 T were apparent peripheral longitudinal tears of the posterior horn. Fifteen of the 26 missed medial and lateral meniscal tears were not seen in retrospect even with knowledge of the tear type and location. Allowing for sample size limitations, we found comparable accuracy of 3-T and 1.5-T MRI of the knee in the diagnosis of meniscal tear. The causes of false-positive and false-negative MRI diagnoses of meniscal tear are similar for 3-T and 1.5-T MRI.
Huang, Danping; Xu, Binbin; Yang, Zhiyun; Xu, Bing; Lin, Xiaolei; Yang, Xiaonan; Zhao, Jing
2015-01-01
To evaluate, using MRI, the extent and pattern of fibrovascular ingrowth into Medpor implants after modified evisceration. Contrast T1-weighted images were performed in 21 patients within 1.5- to69-month intervals after modified evisceration with primary Medpor implantation. In 6 patients, the images were obtained separately following 1- and 5-minute delays after contrast administration. No grade I enhancement occurred in these series. Grade II was observed in 2 patients (9.09%), grade III in 8 patients (36.36%), grade IV in 9 patients (40.91%), and grade V in 3 patients (13.64%). Significant correlation existed between the grade of enhancement and the postevisceration interval (r = 0.483, p = 0.023 < 0.05). The images demonstrated an enhancement pattern that started at the unwrapped posterior pole and anterior location of rectus muscles with progressive centripetal vascularization toward the center of the implant. At the early stage of recovery, the fibrous connective tissue was thick in front of Medpor spheres. In the 5-minute delay images of 6 patients, 2 patients failed to exhibit further enhancement; 2 patients exhibited enlarged and homogeneous enhancement; and 2 patients revealed more intense enhancement patterns. The medical ethics committee of Zhongshan Ophthalmic Center approved the study. Fibrovascular ingrowth into Medpor implants was satisfactory after the modified evisceration and correlated with the duration of the implants. The double layers of sclera effectively prevented the implant extrusion and exposure. The authors recommend waiting at least 5 minutes before obtaining MR images after contrast administration.
Wu, Ed X.; Tang, Haiying; Tong, Christopher; Heymsfield, Steve B.; Vasselli, Joseph R.
2015-01-01
This study aimed to develop a quantitative and in vivo magnetic resonance imaging (MRI) approach to investigate the muscle growth effects of anabolic steroids. A protocol of MRI acquisition on a standard clinical 1.5 Tesla scanner and quantitative image analysis was established and employed to measure the individual muscle and organ volumes in the intact and castrated guinea pigs undergoing a 16-week treatment protocol by two well-documented anabolic steroids, testosterone and nandrolone, via implanted silastic capsules. High correlations between the in vivo MRI and postmortem dissection measurements were observed for shoulder muscle complex (R = 0.86), masseter (R=0.79), temporalis (R=0.95), neck muscle complex (R=0.58), prostate gland and seminal vesicles (R=0.98), and testis (R=0.96). Furthermore, the longitudinal MRI measurements yielded adequate sensitivity to detect the restoration of growth to or towards normal in castrated guinea pigs by replacing circulating steroid levels to physiological or slightly higher levels, as expected. These results demonstrated that quantitative MRI using a standard clinical scanner provides accurate and sensitive measurement of individual muscles and organs, and this in vivo MRI protocol in conjunction with the castrated guinea pig model constitutes an effective platform to investigate the longitudinal and cross-sectional growth effects of other potential anabolic steroids. The quantitative MRI protocol developed can also be readily adapted for human studies on most clinical MRI scanner to investigate the anabolic steroid growth effects, or monitor the changes in individual muscle and organ volume and geometry following injury, strength training, neuromuscular disorders, and pharmacological or surgical interventions. PMID:18241900
Wellmer, Jörg; von Oertzen, Joachim; Schaller, Carlo; Urbach, Horst; König, Roy; Widman, Guido; Van Roost, Dirk; Elger, Christian E
2002-12-01
Invasive presurgical work up of pharmacoresistant epilepsies presumes integration of multiple diagnostic modalities into a comprehensive picture of seizure onset and eloquent brain areas. During resection, reliable transfer of evaluation results to the patient's individual anatomy must be made. We investigated the value of digital photography-based grid localization in combination with preoperative three-dimensional (3D) magnetic resonance imaging (MRI) for clinical routine. Digital photographs of the exposed cortex were taken before and after grid placement. Location of electrode contacts on the cortex was identified and schematically indicated on native cortex prints. Accordingly, transfer of contact positions to a 3D MRI brain-surface rendering was carried out manually by using the rendering software. Results of the electrophysiologic evaluation were transferred to either electrode contact reproduction and co-registered with imaging-based techniques such as single-photon emission computed tomography (SPECT), positron emission tomography (PET), and functional MRI (fMRI). Digital photography allows precise and highly realistic documentation of electrode contact positions on the individual neocortical surface. Lesions underneath grids can be highlighted by semitransparent MRI surface rendering, and lobar boundaries can be identified. Because of integrating electrode contact positions into the postprocessed 3D MRI data set, imaging-based techniques can be codisplayed with the results of the electrophysiologic evaluation. Comparison with CT/MRI co-registration showed good accuracy of the method. However, grids not sewn to the dura at implantation can become subject to significant displacement. Digital photography in combination with preimplantation 3D MRI allows the generation of reliable tailored resection plans in neocortical epilepsy surgery. The method enhances surgical safety and confidence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, T; Diak, A; Surucu, M
Purpose: The use of MR to plan and evaluate brachytherapy treatment for cervical cancer is increasing given the availability of MR conditional or safe applicators and MRI’s proven superiority to CT for characterizing soft tissue lesions. The titanium applicators, however, cause geometric distortions or imaging artifacts, which reduce the utility of MRI for dosimetry. We sought to quantify the observed volume of the same applicator on a previously optimized T2 sequence in comparison to the conventional T2 sequence and CT obtained for brachytherapy planning. Methods: Prior work with testing in phantoms showed that increases in readout bandwidth yielded reductions inmore » artifact area and distortion measurements even with voxel increases. Following IRB approval, nine patients with titanium tandem & ovoid applicator (Varian Medical Systems) in place were scanned with a standard periprocedural protocol which included sagittal T2 fast spin echo (FSE) acquisition (res 0.98×0.78×4.0 mm{sup 3}; BW 200Hz). An additional T2-weighted FSE sequence (res 0.98×0.98×3–4 mm{sup 3}; BW500Hz) with increased readout bandwidth, readout voxel size, and echo train length was added to the protocol. Volume measurements of the applicator (from tip to cervical stop) were hand-segmented in Velocity AI 3.1 (Velocity Medical Solutions) for the two T2 FSE sequences and a planning CT obtained shortly after MRI. Differences were analyzed using a paired t-test. Results: Average apparent volumes of the applicator on standard T2 sequence, decreased bandwidth T2 sequence and CT were 5.922±1.283 cm{sup 3}, 4.544±1.524 cm3, and 2.304±0.509 cm{sup 3} respectively. Conclusion: Apparent volumes of a brachytherapy applicator can be compared in vivo. The modified sequence results in decreased apparent size of the cervical applicator. Both MR sequence volumes were larger than the planning CT, which was expected. Future work will focus on the diagnostic quality of the new sequence and quantifying any geometric shifts after CT to MRI registration based on anatomical landmarks.« less
Implant positioning in TKA: comparison between conventional and patient-specific instrumentation.
Ferrara, Ferdinando; Cipriani, Antonio; Magarelli, Nicola; Rapisarda, Santi; De Santis, Vincenzo; Burrofato, Aaron; Leone, Antonio; Bonomo, Lorenzo
2015-04-01
The number of total knee arthroplasty (TKA) procedures continuously increases, with good to excellent results. In the last few years, new surgical techniques have been developed to improve prosthesis positioning. In this context, patient-specific instrumentation is included. The goal of this study was to compare the perioperative parameters and the spatial positioning of prosthetic components in TKA procedures performed with patient-specific instrumentation vs traditional TKA. In this prospective comparative randomized study, 15 patients underwent TKA with 3-dimensional magnetic resonance imaging (MRI) preoperative planning (patient-specific instrumentation group) and 15 patients underwent traditional TKA (non-patient-specific instrumentation group). All patients underwent postoperative computed tomography (CT) examination. In the patient-specific instrumentation group, preoperative data planning regarding femoral and tibial bone resection was correlated with intraoperative measurements. Surgical time, length of hospitalization, and intraoperative and postoperative bleeding were compared between the 2 groups. Positioning of implants on postoperative CT was assessed for both groups. Data planned with 3-dimensional MRI regarding the depth of bone cuts showed good to excellent correlation with intraoperative measurements. The patient-specific instrumentation group showed better perioperative outcomes and good correlation between the spatial positioning of prosthetic components planned preoperatively and that seen on postoperative CT. Less variability was found in the patient-specific instrumentation group than in the non-patient-specific instrumentation group in spatial orientation of prosthetic components. Preoperative planning with 3-dimensional MRI in TKA has a better perioperative outcome compared with the traditional method. Use of patient-specific instrumentation can also improve the spatial positioning of both prosthetic components. Copyright 2015, SLACK Incorporated.
MRI directed bilateral stimulation of the subthalamic nucleus in patients with Parkinson's disease
Patel, N; Plaha, P; O'Sullivan, K; McCarter, R; Heywood, P; Gill, S
2003-01-01
Objective: Bilateral chronic high frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN) has emerged as an appropriate therapy for patients with advanced Parkinson's disease refractory to medical therapy. Advances in neuroimaging and neurophysiology have led to the development of varied targeting methods for the delivery of this treatment. Intraoperative neurophysiological and clinical monitoring is regarded by many to be mandatory for accurate STN localisation. We have examined efficacy of bilateral STN stimulation using a predominantly magnetic resonance imaging (MRI)-directed technique. Methods: DBS leads were stereotactically implanted into the STN using an MRI directed method, with intraoperative macrostimulation used purely for adjustment. The effects of DBS were evaluated in 16 patients followed up to 12 months, and compared with baseline assessments. Assessments were performed in both off and on medication states, and were based on the Unified Parkinson's Disease Rating Scale (UPDRS) and timed motor tests. Functional status outcomes were examined using the PDQ-39 quality of life questionnaire. A battery of psychometric tests was used to assess cognition. Results: After 12 months, stimulation in the off medication state resulted in significant improvements in Activities of Daily Living and Motor scores (UPDRS parts II and III) by 62% and 61% respectively. Timed motor tests were significantly improved in the off medication state. Motor scores (UPDRS part III) were significantly improved by 40% in the on medication state. Dyskinesias and off duration were significantly reduced and the mean dose of L-dopa equivalents was reduced by half. Psychometric test scores were mostly unchanged or improved. Adverse events were few. Conclusions: An MRI directed targeting method for implantation of DBS leads into the STN can be used safely and effectively, and results are comparable with studies using intraoperative microelectrode neurophysiological targeting. In addition, our method was associated with an efficient use of operating time, and without the necessary costs of microelectrode recording. PMID:14638880
Magnetic resonance imaging - A troubleshooter in obstetric emergencies: A pictorial review
Gupta, Rohini; Bajaj, Sunil Kumar; Kumar, Nishith; Chandra, Ranjan; Misra, Ritu Nair; Malik, Amita; Thukral, Brij Bhushan
2016-01-01
The application of magnetic resonance imaging (MRI) in pregnancy faced initial skepticism of physicians because of fetal safety concerns. The perceived fetal risk has been found to be unwarranted and of late, the modality has attained acceptability. Its role in diagnosing fetal anomalies is well recognized and following its safety certification in pregnancy, it is finding increasing utilization during pregnancy and puerperium. However, the use of MRI in maternal emergency obstetric conditions is relatively limited as it is still evolving. In early gestation, ectopic implantation is one of the major life-threatening conditions that are frequently encountered. Although ultrasound (USG) is the accepted mainstay modality, the diagnostic predicament persists in many cases. MRI has a role where USG is indeterminate, particularly in the extratubal ectopic pregnancy. Later in gestation, MRI can be a useful adjunct in placental disorders like previa, abruption, and adhesion. It is a good problem-solving tool in adnexal masses such as ovarian torsion and degenerated fibroid, which have a higher incidence during pregnancy. Catastrophic conditions like uterine rupture can also be preoperatively and timely diagnosed. MRI has a definite role to play in postpartum and post-abortion life-threatening conditions, e.g., retained products of conception, and gestational trophoblastic disease, especially when USG is inconclusive or inadequate. PMID:27081223
Zhang, Lu; Wang, Yao; Tang, Yaohui; Jiao, Zheng; Xie, Chengying; Zhang, Haijiao; Gu, Ping; Wei, Xunbin; Yang, Guo-Yuan; Gu, Hongchen; Zhang, Chunfu
2013-05-21
Multifunctional probes with high MRI sensitivity and high efficiency for cell labeling are desirable for MR cell imaging. Herein, we have fabricated fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs) for neural progenitor cell (C17.2) MR imaging. FmSiO4@SPIONs were discrete and uniform in size, and had a clear core-shell structure. The magnetic core size was about 10 nm and the fluorescent mesoporous silica coating layer was around 20 nm. Compared with fluorescent dense silica-coated SPIONs (fdSiO4@SPIONs) with a similar size, fmSiO4@SPIONs demonstrated higher MR sensitivity and cell labeling efficiency. When implanted into the right hemisphere of stroke mice, contralateral to the ischemic territory, a small amount of labeled cells were able to be tracked migrating to the lesion sites using a clinical MRI scanner (3 T). More impressively, even when administered intravenously, the labeled cells could also be monitored homing to the ischemic area. MRI observations were corroborated by histological studies of the brain tissues. Our study demonstrated that fmSiO4@SPIONs are highly effective for cell imaging and hold great promise for MRI cell tracking in future.
van Dijk, Vincent F; Delnoy, Peter Paul H M; Smit, Jaap Jan J; Ramdat Misier, R Anand; Elvan, Arif; van Es, H Wouter; Rensing, Benno J W M; Raciti, Giovanni; Boersma, Lucas V A
2017-07-01
Modern pacemakers are designed to allow patients to undergo magnetic resonance imaging (MRI) under a set of specific conditions. Aim of this study is to provide confirmatory evidence of safety and performance of a new pacing system (ImageReady™, Boston Scientific) in patients undergoing 1.5 and 3T MRI. Two prospective, nonrandomized, single-arm studies were designed to provide confirmatory data of no impact of MRI on device function, lead parameters, and patient conditions in subjects implanted with the system undergoing a clinically non-indicated 1.5T and 3T MRI, respectively. Device measurements were done within 1 hour before and after the scan and at 1 month follow-up. Thirty-two subjects underwent MRI visit (17 subjects with 1.5T MRI and 15 subjects with 3T MRI). There were no unanticipated adverse effects related to the pacemaker. Device measurements taken pre- and post-MRI scan did not show any clinical relevant change that could indicate an effect of the MRI on the device or at the lead-tissue interface (RV threshold change: 0.01 ± 0.13 V, P = 0.60; RA threshold change: 0.01 ± 0.11 V, P = 0.53; R wave change: -0.44 ± 1.73 mV, P = 0.36; R wave change: 0.12 ± 1.67 mV, P = 0.73), with data confirmed at 1-month follow-up visit. The study documented safety of the pacing system in the 1.5T and 3T MRI environment by showing no adverse events related to device or MRI scan. Additional data are required to cover the more complex scenarios involving different diagnostic needs, conditions of use, clinical conditions, and new emerging technologies. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wronski, M; Sarfehnia, A; Sahgal, A
Purpose: To evaluate the interface effects when irradiating through a hip prosthesis in the presence of an orthogonal 1.5 T magnetic field using Monte Carlo simulations. Methods: A 20×20×38 cm virtual phantom with two 5×5×5 cm sections of bilateral titanium hip prosthesis was created in GPU-based Monte Carlo (MC) algorithm (GPUMCD, Elekta AB, Stockholm Sweden). The lateral prosthesis spacing was based on a representative patient CT scan. A treatment SAD of 143.5 cm was chosen, corresponding to the Elekta AB MRI Linac and the beam energy distribution was sampled from a histogram representing the true MRI Linac spectrum. A magneticmore » field of 1.5 T was applied perpendicular to the plane of irradiation. Dose was calculated, in voxels of side 1 mm, for 2×2, 5×5, and 10×10 cm treatment field sizes with normal beam incidence (gantry at 90° or 270°) and at 5° and 10° from normal, representing the range of incidence through the bilateral prosthesis. Results: With magnetic field ON (B-On) and normal beam incidence the backscatter dose at the interfaces of proximal and distal implants is reduced for all the field sizes compared to the magnetic field OFF (B-Off) case. The absolute reduction in doses at the interface was in the range of 12.93% to 13.16% for the proximal implant and 13.57% to 16.12% for the distal implant. Similarly for the oblique incidences of 5o and 10o the dose in the plane adjacent to the prosthetic implants is lower when the magnetic field is ON. Conclusion: The dosimetric effects of irradiating through a hip prosthesis in the presence of a transverse magnetic field have been determined using MC simulation. The backscatter dose reduction translates into significantly lower hot spots at the prosthetic interfaces, which are otherwise substantially high in the absence of the magnetic field. This project was supported through funding provided by ElektaTM.« less
The effects of hematoma on implant capsules.
Caffee, H H
1986-02-01
Hematoma surrounding an implant is one of the many factors that have been suggested as possible causes for scar capsule contracture. In this study, experiments were designed to determine the influence of hematoma on the incidence and severity of capsule contracture in rabbits. Two implants were placed in each animal, 1 with a surrounding hematoma and 1 control. Capsules were evaluated subjectively and compared objectively with measurements of deformability, surface area, and capsule thickness. No differences were found with any of the objective criteria, which suggests that hematoma may not be a noteworthy cause of implant capsule contracture.
Effect of He implantation on fracture behavior and microstructural evolution in F82H
NASA Astrophysics Data System (ADS)
Yabuuchi, Kiyohiro; Sato, Kiminori; Nogami, Shuhei; Hasegawa, Akira; Ando, Masami; Tanigawa, Hiroyasu
2014-12-01
Reduced-activation ferritic/martensitic steels (RAFMs) are the primary candidate structural materials for fusion reactor blanket components. He bubbles, which formed under 14 MeV neutron irradiation, is considered to cause some mechanical property changes. In a previous study, Hasegawa et al. investigated the fracture behavior using Charpy impact test of He implanted F82H by 50 MeV α-particles with cyclotron accelerator, and the ductile brittle transition temperature (DBTT) was increased and intergranular fracture (IGF) was observed. However, the cause of the IGF was not shown in the previous study. To clarify the cause of the IGF of the He implanted F82H by 50 MeV α-particles with cyclotron accelerator, the microstructure of the He implanted F82H was investigated. After Charpy impact test at 233 K, the brittle fracture surface of the He implanted specimen was observed by SEM and TEM. By SEM observation, grain boundary surface was clearly observed from the bottom of the notch to a depth of about 400 μm. This area correspond to the He implanted region. On the other hand, at unimplanted region, river pattern was observed and transgranular fracture occurred. TEM observation revealed the He bubbles agglomeration at dislocations, lath boundaries, and grain boundaries, and the coarsening of precipitates on grain boundaries. IGF of the He implanted F82H was caused by both He bubbles and coarsening precipitates.
Linguine sign at MR imaging: does it represent the collapsed silicone implant shell?
Gorczyca, D P; DeBruhl, N D; Mund, D F; Bassett, L W
1994-05-01
One intact and one ruptured single-lumen implant were surgically placed in a rabbit. Magnetic resonance (MR) imaging was performed before and after surgical removal, and the ruptured implant was imaged after removal of the implant shell. Multiple curvilinear hypointense lines (linguine sign) were present in the MR images of the ruptured implant and of the implant shell alone immersed in saline solution but not in the image of the free silicone. The collapsed implant shell in a ruptured silicone implant does cause the linguine sign.
Tsuchida, Atsuko; Yokoi, Norihide; Namae, Misako; Fuse, Masanori; Masuyama, Taku; Sasaki, Masashi; Kawazu, Shoji; Komeda, Kajuro
2008-12-01
The Komeda miniature rat Ishikawa (KMI) is a spontaneous animal model of dwarfism caused by a mutation in Prkg2, which encodes cGMP-dependent protein kinase type II (cGKII). This strain has been maintained as a segregating inbred strain for the mutated allele mri. In this study, we characterized the phenotype of the KMI strain, particularly growth traits, craniofacial measurements, and organ weights. The homozygous mutant (mri/mri) animals were approximately 70% to 80% of the size of normal, heterozygous (mri/+) animals in regard to body length, weight, and naso-occipital length of the calvarium, and the retroperitoneal fat of mri/mri rats was reduced greatly. In addition, among progeny of the (BNxKMI-mri/mri)F1xKMI-mri/mri backcross, animals with the KMI phenotype (mri/mri) were easily distinguished from those showing the wild-type phenotype (mri/+) by using growth traits such as body length and weight. Genetic analysis revealed that all of the backcrossed progeny exhibiting the KMI phenotype were homozygous for the KMI allele in the 1.2-cM region between D14Rat5 and D14Rat80 on chromosome 14, suggesting strongly that mri acts in a completely recessive manner. The KMI strain is the first and only rat model with a confirmed mutation in Prkg2 and is a valuable model for studying dwarfism and longitudinal growth traits in humans and for functional studies of cGKII.
Tsuchida, Atsuko; Yokoi, Norihide; Namae, Misako; Fuse, Masanori; Masuyama, Taku; Sasaki, Masashi; Kawazu, Shoji; Komeda, Kajuro
2008-01-01
The Komeda miniature rat Ishikawa (KMI) is a spontaneous animal model of dwarfism caused by a mutation in Prkg2, which encodes cGMP-dependent protein kinase type II (cGKII). This strain has been maintained as a segregating inbred strain for the mutated allele mri. In this study, we characterized the phenotype of the KMI strain, particularly growth traits, craniofacial measurements, and organ weights. The homozygous mutant (mri/mri) animals were approximately 70% to 80% of the size of normal, heterozygous (mri/+) animals in regard to body length, weight, and naso-occipital length of the calvarium, and the retroperitoneal fat of mri/mri rats was reduced greatly. In addition, among progeny of the (BN×KMI-mri/mri)F1×KMI-mri/mri backcross, animals with the KMI phenotype (mri/mri) were easily distinguished from those showing the wild-type phenotype (mri/+) by using growth traits such as body length and weight. Genetic analysis revealed that all of the backcrossed progeny exhibiting the KMI phenotype were homozygous for the KMI allele in the 1.2-cM region between D14Rat5 and D14Rat80 on chromosome 14, suggesting strongly that mri acts in a completely recessive manner. The KMI strain is the first and only rat model with a confirmed mutation in Prkg2 and is a valuable model for studying dwarfism and longitudinal growth traits in humans and for functional studies of cGKII. PMID:19149413
Magnetic Resonance Imaging of Human Tissue-Engineered Adipose Substitutes
Proulx, Maryse; Aubin, Kim; Lagueux, Jean; Audet, Pierre; Auger, Michèle
2015-01-01
Adipose tissue (AT) substitutes are being developed to answer the strong demand in reconstructive surgery. To facilitate the validation of their functional performance in vivo, and to avoid resorting to excessive number of animals, it is crucial at this stage to develop biomedical imaging methodologies, enabling the follow-up of reconstructed AT substitutes. Until now, biomedical imaging of AT substitutes has scarcely been reported in the literature. Therefore, the optimal parameters enabling good resolution, appropriate contrast, and graft delineation, as well as blood perfusion validation, must be studied and reported. In this study, human adipose substitutes produced from adipose-derived stem/stromal cells using the self-assembly approach of tissue engineering were implanted into athymic mice. The fate of the reconstructed AT substitutes implanted in vivo was successfully followed by magnetic resonance imaging (MRI), which is the imaging modality of choice for visualizing soft ATs. T1-weighted images allowed clear delineation of the grafts, followed by volume integration. The magnetic resonance (MR) signal of reconstructed AT was studied in vitro by proton nuclear magnetic resonance (1H-NMR). This confirmed the presence of a strong triglyceride peak of short longitudinal proton relaxation time (T1) values (200±53 ms) in reconstructed AT substitutes (total T1=813±76 ms), which establishes a clear signal difference between adjacent muscle, connective tissue, and native fat (total T1 ∼300 ms). Graft volume retention was followed up to 6 weeks after implantation, revealing a gradual resorption rate averaging at 44% of initial substitute's volume. In addition, vascular perfusion measured by dynamic contrast-enhanced-MRI confirmed the graft's vascularization postimplantation (14 and 21 days after grafting). Histological analysis of the grafted tissues revealed the persistence of numerous adipocytes without evidence of cysts or tissue necrosis. This study describes the in vivo grafting of human adipose substitutes devoid of exogenous matrix components, and for the first time, the optimal parameters necessary to achieve efficient MRI visualization of grafted tissue-engineered adipose substitutes. PMID:25549069
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elzibak, A; Fatemi-Ardekani, A; Soliman, A
Purpose: To identify and analyze the appearance of calcifications and brachytherapy seeds on magnitude and phase MRI images and to investigate whether they can be distinguished from each other on corrected phase images for application to prostate and breast low dose rate (LDR) implant dosimetry. Methods: An agar-based gel phantom containing two LDR brachytherapy seeds (Advantage Pd-103, IsoAid, 0.8mm diameter, 4.5mm length) and two spherical calcifications (large: 7mm diameter and small: 4mm diameter) was constructed and imaged on a 3T Philips MR scanner using a 16-channel head coil and a susceptibility weighted imaging (SWI) sequence (2mm slices, 320mm FOV, TR/more » TE= 26.5/5.3ms, 15 degree flip angle). The phase images were unwrapped and corrected using a 32×32, 2D Hanning high pass filter to remove background phase noise. Appearance of the seeds and calcifications was assessed visually and quantitatively using Osirix (http://www.osirix-viewer.com/). Results: As expected, calcifications and brachytherapy seeds appeared dark (hypointense) relative to the surrounding gel on the magnitude MRI images. The diameter of each seed without the surrounding artifact was measured to be 0.1 cm on the magnitude image, while diameters of 0.79 and 0.37 cm were measured for the larger and smaller calcifications, respectively. On the corrected phase images, the brachytherapy seeds and the calcifications appeared bright (hyperintense). The diameter of the seeds was larger on the phase images (0.17 cm) likely due to the dipole effect. Conclusion: MRI has the best soft tissue contrast for accurate organ delineation leading to most accurate implant dosimetry. This work demonstrated that phase images can potentially be useful in identifying brachytherapy seeds and calcifications in the prostate and breast due to their bright appearance, which helps in their visualization and quantification for accurate dosimetry using MR-only. Future work includes optimizing phase filters to best identify and delineate seeds and calcifications.« less
Magnetic resonance imaging in central nervous system sarcoidosis.
