Sample records for mri techniques including

  1. Understanding Magnetic Resonance Imaging of Knee Cartilage Repair: A Focus on Clinical Relevance.

    PubMed

    Hayashi, Daichi; Li, Xinning; Murakami, Akira M; Roemer, Frank W; Trattnig, Siegfried; Guermazi, Ali

    2017-06-01

    The aims of this review article are (a) to describe the principles of morphologic and compositional magnetic resonance imaging (MRI) techniques relevant for the imaging of knee cartilage repair surgery and their application to longitudinal studies and (b) to illustrate the clinical relevance of pre- and postsurgical MRI with correlation to intraoperative images. First, MRI sequences that can be applied for imaging of cartilage repair tissue in the knee are described, focusing on comparison of 2D and 3D fast spin echo and gradient recalled echo sequences. Imaging features of cartilage repair tissue are then discussed, including conventional (morphologic) MRI and compositional MRI techniques. More specifically, imaging techniques for specific cartilage repair surgery techniques as described above, as well as MRI-based semiquantitative scoring systems for the knee cartilage repair tissue-MR Observation of Cartilage Repair Tissue and Cartilage Repair OA Knee Score-are explained. Then, currently available surgical techniques are reviewed, including marrow stimulation, osteochondral autograft, osteochondral allograft, particulate cartilage allograft, autologous chondrocyte implantation, and others. Finally, ongoing research efforts and future direction of cartilage repair tissue imaging are discussed.

  2. Whole body MRI, including diffusion-weighted imaging in follow-up of patients with testicular cancer.

    PubMed

    Mosavi, Firas; Laurell, Anna; Ahlström, Håkan

    2015-11-01

    Whole body (WB) magnetic resonance imaging (MRI), including diffusion-weighted imaging (DWI) has become increasingly utilized in cancer imaging, yet the clinical utility of these techniques in follow-up of testicular cancer patients has not been evaluated. The purpose of this study was to evaluate the feasibility of WB MRI with continuous table movement (CTM) technique, including multistep DWI in follow-up of patients with testicular cancer. WB MRI including DWI was performed in follow-up of 71 consecutive patients (median age, 37 years; range 19-84) with histologically confirmed testicular cancer. WB MRI protocol included axial T1-Dixon and T2-BLADE sequences using CTM technique. Furthermore, multi-step DWI was performed using b-value 50 and 1000 s/mm(2). One criterion for feasibility was patient tolerance and satisfactory image quality. Another criterion was the accuracy in detection of any pathological mass, compared to standard of reference. Signal intensity in DWI was used for evaluation of residual mass activity. Clinical, laboratory and imaging follow-up were applied as standard of reference for the evaluation of WB MRI. WB MRI was tolerated in nearly all patients (69/71 patients, 97%) and the image quality was satisfactory. Metal artifacts deteriorated the image quality in six patients, but it did not influence the overall results. No case of clinical relapse was observed during the follow-up time. There was a good agreement between conventional WB MRI and standard of reference in all patients. Three patients showed residual masses and DWI signal was not restricted in these patients. Furthermore, DWI showed abnormally high signal intensity in a normal-sized retroperitoneal lymph node indicating metastasis. The subsequent (18)F-FDG PET/CT could verify the finding. WB MRI with CTM technique including multi-step DWI is feasible in follow-up of patients with testicular cancer. DWI may contribute to important added-value data to conventional MRI sequences regarding the activity of residual masses.

  3. Magnetic Resonance Elastography and Other Magnetic Resonance Imaging Techniques in Chronic Liver Disease: Current Status and Future Directions.

    PubMed

    Tan, Cher Heng; Venkatesh, Sudhakar Kundapur

    2016-09-15

    Recent advances in the noninvasive imaging of chronic liver disease have led to improvements in diagnosis, particularly with magnetic resonance imaging (MRI). A comprehensive evaluation of the liver may be performed with the quantification of the degree of hepatic steatosis, liver iron concentration, and liver fibrosis. In addition, MRI of the liver may be used to identify complications of cirrhosis, including portal hypertension, ascites, and the development of hepatocellular carcinoma. In this review article, we discuss the state of the art techniques in liver MRI, namely, magnetic resonance elastography, hepatobiliary phase MRI, and liver fat and iron quantification MRI. The use of these advanced techniques in the management of chronic liver diseases, including nonalcoholic fatty liver disease, will be elaborated.

  4. Magnetic Resonance Elastography and Other Magnetic Resonance Imaging Techniques in Chronic Liver Disease: Current Status and Future Directions

    PubMed Central

    Tan, Cher Heng; Venkatesh, Sudhakar Kundapur

    2016-01-01

    Recent advances in the noninvasive imaging of chronic liver disease have led to improvements in diagnosis, particularly with magnetic resonance imaging (MRI). A comprehensive evaluation of the liver may be performed with the quantification of the degree of hepatic steatosis, liver iron concentration, and liver fibrosis. In addition, MRI of the liver may be used to identify complications of cirrhosis, including portal hypertension, ascites, and the development of hepatocellular carcinoma. In this review article, we discuss the state of the art techniques in liver MRI, namely, magnetic resonance elastography, hepatobiliary phase MRI, and liver fat and iron quantification MRI. The use of these advanced techniques in the management of chronic liver diseases, including non-alcoholic fatty liver disease, will be elaborated. PMID:27563019

  5. MRI signal intensity of anterior cruciate ligament graft after transtibial versus anteromedial portal technique (TRANSIG): design of a randomized controlled clinical trial.

    PubMed

    Ruiter, Simeon J S; Brouwer, Reinoud W; Meys, Tim W G M; Slump, Cornelis H; van Raay, Jos J A M

    2016-08-10

    There are two primary surgical techniques to reconstruct the anterior cruciate ligament (ACL), transtibial (TT) technique and anteromedial portal (AMP) technique. Currently, there is no consensus which surgical technique elicits the best clinical and functional outcomes. MRI-derived measures of the signal intensity (SI) of the ACL graft have been described as an independent predictor of graft properties. The purpose of this study is to compare the MRI derived SI measurements of the ACL graft one year after ACL reconstruction, in order to compare the outcomes of both the AMP and TT ACL reconstruction technique. Thirty-six patients will be included in a randomized controlled trial. Patients who are admitted for primary unilateral ACL reconstruction will be included in the study. Exclusion criteria are a history of previous surgery on the ipsilateral knee, re-rupture of the ipsilateral ACL graft, associated ligamentous injuries or meniscal tear of the ipsilateral knee, unhealthy contralateral knee, contra-indications for MRI and a preference for one of the two surgical techniques and/or orthopaedic surgeon. Primary outcome is MRI Signal intensity ratio (SIR) of the ACL graft. Secondary outcome measures are the International Knee Documentation Committee (IKDC) Knee Examination Form,the Knee injury and Osteoarthritis Outcome Scores (KOOS) and the Anterior Cruciate Ligament OsteoArthritis Score (ACLOAS). Differences between MRI SIR assessment with the current MRI protocol (proton density weighted imaging protocol) and the additional T2*-weighted gradient-echo protocol will be assessed. There is no consensus regarding the TT or AMP ACL reconstruction technique. SI measurements with MRI have been used in other clinical studies for evaluation of the ACL graft and maturation after ACL reconstruction compared to clinical and functional outcomes. This randomized controlled trial has been designed to compare the TT technique with the AMP technique with the use of MRI SI of the graft after ACL reconstruction. Netherlands Trial Registry NTR5410 (registered on August 24, 2015).

  6. Clinical utility of BOLD fMRI in preoperative work-up of epilepsy

    PubMed Central

    Ganesan, Karthik; Ursekar, Meher

    2014-01-01

    Surgical techniques have emerged as a viable therapeutic option in patients with drug refractory epilepsy. Pre-surgical evaluation of epilepsy requires a comprehensive, multiparametric, and multimodal approach for precise localization of the epileptogenic focus. Various non-invasive techniques are available at the disposal of the treating physician to detect the epileptogenic focus, which include electroencephalography (EEG), video-EEG, magnetic resonance imaging (MRI), functional MRI including blood oxygen level dependent (BOLD) techniques, single photon emission tomography (SPECT), and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET). Currently, non-invasive high-resolution MR imaging techniques play pivotal roles in the preoperative detection of the seizure focus, and represent the foundation for successful epilepsy surgery. BOLD functional magnetic resonance imaging (fMRI) maps allow for precise localization of the eloquent cortex in relation to the seizure focus. This review article focuses on the clinical utility of BOLD (fMRI) in the pre-surgical work-up of epilepsy patients. PMID:24851002

  7. T₁ρ MRI of human musculoskeletal system.

    PubMed

    Wang, Ligong; Regatte, Ravinder R

    2015-03-01

    Magnetic resonance imaging (MRI) offers the direct visualization of the human musculoskeletal (MSK) system, especially all diarthrodial tissues including cartilage, bone, menisci, ligaments, tendon, hip, synovium, etc. Conventional MRI techniques based on T1 - and T2 -weighted, proton density (PD) contrast are inconclusive in quantifying early biochemically degenerative changes in MSK system in general and articular cartilage in particular. In recent years, quantitative MR parameter mapping techniques have been used to quantify the biochemical changes in articular cartilage, with a special emphasis on evaluating joint injury, cartilage degeneration, and soft tissue repair. In this article we focus on cartilage biochemical composition, basic principles of T1ρ MRI, implementation of T1ρ pulse sequences, biochemical validation, and summarize the potential applications of the T1ρ MRI technique in MSK diseases including osteoarthritis (OA), anterior cruciate ligament (ACL) injury, and knee joint repair. Finally, we also review the potential advantages, challenges, and future prospects of T1ρ MRI for widespread clinical translation. © 2014 Wiley Periodicals, Inc.

  8. Breast MRI in community practice: equipment and imaging techniques at facilities in the Breast Cancer Surveillance Consortium.

    PubMed

    DeMartini, Wendy B; Ichikawa, Laura; Yankaskas, Bonnie C; Buist, Diana; Kerlikowske, Karla; Geller, Berta; Onega, Tracy; Rosenberg, Robert D; Lehman, Constance D

    2010-11-01

    MRI is increasingly used for the detection of breast carcinoma. Little is known about breast MRI techniques among community practice facilities. The aim of this study was to evaluate equipment and acquisition techniques used by community facilities across the United States, including compliance with minimum standards by the ACRIN® 6667 Trial and the European Society of Breast Imaging. Breast Cancer Surveillance Consortium facilities performing breast MRI were identified and queried by survey regarding breast MRI equipment and technical parameters. Variables included scanner field strength, coil type, acquisition coverage, slice thickness, and the timing of the initial postcontrast sequence. Results were tallied and percentages of facilities meeting ACRIN® and European Society of Breast Imaging standards were calculated. From 23 facilities performing breast MRI, results were obtained from 14 (61%) facilities with 16 MRI scanners reporting 18 imaging parameters. Compliance with equipment recommendations of ≥1.5-T field strength was 94% and of a dedicated breast coil was 100%. Eighty-three percent of acquisitions used bilateral postcontrast techniques, and 78% used slice thickness≤3 mm. The timing of initial postcontrast sequences ranged from 58 seconds to 8 minutes 30 seconds, with 63% meeting recommendations for completion within 4 minutes. Nearly all surveyed facilities met ACRIN and European Society of Breast Imaging standards for breast MRI equipment. The majority met standards for acquisition parameters, although techniques varied, in particular for the timing of initial postcontrast imaging. Further guidelines by the ACR Breast MRI Accreditation Program will be of importance in facilitating standardized and high-quality breast MRI. Copyright © 2010 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  9. DCE-MRI, DW-MRI, and MRS in Cancer: Challenges and Advantages of Implementing Qualitative and Quantitative Multi-parametric Imaging in the Clinic

    PubMed Central

    Winfield, Jessica M.; Payne, Geoffrey S.; Weller, Alex; deSouza, Nandita M.

    2016-01-01

    Abstract Multi-parametric magnetic resonance imaging (mpMRI) offers a unique insight into tumor biology by combining functional MRI techniques that inform on cellularity (diffusion-weighted MRI), vascular properties (dynamic contrast-enhanced MRI), and metabolites (magnetic resonance spectroscopy) and has scope to provide valuable information for prognostication and response assessment. Challenges in the application of mpMRI in the clinic include the technical considerations in acquiring good quality functional MRI data, development of robust techniques for analysis, and clinical interpretation of the results. This article summarizes the technical challenges in acquisition and analysis of multi-parametric MRI data before reviewing the key applications of multi-parametric MRI in clinical research and practice. PMID:27748710

  10. Analysis strategies for high-resolution UHF-fMRI data.

    PubMed

    Polimeni, Jonathan R; Renvall, Ville; Zaretskaya, Natalia; Fischl, Bruce

    2018-03-01

    Functional MRI (fMRI) benefits from both increased sensitivity and specificity with increasing magnetic field strength, making it a key application for Ultra-High Field (UHF) MRI scanners. Most UHF-fMRI studies utilize the dramatic increases in sensitivity and specificity to acquire high-resolution data reaching sub-millimeter scales, which enable new classes of experiments to probe the functional organization of the human brain. This review article surveys advanced data analysis strategies developed for high-resolution fMRI at UHF. These include strategies designed to mitigate distortion and artifacts associated with higher fields in ways that attempt to preserve spatial resolution of the fMRI data, as well as recently introduced analysis techniques that are enabled by these extremely high-resolution data. Particular focus is placed on anatomically-informed analyses, including cortical surface-based analysis, which are powerful techniques that can guide each step of the analysis from preprocessing to statistical analysis to interpretation and visualization. New intracortical analysis techniques for laminar and columnar fMRI are also reviewed and discussed. Prospects for single-subject individualized analyses are also presented and discussed. Altogether, there are both specific challenges and opportunities presented by UHF-fMRI, and the use of proper analysis strategies can help these valuable data reach their full potential. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The power of using functional fMRI on small rodents to study brain pharmacology and disease

    PubMed Central

    Jonckers, Elisabeth; Shah, Disha; Hamaide, Julie; Verhoye, Marleen; Van der Linden, Annemie

    2015-01-01

    Functional magnetic resonance imaging (fMRI) is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD) fMRI techniques, including resting state (rsfMRI), stimulus-evoked (st-fMRI), and pharmacological MRI (phMRI). Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sensory stimulation and/or a pharmacological challenge. The first part of this review describes the physiological basis of BOLD fMRI and the hemodynamic response on which the MRI contrast is based. Specific emphasis goes to possible effects of anesthesia and the animal’s physiological conditions on neural activity and the hemodynamic response. The second part of this review describes applications of the aforementioned techniques in pharmacologically induced, as well as in traumatic and transgenic disease models and illustrates how multiple fMRI methods can be applied successfully to evaluate different aspects of a specific disorder. For example, fMRI techniques can be used to pinpoint the neural substrate of a disease beyond previously defined hypothesis-driven regions-of-interest. In addition, fMRI techniques allow one to dissect how specific modifications (e.g., treatment, lesion etc.) modulate the functioning of specific brain areas (st-fMRI, phMRI) and how functional connectivity (rsfMRI) between several brain regions is affected, both in acute and extended time frames. Furthermore, fMRI techniques can be used to assess/explore the efficacy of novel treatments in depth, both in fundamental research as well as in preclinical settings. In conclusion, by describing several exemplary studies, we aim to highlight the advantages of functional MRI in exploring the acute and long-term effects of pharmacological substances and/or pathology on brain functioning along with several methodological considerations. PMID:26539115

  12. Role of New Functional MRI Techniques in the Diagnosis, Staging, and Followup of Gynecological Cancer: Comparison with PET-CT

    PubMed Central

    Alvarez Moreno, Elena; Jimenez de la Peña, Mar; Cano Alonso, Raquel

    2012-01-01

    Recent developments in diagnostic imaging techniques have magnified the role and potential of both MRI and PET-CT in female pelvic imaging. This article reviews the techniques and clinical applications of new functional MRI (fMRI) including diffusion-weighted MRI (DWI), dynamic contrast-enhanced (DCE)-MRI, comparing with PET-CT. These new emerging provide not only anatomic but also functional imaging, allowing detection of small volumes of active tumor at diagnosis and early disease relapse, which may not result in detectable morphological changes at conventional imaging. This information is useful in distinguishing between recurrent/residual tumor and post-treatment changes and assessing treatment response, with a clear impact on patient management. Both PET-CT and now fMRI have proved to be very valuable tools for evaluation of gynecologic tumors. Most papers try to compare these techniques, but in our experience both are complementary in management of these patients. Meanwhile PET-CT is superior in diagnosis of ganglionar disease; fMRI presents higher accuracy in local preoperative staging. Both techniques can be used as biomarkers of tumor response and present high accuracy in diagnosis of local recurrence and peritoneal dissemination, with complementary roles depending on histological type, anatomic location and tumoral volume. PMID:22315683

  13. Morphological and functional evaluation of chronic pancreatitis with magnetic resonance imaging

    PubMed Central

    Hansen, Tine Maria; Nilsson, Matias; Gram, Mikkel; Frøkjær, Jens Brøndum

    2013-01-01

    Magnetic resonance imaging (MRI) techniques for assessment of morphology and function of the pancreas have been improved dramatically the recent years and MRI is very often used in diagnosing and follow-up of chronic pancreatitis (CP) patients. Standard MRI including fat-suppressed T1-weighted and T2-weighted imaging techniques reveal decreased signal and glandular atrophy of the pancreas in CP. In contrast-enhanced MRI of the pancreas in CP the pancreatic signal is usually reduced and delayed due to decreased perfusion as a result of chronic inflammation and fibrosis. Thus, morphological changes of the ductal system can be assessed by magnetic resonance cholangiopancreatography (MRCP). Furthermore, secretin-stimulated MRCP is a valuable technique to evaluate side branch pathology and the exocrine function of the pancreas and diffusion weighted imaging can be used to quantify both parenchymal fibrotic changes and the exocrine function of the pancreas. These standard and advanced MRI techniques are supplementary techniques to reveal morphological and functional changes of the pancreas in CP. Recently, spectroscopy has been used for assessment of metabolite concentrations in-vivo in different tissues and may have the potential to offer better tissue characterization of the pancreas. Hence, the purpose of the present review is to provide an update on standard and advanced MRI techniques of the pancreas in CP. PMID:24259954

  14. Quantitative techniques for musculoskeletal MRI at 7 Tesla.

    PubMed

    Bangerter, Neal K; Taylor, Meredith D; Tarbox, Grayson J; Palmer, Antony J; Park, Daniel J

    2016-12-01

    Whole-body 7 Tesla MRI scanners have been approved solely for research since they appeared on the market over 10 years ago, but may soon be approved for selected clinical neurological and musculoskeletal applications in both the EU and the United States. There has been considerable research work on musculoskeletal applications at 7 Tesla over the past decade, including techniques for ultra-high resolution morphological imaging, 3D T2 and T2* mapping, ultra-short TE applications, diffusion tensor imaging of cartilage, and several techniques for assessing proteoglycan content in cartilage. Most of this work has been done in the knee or other extremities, due to technical difficulties associated with scanning areas such as the hip and torso at 7 Tesla. In this manuscript, we first provide some technical context for 7 Tesla imaging, including challenges and potential advantages. We then review the major quantitative MRI techniques being applied to musculoskeletal applications on 7 Tesla whole-body systems.

  15. WE-B-BRD-00: MRI for Radiation Oncology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The use of MRI in radiation therapy is rapidly increasing. Applications vary from the MRI simulator, to the MRI fused with CT, and to the integrated MRI+RT system. Compared with the standard MRI QA, a broader scope of QA features has to be defined in order to maximize the benefits of using MRI in radiation therapy. These QA features include geometric fidelity, image registration, motion management, cross-system alignment, and hardware interference. Advanced MRI techniques require a specific type of QA, as they are being widely used in radiation therapy planning, dose calculations, post-implant dosimetry, and prognoses. A vigorous and adaptivemore » QA program is crucial to defining the responsibility of the entire radiation therapy group and detecting deviations from the performance of high-quality treatment. As a drastic departure from CT simulation, MRI simulation requires changes in the work flow of treatment planning and image guidance. MRI guided radiotherapy platforms are being developed and commercialized to take the advantage of the advance in knowledge, technology and clinical experience. This symposium will from an educational perspective discuss the scope and specific issues related to MRI guided radiotherapy. Learning Objectives: Understand the difference between a standard and a radiotherapy-specific MRI QA program. Understand the effects of MRI artifacts (geometric distortion and motion) on radiotherapy. Understand advanced MRI techniques (ultrashort echo, fast MRI including dynamic MRI and 4DMRI, diffusion, perfusion, and MRS) and related QA. Understand the methods to prepare MRI for treatment planning (electron density assignment, multimodality image registration, segmentation and motion management). Current status of MRI guided treatment platforms. Dr. Jihong Wang has a research grant with Elekta-MRL project. Dr. Ke Sheng receives research grants from Varian Medical systems.« less

  16. Dynamic MRI to quantify musculoskeletal motion: A systematic review of concurrent validity and reliability, and perspectives for evaluation of musculoskeletal disorders.

    PubMed

    Borotikar, Bhushan; Lempereur, Mathieu; Lelievre, Mathieu; Burdin, Valérie; Ben Salem, Douraied; Brochard, Sylvain

    2017-01-01

    To report evidence for the concurrent validity and reliability of dynamic MRI techniques to evaluate in vivo joint and muscle mechanics, and to propose recommendations for their use in the assessment of normal and impaired musculoskeletal function. The search was conducted on articles published in Web of science, PubMed, Scopus, Academic search Premier, and Cochrane Library between 1990 and August 2017. Studies that reported the concurrent validity and/or reliability of dynamic MRI techniques for in vivo evaluation of joint or muscle mechanics were included after assessment by two independent reviewers. Selected articles were assessed using an adapted quality assessment tool and a data extraction process. Results for concurrent validity and reliability were categorized as poor, moderate, or excellent. Twenty articles fulfilled the inclusion criteria with a mean quality assessment score of 66% (±10.4%). Concurrent validity and/or reliability of eight dynamic MRI techniques were reported, with the knee being the most evaluated joint (seven studies). Moderate to excellent concurrent validity and reliability were reported for seven out of eight dynamic MRI techniques. Cine phase contrast and real-time MRI appeared to be the most valid and reliable techniques to evaluate joint motion, and spin tag for muscle motion. Dynamic MRI techniques are promising for the in vivo evaluation of musculoskeletal mechanics; however results should be evaluated with caution since validity and reliability have not been determined for all joints and muscles, nor for many pathological conditions.

  17. Resting-state functional magnetic resonance imaging for surgical planning in pediatric patients: a preliminary experience.

    PubMed

    Roland, Jarod L; Griffin, Natalie; Hacker, Carl D; Vellimana, Ananth K; Akbari, S Hassan; Shimony, Joshua S; Smyth, Matthew D; Leuthardt, Eric C; Limbrick, David D

    2017-12-01

    OBJECTIVE Cerebral mapping for surgical planning and operative guidance is a challenging task in neurosurgery. Pediatric patients are often poor candidates for many modern mapping techniques because of inability to cooperate due to their immature age, cognitive deficits, or other factors. Resting-state functional MRI (rs-fMRI) is uniquely suited to benefit pediatric patients because it is inherently noninvasive and does not require task performance or significant cooperation. Recent advances in the field have made mapping cerebral networks possible on an individual basis for use in clinical decision making. The authors present their initial experience translating rs-fMRI into clinical practice for surgical planning in pediatric patients. METHODS The authors retrospectively reviewed cases in which the rs-fMRI analysis technique was used prior to craniotomy in pediatric patients undergoing surgery in their institution. Resting-state analysis was performed using a previously trained machine-learning algorithm for identification of resting-state networks on an individual basis. Network maps were uploaded to the clinical imaging and surgical navigation systems. Patient demographic and clinical characteristics, including need for sedation during imaging and use of task-based fMRI, were also recorded. RESULTS Twenty patients underwent rs-fMRI prior to craniotomy between December 2013 and June 2016. Their ages ranged from 1.9 to 18.4 years, and 12 were male. Five of the 20 patients also underwent task-based fMRI and one underwent awake craniotomy. Six patients required sedation to tolerate MRI acquisition, including resting-state sequences. Exemplar cases are presented including anatomical and resting-state functional imaging. CONCLUSIONS Resting-state fMRI is a rapidly advancing field of study allowing for whole brain analysis by a noninvasive modality. It is applicable to a wide range of patients and effective even under general anesthesia. The nature of resting-state analysis precludes any need for task cooperation. These features make rs-fMRI an ideal technology for cerebral mapping in pediatric neurosurgical patients. This review of the use of rs-fMRI mapping in an initial pediatric case series demonstrates the feasibility of utilizing this technique in pediatric neurosurgical patients. The preliminary experience presented here is a first step in translating this technique to a broader clinical practice.

  18. Pharmacological imaging as a tool to visualise dopaminergic neurotoxicity.

    PubMed

    Schrantee, A; Reneman, L

    2014-09-01

    Dopamine abnormalities underlie a wide variety of psychopathologies, including ADHD and schizophrenia. A new imaging technique, pharmacological magnetic resonance imaging (phMRI), is a promising non-invasive technique to visualize the dopaminergic system in the brain. In this review we explore the clinical potential of phMRI in detecting dopamine dysfunction or neurotoxicity, assess its strengths and weaknesses and identify directions for future research. Preclinically, phMRI is able to detect severe dopaminergic abnormalities quite similar to conventional techniques such as PET and SPECT. phMRI benefits from its high spatial resolution and the possibility to visualize both local and downstream effects of dopaminergic neurotransmission. In addition, it allows for repeated measurements and assessments in vulnerable populations. The major challenge is the complex interpretation of phMRI results. Future studies in patients with dopaminergic abnormalities need to confirm the currently reviewed preclinical findings to validate the technique in a clinical setting. Eventually, based on the current review we expect that phMRI can be of use in a clinical setting involving vulnerable populations (such as children and adolescents) for diagnosis and monitoring treatment efficacy. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Advanced MRI Methods for Assessment of Chronic Liver Disease

    PubMed Central

    Taouli, Bachir; Ehman, Richard L.; Reeder, Scott B.

    2010-01-01

    MRI plays an increasingly important role for assessment of patients with chronic liver disease. MRI has numerous advantages, including lack of ionizing radiation and the possibility of performing multiparametric imaging. With recent advances in technology, advanced MRI methods such as diffusion-, perfusion-weighted MRI, MR elastography, chemical shift based fat-water separation and MR spectroscopy can now be applied to liver imaging. We will review the respective roles of these techniques for assessment of chronic liver disease. PMID:19542391

  20. Diagnostic accuracy of magnetic resonance imaging techniques for treatment response evaluation in patients with high-grade glioma, a systematic review and meta-analysis.

    PubMed

    van Dijken, Bart R J; van Laar, Peter Jan; Holtman, Gea A; van der Hoorn, Anouk

    2017-10-01

    Treatment response assessment in high-grade gliomas uses contrast enhanced T1-weighted MRI, but is unreliable. Novel advanced MRI techniques have been studied, but the accuracy is not well known. Therefore, we performed a systematic meta-analysis to assess the diagnostic accuracy of anatomical and advanced MRI for treatment response in high-grade gliomas. Databases were searched systematically. Study selection and data extraction were done by two authors independently. Meta-analysis was performed using a bivariate random effects model when ≥5 studies were included. Anatomical MRI (five studies, 166 patients) showed a pooled sensitivity and specificity of 68% (95%CI 51-81) and 77% (45-93), respectively. Pooled apparent diffusion coefficients (seven studies, 204 patients) demonstrated a sensitivity of 71% (60-80) and specificity of 87% (77-93). DSC-perfusion (18 studies, 708 patients) sensitivity was 87% (82-91) with a specificity of 86% (77-91). DCE-perfusion (five studies, 207 patients) sensitivity was 92% (73-98) and specificity was 85% (76-92). The sensitivity of spectroscopy (nine studies, 203 patients) was 91% (79-97) and specificity was 95% (65-99). Advanced techniques showed higher diagnostic accuracy than anatomical MRI, the highest for spectroscopy, supporting the use in treatment response assessment in high-grade gliomas. • Treatment response assessment in high-grade gliomas with anatomical MRI is unreliable • Novel advanced MRI techniques have been studied, but diagnostic accuracy is unknown • Meta-analysis demonstrates that advanced MRI showed higher diagnostic accuracy than anatomical MRI • Highest diagnostic accuracy for spectroscopy and perfusion MRI • Supports the incorporation of advanced MRI in high-grade glioma treatment response assessment.

  1. Systematic Review of Synthetic Computed Tomography Generation Methodologies for Use in Magnetic Resonance Imaging-Only Radiation Therapy.

    PubMed

    Johnstone, Emily; Wyatt, Jonathan J; Henry, Ann M; Short, Susan C; Sebag-Montefiore, David; Murray, Louise; Kelly, Charles G; McCallum, Hazel M; Speight, Richard

    2018-01-01

    Magnetic resonance imaging (MRI) offers superior soft-tissue contrast as compared with computed tomography (CT), which is conventionally used for radiation therapy treatment planning (RTP) and patient positioning verification, resulting in improved target definition. The 2 modalities are co-registered for RTP; however, this introduces a systematic error. Implementing an MRI-only radiation therapy workflow would be advantageous because this error would be eliminated, the patient pathway simplified, and patient dose reduced. Unlike CT, in MRI there is no direct relationship between signal intensity and electron density; however, various methodologies for MRI-only RTP have been reported. A systematic review of these methods was undertaken. The PRISMA guidelines were followed. Embase and Medline databases were searched (1996 to March, 2017) for studies that generated synthetic CT scans (sCT)s for MRI-only radiation therapy. Sixty-one articles met the inclusion criteria. This review showed that MRI-only RTP techniques could be grouped into 3 categories: (1) bulk density override; (2) atlas-based; and (3) voxel-based techniques, which all produce an sCT scan from MR images. Bulk density override techniques either used a single homogeneous or multiple tissue override. The former produced large dosimetric errors (>2%) in some cases and the latter frequently required manual bone contouring. Atlas-based techniques used both single and multiple atlases and included methods incorporating pattern recognition techniques. Clinically acceptable sCTs were reported, but atypical anatomy led to erroneous results in some cases. Voxel-based techniques included methods using routine and specialized MRI sequences, namely ultra-short echo time imaging. High-quality sCTs were produced; however, use of multiple sequences led to long scanning times increasing the chances of patient movement. Using nonroutine sequences would currently be problematic in most radiation therapy centers. Atlas-based and voxel-based techniques were found to be the most clinically useful methods, with some studies reporting dosimetric differences of <1% between planning on the sCT and CT and <1-mm deviations when using sCTs for positional verification. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Dynamic MRI to quantify musculoskeletal motion: A systematic review of concurrent validity and reliability, and perspectives for evaluation of musculoskeletal disorders

    PubMed Central

    Lempereur, Mathieu; Lelievre, Mathieu; Burdin, Valérie; Ben Salem, Douraied; Brochard, Sylvain

    2017-01-01

    Purpose To report evidence for the concurrent validity and reliability of dynamic MRI techniques to evaluate in vivo joint and muscle mechanics, and to propose recommendations for their use in the assessment of normal and impaired musculoskeletal function. Materials and methods The search was conducted on articles published in Web of science, PubMed, Scopus, Academic search Premier, and Cochrane Library between 1990 and August 2017. Studies that reported the concurrent validity and/or reliability of dynamic MRI techniques for in vivo evaluation of joint or muscle mechanics were included after assessment by two independent reviewers. Selected articles were assessed using an adapted quality assessment tool and a data extraction process. Results for concurrent validity and reliability were categorized as poor, moderate, or excellent. Results Twenty articles fulfilled the inclusion criteria with a mean quality assessment score of 66% (±10.4%). Concurrent validity and/or reliability of eight dynamic MRI techniques were reported, with the knee being the most evaluated joint (seven studies). Moderate to excellent concurrent validity and reliability were reported for seven out of eight dynamic MRI techniques. Cine phase contrast and real-time MRI appeared to be the most valid and reliable techniques to evaluate joint motion, and spin tag for muscle motion. Conclusion Dynamic MRI techniques are promising for the in vivo evaluation of musculoskeletal mechanics; however results should be evaluated with caution since validity and reliability have not been determined for all joints and muscles, nor for many pathological conditions. PMID:29232401

  3. Quantitative techniques for musculoskeletal MRI at 7 Tesla

    PubMed Central

    Taylor, Meredith D.; Tarbox, Grayson J.; Palmer, Antony J.; Park, Daniel J.

    2016-01-01

    Whole-body 7 Tesla MRI scanners have been approved solely for research since they appeared on the market over 10 years ago, but may soon be approved for selected clinical neurological and musculoskeletal applications in both the EU and the United States. There has been considerable research work on musculoskeletal applications at 7 Tesla over the past decade, including techniques for ultra-high resolution morphological imaging, 3D T2 and T2* mapping, ultra-short TE applications, diffusion tensor imaging of cartilage, and several techniques for assessing proteoglycan content in cartilage. Most of this work has been done in the knee or other extremities, due to technical difficulties associated with scanning areas such as the hip and torso at 7 Tesla. In this manuscript, we first provide some technical context for 7 Tesla imaging, including challenges and potential advantages. We then review the major quantitative MRI techniques being applied to musculoskeletal applications on 7 Tesla whole-body systems. PMID:28090448

  4. Wallerian Degeneration Beyond the Corticospinal Tracts: Conventional and Advanced MRI Findings.

    PubMed

    Chen, Yin Jie; Nabavizadeh, Seyed Ali; Vossough, Arastoo; Kumar, Sunil; Loevner, Laurie A; Mohan, Suyash

    2017-05-01

    Wallerian degeneration (WD) is defined as progressive anterograde disintegration of axons and accompanying demyelination after an injury to the proximal axon or cell body. Since the 1980s and 1990s, conventional magnetic resonance imaging (MRI) sequences have been shown to be sensitive to changes of WD in the subacute to chronic phases. More recently, advanced MRI techniques, such as diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI), have demonstrated some of earliest changes attributed to acute WD, typically on the order of days. In addition, there is increasing evidence on the value of advanced MRI techniques in providing important prognostic information related to WD. This article reviews the utility of conventional and advanced MRI techniques for assessing WD, by focusing not only on the corticospinal tract but also other neural tracts less commonly thought of, including corticopontocerebellar tract, dentate-rubro-olivary pathway, posterior column of the spinal cord, corpus callosum, limbic circuit, and optic pathway. The basic anatomy of these neural pathways will be discussed, followed by a comprehensive review of existing literature supported by instructive clinical examples. The goal of this review is for readers to become more familiar with both conventional and advanced MRI findings of WD involving important neural pathways, as well as to illustrate increasing utility of advanced MRI techniques in providing important prognostic information for various pathologies. Copyright © 2016 by the American Society of Neuroimaging.

  5. DCE-MRI: a review and applications in veterinary oncology.

    PubMed

    Boss, M Keara; Muradyan, N; Thrall, D E

    2013-06-01

    Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is a functional imaging technique that assesses the physiology of tumour tissue by exploiting abnormal tumour microvasculature. Advances made through DCE-MRI include improvement in the diagnosis of cancer, optimization of treatment choices, assessment of treatment efficacy and non-invasive identification of prognostic information. DCE-MRI enables quantitative assessment of tissue vessel density, integrity, and permeability, and this information can be applied to study of angiogenesis, hypoxia and the evaluation of various biomarkers. Reproducibility of DCE-MRI results is important in determining the significance of observed changes in the parameters. As improvements are made towards the utility of DCE-MRI and interpreting biologic associations, the technique will be applied more frequently in the study of cancer in animals. Given the importance of tumour perfusion with respect to tumour oxygenation and drug delivery, the use of DCE-MRI is a convenient and powerful way to gain basic information about a tumour. © 2011 John Wiley & Sons Ltd.

  6. Various diffusion magnetic resonance imaging techniques for pancreatic cancer

    PubMed Central

    Tang, Meng-Yue; Zhang, Xiao-Ming; Chen, Tian-Wu; Huang, Xiao-Hua

    2015-01-01

    Pancreatic cancer is one of the most common malignant tumors and remains a treatment-refractory cancer with a poor prognosis. Currently, the diagnosis of pancreatic neoplasm depends mainly on imaging and which methods are conducive to detecting small lesions. Compared to the other techniques, magnetic resonance imaging (MRI) has irreplaceable advantages and can provide valuable information unattainable with other noninvasive or minimally invasive imaging techniques. Advances in MR hardware and pulse sequence design have particularly improved the quality and robustness of MRI of the pancreas. Diffusion MR imaging serves as one of the common functional MRI techniques and is the only technique that can be used to reflect the diffusion movement of water molecules in vivo. It is generally known that diffusion properties depend on the characterization of intrinsic features of tissue microdynamics and microstructure. With the improvement of the diffusion models, diffusion MR imaging techniques are increasingly varied, from the simplest and most commonly used technique to the more complex. In this review, the various diffusion MRI techniques for pancreatic cancer are discussed, including conventional diffusion weighted imaging (DWI), multi-b DWI based on intra-voxel incoherent motion theory, diffusion tensor imaging and diffusion kurtosis imaging. The principles, main parameters, advantages and limitations of these techniques, as well as future directions for pancreatic diffusion imaging are also discussed. PMID:26753059

  7. Magnetic resonance imaging-guided navigation with a thermoplastic shell for breast-conserving surgery.

    PubMed

    Abe, M; Kiryu, T; Sonoda, K; Kashiki, Y

    2011-11-01

    The aim of this study was to evaluate the accuracy of a magnetic resonance imaging (MRI) marking technique with a drape-type thermoplastic shell for planning breast-conserving surgery (BCS). A prospective review was performed on 35 consecutive patients who underwent MRI in the supine position and used the specified MRI marking technique. Eleven cases underwent pre-operative chemotherapy and 24 cases did not. After immobilizing the breast mound with a drape-type thermoplastic shell, patients underwent MRI, and the location of the lesion was marked on the shell. Resection lines were dyed blue by indigo carmine, which was pushed through the pores of the shell. Specimens obtained during BCS were sliced into 5-mm contiguous sections, and the margin was assessed for each specimen. Cancer foci less than 5 mm from the margin were classified as positive. Of 35 patients, 33 were included in the analysis; 2 were excluded due to a lack of effect of pre-operative chemotherapy. Of these 33 patients, 25 (75.8%) had negative margins and 7 (21.2%) had positive margins. Our MRI marking technique may be useful for evaluating the extent of tumors that were determined by MRI alone. Long-term outcomes of this technique should be evaluated further. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. MO-D-PinS Room/Hall E-00: MR Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2016-06-15

    MRI, with its excellent soft tissue contrast and its ability to provide physiological as well as anatomical information, is becoming increasingly used in radiation therapy for treatment planning, image-guided radiation therapy, and treatment evaluation. This session will explore solutions to integrating MRI into the simulation process. Obstacles for using MRI for simulation include distortions and artifacts, image acquisition speed, complexity of imaging techniques, and lack of electron density information. Partners in Solutions presents vendor representatives who will present their approaches to meeting these challenges and others. An increased awareness of how MRI simulation works will allow physicists to better understandmore » and use this powerful technique. The speakers are all employees who are presenting information about their company’s products.« less

  9. Comprehensive Review on Magnetic Resonance Imaging in Alzheimer's Disease.

    PubMed

    Dona, Olga; Thompson, Jeff; Druchok, Cheryl

    2016-01-01

    Alzheimer's disease (AD) is the most common cause of dementia in the elderly. However, definitive diagnosis of AD is only achievable postmortem and currently relies on clinical neurological evaluation. Magnetic resonance imaging (MRI) can evaluate brain changes typical of AD, including brain atrophy, presence of amyloid β (Aβ) plaques, and functional and biochemical abnormalities. Structural MRI (sMRI) has historically been used to assess the inherent brain atrophy present in AD. However, new techniques have recently emerged that have refined sMRI into a more precise tool to quantify the thickness and volume of AD-sensitive cerebral structures. Aβ plaques, a defining pathology of AD, are widely believed to contribute to the progressive cognitive decline in AD, but accurate assessment is only possible on autopsy. In vivo MRI of plaques, although currently limited to mouse models of AD, is a very promising technique. Measuring changes in activation and connectivity in AD-specific regions of the brain can be performed with functional MRI (fMRI). To help distinguish AD from diseases with similar symptoms, magnetic resonance spectroscopy (MRS) can be used to look for differing metabolite concentrations in vivo. Together, these MR techniques, evaluating various brain changes typical of AD, may help to provide a more definitive diagnosis and ease the assessment of the disease over time, noninvasively.

