Sample records for mri magnetic resonance

  1. Magnetic Resonance Imaging (MRI) Safety

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) Safety What is MRI and how does ... What is MRI and how does it work? Magnetic resonance imaging, or MRI, is a way of obtaining detailed ...

  2. Magnetic Resonance Imaging (MRI): Dynamic Pelvic Floor

    MedlinePlus

    ... Site Index A-Z Magnetic Resonance Imaging (MRI) – Dynamic Pelvic Floor Dynamic pelvic floor magnetic resonance imaging ( ... the limitations of pelvic floor MRI? What is dynamic pelvic floor MRI? Magnetic resonance imaging (MRI) is ...

  3. MRI (Magnetic Resonance Imaging)

    MedlinePlus

    ... IV in the arm. MRI Research Programs at FDA Magnetic Resonance Imaging (MRI) Safety Electromagnetic Modeling Related ... Resonance Imaging Equipment in Clinical Use (March 2015) FDA/CDER: Information on Gadolinium-Based Contrast Agents Safety ...

  4. Magnetic Resonance Imaging (MRI): Lumbar Spine (For Parents)

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Magnetic Resonance Imaging (MRI): Lumbar Spine KidsHealth / For Parents / Magnetic Resonance Imaging (MRI): Lumbar Spine What's in this article? What ...

  5. Magnetic Resonance Imaging

    MedlinePlus

    ... specific information about your own examination. What is magnetic resonance imaging (MRI)? What is MRI used for? How safe ... What is the MRI examination like? What is magnetic resonance imaging (MRI)? MRI, or magnetic resonance imaging, is a ...

  6. Magnetic Resonance Medical Imaging (MRI)-from the inside

    NASA Astrophysics Data System (ADS)

    Bottomley, Paul

    There are about 36,000 magnetic resonance imaging (MRI) scanners in the world, with annual sales of 2500. In the USA about 34 million MRI studies are done annually, and 60-70% of all scanners operate at 1.5 Tesla (T). In 1982 there were none. How MRI got to be-and how it got to1.5T is the subject of this talk. Its an insider's view-mine-as a physics PhD student at Nottingham University when MRI (almost) began, through to the invention of the 1.5T clinical MRI scanner at GE's research center in Schenectady NY.Before 1977 all MRI was done on laboratory nuclear magnetic resonance instruments used for analyzing small specimens via chemical shift spectroscopy (MRS). It began with Lauterbur's 1973 observation that turning up the spectrometer's linear gradient magnetic field, generated a spectrum that was a 1D projection of the sample in the direction of the gradient. What followed in the 70's was the development of 3 key methods of 3D spatial localization that remain fundamental to MRI today.As the 1980's began, the once unimaginable prospect of upscaling from 2cm test-tubes to human body-sized magnets, gradient and RF transmit/receive systems, was well underway, evolving from arm-sized, to whole-body electromagnet-based systems operating at <0.2T. I moved to Johns Hopkins University to apply MRI methods to localized MRS and study cardiac metabolism, and then to GE to build a whole-body MRS machine. The largest uniform magnet possible-then, a 1.5T superconducting system-was required. Body MRI was first thought impossible above 0.35T due to RF penetration, detector coil and signal-to-noise ratio (SNR) issues. When GE finally did take on MRI, their plan was to drop the field to 0.3T. We opted to make MRI work at 1.5T instead. The result was a scanner that could study both anatomy and metabolism with a SNR way beyond its lower field rivals. MRI's success truly reflects the team efforts of many: from the NMR physics to the engineering of magnets, gradient and RF systems.

  7. The physics of functional magnetic resonance imaging (fMRI)

    NASA Astrophysics Data System (ADS)

    Buxton, Richard B.

    2013-09-01

    Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm3 spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology.

  8. The physics of functional magnetic resonance imaging (fMRI)

    PubMed Central

    Buxton, Richard B

    2015-01-01

    Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm3 spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology. PMID:24006360

  9. The physics of functional magnetic resonance imaging (fMRI).

    PubMed

    Buxton, Richard B

    2013-09-01

    Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm(3) spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology.

  10. Development of Laser-Polarized Noble Gas Magnetic Resonance Imaging (MRI) Technology

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    2004-01-01

    We are developing technology for laser-polarized noble gas nuclear magnetic resonance (NMR), with the aim of enabling it as a novel biomedical imaging tool for ground-based and eventually space-based application. This emerging multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation, perfusion, and gas-exchange. In addition, laser-polarized noble gases (3He and 1BXe) do not require a large magnetic field for sensitive NMR detection, opening the door to practical MRI with novel, open-access magnet designs at very low magnetic fields (and hence in confined spaces). We are pursuing two specific aims in this technology development program. The first aim is to develop an open-access, low-field (less than 0.01 T) instrument for MRI studies of human gas inhalation as a function of subject orientation, and the second aim is to develop functional imaging of the lung using laser-polarized He-3 and Xe-129.

  11. Midbrain and spinal cord magnetic resonance imaging (MRI) changes in poliomyelitis.

    PubMed

    Choudhary, Anita; Sharma, Suvasini; Sankhyan, Naveen; Gulati, Sheffali; Kalra, Veena; Banerjee, Bidisha; Kumar, Atin

    2010-04-01

    Poliomyelitis, though eradicated from most parts of the world, continues to occur in India. There is paucity of data on the magnetic resonance imaging (MRI) changes in poliomyelitis. We report a 3(1/2)-year-old boy who presented with subacute onset flaccid paralysis and altered sensorium. Stool culture was positive for wild polio virus type 3. Magnetic resonance imaging revealed signal changes in bilateral substantia nigra and anterior horns of the spinal cord. These MRI changes may be of potential diagnostic significance in a child with poliomyelitis.

  12. Functional Magnetic Resonance Imaging (MRI) and MRI Tractography in Progressive Supranuclear Palsy-Like Syndrome

    PubMed Central

    Vaphiades, Michael S.; Visscher, Kristina; Rucker, Janet C.; Vattoth, Surjith; Roberson, Glenn H.

    2015-01-01

    ABSTRACT An 18-year-old woman underwent an uneventful ascending aortic aneurysm repair then developed progressive supranuclear palsy-like syndrome. Extensive neuroimaging including contrasted fat-suppressed cranial and orbital magnetic resonance imaging (MRI), MRI tractography, and functional MRI (fMRI) revealed no clear radiographic involvement except for a single tiny hypoechoic midbrain dot on the T2*-weighted gradient-echo imaging, which is not considered sufficient to account for the patient’s deficits. This case attests to the occult nature of this rare and devastating syndrome. PMID:27928334

  13. Magnetic resonance imaging (MRI) of abnormal uterine masses.

    PubMed

    al-Ahwani, S; Assem, M; Belal, A; Abdel-Hamid, H

    1991-01-01

    Sixteen women with clinically diagnosed uterine masses were studied by magnetic resonance imaging (MRI). Pelvic study was carried out in the coronal, sagittal and axial planes. Uterine leiomyomas were detected in 12 cases, while the remaining cases were one each of uterine sarcoma, invasive molar pregnancy, cervical malignancy with pyometra and haematometra with congenital cervical stenosis. The uterine origin of the masses could be clearly detected in all patients, as well as the nature of the masses, the presence of degenerative or malignant changes and the nature of the intrauterine fluid. MRI characteristic findings of the studied masses are presented and discussed.

  14. Magnetic Resonance Safety

    PubMed Central

    Sammet, Steffen

    2016-01-01

    Magnetic Resonance Imaging (MRI) has a superior soft-tissue contrast compared to other radiological imaging modalities and its physiological and functional applications have led to a significant increase in MRI scans worldwide. A comprehensive MRI safety training to protect patients and other healthcare workers from potential bio-effects and risks of the magnetic fields in an MRI suite is therefore essential. The knowledge of the purpose of safety zones in an MRI suite as well as MRI appropriateness criteria is important for all healthcare professionals who will work in the MRI environment or refer patients for MRI scans. The purpose of this article is to give an overview of current magnetic resonance safety guidelines and discuss the safety risks of magnetic fields in an MRI suite including forces and torque of ferromagnetic objects, tissue heating, peripheral nerve stimulation and hearing damages. MRI safety and compatibility of implanted devices, MRI scans during pregnancy and the potential risks of MRI contrast agents will also be discussed and a comprehensive MRI safety training to avoid fatal accidents in an MRI suite will be presented. PMID:26940331

  15. Complete fourier direct magnetic resonance imaging (CFD-MRI) for diffusion MRI

    PubMed Central

    Özcan, Alpay

    2013-01-01

    The foundation for an accurate and unifying Fourier-based theory of diffusion weighted magnetic resonance imaging (DW–MRI) is constructed by carefully re-examining the first principles of DW–MRI signal formation and deriving its mathematical model from scratch. The derivations are specifically obtained for DW–MRI signal by including all of its elements (e.g., imaging gradients) using complex values. Particle methods are utilized in contrast to conventional partial differential equations approach. The signal is shown to be the Fourier transform of the joint distribution of number of the magnetic moments (at a given location at the initial time) and magnetic moment displacement integrals. In effect, the k-space is augmented by three more dimensions, corresponding to the frequency variables dual to displacement integral vectors. The joint distribution function is recovered by applying the Fourier transform to the complete high-dimensional data set. In the process, to obtain a physically meaningful real valued distribution function, phase corrections are applied for the re-establishment of Hermitian symmetry in the signal. Consequently, the method is fully unconstrained and directly presents the distribution of displacement integrals without any assumptions such as symmetry or Markovian property. The joint distribution function is visualized with isosurfaces, which describe the displacement integrals, overlaid on the distribution map of the number of magnetic moments with low mobility. The model provides an accurate description of the molecular motion measurements via DW–MRI. The improvement of the characterization of tissue microstructure leads to a better localization, detection and assessment of biological properties such as white matter integrity. The results are demonstrated on the experimental data obtained from an ex vivo baboon brain. PMID:23596401

  16. Magnetic Resonance Imaging (MRI) and Digital Subtraction Angiography Investigation of Childhood Moyamoya Disease.

    PubMed

    Song, Peiji; Qin, Jing; Lun, Han; Qiao, Penggang; Xie, Anming; Li, Gongjie

    2017-11-01

    Because digital subtraction angiography (DSA) is not an ideal angiographic examination for moyamoya disease in the pediatric population, magnetic resonance angiography (MRA) provides a noninvasive contrast-free angiographic examination; whereas magnetic resonance imaging (MRI) provides superior spatial resolution and soft-tissue contrast for lesion assessment. Ninety patients with moyamoya disease were examined by MRI and DSA to assess the distribution of lesions and their diagnostic agreement between modalities. MRI examination revealed 439 lesions. Punctate lesions were the most abundant, followed by patchy lesions. These lesions generally covered a smaller area than the abnormal-vascular corresponding brain parenchyma. Steno-occlusive changes at bilateral anterior, medial, and posterior cerebral arteries were identified by MRA and DSA. MRI showed moderate agreement in identifying lesions after steno-occlusive changes in anterior and medial cerebral arteries, and good agreement in posterior cerebral arteries; 6% to 11% of cases were misdiagnosed by MRA.

  17. Mathematical Development and Computational Analysis of Harmonic Phase-Magnetic Resonance Imaging (HARP-MRI) Based on Bloch Nuclear Magnetic Resonance (NMR) Diffusion Model for Myocardial Motion.

    PubMed

    Dada, Michael O; Jayeoba, Babatunde; Awojoyogbe, Bamidele O; Uno, Uno E; Awe, Oluseyi E

    2017-09-13

    Harmonic Phase-Magnetic Resonance Imaging (HARP-MRI) is a tagged image analysis method that can measure myocardial motion and strain in near real-time and is considered a potential candidate to make magnetic resonance tagging clinically viable. However, analytical expressions of radially tagged transverse magnetization in polar coordinates (which is required to appropriately describe the shape of the heart) have not been explored because the physics required to directly connect myocardial deformation of tagged Nuclear Magnetic Resonance (NMR) transverse magnetization in polar geometry and the appropriate harmonic phase parameters are not yet available. The analytical solution of Bloch NMR diffusion equation in spherical geometry with appropriate spherical wave tagging function is important for proper analysis and monitoring of heart systolic and diastolic deformation with relevant boundary conditions. In this study, we applied Harmonic Phase MRI method to compute the difference between tagged and untagged NMR transverse magnetization based on the Bloch NMR diffusion equation and obtained radial wave tagging function for analysis of myocardial motion. The analytical solution of the Bloch NMR equations and the computational simulation of myocardial motion as developed in this study are intended to significantly improve healthcare for accurate diagnosis, prognosis and treatment of cardiovascular related deceases at the lowest cost because MRI scan is still one of the most expensive anywhere. The analysis is fundamental and significant because all Magnetic Resonance Imaging techniques are based on the Bloch NMR flow equations.

  18. Detailed Magnetic Resonance Imaging (MRI) Analysis in Infantile Spasms.

    PubMed

    Harini, Chellamani; Sharda, Sonal; Bergin, Ann Marie; Poduri, Annapurna; Yuskaitis, Christopher J; Peters, Jurriaan M; Rakesh, Kshitiz; Kapur, Kush; Pearl, Phillip L; Prabhu, Sanjay P

    2018-05-01

    To evaluate initial magnetic resonance imaging (MRI) abnormalities in infantile spasms, correlate them to clinical characteristics, and describe repeat imaging findings. A retrospective review of infantile spasm patients was conducted, classifying abnormal MRI into developmental, acquired, and nonspecific subgroups. MRIs were abnormal in 52 of 71 infantile spasm patients (23 developmental, 23 acquired, and 6 nonspecific) with no correlation to the clinical infantile spasm characteristics. Both developmental and acquired subgroups exhibited cortical gray and/or white matter abnormalities. Additional abnormalities of deep gray structures, brain stem, callosum, and volume loss occurred in the structural acquired subgroup. Repeat MRI showed better definition of the extent of existing malformations. In structural infantile spasms, developmental/acquired subgroups showed differences in pattern of MRI abnormalities but did not correlate with clinical characteristics.

  19. Simple and Inexpensive Classroom Demonstrations of Nuclear Magnetic Resonance and Magnetic Resonance Imaging.

    ERIC Educational Resources Information Center

    Olson, Joel A.; Nordell, Karen J.; Chesnik, Marla A.; Landis, Clark R.; Ellis, Arthur B.; Rzchowski, M. S.; Condren, S. Michael; Lisensky, George C.

    2000-01-01

    Describes a set of simple, inexpensive, classical demonstrations of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) principles that illustrate the resonance condition associated with magnetic dipoles and the dependence of the resonance frequency on environment. (WRM)

  20. New oil-in-water magnetic emulsion as contrast agent for in vivo magnetic resonance imaging (MRI).

    PubMed

    Ahmed, Naveed; Jaafar-Maalej, Chiraz; Eissa, Mohamed Mahmoud; Fessi, Hatem; Elaissari, Abdelhamid

    2013-09-01

    Nowadays, bio-imaging techniques are widely applied for the diagnosis of various diseased/tumoral tissues in the body using different contrast agents. Accordingly, the advancement in bionanotechnology research is enhanced in this regard. Among contrast agents used, superparamagnetic iron oxide nanoparticles were developed by many researchers and applied for in vive magnetic resonance imaging (MRI). In this study, a new oil-in-water magnetic emulsion was used as contrast agent in MRI, after being characterized in terms of particle size, iron oxide content, magnetic properties and colloidal stability using dynamic light scattering (DLS), thermal gravimetric analysis (TGA), vibrating sample magnetometer (VSM) and zeta potential measurement techniques, respectively. The hydrodynamic size and magnetic content of the magnetic colloidal particles were found to be 250 nm and 75 wt%, respectively. In addition, the used magnetic emulsion possesses superparamagentic properties and high colloidal stability in aqueous medium. Then, the magnetic emulsion was highly diluted and administered intravenously to the Sprague dawley rats to be tested as contrast agent for in vivo MRI. In this preliminary study, MRI images showed significant enhancement in contrast, especially for T2 (relaxation time) contrast enhancement, indicating the distribution of magnetic colloidal nanoparticles within organs, like liver, spleen and kidneys of the Sprague dawley rats. In addition, it was found that 500 microL of the highly diluted magnetic emulsion (0.05 wt%) was found adequate for MRI analysis. This seems to be useful for further investigations especially in theranostic applications of magnetic emulsion.

  1. Amyloid imaging using fluorine-19 magnetic resonance imaging ((19)F-MRI).

    PubMed

    Tooyama, Ikuo; Yanagisawa, Daijiro; Taguchi, Hiroyasu; Kato, Tomoko; Hirao, Koichi; Shirai, Nobuaki; Sogabe, Takayuki; Ibrahim, Nor Faeizah; Inubushi, Toshiro; Morikawa, Shigehiro

    2016-09-01

    The formation of senile plaques followed by the deposition of amyloid-β is the earliest pathological change in Alzheimer's disease. Thus, the detection of senile plaques remains the most important early diagnostic indicator of Alzheimer's disease. Amyloid imaging is a noninvasive technique for visualizing senile plaques in the brains of Alzheimer's patients using positron emission tomography (PET) or magnetic resonance imaging (MRI). Because fluorine-19 ((19)F) displays an intense nuclear magnetic resonance signal and is almost non-existent in the body, targets are detected with a higher signal-to-noise ratio using appropriate fluorinated contrast agents. The recent introduction of high-field MRI allows us to detect amyloid depositions in the brain of living mouse using (19)F-MRI. So far, at least three probes have been reported to detect amyloid deposition in the brain of transgenic mouse models of Alzheimer's disease; (E,E)-1-fluoro-2,5-bis-(3-hydroxycarbonyl-4-hydroxy)styrylbenzene (FSB), 1,7-bis(4'-hydroxy-3'-trifluoromethoxyphenyl)-4-methoxycarbonylethyl-1,6-heptadiene3,5-dione (FMeC1, Shiga-Y5) and 6-(3',6',9',15',18',21'-heptaoxa-23',23',23'-trifluorotricosanyloxy)-2-(4'-dimethylaminostyryl)benzoxazole (XP7, Shiga-X22). This review presents the recent advances in amyloid imaging using (19)F-MRI, including our own studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Magnetic resonance imaging (MRI): A review of genetic damage investigations.

    PubMed

    Vijayalaxmi; Fatahi, Mahsa; Speck, Oliver

    2015-01-01

    Magnetic resonance imaging (MRI) is a powerful, non-invasive diagnostic medical imaging technique widely used to acquire detailed information about anatomy and function of different organs in the body, in both health and disease. It utilizes electromagnetic fields of three different frequency bands: static magnetic field (SMF), time-varying gradient magnetic fields (GMF) in the kHz range and pulsed radiofrequency fields (RF) in the MHz range. There have been some investigations examining the extent of genetic damage following exposure of bacterial and human cells to all three frequency bands of electromagnetic fields, as used during MRI: the rationale for these studies is the well documented evidence of positive correlation between significantly increased genetic damage and carcinogenesis. Overall, the published data were not sufficiently informative and useful because of the small sample size, inappropriate comparison of experimental groups, etc. Besides, when an increased damage was observed in MRI-exposed cells, the fate of such lesions was not further explored from multiple 'down-stream' events. This review provides: (i) information on the basic principles used in MRI technology, (ii) detailed experimental protocols, results and critical comments on the genetic damage investigations thus far conducted using MRI equipment and, (iii) a discussion on several gaps in knowledge in the current scientific literature on MRI. Comprehensive, international, multi-centered collaborative studies, using a common and widely used MRI exposure protocol (cardiac or brain scan) incorporating several genetic/epigenetic damage end-points as well as epidemiological investigations, in large number of individuals/patients are warranted to reduce and perhaps, eliminate uncertainties raised in genetic damage investigations in cells exposed in vitro and in vivo to MRI. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Pharmaceutical applications of magnetic resonance imaging (MRI).

    PubMed

    Richardson, J Craig; Bowtell, Richard W; Mäder, Karsten; Melia, Colin D

    2005-06-15

    Magnetic resonance imaging (MRI) is a powerful imaging modality that provides internal images of materials and living organisms on a microscopic and macroscopic scale. It is non-invasive and non-destructive, and one of very few techniques that can observe internal events inside undisturbed specimens in situ. It is versatile, as a wide range of NMR modalities can be accessed, and 2D and 3D imaging can be undertaken. Despite widespread use and major advances in clinical MRI, it has seen limited application in the pharmaceutical sciences. In vitro studies have focussed on drug release mechanisms in polymeric delivery systems, but isolated studies of bioadhesion, tablet properties, and extrusion and mixing processes illustrate the wider potential. Perhaps the greatest potential however, lies in investigations of pharmaceuticals in vivo, where pilot human and animal studies have demonstrated we can obtain unique insights into the behaviour of gastrointestinal, topical, colloidal, and targeted drug delivery systems.

  4. Distance-dependent magnetic resonance tuning as a versatile MRI sensing platform for biological targets

    NASA Astrophysics Data System (ADS)

    Choi, Jin-Sil; Kim, Soojin; Yoo, Dongwon; Shin, Tae-Hyun; Kim, Hoyoung; Gomes, Muller D.; Kim, Sun Hee; Pines, Alexander; Cheon, Jinwoo

    2017-05-01

    Nanoscale distance-dependent phenomena, such as Förster resonance energy transfer, are important interactions for use in sensing and imaging, but their versatility for bioimaging can be limited by undesirable photon interactions with the surrounding biological matrix, especially in in vivo systems. Here, we report a new type of magnetism-based nanoscale distance-dependent phenomenon that can quantitatively and reversibly sense and image intra-/intermolecular interactions of biologically important targets. We introduce distance-dependent magnetic resonance tuning (MRET), which occurs between a paramagnetic `enhancer' and a superparamagnetic `quencher', where the T1 magnetic resonance imaging (MRI) signal is tuned ON or OFF depending on the separation distance between the quencher and the enhancer. With MRET, we demonstrate the principle of an MRI-based ruler for nanometre-scale distance measurement and the successful detection of both molecular interactions (for example, cleavage, binding, folding and unfolding) and biological targets in in vitro and in vivo systems. MRET can serve as a novel sensing principle to augment the exploration of a wide range of biological systems.

  5. [Magnetic resonance imaging in facial injuries and digital fusion CT/MRI].

    PubMed

    Kozakiewicz, Marcin; Olszycki, Marek; Arkuszewski, Piotr; Stefańczyk, Ludomir

    2006-01-01

    Magnetic resonance images [MRI] and their digital fusion with computed tomography [CT] data, observed in patients affected with facial injuries, are presented in this study. The MR imaging of 12 posttraumatic patients was performed in the same plains as their previous CT scans. Evaluation focused on quality of the facial soft tissues depicting, which was unsatisfactory in CT. Using the own "Dental Studio" programme the digital fusion of the both modalities was performed. Pathologic dislocations and injures of facial soft tissues are visualized better in MRI than in CT examination. Especially MRI properly reveals disturbances in intraorbital soft structures. MRI-based assessment is valuable in patients affected with facial soft tissues injuries, especially in case of orbita/sinuses hernia. Fusion CT/MRI scans allows to evaluate simultaneously bone structure and soft tissues of the same region.

  6. Dual Contrast - Magnetic Resonance Fingerprinting (DC-MRF): A Platform for Simultaneous Quantification of Multiple MRI Contrast Agents.

    PubMed

    Anderson, Christian E; Donnola, Shannon B; Jiang, Yun; Batesole, Joshua; Darrah, Rebecca; Drumm, Mitchell L; Brady-Kalnay, Susann M; Steinmetz, Nicole F; Yu, Xin; Griswold, Mark A; Flask, Chris A

    2017-08-16

    Injectable Magnetic Resonance Imaging (MRI) contrast agents have been widely used to provide critical assessments of disease for both clinical and basic science imaging research studies. The scope of available MRI contrast agents has expanded over the years with the emergence of molecular imaging contrast agents specifically targeted to biological markers. Unfortunately, synergistic application of more than a single molecular contrast agent has been limited by MRI's ability to only dynamically measure a single agent at a time. In this study, a new Dual Contrast - Magnetic Resonance Fingerprinting (DC - MRF) methodology is described that can detect and independently quantify the local concentration of multiple MRI contrast agents following simultaneous administration. This "multi-color" MRI methodology provides the opportunity to monitor multiple molecular species simultaneously and provides a practical, quantitative imaging framework for the eventual clinical translation of molecular imaging contrast agents.

  7. Magnetic nanoparticles in magnetic resonance imaging and diagnostics.

    PubMed

    Rümenapp, Christine; Gleich, Bernhard; Haase, Axel

    2012-05-01

    Magnetic nanoparticles are useful as contrast agents for magnetic resonance imaging (MRI). Paramagnetic contrast agents have been used for a long time, but more recently superparamagnetic iron oxide nanoparticles (SPIOs) have been discovered to influence MRI contrast as well. In contrast to paramagnetic contrast agents, SPIOs can be functionalized and size-tailored in order to adapt to various kinds of soft tissues. Although both types of contrast agents have a inducible magnetization, their mechanisms of influence on spin-spin and spin-lattice relaxation of protons are different. A special emphasis on the basic magnetism of nanoparticles and their structures as well as on the principle of nuclear magnetic resonance is made. Examples of different contrast-enhanced magnetic resonance images are given. The potential use of magnetic nanoparticles as diagnostic tracers is explored. Additionally, SPIOs can be used in diagnostic magnetic resonance, since the spin relaxation time of water protons differs, whether magnetic nanoparticles are bound to a target or not.

  8. Reducing Field Distortion in Magnetic Resonance Imaging

    NASA Technical Reports Server (NTRS)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  9. Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET)/MRI for Lung Cancer Staging.

    PubMed

    Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Yoshikawa, Takeshi; Sugimura, Kazuro

    2016-07-01

    Tumor, lymph node, and metastasis (TNM) classification of lung cancer is typically performed with the TNM staging system, as recommended by the Union Internationale Contre le Cancer (UICC), the American Joint Committee on Cancer (AJCC), and the International Association for the Study of Lung Cancer (IASLC). Radiologic examinations for TNM staging of lung cancer patients include computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography with 2-[fluorine-18] fluoro-2-deoxy-D-glucose (FDG-PET), and FDG-PET combined with CT (FDG-PET/CT) and are used for pretherapeutic assessments. Recent technical advances in MR systems, application of fast and parallel imaging and/or introduction of new MR techniques, and utilization of contrast media have markedly improved the diagnostic utility of MRI in this setting. In addition, FDG-PET can be combined or fused with MRI (PET/MRI) for clinical practice. This review article will focus on these recent advances in MRI as well as on PET/MRI for lung cancer staging, in addition to a discussion of their potential and limitations for routine clinical practice in comparison with other modalities such as CT, FDG-PET, and PET/CT.

  10. [The Diagnostic Value of Pre-Biopsy Magnetic Resonance Imaging (MRI) for Detecting Prostate Cancer].

    PubMed

    Mori, Kohei; Miyoshi, Yasuhide; Yoneyama, Shuko; Ishida, Hiroaki; Hattori, Yusuke; Teranishi, Jun-ichi; Kondo, Keiichi; Noguchi, Kazumi

    2016-01-01

    We examined the value of pre-biopsy magnetic resonance imaging (MRI) for detecting prostate cancer. We analyzed 267 men with prostate-specific antigen (PSA) levels of 3-10 ng/ml who underwent systematic prostate needle biopsy. From April 2009 to March 2011, a total of 98 male patients underwent 16-core prostatic biopsies without pre-biopsy magnetic resonance imaging (MRI) (nonenforcement group). From April 2011 to March 2013, 169 men underwent pre-biopsy MRI [T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI)] (enforcement group). When MRI findings indicated cancer in the latter group, in addition to the systematic 16-core biopsy one or two targeted biopsies were performed. Patients without suspicious MRI findings underwent only systematic 16-core biopsy. Cancer detection rates in the nonenforcement and enforcement groups were 42.9% (48/92) and 46. 2% (78/169), respectively. The difference did not reach significance (p=0.612). Although the cancer detection rates were 39.4% (41/104) in the MRI-negative group and 56. 9% (37/65) in the MRI-positive group (p=0.039), the sensitivity and specificity for cancer detection by MRI were relatively low: 47.4% and 69.2%, respectively. By receiver-operating curve analysis, the area under the curve for cancer detection by MRI was only 0.583. There were two study limitations. First, the patient sample size was small. Second, it is unclear whether an adequate sample of the suspicious lesion was obtained by biopsy. We thus demonstrated that it might be improper to base a diagnosis solely on pre-biopsy MRI (T2WI and DWI) findings in men with serum PSA levels of 3-10 ng/ml.

  11. Magnetic Resonance Imaging (MRI) - Spine

    MedlinePlus

    ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...

  12. Magnetic resonance imaging and magnetic resonance spectroscopy for detection of early Alzheimer's disease.

    PubMed

    Westman, Eric; Wahlund, Lars-Olof; Foy, Catherine; Poppe, Michaela; Cooper, Allison; Murphy, Declan; Spenger, Christian; Lovestone, Simon; Simmons, Andrew

    2011-01-01

    Alzheimer's disease is the most common form of neurodegenerative disorder and early detection is of great importance if new therapies are to be effectively administered. We have investigated whether the discrimination between early Alzheimer's disease (AD) and elderly healthy control subjects can be improved by adding magnetic resonance spectroscopy (MRS) measures to magnetic resonance imaging (MRI) measures. In this study 30 AD patients and 36 control subjects were included. High resolution T1-weighted axial magnetic resonance images were obtained from each subject. Automated regional volume segmentation and cortical thickness measures were determined for the images. 1H MRS was acquired from the hippocampus and LCModel was used for metabolic quantification. Altogether, this yielded 58 different volumetric, cortical thickness and metabolite ratio variables which were used for multivariate analysis to distinguish between subjects with AD and Healthy controls. Combining MRI and MRS measures resulted in a sensitivity of 97% and a specificity of 94% compared to using MRI or MRS measures alone (sensitivity: 87%, 76%, specificity: 86%, 83% respectively). Adding the MRS measures to the MRI measures more than doubled the positive likelihood ratio from 6 to 17. Adding MRS measures to a multivariate analysis of MRI measures resulted in significantly better classification than using MRI measures alone. The method shows strong potential for discriminating between Alzheimer's disease and controls.

  13. Magnetic field shift due to mechanical vibration in functional magnetic resonance imaging.

    PubMed

    Foerster, Bernd U; Tomasi, Dardo; Caparelli, Elisabeth C

    2005-11-01

    Mechanical vibrations of the gradient coil system during readout in echo-planar imaging (EPI) can increase the temperature of the gradient system and alter the magnetic field distribution during functional magnetic resonance imaging (fMRI). This effect is enhanced by resonant modes of vibrations and results in apparent motion along the phase encoding direction in fMRI studies. The magnetic field drift was quantified during EPI by monitoring the resonance frequency interleaved with the EPI acquisition, and a novel method is proposed to correct the apparent motion. The knowledge on the frequency drift over time was used to correct the phase of the k-space EPI dataset. Since the resonance frequency changes very slowly over time, two measurements of the resonance frequency, immediately before and after the EPI acquisition, are sufficient to remove the field drift effects from fMRI time series. The frequency drift correction method was tested "in vivo" and compared to the standard image realignment method. The proposed method efficiently corrects spurious motion due to magnetic field drifts during fMRI. (c) 2005 Wiley-Liss, Inc.

  14. Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer's disease mice using magnetic resonance imaging (MRI).

    PubMed

    Cheng, Kwok Kin; Chan, Pui Shan; Fan, Shujuan; Kwan, Siu Ming; Yeung, King Lun; Wáng, Yì-Xiáng J; Chow, Albert Hee Lum; Wu, Ed X; Baum, Larry

    2015-03-01

    Diagnosis of Alzheimer's disease (AD) can be performed with the assistance of amyloid imaging. The current method relies on positron emission tomography (PET), which is expensive and exposes people to radiation, undesirable features for a population screening method. Magnetic resonance imaging (MRI) is cheaper and is not radioactive. Our approach uses magnetic nanoparticles (MNPs) made of superparamagnetic iron oxide (SPIO) conjugated with curcumin, a natural compound that specifically binds to amyloid plaques. Coating of curcumin-conjugated MNPs with polyethylene glycol-polylactic acid block copolymer and polyvinylpyrrolidone by antisolvent precipitation in a multi-inlet vortex mixer produces stable and biocompatible curcumin magnetic nanoparticles (Cur-MNPs) with mean diameter <100 nm. These nanoparticles were visualized by transmission electron microscopy and atomic force microscopy, and their structure and chemistry were further characterized by X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and Fourier transform infrared spectroscopy. Cur-MNPs exhibited no cytotoxicity in either Madin-Darby canine kidney (MDCK) or differentiated human neuroblastoma cells (SH-SY5Y). The Papp of Cur-MNPs was 1.03 × 10(-6) cm/s in an in vitro blood-brain barrier (BBB) model. Amyloid plaques could be visualized in ex vivo T2*-weighted magnetic resonance imaging (MRI) of Tg2576 mouse brains after injection of Cur-MNPs, and no plaques could be found in non-transgenic mice. Immunohistochemical examination of the mouse brains revealed that Cur-MNPs were co-localized with amyloid plaques. Thus, Cur-MNPs have the potential for non-invasive diagnosis of AD using MRI. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Delineating potential epileptogenic areas utilizing resting functional magnetic resonance imaging (fMRI) in epilepsy patients.

    PubMed

    Pizarro, Ricardo; Nair, Veena; Meier, Timothy; Holdsworth, Ryan; Tunnell, Evelyn; Rutecki, Paul; Sillay, Karl; Meyerand, Mary E; Prabhakaran, Vivek

    2016-08-01

    Seizure localization includes neuroimaging like electroencephalogram, and magnetic resonance imaging (MRI) with limited ability to characterize the epileptogenic network. Temporal clustering analysis (TCA) characterizes epileptogenic network congruent with interictal epileptiform discharges by clustering together voxels with transient signals. We generated epileptogenic areas for 12 of 13 epilepsy patients with TCA, congruent with different areas of seizure onset. Resting functional MRI (fMRI) scans are noninvasive, and can be acquired quickly, in patients with different levels of severity and function. Analyzing resting fMRI data using TCA is quick and can complement clinical methods to characterize the epileptogenic network.

  16. Magnetic resonance imaging of the knee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mink, J.H.; Reicher, M.A.; Crues, J.V.

    1987-01-01

    Introducing a comprehensive, practical guide to the use of magnetic resonance imaging (MRI) in detecting and evaluating knee disorders and planning arthroscopic surgery) This book integrates MRI findings with pertinent anatomy, physiology, and clinical signs to assist radiologists in selecting imaging protocols and interpreting scans. Detailed chapters focus on magnetic resonance imaging of the menisci and ligaments and evaluation of osteonecrosis, osteochondrosis, and osteochondritis. The authors demonstrate the potential of MRI for diagnosing various knee disorders such as arthritis, fractures, popliteal cysts, synovial disease, plicae, popliteal artery aneurysms, tumors, and bone marrow disorders.

  17. Creating a strategic management plan for magnetic resonance imaging (MRI) provision.

    PubMed

    Szczepura, A; Clark, M

    2000-09-01

    We were commissioned by the West Midlands NHS Regional Specialized Services Group (RSSG) to formulate a strategic plan for the management of Magnetic Resonance Imaging (MRI) within the West Midlands, UK. We needed to establish whether an increase in MRI provision was required, and if so to develop criteria to shape both the nature and location of MRI provision. We found that the UK had relatively low MRI provision per capita by international standards, and that the West Midlands region of the UK had less than the UK average level of MRI provision per capita. Within the region there was a 'mixed economy' of MRI provision involving fixed site scanners owned by the NHS and private companies, and private sector mobile MRI provision. There was little evidence of inappropriate MRI use, but considerable evidence of under-provision. Most MRI scanners in the region were heavily utilized, and average waiting times for MRI frequently exceeded guidelines (of a maximum 13-week wait for non-urgent MRI scans). Projections from NHS Trusts, MRI suppliers, and experts in the MRI field, led us to the conclusion that demand for MRI was likely to grow by between 12.5 and 18.5% per annum. This implies that 8-14 additional MRI scanners might be required within the West Midlands over the next 5 years, to meet existing, and rising demand for MRI. We therefore developed criteria (outlined in the paper) to enhance the productive and allocative efficiency of the deployment of MRI provision, whilst improving the configuration of MRI with reference to geographical equality of access to MRI.

  18. Music-based magnetic resonance fingerprinting to improve patient comfort during MRI examinations.

    PubMed

    Ma, Dan; Pierre, Eric Y; Jiang, Yun; Schluchter, Mark D; Setsompop, Kawin; Gulani, Vikas; Griswold, Mark A

    2016-06-01

    Unpleasant acoustic noise is a drawback of almost every MRI scan. Instead of reducing acoustic noise to improve patient comfort, we propose a technique for mitigating the noise problem by producing musical sounds directly from the switching magnetic fields while simultaneously quantifying multiple important tissue properties. MP3 music files were converted to arbitrary encoding gradients, which were then used with varying flip angles and repetition times in a two- and three-dimensional magnetic resonance fingerprinting (MRF) examination. This new acquisition method, named MRF-Music, was used to quantify T1 , T2 , and proton density maps simultaneously while providing pleasing sounds to the patients. MRF-Music scans improved patient comfort significantly during MRI examinations. The T1 and T2 values measured from phantom are in good agreement with those from the standard spin echo measurements. T1 and T2 values from the brain scan are also close to previously reported values. MRF-Music sequence provides significant improvement in patient comfort compared with the MRF scan and other fast imaging techniques such as echo planar imaging and turbo spin echo scans. It is also a fast and accurate quantitative method that quantifies multiple relaxation parameters simultaneously. Magn Reson Med 75:2303-2314, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  19. MRI and magnetic resonance angiography findings in patients with multiple sclerosis mimicked by stroke.

    PubMed

    Khedr, Abdullatif Al; Canaple, Sandrine; Monet, Pauline; Godefroy, Olivier; Bugnicourt, Jean-Marc

    2013-08-01

    We report a 45-year-old woman who presented with a first demyelinating event with abnormalities seen on both MRI and magnetic resonance angiography that were highly suggestive of acute ischemic stroke. This report highlights the problem of differential diagnosis of acute neurological symptoms in adult subjects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Measuring Pain for Patients Seeking Physical Therapy: Can Functional Magnetic Resonance Imaging (fMRI) Help?

    PubMed

    Elliott, James M; Owen, Meriel; Bishop, Mark D; Sparks, Cheryl; Tsao, Henry; Walton, David M; Weber, Kenneth A; Wideman, Timothy H

    2017-01-01

    In the multidisciplinary fields of pain medicine and rehabilitation, advancing techniques such as functional magnetic resonance imaging (fMRI) are used to enhance our understanding of the pain experience. Given that such measures, in some circles, are expected to help us understand the brain in pain, future research in pain measurement is undeniably rich with possibility. However, pain remains intensely personal and represents a multifaceted experience, unique to each individual; no single measure in isolation, fMRI included, can prove or quantify its magnitude beyond the patient self-report. Physical therapists should be aware of cutting-edge advances in measuring the patient's pain experience, and they should work closely with professionals in other disciplines (eg, magnetic resonance physicists, biomedical engineers, radiologists, psychologists) to guide the exploration and development of multimodal pain measurement and management on a patient-by-patient basis. The primary purpose of this perspective article is to provide a brief overview of fMRI and inform physical therapist clinicians of the pros and cons when utilized as a measure of the patient's perception of pain. A secondary purpose is to describe current known factors that influence the quality of fMRI data and its analyses, as well as the potential for future clinical applications relevant to physical therapist practice. Lastly, the interested reader is introduced and referred to existing guidelines and recommendations for reporting fMRI research. © 2017 American Physical Therapy Association.

  1. Towards Single Biomolecule Imaging via Optical Nanoscale Magnetic Resonance Imaging.

    PubMed

    Boretti, Alberto; Rosa, Lorenzo; Castelletto, Stefania

    2015-09-09

    Nuclear magnetic resonance (NMR) spectroscopy is a physical marvel in which electromagnetic radiation is charged and discharged by nuclei in a magnetic field. In conventional NMR, the specific nuclei resonance frequency depends on the strength of the magnetic field and the magnetic properties of the isotope of the atoms. NMR is routinely utilized in clinical tests by converting nuclear spectroscopy in magnetic resonance imaging (MRI) and providing 3D, noninvasive biological imaging. While this technique has revolutionized biomedical science, measuring the magnetic resonance spectrum of single biomolecules is still an intangible aspiration, due to MRI resolution being limited to tens of micrometers. MRI and NMR have, however, recently greatly advanced, with many breakthroughs in nano-NMR and nano-MRI spurred by using spin sensors based on an atomic impurities in diamond. These techniques rely on magnetic dipole-dipole interactions rather than inductive detection. Here, novel nano-MRI methods based on nitrogen vacancy centers in diamond are highlighted, that provide a solution to the imaging of single biomolecules with nanoscale resolution in-vivo and in ambient conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Numerical evaluation of heating in the human head due to magnetic resonance imaging (MRI)

    NASA Astrophysics Data System (ADS)

    Nguyen, Uyen; Brown, Steve; Chang, Isaac; Krycia, Joe; Mirotznik, Mark S.

    2003-06-01

    In this paper we present a numerical model for evaluating tissue heating during magnetic resonance imaging (MRI). Our method, which included a detailed anatomical model of a human head, calculated both the electromagnetic power deposition and the associated temperature elevations during a MRI head examination. Numerical studies were conducted using a realistic birdcage coil excited at frequencies ranging from 63 MHz to 500 MHz. The model was validated both experimentally and analytically. The experimental validation was performed at the MR test facility located at the FDA's Center for Devices and Radiological Health (CDRH).

  3. Magnetic Resonance Elastography and Other Magnetic Resonance Imaging Techniques in Chronic Liver Disease: Current Status and Future Directions.

    PubMed

    Tan, Cher Heng; Venkatesh, Sudhakar Kundapur

    2016-09-15

    Recent advances in the noninvasive imaging of chronic liver disease have led to improvements in diagnosis, particularly with magnetic resonance imaging (MRI). A comprehensive evaluation of the liver may be performed with the quantification of the degree of hepatic steatosis, liver iron concentration, and liver fibrosis. In addition, MRI of the liver may be used to identify complications of cirrhosis, including portal hypertension, ascites, and the development of hepatocellular carcinoma. In this review article, we discuss the state of the art techniques in liver MRI, namely, magnetic resonance elastography, hepatobiliary phase MRI, and liver fat and iron quantification MRI. The use of these advanced techniques in the management of chronic liver diseases, including nonalcoholic fatty liver disease, will be elaborated.

  4. Magnetic Resonance Elastography and Other Magnetic Resonance Imaging Techniques in Chronic Liver Disease: Current Status and Future Directions

    PubMed Central

    Tan, Cher Heng; Venkatesh, Sudhakar Kundapur

    2016-01-01

    Recent advances in the noninvasive imaging of chronic liver disease have led to improvements in diagnosis, particularly with magnetic resonance imaging (MRI). A comprehensive evaluation of the liver may be performed with the quantification of the degree of hepatic steatosis, liver iron concentration, and liver fibrosis. In addition, MRI of the liver may be used to identify complications of cirrhosis, including portal hypertension, ascites, and the development of hepatocellular carcinoma. In this review article, we discuss the state of the art techniques in liver MRI, namely, magnetic resonance elastography, hepatobiliary phase MRI, and liver fat and iron quantification MRI. The use of these advanced techniques in the management of chronic liver diseases, including non-alcoholic fatty liver disease, will be elaborated. PMID:27563019

  5. Note: Progress on the use of MgB2 superconducting joint technique for the development of MgB2 magnets for magnetic resonance imaging (MRI).

    PubMed

    Kim, Y G; Song, J B; Kim, J C; Kim, J M; Yoo, B H; Yun, S B; Hwang, D Y; Lee, H G

    2017-08-01

    This note presents a superconducting joint technique for the development of MgB 2 magnetic resonance imaging (MRI) magnets. The MgB 2 superconducting joint was fabricated by a powder processing method using Mg and B powders to establish a wire-bulk-wire connection. The joint resistance measured using a field-decay method was <10 -14 Ω, demonstrating that the proposed joint technique could be employed for developing "next-generation" MgB 2 MRI magnets operating in the persistent current mode.

  6. Heart MRI

    MedlinePlus

    Magnetic resonance imaging - cardiac; Magnetic resonance imaging - heart; Nuclear magnetic resonance - cardiac; NMR - cardiac; MRI of the heart; Cardiomyopathy - MRI; Heart failure - MRI; Congenital heart disease - MRI

  7. Idiopathic granulomatous mastitis: magnetic resonance imaging findings with diffusion MRI.

    PubMed

    Aslan, Hulya; Pourbagher, Aysin; Colakoglu, Tamer

    2016-07-01

    Idiopathic granulomatous mastitis (IGM) is a rare benign breast disease with unknown etiology which can mimic breast carcinoma, both clinically and radiologically. Magnetic resonance imaging (MRI) findings of IGM have been previously described; however there is no study evaluating diffusion-weighted MRI findings of IGM. To analyze conventional, dynamic contrast-enhanced, and diffusion-weighted MRI signal characteristics of IGM by comparing it with the contralateral normal breast parenchyma. A total of 39 patients were included in the study. On dynamic contrast-enhanced MRI, the distribution and enhancement patterns of the lesions were evaluated. We also detected the frequencies of involving quadrants, retroareolar involvement, accompanying abscess, and skin edema. T2-weighted (T2W) and STIR signal intensities and both mean and minimum apparent diffusion coefficient (ADC) values were compared with the contralateral normal parenchyma. IGM showed significantly lower mean and minimum ADC values when compared with the normal parenchyma. Signal intensities on T2W and STIR sequences of the lesion were significantly higher than the normal parenchyma. On dynamic contrast-enhanced MRI, 7.7% of the patients had mass-like contrast enhancement, 92.3% of the patients had non-mass-like contrast enhancement. Abscess was positive in 33.3% of the patients. As a result, IGM showed commonly non-mass-like lesions with restricted diffusion. Although it is a benign pathology, it may show clustered ring-like enhancement like malignant lesions. © The Foundation Acta Radiologica 2015.

  8. Triaxial fiber optic magnetic field sensor for MRI applications

    NASA Astrophysics Data System (ADS)

    Filograno, Massimo L.; Pisco, Marco; Catalano, Angelo; Forte, Ernesto; Aiello, Marco; Soricelli, Andrea; Davino, Daniele; Visone, Ciro; Cutolo, Antonello; Cusano, Andrea

    2016-05-01

    In this paper, we report a fiber-optic triaxial magnetic field sensor, based on Fiber Bragg Gratings (FBGs) integrated with giant magnetostrictive material, the Terfenol-D. The realized sensor has been designed and engineered for Magnetic Resonance Imaging (MRI) applications. A full magneto-optical characterization of the triaxial sensing probe has been carried out, providing the complex relationship among the FBGs wavelength shift and the applied magnetostatic field vector. Finally, the developed fiber optic sensors have been arranged in a sensor network composed of 20 triaxial sensors for mapping the magnetic field distribution in a MRI-room at a diagnostic center in Naples (SDN), equipped with Positron emission tomography/magnetic resonance (PET/MR) instrumentation. Experimental results reveal that the proposed sensor network can be efficiently used in MRI centers for performing quality assurance tests, paving the way for novel integrated tools to measure the magnetic dose accumulated day by day by MRI operators.

  9. Magnetic Field Gradient Calibration as an Experiment to Illustrate Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Seedhouse, Steven J.; Hoffmann, Markus M.

    2008-01-01

    A nuclear magnetic resonance (NMR) spectroscopy experiment for the undergraduate physical chemistry laboratory is described that encompasses both qualitative and quantitative pedagogical goals. Qualitatively, the experiment illustrates how images are obtained in magnetic resonance imaging (MRI). Quantitatively, students experience the…

  10. Local and global thermoregulatory responses to MRI electromagnetic fields: Biological effects and safety aspects of nuclear magnetic resonance imaging and spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, C.J.

    1991-01-01

    During magnetic resonance imaging (MRI) procedures, a subject is exposed to three novel environmental stimuli which have drawn attention over the past decade as potential health hazards: (1) a relatively intense static magnetic field; (2) a time-varying magnetic field, and (3) a radiofrequency (RF) field. Thermoregulation is one of many physiological systems that can be affected by MRI, specifically by the RF radiation absorbed by the subject during MRI. While there is some sparse, albeit controversial data on the possible effects of static magnetic fields on thermoregulation, the major concern regarding potential health hazards of the MRI-induced thermal effects centersmore » on the RF radiation absorbed by a subject during a scan. The purpose of the paper is to review the studies that have impacted on understanding the thermoregulatory effects of MRI with special emphasis on the problems of selecting appropriate animal models for assessing the potential risk of RF radiation exposure during MRI.« less

  11. Biomedical Investigations with Laser-Polarized Noble Gas Magnetic Resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    2003-01-01

    We pursued advanced technology development of laser-polarized noble gas nuclear magnetic resonance (NMR) as a novel biomedical imaging tool for ground-based and eventually space-based application. This new multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation-as well as studies of tissue perfusion. In addition, laser-polarized noble gases (3He and 129Xe) do not require a large magnetic field for sensitive detection, opening the door to practical MRI at very low magnetic fields with an open, lightweight, and low-power device. We pursued two technology development specific aims: (1) development of low-field (less than 0.01 T) noble gas MRI of humans; and (2) development of functional MRI of the lung using laser-polarized noble gas and related techniques.

  12. Quantitative magnetic resonance micro-imaging methods for pharmaceutical research.

    PubMed

    Mantle, M D

    2011-09-30

    The use of magnetic resonance imaging (MRI) as a tool in pharmaceutical research is now well established and the current literature covers a multitude of different pharmaceutically relevant research areas. This review focuses on the use of quantitative magnetic resonance micro-imaging techniques and how they have been exploited to extract information that is of direct relevance to the pharmaceutical industry. The article is divided into two main areas. The first half outlines the theoretical aspects of magnetic resonance and deals with basic magnetic resonance theory, the effects of nuclear spin-lattice (T(1)), spin-spin (T(2)) relaxation and molecular diffusion upon image quantitation, and discusses the applications of rapid magnetic resonance imaging techniques. In addition to the theory, the review aims to provide some practical guidelines for the pharmaceutical researcher with an interest in MRI as to which MRI pulse sequences/protocols should be used and when. The second half of the article reviews the recent advances and developments that have appeared in the literature concerning the use of quantitative micro-imaging methods to pharmaceutically relevant research. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Multiparametric Magnetic Resonance Imaging (MRI) and MRI-Transrectal Ultrasound Fusion Biopsy for Index Tumor Detection: Correlation with Radical Prostatectomy Specimen.

    PubMed

    Radtke, Jan P; Schwab, Constantin; Wolf, Maya B; Freitag, Martin T; Alt, Celine D; Kesch, Claudia; Popeneciu, Ionel V; Huettenbrink, Clemens; Gasch, Claudia; Klein, Tilman; Bonekamp, David; Duensing, Stefan; Roth, Wilfried; Schueler, Svenja; Stock, Christian; Schlemmer, Heinz-Peter; Roethke, Matthias; Hohenfellner, Markus; Hadaschik, Boris A

    2016-11-01

    Multiparametric magnetic resonance imaging (mpMRI) and MRI fusion targeted biopsy (FTB) detect significant prostate cancer (sPCa) more accurately than conventional biopsies alone. To evaluate the detection accuracy of mpMRI and FTB on radical prostatectomy (RP) specimen. From a cohort of 755 men who underwent transperineal MRI and transrectal ultrasound fusion biopsy under general anesthesia between 2012 and 2014, we retrospectively analyzed 120 consecutive patients who had subsequent RP. All received saturation biopsy (SB) in addition to FTB of lesions with Prostate Imaging Reporting and Data System (PI-RADS) score ≥2. The index lesion was defined as the lesion with extraprostatic extension, the highest Gleason score (GS), or the largest tumor volume (TV) if GS were the same, in order of priority. GS 3+3 and TV ≥1.3ml or GS ≥3+4 and TV ≥0.55ml were considered sPCa. We assessed the detection accuracy by mpMRI and different biopsy approaches and analyzed lesion agreement between mpMRI and RP specimen. Overall, 120 index and 71 nonindex lesions were detected. Overall, 107 (89%) index and 51 (72%) nonindex lesions harbored sPCa. MpMRI detected 110 of 120 (92%) index lesions, FTB (two cores per lesion) alone diagnosed 96 of 120 (80%) index lesions, and SB alone diagnosed 110 of 120 (92%) index lesions. Combined SB and FTB detected 115 of 120 (96%) index foci. FTB performed significantly less accurately compared with mpMRI (p=0.02) and the combination for index lesion detection (p=0.002). Combined FTB and SB detected 97% of all sPCa lesions and was superior to mpMRI (85%), FTB (79%), and SB (88%) alone (p<0.001 each). Spearman's rank correlation coefficient for index lesion agreement between mpMRI and RP was 0.87 (p<0.001). Limitations included the retrospective design, multiple operators, and nonblinding of radiologists. MpMRI identified 92% of index lesions compared with RP histopathology. The combination of FTB and SB was superior to both approaches alone

  14. Relationship Between Prebiopsy Multiparametric Magnetic Resonance Imaging (MRI), Biopsy Indication, and MRI-ultrasound Fusion-targeted Prostate Biopsy Outcomes.

    PubMed

    Meng, Xiaosong; Rosenkrantz, Andrew B; Mendhiratta, Neil; Fenstermaker, Michael; Huang, Richard; Wysock, James S; Bjurlin, Marc A; Marshall, Susan; Deng, Fang-Ming; Zhou, Ming; Melamed, Jonathan; Huang, William C; Lepor, Herbert; Taneja, Samir S

    2016-03-01

    Increasing evidence supports the use of magnetic resonance imaging (MRI)-ultrasound fusion-targeted prostate biopsy (MRF-TB) to improve the detection of clinically significant prostate cancer (PCa) while limiting detection of indolent disease compared to systematic 12-core biopsy (SB). To compare MRF-TB and SB results and investigate the relationship between biopsy outcomes and prebiopsy MRI. Retrospective analysis of a prospectively acquired cohort of men presenting for prostate biopsy over a 26-mo period. A total of 601 of 803 consecutively eligible men were included. All men were offered prebiopsy MRI and assigned a maximum MRI suspicion score (mSS). Men with an MRI abnormality underwent combined MRF-TB and SB. Detection rates for all PCa and high-grade PCa (Gleason score [GS] ≥7) were compared using the McNemar test. MRF-TB detected fewer GS 6 PCas (75 vs 121; p<0.001) and more GS ≥7 PCas (158 vs 117; p<0.001) than SB. Higher mSS was associated with higher detection of GS ≥7 PCa (p<0.001) but was not correlated with detection of GS 6 PCa. Prediction of GS ≥7 disease by mSS varied according to biopsy history. Compared to SB, MRF-TB identified more GS ≥7 PCas in men with no prior biopsy (88 vs 72; p=0.012), in men with a prior negative biopsy (28 vs 16; p=0.010), and in men with a prior cancer diagnosis (42 vs 29; p=0.043). MRF-TB detected fewer GS 6 PCas in men with no prior biopsy (32 vs 60; p<0.001) and men with prior cancer (30 vs 46; p=0.034). Limitations include the retrospective design and the potential for selection bias given a referral population. MRF-TB detects more high-grade PCas than SB while limiting detection of GS 6 PCa in men presenting for prostate biopsy. These findings suggest that prebiopsy multiparametric MRI and MRF-TB should be considered for all men undergoing prostate biopsy. In addition, mSS in conjunction with biopsy indications may ultimately help in identifying men at low risk of high-grade cancer for whom prostate biopsy

  15. Neuromelanin detection by magnetic resonance imaging (MRI) and its promise as a biomarker for Parkinson's disease.

    PubMed

    Sulzer, David; Cassidy, Clifford; Horga, Guillermo; Kang, Un Jung; Fahn, Stanley; Casella, Luigi; Pezzoli, Gianni; Langley, Jason; Hu, Xiaoping P; Zucca, Fabio A; Isaias, Ioannis U; Zecca, Luigi

    2018-01-01

    The diagnosis of Parkinson's disease (PD) occurs after pathogenesis is advanced and many substantia nigra (SN) dopamine neurons have already died. Now that therapies to block this neuronal loss are under development, it is imperative that the disease be diagnosed at earlier stages and that the response to therapies is monitored. Recent studies suggest this can be accomplished by magnetic resonance imaging (MRI) detection of neuromelanin (NM), the characteristic pigment of SN dopaminergic, and locus coeruleus (LC) noradrenergic neurons. NM is an autophagic product synthesized via oxidation of catecholamines and subsequent reactions, and in the SN and LC it increases linearly during normal aging. In PD, however, the pigment is lost when SN and LC neurons die. As shown nearly 25 years ago by Zecca and colleagues, NM's avid binding of iron provides a paramagnetic source to enable electron and nuclear magnetic resonance detection, and thus a means for safe and noninvasive measure in living human brain. Recent technical improvements now provide a means for MRI to differentiate between PD patients and age-matched healthy controls, and should be able to identify changes in SN NM with age in individuals. We discuss how MRI detects NM and how this approach might be improved. We suggest that MRI of NM can be used to confirm PD diagnosis and monitor disease progression. We recommend that for subjects at risk for PD, and perhaps generally for older people, that MRI sequences performed at regular intervals can provide a pre-clinical means to detect presymptomatic PD.

  16. Comparison among T1-weighted magnetic resonance imaging, modified dixon method, and magnetic resonance spectroscopy in measuring bone marrow fat.

    PubMed

    Shen, Wei; Gong, Xiuqun; Weiss, Jessica; Jin, Ye

    2013-01-01

    An increasing number of studies are utilizing different magnetic resonance (MR) methods to quantify bone marrow fat due to its potential role in osteoporosis. Our aim is to compare the measurements of bone marrow fat among T1-weighted magnetic resonance imaging (MRI), modified Dixon method (also called fat fraction MRI (FFMRI)), and magnetic resonance spectroscopy (MRS). Contiguous MRI scans were acquired in 27 Caucasian postmenopausal women with a modified Dixon method (i.e., FFMRI). Bone marrow adipose tissue (BMAT) of T1-weighted MRI and bone marrow fat fraction of the L3 vertebra and femoral necks were quantified using SliceOmatic and Matlab. MRS was also acquired at the L3 vertebra. Correlation among the three MR methods measured bone marrow fat fraction and BMAT ranges from 0.78 to 0.88 (P < 0.001) in the L3 vertebra. Correlation between BMAT measured by T1-weighted MRI and bone marrow fat fraction measured by modified FFMRI is 0.86 (P < 0.001) in femoral necks. There are good correlations among T1-weighted MRI, FFMRI, and MRS for bone marrow fat quantification. The inhomogeneous distribution of bone marrow fat, the threshold segmentation of the T1-weighted MRI, and the ambiguity of the FFMRI may partially explain the difference among the three methods.

  17. Comparison among T1-Weighted Magnetic Resonance Imaging, Modified Dixon Method, and Magnetic Resonance Spectroscopy in Measuring Bone Marrow Fat

    PubMed Central

    Shen, Wei; Gong, Xiuqun; Weiss, Jessica; Jin, Ye

    2013-01-01

    Introduction. An increasing number of studies are utilizing different magnetic resonance (MR) methods to quantify bone marrow fat due to its potential role in osteoporosis. Our aim is to compare the measurements of bone marrow fat among T1-weighted magnetic resonance imaging (MRI), modified Dixon method (also called fat fraction MRI (FFMRI)), and magnetic resonance spectroscopy (MRS). Methods. Contiguous MRI scans were acquired in 27 Caucasian postmenopausal women with a modified Dixon method (i.e., FFMRI). Bone marrow adipose tissue (BMAT) of T1-weighted MRI and bone marrow fat fraction of the L3 vertebra and femoral necks were quantified using SliceOmatic and Matlab. MRS was also acquired at the L3 vertebra. Results. Correlation among the three MR methods measured bone marrow fat fraction and BMAT ranges from 0.78 to 0.88 (P < 0.001) in the L3 vertebra. Correlation between BMAT measured by T1-weighted MRI and bone marrow fat fraction measured by modified FFMRI is 0.86 (P < 0.001) in femoral necks. Conclusion. There are good correlations among T1-weighted MRI, FFMRI, and MRS for bone marrow fat quantification. The inhomogeneous distribution of bone marrow fat, the threshold segmentation of the T1-weighted MRI, and the ambiguity of the FFMRI may partially explain the difference among the three methods. PMID:23606951

  18. Virtual Humans for Implantable Device Safety Assessment in MRI: Mitigating Magnetic Resonance Imaging Hazards for Implanted Medical Devices.

    PubMed

    Brown, James E; Qiang, Rui; Stadnik, Paul J; Stotts, Larry J; Von Arx, Jeffrey A

    2017-01-01

    Magnetic resonance imaging (MRI) is the preferred modality for soft tissue imaging because of its nonionizing radiation and lack of contrast agent. Due to interactions between the MR system and active implantable medical devices (AIMDs), patients with implants such as pacemakers are generally denied access to MRI, which presents a detriment to that population. It has been estimated that 50-75% of patients with a cardiac device were denied access to MRI scanning and, moreover, that 17% of pacemaker patients need an MRI within 12 months of implantation [1]. In recent years, AIMD manufacturers, such as Biotronik, have assessed the conditional safety of devices in MRI.

  19. Anatomic study of the canine stifle using low-field magnetic resonance imaging (MRI) and MRI arthrography.

    PubMed

    Pujol, Esteban; Van Bree, Henri; Cauzinille, Laurent; Poncet, Cyrill; Gielen, Ingrid; Bouvy, Bernard

    2011-06-01

    To investigate the use of low-field magnetic resonance imaging (MRI) and MR arthrography in normal canine stifles and to compare MRI images to gross dissection. Descriptive study. Adult canine pelvic limbs (n=17). Stifle joints from 12 dogs were examined by orthopedic and radiographic examination, synovial fluid analysis, and MRI performed using a 0.2 T system. Limbs 1 to 7 were used to develop the MR and MR arthrography imaging protocol. Limbs 8-17 were studied with the developed MR and MR arthrography protocol and by gross dissection. Three sequences were obtained: T1-weighted spin echo (SE) in sagittal, dorsal, and transverse plane; T2-weighted SE in sagittal plane and T1-gradient echo in sagittal plane. Specific bony and soft tissue structures were easily identifiable with the exception of articular cartilage. The cranial and caudal cruciate ligaments were identified. Medial and lateral menisci were seen as wedge-shaped hypointense areas. MR arthrography permitted further delineation of specific structures. MR images corresponded with gross dissection morphology. With the exception of poor delineation of articular cartilage, a low-field MRI and MR arthrography protocol provides images of adequate quality to assess the normal canine stifle joint. © Copyright 2011 by The American College of Veterinary Surgeons.

  20. Magnetic Resonance Imaging of Liver Metastasis.

    PubMed

    Karaosmanoglu, Ali Devrim; Onur, Mehmet Ruhi; Ozmen, Mustafa Nasuh; Akata, Deniz; Karcaaltincaba, Musturay

    2016-12-01

    Liver magnetic resonance imaging (MRI) is becoming the gold standard in liver metastasis detection and treatment response assessment. The most sensitive magnetic resonance sequences are diffusion-weighted images and hepatobiliary phase images after Gd-EOB-DTPA. Peripheral ring enhancement, diffusion restriction, and hypointensity on hepatobiliary phase images are hallmarks of liver metastases. In patients with normal ultrasonography, computed tomography (CT), and positron emission tomography (PET)-CT findings and high clinical suspicion of metastasis, MRI should be performed for diagnosis of unseen metastasis. In melanoma, colon cancer, and neuroendocrine tumor metastases, MRI allows confident diagnosis of treatment-related changes in liver and enables differential diagnosis from primary liver tumors. Focal nodular hyperplasia-like nodules in patients who received platinum-based chemotherapy, hypersteatosis, and focal fat can mimic metastasis. In cancer patients with fatty liver, MRI should be preferred to CT. Although the first-line imaging for metastases is CT, MRI can be used as a problem-solving method. MRI may be used as the first-line method in patients who would undergo curative surgery or metastatectomy. Current limitation of MRI is low sensitivity for metastasis smaller than 3mm. MRI fingerprinting, glucoCEST MRI, and PET-MRI may allow simpler and more sensitive diagnosis of liver metastasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Magnetic Resonance Imaging of Surgical Implants Made from Weak Magnetic Materials

    NASA Astrophysics Data System (ADS)

    Gogola, D.; Krafčík, A.; Štrbák, O.; Frollo, I.

    2013-08-01

    Materials with high magnetic susceptibility cause local inhomogeneities in the main field of the magnetic resonance (MR) tomograph. These inhomogeneities lead to loss of phase coherence, and thus to a rapid loss of signal in the image. In our research we investigated inhomogeneous field of magnetic implants such as magnetic fibers, designed for inner suture during surgery. The magnetic field inhomogeneities were studied at low magnetic planar phantom, which was made from four thin strips of magnetic tape, arranged grid-wise. We optimized the properties of imaging sequences with the aim to find the best setup for magnetic fiber visualization. These fibers can be potentially exploited in surgery for internal stitches. Stitches can be visualized by the magnetic resonance imaging (MRI) method after surgery. This study shows that the imaging of magnetic implants is possible by using the low field MRI systems, without the use of complicated post processing techniques (e.g., IDEAL).

  2. Intra- and inter-examination repeatability of magnetic resonance spectroscopy, magnitude-based MRI, and complex-based MRI for estimation of hepatic proton density fat fraction in overweight and obese children and adults.

    PubMed

    Tyagi, Avishkar; Yeganeh, Omid; Levin, Yakir; Hooker, Jonathan C; Hamilton, Gavin C; Wolfson, Tanya; Gamst, Anthony; Zand, Amir K; Heba, Elhamy; Loomba, Rohit; Schwimmer, Jeffrey; Middleton, Michael S; Sirlin, Claude B

    2015-10-01

    Determine intra- and inter-examination repeatability of magnitude-based magnetic resonance imaging (MRI-M), complex-based magnetic resonance imaging (MRI-C), and magnetic resonance spectroscopy (MRS) at 3T for estimating hepatic proton density fat fraction (PDFF), and using MRS as a reference, confirm MRI-M and MRI-C accuracy. Twenty-nine overweight and obese pediatric (n = 20) and adult (n = 9) subjects (23 male, 6 female) underwent three same-day 3T MR examinations. In each examination MRI-M, MRI-C, and single-voxel MRS were acquired three times. For each MRI acquisition, hepatic PDFF was estimated at the MRS voxel location. Intra- and inter-examination repeatability were assessed by computing standard deviations (SDs) and intra-class correlation coefficients (ICCs). Aggregate SD was computed for each method as the square root of the average of first repeat variances. MRI-M and MRI-C PDFF estimation accuracy was assessed using linear regression with MRS as a reference. For MRI-M, MRI-C, and MRS acquisitions, respectively, mean intra-examination SDs were 0.25%, 0.42%, and 0.49%; mean intra-examination ICCs were 0.999, 0.997, and 0.995; mean inter-examination SDs were 0.42%, 0.45%, and 0.46%; and inter-examination ICCs were 0.995, 0.992, and 0.990. Aggregate SD for each method was <0.9%. Using MRS as a reference, regression slope, intercept, average bias, and R (2), respectively, for MRI-M were 0.99%, 1.73%, 1.61%, and 0.986, and for MRI-C were 0.96%, 0.43%, 0.40%, and 0.991. MRI-M, MRI-C, and MRS showed high intra- and inter-examination hepatic PDFF estimation repeatability in overweight and obese subjects. Longitudinal hepatic PDFF change >1.8% (twice the maximum aggregate SD) may represent real change rather than measurement imprecision. Further research is needed to assess whether examinations performed on different days or with different MR technologists affect repeatability of MRS voxel placement and MRS-based PDFF measurements.

  3. Intra- and inter-examination repeatability of magnetic resonance spectroscopy, magnitude-based MRI, and complex-based MRI for estimation of hepatic proton density fat fraction in overweight and obese children and adults

    PubMed Central

    Tyagi, Avishkar; Yeganeh, Omid; Levin, Yakir; Hooker, Jonathan C.; Hamilton, Gavin C.; Wolfson, Tanya; Gamst, Anthony; Zand, Amir K.; Heba, Elhamy; Loomba, Rohit; Schwimmer, Jeffrey; Middleton, Michael S.; Sirlin, Claude B.

    2016-01-01

    Purpose Determine intra- and inter-examination repeatability of magnitude-based magnetic resonance imaging (MRI-M), complex-based magnetic resonance imaging (MRI-C), and magnetic resonance spectroscopy (MRS) at 3T for estimating hepatic proton density fat fraction (PDFF), and using MRS as a reference, confirm MRI-M and MRI-C accuracy. Methods Twenty-nine overweight and obese pediatric (n = 20) and adult (n = 9) subjects (23 male, 6 female) underwent three same-day 3T MR examinations. In each examination MRI-M, MRI-C, and single-voxel MRS were acquired three times. For each MRI acquisition, hepatic PDFF was estimated at the MRS voxel location. Intra- and inter-examination repeatability were assessed by computing standard deviations (SDs) and intra-class correlation coefficients (ICCs). Aggregate SD was computed for each method as the square root of the average of first repeat variances. MRI-M and MRI-C PDFF estimation accuracy was assessed using linear regression with MRS as a reference. Results For MRI-M, MRI-C, and MRS acquisitions, respectively, mean intra-examination SDs were 0.25%, 0.42%, and 0.49%; mean intra-examination ICCs were 0.999, 0.997, and 0.995; mean inter-examination SDs were 0.42%, 0.45%, and 0.46%; and inter-examination ICCs were 0.995, 0.992, and 0.990. Aggregate SD for each method was <0.9%. Using MRS as a reference, regression slope, intercept, average bias, and R2, respectively, for MRI-M were 0.99%, 1.73%, 1.61%, and 0.986, and for MRI-C were 0.96%, 0.43%, 0.40%, and 0.991. Conclusion MRI-M, MRI-C, and MRS showed high intra- and inter-examination hepatic PDFF estimation repeatability in overweight and obese subjects. Longitudinal hepatic PDFF change >1.8% (twice the maximum aggregate SD) may represent real change rather than measurement imprecision. Further research is needed to assess whether examinations performed on different days or with different MR technologists affect repeatability of MRS voxel placement and MRS-based PDFF measurements

  4. Impact of functional magnetic resonance imaging (fMRI) scanner noise on affective state and attentional performance.

    PubMed

    Jacob, Shawna N; Shear, Paula K; Norris, Matthew; Smith, Matthew; Osterhage, Jeff; Strakowski, Stephen M; Cerullo, Michael; Fleck, David E; Lee, Jing-Huei; Eliassen, James C

    2015-01-01

    Previous research has shown that performance on cognitive tasks administered in the scanner can be altered by the scanner environment. There are no previous studies that have investigated the impact of scanner noise using a well-validated measure of affective change. The goal of this study was to determine whether performance on an affective attentional task or emotional response to the task would change in the presence of distracting acoustic noise, such as that encountered in a magnetic resonance imaging (MRI) environment. Thirty-four young adults with no self-reported history of neurologic disorder or mental illness completed three blocks of the affective Posner task outside of the scanner. The task was meant to induce frustration through monetary contingencies and rigged feedback. Participants completed a Self-Assessment Manikin at the end of each block to rate their mood, arousal level, and sense of dominance. During the task, half of the participants heard noise (recorded from a 4T MRI system), and half heard no noise. The affective Posner task led to significant reductions in mood and increases in arousal in healthy participants. The presence of scanner noise did not impact task performance; however, individuals in the noise group did report significantly poorer mood throughout the task. The results of the present study suggest that the acoustic qualities of MRI enhance frustration effects on an affective attentional task and that scanner noise may influence mood during similar functional magnetic resonance imaging (fMRI) tasks.

  5. Biomedical Investigations with Laser-Polarized Noble Gas Magnetic Resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    2001-01-01

    We are developing laser-polarized noble gas nuclear magnetic resonance (NMR) as a novel biomedical imaging tool for ground-based and eventually space-based application. This emerging multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI) (e.g., of lung ventilation) as well as studies of tissue perfusion. In addition, laser-polarized noble gases (He-3 and Xe-129) do not require a large magnetic field for sensitive detection, opening the door to practical MRI at very low magnetic fields with an open, lightweight, and low-power device. We are pursuing two specific aims in this research. The first aim is to develop a low-field (< 0.01 T) instrument for noble gas MRI of humans, and the second aim is to develop functional MRI of the lung using laser-polarized Xe-129 and related techniques.

  6. Molecular aspects of magnetic resonance imaging and spectroscopy.

    PubMed

    Boesch, C

    1999-01-01

    Magnetic resonance imaging (MRI) is a well known diagnostic tool in radiology that produces unsurpassed images of the human body, in particular of soft tissue. However, the medical community is often not aware that MRI is an important yet limited segment of magnetic resonance (MR) or nuclear magnetic resonance (NMR) as this method is called in basic science. The tremendous morphological information of MR images sometimes conceal the fact that MR signals in general contain much more information, especially on processes on the molecular level. NMR is successfully used in physics, chemistry, and biology to explore and characterize chemical reactions, molecular conformations, biochemical pathways, solid state material, and many other applications that elucidate invisible characteristics of matter and tissue. In medical applications, knowledge of the molecular background of MRI and in particular MR spectroscopy (MRS) is an inevitable basis to understand molecular phenomenon leading to macroscopic effects visible in diagnostic images or spectra. This review shall provide the necessary background to comprehend molecular aspects of magnetic resonance applications in medicine. An introduction into the physical basics aims at an understanding of some of the molecular mechanisms without extended mathematical treatment. The MR typical terminology is explained such that reading of original MR publications could be facilitated for non-MR experts. Applications in MRI and MRS are intended to illustrate the consequences of molecular effects on images and spectra.

  7. The Nobel Prize in Medicine for Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Fry, Charles G.

    2004-01-01

    Nobel Prize in Medicine awarded in December 2003 to chemist Paul C. Lauterbur and physicist Peter Mansfield for the development of magnetic resonance imaging (MRI), a long overdue recognition of the huge impact MRI has had in medical diagnostics and research is mentioned. MRI was derived, and remains an extension of nuclear magnetic resonance…

  8. Virtual phantom magnetic resonance imaging (ViP MRI) on a clinical MRI platform.

    PubMed

    Saint-Jalmes, Hervé; Bordelois, Alejandro; Gambarota, Giulio

    2018-01-01

    The purpose of this study was to implement Virtual Phantom Magnetic Resonance Imaging (ViP MRI), a technique that allows for generating reference signals in MR images using radiofrequency (RF) signals, on a clinical MR system and to test newly designed virtual phantoms. MRI experiments were conducted on a 1.5 T MRI scanner. Electromagnetic modelling of the ViP system was done using the principle of reciprocity. The ViP RF signals were generated using a compact waveform generator (dimensions of 26 cm × 18 cm × 16 cm), connected to a homebuilt 25 mm-diameter RF coil. The ViP RF signals were transmitted to the MRI scanner bore, simultaneously with the acquisition of the signal from the object of interest. Different types of MRI data acquisition (2D and 3D gradient-echo) as well as different phantoms, including the Shepp-Logan phantom, were tested. Furthermore, a uniquely designed virtual phantom - in the shape of a grid - was generated; this newly proposed phantom allows for the investigations of the vendor distortion correction field. High quality MR images of virtual phantoms were obtained. An excellent agreement was found between the experimental data and the inverse cube law, which was the expected functional dependence obtained from the electromagnetic modelling of the ViP system. Short-term time stability measurements yielded a coefficient of variation in the signal intensity over time equal to 0.23% and 0.13% for virtual and physical phantom, respectively. MR images of the virtual grid-shaped phantom were reconstructed with the vendor distortion correction; this allowed for a direct visualization of the vendor distortion correction field. Furthermore, as expected from the electromagnetic modelling of the ViP system, a very compact coil (diameter ~ cm) and very small currents (intensity ~ mA) were sufficient to generate a signal comparable to that of physical phantoms in MRI experiments. The ViP MRI technique was successfully implemented on a clinical MR

  9. A Multireader Exploratory Evaluation of Individual Pulse Sequence Cancer Detection on Prostate Multiparametric Magnetic Resonance Imaging (MRI).

    PubMed

    Gaur, Sonia; Harmon, Stephanie; Gupta, Rajan T; Margolis, Daniel J; Lay, Nathan; Mehralivand, Sherif; Merino, Maria J; Wood, Bradford J; Pinto, Peter A; Shih, Joanna H; Choyke, Peter L; Turkbey, Baris

    2018-04-25

    To determine independent contribution of each prostate multiparametric magnetic resonance imaging (mpMRI) sequence to cancer detection when read in isolation. Prostate mpMRI at 3-Tesla with endorectal coil from 45 patients (n = 30 prostatectomy cases, n = 15 controls with negative magnetic resonance imaging [MRI] or biopsy) were retrospectively interpreted. Sequences (T2-weighted [T2W] MRI, diffusion-weighted imaging [DWI], and dynamic contrast-enhanced [DCE] MRI; N = 135) were separately distributed to three radiologists at different institutions. Readers evaluated each sequence blinded to other mpMRI sequences. Findings were correlated to whole-mount pathology. Cancer detection sensitivity, positive predictive value for whole prostate (WP), transition zone, and peripheral zone were evaluated per sequence by reader, with reader concordance measured by index of specific agreement. Cancer detection rates (CDRs) were calculated for combinations of independently read sequences. 44 patients were evaluable (cases median prostate-specific antigen 6.83 [ range 1.95-51.13] ng/mL, age 62 [45-71] years; controls prostate-specific antigen 6.85 [2.4-10.87] ng/mL, age 65.5 [47-71] years). Readers had highest sensitivity on DWI (59%) vs T2W MRI (48%) and DCE (23%) in WP. DWI-only positivity (DWI+/T2W-/DCE-) achieved highest CDR in WP (38%), compared to T2W-only (CDR 24%) and DCE-only (CDR 8%). DWI+/T2W+/DCE- achieved CDR 80%, an added benefit of 56.4% from T2W-only and of 42% from DWI-only (P < .0001). All three sequences interpreted independently positive gave highest CDR of 90%. Reader agreement was moderate (index of specific agreement: T2W = 54%, DWI = 58%, DCE = 33%). When prostate mpMRI sequences are interpreted independently by multiple observers, DWI achieves highest sensitivity and CDR in transition zone and peripheral zone. T2W and DCE MRI both add value to detection; mpMRI achieves highest detection sensitivity when all three mpMRI

  10. Quantitative magnetic resonance imaging phantoms: A review and the need for a system phantom.

    PubMed

    Keenan, Kathryn E; Ainslie, Maureen; Barker, Alex J; Boss, Michael A; Cecil, Kim M; Charles, Cecil; Chenevert, Thomas L; Clarke, Larry; Evelhoch, Jeffrey L; Finn, Paul; Gembris, Daniel; Gunter, Jeffrey L; Hill, Derek L G; Jack, Clifford R; Jackson, Edward F; Liu, Guoying; Russek, Stephen E; Sharma, Samir D; Steckner, Michael; Stupic, Karl F; Trzasko, Joshua D; Yuan, Chun; Zheng, Jie

    2018-01-01

    The MRI community is using quantitative mapping techniques to complement qualitative imaging. For quantitative imaging to reach its full potential, it is necessary to analyze measurements across systems and longitudinally. Clinical use of quantitative imaging can be facilitated through adoption and use of a standard system phantom, a calibration/standard reference object, to assess the performance of an MRI machine. The International Society of Magnetic Resonance in Medicine AdHoc Committee on Standards for Quantitative Magnetic Resonance was established in February 2007 to facilitate the expansion of MRI as a mainstream modality for multi-institutional measurements, including, among other things, multicenter trials. The goal of the Standards for Quantitative Magnetic Resonance committee was to provide a framework to ensure that quantitative measures derived from MR data are comparable over time, between subjects, between sites, and between vendors. This paper, written by members of the Standards for Quantitative Magnetic Resonance committee, reviews standardization attempts and then details the need, requirements, and implementation plan for a standard system phantom for quantitative MRI. In addition, application-specific phantoms and implementation of quantitative MRI are reviewed. Magn Reson Med 79:48-61, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  11. Magnetic resonance imaging of chemistry.