Miller, D H; Kendall, B E; Barter, S; Johnson, G; MacManus, D G; Logsdail, S J; Ormerod, I E; McDonald, W I
1988-03-01
We performed brain MRIs on 21 patients with CNS sarcoidosis. Brain CTs were performed in 18 of these. Parenchymal lesions were seen in 17 of 21 with MRI, compared with 9 of 18 with CT. MRI detected a greater number of parenchymal lesions in cases where both CT and MRI were positive, and some lesions appeared more extensive with MRI than with CT. The most common MRI pattern was one of periventricular and multifocal white matter lesions (14 cases). Such a pattern is not specific, and other recognized causes for it were identified in four cases. It is likely, however, that sarcoid tissue causes this pattern in some cases, and confirmation was obtained from cerebral biopsy in one. In six patients, the white matter changes were indistinguishable from those seen in multiple sclerosis. Contrast-enhanced CT in two patients showed diffuse meningeal involvement not seen with MRI. MRI is the investigation of choice in detecting parenchymal changes in the brain of patients with CNS sarcoidosis and may prove useful in monitoring treatment in such cases.
Jaite, Charlotte; Bachmann, Christian; Dewey, Marc; Weschke, Bernhard; Spors, Birgit; von Moers, Arpad; Napp, Adriane; Lehmkuhl, Ulrike; Kappel, Viola
2013-11-01
Numerous research centres apply magnetic resonance imaging (MRI) for research purposes in children. In view of this practical research, ethical concerns regarding the strains the study participants are exposed to during the MRI examination are discussed. The study evaluates whether an MRI examination induces negative emotions in children and adolescents which are more intense than the ones caused by electroencephalography (EEG), an examination method currently classified as causing "minimal stress." Furthermore, the emotional stress induced by the MRI examination in children and adolescents is compared with that induced in adults. The study gathers data on examination-related emotions in children (age 8-17;11, male and female) who undergo an MRI examination of the cerebrum with a medical indication. The comparison group is a sample of children and adolescents examined with EEG (age 8-17;11, male and female) as well as a sample of adults (age 18-65, male and female) examined with MRI. At present, the study is in the stage of data collection. This article presents the study design of the MRI research project.
MR imaging of stem cell apoptosis in arthritic joints with a caspase-activatable contrast agent
Nejadnik, Hossein; Ye, Deju; Lenkov, Olga D.; Donig, Jessica; Martin, John E.; Castillo, Rostislav; Derugin, Nikita; Sennino, Barbara; Rao, Jianghong; Daldrup-Link, Heike E.
2015-01-01
About 43 million individuals in the U.S. encounter cartilage injuries due to trauma or osteoarthritis, leading to joint pain and functional disability. Matrix associated stem cell implants (MASI) represent a promising approach for repair of cartilage defects. However, limited survival of MASI creates a significant bottleneck for successful cartilage regeneration outcomes and functional reconstitution. We report a new approach for non-invasive detection of stem cell apoptosis with MR imaging, based on a caspase-3 sensitive nano-aggregation MRI probe (C-SNAM). C-SNAM self-assembles into nanoparticles after hydrolysis by caspase-3, leading to 90% amplification of 1H MR and prolonged in vivo retention. Following intra-articular injection, C-SNAM causes significant MR signal enhancement in apoptotic MASI compared to viable MASI. Our results indicate that C-SNAM functions as an imaging biomarker for stem cell apoptosis in MASI. This concept could be applied to a broad range of cell transplants and target sites. PMID:25597243
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pötter, Richard; Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna; Federico, Mario
Purpose: To define, in the setting of cervical cancer, to what extent information from additional pretreatment magnetic resonance imaging (MRI) without the brachytherapy applicator improves conformity of CT-based high-risk clinical target volume (CTV{sub HR}) contours, compared with the MRI for various tumor stages (International Federation of Gynecology and Obstetrics [FIGO] stages I-IVA). Methods and Materials: The CTV{sub HR} was contoured in 39 patients with cervical cancer (FIGO stages I-IVA) (1) on CT images based on clinical information (CTV{sub HR}-CT{sub Clinical}) alone; and (2) using an additional MRI before brachytherapy, without the applicator (CTV{sub HR}-CT{sub pre-BT} {sub MRI}). The CT contours were compared withmore » reference contours on MRI with the applicator in place (CTV{sub HR}-MRI{sub ref}). Width, height, thickness, volumes, and topography were analyzed. Results: The CT-MRI{sub ref} differences hardly varied in stage I tumors (n=8). In limited-volume stage IIB and IIIB tumors (n=19), CTV{sub HR}-CT{sub pre-BT} {sub MRI}–MRI{sub ref} volume differences (2.6 cm{sup 3} [IIB], 7.3 cm{sup 3} [IIIB]) were superior to CTV{sub HR}-CT{sub Clinical}–MRI{sub ref} (11.8 cm{sup 3} [IIB], 22.9 cm{sup 3} [IIIB]), owing to significant improvement of height and width (P<.05). In advanced disease (n=12), improved agreement with MR volume, width, and height was achieved for CTV{sub HR}-CT{sub pre-BT} {sub MRI}. In 5 of 12 cases, MRI{sub ref} contours were partly missed on CT. Conclusions: Pre-BT MRI helps to define CTV{sub HR} before BT implantation appropriately, if only CT images with the applicator in place are available for BT planning. Significant improvement is achievable in limited-volume stage IIB and IIIB tumors. In more advanced disease (extensive IIB to IVA), improvement of conformity is possible but may be associated with geographic misses. Limited impact on precision of CTV{sub HR}-CT is expected in stage IB tumors.« less
Patients’ satisfaction with anatomic polyurethane implants
2017-01-01
This paper presents patients satisfaction using anatomical polyurethane breast implants. We performed surgery on 525 patients, 370 of which were primary and 155 were secondary to various causes such as capsular contracture, ruptured implants, volume changes, and incorrect positioning of the implant. The advantages of silicone polyurethane covers shown high level of patient satisfaction, low incidence of capsular contracture, and absence of implant rotation, and late seroma. PMID:28497022
Pötter, Richard; Federico, Mario; Sturdza, Alina; Fotina, Irina; Hegazy, Neamat; Schmid, Maximilian; Kirisits, Christian; Nesvacil, Nicole
2016-03-01
To define, in the setting of cervical cancer, to what extent information from additional pretreatment magnetic resonance imaging (MRI) without the brachytherapy applicator improves conformity of CT-based high-risk clinical target volume (CTVHR) contours, compared with the MRI for various tumor stages (International Federation of Gynecology and Obstetrics [FIGO] stages I-IVA). The CTVHR was contoured in 39 patients with cervical cancer (FIGO stages I-IVA) (1) on CT images based on clinical information (CTVHR-CTClinical) alone; and (2) using an additional MRI before brachytherapy, without the applicator (CTVHR-CTpre-BT MRI). The CT contours were compared with reference contours on MRI with the applicator in place (CTVHR-MRIref). Width, height, thickness, volumes, and topography were analyzed. The CT-MRIref differences hardly varied in stage I tumors (n=8). In limited-volume stage IIB and IIIB tumors (n=19), CTVHR-CTpre-BT MRI-MRIref volume differences (2.6 cm(3) [IIB], 7.3 cm(3) [IIIB]) were superior to CTVHR-CTClinical-MRIref (11.8 cm(3) [IIB], 22.9 cm(3) [IIIB]), owing to significant improvement of height and width (P<.05). In advanced disease (n=12), improved agreement with MR volume, width, and height was achieved for CTVHR-CTpre-BT MRI. In 5 of 12 cases, MRIref contours were partly missed on CT. Pre-BT MRI helps to define CTVHR before BT implantation appropriately, if only CT images with the applicator in place are available for BT planning. Significant improvement is achievable in limited-volume stage IIB and IIIB tumors. In more advanced disease (extensive IIB to IVA), improvement of conformity is possible but may be associated with geographic misses. Limited impact on precision of CTVHR-CT is expected in stage IB tumors. Copyright © 2016 Elsevier Inc. All rights reserved.
Management of dental implant fractures. A case history.
Al Quran, Firas A M; Rashan, Bashar A; Al-Dwairi, Ziad N
2009-01-01
The widespread use of endosseous osseointegrated implants to replace missing natural teeth increases the chances of implant complications and failures, despite the high initial success rate reported in the literature. Implant fracture is one possible complication that results in ultimate failure of the dental implant. Such a complication poses a management crisis even for the most experienced clinician. This article reports on a case of implant fracture, its possible causes, and how the case was managed.
Analysis of the causes of dental implant fracture: A retrospective clinical study.
Stoichkov, Biser; Kirov, Dimitar
2018-01-01
Fracture of osseointegrated dental implants is the most severe mechanical complication. The aim of the present study was to analyze possible causative factors for implant body fracture. One hundred and one patients with 218 fitted implants and a follow-up period of 3 to 10 years were studied. Factors associated with biomechanical and physiologic overloading such as parafunctional activity (eg, bruxism), occlusion, and cantilevers, and factors related to the planning of the dental prosthesis, available bone volume, implant area, implant diameter, number of implants, and their inclination were tracked. The impact of their effect was analyzed using the Bonferroni-corrected post-hoc Mann-Whitney test for each group. The incidence of dental implant fracture was 2.3% in the investigated cases. Improper treatment planning, bruxism, and time of the complication setting in were the main factors leading to this complication. Typical size effect was established only for available bruxism, occlusal errors, and their activity duration. These complications were observed most often with single crown prostheses, and in combination with parafunctional activities such as bruxism and lack of implant-protected occlusion. Occlusal overload due to bruxism or inappropriate or inadequate occlusion as a single factor or a combination of these factors during the first years after the functional load can cause implant fracture. Fracture of the implant body more frequently occurred with single crowns than with other implant-supported fixed dental prostheses.
Bastian, Dirk; Ebrahim, Iftikhar O; Chen, Ju-Yi; Chen, Mien-Cheng; Huang, Dejia; Huang, Jin-Long; Kuznetsov, Vadim A; Maus, Bärbel; Naik, Ajay M; Verhees, Koen J P; Fagih, Ahmed R Al
2018-06-13
Currently, several geographies around the world remain underrepresented in medical device trials. The PANORAMA 2 study was designed to assess contemporary region-specific differences in clinical practice patterns of patients with cardiac implantable electronic devices (CIEDs). In this prospective, multicenter, observational, multi-national study, baseline and implant data of 4,706 patients receiving Medtronic CIEDs (either de novo device implants, replacements, or upgrades) were analyzed, consisting of: 54% implantable pulse generators (IPGs), 20.3% implantable cardiac defibrillators (ICDs), 15% cardiac resynchronization therapy defibrillators (CRT-Ds), 5.1% cardiac resynchronization therapy pacemakers (CRT-Ps), from 117 hospitals in 23 countries across 4 geographical regions between 2012 and 2016. For all device types, in all regions, there were less females than males enrolled, and women were less likely to have ischemic cardiomyopathy. Implant procedure duration differed significantly across the geographies for all device types. Subjects from emerging countries, women and older patients were less likely to receive a magnetic resonance imaging (MRI)-compatible device. Defibrillation testing differed significantly between the regions. European patients had the highest rates of atrial fibrillation (AF), and the lowest number of implanted single-chamber IPGs. Evaluation of stroke history suggested that the general embolic risk is more strongly associated with stroke than AF. We provide comprehensive descriptive data on patients receiving Medtronic CIEDs from several geographies, some of which are understudied in randomized controlled trials (RCTs). We found significant variations in patient characteristics. Several medical decisions appear to be affected by socioeconomic factors. Long-term follow-up data will help evaluate if these variations require adjustments to outcome expectations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Voskoboinik, Aleksandr; Bloom, Jason; Taylor, Andrew; Mariani, Justin
2016-09-01
Primary prevention implantable cardioverter defibrillators (ICDs) reduce mortality in selected patients with severe systolic dysfunction. Current guidelines suggest a 3- to 6-month waiting period before implantation. We retrospectively studied 29 consecutive patients with newly diagnosed nonischemic cardiomyopathy (NICM) who underwent primary prevention ICD implantation within 6 months of diagnosis between January 2008 and April 2014. Cardiac MRI (CMR) evaluated left ventricular ejection fraction (LVEF) and regional fibrosis preimplant. The primary end point was "failure to qualify for an ICD at 12 months postimplant," either due to LVEF ≥ 35% or deterioration necessitating mechanical support or transplantation, without appropriate ICD therapy. Secondary end points were appropriate and inappropriate ICD therapy. Baseline mean age was 44.2 ± 14.8 years and median LVEF 16.4%. Median time from diagnosis to implant was 32 days. At 12 months, 17 patients (58.6%) no longer qualified for an ICD, mainly due to LVEF improvement. At follow-up (mean 32.0 ± 20.6 months), three patients received appropriate therapy (one for ventricular fibrillation). All three had CMR late gadolinium enhancement (LGE) and nonsustained ventricular tachycardia (NSVT) preimplant. Cardiac resynchronization at implant predicted LVEF improvement. Early appropriate therapy, particularly for ventricular fibrillation, is infrequent for patients with very severe NICM who have ICDs implanted within 6 months of diagnosis. The majority of these patients would not qualify for an ICD at 12 months postinsertion. In the absence of a multimodality risk score, early ICD insertion should only be considered in selected cases (presence of LGE and NSVT). Wearable cardioverter defibrillators may have a role as a bridge to ICD decision. © 2016 Wiley Periodicals, Inc.
Polyelectrolyte coating of ferumoxytol nanoparticles for labeling of dendritic cells
NASA Astrophysics Data System (ADS)
Celikkin, Nehar; Jakubcová, Lucie; Zenke, Martin; Hoss, Mareike; Wong, John Erik; Hieronymus, Thomas
2015-04-01
Engineered magnetic nanoparticles (MNPs) are emerging to be used as cell tracers, drug delivery vehicles, and contrast agents for magnetic resonance imaging (MRI) for enhanced theragnostic applications in biomedicine. In vitro labeling of target cell populations with MNPs and their implantation into animal models and patients shows promising outcomes in monitoring successful cell engraftment, differentiation and migration by using MRI. Dendritic cells (DCs) are professional antigen-presenting cells that initiate adaptive immune responses. Thus, DCs have been the focus of cellular immunotherapy and are increasingly applied in clinical trials. Here, we addressed the coating of different polyelectrolytes (PE) around ferumoxytol particles using the layer-by-layer technique. The impact of PE-coated ferumoxytol particles for labeling of DCs and Flt3+ DC progenitors was then investigated. The results from our studies revealed that PE-coated ferumoxytol particles can be readily employed for labeling of DC and DC progenitors and thus are potentially suitable as contrast agents for MRI tracking.
Ramaswamy, Sharan; Greco, Jane B.; Uluer, Mehmet C.; Zhang, Zijun; Zhang, Zhuoli; Fishbein, Kenneth W.
2009-01-01
The distribution of cells within tissue-engineered constructs is difficult to study through nondestructive means, such as would be required after implantation. However, cell labeling with iron-containing particles may prove to be a useful approach to this problem, because regions containing such labeled cells have been shown to be readily detectable using magnetic resonance imaging (MRI). In this study, we used the Food and Drug Administration–approved superparamagnetic iron oxide (SPIO) contrast agent Feridex in combination with transfection agents to label chondrocytes and visualize them with MRI in two different tissue-engineered cartilage constructs. Correspondence between labeled cell spatial location as determined using MRI and histology was established. The SPIO-labeling process was found not to affect the phenotype or viability of the chondrocytes or the production of major cartilage matrix constituents. We believe that this method of visualizing and tracking chondrocytes may be useful in the further development of tissue engineered cartilage therapeutics. PMID:19788362
Ellenor, Christopher W; Stang, Pascal P; Etezadi-Amoli, Maryam; Pauly, John M; Scott, Greig C
2015-03-01
The concept of a "radiofrequency safety prescreen" is investigated, wherein dangerous interactions between radiofrequency fields used in MRI, and conductive implants in patients are detected through impedance changes in the radiofrequency coil. The behavior of coupled oscillators is reviewed, and the resulting, observable impedance changes are discussed. A birdcage coil is loaded with a static head phantom and a wire phantom with a wire close to its resonant length, the shape, position, and orientation of which can be changed. Interactions are probed with a current sensor and network analyzer. Impedance spectra show dramatic, unmistakable splitting in cases of strong coupling, and strong correlation is observed between induced current and scattering parameters. The feasibility of a new, low-power prescreening technique has been demonstrated in a simple phantom experiment, which can unambiguously detect resonant interactions between an implanted wire and an imaging coil. A new technique has also been presented which can detect parallel transmit null modes for the wire. © 2014 Wiley Periodicals, Inc.
Biological and MRI characterization of biomimetic ECM scaffolds for cartilage tissue regeneration.
Ravindran, Sriram; Kotecha, Mrignayani; Huang, Chun-Chieh; Ye, Allen; Pothirajan, Padmabharathi; Yin, Ziying; Magin, Richard; George, Anne
2015-12-01
Osteoarthritis is the most common joint disorder affecting millions of people. Most scaffolds developed for cartilage regeneration fail due to vascularization and matrix mineralization. In this study we present a chondrogenic extracellular matrix (ECM) incorporated collagen/chitosan scaffold (chondrogenic ECM scaffold) for potential use in cartilage regenerative therapy. Biochemical characterization showed that these scaffolds possess key pro-chondrogenic ECM components and growth factors. MRI characterization showed that the scaffolds possess mechanical properties and diffusion characteristics important for cartilage tissue regeneration. In vivo implantation of the chondrogenic ECM scaffolds with bone marrow derived mesenchymal stem cells (MSCs) triggered chondrogenic differentiation of the MSCs without the need for external stimulus. Finally, results from in vivo MRI experiments indicate that the chondrogenic ECM scaffolds are stable and possess MR properties on par with native cartilage. Based on our results, we envision that such ECM incorporated scaffolds have great potential in cartilage regenerative therapy. Additionally, our validation of MR parameters with histology and biochemical analysis indicates the ability of MRI techniques to track the progress of our ECM scaffolds non-invasively in vivo; highlighting the translatory potential of this technology. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ramaswamy, Sharan; Uluer, Mehmet C.; Leen, Stephanie; Bajaj, Preeti; Fishbein, Kenneth W.
2008-01-01
Abstract The glycosaminoglycan (GAG) content of engineered cartilage is a determinant of biochemical and mechanical quality. The ability to measure the degree to which GAG content is maintained or increases in an implant is therefore of importance in cartilage repair procedures. The gadolinium exclusion magnetic resonance imaging (MRI) method for estimating matrix fixed charge density (FCD) is ideally suited to this. One promising approach to cartilage repair is use of seeded injectable hydrogels. Accordingly, we assess the reliability of measuring GAG content in such a system ex vivo using MRI. Samples of the photo-polymerizable hydrogel, poly(ethylene oxide) diacrylate, were seeded with bovine chondrocytes (∼2.4 million cells/sample). The FCD of the constructs was determined using MRI after 9, 16, 29, 36, 43, and 50 days of incubation. Values were correlated with the results of biochemical determination of GAG from the same samples. FCD and GAG were found to be statistically significantly correlated (R2 = 0.91, p <0.01). We conclude that MRI-derived FCD measurements of FCD in injectable hydrogels reflect tissue GAG content and that this methodology therefore has potential for in vivo monitoring of such constructs. PMID:18620483
Piątek, Łukasz; Polewczyk, Anna; Kurzawski, Jacek; Zachura, Małgorzata; Kaczmarczyk, Małgorzata; Janion, Marianna
Due to increasing number of patients treated by cardiac implantable electronic devices we observe increasing number of complications after these procedures We analysed causes of early surgical revision of implantable devices connected with 1673 procedures of implantation (871 procedures) or exchange (802 procedures) of pacing systems (PM), cardioverter-difibrillators (ICD) and resynchronisation systems (CRT) in one local centre of electrotherapy in years 2012 to 2015. We characterised risk factors and its influence on encountered complications. In analysed period 72 reinterventions after implantations or exchanges of PM/ICD/CRT were performed. Main causes of early complications were: lead malfunction (2.5%), including the dislodgement of the leads in 1.9%, pocket hematoma (1.4%) and other abnormalities of the pocket (0.4 %), including pocket infections in 0.2%. The most important risk factors of early complications were often implantations of the leads with passive fixation and anticoagulation therapy in perioperative period. The knowledge of the early complications after implantations and exchanges of PM/ICD/CRT should improve the safety of procedures through more often used of the leads with active fixation and properly preparation of the patients requering the antithrombic therapy.
de Freitas, Ricardo Miguel Costa; Andrade, Celi Santos; Caldas, José Guilherme Mendes Pereira; Kanas, Alexandre Fligelman; Cabral, Richard Halti; Tsunemi, Miriam Harumi; Rodríguez, Hernán Joel Cervantes; Rabbani, Said Rahnamaye
2015-05-01
New spinal interventions or implants have been tested on ex vivo or in vivo porcine spines, as they are readily available and have been accepted as a comparable model to human cadaver spines. Imaging-guided interventional procedures of the spine are mostly based on fluoroscopy or, still, on multidetector computed tomography (MDCT). Cone-beam computed tomography (CBCT) and magnetic resonance imaging (MRI) are also available methods to guide interventional procedures. Although some MDCT data from porcine spines are available in the literature, validation of the measurements on CBCT and MRI is lacking. To describe and compare the anatomical measurements accomplished with MDCT, CBCT, and MRI of lumbar porcine spines to determine if CBCT and MRI are also useful methods for experimental studies. An experimental descriptive-comparative study. Sixteen anatomical measurements of an individual vertebra from six lumbar porcine spines (n=36 vertebrae) were compared with their MDCT, CBCT, and MRI equivalents. Comparisons were made for the absolute values of the parameters. Similarities were found in all imaging methods. Significant correlation (p<.05) was observed with all variables except those that included cartilaginous tissue from the end plates when the anatomical study was compared with the imaging methods. The CBCT and MRI provided imaging measurements of the lumbar porcine spines that were similar to the anatomical and MDCT data, and they can be useful for specific experimental research studies. Copyright © 2015 Elsevier Inc. All rights reserved.
Registration of 3D ultrasound computer tomography and MRI for evaluation of tissue correspondences
NASA Astrophysics Data System (ADS)
Hopp, T.; Dapp, R.; Zapf, M.; Kretzek, E.; Gemmeke, H.; Ruiter, N. V.
2015-03-01
3D Ultrasound Computer Tomography (USCT) is a new imaging method for breast cancer diagnosis. In the current state of development it is essential to correlate USCT with a known imaging modality like MRI to evaluate how different tissue types are depicted. Due to different imaging conditions, e.g. with the breast subject to buoyancy in USCT, a direct correlation is demanding. We present a 3D image registration method to reduce positioning differences and allow direct side-by-side comparison of USCT and MRI volumes. It is based on a two-step approach including a buoyancy simulation with a biomechanical model and free form deformations using cubic B-Splines for a surface refinement. Simulation parameters are optimized patient-specifically in a simulated annealing scheme. The method was evaluated with in-vivo datasets resulting in an average registration error below 5mm. Correlating tissue structures can thereby be located in the same or nearby slices in both modalities and three-dimensional non-linear deformations due to the buoyancy are reduced. Image fusion of MRI volumes and USCT sound speed volumes was performed for intuitive display. By applying the registration to data of our first in-vivo study with the KIT 3D USCT, we could correlate several tissue structures in MRI and USCT images and learn how connective tissue, carcinomas and breast implants observed in the MRI are depicted in the USCT imaging modes.
Pauchard, Y; Smith, M; Mintchev, M
2004-01-01
Magnetic resonance imaging (MRI) suffers from geometric distortions arising from various sources. One such source are the non-linearities associated with the presence of metallic implants, which can profoundly distort the obtained images. These non-linearities result in pixel shifts and intensity changes in the vicinity of the implant, often precluding any meaningful assessment of the entire image. This paper presents a method for correcting these distortions based on non-rigid image registration techniques. Two images from a modelled three-dimensional (3D) grid phantom were subjected to point-based thin-plate spline registration. The reference image (without distortions) was obtained from a grid model including a spherical implant, and the corresponding test image containing the distortions was obtained using previously reported technique for spatial modelling of magnetic susceptibility artifacts. After identifying the nonrecoverable area in the distorted image, the calculated spline model was able to quantitatively account for the distortions, thus facilitating their compensation. Upon the completion of the compensation procedure, the non-recoverable area was removed from the reference image and the latter was compared to the compensated image. Quantitative assessment of the goodness of the proposed compensation technique is presented.