  10. Diffusion MRI in the heart

    PubMed Central

    Mekkaoui, Choukri; Reese, Timothy G.; Jackowski, Marcel P.; Bhat, Himanshu

    2015-01-01

    Diffusion MRI provides unique information on the structure, organization, and integrity of the myocardium without the need for exogenous contrast agents. Diffusion MRI in the heart, however, has proven technically challenging because of the intrinsic non‐rigid deformation during the cardiac cycle, displacement of the myocardium due to respiratory motion, signal inhomogeneity within the thorax, and short transverse relaxation times. Recently developed accelerated diffusion‐weighted MR acquisition sequences combined with advanced post‐processing techniques have improved the accuracy and efficiency of diffusion MRI in the myocardium. In this review, we describe the solutions and approaches that have been developed to enable diffusion MRI of the heart in vivo, including a dual‐gated stimulated echo approach, a velocity‐ (M 1) or an acceleration‐ (M 2) compensated pulsed gradient spin echo approach, and the use of principal component analysis filtering. The structure of the myocardium and the application of these techniques in ischemic heart disease are also briefly reviewed. The advent of clinical MR systems with stronger gradients will likely facilitate the translation of cardiac diffusion MRI into clinical use. The addition of diffusion MRI to the well‐established set of cardiovascular imaging techniques should lead to new and complementary approaches for the diagnosis and evaluation of patients with heart disease. © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. PMID:26484848

  11. OARSI Clinical Trials Recommendations for Hip Imaging in Osteoarthritis

    PubMed Central

    Gold, Garry E.; Cicuttini, Flavia; Crema, Michel D.; Eckstein, Felix; Guermazi, Ali; Kijowski, Richard; Link, Thomas M.; Maheu, Emmanuel; Martel-Pelletier, Johanne; Miller, Colin G.; Pelletier, Jean-Pierre; Peterfy, Charles G.; Potter, Hollis G.; Roemer, Frank W.; Hunter, David. J

    2015-01-01

    Imaging of hip in osteoarthritis (OA) has seen considerable progress in the past decade, with the introduction of new techniques that may be more sensitive to structural disease changes. The purpose of this expert opinion, consensus driven recommendation is to provide detail on how to apply hip imaging in disease modifying clinical trials. It includes information on acquisition methods/ techniques (including guidance on positioning for radiography, sequence/protocol recommendations/ hardware for MRI); commonly encountered problems (including positioning, hardware and coil failures, artifacts associated with various MRI sequences); quality assurance/ control procedures; measurement methods; measurement performance (reliability, responsiveness, and validity); recommendations for trials; and research recommendations. PMID:25952344

  12. Multiresolution texture models for brain tumor segmentation in MRI.

    PubMed

    Iftekharuddin, Khan M; Ahmed, Shaheen; Hossen, Jakir

    2011-01-01

    In this study we discuss different types of texture features such as Fractal Dimension (FD) and Multifractional Brownian Motion (mBm) for estimating random structures and varying appearance of brain tissues and tumors in magnetic resonance images (MRI). We use different selection techniques including KullBack - Leibler Divergence (KLD) for ranking different texture and intensity features. We then exploit graph cut, self organizing maps (SOM) and expectation maximization (EM) techniques to fuse selected features for brain tumors segmentation in multimodality T1, T2, and FLAIR MRI. We use different similarity metrics to evaluate quality and robustness of these selected features for tumor segmentation in MRI for real pediatric patients. We also demonstrate a non-patient-specific automated tumor prediction scheme by using improved AdaBoost classification based on these image features.

  13. Structural Image Analysis of the Brain in Neuropsychology Using Magnetic Resonance Imaging (MRI) Techniques.

    PubMed

    Bigler, Erin D

    2015-09-01

    Magnetic resonance imaging (MRI) of the brain provides exceptional image quality for visualization and neuroanatomical classification of brain structure. A variety of image analysis techniques provide both qualitative as well as quantitative methods to relate brain structure with neuropsychological outcome and are reviewed herein. Of particular importance are more automated methods that permit analysis of a broad spectrum of anatomical measures including volume, thickness and shape. The challenge for neuropsychology is which metric to use, for which disorder and the timing of when image analysis methods are applied to assess brain structure and pathology. A basic overview is provided as to the anatomical and pathoanatomical relations of different MRI sequences in assessing normal and abnormal findings. Some interpretive guidelines are offered including factors related to similarity and symmetry of typical brain development along with size-normalcy features of brain anatomy related to function. The review concludes with a detailed example of various quantitative techniques applied to analyzing brain structure for neuropsychological outcome studies in traumatic brain injury.

  14. Diffusion MRI in the heart.

    PubMed

    Mekkaoui, Choukri; Reese, Timothy G; Jackowski, Marcel P; Bhat, Himanshu; Sosnovik, David E

    2017-03-01

    Diffusion MRI provides unique information on the structure, organization, and integrity of the myocardium without the need for exogenous contrast agents. Diffusion MRI in the heart, however, has proven technically challenging because of the intrinsic non-rigid deformation during the cardiac cycle, displacement of the myocardium due to respiratory motion, signal inhomogeneity within the thorax, and short transverse relaxation times. Recently developed accelerated diffusion-weighted MR acquisition sequences combined with advanced post-processing techniques have improved the accuracy and efficiency of diffusion MRI in the myocardium. In this review, we describe the solutions and approaches that have been developed to enable diffusion MRI of the heart in vivo, including a dual-gated stimulated echo approach, a velocity- (M 1 ) or an acceleration- (M 2 ) compensated pulsed gradient spin echo approach, and the use of principal component analysis filtering. The structure of the myocardium and the application of these techniques in ischemic heart disease are also briefly reviewed. The advent of clinical MR systems with stronger gradients will likely facilitate the translation of cardiac diffusion MRI into clinical use. The addition of diffusion MRI to the well-established set of cardiovascular imaging techniques should lead to new and complementary approaches for the diagnosis and evaluation of patients with heart disease. © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  15. MRI Post-processing in Pre-surgical Evaluation

    PubMed Central

    Wang, Z. Irene; Alexopoulos, Andreas V.

    2016-01-01

    Purpose of Review Advanced MRI post-processing techniques are increasingly used to complement visual analysis and elucidate structural epileptogenic lesions. This review summarizes recent developments in MRI post-processing in the context of epilepsy pre-surgical evaluation, with the focus on patients with unremarkable MRI by visual analysis (i.e., “nonlesional” MRI). Recent Findings Various methods of MRI post-processing have been reported to show additional clinical values in the following areas: (1) lesion detection on an individual level; (2) lesion confirmation for reducing the risk of over reading the MRI; (3) detection of sulcal/gyral morphologic changes that are particularly difficult for visual analysis; and (4) delineation of cortical abnormalities extending beyond the visible lesion. Future directions to improve performance of MRI post-processing include using higher magnetic field strength for better signal and contrast to noise ratio, adopting a multi-contrast frame work, and integration with other noninvasive modalities. Summary MRI post-processing can provide essential value to increase the yield of structural MRI and should be included as part of the presurgical evaluation of nonlesional epilepsies. MRI post-processing allows for more accurate identification/delineation of cortical abnormalities, which should then be more confidently targeted and mapped. PMID:26900745

  16. Intraoperative 3 tesla magnetic resonance imaging: our experience in tumors.

    PubMed

    García-Baizán, A; Tomás-Biosca, A; Bartolomé Leal, P; Domínguez, P D; García de Eulate Ruiz, R; Tejada, S; Zubieta, J L

    To report our experience in the use of 3 tesla intraoperative magnetic resonance imaging (MRI) in neurosurgical procedures for tumors, and to evaluate the criteria for increasing the extension of resection. This retrospective study included all consecutive intraoperative MRI studies done for neuro-oncologic disease in the first 13 months after the implementation of the technique. We registered possible immediate complications, the presence of tumor remnants, and whether the results of the intraoperative MRI study changed the surgical management. We recorded the duration of surgery in all cases. The most common tumor was recurrent glioblastoma, followed by primary glioblastoma and metastases. Complete resection was achieved in 28%, and tumor remnants remained in 72%. Intraoperative MRI enabled neurosurgeons to improve the extent of the resection in 85% of cases. The mean duration of surgery was 390±122minutes. Intraoperative MRI using a strong magnetic field (3 teslas) is a valid new technique that enables precise study of the tumor resection to determine whether the resection can be extended without damaging eloquent zones. Although the use of MRI increases the duration of surgery, the time required decreases as the team becomes more familiar with the technique. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. 4D flow imaging with MRI

    PubMed Central

    Stankovic, Zoran; Allen, Bradley D.; Garcia, Julio; Jarvis, Kelly B.

    2014-01-01

    Magnetic resonance imaging (MRI) has become an important tool for the clinical evaluation of patients with cardiovascular disease. Since its introduction in the late 1980s, 2-dimensional phase contrast MRI (2D PC-MRI) has become a routine part of standard-of-care cardiac MRI for the assessment of regional blood flow in the heart and great vessels. More recently, time-resolved PC-MRI with velocity encoding along all three flow directions and three-dimensional (3D) anatomic coverage (also termed ‘4D flow MRI’) has been developed and applied for the evaluation of cardiovascular hemodynamics in multiple regions of the human body. 4D flow MRI allows for the comprehensive evaluation of complex blood flow patterns by 3D blood flow visualization and flexible retrospective quantification of flow parameters. Recent technical developments, including the utilization of advanced parallel imaging techniques such as k-t GRAPPA, have resulted in reasonable overall scan times, e.g., 8-12 minutes for 4D flow MRI of the aorta and 10-20 minutes for whole heart coverage. As a result, the application of 4D flow MRI in a clinical setting has become more feasible, as documented by an increased number of recent reports on the utility of the technique for the assessment of cardiac and vascular hemodynamics in patient studies. A number of studies have demonstrated the potential of 4D flow MRI to provide an improved assessment of hemodynamics which might aid in the diagnosis and therapeutic management of cardiovascular diseases. The purpose of this review is to describe the methods used for 4D flow MRI acquisition, post-processing and data analysis. In addition, the article provides an overview of the clinical applications of 4D flow MRI and includes a review of applications in the heart, thoracic aorta and hepatic system. PMID:24834414

  18. SEOM-SERAM-SEMNIM guidelines on the use of functional and molecular imaging techniques in advanced non-small-cell lung cancer.

    PubMed

    Fernández Pérez, G; Sánchez Escribano, R; García Vicente, A M; Luna Alcalá, A; Ceballos Viro, J; Delgado Bolton, R C; Vilanova Busquets, J C; Sánchez Rovira, P; Fierro Alanis, M P; García Figueiras, R; Alés Martínez, J E

    2018-05-25

    Imaging in oncology is an essential tool for patient management but its potential is being profoundly underutilized. Each of the techniques used in the diagnostic process also conveys functional information that can be relevant in treatment decision making. New imaging algorithms and techniques enhance our knowledge about the phenotype of the tumor and its potential response to different therapies. Functional imaging can be defined as the one that provides information beyond the purely morphological data, and include all the techniques that make it possible to measure specific physiological functions of the tumor, whereas molecular imaging would include techniques that allow us to measure metabolic changes. Functional and molecular techniques included in this document are based on multi-detector computed tomography (CT), 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET), magnetic resonance imaging (MRI), and hybrid equipments, integrating PET with CT (PET/CT) or MRI (PET-MRI). Lung cancer is one of the most frequent and deadly tumors although survival is increasing thanks to advances in diagnostic methods and new treatments. This increased survival poises challenges in terms of proper follow-up and definitions of response and progression, as exemplified by immune therapy-related pseudoprogression. In this consensus document, the use of functional and molecular imaging techniques will be addressed to exploit their current potential and explore future applications in the diagnosis, evaluation of response and detection of recurrence of advanced NSCLC. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Functional Magnetic Resonance Imaging and Functional Near-Infrared Spectroscopy: Insights from Combined Recording Studies

    PubMed Central

    Scarapicchia, Vanessa; Brown, Cassandra; Mayo, Chantel; Gawryluk, Jodie R.

    2017-01-01

    Although blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) is a widely available, non-invasive technique that offers excellent spatial resolution, it remains limited by practical constraints imposed by the scanner environment. More recently, functional near infrared spectroscopy (fNIRS) has emerged as an alternative hemodynamic-based approach that possesses a number of strengths where fMRI is limited, most notably in portability and higher tolerance for motion. To date, fNIRS has shown promise in its ability to shed light on the functioning of the human brain in populations and contexts previously inaccessible to fMRI. Notable contributions include infant neuroimaging studies and studies examining full-body behaviors, such as exercise. However, much like fMRI, fNIRS has technical constraints that have limited its application to clinical settings, including a lower spatial resolution and limited depth of recording. Thus, by combining fMRI and fNIRS in such a way that the two methods complement each other, a multimodal imaging approach may allow for more complex research paradigms than is feasible with either technique alone. In light of these issues, the purpose of the current review is to: (1) provide an overview of fMRI and fNIRS and their associated strengths and limitations; (2) review existing combined fMRI-fNIRS recording studies; and (3) discuss how their combined use in future research practices may aid in advancing modern investigations of human brain function. PMID:28867998

  20. Assessment of CF lung disease using motion corrected PROPELLER MRI: a comparison with CT.

    PubMed

    Ciet, Pierluigi; Serra, Goffredo; Bertolo, Silvia; Spronk, Sandra; Ros, Mirco; Fraioli, Francesco; Quattrucci, Serena; Assael, M Baroukh; Catalano, Carlo; Pomerri, Fabio; Tiddens, Harm A W M; Morana, Giovanni

    2016-03-01

    To date, PROPELLER MRI, a breathing-motion-insensitive technique, has not been assessed for cystic fibrosis (CF) lung disease. We compared this technique to CT for assessing CF lung disease in children and adults. Thirty-eight stable CF patients (median 21 years, range 6-51 years, 22 female) underwent MRI and CT on the same day. Study protocol included respiratory-triggered PROPELLER MRI and volumetric CT end-inspiratory and -expiratory acquisitions. Two observers scored the images using the CF-MRI and CF-CT systems. Scores were compared with intra-class correlation coefficient (ICC) and Bland-Altman plots. The sensitivity and specificity of MRI versus CT were calculated. MRI sensitivity for detecting severe CF bronchiectasis was 0.33 (CI 0.09-0.57), while specificity was 100% (CI 0.88-1). ICCs for bronchiectasis and trapped air were as follows: MRI-bronchiectasis (0.79); CT-bronchiectasis (0.85); MRI-trapped air (0.51); CT-trapped air (0.87). Bland-Altman plots showed an MRI tendency to overestimate the severity of bronchiectasis in mild CF disease and underestimate bronchiectasis in severe disease. Motion correction in PROPELLER MRI does not improve assessment of CF lung disease compared to CT. However, the good inter- and intra-observer agreement and the high specificity suggest that MRI might play a role in the short-term follow-up of CF lung disease (i.e. pulmonary exacerbations). PROPELLER MRI does not match CT sensitivity to assess CF lung disease. PROPELLER MRI has lower sensitivity than CT to detect severe bronchiectasis. PROPELLER MRI has good to very good intra- and inter-observer variability. PROPELLER MRI can be used for short-term follow-up studies in CF.

  1. Functional Cardiac Magnetic Resonance Imaging (MRI) in the Assessment of Myocardial Viability and Perfusion

    PubMed Central

    2003-01-01

    Executive Summary Objective The objective of this health technology policy assessment was to determine the effectiveness safety and cost-effectiveness of using functional cardiac magnetic resonance imaging (MRI) for the assessment of myocardial viability and perfusion in patients with coronary artery disease and left ventricular dysfunction. Results Functional MRI has become increasingly investigated as a noninvasive method for assessing myocardial viability and perfusion. Most patients in the published literature have mild to moderate impaired LV function. It is possible that the severity of LV dysfunction may be an important factor that can alter the diagnostic accuracy of imaging techniques. There is some evidence of comparable or better performance of functional cardiac MRI for the assessment of myocardial viability and perfusion compared with other imaging techniques. However limitations to most of the studies included: Functional cardiac MRI studies that assess myocardial viability and perfusion have had small sample sizes. Some studies assessed myocardial viability/perfusion in patients who had already undergone revascularization, or excluded patients with a prior MI (Schwitter et al., 2001). Lack of explicit detail of patient recruitment. Patients with LVEF >35%. Interstudy variability in post MI imaging time(including acute or chronic MI), when patients with a prior MI were included. Poor interobserver agreement (kappa statistic) in the interpretation of the results. Traditionally, 0.80 is considered “good”. Cardiac MRI measurement of myocardial perfusion to as an adjunct tool to help diagnose CAD (prior to a definitive coronary angiography) has also been examined in some studies, with methodological limitations, yielding comparable results. Many studies examining myocardial viability and perfusion report on the accuracy of imaging methods with limited data on long-term patient outcome and management. Kim et al. (2000) revealed that the transmural extent of hyperenhancement was significantly related to the likelihood of improvement in contractility after revascularization. However, the LVEF in the patient population was 43% prior to revascularization. It is important to know whether the technique has the same degree of accuracy in patients who have more severe LV dysfunction and who would most benefit from an assessment of myocardial viability. “Substantial” viability used as a measure of a patient’s ability to recover after revascularization has not been definitively reported (how much viability is enough?). Patients with severe LV dysfunction are more likely to have mixtures of surviving myocardium, including normal, infarcted, stunned and hibernating myocardium (Cowley et al., 1999). This may lead to a lack of homogeneity of response to testing and to revascularization and contribute to inter- and intra-study differences. There is a need for a large prospective study with adequate follow-up time for patients with CAD and LV dysfunction (LVEF<35%) comparing MRI and an alternate imaging technique. There is some evidence that MRI has comparable sensitivity, specificity and accuracy to PET for determining myocardial viability. However, there is a lack of evidence comparing the accuracy of these two techniques to predict LV function recovery. In addition, some studies refer to PET as the gold standard for the assessment of myocardial viability. Therefore, PET may be an ideal noninvasive imaging comparator to MRI for a prospective study with follow-up. To date, there is a lack of cost-effectiveness analyses (or any economic analyses) of functional cardiac MRI versus an alternate noninvasive imaging method for the assessment of myocardial viability/perfusion. Conclusion There is some evidence that the accuracy of functional cardiac MRI compares favourably with alternate imaging techniques for the assessment of myocardial viability and perfusion. There is insufficient evidence whether functional cardiac MRI can better select which patients [who have CAD and severe LV dysfunction (LVEF <35%)] may benefit from revascularization compared with an alternate noninvasive imaging technology. There is insufficient evidence whether functional cardiac MRI can better select which patients should proceed to invasive coronary angiography for the definitive diagnosis of CAD, compared with an alternate noninvasive imaging technology. There is a need for a large prospective (potentially multicentre) study with adequate follow-up time for patients with CAD and LV dysfunction (LVEF<35%) comparing MRI and PET. Since longer follow-up time may be associated with restenosis or graft occlusion, it has been suggested to have serial measurements after revascularization (Cowley et al., 1999). PMID:23074446

  2. MRI as a tool to study brain structure from mouse models for mental retardation

    NASA Astrophysics Data System (ADS)

    Verhoye, Marleen; Sijbers, Jan; Kooy, R. F.; Reyniers, E.; Fransen, E.; Oostra, B. A.; Willems, Peter; Van der Linden, Anne-Marie

    1998-07-01

    Nowadays, transgenic mice are a common tool to study brain abnormalities in neurological disorders. These studies usually rely on neuropathological examinations, which have a number of drawbacks, including the risk of artefacts introduced by fixation and dehydration procedures. Here we present 3D Fast Spin Echo Magnetic Resonance Imaging (MRI) in combination with 2D and 3D segmentation techniques as a powerful tool to study brain anatomy. We set up MRI of the brain in mouse models for the fragile X syndrome (FMR1 knockout) and Corpus callosum hypoplasia, mental Retardation, Adducted thumbs, Spastic paraplegia and Hydrocephalus (CRASH) syndrome (L1CAM knockout). Our major goal was to determine qualitative and quantitative differences in specific brain structures. MRI of the brain of fragile X and CRASH patients has revealed alterations in the size of specific brain structures, including the cerebellar vermis and the ventricular system. In the present MRI study of the brain from fragile X knockout mice, we have measured the size of the brain, cerebellum and 4th ventricle, which were reported as abnormal in human fragile X patients, but found no evidence for altered brain regions in the mouse model. In CRASH syndrome, the most specific brain abnormalities are vermis hypoplasia and abnormalities of the ventricular system with some degree of hydrocephalus. With the MRI study of L1CAM knockout mice we found vermis hypoplasia, abnormalities of the ventricular system including dilatation of the lateral and the 4th ventricles. These subtle abnormalities were not detected upon standard neuropathological examination. Here we proved that this sensitive MRI technique allows to measure small differences which can not always be detected by means of pathology.

  3. MRI-negative temporal lobe epilepsy-What do we know?

    PubMed

    Muhlhofer, Wolfgang; Tan, Yee-Leng; Mueller, Susanne G; Knowlton, Robert

    2017-05-01

    Temporal lobe epilepsy (TLE) is the most common focal epilepsy in adults. TLE has a high chance of becoming medically refractory, and as such, is frequently considered for further evaluation and surgical intervention. Up to 30% of TLE cases, however, can have normal ("nonlesional" or negative) magnetic resonance imaging (MRI) results, which complicates the presurgical workup and has been associated with worse surgical outcomes. Helped by contributions from advanced imaging techniques and electrical source localization, the number of surgeries performed on MRI-negative TLE has increased over the last decade. Thereby new epidemiologic, clinical, electrophysiologic, neuropathologic, and surgical data of MRI-negative TLE has emerged, showing characteristics that are distinct from those of lesional TLE. This review article summarizes what we know today about MRI-negative TLE, and discusses the comprehensive assessment of patients with MRI-negative TLE in a structured and systematic approach. It also includes a concise description of the most recent developments in structural and functional imaging, and highlights postprocessing imaging techniques that have been shown to add localization value in MRI-negative epilepsies. We evaluate surgical outcomes of MRI-negative TLE, identify prognostic makers of postoperative seizure freedom, and discuss strategies for optimizing the selection of surgical candidates in this group. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  4. A historical overview of magnetic resonance imaging, focusing on technological innovations.

    PubMed

    Ai, Tao; Morelli, John N; Hu, Xuemei; Hao, Dapeng; Goerner, Frank L; Ager, Bryan; Runge, Val M

    2012-12-01

    Magnetic resonance imaging (MRI) has now been used clinically for more than 30 years. Today, MRI serves as the primary diagnostic modality for many clinical problems. In this article, historical developments in the field of MRI will be discussed with a focus on technological innovations. Topics include the initial discoveries in nuclear magnetic resonance that allowed for the advent of MRI as well as the development of whole-body, high field strength, and open MRI systems. Dedicated imaging coils, basic pulse sequences, contrast-enhanced, and functional imaging techniques will also be discussed in a historical context. This article describes important technological innovations in the field of MRI, together with their clinical applicability today, providing critical insights into future developments.

  5. The efficacy and utilisation of preoperative multiparametric magnetic resonance imaging in robot-assisted radical prostatectomy: does it change the surgical dissection plan?

    PubMed

    Tavukçu, Hasan Hüseyin; Aytaç, Ömer; Balcı, Numan Cem; Kulaksızoğlu, Haluk; Atuğ, Fatih

    2017-12-01

    We investigated the effect of the use of multiparametric prostate magnetic resonance imaging (mp-MRI) on the dissection plan of the neurovascular bundle and the oncological results of our patients who underwent robot-assisted radical prostatectomy. We prospectively evaluated 60 consecutive patients, including 30 patients who had (Group 1), and 30 patients who had not (Group 2) mp-MRI before robot-assisted radical prostatectomy. Based on the findings of mp-MRI, the dissection plan was changed as intrafascial, interfascial, and extrafascial in the mp-MRI group. Two groups were compared in terms of age, prostate-specific antigen (PSA), Gleason sum scores and surgical margin positivity. There was no statistically significant difference between the two groups in terms of age, PSA, biopsy Gleason score, final pathological Gleason score and surgical margin positivity. mp-MRI changed the initial surgical plan in 18 of 30 patients (60%) in Group 1. In seventeen of these patients (56%) surgical plan was changed from non-nerve sparing to interfascial nerve sparing plan. In one patient dissection plan was changed to non-nerve sparing technique which had extraprostatic extension on final pathology. Surgical margin positivity was similar in Groups 1, and 2 (16% and 13%, respectively) although, Group 1 had higher number of high- risk patients. mp-MRI confirmed the primary tumour localisation in the final pathology in 27 of of 30 patients (90%). Preoperative mp-MRI effected the decision to perform a nerve-sparing technique in 56% of the patients in our study; moreover, changing the dissection plan from non-nerve-sparing technique to a nerve sparing technique did not increase the rate of surgical margin positivity.

  6. EEG-Informed fMRI: A Review of Data Analysis Methods

    PubMed Central

    Abreu, Rodolfo; Leal, Alberto; Figueiredo, Patrícia

    2018-01-01

    The simultaneous acquisition of electroencephalography (EEG) with functional magnetic resonance imaging (fMRI) is a very promising non-invasive technique for the study of human brain function. Despite continuous improvements, it remains a challenging technique, and a standard methodology for data analysis is yet to be established. Here we review the methodologies that are currently available to address the challenges at each step of the data analysis pipeline. We start by surveying methods for pre-processing both EEG and fMRI data. On the EEG side, we focus on the correction for several MR-induced artifacts, particularly the gradient and pulse artifacts, as well as other sources of EEG artifacts. On the fMRI side, we consider image artifacts induced by the presence of EEG hardware inside the MR scanner, and the contamination of the fMRI signal by physiological noise of non-neuronal origin, including a review of several approaches to model and remove it. We then provide an overview of the approaches specifically employed for the integration of EEG and fMRI when using EEG to predict the blood oxygenation level dependent (BOLD) fMRI signal, the so-called EEG-informed fMRI integration strategy, the most commonly used strategy in EEG-fMRI research. Finally, we systematically review methods used for the extraction of EEG features reflecting neuronal phenomena of interest. PMID:29467634

  7. Optimizing MRI for imaging peripheral arthritis.

    PubMed

    Hodgson, Richard J; O'Connor, Philip J; Ridgway, John P

    2012-11-01

    MRI is increasingly used for the assessment of both inflammatory arthritis and osteoarthritis. The wide variety of MRI systems in use ranges from low-field, low-cost extremity units to whole-body high-field 7-T systems, each with different strengths for specific applications. The availability of dedicated radiofrequency phased-array coils allows the rapid acquisition of high-resolution images of one or more peripheral joints. MRI is uniquely flexible in its ability to manipulate image contrast, and individual MR sequences may be combined into protocols to sensitively visualize multiple features of arthritis including synovitis, bone marrow lesions, erosions, cartilage changes, and tendinopathy. Careful choice of the imaging parameters allows images to be generated with optimal quality while minimizing unwanted artifacts. Finally, there are many novel MRI techniques that can quantify disease levels in arthritis in tissues including synovitis and cartilage. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  8. MRI-guided focused ultrasound surgery in musculoskeletal diseases: the hot topics

    PubMed Central

    Napoli, Alessandro; Sacconi, Beatrice; Battista, Giuseppe; Guglielmi, Giuseppe; Catalano, Carlo; Albisinni, Ugo

    2016-01-01

    MRI-guided focused ultrasound surgery (MRgFUS) is a minimally invasive treatment guided by the most sophisticated imaging tool available in today's clinical practice. Both the imaging and therapeutic sides of the equipment are based on non-ionizing energy. This technique is a very promising option as potential treatment for several pathologies, including musculoskeletal (MSK) disorders. Apart from clinical applications, MRgFUS technology is the result of long, heavy and cumulative efforts exploring the effects of ultrasound on biological tissues and function, the generation of focused ultrasound and treatment monitoring by MRI. The aim of this article is to give an updated overview on a “new” interventional technique and on its applications for MSK and allied sciences. PMID:26607640

  9. Imaging of respiratory muscles in neuromuscular disease: A review.

    PubMed

    Harlaar, L; Ciet, P; van der Ploeg, A T; Brusse, E; van der Beek, N A M E; Wielopolski, P A; de Bruijne, M; Tiddens, H A W M; van Doorn, P A

    2018-03-01

    Respiratory muscle weakness frequently occurs in patients with neuromuscular disease. Measuring respiratory function with standard pulmonary function tests provides information about the contribution of all respiratory muscles, the lungs and airways. Imaging potentially enables the study of different respiratory muscles, including the diaphragm, separately. In this review, we provide an overview of imaging techniques used to study respiratory muscles in neuromuscular disease. We identified 26 studies which included a total of 573 patients with neuromuscular disease. Imaging of respiratory muscles was divided into static and dynamic techniques. Static techniques comprise chest radiography, B-mode (brightness mode) ultrasound, CT and MRI, and are used to assess the position and thickness of the diaphragm and the other respiratory muscles. Dynamic techniques include fluoroscopy, M-mode (motion mode) ultrasound and MRI, used to assess diaphragm motion in one or more directions. We discuss how these imaging techniques relate with spirometric values and whether these can be used to study the contribution of the different respiratory muscles in patients with neuromuscular disease. Copyright © 2017. Published by Elsevier B.V.

  10. Advanced and Conventional Magnetic Resonance Imaging in Neuropsychiatric Lupus

    PubMed Central

    Sarbu, Nicolae; Bargalló, Núria; Cervera, Ricard

    2015-01-01

    Neuropsychiatric lupus is a major diagnostic challenge, and a main cause of morbidity and mortality in patients with systemic lupus erythematosus (SLE). Magnetic resonance imaging (MRI) is, by far, the main tool for assessing the brain in this disease. Conventional and advanced MRI techniques are used to help establishing the diagnosis, to rule out alternative diagnoses, and recently, to monitor the evolution of the disease. This review explores the neuroimaging findings in SLE, including the recent advances in new MRI methods. PMID:26236469

  11. Sparse Reconstruction Techniques in MRI: Methods, Applications, and Challenges to Clinical Adoption

    PubMed Central

    Yang, Alice Chieh-Yu; Kretzler, Madison; Sudarski, Sonja; Gulani, Vikas; Seiberlich, Nicole

    2016-01-01

    The family of sparse reconstruction techniques, including the recently introduced compressed sensing framework, has been extensively explored to reduce scan times in Magnetic Resonance Imaging (MRI). While there are many different methods that fall under the general umbrella of sparse reconstructions, they all rely on the idea that a priori information about the sparsity of MR images can be employed to reconstruct full images from undersampled data. This review describes the basic ideas behind sparse reconstruction techniques, how they could be applied to improve MR imaging, and the open challenges to their general adoption in a clinical setting. The fundamental principles underlying different classes of sparse reconstructions techniques are examined, and the requirements that each make on the undersampled data outlined. Applications that could potentially benefit from the accelerations that sparse reconstructions could provide are described, and clinical studies using sparse reconstructions reviewed. Lastly, technical and clinical challenges to widespread implementation of sparse reconstruction techniques, including optimization, reconstruction times, artifact appearance, and comparison with current gold-standards, are discussed. PMID:27003227

  12. Advanced magnetic resonance imaging of neurodegenerative diseases.

    PubMed

    Agosta, Federica; Galantucci, Sebastiano; Filippi, Massimo

    2017-01-01

    Magnetic resonance imaging (MRI) is playing an increasingly important role in the study of neurodegenerative diseases, delineating the structural and functional alterations determined by these conditions. Advanced MRI techniques are of special interest for their potential to characterize the signature of each neurodegenerative condition and aid both the diagnostic process and the monitoring of disease progression. This aspect will become crucial when disease-modifying (personalized) therapies will be established. MRI techniques are very diverse and go from the visual inspection of MRI scans to more complex approaches, such as manual and automatic volume measurements, diffusion tensor MRI, and functional MRI. All these techniques allow us to investigate the different features of neurodegeneration. In this review, we summarize the most recent advances concerning the use of MRI in some of the most important neurodegenerative conditions, putting an emphasis on the advanced techniques.

  13. Contrast enhanced ultrasound and magnetic resonance imaging in hepatocellular carcinoma diagnosis.

    PubMed

    Dumitrescu, Cristiana I; Gheonea, Ioana A; Săndulescu, Larisa; Surlin, Valeriu; Săftoiu, Adrian; Dumitrescu, Daniela

    2013-12-01

    The new developments in imaging technology, including contrast enhanced ultrasound (CEUS), computed tomography (CT), and magnetic resonance imaging (MRI), allow a better diagnosis of both malignant and benign liver lesions. A retrospective trial of 126 patients was conducted in the Gastroenterology and Imaging Departments of the University of Medicine and Pharmacy Craiova, Romania. CEUS and MRI were the imaging techniques used for diagnosis of focal liver lesions (FLL), especially for hepatocellular carcinoma (HCC). Histopathology was used only in 15 cases. For each method of investigation we calculated the sensitivity, specificity, positive and negative predictive values (PPV and NPV), positive and negative likelihood ratio (+LR, -LR), accuracy and we compared the ROC curves. Statistical analysis also included the Chi-square and Kappa tests. Seventy six cases were diagnosed as HCC, with average size of 5.2±3.3 cm in diameter. The sensitivity and specificity were 71.4% and 95.6% for CEUS and 91.4%, 98.9% respectively, for MRI. When comparing the ROC curves, we found a higher area under curve for MRI (0.952) then for CEUS (0.835) (p=0.005), and 95% confidence interval of 0.0343 to 0.199. No statistically significant difference in diagnosis of FLL was found between CEUS and MRI (p > 0.05) and the agreement between the two imaging techniques was good (k = 0.78). CEUS can be used as the first step in the diagnosis of liver lesions, but MRI remains the gold standard diagnostic method for liver tumors.

  14. A comparison of 3-T magnetic resonance imaging and computed tomography arthrography to identify structural cartilage defects of the fetlock joint in the horse.

    PubMed

    Hontoir, Fanny; Nisolle, Jean-François; Meurisse, Hubert; Simon, Vincent; Tallier, Max; Vanderstricht, Renaud; Antoine, Nadine; Piret, Joëlle; Clegg, Peter; Vandeweerd, Jean-Michel

    2014-01-01

    Articular cartilage defects are prevalent in metacarpo/metatarsophalangeal (MCP/MTP) joints of horses. The aim of this study was to determine and compare the sensitivity and specificity of 3-Tesla magnetic resonance imaging (3-T MRI) and computed tomography arthrography (CTA) to identify structural cartilage defects in the equine MCP/MTP joint. Forty distal cadaver limbs were imaged by CTA (after injection of contrast medium) and by 3-T MRI using specific sequences, namely, dual-echo in the steady-state (DESS), and sampling perfection with application-optimised contrast using different flip-angle evolutions (SPACE). Gross anatomy was used as the gold standard to evaluate sensitivity and specificity of both imaging techniques. CTA sensitivity and specificity were 0.82 and 0.96, respectively, and were significantly higher than those of MRI (0.41 and 0.93, respectively) in detecting overall cartilage defects (no defect vs. defect). The intra and inter-rater agreements were 0.96 and 0.92, respectively, and 0.82 and 0.88, respectively, for CT and MRI. The positive predictive value for MRI was low (0.57). CTA was considered a valuable tool for assessing cartilage defects in the MCP/MTP joint due to its short acquisition time, its specificity and sensitivity, and it was also more accurate than MRI. However, MRI permits assessment of soft tissues and subchondral bone and is a useful technique for joint evaluation, although clinicians should be aware of the limitations of this diagnostic technique, including reduced accuracy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Thoracic magnetic resonance imaging: pulmonary thromboembolism.

    PubMed

    Fink, Christian; Henzler, Thomas; Shirinova, Aysel; Apfaltrer, Paul; Wasser, Klaus

    2013-05-01

    Ongoing technical developments have substantially improved the potential of magnetic resonance imaging (MRI) in the assessment of the pulmonary circulation. These developments includes improved magnet and hardware design, new k-space sampling techniques (ie, parallel imaging), and alternative contrast materials. With these techniques, not only can pulmonary vessels be visualized by MR angiography with high spatial resolution but also the perfusion of the lungs and its changes in relation to pulmonary thromboembolism (PE) can be assessed. Considering venous thromboembolism as a systemic disease, MR venography might be added for the diagnosis of underlying deep venous thrombosis. A unique advantage of MRI over other imaging tests is its potential to evaluate changes in cardiac function as a result of obstruction of the pulmonary circulation, which may have a significant impact on patient monitoring and treatment. Finally, MRI does not involve radiation, which is advantageous, especially in young patients. Over the years, a number of studies have shown promising results not only for MR angiography but also for MRI of lung perfusion and for MR venography. This review article summarizes and discusses the current evidence on pulmonary MRI for patients with suspected PE.

  16. Registration of in vivo MR to histology of rodent brains using blockface imaging

    NASA Astrophysics Data System (ADS)

    Uberti, Mariano; Liu, Yutong; Dou, Huanyu; Mosley, R. Lee; Gendelman, Howard E.; Boska, Michael

    2009-02-01

    Registration of MRI to histopathological sections can enhance bioimaging validation for use in pathobiologic, diagnostic, and therapeutic evaluations. However, commonly used registration methods fall short of this goal due to tissue shrinkage and tearing after brain extraction and preparation. In attempts to overcome these limitations we developed a software toolbox using 3D blockface imaging as the common space of reference. This toolbox includes a semi-automatic brain extraction technique using constraint level sets (CLS), 3D reconstruction methods for the blockface and MR volume, and a 2D warping technique using thin-plate splines with landmark optimization. Using this toolbox, the rodent brain volume is first extracted from the whole head MRI using CLS. The blockface volume is reconstructed followed by 3D brain MRI registration to the blockface volume to correct the global deformations due to brain extraction and fixation. Finally, registered MRI and histological slices are warped to corresponding blockface images to correct slice specific deformations. The CLS brain extraction technique was validated by comparing manual results showing 94% overlap. The image warping technique was validated by calculating target registration error (TRE). Results showed a registration accuracy of a TRE < 1 pixel. Lastly, the registration method and the software tools developed were used to validate cell migration in murine human immunodeficiency virus type one encephalitis.

  17. Biochemical validity of imaging techniques (X-ray, MRI, and dGEMRIC) in degenerative disc disease of the human cervical spine-an in vivo study.