    PubMed

    Britton, Melanie M

    2010-11-01

    Magnetic resonance imaging (MRI) has long been recognized as one of the most important tools in medical diagnosis and research. However, MRI is also well placed to image chemical reactions and processes, determine the concentration of chemical species, and look at how chemistry couples with environmental factors, such as flow and heterogeneous media. This tutorial review will explain how magnetic resonance imaging works, reviewing its application in chemistry and its ability to directly visualise chemical processes. It will give information on what resolution and contrast are possible, and what chemical and physical parameters can be measured. It will provide examples of the use of MRI to study chemical systems, its application in chemical engineering and the identification of contrast agents for non-clinical applications. A number of studies are presented including investigation of chemical conversion and selectivity in fixed-bed reactors, temperature probes for catalyst pellets, ion mobility during tablet dissolution, solvent dynamics and ion transport in Nafion polymers and the formation of chemical waves and patterns.

  12. Magnetic resonance electrical impedance tomography (MREIT): simulation study of J-substitution algorithm.

    PubMed

    Kwon, Ohin; Woo, Eung Je; Yoon, Jeong-Rock; Seo, Jin Keun

    2002-02-01

    We developed a new image reconstruction algorithm for magnetic resonance electrical impedance tomography (MREIT). MREIT is a new EIT imaging technique integrated into magnetic resonance imaging (MRI) system. Based on the assumption that internal current density distribution is obtained using magnetic resonance imaging (MRI) technique, the new image reconstruction algorithm called J-substitution algorithm produces cross-sectional static images of resistivity (or conductivity) distributions. Computer simulations show that the spatial resolution of resistivity image is comparable to that of MRI. MREIT provides accurate high-resolution cross-sectional resistivity images making resistivity values of various human tissues available for many biomedical applications.

  13. Axial traction magnetic resonance imaging (MRI) of the glenohumeral joint in healthy volunteers: initial experience.

    PubMed

    Garwood, Elisabeth R; Souza, Richard B; Zhang, Amy; Zhang, Alan L; Ma, C Benjamin; Link, Thomas M; Motamedi, Daria

    Evaluate technical feasibility and potential applications of glenohumeral (GH) joint axial traction magnetic resonance imaging (MRI) in healthy volunteers. Eleven shoulders were imaged in neutral and with 4kg axial traction at 3T. Quantitative measurements were assessed. Axial traction was well tolerated. There was statistically significant widening of the superior GH joint space (p=0.002) and acromial angle (p=0.017) with traction. Inter-rater agreement was high. GH joint axial traction MRI is technically feasible and well tolerated in volunteers. Traction of the capsule, widening of the superior GH joint space and acromial angle were observed. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. RAPID COMMUNICATION: Magnetic resonance imaging inside metallic vessels

    NASA Astrophysics Data System (ADS)

    Han, Hui; Balcom, Bruce J.

    2010-10-01

    We introduce magnetic resonance imaging (MRI) measurements inside metallic vessels. Until now, MRI has been unusable inside metallic vessels because of eddy currents in the walls. We have solved the problem and generated high quality images by employing a magnetic field gradient monitoring method. The ability to image within metal enclosures and structures means many new samples and systems are now amenable to MRI. Most importantly this study will form the basis of new MRI-compatible metallic pressure vessels, which will permit MRI of macroscopic systems at high pressure.

  15. Magnetic resonance imaging based clinical research in Alzheimer's disease.

    PubMed

    Fayed, Nicolás; Modrego, Pedro J; Salinas, Gulillermo Rojas; Gazulla, José

    2012-01-01

    Alzheimer's disease (AD) is the most common cause of dementia in elderly people in western countries. However important goals are unmet in the issue of early diagnosis and the development of new drugs for treatment. Magnetic resonance imaging (MRI) and volumetry of the medial temporal lobe structures are useful tools for diagnosis. Positron emission tomography is one of the most sensitive tests for making an early diagnosis of AD but the cost and limited availability are important caveats for its utilization. The importance of magnetic resonance techniques has increased gradually to the extent that most clinical works based on AD use these techniques as the main aid to diagnosis. However, the accuracy of structural MRI as biomarker of early AD generally reaches an accuracy of 80%, so additional biomarkers should be used to improve predictions. Other structural MRI (diffusion weighted, diffusion-tensor MRI) and functional MRI have also added interesting contribution to the understanding of the pathophysiology of AD. Magnetic resonance spectroscopy has proven useful to monitor progression and response to treatment in AD, as well as a biomarker of early AD in mild cognitive impairment.

  16. Percutaneous magnetic resonance imaging-guided bone tumor management and magnetic resonance imaging-guided bone therapy.

    PubMed

    Sequeiros, Roberto Blanco; Fritz, Jan; Ojala, Risto; Carrino, John A

    2011-08-01

    Magnetic resonance imaging (MRI) is promising tool for image-guided therapy. In musculoskeletal setting, image-guided therapy is used to direct diagnostic and therapeutic procedures and to steer patient management. Studies have demonstrated that MRI-guided interventions involving bone, soft tissue, joints, and intervertebral disks are safe and in selected indications can be the preferred action to manage clinical situation. Often, these procedures are technically similar to those performed in other modalities (computed tomography, fluoroscopy) for bone and soft tissue lesions. However, the procedural perception to the operator can be very different to other modalities because of the vastly increased data.Magnetic resonance imaging guidance is particularly advantageous should the lesion not be visible by other modalities, for selective lesion targeting, intra-articular locations, cyst aspiration, and locations adjacent to surgical hardware. Palliative tumor-related pain management such as ablation therapy forms a subset of procedures that are frequently performed under MRI. Another suitable entity for MRI guidance are the therapeutic percutaneous osseous or joint-related benign or reactive conditions such as osteoid osteoma, epiphyseal bone bridging, osteochondritis dissecans, bone cysts, localized bone necrosis, and posttraumatic lesions. In this article, we will describe in detail the technical aspects of performing MRI-guided therapeutic musculoskeletal procedures as well as the clinical indications.

  17. Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  18. Magnetic resonance imaging with an optical atomic magnetometer

    PubMed Central

    Xu, Shoujun; Yashchuk, Valeriy V.; Donaldson, Marcus H.; Rochester, Simon M.; Budker, Dmitry; Pines, Alexander

    2006-01-01

    We report an approach for the detection of magnetic resonance imaging without superconducting magnets and cryogenics: optical atomic magnetometry. This technique possesses a high sensitivity independent of the strength of the static magnetic field, extending the applicability of magnetic resonance imaging to low magnetic fields and eliminating imaging artifacts associated with high fields. By coupling with a remote-detection scheme, thereby improving the filling factor of the sample, we obtained time-resolved flow images of water with a temporal resolution of 0.1 s and spatial resolutions of 1.6 mm perpendicular to the flow and 4.5 mm along the flow. Potentially inexpensive, compact, and mobile, our technique provides a viable alternative for MRI detection with substantially enhanced sensitivity and time resolution for various situations where traditional MRI is not optimal. PMID:16885210

  19. Magnetic resonance imaging. Application to family practice.

    PubMed

    Goh, R H; Somers, S; Jurriaans, E; Yu, J

    1999-09-01

    To review indications, contraindications, and risks of using magnetic resonance imaging (MRI) in order to help primary care physicians refer patients appropriately for MRI, screen for contraindications to using MRI, and educate patients about MRI. Recommendations are based on classic textbooks, the policies of our MRI group, and a literature search using MEDLINE with the MeSH headings magnetic resonance imaging, brain, musculoskeletal, and spine. The search was limited to human, English-language, and review articles. Evidence in favour of using MRI for imaging the head, spine, and joints is well established. For cardiac, abdominal, and pelvic conditions, MRI has been shown useful for certain indications, usually to complement other modalities. For demonstrating soft tissue conditions, MRI is better than computed tomography (CT), but CT shows bone and acute bleeding better. Therefore, patients with trauma or suspected intracranial bleeding should have CT. Tumours, congenital abnormalities, vascular structures, and the cervical or thoracic spine show better on MRI. Either modality can be used for lower back pain. Cardiac, abdominal, and pelvic abnormalities should be imaged with ultrasound or CT before MRI. Contraindications for MRI are mainly metallic implants or shrapnel, severe claustrophobia, or obesity. With the increasing availability of MRI scanners in Canada, better understanding of the indications, contraindications, and risks will be helpful for family physicians and their patients.

  20. Magnetic Resonance Imaging (MRI) for the Assessment of Myocardial Viability

    PubMed Central

    2010-01-01

    Imaging for the Assessment of Myocardial Viability: An Evidence-Based Analysis Objective The objective of this analysis is to assess the effectiveness and cost-effectiveness of cardiovascular magnetic resonance imaging (cardiac MRI) for the assessment of myocardial viability. To evaluate the effectiveness of cardiac MRI viability imaging, the following outcomes were examined: the diagnostic accuracy in predicting functional recovery and the impact of cardiac MRI viability imaging on prognosis (mortality and other patient outcomes). Clinical Need: Condition and Target Population Left Ventricular Systolic Dysfunction and Heart Failure Heart failure is a complex syndrome characterized by the heart’s inability to maintain adequate blood circulation through the body leading to multiorgan abnormalities and, eventually, death. Patients with heart failure experience poor functional capacity, decreased quality of life, and increased risk of morbidity and mortality. In 2005, more than 71,000 Canadians died from cardiovascular disease, of which, 54% were due to ischemic heart disease. Left ventricular (LV) systolic dysfunction due to coronary artery disease (CAD) 1 is the primary cause of heart failure accounting for more than 70% of cases. The prevalence of heart failure was estimated at one percent of the Canadian population in 1989. Since then, the increase in the older population has undoubtedly resulted in a substantial increase in cases. Heart failure is associated with a poor prognosis: one-year mortality rates were 32.9% and 31.1% for men and women, respectively in Ontario between 1996 and 1997. Treatment Options In general, there are three options for the treatment of heart failure: medical treatment, heart transplantation, and revascularization for those with CAD as the underlying cause. Concerning medical treatment, despite recent advances, mortality remains high among treated patients, while, heart transplantation is affected by the limited availability of donor hearts

  1. Hemispheric asymmetries in dorsal language pathway white-matter tracts: A magnetic resonance imaging tractography and functional magnetic resonance imaging study.

    PubMed

    Silva, Guilherme; Citterio, Alberto

    2017-10-01

    Introduction Previous studies have shown that the arcuate fasciculus has a leftward asymmetry in right-handers that could be correlated with the language lateralisation defined by functional magnetic resonance imaging. Nonetheless, information about the asymmetry of the other fibres that constitute the dorsal language pathway is scarce. Objectives This study investigated the asymmetry of the white-matter tracts involved in the dorsal language pathway through the diffusion tensor imaging (DTI) technique, in relation to language hemispheric dominance determined by task-dependent functional magnetic resonance imaging (fMRI). Methods We selected 11 patients (10 right-handed) who had been studied with task-dependent fMRI for language areas and DTI and who had no language impairment or structural abnormalities that could compromise magnetic resonance tractography of the fibres involved in the dorsal language pathway. Laterality indices (LI) for fMRI and for the volumes of each tract were calculated. Results In fMRI, all the right-handers had left hemispheric lateralisation, and the ambidextrous subject presented right hemispheric dominance. The arcuate fasciculus LI was strongly correlated with fMRI LI ( r = 0.739, p = 0.009), presenting the same lateralisation of fMRI in seven subjects (including the right hemispheric dominant). It was not asymmetric in three cases and had opposite lateralisation in one case. The other tracts presented predominance for rightward lateralisation, especially superior longitudinal fasciculus (SLF) II/III (nine subjects), but their LI did not correlate (directly or inversely) with fMRI LI. Conclusion The fibres that constitute the dorsal language pathway have an asymmetric distribution in the cerebral hemispheres. Only the asymmetry of the arcuate fasciculus is correlated with fMRI language lateralisation.

  2. A hyperpolarized equilibrium for magnetic resonance

    PubMed Central

    Hövener, Jan-Bernd; Schwaderlapp, Niels; Lickert, Thomas; Duckett, Simon B.; Mewis, Ryan E.; Highton, Louise A. R.; Kenny, Stephen M.; Green, Gary G. R.; Leibfritz, Dieter; Korvink, Jan G.; Hennig, Jürgen; von Elverfeldt, Dominik

    2013-01-01

    Nuclear magnetic resonance spectroscopy and imaging (MRI) play an indispensable role in science and healthcare but use only a tiny fraction of their potential. No more than ≈10 p.p.m. of all 1H nuclei are effectively detected in a 3-Tesla clinical MRI system. Thus, a vast array of new applications lays dormant, awaiting improved sensitivity. Here we demonstrate the continuous polarization of small molecules in solution to a level that cannot be achieved in a viable magnet. The magnetization does not decay and is effectively reinitialized within seconds after being measured. This effect depends on the long-lived, entangled spin-order of parahydrogen and an exchange reaction in a low magnetic field of 10−3 Tesla. We demonstrate the potential of this method by fast MRI and envision the catalysis of new applications such as cancer screening or indeed low-field MRI for routine use and remote application. PMID:24336292

  3. A hyperpolarized equilibrium for magnetic resonance.

    PubMed

    Hövener, Jan-Bernd; Schwaderlapp, Niels; Lickert, Thomas; Duckett, Simon B; Mewis, Ryan E; Highton, Louise A R; Kenny, Stephen M; Green, Gary G R; Leibfritz, Dieter; Korvink, Jan G; Hennig, Jürgen; von Elverfeldt, Dominik

    2013-01-01

    Nuclear magnetic resonance spectroscopy and imaging (MRI) play an indispensable role in science and healthcare but use only a tiny fraction of their potential. No more than ≈10 p.p.m. of all ¹H nuclei are effectively detected in a 3-Tesla clinical MRI system. Thus, a vast array of new applications lays dormant, awaiting improved sensitivity. Here we demonstrate the continuous polarization of small molecules in solution to a level that cannot be achieved in a viable magnet. The magnetization does not decay and is effectively reinitialized within seconds after being measured. This effect depends on the long-lived, entangled spin-order of parahydrogen and an exchange reaction in a low magnetic field of 10⁻³ Tesla. We demonstrate the potential of this method by fast MRI and envision the catalysis of new applications such as cancer screening or indeed low-field MRI for routine use and remote application.

  4. Magnetic resonance imaging (MRI) evaluation of developmental delay in pediatric patients.

    PubMed

    Ali, Althaf S; Syed, Naziya P; Murthy, G S N; Nori, Madhavi; Abkari, Anand; Pooja, B K; Venkateswarlu, J

    2015-01-01

    Developmental delay is defined as significant delay in one or more developmental domains. Magnetic Resonance Imaging (MRI) is the best modality to investigate such patients. Evaluation of a child with developmental delay is important not only because it allows early diagnosis and treatment but also helpful for parental counseling regarding the outcome of their child and to identify any possible risk of recurrence in the siblings. Thus this study was undertaken to evaluate the developmental delay in Indian children which will help the clinicians in providing an estimation of the child's ultimate developmental potential and organize specific treatment requirement and also relieve parental apprehension. To study the prevalence of normal and abnormal MRI in pediatric patients presenting with developmental delay and further categorize the abnormal MRI based on its morphological features. It is a prospective, observational & descriptive study of MRI Brain in 81 paediatric patients (46 Males and 35 Females), aged between three months to 12 years; presenting with developmental delay in Deccan College of Medical Sciences, Hyderabad; over a period of three years (Sept 2011 to Sept 2014). MRI brain was done on 1.5T Siemens Magnetom Essenza & 0.35T Magnetom C with appropriate sequences and planes after making the child sleep/sedated/ anesthetized. Various anatomical structures like Ventricles, Corpus callosum, etc were systematically assessed. The MRI findings were divided into various aetiological subgroups. Normal MRI findings were seen in 32% cases and 68% had abnormal findings of which the proportion of Traumatic/ Neurovascular Diseases, Congenital & Developmental, Metabolic and Degenerative, neoplastic and non specific were 31%, 17%, 10%, 2.5% and 7.5% respectively. The ventricles and white matter mainly the corpus callosum were the most commonly affected anatomical structures. The diagnostic yield was found to be 68% and higher yield was seen in patients presenting with

  5. [Utilization of polymeric micelle magnetic resonance imaging (MRI) contrast agent for theranostic system].

    PubMed

    Shiraishi, Kouichi

    2013-01-01

    We applied a polymeric micelle carrier system for the targeting of a magnetic resonance imaging (MRI) contrast agent. Prepared polymeric micelle MRI contrast agent exhibited a long circulation characteristic in blood, and considerable amount of the contrast agent was found to accumulate in colon 26 solid tumor by the EPR effect. The signal intensities of tumor area showed 2-folds increase in T1-weighted images at 24 h after i.v. injection. To observe enhancement of the EPR effect by Cderiv pretreatment on tumor targeting, we used the contrast agent for the evaluation by means of MRI. Cderiv pretreatment significantly enhanced tumor accumulation of the contrast agent. Interestingly, very high signal intensity in tumor region was found at 24 h after the contrast agent injection in Cderiv pretreated mice. The contrast agent visualized a microenvironmental change in tumor. These results indicate that the contrast agent exhibits potential use for tumor diagnostic agent. To combine with a polymeric micelle carrier system for therapeutic agent, the usage of the combination makes a new concept of "theranostic" for a better cancer treatment.

  6. A historical overview of magnetic resonance imaging, focusing on technological innovations.

    PubMed

    Ai, Tao; Morelli, John N; Hu, Xuemei; Hao, Dapeng; Goerner, Frank L; Ager, Bryan; Runge, Val M

    2012-12-01

    Magnetic resonance imaging (MRI) has now been used clinically for more than 30 years. Today, MRI serves as the primary diagnostic modality for many clinical problems. In this article, historical developments in the field of MRI will be discussed with a focus on technological innovations. Topics include the initial discoveries in nuclear magnetic resonance that allowed for the advent of MRI as well as the development of whole-body, high field strength, and open MRI systems. Dedicated imaging coils, basic pulse sequences, contrast-enhanced, and functional imaging techniques will also be discussed in a historical context. This article describes important technological innovations in the field of MRI, together with their clinical applicability today, providing critical insights into future developments.

  7. Magnetic resonance imaging (MRI) of oak trees infected with Phytophthora ramorum to determine potential avenues of infection in bark

    Treesearch

    Edwin R. Florance

    2006-01-01

    Non-destructive magnetic resonance imaging (MRI) revealed pathological anatomical features of coast live oak trees (Quercus agrifolia) that were naturally infected with Phytophthora ramorum. Fresh excised whole slices showing typical macroscopic cankers and bleeding were examined. Infected areas (i.e. cankers) were compared to...

  8. Development and validation of a questionnaire evaluating patient anxiety during Magnetic Resonance Imaging: the Magnetic Resonance Imaging-Anxiety Questionnaire (MRI-AQ).

    PubMed

    Ahlander, Britt-Marie; Årestedt, Kristofer; Engvall, Jan; Maret, Eva; Ericsson, Elisabeth

    2016-06-01

    To develop and validate a new instrument measuring patient anxiety during Magnetic Resonance Imaging examinations, Magnetic Resonance Imaging- Anxiety Questionnaire. Questionnaires measuring patients' anxiety during Magnetic Resonance Imaging examinations have been the same as used in a wide range of conditions. To learn about patients' experience during examination and to evaluate interventions, a specific questionnaire measuring patient anxiety during Magnetic Resonance Imaging is needed. Psychometric cross-sectional study with test-retest design. A new questionnaire, Magnetic Resonance Imaging-Anxiety Questionnaire, was designed from patient expressions of anxiety in Magnetic Resonance Imaging-scanners. The sample was recruited between October 2012-October 2014. Factor structure was evaluated with exploratory factor analysis and internal consistency with Cronbach's alpha. Criterion-related validity, known-group validity and test-retest was calculated. Patients referred for Magnetic Resonance Imaging of either the spine or the heart, were invited to participate. The development and validation of Magnetic Resonance Imaging-Anxiety Questionnaire resulted in 15 items consisting of two factors. Cronbach's alpha was found to be high. Magnetic Resonance Imaging-Anxiety Questionnaire correlated higher with instruments measuring anxiety than with depression scales. Known-group validity demonstrated a higher level of anxiety for patients undergoing Magnetic Resonance Imaging scan of the heart than for those examining the spine. Test-retest reliability demonstrated acceptable level for the scale. Magnetic Resonance Imaging-Anxiety Questionnaire bridges a gap among existing questionnaires, making it a simple and useful tool for measuring patient anxiety during Magnetic Resonance Imaging examinations. © 2016 The Authors. Journal of Advanced Nursing Published by John Wiley & Sons Ltd.

  9. Normal feline brain: clinical anatomy using magnetic resonance imaging.

    PubMed

    Mogicato, G; Conchou, F; Layssol-Lamour, C; Raharison, F; Sautet, J

    2012-04-01

    The purpose of this study was to provide a clinical anatomy atlas of the feline brain using magnetic resonance imaging (MRI). Brains of twelve normal cats were imaged using a 1.5 T magnetic resonance unit and an inversion/recovery sequence (T1). Fourteen relevant MRI sections were chosen in transverse, dorsal, median and sagittal planes. Anatomic structures were identified and labelled using anatomical texts and Nomina Anatomica Veterinaria, sectioned specimen heads, and previously published articles. The MRI sections were stained according to the major embryological and anatomical subdivisions of the brain. The relevant anatomical structures seen on MRI will assist clinicians to better understand MR images and to relate this neuro-anatomy to clinical signs. © 2011 Blackwell Verlag GmbH.

  10. Contactless Abdominal Fat Reduction With Selective RF™ Evaluated by Magnetic Resonance Imaging (MRI): Case Study.

    PubMed

    Downie, Jeanine; Kaspar, Miroslav

    2016-04-01

    Noninvasive body shaping methods seem to be an ascending part of the aesthetics market. As a result, the pressure to develop reliable methods for the collection and presentation of their results has also increased. The most used techniques currently include ultrasound measurements of fat thickness in the treated area, caliper measurements, bioimpedance-based scale measurements or circumferential tape measurements. Although these are the most used techniques, almost all of them have some limitations in reproducibility and/or accuracy. This study shows Magnetic Resonance Imaging (MRI) as the new method for the presentation of results in the body shaping industry. Six subjects were treated by a contactless selective radiofrequency device (BTL Vanquish ME, BTL Industries Inc., Boston, MA). The MRI fat thickness was measured at the baseline and at 4-weeks following the treatment. In addition to MRI images and measurements, digital photographs and anthropometric evaluations such as weight, abdominal circumference, and caliper fat thickness measurements were recorded. Abdominal fat thickness measurements from the MRI were performed from the same slices determined by the same tissue artefacts. The MRI fat thickness difference between the baseline measurement and follow up visit showed an average reduction of 5.36 mm as calculated from the data of 5 subjects. One subject dropped out of study due to non-study related issues. The results were statistically significant based on the Student's T-test evaluation. Magnetic resonance imaging abdominal fat thickness measurements seems to be the best method for the evaluation of fat thickness reduction after non-invasive body shaping treatments. In this study, this method shows average fat thickness reduction of 5.36 mm while the weight of the subjects didn't change significantly. A large spot size measuring 1317 cm(2) (204 square inches) covers the abdomen flank to flank. The average thickness of 5.36 mm of the fat layer reduced

  11. Reliability of Early Magnetic Resonance Imaging (MRI) and Necessity of Repeating MRI in Noncooled and Cooled Infants With Neonatal Encephalopathy.

    PubMed

    Chakkarapani, Elavazhagan; Poskitt, Kenneth J; Miller, Steven P; Zwicker, Jill G; Xu, Qi; Wong, Darren S T; Roland, Elke H; Hill, Alan; Chau, Vann

    2016-04-01

    In cooled newborns with encephalopathy, although late magnetic resonance imaging (MRI) scan (10-14 days of age) is reliable in predicting long-term outcome, it is unknown whether early scan (3-6 days of life) is. We compared the predominant pattern and extent of lesion between early and late MRI in 89 term neonates with neonatal encephalopathy. Forty-three neonates (48%) were cooled. The predominant pattern of lesions and the extent of lesion in the watershed region agreed near perfectly in noncooled (kappa = 0.94; k = 0.88) and cooled (k = 0.89; k = 0.87) infants respectively. There was perfect agreement in the extent of lesion in the basal nuclei in noncooled infants (k = 0.83) and excellent agreement in cooled infants (k = 0.67). Changes in extent of lesions on late MRI occurred in 19 of 89 infants, with higher risk in infants with hypoglycemia and moderate-severe lesions in basal nuclei. In most term neonates with neonatal encephalopathy, early MRI (relative to late scan) robustly predicts the predominant pattern and extent of injury. © The Author(s) 2015.

  12. Magnetic resonance imaging of granular materials

    NASA Astrophysics Data System (ADS)

    Stannarius, Ralf

    2017-05-01

    Magnetic Resonance Imaging (MRI) has become one of the most important tools to screen humans in medicine; virtually every modern hospital is equipped with a Nuclear Magnetic Resonance (NMR) tomograph. The potential of NMR in 3D imaging tasks is by far greater, but there is only "a handful" of MRI studies of particulate matter. The method is expensive, time-consuming, and requires a deep understanding of pulse sequences, signal acquisition, and processing. We give a short introduction into the physical principles of this imaging technique, describe its advantages and limitations for the screening of granular matter, and present a number of examples of different application purposes, from the exploration of granular packing, via the detection of flow and particle diffusion, to real dynamic measurements. Probably, X-ray computed tomography is preferable in most applications, but fast imaging of single slices with modern MRI techniques is unmatched, and the additional opportunity to retrieve spatially resolved flow and diffusion profiles without particle tracking is a unique feature.

  13. Fetal magnetic resonance imaging (MRI): a tool for a better understanding of normal and abnormal brain development.

    PubMed

    Saleem, Sahar N

    2013-07-01

    Knowledge of the anatomy of the developing fetal brain is essential to detect abnormalities and understand their pathogenesis. Capability of magnetic resonance imaging (MRI) to visualize the brain in utero and to differentiate between its various tissues makes fetal MRI a potential diagnostic and research tool for the developing brain. This article provides an approach to understand the normal and abnormal brain development through schematic interpretation of fetal brain MR images. MRI is a potential screening tool in the second trimester of pregnancies in fetuses at risk for brain anomalies and helps in describing new brain syndromes with in utero presentation. Accurate interpretation of fetal MRI can provide valuable information that helps genetic counseling, facilitates management decisions, and guides therapy. Fetal MRI can help in better understanding the pathogenesis of fetal brain malformations and can support research that could lead to disease-specific interventions.

  14. A magnetic compatible supernumerary robotic finger for functional magnetic resonance imaging (fMRI) acquisitions: Device description and preliminary results.

    PubMed

    Hussain, Irfan; Santarnecchi, Emiliano; Leo, Andrea; Ricciardi, Emiliano; Rossi, Simone; Prattichizzo, Domenico

    2017-07-01

    The Supernumerary robotic limbs are a recently introduced class of wearable robots that, differently from traditional prostheses and exoskeletons, aim at adding extra effectors (i.e., arms, legs, or fingers) to the human user, rather than substituting or enhancing the natural ones. However, it is still undefined whether the use of supernumerary robotic limbs could specifically lead to neural modifications in brain dynamics. The illusion of owning the part of body has been already proven in many experimental observations, such as those relying on multisensory integration (e.g., rubber hand illusion), prosthesis and even on virtual reality. In this paper we present a description of a novel magnetic compatible supernumerary robotic finger together with preliminary observations from two functional magnetic resonance imaging (fMRI) experiments, in which brain activity was measured before and after a period of training with the robotic device, and during the use of the novel MRI-compatible version of the supernumerary robotic finger. Results showed that the usage of the MR-compatible robotic finger is safe and does not produce artifacts on MRI images. Moreover, the training with the supernumerary robotic finger recruits a network of motor-related cortical regions (i.e. primary and supplementary motor areas), hence the same motor network of a fully physiological voluntary motor gestures.

  15. Proton Magnetic Resonance Spectroscopy and MRI Reveal No Evidence for Brain Mitochondrial Dysfunction in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Corrigan, Neva M.; Shaw, Dennis. W. W.; Richards, Todd L.; Estes, Annette M.; Friedman, Seth D.; Petropoulos, Helen; Artru, Alan A.; Dager, Stephen R.

    2012-01-01

    Brain mitochondrial dysfunction has been proposed as an etiologic factor in autism spectrum disorder (ASD). Proton magnetic resonance spectroscopic imaging ([superscript 1]HMRS) and MRI were used to assess for evidence of brain mitochondrial dysfunction in longitudinal samples of children with ASD or developmental delay (DD), and cross-sectionally…

  16. 76 FR 58281 - Magnetic Resonance Imaging Safety; Public Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-20

    ... announcing a public workshop entitled: ``Magnetic Resonance Imaging (MRI) Safety Public Workshop.'' The... (MRI) and approaches to mitigate risks. The overall goal is to discuss strategies to minimize patient and staff risk in the MRI environment. DATES: The public workshop will be held on October 25, 2011...

  17. Magnetic resonance imaging of spinal infection.

    PubMed

    Tins, Bernhard J; Cassar-Pullicino, Victor N; Lalam, Radhesh K

    2007-06-01

    This article reviews the pathophysiology of spinal infection and its relevance for imaging. Magnetic resonance imaging (MRI) is the modality with by far the best sensitivity and specificity for spinal infection. The imaging appearances of spinal infection in MRI are outlined, and imaging techniques are discussed. The problems of clinical diagnosis are outlined. There is some emphasis on the MRI differentiation of pyogenic and nonpyogenic infection and on the differential diagnosis of spinal infection centered on the imaging presentation.

  18. Implications of neurovascular uncoupling in functional magnetic resonance imaging (fMRI) of brain tumors.

    PubMed

    Pak, Rebecca W; Hadjiabadi, Darian H; Senarathna, Janaka; Agarwal, Shruti; Thakor, Nitish V; Pillai, Jay J; Pathak, Arvind P

    2017-11-01

    Functional magnetic resonance imaging (fMRI) serves as a critical tool for presurgical mapping of eloquent cortex and changes in neurological function in patients diagnosed with brain tumors. However, the blood-oxygen-level-dependent (BOLD) contrast mechanism underlying fMRI assumes that neurovascular coupling remains intact during brain tumor progression, and that measured changes in cerebral blood flow (CBF) are correlated with neuronal function. Recent preclinical and clinical studies have demonstrated that even low-grade brain tumors can exhibit neurovascular uncoupling (NVU), which can confound interpretation of fMRI data. Therefore, to avoid neurosurgical complications, it is crucial to understand the biophysical basis of NVU and its impact on fMRI. Here we review the physiology of the neurovascular unit, how it is remodeled, and functionally altered by brain cancer cells. We first discuss the latest findings about the components of the neurovascular unit. Next, we synthesize results from preclinical and clinical studies to illustrate how brain tumor induced NVU affects fMRI data interpretation. We examine advances in functional imaging methods that permit the clinical evaluation of brain tumors with NVU. Finally, we discuss how the suppression of anomalous tumor blood vessel formation with antiangiogenic therapies can "normalize" the brain tumor vasculature, and potentially restore neurovascular coupling.

  19. Wavelet-based de-noising algorithm for images acquired with parallel magnetic resonance imaging (MRI).

    PubMed

    Delakis, Ioannis; Hammad, Omer; Kitney, Richard I

    2007-07-07

    Wavelet-based de-noising has been shown to improve image signal-to-noise ratio in magnetic resonance imaging (MRI) while maintaining spatial resolution. Wavelet-based de-noising techniques typically implemented in MRI require that noise displays uniform spatial distribution. However, images acquired with parallel MRI have spatially varying noise levels. In this work, a new algorithm for filtering images with parallel MRI is presented. The proposed algorithm extracts the edges from the original image and then generates a noise map from the wavelet coefficients at finer scales. The noise map is zeroed at locations where edges have been detected and directional analysis is also used to calculate noise in regions of low-contrast edges that may not have been detected. The new methodology was applied on phantom and brain images and compared with other applicable de-noising techniques. The performance of the proposed algorithm was shown to be comparable with other techniques in central areas of the images, where noise levels are high. In addition, finer details and edges were maintained in peripheral areas, where noise levels are low. The proposed methodology is fully automated and can be applied on final reconstructed images without requiring sensitivity profiles or noise matrices of the receiver coils, therefore making it suitable for implementation in a clinical MRI setting.

  20. Magnetic resonance imaging in laboratory petrophysical core analysis

    NASA Astrophysics Data System (ADS)

    Mitchell, J.; Chandrasekera, T. C.; Holland, D. J.; Gladden, L. F.; Fordham, E. J.

    2013-05-01

    Magnetic resonance imaging (MRI) is a well-known technique in medical diagnosis and materials science. In the more specialized arena of laboratory-scale petrophysical rock core analysis, the role of MRI has undergone a substantial change in focus over the last three decades. Initially, alongside the continual drive to exploit higher magnetic field strengths in MRI applications for medicine and chemistry, the same trend was followed in core analysis. However, the spatial resolution achievable in heterogeneous porous media is inherently limited due to the magnetic susceptibility contrast between solid and fluid. As a result, imaging resolution at the length-scale of typical pore diameters is not practical and so MRI of core-plugs has often been viewed as an inappropriate use of expensive magnetic resonance facilities. Recently, there has been a paradigm shift in the use of MRI in laboratory-scale core analysis. The focus is now on acquiring data in the laboratory that are directly comparable to data obtained from magnetic resonance well-logging tools (i.e., a common physics of measurement). To maintain consistency with well-logging instrumentation, it is desirable to measure distributions of transverse (T2) relaxation time-the industry-standard metric in well-logging-at the laboratory-scale. These T2 distributions can be spatially resolved over the length of a core-plug. The use of low-field magnets in the laboratory environment is optimal for core analysis not only because the magnetic field strength is closer to that of well-logging tools, but also because the magnetic susceptibility contrast is minimized, allowing the acquisition of quantitative image voxel (or pixel) intensities that are directly scalable to liquid volume. Beyond simple determination of macroscopic rock heterogeneity, it is possible to utilize the spatial resolution for monitoring forced displacement of oil by water or chemical agents, determining capillary pressure curves, and estimating

  1. Reversing the polarity of a cochlear implant magnet after magnetic resonance imaging.

    PubMed

    Jeon, Ju Hyun; Bae, Mi Ran; Chang, Jae Won; Choi, Jae Young

    2012-08-01

    The number of patients with cochlear implant (CI) has been rapidly increasing in recent years, and these patients show a growing need of examination by magnetic resonance imaging (MRI). However, the use of MRI on patients with CI is restricted by the internal magnet of the CI. Many studies have investigated the safety of performing 1.5T MRI on patients with CI, which is now being practiced in a clinical setting. We experienced a case in which the polarity of the cochlear implant magnet was reversed after the patient was examined using 1.5T MRI. The external device was attached to the internal device oppositely. We could not find displacement of the internal device, magnet, or electrode upon radiological evaluation. We came up with two possible mechanisms by which the polarity of the magnet reversed. The first possibility was that the magnetic field of MRI reversed the polarity of the magnet. The second was that the internal magnet was physically realigned while interacting with the MRI. We believe the second hypothesis to be more reliable. A removable magnet and a loose magnet boundary of a CI device may have allowed for physical reorientation of the internal magnet. Therefore, in order to avoid these complications, first, the internal magnet must not be aligned anti-parallel with the magnetic polarity of MRI. In the Siemens MRI, the vector of the magnetic field is downward, so implant site should be placed in facing upwards to minimize demagnetization. In the GE Medical Systems MRI, the vector of the magnetic field is upward, so the implant site should be placed facing downwards. Second, wearing of a commercial mold which is fixed to the internal device before performing MRI can be helpful. In addition, any removable internal magnets in a CI device should be removed before MRI, especially in the trunk. However, to ultimately solve this problem, the pocket of the internal magnet should be redesigned for safety. Copyright © 2011. Published by Elsevier Ireland Ltd.

  2. Brain Morphometry Using Anatomical Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Bansal, Ravi; Gerber, Andrew J.; Peterson, Bradley S.

    2008-01-01

    The efficacy of anatomical magnetic resonance imaging (MRI) in studying the morphological features of various regions of the brain is described, also providing the steps used in the processing and studying of the images. The ability to correlate these features with several clinical and psychological measures can help in using anatomical MRI to…

  3. Magnetic resonance imaging for the study of mummies.

    PubMed

    Giovannetti, Giulio; Guerrini, Andrea; Carnieri, Emiliano; Salvadori, Piero A

    2016-07-01

    Nondestructive diagnostic imaging for mummies study has a long tradition and high-resolution images of the samples morphology have been extensively acquired by using computed tomography (CT). However, although in early reports no signal or image was obtained because of the low water content, mummy magnetic resonance imaging (MRI) was demonstrated able to generate images of such ancient specimens by using fast imaging techniques. Literature demonstrated the general feasibility of nonclinical MRI for visualizing historic human tissues, which is particularly interesting for archeology. More recently, multinuclear magnetic resonance spectroscopy (MRS) was demonstrated able to detect numerous organic biochemicals from such remains. Although the quality of these images is not yet comparable to that of clinical magnetic resonance (MR) images, and further research will be needed for determining the full capacity of MR in this topic, the information obtained with MR can be viewed as complementary to the one provided by CT and useful for paleoradiological studies of mummies. This work contains an overview of the state of art of the emerging uses of MRI in paleoradiology. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Benchtop-magnetic resonance imaging (BT-MRI) characterization of push-pull osmotic controlled release systems.

    PubMed

    Malaterre, Vincent; Metz, Hendrik; Ogorka, Joerg; Gurny, Robert; Loggia, Nicoletta; Mäder, Karsten

    2009-01-05

    The mechanism of drug release from push-pull osmotic systems (PPOS) has been investigated by Magnetic Resonance Imaging (MRI) using a new benchtop apparatus. The signal intensity profiles of both PPOS layers were monitored non-invasively over time to characterize the hydration and swelling kinetics. The drug release performance was well-correlated to the hydration kinetics. The results show that (i) hydration and swelling critically depend on the tablet core composition, (ii) high osmotic pressure developed by the push layer may lead to bypassing the drug layer and incomplete drug release and (iii) the hydration of both the drug and the push layers needs to be properly balanced to efficiently deliver the drug. MRI is therefore a powerful tool to get insights on the drug delivery mechanism of push-pull osmotic systems, which enable a more efficient optimization of such formulations.

  5. Magnetic resonance imaging and spectroscopy of the murine cardiovascular system.

    PubMed

    Akki, Ashwin; Gupta, Ashish; Weiss, Robert G

    2013-03-01

    Magnetic resonance imaging (MRI) has emerged as a powerful and reliable tool to noninvasively study the cardiovascular system in clinical practice. Because transgenic mouse models have assumed a critical role in cardiovascular research, technological advances in MRI have been extended to mice over the last decade. These have provided critical insights into cardiac and vascular morphology, function, and physiology/pathophysiology in many murine models of heart disease. Furthermore, magnetic resonance spectroscopy (MRS) has allowed the nondestructive study of myocardial metabolism in both isolated hearts and in intact mice. This article reviews the current techniques and important pathophysiological insights from the application of MRI/MRS technology to murine models of cardiovascular disease.

  6. Magnetic resonance spectroscopy and imaging for the study of fossils.

    PubMed

    Giovannetti, Giulio; Guerrini, Andrea; Salvadori, Piero A

    2016-07-01

    Computed tomography (CT) has long been used for investigating palaeontological specimens, as it is a nondestructive technique which avoids the need to dissolve or ionize the fossil sample. However, magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) have recently gained ground as analytical tools for examination of palaeontological samples, by nondestructively providing information about the structure and composition of fossils. While MRI techniques are able to reveal the three-dimensional geometry of the trace fossil, MRS can provide information on the chemical composition of the samples. The multidimensional nature of MR (magnetic resonance) signals has potential to provide rich three-dimensional data on the palaeontological specimens and also to help in elucidating paleopathological and paleoecological questions. In this work the verified applications and the emerging uses of MRI and MRS in paleontology are reviewed, with particular attention to fossil spores, fossil plants, ambers, fossil invertebrates, and fossil vertebrate studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Magnetic Resonance Imaging (MRI) Evaluation of Developmental Delay in Pediatric Patients

    PubMed Central

    Syed, Naziya P.; Murthy, G.S.N.; Nori, Madhavi; Abkari, Anand; Pooja, B.K.; Venkateswarlu, J.

    2015-01-01

    Introduction: Developmental delay is defined as significant delay in one or more developmental domains. Magnetic Resonance Imaging (MRI) is the best modality to investigate such patients. Evaluation of a child with developmental delay is important not only because it allows early diagnosis and treatment but also helpful for parental counseling regarding the outcome of their child and to identify any possible risk of recurrence in the siblings. Thus this study was undertaken to evaluate the developmental delay in Indian children which will help the clinicians in providing an estimation of the child’s ultimate developmental potential and organize specific treatment requirement and also relieve parental apprehension. Aims and Objectives: To study the prevalence of normal and abnormal MRI in pediatric patients presenting with developmental delay and further categorize the abnormal MRI based on its morphological features. Materials and Methods: It is a prospective, observational & descriptive study of MRI Brain in 81 paediatric patients (46 Males and 35 Females), aged between three months to 12 years; presenting with developmental delay in Deccan College of Medical Sciences, Hyderabad; over a period of three years (Sept 2011 to Sept 2014). MRI brain was done on 1.5T Siemens Magnetom Essenza & 0.35T Magnetom C with appropriate sequences and planes after making the child sleep/sedated/ anesthetized. Various anatomical structures like Ventricles, Corpus callosum, etc were systematically assessed. The MRI findings were divided into various aetiological subgroups. Results: Normal MRI findings were seen in 32% cases and 68% had abnormal findings of which the proportion of Traumatic/ Neurovascular Diseases, Congenital & Developmental, Metabolic and Degenerative, neoplastic and non specific were 31%, 17%, 10%, 2.5% and 7.5% respectively. The ventricles and white matter mainly the corpus callosum were the most commonly affected anatomical structures. The diagnostic yield was

  8. Open-Access, Low-Magnetic-Field MRI System for Lung Research

    NASA Technical Reports Server (NTRS)

    Mair, Ross W.; Rosen, Matthew S.; Tsai, Leo L.; Walsworth, Ronald L.; Hrovat, Mirko I.; Patz, Samuel; Ruset, Iullian C.; Hersman, F. William

    2009-01-01

    An open-access magnetic resonance imaging (MRI) system is being developed for use in research on orientational/gravitational effects on lung physiology and function. The open-access geometry enables study of human subjects in diverse orientations. This system operates at a magnetic flux density, considerably smaller than the flux densities of typical other MRI systems, that can be generated by resistive electromagnet coils (instead of the more-expensive superconducting coils of the other systems). The human subject inhales air containing He-3 or Xe-129 atoms, the nuclear spins of which have been polarized by use of a laser beam to obtain a magnetic resonance that enables high-resolution gas space imaging at the low applied magnetic field. The system includes a bi-planar, constant-current, four-coil electromagnet assembly and associated electronic circuitry to apply a static magnetic field of 6.5 mT throughout the lung volume; planar coils and associated circuitry to apply a pulsed magnetic-field-gradient for each spatial dimension; a single, detachable radio-frequency coil and associated circuitry for inducing and detecting MRI signals; a table for supporting a horizontal subject; and electromagnetic shielding surrounding the electromagnet coils.

  9. Magnetic resonance imaging of tablet dissolution.

    PubMed

    Nott, Kevin P

    2010-01-01

    Magnetic resonance imaging (MRI) is the technique of choice for measuring hydration, and its effects, during dissolution of tablets since it non-invasively maps (1)H nuclei associated with 'mobile' water. Although most studies have used MRI systems with high-field superconducting magnets, low-field laboratory-based instruments based on permanent magnet technology are being developed that provide key data for the formulation scientist. Incorporation of dissolution hardware, in particular the United States Pharmacopeia (USP) apparatus 4 flow-through cell, allows measurements under controlled conditions for comparison against other dissolution methods. Furthermore, simultaneous image acquisition and measurement of drug concentration allow direct comparison of the drug release throughout the hydration process. The combination of low-field MRI with USP-4 apparatus provides another tool to aid tablet formulation. Copyright 2009 Elsevier B.V. All rights reserved.

  10. Limits to magnetic resonance microscopy

    NASA Astrophysics Data System (ADS)

    Glover, Paul; Mansfield, Peter, Sir

    2002-10-01

    The last quarter of the twentieth century saw the development of magnetic resonance imaging (MRI) grow from a laboratory demonstration to a multi-billion dollar worldwide industry. There is a clinical body scanner in almost every hospital of the developed nations. The field of magnetic resonance microscopy (MRM), after mostly being abandoned by researchers in the first decade of MRI, has become an established branch of the science. This paper reviews the development of MRM over the last decade with an emphasis on the current state of the art. The fundamental principles of imaging and signal detection are examined to determine the physical principles which limit the available resolution. The limits are discussed with reference to liquid, solid and gas phase microscopy. In each area, the novel approaches employed by researchers to push back the limits of resolution are discussed. Although the limits to resolution are well known, the developments and applications of MRM have not reached their limit.

  11. Magnetic Resonance Imaging of Stroke in the Rat

    PubMed Central

    CHOPP, Michael; LI, Lian; ZHANG, Li; ZHANG, Zheng-gang; LI, Qing-jiang; JIANG, Quan

    2014-01-01

    Magnetic resonance imaging (MRI) is now a routine neuroimaging tool in the clinic. Throughout all phases of stroke from acute to chronic, MRI plays an important role to diagnose, evaluate and monitor the cerebral tissue undergoing stroke. This review provides a description of various MRI methods and an overview of selected MRI studies, with an embolic stroke model of rat, performed in the MRI laboratory of Department of Neurology, Henry Ford Hospital, Detroit, Michigan, US. PMID:24920874

  12. Pushing the sensitivity envelope of lanthanide-based magnetic resonance imaging (MRI) contrast agents for molecular imaging applications.

    PubMed

    Aime, Silvio; Castelli, Daniela Delli; Crich, Simonetta Geninatti; Gianolio, Eliana; Terreno, Enzo

    2009-07-21

    Contrast in magnetic resonance imaging (MRI) arises from changes in the intensity of the proton signal of water between voxels (essentially, the 3D counterpart of pixels). Differences in intervoxel intensity can be significantly enhanced with chemicals that alter the nuclear magnetic resonance (NMR) intensity of the imaged spins; this alteration can occur by various mechanisms. Paramagnetic lanthanide(III) complexes are used in two major classes of MRI contrast agent: the well-established class of Gd-based agents and the emerging class of chemical exchange saturation transfer (CEST) agents. A Gd-based complex increases water signal by enhancing the longitudinal relaxation rate of water protons, whereas CEST agents decrease water signal as a consequence of the transfer of saturated magnetization from the exchangeable protons of the agent. In this Account, we survey recent progress in both areas, focusing on how MRI is becoming a more competitive choice among the various molecular imaging methods. Compared with other imaging modalities, MRI is set apart by its superb anatomical resolution; however, its success in molecular imaging suffers because of its intrinsic insensitivity. A relatively high concentration of molecular agents (0.01-0.1 mM) is necessary to produce a local alteration in the water signal intensity. Unfortunately, the most desirable molecules for visualization in molecular imaging are present at much lower concentrations, in the nano- or picomolar range. Therefore, augmenting the sensitivity of MRI agents is key to the development of MR-based molecular imaging applications. In principle, this task can be tackled either by increasing the sensitivity of the reporting units, through the optimization of their structural and dynamic properties, or by setting up proper amplification strategies that allow the accumulation of a huge number of imaging reporters at the site of interest. For Gd-based agents, high sensitivities can be attained by exploiting a

  13. Psychological reactions in women undergoing fetal magnetic resonance imaging.

    PubMed

    Leithner, Katharina; Pörnbacher, Susanne; Assem-Hilger, Eva; Krampl, Elisabeth; Ponocny-Seliger, Elisabeth; Prayer, Daniela

    2008-02-01

    To investigate women's psychological reactions when undergoing fetal magnetic resonance imaging (MRI), and to estimate whether certain groups, based on clinical and sociodemographic variables, differ in their subjective experiences with fetal MRI and in their anxiety levels related to the scanning procedure. This study is a prospective cohort investigation of 62 women before and immediately after fetal MRI. Anxiety levels and subjective experiences were measured by questionnaires. Groups based on clinical and sociodemographic variables were compared with regard to anxiety levels and to the scores on the Prescan and Postscan Imaging Distress Questionnaire. Anxiety scores before fetal MRI were 8.8 points higher than those of the female, nonclinical, norm population (P<.001). The severity of the referral diagnosis showed a linearly increasing effect on anxiety level before MRI (weighted linear term: F1,59=5.325, P=.025). Magnetic resonance imaging was experienced as unpleasant by 33.9% (95% confidence interval [CI] 21.2-46.6%) and as hardly bearable by 4.8% (95% CI 0-17.5%) of the women. Physical restraint (49.9%, 95% CI 37.4-62.4%), noise level (53.2%, 95% CI 40.7-65.7%), anxiety for the infant (53.2%, 95% CI 40.7-65.7%), and the duration of the examination (51.6%, 95% CI 39.1-64.1%) were major distressing factors. Women who undergo fetal magnetic resonance imaging experience considerable distress, especially those with poor fetal prognoses. Ongoing technical developments, such as a reduction of noise, shortening the duration of the MRI, and a more comfortable position in open MRI machines, may have the potential to improve the subjective experiences of women during fetal MRI. III.

  14. Development of magnetic resonance technology for noninvasive boron quantification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradshaw, K.M.

    1990-11-01

    Boron magnetic resonance imaging (MRI) and spectroscopy (MRS) were developed in support of the noninvasive boron quantification task of the Idaho National Engineering Laboratory (INEL) Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNCT) program. The hardware and software described in this report are modifications specific to a GE Signa{trademark} MRI system, release 3.X and are necessary for boron magnetic resonance operation. The technology developed in this task has been applied to obtaining animal pharmacokinetic data of boron compounds (drug time response) and the in-vivo localization of boron in animal tissue noninvasively. 9 refs., 21 figs.

  15. Characteristic findings of magnetic resonance imaging (MRI) and computed tomography (CT) for severe chronic laminitis in a Thoroughbred horse

    PubMed Central

    YAMADA, Kazutaka; INUI, Tomohiro; ITOH, Megumi; YANAGAWA, Masashi; SATO, Fumio; TOMINARI, Masataka; MIZOBE, Fumiaki; KISHIMOTO, Miori; SASAKI, Naoki

    2017-01-01

    ABSTRACT A Thoroughbred horse with severe chronic laminitis of both forelimbs was evaluated on the same day with magnetic resonance imaging (MRI) and computed tomography (CT). Both MRI and CT revealed loss of the dorsal aspect of the cortical bone of the 3rd phalanx and sclerosis. CT reflected the status of the horny layer and bone of the affected feet, while MRI depicted inflammation of the laminar corium, together with tendon edema. On the 3-dimensional CT venogram, vessels were visualized in both the right and left forelimbs, although there was a difference in the vasculature of the coronary plexus and circumflex vessels between the right and left forelimbs. A combination of both MRI and CT provides detailed information regarding pathological conditions. PMID:28955162

  16. Fat ViP MRI: Virtual Phantom Magnetic Resonance Imaging of water-fat systems.

    PubMed

    Salvati, Roberto; Hitti, Eric; Bellanger, Jean-Jacques; Saint-Jalmes, Hervé; Gambarota, Giulio

    2016-06-01

    Virtual Phantom Magnetic Resonance Imaging (ViP MRI) is a method to generate reference signals on MR images, using external radiofrequency (RF) signals. The aim of this study was to assess the feasibility of ViP MRI to generate complex-data images of phantoms mimicking water-fat systems. Various numerical phantoms with a given fat fraction, T2* and field map were designed. The k-space of numerical phantoms was converted into RF signals to generate virtual phantoms. MRI experiments were performed at 4.7T using a multi-gradient-echo sequence on virtual and physical phantoms. The data acquisition of virtual and physical phantoms was simultaneous. Decomposition of the water and fat signals was performed using a complex-based water-fat separation algorithm. Overall, a good agreement was observed between the fat fraction, T2* and phase map values of the virtual and numerical phantoms. In particular, fat fractions of 10.5±0.1 (vs 10% of the numerical phantom), 20.3±0.1 (vs 20%) and 30.4±0.1 (vs 30%) were obtained in virtual phantoms. The ViP MRI method allows for generating imaging phantoms that i) mimic water-fat systems and ii) can be analyzed with water-fat separation algorithms based on complex data. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Magnetic Resonance Mediated Radiofrequency Ablation.

    PubMed

    Hue, Yik-Kiong; Guimaraes, Alexander R; Cohen, Ouri; Nevo, Erez; Roth, Abraham; Ackerman, Jerome L

    2018-02-01

    To introduce magnetic resonance mediated radiofrequency ablation (MR-RFA), in which the MRI scanner uniquely serves both diagnostic and therapeutic roles. In MR-RFA scanner-induced RF heating is channeled to the ablation site via a Larmor frequency RF pickup device and needle system, and controlled via the pulse sequence. MR-RFA was evaluated with simulation of electric and magnetic fields to predict the increase in local specific-absorption-rate (SAR). Temperature-time profiles were measured for different configurations of the device in agar phantoms and ex vivo bovine liver in a 1.5 T scanner. Temperature rise in MR-RFA was imaged using the proton resonance frequency method validated with fiber-optic thermometry. MR-RFA was performed on the livers of two healthy live pigs. Simulations indicated a near tenfold increase in SAR at the RFA needle tip. Temperature-time profiles depended significantly on the physical parameters of the device although both configurations tested yielded temperature increases sufficient for ablation. Resected livers from live ablations exhibited clear thermal lesions. MR-RFA holds potential for integrating RF ablation tumor therapy with MRI scanning. MR-RFA may add value to MRI with the addition of a potentially disposable ablation device, while retaining MRI's ability to provide real time procedure guidance and measurement of tissue temperature, perfusion, and coagulation.

  18. Edge-augmented Fourier partial sums with applications to Magnetic Resonance Imaging (MRI)

    NASA Astrophysics Data System (ADS)

    Larriva-Latt, Jade; Morrison, Angela; Radgowski, Alison; Tobin, Joseph; Iwen, Mark; Viswanathan, Aditya

    2017-08-01

    Certain applications such as Magnetic Resonance Imaging (MRI) require the reconstruction of functions from Fourier spectral data. When the underlying functions are piecewise-smooth, standard Fourier approximation methods suffer from the Gibbs phenomenon - with associated oscillatory artifacts in the vicinity of edges and an overall reduced order of convergence in the approximation. This paper proposes an edge-augmented Fourier reconstruction procedure which uses only the first few Fourier coefficients of an underlying piecewise-smooth function to accurately estimate jump information and then incorporate it into a Fourier partial sum approximation. We provide both theoretical and empirical results showing the improved accuracy of the proposed method, as well as comparisons demonstrating superior performance over existing state-of-the-art sparse optimization-based methods.

  19. Ultra-high magnetic resonance imaging (MRI): a potential examination for deep brain stimulation devices and the limitation study concerning MRI-related heating injury.

    PubMed

    Chen, Ying-Chuan; Li, Jun-Ju; Zhu, Guan-Yu; Shi, Lin; Yang, An-Chao; Jiang, Yin; Zhang, Xin; Zhang, Jian-Guo

    2017-03-01

    Nowadays, the patients with deep brain stimulation (DBS) devices are restricted to undertake 1.5T magnetic resonance imaging (MRI) according to the guideline. Nevertheless, we conducted an experiment to test pathological change near the leads in different field-strength MRI. Twenty-four male New Zealand rabbits were assigned to Group 1 (G1, n = 6, 7.0T, DBS), Group 2 (G2, n = 6, 3.0T, DBS), Group 3 (G3, n = 6, 1.5T, DBS), and Group 4 (G4, n = 6, 1.5T, paracentesis). DBS leads were implanted in G1, G2 and G3, targeting left nucleus ventralis posterior thalami. Paracentesis was performed in G4. 24 h after MRI scan, all animals were killed for examining pathological alternation (at different distance from lead) via transmission electron microscopy. Our results suggest that the severity of tissue injury correlates with the distance to electrode instead of field strength of MRI. Up to now, the reason for the restriction of MRI indicated no significantly different pathological change.

  20. Magnetic resonance imaging and spectroscopy of the murine cardiovascular system

    PubMed Central

    Akki, Ashwin; Gupta, Ashish

    2013-01-01

    Magnetic resonance imaging (MRI) has emerged as a powerful and reliable tool to noninvasively study the cardiovascular system in clinical practice. Because transgenic mouse models have assumed a critical role in cardiovascular research, technological advances in MRI have been extended to mice over the last decade. These have provided critical insights into cardiac and vascular morphology, function, and physiology/pathophysiology in many murine models of heart disease. Furthermore, magnetic resonance spectroscopy (MRS) has allowed the nondestructive study of myocardial metabolism in both isolated hearts and in intact mice. This article reviews the current techniques and important pathophysiological insights from the application of MRI/MRS technology to murine models of cardiovascular disease. PMID:23292717

  1. Fast magnetic resonance imaging based on high degree total variation

    NASA Astrophysics Data System (ADS)

    Wang, Sujie; Lu, Liangliang; Zheng, Junbao; Jiang, Mingfeng

    2018-04-01

    In order to eliminating the artifacts and "staircase effect" of total variation in Compressive Sensing MRI, high degree total variation model is proposed for dynamic MRI reconstruction. the high degree total variation regularization term is used as a constraint to reconstruct the magnetic resonance image, and the iterative weighted MM algorithm is proposed to solve the convex optimization problem of the reconstructed MR image model, In addtion, one set of cardiac magnetic resonance data is used to verify the proposed algorithm for MRI. The results show that the high degree total variation method has a better reconstruction effect than the total variation and the total generalized variation, which can obtain higher reconstruction SNR and better structural similarity.

  2. Multidimensionally encoded magnetic resonance imaging.

    PubMed

    Lin, Fa-Hsuan

    2013-07-01

    Magnetic resonance imaging (MRI) typically achieves spatial encoding by measuring the projection of a q-dimensional object over q-dimensional spatial bases created by linear spatial encoding magnetic fields (SEMs). Recently, imaging strategies using nonlinear SEMs have demonstrated potential advantages for reconstructing images with higher spatiotemporal resolution and reducing peripheral nerve stimulation. In practice, nonlinear SEMs and linear SEMs can be used jointly to further improve the image reconstruction performance. Here, we propose the multidimensionally encoded (MDE) MRI to map a q-dimensional object onto a p-dimensional encoding space where p > q. MDE MRI is a theoretical framework linking imaging strategies using linear and nonlinear SEMs. Using a system of eight surface SEM coils with an eight-channel radiofrequency coil array, we demonstrate the five-dimensional MDE MRI for a two-dimensional object as a further generalization of PatLoc imaging and O-space imaging. We also present a method of optimizing spatial bases in MDE MRI. Results show that MDE MRI with a higher dimensional encoding space can reconstruct images more efficiently and with a smaller reconstruction error when the k-space sampling distribution and the number of samples are controlled. Copyright © 2012 Wiley Periodicals, Inc.

  3. Three-Dimensional Magnetic Resonance Imaging of Velopharyngeal Structures

    ERIC Educational Resources Information Center

    Bae, Youkyung; Kuehn, David P.; Sutton, Bradley P.; Conway, Charles A.; Perry, Jamie L.

    2011-01-01

    Purpose: To report the feasibility of using a 3-dimensional (3D) magnetic resonance imaging (MRI) protocol for examining velopharyngeal structures. Using collected 3D MRI data, the authors investigated the effect of sex on the midsagittal velopharyngeal structures and the levator veli palatini (levator) muscle configurations. Method: Ten Caucasian…

  4. Magnetic resonance imaging (MRI) and prognostication in neonatal hypoxic-ischemic injury: a vignette-based study of Canadian specialty physicians.

    PubMed

    Bell, Emily; Rasmussen, Lisa Anne; Mazer, Barbara; Shevell, Michael; Miller, Steven P; Synnes, Anne; Yager, Jerome Y; Majnemer, Annette; Muhajarine, Nazeem; Chouinard, Isabelle; Racine, Eric

    2015-02-01

    Magnetic resonance imaging (MRI) could improve prognostication in neonatal brain injury; however, factors beyond technical or scientific refinement may impact its use and interpretation. We surveyed Canadian neonatologists and pediatric neurologists using general and vignette-based questions about the use of MRI for prognostication in neonates with hypoxic-ischemic injury. There was inter- and intra-vignette variability in prognosis and in ratings about the usefulness of MRI. Severity of predicted outcome correlated with certainty about the outcome. A majority of physicians endorsed using MRI results in discussing prognosis with families, and most suggested that MRI results contribute to end-of-life decisions. Participating neonatologists, when compared to participating pediatric neurologists, had significantly less confidence in the interpretation of MRI by colleagues in neurology and radiology. Further investigation is needed to understand the complexity of MRI and of its application. Potential gaps relative to our understanding of the ethical importance of these findings should be addressed. © The Author(s) 2014.

  5. Detection of magnetism in the red imported fire ant (Solenopsis invicta) using magnetic resonance imaging.

    PubMed

    Slowik, T J; Green, B L; Thorvilson, H G

    1997-01-01

    Red imported fire ant (Solenopsis invicta) workers, queens, and alates were analyzed by magnetic resonance imaging (MRI) for the presence of natural magnetism. Images of ants showed distortion patterns similar to those of honey bees and monarch butterflies, both of which possess ferromagnetic material. The bipolar ring patterns of MRI indicated the presence in fire ants of small amounts of internal magnetic material, which may be used in orientation behaviors, as in the honey bees.

  6. Impact of magnetic resonance imaging on ventricular tachyarrhythmia sensing: Results of the Evera MRI Study.

    PubMed

    Gold, Michael R; Sommer, Torsten; Schwitter, Juerg; Kanal, Emanuel; Bernabei, Matthew A; Love, Charles J; Surber, Ralf; Ramza, Brian; Cerkvenik, Jeffrey; Merkely, Béla

    2016-08-01

    Studies have shown that magnetic resonance imaging (MRI) conditional pacemakers experience no significant effect from MRI on device function, sensing, or pacing. More recently, similar safety outcomes were demonstrated with MRI conditional defibrillators (implantable cardioverter-defibrillator [ICD]), but the impact on ventricular arrhythmias has not been assessed. The purpose of this study was to assess the effect of MRI on ICD sensing and treatment of ventricular tachyarrhythmias. The Evera MRI Study was a worldwide trial of 156 patients implanted with an ICD designed to be MRI conditional. Device-detected spontaneous and induced ventricular tachycardia/ventricular fibrillation (VT/VF) episodes occurring before and after whole body MRI were evaluated by a blinded episode review committee. Detection delay was computed as the sum of RR intervals of undersensed beats. A ≥5-second delay in detection due to undersensing was prospectively defined as clinically significant. Post-MRI, there were 22 polymorphic VT/VF episodes in 21 patients, with 16 of these patients having 17 VT/VF episodes pre-MRI. Therapy was successful for all episodes, with no failures to treat or terminate arrhythmias. The mean detection delay due to undersensing pre- and post-MRI was 0.60 ± 0.59 and 0.33 ± 0.63 seconds, respectively (P = .17). The maximum detection delay was 2.19 seconds pre-MRI and 2.87 seconds post-MRI. Of the 17 pre-MRI episodes, 14 (82%) had some detection delay as compared with 11 of 22 (50%) post-MRI episodes (P = .03); no detection delay was clinically significant. Detection and treatment of VT/VF was excellent, with no detection delays or significant impact of MRI observed. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  7. A Rare Complication of Cochlear Implantation After Magnetic Resonance Imaging: Reversion of the Magnet.

    PubMed

    Öztürk, Erkan; Doruk, Can; Orhan, Kadir Serkan; Çelik, Mehmet; Polat, Beldan; Güldiken, Yahya

    2017-06-01

    Cochlear implants are mechanical devices used for patients with severe sensory-neural hearing loss, which has an inner magnet. It is proven that 1.5 Tesla magnetic resonance imaging (MRI) scanners are safe to use in patients with cochlear implant. In our patient, the authors aim to introduce a rare complication caused after a 1.5 Tesla MRI scanning and the management of this situation; the reversion of the magnet of the implant without displacement and significance of surgery in management.

  8. Ezetimibe for the Treatment of Nonalcoholic Steatohepatitis: Assessment by Novel Magnetic Resonance Imaging and Magnetic Resonance Elastography in a Randomized Trial (MOZART Trial)

    PubMed Central

    Loomba, Rohit; Sirlin, Claude B; Ang, Brandon; Bettencourt, Ricki; Jain, Rashmi; Salotti, Joanie; Soaft, Linda; Hooker, Jonathan; Kono, Yuko; Bhatt, Archana; Hernandez, Laura; Nguyen, Phirum; Noureddin, Mazen; Haufe, William; Hooker, Catherine; Yin, Meng; Ehman, Richard; Lin, Grace Y; Valasek, Mark A; Brenner, David A; Richards, Lisa

    2015-01-01

    Ezetimibe inhibits intestinal cholesterol absorption and lowers low-density lipoprotein cholesterol. Uncontrolled studies have suggested that it reduces liver fat as estimated by ultrasound in nonalcoholic steatohepatitis (NASH). Therefore, we aimed to examine the efficacy of ezetimibe versus placebo in reducing liver fat by the magnetic resonance imaging-derived proton density-fat fraction (MRI-PDFF) and liver histology in patients with biopsy-proven NASH. In this randomized, double-blind, placebo-controlled trial, 50 patients with biopsy-proven NASH were randomized to either ezetimibe 10 mg orally daily or placebo for 24 weeks. The primary outcome was a change in liver fat as measured by MRI-PDFF in colocalized regions of interest within each of the nine liver segments. Novel assessment by two-dimensional and three-dimensional magnetic resonance elastography was also performed. Ezetimibe was not significantly better than placebo at reducing liver fat as measured by MRI-PDFF (mean difference between the ezetimibe and placebo arms -1.3%, P = 0.4). Compared to baseline, however, end-of-treatment MRI-PDFF was significantly lower in the ezetimibe arm (15%-11.6%, P < 0.016) but not in the placebo arm (18.5%-16.4%, P = 0.15). There were no significant differences in histologic response rates, serum alanine aminotransferase and aspartate aminotransferase levels, or longitudinal changes in two-dimensional and three-dimensional magnetic resonance elastography-derived liver stiffness between the ezetimibe and placebo arms. Compared to histologic nonresponders (25/35), histologic responders (10/35) had a significantly greater reduction in MRI-PDFF (-4.35 ± 4.9% versus -0.30 ± 4.1%, P < 0.019). Conclusions: Ezetimibe did not significantly reduce liver fat in NASH. This trial demonstrates the application of colocalization of MRI-PDFF-derived fat maps and magnetic resonance elastography-derived stiffness maps of the liver before and after treatment to noninvasively assess

  9. Efficient solution methodology for calibrating the hemodynamic model using functional Magnetic Resonance Imaging (fMRI) measurements.

    PubMed

    Zambri, Brian; Djellouli, Rabia; Laleg-Kirati, Taous-Meriem

    2015-08-01

    Our aim is to propose a numerical strategy for retrieving accurately and efficiently the biophysiological parameters as well as the external stimulus characteristics corresponding to the hemodynamic mathematical model that describes changes in blood flow and blood oxygenation during brain activation. The proposed method employs the TNM-CKF method developed in [1], but in a prediction/correction framework. We present numerical results using both real and synthetic functional Magnetic Resonance Imaging (fMRI) measurements to highlight the performance characteristics of this computational methodology.

  10. [A study of magnetic shielding design for a magnetic resonance imaging linac system].

    PubMed

    Zhang, Zheshun; Chen, Wenjing; Qiu, Yang; Zhu, Jianming

    2017-12-01

    One of the main technical challenges when integrating magnetic resonance imaging (MRI) systems with medical linear accelerator is the strong interference of fringe magnetic fields from the MRI system with the electron beams of linear accelerator, making the linear accelerator not to work properly. In order to minimize the interference of magnetic fields, a magnetic shielding cylinder with an open structure made of high permeability materials is designed. ANSYS Maxwell was used to simulate Helmholtz coil which generate uniform magnetic field instead of the fringe magnetic fields which affect accelerator gun. The parameters of shielding tube, such as permeability, radius, length, side thickness, bottom thickness and fringe magnetic fields strength are simulated, and the data is processed by MATLAB to compare the shielding performance. This article gives out a list of magnetic shielding effectiveness with different side thickness and bottom thickness under the optimal radius and length, which showes that this design can meet the shielding requirement for the MRI-linear accelerator system.

  11. Exposure to MRI-related magnetic fields and vertigo in MRI workers.

    PubMed

    Schaap, Kristel; Portengen, Lützen; Kromhout, Hans

    2016-03-01

    Vertigo has been reported by people working around magnetic resonance imaging (MRI) scanners and was found to increase with increasing strength of scanner magnets. This suggests an association with exposure to static magnetic fields (SMF) and/or motion-induced time-varying magnetic fields (TVMF). This study assessed the association between various metrics of shift-long exposure to SMF and TVMF and self-reported vertigo among MRI workers. We analysed 358 shifts from 234 employees at 14 MRI facilities in the Netherlands. Participants used logbooks to report vertigo experienced during the work day at the MRI facility. In addition, personal exposure to SMF and TVMF was measured during the same shifts, using portable magnetic field dosimeters. Vertigo was reported during 22 shifts by 20 participants and was significantly associated with peak and time-weighted average (TWA) metrics of SMF as well as TVMF exposure. Associations were most evident with full-shift TWA TVMF exposure. The probability of vertigo occurrence during a work shift exceeded 5% at peak exposure levels of 409 mT and 477 mT/s and at full-shift TWA levels of 3 mT and 0.6 mT/s. These results confirm the hypothesis that vertigo is associated with exposure to MRI-related SMF and TVMF. Strong correlations between various metrics of shift-long exposure make it difficult to disentangle the effects of SMF and TVMF exposure, or identify the most relevant exposure metric. On the other hand, this also implies that several metrics of shift-long exposure to SMF and TVMF should perform similarly in epidemiological studies on MRI-related vertigo. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  12. A variable torque motor compatible with magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Roeck, W. W.; Ha, S.-H.; Farmaka, S.; Nalcioglu, O.

    2009-04-01

    High magnetic fields used in magnetic resonance imaging (MRI) do not allow the employment of conventional motors due to various incompatibility issues. This paper reports on a new motor that can operate in or near high field magnets used for MRI. The motor was designed to be operational with the MRI equipment and could be used in a rotating imaging gantry inside the magnet designed for dual modality imaging. Furthermore, it could also be used for image guided robotic interventional procedures inside a MRI system if so desired. The prototype motor was developed using magnetic resonance (MR) compatible materials, and its functionality with MR imaging was evaluated experimentally by measuring the performance of the motor and its effect on the MR image quality. Since in our application, namely, single photon emission tomography, the motor has to perform precise stepping of the gantry in small angular steps the most important parameter is the start-up torque. The experimental results showed that the motor has a start-up torque up to 1.37 Nm and rotates at 196 rpm when a constant voltage difference of 12 V is applied at a magnetic field strength of 1 T. The MR image quality was quantified by measuring the signal-to-noise of images acquired under different conditions. The results presented here indicate that the motor is MR compatible and could be used for rotating an imaging gantry or a surgical device inside the magnet.

  13. Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data.

    PubMed

    Weiskopf, Nikolaus; Veit, Ralf; Erb, Michael; Mathiak, Klaus; Grodd, Wolfgang; Goebel, Rainer; Birbaumer, Niels

    2003-07-01

    A brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI) is presented which allows human subjects to observe and control changes of their own blood oxygen level-dependent (BOLD) response. This BCI performs data preprocessing (including linear trend removal, 3D motion correction) and statistical analysis on-line. Local BOLD signals are continuously fed back to the subject in the magnetic resonance scanner with a delay of less than 2 s from image acquisition. The mean signal of a region of interest is plotted as a time-series superimposed on color-coded stripes which indicate the task, i.e., to increase or decrease the BOLD signal. We exemplify the presented BCI with one volunteer intending to control the signal of the rostral-ventral and dorsal part of the anterior cingulate cortex (ACC). The subject achieved significant changes of local BOLD responses as revealed by region of interest analysis and statistical parametric maps. The percent signal change increased across fMRI-feedback sessions suggesting a learning effect with training. This methodology of fMRI-feedback can assess voluntary control of circumscribed brain areas. As a further extension, behavioral effects of local self-regulation become accessible as a new field of research.

  14. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodson, Boyd McLean

    1999-12-01

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permitmore » a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI.« less

  15. Variable Temperature Nuclear Magnetic Resonance and Magnetic Resonance Imaging System as a Novel Technique for In Situ Monitoring of Food Phase Transition.

    PubMed

    Song, Yukun; Cheng, Shasha; Wang, Huihui; Zhu, Bei-Wei; Zhou, Dayong; Yang, Peiqiang; Tan, Mingqian

    2018-01-24

    A nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) system with a 45 mm variable temperature (VT) sample probe (VT-NMR-MRI) was developed as an innovative technique for in situ monitoring of food phase transition. The system was designed to allow for dual deployment in either a freezing (-37 °C) or high temperature (150 °C) environment. The major breakthrough of the developed VT-NMR-MRI system is that it is able to measure the water states simultaneously in situ during food processing. The performance of the VT-NMR-MRI system was evaluated by measuring the phase transition for salmon flesh and hen egg samples. The NMR relaxometry results demonstrated that the freezing point of salmon flesh was -8.08 °C, and the salmon flesh denaturation temperature was 42.16 °C. The protein denaturation of egg was 70.61 °C, and the protein denaturation occurred at 24.12 min. Meanwhile, the use of MRI in phase transition of food was also investigated to gain internal structural information. All these results showed that the VT-NMR-MRI system provided an effective means for in situ monitoring of phase transition in food processing.

  16. Metamaterial Combining Electric- and Magnetic-Dipole-Based Configurations for Unique Dual-Band Signal Enhancement in Ultrahigh-Field Magnetic Resonance Imaging

    PubMed Central

    2017-01-01

    Magnetic resonance imaging and spectroscopy (MRI and MRS) are both widely used techniques in medical diagnostics and research. One of the major thrusts in recent years has been the introduction of ultrahigh-field magnets in order to boost the sensitivity. Several MRI studies have examined further potential improvements in sensitivity using metamaterials, focusing on single frequency applications. However, metamaterials have yet to reach a level that is practical for routine MRI use. In this work, we explore a new metamaterial implementation for MRI, a dual-nuclei resonant structure, which can be used for both proton and heteronuclear magnetic resonance. Our approach combines two configurations, one based on a set of electric dipoles for the low frequency band, and the second based on a set of magnetic dipoles for the high frequency band. We focus on the implementation of a dual-nuclei metamaterial for phosphorus and proton imaging and spectroscopy at an ultrahigh-field strength of 7 T. In vivo scans using this flexible and compact structure show that it locally enhances both the phosphorus and proton transmit and receive sensitivities. PMID:28901137

  17. Metamaterial Combining Electric- and Magnetic-Dipole-Based Configurations for Unique Dual-Band Signal Enhancement in Ultrahigh-Field Magnetic Resonance Imaging.

    PubMed

    Schmidt, Rita; Webb, Andrew

    2017-10-11

    Magnetic resonance imaging and spectroscopy (MRI and MRS) are both widely used techniques in medical diagnostics and research. One of the major thrusts in recent years has been the introduction of ultrahigh-field magnets in order to boost the sensitivity. Several MRI studies have examined further potential improvements in sensitivity using metamaterials, focusing on single frequency applications. However, metamaterials have yet to reach a level that is practical for routine MRI use. In this work, we explore a new metamaterial implementation for MRI, a dual-nuclei resonant structure, which can be used for both proton and heteronuclear magnetic resonance. Our approach combines two configurations, one based on a set of electric dipoles for the low frequency band, and the second based on a set of magnetic dipoles for the high frequency band. We focus on the implementation of a dual-nuclei metamaterial for phosphorus and proton imaging and spectroscopy at an ultrahigh-field strength of 7 T. In vivo scans using this flexible and compact structure show that it locally enhances both the phosphorus and proton transmit and receive sensitivities.

  18. Accuracy of magnetic resonance based susceptibility measurements

    NASA Astrophysics Data System (ADS)

    Erdevig, Hannah E.; Russek, Stephen E.; Carnicka, Slavka; Stupic, Karl F.; Keenan, Kathryn E.