Nordbeck, Peter; Fidler, Florian; Friedrich, Michael T; Weiss, Ingo; Warmuth, Marcus; Gensler, Daniel; Herold, Volker; Geistert, Wolfgang; Jakob, Peter M; Ertl, Georg; Ritter, Oliver; Ladd, Mark E; Bauer, Wolfgang R; Quick, Harald H
2012-12-01
There are serious concerns regarding safety when performing magnetic resonance imaging in patients with implanted conductive medical devices, such as cardiac pacemakers, and associated leads, as severe incidents have occurred in the past. In this study, several approaches for altering an implant's lead design were systematically developed and evaluated to enhance the safety of implanted medical devices in a magnetic resonance imaging environment. The individual impact of each design change on radiofrequency heating was then systematically investigated in functional lead prototypes at 1.5 T. Radiofrequency-induced heating could be successfully reduced by three basic changes in conventional pacemaker lead design: (1) increasing the lead tip area, (2) increasing the lead conductor resistance, and (3) increasing outer lead insulation conductivity. The findings show that radiofrequency energy pickup in magnetic resonance imaging can be reduced and, therefore, patient safety can be improved with dedicated construction changes according to a "safe by design" strategy. Incorporation of the described alterations into implantable medical devices such as pacemaker leads can be used to help achieve favorable risk-benefit-ratios when performing magnetic resonance imaging in the respective patient group. Copyright © 2012 Wiley Periodicals, Inc.
Reaction of the rat tissues to implantation of polyhydroxyalkanoate films and ultrafine fibers.
Maiborodin, I V; Shevela, A I; Morozov, V V; Novikova, Ya V; Matveeva, V A; Drovosekov, M N; Barannik, M I
2013-01-01
The reaction of various tissues of rats to implantation of polyhydroxyalkanoate films and ultrafine fibers was studied by optic microscopy. Implantation of polyhydroxyalkanoate films into the abdominal cavity caused a peritoneal reaction, leading after 1 month to the formation of fibrous adhesions between polyhydroxyalkanoate and intestinal loops. Under the skin and in the muscle tissue polyhydroxyalkanoate films were encapsulated in a thick fibrous capsule. Implantation of polyhydroxyalkanoate ultrathin fibers led to formation of foreign body granulomas in all tissues with perifocal inflammation and sclerosis of the adjacent tissues. The polymer was fragmented in these granulomas and phagocytosed by macrophages with the formation of giant foreign body cells. Hence, polyhydroxyalkanoate materials implanted in vivo caused chronic granulomatous inflammatory reaction and were very slowly destroyed by macrophages.
A contact mechanics model for ankle implants with inclusion of surface roughness effects
NASA Astrophysics Data System (ADS)
Hodaei, M.; Farhang, K.; Maani, N.
2014-02-01
Total ankle replacement is recognized as one of the best procedures to treat painful arthritic ankles. Even though this method can relieve patients from pain and reproduce the physiological functions of the ankle, an improper design can cause an excessive amount of metal debris due to wear, causing toxicity in implant recipient. This paper develops a contact model to treat the interaction of tibia and talus implants in an ankle joint. The contact model describes the interaction of implant rough surfaces including both elastic and plastic deformations. In the model, the tibia and the talus surfaces are viewed as macroscopically conforming cylinders or conforming multi-cylinders containing micrometre-scale roughness. The derived equations relate contact force on the implant and the minimum mean surface separation of the rough surfaces. The force is expressed as a statistical integral function of asperity heights over the possible region of interaction of the roughness of the tibia and the talus implant surfaces. A closed-form approximate equation relating contact force and minimum separation is used to obtain energy loss per cycle in a load-unload sequence applied to the implant. In this way implant surface statistics are related to energy loss in the implant that is responsible for internal void formation and subsequent wear and its harmful toxicity to the implant recipient.
Urinary incontinence - injectable implant
... injections of material into the urethra to help control urine leakage ( urinary incontinence ) caused by a weak urinary sphincter. ... choose to have implants. Women who have urine leakage and want a ... procedure to control the problem may choose to have an implant ...
A rare, late complication after automated implantable cardioverter-defibrillator placement.
Shapiro, Michael; Hanon, Sam; Schweitzer, Paul
2004-10-01
This article describes an interesting case of automated implantable cardioverter defibrillator (AICD) extrusion fifteen months after implantation. The case report is followed by a discussion of the causes and treatment of skin erosion following pacemaker/AICD insertion.
Experience in cochlear reimplantation. Descriptive study of a 20-year period.
Gutiérrez-Salazar, Andrés; Cop, Constanze; Osorio-Acosta, Ángel; Borkoski-Barreiro, Silvia; Falcón-González, Juan C; Ramos-Macías, Ángel
2015-01-01
The cochlear implant is a surgical procedure that has increased substantially, because the paediatric population is diagnosed and implanted early and because there are increased potential indications. This device has the inherent risk of failure in performance, as dies any active medical device, which is the most common cause of implant removal. Our goal was to understand what the causes that produced removal in our series were, and confirm if these conformed to reality as reviewed in the literature. This was a retrospective, descriptive, observational study of 859 cochlear implant surgeries carried out between October 1991 and May 2011. The causes of implant removal were classified according to the European Consensus Statement on Cochlear Implant Failures and Explantations. The reimplantation rate was 6.16% (n=51). The most common reason for removal was technical device failure (45.5%), followed by infection/rejection (23.6%) and upgrade (12.7%). Less common causes: there were 3 cases (5.6%) of electrode misplacement, 2 cases (3.6%) of labyrinthine ossification, 2 (3.6%) as a result of head trauma, 2 (3.6%) from need for nuclear magnetic resonance imaging and 1 case (1.8%) from psychiatric illness. Cochlear reimplantation is a safe procedure, with a low complication rate. In our centre, it reaches an overall rate of 6.16%. Technical device failure remains the most common cause of this procedure, although there is a significant percentage of reimplantation for device update. Copyright © 2014 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.
Neurotrophic Electrode: Method of assembly and implantation into human motor speech cortex
Bartels, Jess; Andreasen, Dinal; Ehirim, Princewill; Mao, Hui; Seibert, Steven; Wright, E Joe; Kennedy, Philip
2008-01-01
The Neurotrophic Electrode (NE) is designed for longevity and stability of recorded signals. To achieve this aim it induces neurites to grow through its glass tip, thus anchoring it in neuropil. The glass tip contains insulated gold wires for recording the activity of the myelinated neurites that grow into the tip. Neural signals inside the tip are electrically insulated from surrounding neural activity by the glass. The most recent version of the electrode has four wires inside its tip to maximize the number of discriminable signals recorded from ingrown neurites, and has a miniature connector. Flexible coiled, insulated gold wires connect to electronics on the skull that remain subcutaneous. The implanted electronics consist of differential amplifiers, FM transmitters, and a sine wave at power up for tuning and calibration. Inclusion criteria for selecting locked-in subjects include medical stability, normal cognition, and strong caregiver support. The implant target is localized via an fMRI-naming task. Final localization at surgery is achieved by 3D stereotaxic localization. During recording, implanted electronics are powered by magnetic induction across an air gap. Coiled antennas placed on the scalp over the implanted transmitters receive the amplified FM transmitter outputs. Data is processed as described elsewhere where stability and longevity issues are addressed. Five subjects have been successfully implanted with the NE. Recorded signals persisted for over four years in two subjects who died from underlying illnesses, and continue for over three years in our present subject. PMID:18672003
ERIC Educational Resources Information Center
Pourtois, Gilles; Vocat, Roland; N'Diaye, Karim; Spinelli, Laurent; Seeck, Margitta; Vuilleumier, Patrik
2010-01-01
We studied error monitoring in a human patient with unique implantation of depth electrodes in both the left dorsal cingulate gyrus and medial temporal lobe prior to surgery. The patient performed a speeded go/nogo task and made a substantial number of commission errors (false alarms). As predicted, intracranial Local Field Potentials (iLFPs) in…
Recent improvements in SPE3D: a VR-based surgery planning environment
NASA Astrophysics Data System (ADS)
Witkowski, Marcin; Sitnik, Robert; Verdonschot, Nico
2014-02-01
SPE3D is a surgery planning environment developed within TLEMsafe project [1] (funded by the European Commission FP7). It enables the operator to plan a surgical procedure on the customized musculoskeletal (MS) model of the patient's lower limbs, send the modified model to the biomechanical analysis module, and export the scenario's parameters to the surgical navigation system. The personalized patient-specific three-dimensional (3-D) MS model is registered with 3-D MRI dataset of lower limbs and the two modalities may be visualized simultaneously. Apart from main planes, any arbitrary MRI cross-section can be rendered on the 3-D MS model in real time. The interface provides tools for: bone cutting, manipulating and removal, repositioning muscle insertion points, modifying muscle force, removing muscles and placing implants stored in the implant library. SPE3D supports stereoscopic viewing as well as natural inspection/manipulation with use of haptic devices. Alternatively, it may be controlled with use of a standard computer keyboard, mouse and 2D display or a touch screen (e.g. in an operating room). The interface may be utilized in two main fields. Experienced surgeons may use it to simulate their operative plans and prepare input data for a surgical navigation system while student or novice surgeons can use it for training.
Rashid, Shams; Rapacchi, Stanislas; Shivkumar, Kalyanam; Plotnik, Adam; Finn, J. Paul; Hu, Peng
2015-01-01
Purpose To study the effects of cardiac devices on three-dimensional (3D) late gadolinium enhancement (LGE) MRI and to develop a 3D LGE protocol for implantable cardioverter defibrillator (ICD) patients with reduced image artifacts. Theory and Methods The 3D LGE sequence was modified by implementing a wideband inversion pulse, which reduces hyperintensity artifacts, and by increasing bandwidth of the excitation pulse. The modified wideband 3D LGE sequence was tested in phantoms and evaluated in six volunteers and five patients with ICDs. Results Phantom and in vivo studies results demonstrated extended signal void and ripple artifacts in 3D LGE that were associated with ICDs. The reason for these artifacts was slab profile distortion and the subsequent aliasing in the slice-encoding direction. The modified wideband 3D LGE provided significantly reduced ripple artifacts than 3D LGE with wideband inversion only. Comparison of 3D and 2D LGE images demonstrated improved spatial resolution of the heart using 3D LGE. Conclusion Increased bandwidth of the inversion and excitation pulses can significantly reduce image artifacts associated with ICDs. Our modified wideband 3D LGE protocol can be readily used for imaging patients with ICDs given appropriate safety guidelines are followed. PMID:25772155
Shalabi, Manal M; Wolke, Johannes G C; Cuijpers, Vincent M J I; Jansen, John A
2007-10-01
High-resolution three-dimensional data about the bone response to oral implants can be obtained by using microfocus computer tomography. However, a disadvantage is that metallic implants cause streaking artifacts due to scattering of X-rays, which prevents an accurate evaluation of the interfacial bone-to-implant contact. It has been suggested that the use of thin titanium coatings deposited on polymeric implants can offer an alternative option for analyzing bone contact using micro-CT imaging. Consequently, the aim of the current study was to investigate bone behavior to titanium-coated polymethylmethacrylate (PMMA) implants by micro-CT and histological evaluation. For the experiment titanium-coated PMMA implants were used. The implants had a machined threaded appearance and were provided with a 400-500 nm thick titanium coating. The implants were inserted in the right or left tibia of 10 goats. After an implantation period of 12 weeks the implants were retrieved and prepared for micro-computer tomography (microCT), light microscopy, and X-ray microanalysis. The micro-CT showed that the screw-threads and typical implant configuration were well maintained through the installation procedure. Overall, histological responses showed that the titanium-coated implants were well tolerated and caused no atypical tissue response. In addition, the bone was seen in direct contact with the titanium-coated layer. The X-ray microanalysis results confirmed the light microscopical data. In conclusion, the obtained results proof the final use of titanium-coated PMMA implants for evaluation of the bone-implant response using microCT. However, this study also confirms that for a proper analysis of the bone-implant interface the additional use of microscopical techniques is still required.
Clinical Holistic Medicine: How to Recover Memory Without “Implanting” Memories in Your Patient
Ventegodt, Søren; Kandel, Isack; Merrick, Joav
2007-01-01
Every therapeutic strategy and system teach us the philosophy of the treatment system to the patient, but often this teaching is subliminal and the philosophical impact must be seen as “implanted philosophy”, which gives distorted interpretations of past events called “implanted memories”. Based on the understanding of the connection between “implanted memory” and “implanted philosophy” we have developed a strategy for avoiding implanting memories arising from one of the seven most common causes of implanted memories in psychodynamic therapy: 1) Satisfying own expectancies, 2) pleasing the therapist, 3) transferences and counter transferences, 4) as source of mental and emotional order, 5) as emotional defence, 6) as symbol and 7) from implanted philosophy. Freud taught us that child sexuality is “polymorphously perverted”, meaning that all kinds of sexuality is present at least potentially with the little child; and in dreams consciousness often go back to the earlier stages of development, potentially causing all kinds of sexual dreams and fantasies, which can come up in therapy and look like real memories. The therapist working with psychodynamic psychotherapy, clinical holistic medicine, psychiatry, and emotionally oriented bodywork, should be aware of the danger of implanting philosophy and memories. Implanted memories and implanted philosophy must be carefully handled and de-learned before ending the therapy. In conclusion “clinical holistic medicine” has developed a strategy for avoiding implanting memories. PMID:17891319
McCarty, Eric C; Fader, Ryan R; Mitchell, Justin J; Glenn, R Edward; Potter, Hollis G; Spindler, Kurt P
2016-09-01
Osteochondral autografts and allografts have been widely used in the treatment of isolated grade 4 articular cartilage lesions of the knee. However, there is a paucity of literature regarding the basic science investigating the direct comparison between fresh osteochondral allografts to autografts. At 12 months, fresh osteochondral allografts are equal to autografts with respect to function, bony incorporation into host bone, and chondrocyte viability. Controlled laboratory study. Eight adult mongrel dogs underwent bilateral hindlimb osteochondral graft implantation in the knee after creation of an acute Outerbridge grade 4 cartilage defect. One hindlimb of each dog knee received an autograft, and the contralateral knee received an allograft. All dogs were sacrificed at 12 months. Graft analysis included gross examination, radiographs, magnetic resonance imaging (MRI), biomechanical testing, and histology. MRI demonstrated excellent bony incorporation of both autografts and allografts, except for 1 allograft that revealed partial incorporation. Histologic examination of cartilage showed intact hyaline appearance for both autografts and allografts, with fibrocartilage at the host-graft interface of both. Biomechanical testing demonstrated no significant difference between allografts and autografts (P = .76). Furthermore, no significant difference was observed between allografts and the native cartilage with biomechanical testing (P = .84). After 12 months from time of implantation, fresh osteochondral allograft tissue and autograft tissue in this study were not statistically different with respect to biomechanical properties, gross morphology, bony incorporation, or overall histologic characteristics. When compared with the previously reported 6-month incorporation rates, there was improved allograft and autograft incorporation at 12 months. With no significant differences in gross examination, radiographs, MRI, biomechanical testing, or histology in the canine model, the use of allograft tissue to treat osteochondral defects may eliminate the morbidity associated with autograft harvest. © 2016 The Author(s).
Malformation of the eighth cranial nerve in children.
de Paula-Vernetta, Carlos; Muñoz-Fernández, Noelia; Mas-Estellés, Fernando; Guzmán-Calvete, Abel; Cavallé-Garrido, Laura; Morera-Pérez, Constantino
2016-01-01
Prevalence of congenital sensorineural hearing loss (SNHL) is approximately 1.5-6 in every 1,000 newborns. Dysfunction of the auditory nerve (auditory neuropathy) may be involved in up to 1%-10% of cases; hearing losses because of vestibulocochlear nerve (VCN) aplasia are less frequent. The objectives of this study were to describe clinical manifestations, hearing thresholds and aetiology of children with SNHL and VCN aplasia. We present 34 children (mean age 20 months) with auditory nerve malformation and profound HL taken from a sample of 385 children implanted in a 10-year period. We studied demographic characteristics, hearing, genetics, risk factors and associated malformations (Casselman's and Sennaroglu's classifications). Data were processed using a bivariate descriptive statistical analysis (P<.05). Of all the cases, 58.8% were bilateral (IIa/IIa and I/I were the most common). Of the unilateral cases, IIb was the most frequent. Auditory screening showed a sensitivity of 77.4%. A relationship among bilateral cases and systemic pathology was observed. We found a statistically significant difference when comparing hearing loss impairment and patients with different types of aplasia as defined by Casselman's classification. Computed tomography (CT) scan yielded a sensitivity of 46.3% and a specificity of 85.7%. However, magnetic resonance imaging (MRI) was the most sensitive imaging test. Ten percent of the children in a cochlear implant study had aplasia or hypoplasia of the auditory nerve. The degree of auditory loss was directly related to the different types of aplasia (Casselman's classification) Although CT scan and MRI are complementary, the MRI is the test of choice for detecting auditory nerve malformation. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anna-Liisa Brownell
Adult progenitor cells hold promise for therapeutic treatment where there has been a disabling loss of function due to death of cells from trauma, disease or aging. However, it will be essential in clinical application to be able to follow the fate of the transplanted cells over time using in vivo tracking methods. We have developed protocol for labeling of progenitor cells to monitor cell trafficking by high resolution magnetic resonance imaging (MRI) and super high resolution positron emission tomography (PET). We have transfected rat subventricular zone stem cells (SVZ, progenitor cell line) and another control cell line (PC12, pheochromocytomamore » cells) utilizing super paramagnetic iron oxide and poly-L-lysine complex for MR imaging or radiolabeling with 18F-fluor deoxy-D- glucose for PET imaging. The labeled cells were transplanted into the rostral migratory stream (RMS) or striatum of normal or 6-hydroxydopamine lesioned Spraque-Dawley rats. Longitudinal MRI studies (up to 40 days) showed that transplantation site has significant impact to the fate of the cells; when SVZ cells were transplanted into the RMS, cells migrated several centimeter into the olfactory bulb; after transplantation into the striatum, the migration was minimal, only 2 mm. PC 12 cells grew a massive tumor after the striatal implantation and significantly smaller tumor after the RMS implantation. PET studies conducted immediately after transplantation verified the transplantation site. MRI studies were able to show the whole path of migration in one image, since part of the cells die during migration and will get detected because of iron content. Endpoint histological studies verified the cell survival and immunohistochemical studies revealed the differentiation of the transplanted cells into astrocytes and neurons.« less
Segmentation of knee MRI using structure enhanced local phase filtering
NASA Astrophysics Data System (ADS)
Lim, Mikhiel; Hacihaliloglu, Ilker
2016-03-01
The segmentation of bone surfaces from magnetic resonance imaging (MRI) data has applications in the quanti- tative measurement of knee osteoarthritis, surgery planning for patient specific total knee arthroplasty and its subsequent fabrication of artificial implants. However, due to the problems associated with MRI imaging such as low contrast between bone and surrounding tissues, noise, bias fields, and the partial volume effect, segmentation of bone surfaces continues to be a challenging operation. In this paper, a new framework is presented for the enhancement of knee MRI scans prior to segmentation in order to obtain high contrast bone images. During the first stage, a new contrast enhanced relative total variation (RTV) regularization method is used in order to remove textural noise from the bone structures and surrounding soft tissue interface. This salient bone edge information is further enhanced using a sparse gradient counting method based on L0 gradient minimization, which globally controls how many non-zero gradients are resulted in order to approximate prominent bone structures in a structure-sparsity-management manner. The last stage of the framework involves incorporation of local phase bone boundary information in order to provide an intensity invariant enhancement of contrast between the bone and surrounding soft tissue. The enhanced images are segmented using a fast random walker algorithm. Validation against expert segmentation was performed on 10 clinical knee MRI images, and achieved a mean dice similarity coefficient (DSC) of 0.975.
Biomaterials and host versus graft response: A short review
Velnar, Tomaz; Bunc, Gorazd; Klobucar, Robert; Gradisnik, Lidija
2016-01-01
Biomaterials and biotechnology are increasing becoming an important area in modern medicine. The main aim in this area is the development of materials, which are biocompatible to normal tissue. Tissue-implant interactions with molecular, biological and cellular characteristics at the implant-tissue interface are important for the use and development of implants. Implantation may cause an inflammatory and immune response in tissue, foreign body reaction, systemic toxicity and imminent infection. Tissue-implant interactions determine the implant life-period. The aims of the study are to consider the biological response to implants. Biomaterials and host reactions to implants and their mechanisms are also briefly discussed. PMID:26894284
Elkafrawy, Fatma; Reda, Ihab; Elsirafy, Mohamed; Gawad, Mohamed Saied Abdel; Elnaggar, Alaa; Khalek Abdel Razek, Ahmed Abdel
2017-02-01
To evaluate the role of three-dimensional constructive interference in steady state (3D-CISS) sequences and phase-contrast magnetic resonance imaging (PC-MRI) in patients with arrested hydrocephalus. A prospective study of 20 patients with arrested hydrocephalus was carried out. All patients underwent PC-MRI and 3D-CISS for assessment of the aqueduct. Axial (through-plane), sagittal (in-plane) PC-MRI, and sagittal 3D-CISS were applied to assess the cerebral aqueduct and the spontaneous third ventriculostomy if present. Aqueductal patency was graded using 3D-CISS and PC-MRI. Quantitative analysis of flow through the aqueduct was performed using PC-MRI. The causes of obstruction were aqueductal obstruction in 75% (n = 15), third ventricular obstruction in 5% (n = 1), and fourth ventricular obstruction in 20% (n = 4). The cause of arrest of hydrocephalus was spontaneous third ventriculostomy in 65% (n = 13), endoscopic third ventriculostomy in 10% (n = 2), and ventriculoperitoneal shunt in 5% (n = 1), and no cause could be detected in 20% of patients (n = 4). There is a positive correlation (r = 0.80) and moderate agreement (κ = 0.509) of grading with PC-MRI and 3D-CISS sequences. The mean peak systolic velocity of cerebrospinal fluid was 1.86 ± 2.48 cm/second, the stroke volume was 6.43 ± 13.81 μL/cycle, and the mean flow was 0.21 ± 0.32 mL/minute. We concluded that 3D-CISS and PC-MRI are noninvasive sequences for diagnosis of the level and cause of arrested hydrocephalus. Copyright © 2016 Elsevier Inc. All rights reserved.
Cushing Syndrome: Diagnostic Workup and Imaging Features, With Clinical and Pathologic Correlation.
Wagner-Bartak, Nicolaus A; Baiomy, Ali; Habra, Mouhammed Amir; Mukhi, Shalini V; Morani, Ajaykumar C; Korivi, Brinda R; Waguespack, Steven G; Elsayes, Khaled M
2017-07-01
Cushing syndrome (CS) is a constellation of clinical signs and symptoms resulting from chronic exposure to excess cortisol, either exogenous or endogenous. Exogenous CS is most commonly caused by administration of glucocorticoids. Endogenous CS is subdivided into two types: adrenocorticotropic hormone (ACTH) dependent and ACTH independent. Cushing disease, which is caused by a pituitary adenoma, is the most common cause of ACTH-dependent CS for which pituitary MRI can be diagnostic, with bilateral inferior petrosal sinus sampling useful in equivocal cases. In ectopic ACTH production, which is usually caused by a tumor in the thorax (e.g., small cell lung carcinoma, bronchial and thymic carcinoids, or medullary thyroid carcinoma) or abdomen (e.g., gastroenteropancreatic neuroendocrine tumors or pheochromocytoma), CT, MRI, and nuclear medicine tests are used for localizing the source of ACTH. In ACTH-independent CS, which is caused by various adrenal abnormalities, adrenal protocol CT or MRI is usually diagnostic.
Xu, Chao; Zhang, Xinxian; Dong, Lina; Zhu, Bin; Xin, Tao
2017-06-01
We verified the advantages of using magnetic resonance imaging (MRI) for improving the diagnostic quality of growth hormone deficiency (GHD) in children with short stature caused by pituitary lesions. Clinical data obtained from 577 GHD patients with short stature caused by pituitary lesions were retrospectively analyzed. There were 354 cases (61.3%) with anterior pituitary dysplasia; 45 cases (7.8%) of pituitary stalk interruption syndrome (PSIS); 15 cases (2.6%) of pituitary hyperplasia due to primary hypothyroidism; 38 cases (6.6%) of Rathke cleft cyst; 68 cases (11.8%) of empty sella syndrome; 16 cases (2.8%) of pituitary invasion from Langerhans cell histiocytosis; 2 cases (0.3%) of sellar regional arachnoid cyst and 39 cases (6.8%) of craniopharyngioma. MRI results showed that the height of anterior pituitary in patients was less than normal. Location, size and signals of posterior pituitary and pituitary stalk were normal in anterior pituitary dysplasia. In all cases pituitary hyperplasia was caused by hypothyroidism. MRI results showed that anterior pituitary was enlarged, and we detected upward apophysis and obvious homogeneous enhancement. There were no pituitary stalk interruption and abnormal signal. We also observed that after hormone replacement therapy the size of pituitary gland was reduced. Anterior pituitary atrophy was observed in Rathke cleft cyst, empty sella syndrome, sellar regional arachnoid cyst and craniopharyngioma. The microstructure of hypophysis and sellar region was studied with MRI. We detected pituitary lesions, and the characteristics of various pituitary diseases of GHD in children with short stature. It was concluded that in children with GHD caused by pituitary lesions, MRI was an excellent method for early diagnosis. This method offers clinical practicability and we believe it can be used for differential diagnosis and to monitor the therapeutic effects.
Use of low-energy hydrogen ion implants in high-efficiency crystalline-silicon solar cells
NASA Technical Reports Server (NTRS)
Fonash, S. J.; Sigh, R.; Mu, H. C.