    PubMed

    Bostelmann, Richard; Bostelmann, Tamara; Nasaca, Adrian; Steiger, Hans Jakob; Zaucke, Frank; Schleich, Christoph

    2017-02-01

    On a molecular level, maturation or degeneration of human intervertebral disc is among others expressed by the content of glycosaminoglycans (GAGs). According to the degenerative status, the disc content can differ in nucleus pulposus (NP) and annulus fibrosus (AF), respectively. Research in this area was conducted mostly on postmortem samples. Although several radiological classification systems exist, none includes biochemical features. Therefore, we focused our in vivo study on a widely spread and less expensive imaging technique for the cervical spine and the correlation of radiological patterns to biochemical equivalents in the intervertebral discs. The aim of this pilot study was to (1) measure the GAG content in human cervical discs, (2) to investigate whether a topographic biochemical GAG pattern can be found, and (3) whether there is a correlation between imaging data (X-ray and magnetic resonance imaging [MRI] including delayed gadolinium-enhanced MRI of cartilage [dGEMRIC] as a special imaging technique of cartilage) and the biochemical data. We conducted a prospective experimental pilot study. Only non-responders to conservative therapy were included. All subjects were physically and neurologically examined, and they completed their questionnaires. Visual analogue scale neck and arm, Neck Disability Index score, radiological parameters (X-rays, MRI, dGEMRIC), and the content of GAG in the cervical disc were assessed. After surgical removal of 12 discs, 96 fractions of AF and NP were biochemically analyzed for the GAG content using dimethylmethylene blue assay. A quantitative pattern of GAGs in the human cervical disc was identified. There were (1) significantly (p<.001) higher values of GAGs (µg GAG/mg tissue) in the NP (169.9 SD 37.3) compared with the AF (132.4 SD 42.2), and (2) significantly (p<.005) higher values of GAGs in the posterior (right/left: 149.9/160.2) compared with the anterior (right/left: 112.0/120.2) part of the AF. Third, we found in dGEMRIC imaging a significantly (p<.008) different distribution of GAGs in the cervical disc (NP 1083.3 ms [SD 248.6], AF 925.9 ms [SD 137.6]). Finally, we found that grading of disc degeneration in X-ray and MRI was significantly correlated with neither AF- nor NP-GAG content. The GAG content in human cervical discs can be detected in vivo and is subject to a significantly (p<.05) region-specific pattern (AF vs. NP; anterior vs. posterior in the AF). Up to the levels of AF and NP, this is reproducible in MRI in dGEMRIC technique, but not in X-ray or standard MRI sequences. Potentially, the MRI in dGEMRIC technique can be used as a non-invasive in vivo indicator for disc degeneration in the cervical spine. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Magnetic resonance imaging for diagnosis of early Alzheimer's disease.

    PubMed

    Colliot, O; Hamelin, L; Sarazin, M

    2013-10-01

    A major challenge for neuroimaging is to contribute to the early diagnosis of Alzheimer's disease (AD). In particular, magnetic resonance imaging (MRI) allows detecting different types of structural and functional abnormalities at an early stage of the disease. Anatomical MRI is the most widely used technique and provides local and global measures of atrophy. The recent diagnostic criteria of "mild cognitive impairment due to AD" include hippocampal atrophy, which is considered a marker of neuronal injury. Advanced image analysis techniques generate automatic and reproducible measures both in the hippocampus and throughout the whole brain. Recent modalities such as diffusion-tensor imaging and resting-state functional MRI provide additional measures that could contribute to the early diagnosis but require further validation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  19. Multiparametric prostate MRI: technical conduct, standardized report and clinical use.

    PubMed

    Manfredi, Matteo; Mele, Fabrizio; Garrou, Diletta; Walz, Jochen; Fütterer, Jurgen J; Russo, Filippo; Vassallo, Lorenzo; Villers, Arnauld; Emberton, Mark; Valerio, Massimo

    2018-02-01

    Multiparametric prostate MRI (mp-MRI) is an emerging imaging modality for diagnosis, characterization, staging, and treatment planning of prostate cancer (PCa). The technique, results reporting, and its role in clinical practice have been the subject of significant development over the last decade. Although mp-MRI is not yet routinely used in the diagnostic pathway, almost all urological guidelines have emphasized the potential role of mp-MRI in several aspects of PCa management. Moreover, new MRI sequences and scanning techniques are currently under evaluation to improve the diagnostic accuracy of mp-MRI. This review presents an overview of mp-MRI, summarizing the technical applications, the standardized reporting systems used, and their current roles in various stages of PCa management. Finally, this critical review also reports the main limitations and future perspectives of the technique.

  20. “Awake” intraoperative functional MRI (ai-fMRI) for mapping the eloquent cortex: Is it possible in awake craniotomy?☆

    PubMed Central

    Lu, Jun-Feng; Zhang, Han; Wu, Jin-Song; Yao, Cheng-Jun; Zhuang, Dong-Xiao; Qiu, Tian-Ming; Jia, Wen-Bin; Mao, Ying; Zhou, Liang-Fu

    2012-01-01

    As a promising noninvasive imaging technique, functional MRI (fMRI) has been extensively adopted as a functional localization procedure for surgical planning. However, the information provided by preoperative fMRI (pre-fMRI) is hampered by the brain deformation that is secondary to surgical procedures. Therefore, intraoperative fMRI (i-fMRI) becomes a potential alternative that can compensate for brain shifts by updating the functional localization information during craniotomy. However, previous i-fMRI studies required that patients be under general anesthesia, preventing the wider application of such a technique as the patients cannot perform tasks unless they are awake. In this study, we propose a new technique that combines awake surgery and i-fMRI, named “awake” i-fMRI (ai-fMRI). We introduced ai-fMRI to the real-time localization of sensorimotor areas during awake craniotomy in seven patients. The results showed that ai-fMRI could successfully detect activations in the bilateral primary sensorimotor areas and supplementary motor areas for all patients, indicating the feasibility of this technique in eloquent area localization. The reliability of ai-fMRI was further validated using intraoperative stimulation mapping (ISM) in two of the seven patients. Comparisons between the pre-fMRI-derived localization result and the ai-fMRI derived result showed that the former was subject to a heavy brain shift and led to incorrect localization, while the latter solved that problem. Additionally, the approaches for the acquisition and processing of the ai-fMRI data were fully illustrated and described. Some practical issues on employing ai-fMRI in awake craniotomy were systemically discussed, and guidelines were provided. PMID:24179766

  1. A feature-based approach to combine functional MRI, structural MRI and EEG brain imaging data.

    PubMed

    Calhoun, V; Adali, T; Liu, J

    2006-01-01

    The acquisition of multiple brain imaging types for a given study is a very common practice. However these data are typically examined in separate analyses, rather than in a combined model. We propose a novel methodology to perform joint independent component analysis across image modalities, including structural MRI data, functional MRI activation data and EEG data, and to visualize the results via a joint histogram visualization technique. Evaluation of which combination of fused data is most useful is determined by using the Kullback-Leibler divergence. We demonstrate our method on a data set composed of functional MRI data from two tasks, structural MRI data, and EEG data collected on patients with schizophrenia and healthy controls. We show that combining data types can improve our ability to distinguish differences between groups.

  2. Diffusion MRI: literature review in salivary gland tumors.

    PubMed

    Attyé, A; Troprès, I; Rouchy, R-C; Righini, C; Espinoza, S; Kastler, A; Krainik, A

    2017-07-01

    Surgical resection is currently the best treatment for salivary gland tumors. A reliable magnetic resonance imaging mapping, encompassing tumor grade, location, and extension may assist safe and effective tumor resection and provide better information for patients regarding potential risks and morbidity after surgical intervention. However, direct examination of the tumor grade and extension using conventional morphological MRI remains difficult, often requiring contrast media injection and complex algorithms on perfusion imaging to estimate the degree of malignancy. In addition, contrast-enhanced MRI technique may be problematic due to the recently demonstrated gadolinium accumulation in the dentate nucleus of the cerebellum. Significant developments in magnetic resonance diffusion imaging, involving voxel-based quantitative analysis through the measurement of the apparent diffusion coefficient, have enhanced our knowledge on the different histopathological salivary tumor grades. Other diffusion imaging-derived techniques, including high-order tractography models, have recently demonstrated their usefulness in assessing the facial nerve location in parotid tumor context. All of these imaging techniques do not require contrast media injection. Our review starts by outlining the physical basis of diffusion imaging, before discussing findings from diagnostic studies testing its usefulness in assessing salivary glands tumors with diffusion MRI. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Advanced flow MRI: emerging techniques and applications

    PubMed Central

    Markl, M.; Schnell, S.; Wu, C.; Bollache, E.; Jarvis, K.; Barker, A. J.; Robinson, J. D.; Rigsby, C. K.

    2016-01-01

    Magnetic resonance imaging (MRI) techniques provide non-invasive and non-ionising methods for the highly accurate anatomical depiction of the heart and vessels throughout the cardiac cycle. In addition, the intrinsic sensitivity of MRI to motion offers the unique ability to acquire spatially registered blood flow simultaneously with the morphological data, within a single measurement. In clinical routine, flow MRI is typically accomplished using methods that resolve two spatial dimensions in individual planes and encode the time-resolved velocity in one principal direction, typically oriented perpendicular to the two-dimensional (2D) section. This review describes recently developed advanced MRI flow techniques, which allow for more comprehensive evaluation of blood flow characteristics, such as real-time flow imaging, 2D multiple-venc phase contrast MRI, four-dimensional (4D) flow MRI, quantification of complex haemodynamic properties, and highly accelerated flow imaging. Emerging techniques and novel applications are explored. In addition, applications of these new techniques for the improved evaluation of cardiovascular (aorta, pulmonary arteries, congenital heart disease, atrial fibrillation, coronary arteries) as well as cerebrovascular disease (intra-cranial arteries and veins) are presented. PMID:26944696

  4. Contrast-enhanced peripheral MRA: technique and contrast agents.

    PubMed

    Nielsen, Yousef W; Thomsen, Henrik S

    2012-09-01

    In the last decade contrast-enhanced magnetic resonance angiography (CE-MRA) has gained wide acceptance as a valuable tool in the diagnostic work-up of patients with peripheral arterial disease. This review presents current concepts in peripheral CE-MRA with emphasis on MRI technique and contrast agents. Peripheral CE-MRA is defined as an MR angiogram of the arteries from the aortic bifurcation to the feet. Advantages of CE-MRA include minimal invasiveness and lack of ionizing radiation. The basic technique employed for peripheral CE-MRA is the bolus-chase method. With this method a paramagnetic MRI contrast agent is injected intravenously and T1-weighted images are acquired in the subsequent arterial first-pass phase. In order to achieve high quality MR angiograms without interfering venous contamination or artifacts, a number of factors need to be taken into account. This includes magnetic field strength of the MRI system, receiver coil configuration, use of parallel imaging, contrast bolus timing technique, and k-space filling strategies. Furthermore, it is possible to optimize peripheral CE-MRA using venous compression techniques, hybrid scan protocols, time-resolved imaging, and steady-state MRA. Gadolinium(Gd)-based contrast agents are used for CE-MRA of the peripheral arteries. Extracellular Gd agents have a pharmacokinetic profile similar to iodinated contrast media. Accordingly, these agents are employed for first-pass MRA. Blood-pool Gd-based agents are characterized by prolonged intravascular stay, due to macromolecular structure or protein binding. These agents can be used for first-pass, as well as steady-state MRA. Some Gd-based contrast agents with low thermodynamic stability have been linked to development of nephrogenic systemic fibrosis in patients with severe renal insufficiency. Using optimized technique and a stable MRI contrast agent, peripheral CE-MRA is a safe procedure with diagnostic accuracy close to that of conventional catheter X-ray angiography.

  5. T2-weighted MRI of the upper abdomen: comparison of four fat-suppressed T2-weighted sequences including PROPELLER (BLADE) technique.

    PubMed

    Bayramoglu, Sibel; Kilickesmez, Ozgür; Cimilli, Tan; Kayhan, Arda; Yirik, Gülseren; Islim, Filiz; Alibek, Sedat

    2010-03-01

    The aim of this study was to compare four different fat-suppressed T2-weighted sequences with different techniques with regard to image quality and lesion detection in upper abdominal magnetic resonance imaging (MRI) scans. Thirty-two consecutive patients referred for upper abdominal MRI for the evaluation of various suspected pathologies were included in this study. Different T2-weighted sequences (free-breathing navigator-triggered turbo spin-echo [TSE], free-breathing navigator-triggered TSE with restore pulse (RP), breath-hold TSE with RP, and free-breathing navigator-triggered TSE with RP using the periodically rotated overlapping parallel lines with enhanced reconstruction technique [using BLADE, a Siemens implementation of this technique]) were used on all patients. All images were assessed independently by two radiologists. Assessments of motion artifacts; the edge sharpness of the liver, pancreas, and intrahepatic vessels; depictions of the intrahepatic vessels; and overall image quality were performed qualitatively. Quantitative analysis was performed by calculation of the signal-to-noise ratios for liver tissue and gallbladder as well as contrast-to-noise ratios of liver to spleen. Liver and gallbladder signal-to-noise ratios as well as liver to spleen contrast-to-noise ratios were significantly higher (P < .05) for the BLADE technique compared to all other sequences. In qualitative analysis, the severity of motion artifacts was significantly lower with T2-weighted free-breathing navigator-triggered BLADE sequences compared to other sequences (P < .01). The edge sharpness of the liver, pancreas, and intrahepatic vessels; depictions of the intrahepatic vessels; and overall image quality were significantly better with the BLADE sequence (P < .05). The T2-weighted free-breathing navigator-triggered TSE sequence with the BLADE technique is a promising approach for reducing motion artifacts and improving image quality in upper abdominal MRI scans.

  6. Mild cognitive impairment and fMRI studies of brain functional connectivity: the state of the art

    PubMed Central

    Farràs-Permanyer, Laia; Guàrdia-Olmos, Joan; Peró-Cebollero, Maribel

    2015-01-01

    In the last 15 years, many articles have studied brain connectivity in Mild Cognitive Impairment patients with fMRI techniques, seemingly using different connectivity statistical models in each investigation to identify complex connectivity structures so as to recognize typical behavior in this type of patient. This diversity in statistical approaches may cause problems in results comparison. This paper seeks to describe how researchers approached the study of brain connectivity in MCI patients using fMRI techniques from 2002 to 2014. The focus is on the statistical analysis proposed by each research group in reference to the limitations and possibilities of those techniques to identify some recommendations to improve the study of functional connectivity. The included articles came from a search of Web of Science and PsycINFO using the following keywords: f MRI, MCI, and functional connectivity. Eighty-one papers were found, but two of them were discarded because of the lack of statistical analysis. Accordingly, 79 articles were included in this review. We summarized some parts of the articles, including the goal of every investigation, the cognitive paradigm and methods used, brain regions involved, use of ROI analysis and statistical analysis, emphasizing on the connectivity estimation model used in each investigation. The present analysis allowed us to confirm the remarkable variability of the statistical analysis methods found. Additionally, the study of brain connectivity in this type of population is not providing, at the moment, any significant information or results related to clinical aspects relevant for prediction and treatment. We propose to follow guidelines for publishing fMRI data that would be a good solution to the problem of study replication. The latter aspect could be important for future publications because a higher homogeneity would benefit the comparison between publications and the generalization of results. PMID:26300802

  7. Dipy, a library for the analysis of diffusion MRI data.

    PubMed

    Garyfallidis, Eleftherios; Brett, Matthew; Amirbekian, Bagrat; Rokem, Ariel; van der Walt, Stefan; Descoteaux, Maxime; Nimmo-Smith, Ian

    2014-01-01

    Diffusion Imaging in Python (Dipy) is a free and open source software project for the analysis of data from diffusion magnetic resonance imaging (dMRI) experiments. dMRI is an application of MRI that can be used to measure structural features of brain white matter. Many methods have been developed to use dMRI data to model the local configuration of white matter nerve fiber bundles and infer the trajectory of bundles connecting different parts of the brain. Dipy gathers implementations of many different methods in dMRI, including: diffusion signal pre-processing; reconstruction of diffusion distributions in individual voxels; fiber tractography and fiber track post-processing, analysis and visualization. Dipy aims to provide transparent implementations for all the different steps of dMRI analysis with a uniform programming interface. We have implemented classical signal reconstruction techniques, such as the diffusion tensor model and deterministic fiber tractography. In addition, cutting edge novel reconstruction techniques are implemented, such as constrained spherical deconvolution and diffusion spectrum imaging (DSI) with deconvolution, as well as methods for probabilistic tracking and original methods for tractography clustering. Many additional utility functions are provided to calculate various statistics, informative visualizations, as well as file-handling routines to assist in the development and use of novel techniques. In contrast to many other scientific software projects, Dipy is not being developed by a single research group. Rather, it is an open project that encourages contributions from any scientist/developer through GitHub and open discussions on the project mailing list. Consequently, Dipy today has an international team of contributors, spanning seven different academic institutions in five countries and three continents, which is still growing.

  8. Multimodal MRI for early diabetic mild cognitive impairment: study protocol of a prospective diagnostic trial.

    PubMed

    Yu, Ying; Sun, Qian; Yan, Lin-Feng; Hu, Yu-Chuan; Nan, Hai-Yan; Yang, Yang; Liu, Zhi-Cheng; Wang, Wen; Cui, Guang-Bin

    2016-08-24

    Type 2 diabetes mellitus (T2DM) is a risk factor for dementia. Mild cognitive impairment (MCI), an intermediary state between normal cognition and dementia, often occurs during the prodromal diabetic stage, making early diagnosis and intervention of MCI very important. Latest neuroimaging techniques revealed some underlying microstructure alterations for diabetic MCI, from certain aspects. But there still lacks an integrated multimodal MRI system to detect early neuroimaging changes in diabetic MCI patients. Thus, we intended to conduct a diagnostic trial using multimodal MRI techniques to detect early diabetic MCI that is determined by the Montreal Cognitive Assessment (MoCA). In this study, healthy controls, prodromal diabetes and diabetes subjects (53 subjects/group) aged 40-60 years will be recruited from the physical examination center of Tangdu Hospital. The neuroimaging and psychometric measurements will be repeated at a 0.5 year-interval for 2.5 years' follow-up. The primary outcome measures are 1) Microstructural and functional alterations revealed with multimodal MRI scans including structure magnetic resonance imaging (sMRI), resting state functional magnetic resonance imaging (rs-fMRI), diffusion kurtosis imaging (DKI), and three-dimensional pseudo-continuous arterial spin labeling (3D-pCASL); 2) Cognition evaluation with MoCA. The second outcome measures are obesity, metabolic characteristics, lifestyle and quality of life. The study will provide evidence for the potential use of multimodal MRI techniques with psychometric evaluation in diagnosing MCI at prodromal diabetic stage so as to help decision making in early intervention and improve the prognosis of T2DM. This study has been registered to ClinicalTrials.gov ( NCT02420470 ) on April 2, 2015 and published on July 29, 2015.

  9. Dipy, a library for the analysis of diffusion MRI data

    PubMed Central

    Garyfallidis, Eleftherios; Brett, Matthew; Amirbekian, Bagrat; Rokem, Ariel; van der Walt, Stefan; Descoteaux, Maxime; Nimmo-Smith, Ian

    2014-01-01

    Diffusion Imaging in Python (Dipy) is a free and open source software project for the analysis of data from diffusion magnetic resonance imaging (dMRI) experiments. dMRI is an application of MRI that can be used to measure structural features of brain white matter. Many methods have been developed to use dMRI data to model the local configuration of white matter nerve fiber bundles and infer the trajectory of bundles connecting different parts of the brain. Dipy gathers implementations of many different methods in dMRI, including: diffusion signal pre-processing; reconstruction of diffusion distributions in individual voxels; fiber tractography and fiber track post-processing, analysis and visualization. Dipy aims to provide transparent implementations for all the different steps of dMRI analysis with a uniform programming interface. We have implemented classical signal reconstruction techniques, such as the diffusion tensor model and deterministic fiber tractography. In addition, cutting edge novel reconstruction techniques are implemented, such as constrained spherical deconvolution and diffusion spectrum imaging (DSI) with deconvolution, as well as methods for probabilistic tracking and original methods for tractography clustering. Many additional utility functions are provided to calculate various statistics, informative visualizations, as well as file-handling routines to assist in the development and use of novel techniques. In contrast to many other scientific software projects, Dipy is not being developed by a single research group. Rather, it is an open project that encourages contributions from any scientist/developer through GitHub and open discussions on the project mailing list. Consequently, Dipy today has an international team of contributors, spanning seven different academic institutions in five countries and three continents, which is still growing. PMID:24600385

  10. [Gastric magnetic resonance study (methods, semiotics)].

    PubMed

    Stashuk, G A

    2003-01-01

    The paper shows the potentialities of gastric study by magnetic resonance imaging (MRI). The methodic aspects of gastric study have been worked out. The MRI-semiotics of the unchanged and tumor-affected wall of the stomach and techniques in examining patients with gastric cancer of various sites are described. Using the developed procedure, MRI was performed in 199 patients, including 154 patients with gastric pathology and 45 control individuals who had no altered gastric wall. Great emphasis is placed on the role of MRI in the diagnosis of endophytic (diffuse) gastric cancer that is of priority value in its morphological structure. MRI was found to play a role in the diagnosis of the spread of a tumorous process both along the walls of the stomach and to its adjacent anatomic structures.

  11. A fast multiparameter MRI approach for acute stroke assessment on a 3T clinical scanner: preliminary results in a non-human primate model with transient ischemic occlusion.

    PubMed

    Zhang, Xiaodong; Tong, Frank; Li, Chun-Xia; Yan, Yumei; Nair, Govind; Nagaoka, Tsukasa; Tanaka, Yoji; Zola, Stuart; Howell, Leonard

    2014-04-01

    Many MRI parameters have been explored and demonstrated the capability or potential to evaluate acute stroke injury, providing anatomical, microstructural, functional, or neurochemical information for diagnostic purposes and therapeutic development. However, the application of multiparameter MRI approach is hindered in clinic due to the very limited time window after stroke insult. Parallel imaging technique can accelerate MRI data acquisition dramatically and has been incorporated in modern clinical scanners and increasingly applied for various diagnostic purposes. In the present study, a fast multiparameter MRI approach including structural T1-weighted imaging (T1W), T2-weighted imaging (T2W), diffusion tensor imaging (DTI), T2-mapping, proton magnetic resonance spectroscopy, cerebral blood flow (CBF), and magnetization transfer (MT) imaging, was implemented and optimized for assessing acute stroke injury on a 3T clinical scanner. A macaque model of transient ischemic stroke induced by a minimal interventional approach was utilized for evaluating the multiparameter MRI approach. The preliminary results indicate the surgical procedure successfully induced ischemic occlusion in the cortex and/or subcortex in adult macaque monkeys (n=4). Application of parallel imaging technique substantially reduced the scanning duration of most MRI data acquisitions, allowing for fast and repeated evaluation of acute stroke injury. Hence, the use of the multiparameter MRI approach with up to five quantitative measures can provide significant advantages in preclinical or clinical studies of stroke disease.

  12. A Preliminary Experience with Use of Intraoperative Magnetic Resonance Imaging in Thalamic Glioma Surgery: A Case Series of 38 Patients.

    PubMed

    Zheng, Xuan; Xu, Xinghua; Zhang, Hui; Wang, Qun; Ma, Xiaodong; Chen, Xiaolei; Sun, Guochen; Zhang, Jiashu; Jiang, Jinli; Xu, Bainan; Zhang, Jun

    2016-05-01

    Thalamic gliomas are rare tumors that constitute 1%-5% of all central nervous system tumors. Despite advanced techniques and equipment, surgical resection remains challenging because of the vital structures adjacent to the tumor. Intraoperative magnetic resonance imaging (MRI) might play an active role during brain tumor surgery because it compensates for brain shift or operation-induced hemorrhage, which are challenging issues for neurosurgeons. We reviewed 38 patients treated surgically under intraoperative MRI guidance between January 2008 and July 2015 at our center. Preoperative, intraoperative, and postoperative MRI scans were reviewed. Preoperative and postoperative motor power, morbidity and mortality, resection rate, surgical approach, pathologic results, and patient demographics were also reviewed. Mean patient age was 37 years ± 18; 12 patients were included in the low-grade group, and 26 patients were included in the high-grade group. Under intraoperative MRI guidance, the gross total resection rate was increased from 16 (42.1%) to 26 (68.4%), and the near-total or subtotal resection rate was increased from 5 (13.2%) to 9 (23.7%). Hematoma formation was discovered in 3 patients on intraoperative MRI scan; each patient underwent a hemostatic operation immediately. With improvements in neurosurgical techniques and equipment, surgical resection is considered feasible in patients with thalamic gliomas. Intraoperative MRI may be helpful in achieving the maximal resection rate with minimal surgical-related morbidity. However, because of severe disease progression, the overall prognosis is unfavorable. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Compressed Sensing for Body MRI

    PubMed Central

    Feng, Li; Benkert, Thomas; Block, Kai Tobias; Sodickson, Daniel K; Otazo, Ricardo; Chandarana, Hersh

    2016-01-01

    The introduction of compressed sensing for increasing imaging speed in MRI has raised significant interest among researchers and clinicians, and has initiated a large body of research across multiple clinical applications over the last decade. Compressed sensing aims to reconstruct unaliased images from fewer measurements than that are traditionally required in MRI by exploiting image compressibility or sparsity. Moreover, appropriate combinations of compressed sensing with previously introduced fast imaging approaches, such as parallel imaging, have demonstrated further improved performance. The advent of compressed sensing marks the prelude to a new era of rapid MRI, where the focus of data acquisition has changed from sampling based on the nominal number of voxels and/or frames to sampling based on the desired information content. This paper presents a brief overview of the application of compressed sensing techniques in body MRI, where imaging speed is crucial due to the presence of respiratory motion along with stringent constraints on spatial and temporal resolution. The first section provides an overview of the basic compressed sensing methodology, including the notion of sparsity, incoherence, and non-linear reconstruction. The second section reviews state-of-the-art compressed sensing techniques that have been demonstrated for various clinical body MRI applications. In the final section, the paper discusses current challenges and future opportunities. PMID:27981664

  14. Non-destructive analysis of sensory traits of dry-cured loins by MRI-computer vision techniques and data mining.

    PubMed

    Caballero, Daniel; Antequera, Teresa; Caro, Andrés; Ávila, María Del Mar; G Rodríguez, Pablo; Perez-Palacios, Trinidad

    2017-07-01

    Magnetic resonance imaging (MRI) combined with computer vision techniques have been proposed as an alternative or complementary technique to determine the quality parameters of food in a non-destructive way. The aim of this work was to analyze the sensory attributes of dry-cured loins using this technique. For that, different MRI acquisition sequences (spin echo, gradient echo and turbo 3D), algorithms for MRI analysis (GLCM, NGLDM, GLRLM and GLCM-NGLDM-GLRLM) and predictive data mining techniques (multiple linear regression and isotonic regression) were tested. The correlation coefficient (R) and mean absolute error (MAE) were used to validate the prediction results. The combination of spin echo, GLCM and isotonic regression produced the most accurate results. In addition, the MRI data from dry-cured loins seems to be more suitable than the data from fresh loins. The application of predictive data mining techniques on computational texture features from the MRI data of loins enables the determination of the sensory traits of dry-cured loins in a non-destructive way. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Quantification of Liver Iron with MRI: State of the Art and Remaining Challenges

    PubMed Central

    Hernando, Diego; Levin, Yakir S; Sirlin, Claude B; Reeder, Scott B

    2015-01-01

    Liver iron overload is the histological hallmark of hereditary hemochromatosis and transfusional hemosiderosis, and can also occur in chronic hepatopathies. Iron overload can result in liver damage, with the eventual development of cirrhosis, liver failure and hepatocellular carcinoma. Assessment of liver iron levels is necessary for detection and quantitative staging of iron overload, and monitoring of iron-reducing treatments. This article discusses the need for non-invasive assessment of liver iron, and reviews qualitative and quantitative methods with a particular emphasis on MRI. Specific MRI methods for liver iron quantification include signal intensity ratio as well as R2 and R2* relaxometry techniques. Methods that are in clinical use, as well as their limitations, are described. Remaining challenges, unsolved problems, and emerging techniques to provide improved characterization of liver iron deposition are discussed. PMID:24585403

  16. MR-guided endovascular interventions: a comprehensive review on techniques and applications.

    PubMed

    Kos, Sebastian; Huegli, Rolf; Bongartz, Georg M; Jacob, Augustinus L; Bilecen, Deniz

    2008-04-01

    The magnetic resonance (MR) guidance of endovascular interventions is probably one of the greatest challenges of clinical MR research. MR angiography is not only an imaging tool for the vasculature but can also simultaneously depict high tissue contrast, including the differentiation of the vascular wall and perivascular tissues, as well as vascular function. Several hurdles had to be overcome to allow MR guidance for endovascular interventions. MR hardware and sequence design had to be developed to achieve acceptable patient access and to allow real-time or near real-time imaging. The development of interventional devices, both applicable and safe for MR imaging (MRI), was also mandatory. The subject of this review is to summarize the latest developments in real-time MRI hardware, MRI, visualization tools, interventional devices, endovascular tracking techniques, actual applications and safety issues.

  17. Advanced MR Imaging of the Placenta: Exploring the in utero placenta-brain connection

    PubMed Central

    Andescavage, Nickie Niforatos; DuPlessis, Adre; Limperopoulos, Catherine

    2015-01-01

    The placenta is a vital organ necessary for the healthy neurodevelopment of the fetus. Despite the known associations between placental dysfunction and neurologic impairment, there is a paucity of tools available to reliably assess in vivo placental health and function. Existing clinical tools for placental assessment remain insensitive in predicting and assessing placental well-being. Advanced MRI techniques hold significant promise for the dynamic, non-invasive, real-time assessment of placental health and identification of early placental-based disorders. In this review, we summarize the available clinical tools for placental assessment including ultrasound, Doppler, and conventional MRI. We then explore the emerging role of advanced placental MR imaging techniques for supporting the developing fetus, appraise the strengths and limitations of quantitative MRI in identifying early markers of placental dysfunction for improved pregnancy monitoring and fetal outcomes. PMID:25765905

  18. An Improved Framework for Confound Regression and Filtering for Control of Motion Artifact in the Preprocessing of Resting-State Functional Connectivity Data

    PubMed Central

    Satterthwaite, Theodore D.; Elliott, Mark A.; Gerraty, Raphael T.; Ruparel, Kosha; Loughead, James; Calkins, Monica E.; Eickhoff, Simon B.; Hakonarson, Hakon; Gur, Ruben C.; Gur, Raquel E.; Wolf, Daniel H.

    2013-01-01

    Several recent reports in large, independent samples have demonstrated the influence of motion artifact on resting-state functional connectivity MRI (rsfc-MRI). Standard rsfc-MRI preprocessing typically includes regression of confounding signals and band-pass filtering. However, substantial heterogeneity exists in how these techniques are implemented across studies, and no prior study has examined the effect of differing approaches for the control of motion-induced artifacts. To better understand how in-scanner head motion affects rsfc-MRI data, we describe the spatial, temporal, and spectral characteristics of motion artifacts in a sample of 348 adolescents. Analyses utilize a novel approach for describing head motion on a voxelwise basis. Next, we systematically evaluate the efficacy of a range of confound regression and filtering techniques for the control of motion-induced artifacts. Results reveal that the effectiveness of preprocessing procedures on the control of motion is heterogeneous, and that improved preprocessing provides a substantial benefit beyond typical procedures. These results demonstrate that the effect of motion on rsfc-MRI can be substantially attenuated through improved preprocessing procedures, but not completely removed. PMID:22926292

  19. Spider Silk: From Protein-Rich Gland Fluids to Diverse Biopolymer Fibers

    DTIC Science & Technology

    2016-01-06

    characterize the protein-rich fluid in the various spider silk producing glands. We have been using a battery of magnetic resonance methods including...solution and solid-state nuclear magnetic resonance (NMR) and micro imaging (MRI) in combination with wide angle and small angle X-ray diffraction...range of magnetic resonance methods. We successfully developed magnetic resonance imaging (MRI) techniques with localized spectroscopy to probe the silk

  20. Syntactic Processing in Bilinguals: An fNIRS Study

    ERIC Educational Resources Information Center

    Scherer, Lilian Cristine; Fonseca, Rochele Paz; Amiri, Mahnoush; Adrover-Roig, Daniel; Marcotte, Karine; Giroux, Francine; Senhadji, Noureddine; Benali, Habib; Lesage, Frederic; Ansaldo, Ana Ines

    2012-01-01

    The study of the neural basis of syntactic processing has greatly benefited from neuroimaging techniques. Research on syntactic processing in bilinguals has used a variety of techniques, including mainly functional magnetic resonance imaging (fMRI) and event-related potentials (ERP). This paper reports on a functional near-infrared spectroscopy…

  1. MRI Segmentation of the Human Brain: Challenges, Methods, and Applications

    PubMed Central

    Despotović, Ivana

    2015-01-01

    Image segmentation is one of the most important tasks in medical image analysis and is often the first and the most critical step in many clinical applications. In brain MRI analysis, image segmentation is commonly used for measuring and visualizing the brain's anatomical structures, for analyzing brain changes, for delineating pathological regions, and for surgical planning and image-guided interventions. In the last few decades, various segmentation techniques of different accuracy and degree of complexity have been developed and reported in the literature. In this paper we review the most popular methods commonly used for brain MRI segmentation. We highlight differences between them and discuss their capabilities, advantages, and limitations. To address the complexity and challenges of the brain MRI segmentation problem, we first introduce the basic concepts of image segmentation. Then, we explain different MRI preprocessing steps including image registration, bias field correction, and removal of nonbrain tissue. Finally, after reviewing different brain MRI segmentation methods, we discuss the validation problem in brain MRI segmentation. PMID:25945121

  2. Comparison of sevoflurane administered through a face mask versus rectal thiopental sodium in children undergoing magnetic resonance imaging.

    PubMed

    Gómez-Ríos, Manuel Ángel; Freire-Vila, Enrique; Kuczkowski, Krzysztof M; Pensado-Castiñeiras, Alberto

    2017-02-01

    Sevoflurane (S) and thiopental sodium (T) are commonly used to produce sedation for routine MRI procedures. However, to date there have been no comparative studies evaluating both techniques. We herein present the firt study comparing S and T techniques for pediatric sedation in MRI procedures. 21 children, aged from 3 months to 6 years, scheduled for MRI were randomly assigned to either S or T group. Sedation performed under spontaneous respiration was induced with inspired 1-8% S in oxigen by face mask connected to a Mapleson C circuit or T (25 mg/kg) administered in distal rectum by cannula. The observed parameters included: time for induction, MRI time, first movement activity postprocedure and recovery time; MRI pauses from patient movement; technique failure, quality of the study, emergence agitation, critical events; and parental and radiologist satisfaction. S compared with T showed significantly shorter anesthesia induction time (1.93 ± 0.7 versus 13.5 ± 2.6 min), first movement time (3.38 ± 1.2 versus 5.9 ± 2.1 min), recovery time (6.8 ± 1.6 versus 10.14 ± 3.3 min), and discharge MRI time (27.83 ± 5.1 versus 47.5 ± 8.7 min). There were fewer pauses during MRI from patient movement in S versus T (0 versus 3). The radiologists reported good quality and satisfaction scores in both groups. There were less behavioral disturbances in T group compared with S group (1 versus 3). There were no critical events in either group. There were no differences in parental satisfaction in both groups. Sevoflurane shortens the induction and recovery time, enabling earlier discharge. Sevoflurane and rectal thiopental sodium protocols are safe and effective, providing adequate conditions for MRI in pediatric outpatients, although rectal thiopental is more unpredictable.

  3. phMRI: methodological considerations for mitigating potential confounding factors

    PubMed Central

    Bourke, Julius H.; Wall, Matthew B.

    2015-01-01

    Pharmacological Magnetic Resonance Imaging (phMRI) is a variant of conventional MRI that adds pharmacological manipulations in order to study the effects of drugs, or uses pharmacological probes to investigate basic or applied (e.g., clinical) neuroscience questions. Issues that may confound the interpretation of results from various types of phMRI studies are briefly discussed, and a set of methodological strategies that can mitigate these problems are described. These include strategies that can be employed at every stage of investigation, from study design to interpretation of resulting data, and additional techniques suited for use with clinical populations are also featured. Pharmacological MRI is a challenging area of research that has both significant advantages and formidable difficulties, however with due consideration and use of these strategies many of the key obstacles can be overcome. PMID:25999812

  4. Shoulder-Mounted Robot for MRI-guided arthrography: Accuracy and mounting study.

    PubMed

    Monfaredi, R; Wilson, E; Sze, R; Sharma, K; Azizi, B; Iordachita, I; Cleary, K

    2015-08-01

    A new version of our compact and lightweight patient-mounted MRI-compatible 4 degree-of-freedom (DOF) robot for MRI-guided arthrography procedures is introduced. This robot could convert the traditional two-stage arthrography procedure (fluoroscopy-guided needle insertion followed by a diagnostic MRI scan) to a one-stage procedure, all in the MRI suite. The results of a recent accuracy study are reported. A new mounting technique is proposed and the mounting stability is investigated using optical and electromagnetic tracking on an anthropomorphic phantom. Five volunteer subjects including 2 radiologists were asked to conduct needle insertion in 4 different random positions and orientations within the robot's workspace and the displacement of the base of the robot was investigated during robot motion and needle insertion. Experimental results show that the proposed mounting method is stable and promising for clinical application.

  5. MRI-based dynamic tracking of an untethered ferromagnetic microcapsule navigating in liquid

    NASA Astrophysics Data System (ADS)

    Dahmen, Christian; Belharet, Karim; Folio, David; Ferreira, Antoine; Fatikow, Sergej

    2016-04-01

    The propulsion of ferromagnetic objects by means of MRI gradients is a promising approach to enable new forms of therapy. In this work, necessary techniques are presented to make this approach work. This includes path planning algorithms working on MRI data, ferromagnetic artifact imaging and a tracking algorithm which delivers position feedback for the ferromagnetic objects, and a propulsion sequence to enable interleaved magnetic propulsion and imaging. Using a dedicated software environment, integrating path-planning methods and real-time tracking, a clinical MRI system is adapted to provide this new functionality for controlled interventional targeted therapeutic applications. Through MRI-based sensing analysis, this article aims to propose a framework to plan a robust pathway to enhance the navigation ability to reach deep locations in the human body. The proposed approaches are validated with different experiments.

  6. MRI-only treatment planning: benefits and challenges

    NASA Astrophysics Data System (ADS)

    Owrangi, Amir M.; Greer, Peter B.; Glide-Hurst, Carri K.

    2018-03-01

    Over the past decade, the application of magnetic resonance imaging (MRI) has increased, and there is growing evidence to suggest that improvements in the accuracy of target delineation in MRI-guided radiation therapy may improve clinical outcomes in a variety of cancer types. However, some considerations should be recognized including patient motion during image acquisition and geometric accuracy of images. Moreover, MR-compatible immobilization devices need to be used when acquiring images in the treatment position while minimizing patient motion during the scan time. Finally, synthetic CT images (i.e. electron density maps) and digitally reconstructed radiograph images should be generated from MRI images for dose calculation and image guidance prior to treatment. A short review of the concepts and techniques that have been developed for implementation of MRI-only workflows in radiation therapy is provided in this document.