    2017-05-01

    Magnetic Resonance Imaging (MRI) is increasingly used to map the magnetic susceptibility of tissue to identify cerebral microbleeds associated with traumatic brain injury and pathological iron deposits associated with neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Accurate measurements of susceptibility are important for determining oxygen and iron content in blood vessels and brain tissue for use in noninvasive clinical diagnosis and treatment assessments. Induced magnetic fields with amplitude on the order of 100 nT, can be detected using MRI phase images. The induced field distributions can then be inverted to obtain quantitative susceptibility maps. The focus of this research was to determine the accuracy of MRI-based susceptibility measurements using simple phantom geometries and to compare the susceptibility measurements with magnetometry measurements where SI-traceable standards are available. The susceptibilities of paramagnetic salt solutions in cylindrical containers were measured as a function of orientation relative to the static MRI field. The observed induced fields as a function of orientation of the cylinder were in good agreement with simple models. The MRI susceptibility measurements were compared with SQUID magnetometry using NIST-traceable standards. MRI can accurately measure relative magnetic susceptibilities while SQUID magnetometry measures absolute magnetic susceptibility. Given the accuracy of moment measurements of tissue mimicking samples, and the need to look at small differences in tissue properties, the use of existing NIST standard reference materials to calibrate MRI reference structures is problematic and better reference materials are required.

  19. Structural Image Analysis of the Brain in Neuropsychology Using Magnetic Resonance Imaging (MRI) Techniques.

    PubMed

    Bigler, Erin D

    2015-09-01

    Magnetic resonance imaging (MRI) of the brain provides exceptional image quality for visualization and neuroanatomical classification of brain structure. A variety of image analysis techniques provide both qualitative as well as quantitative methods to relate brain structure with neuropsychological outcome and are reviewed herein. Of particular importance are more automated methods that permit analysis of a broad spectrum of anatomical measures including volume, thickness and shape. The challenge for neuropsychology is which metric to use, for which disorder and the timing of when image analysis methods are applied to assess brain structure and pathology. A basic overview is provided as to the anatomical and pathoanatomical relations of different MRI sequences in assessing normal and abnormal findings. Some interpretive guidelines are offered including factors related to similarity and symmetry of typical brain development along with size-normalcy features of brain anatomy related to function. The review concludes with a detailed example of various quantitative techniques applied to analyzing brain structure for neuropsychological outcome studies in traumatic brain injury.

  20. Magnetic resonance imaging as a tool for extravehicular activity analysis

    NASA Technical Reports Server (NTRS)

    Dickenson, R.; Lorenz, C.; Peterson, S.; Strauss, A.; Main, J.

    1992-01-01

    The purpose of this research is to examine the value of magnetic resonance imaging (MRI) as a means of conducting kinematic studies of the hand for the purpose of EVA capability enhancement. After imaging the subject hand using a magnetic resonance scanner, the resulting 2D slices were reconstructed into a 3D model of the proximal phalanx of the left hand. Using the coordinates of several landmark positions, one is then able to decompose the motion of the rigid body. MRI offers highly accurate measurements due to its tomographic nature without the problems associated with other imaging modalities for in vivo studies.

  1. Diagnostic and clinical application value of magnetic resonance imaging (MRI) for progressive massive fibrosis of coal worker pneumoconiosis

    PubMed Central

    Zhang, Lansheng; Wang, Chun; Yan, Qiuyue; Zhang, Tao; Han, Zhengxiang; Jiang, Guan

    2017-01-01

    Abstract Rationale: Using magnetic resonance imaging (MRI), we diagnosed pneumoconiosis by identifying the content and distribution of hydrogen protons in the water molecules in different tissues and lesions. Patient concerns: 25 cases of CWP patients with progressive massive fibrosis (PMF) lesions. Diagnoses: Patients were correctly diagnosed, with one case each of Phase I and II pneumoconiosis and 23 cases of Phase III pneumoconiosis. Interventions: None. Outcomes: Through MRI, 39 PMF pneumoconiosis lesions exhibited equal, low or equally low, and uneven signals on T2WI and fat suppression (SPIR) (38/39, 37/39). Lessons: MRI has good specificity to identify the characteristics of PMF lesions of CWP, as well as has high application value for the differential diagnosis of lung cancer and other lung tumor-like lesions. PMID:28514304

  2. Magnetic resonance in studies of glaucoma

    PubMed Central

    Fiedorowicz, Michał; Dyda, Wojciech; Rejdak, Robert; Grieb, Paweł

    2011-01-01

    Summary Glaucoma is the second leading cause of blindness. It affects retinal ganglion cells and the optic nerve. However, there is emerging evidence that glaucoma also affects other components of the visual pathway and visual cortex. There is a need to employ new methods of in vivo brain evaluation to characterize these changes. Magnetic resonance (MR) techniques are well suited for this purpose. We review data on the MR evaluation of the visual pathway and the use of MR techniques in the study of glaucoma, both in humans and in animal models. These studies demonstrated decreases in optic nerve diameter, localized white matter loss and decrease in visual cortex density. Studies on rats employing manganese-enhanced MRI showed that axonal transport in the optic nerve is affected. Diffusion tensor MRI revealed signs of degeneration of the optic pathway. Functional MRI showed decreased response of the visual cortex after stimulation of the glaucomatous eye. Magnetic resonance spectroscopy demonstrated changes in metabolite levels in the visual cortex in a rat model of glaucoma, although not in glaucoma patients. Further applications of MR techniques in studies of glaucomatous brains are indicated. PMID:21959626

  3. MRI Safety during Pregnancy

    MedlinePlus

    ... during the exam? Contrast material MRI during pregnancy Magnetic resonance imaging (MRI) If you are pregnant and your doctor wants to perform a magnetic resonance imaging (MRI) exam, there is a possibility that your ...

  4. Magnetic Resonance Imaging of Adipose Tissue in Metabolic Dysfunction.

    PubMed

    Franz, Daniela; Syväri, Jan; Weidlich, Dominik; Baum, Thomas; Rummeny, Ernst J; Karampinos, Dimitrios C

    2018-06-06

     Adipose tissue has become an increasingly important tissue target in medicine. It plays a central role in the storage and release of energy throughout the human body and has recently gained interest for its endocrinologic function. Magnetic resonance imaging (MRI) is an established method for quantitative direct evaluation of adipose tissue distribution, and is used increasingly as the modality of choice for metabolic phenotyping. The purpose of this review was the identification and presentation of the currently available literature on MRI of adipose tissue in metabolic dysfunction.  A PubMed (http://www.ncbi.nlm.nih.gov/pubmed) keyword search up to August 2017 without starting date limitation was performed and reference lists of relevant articles were searched.  MRI provides excellent tools for the evaluation of adipose tissue distribution and further characterization of the tissue. Standard as well as newly developed MRI techniques allow a risk stratification for the development of metabolic dysfunction and enable monitoring without the use of ionizing radiation or contrast material.   · Different types of adipose tissue play a crucial role in various types of metabolic dysfunction.. · Magnetic resonance imaging (MRI) is an excellent tool for noninvasive adipose tissue evaluation with respect to distribution, composition and metabolic activity.. · Both standard and newly developed MRI techniques can be used for risk stratification for the development of metabolic dysfunction and allow monitoring without the use of ionizing radiation or contrast material.. · Franz D, Syväri J, Weidlich D et al. Magnetic Resonance Imaging of Adipose Tissue in Metabolic Dysfunction. Fortschr Röntgenstr 2018; DOI: 10.1055/a-0612-8006. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Assessing access to MRI of patients with magnetic resonance-conditional pacemaker and implantable cardioverter defibrillator systems: the Really ProMRI study design.

    PubMed

    Maglia, Giampiero; Curnis, Antonio; Brieda, Marco; Anaclerio, Matteo; Caccavo, Vincenzo; Bonfanti, Paolo; Melissano, Donato; Caravati, Fabrizio; Giovene, Lisa; Gargaro, Alessio

    2015-10-01

    Despite the fact that magnetic resonance (MR)-conditional pacemaker and lead systems have been introduced more than 5 years ago, it is still not clear whether they have actually facilitated the access of pacemaker patients to this important diagnostic tool. Factors limiting MR scans in daily practice in patients with MR-conditional cardiac implantable electronic device (CIED) systems may be related to organizational, cultural and sometimes legal aspects. The Really ProMRI registry is an ongoing survey designed to assess the annual rate of MR examinations in patients with MR-conditional implants, with either pacemakers or implantable cardioverter defibrillators, and to detect the main factors limiting MRI. The primary endpoint of the Really ProMRI registry is to assess the current access to MRI of patients with MR-conditional pacemaker or implantable cardioverter defibrillator systems during normal practice. Data in the literature reported a 17% annual incidence of medical conditions requiring MRI in CIED patients. The Really ProMRI registry has been designed to detect 4.5% absolute difference with an 80% statistical power, by recruiting 600 patients already implanted with MR-conditional CIED implant. Patients will be followed up for 1 year, during which they will be asked to refer any prescription, execution or denial of an MR examination by patient questionnaires and original source documents. The ongoing Really ProMRI registry will assess the actual rate of and factors limiting the access to MRI for patients with MR-conditional CIEDs.

  6. Smart Contrast Agents for Magnetic Resonance Imaging.

    PubMed

    Bonnet, Célia S; Tóth, Éva

    2016-01-01

    By visualizing bioactive molecules or biological parameters in vivo, molecular imaging is searching for information at the molecular level in living organisms. In addition to contributing to earlier and more personalized diagnosis in medicine, it also helps understand and rationalize the molecular factors underlying physiological and pathological processes. In magnetic resonance imaging (MRI), complexes of paramagnetic metal ions, mostly lanthanides, are commonly used to enhance the intrinsic image contrast. They rely either on the relaxation effect of these metal chelates (T(1) agents), or on the phenomenon of paramagnetic chemical exchange saturation transfer (PARACEST agents). In both cases, responsive molecular magnetic resonance imaging probes can be designed to report on various biomarkers of biological interest. In this context, we review recent work in the literature and from our group on responsive T(1) and PARACEST MRI agents for the detection of biogenic metal ions (such as calcium or zinc), enzymatic activities, or neurotransmitter release. These examples illustrate the general strategies that can be applied to create molecular imaging agents with an MRI detectable response to biologically relevant parameters.

  7. [CROHN'S DISEASE PATIENTS' SATISFACTION WITH COLONOSCOPY VERSUS ENTERO MAGNETIC RESONANCE IMAGING (MRI)].

    PubMed

    Cámara Viudez, G; Toro Flores, R; Villafruela Cives, M; Moral Cebrián, I; Tabernero Daveiga, S; Poves Martínez, E

    2014-12-01

    To evaluate satisfaction and preferences in Crohn's disease patients who have undergone a colonoscopy (CL) and a MRI colonography (MRI). As well as evaluate the effectiveness of the information system to collect the data. A sectional pilot study conducted through a satisfaction survey questionnaire for patients diagnosed with Crohn's disease (CD). Study patients were selected from the Gastroenterology Department in the Principe de Asturias University Hospital, where both the colonoscopy and the entero magnetic resonance imaging tests were done from the 1st of January to the 30th of June 2012. Surveys were conducted during July and August 2012. A total of 48 patients with Crohn's disease participated. Out of these, 24 were women and 24 were men. The mean age was 43 years (SD: 13.8). The worst score was obtained at the time of preparation for both procedures. If patients could choose they would prefer CL 23, 16 MRI and 9 were indifferent. The patients' preference for CL could be due to the administration of sedatives prior to the procedure. A procedure such as the CL which initially may result unpleasant for the patient is tolerated much better as a result of the sedation. In both tests, the preparations prior to the procedures are perceived as unpleasant. We will think about how to improve patients' tolerance to these preparations, maybe by giving more information as patients, because we don't know often how to do it properly, which could magnify this unpleasant perception.

  8. Quantitative susceptibility mapping (QSM): Decoding MRI data for a tissue magnetic biomarker

    PubMed Central

    Wang, Yi; Liu, Tian

    2015-01-01

    In MRI, the main magnetic field polarizes the electron cloud of a molecule, generating a chemical shift for observer protons within the molecule and a magnetic susceptibility inhomogeneity field for observer protons outside the molecule. The number of water protons surrounding a molecule for detecting its magnetic susceptibility is vastly greater than the number of protons within the molecule for detecting its chemical shift. However, the study of tissue magnetic susceptibility has been hindered by poor molecular specificities of hitherto used methods based on MRI signal phase and T2* contrast, which depend convolutedly on surrounding susceptibility sources. Deconvolution of the MRI signal phase can determine tissue susceptibility but is challenged by the lack of MRI signal in the background and by the zeroes in the dipole kernel. Recently, physically meaningful regularizations, including the Bayesian approach, have been developed to enable accurate quantitative susceptibility mapping (QSM) for studying iron distribution, metabolic oxygen consumption, blood degradation, calcification, demyelination, and other pathophysiological susceptibility changes, as well as contrast agent biodistribution in MRI. This paper attempts to summarize the basic physical concepts and essential algorithmic steps in QSM, to describe clinical and technical issues under active development, and to provide references, codes, and testing data for readers interested in QSM. Magn Reson Med 73:82–101, 2015. © 2014 The Authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance. This is an open access article under the terms of the Creative commons Attribution License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited. PMID:25044035

  9. Transcranial magnetic stimulation assisted by neuronavigation of magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Viesca, N. Angeline; Alcauter, S. Sarael; Barrios, A. Fernando; González, O. Jorge J.; Márquez, F. Jorge A.

    2012-10-01

    Technological advance has improved the way scientists and doctors can learn about the brain and treat different disorders. A non-invasive method used for this is Transcranial Magnetic Stimulation (TMS) based on neuron excitation by electromagnetic induction. Combining this method with functional Magnetic Resonance Images (fMRI), it is intended to improve the localization technique of cortical brain structures by designing an extracranial localization system, based on Alcauter et al. work.

  10. [Magnetic resonance imaging (MRI) in children and adolescents – study design of a feasibility study concerning examination related emotions].

    PubMed

    Jaite, Charlotte; Bachmann, Christian; Dewey, Marc; Weschke, Bernhard; Spors, Birgit; von Moers, Arpad; Napp, Adriane; Lehmkuhl, Ulrike; Kappel, Viola

    2013-11-01

    Numerous research centres apply magnetic resonance imaging (MRI) for research purposes in children. In view of this practical research, ethical concerns regarding the strains the study participants are exposed to during the MRI examination are discussed. The study evaluates whether an MRI examination induces negative emotions in children and adolescents which are more intense than the ones caused by electroencephalography (EEG), an examination method currently classified as causing "minimal stress." Furthermore, the emotional stress induced by the MRI examination in children and adolescents is compared with that induced in adults. The study gathers data on examination-related emotions in children (age 8-17;11, male and female) who undergo an MRI examination of the cerebrum with a medical indication. The comparison group is a sample of children and adolescents examined with EEG (age 8-17;11, male and female) as well as a sample of adults (age 18-65, male and female) examined with MRI. At present, the study is in the stage of data collection. This article presents the study design of the MRI research project.

  11. Recording event-related activity under hostile magnetic resonance environment: Is multimodal EEG/ERP-MRI recording possible?

    PubMed

    Karakaş, H M; Karakaş, S; Ozkan Ceylan, A; Tali, E T

    2009-08-01

    Event-related potentials (ERPs) have high temporal resolution, but insufficient spatial resolution; the converse is true for the functional imaging techniques. The purpose of the study was to test the utility of a multimodal EEG/ERP-MRI technique which combines electroencephalography (EEG) and magnetic resonance imaging (MRI) for a simultaneously high temporal and spatial resolution. The sample consisted of 32 healthy young adults of both sexes. Auditory stimuli were delivered according to the active and passive oddball paradigms in the MRI environment (MRI-e) and in the standard conditions of the electrophysiology laboratory environment (Lab-e). Tasks were presented in a fixed order. Participants were exposed to the recording environments in a counterbalanced order. EEG data were preprocessed for MRI-related artifacts. Source localization was made using a current density reconstruction technique. The ERP waveforms for the MRI-e were morphologically similar to those for the Lab-e. The effect of the recording environment, experimental paradigm and electrode location were analyzed using a 2x2x3 analysis of variance for repeated measures. The ERP components in the two environments showed parametric variations and characteristic topographical distributions. The calculated sources were in line with the related literature. The findings indicated effortful cognitive processing in MRI-e. The study provided preliminary data on the feasibility of the multimodal EEG/ERP-MRI technique. It also indicated lines of research that are to be pursued for a decisive testing of this technique and its implementation to clinical practice.

  12. Utility of magnetic resonance imaging and nuclear magnetic resonance-based metabolomics for quantification of inflammatory lung injury

    PubMed Central

    Serkova, Natalie J.; Van Rheen, Zachary; Tobias, Meghan; Pitzer, Joshua E.; Wilkinson, J. Erby; Stringer, Kathleen A.

    2008-01-01

    Magnetic resonance imaging (MRI) and metabolic nuclear magnetic resonance (NMR) spectroscopy are clinically available but have had little application in the quantification of experimental lung injury. There is a growing and unfulfilled need for predictive animal models that can improve our understanding of disease pathogenesis and therapeutic intervention. Integration of MRI and NMR could extend the application of experimental data into the clinical setting. This study investigated the ability of MRI and metabolic NMR to detect and quantify inflammation-mediated lung injury. Pulmonary inflammation was induced in male B6C3F1 mice by intratracheal administration of IL-1β and TNF-α under isoflurane anesthesia. Mice underwent MRI at 2, 4, 6, and 24 h after dosing. At 6 and 24 h lungs were harvested for metabolic NMR analysis. Data acquired from IL-1β+TNF-α-treated animals were compared with saline-treated control mice. The hyperintense-to-total lung volume (HTLV) ratio derived from MRI was higher in IL-1β+TNF-α-treated mice compared with control at 2, 4, and 6 h but returned to control levels by 24 h. The ability of MRI to detect pulmonary inflammation was confirmed by the association between HTLV ratio and histological and pathological end points. Principal component analysis of NMR-detectable metabolites also showed a temporal pattern for which energy metabolism-based biomarkers were identified. These data demonstrate that both MRI and metabolic NMR have utility in the detection and quantification of inflammation-mediated lung injury. Integration of these clinically available techniques into experimental models of lung injury could improve the translation of basic science knowledge and information to the clinic. PMID:18441091

  13. Magnetic resonance imaging based functional imaging in paediatric oncology.

    PubMed

    Manias, Karen A; Gill, Simrandip K; MacPherson, Lesley; Foster, Katharine; Oates, Adam; Peet, Andrew C

    2017-02-01

    Imaging is central to management of solid tumours in children. Conventional magnetic resonance imaging (MRI) is the standard imaging modality for tumours of the central nervous system (CNS) and limbs and is increasingly used in the abdomen. It provides excellent structural detail, but imparts limited information about tumour type, aggressiveness, metastatic potential or early treatment response. MRI based functional imaging techniques, such as magnetic resonance spectroscopy, diffusion and perfusion weighted imaging, probe tissue properties to provide clinically important information about metabolites, structure and blood flow. This review describes the role of and evidence behind these functional imaging techniques in paediatric oncology and implications for integrating them into routine clinical practice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The diagnostic test accuracy of magnetic resonance imaging, magnetic resonance arthrography and computer tomography in the detection of chondral lesions of the hip.

    PubMed

    Smith, Toby O; Simpson, Michael; Ejindu, Vivian; Hing, Caroline B

    2013-04-01

    The purpose of this study was to assess the diagnostic test accuracy of magnetic resonance imaging (MRI), magnetic resonance arthrography (MRA) and multidetector arrays in CT arthrography (MDCT) for assessing chondral lesions in the hip joint. A review of the published and unpublished literature databases was performed to identify all studies reporting the diagnostic test accuracy (sensitivity/specificity) of MRI, MRA or MDCT for the assessment of adults with chondral (cartilage) lesions of the hip with surgical comparison (arthroscopic or open) as the reference test. All included studies were reviewed using the quality assessment of diagnostic accuracy studies appraisal tool. Pooled sensitivity, specificity, likelihood ratios and diagnostic odds ratios were calculated with 95 % confidence intervals using a random-effects meta-analysis for MRI, MRA and MDCT imaging. Eighteen studies satisfied the eligibility criteria. These included 648 hips from 637 patients. MRI indicated a pooled sensitivity of 0.59 (95 % CI: 0.49-0.70) and specificity of 0.94 (95 % CI: 0.90-0.97), and MRA sensitivity and specificity values were 0.62 (95 % CI: 0.57-0.66) and 0.86 (95 % CI: 0.83-0.89), respectively. The diagnostic test accuracy for the detection of hip joint cartilage lesions is currently superior for MRI compared with MRA. There were insufficient data to perform meta-analysis for MDCT or CTA protocols. Based on the current limited diagnostic test accuracy of the use of magnetic resonance or CT, arthroscopy remains the most accurate method of assessing chondral lesions in the hip joint.

  15. Assessment of Renal Hemodynamics and Oxygenation by Simultaneous Magnetic Resonance Imaging (MRI) and Quantitative Invasive Physiological Measurements.

    PubMed

    Cantow, Kathleen; Arakelyan, Karen; Seeliger, Erdmann; Niendorf, Thoralf; Pohlmann, Andreas

    2016-01-01

    In vivo assessment of renal perfusion and oxygenation under (patho)physiological conditions by means of noninvasive diagnostic imaging is conceptually appealing. Blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) and quantitative parametric mapping of the magnetic resonance (MR) relaxation times T 2* and T 2 are thought to provide surrogates of renal tissue oxygenation. The validity and efficacy of this technique for quantitative characterization of local tissue oxygenation and its changes under different functional conditions have not been systematically examined yet and remain to be established. For this purpose, the development of an integrative multimodality approaches is essential. Here we describe an integrated hybrid approach (MR-PHYSIOL) that combines established quantitative physiological measurements with T 2* (T 2) mapping and MR-based kidney size measurements. Standardized reversible (patho)physiologically relevant interventions, such as brief periods of aortic occlusion, hypoxia, and hyperoxia, are used for detailing the relation between the MR-PHYSIOL parameters, in particular between renal T 2* and tissue oxygenation.

  16. Magnetic field simulation and shimming analysis of 3.0T superconducting MRI system

    NASA Astrophysics Data System (ADS)

    Yue, Z. K.; Liu, Z. Z.; Tang, G. S.; Zhang, X. C.; Duan, L. J.; Liu, W. C.

    2018-04-01

    3.0T superconducting magnetic resonance imaging (MRI) system has become the mainstream of modern clinical MRI system because of its high field intensity and high degree of uniformity and stability. It has broad prospects in scientific research and other fields. We analyze the principle of magnet designing in this paper. We also perform the magnetic field simulation and shimming analysis of the first 3.0T/850 superconducting MRI system in the world using the Ansoft Maxwell simulation software. We guide the production and optimization of the prototype based on the results of simulation analysis. Thus the magnetic field strength, magnetic field uniformity and magnetic field stability of the prototype is guided to achieve the expected target.

  17. Preoperative axillary lymph node evaluation in breast cancer patients by breast magnetic resonance imaging (MRI): Can breast MRI exclude advanced nodal disease?

    PubMed

    Hyun, Su Jeong; Kim, Eun-Kyung; Moon, Hee Jung; Yoon, Jung Hyun; Kim, Min Jung

    2016-11-01

    To evaluate the diagnostic performance of breast magnetic resonance imaging (MRI) in preoperative evaluation of axillary lymph node metastasis (ALNM) in breast cancer patients and to assess whether breast MRI can be used to exclude advanced nodal disease. A total of 425 patients were included in this study and breast MRI findings were retrospectively reviewed. The diagnostic performance of breast MRI for diagnosis of ALNM was evaluated in all patients, patients with neoadjuvant chemotherapy (NAC), and those without NAC (no-NAC). We evaluated whether negative MRI findings (cN0) can exclude advanced nodal disease (pN2-pN3) using the negative predictive value (NPV) in each group. The sensitivity and NPV of breast MRI in evaluation of ALNM was 51.3 % (60/117) and 83.3 % (284/341), respectively. For cN0 cases on MRI, pN2-pN3 manifested in 1.8 % (6/341) of the overall patients, 0.4 % (1/257) of the no-NAC group, and 6 % (5/84) of the NAC group. The NPV of negative MRI findings for exclusion of pN2-pN3 was higher for the no-NAC group than for the NAC group (99.6 % vs. 94.0 %, p = 0.039). Negative MRI findings (cN0) can exclude the presence of advanced nodal disease with an NPV of 99.6 % in the no-NAC group. • Breast MRI can be used to exclude advanced nodal disease (pN2-3). • Negative MRI allows breast cancer patients to avoid unnecessary axillary surgery (98.2 %). • Negative MRI findings exclude 99.6 % of pN2-pN3 in the no-NAC group. • Negative MRI findings exclude 96.0 % of pN2-pN3 in the NAC group.

  18. Electromyography as a recording system for eyeblink conditioning with functional magnetic resonance imaging.

    PubMed

    Knuttinen, M-G; Parrish, T B; Weiss, C; LaBar, K S; Gitelman, D R; Power, J M; Mesulam, M-M; Disterhoft, J F

    2002-10-01

    This study was designed to develop a suitable method of recording eyeblink responses while conducting functional magnetic resonance imaging (fMRI). Given the complexity of this behavioral setup outside of the magnet, this study sought to adapt and further optimize an approach to eyeblink conditioning that would be suitable for conducting event-related fMRI experiments. This method involved the acquisition of electromyographic (EMG) signals from the orbicularis oculi of the right eye, which were subsequently amplified and converted into an optical signal outside of the head coil. This optical signal was converted back into an electrical signal once outside the magnet room. Electromyography (EMG)-detected eyeblinks were used to measure responses in a delay eyeblink conditioning paradigm. Our results indicate that: (1) electromyography is a sensitive method for the detection of eyeblinks during fMRI; (2) minimal interactions or artifacts of the EMG signal were created from the magnetic resonance pulse sequence; and (3) no electromyography-related artifacts were detected in the magnetic resonance images. Furthermore, an analysis of the functional data showed areas of activation that have previously been shown in positron emission tomography studies of human eyeblink conditioning. Our results support the strength of this behavioral setup as a suitable method to be used in association with fMRI.

  19. Further studies on the effects of magnetic resonance imaging fields on middle ear implants.

    PubMed

    Applebaum, E L; Valvassori, G E

    1990-10-01

    We investigated the effects of magnetic resonance imaging (MRI) fields on 21 stapedectomy prostheses and other middle ear implants and two different receiver-stimulator modules from 22-channel cochlear implants. None of the middle ear implants was displaced by the magnetic field, except for one platinum-stainless steel stapedectomy piston. Magnetism was not induced in any of the middle ear implants subjected to prolonged exposure in the MRI scanner. We conclude that MRI could pose a hazard to patients who have had stapedectomy using certain platinum-stainless steel piston prostheses and to patients with cochlear implants. Magnetic resonance imaging should pose no hazard to patients who have had the other middle ear implants reported on in this and our previous investigation.

  20. Magnetic Resonance Imaging (MRI) Evaluation for Anterior Disc Displacement of the Temporomandibular Joint.

    PubMed

    Yang, Zhongjun; Wang, Mingguo; Ma, Yingwei; Lai, Qingguo; Tong, Dongdong; Zhang, Fenghe; Dong, Lili

    2017-02-08

    BACKGROUND Magnetic resonance imaging (MRI) is the criterion standard imaging technique for visualization of the temporomandibular joint (TMJ) region, and is currently considered the optimum modality for comprehensive evaluation in patients with temporomandibular joint disorder (TMD). This study was aimed at finding the value of MRI in pre-clinical diagnosis of TMJ disc displacement. MATERIAL AND METHODS Patients primarily diagnosed as having anterior disc displacement by clinical symptoms and X-ray were selected in the present study. MRI was used to evaluate surrounding anatomical structures and position, as well as morphological and signal intensity change between patients and normal controls. RESULTS Posterior band position was significantly different between the patient group and control group. At the maximum opened-mouth position, the location of disc intermediate zone returned to normal. At closed-mouth position, the thickness of anterior and middle, but not posterior, band increased. The motion range of the condyle in the anterior disc displacement without reduction (ADDWR) patient group was significantly less than the value in the anterior disc displacement with reduction (ADDR) patient group and the control group. Whether at closed-mouth position or maximum opened-mouth position, the exudate volume in the patient group was greater than in the normal group. CONCLUSIONS MRI can be successfully used to evaluate multiple morphological changes at different mouth positions of normal volunteers and patients. The disc-condyle relationship can serve as an important indicator in assessing anterior disc displacement, and can be used to distinguish disc displacement with or without reduction.

  1. Magnetic Resonance Imaging (MRI) Evaluation for Anterior Disc Displacement of the Temporomandibular Joint

    PubMed Central

    Yang, Zhongjun; Wang, Mingguo; Ma, Yingwei; Lai, Qingguo; Tong, Dongdong; Zhang, Fenghe; Dong, Lili

    2017-01-01

    Background Magnetic resonance imaging (MRI) is the criterion standard imaging technique for visualization of the temporomandibular joint (TMJ) region, and is currently considered the optimum modality for comprehensive evaluation in patients with temporomandibular joint disorder (TMD). This study was aimed at finding the value of MRI in pre-clinical diagnosis of TMJ disc displacement. Material/Methods Patients primarily diagnosed as having anterior disc displacement by clinical symptoms and X-ray were selected in the present study. MRI was used to evaluate surrounding anatomical structures and position, as well as morphological and signal intensity change between patients and normal controls. Results Posterior band position was significantly different between the patient group and control group. At the maximum opened-mouth position, the location of disc intermediate zone returned to normal. At closed-mouth position, the thickness of anterior and middle, but not posterior, band increased. The motion range of the condyle in the anterior disc displacement without reduction (ADDWR) patient group was significantly less than the value in the anterior disc displacement with reduction (ADDR) patient group and the control group. Whether at closed-mouth position or maximum opened-mouth position, the exudate volume in the patient group was greater than in the normal group. Conclusions MRI can be successfully used to evaluate multiple morphological changes at different mouth positions of normal volunteers and patients. The disc-condyle relationship can serve as an important indicator in assessing anterior disc displacement, and can be used to distinguish disc displacement with or without reduction. PMID:28176754

  2. Non-invasive in vivo evaluation of in situ forming PLGA implants by benchtop magnetic resonance imaging (BT-MRI) and EPR spectroscopy.

    PubMed

    Kempe, Sabine; Metz, Hendrik; Pereira, Priscila G C; Mäder, Karsten

    2010-01-01

    In the present study, we used benchtop magnetic resonance imaging (BT-MRI) for non-invasive and continuous in vivo studies of in situ forming poly(lactide-co-glycolide) (PLGA) implants without the use of contrast agents. Polyethylene glycol (PEG) 400 was used as an alternative solvent to the clinically used NMP. In addition to BT-MRI, we applied electron paramagnetic resonance (EPR) spectroscopy to characterize implant formation and drug delivery processes in vitro and in vivo. We were able to follow key processes of implant formation by EPR and MRI. Because EPR spectra are sensitive to polarity and mobility, we were able to follow the kinetics of the solvent/non-solvent exchange and the PLGA precipitation. Due to the high water affinity of PEG 400, we observed a transient accumulation of water in the implant neighbourhood. Furthermore, we detected the encapsulation by BT-MRI of the implant as a response of the biological system to the polymer, followed by degradation over a period of two months. We could show that MRI in general has the potential to get new insights in the in vivo fate of in situ forming implants. The study also clearly shows that BT-MRI is a new viable and much less expensive alternative for superconducting MRI machines to monitor drug delivery processes in vivo in small mammals. Copyright 2009 Elsevier B.V. All rights reserved.

  3. Magnetic resonance imaging (MRI) of PEM dehydration and gas manifold flooding during continuous fuel cell operation

    NASA Astrophysics Data System (ADS)

    Minard, Kevin R.; Viswanathan, Vilayanur V.; Majors, Paul D.; Wang, Li-Qiong; Rieke, Peter C.

    Magnetic resonance imaging (MRI) was employed for visualizing water inside a proton exchange membrane (PEM) fuel cell during 11.4 h of continuous operation with a constant load. Two-dimensional images acquired every 128 s revealed the formation of a dehydration front that propagated slowly over the surface of the fuel cell membrane-starting from gas inlets and progressing toward gas outlets. After traversing the entire PEM surface, channels in the gas manifold began to flood on the cathode side. To establish a qualitative understanding of these observations, acquired images were correlated to the current output and the operating characteristics of the fuel cell. Results demonstrate the power of MRI for visualizing changing water distributions during PEM fuel cell operation, and highlight its potential utility for studying the causes of cell failure and/or strategies of water management.

  4. [Magnetic resonance imaging of the penis. Its normal anatomy].

    PubMed

    Banchik, E L; Mineev, N I; Mitusov, V V; Dombrovskiĭ, V I; Kogan, M I

    2012-01-01

    To estimate the capabilities of magnetic resonance imaging (MRI) to identify penile anatomic structures and their topographic relationships. Penile MRI results were analyzed in 52 men of different ages who had no history, clinical, laboratory, and radiological data in favor of diseases of this organ. Penile imaging technology and its algorithm, including patient preparation and posi-tioning and a list of impulse sequences and their parameters, are proposed. Penile MRI and anatomy are described in detail; magnetic resonance signal characteristics of the main structural elements of the organ and its adjacent tissues on T1- and T2-weighted images are specified. The MRI morphometry results of the cavernous and spongy bodies, urethra, and penis as a whole, which agree well with the similar known literature data, are given. The investigation has provided evidence for the high informative value of the technique in recognizing the relatively small anatomic structures of the penis, which is comparable with that of the morphological study of a gross specimen of this organ, which in turn predetermines a further investigation of the capabilities of MRI to diagnose penile diseases and to estimate the quality of their treatment.

  5. Imaging of Groin Pain: Magnetic Resonance and Ultrasound Imaging Features.

    PubMed

    Lee, Susan C; Endo, Yoshimi; Potter, Hollis G

    Evaluation of groin pain in athletes may be challenging as pain is typically poorly localized and the pubic symphyseal region comprises closely approximated tendons and muscles. As such, magnetic resonance imaging (MRI) and ultrasound (US) may help determine the etiology of groin pain. A PubMed search was performed using the following search terms: ultrasound, magnetic resonance imaging, sports hernia, athletic pubalgia, and groin pain. Date restrictions were not placed on the literature search. Clinical review. Level 4. MRI is sensitive in diagnosing pathology in groin pain. Not only can MRI be used to image rectus abdominis/adductor longus aponeurosis and pubic bone pathology, but it can also evaluate other pathology within the hip and pelvis. MRI is especially helpful when groin pain is poorly localized. Real-time capability makes ultrasound useful in evaluating the pubic symphyseal region, as it can be used for evaluation and treatment. MRI and US are valuable in diagnosing pathology in athletes with groin pain, with the added utility of treatment using US-guided intervention. Strength-of Recommendation Taxonomy: C.

  6. [Gastric magnetic resonance study (methods, semiotics)].

    PubMed

    Stashuk, G A

    2003-01-01

    The paper shows the potentialities of gastric study by magnetic resonance imaging (MRI). The methodic aspects of gastric study have been worked out. The MRI-semiotics of the unchanged and tumor-affected wall of the stomach and techniques in examining patients with gastric cancer of various sites are described. Using the developed procedure, MRI was performed in 199 patients, including 154 patients with gastric pathology and 45 control individuals who had no altered gastric wall. Great emphasis is placed on the role of MRI in the diagnosis of endophytic (diffuse) gastric cancer that is of priority value in its morphological structure. MRI was found to play a role in the diagnosis of the spread of a tumorous process both along the walls of the stomach and to its adjacent anatomic structures.

  7. [Joint correction for motion artifacts and off-resonance artifacts in multi-shot diffusion magnetic resonance imaging].

    PubMed

    Wu, Wenchuan; Fang, Sheng; Guo, Hua

    2014-06-01

    Aiming at motion artifacts and off-resonance artifacts in multi-shot diffusion magnetic resonance imaging (MRI), we proposed a joint correction method in this paper to correct the two kinds of artifacts simultaneously without additional acquisition of navigation data and field map. We utilized the proposed method using multi-shot variable density spiral sequence to acquire MRI data and used auto-focusing technique for image deblurring. We also used direct method or iterative method to correct motion induced phase errors in the process of deblurring. In vivo MRI experiments demonstrated that the proposed method could effectively suppress motion artifacts and off-resonance artifacts and achieve images with fine structures. In addition, the scan time was not increased in applying the proposed method.

  8. Magnetic resonance imaging using chemical exchange saturation transfer

    NASA Astrophysics Data System (ADS)

    Park, Jaeseok

    2012-10-01

    Magnetic resonance imaging (MRI) has been widely used as a valuable diagnostic imaging modality that exploits water content and water relaxation properties to provide both structural and functional information with high resolution. Chemical exchange saturation transfer (CEST) in MRI has been recently introduced as a new mechanism of image contrast, wherein exchangeable protons from mobile proteins and peptides are indirectly detected through saturation transfer and are not observable using conventional MRI. It has been demonstrated that CEST MRI can detect important tissue metabolites and byproducts such as glucose, glycogen, and lactate. Additionally, CEST MRI is sensitive to pH or temperature and can calibrate microenvironment dependent on pH or temperature. In this work, we provide an overview on recent trends in CEST MRI, introducing general principles of CEST mechanism, quantitative description of proton transfer process between water pool and exchangeable solute pool in the presence or absence of conventional magnetization transfer effect, and its applications

  9. Off-resonance saturation magnetic resonance imaging of superparamagnetic polymeric micelles.

    PubMed

    Khemtong, Chalermchai; Kessinger, Chase W; Togao, Osamu; Ren, Jimin; Takahashi, Masaya; Sherry, A Dean; Gao, Jinming

    2009-01-01

    An off-resonance saturation (ORS) method was used for magnetic resonance imaging of superparamagnetic polymeric micelles (SPPM). SPPM was produced by encapsulating a cluster of magnetite nanoparticles (9.9+/-0.4 nm in diameter) in poly(ethylene glycol)-b-poly(D,L-lactide) (PEG-PLA) copolymer micelles (micelle diameter: 60+/-9 nm). In ORS MRI, a selective radiofrequency (RF) pulse was applied at an off-resonance position (0-50 ppm) from the bulk water signal, and the SPPM particles were visualized by the contrast on a division image constructed from two images acquired with and without pre-saturation. Here, the effects of saturation offset frequencies, saturation durations, and RF powers on ORS contrasts were investigated as these parameters are critical for optimization of ORS MRI for in vivo imaging applications. The ability to turn "ON" and "OFF" ORS contrast of SPPM solutions permits for an accurate image subtraction and a contrast enhancement to visualize SPPM probes for in vivo imaging of cancer.

  10. Association of quantitative magnetic resonance imaging parameters with histological findings from MRI/ultrasound fusion prostate biopsy.

    PubMed

    Dianat, Seyed Saeid; Carter, H Ballentine; Schaeffer, Edward M; Hamper, Ulrik M; Epstein, Jonathan I; Macura, Katarzyna J

    2015-10-01

    Purpose of this pilot study was to correlate quantitative parameters derived from the multiparametric magnetic resonance imaging (MP-MRI) of the prostate with results from MRI guided transrectal ultrasound (MRI/TRUS) fusion prostate biopsy in men with suspected prostate cancer. Thirty-nine consecutive patients who had 3.0T MP-MRI and subsequent MRI/TRUS fusion prostate biopsy were included and 73 MRI-identified targets were sampled by 177 cores. The pre-biopsy MP-MRI consisted of T2-weighted, diffusion weighted (DWI), and dynamic contrast enhanced (DCE) images. The association of quantitative MRI measurements with biopsy histopathology findings was assessed by Mann-Whitney U- test and Kruskal-Wallis test. Of 73 targets, biopsy showed benign prostate tissue in 46 (63%), cancer in 23 (31.5%), and atypia/high grade prostatic intraepithelial neoplasia in four (5.5%) targets. The median volume of cancer-positive targets was 1.3 cm3. The cancer-positive targets were located in the peripheral zone (56.5%), transition zone (39.1%), and seminal vesicle (4.3%). Nine of 23 (39.1%) cancer-positive targets were higher grade cancer (Gleason grade > 6). Higher grade targets and cancer-positive targets compared to benign lesions exhibited lower mean apparent diffusion coefficient (ADC) value (952.7 < 1167.9 < 1278.9), and lower minimal extracellular volume fraction (ECF) (0.13 < 0.185 < 0.213), respectively. The difference in parameters was more pronounced between higher grade cancer and benign lesions. Our findings from a pilot study indicate that quantitative MRI parameters can predict malignant histology on MRI/TRUS fusion prostate biopsy, which is a valuable technique to ensure adequate sampling of MRI-visible suspicious lesions under TRUS guidance and may impact patient management. The DWI-based quantitative measurement exhibits a stronger association with biopsy findings than the other MRI parameters.

  11. Repeatability of magnetic resonance fingerprinting T1 and T2 estimates assessed using the ISMRM/NIST MRI system phantom.

    PubMed

    Jiang, Yun; Ma, Dan; Keenan, Kathryn E; Stupic, Karl F; Gulani, Vikas; Griswold, Mark A

    2017-10-01

    The purpose of this study was to evaluate accuracy and repeatability of T 1 and T 2 estimates of a MR fingerprinting (MRF) method using the ISMRM/NIST MRI system phantom. The ISMRM/NIST MRI system phantom contains multiple compartments with standardized T 1 , T 2 , and proton density values. Conventional inversion-recovery spin echo and spin echo methods were used to characterize the T 1 and T 2 values in the phantom. The phantom was scanned using the MRF-FISP method over 34 consecutive days. The mean T 1 and T 2 values were compared with the values from the spin echo methods. The repeatability was characterized as the coefficient of variation of the measurements over 34 days. T 1 and T 2 values from MRF-FISP over 34 days showed a strong linear correlation with the measurements from the spin echo methods (R 2  = 0.999 for T 1 ; R 2  = 0.996 for T 2 ). The MRF estimates over the wide ranges of T 1 and T 2 values have less than 5% variation, except for the shortest T 2 relaxation times where the method still maintains less than 8% variation. MRF measurements of T 1 and T 2 are highly repeatable over time and across wide ranges of T 1 and T 2 values. Magn Reson Med 78:1452-1457, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  12. Functional Magnetic Resonance Imaging Methods

    PubMed Central

    Chen, Jingyuan E.; Glover, Gary H.

    2015-01-01

    Since its inception in 1992, Functional Magnetic Resonance Imaging (fMRI) has become an indispensible tool for studying cognition in both the healthy and dysfunctional brain. FMRI monitors changes in the oxygenation of brain tissue resulting from altered metabolism consequent to a task-based evoked neural response or from spontaneous fluctuations in neural activity in the absence of conscious mentation (the “resting state”). Task-based studies have revealed neural correlates of a large number of important cognitive processes, while fMRI studies performed in the resting state have demonstrated brain-wide networks that result from brain regions with synchronized, apparently spontaneous activity. In this article, we review the methods used to acquire and analyze fMRI signals. PMID:26248581

  13. Functional magnetic resonance imaging.

    PubMed

    Buchbinder, Bradley R

    2016-01-01

    Functional magnetic resonance imaging (fMRI) maps the spatiotemporal distribution of neural activity in the brain under varying cognitive conditions. Since its inception in 1991, blood oxygen level-dependent (BOLD) fMRI has rapidly become a vital methodology in basic and applied neuroscience research. In the clinical realm, it has become an established tool for presurgical functional brain mapping. This chapter has three principal aims. First, we review key physiologic, biophysical, and methodologic principles that underlie BOLD fMRI, regardless of its particular area of application. These principles inform a nuanced interpretation of the BOLD fMRI signal, along with its neurophysiologic significance and pitfalls. Second, we illustrate the clinical application of task-based fMRI to presurgical motor, language, and memory mapping in patients with lesions near eloquent brain areas. Integration of BOLD fMRI and diffusion tensor white-matter tractography provides a road map for presurgical planning and intraoperative navigation that helps to maximize the extent of lesion resection while minimizing the risk of postoperative neurologic deficits. Finally, we highlight several basic principles of resting-state fMRI and its emerging translational clinical applications. Resting-state fMRI represents an important paradigm shift, focusing attention on functional connectivity within intrinsic cognitive networks. © 2016 Elsevier B.V. All rights reserved.

  14. Magnetic resonance imaging of clays: swelling, sedimentation, dissolution

    NASA Astrophysics Data System (ADS)

    Dvinskikh, Sergey; Furo, Istvan

    2010-05-01

    While most magnetic resonance imaging (MRI) applications concern medical research, there is a rapidly increasing number of MRI studies in the field of environmental science and technology. In this presentation, MRI will be introduced from the latter perspective. While many processes in these areas are similar to those addressed in medical applications of MRI, parameters and experimental implementations are often quite different and, in many respects, far more demanding. This hinders direct transfer of existing methods developed for biomedical research, especially when facing the challenging task of obtaining spatially resolved quantitative information. In MRI investigation of soils, clays, and rocks, mainly water signal is detected, similarly to MRI of biological and medical samples. However, a strong variation of water mobility and a wide spread of water spin relaxation properties in these materials make it difficult to use standard MRI approaches. Other significant limitations can be identified as following: T2 relaxation and probe dead time effects; molecular diffusion artifacts; varying dielectric losses and induced currents in conductive samples; limited dynamic range; blurring artifacts accompanying drive for increasing sensitivity and/or imaging speed. Despite these limitations, by combining MRI techniques developed for solid and liquid states and using independent information on relaxation properties of water, interacting with the material of interest, true images of distributions of both water, material and molecular properties in a wide range of concentrations can be obtained. Examples of MRI application will be given in the areas of soil and mineral research where understanding water transport and erosion processes is one of the key challenges. Efforts in developing and adapting MRI approaches to study these kinds of systems will be outlined as well. Extensive studies of clay/water interaction have been carried out in order to provide a quantitative

  15. Accessible magnetic resonance imaging.

    PubMed

    Kaufman, L; Arakawa, M; Hale, J; Rothschild, P; Carlson, J; Hake, K; Kramer, D; Lu, W; Van Heteren, J

    1989-10-01

    The cost of magnetic resonance imaging (MRI) is driven by magnetic field strength. Misperceptions as to the impact of field strength on performance have led to systems that are more expensive than they need to be. Careful analysis of all the factors that affect diagnostic quality lead to the conclusion that field strength per se is not a strong determinant of system performance. Freed from the constraints imposed by high-field operation, it is possible to exploit a varied set of opportunities afforded by low-field operation. In addition to lower costs and easier siting, we can take advantage of shortened T1 times, higher contrast, reduced sensitivity to motion, and reduced radiofrequency power deposition. These conceptual advantages can be made to coalesce onto practical imaging systems. We describe a low-cost MRI system that utilizes a permanent magnet of open design. Careful optimization of receiving antennas and acquisition sequences permit performance levels consistent with those needed for an effective diagnostic unit. Ancillary advantages include easy access to the patient, reduced claustrophobia, quiet and comfortable operation, and absence of a missile effect. The system can be sited in 350 sq ft and consumes a modest amount of electricity. MRI equipment of this kind can widen the population base than can access this powerful and beneficial diagnostic modality.

  16. A novel high temperature superconducting magnetic flux pump for MRI magnets

    NASA Astrophysics Data System (ADS)

    Bai, Zhiming; Yan, Guo; Wu, Chunli; Ding, Shufang; Chen, Chuan

    2010-10-01

    This paper presents a kind of minitype magnetic flux pump made of high temperature superconductor. This kind of novel high temperature superconducting (HTS) flux pump has not any mechanical revolving parts or thermal switches. The excitation current of copper coils in magnetic pole system is controlled by a singlechip. The structure design and operational principle have been described. The operating performance of the new model magnetic flux pump has been preliminarily tested. The experiments show that the maximum pumping current is approximately 200 A for Bi2223 flux pump and 80 A for MgB 2 flux pump operating at 20 K. By comparison, it is discovered that the operating temperature range is wider, the ripple is smaller and the pumping frequency is higher in Bi2223 flux pump than those in MgB 2 flux pump. These results indicate that the newly developed Bi2223 magnetic flux pump may efficiently compensate the magnetic field decay in HTS magnet and make the magnet operate in persistent current mode, this point is significant to the magnetic resonance imaging (MRI) magnets. This new flux pump is under construction presently. It is expected that the Bi2223 flux pump would be applied to the superconducting MRI magnets by further optimizing structure and improving working process.

  17. Adjustable permanent magnet assembly for NMR and MRI

    DOEpatents

    Pines, Alexander; Paulsen, Jeffrey; Bouchard, Louis S; Blumich, Bernhard

    2013-10-29

    System and methods for designing and using single-sided magnet assemblies for magnetic resonance imaging (MRI) are disclosed. The single-sided magnet assemblies can include an array of permanent magnets disposed at selected positions. At least one of the permanent magnets can be configured to rotate about an axis of rotation in the range of at least +/-10 degrees and can include a magnetization having a vector component perpendicular to the axis of rotation. The single-sided magnet assemblies can further include a magnet frame that is configured to hold the permanent magnets in place while allowing the at least one of the permanent magnets to rotate about the axis of rotation.

  18. Comprehensive Review on Magnetic Resonance Imaging in Alzheimer's Disease.

    PubMed

    Dona, Olga; Thompson, Jeff; Druchok, Cheryl

    2016-01-01

    Alzheimer's disease (AD) is the most common cause of dementia in the elderly. However, definitive diagnosis of AD is only achievable postmortem and currently relies on clinical neurological evaluation. Magnetic resonance imaging (MRI) can evaluate brain changes typical of AD, including brain atrophy, presence of amyloid β (Aβ) plaques, and functional and biochemical abnormalities. Structural MRI (sMRI) has historically been used to assess the inherent brain atrophy present in AD. However, new techniques have recently emerged that have refined sMRI into a more precise tool to quantify the thickness and volume of AD-sensitive cerebral structures. Aβ plaques, a defining pathology of AD, are widely believed to contribute to the progressive cognitive decline in AD, but accurate assessment is only possible on autopsy. In vivo MRI of plaques, although currently limited to mouse models of AD, is a very promising technique. Measuring changes in activation and connectivity in AD-specific regions of the brain can be performed with functional MRI (fMRI). To help distinguish AD from diseases with similar symptoms, magnetic resonance spectroscopy (MRS) can be used to look for differing metabolite concentrations in vivo. Together, these MR techniques, evaluating various brain changes typical of AD, may help to provide a more definitive diagnosis and ease the assessment of the disease over time, noninvasively.

  19. Magnetic Resonance Microscopy of the Lung

    NASA Astrophysics Data System (ADS)

    Johnson, G. Allan

    1999-11-01

    The lung presents both challenges and opportunities for study by magnetic resonance imaging (MRI). The technical challenges arise from respiratory and cardiac motion, limited signal from the tissues, and unique physical structure of the lung. These challenges are heightened in magnetic resonance microscopy (MRM) where the spatial resolution may be up to a million times higher than that of conventional MRI. The development of successful techniques for MRM of the lung present enormous opportunities for basic studies of lung structure and function, toxicology, environmental stress, and drug discovery by permitting investigators to study this most essential organ nondestructively in the live animal. Over the last 15 years, scientists at the Duke Center for In Vivo Microscopy have developed techniques for MRM in the live animal through an interdisciplinary program of biology, physics, chemistry, electrical engineering, and computer science. This talk will focus on the development of specialized radiofrequency coils for lung imaging, projection encoding methods to limit susceptibility losses, specialized support structures to control and monitor physiologic motion, and the most recent development of hyperpolarized gas imaging with ^3He and ^129Xe.

  20. Thoracic magnetic resonance imaging: pulmonary thromboembolism.

    PubMed

    Fink, Christian; Henzler, Thomas; Shirinova, Aysel; Apfaltrer, Paul; Wasser, Klaus

    2013-05-01

    Ongoing technical developments have substantially improved the potential of magnetic resonance imaging (MRI) in the assessment of the pulmonary circulation. These developments includes improved magnet and hardware design, new k-space sampling techniques (ie, parallel imaging), and alternative contrast materials. With these techniques, not only can pulmonary vessels be visualized by MR angiography with high spatial resolution but also the perfusion of the lungs and its changes in relation to pulmonary thromboembolism (PE) can be assessed. Considering venous thromboembolism as a systemic disease, MR venography might be added for the diagnosis of underlying deep venous thrombosis. A unique advantage of MRI over other imaging tests is its potential to evaluate changes in cardiac function as a result of obstruction of the pulmonary circulation, which may have a significant impact on patient monitoring and treatment. Finally, MRI does not involve radiation, which is advantageous, especially in young patients. Over the years, a number of studies have shown promising results not only for MR angiography but also for MRI of lung perfusion and for MR venography. This review article summarizes and discusses the current evidence on pulmonary MRI for patients with suspected PE.

  1. Methotrexate-conjugated magnetic nanoparticles for thermochemotherapy and magnetic resonance imaging of tumor

    NASA Astrophysics Data System (ADS)

    Gao, Fuping; Yan, Zixing; Zhou, Jing; Cai, Yuanyuan; Tang, Jintian

    2012-10-01

    There is significant interest in recent years in developing magnetic nanoparticles (MNPs) having multifunctional characteristics with complimentary roles. In this study, methotrexate (MTX) was conjugated on the iron oxide magnetic nanoparticles surface via a poly(ethyleneimine) self-assembled monolayer (MTX-MNPs). The novel platform combined cancer chemotherapy, hyperthermia and potential monitoring of the progression of disease through magnetic resonance imaging (MRI). The conjugation of MTX on the magnetite surface was confirmed by Fourier transform infrared spectroscopy and change of zeta potential. Transmission electron microscope (TEM) showed that MTX-MNPs were morphologically spherical. The average diameter of MTX-MNPs was 30.1 ± 5.2 nm determined by dynamic light scattering. Magnetic measurements revealed that the saturation magnetization of MTX-MNPs reached 68.8 emu/g and the nanoparticles were superparamagnetic. The MTX-MNPs had good heating properties in an alternating magnetic field. TEM results showed that a larger number of MTX-MNPs were internalized into the MCF-7 cellular cytoplasm compared with the MNPs. The MTX-MNPs demonstrated highly synergistic antiproliferative effects of simultaneous chemotherapy and hyperthermia in MCF-7 breast cancer cells. A significant negative contrast enhancement was observed with magnetic resonance phantom imaging for MCF-7 cells over L929cells, when both were cultured with the nanoconjugate. The MTX-MNPs with combined characteristics of thermochemotherapy and MRI could be of high clinical significance in the treatment of tumor.

  2. Testing the quality of images for permanent magnet desktop MRI systems using specially designed phantoms.

    PubMed

    Qiu, Jianfeng; Wang, Guozhu; Min, Jiao; Wang, Xiaoyan; Wang, Pengcheng

    2013-12-21

    Our aim was to measure the performance of desktop magnetic resonance imaging (MRI) systems using specially designed phantoms, by testing imaging parameters and analysing the imaging quality. We designed multifunction phantoms with diameters of 18 and 60 mm for desktop MRI scanners in accordance with the American Association of Physicists in Medicine (AAPM) report no. 28. We scanned the phantoms with three permanent magnet 0.5 T desktop MRI systems, measured the MRI image parameters, and analysed imaging quality by comparing the data with the AAPM criteria and Chinese national standards. Image parameters included: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, signal-to-noise ratio (SNR), and image uniformity. The image parameters of three desktop MRI machines could be measured using our specially designed phantoms, and most parameters were in line with MRI quality control criterion, including: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, image uniformity and slice position accuracy. However, SNR was significantly lower than in some references. The imaging test and quality control are necessary for desktop MRI systems, and should be performed with the applicable phantom and corresponding standards.

  3. Accuracy of magnetic resonance imaging, magnetic resonance arthrography and computed tomography for the detection of chondral lesions of the knee.

    PubMed

    Smith, Toby O; Drew, Benjamin T; Toms, Andoni P; Donell, Simon T; Hing, Caroline B

    2012-12-01

    To assess the diagnostic test accuracy of magnetic resonance imaging (MRI), magnetic resonance arthrography (MRA) and computed tomography arthrography (CTA) for the detection of chondral lesions of the patellofemoral and tibiofemoral joints. A review of published and unpublished literature sources was conducted on 22nd September 2011. All studies assessing the diagnostic test accuracy (sensitivity/specificity) of MRI or MRA or CTA for the assessment of adults with chondral (cartilage) lesions of the knee (tibiofemoral/patellofemoral joints) with surgical comparison (arthroscopic or open) as the reference test were included. Data were analysed through meta-analysis. Twenty-seven studies assessing 2,592 knees from 2,509 patients were included. The findings indicated that whilst presenting a high specificity (0.95-0.99), the sensitivity of MRA, MRI and CTA ranged from 0.70 to 0.80. MRA was superior to MRI and CTA for the detection of patellofemoral joint chondral lesions and that higher field-strength MRI scanner and grade four lesions were more accurately detected compared with lower field-strength and grade one lesions. There appeared no substantial difference in diagnostic accuracy between the interpretation from musculoskeletal and general radiologists when undertaking an MRI review of tibiofemoral and patellofemoral chondral lesions. Specialist radiological imaging is specific for cartilage disease in the knee but has poorer sensitivity to determine the therapeutic options in this population. Due to this limitation, there remains little indication to replace the 'gold-standard' arthroscopic investigation with MRI, MRA or CTA for the assessment of adults with chondral lesions of the knee. II.

  4. Functional magnetic resonance imaging (fMRI)-aided therapeutics of Chinese speech area-related lesions: screening of fMRI-stimulating mode and its clinical applications.

    PubMed

    Wu, Nan; Xie, Bing; Wu, Guo-Cai; Lan, Chuan; Wang, Jian; Feng, Hua

    2010-01-01

    Language area-related lesion is a serious issue in neurosurgery. Removing the lesion in the language area and at the same time preserving language functions is a great challenge. In this study, we aimed to screen functional magnetic resonance imaging (fMRI) based task types suitable for activation of Broca and Wernicke areas in Chinese population, characterize lesion properties of functional area of Chinese language in brain, and assess the potential of fMRI-guided neuronavigation in clinical applications. Blood oxygen level-dependent fMRI has been used to localize language area prior to operation. We carried out extensive fMRI analyses and conducted operation on patients with lesions in speech area. fMRI tests revealed that the reciting task in Chinese can steadily activate the Broca area, and paragraph comprehension task in Chinese can effectively activate the Wernicke area. Cortical stimulation of patients when being awake during operation validated the sensitivity and accuracy of fMRI. The safe distance between language activation area and removal of the lesion in language area was determined to be about 10 mm. Further investigation suggested that navigation of fMRI combined with diffuse tensor imaging can decrease the incidence of postoperative dysfunction and increase the success rate for complete removal of lesion. Taken together, these findings may be helpful to clinical therapy for language area-related lesions.

  5. Review: Magnetic resonance imaging techniques in ophthalmology

    PubMed Central

    Fagan, Andrew J.

    2012-01-01

    Imaging the eye with magnetic resonance imaging (MRI) has proved difficult due to the eye’s propensity to move involuntarily over typical imaging timescales, obscuring the fine structure in the eye due to the resulting motion artifacts. However, advances in MRI technology help to mitigate such drawbacks, enabling the acquisition of high spatiotemporal resolution images with a variety of contrast mechanisms. This review aims to classify the MRI techniques used to date in clinical and preclinical ophthalmologic studies, describing the qualitative and quantitative information that may be extracted and how this may inform on ocular pathophysiology. PMID:23112569

  6. Magnetic resonance imaging of placenta accreta

    PubMed Central

    Varghese, Binoj; Singh, Navdeep; George, Regi A.N; Gilvaz, Sareena

    2013-01-01

    Placenta accreta (PA) is a severe pregnancy complication which occurs when the chorionic villi (CV) invade the myometrium abnormally. Optimal management requires accurate prenatal diagnosis. Ultrasonography (USG) and magnetic resonance imaging (MRI) are the modalities for prenatal diagnosis of PA, although USG remains the primary investigation of choice. MRI is a complementary technique and reserved for further characterization when USG is inconclusive or incomplete. Breath-hold T2-weighted half-Fourier rapid acquisition with relaxation enhancement (RARE) and balanced steady-state free precession imaging in the three orthogonal planes is the key MRI technique. Markedly heterogeneous placenta, thick intraplacental dark bands on half-Fourier acquisition single-shot turbo spin-echo (HASTE), and disorganized abnormal intraplacental vascularity are the cardinal MRI features of PA. MRI is less reliable in differentiating between different degrees of placental invasion, especially between accreta vera and increta. PMID:24604945

  7. Conductors for commercial MRI magnets beyond NbTi: requirements and challenges.

    PubMed

    Parizh, Michael; Lvovsky, Yuri; Sumption, Michael

    2017-01-01

    Magnetic Resonance Imaging (MRI), a powerful medical diagnostic tool, is the largest commercial application of superconductivity. The superconducting magnet is the largest and most expensive component of an MRI system. The magnet configuration is determined by competing requirements including optimized functional performance, patient comfort, ease of siting in a hospital environment, minimum acquisition and lifecycle cost including service. In this paper, we analyze conductor requirements for commercial MRI magnets beyond traditional NbTi conductors, while avoiding links to a particular magnet configuration or design decisions. Potential conductor candidates include MgB 2 , ReBCO and BSCCO options. The analysis shows that no MRI-ready non-NbTi conductor is commercially available at the moment. For some conductors, MRI specifications will be difficult to achieve in principle. For others, cost is a key barrier. In some cases, the prospects for developing an MRI-ready conductor are more favorable, but significant developments are still needed. The key needs include the development of, or significant improvements in: (a) conductors specifically designed for MRI applications, with form-fit-and-function readily integratable into the present MRI magnet technology with minimum modifications. Preferably, similar conductors should be available from multiple vendors; (b) conductors with improved quench characteristics, i.e. the ability to carry significant current without damage while in the resistive state; (c) insulation which is compatible with manufacturing and refrigeration technologies; (d) dramatic increases in production and long-length quality control, including large-volume conductor manufacturing technology. In-situ MgB 2 is, perhaps, the closest to meeting commercial and technical requirements to become suitable for commercial MRI. Conductor technology is an important, but not the only, issue in introduction of HTS / MgB 2 conductor into commercial MRI magnets

  8. Conductors for commercial MRI magnets beyond NbTi: requirements and challenges

    NASA Astrophysics Data System (ADS)

    Parizh, Michael; Lvovsky, Yuri; Sumption, Michael

    2017-01-01

    Magnetic resonance imaging (MRI), a powerful medical diagnostic tool, is the largest commercial application of superconductivity. The superconducting magnet is the largest and most expensive component of an MRI system. The magnet configuration is determined by competing requirements including optimized functional performance, patient comfort, ease of siting in a hospital environment, minimum acquisition and lifecycle cost including service. In this paper, we analyze conductor requirements for commercial MRI magnets beyond traditional NbTi conductors, while avoiding links to a particular magnet configuration or design decisions. Potential conductor candidates include MgB2, ReBCO and BSCCO options. The analysis shows that no MRI-ready non-NbTi conductor is commercially available at the moment. For some conductors, MRI specifications will be difficult to achieve in principle. For others, cost is a key barrier. In some cases, the prospects for developing an MRI-ready conductor are more favorable, but significant developments are still needed. The key needs include the development of, or significant improvements in: (a) conductors specifically designed for MRI applications, with form-fit-and-function readily integratable into the present MRI magnet technology with minimum modifications. Preferably, similar conductors should be available from multiple vendors; (b) conductors with improved quench characteristics, i.e. the ability to carry significant current without damage while in the resistive state; (c) insulation which is compatible with manufacturing and refrigeration technologies; (d) dramatic increases in production and long-length quality control, including large-volume conductor manufacturing technology. In-situ MgB2 is, perhaps, the closest to meeting commercial and technical requirements to become suitable for commercial MRI. Conductor technology is an important, but not the only, issue in introduction of HTS/MgB2 conductor into commercial MRI magnets. These

  9. Conductors for commercial MRI magnets beyond NbTi: requirements and challenges

    PubMed Central

    Parizh, Michael; Lvovsky, Yuri; Sumption, Michael

    2016-01-01

    Magnetic Resonance Imaging (MRI), a powerful medical diagnostic tool, is the largest commercial application of superconductivity. The superconducting magnet is the largest and most expensive component of an MRI system. The magnet configuration is determined by competing requirements including optimized functional performance, patient comfort, ease of siting in a hospital environment, minimum acquisition and lifecycle cost including service. In this paper, we analyze conductor requirements for commercial MRI magnets beyond traditional NbTi conductors, while avoiding links to a particular magnet configuration or design decisions. Potential conductor candidates include MgB2, ReBCO and BSCCO options. The analysis shows that no MRI-ready non-NbTi conductor is commercially available at the moment. For some conductors, MRI specifications will be difficult to achieve in principle. For others, cost is a key barrier. In some cases, the prospects for developing an MRI-ready conductor are more favorable, but significant developments are still needed. The key needs include the development of, or significant improvements in: (a) conductors specifically designed for MRI applications, with form-fit-and-function readily integratable into the present MRI magnet technology with minimum modifications. Preferably, similar conductors should be available from multiple vendors; (b) conductors with improved quench characteristics, i.e. the ability to carry significant current without damage while in the resistive state; (c) insulation which is compatible with manufacturing and refrigeration technologies; (d) dramatic increases in production and long-length quality control, including large-volume conductor manufacturing technology. In-situ MgB2 is, perhaps, the closest to meeting commercial and technical requirements to become suitable for commercial MRI. Conductor technology is an important, but not the only, issue in introduction of HTS / MgB2 conductor into commercial MRI magnets. These

  10. Pathologic Findings of Breast Lesions Detected on Magnetic Resonance Imaging.

    PubMed

    Jabbar, Seema B; Lynch, Beverly; Seiler, Stephen; Hwang, Helena; Sahoo, Sunati

    2017-11-01

    - Breast magnetic resonance imaging (MRI) is now used routinely for high-risk screening and in the evaluation of the extent of disease in newly diagnosed breast cancer patients. Morphologic characteristics and the kinetic pattern largely determine how suspicious a breast lesion is on MRI. Because of its high sensitivity, MRI identifies a large number of suspicious lesions. However, the low to moderate specificity and the additional cost have raised questions regarding its frequent use. - To identify the pathologic entities that frequently present as suspicious enhancing lesions and to identify specific MRI characteristics that may be predictive of malignancy. - One hundred seventy-seven MRI-guided biopsies from 152 patients were included in the study. The indication for MRI, MRI features, pathologic findings, and patient demographics were recorded. The MRI findings and the pathology slides were reviewed by a dedicated breast radiologist and breast pathologists. - Seventy-one percent (126 of 177) of MRI-guided breast biopsies were benign, 11% (20 of 177) showed epithelial atypia, and 18% (31 of 177) showed malignancy. The vast majority (84%; 62 of 74) of MRI lesions with persistent kinetics were benign. However, 57% (17 of 30) of lesions with washout kinetics and 65% (62 of 95) of mass lesions were also benign. - Magnetic resonance imaging detects malignancies undetected by other imaging modalities but also detects a wide variety of benign lesions. Benign and malignant lesions identified by MRI share similar morphologic and kinetic features, necessitating biopsy for histologic confirmation.

  11. Magnetic resonance beacon to detect intracellular microRNA during neurogenesis.

    PubMed

    Lee, Jonghwan; Jin, Yeon A; Ko, Hae Young; Lee, Yong Seung; Heo, Hyejung; Cho, Sujeong; Kim, Soonhag

    2015-02-01

    Magnetic resonance imaging (MRI) offers great spatial resolution for viewing deep tissues and anatomy. We developed a self-assembling signal-on magnetic fluorescence nanoparticle to visualize intracellular microRNAs (miRNAs or miRs) during neurogenesis using MRI. The self-assembling nanoparticle (miR124a MR beacon) was aggregated by the incubation of three different oligonucleotides: a 3' adaptor, a 5' adaptor, and a linker containing miR124a-binding sequences. The T2-weighted magnetic resonance (MR) signal of the self-assembled nanoparticle was quenched when miR124a was absent from test tubes or was minimally expressed in cells and tissues. When miR124a was present in test tubes or highly expressed in vitro and in vivo during P19 cell neurogenesis, it hybridized with the miR124a MR beacon, causing the linker to detach, resulting in increased signal-on MRI intensity. This MR beacon can be used as a new imaging probe to monitor the miRNA-mediated regulation of cellular processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Advanced magnetic resonance imaging of neurodegenerative diseases.

    PubMed

    Agosta, Federica; Galantucci, Sebastiano; Filippi, Massimo

    2017-01-01

    Magnetic resonance imaging (MRI) is playing an increasingly important role in the study of neurodegenerative diseases, delineating the structural and functional alterations determined by these conditions. Advanced MRI techniques are of special interest for their potential to characterize the signature of each neurodegenerative condition and aid both the diagnostic process and the monitoring of disease progression. This aspect will become crucial when disease-modifying (personalized) therapies will be established. MRI techniques are very diverse and go from the visual inspection of MRI scans to more complex approaches, such as manual and automatic volume measurements, diffusion tensor MRI, and functional MRI. All these techniques allow us to investigate the different features of neurodegeneration. In this review, we summarize the most recent advances concerning the use of MRI in some of the most important neurodegenerative conditions, putting an emphasis on the advanced techniques.

  13. Functional Nanoparticles for Magnetic Resonance Imaging

    PubMed Central

    Mao, Xinpei; Xu, Jiadi; Cui, Honggang

    2016-01-01

    Nanoparticle-based magnetic resonance imaging (MRI) contrast agents have received much attention over the past decade. By virtue of a high payload of magnetic moieties, enhanced accumulation at disease sites, and a large surface area for additional modification with targeting ligands, nanoparticle-based contrast agents offer promising new platforms to further enhance the high resolution and sensitivity of MRI for various biomedical applications. T2* superparamagnetic iron oxide nanoparticles (SPIONs) first demonstrated superior improvement on MRI sensitivity. The prevailing SPION attracted growing interest in the development of refined nanoscale versions of MRI contrast agents. Afterwards, T1-based contrast agents were developed, and became the most studied subject in MRI due to the positive contrast they provide that avoids the susceptibility associated with MRI signal reduction. Recently, chemical exchange saturation transfer (CEST) contrast agents have emerged and rapidly gained popularity. The unique aspect of CEST contrast agents is that their contrast can be selectively turned “on” and “off” by radiofrequency (RF) saturation. Their performance can be further enhanced by incorporating a large number of exchangeable protons into well-defined nanostructure. Besides activatable CEST contrast agents, there is growing interest in developing nanoparticle-based activatable MRI contrast agents responsive to stimuli (pH, enzyme, etc.), which improves sensitivity and specificity. In this review, we summarize the recent development of various types of nanoparticle-based MRI contrast agents, and have focused our discussions on the key advantages of introducing nanoparticles in MRI. PMID:27040463

  14. Magnetic resonance imaging of the normal bovine digit.

    PubMed

    Raji, A R; Sardari, K; Mirmahmoob, P

    2009-08-01

    The purpose of this study was defining the normal structures of the digits and hoof in Holstein dairy cattle using Magnetic Resonance Image (MRI). Transverse, Sagital and Dorsoplantar MRI images of three isolated cattle cadaver digits were obtained using Gyroscan T5-NT a magnet of 0.5 Tesla and T1 Weighted sequence. The MRI images were compared to corresponding frozen cross-sections and dissect specimens of the cadaver digits. Relevant anatomical structures were identified and labeled at each level. The MRI images provided anatomical detail of the digits and hoof in Holstein dairy cattle. Transversal images provided excellent depiction of anatomical structures when compared to corresponding frozen cross-sections. The information presented in this paper would serve as an initial reference to the evaluation of MRI images of the digits and hoof in Holstein dairy cattle, that can be used by radiologist, clinicians, surgeon or for research propose in bovine lameness.

  15. Optical Pumping Spin Exchange 3He Gas Cells for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Kim, W.; Stepanyan, S. S.; Kim, A.; Jung, Y.; Woo, S.; Yurov, M.; Jang, J.

    2009-08-01

    We present a device for spin-exchange optical pumping system to produce large quantities of polarized noble gases for Magnetic Resonance Imaging (MRI). A method and design of apparatus for pumping the polarization of noble gases is described. The method and apparatus enable production, storage and usage of hyperpolarized noble gases for different purposes, including Magnetic Resonance Imaging of human and animal subjects. Magnetic imaging agents breathed into lungs can be observed by the radio waves of the MRI scanner and report back physical and functional information about lung's health and desease. The technique known as spin exchange optical pumping is used. Nuclear magnetic resonance is implemented to measure the polarization of hyperpolarized gas. The cells prepared and sealed under high vacuum after handling Alkali metals into the cell and filling with the 3He-N2 mixture. The cells could be refilled. The 3He reaches around 50% polarization in 5-15 hours.

  16. Acoustic noise during functional magnetic resonance imaginga)

    PubMed Central

    Ravicz, Michael E.; Melcher, Jennifer R.; Kiang, Nelson Y.-S.

    2007-01-01

    Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For studies of the auditory system, acoustic noise generated during fMRI can interfere with assessments of this activation by introducing uncontrolled extraneous sounds. As a first step toward reducing the noise during fMRI, this paper describes the temporal and spectral characteristics of the noise present under typical fMRI study conditions for two imagers with different static magnetic field strengths. Peak noise levels were 123 and 138 dB re 20 μPa in a 1.5-tesla (T) and a 3-T imager, respectively. The noise spectrum (calculated over a 10-ms window coinciding with the highest-amplitude noise) showed a prominent maximum at 1 kHz for the 1.5-T imager (115 dB SPL) and at 1.4 kHz for the 3-T imager (131 dB SPL). The frequency content and timing of the most intense noise components indicated that the noise was primarily attributable to the readout gradients in the imaging pulse sequence. The noise persisted above background levels for 300-500 ms after gradient activity ceased, indicating that resonating structures in the imager or noise reverberating in the imager room were also factors. The gradient noise waveform was highly repeatable. In addition, the coolant pump for the imager’s permanent magnet and the room air handling system were sources of ongoing noise lower in both level and frequency than gradient coil noise. Knowledge of the sources and characteristics of the noise enabled the examination of general approaches to noise control that could be applied to reduce the unwanted noise during fMRI sessions. PMID:11051496

  17. GADOLINIUM(Gd)-BASED and Ion Oxide Nanoparticle Contrast Agents for Pre-Clinical and Clinical Magnetic Resonance Imaging (mri) Research

    NASA Astrophysics Data System (ADS)

    Ng, Thian C.

    2012-06-01

    It is known that one strength of MRI is its excellent soft tissue discrimination. It naturally provides sufficient contrast between the structural differences of normal and pathological tissues, their spatial extent and progression. However, to further extend its applications and enhance even more contrast for clinical studies, various Gadolinium (Gd)-based contrast agents have been developed for different organs (brain strokes, cancer, cardio-MRI, etc). These Gd-based contrast agents are paramagnetic compounds that have strong T1-effect for enhancing the contrast between tissue types. Gd-contrast can also enhance magnetic resonance angiography (CE-MRA) for studying stenosis and for measuring perfusion, vascular susceptibility, interstitial space, etc. Another class of contrast agents makes use of ferrite iron oxide nanoparticles (including Superparamagnetic Ion Oxide (SPIO) and Ultrasmall Superparamagnetic Iron Oxide (USPIO)). These nanoparticles have superior magnetic susceptibility effect and produce a drop in signal, namely in T2*-weighted images, useful for the determination of lymph nodes metastases, angiogenesis and arteriosclerosis plaques.

  18. Simple Fabrication of Gd(III)-DTPA-Nanodiamond Particles by Chemical Modification for Use as Magnetic Resonance Imaging (MRI) Contrast Agent

    NASA Astrophysics Data System (ADS)

    Nakamura, Takako; Ohana, Tsuguyori; Yabuno, Hajime; Kasai, Rumiko; Suzuki, Tetsuya; Hasebe, Terumitsu

    2013-01-01

    We have developed a simple and useful process for fabricating nanodiamond (ND) particles modified with an organogadolinium moiety by chemical modification for their use as a magnetic resonance imaging (MRI) contrast agent. The introduction of the organogadolinium moiety on the surface of the ND particles was performed by the condensation of ND and diethylenetriaminepentaacetic acid (DTPA) followed by treatment with GdCl3. The modified surfaces were evaluated by X-ray photoelectron spectroscopy, diffuse reflectance Fourier transform infrared spectroscopy, mass spectroscopy, and inductively coupled plasma atomic emission spectroscopy analyses. MRI experiments on the Gd-DTPA-ND particles indicated their high signal intensity on T1-weighted images.

  19. Error-related processing following severe traumatic brain injury: An event-related functional magnetic resonance imaging (fMRI) study

    PubMed Central

    Sozda, Christopher N.; Larson, Michael J.; Kaufman, David A.S.; Schmalfuss, Ilona M.; Perlstein, William M.

    2011-01-01

    Continuous monitoring of one’s performance is invaluable for guiding behavior towards successful goal attainment by identifying deficits and strategically adjusting responses when performance is inadequate. In the present study, we exploited the advantages of event-related functional magnetic resonance imaging (fMRI) to examine brain activity associated with error-related processing after severe traumatic brain injury (sTBI). fMRI and behavioral data were acquired while 10 sTBI participants and 12 neurologically-healthy controls performed a task-switching cued-Stroop task. fMRI data were analyzed using a random-effects whole-brain voxel-wise general linear model and planned linear contrasts. Behaviorally, sTBI patients showed greater error-rate interference than neurologically-normal controls. fMRI data revealed that, compared to controls, sTBI patients showed greater magnitude error-related activation in the anterior cingulate cortex (ACC) and an increase in the overall spatial extent of error-related activation across cortical and subcortical regions. Implications for future research and potential limitations in conducting fMRI research in neurologically-impaired populations are discussed, as well as some potential benefits of employing multimodal imaging (e.g., fMRI and event-related potentials) of cognitive control processes in TBI. PMID:21756946

  20. Error-related processing following severe traumatic brain injury: an event-related functional magnetic resonance imaging (fMRI) study.