1986-01-01
The use of low-energy hydrogen implants in the fabrication of high-efficiency crystalline silicon solar cells was investigated. Low-energy hydrogen implants result in hydrogen-caused effects in all three regions of a solar cell: emitter, space charge region, and base. In web, Czochralski (Cz), and floating zone (Fz) material, low-energy hydrogen implants reduced surface recombination velocity. In all three, the implants passivated the space charge region recombination centers. It was established that hydrogen implants can alter the diffusion properties of ion-implanted boron in silicon, but not ion-implated arsenic.
Kolandaivelu, Aravindan; Zviman, Menekhem M.; Castro, Valeria; Lardo, Albert C.; Berger, Ronald D.; Halperin, Henry R.
2010-01-01
Background Failure to achieve properly localized, permanent tissue destruction is a common cause of arrhythmia recurrence after cardiac ablation. Current methods of assessing lesion size and location during cardiac radiofrequency ablation are unreliable or not suited for repeated assessment during the procedure. MRI thermography could be used to delineate permanent ablation lesions because tissue heating above 50°C is the cause of permanent tissue destruction during radiofrequency ablation. However, image artifacts caused by cardiac motion, the ablation electrode, and radiofrequency ablation currently pose a challenge to MRI thermography in the heart. In the current study, we sought to demonstrate the feasibility of MRI thermography during cardiac ablation. Methods and Results An MRI-compatible electrophysiology catheter and filtered radiofrequency ablation system was used to perform ablation in the left ventricle of 6 mongrel dogs in a 1.5-T MRI system. Fast gradient-echo imaging was performed before and during radiofrequency ablation, and thermography images were derived from the preheating and postheating images. Lesion extent by thermography was within 20% of the gross pathology lesion. Conclusions MR thermography appears to be a promising technique for monitoring lesion formation and may allow for more accurate placement and titration of ablation, possibly reducing arrhythmia recurrences. PMID:20657028
Overdenture retaining bar stress distribution: a finite-element analysis.
Caetano, Conrado Reinoldes; Mesquita, Marcelo Ferraz; Consani, Rafael Leonardo Xediek; Correr-Sobrinho, Lourenço; Dos Santos, Mateus Bertolini Fernandes
2015-05-01
Evaluate the stress distribution on the peri-implant bone tissue and prosthetic components of bar-clip retaining systems for overdentures presenting different implant inclinations, vertical misfit and framework material. Three-dimensional models of a jaw and an overdenture retained by two implants and a bar-clip attachment were modeled using specific software (SolidWorks 2010). The studied variables were: latero-lateral inclination of one implant (-10°, -5°, 0°, +5°, +10°); vertical misfit on the other implant (50, 100, 200 µm); and framework material (Au type IV, Ag-Pd, Ti cp, Co-Cr). Solid models were imported into mechanical simulation software (ANSYS Workbench 11). All nodes on the bone's external surface were constrained and a displacement was applied to simulate the settling of the framework on the ill-fitted component. Von Mises stress for the prosthetic components and maximum principal stress to the bone tissue were evaluated. The +10° inclination presented the worst biomechanical behavior, promoting the highest stress values on the bar framework and peri-implant bone tissue. The -5° group presented the lowest stress values on the prosthetic components and the lowest stress value on peri-implant bone tissue was observed in -10°. Increased vertical misfit caused an increase on the stress values in all evaluated structures. Stiffer framework materials caused a considerable stress increase in the framework itself, prosthetic screw of the fitted component and peri-implant bone tissue. Inclination of one implant associated with vertical misfit caused a relevant effect on the stress distribution in bar-clip retained overdentures. Different framework materials promoted increased levels of stress in all the evaluated structures.
NASA Astrophysics Data System (ADS)
Tan, Jing; Li, Yiting; Liu, Zhiyuan; Qu, Shuxin; Lu, Xiong; Wang, Jianxin; Duan, Ke; Weng, Jie; Feng, Bo
2015-07-01
The titanium percutaneous implants were widely used in clinic; however, they have an increased risk of infection since they breach the skin barrier. Lack of complete skin integration with the implants can cause infection and implant removal. In this work, three titania nanotubes (TNT) with different diameters, 50 nm (TNT-50), 100 nm (TNT-100) and 150 nm (TNT-150) arrays were prepared on titanium surfaces by anodization, pure titanium (pTi) was used as control. Samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle analysis. The antibacterial efficiency of TNT was evaluated in vitro against Staphylococcus aureus under the visible light. The results indicated that TNT-100 had the highest antibacterial efficiency under the visible light. Subsequently, TNT implants and pTi implants were placed subcutaneously to the dorsum of New Zealand White rabbits, 108 CFU S. aureus was inoculated into the implant sites 4 h after surgery. The TNF-alpha and IL-1alpha were determined using enzyme linked immunoassay (ELISA). TNT implants revealed less inflammatory factor release than pTi implants with or without injected S. aureus liquid. According to the histological results, the TNT implants displayed excellent tissue integration. Whereas, pTi implants were surrounded with fibrotic capsule, and the skin tissue was almost separated from the implant surface. Therefore, the TNT significantly inhibited the infection risk and enhanced tissue integration of the percutaneous implants compared to pTi. The immersion test in the culture medium suggested that one of causes be probably more proteins adsorbed on TNT than on pTi.
Cochlear Implantation in Siblings With Refsum's Disease.
Stähr, Kerstin; Kuechler, Alma; Gencik, Martin; Arnolds, Judith; Dendy, Meaghan; Lang, Stephan; Arweiler-Harbeck, Diana
2017-08-01
Whether the origin of severe hearing loss in Refsum's syndrome is caused by cochlear impairment or retrocochlear degeneration remains unclear. This case report aims to investigate hearing performance before and after cochlear implantation to shed light on this question. Also, identification of new mutations causing Refsum's syndrome would be helpful in generating additional means of diagnosis. A family of 4 individuals was subjected to genetic testing. Two siblings (56 and 61 years old) suffered from severe hearing and vision loss and received bilateral cochlear implants. Genetic analysis, audiological outcome, and clinical examinations were performed. One new mutation in the PHYH gene (c.768del63bp) causing Refsum's disease was found. Preoperative distortion product otoacoustic emissions (DPAOEs) were absent. Postoperative speech perception in Freiburger speech test was 100% for bisyllabic words and 85% (patient No. 1) and 65% (patient No. 2), respectively, for monosyllabic words. Five years after implantation, speech perception remained stable for bisyllabic words but showed decreasing capabilities for monosyllabic words. A new mutation causing Refsum's disease is presented. Cochlear implantation in case of severe hearing loss leads to an improvement in speech perception and should be recommended for patients with Refsum's disease, especially when the hearing loss is combined with a severe loss of vision. Decrease of speech perception in the long-term follow-up could indicate an additional retrocochlear degeneration.
Cochlear implantation in patients with bilateral cochlear trauma.
Serin, Gediz Murat; Derinsu, Ufuk; Sari, Murat; Gergin, Ozgül; Ciprut, Ayça; Akdaş, Ferda; Batman, Cağlar
2010-01-01
Temporal bone fracture, which involves the otic capsule, can lead to complete loss of auditory and vestibular functions, whereas the patients without fractures may experience profound sensorineural hearing loss due to cochlear concussion. Cochlear implant is indicated in profound sensorineural hearing loss due to cochlear trauma but who still have an intact auditory nerve. This is a retrospective review study. We report 5 cases of postlingually deafened patients caused by cochlear trauma, who underwent cochlear implantation. Preoperative and postoperative hearing performance will be presented. These patients are cochlear implanted after the cochlear trauma in our department between 2001 and 2006. All patients performed very well with their implants, obtained open-set speech understanding. They all became good telephone users after implantation. Their performance in speech understanding was comparable to standard postlingual adult patients implanted. Cochlear implantation is an effective aural rehabilitation in profound sensorineural hearing loss caused by temporal bone trauma. Preoperative temporal bone computed tomography, magnetic resonance imaging, and promontorium stimulation testing are necessary to make decision for the surgery and to determine the side to be implanted. Surgery could be challenging and complicated because of anatomical irregularity. Moreover, fibrosis and partial or total ossification within the cochlea must be expected. Copyright 2010. Published by Elsevier Inc.
Delayed Propionibacterium acnes surgical site infections occur only in the presence of an implant
Shiono, Yuta; Ishii, Ken; Nagai, Shigenori; Kakinuma, Hiroaki; Sasaki, Aya; Funao, Haruki; Kuramoto, Tetsuya; Yoshioka, Kenji; Ishihama, Hiroko; Isogai, Norihiro; Takeshima, Kenichiro; Tsuji, Takashi; Okada, Yasunori; Koyasu, Shigeo; Nakamura, Masaya; Toyama, Yoshiaki; Aizawa, Mamoru; Matsumoto, Morio
2016-01-01
Whether Propionibacterium acnes (P. acnes) causes surgical-site infections (SSI) after orthopedic surgery is controversial. We previously reported that we frequently find P. acnes in intraoperative specimens, yet none of the patients have clinically apparent infections. Here, we tracked P. acnes for 6 months in a mouse osteomyelitis model. We inoculated P. acnes with an implant into the mouse femur in the implant group; the control group was treated with the bacteria but no implant. We then observed over a 6-month period using optical imaging system. During the first 2 weeks, bacterial signals were detected in the femur in the both groups. The bacterial signal completely disappeared in the control group within 28 days. Interestingly, in the implant group, bacterial signals were still present 6 months after inoculation. Histological and scanning electron-microscope analyses confirmed that P. acnes was absent from the control group 6 months after inoculation, but in the implant group, the bacteria had survived in a biofilm around the implant. PCR analysis also identified P. acnes in the purulent effusion from the infected femurs in the implant group. To our knowledge, this is the first report showing that P. acnes causes SSI only in the presence of an implant. PMID:27615686
Todor, Dorin A; Barani, Igor J; Lin, Peck-Sun; Anscher, Mitchell S
2011-09-01
To compare the ability of single- and dual-isotope prostate seed implants to escalate biologically effective dose (BED) to foci of disease while reducing prescription dose to the prostate. Nine plans, using 125I, 103Pd, and 131Cs alone and in combination were created retrospectively for 2 patients. Ultrasound and MRI/MRS datasets were used for treatment planning. Voxel-by-voxel BED was calculated for single- and dual-isotope plans. Equivalent uniform BED (EUBED) was used to compare plans. The MRS-positive planning target volumes (PTVi) were delineated along with PTV (prostate+5 mm), rectum, and urethra. Single-isotope implants, prescribed to conventional doses, were generated to achieve good PTV coverage. The PTVi were prospectively used to generate implants using mixtures of isotopes. For mixed-radioisotope implants, we also explored the impact on EUBED of lowering prescription doses by 15%. The EUBED of PTVi in the setting of primary 125I implant increased 20-66% when 103Pd and 131Cs were used compared with 125I boost. Decreasing prescription dose by 15% in mixed-isotope implants results in a potential 10% reduction in urethral EUBED with preservation of PTV coverage while still boosting PTVi (up to 80%). When radiobiologic parameters corresponding to more-aggressive disease are assigned to foci, faster-decaying isotopes used in mixed implants have the potential to preserve the equivalent biological effect of mono-isotope implants considering less-aggressive disease distributed in the entire prostate. This is a hypothesis-generating study proposing a treatment paradigm that could be the middle ground between whole-gland irradiation and focal-only treatment. The use of two isotopes concurrent with decreasing the minimal peripheral dose is shown to increase EUBED of selected subvolumes while preserving the therapeutic effect at the level of the gland. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todor, Dorin A., E-mail: dtodor@mcvh-vcu.edu; Barani, Igor J.; Lin, Peck-Sun
2011-09-01
Purpose: To compare the ability of single- and dual-isotope prostate seed implants to escalate biologically effective dose (BED) to foci of disease while reducing prescription dose to the prostate. Methods and Materials: Nine plans, using {sup 125}I, {sup 103}Pd, and {sup 131}Cs alone and in combination were created retrospectively for 2 patients. Ultrasound and MRI/MRS datasets were used for treatment planning. Voxel-by-voxel BED was calculated for single- and dual-isotope plans. Equivalent uniform BED (EUBED) was used to compare plans. The MRS-positive planning target volumes (PTV{sub i}) were delineated along with PTV (prostate + 5 mm), rectum, and urethra. Single-isotope implants,more » prescribed to conventional doses, were generated to achieve good PTV coverage. The PTV{sub i} were prospectively used to generate implants using mixtures of isotopes. For mixed-radioisotope implants, we also explored the impact on EUBED of lowering prescription doses by 15%. Results: The EUBED of PTV{sub i} in the setting of primary {sup 125}I implant increased 20-66% when {sup 103}Pd and {sup 131}Cs were used compared with {sup 125}I boost. Decreasing prescription dose by 15% in mixed-isotope implants results in a potential 10% reduction in urethral EUBED with preservation of PTV coverage while still boosting PTV{sub i} (up to 80%). When radiobiologic parameters corresponding to more-aggressive disease are assigned to foci, faster-decaying isotopes used in mixed implants have the potential to preserve the equivalent biological effect of mono-isotope implants considering less-aggressive disease distributed in the entire prostate. Conclusions: This is a hypothesis-generating study proposing a treatment paradigm that could be the middle ground between whole-gland irradiation and focal-only treatment. The use of two isotopes concurrent with decreasing the minimal peripheral dose is shown to increase EUBED of selected subvolumes while preserving the therapeutic effect at the level of the gland.« less
Pallante-Kichura, Andrea L.; Bae, Won C.; Du, Jiang; Statum, Sheronda; Wolfson, Tanya; Gamst, Anthony C.; Cory, Esther; Amiel, David; Bugbee, William D.; Sah, Robert L.; Chung, Christine B.
2014-01-01
Objective: To describe and apply a semiquantitative MRI scoring system for multifeature analysis of cartilage defect repair in the knee by osteochondral allografts and to correlate this scoring system with histopathologic, micro–computed tomography (µCT), and biomechanical reference standards using a goat repair model. Design: Fourteen adult goats had 2 osteochondral allografts implanted into each knee: one in the medial femoral condyle and one in the lateral trochlea. At 12 months, goats were euthanized and MRI was performed. Two blinded radiologists independently rated 9 primary features for each graft, including cartilage signal, fill, edge integration, surface congruity, calcified cartilage integrity, subchondral bone plate congruity, subchondral bone marrow signal, osseous integration, and presence of cystic changes. Four ancillary features of the joint were also evaluated, including opposing cartilage, meniscal tears, synovitis, and fat-pad scarring. Comparison was made with histologic and µCT reference standards as well as biomechanical measures. Interobserver agreement and agreement with reference standards was assessed. Cohen’s κ, Spearman’s correlation, and Kruskal-Wallis tests were used as appropriate. Results: There was substantial agreement (κ > 0.6, P < 0.001) for each MRI feature and with comparison against reference standards, except for cartilage edge integration (κ = 0.6). There was a strong positive correlation between MRI and reference standard scores (ρ = 0.86, P < 0.01). Osteochondral allograft MRI scoring system was sensitive to differences in outcomes between the types of allografts. Conclusions: We have described a comprehensive MRI scoring system for osteochondral allografts and have validated this scoring system with histopathologic and µCT reference standards as well as biomechanical indentation testing. PMID:24489999
Functional MRI during Hippocampal Deep Brain Stimulation in the Healthy Rat Brain.
Van Den Berge, Nathalie; Vanhove, Christian; Descamps, Benedicte; Dauwe, Ine; van Mierlo, Pieter; Vonck, Kristl; Keereman, Vincent; Raedt, Robrecht; Boon, Paul; Van Holen, Roel
2015-01-01
Deep Brain Stimulation (DBS) is a promising treatment for neurological and psychiatric disorders. The mechanism of action and the effects of electrical fields administered to the brain by means of an electrode remain to be elucidated. The effects of DBS have been investigated primarily by electrophysiological and neurochemical studies, which lack the ability to investigate DBS-related responses on a whole-brain scale. Visualization of whole-brain effects of DBS requires functional imaging techniques such as functional Magnetic Resonance Imaging (fMRI), which reflects changes in blood oxygen level dependent (BOLD) responses throughout the entire brain volume. In order to visualize BOLD responses induced by DBS, we have developed an MRI-compatible electrode and an acquisition protocol to perform DBS during BOLD fMRI. In this study, we investigate whether DBS during fMRI is valuable to study local and whole-brain effects of hippocampal DBS and to investigate the changes induced by different stimulation intensities. Seven rats were stereotactically implanted with a custom-made MRI-compatible DBS-electrode in the right hippocampus. High frequency Poisson distributed stimulation was applied using a block-design paradigm. Data were processed by means of Independent Component Analysis. Clusters were considered significant when p-values were <0.05 after correction for multiple comparisons. Our data indicate that real-time hippocampal DBS evokes a bilateral BOLD response in hippocampal and other mesolimbic structures, depending on the applied stimulation intensity. We conclude that simultaneous DBS and fMRI can be used to detect local and whole-brain responses to circuit activation with different stimulation intensities, making this technique potentially powerful for exploration of cerebral changes in response to DBS for both preclinical and clinical DBS.
Functional MRI during Hippocampal Deep Brain Stimulation in the Healthy Rat Brain
Van Den Berge, Nathalie; Vanhove, Christian; Descamps, Benedicte; Dauwe, Ine; van Mierlo, Pieter; Vonck, Kristl; Keereman, Vincent; Raedt, Robrecht; Boon, Paul; Van Holen, Roel
2015-01-01
Deep Brain Stimulation (DBS) is a promising treatment for neurological and psychiatric disorders. The mechanism of action and the effects of electrical fields administered to the brain by means of an electrode remain to be elucidated. The effects of DBS have been investigated primarily by electrophysiological and neurochemical studies, which lack the ability to investigate DBS-related responses on a whole-brain scale. Visualization of whole-brain effects of DBS requires functional imaging techniques such as functional Magnetic Resonance Imaging (fMRI), which reflects changes in blood oxygen level dependent (BOLD) responses throughout the entire brain volume. In order to visualize BOLD responses induced by DBS, we have developed an MRI-compatible electrode and an acquisition protocol to perform DBS during BOLD fMRI. In this study, we investigate whether DBS during fMRI is valuable to study local and whole-brain effects of hippocampal DBS and to investigate the changes induced by different stimulation intensities. Seven rats were stereotactically implanted with a custom-made MRI-compatible DBS-electrode in the right hippocampus. High frequency Poisson distributed stimulation was applied using a block-design paradigm. Data were processed by means of Independent Component Analysis. Clusters were considered significant when p-values were <0.05 after correction for multiple comparisons. Our data indicate that real-time hippocampal DBS evokes a bilateral BOLD response in hippocampal and other mesolimbic structures, depending on the applied stimulation intensity. We conclude that simultaneous DBS and fMRI can be used to detect local and whole-brain responses to circuit activation with different stimulation intensities, making this technique potentially powerful for exploration of cerebral changes in response to DBS for both preclinical and clinical DBS. PMID:26193653
Skarecky, Douglas; Yu, Hon; Linehan, Jennifer; Morales, Blanca; Su, Min-Ying; Fwu, Peter; Ahlering, Thomas
2017-10-01
To study the combination of thermal magnetic resonance imaging (MRI) and novel hypothermic cooling, via an endorectal cooling balloon (ECB), to assess the effective dispersion and temperature drop in pelvic tissue to potentially reduce inflammatory cascade in surgical applications. Three male subjects, before undergoing robot-assisted radical prostatectomy, were cooled via an ECB, rendered MRI compatible for patient safety before ECB hypothermia. MRI studies were performed using a 3T scanner and included T2-weighted anatomic scan for the pelvic structures, followed by a temperature mapping scan. The sequence was performed repeatedly during the cooling experiment, whereas the phase data were collected using an integrated MR-high-intensity focused ultrasound workstation in real time. Pelvic cooling was instituted with a cooling console located outside the MRI magnet room. The feasibility of pelvic cooling measured a temperature drop of the ECB of 20-25 degrees in real time was achieved after an initial time delay of 10-15 seconds for the ECB to cool. The thermal MRI anatomic images of the prostate and neurovascular bundle demonstrate cooling at this interface to be 10-15 degrees, and also that cooling extends into the prostate itself ~5 degrees, and disperses into the pelvic region as well. An MRI-compatible ECB coupled with thermal MRI is a feasible method to assess effective hypothermic diffusion and saturation to pelvic structures. By inference, hypothermia-induced rectal cooling could potentially reduce inflammation, scarring, and fistula in radical prostatectomy, as well as other urologic tissue procedures of high-intensity focused ultrasound, external beam radiation therapy, radioactive seed implants, transurethral microwave therapy, and transurethral resection of the prostate. Copyright © 2017 Elsevier Inc. All rights reserved.
Kim, Ho Jin; Mun, Da Na; Goo, Hyun Woo; Yun, Tae-Jin
2017-04-01
Cardiac computed tomography (CT) has emerged as an alternative to magnetic resonance imaging (MRI) for ventricular volumetry. However, the clinical use of cardiac CT requires external validation. Both cardiac CT and MRI were performed prior to pulmonary valve implantation (PVI) in 11 patients (median age, 19 years) who had undergone total correction of tetralogy of Fallot during infancy. The simplified contouring method (MRI) and semiautomatic 3-dimensional region-growing method (CT) were used to measure ventricular volumes. All volumetric indices measured by CT and MRI generally correlated well with each other, except for the left ventricular end-systolic volume index (LV-ESVI), which showed the following correlations with the other indices: the right ventricular end-diastolic volume index (RV-EDVI) (r=0.88, p<0.001), the right ventricular end-systolic volume index (RV-ESVI) (r=0.84, p=0.001), the left ventricular end-diastolic volume index (LV-EDVI) (r=0.90, p=0.001), and the LV-ESVI (r=0.55, p=0.079). While the EDVIs measured by CT were significantly larger than those measured by MRI (median RV-EDVI: 197 mL/m 2 vs. 175 mL/m 2 , p=0.008; median LV-EDVI: 94 mL/m 2 vs. 92 mL/m 2 , p=0.026), no significant differences were found for the RV-ESVI or LV-ESVI. The EDVIs measured by cardiac CT were greater than those measured by MRI, whereas the ESVIs measured by CT and MRI were comparable. The volumetric characteristics of these 2 diagnostic modalities should be taken into account when indications for late PVI after tetralogy of Fallot repair are assessed.
Composite fibrous glaucoma drainage implant
NASA Astrophysics Data System (ADS)
Klapstova, A.; Horakova, J.; Shynkarenko, A.; Lukas, D.
2017-10-01
Glaucoma is a frequent reason of loss vision. It is usually caused by increased intraocular pressure leading to damage of optic nerve head. This work deals with the development of fibrous structure suitable for glaucoma drainage implants (GDI). Commercially produced metallic glaucoma implants are very effective in lowering intraocular pressure. However, these implants may cause adverse events such as damage to adjacent tissue, fibrosis, hypotony or many others [1]. The aim of this study is to reduce undesirable properties of currently produced drains and improve their properties by creating of the composite fibrous drain for achieve a normal intraocular pressure. Two types of electrospinning technologies were used for the production of very small tubular implants. First type was focused for production of outer part of tubular drain and the second type of electrospinning method made the inner part of shape follows the connections of both parts. Complete implant had a special properties suitable for drainage of fluid. Morphological parameters, liquid transport tests and in-vitro cell adhesion tests were detected.
Hayes, Galina; Gibson, Tom; Moens, Noel M M; Nykamp, Stephanie; Wood, Darren; Foster, Robert; Lerer, Asaf
2016-01-01
Gentamicin impregnated collagen sponge (GICS) can be used to treat intra-articular surgical site infections. High local concentrations of gentamicin can be reached for short periods; however the collagen vehicle may persist for much longer periods. We wished to determine the effect of sponge implantation on joint inflammation and renal function. Eighteen medium sized mixed breed research dogs of hound type were randomized to two groups; arthroscopic implantation of GICS at gentamicin dose = 6 mg/kg (n = 9) or sham operation (n = 9). Endpoints consisted of joint inflammation measured by synovial fluid cell counts and cytokine concentrations; lameness measured by force plate asymmetry indices; and renal function measured by glomerular filtration rate (GFR) study. The prevalence of lesions associated with aminoglycoside nephrotoxicity was assessed by renal biopsy and transmission electron microscopy. Gentamicin impregnated collagen sponge implantation caused joint inflammation (p <0.01), lameness (p = 0.04), and decreased GFR (p = 0.04). No difference was observed in the prevalence of renal lesions on biopsy between the treatment and control groups (p = 0.49). Gentamicin impregnated collagen sponge implantation causes joint inflammation and lameness as well as GFR reductions at the dose assessed. Gentamicin impregnated collagen sponge are not recommended for intra-articular implantation in dogs.
Occlusal considerations in implant therapy: clinical guidelines with biomechanical rationale.
Kim, Yongsik; Oh, Tae-Ju; Misch, Carl E; Wang, Hom-Lay
2005-02-01
Due to lack of the periodontal ligament, osseointegrated implants, unlike natural teeth, react biomechanically in a different fashion to occlusal force. It is therefore believed that dental implants may be more prone to occlusal overloading, which is often regarded as one of the potential causes for peri-implant bone loss and failure of the implant/implant prosthesis. Overloading factors that may negatively influence on implant longevity include large cantilevers, parafunctions, improper occlusal designs, and premature contacts. Hence, it is important to control implant occlusion within physiologic limit and thus provide optimal implant load to ensure a long-term implant success. The purposes of this paper are to discuss the importance of implant occlusion for implant longevity and to provide clinical guidelines of optimal implant occlusion and possible solutions managing complications related to implant occlusion. It must be emphasized that currently there is no evidence-based, implant-specific concept of occlusion. Future studies in this area are needed to clarify the relationship between occlusion and implant success.