  7. MRI Sequences in Head & Neck Radiology - State of the Art.

    PubMed

    Widmann, Gerlig; Henninger, Benjamin; Kremser, Christian; Jaschke, Werner

    2017-05-01

    Background  Magnetic resonance imaging (MRI) has become an essential imaging modality for the evaluation of head & neck pathologies. However, the diagnostic power of MRI is strongly related to the appropriate selection and interpretation of imaging protocols and sequences. The aim of this article is to review state-of-the-art sequences for the clinical routine in head & neck MRI and to describe the evidence for which medical question these sequences and techniques are useful. Method  Literature review of state-of-the-art sequences in head & neck MRI. Results and Conclusion  Basic sequences (T1w, T2w, T1wC+) and fat suppression techniques (TIRM/STIR, Dixon, Spectral Fat sat) are important tools in the diagnostic workup of inflammation, congenital lesions and tumors including staging. Additional sequences (SSFP (CISS, FIESTA), SPACE, VISTA, 3D-FLAIR) are used for pathologies of the cranial nerves, labyrinth and evaluation of endolymphatic hydrops in Menière's disease. Vessel and perfusion sequences (3D-TOF, TWIST/TRICKS angiography, DCE) are used in vascular contact syndromes, vascular malformations and analysis of microvascular parameters of tissue perfusion. Diffusion-weighted imaging (EPI-DWI, non-EPI-DWI, RESOLVE) is helpful in cholesteatoma imaging, estimation of malignancy, and evaluation of treatment response and posttreatment recurrence in head & neck cancer. Understanding of MRI sequences and close collaboration with referring physicians improves the diagnostic confidence of MRI in the daily routine and drives further research in this fascinating image modality. Key Points:   · Understanding of MRI sequences is essential for the correct and reliable interpretation of MRI findings.. · MRI protocols have to be carefully selected based on relevant clinical information.. · Close collaboration with referring physicians improves the output obtained from the diagnostic possibilities of MRI.. Citation Format · Widmann G, Henninger B, Kremser C et al. MRI Sequences in Head & Neck Radiology - State of the Art. Fortschr Röntgenstr 2017; 189: 413 - 422. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Software Toolbox for Low-Frequency Conductivity and Current Density Imaging Using MRI.

    PubMed

    Sajib, Saurav Z K; Katoch, Nitish; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2017-11-01

    Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes. Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes.

  9. Recording event-related activity under hostile magnetic resonance environment: Is multimodal EEG/ERP-MRI recording possible?

    PubMed

    Karakaş, H M; Karakaş, S; Ozkan Ceylan, A; Tali, E T

    2009-08-01

    Event-related potentials (ERPs) have high temporal resolution, but insufficient spatial resolution; the converse is true for the functional imaging techniques. The purpose of the study was to test the utility of a multimodal EEG/ERP-MRI technique which combines electroencephalography (EEG) and magnetic resonance imaging (MRI) for a simultaneously high temporal and spatial resolution. The sample consisted of 32 healthy young adults of both sexes. Auditory stimuli were delivered according to the active and passive oddball paradigms in the MRI environment (MRI-e) and in the standard conditions of the electrophysiology laboratory environment (Lab-e). Tasks were presented in a fixed order. Participants were exposed to the recording environments in a counterbalanced order. EEG data were preprocessed for MRI-related artifacts. Source localization was made using a current density reconstruction technique. The ERP waveforms for the MRI-e were morphologically similar to those for the Lab-e. The effect of the recording environment, experimental paradigm and electrode location were analyzed using a 2x2x3 analysis of variance for repeated measures. The ERP components in the two environments showed parametric variations and characteristic topographical distributions. The calculated sources were in line with the related literature. The findings indicated effortful cognitive processing in MRI-e. The study provided preliminary data on the feasibility of the multimodal EEG/ERP-MRI technique. It also indicated lines of research that are to be pursued for a decisive testing of this technique and its implementation to clinical practice.

  10. MR-Based Assessment of Bone Marrow Fat in Osteoporosis, Diabetes, and Obesity

    PubMed Central

    Cordes, Christian; Baum, Thomas; Dieckmeyer, Michael; Ruschke, Stefan; Diefenbach, Maximilian N.; Hauner, Hans; Kirschke, Jan S.; Karampinos, Dimitrios C.

    2016-01-01

    Bone consists of the mineralized component (i.e., cortex and trabeculae) and the non-mineralized component (i.e., bone marrow). Most of the routine clinical bone imaging uses X-ray-based techniques and focuses on the mineralized component. However, bone marrow adiposity has been also shown to have a strong linkage with bone health. Specifically, multiple previous studies have demonstrated a negative association between bone marrow fat fraction (BMFF) and bone mineral density. Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) are ideal imaging techniques for non-invasively investigating the properties of bone marrow fat. In the present work, we first review the most important MRI and MRS methods for assessing properties of bone marrow fat, including methodologies for measuring BMFF and bone marrow fatty acid composition parameters. Previous MRI and MRS studies measuring BMFF and fat unsaturation in the context of osteoporosis are then reviewed. Finally, previous studies investigating the relationship between bone marrow fat, other fat depots, and bone health in patients with obesity and type 2 diabetes are presented. In summary, MRI and MRS are powerful non-invasive techniques for measuring properties of bone marrow fat in osteoporosis, obesity, and type 2 diabetes and can assist in future studies investigating the pathophysiology of bone changes in the above clinical scenarios. PMID:27445977

  11. Fetal brain volumetry through MRI volumetric reconstruction and segmentation

    PubMed Central

    Estroff, Judy A.; Barnewolt, Carol E.; Connolly, Susan A.; Warfield, Simon K.

    2013-01-01

    Purpose Fetal MRI volumetry is a useful technique but it is limited by a dependency upon motion-free scans, tedious manual segmentation, and spatial inaccuracy due to thick-slice scans. An image processing pipeline that addresses these limitations was developed and tested. Materials and methods The principal sequences acquired in fetal MRI clinical practice are multiple orthogonal single-shot fast spin echo scans. State-of-the-art image processing techniques were used for inter-slice motion correction and super-resolution reconstruction of high-resolution volumetric images from these scans. The reconstructed volume images were processed with intensity non-uniformity correction and the fetal brain extracted by using supervised automated segmentation. Results Reconstruction, segmentation and volumetry of the fetal brains for a cohort of twenty-five clinically acquired fetal MRI scans was done. Performance metrics for volume reconstruction, segmentation and volumetry were determined by comparing to manual tracings in five randomly chosen cases. Finally, analysis of the fetal brain and parenchymal volumes was performed based on the gestational age of the fetuses. Conclusion The image processing pipeline developed in this study enables volume rendering and accurate fetal brain volumetry by addressing the limitations of current volumetry techniques, which include dependency on motion-free scans, manual segmentation, and inaccurate thick-slice interpolation. PMID:20625848

  12. Advanced magnetic resonance imaging in glioblastoma: a review.

    PubMed

    Shukla, Gaurav; Alexander, Gregory S; Bakas, Spyridon; Nikam, Rahul; Talekar, Kiran; Palmer, Joshua D; Shi, Wenyin

    2017-08-01

    Glioblastoma, the most common and most rapidly progressing primary malignant tumor of the central nervous system, continues to portend a dismal prognosis, despite improvements in diagnostic and therapeutic strategies over the last 20 years. The standard of care radiographic characterization of glioblastoma is magnetic resonance imaging (MRI), which is a widely utilized examination in the diagnosis and post-treatment management of patients with glioblastoma. Basic MRI modalities available from any clinical scanner, including native T1-weighted (T1w) and contrast-enhanced (T1CE), T2-weighted (T2w), and T2-fluid-attenuated inversion recovery (T2-FLAIR) sequences, provide critical clinical information about various processes in the tumor environment. In the last decade, advanced MRI modalities are increasingly utilized to further characterize glioblastomas more comprehensively. These include multi-parametric MRI sequences, such as dynamic susceptibility contrast (DSC), dynamic contrast enhancement (DCE), higher order diffusion techniques such as diffusion tensor imaging (DTI), and MR spectroscopy (MRS). Significant efforts are ongoing to implement these advanced imaging modalities into improved clinical workflows and personalized therapy approaches. Functional MRI (fMRI) and tractography are increasingly being used to identify eloquent cortices and important tracts to minimize postsurgical neuro-deficits. A contemporary review of the application of standard and advanced MRI in clinical neuro-oncologic practice is presented here.

  13. Cerebrovascular-Reactivity Mapping Using MRI: Considerations for Alzheimer's Disease.

    PubMed

    Chen, J J

    2018-01-01

    Alzheimer's disease (AD) is associated with well-established macrostructural and cellular markers, including localized brain atrophy and deposition of amyloid. However, there is growing recognition of the link between cerebrovascular dysfunction and AD, supported by continuous experimental evidence in the animal and human literature. As a result, neuroimaging studies of AD are increasingly aiming to incorporate vascular measures, exemplified by measures of cerebrovascular reactivity (CVR). CVR is a measure that is rooted in clinical practice, and as non-invasive CVR-mapping techniques become more widely available, routine CVR mapping may open up new avenues of investigation into the development of AD. This review focuses on the use of MRI to map CVR, paying specific attention to recent developments in MRI methodology and on the emerging stimulus-free approaches to CVR mapping. It also summarizes the biological basis for the vascular contribution to AD, and provides critical perspective on the choice of CVR-mapping techniques amongst frail populations.

  14. Functional MRI in the Investigation of Blast-Related Traumatic Brain Injury

    PubMed Central

    Graner, John; Oakes, Terrence R.; French, Louis M.; Riedy, Gerard

    2012-01-01

    This review focuses on the application of functional magnetic resonance imaging (fMRI) to the investigation of blast-related traumatic brain injury (bTBI). Relatively little is known about the exact mechanisms of neurophysiological injury and pathological and functional sequelae of bTBI. Furthermore, in mild bTBI, standard anatomical imaging techniques (MRI and computed tomography) generally fail to show focal lesions and most of the symptoms present as subjective clinical functional deficits. Therefore, an objective test of brain functionality has great potential to aid in patient diagnosis and provide a sensitive measurement to monitor disease progression and treatment. The goal of this review is to highlight the relevant body of blast-related TBI literature and present suggestions and considerations in the development of fMRI studies for the investigation of bTBI. The review begins with a summary of recent bTBI publications followed by discussions of various elements of blast-related injury. Brief reviews of some fMRI techniques that focus on mental processes commonly disrupted by bTBI, including working memory, selective attention, and emotional processing, are presented in addition to a short review of resting state fMRI. Potential strengths and weaknesses of these approaches as regards bTBI are discussed. Finally, this review presents considerations that must be made when designing fMRI studies for bTBI populations, given the heterogeneous nature of bTBI and its high rate of comorbidity with other physical and psychological injuries. PMID:23460082

  15. Pressure Autoregulation Measurement Techniques in Adult Traumatic Brain Injury, Part I: A Scoping Review of Intermittent/Semi-Intermittent Methods.

    PubMed

    Zeiler, Frederick A; Donnelly, Joseph; Calviello, Leanne; Menon, David K; Smielewski, Peter; Czosnyka, Marek

    2017-12-01

    The purpose of this study was to perform a systematic, scoping review of commonly described intermittent/semi-intermittent autoregulation measurement techniques in adult traumatic brain injury (TBI). Nine separate systematic reviews were conducted for each intermittent technique: computed tomographic perfusion (CTP)/Xenon-CT (Xe-CT), positron emission tomography (PET), magnetic resonance imaging (MRI), arteriovenous difference in oxygen (AVDO 2 ) technique, thigh cuff deflation technique (TCDT), transient hyperemic response test (THRT), orthostatic hypotension test (OHT), mean flow index (Mx), and transfer function autoregulation index (TF-ARI). MEDLINE ® , BIOSIS, EMBASE, Global Health, Scopus, Cochrane Library (inception to December 2016), and reference lists of relevant articles were searched. A two tier filter of references was conducted. The total number of articles utilizing each of the nine searched techniques for intermittent/semi-intermittent autoregulation techniques in adult TBI were: CTP/Xe-CT (10), PET (6), MRI (0), AVDO 2 (10), ARI-based TCDT (9), THRT (6), OHT (3), Mx (17), and TF-ARI (6). The premise behind all of the intermittent techniques is manipulation of systemic blood pressure/blood volume via either chemical (such as vasopressors) or mechanical (such as thigh cuffs or carotid compression) means. Exceptionally, Mx and TF-ARI are based on spontaneous fluctuations of cerebral perfusion pressure (CPP) or mean arterial pressure (MAP). The method for assessing the cerebral circulation during these manipulations varies, with both imaging-based techniques and TCD utilized. Despite the limited literature for intermittent/semi-intermittent techniques in adult TBI (minus Mx), it is important to acknowledge the availability of such tests. They have provided fundamental insight into human autoregulatory capacity, leading to the development of continuous and more commonly applied techniques in the intensive care unit (ICU). Numerous methods of intermittent/semi-intermittent pressure autoregulation assessment in adult TBI exist, including: CTP/Xe-CT, PET, AVDO 2 technique, TCDT-based ARI, THRT, OHT, Mx, and TF-ARI. MRI-based techniques in adult TBI are yet to be described, with the main focus of MRI techniques on metabolic-based cerebrovascular reactivity (CVR) and not pressure-based autoregulation.

  16. Imaging in syndesmotic injury: a systematic literature review.

    PubMed

    Krähenbühl, Nicola; Weinberg, Maxwell W; Davidson, Nathan P; Mills, Megan K; Hintermann, Beat; Saltzman, Charles L; Barg, Alexej

    2018-05-01

    To give a systematic overview of current diagnostic imaging options for assessment of the distal tibio-fibular syndesmosis. A systematic literature search across the following sources was performed: PubMed, ScienceDirect, Google Scholar, and SpringerLink. Forty-two articles were included and subdivided into three groups: group one consists of studies using conventional radiographs (22 articles), group two includes studies using computed tomography (CT) scans (15 articles), and group three comprises studies using magnet resonance imaging (MRI, 9 articles).The following data were extracted: imaging modality, measurement method, number of participants and ankles included, average age of participants, sensitivity, specificity, and accuracy of the measurement technique. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool was used to assess the methodological quality. The three most common techniques used for assessment of the syndesmosis in conventional radiographs are the tibio-fibular clear space (TFCS), the tibio-fibular overlap (TFO), and the medial clear space (MCS). Regarding CT scans, the tibio-fibular width (axial images) was most commonly used. Most of the MRI studies used direct assessment of syndesmotic integrity. Overall, the included studies show low probability of bias and are applicable in daily practice. Conventional radiographs cannot predict syndesmotic injuries reliably. CT scans outperform plain radiographs in detecting syndesmotic mal-reduction. Additionally, the syndesmotic interval can be assessed in greater detail by CT. MRI measurements achieve a sensitivity and specificity of nearly 100%; however, correlating MRI findings with patients' complaints is difficult, and utility with subtle syndesmotic instability needs further investigation. Overall, the methodological quality of these studies was satisfactory.

  17. Advanced MRI in Multiple Sclerosis: Current Status and Future Challenges

    PubMed Central

    Fox, Robert J.; Beall, Erik; Bhattacharyya, Pallab; Chen, Jacqueline; Sakaie, Ken

    2011-01-01

    Synopsis Magnetic resonance imaging (MRI) has rapidly become a leading research tool in the study of multiple sclerosis (MS). Conventional imaging is useful in diagnosis and management of the inflammatory stages of MS, but has limitations in describing the degree of tissue injury as well as the cause of progressive disability seen in the later stages of disease. Advanced MRI techniques hold promise to fill this void. Magnetization transfer imaging is a widely available technique that can characterize demyelination and may be useful in measuring putative remyelinating therapies. Diffusion tensor imaging describes the three-dimensional diffusion of water and holds promise in characterizing neurodegeneration and putative neuroprotective therapies. Spectroscopy measures the imbalance of cellular metabolites and could help unravel the pathogenesis of neurodegeneration in MS. Functional (f) MRI can be used to understand the functional consequences of MS injury, including the impact on cortical function and compensatory mechanisms. These imaging tools hold great promise to increase our understanding of MS pathogenesis and provide greater insight into the efficacy of new MS therapies. PMID:21439446

  18. Advanced magnetic resonance imaging of the physical processes in human glioblastoma.

    PubMed

    Kalpathy-Cramer, Jayashree; Gerstner, Elizabeth R; Emblem, Kyrre E; Andronesi, Ovidiu; Rosen, Bruce

    2014-09-01

    The most common malignant primary brain tumor, glioblastoma multiforme (GBM) is a devastating disease with a grim prognosis. Patient survival is typically less than two years and fewer than 10% of patients survive more than five years. Magnetic resonance imaging (MRI) can have great utility in the diagnosis, grading, and management of patients with GBM as many of the physical manifestations of the pathologic processes in GBM can be visualized and quantified using MRI. Newer MRI techniques such as dynamic contrast enhanced and dynamic susceptibility contrast MRI provide functional information about the tumor hemodynamic status. Diffusion MRI can shed light on tumor cellularity and the disruption of white matter tracts in the proximity of tumors. MR spectroscopy can be used to study new tumor tissue markers such as IDH mutations. MRI is helping to noninvasively explore the link between the molecular basis of gliomas and the imaging characteristics of their physical processes. We, here, review several approaches to MR-based imaging and discuss the potential for these techniques to quantify the physical processes in glioblastoma, including tumor cellularity and vascularity, metabolite expression, and patterns of tumor growth and recurrence. We conclude with challenges and opportunities for further research in applying physical principles to better understand the biologic process in this deadly disease. See all articles in this Cancer Research section, "Physics in Cancer Research." ©2014 American Association for Cancer Research.

  19. Effects of Inaccurate Identification of Interictal Epileptiform Discharges in Concurrent EEG-fMRI

    NASA Astrophysics Data System (ADS)

    Gkiatis, K.; Bromis, K.; Kakkos, I.; Karanasiou, I. S.; Matsopoulos, G. K.; Garganis, K.

    2017-11-01

    Concurrent continuous EEG-fMRI is a novel multimodal technique that is finding its way into clinical practice in epilepsy. EEG timeseries are used to identify the timing of interictal epileptiform discharges (IEDs) which is then included in a GLM analysis in fMRI to localize the epileptic onset zone. Nevertheless, there are still some concerns about its reliability concerning BOLD changes correlated with IEDs. Even though IEDs are identified by an experienced neurologist-epiliptologist, the reliability and concordance of the mark-ups is depending on many factors including the level of fatigue, the amount of time that he spent or, in some cases, even the screen that is being used for the display of timeseries. This investigation is aiming to unravel the effect of misidentification or inaccuracy in the mark-ups of IEDs in the fMRI statistical parametric maps. Concurrent EEG-fMRI was conducted in six subjects with various types of epilepsy. IEDs were identified by an experienced neurologist-epiliptologist. Analysis of EEG was performed with EEGLAB and analysis of fMRI was conducted in FSL. Preliminary results revealed lower statistical significance for missing events or larger period of IEDs than the actual ones and the introduction of false positives and false negatives in statistical parametric maps when random events were included in the GLM on top of the IEDs. Our results suggest that mark-ups in EEG for simultaneous EEG-fMRI should be done with caution from an experienced and restful neurologist as it affects the fMRI results in various and unpredicted ways.

  20. Innovations in imaging modalities for recurrent and metastatic prostate cancer: a systematic review.

    PubMed

    Albisinni, Simone; Aoun, Fouad; Marcelis, Quentin; Jungels, Claude; Al Hajj Obeid, Walid; Zanaty, Marc; Tubaro, Andrea; Roumeguere, Thierry; DE Nunzio, Cosimo

    2018-01-31

    The last decade has witnessed tremendous changes in the management of advanced and metastatic castration resistant prostate cancer (mCRPC). In the current systematic review, we analyze novel imaging techniques in the setting of recurrent and metastatic PCa, exploring available data and highlighting future exams which could enter clinical practice in the upcoming years. The National Library of Medicine Database was searched for relevant articles published between January 2012 and August 2017. A wide search was performed including the combination of following words: "Prostate" AND "Cancer" AND ("Metastatic" OR "Recurrent") AND "imaging" AND ("MRI" OR "PET"). The selection procedure followed the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) principles and is presented using a PRISMA flow chart. Novel imaging techniques, as multiparametric MRI, whole-body MRI and Choline and PSMA PET imaging techniques are currently revolutioning the treatment planning in patients with advanced and metastatic PCa, allowing a better characterization of the disease. Multiparametric MRI performs well in the detection of local recurrences, with sensitivity rates of 67-98% and overall diagnostic accuracy of 83-93%, depending on the type of magnetic field strength (1.5 vs 3T). Whole body MRI instead shows a high specificity (>95%) for bone metastases. PET imaging, and in particular PSMA PET/CT, showed promising results in the detection of both local and distant recurrences, even for low PSA values (<0.5ng/ml). Sensitivity varies from 77-98% depending on PSA value and PSA velocity. Whole body-MRI, NaF PET, Choline-PET/CT and PSMA PET/CT are flourishing techniques which find great application in the field of recurrent and metastatic PCa, in the effort to reduce treatment of "PSA only" and rather focus our therapies on clinical tumor entities. Standardization is urgently needed to allow adequate comparison of results and diffusion on a large scale.

  1. TH-CD-206-09: Learning-Based MRI-CT Prostate Registration Using Spare Patch-Deformation Dictionary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X; Jani, A; Rossi, P

    Purpose: To enable MRI-guided prostate radiotherapy, MRI-CT deformable registration is required to map the MRI-defined tumor and key organ contours onto the CT images. Due to the intrinsic differences in grey-level intensity characteristics between MRI and CT images, the integration of MRI into CT-based radiotherapy is very challenging. We are developing a learning-based registration approach to address this technical challenge. Methods: We propose to estimate the deformation between MRI and CT images in a patch-wise fashion by using the sparse representation technique. Specifically, we assume that two image patches should follow the same deformation if their patch-wise appearance patterns aremore » similar. We first extract a set of key points in the new CT image. Then, for each key point, we adaptively construct a coupled dictionary from the training MRI-CT images, where each coupled element includes both appearance and deformation of the same image patch. After calculating the sparse coefficients in representing the patch appearance of each key point based on the constructed dictionary, we can predict the deformation for this point by applying the same sparse coefficients to the respective deformations in the dictionary. Results: This registration technique was validated with 10 prostate-cancer patients’ data and its performance was compared with the commonly used free-form-deformation-based registration. Several landmarks in both images were identified to evaluate the accuracy of our approach. Overall, the averaged target registration error of the intensity-based registration and the proposed method was 3.8±0.4 mm and 1.9±0.3 mm, respectively. Conclusion: We have developed a novel prostate MR-CT registration approach based on patch-deformation dictionary, demonstrated its clinical feasibility, and validated its accuracy. This technique will either reduce or compensate for the effect of patient-specific treatment variation measured during the course of radiotherapy, is therefore well-suited for a number of MRI-guided adaptive radiotherapy, and potentially enhance prostate radiotherapy treatment outcome.« less

  2. MRI measurements of Blood-Brain Barrier function in dementia: A review of recent studies.

    PubMed

    Raja, Rajikha; Rosenberg, Gary A; Caprihan, Arvind

    2018-05-15

    Blood-brain barrier (BBB) separates the systemic circulation and the brain, regulating transport of most molecules to protect the brain microenvironment. Multiple structural and functional components preserve the integrity of the BBB. Several imaging modalities are available to study disruption of the BBB. However, the subtle changes in BBB leakage that occurs in vascular cognitive impairment and Alzheimer's disease have been less well studied. Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is the most widely adopted non-invasive imaging technique for evaluating BBB breakdown. It is used as a significant marker for a wide variety of diseases with large permeability leaks, such as brain tumors and multiple sclerosis, to more subtle disruption in chronic vascular disease and dementia. DCE-MRI analysis of BBB includes both model-free parameters and quantitative parameters using pharmacokinetic modelling. We review MRI studies of BBB breakdown in dementia. The challenges in measuring subtle BBB changes and the state of the art techniques are initially examined. Subsequently, a systematic review comparing methodologies from recent in-vivo MRI studies is presented. Various factors related to subtle BBB permeability measurement such as DCE-MRI acquisition parameters, arterial input assessment, T 1 mapping and data analysis methods are reviewed with the focus on finding the optimal technique. Finally, the reported BBB permeability values in dementia are compared across different studies and across various brain regions. We conclude that reliable measurement of low-level BBB permeability across sites remains a difficult problem and a standardization of the methodology for both data acquisition and quantitative analysis is required. This article is part of the Special Issue entitled 'Cerebral Ischemia'. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Virtual phantom magnetic resonance imaging (ViP MRI) on a clinical MRI platform.

    PubMed

    Saint-Jalmes, Hervé; Bordelois, Alejandro; Gambarota, Giulio

    2018-01-01

    The purpose of this study was to implement Virtual Phantom Magnetic Resonance Imaging (ViP MRI), a technique that allows for generating reference signals in MR images using radiofrequency (RF) signals, on a clinical MR system and to test newly designed virtual phantoms. MRI experiments were conducted on a 1.5 T MRI scanner. Electromagnetic modelling of the ViP system was done using the principle of reciprocity. The ViP RF signals were generated using a compact waveform generator (dimensions of 26 cm × 18 cm × 16 cm), connected to a homebuilt 25 mm-diameter RF coil. The ViP RF signals were transmitted to the MRI scanner bore, simultaneously with the acquisition of the signal from the object of interest. Different types of MRI data acquisition (2D and 3D gradient-echo) as well as different phantoms, including the Shepp-Logan phantom, were tested. Furthermore, a uniquely designed virtual phantom - in the shape of a grid - was generated; this newly proposed phantom allows for the investigations of the vendor distortion correction field. High quality MR images of virtual phantoms were obtained. An excellent agreement was found between the experimental data and the inverse cube law, which was the expected functional dependence obtained from the electromagnetic modelling of the ViP system. Short-term time stability measurements yielded a coefficient of variation in the signal intensity over time equal to 0.23% and 0.13% for virtual and physical phantom, respectively. MR images of the virtual grid-shaped phantom were reconstructed with the vendor distortion correction; this allowed for a direct visualization of the vendor distortion correction field. Furthermore, as expected from the electromagnetic modelling of the ViP system, a very compact coil (diameter ~ cm) and very small currents (intensity ~ mA) were sufficient to generate a signal comparable to that of physical phantoms in MRI experiments. The ViP MRI technique was successfully implemented on a clinical MR system. One of the major advantages of ViP MRI over previous approaches is that the generation and transmission of RF signals can be achieved with a self-contained apparatus. As such, the ViP MRI technique is transposable to different platforms (preclinical and clinical) of different vendors. It is also shown here that ViP MRI could be used to generate signals whose characteristics cannot be reproduced by physical objects. This could be exploited to assess MRI system properties, such as the vendor distortion correction field. © 2017 American Association of Physicists in Medicine.

  4. Comparison of ASL and DCE MRI for the non-invasive measurement of renal blood flow: quantification and reproducibility.

    PubMed

    Cutajar, Marica; Thomas, David L; Hales, Patrick W; Banks, T; Clark, Christopher A; Gordon, Isky

    2014-06-01

    To investigate the reproducibility of arterial spin labelling (ASL) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and quantitatively compare these techniques for the measurement of renal blood flow (RBF). Sixteen healthy volunteers were examined on two different occasions. ASL was performed using a multi-TI FAIR labelling scheme with a segmented 3D-GRASE imaging module. DCE MRI was performed using a 3D-FLASH pulse sequence. A Bland-Altman analysis was used to assess repeatability of each technique, and determine the degree of correspondence between the two methods. The overall mean cortical renal blood flow (RBF) of the ASL group was 263 ± 41 ml min(-1) [100 ml tissue](-1), and using DCE MRI was 287 ± 70 ml min(-1) [100 ml tissue](-1). The group coefficient of variation (CVg) was 18 % for ASL and 28 % for DCE-MRI. Repeatability studies showed that ASL was more reproducible than DCE with CVgs of 16 % and 25 % for ASL and DCE respectively. Bland-Altman analysis comparing the two techniques showed a good agreement. The repeated measures analysis shows that the ASL technique has better reproducibility than DCE-MRI. Difference analysis shows no significant difference between the RBF values of the two techniques. Reliable non-invasive monitoring of renal blood flow is currently clinically unavailable. Renal arterial spin labelling MRI is robust and repeatable. Renal dynamic contrast-enhanced MRI is robust and repeatable. ASL blood flow values are similar to those obtained using DCE-MRI.

  5. Pairwise Classifier Ensemble with Adaptive Sub-Classifiers for fMRI Pattern Analysis.

    PubMed

    Kim, Eunwoo; Park, HyunWook

    2017-02-01

    The multi-voxel pattern analysis technique is applied to fMRI data for classification of high-level brain functions using pattern information distributed over multiple voxels. In this paper, we propose a classifier ensemble for multiclass classification in fMRI analysis, exploiting the fact that specific neighboring voxels can contain spatial pattern information. The proposed method converts the multiclass classification to a pairwise classifier ensemble, and each pairwise classifier consists of multiple sub-classifiers using an adaptive feature set for each class-pair. Simulated and real fMRI data were used to verify the proposed method. Intra- and inter-subject analyses were performed to compare the proposed method with several well-known classifiers, including single and ensemble classifiers. The comparison results showed that the proposed method can be generally applied to multiclass classification in both simulations and real fMRI analyses.

  6. New magnetic resonance imaging methods in nephrology

    PubMed Central

    Zhang, Jeff L.; Morrell, Glen; Rusinek, Henry; Sigmund, Eric; Chandarana, Hersh; Lerman, Lilach O.; Prasad, Pottumarthi Vara; Niles, David; Artz, Nathan; Fain, Sean; Vivier, Pierre H.; Cheung, Alfred K.; Lee, Vivian S.

    2013-01-01

    Established as a method to study anatomic changes, such as renal tumors or atherosclerotic vascular disease, magnetic resonance imaging (MRI) to interrogate renal function has only recently begun to come of age. In this review, we briefly introduce some of the most important MRI techniques for renal functional imaging, and then review current findings on their use for diagnosis and monitoring of major kidney diseases. Specific applications include renovascular disease, diabetic nephropathy, renal transplants, renal masses, acute kidney injury and pediatric anomalies. With this review, we hope to encourage more collaboration between nephrologists and radiologists to accelerate the development and application of modern MRI tools in nephrology clinics. PMID:24067433

  7. The Primer for Sports Medicine Professionals on Imaging

    PubMed Central

    Farshad-Amacker, Nadja A.; Jain Palrecha, Sapna; Farshad, Mazda

    2013-01-01

    Because of its inherent superior soft tissue contrast and lack of ionizing radiation, magnetic resonance imaging (MRI) is highly suited to study the complex anatomy of the shoulder joint, particularly when assessing the relatively high incidence of shoulder injuries in young, athletic patients. This review aims to serve as a primer for understanding shoulder MRI in an algorithmical approach, including MRI protocol and technique, normal anatomy and anatomical variations of the shoulder, pathologic conditions of the rotator cuff tendons and muscles, the long head of the biceps tendon, shoulder impingement, labral and glenohumeral ligament pathology, MR findings in shoulder instability, adhesive capsulitis, and osteoarthritis. PMID:24381700

  8. MRI for Iron Overload in Thalassemia.

    PubMed

    Fernandes, Juliano Lara

    2018-04-01

    MRI is a key tool in the current management of patients with thalassemia. Given its capability of assessing iron overload in different organs noninvasively and without contrast, it has significant advantages over other metrics, including serum ferritin. Liver iron concentration can be measured either with relaxometry methods T2*/T2 or signal intensity ratio techniques. Myocardial iron can be assessed in the same examination through T2* imaging. In this review, we focus on showing how MRI evaluates iron in both organs and the clinical applications as well as practical approaches to using this tool by clinicians taking care of patients with thalassemia. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. MRI in patients with inflammatory bowel disease

    PubMed Central

    Gee, Michael S.; Harisinghani, Mukesh G.

    2011-01-01

    Inflammatory bowel disease (IBD) affects approximately 1.4 million people in North America and, because of its typical early age of onset and episodic disease course, IBD patients often undergo numerous imaging studies over the course of their lifetimes. CT has become the standard imaging modality for assessment of IBD patients because of its widespread availability, rapid image acquisition, and ability to evaluate intraluminal and extraluminal disease. However, repetitive CT imaging has been associated with a significant ionizing radiation risk to patients, making MRI an appealing alternative IBD imaging modality. Pelvic MRI is currently the imaging gold standard for detecting perianal disease, while recent studies indicate that MRI bowel-directed techniques (enteroclysis, enterography, colonography) can accurately evaluate bowel inflammation in IBD. With recent technical innovations leading to faster and higher resolution body MRI, the role of MRI in IBD evaluation is likely to continue to expand. Future applications include surveillance imaging, detection of mural fibrosis, and early assessment of therapy response. PMID:21512607

  10. Inner experience in the scanner: can high fidelity apprehensions of inner experience be integrated with fMRI?

    PubMed Central

    Kühn, Simone; Fernyhough, Charles; Alderson-Day, Benjamin; Hurlburt, Russell T.

    2014-01-01

    To provide full accounts of human experience and behavior, research in cognitive neuroscience must be linked to inner experience, but introspective reports of inner experience have often been found to be unreliable. The present case study aimed at providing proof of principle that introspection using one method, descriptive experience sampling (DES), can be reliably integrated with fMRI. A participant was trained in the DES method, followed by nine sessions of sampling within an MRI scanner. During moments where the DES interview revealed ongoing inner speaking, fMRI data reliably showed activation in classic speech processing areas including left inferior frontal gyrus. Further, the fMRI data validated the participant’s DES observations of the experiential distinction between inner speaking and innerly hearing her own voice. These results highlight the precision and validity of the DES method as a technique of exploring inner experience and the utility of combining such methods with fMRI. PMID:25538649

  11. In vivo MRI Using Laser Polarized Noble Gases.

    NASA Astrophysics Data System (ADS)

    Cates, G. D.

    1996-03-01

    A new technique for magnetic resonance imaging (MRI) will be reviewed in which the noble gas nuclei ^3He and ^129Xe are used as the source of signal instead of the protons in water, as is the case in conventional MRI. The noble gas nuclei are polarized by spin exchange with laser optically pumped alkali-metal vapor. The noble gas, which under appropriate conditions can exhibit spin relaxation times of hours to days, can be inhaled, making it possible to obtain images of the gas space of the lungs of unprecedented resolution. In the case of ^129Xe, substantial quantities of gas dissolves into the blood, opening up the prospect of imaging other parts of the body such as the heart and the brain. Recent results will be reviewed, including lung images of both guinea pigs and humans from a Duke/Princeton collaboration, and spectroscopic measurements of ^129Xe that is dissolved in mouse blood, from the Stony Brook group. Other results will be reviewed as available. Attention will be given to the issues involved in producing large quantities of polarized noble gas for imaging, including a discussion of the use of high power diode laser arrays, a technology that has helped this new MRI technique grow quickly to be of potential clinical value. Finally, future prospects for the diagnosis of disease will be discussed.

  12. Diffusion-weighted Breast MRI: Clinical Applications and Emerging Techniques

    PubMed Central

    Partridge, Savannah C.; Nissan, Noam; Rahbar, Habib; Kitsch, Averi E.; Sigmund, Eric E.

    2016-01-01

    Diffusion weighted MRI (DWI) holds potential to improve the detection and biological characterization of breast cancer. DWI is increasingly being incorporated into breast MRI protocols to address some of the shortcomings of routine clinical breast MRI. Potential benefits include improved differentiation of benign and malignant breast lesions, assessment and prediction of therapeutic efficacy, and non-contrast detection of breast cancer. The breast presents a unique imaging environment with significant physiologic and inter-subject variations, as well as specific challenges to achieving reliable high quality diffusion weighted MR images. Technical innovations are helping to overcome many of the image quality issues that have limited widespread use of DWI for breast imaging. Advanced modeling approaches to further characterize tissue perfusion, complexity, and glandular organization may expand knowledge and yield improved diagnostic tools. PMID:27690173

  13. Translating state-of-the-art spinal cord MRI techniques to clinical use: A systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI

    PubMed Central

    Martin, Allan R.; Aleksanderek, Izabela; Cohen-Adad, Julien; Tarmohamed, Zenovia; Tetreault, Lindsay; Smith, Nathaniel; Cadotte, David W.; Crawley, Adrian; Ginsberg, Howard; Mikulis, David J.; Fehlings, Michael G.

    2015-01-01

    Background A recent meeting of international imaging experts sponsored by the International Spinal Research Trust (ISRT) and the Wings for Life Foundation identified 5 state-of-the-art MRI techniques with potential to transform the field of spinal cord imaging by elucidating elements of the microstructure and function: diffusion tensor imaging (DTI), magnetization transfer (MT), myelin water fraction (MWF), MR spectroscopy (MRS), and functional MRI (fMRI). However, the progress toward clinical translation of these techniques has not been established. Methods A systematic review of the English literature was conducted using MEDLINE, MEDLINE-in-Progress, Embase, and Cochrane databases to identify all human studies that investigated utility, in terms of diagnosis, correlation with disability, and prediction of outcomes, of these promising techniques in pathologies affecting the spinal cord. Data regarding study design, subject characteristics, MRI methods, clinical measures of impairment, and analysis techniques were extracted and tabulated to identify trends and commonalities. The studies were assessed for risk of bias, and the overall quality of evidence was assessed for each specific finding using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) framework. Results A total of 6597 unique citations were identified in the database search, and after full-text review of 274 articles, a total of 104 relevant studies were identified for final inclusion (97% from the initial database search). Among these, 69 studies utilized DTI and 25 used MT, with both techniques showing an increased number of publications in recent years. The review also identified 1 MWF study, 11 MRS studies, and 8 fMRI studies. Most of the studies were exploratory in nature, lacking a priori hypotheses and showing a high (72%) or moderately high (20%) risk of bias, due to issues with study design, acquisition techniques, and analysis methods. The acquisitions for each technique varied widely across studies, rendering direct comparisons of metrics invalid. The DTI metric fractional anisotropy (FA) had the strongest evidence of utility, with moderate quality evidence for its use as a biomarker showing correlation with disability in several clinical pathologies, and a low level of evidence that it identifies tissue injury (in terms of group differences) compared with healthy controls. However, insufficient evidence exists to determine its utility as a sensitive and specific diagnostic test or as a tool to predict clinical outcomes. Very low quality evidence suggests that other metrics also show group differences compared with controls, including DTI metrics mean diffusivity (MD) and radial diffusivity (RD), the diffusional kurtosis imaging (DKI) metric mean kurtosis (MK), MT metrics MT ratio (MTR) and MT cerebrospinal fluid ratio (MTCSF), and the MRS metric of N-acetylaspartate (NAA) concentration, although these results were somewhat inconsistent. Conclusions State-of-the-art spinal cord MRI techniques are emerging with great potential to improve the diagnosis and management of various spinal pathologies, but the current body of evidence has only showed limited clinical utility to date. Among these imaging tools DTI is the most mature, but further work is necessary to standardize and validate its use before it will be adopted in the clinical realm. Large, well-designed studies with a priori hypotheses, standardized acquisition methods, detailed clinical data collection, and robust automated analysis techniques are needed to fully demonstrate the potential of these rapidly evolving techniques. PMID:26862478

  14. The role of magnetic resonance imaging techniques in evaluation and management of the idiopathic inflammatory myopathies.

    PubMed

    Day, Jessica; Patel, Sandy; Limaye, Vidya

    2017-04-01

    Magnetic resonance imaging (MRI) is an important tool in the evaluation of neuromuscular disorders. MRI accurately demonstrates muscle oedema, atrophy, subcutaneous pathology and fatty infiltration and also highlights the distribution of muscle involvement. This review examines the role of MRI in evaluation of the idiopathic inflammatory myopathies (IIMs), a heterogeneous group of autoimmune conditions characterised by muscle inflammation and a variety of extra-muscular manifestations. MRI has a clear role in aiding diagnosis of these conditions, guiding muscle biopsy, differentiating subtypes of IIM using a pattern-based approach, and monitoring disease activity in a longitudinal fashion. Whole body MRI is an emerging technique that offers several advantages over regional MRI, but is not currently widely available. We will also consider newer MRI techniques which provide detailed information regarding the metabolism, function and structure of muscle, although their use is restricted to research purposes at present. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Imaging Modalities Relevant to Intracranial Pressure Assessment in Astronauts: A Case-Based Discussion

    NASA Technical Reports Server (NTRS)

    Sargsyan, Ashot E.; Kramer, Larry A.; Hamilton, Douglas R.; Hamilton, Douglas R.; Fogarty, Jennifer; Polk, J. D.