    PubMed

    Sozda, Christopher N; Larson, Michael J; Kaufman, David A S; Schmalfuss, Ilona M; Perlstein, William M

    2011-10-01

    Continuous monitoring of one's performance is invaluable for guiding behavior towards successful goal attainment by identifying deficits and strategically adjusting responses when performance is inadequate. In the present study, we exploited the advantages of event-related functional magnetic resonance imaging (fMRI) to examine brain activity associated with error-related processing after severe traumatic brain injury (sTBI). fMRI and behavioral data were acquired while 10 sTBI participants and 12 neurologically-healthy controls performed a task-switching cued-Stroop task. fMRI data were analyzed using a random-effects whole-brain voxel-wise general linear model and planned linear contrasts. Behaviorally, sTBI patients showed greater error-rate interference than neurologically-normal controls. fMRI data revealed that, compared to controls, sTBI patients showed greater magnitude error-related activation in the anterior cingulate cortex (ACC) and an increase in the overall spatial extent of error-related activation across cortical and subcortical regions. Implications for future research and potential limitations in conducting fMRI research in neurologically-impaired populations are discussed, as well as some potential benefits of employing multimodal imaging (e.g., fMRI and event-related potentials) of cognitive control processes in TBI. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Efficient bias correction for magnetic resonance image denoising.

    PubMed

    Mukherjee, Partha Sarathi; Qiu, Peihua

    2013-05-30

    Magnetic resonance imaging (MRI) is a popular radiology technique that is used for visualizing detailed internal structure of the body. Observed MRI images are generated by the inverse Fourier transformation from received frequency signals of a magnetic resonance scanner system. Previous research has demonstrated that random noise involved in the observed MRI images can be described adequately by the so-called Rician noise model. Under that model, the observed image intensity at a given pixel is a nonlinear function of the true image intensity and of two independent zero-mean random variables with the same normal distribution. Because of such a complicated noise structure in the observed MRI images, denoised images by conventional denoising methods are usually biased, and the bias could reduce image contrast and negatively affect subsequent image analysis. Therefore, it is important to address the bias issue properly. To this end, several bias-correction procedures have been proposed in the literature. In this paper, we study the Rician noise model and the corresponding bias-correction problem systematically and propose a new and more effective bias-correction formula based on the regression analysis and Monte Carlo simulation. Numerical studies show that our proposed method works well in various applications. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Imaging of Groin Pain: Magnetic Resonance and Ultrasound Imaging Features

    PubMed Central

    Lee, Susan C.; Endo, Yoshimi; Potter, Hollis G.

    2017-01-01

    Context: Evaluation of groin pain in athletes may be challenging as pain is typically poorly localized and the pubic symphyseal region comprises closely approximated tendons and muscles. As such, magnetic resonance imaging (MRI) and ultrasound (US) may help determine the etiology of groin pain. Evidence Acquisition: A PubMed search was performed using the following search terms: ultrasound, magnetic resonance imaging, sports hernia, athletic pubalgia, and groin pain. Date restrictions were not placed on the literature search. Study Design: Clinical review. Level of Evidence: Level 4. Results: MRI is sensitive in diagnosing pathology in groin pain. Not only can MRI be used to image rectus abdominis/adductor longus aponeurosis and pubic bone pathology, but it can also evaluate other pathology within the hip and pelvis. MRI is especially helpful when groin pain is poorly localized. Real-time capability makes ultrasound useful in evaluating the pubic symphyseal region, as it can be used for evaluation and treatment. Conclusion: MRI and US are valuable in diagnosing pathology in athletes with groin pain, with the added utility of treatment using US-guided intervention. Strength-of Recommendation Taxonomy: C PMID:28850315

  3. Magnetic resonance imaging in evaluating workers' compensation patients.

    PubMed

    Babbel, Daniel; Rayan, Ghazi

    2012-04-01

    We studied the utility of magnetic resonance imaging (MRI) studies for workers' compensation patients with hand conditions in which the referring doctor obtained the images. We compared the MRI findings with the eventual clinical findings. We also investigated the approximate cost of these MRI studies. We retrospectively reviewed the charts of all workers' compensation patients seen in a hand and upper extremity practice over the course of 3 years. We selected patients who had MRI studies of the affected upper extremities before referral to the senior author (G.R.). We reviewed the charts for information regarding demographics, referral diagnoses, MRI diagnoses made by the radiologist, the area of the upper extremity studied, and eventual clinical diagnoses by the senior author. We made a determination as to whether a hand surgeon could have adequately diagnosed and treated the patients' conditions without the imaging studies. We also investigated the cost associated with these MRIs. We included 62 patients with a total of 67 MRI scans in this study. The MRI studies did not contribute to clinically diagnosing the patients' conditions in any of the cases we reviewed. The hand surgeon's clinical diagnosis disagreed with the radiologist's MRI diagnosis in 63% of patients. The MRI was unnecessary to arrive at the clinical diagnosis and did not influence the treatment offered for any of the 62 patients. The total cost for the 67 non-contrast MRI studies was approximately $53,000. Costly imaging studies are frequently done to determine the validity of a patient's reported problems; unfortunately, these tests are frequently unnecessary and waste resources. Magnetic resonance imaging scans may not be the standard for accurate diagnosis and can misdirect care. Therapeutic III. Copyright © 2012 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  4. Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures

    NASA Astrophysics Data System (ADS)

    Lu, George J.; Farhadi, Arash; Szablowski, Jerzy O.; Lee-Gosselin, Audrey; Barnes, Samuel R.; Lakshmanan, Anupama; Bourdeau, Raymond W.; Shapiro, Mikhail G.

    2018-05-01

    Non-invasive biological imaging requires materials capable of interacting with deeply penetrant forms of energy such as magnetic fields and sound waves. Here, we show that gas vesicles (GVs), a unique class of gas-filled protein nanostructures with differential magnetic susceptibility relative to water, can produce robust contrast in magnetic resonance imaging (MRI) at sub-nanomolar concentrations, and that this contrast can be inactivated with ultrasound in situ to enable background-free imaging. We demonstrate this capability in vitro, in cells expressing these nanostructures as genetically encoded reporters, and in three model in vivo scenarios. Genetic variants of GVs, differing in their magnetic or mechanical phenotypes, allow multiplexed imaging using parametric MRI and differential acoustic sensitivity. Additionally, clustering-induced changes in MRI contrast enable the design of dynamic molecular sensors. By coupling the complementary physics of MRI and ultrasound, this nanomaterial gives rise to a distinct modality for molecular imaging with unique advantages and capabilities.

  5. Magnetic resonance imaging of the fetal brain.

    PubMed

    Tee, L Mf; Kan, E Yl; Cheung, J Cy; Leung, W C

    2016-06-01

    This review covers the recent literature on fetal brain magnetic resonance imaging, with emphasis on techniques, advances, common indications, and safety. We conducted a search of MEDLINE for articles published after 2010. The search terms used were "(fetal OR foetal OR fetus OR foetus) AND (MR OR MRI OR [magnetic resonance]) AND (brain OR cerebral)". Consensus statements from major authorities were also included. As a result, 44 relevant articles were included and formed the basis of this review. One major challenge is fetal motion that is largely overcome by ultra-fast sequences. Currently, single-shot fast spin-echo T2-weighted imaging remains the mainstay for motion resistance and anatomical delineation. Recently, a snap-shot inversion recovery sequence has enabled robust T1-weighted images to be obtained, which is previously a challenge for standard gradient-echo acquisitions. Fetal diffusion-weighted imaging, diffusion tensor imaging, and magnetic resonance spectroscopy are also being developed. With multiplanar capabilities, superior contrast resolution and field of view, magnetic resonance imaging does not have the limitations of sonography, and can provide additional important information. Common indications include ventriculomegaly, callosum and posterior fossa abnormalities, and twin complications. There are safety concerns about magnetic resonance-induced heating and acoustic damage but current literature showed no conclusive evidence of deleterious fetal effects. The American College of Radiology guideline states that pregnant patients can be accepted to undergo magnetic resonance imaging at any stage of pregnancy if risk-benefit ratio to patients warrants that the study be performed. Magnetic resonance imaging of the fetal brain is a safe and powerful adjunct to sonography in prenatal diagnosis. It can provide additional information that aids clinical management, prognostication, and counselling.

  6. A simple anaesthetic and monitoring system for magnetic resonance imaging.

    PubMed

    Rejger, V S; Cohn, B F; Vielvoye, G J; de Raadt, F B

    1989-09-01

    Clinical magnetic resonance imaging (MRI) is a digital tomographic technique which utilizes radio waves emitted by hydrogen protons in a powerful magnetic field to form an image of soft-tissue structures and abnormalities within the body. Unfortunately, because of the relatively long scanning time required and the narrow deep confines of the MRI tunnel and Faraday cage, some patients cannot be examined without the use of heavy sedation or general anaesthesia. Due to poor access to the patient and the strong magnetic field, several problems arise in monitoring and administering anaesthesia during this procedure. In this presentation these problems and their solutions, as resolved by our institution, are discussed. Of particular interest is the anaesthesia circuit specifically adapted for use during MRI scanning.

  7. Vision 20/20: Magnetic resonance imaging-guided attenuation correction in PET/MRI: Challenges, solutions, and opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehranian, Abolfazl; Arabi, Hossein; Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch

    Attenuation correction is an essential component of the long chain of data correction techniques required to achieve the full potential of quantitative positron emission tomography (PET) imaging. The development of combined PET/magnetic resonance imaging (MRI) systems mandated the widespread interest in developing novel strategies for deriving accurate attenuation maps with the aim to improve the quantitative accuracy of these emerging hybrid imaging systems. The attenuation map in PET/MRI should ideally be derived from anatomical MR images; however, MRI intensities reflect proton density and relaxation time properties of biological tissues rather than their electron density and photon attenuation properties. Therefore, inmore » contrast to PET/computed tomography, there is a lack of standardized global mapping between the intensities of MRI signal and linear attenuation coefficients at 511 keV. Moreover, in standard MRI sequences, bones and lung tissues do not produce measurable signals owing to their low proton density and short transverse relaxation times. MR images are also inevitably subject to artifacts that degrade their quality, thus compromising their applicability for the task of attenuation correction in PET/MRI. MRI-guided attenuation correction strategies can be classified in three broad categories: (i) segmentation-based approaches, (ii) atlas-registration and machine learning methods, and (iii) emission/transmission-based approaches. This paper summarizes past and current state-of-the-art developments and latest advances in PET/MRI attenuation correction. The advantages and drawbacks of each approach for addressing the challenges of MR-based attenuation correction are comprehensively described. The opportunities brought by both MRI and PET imaging modalities for deriving accurate attenuation maps and improving PET quantification will be elaborated. Future prospects and potential clinical applications of these techniques and their integration in

  8. Vision 20/20: Magnetic resonance imaging-guided attenuation correction in PET/MRI: Challenges, solutions, and opportunities.

    PubMed

    Mehranian, Abolfazl; Arabi, Hossein; Zaidi, Habib

    2016-03-01

    Attenuation correction is an essential component of the long chain of data correction techniques required to achieve the full potential of quantitative positron emission tomography (PET) imaging. The development of combined PET/magnetic resonance imaging (MRI) systems mandated the widespread interest in developing novel strategies for deriving accurate attenuation maps with the aim to improve the quantitative accuracy of these emerging hybrid imaging systems. The attenuation map in PET/MRI should ideally be derived from anatomical MR images; however, MRI intensities reflect proton density and relaxation time properties of biological tissues rather than their electron density and photon attenuation properties. Therefore, in contrast to PET/computed tomography, there is a lack of standardized global mapping between the intensities of MRI signal and linear attenuation coefficients at 511 keV. Moreover, in standard MRI sequences, bones and lung tissues do not produce measurable signals owing to their low proton density and short transverse relaxation times. MR images are also inevitably subject to artifacts that degrade their quality, thus compromising their applicability for the task of attenuation correction in PET/MRI. MRI-guided attenuation correction strategies can be classified in three broad categories: (i) segmentation-based approaches, (ii) atlas-registration and machine learning methods, and (iii) emission/transmission-based approaches. This paper summarizes past and current state-of-the-art developments and latest advances in PET/MRI attenuation correction. The advantages and drawbacks of each approach for addressing the challenges of MR-based attenuation correction are comprehensively described. The opportunities brought by both MRI and PET imaging modalities for deriving accurate attenuation maps and improving PET quantification will be elaborated. Future prospects and potential clinical applications of these techniques and their integration in commercial

  9. WE-DE-206-02: MRI Hardware - Magnet, Gradient, RF Coils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocharian, A.

    Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner,more » and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.« less

  10. Music-Based Magnetic Resonance Fingerprinting to Improve Patient Comfort During MRI Exams

    PubMed Central

    Ma, Dan; Pierre, Eric Y.; Jiang, Yun; Schluchter, Mark D.; Setsompop, Kawin; Gulani, Vikas; Griswold, Mark A.

    2015-01-01

    Purpose The unpleasant acoustic noise is an important drawback of almost every magnetic resonance imaging scan. Instead of reducing the acoustic noise to improve patient comfort, a method is proposed to mitigate the noise problem by producing musical sounds directly from the switching magnetic fields while simultaneously quantifying multiple important tissue properties. Theory and Methods MP3 music files were converted to arbitrary encoding gradients, which were then used with varying flip angles and TRs in both 2D and 3D MRF exam. This new acquisition method named MRF-Music was used to quantify T1, T2 and proton density maps simultaneously while providing pleasing sounds to the patients. Results The MRF-Music scans were shown to significantly improve the patients' comfort during the MRI scans. The T1 and T2 values measured from phantom are in good agreement with those from the standard spin echo measurements. T1 and T2 values from the brain scan are also close to previously reported values. Conclusions MRF-Music sequence provides significant improvement of the patient's comfort as compared to the MRF scan and other fast imaging techniques such as EPI and TSE scans. It is also a fast and accurate quantitative method that quantifies multiple relaxation parameter simultaneously. PMID:26178439

  11. Technological challenges in Magnetic Resonance Imaging: enhancing sensitivity, moving to quantitative imaging and searching for disease biomarkers

    NASA Astrophysics Data System (ADS)

    Retico, A.

    2018-02-01

    Diagnostic imaging based on the Nuclear Magnetic Resonance phenomenon has increasingly spread in the recent few decades, mainly owing to its exquisite capability in depicting a contrast between soft tissues, to its generally non-invasive nature, and to the priceless advantage of using non-ionizing radiation. Magnetic Resonance (MR)-based acquisition techniques allow gathering information on the structure (through Magnetic Resonance Imaging— MRI), the metabolic composition (through Magnetic Resonance Spectroscopy—MRS), and the functioning (through functional MRI —fMRI) of the human body. MR investigations are the methods of choice for studying the brain in vivo, including anatomy, structural wiring and functional connectivity, in healthy and pathological conditions. Alongside the efforts of the clinical research community in extending the acquisition protocols to allow the exploration of a large variety of pathologies affecting diverse body regions, some relevant technological improvements are on the way to maximize the impact of MR in medical diagnostic. The development of MR scanners operating at ultra-high magnetic field (UHF) strength (>= 7 tesla), is pushing forward the spatial resolution of MRI and the spectral resolution of MRS, and it is increasing the specificity of fMRI to grey matter signal. UHF MR systems are currently in use for research purposes only; nevertheless, UHF technological advances are positively affecting MR investigations at clinical field strengths. To overcome the current major limitation of MRI, which is mostly based on contrast between tissues rather than on absolute measurements of physical quantities, a new acquisition modality is under development, which is referred as Magnetic Resonance Fingerprinting technique. Finally, as neuroimaging data acquired worldwide are reaching the typical size of Big Data, dedicated technical solutions are required to mine large amount of information and to identify specific biomarkers of

  12. Advanced and Conventional Magnetic Resonance Imaging in Neuropsychiatric Lupus

    PubMed Central

    Sarbu, Nicolae; Bargalló, Núria; Cervera, Ricard

    2015-01-01

    Neuropsychiatric lupus is a major diagnostic challenge, and a main cause of morbidity and mortality in patients with systemic lupus erythematosus (SLE). Magnetic resonance imaging (MRI) is, by far, the main tool for assessing the brain in this disease. Conventional and advanced MRI techniques are used to help establishing the diagnosis, to rule out alternative diagnoses, and recently, to monitor the evolution of the disease. This review explores the neuroimaging findings in SLE, including the recent advances in new MRI methods. PMID:26236469

  13. Monitoring Cartilage Tissue Engineering Using Magnetic Resonance Spectroscopy, Imaging, and Elastography

    PubMed Central

    Klatt, Dieter; Magin, Richard L.

    2013-01-01

    A key technical challenge in cartilage tissue engineering is the development of a noninvasive method for monitoring the composition, structure, and function of the tissue at different growth stages. Due to its noninvasive, three-dimensional imaging capabilities and the breadth of available contrast mechanisms, magnetic resonance imaging (MRI) techniques can be expected to play a leading role in assessing engineered cartilage. In this review, we describe the new MR-based tools (spectroscopy, imaging, and elastography) that can provide quantitative biomarkers for cartilage tissue development both in vitro and in vivo. Magnetic resonance spectroscopy can identify the changing molecular structure and alternations in the conformation of major macromolecules (collagen and proteoglycans) using parameters such as chemical shift, relaxation rates, and magnetic spin couplings. MRI provides high-resolution images whose contrast reflects developing tissue microstructure and porosity through changes in local relaxation times and the apparent diffusion coefficient. Magnetic resonance elastography uses low-frequency mechanical vibrations in conjunction with MRI to measure soft tissue mechanical properties (shear modulus and viscosity). When combined, these three techniques provide a noninvasive, multiscale window for characterizing cartilage tissue growth at all stages of tissue development, from the initial cell seeding of scaffolds to the development of the extracellular matrix during construct incubation, and finally, to the postimplantation assessment of tissue integration in animals and patients. PMID:23574498

  14. Nanoamplifiers synthesized from gadolinium and gold nanocomposites for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Tian, Xiumei; Shao, Yuanzhi; He, Haoqiang; Liu, Huan; Shen, Yingying; Huang, Wenlin; Li, Li

    2013-03-01

    We have synthesized an efficient and highly sensitive nanoamplifier composed of gadolinium-doped silica nanoparticles and gold nanoparticles (AuNPs). Magnetic resonance imaging (MRI) in vitro and in vivo assays revealed enhancement of signal sensitivity, which may be explained by electron transfer between water and gadolinium-doped nanoparticles, apparent in the presence of gold. In vitro and in vivo evaluation demonstrated nanoamplifier incurred minimal cytotoxicity and immunotoxicity, increased stability, and gradual excretion patterns. Tumor targeted properties were preliminarily determined when the nanoamplifier was injected into mouse models of colon cancer liver metastasis. Furthermore, although AuNPs departed from the nanoamplifiers in specific mice tissues, optical and magnetic resonance imaging was efficient, especially in metastatic tumors. These assays validate our nanoamplifier as an effective MRI signal enhancer with sensitive cancer diagnosis potential.We have synthesized an efficient and highly sensitive nanoamplifier composed of gadolinium-doped silica nanoparticles and gold nanoparticles (AuNPs). Magnetic resonance imaging (MRI) in vitro and in vivo assays revealed enhancement of signal sensitivity, which may be explained by electron transfer between water and gadolinium-doped nanoparticles, apparent in the presence of gold. In vitro and in vivo evaluation demonstrated nanoamplifier incurred minimal cytotoxicity and immunotoxicity, increased stability, and gradual excretion patterns. Tumor targeted properties were preliminarily determined when the nanoamplifier was injected into mouse models of colon cancer liver metastasis. Furthermore, although AuNPs departed from the nanoamplifiers in specific mice tissues, optical and magnetic resonance imaging was efficient, especially in metastatic tumors. These assays validate our nanoamplifier as an effective MRI signal enhancer with sensitive cancer diagnosis potential. Electronic supplementary information

  15. The hidden-Markov brain: comparison and inference of white matter hyperintensities on magnetic resonance imaging (MRI)

    NASA Astrophysics Data System (ADS)

    Pham, Tuan D.; Salvetti, Federica; Wang, Bing; Diani, Marco; Heindel, Walter; Knecht, Stefan; Wersching, Heike; Baune, Bernhard T.; Berger, Klaus

    2011-02-01

    Rating and quantification of cerebral white matter hyperintensities on magnetic resonance imaging (MRI) are important tasks in various clinical and scientific settings. As manual evaluation is time consuming and imprecise, much effort has been made to automate the quantification of white matter hyperintensities. There is rarely any report that attempts to study the similarity/dissimilarity of white matter hyperintensity patterns that have different sizes, shapes and spatial localizations on the MRI. This paper proposes an original computational neuroscience framework for such a conceptual study with a standpoint that the prior knowledge about white matter hyperintensities can be accumulated and utilized to enable a reliable inference of the rating of a new white matter hyperintensity observation. This computational approach for rating inference of white matter hyperintensities, which appears to be the first study, can be utilized as a computerized rating-assisting tool and can be very economical for diagnostic evaluation of brain tissue lesions.

  16. Magnetic resonance imaging (MRI) and relaxation spectrum analysis as methods to investigate swelling in whey protein gels.

    PubMed

    Oztop, Mecit H; Rosenberg, Moshe; Rosenberg, Yael; McCarthy, Kathryn L; McCarthy, Michael J

    2010-10-01

    Effective means for controlled delivery of nutrients and nutraceuticals are needed. Whey protein-based gels, as a model system and as a potential delivery system, exhibit pH-dependent swelling when placed in aqueous solutions. Understanding the physics that govern gel swelling is thus important when designing gel-based delivery platforms. The extent of swelling over time was monitored gravimetrically. In addition to gravimetric measurements, magnetic resonance imaging (MRI) a real-time noninvasive imaging technique that quantified changes in geometry and water content of these gels was utilized. Heat-set whey protein gels were prepared at pH 7 and swelling was monitored in aqueous solutions with pH values of 2.5, 7, and 10. Changes in dimension over time, as characterized by the number of voxels in an image, were correlated to gravimetric measurements. Excellent correlations between mass uptake and volume change (R(2)= 0.99) were obtained for the gels in aqueous solutions at pH 7 and 10, but not for gels in the aqueous solution at pH 2.5. To provide insight into the mechanisms for water uptake, nuclear magnetic resonance (NMR) relaxation times were measured in independent experiments. The relaxation spectrum for the spin-spin relaxation time (T(2)) showed the presence of 3 proton pools for pH 7 and 10 trials and 4 proton pools for pH 2.5 trials. Results demonstrate that MRI and NMR relaxation measurements provided information about swelling in whey protein gels that can constitute a new means for investigating and developing effective delivery systems for foods.

  17. New magnetic resonance imaging methods in nephrology

    PubMed Central

    Zhang, Jeff L.; Morrell, Glen; Rusinek, Henry; Sigmund, Eric; Chandarana, Hersh; Lerman, Lilach O.; Prasad, Pottumarthi Vara; Niles, David; Artz, Nathan; Fain, Sean; Vivier, Pierre H.; Cheung, Alfred K.; Lee, Vivian S.

    2013-01-01

    Established as a method to study anatomic changes, such as renal tumors or atherosclerotic vascular disease, magnetic resonance imaging (MRI) to interrogate renal function has only recently begun to come of age. In this review, we briefly introduce some of the most important MRI techniques for renal functional imaging, and then review current findings on their use for diagnosis and monitoring of major kidney diseases. Specific applications include renovascular disease, diabetic nephropathy, renal transplants, renal masses, acute kidney injury and pediatric anomalies. With this review, we hope to encourage more collaboration between nephrologists and radiologists to accelerate the development and application of modern MRI tools in nephrology clinics. PMID:24067433

  18. Visualising uncertainty: Examining women's views on the role of Magnetic Resonance Imaging (MRI) in late pregnancy.

    PubMed

    Reed, Kate; Kochetkova, Inna; Whitby, Elspeth

    2016-09-01

    Prenatal screening occupies a prominent role within sociological debates on medical uncertainty. A particular issue concerns the limitations of routine screening which tends to be based on risk prediction. Computer assisted visual technologies such as Magnetic Resonance Imaging (MRI) are now starting to be applied to the prenatal realm to assist in the diagnosis of a range of fetal and maternal disorders (from problems with the fetal brain to the placenta). MRI is often perceived in popular and medical discourse as a technology of certainty and truth. However, little is known about the use of MRI as a tool to confirm or refute the diagnosis of a range of disorders in pregnancy. Drawing on qualitative research with pregnant women attending a fetal medicine clinic in the North of England this paper examines the potential role that MRI can play in mediating pregnancy uncertainty. The paper will argue that MRI can create and manage women's feelings of uncertainty during pregnancy. However, while MRI may not always provide women with unequivocal answers, the detailed information provided by MR images combined with the interpretation and communication skills of the radiologist in many ways enables women to navigate the issue. Our analysis of empirical data therefore highlights the value of this novel technological application for women and their partners. It also seeks to stress the merit of taking a productive approach to the study of diagnostic uncertainty, an approach which recognises the concepts dual nature. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  19. [Clinical and magnetic resonance imaging characteristics of isolated congenital anosmia].

    PubMed

    Liu, Jian-feng; Wang, Jian; You, Hui; Ni, Dao-feng; Yang, Da-zhang

    2010-05-25

    To report a series of patients with isolated congenital anosmia and summarize their clinical and magnetic resonance imaging (MRI) characteristics. Twenty patients with isolated congenital anosmia were reviewed retrospectively. A thorough medical and chemosensory history, physical examination, nasal endoscopy, T&T olfactory testing, olfactory event-related potentials, sinonasal computed tomography scan and magnetic resonance image of olfactory pathway were performed in all patients. Neither ENT physical examination nor nasal endoscopy was remarkable. Subjective olfactory testing indicated all of them were of anosmia. No olfactory event-related potentials to maximal stimulus were obtained. Computed tomography scan was normal. MRI revealed the absence of olfactory bulbs and tracts in all cases. And hypoplasia or aplasia of olfactory sulcus was found in all cases. All the patients had normal sex hormone level. The diagnosis of isolated congenital anosmia is established on chief complaints, physical examination, olfactory testing and olfactory imaging. MRI of olfactory pathway is indispensable.

  20. The OMERACT Rheumatoid Arthritis Magnetic Resonance Imaging (MRI) Scoring System: Updated Recommendations by the OMERACT MRI in Arthritis Working Group.

    PubMed

    Østergaard, Mikkel; Peterfy, Charles G; Bird, Paul; Gandjbakhch, Frédérique; Glinatsi, Daniel; Eshed, Iris; Haavardsholm, Espen A; Lillegraven, Siri; Bøyesen, Pernille; Ejbjerg, Bo; Foltz, Violaine; Emery, Paul; Genant, Harry K; Conaghan, Philip G

    2017-11-01

    The Outcome Measures in Rheumatology (OMERACT) Rheumatoid Arthritis (RA) Magnetic Resonance Imaging (MRI) scoring system (RAMRIS), evaluating bone erosion, bone marrow edema/osteitis, and synovitis, was introduced in 2002, and is now the standard method of objectively quantifying inflammation and damage by MRI in RA trials. The objective of this paper was to identify subsequent advances and based on them, to provide updated recommendations for the RAMRIS. MRI studies relevant for RAMRIS and technical and scientific advances were analyzed by the OMERACT MRI in Arthritis Working Group, which used these data to provide updated considerations on image acquisition, RAMRIS definitions, and scoring systems for the original and new RA pathologies. Further, a research agenda was outlined. Since 2002, longitudinal studies and clinical trials have documented RAMRIS variables to have face, construct, and criterion validity; high reliability and sensitivity to change; and the ability to discriminate between therapies. This has enabled RAMRIS to demonstrate inhibition of structural damage progression with fewer patients and shorter followup times than has been possible with conventional radiography. Technical improvements, including higher field strengths and improved pulse sequences, allow higher image resolution and contrast-to-noise ratio. These have facilitated development and validation of scoring methods of new pathologies: joint space narrowing and tenosynovitis. These have high reproducibility and moderate sensitivity to change, and can be added to RAMRIS. Combined scores of inflammation or joint damage may increase sensitivity to change and discriminative power. However, this requires further research. Updated 2016 RAMRIS recommendations and a research agenda were developed.

  1. Rotator cuff disorders: How to write a surgically relevant magnetic resonance imaging report?

    PubMed Central

    Tawfik, Ahmed M; El-Morsy, Ahmad; Badran, Mohamed Aboelnour

    2014-01-01

    Evaluation of rotator cuff is a common indication for magnetic resonance imaging (MRI) scanning of the shoulder. Conventional MRI is the most commonly used technique, while magnetic resonance (MR) arthrography is reserved for certain cases. Rotator cuff disorders are thought to be caused by a combination of internal and external mechanisms. A well-structured MRI report should comment on the relevant anatomic structures including the acromial type and orientation, the presence of os acromiale, acromio-clavicular degenerative spurs and fluid in the subacromial subdeltoid bursa. In addition, specific injuries of the rotator cuff tendons and the condition of the long head of biceps should be accurately reported. The size and extent of tendon tears, tendon retraction and fatty degeneration or atrophy of the muscles are all essential components of a surgically relevant MRI report. PMID:24976930

  2. Navigation concepts for magnetic resonance imaging-guided musculoskeletal interventions.

    PubMed

    Busse, Harald; Kahn, Thomas; Moche, Michael

    2011-08-01

    Image-guided musculoskeletal (MSK) interventions are a widely used alternative to open surgical procedures for various pathological findings in different body regions. They traditionally involve one of the established x-ray imaging techniques (radiography, fluoroscopy, computed tomography) or ultrasound scanning. Over the last decades, magnetic resonance imaging (MRI) has evolved into one of the most powerful diagnostic tools for nearly the whole body and has therefore been increasingly considered for interventional guidance as well.The strength of MRI for MSK applications is a combination of well-known general advantages, such as multiplanar and functional imaging capabilities, wide choice of tissue contrasts, and absence of ionizing radiation, as well as a number of MSK-specific factors, for example, the excellent depiction of soft-tissue tumors, nonosteolytic bone changes, and bone marrow lesions. On the downside, the magnetic resonance-compatible equipment needed, restricted space in the magnet, longer imaging times, and the more complex workflow have so far limited the number of MSK procedures under MRI guidance.Navigation solutions are generally a natural extension of any interventional imaging system, in particular, because powerful hardware and software for image processing have become routinely available. They help to identify proper access paths, provide accurate feedback on the instrument positions, facilitate the workflow in an MRI environment, and ultimately contribute to procedural safety and success.The purposes of this work were to describe some basic concepts and devices for MRI guidance of MSK procedures and to discuss technical and clinical achievements and challenges for some selected implementations.

  3. An update on clinical applications of magnetic nanoparticles for increasing the resolution of magnetic resonance imaging.

    PubMed

    Zeinali Sehrig, Fatemeh; Majidi, Sima; Asvadi, Sahar; Hsanzadeh, Arash; Rasta, Seyed Hossein; Emamverdy, Masumeh; Akbarzadeh, Jamshid; Jahangiri, Sahar; Farahkhiz, Shahrzad; Akbarzadeh, Abolfazl

    2016-11-01

    Today, technologies based on magnetic nanoparticles (MNPs) are regularly applied to biological systems with diagnostic or therapeutic aims. Nanoparticles made of the elements iron (Fe), gadolinium (Gd) or manganese (Mn) are generally used in many diagnostic applications performed under magnetic resonance imaging (MRI). Similar to molecular-based contrast agents, nanoparticles can be used to increase the resolution of imaging while offering well biocompatibility, poisonousness and biodistribution. Application of MNPs enhanced MRI sensitivity due to the accumulation of iron in the liver caused by discriminating action of the hepatobiliary system. The aim of this study is about the use, properties and advantages of MNPs in MRI.

  4. An EEG (electroencephalogram) recording system with carbon wire electrodes for simultaneous EEG-fMRI (functional magnetic resonance imaging) recording

    PubMed Central

    Negishi, Michiro; Abildgaard, Mark; Laufer, Ilan; Nixon, Terry; Constable, Robert Todd

    2008-01-01

    Simultaneous EEG-fMRI (Electroencephalography-functional Magnetic Resonance Imaging) recording provides a means for acquiring high temporal resolution electrophysiological data and high spatial resolution metabolic data of the brain in the same experimental runs. Carbon wire electrodes (not metallic EEG electrodes with carbon wire leads) are suitable for simultaneous EEG-fMRI recording, because they cause less RF (radio-frequency) heating and susceptibility artifacts than metallic electrodes. These characteristics are especially desirable for recording the EEG in high field MRI scanners. Carbon wire electrodes are also comfortable to wear during long recording sessions. However, carbon electrodes have high electrode-electrolyte potentials compared to widely used Ag/AgCl (silver/silver-chloride) electrodes, which may cause slow voltage drifts. This paper introduces a prototype EEG recording system with carbon wire electrodes and a circuit that suppresses the slow voltage drift. The system was tested for the voltage drift, RF heating, susceptibility artifact, and impedance, and was also evaluated in a simultaneous ERP (event-related potential)-fMRI experiment. PMID:18588913

  5. Penile fracture: penoscrotal approach with degloving of penis after Magnetic Resonance Imaging (MRI).

    PubMed

    Antonini, Gabriele; Vicini, Patrizio; Sansalone, Salvatore; Garaffa, Giulio; Vitarelli, Antonio; De Berardinis, Ettore; Von Heland, Magnus; Giovannone, Riccardo; Casciani, Emanuele; Gentile, Vincenzo

    2014-03-28

    Fracture of the penis, a relatively uncommon emergency in Urology, consists in the traumatic rupture of the tunica albuginea of the corpus cavernosum. Examination and clinical history can be highly suspicious of penile fracture in the majority of cases and ultrasonography (USS) can be useful to identify the exact location of the tunical rupture, which is proximal in 2/3 of cases and therefore manageable through a penoscrotal approach. Although expensive and not readily available in the acute setting, Magnetic Resonance Imaging (MRI) may play a role in the differential diagnosis with rupture of a circumflex or dorsal vein of the penis or when the tunical rupture is not associated with tear of the overlying Buck's fascia. This form of imaging is more sensitive than USS at identifying the presence of a tunical tear. The treatment of choice is immediate surgical repair, which allows preserving erectile function and minimizing corporeal fibrosis.

  6. MRI Scans

    MedlinePlus

    Magnetic resonance imaging (MRI) uses a large magnet and radio waves to look at organs and structures inside your body. Health care professionals use MRI scans to diagnose a variety of conditions, from torn ...

  7. A review of technical aspects of T1-weighted dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in human brain tumors.

    PubMed

    Bergamino, M; Bonzano, L; Levrero, F; Mancardi, G L; Roccatagliata, L

    2014-09-01

    In the last few years, several imaging methods, such as magnetic resonance imaging (MRI) and computed tomography, have been used to investigate the degree of blood-brain barrier (BBB) permeability in patients with neurological diseases including multiple sclerosis, ischemic stroke, and brain tumors. One promising MRI method for assessing the BBB permeability of patients with neurological diseases in vivo is T1-weighted dynamic contrast-enhanced (DCE)-MRI. Here we review the technical issues involved in DCE-MRI in the study of human brain tumors. In the first part of this paper, theoretical models for the DCE-MRI analysis will be described, including the Toft-Kety models, the adiabatic approximation to the tissue homogeneity model and the two-compartment exchange model. These models can be used to estimate important kinetic parameters related to BBB permeability. In the second part of this paper, details of the data acquisition, issues related to the arterial input function, and procedures for DCE-MRI image analysis are illustrated. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  8. Magnetic resonance imaging for the ophthalmologist: A primer

    PubMed Central

    Simha, Arathi; Irodi, Aparna; David, Sarada

    2012-01-01

    Magnetic resonance imaging (MRI) and computerized tomography (CT) have added a new dimension in the diagnosis and management of ocular and orbital diseases. Although CT is more widely used, MRI is the modality of choice in select conditions and can be complimentary to CT in certain situations. The diagnostic yield is best when the ophthalmologist and radiologist work together. Ophthalmologists should be able to interpret these complex imaging modalities as better clinical correlation is then possible. In this article, we attempt to describe the basic principles of MRI and its interpretation, avoiding confusing technical terms. PMID:22824600

  9. Magnetic Resonance Imaging of Gel-cast Ceramic Composites

    DOE R&D Accomplishments Database

    Dieckman, S. L.; Balss, K. M.; Waterfield, L. G.; Jendrzejczyk, J. A.; Raptis, A. C.

    1997-01-16

    Magnetic resonance imaging (MRI) techniques are being employed to aid in the development of advanced near-net-shape gel-cast ceramic composites. MRI is a unique nondestructive evaluation tool that provides information on both the chemical and physical properties of materials. In this effort, MRI imaging was performed to monitor the drying of porous green-state alumina - methacrylamide-N.N`-methylene bisacrylamide (MAM-MBAM) polymerized composite specimens. Studies were performed on several specimens as a function of humidity and time. The mass and shrinkage of the specimens were also monitored and correlated with the water content.

  10. Current beliefs and practice patterns among urologists regarding prostate magnetic resonance imaging and magnetic resonance-targeted biopsy.

    PubMed

    Muthigi, Akhil; Sidana, Abhinav; George, Arvin K; Kongnyuy, Michael; Maruf, Mahir; Valayil, Subin; Wood, Bradford J; Pinto, Peter A

    2017-01-01

    Multiparametric magnetic resonance imaging (MRI) and magnetic resonance (MR) -targeted biopsy have a growing role in the screening and evaluation of prostate cancer. We aim to evaluate the current knowledge, attitude, and practice patterns of urologists regarding this new technique. An anonymous online questionnaire was designed to collect information on urologists' beliefs and use of prostate multiparametric MRI and MR-targeted biopsy. The survey was sent to members of the Society of Urologic Oncology, the Endourological Society, and European Association of Urology. Multivariate logistic regression analysis was performed to determine predictors for use of prostate MRI and MR-targeted biopsy. A total of 302 responses were received (Endourological Society: 175, European Association of Urology: 23, and Society of Urologic Oncology: 104). Most respondents (83.6%) believe MR-targeted biopsy to be moderately to extremely beneficial in the evaluation of prostate cancer. Overall, 85.7% of responders use prostate MRI in their practice, and 63.0% use MR-targeted biopsy. The 2 most common settings for use of MR-targeted biopsy include patients with history of prior negative biopsy result (96.3%) and monitoring patients on active surveillance (72.5%). In those who do not use MR-targeted biopsy, the principal reasons were lack of necessary infrastructure (64.1%) and prohibitive costs (48.1%). On multivariate logistic regression analysis, practice in an academic setting (1.86 [1.02-3.40], P = 0.043) and performing greater than 25 radical prostatectomies per year (2.32 [1.18-4.56], P = 0.015) remained independent predictors for using MR-targeted biopsy. Most respondents of our survey look favorably on use of prostate MRI and MR-targeted biopsy in clinical practice. Over time, reduction in fixed costs and easier access to equipment may lead to further dissemination of this novel and potentially transformative technology. Published by Elsevier Inc.

  11. Magnetic resonance imaging of pelvic endometriosis.

    PubMed

    Méndez Fernández, R; Barrera Ortega, J

    Endometriosis is common in women of reproductive age; it can cause pelvic pain and infertility. It is important to diagnose endometriosis and to thoroughly evaluate its extension, especially when surgical treatment is being considered. Magnetic resonance imaging (MRI) with careful examination technique and interpretation enables more accurate and complete diagnosis and staging than ultrasonography, especially in cases of deep pelvic endometriosis. Furthermore, MRI can identify implants in sites that can be difficult to access in endoscopic or laparoscopic explorations. In this article, we describe the appropriate MRI protocol for the study of pelvic endometriosis and the MRI signs of pelvic organ involvement. It is necessary to know the subtle findings and to look for them so we can ensure that they are not overlooked. We describe clinical grading systems for endometriosis and review the diagnostic efficacy of MRI in comparison with other imaging techniques and surgery. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Comparison of radiography and magnetic resonance imaging for evaluating the extent of nasal neoplasia in dogs.

    PubMed

    Petite, A F B; Dennis, R

    2006-09-01

    Magnetic resonance imaging (MRI) is increasingly used in veterinary practice and, in some centres, is part of the diagnostic work-up of small animals with nasal disease. However, there are no published studies which critically evaluate the use of magnetic resonance imaging for this purpose. The purpose of this work was to assess the changes seen using magnetic resonance imaging and to compare them with radiography. The study included 12 dogs that had undergone both radiography and magnetic resonance imaging of the nasal cavity and had a histopathological diagnosis of malignant nasal neoplasia. Two pairs of board-certified radiologists scored the radiographs and the MRI scans, evaluating 10 signs of abnormality using a simple scoring system. Magnetic resonance imaging features were described in detail, and radiographic and magnetic resonance imaging scores for each sign as well as total scores were compared. Magnetic resonance imaging often showed that the tumour was more extensive than it had appeared on radiography but occasionally showed that radiographs had overestimated its size. Although radiography was reliable for assessment of the presence and size of a mass and for the extent of turbinate destruction, it usually failed to show occlusion of the major airway passages that were evident on magnetic resonance imaging. Extension of the tumour into the opposite nasal cavity, frontal sinus, orbit and cranial cavity was shown much better on magnetic resonance imaging. Minor but significant extension beyond the nasal cavity, which is important for treatment planning and prognosis, requires magnetic resonance imaging for demonstration, although radiography shows major changes reliably.

  13. Magnetic resonance imaging findings in a red kangaroo (Macropus rufus) with otitis.

    PubMed

    Okeson, Danelle M; Coke, Rob L; Kochunov, Peter; Davis, M Duff

    2008-12-01

    Magnetic resonance imaging (MRI) was performed on an adult, male Red kangaroo (Macropus rufus) with a history of nonspecific neurologic signs and acute discharge from the left ear. MRI revealed findings consistent with otitis and possible osteomyelitis of the temporal and mastoid bones. To the authors' knowledge, this is the first report of otitis and MRI findings in a kangaroo.

  14. Low-grade Glioma Surgery in Intraoperative Magnetic Resonance Imaging: Results of a Multicenter Retrospective Assessment of the German Study Group for Intraoperative Magnetic Resonance Imaging.

    PubMed

    Coburger, Jan; Merkel, Andreas; Scherer, Moritz; Schwartz, Felix; Gessler, Florian; Roder, Constantin; Pala, Andrej; König, Ralph; Bullinger, Lars; Nagel, Gabriele; Jungk, Christine; Bisdas, Sotirios; Nabavi, Arya; Ganslandt, Oliver; Seifert, Volker; Tatagiba, Marcos; Senft, Christian; Mehdorn, Maximilian; Unterberg, Andreas W; Rössler, Karl; Wirtz, Christian Rainer

    2016-06-01

    The ideal treatment strategy for low-grade gliomas (LGGs) is a controversial topic. Additionally, only smaller single-center series dealing with the concept of intraoperative magnetic resonance imaging (iMRI) have been published. To investigate determinants for patient outcome and progression-free-survival (PFS) after iMRI-guided surgery for LGGs in a multicenter retrospective study initiated by the German Study Group for Intraoperative Magnetic Resonance Imaging. A retrospective consecutive assessment of patients treated for LGGs (World Health Organization grade II) with iMRI-guided resection at 6 neurosurgical centers was performed. Eloquent location, extent of resection, first-line adjuvant treatment, neurophysiological monitoring, awake brain surgery, intraoperative ultrasound, and field-strength of iMRI were analyzed, as well as progression-free survival (PFS), new permanent neurological deficits, and complications. Multivariate binary logistic and Cox regression models were calculated to evaluate determinants of PFS, gross total resection (GTR), and adjuvant treatment. A total of 288 patients met the inclusion criteria. On multivariate analysis, GTR significantly increased PFS (hazard ratio, 0.44; P < .01), whereas "failed" GTR did not differ significantly from intended subtotal-resection. Combined radiochemotherapy as adjuvant therapy was a negative prognostic factor (hazard ratio: 2.84, P < .01). Field strength of iMRI was not associated with PFS. In the binary logistic regression model, use of high-field iMRI (odds ratio: 0.51, P < .01) was positively and eloquent location (odds ratio: 1.99, P < .01) was negatively associated with GTR. GTR was not associated with increased rates of new permanent neurological deficits. GTR was an independent positive prognostic factor for PFS in LGG surgery. Patients with accidentally left tumor remnants showed a similar prognosis compared with patients harboring only partially resectable tumors. Use of high-field iMRI was

  15. Interobserver variability in the radiological assessment of magnetic resonance imaging (MRI) including perfusion MRI in glioblastoma multiforme.

    PubMed

    Kerkhof, M; Hagenbeek, R E; van der Kallen, B F W; Lycklama À Nijeholt, G J; Dirven, L; Taphoorn, M J B; Vos, M J

    2016-10-01

    Conventional magnetic resonance imaging (MRI) has limited value for differentiation of true tumor progression and pseudoprogression in treated glioblastoma multiforme (GBM). Perfusion weighted imaging (PWI) may be helpful in the differentiation of these two phenomena. Here interobserver variability in routine radiological evaluation of GBM patients is assessed using MRI, including PWI. Three experienced neuroradiologists evaluated MR scans of 28 GBM patients during temozolomide chemoradiotherapy at three time points: preoperative (MR1) and postoperative (MR2) MR scan and the follow-up MR scan after three cycles of adjuvant temozolomide (MR3). Tumor size was measured both on T1 post-contrast and T2 weighted images according to the Response Assessment in Neuro-Oncology criteria. PW images of MR3 were evaluated by visual inspection of relative cerebral blood volume (rCBV) color maps and by quantitative rCBV measurements of enhancing areas with highest rCBV. Image interpretability of PW images was also scored. Finally, the neuroradiologists gave a conclusion on tumor status, based on the interpretation of both T1 and T2 weighted images (MR1, MR2 and MR3) in combination with PWI (MR3). Interobserver agreement on visual interpretation of rCBV maps was good (κ = 0.63) but poor on quantitative rCBV measurements and on interpretability of perfusion images (intraclass correlation coefficient 0.37 and κ = 0.23, respectively). Interobserver agreement on the overall conclusion of tumor status was moderate (κ = 0.48). Interobserver agreement on the visual interpretation of PWI color maps was good. However, overall interpretation of MR scans (using both conventional and PW images) showed considerable interobserver variability. Therefore, caution should be applied when interpreting MRI results during chemoradiation therapy. © 2016 EAN.

  16. Magnetic resonance imaging in Tietze's syndrome.

    PubMed

    Volterrani, L; Mazzei, M A; Giordano, N; Nuti, R; Galeazzi, M; Fioravanti, A

    2008-01-01

    To evaluate the usefulness of magnetic resonance imaging (MRI) in Tietze's syndrome which, to our knowledge, has not previously been reported in the literature. Twelve consecutive outpatients with clinical features of Tietze's syndrome underwent evaluation, including the anamnesis, clinical general examination, clinical evaluation of costosternal and sternoclavicular joints (SCJ) and biochemical and instrumental investigations. Twenty normal subjects age- and sex-matched to the patients' group were examined in a similar manner. MRI of costosternal and SCJ was performed using a 1.5 Tesla unit (Gyroscan NT 1.5 Philips, The Netherlands and GE Signa Excite HD, GE Healthcare, Milwaukee, Wis., USA). The MRI pattern of primary Tietze's syndrome was characterized as follows: enlargement and thickening of cartilage at the site of complaint (12/12 patients); focal or widespread increased signal intensities of affected cartilage on both TSE T2-weighted and STIR or FAT SAT images (10/12 patients); bone marrow oedema in the subcondral bone (5/12 patients); vivid gadolinium uptake in the areas of thickened cartilage, in the subcondral bone marrow and/or in capsule and ligaments (10/12, 4/12 and 7/12 patients respectively). Magnetic resonance is an excellent technique to evidence both the cartilage and bone abnormalities, therefore it represents the elective method in the investigation of primary Tietze's syndrome, due to its high sensitivity, diagnostic reliability and biological advantages thanks to the lack of ionizing radiation.

  17. Real-time Magnetic Resonance Imaging Guidance for Cardiovascular Procedures

    PubMed Central

    Horvath, Keith A.; Li, Ming; Mazilu, Dumitru; Guttman, Michael A.; McVeigh, Elliot R.

    2008-01-01

    Magnetic resonance imaging (MRI) of the cardiovascular system has proven to be an invaluable diagnostic tool. Given the ability to allow for real-time imaging, MRI guidance of intraoperative procedures can provide superb visualization which can facilitate a variety of interventions and minimize the trauma of the operations as well. In addition to the anatomic detail, MRI can provide intraoperative assessment of organ and device function. Instruments and devices can be marked to enhance visualization and tracking. All of which is an advance over standard x-ray or ultrasonic imaging. PMID:18395633

  18. State-of-the-art magnetic resonance imaging of pancreatic cancer.

    PubMed

    Schima, Wolfgang; Ba-Ssalamah, Ahmed; Goetzinger, Peter; Scharitzer, Martina; Koelblinger, Claus

    2007-12-01

    Technical advances of magnetic resonance imaging (MRI), including ultrahigh-field magnetic resonance at 3.0 T, parallel imaging techniques, and multichannel receive coils of the abdomen, have promoted MRI of the pancreas. For adenocarcinoma, which is the most common malignant pancreatic tumor, helical CT has been most often used for detection and staging, but it has limitations in the detection of small cancers 2 cm in diameter or less (sensitivity, 63%). Moreover, it is not very accurate in determining nonresectability, because small liver metastases, peritoneal carcinomatosis, and subtle signs of vascular infiltration may be missed. At ultrahigh field at 3.0 T, gadolinium-enhanced MRI using volume-interpolated 3-dimensional gradient-recalled echo pulse sequences with near-isotropic voxels are very useful for detection of subtle abnormalities. Mangafodipir-enhanced MRI reveals a very high tumor-pancreas contrast, which helps to diagnose small cancers. Contrast-enhanced MRI is a problem-solving tool in case of equivocal CT: it helps to differentiate between cancer and focal pancreatitis. Neuroendocrine carcinoma may present with a spectrum of appearances at MRI, but the primary tumor and liver metastases are hypervascular in approximately 70%. In this article, pancreas imaging protocols for 1.5 and 3.0 T are explained. We present the imaging features of pancreatic cancer and the important questions in staging, which should be addressed by the radiologist.

  19. Computed inverse MRI for magnetic susceptibility map reconstruction

    PubMed Central

    Chen, Zikuan; Calhoun, Vince

    2015-01-01

    Objective This paper reports on a computed inverse magnetic resonance imaging (CIMRI) model for reconstructing the magnetic susceptibility source from MRI data using a two-step computational approach. Methods The forward T2*-weighted MRI (T2*MRI) process is decomposed into two steps: 1) from magnetic susceptibility source to fieldmap establishment via magnetization in a main field, and 2) from fieldmap to MR image formation by intravoxel dephasing average. The proposed CIMRI model includes two inverse steps to reverse the T2*MRI procedure: fieldmap calculation from MR phase image and susceptibility source calculation from the fieldmap. The inverse step from fieldmap to susceptibility map is a 3D ill-posed deconvolution problem, which can be solved by three kinds of approaches: Tikhonov-regularized matrix inverse, inverse filtering with a truncated filter, and total variation (TV) iteration. By numerical simulation, we validate the CIMRI model by comparing the reconstructed susceptibility maps for a predefined susceptibility source. Results Numerical simulations of CIMRI show that the split Bregman TV iteration solver can reconstruct the susceptibility map from a MR phase image with high fidelity (spatial correlation≈0.99). The split Bregman TV iteration solver includes noise reduction, edge preservation, and image energy conservation. For applications to brain susceptibility reconstruction, it is important to calibrate the TV iteration program by selecting suitable values of the regularization parameter. Conclusions The proposed CIMRI model can reconstruct the magnetic susceptibility source of T2*MRI by two computational steps: calculating the fieldmap from the phase image and reconstructing the susceptibility map from the fieldmap. The crux of CIMRI lies in an ill-posed 3D deconvolution problem, which can be effectively solved by the split Bregman TV iteration algorithm. PMID:22446372

  20. R&D Progress of HTS Magnet Project for Ultrahigh-field MRI

    NASA Astrophysics Data System (ADS)

    Tosaka, Taizo; Miyazaki, Hiroshi; Iwai, Sadanori; Otani, Yasumi; Takahashi, Masahiko; Tasaki, Kenji; Nomura, Shunji; Kurusu, Tsutomu; Ueda, Hiroshi; Noguchi, So; Ishiyama, Atsushi; Urayama, Shinichi; Fukuyama, Hidenao

    An R&D project on high-temperature superconducting (HTS) magnets using rare-earth Ba2Cu3O7 (REBCO) wires was started in 2013. The project objective is to investigate the feasibility of adapting REBCO magnets to ultrahigh field (UHF) magnetic resonance imaging (MRI) systems. REBCO wires are promising components for UHF-MRI magnets because of their superior superconducting and mechanical properties, which make them smaller and lighter than conventional ones. Moreover, REBCO magnets can be cooled by the conduction-cooling method, making liquid helium unnecessary. In the past two years, some test coils and model magnets have been fabricated and tested. This year is the final year of the project. The goals of the project are: (1) to generate a 9.4 T magnetic field with a small test coil, (2) to generate a homogeneous magnetic field in a 200 mm diameter spherical volume with a 1.5 T model magnet, and (3) to perform imaging with the 1.5 T model magnet. In this paper, the progress of this R&D is described. The knowledge gained through these R&D results will be reflected in the design of 9.4 T MRI magnets for brain and whole body imaging.

  1. Nanoplatforms for magnetic resonance imaging of cancer

    PubMed Central

    Cywińska, Monika A.; Grudziński, Ireneusz P.; Cieszanowski, Andrzej; Bystrzejewski, Michał; Popławska, Magdalena

    2011-01-01

    Summary The application of biomedical nanotechnology in magnetic resonance imaging (MRI) is expect to have a major impact leading to the development of new contrast drug candidates on the nanoscale (1–100 nm) that are able to react with specific biological targets at a molecular level. One of the major challenges in this regard is the construction of nanomaterials, especially used in molecular MRI diagnostics of cancer in vivo, specialized antitumor drug delivery or real-time evaluation of the efficacy of the implemented cancer treatment. In this paper, we tried to gain further insights into current trends of nanomedicine, with special focus on preclinical MRI studies in translation cancer research. PMID:22802828

  2. [Comparison of magnetic resonance imaging artifacts of five common dental materials].

    PubMed

    Xu, Yisheng; Yu, Risheng

    2015-06-01

    To compare five materials commonly used in dentistry, including three types of metals and two types of ceramics, by using different sequences of three magnetic resonance imaging (MRI) field strengths (0.35, 1.5, and 3.0 T). Three types of metals and two types of ceramics that were fabricated into the same size and thickness as an incisor crown were placed in a plastic tank filled with saline. The crowns were scanned using an magnetic resonance (MR) machine at 0.35, 1.5, and 3.0 T field strengths. The TlWI and T2WI images were obtained. The differences of various materials in different artifacts of field MR scans were determined. The zirconia crown presented no significant artifacts when scanned under the three types of MRI field strengths. The artifacts of casting ceramic were minimal. All dental precious metal alloys, nickel-chromium alloy dental porcelain, and cobalt-chromium ceramic alloy showed varying degrees of artifacts under the three MRI field strengths. Zirconia and casting ceramics present almost no or faint artifacts. By contrast, precious metal alloys, nickel-chromium alloy dental porcelain and cobalt-chromium ceramic alloy display MRI artifacts. The artifact area increase with increasing magnetic field.

  3. High Field Small Animal Magnetic Resonance Oncology Studies

    PubMed Central

    Bokacheva, Louisa; Ackerstaff, Ellen; LeKaye, H. Carl; Zakian, Kristen; Koutcher, Jason A.

    2014-01-01

    This review focuses on the applications of high magnetic field magnetic resonance imaging (MRI) and spectroscopy (MRS) to cancer studies in small animals. High field MRI can provide information about tumor physiology, the microenvironment, metabolism, vascularity and cellularity. Such studies are invaluable for understanding tumor growth and proliferation, response to treatment and drug development. The MR techniques reviewed here include 1H, 31P, Chemical Exchange Saturation Transfer (CEST) imaging, and hyperpolarized 13C MR spectroscopy as well as diffusion-weighted, Blood Oxygen Level Dependent (BOLD) contrast imaging, and dynamic contrast-enhanced MR imaging. These methods have been proven effective in animal studies and are highly relevant to human clinical studies. PMID:24374985

  4. Blood oxygenation level-dependent (BOLD) contrast magnetic resonance imaging (MRI) for prediction of breast cancer chemotherapy response: a pilot study.

    PubMed

    Jiang, Lan; Weatherall, Paul T; McColl, Roderick W; Tripathy, Debu; Mason, Ralph P

    2013-05-01

    To determine whether a simple noninvasive method of assessing tumor oxygenation is feasible in the clinical setting and can provide useful, potentially predictive information. Tumor microcirculation and oxygenation play critical roles in tumor growth and responsiveness to cytotoxic treatment and may provide prognostic indicators for cancer therapy. Deoxyhemoglobin is paramagnetic and can serve as an endogenous contrast agent causing signal loss in echo planar magnetic resonance imaging (MRI) (blood oxygenation level-dependent [BOLD]-MRI). We used BOLD-MRI to provide early evaluation of response to neoadjuvant chemotherapy in patients with locally advanced breast cancer. MRI was performed on 11 patients with biopsy-proven malignancy. MRI exams were scheduled before, during, and after chemotherapy. The BOLD study applied a 6-minute oxygen breathing challenge. Seven patients successfully completed the exams. Before chemotherapy, BOLD contrast enhancement was observed in all tumors, but the patients, who ultimately had complete pathological response, exhibited a significantly higher BOLD response to oxygen breathing. We have successfully implemented an oxygen-breathing challenge BOLD contrast technique as part of the standard breast MRI exam in patients with locally advanced breast cancer. The preliminary observation that a large BOLD response correlated with better treatment response suggests a predictive capability for BOLD MRI. Copyright © 2012 Wiley Periodicals, Inc.

  5. Childhood temporal lobe epilepsy: correlation between electroencephalography and magnetic resonance spectroscopy: a case-control study.

    PubMed

    Azab, Seham Fa; Sherief, Laila M; Saleh, Safaa H; Elshafeiy, Mona M; Siam, Ahmed G; Elsaeed, Wafaa F; Arafa, Mohamed A; Bendary, Eman A; Sherbiny, Hanan S; Elbehedy, Rabab M; Aziz, Khalid A

    2015-04-18

    The diagnosis of epilepsy should be made as early as possible to give a child the best chance for treatment success and also to decrease complications such as learning difficulties and social and behavioral problems. In this study, we aimed to assess the ability of magnetic resonance spectroscopy (MRS) in detecting the lateralization side in patients with Temporal lobe epilepsy (TLE) in correlation with EEG and MRI findings. This was a case-control study including 40 patients diagnosed (clinically and by EEG) as having temporal lobe epilepsy aged 8 to 14 years (mean, 10.4 years) and 20 healthy children with comparable age and gender as the control group. All patients were subjected to clinical examination, interictal electroencephalography and magnetic resonance imaging (MRI). Proton magnetic resonance spectroscopic examination (MRS) was performed to the patients and the controls. According to the findings of electroencephalography, our patients were classified to three groups: Group 1 included 20 patients with unitemporal (lateralized) epileptic focus, group 2 included 12 patients with bitemporal (non-lateralized) epileptic focus and group 3 included 8 patients with normal electroencephalography. Magnetic resonance spectroscopy could lateralize the epileptic focus in 19 patients in group 1, nine patients in group2 and five patients in group 3 with overall lateralization of (82.5%), while electroencephalography was able to lateralize the focus in (50%) of patients and magnetic resonance imaging detected lateralization of mesial temporal sclerosis in (57.5%) of patients. Magnetic resonance spectroscopy is a promising tool in evaluating patients with epilepsy and offers increased sensitivity to detect temporal pathology that is not obvious on structural MRI imaging.

  6. Exposure to time varying magnetic fields associated with magnetic resonance imaging reduces fentanyl-induced analgesia in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teskey, G.C.; Prato, F.S.; Ossenkopp, K.P.

    The effects of exposure to clinical magnetic resonance imaging (MRI) on analgesia induced by the mu opiate agonist, fentanyl, was examined in mice. During the dark period, adult male mice were exposed for 23.2 min to the time-varying (0.6 T/sec) magnetic field (TVMF) component of the MRI procedure. Following this exposure, the analgesic potency of fentanyl citrate (0.1 mg/kg) was determined at 5, 10, 15, and 30 min post-injection, using a thermal test stimulus (hot-plate 50 degrees C). Exposure to the magnetic-field gradients attenuated the fentanyl-induced analgesia in a manner comparable to that previously observed with morphine. These results indicatemore » that the time-varying magnetic fields associated with MRI have significant inhibitory effects on the analgesic effects of specific mu-opiate-directed ligands.« less

  7. Patterns of Breast Magnetic Resonance Imaging Use in Community Practice

    PubMed Central

    Wernli, Karen J.; DeMartini, Wendy B.; Ichikawa, Laura; Lehman, Constance D.; Onega, Tracy; Kerlikowske, Karla; Henderson, Louise M.; Geller, Berta M.; Hofmann, Mike; Yankaskas, Bonnie C.

    2014-01-01

    Importance Breast magnetic resonance imaging (MRI) is increasingly used for breast cancer screening, diagnostic evaluation, and surveillance However, we lack data on national patterns of breast MRI use in community practice. Objective To describe 2005–2009 patterns of breast magnetic resonance imaging (MRI) use in U.S. community practice. Design Observational cohort study Setting Data collected from 2005–2009 on breast MRI and mammography from five national Breast Cancer Surveillance Consortium registries. Participants Data included 8931 breast MRI examinations and 1,288,924 screening mammograms from women aged 18–79 years. Main measures We calculated the rate of breast MRI examinations per 1000 women with breast imaging within the same year and described the clinical indications for the breast MRI examinations by year and age. We compared women screened with breast MRI to women screened with mammography alone for patient characteristics and lifetime breast cancer risk. Results The overall rate of breast MRI from 2005 through 2009 nearly tripled from 4.2 to 11.5 examinations per 1000 women with the most rapid rise from 2005–2007 (p=0.02). The most common clinical indication was diagnostic evaluation (40.3%), followed by screening (31.7%). Compared to women who received screening mammography alone, women who underwent screening breast MRI were more likely to be <50 years, white non-Hispanic, nulliparous, and have extremely dense breast tissue, a family history of breast cancer, and a personal history of breast cancer. The proportion of women screened by breast MRI at high lifetime risk for breast cancer (>20%) increased during the study period from 9% in 2005 to 29% in 2009. Conclusions and relevance Use of breast MRI for screening in high-risk women is increasing. However, our findings suggest there is a need to improve appropriate utilization, including among women who may benefit from screening breast MRI. PMID:24247555

  8. Hypothalamic metabolic compartmentation during appetite regulation as revealed by magnetic resonance imaging and spectroscopy methods

    PubMed Central

    Lizarbe, Blanca; Benitez, Ania; Peláez Brioso, Gerardo A.; Sánchez-Montañés, Manuel; López-Larrubia, Pilar; Ballesteros, Paloma; Cerdán, Sebastián

    2013-01-01

    We review the role of neuroglial compartmentation and transcellular neurotransmitter cycling during hypothalamic appetite regulation as detected by Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS) methods. We address first the neurochemical basis of neuroendocrine regulation in the hypothalamus and the orexigenic and anorexigenic feed-back loops that control appetite. Then we examine the main MRI and MRS strategies that have been used to investigate appetite regulation. Manganese-enhanced magnetic resonance imaging (MEMRI), Blood oxygenation level-dependent contrast (BOLD), and Diffusion-weighted magnetic resonance imaging (DWI) have revealed Mn2+ accumulations, augmented oxygen consumptions, and astrocytic swelling in the hypothalamus under fasting conditions, respectively. High field 1H magnetic resonance in vivo, showed increased hypothalamic myo-inositol concentrations as compared to other cerebral structures. 1H and 13C high resolution magic angle spinning (HRMAS) revealed increased neuroglial oxidative and glycolytic metabolism, as well as increased hypothalamic glutamatergic and GABAergic neurotransmissions under orexigenic stimulation. We propose here an integrative interpretation of all these findings suggesting that the neuroendocrine regulation of appetite is supported by important ionic and metabolic transcellular fluxes which begin at the tripartite orexigenic clefts and become extended spatially in the hypothalamus through astrocytic networks becoming eventually MRI and MRS detectable. PMID:23781199

  9. Magnetic resonance spectroscopy of fiber tracts in children with traumatic brain injury: A combined MRS - Diffusion MRI study.

    PubMed

    Dennis, Emily L; Babikian, Talin; Alger, Jeffry; Rashid, Faisal; Villalon-Reina, Julio E; Jin, Yan; Olsen, Alexander; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C; Thompson, Paul M; Asarnow, Robert F

    2018-05-10

    Traumatic brain injury can cause extensive damage to the white matter (WM) of the brain. These disruptions can be especially damaging in children, whose brains are still maturing. Diffusion magnetic resonance imaging (dMRI) is the most commonly used method to assess WM organization, but it has limited resolution to differentiate causes of WM disruption. Magnetic resonance spectroscopy (MRS) yields spectra showing the levels of neurometabolites that can indicate neuronal/axonal health, inflammation, membrane proliferation/turnover, and other cellular processes that are on-going post-injury. Previous analyses on this dataset revealed a significant division within the msTBI patient group, based on interhemispheric transfer time (IHTT); one subgroup of patients (TBI-normal) showed evidence of recovery over time, while the other showed continuing degeneration (TBI-slow). We combined dMRI with MRS to better understand WM disruptions in children with moderate-severe traumatic brain injury (msTBI). Tracts with poorer WM organization, as shown by lower FA and higher MD and RD, also showed lower N-acetylaspartate (NAA), a marker of neuronal and axonal health and myelination. We did not find lower NAA in tracts with normal WM organization. Choline, a marker of inflammation, membrane turnover, or gliosis, did not show such associations. We further show that multi-modal imaging can improve outcome prediction over a single modality, as well as over earlier cognitive function measures. Our results suggest that demyelination plays an important role in WM disruption post-injury in a subgroup of msTBI children and indicate the utility of multi-modal imaging. © 2018 Wiley Periodicals, Inc.

  10. Prospective comparison of magnetic resonance imaging to transient elastography and serum markers for liver fibrosis detection.

    PubMed

    Dyvorne, Hadrien A; Jajamovich, Guido H; Bane, Octavia; Fiel, M Isabel; Chou, Hsin; Schiano, Thomas D; Dieterich, Douglas; Babb, James S; Friedman, Scott L; Taouli, Bachir

    2016-05-01

    Establishing accurate non-invasive methods of liver fibrosis quantification remains a major unmet need. Here, we assessed the diagnostic value of a multiparametric magnetic resonance imaging (MRI) protocol including diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE)-MRI and magnetic resonance elastography (MRE) in comparison with transient elastography (TE) and blood tests [including ELF (Enhanced Liver Fibrosis) and APRI] for liver fibrosis detection. In this single centre cross-sectional study, we prospectively enrolled 60 subjects with liver disease who underwent multiparametric MRI (DWI, DCE-MRI and MRE), TE and blood tests. Correlation was assessed between non-invasive modalities and histopathologic findings including stage, grade and collagen content, while accounting for covariates such as age, sex, BMI, HCV status and MRI-derived fat and iron content. ROC curve analysis evaluated the performance of each technique for detection of moderate-to-advanced liver fibrosis (F2-F4) and advanced fibrosis (F3-F4). Magnetic resonance elastography provided the strongest correlation with fibrosis stage (r = 0.66, P < 0.001), inflammation grade (r = 0.52, P < 0.001) and collagen content (r = 0.53, P = 0.036). For detection of moderate-to-advanced fibrosis (F2-F4), AUCs were 0.78, 0.82, 0.72, 0.79, 0.71 for MRE, TE, DCE-MRI, DWI and APRI, respectively. For detection of advanced fibrosis (F3-F4), AUCs were 0.94, 0.77, 0.79, 0.79 and 0.70, respectively. Magnetic resonance elastography provides the highest correlation with histopathologic markers and yields high diagnostic performance for detection of advanced liver fibrosis and cirrhosis, compared to DWI, DCE-MRI, TE and serum markers. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Magnetic resonance-transcranial ultrasound fusion imaging: A novel tool for brain electrode location.

    PubMed

    Walter, Uwe; Müller, Jan-Uwe; Rösche, Johannes; Kirsch, Michael; Grossmann, Annette; Benecke, Reiner; Wittstock, Matthias; Wolters, Alexander

    2016-03-01

    A combination of preoperative magnetic resonance imaging (MRI) with real-time transcranial ultrasound, known as fusion imaging, may improve postoperative control of deep brain stimulation (DBS) electrode location. Fusion imaging, however, employs a weak magnetic field for tracking the position of the ultrasound transducer and the patient's head. Here we assessed its feasibility, safety, and clinical relevance in patients with DBS. Eighteen imaging sessions were conducted in 15 patients (7 women; aged 52.4 ± 14.4 y) with DBS of subthalamic nucleus (n = 6), globus pallidus interna (n = 5), ventro-intermediate (n = 3), or anterior (n = 1) thalamic nucleus and clinically suspected lead displacement. Minimum distance between DBS generator and magnetic field transmitter was kept at 65 cm. The pre-implantation MRI dataset was loaded into the ultrasound system for the fusion imaging examination. The DBS lead position was rated using validated criteria. Generator DBS parameters and neurological state of patients were monitored. Magnetic resonance-ultrasound fusion imaging and volume navigation were feasible in all cases and provided with real-time imaging capabilities of DBS lead and its location within the superimposed magnetic resonance images. Of 35 assessed lead locations, 30 were rated optimal, three suboptimal, and two displaced. In two cases, electrodes were re-implanted after confirming their inappropriate location on computed tomography (CT) scan. No influence of fusion imaging on clinical state of patients, or on DBS implantable pulse generator function, was found. Magnetic resonance-ultrasound real-time fusion imaging of DBS electrodes is safe with distinct precautions and improves assessment of electrode location. It may lower the need for repeated CT or MRI scans in DBS patients. © 2015 International Parkinson and Movement Disorder Society.

  12. Magnetic resonance dispersion imaging for localization of angiogenesis and cancer growth.

    PubMed

    Mischi, Massimo; Turco, Simona; Lavini, Cristina; Kompatsiari, Kyveli; de la Rosette, Jean J M C H; Breeuwer, Marcel; Wijkstra, Hessel

    2014-08-01

    Cancer angiogenesis can be imaged by using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Pharmacokinetic modeling can be used to assess vascular perfusion and permeability, but the assessment of angiogenic changes in the microvascular architecture remains challenging. This article presents 2 models enabling the characterization of the microvascular architecture by DCE-MRI. The microvascular architecture is reflected in the dispersion coefficient according to the convective dispersion equation. A solution of this equation, combined with the Tofts model, permits defining a dispersion model for magnetic resonance imaging. A reduced dispersion model is also presented. The proposed models were evaluated for prostate cancer diagnosis. Dynamic contrast-enhanced magnetic resonance imaging was performed, and concentration-time curves were calculated in each voxel. The simultaneous generation of parametric maps related to permeability and dispersion was obtained through model fitting. A preliminary validation was carried out through comparison with the histology in 15 patients referred for radical prostatectomy. Cancer localization was accurate with both dispersion models, with an area under the receiver operating characteristic curve greater than 0.8. None of the compared parameters, aimed at assessing vascular permeability and perfusion, showed better results. A new DCE-MRI method is proposed to characterize the microvascular architecture through the assessment of intravascular dispersion, without the need for separate arterial-input-function estimation. The results are promising and encourage further research.

  13. Magnetic resonance imaging and electromyography as indexes of muscle function

    NASA Technical Reports Server (NTRS)

    Adams, Gregory R.; Duvoisin, Marc R.; Dudley, Gary A.

    1992-01-01

    A hypothesis is tested that exercise-induced magnetic resonance (MR) contrast shifts would relate to electromyography (EMG) amplitude if both measures reflect muscle use during exercise. Both magnetic resonance images (MRI) and EMG data were obtained for separate eccentric (ECC) and cocentric (CON) exercise of increasing intensity for seven subjects 30-32 yr old. CON and ECC actions caused increased integrated EMG (IEMG) and T2 values which were strongly related with relative resistance. The rate of increase and absolute value of both T2 and IEMG were found to be greater for CON than for ECC actions. For both actions IEMG and T2 were correlated. Data obtained suggest that surface IEMG accurately reflects the contractile behavior of muscle and exercise-induced increases in MRI T2 values reflect certain processes that scale with muscle use.

  14. Magnetic susceptibility and magnetic resonance measurements of the moisture content and hydration condition of a magnetic mixture material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsukada, K., E-mail: tsukada@cc.okayama-u.ac.jp; Kusaka, T.; Saari, M. M.

    2014-05-07

    We developed a magnetic measurement method to measure the moisture content and hydration condition of mortar as a magnetic mixture material. Mortar is a mixture of Portland cement, sand, and water, and these materials exhibit different magnetic properties. The magnetization–magnetic field curves of these components and of mortars with different moisture contents were measured, using a specially developed high-temperature-superconductor superconducting quantum interference device. Using the differences in magnetic characteristics, the moisture content of mortar was measured at the ferromagnetic saturation region over 250 mT. A correlation between magnetic susceptibility and moisture content was successfully established. After Portland cement and water aremore » mixed, hydration begins. At the early stage of the hydration/gel, magnetization strength increased over time. To investigate the magnetization change, we measured the distribution between bound and free water in the mortar in the early stage by magnetic resonance imaging (MRI). The MRI results suggest that the amount of free water in mortar correlates with the change in magnetic susceptibility.« less

  15. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system.

    PubMed

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2014-09-01

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.

  16. Low-temperature magnetic resonance imaging with 2.8 μm isotropic resolution

    NASA Astrophysics Data System (ADS)

    Chen, Hsueh-Ying; Tycko, Robert

    2018-02-01

    We demonstrate the feasibility of high-resolution 1H magnetic resonance imaging (MRI) at low temperatures by obtaining an MRI image of 20 μm diameter glass beads in glycerol/water at 28 K with 2.8 μm isotropic resolution. The experiments use a recently-described MRI apparatus (Moore and Tycko, 2015) with minor modifications. The sample is contained within a radio-frequency microcoil with 150 μm inner diameter. Sensitivity is additionally enhanced by paramagnetic doping, optimization of the sample temperature, three-dimensional phase-encoding of k-space data, pulsed spin-lock detection of 1H nuclear magnetic resonance signals, and spherical sampling of k-space. We verify that the actual image resolution is 2.7 ± 0.3 μm by quantitative comparisons of experimental and calculated images. Our imaging approach is compatible with dynamic nuclear polarization, providing a path to significantly higher resolution in future experiments.

  17. Magnetic resonance imaging after exposure to microgravity

    NASA Technical Reports Server (NTRS)

    Leblanc, Adrian

    1993-01-01

    A number of physiological changes were demonstrated in bone, muscle, and blood from exposure of humans and animals to microgravity. Determining mechanisms and the development of effective countermeasures for long-duration space missions is an important NASA goal. Historically, NASA has had to rely on tape measures, x-ray, and metabolic balance studies with collection of excreta and blood specimens to obtain this information. The development of magnetic resonance imaging (MRI) offers the possibility of greatly extending these early studies in ways not previously possible; MRI is also non-invasive and safe; i.e., no radiation exposure. MRI provides both superb anatomical images for volume measurements of individual structures and quantification of chemical/physical changes induced in the examined tissues. This investigation will apply MRI technology to measure muscle, intervertebral disc, and bone marrow changes resulting from exposure to microgravity.

  18. [The Application of Magnetic Resonance Imaging in Alzheimer's Disease].

    PubMed

    Matsuda, Hiroshi

    2017-07-01

    In Alzheimer's disease (AD), magnetic resonance imaging (MRI) is essential for early diagnosis, differential diagnosis, and evaluation of disease progression. In structural MRI, the automatic diagnosis of atrophy by computers, even when it is not visually noticeable, is possible in daily clinical practice. Furthermore, subfield volumetric measurements of the medial temporal structures, as well as longitudinal volume measurements with high accuracy, have been developed and are useful for calculating the needed sample size in clinical trials. In addition to detecting local atrophy, graph theory has been applied to structural MRI for evaluation of alterations of the brain networks potentially affected in AD.

  19. Medical Imaging Field of Magnetic Resonance Imaging: Identification of Specialties within the Field

    ERIC Educational Resources Information Center

    Grey, Michael L.

    2009-01-01

    This study was conducted to determine if specialty areas are emerging in the magnetic resonance imaging (MRI) profession due to advancements made in the medical sciences, imaging technology, and clinical applications used in MRI that would require new developments in education/training programs and national registry examinations. In this…

  20. Magnet dislocation: an increasing and serious complication following MRI in patients with cochlear implants.

    PubMed

    Hassepass, F; Stabenau, V; Arndt, S; Beck, R; Bulla, S; Grauvogel, T; Aschendorff, A

    2014-07-01

    Cochlear implantation (CI) represents the gold standard in the treatment of children born deaf and postlingually deafened adults. Initial magnetic resonance imaging (MRI) was contraindicated in CI users. Meanwhile, there are specific recommendations concerning MRI compatibility depending on the type of CI system and the device manufacturer. Some CI systems are even approved for MRI with the internal magnet left in place. The aim of this study was to analyze all magnet revision surgeries in CI patients at one CI center and the relationship to MRI scans over time. Between 2000 and 2013, a total of 2027 CIs were implanted. The number of magnet dislocation (MD) surgeries and their causes was assessed retrospectively. In total 12 cases of MD resulting from an MRI scan (0.59 %) were observed, accounting for 52.2 % of all magnetic revision surgeries. As per the labeling, it was considered safe to leave the internal magnet in place during MRI while following specific manufacturer recommendations: MRI intensity of 1.5 Tesla (T) and compression head bandage during examination. A compression head bandage in a 1.5 T MRI unit does not safely prevent MD and the related serious complications in CI recipients. We recommend a Stenvers view radiograph after MRI with the internal magnet in place for early identification of MD, at least in the case of pain during or after MRI examination. MRI in CI patients should be indicated with restraint and patients should be explicitly informed about the possible risks. Recommendations regarding MRI compatibility and the handling of CI patients issued with MRI for the most common CI systems are summarized. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Human developmental anatomy: microscopic magnetic resonance imaging (μMRI) of four human embryos (from Carnegie Stage 10 to 20).