Rühling, A; Kocher, T; Kreusch, J; Plagmann, H C
1994-03-01
Removal of plaque and calculus by means of sonic and ultrasonic scalers causes considerable damage to implants. With a view to avoiding the aggressive effects of these instruments, an experimental study was carried out for which conventional sonic and ultrasonic scalers were coated with Teflon. The effects of these instruments on implant surfaces was then compared with that of plastic and metal implant curettes. Stereo-microscopy, scanning electron microscopy and surface profilometry were used to detect and record damage to implant surfaces and changes in surface roughness. Generation and propagation of heat in subgingival simulation of use of sonic and ultrasonic scalers were also recorded by means of temperature measurements at the implant surface. The results revealed that no discernible damage was caused by Teflon-coated sonic and ultrasonic scalers or implant curettes made of plastic on smooth titanium surfaces. Instrument material residues were found on rough implant surfaces. It was not the intention of this study to provide an analysis of the prerequisites for the cleaning of rough implant surfaces, but rather to determine what type of damage is to be expected when contact is made with smooth and rough surfaces unintentionally. Temperature measurements during the subgingival use of sonic and ultrasonic scalers indicated satisfactory functioning of the cooling system. Coating of sonic and ultrasonic scaler tips with Teflon thus facilitates the use of high-frequency instruments to achieve professional cleaning of implants.
21 CFR 882.5860 - Implanted neuromuscular stimulator.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implanted neuromuscular stimulator. 882.5860... neuromuscular stimulator. (a) Identification. An implanted neuromuscular stimulator is a device that provides electrical stimulation to a patient's peroneal or femoral nerve to cause muscles in the leg to contract, thus...
Effect of plastic-covered ultrasonic scalers on titanium implant surfaces.
Mann, M; Parmar, D; Walmsley, A D; Lea, S C
2012-01-01
Maintaining oral health around titanium implants is essential. The formation of a biofilm on the titanium surface will influence the continuing success of the implant. These concerns have led to modified ultrasonic scaler instruments that look to reduce implant damage while maximising the cleaning effect. This study aimed to assess the effect of instrumentation, with traditional and modified ultrasonic scalers, on titanium implant surfaces and to correlate this with the oscillations of the instruments. Two ultrasonic insert designs (metallic TFI-10 and a plastic-tipped implant insert) were selected. Each scaler probe was scanned using a scanning laser vibrometer, under loaded and unloaded conditions, to determine their oscillation characteristics. Loads were applied against a titanium implant (100g and 200 g) for 10 s. The resulting implant surfaces were then scanned using laser profilometry and scanning electron microscopy (SEM). Insert probes oscillated with an elliptical motion with the maximum amplitude at the probe tip. Laser profilometry detected defects in the titanium surface only for the metallic scaler insert. Defect widths at 200 g high power were significantly larger than all other load/power conditions (P<0.02). Using SEM, it was observed that modifications to the implant surface had occurred following instrumentation with the plastic-tipped insert. Debris was also visible around the defects. Metal scalers produce defects in titanium implant surfaces and load and power are important factors in the damage caused. Plastic-coated scaler probes cause minimal damage to implant surfaces and have a polishing action but can leave plastic deposits behind on the implant surface. © 2011 John Wiley & Sons A/S.
Olszewska, D A; Costello, D J
2014-12-01
Magnetic Resonance Imaging (MRI) is increasingly available as a tool for assessment of patients presenting to acute services with seizures. We set out to prospectively determine the usefulness of early MRI brain in a cohort of patients presenting with acute seizures. We examined the MR imaging studies performed in patients admitted solely because of acute seizures to Cork University Hospital over a 12-month period. The main aim of the study was to determine if the MRI established the proximate cause for the patient's recent seizure. We identified 91 patients who underwent MRI brain within 48 h of admission for seizures. Of the 91 studies, 51 were normal (56 %). The remaining 40 studies were abnormal as follows: microvascular disease (usually moderate/severe) (n = 19), post-traumatic gliosis (n = 7), remote symptomatic lesion (n = 6), primary brain tumour (n = 5), venous sinus thrombosis (n = 3), developmental lesion (n = 3), post-surgical gliosis (n = 3) and single cases of demyelination, unilateral hippocampal sclerosis, lobar haemorrhage and metastatic malignant melanoma. Abnormalities in diffusion-weighted sequences that were attributable to prolonged ictal activity were seen in nine patients, all of who had significant ongoing clinical deficits, most commonly delirium. Of the 40 patients with abnormal MRI studies, seven patients had unremarkable CT brain. MR brain imaging revealed the underlying cause for acute seizures in 44 % of patients. CT brain imaging failed to detect the cause of the acute seizures in 19 % of patients in whom subsequent MRI established the cause. This study emphasises the importance of obtaining optimal imaging in people admitted with acute seizures.
Teissier, N; Doehring, I; Noel-Petroff, N; Elmaleh-Bergès, M; Viala, P; François, M; Faye, A; Van Den Abbeele, T; Lorrot, M
2013-06-01
Bacterial meningitis (BM) is the primary etiology of acquired sensorineural hearing loss (SNHL) in children and may compromise language development. Since the 1990 s, cochlear implants (CIs) have become part of the management of children with profound SNHL with encouraging results. The aim of this study was to analyze the audiophonological performance of children before and after cochlear implantation for SNHL following bacterial meningitis. Retrospective study of all children fitted with CIs for bilateral severe to profound SNHL after bacterial meningitis in the Robert-Debré pediatric ENT department between August 1990 and March 2009. Audiophonological performance was assessed using the APCEI profile. Of the 283 children receiving implants during that period, 16 children (6%; 6 boys, 10 girls) underwent CI implantation after bacterial meningitis (Streptococcus pneumoniae in 8 cases, Neisseria meningitidis in 2 cases, and Haemophilus influenzae in 4 cases). The mean time from meningitis to SNHL was 8.3 months (median, 1.5 months; range, 1 day to 13 years). The mean time from meningitis to cochlear implantation was 2 years and 3 months (median, 7 months; range, 1 month to 13 years 3 months). Twelve children (75%) presented partial cochlear and/or vestibular ossification on presurgical CT scan. Three children received bilateral implants. Thirteen children (81%) developed early SNHL in the first 3 months, whereas 3 children developed SNHL more than 10 months after meningitis. As for the benefits of cochlear implantation, 11 children presented near to normal intelligibility and optimal use of their cochlear implant; 5 children presented partial benefits due to neurological sequelae (1), a long delay before implantation (1), technical problems (2), or a social problem in relation to low socioeconomic status (1). After bacterial meningitis, audiological evaluation must be made carefully during the first 3 months to detect early SNHL, but SNHL may also develop several years later. In case of profound SNHL and a modified signal of the labyrinth on the MRI, cochlear implantation must be performed without delay before cochlear and/or vestibular ossification. Cochlear implantation is an effective technique with good long-term audiologic results. The coexistence of neurological lesions may compromise the results, but it should not contraindicate a cochlear implantation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
2013-01-01
Introduction The application of mesenchymal stem cells (MSCs) in treating rheumatoid arthritis (RA) has been made possible by the immunosuppressive and differentiation abilities of these cells. A non-invasive means of assessing cell integration and bio-distribution is fundamental in evaluating the risks and success of this therapy, thereby enabling clinical translation. This paper defines the use of superparamagnetic iron oxide nanoparticles (SPIONs) in conjunction with magnetic resonance imaging (MRI) to image and track MSCs in vivo within a murine model of RA. Methods Murine MSCs (mMSCs) were isolated, expanded and labelled with SiMAG, a commercially available particle. In vitro MRI visibility thresholds were investigated by labelling mMSCs with SiMAG with concentrations ranging from 0 to 10 μg/ml and resuspending varying cell doses (103 to 5 × 105 cells) in 2 mg/ml collagen prior to MR-imaging. Similarly, in vivo detection thresholds were identified by implanting 3 × 105 mMSCs labelled with 0 to 10 μg/ml SiMAG within the synovial cavity of a mouse and MR-imaging. Upon RA induction, 300,000 mMSCs labelled with SiMAG (10 μg/ml) were implanted via intra-articular injection and joint swelling monitored as an indication of RA development over seven days. Furthermore, the effect of SiMAG on cell viability, proliferation and differentiation was investigated. Results A minimum particle concentration of 1 μg/ml (300,000 cells) and cell dose of 100,000 cells (5 and 10 μg/ml) were identified as the in vitro MRI detection threshold. Cell viability, proliferation and differentiation capabilities were not affected, with labelled populations undergoing successful differentiation down osteogenic and adipogenic lineages. A significant decrease (P < 0.01) in joint swelling was measured in groups containing SiMAG-labelled and unlabelled mMSCs implying that the presence of SPIONs does not affect the immunomodulating properties of the cells. In vivo MRI scans demonstrated good contrast and the identification of SiMAG-labelled populations within the synovial joint up to 7 days post implantation. This was further confirmed using histological analysis. Conclusions We have been able to monitor and track the migration of stem cell populations within the rheumatic joint in a non-invasive manner. This manuscript goes further to highlight the key characteristics (biocompatible and the ability to create significant contrast at realistic doses within a clinical relevant system) demonstrated by SiMAG that should be incorporated into the design of a new clinically approved tracking agent. PMID:24406201
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, Daniel R., E-mail: drsimpson@ucsd.edu; Scanderbeg, Daniel J.; Carmona, Ruben
Purpose/Objectives: A report of clinical outcomes of a computed tomography (CT)-based image guided brachytherapy (IGBT) technique for treatment of cervical cancer. Methods and Materials: Seventy-six women with International Federation of Gynecology and Obstetrics stage IB to IVA cervical carcinoma diagnosed between 2007 and 2014 were treated with definitive external beam radiation therapy (EBRT) with or without concurrent chemotherapy followed by high-dose-rate (HDR) IGBT. All patients underwent planning CT simulation at each implantation. A high-risk clinical target volume (HRCTV) encompassing any visible tumor and the entire cervix was contoured on the simulation CT. When available, magnetic resonance imaging (MRI) was performedmore » at implantation to assist with tumor delineation. The prescription dose was prescribed to the HRCTV. Results: The median follow-up time was 17 months. Thirteen patients (17%) had an MRI done before brachytherapy, and 16 patients (21%) were treated without MRI guidance. The mean EBRT/IGBT sum 2-Gy equivalent dose (EQD2) delivered to the 90% volume of the HRCTV was 86.3 Gy. The mean maximum EQD2s delivered to 2 cm{sup 3} of the rectum, sigmoid, and bladder were 67.5 Gy, 66.2 Gy, and 75.3 Gy, respectively. The 2-year cumulative incidences of local, locoregional, and distant failure were 5.8% (95% confidence interval [CI]: 1.4%-14.8%), 15.1% (95% CI: 5.4%-29.4%), and 24.3% (95% CI: 12.1%-38.9%), respectively. The 2-year overall and disease-free survival rates were 75% (95% CI, 61%-91%) and 73% (95% CI, 60%-90%), respectively. Twenty-nine patients (38%) experienced grade ≥2 acute toxicity, with 5 cases of acute grade 3 toxicity and no grade ≥4 toxicities. One patient experienced grade 3 gastrointestinal toxicity. No other late grade ≥3 events were observed. Conclusions: This is the largest report to date of CT/MRI-based IGBT for the treatment of cervical cancer. The results are promising, with excellent local control and acceptable toxicity. Further investigation is needed to assess the long-term safety and efficacy of this treatment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, Steven J., E-mail: sjfrank@mdanderson.org; Johansen, Mary J.; Martirosyan, Karen S.
2013-03-15
Purpose: C4, a cobalt dichloride-N-acetyl cysteine complex, is being developed as a positive-signal magnetic resonance imaging (MRI) marker to localize implanted radioactive seeds in prostate brachytherapy. We evaluated the toxicity and biodistribution of C4 in rats with the goal of simulating the systemic effects of potential leakage from C4 MRI markers within the prostate. Methods and Materials: 9-μL doses (equivalent to leakage from 120 markers in a human) of control solution (0.9% sodium chloride), 1% (proposed for clinical use), and 10% C4 solution were injected into the prostates of male Sprague-Dawley rats via laparotomy. Organ toxicity and cobalt disposition inmore » plasma, tissues, feces, and urine were evaluated. Results: No C4-related morbidity or mortality was observed in the biodistribution arm (60 rats). Biodistribution was measurable after 10% C4 injection: cobalt was cleared rapidly from periprostatic tissue; mean concentrations in prostate were 163 μg/g and 268 μg/g at 5 and 30 minutes but were undetectable by 60 minutes. Expected dual renal-hepatic elimination was observed, with percentages of injected dose recovered in tissues of 39.0 ± 5.6% (liver), >11.8 ± 6.5% (prostate), and >5.3 ± 0.9% (kidney), with low plasma concentrations detected up to 1 hour (1.40 μg/mL at 5-60 minutes). Excretion in urine was 13.1 ± 4.6%, with 3.1 ± 0.54% recovered in feces by 24 hours. In the toxicity arm, 3 animals died in the control group and 1 each in the 1% and 10% groups from surgical or anesthesia-related complications; all others survived to scheduled termination at 14 days. No C4-related adverse clinical signs or organ toxicity were observed. Conclusion: C4-related toxicity was not observed at exposures at least 10-fold the exposure proposed for use in humans. These data demonstrating lack of systemic toxicity with dual routes of elimination in the event of in situ rupture suggest that C4 warrants further investigation as an MRI marker for prostate brachytherapy.« less
Favazza, Christopher P; Edmonson, Heidi A; Ma, Chi; Shu, Yunhong; Felmlee, Joel P; Watson, Robert E; Gorny, Krzysztof R
2017-11-01
To assess risks of RF-heating of a vagus nerve stimulator (VNS) during 1.5 T prostate MRI using body coil transmit and to compare these risks with those associated with MRI head exams using a transmit/receive head coil. Spatial distributions of radio-frequency (RF) B1 fields generated by transmit/receive (T/R) body and head coils were empirically assessed along the long axis of a 1.5 T MRI scanner bore. Measurements were obtained along the center axis of the scanner and laterally offset by 15 cm (body coil) and 7 cm (head coil). RF-field measurements were supplemented with direct measurements of RF-heating of 15 cm long copper wires affixed to and submerged in the "neck" region of the gelled saline-filled (sodium chloride and polyacrylic acid) "head-and-torso" phantom. Temperature elevations at the lead tips were measured using fiber-optic thermometers with the phantom positioned at systematically increased distances from the scanner isocenter. B1 field measurements demonstrated greater than 10 dB reduction in RF power at distances beyond 28 cm and 24 cm from isocenter for body and head coil, respectively. Moreover, RF power from body coil transmit at distances greater than 32 cm from isocenter was found to be lower than from the RF power from head coil transmit measured at locations adjacent to the coil array at its opening. Correspondingly, maximum temperature elevations at the tips of the copper wires decreased with increasing distance from isocenter - from 7.4°C at 0 cm to no appreciable heating at locations beyond 40 cm. For the particular scanner model evaluated in this study, positioning an implanted VNS farther than 32 cm from isocenter (configuration achievable for prostate exams) can reduce risks of RF-heating resulting from the body coil transmit to those associated with using a T/R head coil. © 2017 American Association of Physicists in Medicine.
Optical and Interface-Based Methods of Defect Engineering in Silicon
ERIC Educational Resources Information Center
Kondratenko, Yevgeniy Vladimirovich
2009-01-01
Ion implantation is widely used in the microelectronics industry for fabrication of source and drain transistor regions. Unfortunately, implantation causes considerable damage to the substrate lattice rendering most of the implanted dopant electrically inactive. Rapid thermal annealing (RTA) heals the damage by rapidly heating the substrate with a…
Wolf, Marcel; Bäumer, Philipp; Pedro, Maria; Dombert, Thomas; Staub, Frank; Heiland, Sabine; Bendszus, Martin; Pham, Mirko
2014-01-01
Sciatic nerve palsy related to hip replacement surgery (HRS) is among the most common causes of sciatic neuropathies. The sciatic nerve may be injured by various different periprocedural mechanisms. The precise localization and extension of the nerve lesion, the determination of nerve continuity, lesion severity, and fascicular lesion distribution are essential for assessing the potential of spontaneous recovery and thereby avoiding delayed or inappropriate therapy. Adequate therapy is in many cases limited to conservative management, but in certain cases early surgical exploration and release of the nerve is indicated. Nerve-conduction-studies and electromyography are essential in the diagnosis of nerve injuries. In postsurgical nerve injuries, additional diagnostic imaging is important as well, in particular to detect or rule out direct mechanical compromise. Especially in the presence of metallic implants, commonly applied diagnostic imaging tests generally fail to adequately visualize nervous tissue. MRI has been deemed problematic due to implant-related artifacts after HRS. In this study, we describe for the first time the spectrum of imaging findings of Magnetic Resonance neurography (MRN) employing pulse sequences relatively insensitive to susceptibility artifacts (susceptibility insensitive MRN, siMRN) in a series of 9 patients with HRS procedure related sciatic nerve palsy. We were able to determine the localization and fascicular distribution of the sciatic nerve lesion in all 9 patients, which clearly showed on imaging predominant involvement of the peroneal more than the tibial division of the sciatic nerve. In 2 patients siMRN revealed direct mechanical compromise of the nerve by surgical material, and in one of these cases indication for surgical release of the sciatic nerve was based on siMRN. Thus, in selected cases of HRS related neuropathies, especially when surgical exploration of the nerve is considered, siMRN, with its potential to largely overcome implant related artifacts, is a useful diagnostic addition to nerve-conduction-studies and electromyography. PMID:24558483
Localizing ECoG electrodes on the cortical anatomy without post-implantation imaging
Gupta, Disha; Hill, N. Jeremy; Adamo, Matthew A.; Ritaccio, Anthony; Schalk, Gerwin
2014-01-01
Introduction Electrocorticographic (ECoG) grids are placed subdurally on the cortex in people undergoing cortical resection to delineate eloquent cortex. ECoG signals have high spatial and temporal resolution and thus can be valuable for neuroscientific research. The value of these data is highest when they can be related to the cortical anatomy. Existing methods that establish this relationship rely either on post-implantation imaging using computed tomography (CT), magnetic resonance imaging (MRI) or X-Rays, or on intra-operative photographs. For research purposes, it is desirable to localize ECoG electrodes on the brain anatomy even when post-operative imaging is not available or when intra-operative photographs do not readily identify anatomical landmarks. Methods We developed a method to co-register ECoG electrodes to the underlying cortical anatomy using only a pre-operative MRI, a clinical neuronavigation device (such as BrainLab VectorVision), and fiducial markers. To validate our technique, we compared our results to data collected from six subjects who also had post-grid implantation imaging available. We compared the electrode coordinates obtained by our fiducial-based method to those obtained using existing methods, which are based on co-registering pre- and post-grid implantation images. Results Our fiducial-based method agreed with the MRI–CT method to within an average of 8.24 mm (mean, median = 7.10 mm) across 6 subjects in 3 dimensions. It showed an average discrepancy of 2.7 mm when compared to the results of the intra-operative photograph method in a 2D coordinate system. As this method does not require post-operative imaging such as CTs, our technique should prove useful for research in intra-operative single-stage surgery scenarios. To demonstrate the use of our method, we applied our method during real-time mapping of eloquent cortex during a single-stage surgery. The results demonstrated that our method can be applied intra-operatively in the absence of post-operative imaging to acquire ECoG signals that can be valuable for neuroscientific investigations. PMID:25379417
Clinical evaluation of a new intracranial pressure monitoring device.
Stendel, R; Heidenreich, J; Schilling, A; Akhavan-Sigari, R; Kurth, R; Picht, T; Pietilä, T; Suess, O; Kern, C; Meisel, J; Brock, M
2003-03-01
Continuous monitoring of intracranial pressure (ICP) still plays a key role in the management of patients at risk from intracranial hypertension. Numerous ICP-measuring devices are available. The aim of the present study was to investigate the clinical characteristics and the magnetic resonance imaging (MRI) compatibility of the recently developed Neurovent-P(REHAU AG+CO, REHAU, Germany) ICP monitoring device. In a prospective two-center study, a total of 98 patients with severe head injury, subarachnoid haemorrhage, intracerebral haemorrhage, and non-traumatic brain edema underwent intraparenchymal monitoring of ICP using the Neurovent-P. A control group comprising 50 patients underwent implantation of the Camino-OLM-110-4B ICP monitor. The zero drift of the probes was determined before and after the ICP recording period. Technical and medical complications were documented. The MRI compatibility of the Neurovent-P ICP probe was investigated by evaluating artifacts caused by the probe, probe function and temperature changes during MRI, and probe movement caused by the magnetic field. The mean zero drift was 0.2+/-0.41 mmHg (maximum 3 mmHg) for the Neurovent-P ICP probes and 0.4+/-0.57 mmHg (maximum 12 mmHg) for the Camino-OLM-110-4B ICP probes. No significant correlation was identified between the extent of zero drift following the removal of the probes and the length of monitoring. Intraparenchymal haemorrhage spatially related to the probe occurred in 1 out of 50 (2%) patients with a Camino-OLM-110-4B probe and in 1 out of 98 (1%) with a Neurovent-P. Damage of the probe due to kinking or overextension of the cable or glass fiber occurred in 4 of the 50 (8%) Camino-OLM-110-4B ICP probes and in 5 of the 98 (5%) Neurovent-P probes. On T2-weighted MR images, the Neurovent-P ICP probe induced only small artifacts with very good discrimination of the surrounding tissue. On T1-weighted MR images, there was a good imaging quality but artifact-related local disturbances in signal occurred. There was no temperature change in the Neurovent-P probe and in the surrounding brain tissue during MR imaging. The Neurovent-P ICP measuring system is a safe and reliable tool for ICP monitoring. Handling of the Neurovent-P system is safe when performed properly.
Aryal, Madhava P; Nagaraja, Tavarekere N; Brown, Stephen L; Lu, Mei; Bagher-Ebadian, Hassan; Ding, Guangliang; Panda, Swayamprava; Keenan, Kelly; Cabral, Glauber; Mikkelsen, Tom; Ewing, James R
2014-10-01
The distribution of dynamic contrast-enhanced MRI (DCE-MRI) parametric estimates in a rat U251 glioma model was analyzed. Using Magnevist as contrast agent (CA), 17 nude rats implanted with U251 cerebral glioma were studied by DCE-MRI twice in a 24 h interval. A data-driven analysis selected one of three models to estimate either (1) plasma volume (vp), (2) vp and forward volume transfer constant (K(trans)) or (3) vp, K(trans) and interstitial volume fraction (ve), constituting Models 1, 2 and 3, respectively. CA distribution volume (VD) was estimated in Model 3 regions by Logan plots. Regions of interest (ROIs) were selected by model. In the Model 3 ROI, descriptors of parameter distributions--mean, median, variance and skewness--were calculated and compared between the two time points for repeatability. All distributions of parametric estimates in Model 3 ROIs were positively skewed. Test-retest differences between population summaries for any parameter were not significant (p ≥ 0.10; Wilcoxon signed-rank and paired t tests). These and similar measures of parametric distribution and test-retest variance from other tumor models can be used to inform the choice of biomarkers that best summarize tumor status and treatment effects. Copyright © 2014 John Wiley & Sons, Ltd.
Kozik, Teri M; Chien, Gianna; Connolly, Therese F; Grewal, Gurinder S; Liang, David; Chien, Walter
2014-04-10
Over 140 million iPads(®) have been sold worldwide. The iPad2(®), with magnets embedded in its frame and Smart Cover and 3G cellular data capability, can potentially cause electromagnetic interference in implantable cardioverter defibrillators. This can lead to potentially life-threatening situations in patients. The goal of this study was to determine whether the iPad2(®) can cause electromagnetic interference in patients with implantable cardioverter defibrillators. Twenty-seven patients with implantable cardioverter defibrillators were studied. The iPad2(®) was held at reading distance and placed directly over the device with cellular data capability activated and deactivated. The manufacturers/models of devices and the patients' body mass index were noted. The presence of electromagnetic interference was detected by using a programmer supplied by each manufacturer. Magnet mode with suspension of anti-tachycardia therapy was triggered in 9 (33%) patients. All occurred when the iPad2(®) was placed directly over the device. The cellular data status did not cause interference and no noise or oversensing was noted. There was no significant difference between the mean body mass index of the groups with or without interference. The iPad2(®) can trigger magnet mode in implantable cardioverter defibrillators when laid directly over the device. This is potentially dangerous if patients should develop life-threatening arrhythmias at the same time. As new electronic products that use magnets are produced, the potential risk to patients with implantable defibrillators needs to be addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, S; Kamrava, M; Yang, Y
Purpose: To evaluate the accuracy of interstitial catheter reconstruction with 0.35T MRI images for MRI-based HDR prostate brachytherapy. Methods: Recently, a real-time MRI-guided radiotherapy system combining a 0.35T MRI system and three cobalt 60 heads (MRIdian System, ViewRay, Cleveland, OH, USA) was installed in our department. A TrueFISP sequence for MRI acquisition at lower field on Viewray was chosen due to its fast speed and high signal-to-noise efficiency. Interstitial FlexiGuide needles were implanted into a tissue equivalent ultrasound prostate phantom (CIRS, Norfolk, Virginia, USA). After an initial 15s pilot MRI to confirm the location of the phantom, planning MRI wasmore » acquired with a 172s TrueFISP sequence. The pulse sequence parameters included: flip angle = 60 degree, echo time (TE) =1.45 ms, repetition time (TR) = 3.37 ms, slice thickness = 1.5 mm, field of view (FOV) =500 × 450mm. For a reference image, a CT scan was followed. The CT and MR scans were then fused with the MIM Maestro (MIM software Inc., Cleveland, OH, USA) and sent to the Oncentra Brachy planning system (Elekta, Veenendaal, Netherlands). Automatic catheter reconstruction using CT and MR image intensities followed by manual reconstruction was used to digitize catheters. The accuracy of catheter reconstruction was evaluated from the catheter tip location. Results: The average difference between the catheter tip locations reconstructed from the CT and MR in the transverse, anteroposterior, and craniocaudal directions was −0.1 ± 0.1 mm (left), 0.2 ± 0.2 mm (anterior), and −2.3 ± 0.5 mm (cranio). The average distance in 3D was 2.3 mm ± 0.5 mm. Conclusion: This feasibility study proved that interstitial catheters can be reconstructed with 0.35T MRI images. For more accurate catheter reconstruction which can affect final dose distribution, a systematic shift should be applied to the MR based catheter reconstruction in HDR prostate brachytherapy.« less
Ren, Wuwei; Elmer, Andreas; Buehlmann, David; Augath, Mark-Aurel; Vats, Divya; Ripoll, Jorge; Rudin, Markus
2016-04-01
Assessing tumor vascular features including permeability and perfusion is essential for diagnostic and therapeutic purposes. The aim of this study was to compare fluorescence and magnetic resonance imaging (MRI)-based vascular readouts in subcutaneously implanted tumors in mice by simultaneous dynamic measurement of tracer uptake using a hybrid fluorescence molecular tomography (FMT)/MRI system. Vascular permeability was measured using a mixture of extravascular imaging agents, GdDOTA and the dye Cy5.5, and perfusion using a mixture of intravascular agents, Endorem and a fluorescent probe (Angiosense). Dynamic fluorescence reflectance imaging (dFRI) was integrated into the hybrid system for high temporal resolution. Excellent correspondence between uptake curves of Cy5.5/GdDOTA and Endorem/Angiosense has been found with correlation coefficients R > 0.98. The two modalities revealed good agreement regarding permeability coefficients and centers-of-gravity of the imaging agent distribution. The FMT/dFRI protocol presented is able to accurately map physiological processes and poses an attractive alternative to MRI for characterizing tumor neoangiogenesis.