    2010-01-01

    Introduction: Intracranial pressure (ICP) elevation has been inferred or documented in a number of space crewmembers. Recent advances in noninvasive imaging technology offer new possibilities for ICP assessment. Most International Space Station (ISS) partner agencies have adopted a battery of occupational health monitoring tests including magnetic resonance imaging (MRI) pre- and postflight, and high-resolution sonography of the orbital structures in all mission phases including during flight. We hypothesize that joint consideration of data from the two techniques has the potential to improve quality and continuity of crewmember monitoring and care. Methods: Specially designed MRI and sonographic protocols were used to image eyes and optic nerves (ON) including the meningeal sheaths. Specific crewmembers multi-modality imaging data were analyzed to identify points of mutual validation as well as unique features of complementary nature. Results and Conclusion: Magnetic resonance imaging (MRI) and high-resolution sonography are both tomographic methods, however images obtained by the two modalities are based on different physical phenomena and use different acquisition principles. Consideration of the images acquired by these two modalities allows cross-validating findings related to the volume and fluid content of the ON subarachnoid space, shape of the globe, and other anatomical features of the orbit. Each of the imaging modalities also has unique advantages, making them complementary techniques.

  16. A review of optimization and quantification techniques for chemical exchange saturation transfer (CEST) MRI toward sensitive in vivo imaging

    PubMed Central

    Guo, Yingkun; Zheng, Hairong; Sun, Phillip Zhe

    2015-01-01

    Chemical exchange saturation transfer (CEST) MRI is a versatile imaging method that probes the chemical exchange between bulk water and exchangeable protons. CEST imaging indirectly detects dilute labile protons via bulk water signal changes following selective saturation of exchangeable protons, which offers substantial sensitivity enhancement and has sparked numerous biomedical applications. Over the past decade, CEST imaging techniques have rapidly evolved due to contributions from multiple domains, including the development of CEST mathematical models, innovative contrast agent designs, sensitive data acquisition schemes, efficient field inhomogeneity correction algorithms, and quantitative CEST (qCEST) analysis. The CEST system that underlies the apparent CEST-weighted effect, however, is complex. The experimentally measurable CEST effect depends not only on parameters such as CEST agent concentration, pH and temperature, but also on relaxation rate, magnetic field strength and more importantly, experimental parameters including repetition time, RF irradiation amplitude and scheme, and image readout. Thorough understanding of the underlying CEST system using qCEST analysis may augment the diagnostic capability of conventional imaging. In this review, we provide a concise explanation of CEST acquisition methods and processing algorithms, including their advantages and limitations, for optimization and quantification of CEST MRI experiments. PMID:25641791

  17. Real-time functional magnetic resonance imaging neurofeedback in motor neurorehabilitation.

    PubMed

    Linden, David E J; Turner, Duncan L

    2016-08-01

    Recent developments in functional magnetic resonance imaging (fMRI) have catalyzed a new field of translational neuroscience. Using fMRI to monitor the aspects of task-related changes in neural activation or brain connectivity, investigators can offer feedback of simple or complex neural signals/patterns back to the participant on a quasireal-time basis [real-time-fMRI-based neurofeedback (rt-fMRI-NF)]. Here, we introduce some background methodology of the new developments in this field and give a perspective on how they may be used in neurorehabilitation in the future. The development of rt-fMRI-NF has been used to promote self-regulation of activity in several brain regions and networks. In addition, and unlike other noninvasive techniques, rt-fMRI-NF can access specific subcortical regions and in principle any region that can be monitored using fMRI including the cerebellum, brainstem and spinal cord. In Parkinson's disease and stroke, rt-fMRI-NF has been demonstrated to alter neural activity after the self-regulation training was completed and to modify specific behaviours. Future exploitation of rt-fMRI-NF could be used to induce neuroplasticity in brain networks that are involved in certain neurological conditions. However, currently, the use of rt-fMRI-NF in randomized, controlled clinical trials is in its infancy.

  18. MRI in local staging of rectal cancer: an update

    PubMed Central

    Tapan, Ümit; Özbayrak, Mustafa; Tatlı, Servet

    2014-01-01

    Preoperative imaging for staging of rectal cancer has become an important aspect of current approach to rectal cancer management, because it helps to select suitable patients for neoadjuvant chemoradiotherapy and determine the appropriate surgical technique. Imaging modalities such as endoscopic ultrasonography, computed tomography, and magnetic resonance imaging (MRI) play an important role in assessing the depth of tumor penetration, lymph node involvement, mesorectal fascia and anal sphincter invasion, and presence of distant metastatic diseases. Currently, there is no consensus on a preferred imaging technique for preoperative staging of rectal cancer. However, high-resolution phased-array MRI is recommended as a standard imaging modality for preoperative local staging of rectal cancer, with excellent soft tissue contrast, multiplanar capability, and absence of ionizing radiation. This review will mainly focus on the role of MRI in preoperative local staging of rectal cancer and discuss recent advancements in MRI technique such as diffusion-weighted imaging and dynamic contrast-enhanced MRI. PMID:25010367

  19. Imaging lung perfusion

    PubMed Central

    Wielpütz, Mark O.; Kauczor, Hans-Ulrich

    2012-01-01

    From the first measurements of the distribution of pulmonary blood flow using radioactive tracers by West and colleagues (J Clin Invest 40: 1–12, 1961) allowing gravitational differences in pulmonary blood flow to be described, the imaging of pulmonary blood flow has made considerable progress. The researcher employing modern imaging techniques now has the choice of several techniques, including magnetic resonance imaging (MRI), computerized tomography (CT), positron emission tomography (PET), and single photon emission computed tomography (SPECT). These techniques differ in several important ways: the resolution of the measurement, the type of contrast or tag used to image flow, and the amount of ionizing radiation associated with each measurement. In addition, the techniques vary in what is actually measured, whether it is capillary perfusion such as with PET and SPECT, or larger vessel information in addition to capillary perfusion such as with MRI and CT. Combined, these issues affect quantification and interpretation of data as well as the type of experiments possible using different techniques. The goal of this review is to give an overview of the techniques most commonly in use for physiological experiments along with the issues unique to each technique. PMID:22604884

  20. High-resolution MRI in detecting subareolar breast abscess.

    PubMed

    Fu, Peifen; Kurihara, Yasuyuki; Kanemaki, Yoshihide; Okamoto, Kyoko; Nakajima, Yasuo; Fukuda, Mamoru; Maeda, Ichiro

    2007-06-01

    Because subareolar breast abscess has a high recurrence rate, a more effective imaging technique is needed to comprehensively visualize the lesions and guide surgery. We performed a high-resolution MRI technique using a microscopy coil to reveal the characteristics and extent of subareolar breast abscess. High-resolution MRI has potential diagnostic value in subareolar breast abscess. This technique can be used to guide surgery with the aim of reducing the recurrence rate.

  1. Ventilation distribution in rats: Part 2 – A comparison of electrical impedance tomography and hyperpolarised helium magnetic resonance imaging

    PubMed Central

    2012-01-01

    Background Hyperpolarised helium MRI (He3 MRI) is a new technique that enables imaging of the air distribution within the lungs. This allows accurate determination of the ventilation distribution in vivo. The technique has the disadvantages of requiring an expensive helium isotope, complex apparatus and moving the patient to a compatible MRI scanner. Electrical impedance tomography (EIT) a non-invasive bedside technique that allows constant monitoring of lung impedance, which is dependent on changes in air space capacity in the lung. We have used He3MRI measurements of ventilation distribution as the gold standard for assessment of EIT. Methods Seven rats were ventilated in supine, prone, left and right lateral position with 70% helium/30% oxygen for EIT measurements and pure helium for He3 MRI. The same ventilator and settings were used for both measurements. Image dimensions, geometric centre and global in homogeneity index were calculated. Results EIT images were smaller and of lower resolution and contained less anatomical detail than those from He3 MRI. However, both methods could measure positional induced changes in lung ventilation, as assessed by the geometric centre. The global in homogeneity index were comparable between the techniques. Conclusion EIT is a suitable technique for monitoring ventilation distribution and inhomgeneity as assessed by comparison with He3 MRI. PMID:22966835

  2. Delineation of early brain development from fetuses to infants with diffusion MRI and beyond.

    PubMed

    Ouyang, Minhui; Dubois, Jessica; Yu, Qinlin; Mukherjee, Pratik; Huang, Hao

    2018-04-12

    Dynamic macrostructural and microstructural changes take place from the mid-fetal stage to 2 years after birth. Delineating structural changes of the brain during early development provides new insights into the complicated processes of both typical development and the pathological mechanisms underlying various psychiatric and neurological disorders including autism, attention deficit hyperactivity disorder and schizophrenia. Decades of histological studies have identified strong spatial and functional maturation gradients in human brain gray and white matter. The recent improvements in magnetic resonance imaging (MRI) techniques, especially diffusion MRI (dMRI), relaxometry imaging, and magnetization transfer imaging (MTI) have provided unprecedented opportunities to non-invasively quantify and map the early developmental changes at whole brain and regional levels. Here, we review the recent advances in understanding early brain structural development during the second half of gestation and the first two postnatal years using modern MR techniques. Specifically, we review studies that delineate the emergence and microstructural maturation of white matter tracts, as well as dynamic mapping of inhomogeneous cortical microstructural organization unique to fetuses and infants. These imaging studies converge into maturational curves of MRI measurements that are distinctive across different white matter tracts and cortical regions. Furthermore, contemporary models offering biophysical interpretations of the dMRI-derived measurements are illustrated to infer the underlying microstructural changes. Collectively, this review summarizes findings that contribute to charting spatiotemporally heterogeneous gray and white matter structural development, offering MRI-based biomarkers of typical brain development and setting the stage for understanding aberrant brain development in neurodevelopmental disorders. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Non-contrast magnetic resonance imaging for bladder cancer: fused high b value diffusion-weighted imaging and T2-weighted imaging helps evaluate depth of invasion.

    PubMed

    Lee, Minsu; Shin, Su-Jin; Oh, Young Taik; Jung, Dae Chul; Cho, Nam Hoon; Choi, Young Deuk; Park, Sung Yoon

    2017-09-01

    To investigate the utility of fused high b value diffusion-weighted imaging (DWI) and T2-weighted imaging (T2WI) for evaluating depth of invasion in bladder cancer. We included 62 patients with magnetic resonance imaging (MRI) and surgically confirmed urothelial carcinoma in the urinary bladder. An experienced genitourinary radiologist analysed the depth of invasion (T stage <2 or ≥2) using T2WI, DWI, T2WI plus DWI, and fused DWI and T2WI (fusion MRI). Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy were investigated. Area under the curve (AUC) was analysed to identify T stage ≥2. The rate of patients with surgically confirmed T stage ≥2 was 41.9% (26/62). Sensitivity, specificity, PPV, NPV and accuracy were 50.0%, 55.6%, 44.8%, 60.6% and 53.2%, respectively, with T2WI; 57.7%, 77.8%, 65.2%, 71.8% and 69.4%, respectively, with DWI; 65.4%, 80.6%, 70.8%, 76.3% and 74.2%, respectively, with T2WI plus DWI and 80.8%, 77.8%, 72.4%, 84.9% and 79.0%, respectively, with fusion MRI. AUC was 0.528 with T2WI, 0.677 with DWI, 0.730 with T2WI plus DWI and 0.793 with fusion MRI for T stage ≥2. Fused high b value DWI and T2WI may be a promising non-contrast MRI technique for assessing depth of invasion in bladder cancer. • Accuracy of fusion MRI was 79.0% for T stage ≥2 in bladder cancer. • AUC of fusion MRI was 0.793 for T stage ≥2 in bladder cancer. • Diagnostic performance of fusion MRI was comparable with T2WI plus DWI. • As a non-contrast MRI technique, fusion MRI is useful for bladder cancer.

  4. Correlation of the CT Compatible Stereotaxic Craniotomy with MRI Scans of the Patients for Removing Cranial Lesions Located Eloquent Areas and Deep Sites of Brain.

    PubMed

    Gulsen, Salih

    2015-03-15

    The first goal in neurosurgery is to protect neural function as long as it is possible. Moreover, while protecting the neural function, a neurosurgeon should extract the maximum amount of tumoral tissue from the tumour region of the brain. So neurosurgery and technological advancement go hand in hand to realize this goal. Using of CT compatible stereotaxy for removing a cranial tumour is to be commended as a cornerstone of these technological advancements. Following CT compatible stereotaxic system applications in neurosurgery, different techniques have taken place in neurosurgical practice. These techniques are magnetic resonance imaging (MRI), MRI compatible stereotaxis, frameless stereotaxy, volumetric stereotaxy, functional MRI, diffusion tensor (DT) imaging techniques (tractography of the white matter), intraoperative MRI and neuronavigation systems. However, to use all of this equipment having these technologies would be impossible because of economic reasons. However, when we correlated this technique with MRI scans of the patients with CT compatible stereotaxy scans, it is possible to provide gross total resection and protect and improve patients' neural functions.

  5. A comparison of early diagnostic utility of Alzheimer disease biomarkers in brain magnetic resonance and cerebrospinal fluid.

    PubMed

    Monge Argilés, J A; Blanco Cantó, M A; Leiva Salinas, C; Flors, L; Muñoz Ruiz, C; Sánchez Payá, J; Gasparini Berenguer, R; Leiva Santana, C

    2014-09-01

    The goals of this study were to compare the early diagnostic utility of Alzheimer disease biomarkers in the CSF with those in brain MRI in conditions found in our clinical practice, and to ascertain the diagnostic accuracy of both techniques used together. Between 2008 and 2009, we included 30 patients with mild cognitive impairment (MCI) who were examined using 1.5 Tesla brain MRI and AD biomarker analysis in CSF. MRI studies were evaluated by 2 radiologists according to the Korf́s visual scale. CSF biomarkers were analysed using INNOTEST reagents for Aβ1-42, total-tau and phospho-tau181p. We evaluated clinical changes 2 years after inclusion. By 2 years after inclusion, 15 of the original 30 patients (50%) had developed AD (NINCDS-ADRA criteria). The predictive utility of AD biomarkers in CSF (RR 2.7; 95% CI, 1.1-6.7; P<.01) was greater than that of MRI (RR 1.5; 95% CI 95%, 0.7-3.4; P<.2); using both techniques together yielded a sensitivity and a negative predictive value of 100%. Normal results on both complementary tests ruled out progression to AD (100%) within 2 years of inclusion. Our results show that the diagnostic accuracy of biomarkers in CSF is higher than that of biomarkers in MRI. Combined use of both techniques is highly accurate for either early diagnosis or exclusion of AD in patients with MCI. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  6. fMRI during natural sleep as a method to study brain function during early childhood.

    PubMed

    Redcay, Elizabeth; Kennedy, Daniel P; Courchesne, Eric

    2007-12-01

    Many techniques to study early functional brain development lack the whole-brain spatial resolution that is available with fMRI. We utilized a relatively novel method in which fMRI data were collected from children during natural sleep. Stimulus-evoked responses to auditory and visual stimuli as well as stimulus-independent functional networks were examined in typically developing 2-4-year-old children. Reliable fMRI data were collected from 13 children during presentation of auditory stimuli (tones, vocal sounds, and nonvocal sounds) in a block design. Twelve children were presented with visual flashing lights at 2.5 Hz. When analyses combined all three types of auditory stimulus conditions as compared to rest, activation included bilateral superior temporal gyri/sulci (STG/S) and right cerebellum. Direct comparisons between conditions revealed significantly greater responses to nonvocal sounds and tones than to vocal sounds in a number of brain regions including superior temporal gyrus/sulcus, medial frontal cortex and right lateral cerebellum. The response to visual stimuli was localized to occipital cortex. Furthermore, stimulus-independent functional connectivity MRI analyses (fcMRI) revealed functional connectivity between STG and other temporal regions (including contralateral STG) and medial and lateral prefrontal regions. Functional connectivity with an occipital seed was localized to occipital and parietal cortex. In sum, 2-4 year olds showed a differential fMRI response both between stimulus modalities and between stimuli in the auditory modality. Furthermore, superior temporal regions showed functional connectivity with numerous higher-order regions during sleep. We conclude that the use of sleep fMRI may be a valuable tool for examining functional brain organization in young children.

  7. The Attentional Field Revealed by Single-Voxel Modeling of fMRI Time Courses

    PubMed Central

    DeYoe, Edgar A.

    2015-01-01

    The spatial topography of visual attention is a distinguishing and critical feature of many theoretical models of visuospatial attention. Previous fMRI-based measurements of the topography of attention have typically been too crude to adequately test the predictions of different competing models. This study demonstrates a new technique to make detailed measurements of the topography of visuospatial attention from single-voxel, fMRI time courses. Briefly, this technique involves first estimating a voxel's population receptive field (pRF) and then “drifting” attention through the pRF such that the modulation of the voxel's fMRI time course reflects the spatial topography of attention. The topography of the attentional field (AF) is then estimated using a time-course modeling procedure. Notably, we are able to make these measurements in many visual areas including smaller, higher order areas, thus enabling a more comprehensive comparison of attentional mechanisms throughout the full hierarchy of human visual cortex. Using this technique, we show that the AF scales with eccentricity and varies across visual areas. We also show that voxels in multiple visual areas exhibit suppressive attentional effects that are well modeled by an AF having an enhancing Gaussian center with a suppressive surround. These findings provide extensive, quantitative neurophysiological data for use in modeling the psychological effects of visuospatial attention. PMID:25810532

  8. Wide-bore 1.5 T MRI-guided deep brain stimulation surgery: initial experience and technique comparison.

    PubMed

    Sillay, Karl A; Rusy, Deborah; Buyan-Dent, Laura; Ninman, Nancy L; Vigen, Karl K

    2014-12-01

    We report results of the initial experience with magnetic resonance image (MRI)-guided implantation of subthalamic nucleus (STN) deep brain stimulating (DBS) electrodes at the University of Wisconsin after having employed frame-based stereotaxy with previously available MR imaging techniques and microelectrode recording for STN DBS surgeries. Ten patients underwent MRI-guided DBS implantation of 20 electrodes between April 2011 and March 2013. The procedure was performed in a purpose-built intraoperative MRI suite configured specifically to allow MRI-guided DBS, using a wide-bore (70 cm) MRI system. Trajectory guidance was accomplished with commercially available system consisting of an MR-visible skull-mounted aiming device and a software guidance system processing intraoperatively acquired iterative MRI scans. A total of 10 patients (5 male, 5 female)-representative of the Parkinson Disease (PD) population-were operated on with standard technique and underwent 20 electrode placements under MRI-guided bilateral STN-targeted DBS placement. All patients completed the procedure with electrodes successfully placed in the STN. Procedure time improved with experience. Our initial experience confirms the safety of MRI-guided DBS, setting the stage for future investigations combining physiology and MRI guidance. Further follow-up is required to compare the efficacy of the MRI-guided surgery cohort to that of traditional frame-based stereotaxy. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. SU-D-18C-01: A Novel 4D-MRI Technology Based On K-Space Retrospective Sorting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y; Yin, F; Cai, J

    2014-06-01

    Purpose: Current 4D-MRI techniques lack sufficient temporal/spatial resolution and consistent tumor contrast. To overcome these limitations, this study presents the development and initial evaluation of an entirely new framework of 4D-MRI based on k-space retrospective sorting. Methods: An important challenge of the proposed technique is to determine the number of repeated scans(NR) required to obtain sufficient k-space data for 4D-MRI. To do that, simulations using 29 cancer patients' respiratory profiles were performed to derive the relationship between data acquisition completeness(Cp) and NR, also relationship between NR(Cp=95%) and the following factors: total slice(NS), respiratory phase bin length(Lb), frame rate(fr), resolution(R) andmore » image acquisition starting-phase(P0). To evaluate our technique, a computer simulation study on a 4D digital human phantom (XCAT) were conducted with regular breathing (fr=0.5Hz; R=256×256). A 2D echo planer imaging(EPI) MRI sequence were assumed to acquire raw k-space data, with respiratory signal and acquisition time for each k-space data line recorded simultaneously. K-space data was re-sorted based on respiratory phases. To evaluate 4D-MRI image quality, tumor trajectories were measured and compared with the input signal. Mean relative amplitude difference(D) and cross-correlation coefficient(CC) are calculated. Finally, phase-sharing sliding window technique was applied to investigate the feasibility of generating ultra-fast 4D-MRI. Result: Cp increased with NR(Cp=100*[1-exp(-0.19*NR)], when NS=30, Lb=100%/6). NR(Cp=95%) was inversely-proportional to Lb (r=0.97), but independent of other factors. 4D-MRI on XCAT demonstrated highly accurate motion information (D=0.67%, CC=0.996) with much less artifacts than those on image-based sorting 4D-MRI. Ultra-fast 4D-MRI with an apparent temporal resolution of 10 frames/second was reconstructed using the phase-sharing sliding window technique. Conclusions: A novel 4D-MRI technology based on k-space sorting has been successfully developed and evaluated on the digital phantom. Framework established can be applied to a variety of MR sequences, showing great promises to develop the optimal 4D-MRI technique for many radiation therapy applications. NIH (1R21CA165384-01A1)« less

  10. Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET)/MRI for Lung Cancer Staging.

    PubMed

    Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Yoshikawa, Takeshi; Sugimura, Kazuro

    2016-07-01

    Tumor, lymph node, and metastasis (TNM) classification of lung cancer is typically performed with the TNM staging system, as recommended by the Union Internationale Contre le Cancer (UICC), the American Joint Committee on Cancer (AJCC), and the International Association for the Study of Lung Cancer (IASLC). Radiologic examinations for TNM staging of lung cancer patients include computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography with 2-[fluorine-18] fluoro-2-deoxy-D-glucose (FDG-PET), and FDG-PET combined with CT (FDG-PET/CT) and are used for pretherapeutic assessments. Recent technical advances in MR systems, application of fast and parallel imaging and/or introduction of new MR techniques, and utilization of contrast media have markedly improved the diagnostic utility of MRI in this setting. In addition, FDG-PET can be combined or fused with MRI (PET/MRI) for clinical practice. This review article will focus on these recent advances in MRI as well as on PET/MRI for lung cancer staging, in addition to a discussion of their potential and limitations for routine clinical practice in comparison with other modalities such as CT, FDG-PET, and PET/CT.

  11. T2* mapping and delayed gadolinium-enhanced magnetic resonance imaging in cartilage (dGEMRIC) of humeral articular cartilage--a histologically controlled study.

    PubMed

    Bittersohl, Bernd; Kircher, Jörn; Miese, Falk R; Dekkers, Christin; Habermeyer, Peter; Fröbel, Julia; Antoch, Gerald; Krauspe, Rüdiger; Zilkens, Christoph

    2015-10-01

    Cartilage biochemical imaging modalities that include the magnetic resonance imaging (MRI) techniques of T2* mapping (sensitive to water content and collagen fiber network) and delayed gadolinium-enhanced MRI of cartilage (dGEMRIC, sensitive to the glycosaminoglycan content) can be effective instruments for early diagnosis and reliable follow-up of cartilage damage. The purpose of this study was to provide T2* mapping and dGEMRIC values in various histologic grades of cartilage degeneration in humeral articular cartilage. A histologically controlled in vitro study was conducted that included human humeral head cartilage specimens with various histologic grades of cartilage degeneration. High-resolution, 3-dimensional (3D) T2* mapping and dGEMRIC were performed that enabled the correlation of MRI and histology data. Cartilage degeneration was graded according to the Mankin score, which evaluates surface morphology, cellularity, toluidine blue staining, and tidemark integrity. SPSS software was used for statistical analyses. Both MRI mapping values decreased significantly (P < .001) with increasing cartilage degeneration. Spearman rank analysis revealed a significant correlation (correlation coefficients ranging from -0.315 to 0.784; P < .001) between the various histologic parameters and the T2* and T1Gd mapping values. This study demonstrates the feasibility of 3D T2* and dGEMRIC to identify various histologic grades of cartilage damage of humeral articular cartilage. With regard to the advantages of these mapping techniques with high image resolution and the ability to accomplish a 3D biochemically sensitive imaging, we consider that these imaging techniques can make a positive contribution to the currently evolving science and practice of cartilage biochemical imaging. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  12. [Open repair of gluteus medius and minimus tendons tears with double-row technique : Clinical and radiological results].

    PubMed

    Schröder, J H; Geßlein, M; Schütz, M; Perka, C; Krüger, D

    2018-03-01

    Operative refixation is a new therapeutic option in cases of failed conservative treatment for trochanteric pain syndrome (TPS) and lesions of the hip abductors in magnetic resonance imaging (MRI). Evaluation of the clinical and radiological results after open gluteus medius and minimus tendon reconstruction with a double-row technique was carried out. Patients with failed conservative treatment for TPS and confirmed lesions of the hip abductors in MRI were treated by open hip abductor tendon reconstruction with a double-row technique. The patients were evaluated preoperatively and postoperatively (minimum follow-up 12 months) using the modified Harris hip score (mHHS) and a subjective score (subjective hip value, SHV). Preoperative and postoperative MRI evaluation included measurement of hip abductor muscle diameter and cross-sectional area as well as fatty degeneration. In this study 12 consecutive cases of open reconstruction of the hip abductor tendons were included. There was a significant improvement in the mHHS. In one case the patient showed an atraumatic rupture in the proximal anchor row. The MRI showed a significant improvement in muscle diameter and cross-sectional area for the gluteus medius muscle of the affected and the contralateral side, while the degree of fatty degeneration did not improve. The fatty degeneration showed a significant correlation with the postoperative results in the mHHS and the SHV. Operative reconstruction of lesions in the hip abductor tendons is a therapy option with significant improvement of patient satisfaction and functional scores as well as muscle diameter and cross-sectional area for the gluteus medius. The degree of fatty degeneration and possible differential diagnoses need to be taken into consideration.

  13. Studies of MRI relaxivities of gadolinium-labeled dendrons

    NASA Astrophysics Data System (ADS)

    Pan, Hongmu; Daniel, Marie-Christine

    2011-05-01

    In cancer detection, imaging techniques have a great importance in early diagnosis. The more sensitive the imaging technique and the earlier the tumor can be detected. Contrast agents have the capability to increase the sensitivity in imaging techniques such as magnetic resonance imaging (MRI). Until now, gadolinium-based contrast agents are mainly used for MRI, and show good enhancement. But improvement is needed for detection of smaller tumors at the earliest stage possible. The dendrons complexed with Gd(DOTA) were synthesized and evaluated as a new MRI contrast agent. The longitudinal and transverse relaxation effects were tested and compared with commercial drug Magnevist, Gd(DTPA).

  14. Advances in Magnetic Resonance Imaging of the Skull Base

    PubMed Central

    Kirsch, Claudia F.E.

    2014-01-01

    Introduction Over the past 20 years, magnetic resonance imaging (MRI) has advanced due to new techniques involving increased magnetic field strength and developments in coils and pulse sequences. These advances allow increased opportunity to delineate the complex skull base anatomy and may guide the diagnosis and treatment of the myriad of pathologies that can affect the skull base. Objectives The objective of this article is to provide a brief background of the development of MRI and illustrate advances in skull base imaging, including techniques that allow improved conspicuity, characterization, and correlative physiologic assessment of skull base pathologies. Data Synthesis Specific radiographic illustrations of increased skull base conspicuity including the lower cranial nerves, vessels, foramina, cerebrospinal fluid (CSF) leaks, and effacement of endolymph are provided. In addition, MRIs demonstrating characterization of skull base lesions, such as recurrent cholesteatoma versus granulation tissue or abscess versus tumor, are also provided as well as correlative clinical findings in CSF flow studies in a patient pre- and post-suboccipital decompression for a Chiari I malformation. Conclusions This article illustrates MRI radiographic advances over the past 20 years, which have improved clinicians' ability to diagnose, define, and hopefully improve the treatment and outcomes of patients with underlying skull base pathologies. PMID:25992137

  15. Unwrapping eddy current compensation: improved compensation of eddy current induced baseline shifts in high-resolution phase-contrast MRI at 9.4 Tesla.

    PubMed

    Espe, Emil K S; Zhang, Lili; Sjaastad, Ivar

    2014-10-01

    Phase-contrast MRI (PC-MRI) is a versatile tool allowing evaluation of in vivo motion, but is sensitive to eddy current induced phase offsets, causing errors in the measured velocities. In high-resolution PC-MRI, these offsets can be sufficiently large to cause wrapping in the baseline phase, rendering conventional eddy current compensation (ECC) inadequate. The purpose of this study was to develop an improved ECC technique (unwrapping ECC) able to handle baseline phase discontinuities. Baseline phase discontinuities are unwrapped by minimizing the spatiotemporal standard deviation of the static-tissue phase. Computer simulations were used for demonstrating the theoretical foundation of the proposed technique. The presence of baseline wrapping was confirmed in high-resolution myocardial PC-MRI of a normal rat heart at 9.4 Tesla (T), and the performance of unwrapping ECC was compared with conventional ECC. Areas of phase wrapping in static regions were clearly evident in high-resolution PC-MRI. The proposed technique successfully eliminated discontinuities in the baseline, and resulted in significantly better ECC than the conventional approach. We report the occurrence of baseline phase wrapping in PC-MRI, and provide an improved ECC technique capable of handling its presence. Unwrapping ECC offers improved correction of eddy current induced baseline shifts in high-resolution PC-MRI. Copyright © 2013 Wiley Periodicals, Inc.

  16. Cost Analysis of MRI Services in Iran: An Application of Activity Based Costing Technique

    PubMed Central

    Bayati, Mohsen; Mahboub Ahari, Alireza; Badakhshan, Abbas; Gholipour, Mahin; Joulaei, Hassan

    2015-01-01

    Background: Considerable development of MRI technology in diagnostic imaging, high cost of MRI technology and controversial issues concerning official charges (tariffs) have been the main motivations to define and implement this study. Objectives: The present study aimed to calculate the unit-cost of MRI services using activity-based costing (ABC) as a modern cost accounting system and to fairly compare calculated unit-costs with official charges (tariffs). Materials and Methods: We included both direct and indirect costs of MRI services delivered in fiscal year 2011 in Shiraz Shahid Faghihi hospital. Direct allocation method was used for distribution of overhead costs. We used micro-costing approach to calculate unit-cost of all different MRI services. Clinical cost data were retrieved from the hospital registering system. Straight-line method was used for depreciation cost estimation. To cope with uncertainty and to increase the robustness of study results, unit costs of 33 MRI services was calculated in terms of two scenarios. Results: Total annual cost of MRI activity center (AC) was calculated at USD 400,746 and USD 532,104 based on first and second scenarios, respectively. Ten percent of the total cost was allocated from supportive departments. The annual variable costs of MRI center were calculated at USD 295,904. Capital costs measured at USD 104,842 and USD 236, 200 resulted from the first and second scenario, respectively. Existing tariffs for more than half of MRI services were above the calculated costs. Conclusion: As a public hospital, there are considerable limitations in both financial and administrative databases of Shahid Faghihi hospital. Labor cost has the greatest share of total annual cost of Shahid Faghihi hospital. The gap between unit costs and tariffs implies that the claim for extra budget from health providers may not be relevant for all services delivered by the studied MRI center. With some adjustments, ABC could be implemented in MRI centers. With the settlement of a reliable cost accounting system such as ABC technique, hospitals would be able to generate robust evidences for financial management of their overhead, intermediate and final ACs. PMID:26715979

  17. Cost Analysis of MRI Services in Iran: An Application of Activity Based Costing Technique.

    PubMed

    Bayati, Mohsen; Mahboub Ahari, Alireza; Badakhshan, Abbas; Gholipour, Mahin; Joulaei, Hassan

    2015-10-01

    Considerable development of MRI technology in diagnostic imaging, high cost of MRI technology and controversial issues concerning official charges (tariffs) have been the main motivations to define and implement this study. The present study aimed to calculate the unit-cost of MRI services using activity-based costing (ABC) as a modern cost accounting system and to fairly compare calculated unit-costs with official charges (tariffs). We included both direct and indirect costs of MRI services delivered in fiscal year 2011 in Shiraz Shahid Faghihi hospital. Direct allocation method was used for distribution of overhead costs. We used micro-costing approach to calculate unit-cost of all different MRI services. Clinical cost data were retrieved from the hospital registering system. Straight-line method was used for depreciation cost estimation. To cope with uncertainty and to increase the robustness of study results, unit costs of 33 MRI services was calculated in terms of two scenarios. Total annual cost of MRI activity center (AC) was calculated at USD 400,746 and USD 532,104 based on first and second scenarios, respectively. Ten percent of the total cost was allocated from supportive departments. The annual variable costs of MRI center were calculated at USD 295,904. Capital costs measured at USD 104,842 and USD 236, 200 resulted from the first and second scenario, respectively. Existing tariffs for more than half of MRI services were above the calculated costs. As a public hospital, there are considerable limitations in both financial and administrative databases of Shahid Faghihi hospital. Labor cost has the greatest share of total annual cost of Shahid Faghihi hospital. The gap between unit costs and tariffs implies that the claim for extra budget from health providers may not be relevant for all services delivered by the studied MRI center. With some adjustments, ABC could be implemented in MRI centers. With the settlement of a reliable cost accounting system such as ABC technique, hospitals would be able to generate robust evidences for financial management of their overhead, intermediate and final ACs.

  18. Noninvasive Techniques for Intracranial Pressure Assessment: A Review from Aerospace Medicine Perspective

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas R.; Sargsyan, Ashot E.; Fogarty, Jennifer; Ebert, Douglas J. W.; Polk, J. D.

    2010-01-01

    Microgravity-induced changes in fluid distribution and other physiological factors due to space flight have been implicated as the cause of increased intracranial pressure (ICP) in a number of space crewmembers. The modest levels of ICP elevation and absence of severe symptoms in this group do not warrant invasive diagnostic interventions. However, the long-term trends and residual or consequential changes secondary to the observed ICP elevation in this group are not yet known. Therefore, close attention is needed to evaluate the potential techniques of noninvasively assessing ICP, including those feasible for in-flight use. Of particular interest is continuity between ground and in-flight testing, whereby data from the same or different techniques allow reasonably dependable estimation of ICP trends and responses. Methods: A thorough review of current literature, analysis of NASA data, and interviews with subject matter experts were conducted to construct a presentation that reflects the state of the art for noninvasive ICP measurement and monitoring. Results: Multiple imaging and non-imaging modalities are available to assess ICP in terrestrial clinical and experimental environments. Imaging alternatives include magnetic resonance imaging (MRI) and high-resolution sonography. Non-imaging techniques include transcranial Doppler, certain audiological methods, and venous ophthalmodynamometry, among others. Special functional techniques have been proposed recently that allow the use of advanced MRI methods to calculate ICP in addition to the acquisition of high-resolution images. Our data include many of these applications, with several cases of correlation with lumbar puncture, the invasive "gold standard" measurement of ICP.

  19. Prediction of pork quality parameters by applying fractals and data mining on MRI.

    PubMed

    Caballero, Daniel; Pérez-Palacios, Trinidad; Caro, Andrés; Amigo, José Manuel; Dahl, Anders B; ErsbØll, Bjarne K; Antequera, Teresa

    2017-09-01

    This work firstly investigates the use of MRI, fractal algorithms and data mining techniques to determine pork quality parameters non-destructively. The main objective was to evaluate the capability of fractal algorithms (Classical Fractal algorithm, CFA; Fractal Texture Algorithm, FTA and One Point Fractal Texture Algorithm, OPFTA) to analyse MRI in order to predict quality parameters of loin. In addition, the effect of the sequence acquisition of MRI (Gradient echo, GE; Spin echo, SE and Turbo 3D, T3D) and the predictive technique of data mining (Isotonic regression, IR and Multiple linear regression, MLR) were analysed. Both fractal algorithm, FTA and OPFTA are appropriate to analyse MRI of loins. The sequence acquisition, the fractal algorithm and the data mining technique seems to influence on the prediction results. For most physico-chemical parameters, prediction equations with moderate to excellent correlation coefficients were achieved by using the following combinations of acquisition sequences of MRI, fractal algorithms and data mining techniques: SE-FTA-MLR, SE-OPFTA-IR, GE-OPFTA-MLR, SE-OPFTA-MLR, with the last one offering the best prediction results. Thus, SE-OPFTA-MLR could be proposed as an alternative technique to determine physico-chemical traits of fresh and dry-cured loins in a non-destructive way with high accuracy. Copyright © 2017. Published by Elsevier Ltd.

  20. Resting state functional connectivity: its physiological basis and application in neuropharmacology.

    PubMed

    Lu, Hanbing; Stein, Elliot A

    2014-09-01

    Brain structures do not work in isolation; they work in concert to produce sensory perception, motivation and behavior. Systems-level network activity can be investigated by resting state magnetic resonance imaging (rsMRI), an emerging neuroimaging technique that assesses the synchrony of the brain's ongoing spontaneous activity. Converging evidence reveals that rsMRI is able to consistently identify distinct spatiotemporal patterns of large-scale brain networks. Dysregulation within and between these networks has been implicated in a number of neurodegenerative and neuropsychiatric disorders, including Alzheimer's disease and drug addiction. Despite wide application of this approach in systems neuroscience, the physiological basis of these fluctuations remains incompletely understood. Here we review physiological studies in electrical, metabolic and hemodynamic fluctuations that are most pertinent to the rsMRI signal. We also review recent applications to neuropharmacology - specifically drug effects on resting state fluctuations. We speculate that the mechanisms governing spontaneous fluctuations in regional oxygenation availability likely give rise to the observed rsMRI signal. We conclude by identifying several open questions surrounding this technique. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'. Published by Elsevier Ltd.

  1. Use of magnetic resonance imaging for the investigation of orbital disease in small animals.

    PubMed

    Dennis, R

    2000-04-01

    Twenty-five small animal patients presenting with signs of orbital disease were investigated using magnetic resonance imaging (MRI) in an attempt to assess the value of this imaging technique for diagnosis. All patients were also examined using ultrasonography, and skull radiography was performed in 20 of these animals. The final diagnoses included neoplasia, inflammatory disease and foreign body penetration. MRI produced detailed images of orbital tissues and provided more information about the extent of pathology than the other imaging techniques; a correct diagnosis based solely on the MRI scan was made in 22 cases. Radiography was found to be helpful only in cases in which neoplastic disease extended markedly beyond the confines of the orbit into the nasal chamber and paranasal sinuses. Radiographic changes other than soft tissue swelling were not evident in other orbital disease processes. Ultrasonography gave both false negative and false positive diagnoses for neoplastic masses, although it allowed the correct diagnosis of both cases of foreign bodies and one of the three cases of retrobulbar abscesses in this series. MRI is recommended for patients in which radiography and ultrasonography fall to produce a confident diagnosis or for which surgery is proposed.

  2. Fetal MRI: A Technical Update with Educational Aspirations

    PubMed Central

    Gholipour, Ali; Estroff, Judith A.; Barnewolt, Carol E.; Robertson, Richard L.; Grant, P. Ellen; Gagoski, Borjan; Warfield, Simon K.; Afacan, Onur; Connolly, Susan A.; Neil, Jeffrey J.; Wolfberg, Adam; Mulkern, Robert V.

    2015-01-01

    Fetal magnetic resonance imaging (MRI) examinations have become well-established procedures at many institutions and can serve as useful adjuncts to ultrasound (US) exams when diagnostic doubts remain after US. Due to fetal motion, however, fetal MRI exams are challenging and require the MR scanner to be used in a somewhat different mode than that employed for more routine clinical studies. Herein we review the techniques most commonly used, and those that are available, for fetal MRI with an emphasis on the physics of the techniques and how to deploy them to improve success rates for fetal MRI exams. By far the most common technique employed is single-shot T2-weighted imaging due to its excellent tissue contrast and relative immunity to fetal motion. Despite the significant challenges involved, however, many of the other techniques commonly employed in conventional neuro- and body MRI such as T1 and T2*-weighted imaging, diffusion and perfusion weighted imaging, as well as spectroscopic methods remain of interest for fetal MR applications. An effort to understand the strengths and limitations of these basic methods within the context of fetal MRI is made in order to optimize their use and facilitate implementation of technical improvements for the further development of fetal MR imaging, both in acquisition and post-processing strategies. PMID:26225129

  3. Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals.