    PubMed

    Lhuaire, Martin; Martinez, Agathe; Kaplan, Hervé; Nuzillard, Jean-Marc; Renard, Yohann; Tonnelet, Romain; Braun, Marc; Avisse, Claude; Labrousse, Marc

    2014-12-01

    Technological advances in the field of biological imaging now allow multi-modal studies of human embryo anatomy. The aim of this study was to assess the high magnetic field μMRI feasibility in the study of small human embryos (less than 21mm crown-rump) as a new tool for the study of human descriptive embryology and to determine better sequence characteristics to obtain higher spatial resolution and higher signal/noise ratio. Morphological study of four human embryos belonging to the historical collection of the Department of Anatomy in the Faculty of Medicine of Reims was undertaken by μMRI. These embryos had, successively, crown-rump lengths of 3mm (Carnegie Stage, CS 10), 12mm (CS 16), 17mm (CS 18) and 21mm (CS 20). Acquisition of images was performed using a vertical nuclear magnetic resonance spectrometer, a Bruker Avance III, 500MHz, 11.7T equipped for imaging. All images were acquired using 2D (transverse, sagittal and coronal) and 3D sequences, either T1-weighted or T2-weighted. Spatial resolution between 24 and 70μm/pixel allowed clear visualization of all anatomical structures of the embryos. The study of human embryos μMRI has already been reported in the literature and a few atlases exist for educational purposes. However, to our knowledge, descriptive or morphological studies of human developmental anatomy based on data collected these few μMRI studies of human embryos are rare. This morphological noninvasive imaging method coupled with other techniques already reported seems to offer new perspectives to descriptive studies of human embryology.

  2. The Safety of Cardiac and Thoracic Magnetic Resonance Imaging in Patients with Cardiac Implantable Electronic Devices.

    PubMed

    Dandamudi, Sanjay; Collins, Jeremy D; Carr, James C; Mongkolwat, Pat; Rahsepar, Amir A; Tomson, Todd T; Verma, Nishant; Arora, Rishi; Chicos, Alex B; Kim, Susan S; Lin, Albert C; Passman, Rod S; Knight, Bradley P

    2016-12-01

    Studies reporting the safety of magnetic resonance imaging (MRI) in patients with a cardiac implantable electronic device (CIED) have mostly excluded examinations with the device in the magnet isocenter. The purpose of this study was to describe the safety of cardiac and thoracic spine MRI in patients with a CIED. The medical records of patients with a CIED who underwent a cardiac or thoracic spine MRI between January 2011 and December 2014 were reviewed. Devices were interrogated before and after imaging with reprogramming to asynchronous pacing in pacemaker-dependent patients. The clinical interpretability of the MRI and peak and average specific absorption rates (SARs, W/kg) achieved were determined. Fifty-eight patients underwent 51 cardiac and 11 thoracic spine MRI exams. Twenty-nine patients had a pacemaker and 29 had an implantable cardioverter defibrillator. Seventeen percent (n = 10) were pacemaker dependent. Fifty-one patients (89%) had non-MRI-conditional devices. There were no clinically significant changes in atrial and ventricular sensing, impedance, and threshold measurements. There were no episodes of device mode changes, arrhythmias, therapies delivered, electrical reset, or battery depletion. One study was prematurely discontinued due to a patient complaint of chest pain of which the etiology was not determined. Across all examinations, the average peak SAR was 2.0 ± 0.85 W/kg with an average SAR of 0.35 ± 0.37 W/kg. Artifact significantly limiting the clinical interpretation of the study was present in 33% of cardiac MRI studies. When a comprehensive CIED magnetic resonance safety protocol is followed, the risk of performing 1.5-T magnetic resonance studies with the device in the magnet isocenter, including in patients who are pacemaker dependent, is low. Copyright © 2016. Published by Elsevier Inc.

  3. Morphological and functional evaluation of chronic pancreatitis with magnetic resonance imaging

    PubMed Central

    Hansen, Tine Maria; Nilsson, Matias; Gram, Mikkel; Frøkjær, Jens Brøndum

    2013-01-01

    Magnetic resonance imaging (MRI) techniques for assessment of morphology and function of the pancreas have been improved dramatically the recent years and MRI is very often used in diagnosing and follow-up of chronic pancreatitis (CP) patients. Standard MRI including fat-suppressed T1-weighted and T2-weighted imaging techniques reveal decreased signal and glandular atrophy of the pancreas in CP. In contrast-enhanced MRI of the pancreas in CP the pancreatic signal is usually reduced and delayed due to decreased perfusion as a result of chronic inflammation and fibrosis. Thus, morphological changes of the ductal system can be assessed by magnetic resonance cholangiopancreatography (MRCP). Furthermore, secretin-stimulated MRCP is a valuable technique to evaluate side branch pathology and the exocrine function of the pancreas and diffusion weighted imaging can be used to quantify both parenchymal fibrotic changes and the exocrine function of the pancreas. These standard and advanced MRI techniques are supplementary techniques to reveal morphological and functional changes of the pancreas in CP. Recently, spectroscopy has been used for assessment of metabolite concentrations in-vivo in different tissues and may have the potential to offer better tissue characterization of the pancreas. Hence, the purpose of the present review is to provide an update on standard and advanced MRI techniques of the pancreas in CP. PMID:24259954

  4. Magnetic resonance imaging of optic nerve

    PubMed Central

    Gala, Foram

    2015-01-01

    Optic nerves are the second pair of cranial nerves and are unique as they represent an extension of the central nervous system. Apart from clinical and ophthalmoscopic evaluation, imaging, especially magnetic resonance imaging (MRI), plays an important role in the complete evaluation of optic nerve and the entire visual pathway. In this pictorial essay, the authors describe segmental anatomy of the optic nerve and review the imaging findings of various conditions affecting the optic nerves. MRI allows excellent depiction of the intricate anatomy of optic nerves due to its excellent soft tissue contrast without exposure to ionizing radiation, better delineation of the entire visual pathway, and accurate evaluation of associated intracranial pathologies. PMID:26752822

  5. Contrast agents in dynamic contrast-enhanced magnetic resonance imaging

    PubMed Central

    Yan, Yuling; Sun, Xilin; Shen, Baozhong

    2017-01-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a noninvasive method to assess angiogenesis, which is widely used in clinical applications including diagnosis, monitoring therapy response and prognosis estimation in cancer patients. Contrast agents play a crucial role in DCE-MRI and should be carefully selected in order to improve accuracy in DCE-MRI examination. Over the past decades, there was much progress in the development of optimal contrast agents in DCE-MRI. In this review, we describe the recent research advances in this field and discuss properties of contrast agents, as well as their advantages and disadvantages. Finally, we discuss the research perspectives for improving this promising imaging method. PMID:28415647

  6. Prevalence of Complications in Intraoperative Magnetic Resonance Imaging Combined with Neurophysiologic Monitoring.

    PubMed

    Sarnthein, Johannes; Lüchinger, Roger; Piccirelli, Marco; Regli, Luca; Bozinov, Oliver

    2016-09-01

    High-field intraoperative magnetic resonance imaging (ioMRI) is becoming increasingly available in neurosurgery centers, where it has to be combined with intraoperative neurophysiologic monitoring (IONM). IONM needle electrodes remain on the patient during ioMRI and may cause image distortions and burns. We tested magnetic resonance (MR) -heating experimentally and investigated the prevalence of complications. We studied electrodes that are certified for IONM, but not "MR conditional." They consist of copper cables (length, 1.5 m) and needles made of either stainless steel (ferromagnetic) or paramagnetic platinum/iridium alloy. We simulated an ioMRI session with gel and measured the temperature increase with optical fibers. We measured the force that an electrode experiences in the magnetic field. Between 2013 and 2016, we prospectively documented subcutaneous needle electrodes that remained in the patient during intraoperative 3 Tesla ioMRI scans. The in vitro testing of the electrodes produced a maximum heating (ΔT = 3.9°C) and force of 0.026 N. We placed 1237 subcutaneous needles in 57 surgical procedures with combined IONM and ioMRI, where needles remained in place during ioMRI. One patient suffered a skin burn on the shoulder. All other electrodes had no side effects. We have corroborated the history of safe use for electrodes with 1.5 m cable in a 3T MRI scanner and demonstrated their use. Nevertheless, heating cannot be excluded, as it depends on location and cable placement. When leaving electrodes in place during ioMRI, risks and benefits have to be carefully evaluated for each patient. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Experimental results for 2D magnetic resonance electrical impedance tomography (MR-EIT) using magnetic flux density in one direction.

    PubMed

    Birgül, Ozlem; Eyüboğlu, B Murat; Ider, Y Ziya

    2003-11-07

    Magnetic resonance electrical impedance tomography (MR-EIT) is an emerging imaging technique that reconstructs conductivity images using magnetic flux density measurements acquired employing MRI together with conventional EIT measurements. In this study, experimental MR-EIT images from phantoms with conducting and insulator objects are presented. The technique is implemented using the 0.15 T Middle East Technical University MRI system. The dc current method used in magnetic resonance current density imaging is adopted. A reconstruction algorithm based on the sensitivity matrix relation between conductivity and only one component of magnetic flux distribution is used. Therefore, the requirement for object rotation is eliminated. Once the relative conductivity distribution is found, it is scaled using the peripheral voltage measurements to obtain the absolute conductivity distribution. Images of several insulator and conductor objects in saline filled phantoms are reconstructed. The L2 norm of relative error in conductivity values is found to be 13%, 17% and 14% for three different conductivity distributions.

  8. Applicability of McDonald 2010 and Magnetic Resonance Imaging in Multiple Sclerosis (MAGNIMS) 2016 Magnetic Resonance Imaging Criteria for the Diagnosis of Multiple Sclerosis in Sri Lanka.

    PubMed

    Gamage, Sujani Madhurika Kodagoda; Wijeweera, Indunil; Wijesinghe, Priyangi; Adikari, Sanjaya Bandara; Fink, Katharina; Sominanda, Herath Mudiyanselage Ajith

    2018-05-31

    The magnetic resonance imaging in multiple sclerosis (MAGNIMS) group recently proposed guidelines to replace the existing dissemination-in-space criteria in McDonald 2010 magnetic resonance imaging (MRI) criteria for diagnosing multiple sclerosis. There has been insufficient research regarding their applicability in Asians. Objective of this study was to determine the sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV) of McDonald 2010 and MAGNIMS 2016 MRI criteria with the aim of verifying their applicability in Sri Lankan patients. Patients with clinically isolated syndrome diagnosed by consultant neurologists were recruited from five major neurology centers. Baseline and follow-up MRI scans were performed within 3 months from the initial presentation and at one year after baseline MRI, respectively. McDonald 2010 and MAGNIMS 2016 MRI criteria were applied to all MRI scans. Patients were followed-up for 2 years to assess the conversion to clinically definite multiple sclerosis (CDMS). The sensitivity, specificity, accuracy, PPV, and NPV for predicting the conversion to CDMS were calculated. Forty-two of 66 patients converted to CDMS. Thirty-seven fulfilled the McDonald 2010 MRI criteria, and 33 converted to CDMS. MAGNIMS 2016 MRI criteria were fulfilled by 29, with 28 converting to CDMS. The sensitivity, specificity, accuracy, PPV, and NPV were 78%, 83%, 64%, 89%, and 69%, respectively, for the McDonald 2010 criteria, and 67%, 96%, 77%, 96%, and 62% for the MAGNIMS 2016 MRI criteria. MAGNIMS 2016 MRI criteria were superior to McDonald 2010 MRI criteria in specificity, accuracy, and PPV, but inferior in sensitivity and NPV. Copyright © 2018 Korean Neurological Association.

  9. SQUIDs vs. Induction Coils for Ultra-Low Field Nuclear Magnetic Resonance: Experimental and Simulation Comparison

    PubMed Central

    Matlashov, Andrei N.; Schultz, Larry J.; Espy, Michelle A.; Kraus, Robert H.; Savukov, Igor M.; Volegov, Petr L.; Wurden, Caroline J.

    2011-01-01

    Nuclear magnetic resonance (NMR) is widely used in medicine, chemistry and industry. One application area is magnetic resonance imaging (MRI). Recently it has become possible to perform NMR and MRI in the ultra-low field (ULF) regime requiring measurement field strengths of the order of only 1 Gauss. This technique exploits the advantages offered by superconducting quantum interference devices or SQUIDs. Our group has built SQUID based MRI systems for brain imaging and for liquid explosives detection at airport security checkpoints. The requirement for liquid helium cooling limits potential applications of ULF MRI for liquid identification and security purposes. Our experimental comparative investigation shows that room temperature inductive magnetometers may provide enough sensitivity in the 3–10 kHz range and can be used for fast liquid explosives detection based on ULF NMR technique. We describe experimental and computer-simulation results comparing multichannel SQUID based and induction coils based instruments that are capable of performing ULF MRI for liquid identification. PMID:21747638

  10. Magnetic resonance-compatible robotic and mechatronics systems for image-guided interventions and rehabilitation: a review study.

    PubMed

    Tsekos, Nikolaos V; Khanicheh, Azadeh; Christoforou, Eftychios; Mavroidis, Constantinos

    2007-01-01

    The continuous technological progress of magnetic resonance imaging (MRI), as well as its widespread clinical use as a highly sensitive tool in diagnostics and advanced brain research, has brought a high demand for the development of magnetic resonance (MR)-compatible robotic/mechatronic systems. Revolutionary robots guided by real-time three-dimensional (3-D)-MRI allow reliable and precise minimally invasive interventions with relatively short recovery times. Dedicated robotic interfaces used in conjunction with fMRI allow neuroscientists to investigate the brain mechanisms of manipulation and motor learning, as well as to improve rehabilitation therapies. This paper gives an overview of the motivation, advantages, technical challenges, and existing prototypes for MR-compatible robotic/mechatronic devices.

  11. Prenatal Diagnosis of Placenta Accreta: Sonography or Magnetic Resonance Imaging?

    PubMed Central

    Dwyer, Bonnie K.; Belogolovkin, Victoria; Tran, Lan; Rao, Anjali; Carroll, Ian; Barth, Richard; Chitkara, Usha

    2009-01-01

    Objective The purpose of this study was to compare the accuracy of transabdominal sonography and magnetic resonance imaging (MRI) for prenatal diagnosis of placenta accreta. Methods A historical cohort study was undertaken at 3 institutions identifying women at risk for placenta accreta who had undergone both sonography and MRI prenatally. Sonographic and MRI findings were compared with the final diagnosis as determined at delivery and by pathologic examination. Results Thirty-two patients who had both sonography and MRI prenatally to evaluate for placenta accreta were identified. Of these, 15 had confirmation of placenta accreta at delivery. Sonography correctly identified the presence of placenta accreta in 14 of 15 patients (93% sensitivity; 95% confidence interval [CI], 80%–100%) and the absence of placenta accreta in 12 of 17 patients (71% specificity; 95% CI, 49%–93%). Magnetic resonance imaging correctly identified the presence of placenta accreta in 12 of 15 patients (80% sensitivity; 95% CI, 60%–100%) and the absence of placenta accreta in 11 of 17 patients (65% specificity; 95% CI, 42%–88%). In 7 of 32 cases, sonography and MRI had discordant diagnoses: sonography was correct in 5 cases, and MRI was correct in 2. There was no statistical difference in sensitivity (P = .25) or specificity (P = .5) between sonography and MRI. Conclusions Both sonography and MRI have fairly good sensitivity for prenatal diagnosis of placenta accreta; however, specificity does not appear to be as good as reported in other studies. In the case of inconclusive findings with one imaging modality, the other modality may be useful for clarifying the diagnosis. PMID:18716136

  12. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob, E-mail: ihahn@caltech.edu

    2014-09-15

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas ofmore » further improvements needed to bring the imaging performance to parity with conventional MRI systems.« less

  13. Magnetic resonance techniques for investigation of multiple sclerosis

    NASA Astrophysics Data System (ADS)

    MacKay, Alex; Laule, Cornelia; Li, David K. B.; Meyers, Sandra M.; Russell-Schulz, Bretta; Vavasour, Irene M.

    2014-11-01

    Multiple sclerosis (MS) is a common neurological disease which can cause loss of vision and balance, muscle weakness, impaired speech, fatigue, cognitive dysfunction and even paralysis. The key pathological processes in MS are inflammation, edema, myelin loss, axonal loss and gliosis. Unfortunately, the cause of MS is still not understood and there is currently no cure. Magnetic resonance imaging (MRI) is an important clinical and research tool for MS. 'Conventional' MRI images of MS brain reveal bright lesions, or plaques, which demark regions of severe tissue damage. Conventional MRI has been extremely valuable for the diagnosis and management of people who have MS and also for the assessment of therapies designed to reduce inflammation and promote repair. While conventional MRI is clearly valuable, it lack pathological specificity and, in some cases, sensitivity to non-lesional pathology. Advanced MR techniques have been developed to provide information that is more sensitive and specific than what is available with clinical scanning. Diffusion tensor imaging and magnetization transfer provide a general but non-specific measure of the pathological state of brain tissue. MR spectroscopy provides concentrations of brain metabolites which can be related to specific pathologies. Myelin water imaging was designed to assess brain myelination and has proved useful for measuring myelin loss in MS. To combat MS, it is crucial that the pharmaceutical industry finds therapies which can reverse the neurodegenerative processes which occur in the disease. The challenge for magnetic resonance researchers is to design imaging techniques which can provide detailed pathological information relating to the mechanisms of MS therapies. This paper briefly describes the pathologies of MS and demonstrates how MS-associated pathologies can be followed using both conventional and advanced MR imaging protocols.

  14. Fat Imaging via Magnetic Resonance Imaging (MRI) in Young Children (Ages 1-4 Years) without Sedation

    PubMed Central

    Shearrer, Grace E.; House, Benjamin T.; Gallas, Michelle C.; Luci, Jeffrey J.; Davis, Jaimie N.

    2016-01-01

    Introduction This pilot study developed techniques to perform Magnetic Resonance Imaging (MRI) of specific fat deposition in 18 children (age 18 months to 4 years). Methods The children engaged in a series of practice tests to become acclimated to the scanner noises, reduce claustrophobia, and rehearse holding still for a set time. The practice tests assessed if the child could remain still for two minutes while watching a video, first while lying on a blanket, second, on the blanket with headphones, and third, in the mock scanner. The children who passed the three practice tests were then scanned with a 3T Siemens Skyra magnet. Abdominal fat distribution (region of interest (ROI) from the top of the ileac crest to the bottom of the ribcage) volume was measured using 2-point DIXON technique. This region was chosen to give an indication of the body composition around the liver. Results Twelve out of eighteen participants successfully completed the actual MRI scan. Chi-squared test showed no significant difference between male and female pass-fail rates. The median age of completed scans was 36 months, whereas the median age for children unable to complete a scan was 28 months. The average total trunk fat was 240.9±85.2mL and the average total VAT was 37.7±25.9mLand liver fat was not quantifiable due to physiological motion. Several strategies (modeling, videos, and incentives) were identified to improve pediatric imaging in different age ranges. Conclusion Using an age-specific and tailored protocol, we were able to successfully use MRI for fat imaging in a majority of young children. Development of such protocols enables researchers to better understand the etiology of fat deposition in young children, which can be used to aid in the prevention and treatment of adiposity. PMID:26901881

  15. Fat Imaging via Magnetic Resonance Imaging (MRI) in Young Children (Ages 1-4 Years) without Sedation.

    PubMed

    Shearrer, Grace E; House, Benjamin T; Gallas, Michelle C; Luci, Jeffrey J; Davis, Jaimie N

    2016-01-01

    This pilot study developed techniques to perform Magnetic Resonance Imaging (MRI) of specific fat deposition in 18 children (age 18 months to 4 years). The children engaged in a series of practice tests to become acclimated to the scanner noises, reduce claustrophobia, and rehearse holding still for a set time. The practice tests assessed if the child could remain still for two minutes while watching a video, first while lying on a blanket, second, on the blanket with headphones, and third, in the mock scanner. The children who passed the three practice tests were then scanned with a 3T Siemens Skyra magnet. Abdominal fat distribution (region of interest (ROI) from the top of the ileac crest to the bottom of the ribcage) volume was measured using 2-point DIXON technique. This region was chosen to give an indication of the body composition around the liver. Twelve out of eighteen participants successfully completed the actual MRI scan. Chi-squared test showed no significant difference between male and female pass-fail rates. The median age of completed scans was 36 months, whereas the median age for children unable to complete a scan was 28 months. The average total trunk fat was 240.9±85.2mL and the average total VAT was 37.7±25.9mLand liver fat was not quantifiable due to physiological motion. Several strategies (modeling, videos, and incentives) were identified to improve pediatric imaging in different age ranges. Using an age-specific and tailored protocol, we were able to successfully use MRI for fat imaging in a majority of young children. Development of such protocols enables researchers to better understand the etiology of fat deposition in young children, which can be used to aid in the prevention and treatment of adiposity.

  16. Early myocardial dysfunction in streptozotocin-induced diabetic mice: a study using in vivo magnetic resonance imaging (MRI)

    PubMed Central

    Yu, Xichun; Tesiram, Yasvir A; Towner, Rheal A; Abbott, Andrew; Patterson, Eugene; Huang, Shijun; Garrett, Marion W; Chandrasekaran, Suresh; Matsuzaki, Satoshi; Szweda, Luke I; Gordon, Brian E; Kem, David C

    2007-01-01

    Background Diabetes is associated with a cardiomyopathy that is independent of coronary artery disease or hypertension. In the present study we used in vivo magnetic resonance imaging (MRI) and echocardiographic techniques to examine and characterize early changes in myocardial function in a mouse model of type 1 diabetes. Methods Diabetes was induced in 8-week old C57BL/6 mice with two intraperitoneal injections of streptozotocin. The blood glucose levels were maintained at 19–25 mmol/l using intermittent low dosages of long acting insulin glargine. MRI and echocardiography were performed at 4 weeks of diabetes (age of 12 weeks) in diabetic mice and age-matched controls. Results After 4 weeks of hyperglycemia one marker of mitochondrial function, NADH oxidase activity, was decreased to 50% of control animals. MRI studies of diabetic mice at 4 weeks demonstrated significant deficits in myocardial morphology and functionality including: a decreased left ventricular (LV) wall thickness, an increased LV end-systolic diameter and volume, a diminished LV ejection fraction and cardiac output, a decreased LV circumferential shortening, and decreased LV peak ejection and filling rates. M-mode echocardiographic and Doppler flow studies of diabetic mice at 4 weeks showed a decreased wall thickening and increased E/A ratio, supporting both systolic and diastolic dysfunction. Conclusion Our study demonstrates that MRI interrogation can identify the onset of diabetic cardiomyopathy in mice with its impaired functional capacity and altered morphology. The MRI technique will lend itself to repetitive study of early changes in cardiac function in small animal models of diabetic cardiomyopathy. PMID:17309798

  17. Development of Ferrite-Based Temperature Sensors for Magnetic Resonance Imaging: A Study of Cu1 -xZnxFe2O4

    NASA Astrophysics Data System (ADS)

    Alghamdi, N. A.; Hankiewicz, J. H.; Anderson, N. R.; Stupic, K. F.; Camley, R. E.; Przybylski, M.; Żukrowski, J.; Celinski, Z.

    2018-05-01

    We investigate the use of Cu1 -xZnxFe2O4 ferrites (0.60 magnetic-resonance-imaging thermometry. Samples are prepared by a standard ceramic technique. Their structural and magnetic properties are determined using x-ray diffraction, scanning electron microscopy, superconducting quantum-interference device magnetometry, and Mössbauer and 3-T nuclear-magnetic-resonance spectroscopies. We use the mass magnetization of powdered ferrites and transverse relaxivity r2* of water protons in Ringer's-solution-based agar gels with embedded micron-sized particles to determine the best composition for magnetic-resonance-imaging (MRI) temperature sensors in the (280-323)-K range. A preclinical 3-T MRI scanner is employed to acquire T2* weighted temperature-dependent images. The brightness of the MRI images is cross-correlated with the temperature of the phantoms, which allows for a temperature determination with approximately 1 °C accuracy. We determine that the composition of 0.65 MRI thermometry near human body temperature.

  18. In situ targeted MRI detection of Helicobacter pylori with stable magnetic graphitic nanocapsules

    PubMed Central

    Li, Yunjie; Hu, Xiaoxiao; Ding, Ding; Zou, Yuxiu; Xu, Yiting; Wang, Xuewei; Zhang, Yin; Chen, Long; Chen, Zhuo; Tan, Weihong

    2017-01-01

    Helicobacter pylori infection is implicated in the aetiology of many diseases. Despite numerous studies, a painless, fast and direct method for the in situ detection of H. pylori remains a challenge, mainly due to the strong acidic/enzymatic environment of the gastric mucosa. Herein, we report the use of stable magnetic graphitic nanocapsules (MGNs), for in situ targeted magnetic resonance imaging (MRI) detection of H. pylori. Several layers of graphene as the shell effectively protect the magnetic core from corrosion while retaining the superior contrast effect for MRI in the gastric environment. Boronic-polyethylene glycol molecules were synthesized and modified on the MGN surface for targeted MRI detection. In a mouse model of H. pylori-induced infection, H. pylori was specifically detected through both T2-weighted MR imaging and Raman gastric mucosa imaging using functionalized MGNs. These results indicated that enhancement of MRI using MGNs may be a promising diagnostic and bioimaging platform for very harsh conditions. PMID:28643777

  19. In situ targeted MRI detection of Helicobacter pylori with stable magnetic graphitic nanocapsules

    NASA Astrophysics Data System (ADS)

    Li, Yunjie; Hu, Xiaoxiao; Ding, Ding; Zou, Yuxiu; Xu, Yiting; Wang, Xuewei; Zhang, Yin; Chen, Long; Chen, Zhuo; Tan, Weihong

    2017-06-01

    Helicobacter pylori infection is implicated in the aetiology of many diseases. Despite numerous studies, a painless, fast and direct method for the in situ detection of H. pylori remains a challenge, mainly due to the strong acidic/enzymatic environment of the gastric mucosa. Herein, we report the use of stable magnetic graphitic nanocapsules (MGNs), for in situ targeted magnetic resonance imaging (MRI) detection of H. pylori. Several layers of graphene as the shell effectively protect the magnetic core from corrosion while retaining the superior contrast effect for MRI in the gastric environment. Boronic-polyethylene glycol molecules were synthesized and modified on the MGN surface for targeted MRI detection. In a mouse model of H. pylori-induced infection, H. pylori was specifically detected through both T2-weighted MR imaging and Raman gastric mucosa imaging using functionalized MGNs. These results indicated that enhancement of MRI using MGNs may be a promising diagnostic and bioimaging platform for very harsh conditions.

  20. Radiologic Diagnosis of Spondylodiscitis, Role of Magnetic Resonance.

    PubMed

    Ramadani, Naser; Dedushi, Kreshnike; Kabashi, Serbeze; Mucaj, Sefedin

    2017-03-01

    Study aim is to report the Magnetic Resonance Imaging (MRI) features of acute and chronic spontaneous spondylodiscitis. 57 year old female, complaining of a fever and longstanding cervical pain worsened during physical therapy. MR images were acquired using superconductive magnet 1.5 T, with the following sequences: sagittal PD and T2 TSE, sagittal T1 SE, axial PD and T2 TSE (lumbar spine), axial T2 GRE (cervical spine). Axial and sagittal T1 SE after administration of (gadolinium DTPA). Examination was reviewed by three radiologists and compared to CT findings. Patient reported cervical pain associated with fever and minimal weight loss. Blood tests were normal except hyperglycemia (DM tip II). X Ray: vertebral destruction localized at C-4 and C-5: NECT: destruction of the C-4/C-5 vertebral bodies (ventral part). MRI: Low signal of the bone marrow on T1l images, which enhanced after Gd-DTPA administration and became intermediate or high on T2 images. The steady high signal intensity of the disk on T2 images and enhancement on T1 images is typical for an acute inflammatory process. Bone Scintigrafi results: Bone changes suspicious for metastasis. Whole body CT results: apart from spine, no other significant changes. MRI is the most sensitive technique for the diagnosis of spondylodiscitis in the acute phase and comparable to CT regarding chronial stage of the disease. The present imagining essay os aimed at showing the main magnetic resonance imaging findings of tuberculous discitis.

  1. Radiologic Diagnosis of Spondylodiscitis, Role of Magnetic Resonance

    PubMed Central

    Ramadani, Naser; Dedushi, Kreshnike; Kabashi, Serbeze; Mucaj, Sefedin

    2017-01-01

    Introduction: Study aim is to report the Magnetic Resonance Imaging (MRI) features of acute and chronic spontaneous spondylodiscitis. Case report: 57 year old female, complaining of a fever and longstanding cervical pain worsened during physical therapy. Methods: MR images were acquired using superconductive magnet 1.5 T, with the following sequences: sagittal PD and T2 TSE, sagittal T1 SE, axial PD and T2 TSE (lumbar spine), axial T2 GRE (cervical spine). Axial and sagittal T1 SE after administration of (gadolinium DTPA). Examination was reviewed by three radiologists and compared to CT findings. Results: Patient reported cervical pain associated with fever and minimal weight loss. Blood tests were normal except hyperglycemia (DM tip II). X Ray: vertebral destruction localized at C-4 and C-5: NECT: destruction of the C-4/C-5 vertebral bodies (ventral part). MRI: Low signal of the bone marrow on T1l images, which enhanced after Gd-DTPA administration and became intermediate or high on T2 images. The steady high signal intensity of the disk on T2 images and enhancement on T1 images is typical for an acute inflammatory process. Bone Scintigrafi results: Bone changes suspicious for metastasis. Whole body CT results: apart from spine, no other significant changes. Conclusion: MRI is the most sensitive technique for the diagnosis of spondylodiscitis in the acute phase and comparable to CT regarding chronial stage of the disease. The present imagining essay os aimed at showing the main magnetic resonance imaging findings of tuberculous discitis. PMID:28484299

  2. Exploratory use of cardiovascular magnetic resonance imaging in liver transplantation: a one-stop shop for preoperative cardiohepatic evaluation.

    PubMed

    Reddy, Sahadev T; Thai, Ngoc L; Fakhri, Asghar A; Oliva, Jose; Tom, Kusum B; Dishart, Michael K; Doyle, Mark; Yamrozik, June A; Williams, Ronald B; Grant, Saundra B; Poydence, Jacqueline; Shah, Moneal; Singh, Anil; Nathan, Swami; Biederman, Robert W W

    2013-11-15

    Preoperative cardiovascular risk stratification in orthotopic liver transplantation candidates has proven challenging due to limitations of current noninvasive modalities. Additionally, the preoperative workup is logistically cumbersome and expensive given the need for separate cardiac, vascular, and abdominal imaging. We evaluated the feasibility of a "one-stop shop" in a magnetic resonance suite, performing assessment of cardiac structure, function, and viability, along with simultaneous evaluation of thoracoabdominal vasculature and liver anatomy. In this pilot study, patients underwent steady-state free precession sequences and stress cardiac magnetic resonance (CMR), thoracoabdominal magnetic resonance angiography, and abdominal magnetic resonance imaging (MRI) on a standard MRI scanner. Pharmacologic stress was performed using regadenoson, adenosine, or dobutamine. Viability was assessed using late gadolinium enhancement. Over 2 years, 51 of 77 liver transplant candidates (mean age, 56 years; 35% female; mean Model for End-stage Liver Disease score, 10.8; range, 6-40) underwent MRI. All referred patients completed standard dynamic CMR, 98% completed stress CMR, 82% completed late gadolinium enhancement for viability, 94% completed liver MRI, and 88% completed magnetic resonance angiography. The mean duration of the entire study was 72 min, and 45 patients were able to complete the entire examination. Among all 51 patients, 4 required follow-up coronary angiography (3 for evidence of ischemia on perfusion CMR and 1 for postoperative ischemia), and none had flow-limiting coronary disease. Nine proceeded to orthotopic liver transplantation (mean 74 days to transplantation after MRI). There were six ascertained mortalities in the nontransplant group and one death in the transplanted group. Explant pathology confirmed 100% detection/exclusion of hepatocellular carcinoma. No complications during CMR examination were encountered. In this proof-of-concept study, it

  3. Accuracy of MRI-based Magnetic Susceptibility Measurements

    NASA Astrophysics Data System (ADS)

    Russek, Stephen; Erdevig, Hannah; Keenan, Kathryn; Stupic, Karl

    Magnetic Resonance Imaging (MRI) is increasingly used to map tissue susceptibility to identify microbleeds associated with brain injury and pathologic iron deposits associated with neurologic diseases such as Parkinson's and Alzheimer's disease. Field distortions with a resolution of a few parts per billion can be measured using MRI phase maps. The field distortion map can be inverted to obtain a quantitative susceptibility map. To determine the accuracy of MRI-based susceptibility measurements, a set of phantoms with paramagnetic salts and nano-iron gels were fabricated. The shapes and orientations of features were varied. Measured susceptibility of 1.0 mM GdCl3 solution in water as a function of temperature agreed well with the theoretical predictions, assuming Gd+3 is spin 7/2. The MRI susceptibility measurements were compared with SQUID magnetometry. The paramagnetic susceptibility sits on top of the much larger diamagnetic susceptibility of water (-9.04 x 10-6), which leads to errors in the SQUID measurements. To extract out the paramagnetic contribution using standard magnetometry, measurements must be made down to low temperature (2K). MRI-based susceptometry is shown to be as or more accurate than standard magnetometry and susceptometry techniques.

  4. SQUIDs vs. Faraday coils for ultlra-low field nuclear magnetic resonance: experimental and simulation comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matlashov, Andrei N; Espy, Michelle A; Kraus, Robert H

    2010-01-01

    Nuclear magnetic resonance (NMR) methods are widely used in medicine, chemistry and industry. One application area is magnetic resonance imaging or MRI. Recently it has become possible to perform NMR and MRI in ultra-low field (ULF) regime that requires measurement field strengths only of the order of 1 Gauss. These techniques exploit the advantages offered by superconducting quantum interference devices or SQUIDs. Our group at LANL has built SQUID based MRI systems for brain imaging and for liquid explosives detection at airports security checkpoints. The requirement for liquid helium cooling limits potential applications of ULF MRI for liquid identification andmore » security purposes. Our experimental comparative investigation shows that room temperature inductive magnetometers provide enough sensitivity in the 3-10 kHz range and can be used for fast liquid explosives detection based on ULF NMR/MRI technique. We describe an experimental and computer simulation comparison of the world's first multichannel SQUID based and Faraday coils based instruments that are capable of performing ULF MRI for liquids identification.« less

  5. Optimal Control-Enabled Imaging and Spectroscopy using a Nanowire Magnetic Resonance Force Microscope

    NASA Astrophysics Data System (ADS)

    Rose, William; Haas, Holger; Chen, Angela; Cory, David; Budakian, Raffi

    Magnetic resonance imaging (MRI) is a powerful non-invasive technique that has transformed our ability to study the structure and function of biological systems. Key to its success has been the unique ability to combine imaging with magnetic resonance spectroscopy. Although it remains a significant challenge, there is considerable interest in extending MRI spectroscopy to the nanometer scale because it would provide a fundamentally new route for determining the structure and function of complex biomolecules. We present data taken with a nanowire magnetic resonance force microscopy (MRFM) setup. We show how the capabilities of this very sensitive spin-detection system can be extended to include spectroscopy and nanometer-scale imaging by combining optimal control theory (OCT) techniques with magic echo sequences. We apply OCT-based dynamical-decoupling pulses to nanoscale ensembles of proton spins in polystyrene, and demonstrate a 500-fold line-narrowing of the proton spin resonance, from 30 kHz to 60 Hz. We further demonstrate 1-D imaging over a 35-nm region with an average voxel size of 2.2 nm. Funding provided by the U.S. Army Research Office, Grant No. W911NF-12-1-0341.

  6. The role of magnetic resonance imaging in the diagnosis of Parkinson's disease: a review.

    PubMed

    Al-Radaideh, Ali M; Rababah, Eman M

    2016-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's in elderly people. Different structural and functional neuroimaging methods play a great role in the early diagnosis of neurodegenerative diseases. This review discusses the role of magnetic resonance imaging (MRI) in the diagnosis of PD. MRI provides clinicians with structural and functional information of human brain noninvasively. Advanced quantitative MRI techniques have shown promise for detecting pathological changes related to different stages of PD. Collectively, advanced MRI techniques at high and ultrahigh magnetic fields aid in better understanding of the nature and progression of PD. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Endowing carbon nanotubes with superparamagnetic properties: applications for cell labeling, MRI cell tracking and magnetic manipulations.

    PubMed

    Lamanna, Giuseppe; Garofalo, Antonio; Popa, Gabriela; Wilhelm, Claire; Bégin-Colin, Sylvie; Felder-Flesch, Delphine; Bianco, Alberto; Gazeau, Florence; Ménard-Moyon, Cécilia

    2013-05-21

    Coating of carbon nanotubes (CNTs) with magnetic nanoparticles (NPs) imparts novel magnetic, optical, and thermal properties with potential applications in the biomedical domain. Multi-walled CNTs have been decorated with iron oxide superparamagnetic NPs. Two different approaches have been investigated based on ligand exchange or "click chemistry". The presence of the NPs on the nanotube surface allows conferring magnetic properties to CNTs. We have evaluated the potential of the NP/CNT hybrids as a contrast agent for magnetic resonance imaging (MRI) and their interactions with cells. The capacity of the hybrids to magnetically monitor and manipulate cells has also been investigated. The NP/CNTs can be manipulated by a remote magnetic field with enhanced contrast in MRI. They are internalized into tumor cells without showing cytotoxicity. The labeled cells can be magnetically manipulated as they display magnetic mobility and are detected at a single cell level through high resolution MRI.

  8. Regression Models for Identifying Noise Sources in Magnetic Resonance Images

    PubMed Central

    Zhu, Hongtu; Li, Yimei; Ibrahim, Joseph G.; Shi, Xiaoyan; An, Hongyu; Chen, Yashen; Gao, Wei; Lin, Weili; Rowe, Daniel B.; Peterson, Bradley S.

    2009-01-01

    Stochastic noise, susceptibility artifacts, magnetic field and radiofrequency inhomogeneities, and other noise components in magnetic resonance images (MRIs) can introduce serious bias into any measurements made with those images. We formally introduce three regression models including a Rician regression model and two associated normal models to characterize stochastic noise in various magnetic resonance imaging modalities, including diffusion-weighted imaging (DWI) and functional MRI (fMRI). Estimation algorithms are introduced to maximize the likelihood function of the three regression models. We also develop a diagnostic procedure for systematically exploring MR images to identify noise components other than simple stochastic noise, and to detect discrepancies between the fitted regression models and MRI data. The diagnostic procedure includes goodness-of-fit statistics, measures of influence, and tools for graphical display. The goodness-of-fit statistics can assess the key assumptions of the three regression models, whereas measures of influence can isolate outliers caused by certain noise components, including motion artifacts. The tools for graphical display permit graphical visualization of the values for the goodness-of-fit statistic and influence measures. Finally, we conduct simulation studies to evaluate performance of these methods, and we analyze a real dataset to illustrate how our diagnostic procedure localizes subtle image artifacts by detecting intravoxel variability that is not captured by the regression models. PMID:19890478

  9. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study.

    PubMed

    Vogel, Michael W; Giorni, Andrea; Vegh, Viktor; Pellicer-Guridi, Ruben; Reutens, David C

    2016-01-01

    We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20-50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably.

  10. Dynamic contrast-enhanced magnetic resonance imaging of the sarcopenic muscle

    PubMed Central

    Nicolato, Elena; Farace, Paolo; Asperio, Roberto M; Marzola, Pasquina; Lunati, Ernesto; Sbarbati, Andrea; Osculati, Francesco

    2002-01-01

    Background Studies about capillarity of the aged muscle provided conflicting results and no data are currently available about the magnetic resonance imaging (MRI) in vivo characteristics of the microvascular bed in aged rats. We have studied age-related modifications of the skeletal muscle by in vivo T2-relaxometry and dynamic contrast-enhanced magnetic resonance imaging (CE-MRI) at high field intensity (4.7 T). The aim of the work was to test the hypothesis that the ageing process involves microvessels in skeletal muscle. Methods The study was performed in 4-month-old (n = 6) and 20-month-old (n = 6) rats. Results At MRI examination, the relaxation time T2 of the gastrocnemius muscle showed no significant difference between these two groups. The kinetic of contrast penetration in the tissue showed that in 4-month-old rats the enhancement values of the signal intensity at different time-points were significantly higher than those found in senescent rats. Conclusion The reported finding suggests that there is a modification of the microcirculatory function in skeletal muscle of aged rats. This work also demonstrates that CE-MRI allows for an in vivo quantification of the multiple biological processes involving the skeletal muscle during aging. Therefore, CE-MRI could represent a further tool for the follow up of tissue modification and therapeutic intervention both in patients with sarcopenia and in experimental models of this pathology. PMID:12049675

  11. Aptamer-conjugated Magnetic Nanoparticles as Targeted Magnetic Resonance Imaging Contrast Agent for Breast Cancer.

    PubMed

    Keshtkar, Mohammad; Shahbazi-Gahrouei, Daryoush; Khoshfetrat, Seyyed Mehdi; Mehrgardi, Masoud A; Aghaei, Mahmoud

    2016-01-01

    Early detection of breast cancer is the most effective way to improve the survival rate in women. Magnetic resonance imaging (MRI) offers high spatial resolution and good anatomic details, and its lower sensitivity can be improved by using targeted molecular imaging. In this study, AS1411 aptamer was conjugated to Fe 3 O 4 @Au nanoparticles for specific targeting of mouse mammary carcinoma (4T1) cells that overexpress nucleolin. In vitro cytotoxicity of aptamer-conjugated nanoparticles was assessed on 4T1 and HFFF-PI6 (control) cells. The ability of the synthesized nanoprobe to target specifically the nucleolin overexpressed cells was assessed with the MRI technique. Results show that the synthesized nanoprobe produced strongly darkened T 2 -weighted magnetic resonance (MR) images with 4T1 cells, whereas the MR images of HFFF-PI6 cells incubated with the nanoprobe are brighter, showing small changes compared to water. The results demonstrate that in a Fe concentration of 45 μg/mL, the nanoprobe reduced by 90% MR image intensity in 4T1 cells compared with the 27% reduction in HFFF-PI6 cells. Analysis of MR signal intensity showed statistically significant signal intensity difference between 4T1 and HFFF-PI6 cells treated with the nanoprobe. MRI experiments demonstrate the high potential of the synthesized nanoprobe as a specific MRI contrast agent for detection of nucleolin-expressing breast cancer cells.

  12. Magnetic Resonance Imaging in Psoriatic Arthritis: A Descriptive Study of Indications, Features and Effect on Treatment Change.

    PubMed

    Maldonado-Ficco, Hernán; Sheane, Barry J; Thavaneswaran, Arane; Chandran, Vinod; Gladman, Dafna D

    2017-08-01

    The aims of this study were to describe the indications for, and features of, axial/peripheral joint magnetic resonance imaging (MRI) in psoriatic arthritis (PsA) and to examine the influence of MRI findings on clinical practice. All axial and peripheral (hand and/or foot) MRI scans on patients attending the Toronto PsA clinic l between 2003 and 2014 were included. Scan details were garnered from the radiologist's official report. A chart review was performed to determine if MRI findings contributed to a change of treatment. One hundred sixty-eight scans were performed on 125 patients (135 axial and 33 peripheral). The mean age was 50.5 (SD, 11.5) years, with 51.2% being female. Mean duration of PsA was 11.2 (SD, 10.9) years. Of the axial scans, the majority were performed on the whole spine (excluding the sacrum) (27.4%) or the sacroiliac joints and spine together (45.2%). The predominant indications were for suspected inflammatory (51.1%) or degenerative (24.4%) disease. Magnetic resonance imaging revealed inflammatory and/or structural change in 34.1% versus 54.8% with degenerative changes. In MRI axial inflammation (n = 25), the majority (48%) had sacroiliac joint involvement, whereas 28% had inflammation at 2 or more sites.Of the periphery, 60.6% of scans were on hands and 21.2% were on feet alone. The main indications were for suspected subclinical synovitis (78.8%). Inflammatory arthritis was the MRI diagnosis in 72.7%. Magnetic resonance imaging findings influenced treatment change (n = 32) in 56.3%, but were insufficient to effect treatment change without clinical findings (100%). Magnetic resonance imaging is useful in evaluating patients with active PsA, particularly when suspecting inflammation and radiographic findings are unhelpful. In some cases, it can be used as an adjunct to clinical examination in determining treatment change.

  13. Concurrent multiscale imaging with magnetic resonance imaging and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liang, Chia-Pin; Yang, Bo; Kim, Il Kyoon; Makris, George; Desai, Jaydev P.; Gullapalli, Rao P.; Chen, Yu

    2013-04-01

    We develop a novel platform based on a tele-operated robot to perform high-resolution optical coherence tomography (OCT) imaging under continuous large field-of-view magnetic resonance imaging (MRI) guidance. Intra-operative MRI (iMRI) is a promising guidance tool for high-precision surgery, but it may not have sufficient resolution or contrast to visualize certain small targets. To address these limitations, we develop an MRI-compatible OCT needle probe, which is capable of providing microscale tissue architecture in conjunction with macroscale MRI tissue morphology in real time. Coregistered MRI/OCT images on ex vivo chicken breast and human brain tissues demonstrate that the complementary imaging scales and contrast mechanisms have great potential to improve the efficiency and the accuracy of iMRI procedure.

  14. Ultra-low field MRI: bringing MRI to new arenas

    DOE PAGES

    Magnelind, Per Erik; Matlashov, Andrei Nikolaevich; Newman, Shaun Garrett; ...

    2016-11-01

    Conventional magnetic resonance imaging (MRI) is moving toward the use of stronger and stronger magnetic fields with 3T, and even 7 T systems being increasingly used in routine clinical applications. However there is another branch of MRI, namely Ultra Low Field MRI (ULF-MRI) where the magnetic fields during readout are several orders of magnitude smaller, namely 1–100 μT. While conventional high-field MRI remains the gold standard there are several situations such as in military emergencies or in developing countries where for cost and logistical reasons, conventional MRI is not practical. In such scenarios, ULF-MRI could provide a solution. Lastly, thismore » article describes the basic principles and the potential of ULF-MRI.« less

  15. Ultra-low field MRI: bringing MRI to new arenas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnelind, Per Erik; Matlashov, Andrei Nikolaevich; Newman, Shaun Garrett

    Conventional magnetic resonance imaging (MRI) is moving toward the use of stronger and stronger magnetic fields with 3T, and even 7 T systems being increasingly used in routine clinical applications. However there is another branch of MRI, namely Ultra Low Field MRI (ULF-MRI) where the magnetic fields during readout are several orders of magnitude smaller, namely 1–100 μT. While conventional high-field MRI remains the gold standard there are several situations such as in military emergencies or in developing countries where for cost and logistical reasons, conventional MRI is not practical. In such scenarios, ULF-MRI could provide a solution. Lastly, thismore » article describes the basic principles and the potential of ULF-MRI.« less

  16. Angstrom-Resolution Magnetic Resonance Imaging of Single Molecules via Wave-Function Fingerprints of Nuclear Spins

    NASA Astrophysics Data System (ADS)

    Ma, Wen-Long; Liu, Ren-Bao

    2016-08-01

    Single-molecule sensitivity of nuclear magnetic resonance (NMR) and angstrom resolution of magnetic resonance imaging (MRI) are the highest challenges in magnetic microscopy. Recent development in dynamical-decoupling- (DD) enhanced diamond quantum sensing has enabled single-nucleus NMR and nanoscale NMR. Similar to conventional NMR and MRI, current DD-based quantum sensing utilizes the "frequency fingerprints" of target nuclear spins. The frequency fingerprints by their nature cannot resolve different nuclear spins that have the same noise frequency or differentiate different types of correlations in nuclear-spin clusters, which limit the resolution of single-molecule MRI. Here we show that this limitation can be overcome by using "wave-function fingerprints" of target nuclear spins, which is much more sensitive than the frequency fingerprints to the weak hyperfine interaction between the targets and a sensor under resonant DD control. We demonstrate a scheme of angstrom-resolution MRI that is capable of counting and individually localizing single nuclear spins of the same frequency and characterizing the correlations in nuclear-spin clusters. A nitrogen-vacancy-center spin sensor near a diamond surface, provided that the coherence time is improved by surface engineering in the near future, may be employed to determine with angstrom resolution the positions and conformation of single molecules that are isotope labeled. The scheme in this work offers an approach to breaking the resolution limit set by the "frequency gradients" in conventional MRI and to reaching the angstrom-scale resolution.

  17. Biological Effects and Safety in Magnetic Resonance Imaging: A Review

    PubMed Central

    Hartwig, Valentina; Giovannetti, Giulio; Vanello, Nicola; Lombardi, Massimo; Landini, Luigi; Simi, Silvana

    2009-01-01

    Since the introduction of Magnetic Resonance Imaging (MRI) as a diagnostic technique, the number of people exposed to electromagnetic fields (EMF) has increased dramatically. In this review, based on the results of a pioneer study showing in vitro and in vivo genotoxic effects of MRI scans, we report an updated survey about the effects of non-ionizing EMF employed in MRI, relevant for patients’ and workers’ safety. While the whole data does not confirm a risk hypothesis, it suggests a need for further studies and prudent use in order to avoid unnecessary examinations, according to the precautionary principle. PMID:19578460

  18. Studying Autism Spectrum Disorder with Structural and Diffusion Magnetic Resonance Imaging: A Survey

    PubMed Central

    Ismail, Marwa M. T.; Keynton, Robert S.; Mostapha, Mahmoud M. M. O.; ElTanboly, Ahmed H.; Casanova, Manuel F.; Gimel'farb, Georgy L.; El-Baz, Ayman

    2016-01-01

    Magnetic resonance imaging (MRI) modalities have emerged as powerful means that facilitate non-invasive clinical diagnostics of various diseases and abnormalities since their inception in the 1980s. Multiple MRI modalities, such as different types of the sMRI and DTI, have been employed to investigate facets of ASD in order to better understand this complex syndrome. This paper reviews recent applications of structural magnetic resonance imaging (sMRI) and diffusion tensor imaging (DTI), to study autism spectrum disorder (ASD). Main reported findings are sometimes contradictory due to different age ranges, hardware protocols, population types, numbers of participants, and image analysis parameters. The primary anatomical structures, such as amygdalae, cerebrum, and cerebellum, associated with clinical-pathological correlates of ASD are highlighted through successive life stages, from infancy to adulthood. This survey demonstrates the absence of consistent pathology in the brains of autistic children and lack of research investigations in patients under 2 years of age in the literature. The known publications also emphasize advances in data acquisition and analysis, as well as significance of multimodal approaches that combine resting-state, task-evoked, and sMRI measures. Initial results obtained with the sMRI and DTI show good promise toward the early and non-invasive ASD diagnostics. PMID:27242476

  19. Clinical utility of magnetic resonance imaging and ultrasonography for diagnosis of polycystic ovary syndrome in adolescent girls.

    PubMed

    Kenigsberg, Lisa E; Agarwal, Chhavi; Sin, Sanghun; Shifteh, Keivan; Isasi, Carmen R; Crespi, Rebecca; Ivanova, Janeta; Coupey, Susan M; Heptulla, Rubina A; Arens, Raanan

    2015-11-01

    To evaluate ovarian morphology using three-dimensional magnetic resonance imaging (MRI) in adolescent girls with and without polycystic ovary syndrome (PCOS). Also compare the utility of MRI versus ultrasonography (US) for diagnosis of PCOS. Cross-sectional study. Urban academic tertiary-care children's hospital. Thirty-nine adolescent girls with untreated PCOS and 22 age/body mass index (BMI)-matched controls. Magnetic resonance imaging and/or transvaginal/transabdominal US. Ovarian volume (OV); follicle number per section (FNPS); correlation between OV on MRI and US; proportion of subjects with features of polycystic ovaries (PCOs) on MRI and US. Magnetic resonance imaging demonstrated larger OV and higher FNPS in subjects with PCOS compared with controls. Within the PCOS group, median OV was 11.9 (7.7) cm(3) by MRI compared with 8.8 (7.8) cm(3) by US. Correlation coefficient between OV by MRI and US was 0.701. Due to poor resolution, FNPS could not be determined by US or compared with MRI. The receiver operating characteristic curve analysis for MRI demonstrated that increasing volume cutoffs for PCOs from 10-14 cm(3) increased specificity from 77%-95%. For FNPS on MRI, specificity increased from 82%-98% by increasing cutoffs from ≥ 12 to ≥ 17. Using Rotterdam cutoffs, 91% of subjects with PCOS met PCO criteria on MRI, whereas only 52% met criteria by US. Ultrasonography measures smaller OV than MRI, cannot accurately detect follicle number, and is a poor imaging modality for characterizing PCOs in adolescents with suspected PCOS. For adolescents in whom diagnosis of PCOS remains uncertain after clinical and laboratory evaluation, MRI should be considered as a diagnostic imaging modality. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  20. Incidental Memory Encoding Assessed with Signal Detection Theory and Functional Magnetic Resonance Imaging (fMRI).

    PubMed

    Clemens, Benjamin; Regenbogen, Christina; Koch, Kathrin; Backes, Volker; Romanczuk-Seiferth, Nina; Pauly, Katharina; Shah, N Jon; Schneider, Frank; Habel, Ute; Kellermann, Thilo

    2015-01-01

    In functional magnetic resonance imaging (fMRI) studies that apply a "subsequent memory" approach, successful encoding is indicated by increased fMRI activity during the encoding phase for hits vs. misses, in areas underlying memory encoding such as the hippocampal formation. Signal-detection theory (SDT) can be used to analyze memory-related fMRI activity as a function of the participant's memory trace strength (d(')). The goal of the present study was to use SDT to examine the relationship between fMRI activity during incidental encoding and participants' recognition performance. To implement a new approach, post-experimental group assignment into High- or Low Performers (HP or LP) was based on 29 healthy participants' recognition performance, assessed with SDT. The analyses focused on the interaction between the factors group (HP vs. LP) and recognition performance (hits vs. misses). A whole-brain analysis revealed increased activation for HP vs. LP during incidental encoding for remembered vs. forgotten items (hits > misses) in the insula/temporo-parietal junction (TPJ) and the fusiform gyrus (FFG). Parameter estimates in these regions exhibited a significant positive correlation with d('). As these brain regions are highly relevant for salience detection (insula), stimulus-driven attention (TPJ), and content-specific processing of mnemonic stimuli (FFG), we suggest that HPs' elevated memory performance was associated with enhanced attentional and content-specific sensory processing during the encoding phase. We provide first correlative evidence that encoding-related activity in content-specific sensory areas and content-independent attention and salience detection areas influences memory performance in a task with incidental encoding of facial stimuli. Based on our findings, we discuss whether the aforementioned group differences in brain activity during incidental encoding might constitute the basis of general differences in memory performance between HP and

  1. Renal ablation using magnetic resonance-guided high intensity focused ultrasound: Magnetic resonance imaging and histopathology assessment.

    PubMed

    Saeed, Maythem; Krug, Roland; Do, Loi; Hetts, Steven W; Wilson, Mark W

    2016-03-28

    To use magnetic resonance-guided high intensity focused ultrasound (MRg-HIFU), magnetic resonance imaging (MRI) and histopathology for noninvasively ablating, quantifying and characterizing ablated renal tissue. Six anesthetized/mechanically-ventilated pigs underwent single/double renal sonication (n = 24) using a 3T-MRg-HIFU (1.1 MHz frequency and 3000J-4400J energies). T2-weighted fast spin echo (T2-W), perfusion saturation recovery gradient echo and contrast enhanced (CE) T1-weighted (T1-W) sequences were used for treatment planning, temperature monitoring, lesion visualization, characterization and quantification, respectively. Histopathology was conducted in excised kidneys to quantify and characterize cellular and vascular changes. Paired Student's t-test was used and a P-value < 0.05 was considered statistically significant. Ablated renal parenchyma could not be differentiated from normal parenchyma on T2-W or non-CE T1-W sequences. Ablated renal lesions were visible as hypoenhanced regions on perfusion and CE T1-W MRI sequences, suggesting perfusion deficits and necrosis. Volumes of ablated parenchyma on CE T1-W images in vivo (0.12-0.36 cm(3) for single sonication 3000J, 0.50-0.84 cm(3), for double 3000J, 0.75-0.78 cm(3) for single 4400J and 0.12-2.65 cm(3) for double 4400J) and at postmortem (0.23-0.52 cm(3), 0.25-0.82 cm(3), 0.45-0.68 cm(3) and 0.29-1.80 cm(3), respectively) were comparable. The ablated volumes on 3000J and 4400J double sonication were significantly larger than single (P < 0.01), thus, the volume and depth of ablated tissue depends on the applied energy and number of sonication. Macroscopic and microscopic examinations confirmed the locations and presence of coagulation necrosis, vascular damage and interstitial hemorrhage, respectively. Contrast enhanced MRI provides assessment of MRg-HIFU renal ablation. Histopathology demonstrated coagulation necrosis, vascular damage and confirmed the volume of damage seen on MRI.

  2. Safety of magnetic resonance imaging of stapes prostheses.

    PubMed

    Syms, Mark James

    2005-03-01

    Assess the safety of performing magnetic resonance imaging (MRI) on patients with stapes prostheses. Survey and animal model. A survey regarding implant usage, MRI procedures, and adverse outcomes after MRI in patients previously undergoing stapes procedures. Guinea pigs implanted with ferromagnetic 17 to 4 stainless steel, 316L nonferromagnetic stainless steel, titanium, and fluoroplastic stapes prostheses underwent a MRI in a 4.7 Tesla MR system. : Three adverse outcomes were reported on the clinical survey. One adverse event occurred during an MRI performed on a recalled ferromagnetic prosthesis. The other two adverse events were probably not secondary to MRI exposure. No damage or inflammation was observed in the region of the oval window or vestibule of implanted guinea pigs exposed to a 4.7 Tesla MR system. The combination of prior studies, the clinical survey, and the absence of histopathologic evidence of damage in the guinea pigs is compelling evidence that MRI for patients with stapes prostheses is safe. Implanting physicians should feel comfortable clearing a patient for a MRI in a 1.5 Tesla or 3.0 Tesla MRI. It is imperative for the physician to qualify the field strength when clearing a patient to undergo a MRI.

  3. Language Development and Brain Magnetic Resonance Imaging Characteristics in Preschool Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Choi, Ja Young; Choi, Yoon Seong; Park, Eun Sook

    2017-01-01

    Purpose: The purpose of this study was to investigate characteristics of language development in relation to brain magnetic resonance imaging (MRI) characteristics and the other contributing factors to language development in children with cerebral palsy (CP). Method: The study included 172 children with CP who underwent brain MRI and language…

  4. Magnetic resonance imaging and computerized tomography in malignant external otitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gherini, S.G.; Brackmann, D.E.; Bradley, W.G.

    1986-05-01

    In malignant external otitis (MEO), determining the anatomic extent of disease and evaluating the physiologic response to therapy remain a problem. Magnetic resonance imaging (MRI) has recently become available in limited clinical settings. Four patients with MEO were evaluated using MRI, computerized tomography (CT), technetium-99 (Tc-99) bone scanning, and gallium-67 citrate (Ga-67 citrate) scanning. MRI is superior to CT, Tc-99 bone scanning, and Ga-67 citrate scanning in evaluating the anatomic extent of soft tissue changes in MEO. MRI alone cannot be relied upon to determine the physiologic response to therapy. MRI can, however, serve as a valuable guide to themore » interpretation of Tc-99 bone and Ga-67 citrate scans, and in this respect, MRI is extremely useful in the treatment of MEO.« less

  5. Magnetic resonance imaging in active surveillance—a modern approach

    PubMed Central

    Moore, Caroline M.

    2018-01-01

    In recent years, active surveillance has been increasingly adopted as a conservative management approach to low and sometimes intermediate risk prostate cancer, to avoid or delay treatment until there is evidence of higher risk disease. A number of studies have investigated the role of multiparametric magnetic resonance imaging (mpMRI) in this setting. MpMRI refers to the use of multiple MRI sequences (T2-weighted anatomical and functional imaging which can include diffusion-weighted imaging, dynamic contrast enhanced imaging, spectroscopy). Each of the parameters investigates different aspects of the prostate gland (anatomy, cellularity, vascularity, etc.). In addition to a qualitative assessment, the radiologist can also extrapolate quantitative imaging biomarkers from these sequences, for example the apparent diffusion coefficient from diffusion-weighted imaging. There are many different types of articles (e.g., reviews, commentaries, consensus meetings, etc.) that address the use of mpMRI in men on active surveillance for prostate cancer. In this paper, we compare original articles that investigate the role of the different mpMRI sequences in men on active surveillance for prostate cancer, in order to discuss the relative utility of the different sequences, and combinations of sequences. We searched MEDLINE/PubMed for manuscripts published from inception to 1st December 2017. The search terms used were (prostate cancer or prostate adenocarcinoma or prostatic carcinoma or prostate carcinoma or prostatic adenocarcinoma) and (MRI or NMR or magnetic resonance imaging or mpMRI or multiparametric MRI) and active surveillance. Overall, 425 publications were found. All abstracts were reviewed to identify papers with original data. Twenty-five papers were analysed and summarised. Some papers based their analysis only on one mpMRI sequence, while others assessed two or more. The evidence from this review suggests that qualitative assessments and quantitative data from

  6. Magnetic Resonance Enterography to Assess Multifocal and Multicentric Bowel Endometriosis.

    PubMed

    Nyangoh Timoh, Krystel; Stewart, Zelda; Benjoar, Mikhael; Beldjord, Selma; Ballester, Marcos; Bazot, Marc; Thomassin-Naggara, Isabelle; Darai, Emile

    To prospectively determine the accuracy of magnetic resonance enterography (MRE) compared with conventional magnetic resonance imaging (MRI) for multifocal (i.e., multiple lesions affecting the same digestive segment) and multicentric (i.e., multiple lesions affecting several digestive segments) bowel endometriosis. A prospective study (Canadian Task Force classification II-2). Tenon University Hospital, Paris, France. Patients with MRI-suspected colorectal endometriosis scheduled for colorectal resection from April 2014 to February 2016 were included. Patients underwent both 1.5-Tesla MRI and MRE as well as laparoscopically assisted and open colorectal resections. The diagnostic performance of MRI and MRE was evaluated for sensitivity, specificity, positive and negative predictive values, accuracy, and positive and negative likelihood ratios (LRs). The interobserver variability of the experienced and junior radiologists was quantified using weighted statistics. Forty-seven patients were included. Twenty-two (46.8%) patients had unifocal lesions, 14 (30%) had multifocal lesions, and 11 (23.4%) had multicentric lesions. The sensitivity, specificity, positive LR, and negative LR for the diagnosis of multifocal lesions were 0.29 (6/21), 1.00 (23/24), 15.36, and 0.71 for MRI and 0.57 (12/21), 0.89 (23/25), 4.95, and 0.58 for MRE. The sensitivity, specificity, positive LR, and negative LR for the diagnosis of multicentric lesions were 0.18 (1/11), 1.00 (1/1), 15, and 0.80 for MRI and 0.46 (5/11), 0.92 (33/36), 5.45, and 0.60 for MRE. Lower accuracies for MRI compared with MRE to diagnose multicentric (p = .01) and multifocal lesions (p = .004) were noted. The interobserver agreement for MRE was good for both multifocality (κ = 0.80) and multicentricity (κ = 0.61). MRE has better accuracy for diagnosing multifocal and multicentric bowel endometriosis than conventional MRI. Copyright © 2018. Published by Elsevier Inc.

  7. Magnetic resonance imaging of boiling induced by high intensity focused ultrasound

    PubMed Central

    Khokhlova, Tatiana D.; Canney, Michael S.; Lee, Donghoon; Marro, Kenneth I.; Crum, Lawrence A.; Khokhlova, Vera A.; Bailey, Michael R.

    2009-01-01

    Both mechanically induced acoustic cavitation and thermally induced boiling can occur during high intensity focused ultrasound (HIFU) medical therapy. The goal was to monitor the temperature as boiling was approached using magnetic resonance imaging (MRI). Tissue phantoms were heated for 20 s in a 4.7-T magnet using a 2-MHz HIFU source with an aperture and radius of curvature of 44 mm. The peak focal pressure was 27.5 MPa with corresponding beam width of 0.5 mm. The temperature measured in a single MRI voxel by water proton resonance frequency shift attained a maximum value of only 73 °C after 7 s of continuous HIFU exposure when boiling started. Boiling was detected by visual observation, by appearance on the MR images, and by a marked change in the HIFU source power. Nonlinear modeling of the acoustic field combined with a heat transfer equation predicted 100 °C after 7 s of exposure. Averaging of the calculated temperature field over the volume of the MRI voxel (0.3×0.5×2 mm3) yielded a maximum of 73 °C that agreed with the MR thermometry measurement. These results have implications for the use of MRI-determined temperature values to guide treatments with clinical HIFU systems. PMID:19354416

  8. Brain tumor response to nimotuzumab treatment evaluated on magnetic resonance imaging.

    PubMed

    Dalmau, Evelio Rafael González; Cabal Mirabal, Carlos; Martínez, Giselle Saurez; Dávila, Agustín Lage; Suárez, José Carlos Ugarte; Cabanas Armada, Ricardo; Rodriguez Cruz, Gretel; Darias Zayas, Daniel; Castillo, Martha Ríos; Valle Garrido, Luis; Sotolongo, Luis Quevedo; Fernández, Mercedes Monzón

    2014-02-01

    Nimotuzumab, a humanized monoclonal antibody anti-epidermal growth factor receptor, has been shown to improve survival and quality of life in patients with pediatric malignant brain tumor. It is necessary, however, to increase the objective response criteria to define the optimal therapeutic schedule. The aim of this study was to obtain magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) quantitative information related to dimensions and morphology, molecular mobility and metabolic activity of the lesion and surroundings in order to evaluate any changes through time. Fourteen pediatric patients treated with nimotuzumab were evaluated on MRI and MRS for >2 years. Each patient was their own control. The MRI/MRS pulse sequence parameters were standardized to ensure experimental reproducibility. A total of 71.4% of patients had stable disease; 21.4% had objective response and 7.1% had progression of disease during the >2 year evaluation period. MRI/MRS data with clinical information provide a clearer picture of treatment response and confirm once again that nimotuzumab is effective in the treatment of pediatric brain tumor. These imaging procedures can be a useful tool for the clinical evaluation of study protocol in clinical practice. © 2013 The Authors. Pediatrics International © 2013 Japan Pediatric Society.

  9. Magnetic Nanoparticles with Dual Functional Properties: Drug Delivery and Magnetic Resonance Imaging

    PubMed Central

    Jain, Tapan K.; Richey, John; Strand, Michelle; Leslie-Pelecky, Diandra L.; Flask, Chris; Labhasetwar, Vinod

    2008-01-01

    There is significant interest in recent years in developing MNPs having multifunctional characteristics with complimentary roles. In this study, we investigated the drug delivery and magnetic resonance imaging (MRI) properties of our novel oleic acid-coated iron-oxide and pluronic-stabilized magnetic nanoparticles (MNPs). The drug incorporation efficiency of doxorubicin and paclitaxel (alone or in combination) in MNPs was 74–95%; the drug release was sustained and the incorporated drugs had marginal effects on physical (size and zeta potential) or magnetization properties of the MNPs. The drugs in combination incorporated in MNPs demonstrated highly synergistic antiproliferative activity in breast cancer cells. The T2 relaxivity (r2) was higher for our MNPs than Feridex IV, whereas the T1 relaxivity (r1) was better for Feridex IV than for our MNPs, suggesting greater sensitivity of our MNPs than Feridex IV in T2 weighted imaging. The circulation half-life (t1/2), determined from the changes in the MRI signal intensity in carotid arteries in mice, was longer for our MNPs than Feridex IV (t1/2 = 31.2 vs 6.4 min). MNPs with combined characteristics of MRI and drug delivery could be of high clinical significance in the treatment of various disease conditions. PMID:18649936

  10. Low rank magnetic resonance fingerprinting.

    PubMed

    Mazor, Gal; Weizman, Lior; Tal, Assaf; Eldar, Yonina C

    2016-08-01

    Magnetic Resonance Fingerprinting (MRF) is a relatively new approach that provides quantitative MRI using randomized acquisition. Extraction of physical quantitative tissue values is preformed off-line, based on acquisition with varying parameters and a dictionary generated according to the Bloch equations. MRF uses hundreds of radio frequency (RF) excitation pulses for acquisition, and therefore high under-sampling ratio in the sampling domain (k-space) is required. This under-sampling causes spatial artifacts that hamper the ability to accurately estimate the quantitative tissue values. In this work, we introduce a new approach for quantitative MRI using MRF, called Low Rank MRF. We exploit the low rank property of the temporal domain, on top of the well-known sparsity of the MRF signal in the generated dictionary domain. We present an iterative scheme that consists of a gradient step followed by a low rank projection using the singular value decomposition. Experiments on real MRI data demonstrate superior results compared to conventional implementation of compressed sensing for MRF at 15% sampling ratio.

  11. Structure-borne sound from magnetic resonance imaging systems

    NASA Astrophysics Data System (ADS)

    Ungar, Eric E.; Zapfe, Jeffrey A.

    2003-10-01

    Magnetic resonance imaging (MRI) systems are known to produce a considerable amount of audible noise. The recent tendency to install such systems on above-grade floors has led to increasing concerns about structure-borne noise transmission from the MRI to adjacent occupied areas. This paper presents the results of a study in which structure-borne noise forces produced by two operational MRI systems were determined via measurement of the floor vibrations induced by the systems and of the impedance of their supporting floors. Forces with known spectra were applied to the floors of planned MRI suites in a hospital extension and the corresponding noise in adjacent areas was measured. Similarly, airborne noise was introduced in the planned suites and the related noise in adjacent areas was measured. The results then were scaled to correspond to the measured MRI forces and airborne noise. It was found that in areas below the planned MRI installations structure-borne noise would predominate, unless it is mitigated. Structure-borne noise isolation of MRI systems, whose environments must meet stringent vibration criteria, is discussed briefly.

  12. Feasibility of real-time magnetic resonance imaging-guided endomyocardial biopsies: An in-vitro study.

    PubMed

    Lossnitzer, Dirk; Seitz, Sebastian A; Krautz, Birgit; Schnackenburg, Bernhard; André, Florian; Korosoglou, Grigorios; Katus, Hugo A; Steen, Henning

    2015-07-26

    To investigate if magnetic resonance (MR)-guided biopsy can improve the performance and safety of such procedures. A novel MR-compatible bioptome was evaluated in a series of in-vitro experiments in a 1.5T magnetic resonance imaging (MRI) system. The bioptome was inserted into explanted porcine and bovine hearts under real-time MR-guidance employing a steady state free precession sequence. The artifact produced by the metal element at the tip and the signal voids caused by the bioptome were visually tracked for navigation and allowed its constant and precise localization. Cardiac structural elements and the target regions for the biopsy were clearly visible. Our method allowed a significantly better spatial visualization of the bioptoms tip compared to conventional X-ray guidance. The specific device design of the bioptome avoided inducible currents and therefore subsequent heating. The novel MR-compatible bioptome provided a superior cardiovascular magnetic resonance (imaging) soft-tissue visualization for MR-guided myocardial biopsies. Not at least the use of MRI guidance for endomyocardial biopsies completely avoided radiation exposure for both patients and interventionalists. MRI-guided endomyocardial biopsies provide a better than conventional X-ray guided navigation and could therefore improve the specificity and reproducibility of cardiac biopsies in future studies.

  13. Catheter-based flexible microcoil RF detectors for internal magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Ahmad, M. M.; Syms, R. R. A.; Young, I. R.; Mathew, B.; Casperz, W.; Taylor-Robinson, S. D.; Wadsworth, C. A.; Gedroyc, W. M. W.

    2009-07-01

    Flexible catheter probes for magnetic resonance imaging (MRI) of the bile duct are demonstrated. The probes consist of a cytology brush modified to accept a resonant RF detector based on a spiral microcoil and hybrid integrated capacitors, and are designed for insertion into the duct via a non-magnetic endoscope during endoscopic retrograde cholangiopancreatography (ERCP). The coil must be narrow enough (<3 mm) to pass through the biopsy channel of the endoscope and sufficiently flexible to turn through 90° to enter the duct. Coils are fabricated as multi-turn electroplated conductors on a flexible base, and two designs formed on SU-8 and polyimide substrates are compared. It is shown that careful control of thermal load is used to obtain useable mechanical properties from SU-8, and that polyimide/SU-8 composites offer improved mechanical reliability. Good electrical performance is demonstrated and sub-millimetre resolution is obtained in 1H MRI experiments at 1.5 T magnetic field strength using test phantoms and in vitro liver tissue.

  14. A meta-classifier for detecting prostate cancer by quantitative integration of in vivo magnetic resonance spectroscopy and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Viswanath, Satish; Tiwari, Pallavi; Rosen, Mark; Madabhushi, Anant

    2008-03-01

    Recently, in vivo Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS) have emerged as promising new modalities to aid in prostate cancer (CaP) detection. MRI provides anatomic and structural information of the prostate while MRS provides functional data pertaining to biochemical concentrations of metabolites such as creatine, choline and citrate. We have previously presented a hierarchical clustering scheme for CaP detection on in vivo prostate MRS and have recently developed a computer-aided method for CaP detection on in vivo prostate MRI. In this paper we present a novel scheme to develop a meta-classifier to detect CaP in vivo via quantitative integration of multimodal prostate MRS and MRI by use of non-linear dimensionality reduction (NLDR) methods including spectral clustering and locally linear embedding (LLE). Quantitative integration of multimodal image data (MRI and PET) involves the concatenation of image intensities following image registration. However multimodal data integration is non-trivial when the individual modalities include spectral and image intensity data. We propose a data combination solution wherein we project the feature spaces (image intensities and spectral data) associated with each of the modalities into a lower dimensional embedding space via NLDR. NLDR methods preserve the relationships between the objects in the original high dimensional space when projecting them into the reduced low dimensional space. Since the original spectral and image intensity data are divorced from their original physical meaning in the reduced dimensional space, data at the same spatial location can be integrated by concatenating the respective embedding vectors. Unsupervised consensus clustering is then used to partition objects into different classes in the combined MRS and MRI embedding space. Quantitative results of our multimodal computer-aided diagnosis scheme on 16 sets of patient data obtained from the ACRIN trial, for which

  15. Histopathologic correlation of magnetic resonance imaging signal patterns in a spinal cord injury model.

    PubMed

    Weirich, S D; Cotler, H B; Narayana, P A; Hazle, J D; Jackson, E F; Coupe, K J; McDonald, C L; Langford, L A; Harris, J H

    1990-07-01

    Magnetic resonance imaging (MRI) provides a noninvasive method of monitoring the pathologic response to spinal cord injury. Specific MR signal intensity patterns appear to correlate with degrees of improvement in the neurologic status in spinal cord injury patients. Histologic correlation of two types of MR signal intensity patterns are confirmed in the current study using a rat animal model. Adult male Sprague-Dawley rats underwent spinal cord trauma at the midthoracic level using a weight-dropping technique. After laminectomy, 5- and 10-gm brass weights were dropped from designated heights onto a 0.1-gm impounder placed on the exposed dura. Animals allowed to regain consciousness demonstrated variable recovery of hind limb paraplegia. Magnetic resonance images were obtained from 2 hours to 1 week after injury using a 2-tesla MRI/spectrometer. Sacrifice under anesthesia was performed by perfusive fixation; spinal columns were excised en bloc, embedded, sectioned, and observed with the compound light microscope. Magnetic resonance axial images obtained during the time sequence after injury demonstrate a distinct correlation between MR signal intensity patterns and the histologic appearance of the spinal cord. Magnetic resonance imaging delineates the pathologic processes resulting from acute spinal cord injury and can be used to differentiate the type of injury and prognosis.

  16. The functional magnetic resonance imaging (fMRI) procedure as experienced by healthy participants and stroke patients--a pilot study.

    PubMed

    Szameitat, André J; Shen, Shan; Sterr, Annette

    2009-07-31

    An important aspect in functional imaging research employing magnetic resonance imaging (MRI) is how participants perceive the MRI scanning itself. For instance, the knowledge of how (un)comfortable MRI scanning is perceived may help institutional review boards (IRBs) or ethics committees to decide on the approval of a study, or researchers to design their experiments. We provide empirical data from our lab gained from 70 neurologically healthy mainly student subjects and from 22 mainly elderly patients suffering from motor deficits after brain damage. All participants took part in various basic research fMRI studies using a 3T MRI scanner. Directly after the scanning, all participants completed a questionnaire assessing their experience with the fMRI procedure. 87.2% of the healthy subjects and 77.3% of the patients rated the MRI procedure as acceptable to comfortable. In healthy subjects, males found the procedure more comfortable, while the opposite was true for patients. 12.1% of healthy subjects considered scanning durations between 30 and 60 min as too long, while no patient considered their 30 min scanning interval as too long. 93.4% of the healthy subjects would like to participate in an fMRI study again, with a significantly lower rate for the subjects who considered the scanning as too long. Further factors, such as inclusion of a diffusion tensor imaging (DTI) scan, age, and study duration had no effect on the questionnaire responses. Of the few negative comments, the main issues were noise, the restriction to keep still for the whole time, and occasional feelings of dizziness. MRI scanning in the basic research setting is an acceptable procedure for elderly and patient participants as well as young healthy subjects.

  17. Magnetic resonance imaging in congenital Brown syndrome.

    PubMed

    Kim, Jae Hyoung; Hwang, Jeong-Min

    2015-08-01

    Our aim was to elucidate the etiology of Brown syndrome by evaluating the trochlea position, morphologic characteristics of the extraocular muscles including superior oblique muscle/tendon complex, and the presence of the cranial nerves (CN) III, IV, and VI using magnetic resonance imaging (MRI) in eight patients with unilateral congenital Brown syndrome and one patient with bilateral congenital Brown syndrome. Nine consecutive patients diagnosed with congenital Brown syndrome had a comprehensive ocular examination and MRI for the CN III, CN VI, and the extraocular muscles. Five of the nine patients underwent additional high resolution MRI for CN IV. The distance from the annulus of Zinn to the trochlea was measured. Normal sized CN III, IV, and VI, as well as all extraocular muscles, could be identified bilaterally in all patients with available MRI. The distance from the annulus of Zinn to the trochlea was the same in both eyes. The findings for our patients, particularly in those who underwent additional high resolution MRI, did not provide evidence of a lack of CN IV as a cause of Brown syndrome.