Erber, R; Wulf, M; Becker-Birck, M; Kaps, S; Aurich, J E; Möstl, E; Aurich, C
2012-02-01
Branding is the traditional and well-established method used to mark horses, but recently microchip transponders for implantation have become available. In this study, behaviour, physiological stress variables and skin temperature in foals were determined in response to hot-iron branding (n=7) and microchip implantation (n=7). Salivary cortisol concentrations increased in response to branding (1.8 ± 0.2 ng/mL) and microchip implantation (1.4 ± 0.1ng/mL), but cortisol release over time did not differ. In response to both manipulations there was a transient increase in heart rate (P<0.001) and heart rate variability (P<0.01). Branding and microchip implantation induced a comparable aversive behaviour (branding, score 3.86 ± 0.85; microchip, score 4.00 ± 0.82). Both techniques thus caused similar physiological and behavioural changes indicative of stress. Acutely, implantation of a microchip was as stressful as branding in foals. Branding caused a necrotising skin burn lasting at least 7 days. Moreover branding, but not microchip implantation (P<0.001), was accompanied by a generalized increase in skin temperature which was comparable to low degree post-burn hypermetabolism in humans. Copyright © 2011 Elsevier Ltd. All rights reserved.
MRI-Based Nonrigid Motion Correction in Simultaneous PET/MRI
Chun, Se Young; Reese, Timothy G.; Ouyang, Jinsong; Guerin, Bastien; Catana, Ciprian; Zhu, Xuping; Alpert, Nathaniel M.; El Fakhri, Georges
2014-01-01
Respiratory and cardiac motion is the most serious limitation to whole-body PET, resulting in spatial resolution close to 1 cm. Furthermore, motion-induced inconsistencies in the attenuation measurements often lead to significant artifacts in the reconstructed images. Gating can remove motion artifacts at the cost of increased noise. This paper presents an approach to respiratory motion correction using simultaneous PET/MRI to demonstrate initial results in phantoms, rabbits, and nonhuman primates and discusses the prospects for clinical application. Methods Studies with a deformable phantom, a free-breathing primate, and rabbits implanted with radioactive beads were performed with simultaneous PET/MRI. Motion fields were estimated from concurrently acquired tagged MR images using 2 B-spline nonrigid image registration methods and incorporated into a PET list-mode ordered-subsets expectation maximization algorithm. Using the measured motion fields to transform both the emission data and the attenuation data, we could use all the coincidence data to reconstruct any phase of the respiratory cycle. We compared the resulting SNR and the channelized Hotelling observer (CHO) detection signal-to-noise ratio (SNR) in the motion-corrected reconstruction with the results obtained from standard gating and uncorrected studies. Results Motion correction virtually eliminated motion blur without reducing SNR, yielding images with SNR comparable to those obtained by gating with 5–8 times longer acquisitions in all studies. The CHO study in dynamic phantoms demonstrated a significant improvement (166%–276%) in lesion detection SNR with MRI-based motion correction as compared with gating (P < 0.001). This improvement was 43%–92% for large motion compared with lesion detection without motion correction (P < 0.001). CHO SNR in the rabbit studies confirmed these results. Conclusion Tagged MRI motion correction in simultaneous PET/MRI significantly improves lesion detection compared with respiratory gating and no motion correction while reducing radiation dose. In vivo primate and rabbit studies confirmed the improvement in PET image quality and provide the rationale for evaluation in simultaneous whole-body PET/MRI clinical studies. PMID:22743250
Radiation Damage Formation And Annealing In Mg-Implanted GaN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whelan, Sean; Kelly, Michael J.; Yan, John
2005-06-30
We have implanted GaN with Mg ions over an energy range of 200keV to 1MeV at substrate temperatures of -150 (cold) and +300 deg. C (hot). The radiation damage formation in GaN was increased for cold implants when compared to samples implanted at elevated temperatures. The increase in damage formation is due to a reduction in the dynamic defect annealing during ion irradiation. The dopant stopping in the solid also depends upon the implant temperature. For a fixed implant energy and dose, Mg ions have a shorter range in GaN for cold implants when compared to hot implants which ismore » caused by the increase in scattering centres (disorder)« less
Image once, print thrice? Three-dimensional printing of replacement parts.
Rankin, Timothy M; Wormer, Blair A; Miller, John D; Giovinco, Nicholas A; Al Kassis, Salam; Armstrong, David G
2018-02-01
The last 20 years has seen an exponential increase in 3D printing as it pertains to the medical industry and more specifically surgery. Previous reviews in this domain have chosen to focus on applications within a specific field. To our knowledge, none have evaluated the broad applications of patient-specific or digital imaging and communications in medicine (DICOM) derived applications of this technology. We searched PUBMED and CINAHL from April 2012 to April 2017. 261 studies fulfilled the inclusion criteria. Proportions of articles reviewed: DICOM (5%), CT (38%), MRI (20%), Ultrasonography (28%), and Bio-printing (9%). There is level IV evidence to support the use of 3D printing for education, pre-operative planning, simulation and implantation. In order to make this technology widely applicable, it will require automation of DICOM to standard tessellation language to implant. Advances in knowledge: Recent lapses in intellectual property and greater familiarity with rapid prototyping in medicine has set the stage for the next generation of custom implants, simulators and autografts. Radiologists may be able to help establish reimbursable procedural terminology.
Ellenor, Christopher W; Stang, Pascal P; Etezadi-Amoli, Maryam; Pauly, John M; Scott, Greig C
2015-01-01
Purpose The concept of a “radiofrequency safety prescreen” is investigated, wherein dangerous interactions between radiofrequency fields used in MRI, and conductive implants in patients are detected through impedance changes in the radiofrequency coil. Theory The behavior of coupled oscillators is reviewed, and the resulting, observable impedance changes are discussed. Methods A birdcage coil is loaded with a static head phantom and a wire phantom with a wire close to its resonant length, the shape, position, and orientation of which can be changed. Interactions are probed with a current sensor and network analyzer. Results Impedance spectra show dramatic, unmistakable splitting in cases of strong coupling, and strong correlation is observed between induced current and scattering parameters. Conclusions The feasibility of a new, low-power prescreening technique has been demonstrated in a simple phantom experiment, which can unambiguously detect resonant interactions between an implanted wire and an imaging coil. A new technique has also been presented which can detect parallel transmit null modes for the wire. Magn Reson Med 73:1328–1339, 2015. © 2014 Wiley Periodicals, Inc. PMID:24623586
Bogovič, Valerija; Svete, Andrej; Bajsić, Ivan
2016-10-01
Heat, generated during the drilling of a dental implant site preparation, leads to a temperature rise and consequently to a thermal injury of the bone tissue surrounding the implant site, which can cause the subsequent implant failure. In this article, we present new findings related to the temperature rise during implant site drilling under real conditions on a bovine rib bone specimen. The experiments were designed with the help of a full-factorial design in randomized complete blocks, where the main effects of the drill diameter in combination with the drilling force and the drilling speed, and their interactions, on the temperature rise were determined. The temperature rise in the bone under real conditions was measured as the implant site was being prepared by a dentist using intermittent, graduated drilling and external irrigation. Results show that the drill diameter has statistically significant effect, independent of the drilling procedure used. Among the examined drilling parameters, the drill diameter has the greatest effect, where an increase in the drill diameter first causes a decrease in the temperature rise and further increase in the drill diameter causes its increase. During the continuous and one-step drilling, the temperatures of the bones were up to 40.5 °C and during the drilling under actual conditions up to 30.11 °C. © IMechE 2016.
Localization of dense intracranial electrode arrays using magnetic resonance imaging
Doyle, Werner K.; Halgren, Eric; Carlson, Chad; Belcher, Thomas L.; Cash, Sydney S.; Devinsky, Orrin; Thesen, Thomas
2013-01-01
Intracranial electrode arrays are routinely used in the pre-surgical evaluation of patients with medically refractory epilepsy, and recordings from these electrodes have been increasingly employed in human cognitive neurophysiology due to their high spatial and temporal resolution. For both researchers and clinicians, it is critical to localize electrode positions relative to the subject-specific neuroanatomy. In many centers, a post-implantation MRI is utilized for electrode detection because of its higher sensitivity for surgical complications and the absence of radiation. However, magnetic susceptibility artifacts surrounding each electrode prohibit unambiguous detection of individual electrodes, especially those that are embedded within dense grid arrays. Here, we present an efficient method to accurately localize intracranial electrode arrays based on pre- and post-implantation MR images that incorporates array geometry and the individual's cortical surface. Electrodes are directly visualized relative to the underlying gyral anatomy of the reconstructed cortical surface of individual patients. Validation of this approach shows high spatial accuracy of the localized electrode positions (mean of 0.96 mm±0.81 mm for 271 electrodes across 8 patients). Minimal user input, short processing time, and utilization of radiation-free imaging are strong incentives to incorporate quantitatively accurate localization of intracranial electrode arrays with MRI for research and clinical purposes. Co-registration to a standard brain atlas further allows inter-subject comparisons and relation of intracranial EEG findings to the larger body of neuroimaging literature. PMID:22759995
A new system of implant abutment connection: how to improve a two piece implant system sealing.
Grecchi, F; DI Girolamo, M; Cura, F; Candotto, V; Carinci, F
2017-01-01
Implant dentistry has become one of the most successful dentistry techniques for replacing missing teeth. The success rate of implant dentistry is above 80%. However, peri-implantitis is a later complication of implant dentistry that if untreated, can lead to implant loss. One of the hypotized causes of peri-implantis is the bacterial leakage at the level of implant-abutment connection. Bacterial leakage is favored to the presence of a micro gap at the implant-abutment interface, allowing microorganisms to penetrate and colonize the inner part of the implant leading to biofilm accumulation and consequently to peri-implantitis development. To identify the capability of the implant to protect the internal space from the external environment, the passage of genetically modified Escherichia coli across implant-abutment interface was evaluated. Implants were immerged in a bacterial culture for twenty-four hours and then bacteria amount was measured inside implant-abutment interface with Real-time PCR. Bacteria were detected inside all studied implants, with a median percentage of 9%. The reported results are better to those of previous studies carried out on different implant systems. Until now, none implant-abutment system has been proven to seal the gap between implant and abutment.
Cooper, H. John; Urban, Robert M.; Wixson, Richard L.; Meneghini, R. Michael; Jacobs, Joshua J.
2013-01-01
Background: Femoral stems with dual-taper modularity were introduced to allow additional options for hip-center restoration independent of femoral fixation in total hip arthroplasty. Despite the increasing availability and use of these femoral stems, concerns exist about potential complications arising from the modular neck-body junction. Methods: This was a multicenter retrospective case series of twelve hips (eleven patients) with adverse local tissue reactions secondary to corrosion at the modular neck-body junction. The cohort included eight women and three men who together had an average age of 60.1 years (range, forty-three to seventy-seven years); all hips were implanted with a titanium-alloy stem and cobalt-chromium-alloy neck. Patients presented with new-onset and increasing pain at a mean of 7.9 months (range, five to thirteen months) following total hip arthroplasty. After serum metal-ion studies and metal artifact reduction sequence (MARS) magnetic resonance imaging (MRI) revealed abnormal results, the patients underwent hip revision at a mean of 15.2 months (range, ten to twenty-three months). Tissue specimens were examined by a single histopathologist, and the retrieved implants were studied with use of light and scanning electron microscopy. Results: Serum metal levels demonstrated greater elevation of cobalt (mean, 6.0 ng/mL) than chromium (mean, 0.6 ng/mL) or titanium (mean, 3.4 ng/mL). MRI with use of MARS demonstrated adverse tissue reactions in eight of nine patients in which it was performed. All hips showed large soft-tissue masses and surrounding tissue damage with visible corrosion at the modular femoral neck-body junction. Available histology demonstrated large areas of tissue necrosis in seven of ten cases, while remaining viable capsular tissue showed a dense lymphocytic infiltrate. Microscopic analysis was consistent with fretting and crevice corrosion at the modular neck-body interface. Conclusions: Corrosion at the modular neck-body junction in dual-tapered stems with a modular cobalt-chromium-alloy femoral neck can lead to release of metal ions and debris resulting in local soft-tissue destruction. Adverse local tissue reaction should be considered as a potential cause for new-onset pain in patients with these components, and early revision should be considered given the potentially destructive nature of these reactions. A workup including serologic studies (erythrocyte sedimentation rate and C-reactive protein), serum metal levels, and MARS MRI can be helpful in establishing this diagnosis. Level of Evidence: Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence. PMID:23677352
Pacheco Usmayo, A; Torregrosa Andrés, A; Flores Méndez, J; Luján Marco, S; Rogel Bertó, R
To describe the types of penile prostheses and their components, to review the appropriate magnetic resonance imaging (MRI) acquisition protocol, and to describe the normal imaging findings and possible complications in patients with inflatable penile implants. Three-piece inflatable penile prostheses are the last link in the treatment chain for erectile dysfunction. They can develop complications, which are classified as non-infectious related to the surgical technique, infectious, or due to mechanical failure of the device. MRI is the most appropriate imaging technique for the postsurgical evaluation of penile prostheses. Images are acquired in three planes using sequences with high spatial resolution, first with the prosthesis at rest and then with the prosthesis activated. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.
Applications of patient-specific 3D printing in medicine.
Heller, Martin; Bauer, Heide-Katharina; Goetze, Elisabeth; Gielisch, Matthias; Roth, Klaus E; Drees, Philipp; Maier, Gerrit S; Dorweiler, Bernhard; Ghazy, Ahmed; Neufurth, Meik; Müller, Werner E G; Schröder, Heinz C; Wang, Xiaohong; Vahl, Christian-Friedrich; Al-Nawas, Bilal
Already three decades ago, the potential of medical 3D printing (3DP) or rapid prototyping for improved patient treatment began to be recognized. Since then, more and more medical indications in different surgical disciplines have been improved by using this new technique. Numerous examples have demonstrated the enormous benefit of 3DP in the medical care of patients by, for example, planning complex surgical interventions preoperatively, reducing implantation steps and anesthesia times, and helping with intraoperative orientation. At the beginning of every individual 3D model, patient-specific data on the basis of computed tomography (CT), magnetic resonance imaging (MRI), or ultrasound data is generated, which is then digitalized and processed using computer-aided design/computer-aided manufacturing (CAD/CAM) software. Finally, the resulting data sets are used to generate 3D-printed models or even implants. There are a variety of different application areas in the various medical fields, eg, drill or positioning templates, or surgical guides in maxillofacial surgery, or patient-specific implants in orthopedics. Furthermore, in vascular surgery it is possible to visualize pathologies such as aortic aneurysms so as to improve the planning of surgical treatment. Although rapid prototyping of individual models and implants is already applied very successfully in regenerative medicine, most of the materials used for 3DP are not yet suitable for implantation in the body. Therefore, it will be necessary in future to develop novel therapy approaches and design new materials in order to completely reconstruct natural tissue.
Implantation of Spheramine in advanced Parkinson's disease (PD).
Bakay, Roy A E; Raiser, Cathy D; Stover, Natividad P; Subramanian, Thyagarajan; Cornfeldt, Michael L; Schweikert, Alfred W; Allen, Richard C; Watts, Ray
2004-01-01
Evaluation of the safety and efficacy of unilateral stereotactic implantation of cultured human retinal pigment epithelial (hRPE) cells attached to microcarriers (Spheramine) in patients with advanced PD in an open label pilot study. Six patients with advanced PD (3 males; 3 females; mean age 52.2 years; mean duration of PD 10.2 years; mean Hoehn and Yahr stage "off" 3.75) were assessed at baseline and post-operatively using the modified CAPIT. Each patient underwent MRI-guided stereotactic transplantation of 325,000 hRPE cells attached to microcarriers in 5 tracts, 5 mm apart in the post-commissural putamen contralateral to the most affected side. Immunosuppression was not used. The UPDRS Motor (UPDR-M) score in the practically defined "off" state was the primary outcome measure. At 6 months post-op, the mean UPDRS-M (off) score improved to 35 (34%) from a pre-op baseline mean of 52 (p <.001). Secondary outcome measures improved including the total UPDRS (33%), Timed Motor Tests (on, 14%; off, 23%), PDQ39 QOL (30%), and Schwab and England score (on, 11%; off, 30%). Bilateral improvements have been observed in motor symptoms, with the greatest effect seen contralateral to the implants. Three of six patients currently have lower Dyskinesia Rating Scale scores than at baseline, while the scores of the other three are unchanged from baseline values. No "off-state" dyskinesias have been observed. Thus Spheramine implantation therapy appears to be safe and well tolerated for 6 months post-implantation.
Appearance of low signal intensity lines in MRI of silicone breast implants.
Stroman, P W; Rolland, C; Dufour, M; Grondin, P; Guidoin, R G
1996-05-01
Magnetic resonance (MR) images of five explanted mammary prostheses were obtained with a 1.5 T GE Signa system using a conventional spin-echo pulse sequence, in order to investigate the low-intensity curvilinear lines which may be observed in MR images of silicone gel-filled breast implants under pressure from fibrous capsules. MR images showed ellipsoid prostheses, often containing multiple low-intensity curvilinear lines which in some cases presented an appearance very similar to that of the linguine sign. Upon opening the fibrous capsules, however, all of the prostheses were found to be completely intact demonstrating that the appearance of multiple low signal intensity curvilinear lines in MR images of silicone gel-filled prostheses is not necessarily a sign of prosthesis rupture. The MR image features which are specific to the linguine sign must be more precisely defined.
MRI-induced heating of deep brain stimulation leads
NASA Astrophysics Data System (ADS)
Mohsin, Syed A.; Sheikh, Noor M.; Saeed, Usman
2008-10-01
The radiofrequency (RF) field used in magnetic resonance imaging is scattered by medical implants. The scattered field of a deep brain stimulation lead can be very intense near the electrodes stimulating the brain. The effect is more pronounced if the lead behaves as a resonant antenna. In this paper, we examine the resonant length effect. We also use the finite element method to compute the near field for (i) the lead immersed in inhomogeneous tissue (fat, muscle, and brain tissues) and (ii) the lead connected to an implantable pulse generator. Electric field, specific absorption rate and induced temperature rise distributions have been obtained in the brain tissue surrounding the electrodes. The worst-case scenario has been evaluated by neglecting the effect of blood perfusion. The computed values are in good agreement with in vitro measurements made in the laboratory.
3D-printed guiding templates for improved osteosarcoma resection
NASA Astrophysics Data System (ADS)
Ma, Limin; Zhou, Ye; Zhu, Ye; Lin, Zefeng; Wang, Yingjun; Zhang, Yu; Xia, Hong; Mao, Chuanbin
2016-03-01
Osteosarcoma resection is challenging due to the variable location of tumors and their proximity with surrounding tissues. It also carries a high risk of postoperative complications. To overcome the challenge in precise osteosarcoma resection, computer-aided design (CAD) was used to design patient-specific guiding templates for osteosarcoma resection on the basis of the computer tomography (CT) scan and magnetic resonance imaging (MRI) of the osteosarcoma of human patients. Then 3D printing technique was used to fabricate the guiding templates. The guiding templates were used to guide the osteosarcoma surgery, leading to more precise resection of the tumorous bone and the implantation of the bone implants, less blood loss, shorter operation time and reduced radiation exposure during the operation. Follow-up studies show that the patients recovered well to reach a mean Musculoskeletal Tumor Society score of 27.125.
Herek, Duygu; Sungurtekin, Ugur
2015-01-01
Hepatic hydatid cysts rarely invade portal veins causing portal cavernomatosis as a secondary complication. We report the case of a patient with direct invasion of the right portal vein by hydatid cysts causing portal cavernomatosis diagnosed via magnetic resonance imaging (MRI). The presented case highlights the useful application of MRI with T2-weighted images and gadolinium-enhanced T1-weighted images in the diagnosis of hepatic hydatid lesions presenting with a rare complication of portal cavernomatosis.
Bilateral cochlear implantation in a patient with bilateral temporal bone fractures.
Chung, Jae Ho; Shin, Myung Chul; Min, Hyun Jung; Park, Chul Won; Lee, Seung Hwan
2011-01-01
With the emphasis on bilateral hearing nowadays, bilateral cochlear implantation has been tried out for bilateral aural rehabilitation. Bilateral sensorineural hearing loss caused by head trauma can get help from cochlear implantation. We present the case of a 44-year-old man with bilateral otic capsule violating temporal bone fractures due to head trauma. The patient demonstrated much improved audiometric and psychoacoustic performance after bilateral cochlear implantation. We believe bilateral cochlear implantation in such patient can be a very effective tool for rehabilitation. Copyright © 2011 Elsevier Inc. All rights reserved.
Hempel, John Martin
2015-12-01
The use of porous polyethylene in reconstructive surgery of the auricle is becoming increasingly accepted. This is a single-stage procedure providing pleasing cosmetic rehabilitation. Further advantages are the possibility of early implantation and the lack of complications caused by harvesting costal cartilage. Additional hearing restoration using middle ear implants allows functional rehabilitation at an early stage. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mashouf, S; University of Toronto, Dept. of Radiation Oncology, Toronto, ON; Ravi, A
Purpose: There is a strong evidence relating post-implant dosimetry for permanent seed prostate brachytherpy to local control rates. The delineation of the prostate on CT images, however, represents a challenge as it is difficult to confidently identify the prostate borders from soft tissue surrounding it. This study aims at quantifying the sensitivity of clinically relevant dosimetric parameters to prostate contouring uncertainty. Methods: The post-implant CT images and plans for a cohort of 43 patients, who have received I–125 permanent prostate seed implant in our centre, were exported to MIM Symphony LDR brachytherapy treatment planning system (MIM Software Inc., Cleveland, OH).more » The prostate contours in post-implant CT images were expanded/contracted uniformly for margins of ±1.00mm, ±2.00mm, ±3.00mm, ±4.00mm and ±5.00mm (±0.01mm). The values for V100 and D90 were extracted from Dose Volume Histograms for each contour and compared. Results: The mean value of V100 and D90 was obtained as 92.3±8.4% and 108.4±12.3% respectively (Rx=145Gy). V100 was reduced by −3.2±1.5%, −7.2±3.0%, −12.8±4.0%, −19.0±4.8%, − 25.5±5.4% for expanded contours of prostate with margins of +1mm, +2mm, +3mm, +4mm, and +5mm, respectively, while it was increased by 1.6±1.2%, 2.4±2.4%, 2.7±3.2%, 2.9±4.2%, 2.9±5.1% for the contracted contours. D90 was reduced by −6.9±3.5%, −14.5±6.1%, −23.8±7.1%, − 33.6±8.5%, −40.6±8.7% and increased by 4.1±2.6%, 6.1±5.0%, 7.2±5.7%, 8.1±7.3% and 8.1±7.3% for the same set of contours. Conclusion: Systematic expansion errors of more than 1mm may likely render a plan sub-optimal. Conversely contraction errors may Result in labeling a plan likely as optimal. The use of MRI images to contour the prostate should results in better delineation of prostate organ which increases the predictive value of post-op plans. Since observers tend to overestimate the prostate volume on CT, compared with MRI, the impact of the contouring uncertainty on V100 and D90 fortunately, has a conservative effect of underestimating the prostate coverage.« less
Espe, Emil K S; Zhang, Lili; Sjaastad, Ivar
2014-10-01
Phase-contrast MRI (PC-MRI) is a versatile tool allowing evaluation of in vivo motion, but is sensitive to eddy current induced phase offsets, causing errors in the measured velocities. In high-resolution PC-MRI, these offsets can be sufficiently large to cause wrapping in the baseline phase, rendering conventional eddy current compensation (ECC) inadequate. The purpose of this study was to develop an improved ECC technique (unwrapping ECC) able to handle baseline phase discontinuities. Baseline phase discontinuities are unwrapped by minimizing the spatiotemporal standard deviation of the static-tissue phase. Computer simulations were used for demonstrating the theoretical foundation of the proposed technique. The presence of baseline wrapping was confirmed in high-resolution myocardial PC-MRI of a normal rat heart at 9.4 Tesla (T), and the performance of unwrapping ECC was compared with conventional ECC. Areas of phase wrapping in static regions were clearly evident in high-resolution PC-MRI. The proposed technique successfully eliminated discontinuities in the baseline, and resulted in significantly better ECC than the conventional approach. We report the occurrence of baseline phase wrapping in PC-MRI, and provide an improved ECC technique capable of handling its presence. Unwrapping ECC offers improved correction of eddy current induced baseline shifts in high-resolution PC-MRI. Copyright © 2013 Wiley Periodicals, Inc.