    PubMed

    Kim, Seong-Gi; Ogawa, Seiji

    2012-07-01

    After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the origins of BOLD fMRI signals, including the topics of (1) effects of spin density, volume fraction, inflow, perfusion, and susceptibility as potential contributors to BOLD fMRI, (2) intravascular and extravascular contributions to conventional gradient-echo and spin-echo BOLD fMRI, (3) spatial specificity of hemodynamic-based fMRI related to vascular architecture and intrinsic hemodynamic responses, (4) BOLD signal contributions from functional changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of O(2) utilization (CMRO(2)), (5) dynamic responses of BOLD, CBF, CMRO(2), and arterial and venous CBV, (6) potential sources of initial BOLD dips, poststimulus BOLD undershoots, and prolonged negative BOLD fMRI signals, (7) dependence of stimulus-evoked BOLD signals on baseline physiology, and (8) basis of resting-state BOLD fluctuations. These discussions are highly relevant to interpreting BOLD fMRI signals as physiological means.

  4. Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals

    PubMed Central

    Kim, Seong-Gi; Ogawa, Seiji

    2012-01-01

    After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the origins of BOLD fMRI signals, including the topics of (1) effects of spin density, volume fraction, inflow, perfusion, and susceptibility as potential contributors to BOLD fMRI, (2) intravascular and extravascular contributions to conventional gradient-echo and spin-echo BOLD fMRI, (3) spatial specificity of hemodynamic-based fMRI related to vascular architecture and intrinsic hemodynamic responses, (4) BOLD signal contributions from functional changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of O2 utilization (CMRO2), (5) dynamic responses of BOLD, CBF, CMRO2, and arterial and venous CBV, (6) potential sources of initial BOLD dips, poststimulus BOLD undershoots, and prolonged negative BOLD fMRI signals, (7) dependence of stimulus-evoked BOLD signals on baseline physiology, and (8) basis of resting-state BOLD fluctuations. These discussions are highly relevant to interpreting BOLD fMRI signals as physiological means. PMID:22395207

  5. Sources and implications of whole-brain fMRI signals in humans

    PubMed Central

    Power, Jonathan D; Plitt, Mark; Laumann, Timothy O; Martin, Alex

    2016-01-01

    Whole-brain fMRI signals are a subject of intense interest: variance in the global fMRI signal (the spatial mean of all signals in the brain) indexes subject arousal, and psychiatric conditions such as schizophrenia and autism have been characterized by differences in the global fMRI signal. Further, vigorous debates exist on whether global signals ought to be removed from fMRI data. However, surprisingly little research has focused on the empirical properties of whole-brain fMRI signals. Here we map the spatial and temporal properties of the global signal, individually, in 1000+ fMRI scans. Variance in the global fMRI signal is strongly linked to head motion, to hardware artifacts, and to respiratory patterns and their attendant physiologic changes. Many techniques used to prepare fMRI data for analysis fail to remove these uninteresting kinds of global signal fluctuations. Thus, many studies include, at the time of analysis, prominent global effects of yawns, breathing changes, and head motion, among other signals. Such artifacts will mimic dynamic neural activity and will spuriously alter signal covariance throughout the brain. Methods capable of isolating and removing global artifactual variance while preserving putative “neural” variance are needed; this paper adopts no position on the topic of global signal regression. PMID:27751941

  6. Dictionary learning and time sparsity in dynamic MRI.

    PubMed

    Caballero, Jose; Rueckert, Daniel; Hajnal, Joseph V

    2012-01-01

    Sparse representation methods have been shown to tackle adequately the inherent speed limits of magnetic resonance imaging (MRI) acquisition. Recently, learning-based techniques have been used to further accelerate the acquisition of 2D MRI. The extension of such algorithms to dynamic MRI (dMRI) requires careful examination of the signal sparsity distribution among the different dimensions of the data. Notably, the potential of temporal gradient (TG) sparsity in dMRI has not yet been explored. In this paper, a novel method for the acceleration of cardiac dMRI is presented which investigates the potential benefits of enforcing sparsity constraints on patch-based learned dictionaries and TG at the same time. We show that an algorithm exploiting sparsity on these two domains can outperform previous sparse reconstruction techniques.

  7. MRI tools for assessment of microstructure and nephron function of the kidney.

    PubMed

    Xie, Luke; Bennett, Kevin M; Liu, Chunlei; Johnson, G Allan; Zhang, Jeff Lei; Lee, Vivian S

    2016-12-01

    MRI can provide excellent detail of renal structure and function. Recently, novel MR contrast mechanisms and imaging tools have been developed to evaluate microscopic kidney structures including the tubules and glomeruli. Quantitative MRI can assess local tubular function and is able to determine the concentrating mechanism of the kidney noninvasively in real time. Measuring single nephron function is now a near possibility. In parallel to advancing imaging techniques for kidney microstructure is a need to carefully understand the relationship between the local source of MRI contrast and the underlying physiological change. The development of these imaging markers can impact the accurate diagnosis and treatment of kidney disease. This study reviews the novel tools to examine kidney microstructure and local function and demonstrates the application of these methods in renal pathophysiology. Copyright © 2016 the American Physiological Society.

  8. Rotator cuff disorders: How to write a surgically relevant magnetic resonance imaging report?

    PubMed Central

    Tawfik, Ahmed M; El-Morsy, Ahmad; Badran, Mohamed Aboelnour

    2014-01-01

    Evaluation of rotator cuff is a common indication for magnetic resonance imaging (MRI) scanning of the shoulder. Conventional MRI is the most commonly used technique, while magnetic resonance (MR) arthrography is reserved for certain cases. Rotator cuff disorders are thought to be caused by a combination of internal and external mechanisms. A well-structured MRI report should comment on the relevant anatomic structures including the acromial type and orientation, the presence of os acromiale, acromio-clavicular degenerative spurs and fluid in the subacromial subdeltoid bursa. In addition, specific injuries of the rotator cuff tendons and the condition of the long head of biceps should be accurately reported. The size and extent of tendon tears, tendon retraction and fatty degeneration or atrophy of the muscles are all essential components of a surgically relevant MRI report. PMID:24976930

  9. Visualizing Transcranial Direct Current Stimulation (tDCS) in vivo using Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Jog, Mayank Anant

    Transcranial Direct Current Stimulation (tDCS) is a low-cost, non-invasive neuromodulation technique that has been shown to treat clinical symptoms as well as improve cognition. However, no techniques exist at the time of research to visualize tDCS currents in vivo. This dissertation presents the theoretical framework and experimental implementations of a novel MRI technique that enables non-invasive visualization of the tDCS electric current using magnetic field mapping. The first chapter establishes the feasibility of measuring magnetic fields induced by tDCS currents. The following chapter discusses the state of the art implementation that can measure magnetic field changes in individual subjects undergoing concurrent tDCS/MRI. The final chapter discusses how the developed technique was integrated with BOLD fMRI-an established MRI technique for measuring brain function. By enabling a concurrent measurement of the tDCS current induced magnetic field as well as the brain's hemodynamic response to tDCS, our technique opens a new avenue to investigate tDCS mechanisms and improve targeting.

  10. Interactive MR image guidance for neurosurgical and minimally invasive procedures

    NASA Astrophysics Data System (ADS)

    Wong, Terence Z.; Schwartz, Richard B.; Pergolizzi, Richard S., Jr.; Black, Peter M.; Kacher, Daniel F.; Morrison, Paul R.; Jolesz, Ferenc A.

    1999-05-01

    Advantages of MR imaging for guidance of minimally invasive procedures include exceptional soft tissue contrast, intrinsic multiplanar imaging capability, and absence of exposure to ionizing radiation. Specialized imaging sequences are available and under development which can further enhance diagnosis and therapy. Flow-sensitive imaging techniques can be used to identify vascular structures. Temperature-sensitive imaging is possible which can provide interactive feedback prior to, during, and following the delivery of thermal energy. Functional MR imaging and dynamic contrast-enhanced MRI sequences can provide additional information for guidance in neurosurgical applications. Functional MR allows mapping of eloquent areas in the brain, so that these areas may be avoided during therapy. Dynamic contrast enhancement techniques can be useful for distinguishing active tumor from tumor necrosis caused by previous radiation therapy. An open-configuration 0.5T MRI system (GE Signa SP) developed at Brigham and Women's Hospital in collaboration with General Electric Medical Systems is described. Interactive navigation systems have been integrated into the MRI system. The imaging system is sited in an operating room environment, and used for image guided neurosurgical procedures (biopsies and tumor excision), as well as minimally invasive thermal therapies. Examples of MR imaging guidance, navigational techniques, and clinical applications are presented.

  11. Fifty years of brain imaging in neonatal encephalopathy following perinatal asphyxia.

    PubMed

    Groenendaal, Floris; de Vries, Linda S

    2017-01-01

    In the past brain imaging of term infants with hypoxic-ischemic encephalopathy (HIE) was performed with cranial ultrasound (cUS) and computed tomography (CT). Both techniques have several disadvantages sensitivity and specificity is limited compared with magnetic resonance imaging (MRI) and CT makes use of radiation. At present MRI including diffusion weighted MRI during the first week of life, has become the method of choice for imaging infants with HIE. In addition to imaging, blood vessels and blood flow can be visualized using MR angiography, MR venography, and arterial spin labeling. Since the use of these techniques additional lesions in infants with HIE, such as arterial ischemic stroke, sinovenous thrombosis, and subdural hemorrhages can be diagnosed, and the incidence appears to be higher than shown previously. Phosphorus magnetic resonance spectroscopy (MRS) has led to the concept of secondary energy failure in infants with HIE, but has not been widely used. Proton MRS of the basal ganglia and thalamus is one of the best predictors of neurodevelopmental outcome. cUS should still be used for screening infants admitted to a NICU with neonatal encephalopathy. In the future magnetic resonance techniques will be increasingly used as early biomarkers of neurodevelopmental outcome in trials of neuroprotective strategies.

  12. TH-EF-BRA-06: A Novel Retrospective 3D K-Space Sorting 4D-MRI Technique Using a Radial K-Space Acquisition MRI Sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y; Subashi, E; Yin, F

    Purpose: Current retrospective 4D-MRI provides superior tumor-to-tissue contrast and accurate respiratory motion information for radiotherapy motion management. The developed 4D-MRI techniques based on 2D-MRI image sorting require a high frame-rate of the MR sequences. However, several MRI sequences provide excellent image quality but have low frame-rate. This study aims at developing a novel retrospective 3D k-space sorting 4D-MRI technique using radial k-space acquisition MRI sequences to improve 4D-MRI image quality and temporal-resolution for imaging irregular organ/tumor respiratory motion. Methods: The method is based on a RF-spoiled, steady-state, gradient-recalled sequence with minimal echo time. A 3D radial k-space data acquisition trajectorymore » was used for sampling the datasets. Each radial spoke readout data line starts from the 3D center of Field-of-View. Respiratory signal can be extracted from the k-space center data point of each spoke. The spoke data was sorted based on its self-synchronized respiratory signal using phase sorting. Subsequently, 3D reconstruction was conducted to generate the time-resolved 4D-MRI images. As a feasibility study, this technique was implemented on a digital human phantom XCAT. The respiratory motion was controlled by an irregular motion profile. To validate using k-space center data as a respiratory surrogate, we compared it with the XCAT input controlling breathing profile. Tumor motion trajectories measured on reconstructed 4D-MRI were compared to the average input trajectory. The mean absolute amplitude difference (D) was calculated. Results: The signal extracted from k-space center data matches well with the input controlling respiratory profile of XCAT. The relative amplitude error was 8.6% and the relative phase error was 3.5%. XCAT 4D-MRI demonstrated a clear motion pattern with little serrated artifacts. D of tumor trajectories was 0.21mm, 0.23mm and 0.23mm in SI, AP and ML directions, respectively. Conclusion: A novel retrospective 3D k-space sorting 4D-MRI technique has been developed and evaluated on human digital phantom. NIH (1R21CA165384-01A1)« less

  13. Topical Review: Unique Contributions of Magnetic Resonance Imaging to Pediatric Psychology Research

    PubMed Central

    Duraccio, Kara M.; Carbine, Kaylie M.; Kirwan, C. Brock

    2016-01-01

    Objective This review aims to provide a brief introduction of the utility of magnetic resonance imaging (MRI) methods in pediatric psychology research, describe several exemplar studies that highlight the unique benefits of MRI techniques for pediatric psychology research, and detail methods for addressing several challenges inherent to pediatric MRI research. Methods Literature review. Results Numerous useful applications of MRI research in pediatric psychology have been illustrated in published research. MRI methods yield information that cannot be obtained using neuropsychological or behavioral measures. Conclusions Using MRI in pediatric psychology research may facilitate examination of neural structures and processes that underlie health behaviors. Challenges inherent to conducting MRI research with pediatric research participants (e.g., head movement) may be addressed using evidence-based strategies. We encourage pediatric psychology researchers to consider adopting MRI techniques to answer research questions relevant to pediatric health and illness. PMID:26141118

  14. Rotator cuff tear shape characterization: a comparison of two-dimensional imaging and three-dimensional magnetic resonance reconstructions.

    PubMed

    Gyftopoulos, Soterios; Beltran, Luis S; Gibbs, Kevin; Jazrawi, Laith; Berman, Phillip; Babb, James; Meislin, Robert

    2016-01-01

    The purpose of this study was to see if 3-dimensional (3D) magnetic resonance imaging (MRI) could improve our understanding of rotator cuff tendon tear shapes. We believed that 3D MRI would be more accurate than two-dimensional (2D) MRI for classifying tear shapes. We performed a retrospective review of MRI studies of patients with arthroscopically proven full-thickness rotator cuff tears. Two orthopedic surgeons reviewed the information for each case, including scope images, and characterized the shape of the cuff tear into crescent, longitudinal, U- or L-shaped longitudinal, and massive type. Two musculoskeletal radiologists reviewed the corresponding MRI studies independently and blind to the arthroscopic findings and characterized the shape on the basis of the tear's retraction and size using 2D MRI. The 3D reconstructions of each cuff tear were reviewed by each radiologist to characterize the shape. Statistical analysis included 95% confidence intervals and intraclass correlation coefficients. The study reviewed 34 patients. The accuracy for differentiating between crescent-shaped, longitudinal, and massive tears using measurements on 2D MRI was 70.6% for reader 1 and 67.6% for reader 2. The accuracy for tear shape characterization into crescent and longitudinal U- or L-shaped using 3D MRI was 97.1% for reader 1 and 82.4% for reader 2. When further characterizing the longitudinal tears as massive or not using 3D MRI, both readers had an accuracy of 76.9% (10 of 13). The overall accuracy of 3D MRI was 82.4% (56 of 68), significantly different (P = .021) from 2D MRI accuracy (64.7%). Our study has demonstrated that 3D MR reconstructions of the rotator cuff improve the accuracy of characterizing rotator cuff tear shapes compared with current 2D MRI-based techniques. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  15. Advanced Pediatric Brain Imaging Research and Training Program

    DTIC Science & Technology

    2014-10-01

    death and disability in children. Recent advances in pediatric magnetic resonance imaging ( MRI ) techniques are revolutionizing our understanding of... MRI , brain injury. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a...principles of pediatric brain injury and recovery following injury, as well as the clinical application of sophisticated MRI techniques that are

  16. Respiratory motion resolved, self-gated 4D-MRI using Rotating Cartesian K-space (ROCK)

    PubMed Central

    Han, Fei; Zhou, Ziwu; Cao, Minsong; Yang, Yingli; Sheng, Ke; Hu, Peng

    2017-01-01

    Purpose To propose and validate a respiratory motion resolved, self-gated (SG) 4D-MRI technique to assess patient-specific breathing motion of abdominal organs for radiation treatment planning. Methods The proposed 4D-MRI technique was based on the balanced steady-state free-precession (bSSFP) technique and 3D k-space encoding. A novel ROtating Cartesian K-space (ROCK) reordering method was designed that incorporates repeatedly sampled k-space centerline as the SG motion surrogate and allows for retrospective k-space data binning into different respiratory positions based on the amplitude of the surrogate. The multiple respiratory-resolved 3D k-space data were subsequently reconstructed using a joint parallel imaging and compressed sensing method with spatial and temporal regularization. The proposed 4D-MRI technique was validated using a custom-made dynamic motion phantom and was tested in 6 healthy volunteers, in whom quantitative diaphragm and kidney motion measurements based on 4D-MRI images were compared with those based on 2D-CINE images. Results The 5-minute 4D-MRI scan offers high-quality volumetric images in 1.2×1.2×1.6mm3 and 8 respiratory positions, with good soft-tissue contrast. In phantom experiments with triangular motion waveform, the motion amplitude measurements based on 4D-MRI were 11.89% smaller than the ground truth, whereas a −12.5% difference was expected due to data binning effects. In healthy volunteers, the difference between the measurements based on 4D-MRI and the ones based on 2D-CINE were 6.2±4.5% for the diaphragm, 8.2±4.9% and 8.9±5.1% for the right and left kidney. Conclusion The proposed 4D-MRI technique could provide high resolution, high quality, respiratory motion resolved 4D images with good soft-tissue contrast and are free of the “stitching” artifacts usually seen on 4D-CT and 4D-MRI based on resorting 2D-CINE. It could be used to visualize and quantify abdominal organ motion for MRI-based radiation treatment planning. PMID:28133752

  17. Respiratory motion-resolved, self-gated 4D-MRI using rotating cartesian k-space (ROCK).

    PubMed

    Han, Fei; Zhou, Ziwu; Cao, Minsong; Yang, Yingli; Sheng, Ke; Hu, Peng

    2017-04-01

    To propose and validate a respiratory motion resolved, self-gated (SG) 4D-MRI technique to assess patient-specific breathing motion of abdominal organs for radiation treatment planning. The proposed 4D-MRI technique was based on the balanced steady-state free-precession (bSSFP) technique and 3D k-space encoding. A novel rotating cartesian k-space (ROCK) reordering method was designed which incorporates repeatedly sampled k-space centerline as the SG motion surrogate and allows for retrospective k-space data binning into different respiratory positions based on the amplitude of the surrogate. The multiple respiratory-resolved 3D k-space data were subsequently reconstructed using a joint parallel imaging and compressed sensing method with spatial and temporal regularization. The proposed 4D-MRI technique was validated using a custom-made dynamic motion phantom and was tested in six healthy volunteers, in whom quantitative diaphragm and kidney motion measurements based on 4D-MRI images were compared with those based on 2D-CINE images. The 5-minute 4D-MRI scan offers high-quality volumetric images in 1.2 × 1.2 × 1.6 mm 3 and eight respiratory positions, with good soft-tissue contrast. In phantom experiments with triangular motion waveform, the motion amplitude measurements based on 4D-MRI were 11.89% smaller than the ground truth, whereas a -12.5% difference was expected due to data binning effects. In healthy volunteers, the difference between the measurements based on 4D-MRI and the ones based on 2D-CINE were 6.2 ± 4.5% for the diaphragm, 8.2 ± 4.9% and 8.9 ± 5.1% for the right and left kidney. The proposed 4D-MRI technique could provide high-resolution, high-quality, respiratory motion-resolved 4D images with good soft-tissue contrast and are free of the "stitching" artifacts usually seen on 4D-CT and 4D-MRI based on resorting 2D-CINE. It could be used to visualize and quantify abdominal organ motion for MRI-based radiation treatment planning. © 2017 American Association of Physicists in Medicine.

  18. Assessment of the Focal Hepatic Lesions Using Diffusion Tensor Magnetic Resonance Imaging

    PubMed Central

    Oussous, Siham Ait; Boujraf, Saïd; Kamaoui, Imane

    2016-01-01

    The goal is assessing the diffusion magnetic resonance imaging (dMRI) method efficiency in characterizing focal hepatic lesions (FHLs). About 28-FHL patients were studied in Radiology and Clinical Imaging Department of our University Hospital using 1.5 Tesla MRI system between January 2010 and June 2011. Patients underwent hepatic MRI consisting of dynamic T1- and T2-weighted imaging. The dMRI was performed with b-values of 200 s/mm2 and 600 s/mm2. About 42 lesions measuring more than 1 cm were studied including the variation of the signal according to the b-value and the apparent diffusion coefficient (ADC). The diagnostic imaging reference was based on standard MRI techniques data for typical lesions and on histology after surgical biopsy for atypical lesions. About 38 lesions were assessed including 13 benign lesions consisting of 1 focal nodular hyperplasia, 8 angiomas, and 4 cysts. About 25 malignant lesions included 11 hepatocellular carcinoma, 9 hepatic metastases, 1 cholangiocarcinoma, and 4 lymphomas. dMRI of soft lesions demonstrated higher ADC of 2.26 ± 0.75 mm2/s, whereas solid lesions showed lower ADC 1.19 ± 0.33 mm2/s with significant difference (P = 0.05). Discrete values collections were noticed. These results were correlated to standard MRI and histological findings. Sensitivity of 93% and specificity of 84% were found in diagnoses of malignant tumors with an ADC threshold of 1.6 × 10−3 mm2/s. dMRI is important characterization method of FHL. However, it should not be used as single criteria of hepatic lesions malignity. MRI, clinical, and biological data must be correlated. Significant difference was found between benign and solid malignant lesions without threshold ADC values. Hence, it is difficult to confirm ADC threshold differentiating the lesion classification. PMID:27186537

  19. Is the performance of MRI in preoperative staging of breast cancer independent of clinical and histological factors? A subgroup analysis.

    PubMed

    Carreira Gómez, C; Zamora Romero, J; Gil de Miguel, A; Chiva de Agustín, M; Plana Farrás, M N; Martínez González, J

    2015-01-01

    To determine whether preoperative breast MRI is more useful in patients according to their breast density, age, menopausal status, and biopsy findings of carcinoma in situ. We retrospectively studied 264 patients treated for breast cancer who had undergone mammography, ultrasonography, and MRI. We compared the size of the tumor on the three techniques and the sensitivity of the techniques for detecting additional lesions both in the overall group and in subgroups of patients classified according to their breast density, age, menopausal status, and histological findings of intraductal carcinoma. The definitive histological diagnosis was used as the gold standard. MRI was the technique that was most concordant with the histological findings for the size of the lesion, and it was also the technique that detected the most additional lesions. With MRI, we observed no differences in lesion size between the overall group and the subgroups in which MRI provided added value. Likewise, we observed no differences in the number of additional lesions detected in the overall group except for multicentric lesions, which was larger in older patients (P=.02). In the subgroup of patients in which MRI provided added value, the sensitivity for bilateral lesions was higher in patients with fatty breasts (P=.04). Multifocal lesions were detected significantly better in premenopausal patients (P=.03). MRI is better than mammography and better than ultrasonography for establishing the size of the tumor and for detecting additional lesions. Our results did not identify any subgroups in which the technique was more useful. Copyright © 2013 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  20. Integration of Medical Imaging Including Ultrasound into a New Clinical Anatomy Curriculum

    ERIC Educational Resources Information Center

    Moscova, Michelle; Bryce, Deborah A.; Sindhusake, Doungkamol; Young, Noel

    2015-01-01

    In 2008 a new clinical anatomy curriculum with integrated medical imaging component was introduced into the University of Sydney Medical Program. Medical imaging used for teaching the new curriculum included normal radiography, MRI, CT scans, and ultrasound imaging. These techniques were incorporated into teaching over the first two years of the…

  1. PET/MRI for neurologic applications.

    PubMed

    Catana, Ciprian; Drzezga, Alexander; Heiss, Wolf-Dieter; Rosen, Bruce R

    2012-12-01

    PET and MRI provide complementary information in the study of the human brain. Simultaneous PET/MRI data acquisition allows the spatial and temporal correlation of the measured signals, creating opportunities impossible to realize using stand-alone instruments. This paper reviews the methodologic improvements and potential neurologic and psychiatric applications of this novel technology. We first present methods for improving the performance and information content of each modality by using the information provided by the other technique. On the PET side, we discuss methods that use the simultaneously acquired MRI data to improve the PET data quantification. On the MRI side, we present how improved PET quantification can be used to validate several MRI techniques. Finally, we describe promising research, translational, and clinical applications that can benefit from these advanced tools.

  2. TH-A-BRF-05: MRI of Individual Lymph Nodes to Guide Regional Breast Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heijst, T van; Asselen, B van; Lagendijk, J

    2014-06-15

    Purpose: In regional radiotherapy (RT) for breast-cancer patients, direct visualization of individual lymph nodes (LNs) may reduce target volumes and Result in lower toxicity (i.e. reduced radiation pneumonitis, arm edema, arm morbidity), relative to standard CT-based delineations. To this end, newly designed magnetic resonance imaging (MRI) sequences were optimized and assessed qualitatively and quantitatively. Methods: In ten healthy female volunteers, a scanning protocol was developed and optimized. Coronal images were acquired in supine RT position positioned on a wedge board on a 1.5 T Ingenia (Philips) wide-bore MRI. In four volunteers the optimized MRI protocol was applied, including a 3-dimensionalmore » (3D) T1-weighted (T1w) fast-field-echo (FFE). T2w sequences, including 3D FFE, 3D and 2D fast spin echo (FSE), and diffusion-weighted single-shot echo-planar imaging (DWI) were also performed. Several fatsuppression techniques were used. Qualitative evaluation parameters included LN contrast, motion susceptibility, visibility of anatomical structures, and fat suppression. The number of visible axillary and supraclavicular LNs was also determined. Results: T1 FFE, insensitive to motion, lacked contrast of LNs, which often blended in with soft tissue and blood. T2 FFE showed high contrast, but some LNs were obscured due to motion. Both 2D and 3D FSE were motion-insensitive having high contrast, although some blood remained visible. 2D FSE showed more anatomical details, while in 3D FSE, some blurring occurred. DWI showed high LN contrast, but suffered from geometric distortions and low resolution. Fat suppression by mDixon was the most reliable in regions with magnetic-field inhomogeneities. The FSE sequences showed the highest sensitivity for LN detection. Conclusion: MRI of regional LNs was achieved in volunteers. The FSE techniques were robust and the most sensitive. Our optimized MRI sequences can facilitate direct delineation of individual LNs. This can Result in smaller target volumes and reduced toxicity in regional RT compared to standard CT planning.« less

  3. Estadiaje local del carcinoma rectal: imágenes de ecografía versus resonancia magnética. Revisión sistemática de la literatura y metaanálisis.

    PubMed

    Guenaga, Katia F; Otoch, Jose P; Artifon, Everson L A

    2016-01-01

    New surgical techniques in the treatment of rectal cancer have improved survival mainly by reducing local recurrences. A preoperative staging method is required to accurately identify tumor stage and planning the appropriate treatment. MRI and ERUS are currently being used for the local staging (T stage). In this review, the accuracy of MRI and ERUS with rigid probe was compared against the gold standard of the pathological findings in the resection specimens. Five studies met the inclusion criteria and were included in this meta-analysis. The accuracy was 91.0% to ERUS and 86.8% to MRI (p=0.27). The result has no statistical significance but with pronounced heterogeneity between the included trials as well as other published reviews. We can conclude that there is a clear need for good quality, larger scale and prospective studies.

  4. Dynamics of the brain: Mathematical models and non-invasive experimental studies

    NASA Astrophysics Data System (ADS)

    Toronov, V.; Myllylä, T.; Kiviniemi, V.; Tuchin, V. V.

    2013-10-01

    Dynamics is an essential aspect of the brain function. In this article we review theoretical models of neural and haemodynamic processes in the human brain and experimental non-invasive techniques developed to study brain functions and to measure dynamic characteristics, such as neurodynamics, neurovascular coupling, haemodynamic changes due to brain activity and autoregulation, and cerebral metabolic rate of oxygen. We focus on emerging theoretical biophysical models and experimental functional neuroimaging results, obtained mostly by functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS). We also included our current results on the effects of blood pressure variations on cerebral haemodynamics and simultaneous measurements of fast processes in the brain by near-infrared spectroscopy and a very novel functional MRI technique called magnetic resonance encephalography. Based on a rapid progress in theoretical and experimental techniques and due to the growing computational capacities and combined use of rapidly improving and emerging neuroimaging techniques we anticipate during next decade great achievements in the overall knowledge of the human brain.

  5. Accounting for the Confound of Meninges in Segmenting Entorhinal and Perirhinal Cortices in T1-Weighted MRI.

    PubMed

    Xie, Long; Wisse, Laura E M; Das, Sandhitsu R; Wang, Hongzhi; Wolk, David A; Manjón, Jose V; Yushkevich, Paul A

    2016-10-01

    Quantification of medial temporal lobe (MTL) cortices, including entorhinal cortex (ERC) and perirhinal cortex (PRC), from in vivo MRI is desirable for studying the human memory system as well as in early diagnosis and monitoring of Alzheimer's disease. However, ERC and PRC are commonly over-segmented in T1-weighted (T1w) MRI because of the adjacent meninges that have similar intensity to gray matter in T1 contrast. This introduces errors in the quantification and could potentially confound imaging studies of ERC/PRC. In this paper, we propose to segment MTL cortices along with the adjacent meninges in T1w MRI using an established multi-atlas segmentation framework together with super-resolution technique. Experimental results comparing the proposed pipeline with existing pipelines support the notion that a large portion of meninges is segmented as gray matter by existing algorithms but not by our algorithm. Cross-validation experiments demonstrate promising segmentation accuracy. Further, agreement between the volume and thickness measures from the proposed pipeline and those from the manual segmentations increase dramatically as a result of accounting for the confound of meninges. Evaluated in the context of group discrimination between patients with amnestic mild cognitive impairment and normal controls, the proposed pipeline generates more biologically plausible results and improves the statistical power in discriminating groups in absolute terms comparing to other techniques using T1w MRI. Although the performance of the proposed pipeline is inferior to that using T2-weighted MRI, which is optimized to image MTL sub-structures, the proposed pipeline could still provide important utilities in analyzing many existing large datasets that only have T1w MRI available.

  6. Game controller modification for fMRI hyperscanning experiments in a cooperative virtual reality environment.

    PubMed

    Trees, Jason; Snider, Joseph; Falahpour, Maryam; Guo, Nick; Lu, Kun; Johnson, Douglas C; Poizner, Howard; Liu, Thomas T

    2014-01-01

    Hyperscanning, an emerging technique in which data from multiple interacting subjects' brains are simultaneously recorded, has become an increasingly popular way to address complex topics, such as "theory of mind." However, most previous fMRI hyperscanning experiments have been limited to abstract social interactions (e.g. phone conversations). Our new method utilizes a virtual reality (VR) environment used for military training, Virtual Battlespace 2 (VBS2), to create realistic avatar-avatar interactions and cooperative tasks. To control the virtual avatar, subjects use a MRI compatible Playstation 3 game controller, modified by removing all extraneous metal components and replacing any necessary ones with 3D printed plastic models. Control of both scanners' operation is initiated by a VBS2 plugin to sync scanner time to the known time within the VR environment. Our modifications include:•Modification of game controller to be MRI compatible.•Design of VBS2 virtual environment for cooperative interactions.•Syncing two MRI machines for simultaneous recording.

  7. The potential of real-time fMRI neurofeedback for stroke rehabilitation: A systematic review.

    PubMed

    Wang, Tianlu; Mantini, Dante; Gillebert, Celine R

    2017-09-18

    Real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback aids the modulation of neural functions by training self-regulation of brain activity through operant conditioning. This technique has been applied to treat several neurodevelopmental and neuropsychiatric disorders, but its effectiveness for stroke rehabilitation has not been examined yet. Here, we systematically review the effectiveness of rt-fMRI neurofeedback training in modulating motor and cognitive processes that are often impaired after stroke. Based on predefined search criteria, we selected and examined 33 rt-fMRI neurofeedback studies, including 651 healthy individuals and 15 stroke patients in total. The results of our systematic review suggest that rt-fMRI neurofeedback training can lead to a learned modulation of brain signals, with associated changes at both the neural and the behavioural level. However, more research is needed to establish how its use can be optimized in the context of stroke rehabilitation. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Brain MRI analysis for Alzheimer's disease diagnosis using an ensemble system of deep convolutional neural networks.

    PubMed

    Islam, Jyoti; Zhang, Yanqing

    2018-05-31

    Alzheimer's disease is an incurable, progressive neurological brain disorder. Earlier detection of Alzheimer's disease can help with proper treatment and prevent brain tissue damage. Several statistical and machine learning models have been exploited by researchers for Alzheimer's disease diagnosis. Analyzing magnetic resonance imaging (MRI) is a common practice for Alzheimer's disease diagnosis in clinical research. Detection of Alzheimer's disease is exacting due to the similarity in Alzheimer's disease MRI data and standard healthy MRI data of older people. Recently, advanced deep learning techniques have successfully demonstrated human-level performance in numerous fields including medical image analysis. We propose a deep convolutional neural network for Alzheimer's disease diagnosis using brain MRI data analysis. While most of the existing approaches perform binary classification, our model can identify different stages of Alzheimer's disease and obtains superior performance for early-stage diagnosis. We conducted ample experiments to demonstrate that our proposed model outperformed comparative baselines on the Open Access Series of Imaging Studies dataset.

  9. Game controller modification for fMRI hyperscanning experiments in a cooperative virtual reality environment

    PubMed Central

    Trees, Jason; Snider, Joseph; Falahpour, Maryam; Guo, Nick; Lu, Kun; Johnson, Douglas C.; Poizner, Howard; Liu, Thomas T.

    2014-01-01

    Hyperscanning, an emerging technique in which data from multiple interacting subjects’ brains are simultaneously recorded, has become an increasingly popular way to address complex topics, such as “theory of mind.” However, most previous fMRI hyperscanning experiments have been limited to abstract social interactions (e.g. phone conversations). Our new method utilizes a virtual reality (VR) environment used for military training, Virtual Battlespace 2 (VBS2), to create realistic avatar-avatar interactions and cooperative tasks. To control the virtual avatar, subjects use a MRI compatible Playstation 3 game controller, modified by removing all extraneous metal components and replacing any necessary ones with 3D printed plastic models. Control of both scanners’ operation is initiated by a VBS2 plugin to sync scanner time to the known time within the VR environment. Our modifications include:•Modification of game controller to be MRI compatible.•Design of VBS2 virtual environment for cooperative interactions.•Syncing two MRI machines for simultaneous recording. PMID:26150964

  10. Ridding fMRI data of motion-related influences: Removal of signals with distinct spatial and physical bases in multiecho data.

    PubMed

    Power, Jonathan D; Plitt, Mark; Gotts, Stephen J; Kundu, Prantik; Voon, Valerie; Bandettini, Peter A; Martin, Alex

    2018-02-27

    "Functional connectivity" techniques are commonplace tools for studying brain organization. A critical element of these analyses is to distinguish variance due to neurobiological signals from variance due to nonneurobiological signals. Multiecho fMRI techniques are a promising means for making such distinctions based on signal decay properties. Here, we report that multiecho fMRI techniques enable excellent removal of certain kinds of artifactual variance, namely, spatially focal artifacts due to motion. By removing these artifacts, multiecho techniques reveal frequent, large-amplitude blood oxygen level-dependent (BOLD) signal changes present across all gray matter that are also linked to motion. These whole-brain BOLD signals could reflect widespread neural processes or other processes, such as alterations in blood partial pressure of carbon dioxide (pCO 2 ) due to ventilation changes. By acquiring multiecho data while monitoring breathing, we demonstrate that whole-brain BOLD signals in the resting state are often caused by changes in breathing that co-occur with head motion. These widespread respiratory fMRI signals cannot be isolated from neurobiological signals by multiecho techniques because they occur via the same BOLD mechanism. Respiratory signals must therefore be removed by some other technique to isolate neurobiological covariance in fMRI time series. Several methods for removing global artifacts are demonstrated and compared, and were found to yield fMRI time series essentially free of motion-related influences. These results identify two kinds of motion-associated fMRI variance, with different physical mechanisms and spatial profiles, each of which strongly and differentially influences functional connectivity patterns. Distance-dependent patterns in covariance are nearly entirely attributable to non-BOLD artifacts.

  11. Accuracy of arterial spin labeling magnetic resonance imaging (MRI) perfusion in detecting the epileptogenic zone in patients with drug-resistant neocortical epilepsy: comparison with electrophysiological data, structural MRI, SISCOM and FDG-PET.

    PubMed

    Sierra-Marcos, A; Carreño, M; Setoain, X; López-Rueda, A; Aparicio, J; Donaire, A; Bargalló, N

    2016-01-01

    Locating the epileptogenic zone (EZ) in patients with neocortical epilepsy presents major challenges. Our aim was to assess the accuracy of arterial spin labeling (ASL), an emerging non-invasive magnetic resonance imaging (MRI) perfusion technique, to locate the EZ in patients with drug-resistant neocortical epilepsy. Twenty-five consecutive patients with neocortical epilepsy referred to our epilepsy unit for pre-surgical evaluation underwent a standardized assessment including video-electroencephalography (EEG) monitoring, structural MRI, subtraction ictal single-photon emission computed tomography co-registered to MRI (SISCOM) and fluorodeoxyglucose positron emission tomography (FDG-PET) studies. An ASL sequence was included in the MRI studies. Areas of hypoperfusion or hyperperfusion on ASL were classified into 15 anatomic-functional cortical regions; these regional cerebral blood flow maps were compared with the EZ determined by the other tests and the strength of concordance was assessed with the kappa coefficient. Of the 25 patients [16 (64%) women; mean age 32.4 (±13.8) years], 18 (72%) had lesions on structural MRI. ASL abnormalities were seen in 15 (60%) patients (nine hypoperfusion, six hyperperfusion). ASL had a very good concordance with FDG-PET (k = 0.84), a good concordance with structural MRI (k = 0.76), a moderate concordance with video-EEG monitoring (k = 0.53) and a fair concordance with SISCOM (k = 0.28). Arterial spin labeling might help to confirm the location and extent of the EZ in the pre-surgical workup of patients with drug-resistant neocortical epilepsy. © 2015 EAN.

  12. Fusion of MRIs and CT scans for surgical treatment of cholesteatoma of the middle ear in children.

    PubMed

    Plouin-Gaudon, Isabelle; Bossard, Denis; Ayari-Khalfallah, Sonia; Froehlich, Patrick

    2010-09-01

    To evaluate the efficiency of diffusion-weighted magnetic resonance imaging (MRI) and high-resolution computed tomographic (CT) scan coregistration in predicting and adequately locating primary or recurrent cholesteatoma in children. Prospective study. Tertiary care university hospital. Ten patients aged 2 to 17 years (mean age, 8.5 years) with cholesteatoma of the middle ear, some of which were previously treated, were included for follow-up with systematic CT scanning and MRI between 2007 and 2008. Computed tomographic scanning was performed on a Siemens Somaton 128 (0.5/0.2-mm slices reformatted in 0.5/0.3-mm images). Fine cuts were obtained parallel and perpendicular to the lateral semicircular canal in each ear (100 × 100-mm field of view). Magnetic resonance imaging was undertaken on a Siemens Avanto 1.5T unit, with a protocol adapted for young children. Diffusion-weighted imaging was acquired using a single-shot turbo spin-echo mode. To allow for diagnosis and localization of the cholesteatoma, CT and diffusion-weighted MRIs were fused for each case. In 10 children, fusion technique allowed for correct diagnosis and precise localization (hypotympanum, epitympanum, mastoid recess, and attical space) as confirmed by subsequent standard surgery (positive predictive value, 100%). In 3 cases, the surgical approach was adequately determined from the fusion results. Lesion sizes on the CT-MRI fusion corresponded with perioperative findings. Recent developments in imaging techniques have made diffusion-weighted MRI more effective for detecting recurrent cholesteatoma. The major drawback of this technique, however, has been its poor anatomical and spatial discrimination. Fusion imaging using high-resolution CT and diffusion-weighted MRI appears to be a promising technique for both the diagnosis and precise localization of cholesteatomas. It provides useful information for surgical planning and, furthermore, is easy to use in pediatric cases.