  18. Magnetic Resonance Imaging of Cartilage Repair

    PubMed Central

    Trattnig, Siegfried; Winalski, Carl S.; Marlovits, Stephan; Jurvelin, Jukka S.; Welsch, Goetz H.; Potter, Hollis G.

    2011-01-01

    Articular cartilage lesions are a common pathology of the knee joint, and many patients may benefit from cartilage repair surgeries that offer the chance to avoid the development of osteoarthritis or delay its progression. Cartilage repair surgery, no matter the technique, requires a noninvasive, standardized, and high-quality longitudinal method to assess the structure of the repair tissue. This goal is best fulfilled by magnetic resonance imaging (MRI). The present article provides an overview of the current state of the art of MRI of cartilage repair. In the first 2 sections, preclinical and clinical MRI of cartilage repair tissue are described with a focus on morphological depiction of cartilage and the use of functional (biochemical) MR methodologies for the visualization of the ultrastructure of cartilage repair. In the third section, a short overview is provided on the regulatory issues of the United States Food and Drug Administration (FDA) and the European Medicines Agency (EMEA) regarding MR follow-up studies of patients after cartilage repair surgeries. PMID:26069565

  19. Magnetic resonance imaging and magnetic resonance spectroscopy in a young male patient with anti-N-methyl-D-aspartate receptor encephalitis and uncommon cerebellar involvement: A case report with review of the literature

    PubMed Central

    Felli, Valentina; Di Sibio, Alessandra; Gennarelli, Antonio; Patriarca, Lucia; Stratta, Paolo; Di Cesare, Ernesto; Rossi, Alessandro; Massimo, Gallucci

    2015-01-01

    We report a case of a 17-year-old man presenting with new onset psychiatric symptoms. Magnetic resonance imaging (MRI) and proton magnetic resonance (MR) spectroscopy revealed some lesions in the right cerebellar hemisphere and ipsilateral cerebellar tonsil suggestive of encephalitis. An extensive workup was negative for both infectious and neoplastic diseases and he was afterward diagnosed with anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis. This disorder is an autoimmune encephalitis, highly lethal but curable, predominantly found in young female with ovarian teratoma. He received methylprednisolone. His clinical findings gradually improve and he made a complete recovery. Accordingly, repeated brain MRI and proton MR spectroscopy showed a gradual reduction of the lesions; MRI taken six months after starting therapy showed complete resolution of the lesions. Our case shows that, although rare, anti-NMDAR encephalitis should be considered also in young men for whom a rapid onset of psychiatric neurological disorders cannot be explained by more frequent causes. Our report underlines also the usefulness of MRI and proton MR spectroscopic findings in the diagnosis and follow-up of this disease. PMID:26613928

  20. The Nobel Prize in Medicine for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Fry, Charles G.

    2004-07-01

    A review is given of the crucial work performed by Paul C. Lauterbur and Peter Mansfield that lead to their being awarded the Nobel Prize in Medicine in 2003. Lauterbur first expounded the idea of mapping spatial information from spectral data in nuclear magnetic resonance (NMR) through the application of magnetic field gradients (P. C. Lauterbur, Nature 1973 , 242, 190-191). One year later Mansfield and co-workers introduced the idea of selective excitation to NMR imaging (A. N. Garroway, P. K. Grannell, and P. Mansfield. J. Phys. C: Solid State Physics 1974 , 7, L457-L462). A major step in making the technique useful for clinical imaging came with Mansfield's publication of the method known as echo planar imaging (P. Mansfield, J. Phys. C: Solid State Physics 1977, 10 (3) , L55-L58). Lauterbur's and Mansfield's work captured the essence of scientific discovery, collaboration, and concerted effort to overcome significant technical issues, and were key to the development of the technique of magnetic resonance imaging (MRI). Examples of how MRI technology can be extended to chemical research are given, and limitations of the technique in this regard are discussed. Discussion of how to use commonly available NMR spectrometers for chemical imaging is also provided.

  1. Ultrahigh-Resolution Magnetic Resonance in Inhomogeneous Magnetic Fields: Two-Dimensional Long-Lived-Coherence Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chinthalapalli, Srinivas; Bornet, Aurélien; Segawa, Takuya F.; Sarkar, Riddhiman; Jannin, Sami; Bodenhausen, Geoffrey

    2012-07-01

    A half-century quest for improving resolution in Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) has enabled the study of molecular structures, biological interactions, and fine details of anatomy. This progress largely relied on the advent of sophisticated superconducting magnets that can provide stable and homogeneous fields with temporal and spatial variations below ΔB0/B0<0.01ppm. In many cases however, inherent properties of the objects under investigation, pulsating arteries, breathing lungs, tissue-air interfaces, surgical implants, etc., lead to fluctuations and losses of local homogeneity. A new method dubbed “long-lived-coherence correlation spectroscopy” (LLC-COSY) opens the way to overcome both inhomogeneous and homogeneous broadening, which arise from local variations in static fields and fluctuating dipole-dipole interactions, respectively. LLC-COSY makes it possible to obtain ultrahigh resolution two-dimensional spectra, with linewidths on the order of Δν=0.1 to 1 Hz, even in very inhomogeneous fields (ΔB0/B0>10ppm or 5000 Hz at 9.7 T), and can improve resolution by a factor up to 9 when the homogeneous linewidths are determined by dipole-dipole interactions. The resulting LLC-COSY spectra display chemical shift differences and scalar couplings in two orthogonal dimensions, like in “J spectroscopy.” LLC-COSY does not require any sophisticated gradient switching or frequency-modulated pulses. Applications to in-cell NMR and to magnetic resonance spectroscopy (MRS) of selected volume elements in MRI appear promising, particularly when susceptibility variations tend to preclude high resolution.

  2. Preclinical evaluation of implantable cardioverter-defibrillator developed for magnetic resonance imaging use.

    PubMed

    Gold, Michael R; Kanal, Emanuel; Schwitter, Juerg; Sommer, Torsten; Yoon, Hyun; Ellingson, Michael; Landborg, Lynn; Bratten, Tara

    2015-03-01

    Many patients with an implantable cardioverter-defibrillator (ICD) have indications for magnetic resonance imaging (MRI). However, MRI is generally contraindicated in ICD patients because of potential risks from hazardous interactions between the MRI and ICD system. The purpose of this study was to use preclinical computer modeling, animal studies, and bench and scanner testing to demonstrate the safety of an ICD system developed for 1.5-T whole-body MRI. MRI hazards were assessed and mitigated using multiple approaches: design decisions to increase safety and reliability, modeling and simulation to quantify clinical MRI exposure levels, animal studies to quantify the physiologic effects of MRI exposure, and bench testing to evaluate safety margin. Modeling estimated the incidence of a chronic change in pacing capture threshold >0.5 V and 1.0 V to be less than 1 in 160,000 and less than 1 in 1,000,000 cases, respectively. Modeling also estimated the incidence of unintended cardiac stimulation to occur in less than 1 in 1,000,000 cases. Animal studies demonstrated no delay in ventricular fibrillation detection and no reduction in ventricular fibrillation amplitude at clinical MRI exposure levels, even with multiple exposures. Bench and scanner testing demonstrated performance and safety against all other MRI-induced hazards. A preclinical strategy that includes comprehensive computer modeling, animal studies, and bench and scanner testing predicts that an ICD system developed for the magnetic resonance environment is safe and poses very low risks when exposed to 1.5-T normal operating mode whole-body MRI. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  3. Plain magnetic resonance imaging as an alternative in evaluating inflammation and bowel damage in inflammatory bowel disease--a prospective comparison with conventional magnetic resonance follow-through.

    PubMed

    Jesuratnam-Nielsen, Kayalvily; Løgager, Vibeke B; Rezanavaz-Gheshlagh, Bijan; Munkholm, Pia; Thomsen, Henrik S

    2015-05-01

    To compare prospectively the diagnostic accuracy of magnetic resonance imaging (MRI) without use of contrast medium orally or intravenously (plain MRI) with magnetic resonance follow-through (MRFT) in patients with inflammatory bowel disease (IBD). Plain MRI was carried out in addition to MRFT, to which the patients were referred. All patients underwent both examinations on the same day. For the evaluation, the bowel was divided into nine segments. Two radiologists, blinded to clinical findings, evaluated bowel wall thickness, diffusion weighted imaging (DWI), and other inflammatory changes in each bowel segments. Further, hyperenhancement of the bowel was also evaluated in MRFT. A total of 100 patients (40 males and 60 females; median age: 38.5; range: 19-90) were enrolled; 44 with Crohn's disease (CD), 25 with ulcerative colitis (UC), 24 with IBD unclassified (IBD-U), and 7 had other diagnosis. Sensitivity, specificity, and accuracy in CD ranged 50-86%, 93-94%, and 91-92% for wall thickening and 49-82%, 85-93%, and 84-89% for DWI, respectively. Sensitivity, specificity, and accuracy in UC range 0-40%, 87-100%, and 80-100% for wall thickening and 0-52%, 83-94% and 76-92% for DWI, respectively. The κ values for bowel wall thickening, DWI, and mural hyperenhancement were detected with fair agreement (κ = 0.26-0.39) at both MRI examinations, whereas only bowel wall thickening in MRFT were detected with moderate agreement (κ = 0.47) Conclusion. Plain MRI cannot currently replace MRFT in the workup of patients with IBD. Further research on plain MRI is needed to improve the protocol.

  4. Defining the learning curve for multiparametric magnetic resonance imaging (MRI) of the prostate using MRI-transrectal ultrasonography (TRUS) fusion-guided transperineal prostate biopsies as a validation tool.

    PubMed

    Gaziev, Gabriele; Wadhwa, Karan; Barrett, Tristan; Koo, Brendan C; Gallagher, Ferdia A; Serrao, Eva; Frey, Julia; Seidenader, Jonas; Carmona, Lina; Warren, Anne; Gnanapragasam, Vincent; Doble, Andrew; Kastner, Christof

    2016-01-01

    To determine the accuracy of multiparametric magnetic resonance imaging (mpMRI) during the learning curve of radiologists using MRI targeted, transrectal ultrasonography (TRUS) guided transperineal fusion biopsy (MTTP) for validation. Prospective data on 340 men who underwent mpMRI (T2-weighted and diffusion-weighted MRI) followed by MTTP prostate biopsy, was collected according to Ginsburg Study Group and Standards for Reporting of Diagnostic Accuracy standards. MRI data were reported by two experienced radiologists and scored on a Likert scale. Biopsies were performed by consultant urologists not 'blinded' to the MRI result and men had both targeted and systematic sector biopsies, which were reviewed by a dedicated uropathologist. The cohorts were divided into groups representing five consecutive time intervals in the study. Sensitivity and specificity of positive MRI reports, prostate cancer detection by positive MRI, distribution of significant Gleason score and negative MRI with false negative for prostate cancer were calculated. Data were sequentially analysed and the learning curve was determined by comparing the first and last group. We detected a positive mpMRI in 64 patients from Group A (91%) and 52 patients from Group E (74%). The prostate cancer detection rate on mpMRI increased from 42% (27/64) in Group A to 81% (42/52) in Group E (P < 0.001). The prostate cancer detection rate by targeted biopsy increased from 27% (17/64) in Group A to 63% (33/52) in Group E (P < 0.001). The negative predictive value of MRI for significant cancer (>Gleason 3+3) was 88.9% in Group E compared with 66.6% in Group A. We demonstrate an improvement in detection of prostate cancer for MRI reporting over time, suggesting a learning curve for the technique. With an improved negative predictive value for significant cancer, decision for biopsy should be based on patient/surgeon factors and risk attributes alongside the MRI findings. © 2014 The Authors BJU International

  5. Magnetic Resonance Imaging (MRI) -- Head

    MedlinePlus Videos and Cool Tools

    ... are clearer and more detailed than other imaging methods. This exam does not use ionizing radiation and ... clearer and more detailed than with other imaging methods. This detail makes MRI an invaluable tool in ...

  6. Optic Nerve Assessment Using 7-Tesla Magnetic Resonance Imaging

    PubMed Central

    Singh, Arun D.; Platt, Sean M.; Lystad, Lisa; Lowe, Mark; Oh, Sehong; Jones, Stephen E.; Alzahrani, Yahya; Plesec, Thomas

    2016-01-01

    Purpose The purpose of this study was to correlate high-resolution magnetic resonance imaging (MRI) and histologic findings in a case of juxtapapillary choroidal melanoma with clinical evidence of optic nerve invasion. Methods With institutional review board approval, an enucleated globe with choroidal melanoma and optic nerve invasion was imaged using a 7-tesla MRI followed by histopathologic evaluation. Results Optical coherence tomography, B-scan ultrasonography, and 1.5-tesla MRI of the orbit (1-mm sections) could not detect optic disc invasion. Ex vivo, 7-tesla MRI detected optic nerve invasion, which correlated with histopathologic features. Conclusions Our case demonstrates the potential to document the existence of optic nerve invasion in the presence of an intraocular tumor, a feature that has a major bearing on decision making, particularly for consideration of enucleation. PMID:27239461

  7. Optic Nerve Assessment Using 7-Tesla Magnetic Resonance Imaging.

    PubMed

    Singh, Arun D; Platt, Sean M; Lystad, Lisa; Lowe, Mark; Oh, Sehong; Jones, Stephen E; Alzahrani, Yahya; Plesec, Thomas

    2016-04-01

    The purpose of this study was to correlate high-resolution magnetic resonance imaging (MRI) and histologic findings in a case of juxtapapillary choroidal melanoma with clinical evidence of optic nerve invasion. With institutional review board approval, an enucleated globe with choroidal melanoma and optic nerve invasion was imaged using a 7-tesla MRI followed by histopathologic evaluation. Optical coherence tomography, B-scan ultrasonography, and 1.5-tesla MRI of the orbit (1-mm sections) could not detect optic disc invasion. Ex vivo, 7-tesla MRI detected optic nerve invasion, which correlated with histopathologic features. Our case demonstrates the potential to document the existence of optic nerve invasion in the presence of an intraocular tumor, a feature that has a major bearing on decision making, particularly for consideration of enucleation.

  8. Ameliorating slice gaps in multislice magnetic resonance images: an interpolation scheme.

    PubMed

    Kashou, Nasser H; Smith, Mark A; Roberts, Cynthia J

    2015-01-01

    Standard two-dimension (2D) magnetic resonance imaging (MRI) clinical acquisition protocols utilize orthogonal plane images which contain slice gaps (SG). The purpose of this work is to introduce a novel interpolation method for these orthogonal plane MRI 2D datasets. Three goals can be achieved: (1) increasing the resolution based on a priori knowledge of scanning protocol, (2) ameliorating the loss of data as a result of SG and (3) reconstructing a three-dimension (3D) dataset from 2D images. MRI data was collected using a 3T GE scanner and simulated using Matlab. The procedure for validating the MRI data combination algorithm was performed using a Shepp-Logan and a Gaussian phantom in both 2D and 3D of varying matrix sizes (64-512), as well as on one MRI dataset of a human brain and on an American College of Radiology magnetic resonance accreditation phantom. The squared error and mean squared error were computed in comparing this scheme to common interpolating functions employed in MR consoles and workstations. The mean structure similarity matrix was computed in 2D as a means of qualitative image assessment. Additionally, MRI scans were used for qualitative assessment of the method. This new scheme was consistently more accurate than upsampling each orientation separately and averaging the upsampled data. An efficient new interpolation approach to resolve SG was developed. This scheme effectively fills in the missing data points by using orthogonal plane images. To date, there have been few attempts to combine the information of three MRI plane orientations using brain images. This has specific applications for clinical MRI, functional MRI, diffusion-weighted imaging/diffusion tensor imaging and MR angiography where 2D slice acquisition are used. In these cases, the 2D data can be combined using our method in order to obtain 3D volume.

  9. Improving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth

    PubMed Central

    A., Javadpour; A., Mohammadi

    2016-01-01

    Background Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging. Objective This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regional growth. Methods Among medical imaging methods, brains MRI segmentation is important due to high contrast of non-intrusive soft tissue and high spatial resolution. Size variations of brain tissues are often accompanied by various diseases such as Alzheimer’s disease. As our knowledge about the relation between various brain diseases and deviation of brain anatomy increases, MRI segmentation is exploited as the first step in early diagnosis. In this paper, regional growth method and auto-mate selection of initial points by genetic algorithm is used to introduce a new method for MRI segmentation. Primary pixels and similarity criterion are automatically by genetic algorithms to maximize the accuracy and validity in image segmentation. Results By using genetic algorithms and defining the fixed function of image segmentation, the initial points for the algorithm were found. The proposed algorithms are applied to the images and results are manually selected by regional growth in which the initial points were compared. The results showed that the proposed algorithm could reduce segmentation error effectively. Conclusion The study concluded that the proposed algorithm could reduce segmentation error effectively and help us to diagnose brain diseases. PMID:27672629

  10. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study

    PubMed Central

    Vegh, Viktor; Reutens, David C.

    2016-01-01

    Object We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. Materials and Methods The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. Results A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20–50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. Conclusions A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably. PMID:27271886

  11. Pediatric functional magnetic resonance neuroimaging: tactics for encouraging task compliance.

    PubMed

    Schlund, Michael W; Cataldo, Michael F; Siegle, Greg J; Ladouceur, Cecile D; Silk, Jennifer S; Forbes, Erika E; McFarland, Ashley; Iyengar, Satish; Dahl, Ronald E; Ryan, Neal D

    2011-05-06

    Neuroimaging technology has afforded advances in our understanding of normal and pathological brain function and development in children and adolescents. However, noncompliance involving the inability to remain in the magnetic resonance imaging (MRI) scanner to complete tasks is one common and significant problem. Task noncompliance is an especially significant problem in pediatric functional magnetic resonance imaging (fMRI) research because increases in noncompliance produces a greater risk that a study sample will not be representative of the study population. In this preliminary investigation, we describe the development and application of an approach for increasing the number of fMRI tasks children complete during neuroimaging. Twenty-eight healthy children ages 9-13 years participated. Generalization of the approach was examined in additional fMRI and event-related potential investigations with children at risk for depression, children with anxiety and children with depression (N=120). Essential features of the approach include a preference assessment for identifying multiple individualized rewards, increasing reinforcement rates during imaging by pairing tasks with chosen rewards and presenting a visual 'road map' listing tasks, rewards and current progress. Our results showing a higher percentage of fMRI task completion by healthy children provides proof of concept data for the recommended tactics. Additional support was provided by results showing our approach generalized to several additional fMRI and event-related potential investigations and clinical populations. We proposed that some forms of task noncompliance may emerge from less than optimal reward protocols. While our findings may not directly support the effectiveness of the multiple reward compliance protocol, increased attention to how rewards are selected and delivered may aid cooperation with completing fMRI tasks. The proposed approach contributes to the pediatric neuroimaging literature by

  12. In Vivo Evaluation of Magnetic Targeting in Mice Colon Tumors with Ultra-Magnetic Liposomes Monitored by MRI.

    PubMed

    Thébault, Caroline J; Ramniceanu, Grégory; Michel, Aude; Beauvineau, Claire; Girard, Christian; Seguin, Johanne; Mignet, Nathalie; Ménager, Christine; Doan, Bich-Thuy

    2018-06-25

    The development of theranostic nanocarriers as an innovative therapy against cancer has been improved by targeting properties in order to optimize the drug delivery to safely achieve its desired therapeutic effect. The aim of this paper is to evaluate the magnetic targeting (MT) efficiency of ultra-magnetic liposomes (UML) into CT26 murine colon tumor by magnetic resonance imaging (MRI). Dynamic susceptibility contrast MRI was applied to assess the bloodstream circulation time. A novel semi-quantitative method called %I 0.25 , based on the intensity distribution in T 2 * -weighted MRI images was developed to compare the accumulation of T 2 contrast agent in tumors with or without MT. To evaluate the efficiency of magnetic targeting, the percentage of pixels under the intensity value I 0.25 (I 0.25  = 0.25(I max  - I min )) was calculated on the intensity distribution histogram. This innovative method of processing MRI images showed the MT efficiency by a %I 0.25 that was significantly higher in tumors using MT compared to passive accumulation, from 15.3 to 28.6 %. This methodology was validated by ex vivo methods with an iron concentration that is 3-fold higher in tumors using MT. We have developed a method that allows a semi-quantitative evaluation of targeting efficiency in tumors, which could be applied to different T 2 contrast agents.

  13. Magnetic resonance imaging (MRI) and relaxation time mapping of concrete

    NASA Astrophysics Data System (ADS)

    Beyea, Steven Donald

    2001-07-01

    The use of Magnetic Resonance Imaging (MRI) of water in concrete is presented. This thesis will approach the problem of MR imaging of concrete by attempting to design new methods, suited to concrete materials, rather than attempting to force the material to suit the method. A number of techniques were developed, which allow the spatial observation of water in concrete in up to three dimensions, and permits the determination of space resolved moisture content, as well as local NMR relaxation times. These methods are all based on the Single-Point Imaging (SPI) method. The development of these new methods will be described, and the techniques validated using phantom studies. The study of one-dimensional moisture transport in drying concrete was performed using SPI. This work examined the effect of initial mixture proportions and hydration time on the drying behaviour of concrete, over a period of three months. Studies of drying concrete were also performed using spatial mapping of the spin-lattice (T1) and effective spin-spin (T2*) relaxation times, thereby permitting the observation of changes in the water occupied pore surface-to-volume ratio (S/V) as a function of drying. Results of this work demonstrated changes in the S/V due to drying, hydration and drying induced microcracking. Three-dimensional MRI of concrete was performed using SPRITE (Single-Point Ramped Imaging with T1 Enhancement) and turboSPI (turbo Single Point Imaging). While SPRITE allows for weighting of MR images using T 1 and T2*, turboSPI allows T2 weighting of the resulting images. Using relaxation weighting it was shown to be possible to discriminate between water contained within a hydrated cement matrix, and water in highly porous aggregates, used to produce low-density concrete. Three dimensional experiments performed using SPRITE and turboSPI examined the role of self-dessication, drying, initial aggregate saturation and initial mixture conditions on the transport of moisture between porous

  14. Evaluation of magnetic resonance imaging issues for a wirelessly powered lead used for epidural, spinal cord stimulation.

    PubMed

    Shellock, Frank G; Audet-Griffin, Annabelle J

    2014-06-01

    The objective of this investigation was to evaluate magnetic resonance imaging (MRI) issues (magnetic field interactions, MRI-related heating, and artifacts) for a wirelessly powered lead used for spinal cord stimulation (SCS). A newly developed, wirelessly powered lead (Freedom-4, Stimwave Technologies Inc., Scottsdale, AZ, USA) underwent evaluation for magnetic field interactions (translational attraction and torque) at 3 Tesla, MRI-related heating at 1.5 Tesla/64 MHz and 3 Tesla/128 MHz, and artifacts at 3 Tesla using standardized techniques. MRI-related heating tests were conducted by placing the lead in a gelled-saline-filled phantom and performing MRI procedures using relatively high levels of radiofrequency energy. Artifacts were characterized using T1-weighted, spin echo (SE), and gradient echo (GRE) pulse sequences. The lead exhibited minor magnetic field interactions (2 degree deflection angle and no torque). Heating was not substantial under 1.5 Tesla/64 MHz (highest temperature change, 2.3°C) and 3 Tesla/128 MHz (highest temperature change, 2.2°C) MRI conditions. Artifacts were moderate in size relative to the size and shape of the lead. These findings demonstrated that it is acceptable for a patient with this wirelessly powered lead used for SCS to undergo MRI under the conditions utilized in this investigation and according to other necessary guidelines. Artifacts seen on magnetic resonance images may pose possible problems if the area of interest is in the same area or close to this lead. © 2013 International Neuromodulation Society.

  15. Magnetic Resonance Imaging of Electrolysis.

    PubMed Central

    Meir, Arie; Hjouj, Mohammad; Rubinsky, Liel; Rubinsky, Boris

    2015-01-01

    This study explores the hypothesis that Magnetic Resonance Imaging (MRI) can image the process of electrolysis by detecting pH fronts. The study has relevance to real time control of cell ablation with electrolysis. To investigate the hypothesis we compare the following MR imaging sequences: T1 weighted, T2 weighted and Proton Density (PD), with optical images acquired using pH-sensitive dyes embedded in a physiological saline agar solution phantom treated with electrolysis and discrete measurements with a pH microprobe. We further demonstrate the biological relevance of our work using a bacterial E. Coli model, grown on the phantom. The results demonstrate the ability of MRI to image electrolysis produced pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E. Coli model grown on the phantom. The results are promising and invite further experimental research. PMID:25659942

  16. Amygdala Volumetry in Patients with Temporal Lobe Epilepsy and Normal Magnetic Resonance Imaging

    PubMed Central

    Singh, Paramdeep; Kaur, Rupinderjeet; Saggar, Kavita; Singh, Gagandeep; Aggarwal, Simmi

    2016-01-01

    Summary Background It has been suggested that the pathophysiology of temporal lobe epilepsy may relate to abnormalities in various brain structures, including the amygdala. Patients with mesial temporal lobe epilepsy (MTLE) without MRI abnormalities (MTLE-NMRI) represent a challenge for diagnosis of the underlying abnormality and for presurgical evaluation. To date, however, only few studies have used quantitative structural Magnetic Resonance Imaging-based techniques to examine amygdalar pathology in these patients. Material/Methods Based on clinical examination, 24-hour video EEG recordings and MRI findings, 50 patients with EEG lateralized TLE and normal structural Magnetic Resonance Imaging results were included in this study. Volumetric magnetic resonance imaging (MRI) studies of the amygdalas and hippocampi were conducted in 50 non-epileptic controls (age 7–79 years) and 50 patients with MTLE with normal MRI on a 1.5-Tesla scanner. Visual assessment and amygdalar volumetry were performed on oblique coronal T2W and T1W MP-RAGE images respectively. The T2 relaxation times were measured using the 16-echo Carr-Purcell-Meiboom-Gill sequence (TE, 22–352). Volumetric data were normalized for variation in head size between individuals. Results were assessed by SSPS statistic program. Results Individual manual volumetric analysis confirmed statistically significant amygdala enlargement (AE) in eight (16%) patients. Overall, among all patients with AE and a defined epileptic focus, 7 had predominant increased volume ipsilateral to the epileptic focus. The T2 relaxometry demonstrated no hyperintense signal of the amygdala in any patient with significant AE. Conclusions This paper presented AE in a few patients with TLE and normal MRI. These findings support the hypothesis that there might be a subgroup of patients with MTLE-NMRI in which the enlarged amygdala could be related to the epileptogenic process. PMID:27231493

  17. Relationship between magnetic field strength and magnetic-resonance-related acoustic noise levels.

    PubMed

    Moelker, Adriaan; Wielopolski, Piotr A; Pattynama, Peter M T

    2003-02-01

    The need for better signal-to-noise ratios and resolution has pushed magnetic resonance imaging (MRI) towards high-field MR-scanners for which only little data on MR-related acoustic noise production have been published. The purpose of this study was to validate the theoretical relationship of sound pressure level (SPL) and static magnetic field strength. This is relevant for allowing adequate comparisons of acoustic data of MR systems at various magnetic field strengths. Acoustic data were acquired during various pulse sequences at field strengths of 0.5, 1.0, 1.5 and 2.0 Tesla using the same MRI unit by means of a Helicon rampable magnet. Continuous-equivalent, i.e. time-averaged, linear SPLs and 1/3-octave band frequencies were recorded. Ramping from 0.5 to 1.0 Tesla and from 1.0 to 2.0 Tesla resulted in an SPL increase of 5.7 and 5.2 dB(L), respectively, when averaged over the various pulse sequences. Most of the acoustic energy was in the 1-kHz frequency band, irrespective of magnetic field strength. The relation between field strength and SPL was slightly non-linear, i.e. a slightly less increase at higher field strengths, presumably caused by the elastic properties of the gradient coil encasings.

  18. MRI induced torque and demagnetization in retention magnets for a bone conduction implant.

    PubMed

    Jansson, Karl-Johan Fredén; Håkansson, Bo; Reinfeldt, Sabine; Taghavi, Hamidreza; Eeg-Olofsson, Måns

    2014-06-01

    Performing magnetic resonance imaging (MRI) examinations in patients who use implantable medical devices involve safety risks both for the patient and the implant. Hearing implants often use two permanent magnets, one implanted and one external, for the retention of the external transmitter coil to the implanted receiver coil to achieve an optimal signal transmission. The implanted magnet is subjected to both demagnetization and torque, magnetically induced by the MRI scanner. In this paper, demagnetization and a comparison between measured and simulated induced torque is studied for the retention magnet used in a bone conduction implant (BCI) system. The torque was measured and simulated in a uniform static magnetic field of 1.5 T. The magnetic field was generated by a dipole electromagnet and permanent magnets with two different types of coercive fields were tested. Demagnetization and maximum torque for the high coercive field magnets was 7.7% ± 2.5% and 0.20 ± 0.01 Nm, respectively and 71.4% ± 19.1% and 0.18 ± 0.01 Nm for the low coercive field magnets, respectively. The simulated maximum torque was 0.34 Nm, deviating from the measured torque in terms of amplitude, mainly related to an insufficient magnet model. The BCI implant with high coercive field magnets is believed to be magnetic resonance (MR) conditional up to 1.5 T if a compression band is used around the skull to fix the implant. This is not approved and requires further investigations, and if removal of the implant is needed, the surgical operation is expected to be simple.

  19. Magnetic resonance imaging (MRI)-based indication for neoadjuvant treatment of rectal carcinoma and the surrogate endpoint CRM status.

    PubMed

    Strassburg, Joachim; Junginger, Theo; Trinh, Trong; Püttcher, Olaf; Oberholzer, Katja; Heald, Richard J; Hermanek, Paul

    2008-11-01

    Is it possible to reduce the frequency of neoadjuvant therapy for rectal carcinoma and nevertheless achieve a rate of more than 90% circumferential resection margin (CRM)-negative resection specimens by a novel concept of magnetic resonance imaging (MRI)-based therapy planning? One hundred eighty-one patients from Berlin and Mainz, Germany, with primary rectal carcinoma, without distant metastasis, underwent radical surgery with curative intention. Surgical procedures applied were anterior resection with total mesorectal excision (TME) or partial mesorectal excision (PME; PME for tumours of the upper rectum) or abdominoperineal excision with TME. With MRI selection of the highest-risk cases, neoadjuvant therapy was given to only 62 of 181 (34.3%). The rate of CRM-negative resection specimens on histology was 170 of 181 (93.9%) for all patients, and in Berlin, only 1 of 93 (1%) specimens was CRM-positive. Patients selected for primary surgery had CRM-negative specimens on histology in 114 of 119 (95.8%). Those selected for neoadjuvant therapy had a lower rate of clear margin: 56 of 62 (90%). By applying a MRI-based indication, the frequency of neoadjuvant treatment with its acute and late adverse effects can be reduced to 30-35% without reduction of pathologically CRM-negative resection specimens and, thus, without the danger of worsening the oncological long-term results. This concept should be confirmed in prospective multicentre observation studies with quality assurance of MRI, surgery and pathology.

  20. Genetically encoded reporters for hyperpolarized xenon magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Shapiro, Mikhail G.; Ramirez, R. Matthew; Sperling, Lindsay J.; Sun, George; Sun, Jinny; Pines, Alexander; Schaffer, David V.; Bajaj, Vikram S.

    2014-07-01

    Magnetic resonance imaging (MRI) enables high-resolution non-invasive observation of the anatomy and function of intact organisms. However, previous MRI reporters of key biological processes tied to gene expression have been limited by the inherently low molecular sensitivity of conventional 1H MRI. This limitation could be overcome through the use of hyperpolarized nuclei, such as in the noble gas xenon, but previous reporters acting on such nuclei have been synthetic. Here, we introduce the first genetically encoded reporters for hyperpolarized 129Xe MRI. These expressible reporters are based on gas vesicles (GVs), gas-binding protein nanostructures expressed by certain buoyant microorganisms. We show that GVs are capable of chemical exchange saturation transfer interactions with xenon, which enables chemically amplified GV detection at picomolar concentrations (a 100- to 10,000-fold improvement over comparable constructs for 1H MRI). We demonstrate the use of GVs as heterologously expressed indicators of gene expression and chemically targeted exogenous labels in MRI experiments performed on living cells.

  1. Foodomics imaging by mass spectrometry and magnetic resonance.

    PubMed

    Canela, Núria; Rodríguez, Miguel Ángel; Baiges, Isabel; Nadal, Pedro; Arola, Lluís

    2016-07-01

    This work explores the use of advanced imaging MS (IMS) and magnetic resonance imaging (MRI) techniques in food science and nutrition to evaluate food sensory characteristics, nutritional value and health benefits. Determining the chemical content and applying imaging tools to food metabolomics offer detailed information about food quality, safety, processing, storage and authenticity assessment. IMS and MRI are powerful analytical systems with an excellent capability for mapping the distribution of many molecules, and recent advances in these platforms are reviewed and discussed, showing the great potential of these techniques for small molecule-based food metabolomics research. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Development of sound measurement systems for auditory functional magnetic resonance imaging.

    PubMed

    Nam, Eui-Cheol; Kim, Sam Soo; Lee, Kang Uk; Kim, Sang Sik

    2008-06-01

    Auditory functional magnetic resonance imaging (fMRI) requires quantification of sound stimuli in the magnetic environment and adequate isolation of background noise. We report the development of two novel sound measurement systems that accurately measure the sound intensity inside the ear, which can simultaneously provide the similar or greater amount of scanner- noise protection than ear-muffs. First, we placed a 2.6 x 2.6-mm microphone in an insert phone that was connected to a headphone [microphone-integrated, foam-tipped insert-phone with a headphone (MIHP)]. This attenuated scanner noise by 37.8+/-4.6 dB, a level better than the reference amount obtained using earmuffs. The nonmetallic optical microphone was integrated with a headphone [optical microphone in a headphone (OMHP)] and it effectively detected the change of sound intensity caused by variable compression on the cushions of the headphone. Wearing the OMHP reduced the noise by 28.5+/-5.9 dB and did not affect echoplanar magnetic resonance images. We also performed an auditory fMRI study using the MIHP system and presented increase in the auditory cortical activation following 10-dB increment in the intensity of sound stimulation. These two newly developed sound measurement systems successfully achieved the accurate quantification of sound stimuli with maintaining the similar level of noise protection of wearing earmuffs in the auditory fMRI experiment.

  3. Prospective randomized trial comparing magnetic resonance imaging (MRI)-guided in-bore biopsy to MRI-ultrasound fusion and transrectal ultrasound-guided prostate biopsy in patients with prior negative biopsies.

    PubMed

    Arsov, Christian; Rabenalt, Robert; Blondin, Dirk; Quentin, Michael; Hiester, Andreas; Godehardt, Erhard; Gabbert, Helmut E; Becker, Nikolaus; Antoch, Gerald; Albers, Peter; Schimmöller, Lars

    2015-10-01

    A significant proportion of prostate cancers (PCas) are missed by conventional transrectal ultrasound-guided biopsy (TRUS-GB). It remains unclear whether the combined approach using targeted magnetic resonance imaging (MRI)-ultrasound fusion-guided biopsy (FUS-GB) and systematic TRUS-GB is superior to targeted MRI-guided in-bore biopsy (IB-GB) for PCa detection. To compare PCa detection between IB-GB alone and FUS-GB + TRUS-GB in patients with at least one negative TRUS-GB and prostate-specific antigen ≥4 ng/ml. Patients were prospectively randomized after multiparametric prostate MRI to IB-GB (arm A) or FUS-GB + TRUS-GB (arm B) from November 2011 to July 2014. The study was powered at 80% to demonstrate an overall PCa detection rate of ≥60% in arm B compared to 40% in arm A. Secondary endpoints were the distribution of highest Gleason scores, the rate of detection of significant PCa (Gleason ≥7), the number of biopsy cores to detect one (significant) PCa, the positivity rate for biopsy cores, and tumor involvement per biopsy core. The study was halted after interim analysis because the primary endpoint was not met. The trial enrolled 267 patients, of whom 210 were analyzed (106 randomized to arm A and 104 to arm B). PCa detection was 37% in arm A and 39% in arm B (95% confidence interval for difference, -16% to 11%; p=0.7). Detection rates for significant PCa (29% vs 32%; p=0.7) and the highest percentage tumor involvement per biopsy core (48% vs 42%; p=0.4) were similar between the arms. The mean number of cores was 5.6 versus 17 (p<0.001). A limitation is the limited number of patients because of early cessation of accrual. This trial failed to identify an important improvement in detection rate for the combined biopsy approach over MRI-targeted biopsy alone. A prospective comparison between MRI-targeted biopsy alone and systematic TRUS-GB is justified. Our randomized study showed similar prostate cancer detection rates between targeted prostate biopsy

  4. A Magnetic Resonance Imaging-Conditional External Cardiac Defibrillator for Resuscitation Within the Magnetic Resonance Imaging Scanner Bore.

    PubMed

    Schmidt, Ehud J; Watkins, Ronald D; Zviman, Menekhem M; Guttman, Michael A; Wang, Wei; Halperin, Henry A

    2016-10-01

    Subjects undergoing cardiac arrest within a magnetic resonance imaging (MRI) scanner are currently removed from the bore and then from the MRI suite, before the delivery of cardiopulmonary resuscitation and defibrillation, potentially increasing the risk of mortality. This precludes many higher-risk (acute ischemic and acute stroke) patients from undergoing MRI and MRI-guided intervention. An MRI-conditional cardiac defibrillator should enable scanning with defibrillation pads attached and the generator ON, enabling application of defibrillation within the seconds of MRI after a cardiac event. An MRI-conditional external defibrillator may improve patient acceptance for MRI procedures. A commercial external defibrillator was rendered 1.5 Tesla MRI-conditional by the addition of novel radiofrequency filters between the generator and commercial disposable surface pads. The radiofrequency filters reduced emission into the MRI scanner and prevented cable/surface pad heating during imaging, while preserving all the defibrillator monitoring and delivery functions. Human volunteers were imaged using high specific absorption rate sequences to validate MRI image quality and lack of heating. Swine were electrically fibrillated (n=4) and thereafter defibrillated both outside and inside the MRI bore. MRI image quality was reduced by 0.8 or 1.6 dB, with the generator in monitoring mode and operating on battery or AC power, respectively. Commercial surface pads did not create artifacts deeper than 6 mm below the skin surface. Radiofrequency heating was within US Food and Drug Administration guidelines. Defibrillation was completely successful inside and outside the MRI bore. A prototype MRI-conditional defibrillation system successfully defibrillated in the MRI without degrading the image quality or increasing the time needed for defibrillation. It can increase patient acceptance for MRI procedures. © 2016 American Heart Association, Inc.

  5. Gadolinium chloride as a contrast agent for imaging wood composite components by magnetic resonance

    Treesearch

    Thomas L. Eberhardt; Chi-Leung So; Andrea Protti; Po-Wah So

    2009-01-01

    Although paramagnetic contrast agents have an established track record in medical uses of magnetic resonance imaging (MRI), only recently has a contrast agent been used for enhancing MRI images of solid wood specimens. Expanding on this concept, wood veneers were treated with a gadolinium-based contrast agent and used in a model system comprising three-ply plywood...

  6. Development and investigation of a magnetic resonance imaging-compatible microlens-based optical detector

    NASA Astrophysics Data System (ADS)

    Paar, Steffen; Umathum, Reiner; Jiang, Xiaoming; Majer, Charles L.; Peter, Jörg

    2015-09-01

    A noncontact optical detector for in vivo imaging has been developed that is compatible with magnetic resonance imaging (MRI). The optical detector employs microlens arrays and might be classified as a plenoptic camera. As a resulting of its design, the detector possesses a slim thickness and is self-shielding against radio frequency (RF) pulses. For experimental investigation, a total of six optical detectors were arranged in a cylindrical fashion, with the imaged object positioned in the center of this assembly. A purposely designed RF volume resonator coil has been developed and is incorporated within the optical imaging system. The whole assembly was placed into the bore of a 1.5 T patient-sized MRI scanner. Simple-geometry phantom studies were performed to assess compatibility and performance characteristics regarding both optical and MR imaging systems. A bimodal ex vivo nude mouse measurement was conducted. From the MRI data, the subject surface was extracted. Optical images were projected on this surface by means of an inverse mapping algorithm. Simultaneous measurements did not reveal influences from the magnetic field and RF pulses onto optical detector performance (spatial resolution, sensitivity). No significant influence of the optical imaging system onto MRI performance was detectable.

  7. Development and investigation of a magnetic resonance imaging-compatible microlens-based optical detector.

    PubMed

    Paar, Steffen; Umathum, Reiner; Jiang, Xiaoming; Majer, Charles L; Peter, Jörg

    2015-09-01

    A noncontact optical detector for in vivo imaging has been developed that is compatible with magnetic resonance imaging (MRI). The optical detector employs microlens arrays and might be classified as a plenoptic camera. As a resulting of its design, the detector possesses a slim thickness and is self-shielding against radio frequency (RF) pulses. For experimental investigation, a total of six optical detectors were arranged in a cylindrical fashion, with the imaged object positioned in the center of this assembly. A purposely designed RF volume resonator coil has been developed and is incorporated within the optical imaging system. The whole assembly was placed into the bore of a 1.5 T patient-sized MRI scanner. Simple-geometry phantom studies were performed to assess compatibility and performance characteristics regarding both optical and MR imaging systems. A bimodal ex vivo nude mouse measurement was conducted. From the MRI data, the subject surface was extracted. Optical images were projected on this surface by means of an inverse mapping algorithm. Simultaneous measurements did not reveal influences from the magnetic field and RF pulses onto optical detector performance (spatial resolution, sensitivity). No significant influence of the optical imaging system onto MRI performance was detectable.

  8. Preparation of an Au-Pt alloy free from artifacts in magnetic resonance imaging.

    PubMed

    Kodama, Tomonobu; Nakai, Ryusuke; Goto, Kenji; Shima, Kunihiro; Iwata, Hiroo

    2017-12-01

    When magnetic resonance imaging (MRI) is performed on patients carrying metallic implants, artifacts can disturb the images around the implants, often making it difficult to interpret them appropriately. However, metallic materials are and will be indispensable as raw materials for medical devices because of their electric conductivity, visibility under X-ray fluoroscopy, and other favorable features. What is now desired is to develop a metallic material which causes no artifacts during MRI. In the present study, we prepared a single-phase and homogeneous Au-Pt alloys (Au; diamagnetic metal, and Pt; paramagnetic metal) by the processing of thermal treatment. Volume magnetic susceptibility was measured with a SQUID Flux Meter and MRI artifact was evaluated using a 1.5-T scanner. After final thermal treatment, an entirely recrystallized homogeneous organization was noted. The Au-35Pt alloy was shown to have a volume magnetic susceptibility of -8.8ppm, causing almost free from artifacts during MRI. We thus prepared an Au-35Pt alloy which had a magnetic susceptibility very close to that of living tissue and caused much fewer artifacts during MRI. It is promising as a material for spinal cages, intracranial electrodes, cerebral aneurysm embolization coils, markers for MRI and so on. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Feasibility of magnetic resonance imaging (MRI) in obtaining nucleus pulposus (NP) water content with changing postures.

    PubMed

    Nazari, Jalil; Pope, Malcolm H; Graveling, Richard A

    2015-05-01

    Opportunities to evaluate spinal loading in vivo are limited and a large majority of studies on the mechanical functions of the spine have been in vitro cadaveric studies and/or models based on many assumptions that are difficult to validate. The purpose of this study was to investigate the feasibility of magnetic resonance imaging (MRI) in obtaining nucleus pulposus (NP) water content measurements with changing postures. MRI studies were conducted on 25 healthy males with no history of low back pain (age 20-38). The L1 to S1 intradiscal levels were imaged in supine, sitting and standing postures using an upright 0.6 Tesla magnet, where a set of H2O: D2O7 phantoms were mounted on the back of the subjects. A calibration curve, provided from these phantoms, was applied to the absolute proton density image, yielding a pixel-by-pixel map of the water content of the NP. The NP at all levels showed a highly significant water loss (p<0.001) in sitting and standing postures compared with the supine posture. A trend towards higher levels of water was observed at all levels in the standing posture relative to sitting postures, however statistically significant differences were found only at L4-L5 and L5-S1 levels. This study demonstrates that variations in water content of the NP in different postures are in agreement with those determined from published invasive disc pressure measurements. The result of study demonstrates the feasibility of using MRI to determine the water content of the NP with changing postures and to use these data to evaluate spinal loading in these postures. This measurement method of water content by quantitative MR imaging could become a powerful tool for both clinical and ergonomic applications. The proposed methodology does not require invasive pressure measurement techniques. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Hepatic fat quantification: a prospective comparison of magnetic resonance spectroscopy and analysis methods for chemical-shift gradient echo magnetic resonance imaging with histologic assessment as the reference standard.

    PubMed

    Kang, Bo-Kyeong; Yu, Eun Sil; Lee, Seung Soo; Lee, Youngjoo; Kim, Namkug; Sirlin, Claude B; Cho, Eun Yoon; Yeom, Suk Keu; Byun, Jae Ho; Park, Seong Ho; Lee, Moon-Gyu

    2012-06-01

    The aims of this study were to assess the confounding effects of hepatic iron deposition, inflammation, and fibrosis on hepatic steatosis (HS) evaluation by magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) and to assess the accuracies of MRI and MRS for HS evaluation, using histology as the reference standard. In this institutional review board-approved prospective study, 56 patients gave informed consents and underwent chemical-shift MRI and MRS of the liver on a 1.5-T magnetic resonance scanner. To estimate MRI fat fraction (FF), 4 analysis methods were used (dual-echo, triple-echo, multiecho, and multi-interference), and MRS FF was calculated with T2 correction. Degrees of HS, iron deposition, inflammation, and fibrosis were analyzed in liver resection (n = 37) and biopsy (n = 19) specimens. The confounding effects of histology on fat quantification were assessed by multiple linear regression analysis. Using the histologic degree of HS as the reference standard, the accuracies of each method in estimating HS and diagnosing an HS of 5% or greater were determined by linear regression and receiver operating characteristic analyses. Iron deposition significantly confounded estimations of FF by the dual-echo (P < 0.001) and triple-echo (P = 0.033) methods, whereas no histologic feature confounded the multiecho and multi-interference methods or MRS. The MRS (r = 0.95) showed the strongest correlation with histologic degree of HS, followed by the multiecho (r = 0.92), multi-interference (r = 0.91), triple-echo (r = 0.90), and dual-echo (r = 0.85) methods. For diagnosing HS, the areas under the curve tended to be higher for MRS (0.96) and the multiecho (0.95), multi-interference (0.95), and triple-echo (0.95) methods than for the dual-echo method (0.88) (P ≥ 0.13). The multiecho and multi-interference MRI methods and MRS can accurately quantify hepatic fat, with coexisting histologic abnormalities having no confounding effects.

  11. Computed inverse resonance imaging for magnetic susceptibility map reconstruction.

    PubMed

    Chen, Zikuan; Calhoun, Vince

    2012-01-01

    This article reports a computed inverse magnetic resonance imaging (CIMRI) model for reconstructing the magnetic susceptibility source from MRI data using a 2-step computational approach. The forward T2*-weighted MRI (T2*MRI) process is broken down into 2 steps: (1) from magnetic susceptibility source to field map establishment via magnetization in the main field and (2) from field map to MR image formation by intravoxel dephasing average. The proposed CIMRI model includes 2 inverse steps to reverse the T2*MRI procedure: field map calculation from MR-phase image and susceptibility source calculation from the field map. The inverse step from field map to susceptibility map is a 3-dimensional ill-posed deconvolution problem, which can be solved with 3 kinds of approaches: the Tikhonov-regularized matrix inverse, inverse filtering with a truncated filter, and total variation (TV) iteration. By numerical simulation, we validate the CIMRI model by comparing the reconstructed susceptibility maps for a predefined susceptibility source. Numerical simulations of CIMRI show that the split Bregman TV iteration solver can reconstruct the susceptibility map from an MR-phase image with high fidelity (spatial correlation ≈ 0.99). The split Bregman TV iteration solver includes noise reduction, edge preservation, and image energy conservation. For applications to brain susceptibility reconstruction, it is important to calibrate the TV iteration program by selecting suitable values of the regularization parameter. The proposed CIMRI model can reconstruct the magnetic susceptibility source of T2*MRI by 2 computational steps: calculating the field map from the phase image and reconstructing the susceptibility map from the field map. The crux of CIMRI lies in an ill-posed 3-dimensional deconvolution problem, which can be effectively solved by the split Bregman TV iteration algorithm.

  12. Magnetic resonance imaging assisted management in five cases of suspected quittor.

    PubMed

    Meehan, Lucinda J; Taylor, Sarah E; Labens, Raphael; Cillán-García, Eugenio

    2016-01-01

    Assessment of the usefulness of magnetic resonance imaging (MRI) in treatment planning in suspected cases of quittor in the horse. Five horses with chronic discharging tracts at the level of the foot underwent MRI for treatment planning. The MRI examination revealed variable involvement of soft tissue and osseous structures of the foot in addition to abnormalities of the ungular cartilages in all cases. In two cases, follow-up MRI examination was performed. Four of five horses had a successful outcome, with three of these undergoing only one surgical procedure and one being managed medically. We believe that the use of preoperative MRI facilitated accurate determination of the structures involved in cases of quittor, guiding the management, surgical approach and postoperative therapy.

  13. Activated iron-containing microglia in the human hippocampus identified by magnetic resonance imaging in Alzheimer disease

    PubMed Central

    Zeineh, Michael M.; Chen, Yuanxin; Kitzler, Hagen H.; Hammond, Robert; Vogel, Hannes; Rutt, Brian K.

    2016-01-01

    Although amyloid plaques and neurofibrillary pathology play important roles in Alzheimer disease (AD), our understanding of AD is incomplete, and the contribution of microglia and iron to neurodegeneration is unknown. High-field magnetic resonance imaging (MRI) is exquisitely sensitive to microscopic iron. To explore iron-associated neuroinflammatory AD pathology, we studied AD and control human brain specimens by (1) performing ultra-high resolution ex vivo 7 Tesla MRI, (2) coregistering the MRI with successive histologic staining for iron, microglia, amyloid beta, and tau, and (3) quantifying the relationship between magnetic resonance signal intensity and histological staining. In AD, we identified numerous small MR hypointensities primarily within the subiculum that were best explained by the combination of microscopic iron and activated microglia (p = 0.025), in contradistinction to the relatively lesser contribution of tau or amyloid. Neuropathologically, this suggests that microglial-mediated neurodegeneration may occur in the hippocampal formation in AD and is detectable by ultra-high resolution MRI. PMID:26190634

  14. Activated iron-containing microglia in the human hippocampus identified by magnetic resonance imaging in Alzheimer disease.

    PubMed

    Zeineh, Michael M; Chen, Yuanxin; Kitzler, Hagen H; Hammond, Robert; Vogel, Hannes; Rutt, Brian K

    2015-09-01

    Although amyloid plaques and neurofibrillary pathology play important roles in Alzheimer disease (AD), our understanding of AD is incomplete, and the contribution of microglia and iron to neurodegeneration is unknown. High-field magnetic resonance imaging (MRI) is exquisitely sensitive to microscopic iron. To explore iron-associated neuroinflammatory AD pathology, we studied AD and control human brain specimens by (1) performing ultra-high resolution ex vivo 7 Tesla MRI, (2) coregistering the MRI with successive histologic staining for iron, microglia, amyloid beta, and tau, and (3) quantifying the relationship between magnetic resonance signal intensity and histological staining. In AD, we identified numerous small MR hypointensities primarily within the subiculum that were best explained by the combination of microscopic iron and activated microglia (p = 0.025), in contradistinction to the relatively lesser contribution of tau or amyloid. Neuropathologically, this suggests that microglial-mediated neurodegeneration may occur in the hippocampal formation in AD and is detectable by ultra-high resolution MRI. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. In utero eyeball development study by magnetic resonance imaging.

    PubMed

    Brémond-Gignac, D S; Benali, K; Deplus, S; Cussenot, O; Ferkdadji, L; Elmaleh, M; Lassau, J P

    1997-01-01

    The aim of this study was to measure fetal ocular development and to determine a growth curve by means of measurements in utero. Fetal ocular development was recorded by analysis of the results of magnetic resonance imaging (MRI). An anatomic study allowed definition of the best contrasted MRI sequences for calculation of the ocular surface. Biometric analysis of the values of the ocular surface in the neuro-ocular plane in 35 fetuses allowed establishment of a linear model of ocular growth curve in utero. Evaluation of ocular development may allow the detection and confirmation of malformational ocular anomalies such as microphthalmia.

  16. Biology and therapy of fibromyalgia. Functional magnetic resonance imaging findings in fibromyalgia

    PubMed Central

    Williams, David A; Gracely, Richard H

    2006-01-01

    Techniques in neuroimaging such as functional magnetic resonance imaging (fMRI) have helped to provide insights into the role of supraspinal mechanisms in pain perception. This review focuses on studies that have applied fMRI in an attempt to gain a better understanding of the mechanisms involved in the processing of pain associated with fibromyalgia. This article provides an overview of the nociceptive system as it functions normally, reviews functional brain imaging methods, and integrates the existing literature utilizing fMRI to study central pain mechanisms in fibromyalgia. PMID:17254318

  17. Intraoperative Magnetic Resonance Imaging During Endoscopic Transsphenoidal Surgery of Growth Hormone-Secreting Pituitary Adenomas.

    PubMed

    Netuka, David; Májovský, Martin; Masopust, Václav; Belšán, Tomáš; Marek, Josef; Kršek, Michal; Hána, Václav; Ježková, Jana; Hána, Václav; Beneš, Vladimír

    2016-07-01

    The effect of intraoperative magnetic resonance imaging (iMRI) on the extent of sellar region tumors treated endonasally has been described in previous research. However, the effects of iMRI on endocrinologic outcome of growth hormone-secreting adenomas have been studied in only a few small cohort studies. Inclusion criteria were primary transsphenoidal surgery for growth hormone-secreting adenoma from January 2009 to December 2014, a minimum follow-up of 1 year, complete endocrinologic data, at least 1 iMRI, and at least 2 postoperative magnetic resonance images. The cohort consisted of 105 patients (54 females, 51 males) with a mean age of 48.3 years (range, 7-77 years). There were 16 microadenomas and 89 macroadenomas. Endocrinologic remission in the whole cohort was achieved in 64 of the patients (60.9%). Resection after iMRI was attempted in 22 of the cases (20.9%). Resection after iMRI led to hormonal remission in 9 cases (8.6%). Endocrinologic postoperative deficit was observed in 10 cases (12.5%). Postoperative cerebrospinal fluid leakage indicated the necessity to reoperate in 3 cases (3.8%). No neurologic deterioration was observed. iMRI influences not only the morphologic extent of pituitary adenomas resection but also the endocrinologic results. We encourage the routine application of iMRI in pituitary adenoma surgery, including hormone-secreting pituitary tumors. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Circular Samples as Objects for Magnetic Resonance Imaging - Mathematical Simulation, Experimental Results

    NASA Astrophysics Data System (ADS)

    Frollo, Ivan; Krafčík, Andrej; Andris, Peter; Přibil, Jiří; Dermek, Tomáš

    2015-12-01

    Circular samples are the frequent objects of "in-vitro" investigation using imaging method based on magnetic resonance principles. The goal of our investigation is imaging of thin planar layers without using the slide selection procedure, thus only 2D imaging or imaging of selected layers of samples in circular vessels, eppendorf tubes,.. compulsorily using procedure "slide selection". In spite of that the standard imaging methods was used, some specificity arise when mathematical modeling of these procedure is introduced. In the paper several mathematical models were presented that were compared with real experimental results. Circular magnetic samples were placed into the homogenous magnetic field of a low field imager based on nuclear magnetic resonance. For experimental verification an MRI 0.178 Tesla ESAOTE Opera imager was used.

  19. Fast magnetic resonance fingerprinting for dynamic contrast-enhanced studies in mice.

    PubMed

    Gu, Yuning; Wang, Charlie Y; Anderson, Christian E; Liu, Yuchi; Hu, He; Johansen, Mette L; Ma, Dan; Jiang, Yun; Ramos-Estebanez, Ciro; Brady-Kalnay, Susann; Griswold, Mark A; Flask, Chris A; Yu, Xin

    2018-05-09

    The goal of this study was to develop a fast MR fingerprinting (MRF) method for simultaneous T 1 and T 2 mapping in DCE-MRI studies in mice. The MRF sequences based on balanced SSFP and fast imaging with steady-state precession were implemented and evaluated on a 7T preclinical scanner. The readout used a zeroth-moment-compensated variable-density spiral trajectory that fully sampled the entire k-space and the inner 10 × 10 k-space with 48 and 4 interleaves, respectively. In vitro and in vivo studies of mouse brain were performed to evaluate the accuracy of MRF measurements with both fully sampled and undersampled data. The application of MRF to dynamic T 1 and T 2 mapping in DCE-MRI studies were demonstrated in a mouse model of heterotopic glioblastoma using gadolinium-based and dysprosium-based contrast agents. The T 1 and T 2 measurements in phantom showed strong agreement between the MRF and the conventional methods. The MRF with spiral encoding allowed up to 8-fold undersampling without loss of measurement accuracy. This enabled simultaneous T 1 and T 2 mapping with 2-minute temporal resolution in DCE-MRI studies. Magnetic resonance fingerprinting provides the opportunity for dynamic quantification of contrast agent distribution in preclinical tumor models on high-field MRI scanners. © 2018 International Society for Magnetic Resonance in Medicine.

  20. Characterizing Articulation in Apraxic Speech Using Real-Time Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Hagedorn, Christina; Proctor, Michael; Goldstein, Louis; Wilson, Stephen M.; Miller, Bruce; Gorno-Tempini, Maria Luisa; Narayanan, Shrikanth S.

    2017-01-01

    Purpose: Real-time magnetic resonance imaging (MRI) and accompanying analytical methods are shown to capture and quantify salient aspects of apraxic speech, substantiating and expanding upon evidence provided by clinical observation and acoustic and kinematic data. Analysis of apraxic speech errors within a dynamic systems framework is provided…

  1. Surface impact on nanoparticle-based magnetic resonance imaging contrast agents

    PubMed Central

    Zhang, Weizhong; Liu, Lin; Chen, Hongmin; Hu, Kai; Delahunty, Ian; Gao, Shi; Xie, Jin

    2018-01-01

    Magnetic resonance imaging (MRI) is one of the most widely used diagnostic tools in the clinic. To improve imaging quality, MRI contrast agents, which can modulate local T1 and T2 relaxation times, are often injected prior to or during MRI scans. However, clinically used contrast agents, including Gd3+-based chelates and iron oxide nanoparticles (IONPs), afford mediocre contrast abilities. To address this issue, there has been extensive research on developing alternative MRI contrast agents with superior r1 and r2 relaxivities. These efforts are facilitated by the fast progress in nanotechnology, which allows for preparation of magnetic nanoparticles (NPs) with varied size, shape, crystallinity, and composition. Studies suggest that surface coatings can also largely affect T1 and T2 relaxations and can be tailored in favor of a high r1 or r2. However, the surface impact of NPs has been less emphasized. Herein, we review recent progress on developing NP-based T1 and T2 contrast agents, with a focus on the surface impact. PMID:29721097

  2. Combined magnetic resonance, fluorescence, and histology imaging strategy in a human breast tumor xenograft model

    PubMed Central

    Jiang, Lu; Greenwood, Tiffany R.; Amstalden van Hove, Erika R.; Chughtai, Kamila; Raman, Venu; Winnard, Paul T.; Heeren, Ron; Artemov, Dmitri; Glunde, Kristine

    2014-01-01

    Applications of molecular imaging in cancer and other diseases frequently require combining in vivo imaging modalities, such as magnetic resonance and optical imaging, with ex vivo optical, fluorescence, histology, and immunohistochemical (IHC) imaging, to investigate and relate molecular and biological processes to imaging parameters within the same region of interest. We have developed a multimodal image reconstruction and fusion framework that accurately combines in vivo magnetic resonance imaging (MRI) and magnetic resonance spectroscopic imaging (MRSI), ex vivo brightfield and fluorescence microscopic imaging, and ex vivo histology imaging. Ex vivo brightfield microscopic imaging was used as an intermediate modality to facilitate the ultimate link between ex vivo histology and in vivo MRI/MRSI. Tissue sectioning necessary for optical and histology imaging required generation of a three-dimensional (3D) reconstruction module for 2D ex vivo optical and histology imaging data. We developed an external fiducial marker based 3D reconstruction method, which was able to fuse optical brightfield and fluorescence with histology imaging data. Registration of 3D tumor shape was pursued to combine in vivo MRI/MRSI and ex vivo optical brightfield and fluorescence imaging data. This registration strategy was applied to in vivo MRI/MRSI, ex vivo optical brightfield/fluorescence, as well as histology imaging data sets obtained from human breast tumor models. 3D human breast tumor data sets were successfully reconstructed and fused with this platform. PMID:22945331

  3. Medical image segmentation using 3D MRI data

    NASA Astrophysics Data System (ADS)

    Voronin, V.; Marchuk, V.; Semenishchev, E.; Cen, Yigang; Agaian, S.

    2017-05-01

    Precise segmentation of three-dimensional (3D) magnetic resonance imaging (MRI) image can be a very useful computer aided diagnosis (CAD) tool in clinical routines. Accurate automatic extraction a 3D component from images obtained by magnetic resonance imaging (MRI) is a challenging segmentation problem due to the small size objects of interest (e.g., blood vessels, bones) in each 2D MRA slice and complex surrounding anatomical structures. Our objective is to develop a specific segmentation scheme for accurately extracting parts of bones from MRI images. In this paper, we use a segmentation algorithm to extract the parts of bones from Magnetic Resonance Imaging (MRI) data sets based on modified active contour method. As a result, the proposed method demonstrates good accuracy in a comparison between the existing segmentation approaches on real MRI data.

  4. Cochlear implant with a non-removable magnet: preliminary research at 3-T MRI.

    PubMed

    Dubrulle, F; Sufana Iancu, A; Vincent, C; Tourrel, G; Ernst, O

    2013-06-01

    To perform preliminary tests in vitro and with healthy volunteers to determine the 3-T MRI compatibility of a cochlear implant with a non-removable magnet. In the in vitro phase, we tested six implants for temperature changes and internal malfunctioning. We measured the demagnetisation of 65 internal magnets with different tilt angles between the implant's magnetic field (bi) and the main magnetic field (b0). In the in vivo phase, we tested 28 operational implants attached to the scalps of volunteers with the head in three different positions. The study did not find significant temperature changes or electronic malfunction in the implants tested in vitro. We found considerable demagnetisation of the cochlear implant magnets in the in vitro and in vivo testing influenced by the position of the magnet in the main magnetic field. We found that if the bi/b0 angle is <90°, there is no demagnetisation; if the bi/b0 angle is >90°, there is demagnetisation in almost 60 % of the cases. When the angle is around 90°, the risk of demagnetisation is low (6.6 %). The preliminary results on cochlear implants with non-removable magnets indicate the need to maintain the contraindication of passage through 3-T MRI. • Magnetic resonance imaging can affect cochlear implants and vice versa. • Demagnetisation of cochlear implant correlates with the angle between bi and b0. • The position of the head in the MRI influences the demagnetisation. • Three-Tesla MRI for cochlear implants is still contraindicated. • However some future solutions are discussed.

  5. The functional magnetic resonance imaging (fMRI) procedure as experienced by healthy participants and stroke patients – A pilot study

    PubMed Central

    2009-01-01

    Background An important aspect in functional imaging research employing magnetic resonance imaging (MRI) is how participants perceive the MRI scanning itself. For instance, the knowledge of how (un)comfortable MRI scanning is perceived may help institutional review boards (IRBs) or ethics committees to decide on the approval of a study, or researchers to design their experiments. Methods We provide empirical data from our lab gained from 70 neurologically healthy mainly student subjects and from 22 mainly elderly patients suffering from motor deficits after brain damage. All participants took part in various basic research fMRI studies using a 3T MRI scanner. Directly after the scanning, all participants completed a questionnaire assessing their experience with the fMRI procedure. Results 87.2% of the healthy subjects and 77.3% of the patients rated the MRI procedure as acceptable to comfortable. In healthy subjects, males found the procedure more comfortable, while the opposite was true for patients. 12.1% of healthy subjects considered scanning durations between 30 and 60 min as too long, while no patient considered their 30 min scanning interval as too long. 93.4% of the healthy subjects would like to participate in an fMRI study again, with a significantly lower rate for the subjects who considered the scanning as too long. Further factors, such as inclusion of a diffusion tensor imaging (DTI) scan, age, and study duration had no effect on the questionnaire responses. Of the few negative comments, the main issues were noise, the restriction to keep still for the whole time, and occasional feelings of dizziness. Conclusion MRI scanning in the basic research setting is an acceptable procedure for elderly and patient participants as well as young healthy subjects. PMID:19646238

  6. Cerebral magnetic resonance imaging of compressed air divers in diving accidents.

    PubMed

    Gao, G K; Wu, D; Yang, Y; Yu, T; Xue, J; Wang, X; Jiang, Y P

    2009-01-01

    To investigate the characteristics of the cerebral magnetic resonance imaging (MRI) of compressed air divers in diving accidents, we conducted an observational case series study. MRI of brain were examined and analysed on seven cases compressed air divers complicated with cerebral arterial gas embolism CAGE. There were some characteristics of cerebral injury: (1) Multiple lesions; (2) larger size; (3) Susceptible to parietal and frontal lobe; (4) Both cortical grey matter and subcortical white matter can be affected; (5) Cerebellum is also the target of air embolism. The MRI of brain is an sensitive method for detecting cerebral lesions in compressed air divers in diving accidents. The MRI should be finished on divers in diving accidents within 5 days.

  7. The role of ultrasound (US) and magnetic resonance imaging (MRI) in penile fracture mapping for modified surgical repair.

    PubMed

    Zare Mehrjardi, Mohammad; Darabi, Mohsen; Bagheri, Seyed Morteza; Kamali, Koosha; Bijan, Bijan

    2017-06-01

    To determine the accuracy of ultrasound (US) and magnetic resonance imaging (MRI) in the diagnosis of penile fracture and preoperative mapping for modified surgical repair. Twenty-five consecutive patients were included in the study prospectively over 29 months (from February 2014 to June 2016). US examination and MRI were performed on all patients and interpreted by two expert radiologists independently. The location of the defect in tunica albuginea was mapped onto a designed scheme preoperatively using each imaging modality. The detection rate, as well as agreement between preoperative radiologic mapping and surgical outcomes, was determined for each modality. The mean age of the patients was 28 ± 7.5 years. The most common etiology was intercourse (88%). The most common location of tunica albuginea rupture was mid-shaft of the penis (60%), and the mean length of tunica defects in their greatest dimension was 13.5 ± 3.95 mm. All patients had associated hematoma, but no urethral injury was detected. The detection rate of US and MRI was 88 and 100%, respectively. US mapped the tear location correctly in 18 patients [61 out of 75 items (81%); κ = 0.66], while MRI mapped it precisely in 23 patients [73 out of 75 items (97%); κ = 0.95]. Both modalities are extremely helpful for the diagnosis of penile fracture. Considering the cost-efficiency and accessibility of ultrasonography, US is recommended as the first-line tool for both diagnosis and preoperative mapping. MRI may be used as a complementary study in the patients for whom US fails to visualize or precisely define the tunica defect.

  8. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection

    PubMed Central

    Sinharay, Sanhita; Pagel, Mark D.

    2016-01-01

    Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized 13C to detect the agent with outstanding sensitivity. These hyperpolarized 13C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection. PMID:27049630

  9. Data-driven mapping of hypoxia-related tumor heterogeneity using DCE-MRI and OE-MRI.

    PubMed

    Featherstone, Adam K; O'Connor, James P B; Little, Ross A; Watson, Yvonne; Cheung, Sue; Babur, Muhammad; Williams, Kaye J; Matthews, Julian C; Parker, Geoff J M

    2018-04-01

    Previous work has shown that combining dynamic contrast-enhanced (DCE)-MRI and oxygen-enhanced (OE)-MRI binary enhancement maps can identify tumor hypoxia. The current work proposes a novel, data-driven method for mapping tissue oxygenation and perfusion heterogeneity, based on clustering DCE/OE-MRI data. DCE-MRI and OE-MRI were performed on nine U87 (glioblastoma) and seven Calu6 (non-small cell lung cancer) murine xenograft tumors. Area under the curve and principal component analysis features were calculated and clustered separately using Gaussian mixture modelling. Evaluation metrics were calculated to determine the optimum feature set and cluster number. Outputs were quantitatively compared with a previous non data-driven approach. The optimum method located six robustly identifiable clusters in the data, yielding tumor region maps with spatially contiguous regions in a rim-core structure, suggesting a biological basis. Mean within-cluster enhancement curves showed physiologically distinct, intuitive kinetics of enhancement. Regions of DCE/OE-MRI enhancement mismatch were located, and voxel categorization agreed well with the previous non data-driven approach (Cohen's kappa = 0.61, proportional agreement = 0.75). The proposed method locates similar regions to the previous published method of binarization of DCE/OE-MRI enhancement, but renders a finer segmentation of intra-tumoral oxygenation and perfusion. This could aid in understanding the tumor microenvironment and its heterogeneity. Magn Reson Med 79:2236-2245, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley

  10. Role of magnetic resonance imaging in the management of perianal Crohn's disease.

    PubMed

    Gallego, Jose C; Echarri, Ana

    2018-02-01

    Perianal fistulas are a major problem in many patients with Crohn's disease. These are usually complex fistulas that adversely affect patients' quality of life, and their clinical management is difficult. Medical treatment sometimes achieves cessation of discharge and closure of the external opening; however, it is difficult to assess the status of the rest of the fistula tract. Magnetic resonance imaging is the method of choice with which to evaluate the condition of perianal fistulas and allows for assessment of the status of inaccessible areas. Magnetic resonance imaging also allows the clinician to evaluate other perianal manifestations of Crohn's disease that differ from the fistulas. This imaging technique is therefore a fundamental means of patient monitoring. When used in conjunction with assessment of the patient's morphological findings, it provides information that allows for both quantification of disease severity and evaluation of the response to treatment. New types of magnetic resonance sequences are emerging, such as diffusion, perfusion, and magnetisation transfer. These sequences may serve as biomarkers because they provide information reflecting the changes taking place at the molecular level. This will help to shape a new scenario in the early assessment of the response to treatments such as anti-tumour necrosis factor drugs. • MRI is the method of choice with which to evaluate perianal fistulas. • In perianal Crohn's disease, MRI is a fundamental means of patient monitoring. • The usefulness of the Van Assche score for patient monitoring remains unclear. • New MRI sequences' diffusion, perfusion, and magnetisation transfer may serve as biomarkers.

  11. Fluorine-19 magnetic resonance imaging probe for the detection of tau pathology in female rTg4510 mice.

    PubMed

    Yanagisawa, Daijiro; Ibrahim, Nor Faeizah; Taguchi, Hiroyasu; Morikawa, Shigehiro; Kato, Tomoko; Hirao, Koichi; Shirai, Nobuaki; Sogabe, Takayuki; Tooyama, Ikuo

    2018-05-01

    Aggregation of tau into neurofibrillary tangles (NFTs) is characteristic of tauopathies, including Alzheimer's disease. Recent advances in tau imaging have attracted much attention because of its potential contributions to early diagnosis and monitoring of disease progress. Fluorine-19 magnetic resonance imaging ( 19 F-MRI) may be extremely useful for tau imaging once a high-quality probe has been formulated. In this investigation, a novel fluorine-19-labeling compound has been developed as a probe for tau imaging using 19 F-MRI. This compound is a buta-1,3-diene derivative with a polyethylene glycol side chain bearing a CF 3 group and is known as Shiga-X35. Female rTg4510 mice (a mouse model of tauopathy) and wild-type mice were intravenously injected with Shiga-X35, and magnetic resonance imaging of each mouse's head was conducted in a 7.0-T horizontal-bore magnetic resonance scanner. The 19 F-MRI in rTg4510 mice showed an intense signal in the forebrain region. Analysis of the signal intensity in the forebrain region revealed a significant accumulation of fluorine-19 magnetic resonance signal in the rTg4510 mice compared with the wild-type mice. Histological analysis showed fluorescent signals of Shiga-X35 binding to the NFTs in the brain sections of rTg4510 mice. Data collected as part of this investigation indicate that 19 F-MRI using Shiga-X35 could be a promising tool to evaluate tau pathology in the brain. © 2017 Wiley Periodicals, Inc.

  12. Fast 3D magnetic resonance fingerprinting for a whole-brain coverage.

    PubMed

    Ma, Dan; Jiang, Yun; Chen, Yong; McGivney, Debra; Mehta, Bhairav; Gulani, Vikas; Griswold, Mark

    2018-04-01

    The purpose of this study was to accelerate the acquisition and reconstruction time of 3D magnetic resonance fingerprinting scans. A 3D magnetic resonance fingerprinting scan was accelerated by using a single-shot spiral trajectory with an undersampling factor of 48 in the x-y plane, and an interleaved sampling pattern with an undersampling factor of 3 through plane. Further acceleration came from reducing the waiting time between neighboring partitions. The reconstruction time was accelerated by applying singular value decomposition compression in k-space. Finally, a 3D premeasured B 1 map was used to correct for the B 1 inhomogeneity. The T 1 and T 2 values of the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology MRI phantom showed a good agreement with the standard values, with an average concordance correlation coefficient of 0.99, and coefficient of variation of 7% in the repeatability scans. The results from in vivo scans also showed high image quality in both transverse and coronal views. This study applied a fast acquisition scheme for a fully quantitative 3D magnetic resonance fingerprinting scan with a total acceleration factor of 144 as compared with the Nyquist rate, such that 3D T 1 , T 2 , and proton density maps can be acquired with whole-brain coverage at clinical resolution in less than 5 min. Magn Reson Med 79:2190-2197, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  13. Intraoperative 3 tesla magnetic resonance imaging: our experience in tumors.

    PubMed

    García-Baizán, A; Tomás-Biosca, A; Bartolomé Leal, P; Domínguez, P D; García de Eulate Ruiz, R; Tejada, S; Zubieta, J L

    To report our experience in the use of 3 tesla intraoperative magnetic resonance imaging (MRI) in neurosurgical procedures for tumors, and to evaluate the criteria for increasing the extension of resection. This retrospective study included all consecutive intraoperative MRI studies done for neuro-oncologic disease in the first 13 months after the implementation of the technique. We registered possible immediate complications, the presence of tumor remnants, and whether the results of the intraoperative MRI study changed the surgical management. We recorded the duration of surgery in all cases. The most common tumor was recurrent glioblastoma, followed by primary glioblastoma and metastases. Complete resection was achieved in 28%, and tumor remnants remained in 72%. Intraoperative MRI enabled neurosurgeons to improve the extent of the resection in 85% of cases. The mean duration of surgery was 390±122minutes. Intraoperative MRI using a strong magnetic field (3 teslas) is a valid new technique that enables precise study of the tumor resection to determine whether the resection can be extended without damaging eloquent zones. Although the use of MRI increases the duration of surgery, the time required decreases as the team becomes more familiar with the technique. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Magnetic resonance tomography of the knee joint.

    PubMed

    Puig, Stefan; Kuruvilla, Yojena Chittazhathu Kurian; Ebner, Lukas; Endel, Gottfried

    2015-10-01

    To compare the diagnostic performance of magnetic resonance imaging (MRI) in terms of sensitivity and specificity using a field strength of <1.0 T (T) versus ≥1.5 T for diagnosing or ruling out knee injuries or knee pathologies. The systematic literature research revealed more than 10,000 references, of which 1598 abstracts were reviewed and 87 full-text articles were retrieved. The further selection process resulted in the inclusion of four systematic reviews and six primary studies. No differences could be identified in the diagnostic performance of low- versus high-field MRI for the detection or exclusion of meniscal or cruciate ligament tears. Regarding the detection or grading of cartilage defects and osteoarthritis of the knee, the existing evidence suggests that high-field MRI is tolerably specific but not very sensitive, while there is literally no evidence for low-field MRI because only a few studies with small sample sizes and equivocal findings have been performed. We can recommend the use of low-field strength MRI systems in suspected meniscal or cruciate ligament injuries. This does, however, not apply to the diagnosis and grading of knee cartilage defects and osteoarthritis because of insufficient evidence.

  15. Psychological impact and acceptability of magnetic resonance imaging and X-ray mammography: the MARIBS Study

    PubMed Central

    Hutton, J; Walker, L G; Gilbert, F J; Evans, D G; Eeles, R; Kwan-Lim, G E; Thompson, D; Pointon, L J; Sharp, D M; Leach, M O

    2011-01-01

    Background: As part of the Magnetic Resonance Imaging for Breast Screening (MARIBS), Study women with a family history of breast cancer were assessed psychologically to determine the relative psychological impact and acceptability of annual screening using magnetic resonance imaging (MRI) and conventional X-ray mammography (XRM). Methods: Women were assessed psychologically at baseline (4 weeks before MRI and XRM), immediately before, and immediately after, both MRI and XRM, and at follow-up (6 weeks after the scans). Results: Overall, both procedures were found to be acceptable with high levels of satisfaction (MRI, 96.3% and XRM, 97.7% NS) and low levels of psychological morbidity throughout, particularly at 6-week follow-up. Low levels of self-reported distress were reported for both procedures (MRI, 13.5% and XRM, 7.8%), although MRI was more distressing (P=0.005). Similarly, higher anticipatory anxiety was reported before MRI than before XRM (P=0.003). Relative to XRM, MRI-related distress was more likely to persist at 6 weeks after the scans in the form of intrusive MRI-related thoughts (P=0.006) and total MRI-related distress (P=0.014). More women stated that they intended to return for XRM (96.3%) than for MRI (88% P<0.0005). These effects were most marked for the first year of screening, although they were also statistically significant in subsequent years. Conclusion: Given the proven benefits of MRI in screening for breast cancer in this population, these data point to the urgent need to provide timely information and support to women undergoing MRI. PMID:21326245

  16. Psychological impact and acceptability of magnetic resonance imaging and X-ray mammography: the MARIBS Study.

    PubMed

    Hutton, J; Walker, L G; Gilbert, F J; Evans, D G; Eeles, R; Kwan-Lim, G E; Thompson, D; Pointon, L J; Sharp, D M; Leach, M O

    2011-02-15

    As part of the Magnetic Resonance Imaging for Breast Screening (MARIBS), Study women with a family history of breast cancer were assessed psychologically to determine the relative psychological impact and acceptability of annual screening using magnetic resonance imaging (MRI) and conventional X-ray mammography (XRM). Women were assessed psychologically at baseline (4 weeks before MRI and XRM), immediately before, and immediately after, both MRI and XRM, and at follow-up (6 weeks after the scans). Overall, both procedures were found to be acceptable with high levels of satisfaction (MRI, 96.3% and XRM, 97.7%; NS) and low levels of psychological morbidity throughout, particularly at 6-week follow-up. Low levels of self-reported distress were reported for both procedures (MRI, 13.5% and XRM, 7.8%), although MRI was more distressing (P=0.005). Similarly, higher anticipatory anxiety was reported before MRI than before XRM (P=0.003). Relative to XRM, MRI-related distress was more likely to persist at 6 weeks after the scans in the form of intrusive MRI-related thoughts (P=0.006) and total MRI-related distress (P=0.014). More women stated that they intended to return for XRM (96.3%) than for MRI (88%; P<0.0005). These effects were most marked for the first year of screening, although they were also statistically significant in subsequent years. Given the proven benefits of MRI in screening for breast cancer in this population, these data point to the urgent need to provide timely information and support to women undergoing MRI.