A Ballistics Examination of Firearm Injuries Involving Breast Implants.
Pannucci, Christopher J; Cyr, Adam J; Moores, Neal G; Young, Jason B; Szegedi, Martin
2018-03-01
This ballistics study examines whether saline breast implants can decrease tissue penetration in firearm injuries. We hypothesize that the fluid column within a saline breast implant can alter bullet velocity and/or bullet pattern of mushrooming. The two experimental groups included saline implants with 7.4 cm projection and a no implant group. The experimental design allowed the bullet to pass-through an implant and into ballistics gel (n = 10) or into ballistics gel without passage through an implant (n = 11). Shots that passed through an implant had 20.6% decreased penetration distance when compared to shots that did not pass-through an implant; this difference was statistically significant (31.9 cm vs. 40.2 cm, p < 0.001). Implant group bullets mushroomed prior to gel entry, but the no implant group mushroomed within the gel. Bullet passage through a saline breast implant results in direct bullet velocity reduction and earlier bullet mushrooming; this causes significantly decreased ballistics gel penetration. © 2017 American Academy of Forensic Sciences.
Why do dental implants fail? Part I.
el Askary, A S; Meffert, R M; Griffin, T
1999-01-01
Many factors are attributed to failure of the dental implant, either directly or indirectly. The focus of this article is to define the causation of dental implant failure, as well as to present an evaluation of the implant literature regarding etiology, classification, management, and treatment of implant failures. This article will highlight the initial signs of implant failure with a view of some clinical cases in terms of classification and degrees of implant failure. Finally, a dental implant failure checklist is formulated to guide the practitioner in defining the cause of implant failure, be it infective or noninfective, and to establish percentages and frequency of occurrence. The checklist applies to all implant systems and will help to determine the factors responsible for causation and the repair procedures, whether they are at the surgical or restorative phases. The definition of implant failure is set forth in terms of ailing, failing, failed, and surviving implants, and the appropriate treatments and dispositions are outlined.
Mastenbroek, Mirjam H; Versteeg, Henneke; Jordaens, Luc; Theuns, Dominic A M J; Pedersen, Susanne S
2014-01-01
We examined whether depression is independently associated with implantable cardioverter defibrillator (ICD) therapy for ventricular tachyarrhythmias and mortality. A cohort of 430 consecutive patients with a first-time ICD (79% men; mean [standard deviation] age = 57.8 [12.1] years) completed the Hospital Anxiety and Depression Scale 1 day before implantation. During follow-up, the ICD was interrogated at 3-month intervals. Cox proportional hazard regression analyses were used to examine the impact of depression on time to first appropriate ICD therapy and all-cause mortality during a median follow-up period of 3.8 years. Of all patients, 108 (25.1%) were depressed. Depression was not associated with time to first appropriate ICD therapy (unadjusted hazard ratio [HR] = 1.07, 95% confidence interval [CI] = 0.73-1.56). However, depression was associated with an increased risk for all-cause mortality (unadjusted HR = 2.18, 95% CI = 1.36-3.49). Depression remained independently associated with all-cause mortality (HR = 1.94, 95% CI = 1.06-3.54, p = .031), after adjusting for demographic and clinical characteristics. Patients who remained depressed during the first 3 months after implantation were at greatest risk for dying (HR = 2.88, 95% CI = 1.29-6.45, p = .010). The current study showed that depression at the time of implant is not associated with time to first appropriate ICD therapy but almost doubled the risk for all-cause mortality in patients with an ICD. Patients with persistent depression during the first 3 months after implantation face the greatest risk of dying. Current evidence indicates that multifactorial interventions are likely to be the most successful in terms of reducing distress. Whether this translates into enhanced survival has yet to be determined.
Intramedullary Mg2Ag nails augment callus formation during fracture healing in mice.
Jähn, Katharina; Saito, Hiroaki; Taipaleenmäki, Hanna; Gasser, Andreas; Hort, Norbert; Feyerabend, Frank; Schlüter, Hartmut; Rueger, Johannes M; Lehmann, Wolfgang; Willumeit-Römer, Regine; Hesse, Eric
2016-05-01
Intramedullary stabilization is frequently used to treat long bone fractures. Implants usually remain unless complications arise. Since implant removal can become technically very challenging with the potential to cause further tissue damage, biodegradable materials are emerging as alternative options. Magnesium (Mg)-based biodegradable implants have a controllable degradation rate and good tissue compatibility, which makes them attractive for musculoskeletal research. Here we report for the first time the implantation of intramedullary nails made of an Mg alloy containing 2% silver (Mg2Ag) into intact and fractured femora of mice. Prior in vitro analyses revealed an inhibitory effect of Mg2Ag degradation products on osteoclast differentiation and function with no impair of osteoblast function. In vivo, Mg2Ag implants degraded under non-fracture and fracture conditions within 210days and 133days, respectively. During fracture repair, osteoblast function and subsequent bone formation were enhanced, while osteoclast activity and bone resorption were decreased, leading to an augmented callus formation. We observed a widening of the femoral shaft under steady state and regenerating conditions, which was at least in part due to an uncoupled bone remodeling. However, Mg2Ag implants did not cause any systemic adverse effects. These data suggest that Mg2Ag implants might be promising for intramedullary fixation of long bone fractures, a novel concept that has to be further investigated in future studies. Biodegradable implants are promising alternatives to standard steel or titanium implants to avoid implant removal after fracture healing. We therefore developed an intramedullary nail using a novel biodegradable magnesium-silver-alloy (Mg2Ag) and investigated the in vitro and in vivo effects of the implants on bone remodeling under steady state and fracture healing conditions in mice. Our results demonstrate that intramedullary Mg2Ag nails degrade in vivo over time without causing adverse effects. Importantly, radiographs, μCT and bone histomorphometry revealed a significant increase in callus size due to an augmented bone formation rate and a reduced bone resorption in fractures supported by Mg2Ag nails, thereby improving bone healing. Thus, intramedullary Mg2Ag nails are promising biomaterials for fracture healing to circumvent implant removal. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Connelly, James W; Galea, Vincent P; Laaksonen, Inari; Matuszak, Sean J; Madanat, Rami; Muratoglu, Orhun; Malchau, Henrik
2018-04-19
The purpose of this study was to identify which patient and clinical factors are predictive of adverse local tissue reaction (ALTR) and to use these factors to create a highly sensitive algorithm for indicating metal artifact reduction sequence magnetic resonance imaging (MARS-MRI) in Articular Surface Replacement (ASR) XL total hip arthroplasty patients. Our secondary aim was to compare our algorithm to existing national guidelines on when to take MARS-MRI in metal-on-metal total hip arthroplasty patients. The study consisted of 137 patients treated with unilateral ASR XL implants from a prospective, multicenter study. Patients underwent MARS-MRI regardless of clinical presentation at a mean of 6.2 (range, 3.3-10.4) years from surgery. Univariate and multivariate analyses were conducted to determine which variables were predictive of ALTR. Predictors were used to create an algorithm to indicate MARS-MRI. Finally, we compared our algorithm's ability to detect ALTR to existing guidelines. We found a visual analog scale pain score ≥2 (odds ratio [OR] = 2.53; P = .023), high blood cobalt (OR = 1.05; P = .023), and male gender (OR = 2.37; P = .034) to be significant predictors of ALTR presence in our cohort. The resultant algorithm achieved 86.4% sensitivity and 60.2% specificity in detecting ALTR within our cohort. Our algorithm had the highest area under the curve and was the only guideline that was significantly predictive of ALTR (P = .014). Our algorithm including patient-reported pain and sex-specific cutoffs for blood cobalt levels could predict ALTR and indicate MARS-MRI in our cohort of ASR XL metal-on-metal patients with high sensitivity. Level II, diagnostic study. Copyright © 2018 Elsevier Inc. All rights reserved.
Herrmann, Tim; Mallow, Johannes; Plaumann, Markus; Luchtmann, Michael; Stadler, Jörg; Mylius, Judith; Brosch, Michael; Bernarding, Johannes
2015-01-01
Neuroimaging of macaques at ultra-high field (UHF) is usually conducted by combining a volume coil for transmit (Tx) and a phased array coil for receive (Rx) tightly enclosing the monkey's head. Good results have been achieved using vertical or horizontal magnets with implanted or near-surface coils. An alternative and less costly approach, the travelling-wave (TW) excitation concept, may offer more flexible experimental setups on human whole-body UHF magnetic resonance imaging (MRI) systems, which are now more widely available. Goal of the study was developing and validating the TW concept for in vivo primate MRI. The TW Primate System (TWPS) uses the radio frequency shield of the gradient system of a human whole-body 7 T MRI system as a waveguide to propagate a circularly polarized B1 field represented by the TE11 mode. This mode is excited by a specifically designed 2-port patch antenna. For receive, a customized neuroimaging monkey head receive-only coil was designed. Field simulation was used for development and evaluation. Signal-to-noise ratio (SNR) was compared with data acquired with a conventional monkey volume head coil consisting of a homogeneous transmit coil and a 12-element receive coil. The TWPS offered good image homogeneity in the volume-of-interest Turbo spin echo images exhibited a high contrast, allowing a clear depiction of the cerebral anatomy. As a prerequisite for functional MRI, whole brain ultrafast echo planar images were successfully acquired. The TWPS presents a promising new approach to fMRI of macaques for research groups with access to a horizontal UHF MRI system.
Herrmann, Tim; Mallow, Johannes; Plaumann, Markus; Luchtmann, Michael; Stadler, Jörg; Mylius, Judith; Brosch, Michael; Bernarding, Johannes
2015-01-01
Introduction Neuroimaging of macaques at ultra-high field (UHF) is usually conducted by combining a volume coil for transmit (Tx) and a phased array coil for receive (Rx) tightly enclosing the monkey’s head. Good results have been achieved using vertical or horizontal magnets with implanted or near-surface coils. An alternative and less costly approach, the travelling-wave (TW) excitation concept, may offer more flexible experimental setups on human whole-body UHF magnetic resonance imaging (MRI) systems, which are now more widely available. Goal of the study was developing and validating the TW concept for in vivo primate MRI. Methods The TW Primate System (TWPS) uses the radio frequency shield of the gradient system of a human whole-body 7 T MRI system as a waveguide to propagate a circularly polarized B1 field represented by the TE11 mode. This mode is excited by a specifically designed 2-port patch antenna. For receive, a customized neuroimaging monkey head receive-only coil was designed. Field simulation was used for development and evaluation. Signal-to-noise ratio (SNR) was compared with data acquired with a conventional monkey volume head coil consisting of a homogeneous transmit coil and a 12-element receive coil. Results The TWPS offered good image homogeneity in the volume-of-interest Turbo spin echo images exhibited a high contrast, allowing a clear depiction of the cerebral anatomy. As a prerequisite for functional MRI, whole brain ultrafast echo planar images were successfully acquired. Conclusion The TWPS presents a promising new approach to fMRI of macaques for research groups with access to a horizontal UHF MRI system. PMID:26066653
Pekcevik, Yeliz; Mitchell, Charles H; Mealy, Maureen A; Orman, Gunes; Lee, In H; Newsome, Scott D; Thompson, Carol B; Pardo, Carlos A; Calabresi, Peter A; Levy, Michael; Izbudak, Izlem
2016-01-01
Background Although spinal magnetic resonance imaging (MRI) findings of neuromyelitis optica (NMO) have been described, there is limited data available that help differentiate NMO from other causes of longitudinally extensive transverse myelitis (LETM). Objective To investigate the spinal MRI findings of LETM that help differentiate NMO at the acute stage from multiple sclerosis (MS) and other causes of LETM. Methods We enrolled 94 patients with LETM into our study. Bright spotty lesions (BSL), the lesion distribution and location were evaluated on axial T2-weighted images. Brainstem extension, cord expansion, T1 darkness and lesion enhancement were noted. We also reviewed the brain MRI of the patients during LETM. Results Patients with NMO had a greater amount of BSL and T1 dark lesions (p < 0.001 and 0.003, respectively). The lesions in NMO patients were more likely to involve greater than one-half of the spinal cord’s cross-sectional area; to enhance and be centrally-located, or both centrally- and peripherally-located in the cord. Of the 62 available brain MRIs, 14 of the 27 whom were NMO patients had findings that may be specific to NMO. Conclusions Certain spinal cord MRI features are more commonly seen in NMO patients and so obtaining brain MRI during LETM may support diagnosis. PMID:26209588
Besinis, A; Hadi, S D; Le, H R; Tredwin, C; Handy, R D
2017-04-01
One of the most common causes of implant failure is peri-implantitis, which is caused by bacterial biofilm formation on the surfaces of dental implants. Modification of the surface nanotopography has been suggested to affect bacterial adherence to implants. Silver nanoparticles are also known for their antibacterial properties. In this study, titanium alloy implants were surface modified following silver plating, anodisation and sintering techniques to create a combination of silver, titanium dioxide and hydroxyapatite (HA) nanocoatings. Their antibacterial performance was quantitatively assessed by measuring the growth of Streptococcus sanguinis, proportion of live/dead cells and lactate production by the microbes over 24 h. Application of a dual layered silver-HA nanocoating to the surface of implants successfully inhibited bacterial growth in the surrounding media (100% mortality), whereas the formation of bacterial biofilm on the implant surfaces was reduced by 97.5%. Uncoated controls and titanium dioxide nanocoatings showed no antibacterial effect. Both silver and HA nanocoatings were found to be very stable in biological fluids with material loss, as a result of dissolution, to be less than 0.07% for the silver nanocoatings after 24 h in a modified Krebs-Ringer bicarbonate buffer. No dissolution was detected for the HA nanocoatings. Thus, application of a dual layered silver-HA nanocoating to titanium alloy implants creates a surface with antibiofilm properties without compromising the HA biocompatibility required for successful osseointegration and accelerated bone healing.
NASA Astrophysics Data System (ADS)
Jung, P.; Henry, J.; Chen, J.
2005-08-01
Low activation 9%Cr martensitic steels EUROFER97, pure tantalum, and low carbon austenitic stainless steel 316L were homogeneously implanted with helium to concentrations up to 5000 appm at temperatures from 70 °C to 400 °C. The specimens were tensile tested at room temperature and at the respective implantation temperatures. In all materials the helium caused an increased in strength and reduction in ductility, with both changes being generally larger at lower implantation and testing temperatures. After implantation some work hardening was retained in 316L and in tantalum, while it almost completely disappeared in EUROFER97. After tensile testing, fracture surfaces were analysed by scanning electron microscopy (SEM). Implantation caused reduction of necking, but up to concentrations of 2500 appm He fracture surface still showed transgranular ductile appearance. Completely brittle intergranular fracture was observed in tantalum at 9000 appm He and is also expected for EUROFER97 at this concentration, according to previous results on similar 9%Cr steels.
Biomaterials and biologics in craniofacial reconstruction.
Engstrand, Thomas
2012-01-01
Complications related to surgery, including infection, wound dehiscence, and implant protrusion, are costly and may cause severe morbidity to patients. The choice of implants materials is critical for a successful outcome, particularly in craniofacial reconstructions. This review discusses the potential benefits and drawbacks of biologically active materials used for craniofacial bone repair as alternatives to inert implant prostheses.
Trans-catheter aortic valve implantation after previous aortic homograft surgery.
Drews, Thorsten; Pasic, Miralem; Buz, Semih; Unbehaun, Axel
2011-12-01
In patients with previous heart surgery, the operative risk is elevated during conventional aortic valve re-operations. Trans-catheter aortic valve implantation is a new method for the treatment of high-risk patients. Nevertheless, this new procedure carries potential risks in patients with previous homograft implantation in aortic position. Between April 2008 and February 2011, 345 consecutive patients (mean EuroSCORE (European System for Cardiac Operative Risk Evaluation): 38 ± 20%; mean Society of Thoracic Surgeons (STS) Mortality Score: 19 ± 16%; mean age: 80 ± 8 years; 111 men and 234 women) underwent trans-apical aortic valve implantation. In three patients, previous aortic homograft implantation had been performed. Homograft degeneration causing combined valve stenosis and incompetence made re-operation necessary. In all three patients, the aortic valve could be implanted using the trans-apical approach, and the procedure was successful. In two patients, there was slight paravalvular leakage of the aortic prosthesis and the other patient had slight central leakage. Neither ostium obstruction nor mitral valve damage was observed. Trans-catheter valve implantation can be performed successfully after previous homograft implantation. Particular care should be taken to achieve optimal valve positioning, not to obstruct the ostium of the coronary vessels due to the changed anatomic situation and not to cause annulus rupture. Copyright © 2011 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.
MRI Near Metallic Implants Using MAVRIC SL: Initial Clinical Experience at 3T
Gutierrez, Luis B.; Do, Bao H.; Gold, Garry E.; Hargreaves, Brian A.; Koch, Kevin M.; Worters, Pauline W.; Stevens, Kathryn J.
2014-01-01
Rationale and Objectives To compare the effectiveness of MAVRIC SL with conventional 2D-FSE MR techniques at 3T in imaging patients with a variety of metallic implants. Materials and Methods Twenty-one 3T MR studies were obtained in 19 patients with different types of metal implants. Paired MAVRIC SL and 2D-FSE sequences were reviewed by 2 radiologists, and compared for in-plane and through-plane metal artifact, visualization of the bone implant interface and surrounding soft tissues, blurring, and overall image quality using a 2-tailed Wilcoxon signed rank test. The area of artifact on paired images was measured and compared using a paired Wilcoxon signed rank test. Changes in patient management resulting from MAVRIC SL imaging were documented. Results Significantly less in-plane and through-plane artifact was seen with MAVRIC SL, with improved visualization of the bone-implant interface and surrounding soft tissues, and superior overall image quality (p = 0.0001). Increased blurring was seen with MAVRIC SL (p=0.0016). MAVRIC SL significantly decreased the image artifact compared to 2D-FSE (p=0.0001). Inclusion of MAVRIC SL to the imaging protocol determined the need for surgery or type of surgery in 5 patients, and ruled out the need for surgery in 13 patients. In 3 patients the area of interest was well seen on both MAVRIC SL and 2D-FSE images, so the addition of MAVRIC had no effect on patient management. Conclusion Imaging around metal implants with MAVRIC SL at 3T significantly improved image quality and decreased image artifact compared to conventional 2D-FSE imaging techniques, and directly impacted patient management. PMID:25435186
Wan, Zongmiao; Wang, Shaobai; Kozanek, Michal; Xia, Qun; Mansfield, Frederick L; Lü, Guohua; Wood, Kirkham B; Li, Guoan
2012-03-01
To evaluate the biomechanical effect of the X-Stop device on the intervertebral foramen (IVF) and segmental spinal canal length (SSCL), as well as the intervertebral disc space at the implanted and the adjacent segments in patients with lumbar spinal stenosis (LSS). Eight elderly patients with LSS, scheduled for X-stop implantation, were CT or MRI scanned to construct 3D vertebral models (L2-S1). Before and after the surgery, each patient was also imaged using a dual-fluoroscopic image system during weight-bearing standing and maximum extension-flexion. The positions of the vertebrae were then determined using an established 2D-3D model matching method. The data revealed that the postoperative IVF area was significantly increased by 32.9% (or 32 mm2) (p<0.05) and the IVF width was increased by 24.4% (or 1.1 mm, p=0.06) during extension, but with minimal change in standing and flexion. The IVF heights were significantly (p<0.05) increased at standing by 1.2 mm and extension by 1.8 mm, but not at flexion. The SSCL were significantly (p<0.05) increased at extension by 1.2 mm, but not at standing and flexion. Anterior disc space of the implanted level was significantly decreased from 8.0 to 6.6 mm during standing. The X-Stop implantation efficiently enlarged the IVF area in the elderly patients with LSS at the operated level with little biomechanical effect immediately on the superior and inferior adjacent levels. However, it reduced the anterior disc space at the implanted level.
A subperiosteal maxillary implant causing severe osteolysis.
Maï, Nguyen Tan; Jean-Baptiste, Caruhel; Hossein, Khonsari Roman
2018-06-22
Subperiosteal implant denture therapy was initially introduced in 1942 in Sweden and was then used worldwide for the treatment of fully edentulous maxillary or mandibular arches with advanced bone atrophy. Most authors describe decent success rates for mandibular subperiosteal implants in cases with major bone atrophy but follow-up studies for maxillary subperiosteal implants are not available. Here, we report a case of severe maxillary osteolysis secondary to the placement of a subperiosteal in-house implant. Subperiosteal implants are rarely used today but patients still carrying these devices with severe complications can be challenging to manage. New technical advances, including the use of surgical planification and additive manufacturing, may lead to a new interest in subperiosteal implants. Copyright © 2018. Published by Elsevier Masson SAS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yee, S; Krauss, D; Yan, D
Purpose: Unlike on the daily CBCT used for the image-guided radiation therapy, the visualization of an implantable metallic fiducial marker on the planning MRI images has been a challenge due to the inherent insensitivity of metal in MRI, and very thin (∼ 1 mm or less) diameter. Here, an MRI technique to visualize a marker used for prostate cancer radiotherapy is reported. Methods: During the MRI acquisitions, a multi-shot turbo spin echo (TSE) technique (TR=3500 ms, TE=8.6 ms, ETL=17, recon voxel=0.42x0.42x3.5 mm3) was acquired in Philips 3T Ingenia together with a T2-weighted multi-shot TSE (TR=5381 ms, TE=110 ms, ETL=17, reconmore » voxel=0.47×0.47×3 mm3) and a balanced turbo field echo (bTFE, flip angle 60, TR=2.76 ms, TE=1.3 ms, 0.85×0.85×3 mm3, NSA=4). In acquiring the MRI to visualize the fiducial marker, a particular emphasis was made to improve the spatial resolution and visibility in the generally dark, inhomogeneous prostate area by adjusting the slice profile ordering and TE values of TSE acquisition (in general, the lower value of TE in TSE acquisition generates a brighter signal but at the cost of high spatial resolution since the k-space, responsible for high spatial resolution, is filled with noisier data). Results: While clearly visible in CT, the marker was not visible in either T2-weighted TSE or bTFE, although the image qualities of both images were superior. In the new TSE acquisition (∼ a proton-density weighted image) adjusted by changing the profile ordering and the TE value, the marker was visible as a negative (but clear) contrast in the magnitude MRI, and as a positive contrast in the imaginary image of the phase-sensitive MRI. Conclusion: A metallic fiducial marker used for image guidance before prostate cancer radiotherapy can be made visible in MRI, which may facilitate more use of MRI in planning and guiding such radiation therapy.« less
Seong-Cheol, Park; Chong Sik, Lee; Seok Min, Kim; Eu Jene, Choi; Do Hee, Lee; Jung Kyo, Lee
2016-12-22
Recently, the use of magnetic dental implants has been re-popularized with the introduction of strong rare earth metal, for example, neodymium, magnets. Unrecognized magnetic dental implants can cause critical magnetic resonance image distortions. We report a case involving surgical failure caused by a magnetic dental implant. A 62-year-old man underwent deep brain stimulation for medically insufficiently controlled Parkinson's disease. Stereotactic magnetic resonance imaging performed for the first deep brain stimulation showed that the overdenture was removed. However, a dental implant remained and contained a neodymium magnet, which was unrecognized at the time of imaging; the magnet caused localized non-linear distortions that were the largest around the dental magnets. In the magnetic field, the subthalamic area was distorted by a 4.6 mm right shift and counter clockwise rotation. However, distortions were visually subtle in the operation field and small for distant stereotactic markers, with approximately 1-2 mm distortions. The surgeon considered the distortion to be normal asymmetry or variation. Stereotactic marker distortion was calculated to be in the acceptable range in the surgical planning software. Targeting errors, approximately 5 mm on the right side and 2 mm on the left side, occurred postoperatively. Both leads were revised after the removal of dental magnets. Dental magnets may cause surgical failures and should be checked and removed before stereotactic surgery. Our findings should be considered when reviewing surgical precautions and making distortion-detection algorithm improvements.
A media player causes clinically significant telemetry interference with implantable loop recorders.