  13. 3D MRI Modeling of Thin and Spatially Complex Soft Tissue Structures without Shrinkage: Lamprey Myosepta as an Example.

    PubMed

    Wood, Bradley M; Jia, Guang; Carmichael, Owen; McKlveen, Kevin; Homberger, Dominique G

    2018-05-12

    3D imaging techniques enable the non-destructive analysis and modeling of complex structures. Among these, MRI exhibits good soft tissue contrast, but is currently less commonly used for non-clinical research than x-ray CT, even though the latter requires contrast-staining that shrinks and distorts soft tissues. When the objective is the creation of a realistic and complete 3D model of soft tissue structures, MRI data are more demanding to acquire and visualize and require extensive post-processing because they comprise non-cubic voxels with dimensions that represent a trade-off between tissue contrast and image resolution. Therefore, thin soft tissue structures with complex spatial configurations are not always visible in a single MRI dataset, so that standard segmentation techniques are not sufficient for their complete visualization. By using the example of the thin and spatially complex connective tissue myosepta in lampreys, we developed a workflow protocol for the selection of the appropriate parameters for the acquisition of MRI data and for the visualization and 3D modeling of soft tissue structures. This protocol includes a novel recursive segmentation technique for supplementing missing data in one dataset with data from another dataset to produce realistic and complete 3D models. Such 3D models are needed for the modeling of dynamic processes, such as the biomechanics of fish locomotion. However, our methodology is applicable to the visualization of any thin soft tissue structures with complex spatial configurations, such as fasciae, aponeuroses, and small blood vessels and nerves, for clinical research and the further exploration of tensegrity. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  14. Fluorescein-Guided Resection of Intramedullary Spinal Cord Tumors: Results from a Preliminary, Multicentric, Retrospective Study.

    PubMed

    Acerbi, Francesco; Cavallo, Claudio; Schebesch, Karl-Michael; Akçakaya, Mehmet Osman; de Laurentis, Camilla; Hamamcioglu, Mustafa Kemal; Broggi, Morgan; Brawanski, Alexander; Falco, Jacopo; Cordella, Roberto; Ferroli, Paolo; Kiris, Talat; Höhne, Julius

    2017-12-01

    Intramedullary spinal cord tumors (IMSCTs) are rare, heterogenous lesions that are usually enhanced on preoperative magnetic resonance imaging (MRI) because of a damaged blood-brain barrier. Sodium fluorescein is a dye that accumulates in areas of the central nervous system with a damaged BBB. Given the pattern of MRI contrast enhancement of the majority of IMSCTs, the use of this fluorescent tracer could improve tumor visualization and quality of resection. In this article, we present the first experience with the application of fluorescein-guided technique for surgical removal of IMSCTs. Eleven patients (6 men, 5 women; mean age, 50.1 years), harboring 5 ependymomas, 3 hemangioblastomas, 1 astrocytoma, 1 pilocytic astrocytoma, and 1 glioneuronal tumor forming rosettes were included. Sodium fluorescein (5 mg/kg) was injected immediately after patient intubation. Tumors were removed with microsurgical technique and standard neurophysiological monitoring, under YELLOW 560 filter (Pentero 900) visualization. Surgical reports were reviewed regarding usefulness and grade of fluorescein staining. Postoperative MRI was performed within 72 hours after surgery, and postoperative clinical outcome was registered. No adverse events were registered. Fluorescent staining was reported in 9 of 11 cases (82%), all of them enhancing on preoperative MRI (100% of ependymomas, 100% of pilocytic astrocytomas, 100% of hemangioblastomas). No fluorescence was reported in 1 astrocytoma and 1 glioneuronal tumor-forming rosette. Intraoperative fluorescence was considered helpful for tumor resection in 9 of 11 cases (82%). Gross total resection was obtained in 8 of 11 cases (72.7%). Our results suggest that fluorescein-guided surgery is a safe and effective technique that can be used during the surgical resection of IMSCTs presenting with contrast-enhancement on preoperative MRI. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Prospective comparison of magnetic resonance imaging to transient elastography and serum markers for liver fibrosis detection.

    PubMed

    Dyvorne, Hadrien A; Jajamovich, Guido H; Bane, Octavia; Fiel, M Isabel; Chou, Hsin; Schiano, Thomas D; Dieterich, Douglas; Babb, James S; Friedman, Scott L; Taouli, Bachir

    2016-05-01

    Establishing accurate non-invasive methods of liver fibrosis quantification remains a major unmet need. Here, we assessed the diagnostic value of a multiparametric magnetic resonance imaging (MRI) protocol including diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE)-MRI and magnetic resonance elastography (MRE) in comparison with transient elastography (TE) and blood tests [including ELF (Enhanced Liver Fibrosis) and APRI] for liver fibrosis detection. In this single centre cross-sectional study, we prospectively enrolled 60 subjects with liver disease who underwent multiparametric MRI (DWI, DCE-MRI and MRE), TE and blood tests. Correlation was assessed between non-invasive modalities and histopathologic findings including stage, grade and collagen content, while accounting for covariates such as age, sex, BMI, HCV status and MRI-derived fat and iron content. ROC curve analysis evaluated the performance of each technique for detection of moderate-to-advanced liver fibrosis (F2-F4) and advanced fibrosis (F3-F4). Magnetic resonance elastography provided the strongest correlation with fibrosis stage (r = 0.66, P < 0.001), inflammation grade (r = 0.52, P < 0.001) and collagen content (r = 0.53, P = 0.036). For detection of moderate-to-advanced fibrosis (F2-F4), AUCs were 0.78, 0.82, 0.72, 0.79, 0.71 for MRE, TE, DCE-MRI, DWI and APRI, respectively. For detection of advanced fibrosis (F3-F4), AUCs were 0.94, 0.77, 0.79, 0.79 and 0.70, respectively. Magnetic resonance elastography provides the highest correlation with histopathologic markers and yields high diagnostic performance for detection of advanced liver fibrosis and cirrhosis, compared to DWI, DCE-MRI, TE and serum markers. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. MRI to assess renal structure and function.

    PubMed

    Artunc, Ferruh; Rossi, Cristina; Boss, Andreas

    2011-11-01

    In addition to excellent anatomical depiction, MRI techniques have expanded to study functional aspects of renal physiology, such as renal perfusion, glomerular filtration rate (GFR) or tissue oxygenation. This review will focus on current developments with an emphasis on clinical applicability. The method of GFR determination is largely heterogeneous and still has weaknesses. However, the technique of employing liver disappearance curves has been shown to be accurate in healthy persons and patients with chronic kidney disease. In potential kidney donors, complete evaluation of kidney anatomy and function can be accomplished in a single-stop investigation. Techniques without contrast media can be utilized to measure renal tissue oxygenation (blood oxygen level-dependent MRI) or perfusion (arterial spin labeling) and could aid in the diagnosis and treatment of ischemic renal diseases, such as renal artery stenosis. Diffusion imaging techniques may provide information on spatially restricted water diffusion and tumor cellularity. Functional MRI opens new horizons in studying renal physiology and pathophysiology in vivo. Although extensively utilized in research, labor-intensive postprocessing and lack of standardization currently limit the clinical applicability of functional MRI. Further studies are necessary to evaluate the clinical value of functional magnetic resonance techniques for early discovery and characterization of kidney disease.

  17. Feasibility of free-breathing dynamic contrast-enhanced MRI of gastric cancer using a golden-angle radial stack-of-stars VIBE sequence: comparison with the conventional contrast-enhanced breath-hold 3D VIBE sequence.

    PubMed

    Li, Huan-Huan; Zhu, Hui; Yue, Lei; Fu, Yi; Grimm, Robert; Stemmer, Alto; Fu, Cai-Xia; Peng, Wei-Jun

    2018-05-01

    To investigate the feasibility and diagnostic value of free-breathing, radial, stack-of-stars three-dimensional (3D) gradient echo (GRE) sequence ("golden angle") on dynamic contrast-enhanced (DCE) MRI of gastric cancer. Forty-three gastric cancer patients were divided into cooperative and uncooperative groups. Respiratory fluctuation was observed using an abdominal respiratory gating sensor. Those who breath-held for more than 15 s were placed in the cooperative group and the remainder in the uncooperative group. The 3-T MRI scanning protocol included 3D GRE and conventional breath-hold VIBE (volume-interpolated breath-hold examination) sequences, comparing images quantitatively and qualitatively. DCE-MRI parameters from VIBE images of normal gastric wall and malignant lesions were compared. For uncooperative patients, 3D GRE scored higher qualitatively, and had higher SNRs (signal-to-noise ratios) and CNRs (contrast-to-noise ratios) than conventional VIBE quantitatively. Though 3D GRE images scored lower in qualitative parameters compared with conventional VIBE for cooperative patients, it provided images with fewer artefacts. DCE parameters differed significantly between normal gastric wall and lesions, with higher Ve (extracellular volume) and lower Kep (reflux constant) in gastric cancer. The free-breathing, golden-angle, radial stack-of-stars 3D GRE technique is feasible for DCE-MRI of gastric cancer. Dynamic enhanced images can be used for quantitative analysis of this malignancy. • Golden-angle radial stack-of-stars VIBE aids gastric cancer MRI diagnosis. • The 3D GRE technique is suitable for patients unable to suspend respiration. • Method scored higher in the qualitative evaluation for uncooperative patients. • The technique produced images with fewer artefacts than conventional VIBE sequence. • Dynamic enhanced images can be used for quantitative analysis of gastric cancer.

  18. RESCUE - Reduction of MRI SNR Degradation by Using an MR-Synchronous Low-Interference PET Acquisition Technique

    NASA Astrophysics Data System (ADS)

    Gebhardt, Pierre; Wehner, Jakob; Weissler, Bjoern; Frach, Thomas; Marsden, Paul K.; Schulz, Volkmar

    2015-06-01

    Devices aiming at combined Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) to enable simultaneous PET/MR image acquisition have to fulfill demanding requirements to avoid mutual magneticas well as electromagnetic-field-related interferences which lead to image quality degradation. Particularly Radio-Frequency (RF)-field-related interferences between PET and MRI may lead to MRI SNR reduction, thereby deteriorating MR image quality. RF shielding of PET electronics is therefore commonly applied to reduce RF emission and lower the potential coupling into MRI RF coil(s). However, shields introduce eddy-current-induced MRI field distortions and should thus be minimized or ideally omitted. Although the MRI noise floor increase caused by a PET system might be acceptable for many MRI applications, some MRI protocols, such as fast or high-resolution MRI scans, typically suffer from low SNR and might need more attention regarding RF silence to preserve the intrinsic MRI SNR. For such cases, we propose RESCUE, an MRI-synchronously-gated PET data acquisition technique: By interrupting the PET acquisition during MR signal receive phases, PET-related RF emission may be minimized, leading to MRI SNR preservation. Our PET insert Hyperion IID using Philips Digital Photon Counting (DPC) sensors serves as the platform to demonstrate RESCUE. To make the DPC sensor suitable for RESCUE to be applied for many MRI sequences with acquisition time windows in the range of a few milliseconds, we present in this paper a new technique which enables rapid DPC sensor operation interruption by dramatically lowering the overhead time to interrupt and restart the sensor operation. Procedures to enter and leave gated PET data acquisition may imply sensitivity losses which add to the ones occurring during MRI RF acquisition. For the case of our PET insert, the new DPC quick-interruption technique yields a PET sensitivity loss reduction by a factor of 78 when compared to the loss introduced with the standard start/stop procedure. For instance, PET sensitivity losses related to overhead time are 2.9% in addition to the loss related to PET gating being equal to the MRI RF acquisition duty cycle (14.7%) for an exemplary T1-weighted 3D-FFE MRI sequence. MRI SNR measurement results obtained with one Singles Detection Module (SDM) using no RF shield demonstrate a noise floor reduction by a factor of 2.1, getting close to the noise floor level of the SNR reference scan (SDM off-powered) when RESCUE was active.

  19. Quantification of intra-fraction motion in breast radiotherapy using supine magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    van Heijst, Tristan C. F.; Philippens, Mariëlle E. P.; Charaghvandi, Ramona K.; den Hartogh, Mariska D.; Lagendijk, Jan J. W.; Desirée van den Bongard, H. J. G.; van Asselen, Bram

    2016-02-01

    In early-stage breast-cancer patients, accelerated partial-breast irradiation techniques (APBI) and hypofractionation are increasingly implemented after breast-conserving surgery (BCS). For a safe and effective radiation therapy (RT), the influence of intra-fraction motion during dose delivery becomes more important as associated fraction durations increase and targets become smaller. Current image-guidance techniques are insufficient to characterize local target movement in high temporal and spatial resolution for extended durations. Magnetic resonance imaging (MRI) can provide high soft-tissue contrast, allow fast imaging, and acquire images during longer periods. The goal of this study was to quantify intra-fraction motion using MRI scans from 21 breast-cancer patients, before and after BCS, in supine RT position, on two time scales. High-temporal 2-dimensional (2D) MRI scans (cine-MRI), acquired every 0.3 s during 2 min, and three 3D MRI scans, acquired over 20 min, were performed. The tumor (bed) and whole breast were delineated on 3D scans and delineations were transferred to the cine-MRI series. Consecutive scans were rigidly registered and delineations were transformed accordingly. Motion in sub-second time-scale (derived from cine-MRI) was generally regular and limited to a median of 2 mm. Infrequently, large deviations were observed, induced by deep inspiration, but these were temporary. Movement on multi-minute scale (derived from 3D MRI) varied more, although medians were restricted to 2.2 mm or lower. Large whole-body displacements (up to 14 mm over 19 min) were sparsely observed. The impact of motion on standard RT techniques is likely small. However, in novel hypofractionated APBI techniques, whole-body shifts may affect adequate RT delivery, given the increasing fraction durations and smaller targets. Motion management may thus be required. For this, on-line MRI guidance could be provided by a hybrid MRI/RT modality, such as the University Medical Center Utrecht MRI linear accelerator.

  20. Computed Tomography and Magnetic Resonance Anatomy of the Normal Orbit and Eye of the Horse.

    PubMed

    D'Août, C; Nisolle, J F; Navez, M; Perrin, R; Launois, T; Brogniez, L; Clegg, P; Hontoir, F; Vandeweerd, J M

    2015-10-01

    Traumatic and infectious diseases of the eye and orbit can occur in horses. For diagnosis and monitoring of such diseases, medical imaging is useful including computed tomography (CT) and magnetic resonance imaging (MRI). The aim of the current study was to describe CT and MRI anatomy of the equine orbit and ocular globe. The heads from four adult horses were scanned with a 6-slice Emotion 6 CT (Siemens, Erlangen), and a 3.0 Tesla Siemens Verio 6 MRI using T1 and T2-weighted sequences. To validate CT and MR reference images, these were compared with anatomical models and gross anatomical sections. The bony limits of the orbital cavity, the relationship of the orbit with sinuses and foramina of the skull were well identified by CT. MRI was useful to observe soft tissues and was able to identify adnexae of the ocular globe (eyelids, periorbital fat, extraocular muscles, lacrymal and tarsal glands). Although MRI was able to identify all components of the eye (including the posterior chamber), it could not differentiate sclera from choroid and retina. The only nerve identified was the optic nerve. Vessels were not seen in this series of cadaver heads. This study showed that CT and MRI are useful techniques to image the equine orbit and eye that can have clinical applications. © 2014 Blackwell Verlag GmbH.

  1. MRI in T staging of rectal cancer: How effective is it?

    PubMed Central

    Mulla, MG; Deb, R; Singh, R

    2010-01-01

    Background: Rectal cancer constitutes about one-third of all gastrointestinal (GI) tract tumors. Because of the high recurrence rates (30%) in rectal cancer, it is vitally important to accurately stage these tumours preoperatively so that appropriate surgical resection can be undertaken. MRI is the ideal technique for the preoperative staging of these tumours. Aim: To determine the accuracy of local T staging of rectal cancer with MRI, using histopathological staging as the gold. Materials and Methods: Forty consecutive patients admitted with rectal cancer over a period of 18 months were included in this retrospective study. MRI scans were performed prior to surgery in all patients, on 1.5T scanners. Two radiologists, with a special interest in gastrointestinal imaging reported all images. Two dedicated histopathologists reported the histology slides. The accuracy of preoperative local MRI T staging was assessed by comparison with postoperative histopathological staging. Results: There was agreement between MRI and histopathology (TNM) staging in 12 patients (30%). The sensitivity and specificity of MRI for T staging was 89% and 67% respectively. The circumferential resection margin (CRM) status was accurately staged in 94.1% of the patients. Conclusions: Preoperative staging with MRI is sensitive in identifying CRM involvement, which is the main factor affecting the outcome of surgery. PMID:20607023

  2. Clinical Resting-state fMRI in the Preoperative Setting

    PubMed Central

    Lee, Megan H.; Miller-Thomas, Michelle M.; Benzinger, Tammie L.; Marcus, Daniel S.; Hacker, Carl D.; Leuthardt, Eric C.; Shimony, Joshua S.

    2017-01-01

    The purpose of this manuscript is to provide an introduction to resting-state functional magnetic resonance imaging (RS-fMRI) and to review the current application of this new and powerful technique in the preoperative setting using our institute’s extensive experience. RS-fMRI has provided important insights into brain physiology and is an increasingly important tool in the clinical setting. As opposed to task-based functional MRI wherein the subject performs a task while being scanned, RS-fMRI evaluates low-frequency fluctuations in the blood oxygen level dependent (BOLD) signal while the subject is at rest. Multiple resting state networks (RSNs) have been identified, including the somatosensory, language, and visual networks, which are of primary importance for presurgical planning. Over the past 4 years, we have performed over 300 RS-fMRI examinations in the clinical setting and these have been used to localize eloquent somatosensory and language cortices before brain tumor resection. RS-fMRI is particularly useful in this setting for patients who are unable to cooperate with the task-based paradigm, such as young children or those who are sedated, paretic, or aphasic. Although RS-fMRI is still investigational, our experience indicates that this method is ready for clinical application in the presurgical setting. PMID:26848556

  3. The diagnostic value of 18F-FDG-PET/CT and MRI in suspected vertebral osteomyelitis - a prospective study.

    PubMed

    Kouijzer, Ilse J E; Scheper, Henk; de Rooy, Jacky W J; Bloem, Johan L; Janssen, Marcel J R; van den Hoven, Leon; Hosman, Allard J F; Visser, Leo G; Oyen, Wim J G; Bleeker-Rovers, Chantal P; de Geus-Oei, Lioe-Fee

    2018-05-01

    The aim of this study was to determine the diagnostic value of 18 F-fluorodeoxyglucose (FDG) positron emission tomography and computed tomography (PET/CT) and magnetic resonance imaging (MRI) in diagnosing vertebral osteomyelitis. From November 2015 until December 2016, 32 patients with suspected vertebral osteomyelitis were prospectively included. All patients underwent both 18 F-FDG-PET/CT and MRI within 48 h. All images were independently reevaluated by two radiologists and two nuclear medicine physicians who were blinded to each others' image interpretation. 18 F-FDG-PET/CT and MRI were compared to the clinical diagnosis according to international guidelines. For 18 F-FDG-PET/CT, sensitivity, specificity, PPV, and NPV in diagnosing vertebral osteomyelitis were 100%, 83.3%, 90.9%, and 100%, respectively. For MRI, sensitivity, specificity, PPV, and NPV were 100%, 91.7%, 95.2%, and 100%, respectively. MRI detected more epidural/spinal abscesses. An important advantage of 18 F-FDG-PET/CT is the detection of metastatic infection (16 patients, 50.0%). 18 F-FDG-PET/CT and MRI are both necessary techniques in diagnosing vertebral osteomyelitis. An important advantage of 18 F-FDG-PET/CT is the visualization of metastatic infection, especially in patients with bacteremia. MRI is more sensitive in detection of small epidural abscesses.

  4. A comparison study of atlas-based 3D cardiac MRI segmentation: global versus global and local transformations

    NASA Astrophysics Data System (ADS)

    Daryanani, Aditya; Dangi, Shusil; Ben-Zikri, Yehuda Kfir; Linte, Cristian A.

    2016-03-01

    Magnetic Resonance Imaging (MRI) is a standard-of-care imaging modality for cardiac function assessment and guidance of cardiac interventions thanks to its high image quality and lack of exposure to ionizing radiation. Cardiac health parameters such as left ventricular volume, ejection fraction, myocardial mass, thickness, and strain can be assessed by segmenting the heart from cardiac MRI images. Furthermore, the segmented pre-operative anatomical heart models can be used to precisely identify regions of interest to be treated during minimally invasive therapy. Hence, the use of accurate and computationally efficient segmentation techniques is critical, especially for intra-procedural guidance applications that rely on the peri-operative segmentation of subject-specific datasets without delaying the procedure workflow. Atlas-based segmentation incorporates prior knowledge of the anatomy of interest from expertly annotated image datasets. Typically, the ground truth atlas label is propagated to a test image using a combination of global and local registration. The high computational cost of non-rigid registration motivated us to obtain an initial segmentation using global transformations based on an atlas of the left ventricle from a population of patient MRI images and refine it using well developed technique based on graph cuts. Here we quantitatively compare the segmentations obtained from the global and global plus local atlases and refined using graph cut-based techniques with the expert segmentations according to several similarity metrics, including Dice correlation coefficient, Jaccard coefficient, Hausdorff distance, and Mean absolute distance error.

  5. Myocardial perfusion quantification using simultaneously acquired 13 NH3 -ammonia PET and dynamic contrast-enhanced MRI in patients at rest and stress.

    PubMed

    Kunze, Karl P; Nekolla, Stephan G; Rischpler, Christoph; Zhang, Shelley HuaLei; Hayes, Carmel; Langwieser, Nicolas; Ibrahim, Tareq; Laugwitz, Karl-Ludwig; Schwaiger, Markus

    2018-04-19

    Systematic differences with respect to myocardial perfusion quantification exist between DCE-MRI and PET. Using the potential of integrated PET/MRI, this study was conceived to compare perfusion quantification on the basis of simultaneously acquired 13 NH 3 -ammonia PET and DCE-MRI data in patients at rest and stress. Twenty-nine patients were examined on a 3T PET/MRI scanner. DCE-MRI was implemented in dual-sequence design and additional T 1 mapping for signal normalization. Four different deconvolution methods including a modified version of the Fermi technique were compared against 13 NH 3 -ammonia results. Cohort-average flow comparison yielded higher resting flows for DCE-MRI than for PET and, therefore, significantly lower DCE-MRI perfusion ratios under the common assumption of equal arterial and tissue hematocrit. Absolute flow values were strongly correlated in both slice-average (R 2  = 0.82) and regional (R 2  = 0.7) evaluations. Different DCE-MRI deconvolution methods yielded similar flow result with exception of an unconstrained Fermi method exhibiting outliers at high flows when compared with PET. Thresholds for Ischemia classification may not be directly tradable between PET and MRI flow values. Differences in perfusion ratios between PET and DCE-MRI may be lifted by using stress/rest-specific hematocrit conversion. Proper physiological constraints are advised in model-constrained deconvolution. © 2018 International Society for Magnetic Resonance in Medicine.

  6. Variability in the use of neuroimaging techniques for diagnosis and follow-up of stroke patients.

    PubMed

    Valcárcel-Nazco, C; Alonso-Modino, D; Montón-Álvarez, F; Sabatel-Hernández, R; Pastor-Santoveña, M S; Mesa-Blanco, P; López-Fernández, J C; Serrano-Aguilar, P

    2017-04-18

    Imaging diagnosis is essential for treatment planning in stroke patients. However, use of these techniques varies due to uncertainty about their effectiveness. Our purpose was to describe the use of CT and MRI in stroke and transient ischaemic attack (TIA) over 5years in hospitals belonging to the Canary Islands Health Service and analyse interhospital variability based on routinely collected administrative data. We gathered the minimum basic dataset (MBDS) from patients diagnosed with stroke or TIA between 2005 and 2010 in 4hospitals. Patients' age, sex, procedures, secondary diagnoses, and duration of hospital stay were also recorded. We conducted a descriptive analysis of patient characteristics and a bivariate analysis using the t test and the chi square test to detect differences between patients assessed and not assessed with MRI. Logistic regression was used to analyse unequal access to MRI. Our study included 10,487 patients (8,571 with stroke and 1,916 with TIA). The percentage of stroke patients undergoing a CT scan increased from 89.47% in 2005 to 91.50% in 2010. In these patients, use of MRI also increased from 25.41% in 2005 to 36.02% in 2010. Among patients with TIA, use of CT increased from 84.64% to 88.04% and MRI from 32.53% to 39.13%. According to our results, female sex, younger age, and presence of comorbidities increase the likelihood of undergoing MRI. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Early myocardial dysfunction in streptozotocin-induced diabetic mice: a study using in vivo magnetic resonance imaging (MRI)

    PubMed Central

    Yu, Xichun; Tesiram, Yasvir A; Towner, Rheal A; Abbott, Andrew; Patterson, Eugene; Huang, Shijun; Garrett, Marion W; Chandrasekaran, Suresh; Matsuzaki, Satoshi; Szweda, Luke I; Gordon, Brian E; Kem, David C

    2007-01-01

    Background Diabetes is associated with a cardiomyopathy that is independent of coronary artery disease or hypertension. In the present study we used in vivo magnetic resonance imaging (MRI) and echocardiographic techniques to examine and characterize early changes in myocardial function in a mouse model of type 1 diabetes. Methods Diabetes was induced in 8-week old C57BL/6 mice with two intraperitoneal injections of streptozotocin. The blood glucose levels were maintained at 19–25 mmol/l using intermittent low dosages of long acting insulin glargine. MRI and echocardiography were performed at 4 weeks of diabetes (age of 12 weeks) in diabetic mice and age-matched controls. Results After 4 weeks of hyperglycemia one marker of mitochondrial function, NADH oxidase activity, was decreased to 50% of control animals. MRI studies of diabetic mice at 4 weeks demonstrated significant deficits in myocardial morphology and functionality including: a decreased left ventricular (LV) wall thickness, an increased LV end-systolic diameter and volume, a diminished LV ejection fraction and cardiac output, a decreased LV circumferential shortening, and decreased LV peak ejection and filling rates. M-mode echocardiographic and Doppler flow studies of diabetic mice at 4 weeks showed a decreased wall thickening and increased E/A ratio, supporting both systolic and diastolic dysfunction. Conclusion Our study demonstrates that MRI interrogation can identify the onset of diabetic cardiomyopathy in mice with its impaired functional capacity and altered morphology. The MRI technique will lend itself to repetitive study of early changes in cardiac function in small animal models of diabetic cardiomyopathy. PMID:17309798

  8. Establishing a clinical cardiac MRI service.

    PubMed

    O'Regan, D P; Schmitz, S A

    2006-03-01

    After several years of research development cardiovascular MRI has evolved into a widely accepted clinical tool. It offers important diagnostic and prognostic information for a variety of clinical indications, which include ischaemic heart disease, cardiomyopathies, valvular dysfunction and congenital heart disorders. It is a safe non-invasive technique that employs a variety of imaging sequences optimized for temporal or spatial resolution, tissue-specific contrast, flow quantification or angiography. Cardiac MRI offers specific advantages over conventional imaging techniques for a significant number of patients. The demand for cardiac MRI studies from cardiothoracic surgeons, cardiologists and other referrers is likely to continue to rise with pressure for more widespread local service provision. Setting up a cardiac MRI service requires careful consideration regarding funding issues and how it will be integrated with existing service provision. The purchase of cardiac phased array coils, monitoring equipment and software upgrades must also be considered, as well as the training needs of those involved. The choice of appropriate imaging protocols will be guided by operator experience, clinical indication and equipment capability, and is likely to evolve as the service develops. Post-processing and offline analysis form a significant part of the time taken to report studies and an efficient method of providing quantitative reports is an important requirement. Collaboration between radiologists and cardiologists is needed to develop a successful service and multi-disciplinary meetings are key component of this. This review will explore these issues from our perspective of a new clinical cardiac MRI service operating over its first year in a teaching hospital imaging department.

  9. Regional homogeneity changes between heroin relapse and non-relapse patients under methadone maintenance treatment: a resting-state fMRI study.

    PubMed

    Chang, Haifeng; Li, Wei; Li, Qiang; Chen, Jiajie; Zhu, Jia; Ye, Jianjun; Liu, Jierong; Li, Zhe; Li, Yongbin; Shi, Ming; Wang, Yarong; Wang, Wei

    2016-08-18

    Methadone maintenance treatment (MMT) is recognized as one of the most effective treatments for heroin addiction but its effect is dimmed by the high incidence of heroin relapse. However, underlying neurobiology mechanism of heroin relapse under MMT is still largely unknown. Here, we took advantage of a resting-state fMRI technique by analysis of regional homogeneity (ReHo), and tried to explore the difference of brain function between heroin relapsers and non-relapsers in MMT. Forty MMT patients were included and received a 12-month follow-up. All patients were given baseline resting-state fMRI scans by using a 3.0 T GE Signa Excite HD whole-body MRI system. Monthly self-report and urine test were used to assess heroin relapse or non-relapse. Subjective craving was measured with visual analog scale. The correlation between ReHo and the degree of heroin relapse was analyzed. Compared with the non-relapsers, ReHo values were increased in the bilateral medial orbitofrontal cortex, right caudate, and right cerebellum of the heroin relapsers while those in the left parahippocampal gyrus, left middle temporal gyrus, right lingual gyrus, and precuneus were decreased in heroin relapsers. Importantly, altered ReHo in the right caudate were positively correlated with heroin relapse rates or subjective craving response. Using the resting-state fMRI technique by analysis of ReHo, we provided the first resting-state fMRI evidence that right caudate may serve as a potential biomarker for heroin relapse prediction and also as a promising target for reducing relapse risk.

  10. A three-way parallel ICA approach to analyze links among genetics, brain structure and brain function.

    PubMed

    Vergara, Victor M; Ulloa, Alvaro; Calhoun, Vince D; Boutte, David; Chen, Jiayu; Liu, Jingyu

    2014-09-01

    Multi-modal data analysis techniques, such as the Parallel Independent Component Analysis (pICA), are essential in neuroscience, medical imaging and genetic studies. The pICA algorithm allows the simultaneous decomposition of up to two data modalities achieving better performance than separate ICA decompositions and enabling the discovery of links between modalities. However, advances in data acquisition techniques facilitate the collection of more than two data modalities from each subject. Examples of commonly measured modalities include genetic information, structural magnetic resonance imaging (MRI) and functional MRI. In order to take full advantage of the available data, this work extends the pICA approach to incorporate three modalities in one comprehensive analysis. Simulations demonstrate the three-way pICA performance in identifying pairwise links between modalities and estimating independent components which more closely resemble the true sources than components found by pICA or separate ICA analyses. In addition, the three-way pICA algorithm is applied to real experimental data obtained from a study that investigate genetic effects on alcohol dependence. Considered data modalities include functional MRI (contrast images during alcohol exposure paradigm), gray matter concentration images from structural MRI and genetic single nucleotide polymorphism (SNP). The three-way pICA approach identified links between a SNP component (pointing to brain function and mental disorder associated genes, including BDNF, GRIN2B and NRG1), a functional component related to increased activation in the precuneus area, and a gray matter component comprising part of the default mode network and the caudate. Although such findings need further verification, the simulation and in-vivo results validate the three-way pICA algorithm presented here as a useful tool in biomedical data fusion applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Imaging brain development: the adolescent brain.

    PubMed

    Blakemore, Sarah-Jayne

    2012-06-01

    The past 15 years have seen a rapid expansion in the number of studies using neuroimaging techniques to investigate maturational changes in the human brain. In this paper, I review MRI studies on structural changes in the developing brain, and fMRI studies on functional changes in the social brain during adolescence. Both MRI and fMRI studies point to adolescence as a period of continued neural development. In the final section, I discuss a number of areas of research that are just beginning and may be the subject of developmental neuroimaging in the next twenty years. Future studies might focus on complex questions including the development of functional connectivity; how gender and puberty influence adolescent brain development; the effects of genes, environment and culture on the adolescent brain; development of the atypical adolescent brain; and implications for policy of the study of the adolescent brain. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Evaluation of the fetal cerebellum by magnetic resonance imaging.

    PubMed

    Llorens Salvador, R; Viegas Sainz, A; Montoya Filardi, A; Montoliu Fornas, G; Menor Serrano, F

    Obstetric protocols dictate that the fetal cerebellum should always be assessed during sonograms during pregnancy. For various reasons, including technical limitations or inconclusive sonographic findings, suspicion of cerebellar abnormalities is one of the most common indications for prenatal magnetic resonance imaging (MRI). Although sonography is the imaging technique of choice to assess the cerebellum, MRI shows the anatomy of the posterior fossa and abnormalities in the development of the fetal cerebellum in greater detail and thus enables a more accurate prenatal diagnosis. We describe and illustrate the normal anatomy of the fetal cerebellum on MRI as well as the different diseases that can affect its development. Moreover, we review the most appropriate terminology to define developmental abnormalities, their differential diagnoses, and the role of MRI in the prenatal evaluation of the posterior fossa. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Resting-State Functional Connectivity in Autism Spectrum Disorders: A Review

    PubMed Central

    Hull, Jocelyn V.; Jacokes, Zachary J.; Torgerson, Carinna M.; Irimia, Andrei; Van Horn, John Darrell

    2017-01-01

    Ongoing debate exists within the resting-state functional MRI (fMRI) literature over how intrinsic connectivity is altered in the autistic brain, with reports of general over-connectivity, under-connectivity, and/or a combination of both. Classifying autism using brain connectivity is complicated by the heterogeneous nature of the condition, allowing for the possibility of widely variable connectivity patterns among individuals with the disorder. Further differences in reported results may be attributable to the age and sex of participants included, designs of the resting-state scan, and to the analysis technique used to evaluate the data. This review systematically examines the resting-state fMRI autism literature to date and compares studies in an attempt to draw overall conclusions that are presently challenging. We also propose future direction for rs-fMRI use to categorize individuals with autism spectrum disorder, serve as a possible diagnostic tool, and best utilize data-sharing initiatives. PMID:28101064

  14. Measurement of segmental lumbar spine flexion and extension using ultrasound imaging.

    PubMed

    Chleboun, Gary S; Amway, Matthew J; Hill, Jesse G; Root, Kara J; Murray, Hugh C; Sergeev, Alexander V

    2012-10-01

    Clinical measurement, technical note. To describe a technique to measure interspinous process distance using ultrasound (US) imaging, to assess the reliability of the technique, and to compare the US imaging measurements to magnetic resonance imaging (MRI) measurements in 3 different positions of the lumbar spine. Segmental spinal motion has been assessed using various imaging techniques, as well as surgically inserted pins. However, some imaging techniques are costly (MRI) and some require ionizing radiation (radiographs and fluoroscopy), and surgical procedures have limited use because of the invasive nature of the technique. Therefore, it is important to have an easily accessible and inexpensive technique for measuring lumbar segmental motion to more fully understand spine motion in vivo, to evaluate the changes that occur with various interventions, and to be able to accurately relate the changes in symptoms to changes in motion of individual vertebral segments. Six asymptomatic subjects participated. The distance between spinous processes at each lumbar segment (L1-2, L2-3, L3-4, L4-5) was measured digitally using MRI and US imaging. The interspinous distance was measured with subjects supine and the lumbar spine in 3 different positions (resting, lumbar flexion, and lumbar extension) for both MRI and US imaging. The differences in distance from neutral to extension, neutral to flexion, and extension to flexion were calculated. The measurement methods had excellent reliability for US imaging (intraclass correlation coefficient [ICC3,3] = 0.94; 95% confidence interval: 0.85, 0.97) and MRI (ICC3,3 = 0.98; 95% confidence interval: 0.95, 0.99). The distance measured was similar between US imaging and MRI (P>.05), except at L3-4 flexion-extension (P = .003). On average, the MRI measurements were 1.3 mm greater than the US imaging measurements. This study describes a new method for the measurement of lumbar spine segmental flexion and extension motion using US imaging. The US method may offer an alternative to other imaging techniques to monitor clinical outcomes because of its ease of use and the consistency of measurements compared to MRI.

  15. fMRI Validation of fNIRS Measurements During a Naturalistic Task

    PubMed Central

    Noah, J. Adam; Ono, Yumie; Nomoto, Yasunori; Shimada, Sotaro; Tachibana, Atsumichi; Zhang, Xian; Bronner, Shaw; Hirsch, Joy

    2015-01-01

    We present a method to compare brain activity recorded with near-infrared spectroscopy (fNIRS) in a dance video game task to that recorded in a reduced version of the task using fMRI (functional magnetic resonance imaging). Recently, it has been shown that fNIRS can accurately record functional brain activities equivalent to those concurrently recorded with functional magnetic resonance imaging for classic psychophysical tasks and simple finger tapping paradigms. However, an often quoted benefit of fNIRS is that the technique allows for studying neural mechanisms of complex, naturalistic behaviors that are not possible using the constrained environment of fMRI. Our goal was to extend the findings of previous studies that have shown high correlation between concurrently recorded fNIRS and fMRI signals to compare neural recordings obtained in fMRI procedures to those separately obtained in naturalistic fNIRS experiments. Specifically, we developed a modified version of the dance video game Dance Dance Revolution (DDR) to be compatible with both fMRI and fNIRS imaging procedures. In this methodology we explain the modifications to the software and hardware for compatibility with each technique as well as the scanning and calibration procedures used to obtain representative results. The results of the study show a task-related increase in oxyhemoglobin in both modalities and demonstrate that it is possible to replicate the findings of fMRI using fNIRS in a naturalistic task. This technique represents a methodology to compare fMRI imaging paradigms which utilize a reduced-world environment to fNIRS in closer approximation to naturalistic, full-body activities and behaviors. Further development of this technique may apply to neurodegenerative diseases, such as Parkinson’s disease, late states of dementia, or those with magnetic susceptibility which are contraindicated for fMRI scanning. PMID:26132365

  16. TU-AB-201-11: A Novel Theoretical Framework for MRI-Only Image Guided LDR Prostate and Breast Brachytherapy Implant Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soliman, A; Elzibak, A; Fatemi, A

    Purpose: To propose a novel framework for accurate model-based dose calculations using only MR images for LDR prostate and breast seed implant brachytherapy. Methods: Model-based dose calculation methodologies recommended by TG-186 require further knowledge about specific tissue composition, which is challenging with MRI. However, relying on MRI-only for implant dosimetry would reduce the soft tissue delineation uncertainty, costs, and uncertainties associated with multi-modality registration and fusion processes. We propose a novel framework to address this problem using quantitative MRI acquisitions and reconstruction techniques. The framework includes three steps: (1) Identify the locations of seeds(2) Identify the presence (or absence) ofmore » calcification(s)(3) Quantify the water and fat content in the underlying tissueSteps (1) and (2) consider the sources that limit patient dosimetry, particularly the inter-seed attenuation and the calcified regions; while step (3) targets the quantification of the tissue composition to consider the heterogeneities in the medium. Our preliminary work has shown that the seeds and the calcifications can be identified with MRI using both the magnitude and the phase images. By employing susceptibility-weighted imaging with specific post-processing techniques, the phase images can be further explored to distinguish the seeds from the calcifications. Absolute quantification of tissue, water, and fat content is feasible and was previously demonstrated in phantoms and in-vivo applications, particularly for brain diseases. The approach relies on the proportionality of the MR signal to the number of protons in an image volume. By employing appropriate correction algorithms for T1 - and T2*-related biases, B1 transmit and receive field inhomogeneities, absolute water/fat content can be determined. Results: By considering calcification and interseed attenuation, and through the knowledge of water and fat mass density, accurate patient-specific implant dosimetry can be achieved with MRI-only. Conclusion: The proposed framework showed that model-based dose calculation is feasible using MRI-only state-of-the-art techniques.« less

  17. Longitudinal assessment of treatment effects on pulmonary ventilation using 1H/3He MRI multivariate templates

    NASA Astrophysics Data System (ADS)

    Tustison, Nicholas J.; Contrella, Benjamin; Altes, Talissa A.; Avants, Brian B.; de Lange, Eduard E.; Mugler, John P.