  17. Structural Magnetic Resonance Imaging Data Do Not Help Support DSM-5 Autism Spectrum Disorder Category

    ERIC Educational Resources Information Center

    Pina-Camacho, Laura; Villero, Sonia; Boada, Leticia; Fraguas, David; Janssen, Joost; Mayoral, Maria; Llorente, Cloe; Arango, Celso; Parellada, Mara

    2013-01-01

    This systematic review aims to determine whether or not structural magnetic resonance imaging (sMRI) data support the DSM-5 proposal of an autism spectrum disorder (ASD) diagnostic category, and whether or not classical DSM-IV autistic disorder (AD) and Asperger syndrome (AS) categories should be subsumed into it. The most replicated sMRI findings…

  18. Inflection Points in Magnetic Resonance Imaging Technology-35 Years of Collaborative Research and Development.

    PubMed

    Wood, Michael L; Griswold, Mark A; Henkelman, Mark; Hennig, Jürgen

    2015-09-01

    The technology for clinical magnetic resonance imaging (MRI) has advanced with remarkable speed and in such a manner reflecting the influence of 3 forces-collaboration between disciplines, collaboration between academia and industry, and the enabling of software applications by hardware. The forces are evident in the key developments from the past and emerging trends for the future highlighted in this review article. These developments are associated with MRI system attributes, such as wider, shorter, and stronger magnets; specialty magnets and hybrid devices; k space; and the notion that magnetic field gradients perform a Fourier transform on the spatial distribution of magnetization, phased-array coils and parallel imaging, the user interface, the wide range of contrast possible, and applications that exploit motion-induced phase shifts. An attempt is made to show connections between these developments and how the 3 forces mentioned previously will continue to shape the technology used so productively in clinical MRI.

  19. Brain functional magnetic resonance imaging response to glucose and fructose infusions in humans

    USDA-ARS?s Scientific Manuscript database

    Objective: In animals, intracerebroventricular glucose and fructose have opposing effects on appetite and weight regulation. In humans, functional brain magnetic resonance imaging (fMRI) studies during carbohydrate ingestion suggest that glucose may regulate HT signaling but are potentially confoun...

  20. Computed tomography and magnetic resonance imaging in diagnosing hepatocellular carcinoma.

    PubMed

    Dalla Palma, L; Pozzi-Mucelli, R S

    1992-02-01

    The evaluation of hepatocellular carcinoma (HCC) is based upon ultrasonography (US) which has proved to have a high sensitivity and is also extremely useful in guiding the percutaneous needle biopsy. The main role of computed tomography (CT) and magnetic resonance imaging (MRI) is to supplement US in evaluating the extent of HCC. The Authors discuss the different techniques of examinations of the liver both for CT and MRI as far as the modalities of contrast enhancement, site of injection, and type of contrast agents are concerned. The differences between low field and high field magnets are also discussed. The main CT and MRI findings are illustrated, depending upon the technique of examination. Finally the role of these techniques is discussed. Based upon personal experience and the data in CT literature, and if performed with updated technology and intraarterial injection (lipiodol), CT is the method of choice in order to supplement US in the evaluation of HCC.

  1. Endometrial cancer: magnetic resonance imaging.

    PubMed

    Manfredi, R; Gui, B; Maresca, G; Fanfani, F; Bonomo, L

    2005-01-01

    Carcinoma of the endometrium is the most common invasive gynecologic malignancy of the female genital tract. Clinically, patients with endometrial carcinoma present with abnormal uterine bleeding. The role of magnetic resonance imaging (MRI) in endometrial carcinoma is disease staging and treatment planning. MRI has been shown to be the most valuable imaging mod-ality in this task, compared with endovaginal ultrasound and computed tomography, because of its intrinsic contrast resolution and multiplanar capability. MRI protocol includes axial T1-weighted images; axial, sagittal, and coronal T2-weighted images; and dynamic gadolinium-enhanced T1-weighted imaging. MR examination is usually performed in the supine position with a phased array multicoil using a four-coil configuration. Endometrial carcinoma is isointense with the normal endometrium and myometrium on noncontrast T1-weighted images and has a variable appearance on T2-weighted images demonstrating heterogeneous signal intensity. The appearance of noninvasive endometrial carcinoma on MRI is characterized by a normal or thickened endometrium, with an intact junctional zone and a sharp tumor-myometrium interface. Invasive endometrial carcinoma is characterized disruption or irregularity of the junctional zone by intermediate signal intensity mass on T2-weighted images. Invasion of the cervical stroma is diagnosed when the low signal intensity cervical stroma is disrupted by the higher signal intensity endometrial carcinoma. MRI in endometrial carcinoma performs better than other imaging modalities in disease staging and treatment planning. Further, the accuracy and the cost of MRI are equivalent to those of surgical staging.

  2. Magnetic resonance imaging in neuropsychiatric systemic lupus erythematosus: current state of the art and novel approaches.

    PubMed

    Postal, M; Lapa, A Tamires; Reis, F; Rittner, L; Appenzeller, S

    2017-04-01

    Systemic lupus erythematosus is a chronic, inflammatory, immune-mediated disease affecting 0.1% of the general population. Neuropsychiatric manifestations in systemic lupus erythematosus have been more frequently recognized and reported in recent years, occurring in up to 75% of patients during the disease course. Magnetic resonance imaging is known to be a useful tool for the detection of structural brain abnormalities in neuropsychiatric systemic lupus erythematosus patients because of the excellent soft-tissue contrast observed with MRI and the ability to acquire multiplanar images. In addition to conventional magnetic resonance imaging techniques to evaluate the presence of atrophy and white matter lesions, several different magnetic resonance imaging techniques have been used to identify microstructural or functional abnormalities. This review will highlight different magnetic resonance imaging techniques, including the advanced magnetic resonance imaging methods used to determine central nervous system involvement in systemic lupus erythematosus.

  3. Preparation and Evaluation of Multiple Nanoemulsions Containing Gadolinium (III) Chelate as a Potential Magnetic Resonance Imaging (MRI) Contrast Agent.

    PubMed

    Sigward, Estelle; Corvis, Yohann; Doan, Bich-Thuy; Kindsiko, Kadri; Seguin, Johanne; Scherman, Daniel; Brossard, Denis; Mignet, Nathalie; Espeau, Philippe; Crauste-Manciet, Sylvie

    2015-09-01

    The objective was to develop, characterize and assess the potentiality of W1/O/W2 self-emulsifying multiple nanoemulsions to enhance signal/noise ratio for Magnetic Resonance Imaging (MRI). For this purpose, a new formulation, was designed for encapsulation efficiency and stability. Various methods were used to characterize encapsulation efficiency ,in particular calorimetric methods (Differential Scanning Calorimetry (DSC), thermogravimetry analysis) and ultrafiltration. MRI in vitro relaxivities were assessed on loaded DTPA-Gd multiple nanoemulsions. Characterization of the formulation, in particular of encapsulation efficiency was a challenge due to interactions found with ultrafiltration method. Thanks to the specifically developed DSC protocol, we were able to confirm the formation of multiple nanoemulsions, differentiate loaded from unloaded nanoemulsions and measure the encapsulation efficiency which was found to be quite high with a 68% of drug loaded. Relaxivity studies showed that the self-emulsifying W/O/W nanoemulsions were positive contrast agents, exhibiting higher relaxivities than those of the DTPA-Gd solution taken as a reference. New self-emulsifying multiple nanoemulsions that were able to load satisfactory amounts of contrasting agent were successfully developed as potential MRI contrasting agents. A specific DSC protocol was needed to be developed to characterize these complex systems as it would be useful to develop these self-formation formulations.

  4. Magnetic resonance imaging of the submandibular-sublingual complex.

    PubMed

    Sbarbati, A; Baldassarri, A; Leclercq, F; Merigo, F; Antonakis, K; Boicelli, A

    1994-01-01

    The submandibular-sublingual complex (SSC) was studied in vivo by magnetic resonance imaging (MRI) at 4.7 and 7.05 Tesla in rat and mouse. A correlation was found between histology and MRI signal. The mainly mucous sublingual gland emitted a more intense signal than the mainly serous submandibular gland. Ventral to the glands, cutis, subcutaneous adipose tissue and two planes of muscular tissue separated by connective laminae were visible in vivo. Autopsy and histology confirmed the in vivo description provided by MRI. The reactivity of the salivary system after pharmacological stimulation was studied in mice at 7.05 Tesla. Stimulation of salivary secretion by pilocarpine nitrate injected in the subcutaneous space ventrally to the SSC resulted in an augmentation of the salivary liquid visible in the oral cavity by MRI. The diffusion of pilocarpine nitrate in the connective tissue located ventrally the SSC and in the glandular parenchyma was also followed in vivo. These results show that MRI is a potentially useful tool for studying the salivary glands in vivo.

  5. 'You're looking for different parts in a jigsaw': foetal MRI (magnetic resonance imaging) as an emerging technology in professional practice.

    PubMed

    Reed, Kate; Kochetkova, Inna; Molyneux-Hodgson, Susan

    2016-06-01

    Magnetic resonance imaging (MRI) was first introduced into clinical practice during the 1980s. Originally used as a diagnostic tool to take pictures of the brain, spine, and joints, it is now used to visualise a range of organs and soft tissue around the body. Developments in clinical applications of the technology are rapid and it is often viewed as the 'gold standard' in many areas of medicine. However, most existing sociological work on MRI tends to focus on the profession of radiology, little is known about the impact of MRI on a broader range of clinical practice. This article focuses on MRI use in pregnancy, a relatively new application of the technology. Drawing on empirical research with a range of health professionals (from radiologists to pathologists) in the North of England, this article asks: how do different types of health professionals engage with the technology and to what end? It will argue that MRI use in pregnancy offers an increasingly important piece of the diagnostic jigsaw, often acting as a bridging technology between medical specialties. The implications of this will be explored in the context of broader sociological debates on the 'visualisation' of medicine and its impact on professionals. © 2016 The Authors. Sociology of Health & Illness published by John Wiley & Sons Ltd on behalf of Foundation for SHIL.

  6. Magnetic resonance imaging phenotyping of Becker muscular dystrophy.

    PubMed

    Faridian-Aragh, Neda; Wagner, Kathryn R; Leung, Doris G; Carrino, John A

    2014-12-01

    There is little information on magnetic resonance imaging (MRI) phenotypes of Becker muscular dystrophy (BMD). This study presents the MRI phenotyping of the upper and lower extremities of a large cohort of BMD patients. In this retrospective study, MRI images of 33 BMD subjects were evaluated for severity, distribution, and symmetry of involvement. Teres major, triceps long head, biceps brachii long head, gluteus maximus, gluteus medius, vasti, adductor longus, adductor magnus, semitendinosus, semimembranosus, and biceps femoris muscles showed the highest severity and frequency of involvement. All analyzed muscles had a high frequency of symmetric involvement. There was significant variability of involvement between muscles within some muscle groups, most notably the arm abductors, posterior arm muscles, medial thigh muscles, and lateral hip rotators. This study showed a distinctive pattern of involvement of extremity muscles in BMD subjects. © 2014 Wiley Periodicals, Inc.

  7. Magnetic Resonance Imaging of Human Tissue-Engineered Adipose Substitutes

    PubMed Central

    Proulx, Maryse; Aubin, Kim; Lagueux, Jean; Audet, Pierre; Auger, Michèle

    2015-01-01

    Adipose tissue (AT) substitutes are being developed to answer the strong demand in reconstructive surgery. To facilitate the validation of their functional performance in vivo, and to avoid resorting to excessive number of animals, it is crucial at this stage to develop biomedical imaging methodologies, enabling the follow-up of reconstructed AT substitutes. Until now, biomedical imaging of AT substitutes has scarcely been reported in the literature. Therefore, the optimal parameters enabling good resolution, appropriate contrast, and graft delineation, as well as blood perfusion validation, must be studied and reported. In this study, human adipose substitutes produced from adipose-derived stem/stromal cells using the self-assembly approach of tissue engineering were implanted into athymic mice. The fate of the reconstructed AT substitutes implanted in vivo was successfully followed by magnetic resonance imaging (MRI), which is the imaging modality of choice for visualizing soft ATs. T1-weighted images allowed clear delineation of the grafts, followed by volume integration. The magnetic resonance (MR) signal of reconstructed AT was studied in vitro by proton nuclear magnetic resonance (1H-NMR). This confirmed the presence of a strong triglyceride peak of short longitudinal proton relaxation time (T1) values (200±53 ms) in reconstructed AT substitutes (total T1=813±76 ms), which establishes a clear signal difference between adjacent muscle, connective tissue, and native fat (total T1 ∼300 ms). Graft volume retention was followed up to 6 weeks after implantation, revealing a gradual resorption rate averaging at 44% of initial substitute's volume. In addition, vascular perfusion measured by dynamic contrast-enhanced-MRI confirmed the graft's vascularization postimplantation (14 and 21 days after grafting). Histological analysis of the grafted tissues revealed the persistence of numerous adipocytes without evidence of cysts or tissue necrosis. This study

  8. Leg MRI scan

    MedlinePlus

    ... anything that contains metal into the scanner room. Considerations Tests that may be done instead of an ... Magnetic resonance imaging - ankle; MRI - femur; MRI - leg Patient Instructions Femur fracture repair - discharge Hip fracture - discharge ...

  9. Preparation of a Cobalt(II) Cage: An Undergraduate Laboratory Experiment That Produces a ParaSHIFT Agent for Magnetic Resonance Spectroscopy

    ERIC Educational Resources Information Center

    Burns, Patrick J.; Tsitovich, Pavel B.; Morrow, Janet R.

    2016-01-01

    Laboratory experiments that demonstrate the effect of paramagnetic complexes on chemical shifts and relaxation times of protons are a useful way to introduce magnetic resonance spectroscopy (MRS) probes or magnetic resonance imaging (MRI) contrast agents. In this undergraduate inorganic chemistry experiment, a paramagnetic Co(II) cage complex is…

  10. The ViewRay system: magnetic resonance-guided and controlled radiotherapy.

    PubMed

    Mutic, Sasa; Dempsey, James F

    2014-07-01

    A description of the first commercially available magnetic resonance imaging (MRI)-guided radiation therapy (RT) system is provided. The system consists of a split 0.35-T MR scanner straddling 3 (60)Co heads mounted on a ring gantry, each head equipped with independent doubly focused multileaf collimators. The MR and RT systems share a common isocenter, enabling simultaneous and continuous MRI during RT delivery. An on-couch adaptive RT treatment-planning system and integrated MRI-guided RT control system allow for rapid adaptive planning and beam delivery control based on the visualization of soft tissues. Treatment of patients with this system commenced at Washington University in January 2014. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Correcting Concomitant Gradient Distortion in Microtesla Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Myers, Whittier

    2005-03-01

    Progress in ultra-low field magnetic resonance imaging (MRI) using an untuned gradiometer coupled to a Superconducting Quantum Interference Device (SQUID) has resulted in three-dimensional images with an in-plane resolution of 2 mm. Protons in samples up to 80 mm in size were prepolarized in a 100 mT field, manipulated by ˜100 μT/m gradients for image encoding, and detected by the SQUID in the ˜65 μT precession field. Maxwell's equations prohibit a unidirectional magnetic field gradient. While the additional concomitant gradients can be neglected in high-field MRI, they distort high-resolution images of large samples taken in microtesla precession fields. We propose two methods to mitigate such distortion: raising the precession field during image encoding, and software post-processing. Both approaches are demonstrated using computer simulations and MRI images. Simulations show that the combination of these techniques can correct the concomitant gradient distortion present in a 4-mm resolution image of an object the size of a human brain with a precession field of 50 μT. Supported by USDOE.

  12. Calibration standard of body tissue with magnetic nanocomposites for MRI and X-ray imaging

    NASA Astrophysics Data System (ADS)

    Rahn, Helene; Woodward, Robert; House, Michael; Engineer, Diana; Feindel, Kirk; Dutz, Silvio; Odenbach, Stefan; StPierre, Tim

    2016-05-01

    We present a first study of a long-term phantom for Magnetic Resonance Imaging (MRI) and X-ray imaging of biological tissues with magnetic nanocomposites (MNC) suitable for 3-dimensional and quantitative imaging of tissues after, e.g. magnetically assisted cancer treatments. We performed a cross-calibration of X-ray microcomputed tomography (XμCT) and MRI with a joint calibration standard for both imaging techniques. For this, we have designed a phantom for MRI and X-ray computed tomography which represents biological tissue enriched with MNC. The developed phantoms consist of an elastomer with different concentrations of multi-core MNC. The matrix material is a synthetic thermoplastic gel, PermaGel (PG). The developed phantoms have been analyzed with Nuclear Magnetic Resonance (NMR) Relaxometry (Bruker minispec mq 60) at 1.4 T to obtain R2 transverse relaxation rates, with SQUID (Superconducting QUantum Interference Device) magnetometry and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to verify the magnetite concentration, and with XμCT and 9.4 T MRI to visualize the phantoms 3-dimensionally and also to obtain T2 relaxation times. A specification of a sensitivity range is determined for standard imaging techniques X-ray computed tomography (XCT) and MRI as well as with NMR. These novel phantoms show a long-term stability over several months up to years. It was possible to suspend a particular MNC within the PG reaching a concentration range from 0 mg/ml to 6.914 mg/ml. The R2 relaxation rates from 1.4 T NMR-relaxometry show a clear connection (R2=0.994) with MNC concentrations between 0 mg/ml and 4.5 mg/ml. The MRI experiments have shown a linear correlation of R2 relaxation and MNC concentrations as well but in a range between MNC concentrations of 0 mg/ml and 1.435 mg/ml. It could be shown that XμCT displays best moderate and high MNC concentrations. The sensitivity range for this particular XμCT apparatus yields from 0.569 mg/ml to 6.914 mg/ml. The

  13. MR imaging of magnetic ink patterns via off-resonance sensitivity.

    PubMed

    Perkins, Stephanie L; Daniel, Bruce L; Hargreaves, Brian A

    2018-03-30

    Printed magnetic ink creates predictable B 0 field perturbations based on printed shape and magnetic susceptibility. This can be exploited for contrast in MR imaging techniques that are sensitized to off-resonance. The purpose of this work was to characterize the susceptibility variations of magnetic ink and demonstrate its application for creating MR-visible skin markings. The magnetic susceptibility of the ink was estimated by comparing acquired and simulated B 0 field maps of a custom-built phantom. The phantom was also imaged using a 3D gradient echo sequence with a presaturation pulse tuned to different frequencies, which adjusts the range of suppressed frequencies. Healthy volunteers with a magnetic ink pattern pressed to the skin or magnetic ink temporary flexible adhesives applied to the skin were similarly imaged. The volume-average magnetic susceptibility of the ink was estimated to be 131 ± 3 parts per million across a 1-mm isotropic voxel (13,100 parts per million assuming a 10-μm thickness of printed ink). Adjusting the saturation frequency highlights different off-resonant regions created by the ink patterns; for example, if tuned to suppress fat, fat suppression will fail near the ink due to the off-resonance. This causes magnetic ink skin markings placed over a region with underlying subcutaneous fat to be visible on MR images. Patterns printed with magnetic ink can be imaged and identified with MRI. Temporary flexible skin adhesives printed with magnetic ink have the potential to be used as skin markings that are visible both by eye and on MR images. © 2018 International Society for Magnetic Resonance in Medicine.

  14. [Nuclear magnetic resonance of anorectal malformations and persistent postoperative fecal incontinence].

    PubMed

    de Agustín, J C; Alami, H; Lassaletta, L; Gámez, M; Fernández, A; Fraile, E; Alenda, J G; Rollán, V; Utrilla, J G

    1992-07-01

    We review our experience with Magnetic Resonance Imaging (MRI) in the evaluation of 6 patients showing anorectal malformation, and 4 more with persistent postoperative fecal incontinence. Preoperative sagittal, axial and coronal planes were studied with special consideration to the pelvic and vertebral structures. The excellent resolution of MRI allowed accurate identification of the pelvic musculature in all patients, including those with bizarre sacral abnormalities. MRI revealed structural anomalies not detected previously, such as teathering cord, intraspinal lipoma, presacral mass and renal malformation. In our institution, MRI has replaced the CT scan in the study of patients suffering of persistent fecal incontinence. In non operated on cases of anorectal malformations, MRI determines with extraordinary accuracy the location of the rectal atretic pouch, the actual pelvic muscular quality, and the detection of previously unsuspected associated anomalies.

  15. Uses, misuses, new uses and fundamental limitations of magnetic resonance imaging in cognitive science

    PubMed Central

    2016-01-01

    When blood oxygenation level-dependent (BOLD) contrast functional magnetic resonance imaging (fMRI) was discovered in the early 1990s, it provoked an explosion of interest in exploring human cognition, using brain mapping techniques based on MRI. Standards for data acquisition and analysis were rapidly put in place, in order to assist comparison of results across laboratories. Recently, MRI data acquisition capabilities have improved dramatically, inviting a rethink of strategies for relating functional brain activity at the systems level with its neuronal substrates and functional connections. This paper reviews the established capabilities of BOLD contrast fMRI, the perceived weaknesses of major methods of analysis, and current results that may provide insights into improved brain modelling. These results have inspired the use of in vivo myeloarchitecture for localizing brain activity, individual subject analysis without spatial smoothing and mapping of changes in cerebral blood volume instead of BOLD activation changes. The apparent fundamental limitations of all methods based on nuclear magnetic resonance are also discussed. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574303

  16. Uses, misuses, new uses and fundamental limitations of magnetic resonance imaging in cognitive science.

    PubMed

    Turner, Robert

    2016-10-05

    When blood oxygenation level-dependent (BOLD) contrast functional magnetic resonance imaging (fMRI) was discovered in the early 1990s, it provoked an explosion of interest in exploring human cognition, using brain mapping techniques based on MRI. Standards for data acquisition and analysis were rapidly put in place, in order to assist comparison of results across laboratories. Recently, MRI data acquisition capabilities have improved dramatically, inviting a rethink of strategies for relating functional brain activity at the systems level with its neuronal substrates and functional connections. This paper reviews the established capabilities of BOLD contrast fMRI, the perceived weaknesses of major methods of analysis, and current results that may provide insights into improved brain modelling. These results have inspired the use of in vivo myeloarchitecture for localizing brain activity, individual subject analysis without spatial smoothing and mapping of changes in cerebral blood volume instead of BOLD activation changes. The apparent fundamental limitations of all methods based on nuclear magnetic resonance are also discussed.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. © 2016 The Authors.

  17. Neuronal current magnetic resonance imaging of evoked potentials and neural oscillations

    NASA Astrophysics Data System (ADS)

    Jiang, Xia

    Despite its great success, the current functional magnetic resonance imaging (MRI) technique relies on changes in cerebral hemodynamic parameters to infer the underlying neural activities, and as a result is limited in its spatial and temporal resolutions. In this dissertation, we discuss the feasibility of neuronal current MRI (nc-MRI), a novel technique in which the small magnetic field changes caused by neuronal electrical activities are directly measured by MRI. Two studies are described. In the first study, we investigated the feasibility of detecting the magnetic field produced by sensory evoked potentials. To eliminate the blood-oxygen-level-dependent (BOLD) effect on the MRI signal, which confounded most previous studies, an octopus visual system model was developed, which, for the first time, allowed for an in vivo investigation of nc-MRI in a BOLD-free environment. Electrophysiological responses were measured in the octopus retina and optical lobe to guide the nc-MRI acquisition. Our results indicated that no nc-MRI signal change related to neuronal activation could be detected at 0.2°/0.2% threshold for signal phase/magnitude respectively, while robust electrophysiological responses were recorded. In the second study, we discuss the feasibility of detecting neural oscillations with MRI, Based on previous studies, a novel approach was proposed in which an external oscillatory field was exploited as the excitation pulse under a spin-locked condition. This approach has the advantages of increased sensitivity and lowered physiological noise. Successful detection of sub-nanotesla field was demonstrated in phantom. Our results suggest that evoked potentials are too weak for nc-MRI detection with the current hardware, and that previous positive findings were likely due to hemodynamic confounders. On the other hand, oscillatory magnetic field can be efficiently detected in phantom. Given the stronger equivalent current dipoles produced by neural oscillations

  18. Quantitative assessment of the equine hoof using digital radiography and magnetic resonance imaging.

    PubMed

    Grundmann, I N M; Drost, W T; Zekas, L J; Belknap, J K; Garabed, R B; Weisbrode, S E; Parks, A H; Knopp, M V; Maierl, J

    2015-09-01

    Evaluation of laminitis cases relies on radiographic measurements of the equine foot. Reference values have not been established for all layers of the foot. To establish normal hoof wall and sole measurements using digital radiography (DR) and magnetic resonance imaging (MRI) and to document tissue components present in the dorsal hoof wall and solar layers seen on DR. Prospective observational case-control study. Digital radiography and MRI were performed on 50 cadaver front feet from 25 horses subjected to euthanasia for nonlameness-related reasons. Four observers measured hoof wall (dorsal, lateral and medial) and sole thickness (sagittal, lateral and medial) using DR and magnetic resonance images. One observer repeated the measurements 3 times. Inter- and intraobserver correlation was assessed. Digital radiography and MRI measurements for the normal hoof wall and sole were established. Inter- and intraobserver pairwise Pearson's correlation for DR (r>0.98) and MRI measurements (r>0.99) was excellent. Based on MRI, the less radiopaque layer on DR is comprised of the stratum lamellatum and stratum reticulare. Normal DR and MRI measurements for the hoof wall and sole were established. On DR images, the less radiopaque layer of the foot observed corresponds to the critical tissues injured in laminitis, the strata lamellatum and reticulare. These reference measurements may be used by the clinician to detect soft-tissue changes in the laminitic equine foot and provide a foundation for future research determining changes in these measurements in horses with laminitis. © 2014 EVJ Ltd.

  19. Diagnostic Imaging of Pregnant Women – The Role of Magnetic Resonance Imaging

    PubMed Central

    Bekiesińska-Figatowska, Monika; Romaniuk-Doroszewska, Anna; Szkudlińska-Pawlak, Sylwia; Duczkowska, Agnieszka; Mądzik, Jarosław; Szopa-Krupińska, Martyna; Maciejewski, Tomasz M.

    2017-01-01

    Summary Background Presentation of magnetic resonance imaging (MRI) findings in pregnant women in the Department of Diagnostic Imaging, Institute of Mother and Child, Warsaw, Poland. Material/Methods Forty-three symptomatic pregnant women underwent MRI between 9 and 33 weeks of gestation (mean of 23 weeks). Moreover, we included 2 pregnant women who underwent fetal MRI and had incidental abnormalities. Results In 9 cases, we excluded the suspected brain abnormalities. In 4 cases, we found unremarkable changes in the brain without clinical significance. One patient was diagnosed with multiple sclerosis, one with cortical dysplasia, one with pineal hemorrhage and one with a brain tumor. On abdominal MRI, 2 patients had normal findings, one patient had colon cancer with a hepatic metastasis, one patient had a hepatic angioma, one patient had an extraadrenal pheochromocytoma, one patient had an abscess in the iliopsoas muscle, 9 patients had myomas, two patients had ovarian simple cysts, two endometrial cysts, three dermoid cysts, one patient had sacrococcygeal teratoma, one patient had a cystadenofibroma (partial borderline tumor), one patient had an androgenic ovarian tumor and two patients had hyperreactio luteinalis. One patient was diagnosed with transient osteoporosis of the hip and one with a stress fracture of the sacral bone. Conclusions Magnetic resonance imaging is the best imaging modality for pregnant women. Although ultrasonography is the method of choice, doubtful cases as well as structures that cannot be examined with ultrasonography can be non-invasively evaluated with MRI. PMID:28507642

  20. 3-T MRI safety assessments of magnetic dental attachments and castable magnetic alloys

    PubMed Central

    Miyata, K; Abe, Y; Ishii, T; Ishigami, T; Ohtani, K; Nagai, E; Ohyama, T; Umekawa, Y; Nakabayashi, S

    2015-01-01

    Objectives: To assess the safety of different magnetic dental attachments during 3-T MRI according to the American Society for Testing and Materials F2182-09 and F2052-06e1 standard testing methods and to develop a method to determine MRI compatibility by measuring magnetically induced torque. Methods: The temperature elevations, magnetically induced forces and torques of a ferromagnetic stainless steel keeper, a coping comprising a keeper and a cast magnetic alloy coping were measured on MRI systems. Results: The coping comprising a keeper demonstrated the maximum temperature increase (1.42 °C) for the whole-body-averaged specific absorption rate and was calculated as 2.1 W kg−1 with the saline phantom. All deflection angles exceeded 45°. The cast magnetic alloy coping had the greatest deflection force (0.33 N) during 3-T MRI and torque (1.015 mN m) during 0.3-T MRI. Conclusions: The tested devices showed minimal radiofrequency (RF)-induced heating in a 3-T MR environment, but the cast magnetic alloy coping showed a magnetically induced deflection force and torque approximately eight times that of the keepers. For safety, magnetic dental attachments should be inspected before and after MRI and large prostheses containing cast magnetic alloy should be removed. Although magnetic dental attachments may pose no great risk of RF-induced heating or magnetically induced torque during 3-T MRI, their magnetically induced deflection forces tended to exceed acceptable limits. Therefore, the inspection of such devices before and after MRI is important for patient safety. PMID:25785821

  1. The effects of soy on freezable bread dough: a magnetic resonance study.

    PubMed

    Simmons, Amber L; Vodovotz, Yael

    2012-11-15

    Hygroscopic soy ingredients were hypothesised to slow the rate of water migration in unleavened bread dough during frozen storage. Thawed soy (18% dry weight) and wheat dough samples were assessed using non-destructive nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) for up to 8 wks frozen storage time. MRI suggested a spatially homogeneous, net increase in proton mobility with frozen storage and, with solution state proton NMR, distinct "free" and "bound" states were discerned. T(2) relaxation times of the majority proton population suggested increased mobility with frozen storage time, and statistical difference from the fresh sample was seen later for the soy samples than the wheat samples. As seen by (13)C-solid state NMR, the crystallinity of the starch was not affected by either soy addition or frozen storage. In conclusion, addition of soy to bakery products led to slightly enhanced preservation of "fresh" characteristics of the dough during frozen storage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Characterization of Cerebral White Matter Properties Using Quantitative Magnetic Resonance Imaging Stains

    PubMed Central

    Hurley, Samuel A.; Samsonov, Alexey A.; Adluru, Nagesh; Hosseinbor, Ameer Pasha; Mossahebi, Pouria; Tromp, Do P.M.; Zakszewski, Elizabeth; Field, Aaron S.

    2011-01-01

    Abstract The image contrast in magnetic resonance imaging (MRI) is highly sensitive to several mechanisms that are modulated by the properties of the tissue environment. The degree and type of contrast weighting may be viewed as image filters that accentuate specific tissue properties. Maps of quantitative measures of these mechanisms, akin to microstructural/environmental-specific tissue stains, may be generated to characterize the MRI and physiological properties of biological tissues. In this article, three quantitative MRI (qMRI) methods for characterizing white matter (WM) microstructural properties are reviewed. All of these measures measure complementary aspects of how water interacts with the tissue environment. Diffusion MRI, including diffusion tensor imaging, characterizes the diffusion of water in the tissues and is sensitive to the microstructural density, spacing, and orientational organization of tissue membranes, including myelin. Magnetization transfer imaging characterizes the amount and degree of magnetization exchange between free water and macromolecules like proteins found in the myelin bilayers. Relaxometry measures the MRI relaxation constants T1 and T2, which in WM have a component associated with the water trapped in the myelin bilayers. The conduction of signals between distant brain regions occurs primarily through myelinated WM tracts; thus, these methods are potential indicators of pathology and structural connectivity in the brain. This article provides an overview of the qMRI stain mechanisms, acquisition and analysis strategies, and applications for these qMRI stains. PMID:22432902

  3. [Influence of mechanical effect due to MRI-magnet on tattoo seal and eye makeup].

    PubMed

    Morishita, Yuta; Miyati, Tosiaki; Ueda, Jousei; Shimizu, Mitsuru; Hamaguchi, Takashi; Fujiwara, Yasuhiro; Hayashi, Hiroyuki

    2008-05-20

    The purpose of our study was to assess the mechanical effect on tattoo seals and eye makeup caused by a spatial magnetic gradient in the magnetic resonance imaging (MRI) system. Seven kinds of tattoo seals and three kinds of eye makeup, i.e., mascara, eye shadow, and eyeliner were used. On a 3.0-Tesla MRI, we determined these deflection angles according to a method established by the American Society for Testing and Materials (ASTM) at the position that produced the greatest magnetically induced deflection. Eighty-five percent of the tattoo seals showed deflection angles greater than 45 degrees of the ASTM guidelines, and the mascara and eye shadow showed over 40 degrees. This was because these contained ferromagnetic pigments such as an iron oxide, but those translational forces were very small owing to slight mass. However, it is desirable that these should be removed before MRI examination to prevent secondary problems.

  4. Magnetic resonance imaging of microstructure transition in stainless steel.

    PubMed

    Peeters, Johannes M; van Faassen, Ernst E H; Bakker, Chris J G

    2006-06-01

    Magnetic resonance images are prone to artifacts caused by metallic objects. Such artifacts may not only hamper image interpretation, but also have been shown to provide information about the magnetic properties of the substances involved. In this work, we aim to explore the potential of MRI to detect, localize and characterize changes in magnetic properties that may occur when certain alloys have been exposed to a thermomechanical stress. For this purpose, stainless steel 304 L wires were drawn to induce a change from paramagnetic austenitic into ferromagnetic martensitic microstructure. The changes in magnetic behavior were quantified by analyzing the geometric distortion in spin echo and the geometric distortion and intravoxel dephasing in gradient echo images at 0.5, 1.5 and 3 T. The results of both imaging strategies were in agreement and in accordance with independent measurements with a vibrating sample magnetometer. Drawing wire to 2% of its cross-sectional area was found to increase the volume fraction of the ferromagnetic martensite from 0.3% to 80% and to enhance the magnetization up to two or three orders of magnitude. The results demonstrate the potential of MRI to locate and quantify stress-induced changes in the magnetic properties of alloys in a completely noninvasive and nondestructive way.

  5. Evaluation of the fetal cerebellum by magnetic resonance imaging.

    PubMed

    Llorens Salvador, R; Viegas Sainz, A; Montoya Filardi, A; Montoliu Fornas, G; Menor Serrano, F

    Obstetric protocols dictate that the fetal cerebellum should always be assessed during sonograms during pregnancy. For various reasons, including technical limitations or inconclusive sonographic findings, suspicion of cerebellar abnormalities is one of the most common indications for prenatal magnetic resonance imaging (MRI). Although sonography is the imaging technique of choice to assess the cerebellum, MRI shows the anatomy of the posterior fossa and abnormalities in the development of the fetal cerebellum in greater detail and thus enables a more accurate prenatal diagnosis. We describe and illustrate the normal anatomy of the fetal cerebellum on MRI as well as the different diseases that can affect its development. Moreover, we review the most appropriate terminology to define developmental abnormalities, their differential diagnoses, and the role of MRI in the prenatal evaluation of the posterior fossa. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Magnetic resonance imaging (MRI) of hormone-induced breast changes in young premenopausal women.

    PubMed

    Clendenen, Tess V; Kim, Sungheon; Moy, Linda; Wan, Livia; Rusinek, Henry; Stanczyk, Frank Z; Pike, Malcolm C; Zeleniuch-Jacquotte, Anne

    2013-01-01

    We conducted a pilot study to identify whether MRI parameters are sensitive to hormone-induced changes in the breast during the natural menstrual cycle and whether changes could also be observed during an oral contraceptive (OC) cycle. The New York University Langone Medical Center Institutional Review Board approved this HIPAA-compliant prospective study. All participants provided written informed consent. Participants were aged 24-31 years.We measured several non-contrast breast MRI parameters during each week of a single menstrual cycle (among 9 women) and OC cycle (among 8 women). Hormones were measured to confirm ovulation and classify menstrual cycle phase among naturally cycling women and to monitor OC compliance among OC users. We investigated how the non-contrast MRI parameters of breast fibroglandular tissue (FGT), apparent diffusion coefficient (ADC), magnetization transfer ratio (MTR), and transverse relaxation time (T2) varied over the natural and the OC cycles. We observed significant increases in MRI FGT% and ADC in FGT, and longer T2 in FGT in the luteal vs. follicular phase of the menstrual cycle. We did not observe any consistent pattern of change for any of the MRI parameters among women using OCs. MRI is sensitive to hormone-induced breast tissue changes during the menstrual cycle. Larger studies are needed to assess whether MRI is also sensitive to the effects of exogenous hormones, such as various OC formulations, on the breast tissue of young premenopausal women. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Assessment of Abdominal Adipose Tissue and Organ Fat Content by Magnetic Resonance Imaging

    PubMed Central

    Hu, Houchun H.; Nayak, Krishna S.; Goran, Michael I.

    2010-01-01

    As the prevalence of obesity continues to rise, rapid and accurate tools for assessing abdominal body and organ fat quantity and distribution are critically needed to assist researchers investigating therapeutic and preventive measures against obesity and its comorbidities. Magnetic resonance imaging (MRI) is the most promising modality to address such need. It is non-invasive, utilizes no ionizing radiation, provides unmatched 3D visualization, is repeatable, and is applicable to subject cohorts of all ages. This article is aimed to provide the reader with an overview of current and state-of-the-art techniques in MRI and associated image analysis methods for fat quantification. The principles underlying traditional approaches such as T1-weighted imaging and magnetic resonance spectroscopy as well as more modern chemical-shift imaging techniques are discussed and compared. The benefits of contiguous 3D acquisitions over 2D multi-slice approaches are highlighted. Typical post-processing procedures for extracting adipose tissue depot volumes and percent organ fat content from abdominal MRI data sets are explained. Furthermore, the advantages and disadvantages of each MRI approach with respect to imaging parameters, spatial resolution, subject motion, scan time, and appropriate fat quantitative endpoints are also provided. Practical considerations in implementing these methods are also presented. PMID:21348916

  8. Understanding disease processes in multiple sclerosis through magnetic resonance imaging studies in animal models

    PubMed Central

    Nathoo, Nabeela; Yong, V. Wee; Dunn, Jeff F.

    2014-01-01

    There are exciting new advances in multiple sclerosis (MS) resulting in a growing understanding of both the complexity of the disorder and the relative involvement of grey matter, white matter and inflammation. Increasing need for preclinical imaging is anticipated, as animal models provide insights into the pathophysiology of the disease. Magnetic resonance (MR) is the key imaging tool used to diagnose and to monitor disease progression in MS, and thus will be a cornerstone for future research. Although gadolinium-enhancing and T2 lesions on MRI have been useful for detecting MS pathology, they are not correlative of disability. Therefore, new MRI methods are needed. Such methods require validation in animal models. The increasing necessity for MRI of animal models makes it critical and timely to understand what research has been conducted in this area and what potential there is for use of MRI in preclinical models of MS. Here, we provide a review of MRI and magnetic resonance spectroscopy (MRS) studies that have been carried out in animal models of MS that focus on pathology. We compare the MRI phenotypes of animals and patients and provide advice on how best to use animal MR studies to increase our understanding of the linkages between MR and pathology in patients. This review describes how MRI studies of animal models have been, and will continue to be, used in the ongoing effort to understand MS. PMID:24936425

  9. Clinical safety of 3-T brain magnetic resonance imaging in newborns.

    PubMed

    Fumagalli, Monica; Cinnante, Claudia Maria; Calloni, Sonia Francesca; Sorrentino, Gabriele; Gorla, Ilaria; Plevani, Laura; Pesenti, Nicola; Sirgiovanni, Ida; Mosca, Fabio; Triulzi, Fabio

    2018-03-29

    The effects and potential hazards of brain magnetic resonance imaging (MRI) at 3 T in newborns are debated. Assess the impact of 3-T MRI in newborns on body temperature and physiological parameters. Forty-nine newborns, born preterm and at term, underwent 3-T brain MRI at term-corrected age. Rectal and skin temperature, oxygen saturation and heart rate were recorded before, during and after the scan. A statistically significant increase in skin temperature of 0.6 °C was observed at the end of the MRI scan (P<0.01). There was no significant changes in rectal temperature, heart rate or oxygen saturation. Core temperature, heart rate and oxygen saturation in newborns were not affected by 3-T brain MR scanning.

  10. Development of a new compact intraoperative magnetic resonance imaging system: concept and initial experience.

    PubMed

    Morita, Akio; Sameshima, Tetsuro; Sora, Shigeo; Kimura, Toshikazu; Nishimura, Kengo; Itoh, Hirotaka; Shibahashi, Keita; Shono, Naoyuki; Machida, Toru; Hara, Naoko; Mikami, Nozomi; Harihara, Yasushi; Kawate, Ryoichi; Ochiai, Chikayuki; Wang, Weimin; Oguro, Toshiki

    2014-06-01

    Magnetic resonance imaging (MRI) during surgery has been shown to improve surgical outcomes, but the current intraoperative MRI systems are too large to install in standard operating suites. Although 1 compact system is available, its imaging quality is not ideal. We developed a new compact intraoperative MRI system and evaluated its use for safety and efficacy. This new system has a magnetic gantry: a permanent magnet of 0.23 T and an interpolar distance of 32 cm. The gantry system weighs 2.8 tons and the 5-G line is within the circle of 2.6 m. We created a new field-of-view head coil and a canopy-style radiofrequency shield for this system. A clinical trial was initiated, and the system has been used in 44 patients. This system is significantly smaller than previous intraoperative MRI systems. High-quality T2 images could discriminate tumor from normal brain tissue and identify anatomic landmarks for accurate surgery. The average imaging time was 45.5 minutes, and no clinical complications or MRI system failures occurred. Floating organisms or particles were minimal (1/200 L maximum). This intraoperative, compact, low-magnetic-field MRI system can be installed in standard operating suites to provide relatively high-quality images without sacrificing safety. We believe that such a system facilitates the introduction of the intraoperative MRI.

  11. Magnetic resonance imaging for diagnosis of early Alzheimer's disease.

    PubMed

    Colliot, O; Hamelin, L; Sarazin, M

    2013-10-01

    A major challenge for neuroimaging is to contribute to the early diagnosis of Alzheimer's disease (AD). In particular, magnetic resonance imaging (MRI) allows detecting different types of structural and functional abnormalities at an early stage of the disease. Anatomical MRI is the most widely used technique and provides local and global measures of atrophy. The recent diagnostic criteria of "mild cognitive impairment due to AD" include hippocampal atrophy, which is considered a marker of neuronal injury. Advanced image analysis techniques generate automatic and reproducible measures both in the hippocampus and throughout the whole brain. Recent modalities such as diffusion-tensor imaging and resting-state functional MRI provide additional measures that could contribute to the early diagnosis but require further validation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  12. Effect of electromagnetic field accompanying the magnetic resonance imaging on human heart rate variability - a pilot study.

    PubMed

    Derkacz, Arkadiusz; Gawrys, Jakub; Gawrys, Karolina; Podgorski, Maciej; Magott-Derkacz, Agnieszka; Poreba, Rafał; Doroszko, Adrian

    2018-06-01

    The effect of electromagnetic field on cardiovascular system in the literature is defined in ambiguous way. The aim of this study was to evaluate the effect of electromagnetic field on the heart rate variability (HRV) during the examination with magnetic resonance. Forty-two patients underwent Holter ECG heart monitoring for 30 minutes twice: immediately before and after the examination with magnetic resonance imaging (MRI). HRV was analysed by assessing a few selected time and spectral parameters. Is has been shown that standard deviation of NN intervals (SDNN) and very low frequency rates increased, whereas the low frequency:high frequency parameter significantly decreased following the MRI examination. These results show that MRI may affect the HRV most likely by changing the sympathetic-parasympathetic balance.

  13. Evaluation of magnetic resonance imaging for the differentiation of inflammatory, neoplastic, and vascular intradural spinal cord diseases in the dog.

    PubMed

    Masciarelli, Amanda E; Griffin, John F; Fosgate, Geoffrey T; Hecht, Silke; Mankin, Joseph M; Holmes, Shannon P; Platt, Simon R; Kent, Marc; Pancotto, Theresa E; Chen, Annie V; Levine, Jonathan M

    2017-07-01

    Magnetic resonance imaging (MRI) is a common test for dogs with suspected intradural spinal cord lesions, however studies on diagnostic performance for this test are lacking. Objectives of this multi-institutional, retrospective, case-control study were to estimate sensitivity and specificity of MRI for (1) distinguishing between histopathologically confirmed intradural spinal cord disease versus degenerative myelopathy in dogs, (2) categorizing intradural spinal cord diseases as neoplastic, inflammatory, or vascular; and (3) determining tumor type within the etiologic category of neoplasia. Additional aims were to (1) determine whether knowledge of clinical data affects sensitivity and specificity of MRI diagnoses; and (2) report interrater agreement for MRI classification of intradural spinal lesions. Cases were recruited from participating hospital databases over a 7-year period. Three reviewers independently evaluated each MRI study prior to and after provision of clinical information. A total of 87 cases were sampled (17 degenerative myelopathy, 53 neoplasia, nine inflammatory, and eight vascular). Magnetic resonance imaging had excellent (>97.6%) sensitivity for diagnosis of intradural spinal cord lesions but specificity varied before and after provision of clinical data (68.6% vs. 82.4%, P = 0.023). Magnetic resonance imaging had good sensitivity (86.8%) and moderate specificity (64.7-72.5%) for diagnosing neoplasia. Sensitivity was lower for classifying inflammatory lesions but improved with provision of clinical data (48.1% vs. 81.5%, P = 0.015). Magnetic resonance imaging was insensitive for diagnosing vascular lesions (25.0%). Interrater agreement was very good for correctly diagnosing dogs with intradural lesions (ĸ = 0.882-0.833), and good (ĸ = 0.726-0.671) for diagnosing dogs with neoplasia. © 2017 American College of Veterinary Radiology.

  14. A Method for Whole Brain Ex Vivo Magnetic Resonance Imaging with Minimal Susceptibility Artifacts

    PubMed Central

    Shatil, Anwar S.; Matsuda, Kant M.; Figley, Chase R.

    2016-01-01

    Magnetic resonance imaging (MRI) is a non-destructive technique that is capable of localizing pathologies and assessing other anatomical features (e.g., tissue volume, microstructure, and white matter connectivity) in postmortem, ex vivo human brains. However, when brains are removed from the skull and cerebrospinal fluid (i.e., their normal in vivo magnetic environment), air bubbles and air–tissue interfaces typically cause magnetic susceptibility artifacts that severely degrade the quality of ex vivo MRI data. In this report, we describe a relatively simple and cost-effective experimental setup for acquiring artifact-free ex vivo brain images using a clinical MRI system with standard hardware. In particular, we outline the necessary steps, from collecting an ex vivo human brain to the MRI scanner setup, and have also described changing the formalin (as might be necessary in longitudinal postmortem studies). Finally, we share some representative ex vivo MRI images that have been acquired using the proposed setup in order to demonstrate the efficacy of this approach. We hope that this protocol will provide both clinicians and researchers with a straight-forward and cost-effective solution for acquiring ex vivo MRI data from whole postmortem human brains. PMID:27965620

  15. Quantitative nuclear magnetic resonance to measure body composition in infants and children

    USDA-ARS?s Scientific Manuscript database

    Quantitative Nuclear Magnetic Resonance (QMR) is being used in human adults to obtain measures of total body fat (FM) with high precision. The current study assessed a device specially designed to accommodate infants and children between 3 and 50 kg (EchoMRI-AH™). Body composition of 113 infants and...

  16. A comprehensive literatures update of clinical researches of superparamagnetic resonance iron oxide nanoparticles for magnetic resonance imaging

    PubMed Central

    Idée, Jean-Marc

    2017-01-01

    This paper aims to update the clinical researches using superparamagnetic iron oxide (SPIO) nanoparticles as magnetic resonance imaging (MRI) contrast agent published during the past five years. PubMed database was used for literature search, and the search terms were (SPIO OR superparamagnetic iron oxide OR Resovist OR Ferumoxytol OR Ferumoxtran-10) AND (MRI OR magnetic resonance imaging). The literature search results show clinical research on SPIO remains robust, particularly fuelled by the approval of ferumoxytol for intravenously administration. SPIOs have been tested on MR angiography, sentinel lymph node detection, lymph node metastasis evaluation; inflammation evaluation; blood volume measurement; as well as liver imaging. Two experimental SPIOs with unique potentials are also discussed in this review. A curcumin-conjugated SPIO can penetrate brain blood barrier (BBB) and bind to amyloid plaques in Alzheime’s disease transgenic mice brain, and thereafter detectable by MRI. Another SPIO was fabricated with a core of Fe3O4 nanoparticle and a shell coating of concentrated hydrophilic polymer brushes and are almost not taken by peripheral macrophages as well as by mononuclear phagocytes and reticuloendothelial system (RES) due to the suppression of non-specific protein binding caused by their stealthy ‘‘brush-afforded’’ structure. This SPIO may offer potentials for the applications such as drug targeting and tissue or organ imaging other than liver and lymph nodes. PMID:28275562

  17. Porous silicon nanoparticles as biocompatible contrast agents for magnetic resonance imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gongalsky, M. B., E-mail: mgongalsky@gmail.com; Kargina, Yu. V.; Osminkina, L. A.

    2015-12-07

    We propose porous silicon nanoparticles (PSi NPs) with natural oxide coating as biocompatible and bioresorbable contrast agents for magnetic resonant imaging (MRI). A strong shortening of the transversal proton relaxation time (T{sub 2}) was observed for aqueous suspensions of PSi NPs, whereas the longitudinal relaxation time (T{sub 1}) changed moderately. The longitudinal and transversal relaxivities are estimated to be 0.03 and 0.4 l/(g·s), respectively, which are promising for biomedical studies. The proton relaxation is suggested to undergo via the magnetic dipole-dipole interaction with Si dangling bonds on surfaces of PSi NPs. MRI experiments with phantoms have revealed the remarkable contrastingmore » properties of PSi NPs for medical diagnostics.« less

  18. Magnetic resonance microscopy of prostate tissue: How basic science can inform clinical imaging development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourne, Roger

    2013-03-15

    This commentary outlines how magnetic resonance imaging (MRI) microscopy studies of prostate tissue samples and whole organs have shed light on a number of clinical imaging mysteries and may enable more effective development of new clinical imaging methods.

  19. Pediatric functional magnetic resonance neuroimaging: tactics for encouraging task compliance

    PubMed Central

    2011-01-01

    Background Neuroimaging technology has afforded advances in our understanding of normal and pathological brain function and development in children and adolescents. However, noncompliance involving the inability to remain in the magnetic resonance imaging (MRI) scanner to complete tasks is one common and significant problem. Task noncompliance is an especially significant problem in pediatric functional magnetic resonance imaging (fMRI) research because increases in noncompliance produces a greater risk that a study sample will not be representative of the study population. Method In this preliminary investigation, we describe the development and application of an approach for increasing the number of fMRI tasks children complete during neuroimaging. Twenty-eight healthy children ages 9-13 years participated. Generalization of the approach was examined in additional fMRI and event-related potential investigations with children at risk for depression, children with anxiety and children with depression (N = 120). Essential features of the approach include a preference assessment for identifying multiple individualized rewards, increasing reinforcement rates during imaging by pairing tasks with chosen rewards and presenting a visual 'road map' listing tasks, rewards and current progress. Results Our results showing a higher percentage of fMRI task completion by healthy children provides proof of concept data for the recommended tactics. Additional support was provided by results showing our approach generalized to several additional fMRI and event-related potential investigations and clinical populations. Discussion We proposed that some forms of task noncompliance may emerge from less than optimal reward protocols. While our findings may not directly support the effectiveness of the multiple reward compliance protocol, increased attention to how rewards are selected and delivered may aid cooperation with completing fMRI tasks Conclusion The proposed approach

  20. Hyperpolarized xenon magnetic resonance of the lung and the brain

    NASA Astrophysics Data System (ADS)

    Venkatesh, Arvind Krishnamachari

    2001-04-01

    Hyperpolarized noble gas Magnetic Resonance Imaging (MRI) is a new diagnostic modality that has been used successfully for lung imaging. Xenon is soluble in blood and inhaled xenon is transported to the brain via circulating blood. Xenon also accumulates in the lipid rich white matter of the brain. Hyperpolarized xenon can hence be used as a tissue- sensitive probe of brain function. The goals of this study were to identify the NMR resonances of xenon in the rat brain and evaluate the role of hyperpolarized xenon for brain MRI. We have developed systems to produce sufficient volumes of hyperpolarized xenon for in vivo brain experiments. The specialized instrumentation developed include an apparatus for optical pump-cell manufacture and high purity gas manifolds for filling cells. A hyperpolarized gas delivery system was designed to ventilate small animals with hyperpolarized xenon for transport to the brain. The T1 of xenon dissolved in blood indicates that the lifetime of xenon in the blood is sufficient for significant magnetization to be transferred to distal tissues. A variety of carrier agents for intravenous delivery of hyperpolarized xenon were tested for transport to distal tissues. Using our new gas delivery system, high SNR 129Xe images of rat lungs were obtained. Spectroscopy with hyperpolarized xenon indicated that xenon was transported from the lungs to the blood and tissues with intact magnetization. After preliminary studies that indicated the feasibility for in vivo rat brain studies, experiments were performed with adult rats and young rats with different stages of white matter development. Both in vivo and in vitro experiments showed the prominence of one peak from xenon in the rat brain, which was assigned to brain lipids. Cerebral brain perfusion was calculated from the wash-out of the hyperpolarized xenon signal in the brain. An increase in brain perfusion during maturation was observed. These experiments showed that hyperpolarized xenon MRI

  1. MRI Evaluation and Safety in the Developing Brain

    PubMed Central

    Tocchio, Shannon; Kline-Fath, Beth; Kanal, Emanuel; Schmithorst, Vincent J.; Panigrahy, Ashok

    2015-01-01

    Magnetic resonance imaging (MRI) evaluation of the developing brain has dramatically increased over the last decade. Faster acquisitions and the development of advanced MRI sequences such as magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), perfusion imaging, functional MR imaging (fMRI), and susceptibility weighted imaging (SWI), as well as the use of higher magnetic field strengths has made MRI an invaluable tool for detailed evaluation of the developing brain. This article will provide an overview of the use and challenges associated with 1.5T and 3T static magnetic fields for evaluation of the developing brain. This review will also summarize the advantages, clinical challenges and safety concerns specifically related to MRI in the fetus and newborn, including the implications of increased magnetic field strength, logistics related to transporting and monitoring of neonates during scanning, sedation considerations and a discussion of current technologies such as MRI-conditional neonatal incubators and dedicated small-foot print neonatal intensive care unit (NICU) scanners. PMID:25743582

  2. Magnetic resonance imaging of the kinked fetal brain stem: a sign of severe dysgenesis.

    PubMed

    Stroustrup Smith, Annemarie; Levine, Deborah; Barnes, Patrick D; Robertson, Richard L

    2005-12-01

    Magnetic resonance imaging (MRI) allows visualization of the fetal brain stem in a manner not previously possible. A "kinked" brain stem is a sign of severe neurodysgenesis. The purpose of this series was to describe cases of a kinked brain stem detected on prenatal MRI and to discuss the possible genetic and syndromic etiologies. Seven cases of a kinked brain stem on fetal MRI (gestational age range, 18-34 weeks) were reviewed and correlated with other clinical, genetic, imaging, and autopsy findings. In all cases, there was associated cerebellar hypogenesis. Additional findings were ventriculomegaly (4 cases), cerebral hypogenesis (3 cases), microcephaly (4 cases), schizencephaly (1 case), cephalocele (1 case), hypogenesis of the corpus callosum (1 case), and hydrocephalus (1 case). In 2 cases, prenatal sonography misidentified the kinked brain stem as the cerebellum. A kinked brain stem is an indicator of severe neurodysgenesis arising early in gestation. Magnetic resonance imaging provides the necessary resolution to detect this sign and delineate any associated anomalies in utero to assist with further genetic evaluation, management, and counseling.

  3. Silica-Coated Nonstoichiometric Nano Zn-Ferrites for Magnetic Resonance Imaging and Hyperthermia Treatment.

    PubMed

    Starsich, Fabian H L; Sotiriou, Georgios A; Wurnig, Moritz C; Eberhardt, Christian; Hirt, Ann M; Boss, Andreas; Pratsinis, Sotiris E

    2016-10-01

    Large-scale and reproducible synthesis of nanomaterials is highly sought out for successful translation into clinics. Flame aerosol technology with its proven capacity to manufacture high purity materials (e.g., light guides) up to kg h -1 is explored here for the preparation of highly magnetic, nonstoichiometric Zn-ferrite (Zn 0.4 Fe 2.6 O 4 ) nanoparticles coated in situ with a nanothin SiO 2 layer. The focus is on their suitability as magnetic multifunctional theranostic agents analyzing their T2 contrast enhancing capability for magnetic resonance imaging (MRI) and their magnetic hyperthermia performance. The primary particle size is closely controlled from 5 to 35 nm evaluating its impact on magnetic properties, MRI relaxivity, and magnetic heating performance. Most importantly, the addition of Zn in the flame precursor solution facilitates the growth of spinel Zn-ferrite crystals that exhibit superior magnetic properties over iron oxides typically made in flames. These properties result in strong MRI T2 contrast agents as shown on a 4.7 T small animal MRI scanner and lead to a more efficient heating with alternating magnetic fields. Also, by injecting Zn 0.4 Fe 2.6 O 4 nanoparticle suspensions into pork tissue, MR-images are acquired at clinically relevant concentrations. Furthermore, the nanothin SiO 2 shell facilitates functionalization with polymers, which improves the biocompatibility of the theranostic system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. [Exposure to static magnetic field and health hazards during the operation of magnetic resonance scanners].

    PubMed

    Karpowicz, Jolanta; Gryz, Krzysztof; Politański, Piotr; Zmyślony, Marek

    2011-01-01

    Magnetic resonance imaging (MRI) scanners belong to the most modern imaging diagnostic devices, which involve workers' exposure to static magnetic fields (SMF) during the preparation and performance of MRI examinations. This paper presents the data on workers' exposure to SMF in the vicinity of MRI scanners and the analysis of SMF-related biological effects and health hazards to find out whether softening the legislative requirements concerning protection against SMF exposure of workers involved in MRI diagnostics is justified. Measurements in the vicinity of 1.5 T MRI magnets showed that exposure to SMF by various scanners depends on both SMF of magnets and scanners design, as well as on work organization. In a routine examination of one patient the radiographer is exposed to SMF exceeding 0.5 mT for app. 1.5-7 min, and up to 1.3 min to SMF exceeding 70 mT. In examinations of patients who need more attention, the duration of exposure may be significantly longer. The mean values (B mean) of exposure to SMF are 5.6-85 mT (mean 30 +/- 19 mT, N = 16). These data demonstrate that only well designed procedures, proper organization of workplace and awareness of workers how to attend the patients without being exposed to strong SMF allow for meeting the requirements of labor law concerning workers' exposure to SMF. The analysis of the available literature on biological effects of SMF has disclosed the lack of data on health effects of many years exposure of workers and the abundance of data demonstrating the biological activity of SMF. Therefore, a radical softening of legislative requirements concerning the exposure of workers' head or trunk is premature, and what is more, it is not indispensable for the development of MRI diagnostic. Such an action should be preceded by extensive international investigations on the health status of workers exposed to electromagnetic fields by MRI scanners.

  5. Topical Review: Unique Contributions of Magnetic Resonance Imaging to Pediatric Psychology Research

    PubMed Central

    Duraccio, Kara M.; Carbine, Kaylie M.; Kirwan, C. Brock

    2016-01-01

    Objective This review aims to provide a brief introduction of the utility of magnetic resonance imaging (MRI) methods in pediatric psychology research, describe several exemplar studies that highlight the unique benefits of MRI techniques for pediatric psychology research, and detail methods for addressing several challenges inherent to pediatric MRI research. Methods Literature review. Results Numerous useful applications of MRI research in pediatric psychology have been illustrated in published research. MRI methods yield information that cannot be obtained using neuropsychological or behavioral measures. Conclusions Using MRI in pediatric psychology research may facilitate examination of neural structures and processes that underlie health behaviors. Challenges inherent to conducting MRI research with pediatric research participants (e.g., head movement) may be addressed using evidence-based strategies. We encourage pediatric psychology researchers to consider adopting MRI techniques to answer research questions relevant to pediatric health and illness. PMID:26141118

  6. Direct quantitative 13 C-filtered 1 H magnetic resonance imaging of PEGylated biomacromolecules in vivo.

    PubMed

    Alvares, Rohan D A; Lau, Justin Y C; Macdonald, Peter M; Cunningham, Charles H; Prosser, R Scott

    2017-04-01

    1 H MRI is an established diagnostic method that generally relies on detection of water. Imaging specific macromolecules is normally accomplished only indirectly through the use of paramagnetic tags, which alter the water signal in their vicinity. We demonstrate a new approach in which macromolecular constituents, such as proteins and drug delivery systems, are observed directly and quantitatively in vivo using 1 H MRI of 13 C-labeled poly(ethylene glycol) ( 13 C-PEG) tags. Molecular imaging of 13 C-PEG-labeled species was accomplished by incorporating a modified heteronuclear multiple quantum coherence filter into a gradient echo imaging sequence. We demonstrate the approach by monitoring the real-time distribution of 13 C-PEG and 13 C-PEGylated albumin injected into the hind leg of a mouse. Filtering the 1 H PEG signal through the directly coupled 13 C nuclei largely eliminates background water and fat signals, thus enabling the imaging of molecules using 1 H MRI. PEGylation is widely employed to enhance the performance of a multitude of macromolecular therapeutics and drug delivery systems, and 13 C-filtered 1 H MRI of 13 C-PEG thus offers the possibility of imaging and quantitating their distribution in living systems in real time. Magn Reson Med 77:1553-1561, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  7. The relationship between functional magnetic resonance imaging activation, diffusion tensor imaging, and training effects.

    PubMed

    Farrar, Danielle; Budson, Andrew E

    2017-04-01

    While the relationship between diffusion tensor imaging (DTI) measurements and training effects is explored by Voelker et al. (this issue), a cursory discussion of functional magnetic resonance imaging (fMRI) measurements categorizes increased activation with findings of greater white matter integrity. Evidence of the relationship between fMRI activation and white matter integrity is conflicting, as is the relationship between fMRI activation and training effects. An examination of the changes in fMRI activation in response to training is helpful, but the relationship between DTI and fMRI activation, particularly in the context of white matter changes, must be examined further before general conclusions can be drawn.

  8. Cranial MRI in a young child with cochlear implants after bilateral magnet removal.

    PubMed

    Helbig, Silke; Stöver, Timo; Burck, Iris; Kramer, Sabine

    2017-12-01

    A young bilateral cochlear implant (CI) user required magnetic resonance imaging (MRI) to determine the cause of hydrocephalus. The images obtained with the CIs in place were not diagnostically useful due to large artefacts generated by the CI magnets. We obtained useful images by bilaterally explanting the CI-magnets and replacing them with non-magnetic placeholder dummies then conducted the imaging. The artefact in the new images was greatly reduced and the images were diagnostically useful. Lastly, we explanted the dummies and reimplanted the CI-magnets. This procedure should be useful to obtain useful images in CI users. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Imaging tooth enamel using zero echo time (ZTE) magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Rychert, Kevin M.; Zhu, Gang; Kmiec, Maciej M.; Nemani, Venkata K.; Williams, Benjamin B.; Flood, Ann B.; Swartz, Harold M.; Gimi, Barjor

    2015-03-01

    In an event where many thousands of people may have been exposed to levels of radiation that are sufficient to cause the acute radiation syndrome, we need technology that can estimate the absorbed dose on an individual basis for triage and meaningful medical decision making. Such dose estimates may be achieved using in vivo electron paramagnetic resonance (EPR) tooth biodosimetry, which measures the number of persistent free radicals that are generated in tooth enamel following irradiation. However, the accuracy of dose estimates may be impacted by individual variations in teeth, especially the amount and distribution of enamel in the inhomogeneous sensitive volume of the resonator used to detect the radicals. In order to study the relationship between interpersonal variations in enamel and EPR-based dose estimates, it is desirable to estimate these parameters nondestructively and without adding radiation to the teeth. Magnetic Resonance Imaging (MRI) is capable of acquiring structural and biochemical information without imparting additional radiation, which may be beneficial for many EPR dosimetry studies. However, the extremely short T2 relaxation time in tooth structures precludes tooth imaging using conventional MRI methods. Therefore, we used zero echo time (ZTE) MRI to image teeth ex vivo to assess enamel volumes and spatial distributions. Using these data in combination with the data on the distribution of the transverse radio frequency magnetic field from electromagnetic simulations, we then can identify possible sources of variations in radiation-induced signals detectable by EPR. Unlike conventional MRI, ZTE applies spatial encoding gradients during the RF excitation pulse, thereby facilitating signal acquisition almost immediately after excitation, minimizing signal loss from short T2 relaxation times. ZTE successfully provided volumetric measures of tooth enamel that may be related to variations that impact EPR dosimetry and facilitate the development

  10. Quantitative analysis of brain magnetic resonance imaging for hepatic encephalopathy

    NASA Astrophysics Data System (ADS)

    Syh, Hon-Wei; Chu, Wei-Kom; Ong, Chin-Sing

    1992-06-01

    High intensity lesions around ventricles have recently been observed in T1-weighted brain magnetic resonance images for patients suffering hepatic encephalopathy. The exact etiology that causes magnetic resonance imaging (MRI) gray scale changes has not been totally understood. The objective of our study was to investigate, through quantitative means, (1) the amount of changes to brain white matter due to the disease process, and (2) the extent and distribution of these high intensity lesions, since it is believed that the abnormality may not be entirely limited to the white matter only. Eleven patients with proven haptic encephalopathy and three normal persons without any evidence of liver abnormality constituted our current data base. Trans-axial, sagittal, and coronal brain MRI were obtained on a 1.5 Tesla scanner. All processing was carried out on a microcomputer-based image analysis system in an off-line manner. Histograms were decomposed into regular brain tissues and lesions. Gray scale ranges coded as lesion were then brought back to original images to identify distribution of abnormality. Our results indicated the disease process involved pallidus, mesencephalon, and subthalamic regions.

  11. Chloral hydrate sedation for magnetic resonance imaging in newborn infants.

    PubMed

    Finnemore, Anna; Toulmin, Hilary; Merchant, Naz; Arichi, Tom; Tusor, Nora; Cox, David; Ederies, Ash; Nongena, Phumza; Ko, Christopher; Dias, Ryan; Edwards, Anthony D; Groves, Alan M

    2014-02-01

    The aim of this study was to look for clinically significant adverse effects of chloral hydrate used in a large cohort of infants sedated for magnetic resonance imaging. Case notes of infants who underwent magnetic resonance imaging (MRI) scanning from 2008 to 2010 were reviewed, with patient demographics, sedation dose, comorbidities, time to discharge, and side effects of sedation noted. Four hundred and eleven infants (median [range] postmenstrual age per weight at scan 42 [31(+4) -60] weeks per 3500 g [1060-9900 g]) were sedated with chloral hydrate (median [range] dose 50 [20-80] mg·kg(-1)). In three cases (0.7%), desaturations occurred which prompted termination of the scan. One infant (0.2%) was admitted for additional observation following sedation but had no prolonged effects. In 17 (3.1%) cases, infants had desaturations which were self-limiting or responded to additional inspired oxygen such that scanning was allowed to continue. When adhering to strict protocols, MRI scanning in newborn infants in this cohort was performed using chloral hydrate sedation with a relatively low risk of significant adverse effects. © 2013 John Wiley & Sons Ltd.

  12. Hair product artifact in magnetic resonance imaging.

    PubMed

    Chenji, Sneha; Wilman, Alan H; Mah, Dennell; Seres, Peter; Genge, Angela; Kalra, Sanjay

    2017-01-01

    The presence of metallic compounds in facial cosmetics and permanent tattoos may affect the quality of magnetic resonance imaging. We report a case study describing a signal artifact due to the use of a leave-on powdered hair dye. On reviewing the ingredients of the product, it was found to contain several metallic compounds. In lieu of this observation, we suggest that MRI centers include the use of metal- or mineral-based facial cosmetics or hair products in their screening protocols. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Tuberous sclerosis complex: correlation of magnetic resonance imaging (MRI) findings with comorbidities.

    PubMed

    Wong, Virginia; Khong, Pek-Lan

    2006-02-01

    We studied the magnetic resonance imaging (MRI) findings in a cohort of Chinese children with tuberous sclerosis complex to determine the relationship between age, sex, mental retardation, autism, epilepsy, infantile spasm, and early age at onset of seizures and the numbers and locations of tubers detected. We searched our tuberous sclerosis registry, established in 1985 (N = 44), and performed an analysis of children who had MRIs of the brain performed (n = 22). A neuroradiologist blinded to the clinical findings scored the MRIs according to the total number and site of the tubers. The following factors were analyzed: age, sex, presence of autism (n = 7), presence (n = 19) and severity of mental retardation (mild [n = 12], moderate to severe [n = 7]), presence of epilepsy (n = 21) or infantile spasm (n = 8), and age at onset of seizures less than 1 year (n = 10). There was no significant relationship between the number and site of tubers and the following factors: sex, autism, mental retardation, degree of mental retardation, epilepsy, history of infantile spasm, or age at onset of seizures less than 1 year. Only the presence of cortical tubers in the parietal regions had a significant relationship with the history of infantile spasm (P = .012). Using multiple regression analysis of all of the risk factors, only age is related to the number of tubers in the MRI (P = .047), and a history of infantile spasm is related to the presence of tubers in the parietal (P = .009) and occipital (P = .031) lobes. The associated comorbidities in tuberous sclerosis complex might be explained by more complex underlying genetic or pathologic issues rather than purely by the site of the cortical tubers. We suggest that a developmental approach, by analyzing the age at the appearance of tubers in both symptomatic and asymptomatic cases with the development of other neuropsychiatric comorbidities, should be undertaken to assess the causal relationship.

  14. Magnetic resonance spectroscopy-guided transperineal prostate biopsy and brachytherapy for recurrent prostate cancer.

    PubMed

    Barnes, Agnieszka Szot; Haker, Steven J; Mulkern, Robert V; So, Minna; D'Amico, Anthony V; Tempany, Clare M

    2005-12-01

    Brachytherapy targeted to the peripheral zone with magnetic resonance imaging (MRI) guidance is a prostate cancer treatment option with potentially fewer complications than other treatments. Follow-up MRI when failure is suspected is, however, difficult because of radiation-induced changes. Furthermore, MR spectroscopy (MRS) is compromised by susceptibility artifacts from radioactive seeds in the peripheral zone. We report a case in which combined MRI/MRS was useful for the detection of prostate cancer in the transitional zone in patients previously treated with MR-guided brachytherapy. We propose that MRI/MRS can help detect recurrent prostate cancer, guide prostate biopsy, and help manage salvage treatment decisions.

  15. Magnetization transfer and adiabatic R 1ρ MRI in the brainstem of Parkinson's disease.

    PubMed

    Tuite, Paul J; Mangia, Silvia; Tyan, Andrew E; Lee, Michael K; Garwood, Michael; Michaeli, Shalom

    2012-06-01

    In addition to classic midbrain pathology, Parkinson's disease (PD) is accompanied by changes in pontine and medullary brainstem structures. These additional abnormalities may underlie non-motor features as well as play a role in motor disability. Using novel magnetic resonance imaging (MRI) methods based on rotating frame adiabatic R(1ρ) (i.e., measurements of longitudinal relaxation during adiabatic full passage pulses) and modified magnetization transfer (MT) MRI mapping, we sought to identify brainstem alterations in nine individuals with mild-moderate PD (off medication) and ten age-matched controls at 4 T. We discovered significant differences in MRI parameters between midbrain and medullary brainstem structures in control subjects as compared to PD patients. These findings support the presence of underlying functional/structural brainstem changes in mild-moderate PD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. The economic effect of using magnetic resonance imaging and magnetic resonance ultrasound fusion biopsy for prostate cancer diagnosis.

    PubMed

    Hutchinson, Ryan C; Costa, Daniel N; Lotan, Yair

    2016-07-01

    Prostate magnetic resonance imaging (MRI) is a maturing imaging modality that has been used to improve detection and staging of prostate cancer. The goal of this review is to evaluate the economic effect of the use of MRI and MRI fusion in the diagnosis of prostate cancer. A literature review was used to identify articles regarding efficacy and cost of MRI and MRI-guided biopsies. There are currently a limited number of studies evaluating cost of incorporating MRI into clinical practice. These studies are primarily models projecting cost estimates based on meta-analyses of the literature. There is considerable variance in the effectiveness of MRI-guided biopsies, both cognitive and fusion, based on user experience, type of MRI (3T vs. 1.5T), use of endorectal coil and type of scoring system for abnormalities such that there is still potential for improvement in accuracy. There is also variability in assumed costs of incorporating MRI into clinical practice. The addition of MRI to the diagnostic algorithm for prostate cancer has caused a shift in how we understand the disease and in what tumors are found on initial and repeat biopsies. Further risk stratification may allow more men to pursue noncurative therapy, which in and of itself is cost-effective in properly selected men. As prostate cancer care comes under increasing scrutiny on a national level, there is pressure on providers to be more accurate in their diagnoses. This in turn can lead to additional testing including Multiparametric MRI, which adds upfront cost. Whether the additional cost of prostate MRI is warranted in detection of prostate cancer is an area of intense research. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Calcium-dependent molecular fMRI using a magnetic nanosensor.

    PubMed

    Okada, Satoshi; Bartelle, Benjamin B; Li, Nan; Breton-Provencher, Vincent; Lee, Jiyoung J; Rodriguez, Elisenda; Melican, James; Sur, Mriganka; Jasanoff, Alan

    2018-06-01

    Calcium ions are ubiquitous signalling molecules in all multicellular organisms, where they mediate diverse aspects of intracellular and extracellular communication over widely varying temporal and spatial scales 1 . Though techniques to map calcium-related activity at a high resolution by optical means are well established, there is currently no reliable method to measure calcium dynamics over large volumes in intact tissue 2 . Here, we address this need by introducing a family of magnetic calcium-responsive nanoparticles (MaCaReNas) that can be detected by magnetic resonance imaging (MRI). MaCaReNas respond within seconds to [Ca 2+ ] changes in the 0.1-1.0 mM range, suitable for monitoring extracellular calcium signalling processes in the brain. We show that the probes permit the repeated detection of brain activation in response to diverse stimuli in vivo. MaCaReNas thus provide a tool for calcium-activity mapping in deep tissue and offer a precedent for the development of further nanoparticle-based sensors for dynamic molecular imaging with MRI.

  18. Calcium-dependent molecular fMRI using a magnetic nanosensor

    NASA Astrophysics Data System (ADS)

    Okada, Satoshi; Bartelle, Benjamin B.; Li, Nan; Breton-Provencher, Vincent; Lee, Jiyoung J.; Rodriguez, Elisenda; Melican, James; Sur, Mriganka; Jasanoff, Alan

    2018-06-01

    Calcium ions are ubiquitous signalling molecules in all multicellular organisms, where they mediate diverse aspects of intracellular and extracellular communication over widely varying temporal and spatial scales1. Though techniques to map calcium-related activity at a high resolution by optical means are well established, there is currently no reliable method to measure calcium dynamics over large volumes in intact tissue2. Here, we address this need by introducing a family of magnetic calcium-responsive nanoparticles (MaCaReNas) that can be detected by magnetic resonance imaging (MRI). MaCaReNas respond within seconds to [Ca2+] changes in the 0.1-1.0 mM range, suitable for monitoring extracellular calcium signalling processes in the brain. We show that the probes permit the repeated detection of brain activation in response to diverse stimuli in vivo. MaCaReNas thus provide a tool for calcium-activity mapping in deep tissue and offer a precedent for the development of further nanoparticle-based sensors for dynamic molecular imaging with MRI.

  19. Preclinical Magnetic Resonance Fingerprinting (MRF) at 7 T: Effective Quantitative Imaging for Rodent Disease Models

    PubMed Central

    Gao, Ying; Chen, Yong; Ma, Dan; Jiang, Yun; Herrmann, Kelsey A.; Vincent, Jason A.; Dell, Katherine M.; Drumm, Mitchell L.; Brady-Kalnay, Susann M.; Griswold, Mark A.; Flask, Chris A.; Lu, Lan

    2015-01-01

    High field, preclinical magnetic resonance imaging (MRI) scanners are now commonly used to quantitatively assess disease status and efficacy of novel therapies in a wide variety of rodent models. Unfortunately, conventional MRI methods are highly susceptible to respiratory and cardiac motion artifacts resulting in potentially inaccurate and misleading data. We have developed an initial preclinical, 7.0 T MRI implementation of the highly novel Magnetic Resonance Fingerprinting (MRF) methodology that has been previously described for clinical imaging applications. The MRF technology combines a priori variation in the MRI acquisition parameters with dictionary-based matching of acquired signal evolution profiles to simultaneously generate quantitative maps of T1 and T2 relaxation times and proton density. This preclinical MRF acquisition was constructed from a Fast Imaging with Steady-state Free Precession (FISP) MRI pulse sequence to acquire 600 MRF images with both evolving T1 and T2 weighting in approximately 30 minutes. This initial high field preclinical MRF investigation demonstrated reproducible and differentiated estimates of in vitro phantoms with different relaxation times. In vivo preclinical MRF results in mouse kidneys and brain tumor models demonstrated an inherent resistance to respiratory motion artifacts as well as sensitivity to known pathology. These results suggest that MRF methodology may offer the opportunity for quantification of numerous MRI parameters for a wide variety of preclinical imaging applications. PMID:25639694

  20. PROSPECTIVE COMPARISON OF TUMOR STAGING USING COMPUTED TOMOGRAPHY VERSUS MAGNETIC RESONANCE IMAGING FINDINGS IN DOGS WITH NASAL NEOPLASIA: A PILOT STUDY.