Thaker, Jay P; Patel, Mehul B; Shah, Ashok J; Liepa, Valdis V; Jongnarangsin, Krit; Thakur, Ranjan K
2009-03-01
The implantable loop recorder is a useful diagnostic tool for intermittent cardiovascular symptoms because it can automatically record arrhythmias as well as a patient-triggered ECG. Media players have been shown to cause telemetry interference with pacemakers. Telemetry interference may be important in patients with implantable loop recorders because capturing a patient-triggered ECG requires a telemetry link between a hand-held activator and the implanted device. The purpose of this study was to determine if a media player causes interference with implantable loop recorders. Fourteen patients with implantable loop recorders underwent evaluation for interference with a 15 GB third generation iPod (Apple, Inc.) media player. All patients had the Reveal Plus (Medtronic, Inc.) implantable loop recorder. We tested for telemetry interference on the programmer by first establishing a telemetry link with the loop recorder and then, the media player was placed next to it, first turned off and then, on. We evaluated for telemetry interference between the activator and the implanted device by placing the activator over the device (normal use) and the media player next to it, first turned off and then, on. We made 5 attempts to capture a patient-triggered ECG by depressing the activator switch 5 times while the media player was off or on. Telemetry interference on the programmer screen, consisting of either high frequency spikes or blanking of the ECG channel was seen in all patients. Telemetry interference with the activator resulted in failure to capture an event in 7 patients. In one of these patients, a green indicator light on the activator suggested that a patient-triggered event was captured, but loop recorder interrogation did not show a captured event. In the remaining 7 patients, an event was captured and appropriately recognized by the device at least 1 out of 5 times. A media player playing in close proximity to an implanted loop recorder may interfere with capture of a patient-triggered event. Patients should be advised to keep media players away from their implanted loop recorder.
The Shape of Things to Come: The Military Benefits of the Brain-Computer Interface in 2040
2015-04-01
blood flow using a method referred to as blood-oxygen-level contrast (BOLD).20, 21 The hemodynamic responses are an indication of increased demand...both human and animal studies. One key disadvantage to fMRI/BOLD is that since the basis of measurement is the indirect detection of blood flow ...analytical tool to assess brain injury, BCIs enhance a patient’s quality of life. For example, the cochlear implant, developed in 1976, can be seen as an
The clinical evaluation of infantile nystagmus: What to do first and why
Bertsch, Morgan; Floyd, Michael; Kehoe, Taylor; Pfeifer, Wanda; Drack, Arlene V.
2017-01-01
Introduction Infantile nystagmus has many causes, some life threatening. We determined the most common diagnoses in order to develop a testing algorithm. Methods Retrospective chart review. Exclusion criteria were no nystagmus, acquired after 6 months, or lack of examination. Data collected: pediatric eye examination findings, ancillary testing, order of testing, referral, and final diagnoses. Final diagnosis was defined as meeting published clinical criteria and/or confirmed by diagnostic testing. Patients with a diagnosis not meeting the definition were “unknown.” Patients with incomplete testing were “incomplete.” Patients with multiple plausible etiologies were “multifactorial.” Patients with negative complete workup were “motor.” Results 284 charts were identified; 202 met inclusion criteria. The 3 most common causes were Albinism(19%), Leber Congenital Amaurosis(LCA)(14%) and Non-LCA retinal dystrophy (13%). Anatomic retinal disorders comprised 10%, motor another 10%. The most common first test was MRI (74/202) with a diagnostic yield of 16%. For 28 MRI-first patients, nystagmus alone was the indication; for 46 MRI-first patients other neurologic signs were present. 0/28 nystagmus-only patients had a diagnostic MRI while 14/46 (30%) with neurologic signs did. Yield of ERG as first test was 56%, OCT 55%, and molecular genetic testing 47%. 90% of patients had an etiology identified. Conclusion The most common causes of infantile nystagmus were retinal disorders (56%), however the most common first test was brain MRI. For patients without other neurologic stigmata complete pediatric eye examination, ERG, OCT and molecular genetic testing had a higher yield than MRI scan. If MRI is not diagnostic, a complete ophthalmologic workup should be pursued. PMID:28177849
Getzlaf, Matthew A.; Lewallen, Eric A.; Kremers, Hilal M.; Jones, Dakota L.; Bonin, Carolina A.; Dudakovic, Amel; Thaler, Roman; Cohen, Robert C.; Lewallen, David G.; van Wijnen, Andre J.
2016-01-01
Like any foreign object, orthopaedic implants are susceptible to infection when introduced into the human body. Without additional preventative measures, the absolute number of annual prosthetic joint infections will continue to rise, and may exceed the capacity of health care systems in the near future. Bacteria are difficult to eradicate from synovial joints due to their exceptionally diverse taxonomy, complex mechanistic attachment capabilities, and tendency to evolve antibiotic resistance. When a primary orthopaedic implant fails from prosthetic joint infection, surgeons are generally challenged by limited options for intervention. In this review, we highlight the etiology and taxonomic groupings of bacteria known to cause prosthetic joint infections, and examine their key mechanisms of attachment. We propose that antimicrobial strategies should focus on the most harmful bacteria taxa within the context of occurrence, taxonomic diversity, adhesion mechanisms, and implant design. Patient-specific identification of organisms that cause prosthetic joint infections will permit assessment of their biological vulnerabilities. The latter can be targeted using a range of antimicrobial techniques that exploit different colonization mechanisms including implant surface attachment, biofilm formation, and/or hematogenous recruitment. We anticipate that customized strategies for each patient, joint, and prosthetic component will be most effective at reducing prosthetic joint infections, including those caused by antibiotic-resistant and polymicrobial bacteria. PMID:26449208
21 CFR 882.5830 - Implanted diaphragmatic/phrenic nerve stimulator.
Code of Federal Regulations, 2012 CFR
2012-04-01
... which an abnormally low amount of air enters the lungs) caused by brain stem disease, high cervical spinal cord injury, or chronic lung disease. The stimulator consists of an implanted receiver with...
21 CFR 882.5830 - Implanted diaphragmatic/phrenic nerve stimulator.
Code of Federal Regulations, 2013 CFR
2013-04-01
... which an abnormally low amount of air enters the lungs) caused by brain stem disease, high cervical spinal cord injury, or chronic lung disease. The stimulator consists of an implanted receiver with...
21 CFR 882.5830 - Implanted diaphragmatic/phrenic nerve stimulator.
Code of Federal Regulations, 2014 CFR
2014-04-01
... which an abnormally low amount of air enters the lungs) caused by brain stem disease, high cervical spinal cord injury, or chronic lung disease. The stimulator consists of an implanted receiver with...
Research on Blastocyst Implantation Essential Factors (BIEFs).
Yoshinaga, Koji
2010-06-01
Blastocyst implantation is a process of interaction between embryo and the uterus. To understand this process, this review tries to summarize what blastocyst implantation essential factors (BIEFs) play what roles, as well as where in the uterus and at what stage of implantation process. Addition of more new data to this kind of compilation of information will help the development of diagnosis and treatment of infertility caused by implantation failure. The major, important cells of the endometrial cells that interact with invading blastocyst (trophoblast) are luminal epithelial cells, stromal cells (decidual cells) and resident immune cells. BIEFs regulate these cells to successfully maintain pregnancy.
A Retrospective Analysis of Ruptured Breast Implants
Baek, Woo Yeol; Lew, Dae Hyun
2014-01-01
Background Rupture is an important complication of breast implants. Before cohesive gel silicone implants, rupture rates of both saline and silicone breast implants were over 10%. Through an analysis of ruptured implants, we can determine the various factors related to ruptured implants. Methods We performed a retrospective review of 72 implants that were removed for implant rupture between 2005 and 2014 at a single institution. The following data were collected: type of implants (saline or silicone), duration of implantation, type of implant shell, degree of capsular contracture, associated symptoms, cause of rupture, diagnostic tools, and management. Results Forty-five Saline implants and 27 silicone implants were used. Rupture was diagnosed at a mean of 5.6 and 12 years after insertion of saline and silicone implants, respectively. There was no association between shell type and risk of rupture. Spontaneous was the most common reason for the rupture. Rupture management was implant change (39 case), microfat graft (2 case), removal only (14 case), and follow-up loss (17 case). Conclusions Saline implants have a shorter average duration of rupture, but diagnosis is easier and safer, leading to fewer complications. Previous-generation silicone implants required frequent follow-up observation, and it is recommended that they be changed to a cohesive gel implant before hidden rupture occurs. PMID:25396188
Thomsen, M; Schneider, U; Breusch, S J; Hansmann, J; Freund, M
2001-08-01
The authors evaluated the significance of different metal alloys used in orthopaedic surgery in producing artefacts during magnetic resonance imaging. Several MRI sequences were tested and magnetic effects evaluated. Twelve discs made of different metal alloys from three manufacturers were examined. These discs were placed in a plastic box with a defined position in ultrasound gel. Then a sensitive, standard T1 weighted gradient echo sequence (TE: 4.1 ms; TR 9.4) was carried out in a coronal plane (Matrix 128/256). A Phillips Easy Vision workstation was used for image analysis. The largest area of artefact formation, including the surface size of the disc, was calculated using a special software program. In order to minimise the measurement error all discs were measured 10 times and the average value was determined. Then eight different sequences were run and measured in the same way. In a second series, all discs were placed separately on metric paper and subjected to the magnetic field of the MRI in order to detect possible motion secondary to the magnetic field applied. The different titanium alloys showed average distortion areas of from 245 mm2 (Ti6Al4V) to 349 mm2 (Ti5Al2.5Fe). Cobalt chrome alloys yielded differences of between 600 mm2 and 651 mm2 and iron alloys of between 902 mm2 (316L or Fe18Cr10NiMo) and 950 mm2 (Fe22Cr10Ni4Mn2MoNb) on average for the standard T1 weighted gradient echo. The artefact areas were dependent on the different sequences performed. For steel, (Fe18Cr10NiMo) areas of from 411 mm2 (T1TSE) to 2027 mm2 (EPI/3D/SPIR) were measured. All sequences studied produced different artefact pictures. None of the materials tested showed changes in position secondary to ferromagnetism. The size of signal distortion by MRI depends on the alloy making up the implanted material and the sequences used. The smallest artefacts occurred with the turbo-spin-echo sequences (TSE). The alloys tested in our study seem to carry no risk for patients of ferromagnetically induced secondary loosening caused by MRI scanning.
Alqutaibi, Ahmed Yaseen; Aboalrejal, Afaf Noman
2018-06-01
Influences of micro-gap and micromotion of the implant-abutment interface on marginal bone loss around implant neck. Liu Y, Wang J. Arch Oral Biol 2017;83:153-60. This study was financially supported by grants from the National Natural Science Foundation of China (81570956) and the Bureau of Science and Technology of Wuhan ([2014]160, 2015060101010051) TYPE OF STUDY/DESIGN: Comprehensive literature review. Copyright © 2018 Elsevier Inc. All rights reserved.
Photodynamic therapy in peri-implantitis
NASA Astrophysics Data System (ADS)
Leretter, Marius; Cândea, Adrian; Topala, Florin
2014-01-01
Peri-implantitis is like Damocles sword, threatening over our final results as is the most common cause of implant failure. It is, was and will be one of the most challenging tasks for the practitioner to deal with. The rough implant surface offers the ideal conditions for the pathogenic bacteria to stick and multiply. Even more, the growing mature biofilm is harder to eliminate. Mechanical cleaning and rinsing is not capable to destroy it entirely. Most treatment protocols include strong antibiotics, disregarding their side effects and interactions with other medications.
Byun, Woo Mok; Ahn, Sang Ho; Ahn, Myun-Whan
2008-10-15
Retrospective analysis of magnetic resonance imaging (MRI) and clinical findings about chemical radiculitis-associated anular tear in patients with radiculopathy. To investigate MRI findings of the chemical radiculitis caused by anular tears and to determine whether chemical radiculitis detected by MRI is the cause of radiculopathy. Many studies document that irritation of adjacent nerve roots by a chemical mediator of inflammation from the nucleus pulposus may result in radiculopathy. Computed tomography (CT) discography may be the best examination for diagnosing discogenic chemical radiculitis but is too invasive. A reliable imaging method for replacing invasive provocative CT discography and diagnosing chemical radiculitis is required. The study population consisted of 12 patients with pain referred to leg(s) with or without low back pain who underwent lumbar spine MRI. All cases of our study demonstrated perianular enhancement caused by chemical radiculitis associated with anular tears. Patterns and locations of perianular enhancement adjacent to anular tears on MRI were assessed. MRI findings were compared with clinical symptoms and/or provocative transforaminal epidural injection (n = 6). For documentation of the relationship between perianular enhancement and radiculopathy, provocative CT discography was performed in 2 cases. Perianular enhancement associated with anular tears revealed thick linear patterns (2.5-7 mm thickness) along margins of anular tears on contrast enhanced axial T1-weighted images with fat suppression. Locations of perianular enhancement adjacent to anular tears were at foraminal (n = 6) and extraforaminal portions (n = 6). CT discography showed a leak of contrast from anular tear to the perianular regions. Pain reproduction at contrast leak level during discography showed concordant pain. There was an apparent correlation between perianular enhancement on MRI and clinical symptoms or provocative epidural nerve root injection in all cases. The perianular enhancement adjacent to anular tears on MRI may be relevant in the diagnosis of symptomatic chemical radiculitis.
Herek, Duygu; Sungurtekin, Ugur
2015-01-01
Background Hepatic hydatid cysts rarely invade portal veins causing portal cavernomatosis as a secondary complication. Case Report We report the case of a patient with direct invasion of the right portal vein by hydatid cysts causing portal cavernomatosis diagnosed via magnetic resonance imaging (MRI). Conclusion The presented case highlights the useful application of MRI with T2-weighted images and gadolinium-enhanced T1-weighted images in the diagnosis of hepatic hydatid lesions presenting with a rare complication of portal cavernomatosis. PMID:26730239
Engelhart, Sally; Segal, Robert J
2017-04-01
Allergy as a cause of adverse outcomes in patients with implanted orthopedic hardware is controversial. Allergy to titanium-based implants has not been well researched, as titanium is traditionally thought to be inert. We highlight the case of a patient who developed systemic dermatitis and implant failure after surgical placement of a titanium alloy (Ti6Al4V) plate in the left foot. The hardware was removed and the eruption cleared in the following weeks. The plate and screws were submitted for metal analysis. The elemental composition of both the plate and screws included 3 major elements-titanium, aluminum, and vanadium-as well as trace elements. Metal analysis revealed that the plate and screws had different microstructures, and electrochemical studies demonstrated that galvanic corrosion could have occurred between the plate and screws due to their different microstructures, contributing to the release of vanadium in vivo. The patient was patch tested with several metals including components of the implant and had a positive patch test reaction only to vanadium trichloride. These findings support a diagnosis of vanadium allergy and suggests that clinicians should consider including vanadium when patch testing patients with a suspected allergic reaction to vanadium-containing implants.
Ebreo, D; Bell, P J; Arshad, H; Donell, S T; Toms, A; Nolan, J F
2013-08-01
Metal artefact reduction (MAR) MRI is now widely considered to be the standard for imaging metal-on-metal (MoM) hip implants. The Medicines and Healthcare Products Regulatory Agency (MHRA) has recommended cross-sectional imaging for all patients with symptomatic MoM bearings. This paper describes the natural history of MoM disease in a 28 mm MoM total hip replacement (THR) using MAR MRI. Inclusion criteria were patients with MoM THRs who had not been revised and had at least two serial MAR MRI scans. All examinations were reported by an experienced observer and classified as A (normal), B (infection) or C1-C3 (mild, moderate, severe MoM-related abnormalities). Between 2002 and 2011 a total of 239 MRIs were performed on 80 patients (two to four scans per THR); 63 initial MRIs (61%) were normal. On subsequent MRIs, six initially normal scans (9.5%) showed progression to a disease state; 15 (15%) of 103 THRs with sequential scans demonstrated worsening disease on subsequent imaging. Most patients with a MoM THR who do not undergo early revision have normal MRI scans. Late progression (from normal to abnormal, or from mild to more severe MoM disease) is not common and takes place over several years.
Penzkofer, Tobias; Tempany-Afdhal, Clare M.
2013-01-01
It is now universally recognized that many prostate cancers are over-diagnosed and over-treated. The European Randomized Study of Screening for Prostate Cancer (ERSPC) from 2009 evidenced that, to save one man from death of prostate cancer, over 1,400 men had to be screened, and 48 had to undergo treatment. Detection of prostate cancer is traditionally based upon digital rectal examination (DRE) and measuring serum prostate specific antigen (PSA), followed by ultrasound guided biopsy. The primary role of imaging for the detection and diagnosis of prostate cancer has been transrectal ultrasound (TRUS) guidance during biopsy. MRI has traditionally been used primarily for staging disease in men with biopsy proven cancer. It is has a well-established role in detecting T3 disease, planning radiation therapy, especially 3D conformal or intensity modulated external beam radiation therapy (IMRT), and planning and guiding interstitial seed implant or brachytherapy. New advances have now established prostate MRI can accurately characterize focal lesions within the gland, an ability that has led to new opportunities for improved cancer detection and guidance for biopsy. There are two new approaches to prostate biopsy are under investigation both use pre-biopsy MRI to define potential targets for sampling and then the biopsy is performed either with direct real-time MR guidance (in-bore) or MR fusion/registration with TRUS images (out-of-bore). In-bore or out-of-bore MRI-guided prostate biopsies have the advantage of using the MR target definition for accurate localization and sampling of targets or suspicious lesions. The out-of-bore method uses combined MRI/TRUS with fusion software that provided target localization and increases the sampling accuracy for TRUS-guided biopsies by integrating prostate MRI information with TRUS. Newer parameters for each imaging modality such as sonoelastography or shear wave elastography (SWE), contrast enhanced US (CEUS) and MRI-elastography, show promise to further enrich data sets. PMID:24000133
Complications of rotator cuff surgery—the role of post-operative imaging in patient care
Thakkar, R S; Thakkar, S C; Srikumaran, U; Fayad, L M
2014-01-01
When pain or disability occurs after rotator cuff surgery, post-operative imaging is frequently performed. Post-operative complications and expected post-operative imaging findings in the shoulder are presented, with a focus on MRI, MR arthrography (MRA) and CT arthrography. MR and CT techniques are available to reduce image degradation secondary to surgical distortions of native anatomy and implant-related artefacts and to define complications after rotator cuff surgery. A useful approach to image the shoulder after surgery is the standard radiography, followed by MRI/MRA for patients with low “metal presence” and CT for patients who have a higher metal presence. However, for the assessment of patients who have undergone surgery for rotator cuff injuries, imaging findings should always be correlated with the clinical presentation because post-operative imaging abnormalities do not necessarily correlate with symptoms. PMID:24734935
Kaushik, S Sivaram; Karr, Robin; Runquist, Matthew; Marszalkowski, Cathy; Sharma, Abhishiek; Rand, Scott D; Maiman, Dennis; Koch, Kevin M
2017-01-01
To evaluate magnetic resonance imaging (MRI) artifacts near metallic spinal instrumentation using both conventional metal artifact reduction sequences (MARS) and 3D multispectral imaging sequences (3D-MSI). Both MARS and 3D-MSI images were acquired in 10 subjects with titanium spinal hardware on a 1.5T GE 450W scanner. Clinical computed tomography (CT) images were used to measure the volume of the implant using seed-based region growing. Using 30-40 landmarks, the MARS and 3D-MSI images were coregistered to the CT images. Three independent users manually segmented the artifact volume from both MR sequences. For five L-spine subjects, one user independently segmented the nerve root in both MARS and 3D-MSI images. For all 10 subjects, the measured artifact volume for the 3D-MSI images closely matched that of the CT implant volume (absolute error: 4.3 ± 2.0 cm 3 ). The MARS artifact volume was ∼8-fold higher than that of the 3D-MSI images (30.7 ± 20.2, P = 0.002). The average nerve root volume for the MARS images was 24 ± 7.3% lower than the 3D-MSI images (P = 0.06). Compared to 3D-MSI images, the higher-resolution MARS images may help study features farther away from the implant surface. However, the MARS images retained substantial artifacts in the slice-dimension that result in a larger artifact volume. These artifacts have the potential to obscure physiologically relevant features, and can be mitigated with 3D-MSI sequences. Hence, MR study protocols may benefit with the inclusion both MARS and 3D-MSI sequences to accurately study pathology near the spine. 2 J. Magn. Reson. Imaging 2017;45:51-58. © 2016 International Society for Magnetic Resonance in Medicine.
Ward, W Kenneth; Slobodzian, Emily P; Tiekotter, Kenneth L; Wood, Michael D
2002-11-01
We addressed the effect of implant thickness, implant porosity, and polyurethane (PU) chemistry on angiogenesis and on the foreign body response in rats. The following materials were implanted subcutaneously for 7 weeks then excised for histologic analysis: a solid PU; a solid polyurethane with silicone and polyethylene oxide (PU-S-PEO); porous expanded polytetrafluoroethylene (ePTFE); and porous polyvinyl alcohol sponge (PVA). Two thicknesses of PU-S-PEO were compared: 300 microns (thin) and 2000 microns (thick). Foreign body capsule (FBC) thickness was much less in PU-S-PEO implants than in PU implants. In addition, FBC were thinner in thin implants than in thick implants. FBC was much more dense in solid implants than in porous implants. As compared with solid implants, porous implants (PVA and ePTFE) led to a marked increase in the number of microvessels that developed adjacent to the implant, as observed both with hematoxylin/eosin staining and with an immunohistochemical anti-endothelial stain. We conclude that the polyethylene oxide and silicone moieties in PU reduce the thickness of the subsequent FBC. In addition, thin implants lead to a thin FBC. Porous implants (PVA and ePTFE) cause more angiogenesis than solid implants. These results may have implications for the measurement of blood-derived analytes by biosensors.
Method for implantation of high dopant concentrations in wide band gap materials
Usov, Igor [Los Alamos, NM; Arendt, Paul N [Los Alamos, NM
2009-09-15
A method that combines alternate low/medium ion dose implantation with rapid thermal annealing at relatively low temperatures. At least one dopant is implanted in one of a single crystal and an epitaxial film of the wide band gap compound by a plurality of implantation cycles. The number of implantation cycles is sufficient to implant a predetermined concentration of the dopant in one of the single crystal and the epitaxial film. Each of the implantation cycles includes the steps of: implanting a portion of the predetermined concentration of the one dopant in one of the single crystal and the epitaxial film; annealing one of the single crystal and the epitaxial film and implanted portion at a predetermined temperature for a predetermined time to repair damage to one of the single crystal and the epitaxial film caused by implantation and activates the implanted dopant; and cooling the annealed single crystal and implanted portion to a temperature of less than about 100.degree. C. This combination produces high concentrations of dopants, while minimizing the defect concentration.
Pollonini, Luca; Olds, Cristen; Abaya, Homer; Bortfeld, Heather; Beauchamp, Michael S; Oghalai, John S
2014-03-01
The primary goal of most cochlear implant procedures is to improve a patient's ability to discriminate speech. To accomplish this, cochlear implants are programmed so as to maximize speech understanding. However, programming a cochlear implant can be an iterative, labor-intensive process that takes place over months. In this study, we sought to determine whether functional near-infrared spectroscopy (fNIRS), a non-invasive neuroimaging method which is safe to use repeatedly and for extended periods of time, can provide an objective measure of whether a subject is hearing normal speech or distorted speech. We used a 140 channel fNIRS system to measure activation within the auditory cortex in 19 normal hearing subjects while they listed to speech with different levels of intelligibility. Custom software was developed to analyze the data and compute topographic maps from the measured changes in oxyhemoglobin and deoxyhemoglobin concentration. Normal speech reliably evoked the strongest responses within the auditory cortex. Distorted speech produced less region-specific cortical activation. Environmental sounds were used as a control, and they produced the least cortical activation. These data collected using fNIRS are consistent with the fMRI literature and thus demonstrate the feasibility of using this technique to objectively detect differences in cortical responses to speech of different intelligibility. Copyright © 2013 Elsevier B.V. All rights reserved.
Ge, Zigang; Tian, Xianfeng; Heng, Boon Chin; Fan, Victor; Yeo, Jin Fei; Cao, Tong
2009-04-01
Utilizing a suitable combination of lactide and glycolide in a copolymer would optimize the degradation rate of a scaffold upon implantation in situ. Moreover, 3D printing technology enables customizing the shape of the scaffold to biometric data from CT and MRI scans. A previous in vitro study has shown that novel 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds had good biocompatibility and mechanical properties comparable with human cancellous bone, while they could support proliferation and osteogenic differentiation of osteoblasts. Based on the previous study, this study evaluated PLGA scaffolds for bone regeneration within a rabbit model. The scaffolds were implanted at two sites on the same animal, within the periosteum and within bi-cortical bone defects on the iliac crest. Subsequently, the efficacy of bone regeneration within the implanted scaffolds was evaluated at 4, 12 and 24 weeks post-surgery through histological analysis. In both the intra-periosteum and iliac bone defect models, the implanted scaffolds facilitated new bone tissue formation and maturation over the time course of 24 weeks, even though there was initially observed to be little tissue ingrowth within the scaffolds at 4 weeks post-surgery. Hence, the 3D-printed porous PLGA scaffolds investigated in this study displayed good biocompatibility and are osteoconductive in both the intra-periosteum and iliac bone defect models.
Plantar fascia: imaging diagnosis and guided treatment.
McNally, Eugene G; Shetty, Shilpa
2010-09-01
Plantar fasciopathy is a common cause of heel pain. This article covers the imaging anatomy of the hindfoot, the imaging findings on ultrasound and magnetic resonance imaging (MRI) of plantar fasciopathy, plantar fibromas, trauma, Achilles tendonopathy, neural compression, stress fractures of the os calcis and other heel pad lesions. Thickening of the plantar fascia insertion more than 5 mm either on ultrasound or MRI is suggestive of plantar fasciopathy. Ultrasound is superior to MRI for diagnosis of plantar fibroma as small low signal lesions on MRI are similar to the normal plantar fascia signal. Ultrasound demonstrates low echogenicity compared with the echogenic plantar fascia. Penetrating injuries can appear bizarre due to associated foreign body impaction and infection. Achilles tendonopathy can cause heel pain and should be considered as a possible diagnosis. Treatment options include physical therapy, ECSWT, corticosteroid injection, and dry needling. Percutaneous US guided treatment methods will be described. Thieme Medical Publishers.