    PubMed

    Lux, Cassie N; Culp, William T N; Johnson, Lynelle R; Kent, Michael; Mayhew, Philipp; Daniaux, Lise A; Carr, Alaina; Puchalski, Sarah

    2017-05-01

    Identification of nasal neoplasia extension and tumor staging in dogs is most commonly performed using computed tomography (CT), however magnetic resonance imaging (MRI) is routinely used in human medicine. A prospective pilot study enrolling six dogs with nasal neoplasia was performed with CT and MRI studies acquired under the same anesthetic episode. Interobserver comparison and comparison between the two imaging modalities with regard to bidimensional measurements of the nasal tumors, tumor staging using historical schemes, and assignment of an ordinal scale of tumor margin clarity at the tumor-soft tissue interface were performed. The hypotheses included that MRI would have greater tumor measurements, result in higher tumor staging, and more clearly define the tumor soft tissue interface when compared to CT. Evaluation of bone involvement of the nasal cavity and head showed a high level of agreement between CT and MRI. Estimation of tumor volume using bidimensional measurements was higher on MRI imaging in 5/6 dogs, and resulted in a median tumor volume which was 18.4% higher than CT imaging. Disagreement between CT and MRI was noted with meningeal enhancement, in which two dogs were positive for meningeal enhancement on MRI and negative on CT. One of six dogs had a higher tumor stage on MRI compared to CT, while the remaining five agreed. Magnetic resonance imaging resulted in larger bidimensional measurements and tumor volume estimates, along with a higher likelihood of identifying meningeal enhancement when compared to CT imaging. Magnetic resonance imaging may provide integral information for tumor staging, prognosis, and treatment planning. © 2017 American College of Veterinary Radiology.

  1. Diverse Application of Magnetic Resonance Imaging for Mouse Phenotyping

    PubMed Central

    Wu, Yijen L.; Lo, Cecilia W.

    2017-01-01

    Small animal models, particularly mouse models, of human diseases are becoming an indispensable tool for biomedical research. Studies in animal models have provided important insights into the etiology of diseases and accelerated the development of therapeutic strategies. Detailed phenotypic characterization is essential, both for the development of such animal models and mechanistic studies into disease pathogenesis and testing the efficacy of experimental therapeutics. Magnetic Resonance Imaging (MRI) is a versatile and non-invasive imaging modality with excellent penetration depth, tissue coverage, and soft tissue contrast. MRI, being a multi-modal imaging modality, together with proven imaging protocols and availability of good contrast agents, is ideally suited for phenotyping mutant mouse models. Here we describe the applications of MRI for phenotyping structural birth defects involving the brain, heart, and kidney in mice. The versatility of MRI and its ease of use are well suited to meet the rapidly increasing demands for mouse phenotyping in the coming age of functional genomics. PMID:28544650

  2. Clinical applications of advanced magnetic resonance imaging techniques for arthritis evaluation

    PubMed Central

    Martín Noguerol, Teodoro; Luna, Antonio; Gómez Cabrera, Marta; Riofrio, Alexie D

    2017-01-01

    Magnetic resonance imaging (MRI) has allowed a comprehensive evaluation of articular disease, increasing the detection of early cartilage involvement, bone erosions, and edema in soft tissue and bone marrow compared to other imaging techniques. In the era of functional imaging, new advanced MRI sequences are being successfully applied for articular evaluation in cases of inflammatory, infectious, and degenerative arthropathies. Diffusion weighted imaging, new fat suppression techniques such as DIXON, dynamic contrast enhanced-MRI, and specific T2 mapping cartilage sequences allow a better understanding of the physiopathological processes that underlie these different arthropathies. They provide valuable quantitative information that aids in their differentiation and can be used as potential biomarkers of articular disease course and treatment response. PMID:28979849

  3. Abnormal findings on knee magnetic resonance imaging in asymptomatic NBA players.

    PubMed

    Walczak, Brian E; McCulloch, Patrick C; Kang, Richard W; Zelazny, Anthony; Tedeschi, Fred; Cole, Brian J

    2008-01-01

    The purpose of this study was to evaluate the knees of asymptomatic National Basketball Association (NBA) players via magnetic resonance imaging (MRI) and confirm or dispute findings reported in the previous literature. It is thought that a variety of significant abnormalities affecting the knee exist in asymptomatic patients and that these findings can be accurately identified on MRI. Two months prior to the 2005 season, bilateral knee MRI examinations of 14 asymptomatic NBA players (28 knees) were evaluated for abnormalities of the articular cartilage, menisci, and patellar and quadriceps tendons. The presence of joint effusion, subchondral edema, and cystic lesions and the integrity of the collateral and cruciate ligaments were also assessed.

  4. Combining Magnetic Resonance Imaging (MRI) and Medical Infrared Thermography (MIT) in the pre- and per-operating management of severe Hidradenitis Suppurativa (HS).

    PubMed

    Derruau, Stéphane; Renard, Yohann; Pron, Hervé; Taiar, Redha; Abdi, Ellie; Polidori, Guillaume; Lorimier, Sandrine

    2018-05-12

    Hidradenitis suppurativa (HS) is a chronic, inflammatory, and recurrent skin disease. Surgical excision of wounds appears to be the only curative treatment for the prevention of recurrence of moderate to severe stages. Magnetic resonance imaging (MRI) is a standard reference examination for the detection of HS peri-anal inflammatory fistula. In this case study, the use of real-time medical infrared thermography, in combination with MRI as appropriate imaging, is proposed. The aim is to assist surgeons in the pre- and peri-surgical management of severe perianal hidradenitis suppurativa with the intent to ensure that all diseased lesions were removed during surgery and therefore to limit recurrence. The results show that medical infrared thermography (MIT), coupled with MRI, could be highly effective strategy to address thermally distinguished health tissues and inflammatory sites during excision, as characterised by differential increases in temperature. Medical infrared thermography could be used to check the total excision of inflammatory lesions as a noninvasive method that is not painful, not radiant, and is easily transportable during surgery. Ultimately, this method could be complementary with MRI in providing clinicians with objective data on the status of tissues below the perianal skin surface in the pre- and per-operating management of severe hidradenitis suppurativa. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. A review of magnetic resonance imaging compatible manipulators in surgery.

    PubMed

    Elhawary, H; Zivanovic, A; Davies, B; Lampérth, M

    2006-04-01

    Developments in magnetic resonance imaging (MRI), coupled with parallel progress in the field of computer-assisted surgery, mean that an ideal environment has been created for the development of MRI-compatible robotic systems and manipulators, capable of enhancing many types of surgical procedure. However, MRI does impose severe restrictions on mechatronic devices to be used in or around the scanners. In this article a review of the developments in the field of MRI-compatible surgical manipulators over the last decade is presented. The manipulators developed make use of different methods of actuation, but they can be reduced to four main groups: actuation transmitted through hydraulics, pneumatic actuators, ultrasonic motors based on the piezoceramic principle and remote manual actuation. Progress has been made concerning material selection, position sensing, and different actuation techniques, and design strategies have been implemented to overcome the multiple restrictions imposed by the MRI environment. Most systems lack the clinical validation needed to continue on to commercial products.

  6. Magnetic resonance conditional paramagnetic choke for suppression of imaging artifacts during magnetic resonance imaging.

    PubMed

    Wu, Kevin J; Gregory, T Stan; Boland, Brian L; Zhao, Wujun; Cheng, Rui; Mao, Leidong; Tse, Zion Tsz Ho

    2018-06-01

    Higher risk patient populations require continuous physiological monitoring and, in some cases, connected life-support systems, during magnetic resonance imaging examinations. While recently there has been a shift toward wireless technology, some of the magnetic resonance imaging devices are still connected to the outside using cabling that could interfere with the magnetic resonance imaging's radio frequency during scanning, resulting in excessive heating. We developed a passive method for radio frequency suppression on cabling that may assist in making some of these devices magnetic resonance imaging compatible. A barrel-shaped strongly paramagnetic choke was developed to suppress induced radio frequency signals which are overlaid onto physiological monitoring leads during magnetic resonance imaging. It utilized a choke placed along the signal lines, with a gadolinium solution core. The choke's magnetic susceptibility was modeled, for a given geometric design, at increasing chelate concentration levels, and measured using a vibrating sample magnetometer. Radio frequency noise suppression versus frequency was quantified with network-analyzer measurements and tested using cabling placed in the magnetic resonance imaging scanner. Temperature-elevation and image-quality reduction due to the device were measured using American Society for Testing and Materials phantoms. Prototype chokes with gadolinium solution cores exhibited increasing magnetic susceptibility, and insertion loss (S21) also showed higher attenuation as gadolinium concentration increased. Image artifacts extending <4 mm from the choke were observed during magnetic resonance imaging, which agreed well with the predicted ∼3 mm artifact from the electrochemical machining simulation. An accompanying temperature increase of <1 °C was observed in the magnetic resonance imaging phantom trial. An effective paramagnetic choke for radio frequency suppression during magnetic resonance imaging was developed

  7. Nuclear Magnetic Resonance Imaging in Endodontics: A Review.

    PubMed

    Di Nardo, Dario; Gambarini, Gianluca; Capuani, Silvia; Testarelli, Luca

    2018-04-01

    This review analyzes the increasing role of magnetic resonance imaging (MRI) in dentistry and its relevance in endodontics. Limits and new strategies to develop MRI protocols for endodontic purposes are reported and discussed. Eligible studies were identified by searching the PubMed databases. Only original articles on dental structures, anatomy, and endodontics investigated by in vitro and in vivo MRI were included in this review. Original articles on MRI in dentistry not concerning anatomy and endodontics were excluded. All the consulted studies showed well-defined images of pathological conditions such as caries and microcracks. The enhanced contrast of pulp provided a high-quality reproduction of the tooth shape and root canal in vitro and in vivo. Assessment of periapical lesions is possible even without the use of contrast medium. MRI is a nonionizing technique characterized by high tissue contrast and high image resolution of soft tissues; it could be considered a valid and safe diagnostic investigation in endodontics because of its potential to identify pulp tissues, define root canal shape, and locate periapical lesions. Copyright © 2018 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Amygdala real-time functional magnetic resonance imaging neurofeedback for major depressive disorder: A review.

    PubMed

    Young, Kymberly D; Zotev, Vadim; Phillips, Raquel; Misaki, Masaya; Drevets, Wayne C; Bodurka, Jerzy

    2018-04-23

    Advances in imaging technologies have allowed for the analysis of functional magnetic resonance imaging data in real-time (rtfMRI), leading to the development of neurofeedback (nf) training. This rtfMRI-nf training utilizes functional magnetic resonance imaging (fMRI) tomographic localization capacity to allow a person to see and regulate the localized hemodynamic signal from his or her own brain. In this review, we summarize the results of several studies that have developed and applied neurofeedback training to healthy and depressed individuals with the amygdala as the neurofeedback target and the goal to increase the hemodynamic response during positive autobiographical memory recall. We review these studies and highlight some of the challenges and advances in developing an rtfMRI-nf paradigm for broader use in psychiatric populations. The work described focuses on our line of research aiming to develop the rtfMRI-nf into an intervention, and includes a discussion of the selection of a region of interest for feedback, selecting a control condition, behavioral and cognitive effects of training, and predicting which participants are most likely to respond well to training. While the results of these studies are encouraging and suggest the clinical potential of amygdala rtfMRI-nf in alleviating symptoms of major depressive disorder, larger studies are warranted to confirm its efficacy. © 2018 The Author. Psychiatry and Clinical Neurosciences © 2018 Japanese Society of Psychiatry and Neurology.

  9. Magnetic Resonance Imaging and Developmental Outcome Following Preterm Birth: Review of Current Evidence

    ERIC Educational Resources Information Center

    Hart, Anthony R.; Whitby, Elspeth W.; Griffiths, Paul D.; Smith, Michael F.

    2008-01-01

    Preterm birth is associated with an increased risk of developmental difficulties. Magnetic resonance imaging (MRI) is increasingly being used to identify damage to the brain following preterm birth. It is hoped this information will aid prognostication and identify neonates who would benefit from early therapeutic intervention. Cystic…

  10. Clinical safety of the ProMRI pacemaker system in patients subjected to thoracic spine and cardiac 1.5-T magnetic resonance imaging scanning conditions.

    PubMed

    Bailey, William M; Mazur, Alexander; McCotter, Craig; Woodard, Pamela K; Rosenthal, Lawrence; Johnson, Whitney; Mela, Theofanie

    2016-02-01

    Permanent cardiac pacemakers have historically been considered a contraindication to magnetic resonance imaging (MRI). The purpose of the ProMRI Phase B Study, a multicenter, prospective, single-arm, nonrandomized study, was to evaluate the clinical safety of the Biotronik ProMRI pacemaker system in patients undergoing thoracic spine and cardiac MRI. The ProMRI Phase B study enrolled 245 patients with stable baseline pacing indices implanted with an Entovis pacemaker (DR-T or SR-T) and Setrox 53-cm and/or 60-cm lead(s). Device interrogation was performed at enrollment, pre- and post-MRI scan, and 1 and 3 months post-MRI. End-points were (1) freedom from MRI- and pacing system-related serious adverse device effects through 1 month post-MRI; (2) freedom from atrial and ventricular MRI-induced pacing threshold increase (>0.5 V); and (3) freedom from P- and R-wave amplitude attenuation (<50%), or P wave <1.5 mV, or R wave <5.0 mV at 1 month post-MRI. In total, 216 patients completed the MRI and 1-month post-MRI follow-up. One adverse event possibly related to the implanted system and the MRI procedure occurred, resulting in a serious adverse device effect-free rate of 99.6% (220/221; P < .0001. Freedom from atrial and ventricular pacing threshold increase was 100% (194/194, P < .001) and 100% (206/206, P < .001) respectively. Freedom from P- and R-wave amplitude attenuation was 98.2% (167/170, P < .001) and 100% (188/188, P < .001) respectively. The results of the ProMRI Phase B study demonstrate the clinical safety and efficacy of the ProMRI pacemaker system in patients subjected to thoracic spine and cardiac MRI conditions. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  11. Brain Magnetic Resonance Imaging with Contrast Dependent on Blood Oxygenation

    NASA Astrophysics Data System (ADS)

    Ogawa, S.; Lee, T. M.; Kay, A. R.; Tank, D. W.

    1990-12-01

    Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high fields, we demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normal physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complements other techniques that are attempting to provide positron emission tomography-like measurements related to regional neural activity.

  12. In vivo nuclear magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Leblanc, A.

    1986-05-01

    During the past year the Woodlands Baylor Magnetic Resonance Imaging (MRI) facility became fully operational. A detailed description of this facility is given. One significant instrument addition this year was the 100 MHz, 40cm bore superconducting imaging spectrometer. This instrument gives researchers the capability to acquire high energy phosphate spectra. This will be used to investigate ATP, phosphocreatinine and inorganic phosphate changes in normal and atrophied muscle before, during and after exercise. An exercise device for use within the bore of the imaging magnet is under design/construction. The results of a study of T sub 1 and T sub 2 changes in atrophied muscle in animals and human subjects are given. The imaging and analysis of the lower leg of 15 research subjects before and after 5 weeks of complete bedrest was completed. A compilation of these results are attached.

  13. In vivo nuclear magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Leblanc, A.

    1986-01-01

    During the past year the Woodlands Baylor Magnetic Resonance Imaging (MRI) facility became fully operational. A detailed description of this facility is given. One significant instrument addition this year was the 100 MHz, 40cm bore superconducting imaging spectrometer. This instrument gives researchers the capability to acquire high energy phosphate spectra. This will be used to investigate ATP, phosphocreatinine and inorganic phosphate changes in normal and atrophied muscle before, during and after exercise. An exercise device for use within the bore of the imaging magnet is under design/construction. The results of a study of T sub 1 and T sub 2 changes in atrophied muscle in animals and human subjects are given. The imaging and analysis of the lower leg of 15 research subjects before and after 5 weeks of complete bedrest was completed. A compilation of these results are attached.

  14. DCE-MRI, DW-MRI, and MRS in Cancer: Challenges and Advantages of Implementing Qualitative and Quantitative Multi-parametric Imaging in the Clinic

    PubMed Central

    Winfield, Jessica M.; Payne, Geoffrey S.; Weller, Alex; deSouza, Nandita M.

    2016-01-01

    Abstract Multi-parametric magnetic resonance imaging (mpMRI) offers a unique insight into tumor biology by combining functional MRI techniques that inform on cellularity (diffusion-weighted MRI), vascular properties (dynamic contrast-enhanced MRI), and metabolites (magnetic resonance spectroscopy) and has scope to provide valuable information for prognostication and response assessment. Challenges in the application of mpMRI in the clinic include the technical considerations in acquiring good quality functional MRI data, development of robust techniques for analysis, and clinical interpretation of the results. This article summarizes the technical challenges in acquisition and analysis of multi-parametric MRI data before reviewing the key applications of multi-parametric MRI in clinical research and practice. PMID:27748710

  15. Magnetization Transfer Magnetic Resonance Imaging Noninvasively Detects Renal Fibrosis in Swine Atherosclerotic Renal Artery Stenosis at 3.0 T.

    PubMed

    Jiang, Kai; Ferguson, Christopher M; Woollard, John R; Zhu, Xiangyang; Lerman, Lilach O

    2017-11-01

    Renal fibrosis is a useful biomarker for diagnosis and evaluation of therapeutic interventions of renal diseases but often requires invasive testing. Magnetization transfer magnetic resonance imaging (MT-MRI), which evaluates the presence of macromolecules, offers a noninvasive tool to probe renal fibrosis in murine renal artery stenosis (RAS) at 16.4 T. In this study, we aimed to identify appropriate imaging parameters for collagen detection at 3.0 T MRI and to test the utility of MT-MRI in measuring renal fibrosis in a swine model of atherosclerotic RAS (ARAS). To select the appropriate offset frequency, an MT-MRI study was performed on a phantom containing 0% to 40% collagen I and III with offset frequencies from -1600 to +1600 Hz and other MT parameters empirically set as pulse width at 16 milliseconds and flip angle at 800 degrees. Then selected MT parameters were used in vivo on pigs 12 weeks after sham (n = 8) or RAS (n = 10) surgeries. The ARAS pigs were fed with high-cholesterol diet to induce atherosclerosis. The MT ratio (MTR) was compared with ex vivo renal fibrosis measured using Sirius-red staining. Offset frequencies at 600 and 1000 Hz were selected for collagen detection without direct saturation of free water signal, and subsequently applied in vivo. The ARAS kidneys showed mild cortical and medullary fibrosis by Sirius-red staining. The cortical and medullary MTRs at 600 and 1000 Hz were both increased. Renal fibrosis measured ex vivo showed good linear correlations with MTR at 600 (cortex: Pearson correlation coefficient r = 0.87, P < 0.001; medulla: r = 0.70, P = 0.001) and 1000 Hz (cortex: r = 0.75, P < 0.001; medulla: r = 0.83, P < 0.001). Magnetization transfer magnetic resonance imaging can noninvasively detect renal fibrosis in the stenotic swine kidney at 3.0 T. Therefore, MT-MRI may potentially be clinically applicable and useful for detection and monitoring of renal pathology in subjects with RAS.

  16. A prototype of injector to control and to detect the release of magnetic beads within the constraints of multibifurcation magnetic resonance navigation procedures.

    PubMed

    Bigot, Alexandre; Soulez, Gilles; Martel, Sylvain

    2017-01-01

    An injector equipped with a bead capture and a bead detection system is presented. In the context of magnetic resonance navigation (MRN), in which MRI gradients are used to steer intravascular therapeutic carriers, fast and reliable injection is essential. In this paper, we present a prototype of injector to control and to detect the release of magnetic beads. The injector relies on two distinct subsystems: (1) the capture subsystem, which creates local magnetic force to stop the flow of magnetic beads; and (2) the detection subsystem, which detects flowing beads and generates a trigger signal to start MRI gradient pulses. Both systems rely on small microcoils wound on the tubing. Five-turn microcoils show the best compromise between size and performance. Less than 5 mW of power is required to capture 0.8-mm beads moving in a flow above 5 mL min -1 or when a gradient above 200 mT m -1 is applied. The detection system is not sensitive to noise and detects every 0.8-mm bead in flow rates up to 14 mL m -1 . The prototype of injector shows performance above the requirements inherent to magnetic resonance navigation. This system is a step toward in vivo multibifurcation MRN. Magn Reson Med 77:444-452, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Design and simulation of a 800 Mbit/s data link for magnetic resonance imaging wearables.

    PubMed

    Vogt, Christian; Buthe, Lars; Petti, Luisa; Cantarella, Giuseppe; Munzenrieder, Niko; Daus, Alwin; Troster, Gerhard

    2015-08-01

    This paper presents the optimization of electronic circuitry for operation in the harsh electro magnetic (EM) environment during a magnetic resonance imaging (MRI) scan. As demonstrator, a device small enough to be worn during the scan is optimized. Based on finite element method (FEM) simulations, the induced current densities due to magnetic field changes of 200 T s(-1) were reduced from 1 × 10(10) A m(-2) by one order of magnitude, predicting error-free operation of the 1.8V logic employed. The simulations were validated using a bit error rate test, which showed no bit errors during a MRI scan sequence. Therefore, neither the logic, nor the utilized 800 Mbit s(-1) low voltage differential swing (LVDS) data link of the optimized wearable device were significantly influenced by the EM interference. Next, the influence of ferro-magnetic components on the static magnetic field and consequently the image quality was simulated showing a MRI image loss with approximately 2 cm radius around a commercial integrated circuit of 1×1 cm(2). This was successively validated by a conventional MRI scan.

  18. A Novel Data-Driven Approach to Preoperative Mapping of Functional Cortex Using Resting-State Functional Magnetic Resonance Imaging

    PubMed Central

    Mitchell, Timothy J.; Hacker, Carl D.; Breshears, Jonathan D.; Szrama, Nick P.; Sharma, Mohit; Bundy, David T.; Pahwa, Mrinal; Corbetta, Maurizio; Snyder, Abraham Z.; Shimony, Joshua S.

    2013-01-01

    BACKGROUND: Recent findings associated with resting-state cortical networks have provided insight into the brain's organizational structure. In addition to their neuroscientific implications, the networks identified by resting-state functional magnetic resonance imaging (rs-fMRI) may prove useful for clinical brain mapping. OBJECTIVE: To demonstrate that a data-driven approach to analyze resting-state networks (RSNs) is useful in identifying regions classically understood to be eloquent cortex as well as other functional networks. METHODS: This study included 6 patients undergoing surgical treatment for intractable epilepsy and 7 patients undergoing tumor resection. rs-fMRI data were obtained before surgery and 7 canonical RSNs were identified by an artificial neural network algorithm. Of these 7, the motor and language networks were then compared with electrocortical stimulation (ECS) as the gold standard in the epilepsy patients. The sensitivity and specificity for identifying these eloquent sites were calculated at varying thresholds, which yielded receiver-operating characteristic (ROC) curves and their associated area under the curve (AUC). RSNs were plotted in the tumor patients to observe RSN distortions in altered anatomy. RESULTS: The algorithm robustly identified all networks in all patients, including those with distorted anatomy. When all ECS-positive sites were considered for motor and language, rs-fMRI had AUCs of 0.80 and 0.64, respectively. When the ECS-positive sites were analyzed pairwise, rs-fMRI had AUCs of 0.89 and 0.76 for motor and language, respectively. CONCLUSION: A data-driven approach to rs-fMRI may be a new and efficient method for preoperative localization of numerous functional brain regions. ABBREVIATIONS: AUC, area under the curve BA, Brodmann area BOLD, blood oxygen level dependent ECS, electrocortical stimulation fMRI, functional magnetic resonance imaging ICA, independent component analysis MLP, multilayer perceptron MP

  19. Passive magnetic shielding in MRI-Linac systems.

    PubMed

    Whelan, Brendan; Kolling, Stefan; Oborn, Brad M; Keall, Paul

    2018-03-26

    Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration.

  20. Passive magnetic shielding in MRI-Linac systems

    NASA Astrophysics Data System (ADS)

    Whelan, Brendan; Kolling, Stefan; Oborn, Brad M.; Keall, Paul

    2018-04-01

    Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration.

  1. Longitudinal Evaluation of Muscle Composition Using Magnetic Resonance in 4 Boys With Duchenne Muscular Dystrophy: Case Series.

    PubMed

    Senesac, Claudia R; Lott, Donovan J; Forbes, Sean C; Mathur, Sunita; Arpan, Ishu; Senesac, Emily S; Walter, Glenn A; Vandenborne, Krista

    2015-07-01

    Duchenne muscular dystrophy (DMD), an inherited recessive X chromosome-linked disease, is the most severe childhood form of muscular dystrophy. Boys with DMD experience muscle loss, with infiltration of intramuscular fat into muscles. This case series describes the progression of DMD in boys using magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS). Magnetic resonance results are then compared with an established functional timed test. Four boys with DMD and 4 healthy age-matched controls were chosen from a larger cohort. Boys with DMD were assessed at 4 time points over 2 years, with controls assessed at baseline only. Progression of the disease was documented by assessing the plantar flexors using MRI and MRS techniques and by assessing ambulation using the 30-Foot Fast Walk Test. Transverse relaxation time (T2) values were elevated in all boys with DMD at baseline. The lipid ratio increased rapidly as the disease progressed in 2 boys. Discrete changes in T2 in the other 2 boys with DMD indicated a slower disease progression. Magnetic resonance imaging and MRS allowed monitoring of the disease over all time periods regardless of ambulation status. The magnetic resonance data were collected with 2 different magnets at 2 different field strengths (1.5 and 3.0 T). Although we corrected for this difference, care must be taken in interpreting data when different image collection systems are used. This was a case series of 4 boys with DMD taken from a larger cohort study. Magnetic resonance imaging and MRS are objective, noninvasive techniques for measuring muscle pathology and can be used to detect discrete changes in both people who are ambulatory and those who are nonambulatory. These techniques should be considered when monitoring DMD progression and assessing efficacy of therapeutic interventions. © 2015 American Physical Therapy Association.

  2. Longitudinal Evaluation of Muscle Composition Using Magnetic Resonance in 4 Boys With Duchenne Muscular Dystrophy: Case Series

    PubMed Central

    Lott, Donovan J.; Forbes, Sean C.; Mathur, Sunita; Arpan, Ishu; Senesac, Emily S.; Walter, Glenn A.; Vandenborne, Krista

    2015-01-01

    Background Duchenne muscular dystrophy (DMD), an inherited recessive X chromosome-linked disease, is the most severe childhood form of muscular dystrophy. Boys with DMD experience muscle loss, with infiltration of intramuscular fat into muscles. Objectives This case series describes the progression of DMD in boys using magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS). Magnetic resonance results are then compared with an established functional timed test. Methods Four boys with DMD and 4 healthy age-matched controls were chosen from a larger cohort. Boys with DMD were assessed at 4 time points over 2 years, with controls assessed at baseline only. Progression of the disease was documented by assessing the plantar flexors using MRI and MRS techniques and by assessing ambulation using the 30-Foot Fast Walk Test. Results Transverse relaxation time (T2) values were elevated in all boys with DMD at baseline. The lipid ratio increased rapidly as the disease progressed in 2 boys. Discrete changes in T2 in the other 2 boys with DMD indicated a slower disease progression. Magnetic resonance imaging and MRS allowed monitoring of the disease over all time periods regardless of ambulation status. Limitations The magnetic resonance data were collected with 2 different magnets at 2 different field strengths (1.5 and 3.0 T). Although we corrected for this difference, care must be taken in interpreting data when different image collection systems are used. This was a case series of 4 boys with DMD taken from a larger cohort study. Conclusions Magnetic resonance imaging and MRS are objective, noninvasive techniques for measuring muscle pathology and can be used to detect discrete changes in both people who are ambulatory and those who are nonambulatory. These techniques should be considered when monitoring DMD progression and assessing efficacy of therapeutic interventions. PMID:25592189

  3. [Possibilities of magnetic resonance tomography in diagnostic imaging of the shoulder joint].

    PubMed

    Reiser, M; Erlemann, R; Bongartz, G; Pauly, T; Kunze, V; Mathiass, H H; Peters, P E

    1988-02-01

    By virtue of its multiplanar representation, magnetic resonance imaging (MRI) allows clear visualization of the complex anatomical relationships of the shoulder joint. In addition to axial planes, slices perpendicular and parallel to the glenoid cavity are used to good advantage. In tears of the rotator cuff an increase in signal intensity within the cuff is recognized in T2- and proton-density-weighted images. Lesions of the glenoid labrum following luxations of the glenohumeral joint can be detected and classified using MRI. The diagnostic value of MRI as compared with other imaging modalities will have to be evaluated in larger series with operative verification.

  4. Enhanced control of dorsolateral prefrontal cortex neurophysiology with real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback training and working memory practice.

    PubMed

    Sherwood, Matthew S; Kane, Jessica H; Weisend, Michael P; Parker, Jason G

    2016-01-01

    Real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback can be used to train localized, conscious regulation of blood oxygen level-dependent (BOLD) signals. As a therapeutic technique, rt-fMRI neurofeedback reduces the symptoms of a variety of neurologic disorders. To date, few studies have investigated the use of self-regulation training using rt-fMRI neurofeedback to enhance cognitive performance. This work investigates the utility of rt-fMRI neurofeedback as a tool to enhance human cognition by training healthy individuals to consciously control activity in the left dorsolateral prefrontal cortex (DLPFC). A cohort of 18 healthy participants in the experimental group underwent rt-fMRI neurofeedback from the left DLPFC in five training sessions across two weeks while 7 participants in the control group underwent similar training outside the MRI and without rt-fMRI neurofeedback. Working memory (WM) performance was evaluated on two testing days separated by the five rt-fMRI neurofeedback sessions using two computerized tests. We investigated the ability to control the BOLD signal across training sessions and WM performance across the two testing days. The group with rt-fMRI neurofeedback demonstrated a significant increase in the ability to self-regulate the BOLD signal in the left DLPFC across sessions. WM performance showed differential improvement between testing days one and two across the groups with the highest increases observed in the rt-fMRI neurofeedback group. These results provide evidence that individuals can quickly gain the ability to consciously control the left DLPFC, and this training results in improvements of WM performance beyond that of training alone. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Significance of diffusion weighted imaging (DWI) as an improving factor in contrast enhanced magnetic resonance imaging (MRI) enterography in evaluation of patients with Crohn's disease.

    PubMed

    Imširović, Bilal; Zerem, Enver; Efendić, Alma; Mekić Abazović, Alma; Zerem, Omar; Djedović, Muhamed

    2018-08-01

    Aim To determine capabilities and potential of contrast enhanced magnetic resonance imaging (MRI) enterography in order to establish the diagnosis and to evaluate severity and activity of intestinal inflammation. Methods Fifty-five patients with suspicion for presence of Crohn's disease were evaluated. All patients underwent contrast enhanced MRI enterography and diffusion weighted imaging (DWI), and subsequently endoscopic examination or surgical treatment. Four parameters were analysed: thickening of the bowel wall, and presence of abscess, fistula and lymphadenopathy. Results Comparing results of DWI and contrast enhanced MRI enterography a significant difference between results given through diffusion and histopathological test was found, e.g. a significant difference between results obtained through diffusion and MRI enterography was found. MRI enterography sensitiveness for bowel wall thickening was 97.7% and specificity 70%, whilst DWI sensitivity for bowel wall thickening was 84% and specificity 100%. The diagnostics of abscess and fistula showed no significant difference between DWI and MRI, while in lymphadenopathy significant difference between contrast enhanced MRI enterography and DWI was found. Conclusion Contrast enhanced MRI enterography in combination with DWI allows for excellent evaluation of disease activity, but also problems or complications following it. The examination can be repeated, controlled, and it can contribute to monitoring of patients with this disease. Copyright© by the Medical Assotiation of Zenica-Doboj Canton.

  6. In vivo Magnetic Resonance Imaging of Tumor Protease Activity

    PubMed Central

    Haris, Mohammad; Singh, Anup; Mohammed, Imran; Ittyerah, Ranjit; Nath, Kavindra; Nanga, Ravi Prakash Reddy; Debrosse, Catherine; Kogan, Feliks; Cai, Kejia; Poptani, Harish; Reddy, Damodar; Hariharan, Hari; Reddy, Ravinder

    2014-01-01

    Increased expression of cathepsins has diagnostic as well as prognostic value in several types of cancer. Here, we demonstrate a novel magnetic resonance imaging (MRI) method, which uses poly-L-glutamate (PLG) as an MRI probe to map cathepsin expression in vivo, in a rat brain tumor model. This noninvasive, high-resolution and non-radioactive method exploits the differences in the CEST signals of PLG in the native form and cathepsin mediated cleaved form. The method was validated in phantoms with known physiological concentrations, in tumor cells and in an animal model of brain tumor along with immunohistochemical analysis. Potential applications in tumor diagnosis and evaluation of therapeutic response are outlined. PMID:25124082

  7. Magnetic resonance imaging of athletic pubalgia and the sports hernia: current understanding and practice.

    PubMed

    Khan, Waseem; Zoga, Adam C; Meyers, William C

    2013-02-01

    Magnetic resonance imaging (MRI) has become the standard imaging modality for activity-related groin pain. Lesions, including rectus abdominis/adductor aponeurosis injury and osteitis pubis, can be accurately identified and delineated in patients with clinical conditions termed athletic pubalgia, core injury, and sports hernia. A dedicated noncontrast athletic pubalgia MRI protocol is easy to implement and should be available at musculoskeletal MR imaging centers. This article will review pubic anatomy, imaging considerations, specific lesions, and common MRI findings encountered in the setting of musculoskeletal groin pain. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. [Magnetic Resonance Imaging Conversion Predictors of Clinically Isolated Syndrome to Multiple Sclerosis].

    PubMed

    Peixoto, Sara; Abreu, Pedro

    2016-11-01

    Clinically isolated syndrome may be the first manifestation of multiple sclerosis, a chronic demyelinating disease of the central nervous system, and it is defined by a single clinical episode suggestive of demyelination. However, patients with this syndrome, even with long term follow up, may not develop new symptoms or demyelinating lesions that fulfils multiple sclerosis diagnostic criteria. We reviewed, in clinically isolated syndrome, what are the best magnetic resonance imaging findings that may predict its conversion to multiple sclerosis. A search was made in the PubMed database for papers published between January 2010 and June 2015 using the following terms: 'clinically isolated syndrome', 'cis', 'multiple sclerosis', 'magnetic resonance imaging', 'magnetic resonance' and 'mri'. In this review, the following conventional magnetic resonance imaging abnormalities found in literature were included: lesion load, lesion location, Barkhof's criteria and brain atrophy related features. The non conventional magnetic resonance imaging techniques studied were double inversion recovery, magnetization transfer imaging, spectroscopy and diffusion tensor imaging. The number and location of demyelinating lesions have a clear role in predicting clinically isolated syndrome conversion to multiple sclerosis. On the other hand, more data are needed to confirm the ability to predict this disease development of non conventional techniques and remaining neuroimaging abnormalities. In forthcoming years, in addition to the established predictive value of the above mentioned neuroimaging abnormalities, different clinically isolated syndrome neuroradiological findings may be considered in multiple sclerosis diagnostic criteria and/or change its treatment recommendations.

  9. Cellular transfer of magnetic nanoparticles via cell microvesicles: impact on cell tracking by magnetic resonance imaging.

    PubMed

    Silva, Amanda K Andriola; Wilhelm, Claire; Kolosnjaj-Tabi, Jelena; Luciani, Nathalie; Gazeau, Florence

    2012-05-01

    Cell labeling with magnetic nanoparticles can be used to monitor the fate of transplanted cells in vivo by magnetic resonance imaging. However, nanoparticles initially internalized in administered cells might end up in other cells of the host organism. We investigated a mechanism of intercellular cross-transfer of magnetic nanoparticles to different types of recipient cells via cell microvesicles released under cellular stress. Three cell types (mesenchymal stem cells, endothelial cells and macrophages) were labeled with 8-nm iron oxide nanoparticles. Then cells underwent starvation stress, during which they produced microvesicles that were subsequently transferred to unlabeled recipient cells. The analysis of the magnetophoretic mobility of donor cells indicated that magnetic load was partially lost under cell stress. Microvesicles shed by stressed cells participated in the release of magnetic label. Moreover, such microvesicles were uptaken by naïve cells, resulting in cellular redistribution of nanoparticles. Iron load of recipient cells allowed their detection by MRI. Cell microvesicles released under stress may be disseminated throughout the organism, where they can be uptaken by host cells. The transferred cargo may be sufficient to allow MRI detection of these secondarily labeled cells, leading to misinterpretations of the effectiveness of transplanted cells.

  10. Magnetic Resonance Imaging (MRI) of the Knee as an Outcome Measure in Juvenile Idiopathic Arthritis: An OMERACT Reliability Study on MRI Scales.

    PubMed

    Hemke, Robert; Tzaribachev, Nikolay; Nusman, Charlotte M; van Rossum, Marion A J; Maas, Mario; Doria, Andrea S

    2017-08-01

    There is increasing evidence that early therapeutic intervention improves longterm joint outcome in juvenile idiopathic arthritis (JIA). Given the existence of highly effective treatments, there is an urgent need for reliable and accurate measures of disease activity and joint damage in JIA. Our objective was to assess the reliability of 2 magnetic resonance imaging (MRI) scoring methods: the Juvenile Arthritis MRI Scoring (JAMRIS) system and the International Prophylaxis Study Group (IPSG) consensus score, for evaluating disease status of the knee in patients with JIA. Four international readers independently scored an MRI dataset of 25 JIA patients with clinical knee involvement. Synovial thickening, joint effusion, bone marrow changes, cartilage lesions, bone erosions, and subchondral cysts were scored using the JAMRIS and IPSG systems. Further, synovial enhancement, infrapatellar fat pad heterogeneity, tendinopathy, and enthesopathy were scored. Interreader reliability was analyzed by using the generalized κ, ICC, and the smallest detectable difference (SDD). ICC regarding interreader reliability ranged from 0.33 (95% CI 0.12-0.52, SDD = 0.29) for enthesopathy up to 0.95 (95% CI 0.92-0.97, SDD = 3.19) for synovial thickening. Good interreader reliability was found concerning joint effusion (ICC 0.93, 95% CI 0.89-0.95, SDD = 0.51), synovial enhancement (ICC 0.90, 95% CI 0.85-0.94, SDD = 9.85), and bone marrow changes (ICC 0.87, 95% CI 0.80-0.92, SDD = 10.94). Moderate to substantial reliability was found concerning cartilage lesions and bone erosions (ICC 0.55-0.72, SDD 1.41-13.65). The preliminary results are promising for most of the scored JAMRIS and IPSG items. However, further refinement of the scoring system is warranted for unsatisfactorily reliable items such as bone erosions, cartilage lesions, and enthesopathy.

  11. Topical Review: Unique Contributions of Magnetic Resonance Imaging to Pediatric Psychology Research.

    PubMed

    Jensen, Chad D; Duraccio, Kara M; Carbine, Kaylie M; Kirwan, C Brock

    2016-03-01

    This review aims to provide a brief introduction of the utility of magnetic resonance imaging (MRI) methods in pediatric psychology research, describe several exemplar studies that highlight the unique benefits of MRI techniques for pediatric psychology research, and detail methods for addressing several challenges inherent to pediatric MRI research. Literature review. Numerous useful applications of MRI research in pediatric psychology have been illustrated in published research. MRI methods yield information that cannot be obtained using neuropsychological or behavioral measures. Using MRI in pediatric psychology research may facilitate examination of neural structures and processes that underlie health behaviors. Challenges inherent to conducting MRI research with pediatric research participants (e.g., head movement) may be addressed using evidence-based strategies. We encourage pediatric psychology researchers to consider adopting MRI techniques to answer research questions relevant to pediatric health and illness. © The Author 2015. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Method and apparatus for magnetic resonance imaging and spectroscopy using microstrip transmission line coils

    DOEpatents

    Zhang, Xiaoliang; Ugurbil, Kamil; Chen, Wei

    2006-04-04

    Apparatus and method for MRI imaging using a coil constructed of microstrip transmission line (MTL coil) are disclosed. In one method, a target is positioned to be imaged within the field of a main magnetic field of a magnet resonance imaging (MRI) system, a MTL coil is positioned proximate the target, and a MRI image is obtained using the main magnet and the MTL coil. In another embodiment, the MRI coil is used for spectroscopy. MRI imaging and spectroscopy coils are formed using microstrip transmission line. These MTL coils have the advantageous property of good performance while occupying a relatively small space, thus allowing MTL coils to be used inside restricted areas more easily than some other prior art coils. In addition, the MTL coils are relatively simple to construct of inexpensive components and thus relatively inexpensive compared to other designs. Further, the MTL coils of the present invention can be readily formed in a wide variety of coil configurations, and used in a wide variety of ways. Further, while the MTL coils of the present invention work well at high field strengths and frequencies, they also work at low frequencies and in low field strengths as well.

  13. A powerful graphical pulse sequence programming tool for magnetic resonance imaging.

    PubMed

    Jie, Shen; Ying, Liu; Jianqi, Li; Gengying, Li

    2005-12-01

    A powerful graphical pulse sequence programming tool has been designed for creating magnetic resonance imaging (MRI) applications. It allows rapid development of pulse sequences in graphical mode (allowing for the visualization of sequences), and consists of three modules which include a graphical sequence editor, a parameter management module and a sequence compiler. Its key features are ease to use, flexibility and hardware independence. When graphic elements are combined with a certain text expressions, the graphical pulse sequence programming is as flexible as text-based programming tool. In addition, a hardware-independent design is implemented by using the strategy of two step compilations. To demonstrate the flexibility and the capability of this graphical sequence programming tool, a multi-slice fast spin echo experiment is performed on our home-made 0.3 T permanent magnet MRI system.

  14. Diethylenetriaminepentaacetic acid-gadolinium (DTPA-Gd)-conjugated polysuccinimide derivatives as magnetic resonance imaging contrast agents.

    PubMed

    Lee, Ha Young; Jee, Hye Won; Seo, Sung Mi; Kwak, Byung Kook; Khang, Gilson; Cho, Sun Hang

    2006-01-01

    Biocompatible polysuccinimide (PSI) derivatives conjugated with diethylenetriaminepentaacetic acid gadolinium (DTPA-Gd) were prepared as magnetic resonance imaging (MRI) contrast agents. In this study, we synthesized PSI derivatives incorporating methoxy-poly(ethylene glycol) (mPEG) as hydrophilic ligand, hexadecylamine as hydrophobic ligand, and DTPA-Gd as contrast agent. PSI was synthesized by the polycondensation polymerization of aspartic acid. All the synthesized materials were characterized by proton nuclear magnetic resonance (1H NMR). Critical micellization concentrations were determined using fluorescent probes (pyrene). Micelle size and shape were measured by electro-photometer light scattering (ELS) and atomic force microscopy (AFM). The formed micelle size ranged from 100 to 300 nm. The T1-weighted MR images of the phantom prepared with PSI-mPEG-C16-(DTPA-Gd) were obtained in a 3.0 T clinical MR imager, and the conjugates showed a great potential as MRI contrast agents.

  15. A Hitchhiker's Guide to Functional Magnetic Resonance Imaging

    PubMed Central

    Soares, José M.; Magalhães, Ricardo; Moreira, Pedro S.; Sousa, Alexandre; Ganz, Edward; Sampaio, Adriana; Alves, Victor; Marques, Paulo; Sousa, Nuno

    2016-01-01

    Functional Magnetic Resonance Imaging (fMRI) studies have become increasingly popular both with clinicians and researchers as they are capable of providing unique insights into brain functions. However, multiple technical considerations (ranging from specifics of paradigm design to imaging artifacts, complex protocol definition, and multitude of processing and methods of analysis, as well as intrinsic methodological limitations) must be considered and addressed in order to optimize fMRI analysis and to arrive at the most accurate and grounded interpretation of the data. In practice, the researcher/clinician must choose, from many available options, the most suitable software tool for each stage of the fMRI analysis pipeline. Herein we provide a straightforward guide designed to address, for each of the major stages, the techniques, and tools involved in the process. We have developed this guide both to help those new to the technique to overcome the most critical difficulties in its use, as well as to serve as a resource for the neuroimaging community. PMID:27891073

  16. Real-time magnetic resonance imaging of cardiac function and flow—recent progress

    PubMed Central

    Zhang, Shuo; Joseph, Arun A.; Voit, Dirk; Schaetz, Sebastian; Merboldt, Klaus-Dietmar; Unterberg-Buchwald, Christina; Hennemuth, Anja; Lotz, Joachim

    2014-01-01

    Cardiac structure, function and flow are most commonly studied by ultrasound, X-ray and magnetic resonance imaging (MRI) techniques. However, cardiovascular MRI is hitherto limited to electrocardiogram (ECG)-synchronized acquisitions and therefore often results in compromised quality for patients with arrhythmias or inabilities to comply with requested protocols—especially with breath-holding. Recent advances in the development of novel real-time MRI techniques now offer dynamic imaging of the heart and major vessels with high spatial and temporal resolution, so that examinations may be performed without the need for ECG synchronization and during free breathing. This article provides an overview of technical achievements, physiological validations, preliminary patient studies and translational aspects for a future clinical scenario of cardiovascular MRI in real time. PMID:25392819

  17. 3T magnetic resonance imaging testing of externally programmable shunt valves

    PubMed Central

    Zabramski, Joseph M.; Preul, Mark C.; Debbins, Josef; McCusker, Daniel J.

    2012-01-01

    Background: Exposure of externally programmable shunt-valves (EPS-valves) to magnetic resonance imaging (MRI) may lead to unexpected changes in shunt settings, or affect the ability to reprogram the valve. We undertook this study to examine the effect of exposure to a 3T MRI on a group of widely used EPS-valves. Methods: Evaluations were performed on first generation EPS-valves (those without a locking mechanism to prevent changes in shunt settings by external magnets other than the programmer) and second generation EPS-valves (those with a locking mechanisms). Fifteen new shunt-valves were divided into five groups of three identical valves each, and then exposed to a series of six simulated MRI scans. After each of the exposures, the valves were evaluated to determine if the valve settings had changed, and whether the valves could be reprogrammed. The study produced 18 evaluations for each line of shunt-valves. Results: Exposure of the first generation EPS-valves to a 3T magnetic field resulted in frequent changes in the valve settings; however, all valves retained their ability to be reprogrammed. Repeated exposure of the second generation EPS-valves has no effect on shunt valve settings, and all valves retained their ability to be interrogated and reprogrammed. Conclusions: Second generation EPS-valves with locking mechanisms can be safely exposed to repeated 3T MRI systems, without evidence that shunt settings will change. The exposure of the first generation EPS-valves to 3T MRI results in frequent changes in shunt settings that necessitate re-evaluation soon after MRI to avoid complications. PMID:22937481

  18. Functional Magnetic Resonance Imaging of Cognitive Processing in Young Adults with Down Syndrome

    ERIC Educational Resources Information Center

    Jacola, Lisa M.; Byars, Anna W.; Chalfonte-Evans, Melinda; Schmithorst, Vincent J.; Hickey, Fran; Patterson, Bonnie; Hotze, Stephanie; Vannest, Jennifer; Chiu, Chung-Yiu; Holland, Scott K.; Schapiro, Mark B.

    2011-01-01

    The authors used functional magnetic resonance imaging (fMRI) to investigate neural activation during a semantic-classification/object-recognition task in 13 persons with Down syndrome and 12 typically developing control participants (age range = 12-26 years). A comparison between groups suggested atypical patterns of brain activation for the…

  19. Fetal intracranial hemorrhage. Imaging by ultrasound and magnetic resonance imaging.

    PubMed

    Kirkinen, P; Partanen, K; Ryynänen, M; Ordén, M R

    1997-08-01

    To describe the magnetic resonance imaging (MRI) findings associated with fetal intracranial hemorrhage and to compare them with ultrasound findings. In four pregnancies complicated by fetal intracranial hemorrhage, fetal imaging was carried out using T2-weighted fast spin echo sequences and T1-weighted fast low angle shot imaging sequences and by transabdominal ultrasonography. An antepartum diagnosis of hemorrhage was made by ultrasound in one case and by MRI in two. Retrospectively, the hemorrhagic area could be identified from the MRI images in an additional two cases and from the ultrasound images in one case. In the cases of intraventricular hemorrhage, the MRI signal intensity in the T1-weighted images was increased in the hemorrhagic area as compared to the contralateral ventricle and brain parenchyma. In a case with subdural hemorrhage, T2-weighted MRI signals from the hemorrhagic area changed from low-to high-intensity signals during four weeks of follow-up. Better imaging of the intracranial anatomy was possible by MRI than by transabdominal ultrasonography. MRI can be used for imaging and dating fetal intracranial hemorrhages. Variable ultrasound and MRI findings are associated with this complication, depending on the age and location of the hemorrhage.

  20. Doxorubicin-modified magnetic nanoparticles as a drug delivery system for magnetic resonance imaging-monitoring magnet-enhancing tumor chemotherapy.

    PubMed

    Liang, Po-Chin; Chen, Yung-Chu; Chiang, Chi-Feng; Mo, Lein-Ray; Wei, Shwu-Yuan; Hsieh, Wen-Yuan; Lin, Win-Li

    2016-01-01

    In this study, we developed functionalized superparamagnetic iron oxide (SPIO) nanoparticles consisting of a magnetic Fe3O4 core and a shell of aqueous stable polyethylene glycol (PEG) conjugated with doxorubicin (Dox) (SPIO-PEG-D) for tumor magnetic resonance imaging (MRI) enhancement and chemotherapy. The size of SPIO nanoparticles was ~10 nm, which was visualized by transmission electron microscope. The hysteresis curve, generated with vibrating-sample magnetometer, showed that SPIO-PEG-D was superparamagnetic with an insignificant hysteresis. The transverse relaxivity (r 2) for SPIO-PEG-D was significantly higher than the longitudinal relaxivity (r 1) (r 2/r 1 >10). The half-life of Dox in blood circulation was prolonged by conjugating Dox on the surface of SPIO with PEG to reduce its degradation. The in vitro experiment showed that SPIO-PEG-D could cause DNA crosslink more serious, resulting in a lower DNA expression and a higher cell apoptosis for HT-29 cancer cells. The Prussian blue staining study showed that the tumors treated with SPIO-PEG-D under a magnetic field had a much higher intratumoral iron density than the tumors treated with SPIO-PEG-D alone. The in vivo MRI study showed that the T2-weighted signal enhancement was stronger for the group under a magnetic field, indicating that it had a better accumulation of SPIO-PEG-D in tumor tissues. In the anticancer efficiency study for SPIO-PEG-D, the results showed that there was a significantly smaller tumor size for the group with a magnetic field than the group without. The in vivo experiments also showed that this drug delivery system combined with a local magnetic field could reduce the side effects of cardiotoxicity and hepatotoxicity. The results showed that the developed SPIO-PEG-D nanoparticles own a great potential for MRI-monitoring magnet-enhancing tumor chemotherapy.

  1. Magnetic Resonance Based Electrical Properties Tomography: A Review

    PubMed Central

    Zhang, Xiaotong; Liu, Jiaen

    2014-01-01

    Frequency-dependent electrical properties (EPs; conductivity and permittivity) of biological tissues provide important diagnostic information (e.g. tumor characterization), and also play an important role in quantifying radiofrequency (RF) coil induced Specific Absorption Rate (SAR) which is a major safety concern in high- and ultrahigh-field Magnetic Resonance Imaging (MRI) applications. Cross-sectional imaging of EPs has been pursued for decades. Recently introduced Electrical Properties Tomography (EPT) approaches utilize the measurable RF magnetic field induced by the RF coil in an MRI system to quantitatively reconstruct the EP distribution in vivo and non-invasively with a spatial resolution of a few millimeters or less. This paper reviews the Electrical Properties Tomography approach from its basic theory in electromagnetism to the state of the art research outcomes. Emphasizing on the imaging reconstruction methods rather than experimentation techniques, we review the developed imaging algorithms, validation results in physical phantoms and biological tissues, as well as their applications in in vivo tumor detection and subject-specific SAR prediction. Challenges for future research are also discussed. PMID:24803104

  2. Acupressure magnets: a possible MRI hazard.

    PubMed

    Otjen, Jeffrey P; Mallon, Kara; Brown, Julie C

    2015-03-01

    The use of magnets as a component of complementary and alternative medicine is increasingly common. Magnet therapy is used to treat a variety of conditions and often involves tiny magnets adhered to the skin. In auriculotherapy, magnets are placed in specific locations of the ear pinnae which represent particular parts of the body. While generally considered safe, these magnets have the potential to cause imaging problems and serious injury during MRI. We report a case of auriculotherapy magnets which escaped detection despite the use of screening forms and a walk-through metal detector. The magnets caused image artifact but no other patient harm. We recommend updating patient screening practices and educating providers placing therapeutic magnets and performing MRIs of this new potential MRI hazard. © 2014 Wiley Periodicals, Inc.

  3. Comparison of magnetic resonance imaging (MRI) and contrast-enhanced ultrasound (CEUS) in the evaluation of unclear solid renal lesions.

    PubMed

    Rübenthaler, J; Paprottka, K; Marcon, J; Hameister, E; Hoffmann, K; Joiko, N; Reiser, M; Clevert, D A

    2016-01-01

    To compare the sensitivity and specificity of contrast-enhanced ultrasound (CEUS) and magnetic resonance imaging (MRI) in the evaluation of unclear renal lesions to the histopathological outcome. A total of 36 patients with a single unclear solid renal lesion with initial imaging studies between 2005 and 2015 were included. CEUS and MRI were used for determining malignancy or benignancy and initial findings were correlated with the histopathological outcome. Out of the 36 renal masses a total of 28 lesions were malignant (77.8%) and 8 were found to be benign (22.2%). Diagnostic accuracy was testes by using the histopathological diagnosis as the gold standard. CEUS showed a sensitivity of 96.4%, a specificity of 100.0%, a positive predictive value (PPV) of 100.0% and a negative predictive value (NPV) of 88,9%. MRI showed a sensitivity of 96.4%, a specificity of 75.0%, a PPV of 93.1% and a NPV of 85.7%. Out of the 28 malignant lesions a total of 18 clear cell renal carcinomas, 6 papillary renal cell carcinomas and 4 other malignant lesions, e.g. metastases, were diagnosed. Out of the 8 benign lesions a total 3 angiomyolipomas, 2 oncocytomas, 1 benign renal cyst and 2 other benign lesions, e.g. renal adenomas were diagnosed. Using CEUS, 1 lesion was falsely identified as benign. Using MRI, 2 lesions were falsely identified as benign and 1 lesion was falsely identified as malignant. CEUS is an useful method which can be additionally used to clinically differentiate between malignant and benign renal lesions. CEUS shows a comparable sensitivity, specificity, PPV and NPV to MRI. In daily clinical routine, patients with contraindications for other imaging modalities can particularly benefit using this method.

  4. The impact of Magnetic Resonance Imaging (MRI) on ischemic stroke detection and incidence: minimal impact within a population-based study.

    PubMed

    Kleindorfer, Dawn; Khoury, Jane; Alwell, Kathleen; Moomaw, Charles J; Woo, Daniel; Flaherty, Matthew L; Adeoye, Opeolu; Ferioli, Simona; Khatri, Pooja; Kissela, Brett M

    2015-09-25

    There are several situations in which magnetic resonance imaging (MRI) might impact whether an cerebrovascular event is considered a new stroke. These include clinically non-focal events with positive imaging for acute cerebral infarction, and worsening of older symptoms without evidence of new infarction on MRI. We sought to investigate the impact of MRI on stroke detection and stroke incidence, by describing agreement between a strictly clinical definition of stroke and a definition based on physician opinion, including MRI imaging findings. All hospitalized strokes that occurred in five Ohio and Northern Kentucky counties (population 1.3 million) in the calendar year of 2005 were identified using ICD-9 discharge codes 430-436. The two definitions used were: "clinical case definition" which included sudden onset focal neurologic symptoms referable to a vascular territory for >24 h, compared to the "best clinical judgment of the physician definition", which considers all relevant information, including neuroimaging findings. The 95% confidence intervals (CI) for the incidence rates were calculated assuming a Poisson distribution. Rates were standardized to the 2000 U.S. population, adjusting for age, race, and sex, and included all age groups. There were 2403 ischemic stroke events in 2269 patients; 1556 (64%) had MRI performed. Of the events, 2049 (83%) were cases by both definitions, 185 (7.7%) met the clinical case definition but were non-cases in the physician's opinion and 169 (7.0%) were non-cases by clinical definition but were cases in the physician's opinion. There was no significant difference in the incidence rates of first-ever or total ischemic strokes generated by the two different definitions, or when only those with MRI imaging were included. We found that MRI findings do not appear to substantially change stroke incidence estimates, as the strictly clinical definition of stroke did not significantly differ from a definition that included imaging

  5. Advanced magnetic resonance imaging in glioblastoma: a review.

    PubMed

    Shukla, Gaurav; Alexander, Gregory S; Bakas, Spyridon; Nikam, Rahul; Talekar, Kiran; Palmer, Joshua D; Shi, Wenyin

    2017-08-01

    Glioblastoma, the most common and most rapidly progressing primary malignant tumor of the central nervous system, continues to portend a dismal prognosis, despite improvements in diagnostic and therapeutic strategies over the last 20 years. The standard of care radiographic characterization of glioblastoma is magnetic resonance imaging (MRI), which is a widely utilized examination in the diagnosis and post-treatment management of patients with glioblastoma. Basic MRI modalities available from any clinical scanner, including native T1-weighted (T1w) and contrast-enhanced (T1CE), T2-weighted (T2w), and T2-fluid-attenuated inversion recovery (T2-FLAIR) sequences, provide critical clinical information about various processes in the tumor environment. In the last decade, advanced MRI modalities are increasingly utilized to further characterize glioblastomas more comprehensively. These include multi-parametric MRI sequences, such as dynamic susceptibility contrast (DSC), dynamic contrast enhancement (DCE), higher order diffusion techniques such as diffusion tensor imaging (DTI), and MR spectroscopy (MRS). Significant efforts are ongoing to implement these advanced imaging modalities into improved clinical workflows and personalized therapy approaches. Functional MRI (fMRI) and tractography are increasingly being used to identify eloquent cortices and important tracts to minimize postsurgical neuro-deficits. A contemporary review of the application of standard and advanced MRI in clinical neuro-oncologic practice is presented here.

  6. Magnetic resonance imaging in prostate cancer detection and management: a systematic review.

    PubMed

    Monni, Fabio; Fontanella, Paolo; Grasso, Angelica; Wiklund, Peter; Ou, Yen-Chuan; Randazzo, Marco; Rocco, Bernardo; Montanari, Emanuele; Bianchi, Giampaolo

    2017-12-01

    The aim of our work was to evaluate the role of multi-parametric magnetic resonance imaging (mpMRI) in detection and management of prostate cancer (PC); specifically investigating the efficacy of mpMRI-based biopsy techniques in terms of diagnostic yield of significant prostate neoplasm and the improved management of patients who choose conservative treatments or active surveillance. A systematic and critical analysis through Medline, Embase, Scopus and Web of Science databases was carried out in March 2016, following the PRISMA ("Preferred Reporting Items for Systematic Reviews and Meta-Analyses") statement. The search was conducted using the following key words: "MRI/TRUS-fusion biopsy," "PIRADS," "prostate cancer," "magnetic resonance imaging (MRI)," "multiparametric MRI (mpMRI)," "systematic prostate biopsy (SB)," "targeted prostate biopsy (TPB)." English language articles were reviewed for inclusion ability. Sixty-six studies were selected in order to evaluate the characteristics and limitations of traditional sample biopsy, the role of mpMRI in detection of PC, specifically the increased degree of diagnostic accuracy of targeted prostate biopsy compared to systematic biopsy (12 cores), and to transperineal saturation biopsies with trans-rectal ultrasound (TRUS) only. MpMRI can detect index lesions in approximately 90% of cases when compared to prostatectomy specimen. The diagnostic performance of biparametric MRI (T2w + DWI) is not inferior to mpMRI, offering valid options to diminish cost- and time-consumption. Since approximately 10% of significant lesions are still MRI-invisible, systematic cores biopsy seem to still be necessary. The analysis of the different techniques shows that in-bore MRI-guided biopsy and MRI/TRUS-fusion-guided biopsy are superior in detection of significant PC compared to visual estimation alone. MpMRI proved to be very effective in active surveillance, as it prevents underdetection of significant PC and it assesses low-risk disease

  7. MRI evaluation and safety in the developing brain.

    PubMed

    Tocchio, Shannon; Kline-Fath, Beth; Kanal, Emanuel; Schmithorst, Vincent J; Panigrahy, Ashok

    2015-03-01

    Magnetic resonance imaging (MRI) evaluation of the developing brain has dramatically increased over the last decade. Faster acquisitions and the development of advanced MRI sequences, such as magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), perfusion imaging, functional MR imaging (fMRI), and susceptibility-weighted imaging (SWI), as well as the use of higher magnetic field strengths has made MRI an invaluable tool for detailed evaluation of the developing brain. This article will provide an overview of the use and challenges associated with 1.5-T and 3-T static magnetic fields for evaluation of the developing brain. This review will also summarize the advantages, clinical challenges, and safety concerns specifically related to MRI in the fetus and newborn, including the implications of increased magnetic field strength, logistics related to transporting and monitoring of neonates during scanning, and sedation considerations, and a discussion of current technologies such as MRI conditional neonatal incubators and dedicated small-foot print neonatal intensive care unit (NICU) scanners. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Positive effect on patient experience of video information given prior to cardiovascular magnetic resonance imaging: A clinical trial.

    PubMed

    Ahlander, Britt-Marie; Engvall, Jan; Maret, Eva; Ericsson, Elisabeth

    2018-03-01

    To evaluate the effect of video information given before cardiovascular magnetic resonance imaging on patient anxiety and to compare patient experiences of cardiovascular magnetic resonance imaging versus myocardial perfusion scintigraphy. To evaluate whether additional information has an impact on motion artefacts. Cardiovascular magnetic resonance imaging and myocardial perfusion scintigraphy are technically advanced methods for the evaluation of heart diseases. Although cardiovascular magnetic resonance imaging is considered to be painless, patients may experience anxiety due to the closed environment. A prospective randomised intervention study, not registered. The sample (n = 148) consisted of 97 patients referred for cardiovascular magnetic resonance imaging, randomised to receive either video information in addition to standard text-information (CMR-video/n = 49) or standard text-information alone (CMR-standard/n = 48). A third group undergoing myocardial perfusion scintigraphy (n = 51) was compared with the cardiovascular magnetic resonance imaging-standard group. Anxiety was evaluated before, immediately after the procedure and 1 week later. Five questionnaires were used: Cardiac Anxiety Questionnaire, State-Trait Anxiety Inventory, Hospital Anxiety and Depression scale, MRI Fear Survey Schedule and the MRI-Anxiety Questionnaire. Motion artefacts were evaluated by three observers, blinded to the information given. Data were collected between April 2015-April 2016. The study followed the CONSORT guidelines. The CMR-video group scored lower (better) than the cardiovascular magnetic resonance imaging-standard group in the factor Relaxation (p = .039) but not in the factor Anxiety. Anxiety levels were lower during scintigraphic examinations compared to the CMR-standard group (p < .001). No difference was found regarding motion artefacts between CMR-video and CMR-standard. Patient ability to relax during cardiovascular magnetic resonance imaging

  9. Neurosurgical Applications of High-Intensity Focused Ultrasound with Magnetic Resonance Thermometry.

    PubMed

    Colen, Rivka R; Sahnoune, Iman; Weinberg, Jeffrey S

    2017-10-01

    Magnetic resonance guided focused ultrasound surgery (MRgFUS) has potential noninvasive effects on targeted tissue. MRgFUS integrates MRI and focused ultrasound surgery (FUS) into a single platform. MRI enables visualization of the target tissue and monitors ultrasound-induced effects in near real-time during FUS treatment. MRgFUS may serve as an adjunct or replace invasive surgery and radiotherapy for specific conditions. Its thermal effects ablate tumors in locations involved in movement disorders and essential tremors. Its nonthermal effects increase blood-brain barrier permeability to enhance delivery of therapeutics and other molecules. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Magnetic Resonance Imaging (MRI) (For Parents)

    MedlinePlus

    ... problems, your child may be given a contrast solution through an IV. The solution, which is painless as it goes into the ... to any medications or food before the contrast solution is given. The contrast solution used in MRI ...

  11. Magnetic Resonance Imaging at 1.5 Tesla With a Cochlear Implant Magnet in Place: Image Quality and Usability.

    PubMed

    Sharon, Jeffrey D; Northcutt, Benjamin G; Aygun, Nafi; Francis, Howard W

    2016-10-01

    To study the quality and usability of magnetic resonance imaging (MRI) obtained with a cochlear implant magnet in situ. Retrospective chart review. Tertiary care center. All patients who underwent brain MRI with a cochlear implant magnet in situ from 2007 to 2016. None. Grade of view of the ipsilateral internal auditory canal (IAC) and cerebellopontine angle (CPA). Inclusion criteria were met by 765 image sequences in 57 MRI brain scans. For the ipsilateral IAC, significant predictors of a grade 1 (normal) view included: absence of fat saturation algorithm (p = 0.001), nonaxial plane of imaging (p = 0.01), and contrast administration (p = 0.001). For the ipsilateral CPA, significant predictors of a grade 1 view included: absence of fat saturation algorithm (p = 0.001), high-resolution images (p = 0.001), and nonaxial plane of imaging (p = 0.001). Overall, coronal T1 high-resolution images produced the highest percentage of grade 1 views (89%). Fat saturation also caused a secondary ring-shaped distortion artifact, which impaired the view of the contralateral CPA 52.7% of the time, and the contralateral IAC 42.8% of the time. MRI scans without any usable (grade 1) sequences had fewer overall sequences (N = 4.3) than scans with at least one usable sequence (N = 7.1, p = 0.001). MRI image quality with a cochlear implant magnet in situ depends on several factors, which can be modified to maximize image quality in this unique patient population.

  12. Magnetic resonance imaging relaxation time in Alzheimer's disease.

    PubMed

    Tang, Xiang; Cai, Feng; Ding, Dong-Xue; Zhang, Lu-Lu; Cai, Xiu-Ying; Fang, Qi

    2018-05-05

    The magnetic resonance imaging (MRI) relaxation time constants, T1 and T2, are sensitive to changes in brain tissue microstructure integrity. Quantitative T1 and T2 relaxation times have been proposed to serve as non-invasive biomarkers of Alzheimer's disease (AD), in which alterations are believed to not only reflect AD-related neuropathology but also cognitive impairment. In this review, we summarize the applications and key findings of MRI techniques in the context of both AD subjects and AD transgenic mouse models. Furthermore, the possible mechanisms of relaxation time alterations in AD will be discussed. Future studies could focus on relaxation time alterations in the early stage of AD, and longitudinal studies are needed to further explore relaxation time alterations during disease progression. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Magnetic resonance imaging (MRI) for the assessment of myocardial viability: an evidence-based analysis.

    PubMed

    2010-01-01

    ASSESSMENT OF MYOCARDIAL VIABILITY: An Evidence-Based Analysis The objective of this analysis is to assess the effectiveness and cost-effectiveness of cardiovascular magnetic resonance imaging (cardiac MRI) for the assessment of myocardial viability. To evaluate the effectiveness of cardiac MRI viability imaging, the following outcomes were examined: the diagnostic accuracy in predicting functional recovery and the impact of cardiac MRI viability imaging on prognosis (mortality and other patient outcomes). CONDITION AND TARGET POPULATION LEFT VENTRICULAR SYSTOLIC DYSFUNCTION AND HEART FAILURE: Heart failure is a complex syndrome characterized by the heart's inability to maintain adequate blood circulation through the body leading to multiorgan abnormalities and, eventually, death. Patients with heart failure experience poor functional capacity, decreased quality of life, and increased risk of morbidity and mortality. In 2005, more than 71,000 Canadians died from cardiovascular disease, of which, 54% were due to ischemic heart disease. Left ventricular (LV) systolic dysfunction due to coronary artery disease (CAD) () is the primary cause of heart failure accounting for more than 70% of cases. The prevalence of heart failure was estimated at one percent of the Canadian population in 1989. Since then, the increase in the older population has undoubtedly resulted in a substantial increase in cases. Heart failure is associated with a poor prognosis: one-year mortality rates were 32.9% and 31.1% for men and women, respectively in Ontario between 1996 and 1997. IN GENERAL, THERE ARE THREE OPTIONS FOR THE TREATMENT OF HEART FAILURE: medical treatment, heart transplantation, and revascularization for those with CAD as the underlying cause. Concerning medical treatment, despite recent advances, mortality remains high among treated patients, while, heart transplantation is affected by the limited availability of donor hearts and consequently has long waiting lists. The third option

  14. Assessment of gunshot bullet injuries with the use of magnetic resonance imaging.

    PubMed

    Hess, U; Harms, J; Schneider, A; Schleef, M; Ganter, C; Hannig, C

    2000-10-01

    Magnetic resonance imaging (MRI) is rarely used for preoperative assessment of shotgun injuries because of concerns of displacing the possibly ferromagnetic foreign body within the surrounding tissue. A total of 56 different projectiles underwent MRI testing for ferromagnetism and imaging quality in vitro and in pig carcasses with a commercially available 1.5-MRI scan. Image quality was compared with that of computed tomographic scans. Projectiles with ferromagnetic properties can be distinguished easily from nonferromagnetic ones by pretesting the motion of an identical projectile within the MRI coil. When ferromagnetic projectiles were excluded, MRI yielded the more precise images compared with other imaging techniques. Projectile localization and associated soft tissue injuries were visualized without artifacts in all cases. When ferromagnetic foreign bodies are excluded by pretesting their properties within the MRI with a comparative projectile, MRI portends an excellent imaging procedure for assessing the extent of injury and planning the removal by surgery.

  15. Robust high-resolution quantification of time signals encoded by in vivo magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Belkić, Dževad; Belkić, Karen

    2018-01-01

    This paper on molecular imaging emphasizes improving specificity of magnetic resonance spectroscopy (MRS) for early cancer diagnostics by high-resolution data analysis. Sensitivity of magnetic resonance imaging (MRI) is excellent, but specificity is insufficient. Specificity is improved with MRS by going beyond morphology to assess the biochemical content of tissue. This is contingent upon accurate data quantification of diagnostically relevant biomolecules. Quantification is spectral analysis which reconstructs chemical shifts, amplitudes and relaxation times of metabolites. Chemical shifts inform on electronic shielding of resonating nuclei bound to different molecular compounds. Oscillation amplitudes in time signals retrieve the abundance of MR sensitive nuclei whose number is proportional to metabolite concentrations. Transverse relaxation times, the reciprocal of decay probabilities of resonances, arise from spin-spin coupling and reflect local field inhomogeneities. In MRS single voxels are used. For volumetric coverage, multi-voxels are employed within a hybrid of MRS and MRI called magnetic resonance spectroscopic imaging (MRSI). Common to MRS and MRSI is encoding of time signals and subsequent spectral analysis. Encoded data do not provide direct clinical information. Spectral analysis of time signals can yield the quantitative information, of which metabolite concentrations are the most clinically important. This information is equivocal with standard data analysis through the non-parametric, low-resolution fast Fourier transform and post-processing via fitting. By applying the fast Padé transform (FPT) with high-resolution, noise suppression and exact quantification via quantum mechanical signal processing, advances are made, presented herein, focusing on four areas of critical public health importance: brain, prostate, breast and ovarian cancers.

  16. Physics of MRI: a primer.

    PubMed

    Plewes, Donald B; Kucharczyk, Walter

    2012-05-01

    This article is based on an introductory lecture given for the past many years during the "MR Physics and Techniques for Clinicians" course at the Annual Meeting of the ISMRM. This introduction is not intended to be a comprehensive overview of the field, as the subject of magnetic resonance imaging (MRI) physics is large and complex. Rather, it is intended to lay a conceptual foundation by which magnetic resonance image formation can be understood from an intuitive perspective. The presentation is nonmathematical, relying on simple models that take the reader progressively from the basic spin physics of nuclei, through descriptions of how the magnetic resonance signal is generated and detected in an MRI scanner, the foundations of nuclear magnetic resonance (NMR) relaxation, and a discussion of the Fourier transform and its relation to MR image formation. The article continues with a discussion of how magnetic field gradients are used to facilitate spatial encoding and concludes with a development of basic pulse sequences and the factors defining image contrast. Copyright © 2012 Wiley Periodicals, Inc.

  17. Gradient-induced Longitudinal Relaxation of Hyperpolarized Noble Gases in the Fringe Fields of Superconducting Magnets Used for Magnetic Resonance

    PubMed Central

    Zheng, Wangzhi; Cleveland, Zackary I.; Möller, Harald E.; Driehuys, Bastiaan

    2010-01-01

    When hyperpolarized noble gases are brought into the bore of a superconducting magnet for magnetic resonance imaging (MRI) or spectroscopy studies, the gases must pass through substantial field gradients, which can cause rapid longitudinal relaxation. In this communication, we present a means of calculating this spatially dependent relaxation rate in the fringe field of typical magnets. We then compare these predictions to experimental measurements of 3He relaxation at various positions near a medium-bore 2-T small animal MRI system. The calculated and measured relaxation rates on the central axis of the magnet agree well and show a maximum 3He relaxation rate of 3.83 × 10−3 s−1 (T1 = 4.4 min) at a distance of 47 cm from the magnet isocenter. We also show that if this magnet were self-shielded, its minimum T1 would drop to 1.2 min. In contrast, a typical self-shielded 1.5-T clinical MRI scanner will induce a minimum on-axis T1 of 12 min. Additionally, we show that the cylindrically symmetric fields of these magnets enable gradient-induced relaxation to be calculated using only knowledge of the on-axis longitudinal field, which can either be measured directly or calculated from a simple field model. Thus, while most MRI magnets employ complex and proprietary current configurations, we show that their fringe fields and the resulting gradient induced relaxation are well approximated by simple solenoid models. Finally, our modeling also demonstrates that relaxation rates can increase by nearly an order of magnitude at radial distances equivalent to the solenoid radius. PMID:21134771

  18. Gradient-induced longitudinal relaxation of hyperpolarized noble gases in the fringe fields of superconducting magnets used for magnetic resonance.

    PubMed

    Zheng, Wangzhi; Cleveland, Zackary I; Möller, Harald E; Driehuys, Bastiaan

    2011-02-01

    When hyperpolarized noble gases are brought into the bore of a superconducting magnet for magnetic resonance imaging (MRI) or spectroscopy studies, the gases must pass through substantial field gradients, which can cause rapid longitudinal relaxation. In this communication, we present a means of calculating this spatially dependent relaxation rate in the fringe field of typical magnets. We then compare these predictions to experimental measurements of (3)He relaxation at various positions near a medium-bore 2-T small animal MRI system. The calculated and measured relaxation rates on the central axis of the magnet agree well and show a maximum (3)He relaxation rate of 3.83×10(-3) s(-1) (T(1)=4.4 min) at a distance of 47 cm from the magnet isocenter. We also show that if this magnet were self-shielded, its minimum T(1) would drop to 1.2 min. In contrast, a typical self-shielded 1.5-T clinical MRI scanner will induce a minimum on-axis T(1) of 12 min. Additionally, we show that the cylindrically symmetric fields of these magnets enable gradient-induced relaxation to be calculated using only knowledge of the on-axis longitudinal field, which can either be measured directly or calculated from a simple field model. Thus, while most MRI magnets employ complex and proprietary current configurations, we show that their fringe fields and the resulting gradient-induced relaxation are well approximated by simple solenoid models. Finally, our modeling also demonstrates that relaxation rates can increase by nearly an order of magnitude at radial distances equivalent to the solenoid radius. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. HLA-DRB*1501 associations with magnetic resonance imaging measures of grey matter pathology in multiple sclerosis.

    PubMed

    Yaldizli, Özgür; Sethi, Varun; Pardini, Matteo; Tur, Carmen; Mok, Kin Y; Muhlert, Nils; Liu, Zheng; Samson, Rebecca S; Wheeler-Kingshott, Claudia A M; Yousry, Tarek A; Houlden, Henry; Hardy, John; Miller, David H; Chard, Declan T

    2016-05-01

    The HLA-DRB*1501 haplotype influences the risk of developing multiple sclerosis (MS), but it is not known how it affects grey matter pathology. To assess HLA-DRB(*)1501 effects on magnetic resonance imaging (MRI) cortical grey matter pathology. Whole and lesional cortical grey matter volumes, lesional and normal-appearing grey matter magnetization transfer ratio were measured in 85 people with MS and 36 healthy control subjects. HLA-DRB(*)1501 haplotype was determined by genotyping (rs3135388). No significant differences were observed in MRI measures between the HLA-DRB(*)1501 subgroups. The HLA-DRB(*)1501 haplotype is not strongly associated with MRI-visible grey matter pathology. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Exterior Decay of Wood-Plastic Composite Boards: Characterization and Magnetic Resonance Imaging

    Treesearch

    Rebecca Ibach; Grace Sun; Marek Gnatowski; Jessie Glaeser; Mathew Leung; John Haight

    2016-01-01

    Magnetic resonance imaging (MRI) was used to evaluate free water content and distribution in wood-plastic composite (WPC) materials decayed during exterior exposure near Hilo, Hawaii. Two segments of the same board blend were selected from 6 commercial decking boards that had fungal fruiting bodies. One of the two board segments was exposed in sun, the other in shadow...