    2013-03-01

    The utitlity of pulmonary functional imaging techniques, such as hyperpolarized 3He MRI, has encouraged their inclusion in research studies for longitudinal assessment of disease progression and the study of treatment effects. We present methodology for performing voxelwise statistical analysis of ventilation maps derived from hyper­ polarized 3He MRI which incorporates multivariate template construction using simultaneous acquisition of IH and 3He images. Additional processing steps include intensity normalization, bias correction, 4-D longitudinal segmentation, and generation of expected ventilation maps prior to voxelwise regression analysis. Analysis is demonstrated on a cohort of eight individuals with diagnosed cystic fibrosis (CF) undergoing treatment imaged five times every two weeks with a prescribed treatment schedule.

  18. Data collection and analysis strategies for phMRI.

    PubMed

    Mandeville, Joseph B; Liu, Christina H; Vanduffel, Wim; Marota, John J A; Jenkins, Bruce G

    2014-09-01

    Although functional MRI traditionally has been applied mainly to study changes in task-induced brain function, evolving acquisition methodologies and improved knowledge of signal mechanisms have increased the utility of this method for studying responses to pharmacological stimuli, a technique often dubbed "phMRI". The proliferation of higher magnetic field strengths and the use of exogenous contrast agent have boosted detection power, a critical factor for successful phMRI due to the restricted ability to average multiple stimuli within subjects. Receptor-based models of neurovascular coupling, including explicit pharmacological models incorporating receptor densities and affinities and data-driven models that incorporate weak biophysical constraints, have demonstrated compelling descriptions of phMRI signal induced by dopaminergic stimuli. This report describes phMRI acquisition and analysis methodologies, with an emphasis on data-driven analyses. As an example application, statistically efficient data-driven regressors were used to describe the biphasic response to the mu-opioid agonist remifentanil, and antagonism using dopaminergic and GABAergic ligands revealed modulation of the mesolimbic pathway. Results illustrate the power of phMRI as well as our incomplete understanding of mechanisms underlying the signal. Future directions are discussed for phMRI acquisitions in human studies, for evolving analysis methodologies, and for interpretative studies using the new generation of simultaneous PET/MRI scanners. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. PROPELLER technique to improve image quality of MRI of the shoulder.

    PubMed

    Dietrich, Tobias J; Ulbrich, Erika J; Zanetti, Marco; Fucentese, Sandro F; Pfirrmann, Christian W A

    2011-12-01

    The purpose of this article is to evaluate the use of the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) technique for artifact reduction and overall image quality improvement for intermediate-weighted and T2-weighted MRI of the shoulder. One hundred eleven patients undergoing MR arthrography of the shoulder were included. A coronal oblique intermediate-weighted turbo spin-echo (TSE) sequence with fat suppression and a sagittal oblique T2-weighted TSE sequence with fat suppression were obtained without (standard) and with the PROPELLER technique. Scanning time increased from 3 minutes 17 seconds to 4 minutes 17 seconds (coronal oblique plane) and from 2 minutes 52 seconds to 4 minutes 10 seconds (sagittal oblique) using PROPELLER. Two radiologists graded image artifacts, overall image quality, and delineation of several anatomic structures on a 5-point scale (5, no artifact, optimal diagnostic quality; and 1, severe artifacts, diagnostically not usable). The Wilcoxon signed rank test was used to compare the data of the standard and PROPELLER images. Motion artifacts were significantly reduced in PROPELLER images (p < 0.001). Observer 1 rated motion artifacts with diagnostic impairment in one patient on coronal oblique PROPELLER images compared with 33 patients on standard images. Ratings for the sequences with PROPELLER were significantly better for overall image quality (p < 0.001). Observer 1 noted an overall image quality with diagnostic impairment in nine patients on sagittal oblique PROPELLER images compared with 23 patients on standard MRI. The PROPELLER technique for MRI of the shoulder reduces the number of sequences with diagnostic impairment as a result of motion artifacts and increases image quality compared with standard TSE sequences. PROPELLER sequences increase the acquisition time.

  20. Blood oxygen level dependent magnetic resonance imaging for detecting pathological patterns in lupus nephritis patients: a preliminary study using a decision tree model.

    PubMed

    Shi, Huilan; Jia, Junya; Li, Dong; Wei, Li; Shang, Wenya; Zheng, Zhenfeng

    2018-02-09

    Precise renal histopathological diagnosis will guide therapy strategy in patients with lupus nephritis. Blood oxygen level dependent (BOLD) magnetic resonance imaging (MRI) has been applicable noninvasive technique in renal disease. This current study was performed to explore whether BOLD MRI could contribute to diagnose renal pathological pattern. Adult patients with lupus nephritis renal pathological diagnosis were recruited for this study. Renal biopsy tissues were assessed based on the lupus nephritis ISN/RPS 2003 classification. The Blood oxygen level dependent magnetic resonance imaging (BOLD-MRI) was used to obtain functional magnetic resonance parameter, R2* values. Several functions of R2* values were calculated and used to construct algorithmic models for renal pathological patterns. In addition, the algorithmic models were compared as to their diagnostic capability. Both Histopathology and BOLD MRI were used to examine a total of twelve patients. Renal pathological patterns included five classes III (including 3 as class III + V) and seven classes IV (including 4 as class IV + V). Three algorithmic models, including decision tree, line discriminant, and logistic regression, were constructed to distinguish the renal pathological pattern of class III and class IV. The sensitivity of the decision tree model was better than that of the line discriminant model (71.87% vs 59.48%, P < 0.001) and inferior to that of the Logistic regression model (71.87% vs 78.71%, P < 0.001). The specificity of decision tree model was equivalent to that of the line discriminant model (63.87% vs 63.73%, P = 0.939) and higher than that of the logistic regression model (63.87% vs 38.0%, P < 0.001). The Area under the ROC curve (AUROCC) of the decision tree model was greater than that of the line discriminant model (0.765 vs 0.629, P < 0.001) and logistic regression model (0.765 vs 0.662, P < 0.001). BOLD MRI is a useful non-invasive imaging technique for the evaluation of lupus nephritis. Decision tree models constructed using functions of R2* values may facilitate the prediction of renal pathological patterns.

  1. Memory assessment in patients with temporal lobe epilepsy to predict memory impairment after surgery: A systematic review.

    PubMed

    Parra-Díaz, P; García-Casares, N

    2017-04-19

    Given that surgical treatment of refractory mesial temporal lobe epilepsy may cause memory impairment, determining which patients are eligible for surgery is essential. However, there is little agreement on which presurgical memory assessment methods are best able to predict memory outcome after surgery and identify those patients with a greater risk of surgery-induced memory decline. We conducted a systematic literature review to determine which presurgical memory assessment methods best predict memory outcome. The literature search of PubMed gathered articles published between January 2005 and December 2015 addressing pre- and postsurgical memory assessment in mesial temporal lobe epilepsy patients by means of neuropsychological testing, functional MRI, and other neuroimaging techniques. We obtained 178 articles, 31 of which were included in our review. Most of the studies used neuropsychological tests and fMRI; these methods are considered to have the greatest predictive ability for memory impairment. Other less frequently used techniques included the Wada test and FDG-PET. Current evidence supports performing a presurgical assessment of memory function using both neuropsychological tests and functional MRI to predict memory outcome after surgery. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Noninvasive imaging of hepatocellular carcinoma: From diagnosis to prognosis

    PubMed Central

    Jiang, Han-Yu; Chen, Jie; Xia, Chun-Chao; Cao, Li-Kun; Duan, Ting; Song, Bin

    2018-01-01

    Hepatocellular carcinoma (HCC) is the most common primary liver cancer and a major public health problem worldwide. Hepatocarcinogenesis is a complex multistep process at molecular, cellular, and histologic levels with key alterations that can be revealed by noninvasive imaging modalities. Therefore, imaging techniques play pivotal roles in the detection, characterization, staging, surveillance, and prognosis evaluation of HCC. Currently, ultrasound is the first-line imaging modality for screening and surveillance purposes. While based on conclusive enhancement patterns comprising arterial phase hyperenhancement and portal venous and/or delayed phase wash-out, contrast enhanced dynamic computed tomography and magnetic resonance imaging (MRI) are the diagnostic tools for HCC without requirements for histopathologic confirmation. Functional MRI techniques, including diffusion-weighted imaging, MRI with hepatobiliary contrast agents, perfusion imaging, and magnetic resonance elastography, show promise in providing further important information regarding tumor biological behaviors. In addition, evaluation of tumor imaging characteristics, including nodule size, margin, number, vascular invasion, and growth patterns, allows preoperative prediction of tumor microvascular invasion and patient prognosis. Therefore, the aim of this article is to review the current state-of-the-art and recent advances in the comprehensive noninvasive imaging evaluation of HCC. We also provide the basic key concepts of HCC development and an overview of the current practice guidelines. PMID:29904242

  3. MRI in ocular drug delivery

    PubMed Central

    Li, S. Kevin; Lizak, Martin J.; Jeong, Eun-Kee

    2008-01-01

    Conventional pharmacokinetic methods for studying ocular drug delivery are invasive and cannot be conveniently applied to humans. The advancement of MRI technology has provided new opportunities in ocular drug-delivery research. MRI provides a means to non-invasively and continuously monitor ocular drug-delivery systems with a contrast agent or compound labeled with a contrast agent. It is a useful technique in pharmacokinetic studies, evaluation of drug-delivery methods, and drug-delivery device testing. Although the current status of the technology presents some major challenges to pharmaceutical research using MRI, it has a lot of potential. In the past decade, MRI has been used to examine ocular drug delivery via the subconjunctival route, intravitreal injection, intrascleral injection to the suprachoroidal space, episcleral and intravitreal implants, periocular injections, and ocular iontophoresis. In this review, the advantages and limitations of MRI in the study of ocular drug delivery are discussed. Different MR contrast agents and MRI techniques for ocular drug-delivery research are compared. Ocular drug-delivery studies using MRI are reviewed. PMID:18186077

  4. Topical Review: Unique Contributions of Magnetic Resonance Imaging to Pediatric Psychology Research.

    PubMed

    Jensen, Chad D; Duraccio, Kara M; Carbine, Kaylie M; Kirwan, C Brock

    2016-03-01

    This review aims to provide a brief introduction of the utility of magnetic resonance imaging (MRI) methods in pediatric psychology research, describe several exemplar studies that highlight the unique benefits of MRI techniques for pediatric psychology research, and detail methods for addressing several challenges inherent to pediatric MRI research. Literature review. Numerous useful applications of MRI research in pediatric psychology have been illustrated in published research. MRI methods yield information that cannot be obtained using neuropsychological or behavioral measures. Using MRI in pediatric psychology research may facilitate examination of neural structures and processes that underlie health behaviors. Challenges inherent to conducting MRI research with pediatric research participants (e.g., head movement) may be addressed using evidence-based strategies. We encourage pediatric psychology researchers to consider adopting MRI techniques to answer research questions relevant to pediatric health and illness. © The Author 2015. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Comparison of fMRI data from passive listening and active-response story processing tasks in children.

    PubMed

    Vannest, Jennifer J; Karunanayaka, Prasanna R; Altaye, Mekibib; Schmithorst, Vincent J; Plante, Elena M; Eaton, Kenneth J; Rasmussen, Jerod M; Holland, Scott K

    2009-04-01

    To use functional MRI (fMRI) methods to visualize a network of auditory and language-processing brain regions associated with processing an aurally-presented story. We compare a passive listening (PL) story paradigm to an active-response (AR) version including online performance monitoring and a sparse acquisition technique. Twenty children (ages 11-13 years) completed PL and AR story processing tasks. The PL version presented alternating 30-second blocks of stories and tones; the AR version presented story segments, comprehension questions, and 5-second tone sequences, with fMRI acquisitions between stimuli. fMRI data was analyzed using a general linear model approach and paired t-test identifying significant group activation. Both tasks showed activation in the primary auditory cortex, superior temporal gyrus bilaterally, and left inferior frontal gyrus (IFG). The AR task demonstrated more extensive activation, including the dorsolateral prefrontal cortex and anterior/posterior cingulate cortex. Comparison of effect size in each paradigm showed a larger effect for the AR paradigm in a left inferior frontal region-of-interest (ROI). Activation patterns for story processing in children are similar in PL and AR tasks. Increases in extent and magnitude of activation in the AR task are likely associated with memory and attention resources engaged across acquisition intervals.

  6. An image warping technique for rodent brain MRI-histology registration based on thin-plate splines with landmark optimization

    NASA Astrophysics Data System (ADS)

    Liu, Yutong; Uberti, Mariano; Dou, Huanyu; Mosley, R. Lee; Gendelman, Howard E.; Boska, Michael D.

    2009-02-01

    Coregistration of in vivo magnetic resonance imaging (MRI) with histology provides validation of disease biomarker and pathobiology studies. Although thin-plate splines are widely used in such image registration, point landmark selection is error prone and often time-consuming. We present a technique to optimize landmark selection for thin-plate splines and demonstrate its usefulness in warping rodent brain MRI to histological sections. In this technique, contours are drawn on the corresponding MRI slices and images of histological sections. The landmarks are extracted from the contours by equal spacing then optimized by minimizing a cost function consisting of the landmark displacement and contour curvature. The technique was validated using simulation data and brain MRI-histology coregistration in a murine model of HIV-1 encephalitis. Registration error was quantified by calculating target registration error (TRE). The TRE of approximately 8 pixels for 20-80 landmarks without optimization was stable at different landmark numbers. The optimized results were more accurate at low landmark numbers (TRE of approximately 2 pixels for 50 landmarks), while the accuracy decreased (TRE approximately 8 pixels for larger numbers of landmarks (70- 80). The results demonstrated that registration accuracy decreases with the increasing landmark numbers offering more confidence in MRI-histology registration using thin-plate splines.

  7. Comparison of 18F-FDG PET/CT and PET/MRI in patients with multiple myeloma

    PubMed Central

    Sachpekidis, Christos; Hillengass, Jens; Goldschmidt, Hartmut; Mosebach, Jennifer; Pan, Leyun; Schlemmer, Heinz-Peter; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2015-01-01

    PET/MRI represents a promising hybrid imaging modality with several potential clinical applications. Although PET/MRI seems highly attractive in the diagnostic approach of multiple myeloma (MM), its role has not yet been evaluated. The aims of this prospective study are to evaluate the feasibility of 18F-FDG PET/MRI in detection of MM lesions, and to investigate the reproducibility of bone marrow lesions detection and quantitative data of 18F-FDG uptake between the functional (PET) component of PET/CT and PET/MRI in MM patients. The study includes 30 MM patients. All patients initially underwent 18F-FDG PET/CT (60 min p.i.), followed by PET/MRI (120 min p.i.). PET/CT and PET/MRI data were assessed and compared based on qualitative (lesion detection) and quantitative (SUV) evaluation. The hybrid PET/MRI system provided good image quality in all cases without artefacts. PET/MRI identified 65 of the 69 lesions, which were detectable with PET/CT (94.2%). Quantitative PET evaluations showed the following mean values in MM lesions: SUVaverage=5.5 and SUVmax=7.9 for PET/CT; SUVaverage=3.9 and SUVmax=5.8 for PET/MRI. Both SUVaverage and SUVmax were significantly higher on PET/CT than on PET/MRI. Spearman correlation analysis demonstrated a strong correlation between both lesional SUVaverage (r=0.744) and lesional SUVmax (r=0.855) values derived from PET/CT and PET/MRI. Regarding detection of myeloma skeletal lesions, PET/MRI exhibited equivalent performance to PET/CT. In terms of tracer uptake quantitation, a significant correlation between the two techniques was demonstrated, despite the statistically significant differences in lesional SUVs between PET/CT and PET/MRI. PMID:26550538

  8. Graphical programming interface: A development environment for MRI methods.

    PubMed

    Zwart, Nicholas R; Pipe, James G

    2015-11-01

    To introduce a multiplatform, Python language-based, development environment called graphical programming interface for prototyping MRI techniques. The interface allows developers to interact with their scientific algorithm prototypes visually in an event-driven environment making tasks such as parameterization, algorithm testing, data manipulation, and visualization an integrated part of the work-flow. Algorithm developers extend the built-in functionality through simple code interfaces designed to facilitate rapid implementation. This article shows several examples of algorithms developed in graphical programming interface including the non-Cartesian MR reconstruction algorithms for PROPELLER and spiral as well as spin simulation and trajectory visualization of a FLORET example. The graphical programming interface framework is shown to be a versatile prototyping environment for developing numeric algorithms used in the latest MR techniques. © 2014 Wiley Periodicals, Inc.

  9. [Language Functions in the Frontal Association Area: Brain Mechanisms That Create Language].

    PubMed

    Yamamoto, Kayako; Sakai, Kuniyoshi L

    2016-11-01

    Broca's area is known to be critically involved in language processing for more than 150 years. Recent neuroimaging techniques, including functional magnetic resonance imaging (fMRI) and diffusion MRI, enabled the subdivision of Broca's area based on both functional and anatomical aspects. Networks among the frontal association areas, especially the left inferior frontal gyrus (IFG), and other cortical regions in the temporal/parietal association areas, are also important for language-related information processing. Here, we review how neuroimaging studies, combined with research paradigms based on theoretical linguistics, have contributed to clarifying the critical roles of the left IFG in syntactic processing and those of language-related networks, including cortical and cerebellar regions.

  10. Characterization of cardiac flow in heart disease patients by computational fluid dynamics and 4D flow MRI

    NASA Astrophysics Data System (ADS)

    Lantz, Jonas; Gupta, Vikas; Henriksson, Lilian; Karlsson, Matts; Persson, Ander; Carhall, Carljohan; Ebbers, Tino

    2017-11-01

    In this study, cardiac blood flow was simulated using Computational Fluid Dynamics and compared to in vivo flow measurements by 4D Flow MRI. In total, nine patients with various heart diseases were studied. Geometry and heart wall motion for the simulations were obtained from clinical CT measurements, with 0.3x0.3x0.3 mm spatial resolution and 20 time frames covering one heartbeat. The CFD simulations included pulmonary veins, left atrium and ventricle, mitral and aortic valve, and ascending aorta. Mesh sizes were on the order of 6-16 million cells, depending on the size of the heart, in order to resolve both papillary muscles and trabeculae. The computed flow field agreed visually very well with 4D Flow MRI, with characteristic vortices and flow structures seen in both techniques. Regression analysis showed that peak flow rate as well as stroke volume had an excellent agreement for the two techniques. We demonstrated the feasibility, and more importantly, fidelity of cardiac flow simulations by comparing CFD results to in vivo measurements. Both qualitative and quantitative results agreed well with the 4D Flow MRI measurements. Also, the developed simulation methodology enables ``what if'' scenarios, such as optimization of valve replacement and other surgical procedures. Funded by the Wallenberg Foundation.

  11. Subcortical pathways serving cortical language sites: initial experience with diffusion tensor imaging fiber tracking combined with intraoperative language mapping.

    PubMed

    Henry, Roland G; Berman, Jeffrey I; Nagarajan, Srikantan S; Mukherjee, Pratik; Berger, Mitchel S

    2004-02-01

    The combination of mapping functional cortical neurons by intraoperative cortical stimulation and axonal architecture by diffusion tensor MRI fiber tracking can be used to delineate the pathways between functional regions. In this study the authors investigated the feasibility of combining these techniques to yield connectivity associated with motor speech and naming. Diffusion tensor MRI fiber tracking provides maps of axonal bundles and was combined with intraoperative mapping of eloquent cortex for a patient undergoing brain tumor surgery. Tracks from eight stimulated sites in the inferior frontal cortex including mouth motor, speech arrest, and anomia were generated from the diffusion tensor MRI data. The regions connected by the fiber tracking were compared to foci from previous functional imaging reports on language tasks. Connections were found between speech arrest, mouth motor, and anomia sites and the SMA proper and cerebral peduncle. The speech arrest and a mouth motor site were also seen to connect to the putamen via the external capsule. This is the first demonstration of delineation of subcortical pathways using diffusion tensor MRI fiber tracking with intraoperative cortical stimulation. The combined techniques may provide improved preservation of eloquent regions during neurological surgery, and may provide access to direct connectivity information between functional regions of the brain.

  12. Subcortical pathways serving cortical language sites: initial experience with diffusion tensor imaging fiber tracking combined with intraoperative language mapping

    PubMed Central

    Henry, Roland G.; Berman, Jeffrey I.; Nagarajan, Srikantan S.; Mukherjee, Pratik; Berger, Mitchel S.

    2014-01-01

    The combination of mapping functional cortical neurons by intraoperative cortical stimulation and axonal architecture by diffusion tensor MRI fiber tracking can be used to delineate the pathways between functional regions. In this study the authors investigated the feasibility of combining these techniques to yield connectivity associated with motor speech and naming. Diffusion tensor MRI fiber tracking provides maps of axonal bundles and was combined with intraoperative mapping of eloquent cortex for a patient undergoing brain tumor surgery. Tracks from eight stimulated sites in the inferior frontal cortex including mouth motor, speech arrest, and anomia were generated from the diffusion tensor MRI data. The regions connected by the fiber tracking were compared to foci from previous functional imaging reports on language tasks. Connections were found between speech arrest, mouth motor, and anomia sites and the SMA proper and cerebral peduncle. The speech arrest and a mouth motor site were also seen to connect to the putamen via the external capsule. This is the first demonstration of delineation of subcortical pathways using diffusion tensor MRI fiber tracking with intraoperative cortical stimulation. The combined techniques may provide improved preservation of eloquent regions during neurological surgery, and may provide access to direct connectivity information between functional regions of the brain. PMID:14980564

  13. Non-destructive monitoring of creaming of oil-in-water emulsion-based formulations using magnetic resonance imaging.

    PubMed

    Onuki, Yoshinori; Horita, Akihiro; Kuribayashi, Hideto; Okuno, Yoshihide; Obata, Yasuko; Takayama, Kozo

    2014-07-01

    A non-destructive method for monitoring creaming of emulsion-based formulations is in great demand because it allows us to understand fully their instability mechanisms. This study was aimed at demonstrating the usefulness of magnetic resonance (MR) techniques, including MR imaging (MRI) and MR spectroscopy (MRS), for evaluating the physicochemical stability of emulsion-based formulations. Emulsions that are applicable as the base of practical skin creams were used as test samples. Substantial creaming was developed by centrifugation, which was then monitored by MRI. The creaming oil droplet layer and aqueous phase were clearly distinguished by quantitative MRI by measuring T1 and the apparent diffusion coefficient. Components in a selected volume in the emulsions could be analyzed using MRS. Then, model emulsions having different hydrophilic-lipophilic balance (HLB) values were tested, and the optimal HLB value for a stable dispersion was determined. In addition, the MRI examination enables the detection of creaming occurring in a polyethylene tube, which is commonly used for commercial products, without losing any image quality. These findings strongly indicate that MR techniques are powerful tools to evaluate the physicochemical stability of emulsion-based formulations. This study will make a great contribution to the development and quality control of emulsion-based formulations.

  14. Quantitative 3D Ultrashort Time-to-Echo (UTE) MRI and Micro-CT (μCT) Evaluation of the Temporomandibular Joint (TMJ) Condylar Morphology

    PubMed Central

    Geiger, Daniel; Bae, Won C.; Statum, Sheronda; Du, Jiang; Chung, Christine B.

    2014-01-01

    Objective Temporomandibular dysfunction involves osteoarthritis of the TMJ, including degeneration and morphologic changes of the mandibular condyle. Purpose of this study was to determine accuracy of novel 3D-UTE MRI versus micro-CT (μCT) for quantitative evaluation of mandibular condyle morphology. Material & Methods Nine TMJ condyle specimens were harvested from cadavers (2M, 3F; Age 85 ± 10 yrs., mean±SD). 3D-UTE MRI (TR=50ms, TE=0.05 ms, 104 μm isotropic-voxel) was performed using a 3-T MR scanner and μCT (18 μm isotropic-voxel) was performed. MR datasets were spatially-registered with μCT dataset. Two observers segmented bony contours of the condyles. Fibrocartilage was segmented on MR dataset. Using a custom program, bone and fibrocartilage surface coordinates, Gaussian curvature, volume of segmented regions and fibrocartilage thickness were determined for quantitative evaluation of joint morphology. Agreement between techniques (MRI vs. μCT) and observers (MRI vs. MRI) for Gaussian curvature, mean curvature and segmented volume of the bone were determined using intraclass correlation correlation (ICC) analyses. Results Between MRI and μCT, the average deviation of surface coordinates was 0.19±0.15 mm, slightly higher than spatial resolution of MRI. Average deviation of the Gaussian curvature and volume of segmented regions, from MRI to μCT, was 5.7±6.5% and 6.6±6.2%, respectively. ICC coefficients (MRI vs. μCT) for Gaussian curvature, mean curvature and segmented volumes were respectively 0.892, 0.893 and 0.972. Between observers (MRI vs. MRI), the ICC coefficients were 0.998, 0.999 and 0.997 respectively. Fibrocartilage thickness was 0.55±0.11 mm, as previously described in literature for grossly normal TMJ samples. Conclusion 3D-UTE MR quantitative evaluation of TMJ condyle morphology ex-vivo, including surface, curvature and segmented volume, shows high correlation against μCT and between observers. In addition, UTE MRI allows quantitative evaluation of the fibrocartilaginous condylar component. PMID:24092237

  15. Spatially encoded phase-contrast MRI-3D MRI movies of 1D and 2D structures at millisecond resolution.

    PubMed

    Merboldt, Klaus-Dietmar; Uecker, Martin; Voit, Dirk; Frahm, Jens

    2011-10-01

    This work demonstrates that the principles underlying phase-contrast MRI may be used to encode spatial rather than flow information along a perpendicular dimension, if this dimension contains an MRI-visible object at only one spatial location. In particular, the situation applies to 3D mapping of curved 2D structures which requires only two projection images with different spatial phase-encoding gradients. These phase-contrast gradients define the field of view and mean spin-density positions of the object in the perpendicular dimension by respective phase differences. When combined with highly undersampled radial fast low angle shot (FLASH) and image reconstruction by regularized nonlinear inversion, spatial phase-contrast MRI allows for dynamic 3D mapping of 2D structures in real time. First examples include 3D MRI movies of the acting human hand at a temporal resolution of 50 ms. With an even simpler technique, 3D maps of curved 1D structures may be obtained from only three acquisitions of a frequency-encoded MRI signal with two perpendicular phase encodings. Here, 3D MRI movies of a rapidly rotating banana were obtained at 5 ms resolution or 200 frames per second. In conclusion, spatial phase-contrast 3D MRI of 2D or 1D structures is respective two or four orders of magnitude faster than conventional 3D MRI. Copyright © 2011 Wiley-Liss, Inc.

  16. Calibrated LCD/TFT stimulus presentation for visual psychophysics in fMRI.

    PubMed

    Strasburger, H; Wüstenberg, T; Jäncke, L

    2002-11-15

    Standard projection techniques using liquid crystal (LCD) or thin-film transistor (TFT) technology show drastic distortions in luminance and contrast characteristics across the screen and across grey levels. Common luminance measurement and calibration techniques are not applicable in the vicinity of MRI scanners. With the aid of a fibre optic, we measured screen luminances for the full space of screen position and image grey values and on that basis developed a compensation technique that involves both luminance homogenisation and position-dependent gamma correction. By the technique described, images displayed to a subject in functional MRI can be specified with high precision by a matrix of desired luminance values rather than by local grey value.

  17. Preoperative local MRI-staging of patients with a suspected pancreatic mass.

    PubMed

    Fischer, U; Vosshenrich, R; Horstmann, O; Becker, H; Salamat, B; Baum, F; Grabbe, E

    2002-02-01

    The aim of this study was to define the value of MRI of the pancreas for preoperative local staging of patients with a suspected pancreatic mass. Ninety-four patients (41 women, 53 men; age range 32-87 years) with a suspected pancreatic tumor underwent preoperative staging with MRI on a 1.5-T system. The MRI protocol included breath-hold MR cholangiopancreatography in turbo spin-echo technique, biphasic contrast-enhanced 3D MR angiography, and MRI of the upper abdomen with breath-hold T2-weighted half-Fourier acquired single-shot turbo spin-echo and T1-weighted fast-low-angle-shot (pre- and postcontrast) sequences. Data were collected prospectively and analyzed by two radiologists in agreement modality. Evaluation criteria were vascular involvement, resectability, and a characterization benign vs malignant. Results were compared to histopathology in 78 patients. Sixteen patients were followed-up. In 74 of 94 patients a solid tumor or an inflammation of the pancreas ( n=62) or the papilla ( n=12) was detected. In this group, MRI had a sensitivity of 98%, a specificity of 92%, and an accuracy of 96% in the characterization of malignant tumors. Regarding only the solid tumors, the positive predictive value of MRI was 87% with respect to resectability. Other pathologic findings included adenoma or inflammation of the duodenum ( n=5), carcinoma or benign stenosis of the choledochus duct ( n=7) and carcinoma of the gall bladder ( n=2). In 6 patients MRI did not depict any pathologic findings, and follow-up confirmed this interpretation. Magnetic resonance imaging allows a local preoperative staging in patients with suspected pancreatic tumor. Limitations, however, concern to the diagnostics of peritoneal and/or liver metastases.

  18. Diffusion tensor tracking of neuronal fiber pathways in the living human brain

    NASA Astrophysics Data System (ADS)

    Lori, Nicolas Francisco

    2001-11-01

    The technique of diffusion tensor tracking (DTT) is described, in which diffusion tensor magnetic resonance imaging (DT-MRI) data are processed to allow the visualization of white matter (WM) tracts in a living human brain. To illustrate the methods, a detailed description is given of the physics of DT-MRI, the structure of the DT-MRI experiment, the computer tools that were developed to visualize WM tracts, the anatomical consistency of the obtained WM tracts, and the accuracy and precision of DTT using computer simulations. When presenting the physics of DT-MRI, a completely quantum-mechanical view of DT-MRI is given where some of the results are new. Examples of anatomical tracts viewed using DTT are presented, including the genu and the splenium of the corpus callosum, the ventral pathway with its amygdala connection highlighted, the geniculo- calcarine tract separated into anterior and posterior parts, the geniculo-calcarine tract defined using functional magnetic resonance imaging (MRI), and U- fibers. In the simulation, synthetic DT-MRI data were constructed that would be obtained for a cylindrical WM tract with a helical trajectory surrounded by gray matter. Noise was then added to the synthetic DT-MRI data, and DTT trajectories were calculated using the noisy data (realistic tracks). Simulated DTT errors were calculated as the vector distance between the realistic tracks and the ideal trajectory. The simulation tested the effects of a comprehensive set of experimental conditions, including voxel size, data sampling, data averaging, type of tract tissue, tract diameter and type of tract trajectory. Simulated DTT accuracy and precision were typically below the voxel dimension, and precision was compatible with the experimental results.

  19. SPIRAL-SPRITE: a rapid single point MRI technique for application to porous media.

    PubMed

    Szomolanyi, P; Goodyear, D; Balcom, B; Matheson, D

    2001-01-01

    This study presents the application of a new, rapid, single point MRI technique which samples k space with spiral trajectories. The general principles of the technique are outlined along with application to porous concrete samples, solid pharmaceutical tablets and gas phase imaging. Each sample was chosen to highlight specific features of the method.

  20. Note: Progress on the use of MgB2 superconducting joint technique for the development of MgB2 magnets for magnetic resonance imaging (MRI).

    PubMed

    Kim, Y G; Song, J B; Kim, J C; Kim, J M; Yoo, B H; Yun, S B; Hwang, D Y; Lee, H G

    2017-08-01

    This note presents a superconducting joint technique for the development of MgB 2 magnetic resonance imaging (MRI) magnets. The MgB 2 superconducting joint was fabricated by a powder processing method using Mg and B powders to establish a wire-bulk-wire connection. The joint resistance measured using a field-decay method was <10 -14 Ω, demonstrating that the proposed joint technique could be employed for developing "next-generation" MgB 2 MRI magnets operating in the persistent current mode.

  1. Integrating multiparametric prostate MRI into clinical practice

    PubMed Central

    2011-01-01

    Abstract Multifunctional magnetic resonance imaging (MRI) techniques are increasingly being used to address bottlenecks in prostate cancer patient management. These techniques yield qualitative, semi-quantitative and fully quantitative biomarkers that reflect on the underlying biological status of a tumour. If these techniques are to have a role in patient management, then standard methods of data acquisition, analysis and reporting have to be developed. Effective communication by the use of scoring systems, structured reporting and a graphical interface that matches prostate anatomy are key elements. Practical guidelines for integrating multiparametric MRI into clinical practice are presented. PMID:22187067

  2. Simultaneous in vivo visualization and localization of solid oral dosage forms in the rat gastrointestinal tract by magnetic resonance imaging (MRI).

    PubMed

    Christmann, V; Rosenberg, J; Seega, J; Lehr, C M

    1997-08-01

    Bioavailability of orally administered drugs is much influenced by the behavior, performance and fate of the dosage form within the gastrointestinal (GI) tract. Therefore, MRI in vivo methods that allow for the simultaneous visualization of solid oral dosage forms and anatomical structures of the GI tract have been investigated. Oral contrast agents containing Gd-DTPA were used to depict the lumen of the digestive organs. Solid oral dosage forms were visualized in a rat model by a 1H-MRI double contrast technique (magnetite-labelled microtablets) and a combination of 1H- and 19F-MRI (fluorine-labelled minicapsules). Simultaneous visualization of solid oral dosage forms and the GI environment in the rat was possible using MRI. Microtablets could reproducibly be monitored in the rat stomach and in the intestines using a 1H-MRI double contrast technique. Fluorine-labelled minicapsules were detectable in the rat stomach by a combination of 1H- and 19F-MRI in vivo. The in vivo 1H-MRI double contrast technique described allows solid oral dosage forms in the rat GI tract to be depicted. Solid dosage forms can easily be labelled by incorporating trace amounts of non-toxic iron oxide (magnetite) particles. 1H-MRI is a promising tool for observing such pharmaceutical dosage forms in humans. Combined 1H- and 19F-MRI offer a means of unambiguously localizing solid oral dosage forms in more distal parts of the GI tract. Studies correlating MRI examinations with drug plasma levels could provide valuable information for the development of pharmaceutical dosage forms.

  3. The Aging Lung: Clinical and Imaging Findings and the Fringe of Physiological State.

    PubMed

    Schröder, T H; Storbeck, B; Rabe, K F; Weber, C

    2015-06-01

    Since aspects of demographic transition have become an essential part of socioeconomic, medical and health-care research in the last decades, it is vital for the radiologist to discriminate between normal ageing related effects and abnormal imaging findings in the elderly. This article reviews functional and structural aspects of the ageing lung and focuses on typical ageing related radiological patterns. • The physiological aging process of the thoracic organs shows typical structural and functional aspects.• Mild interstitial fibrosis and focal parenchymal abnormalities like septal thickening can be diagnosed frequently - whereas a clinical correlate is often lacking.• With increasing patient age, the influence by various intrinsic and extrinsic factors (including comorbidities of the patient, and drug inhalation toxicants) also increases.• A growing spectrum of imaging techniques (including functional cardiopulmonary MRI, MRI spectroscopy, hybrid-techniques) is confronted by rare empiric data in the very old people (aging 80 years and older). © Georg Thieme Verlag KG Stuttgart · New York.

  4. Successful Treatment of Early Talar Osteonecrosis by Core Decompression Combined with Intraosseous Stem Cell Injection: A Case Report.

    PubMed

    Nevalainen, Mika T; Repo, Jussi P; Pesola, Maija; Nyrhinen, Jukka P

    2018-01-01

    Osteonecrosis of the talus is a fairly rare condition. Many predisposing factors have been identified including previous trauma, use of corticosteroids, alcoholism, and smoking. As a gold standard, magnetic resonance imaging (MRI) is the most sensitive and specific diagnostic examination to detect osteonecrosis. While many treatment options for talar osteonecrosis exist, core decompression is suggested on young patients with good outcome results. More recently, intraosseous stem cell and platelet-rich plasma (PRP) injection has been added to the core decompression procedure. We report a successful treatment of early talar osteonecrosis ARCO I (Association Research Circulation Osseous) by core decompression combined with stem cell and PRP injection. On 3-month and 15-month follow-up, MRI showed complete resolution of the osteonecrotic changes together with clinical improvement. This modified technique is a viable treatment option for early talar osteonecrosis. Nevertheless, future prospects should include a study comparing this combined technique with plain core decompression.

  5. Sensitivity and specificity of ultrasonography in early diagnosis of metatarsal bone stress fractures: a pilot study of 37 patients.

    PubMed

    Banal, Frédéric; Gandjbakhch, Frédérique; Foltz, Violaine; Goldcher, Alain; Etchepare, Fabien; Rozenberg, Sylvie; Koeger, Anne-Claude; Bourgeois, Pierre; Fautrel, Bruno

    2009-08-01

    To date, early diagnosis of stress fractures depends on magnetic resonance imaging (MRI) or bone scan scintigraphy, as radiographs are usually normal at onset of symptoms. These examinations are expensive or invasive, time-consuming, and poorly accessible. A recent report has shown the ability of ultrasonography (US) to detect early stress fractures. Our objective was to evaluate sensitivity and specificity of US versus dedicated MRI (0.2 Tesla), taken as the gold standard, in early diagnosis of metatarsal bone stress fractures. A case-control study from November 2006 to December 2007 was performed. All consecutive patients with mechanical pain and swelling of the metatarsal region for less than 3 months and with normal radiographs were included. US and dedicated MRI examinations of the metatarsal bones were performed the same day by experienced rheumatologists with expertise in US and MRI. Reading was undertaken blind to the clinical assessment and MRI/US results. Forty-one feet were analyzed on US and dedicated MRI from 37 patients (28 women, 9 men, mean age 52.7 +/- 14.1 yrs). MRI detected 13 fractures in 12 patients. Sensitivity of US was 83%, specificity 76%, positive predictive value 59%, and negative predictive value 92%. Positive likehood ratio was 3.45, negative likehood ratio 0.22. In cases of normal radiographs, US is indicated in the diagnosis of metatarsal bone stress fractures, as it is a low cost, noninvasive, rapid, and easy technique with good sensitivity and specificity. From these data, we propose a new imaging algorithm including US.

  6. Pre-Adult MRI of Brain Cancer and Neurological Injury: Multivariate Analyses

    PubMed Central

    Levman, Jacob; Takahashi, Emi

    2016-01-01

    Brain cancer and neurological injuries, such as stroke, are life-threatening conditions for which further research is needed to overcome the many challenges associated with providing optimal patient care. Multivariate analysis (MVA) is a class of pattern recognition technique involving the processing of data that contains multiple measurements per sample. MVA can be used to address a wide variety of neuroimaging challenges, including identifying variables associated with patient outcomes; understanding an injury’s etiology, development, and progression; creating diagnostic tests; assisting in treatment monitoring; and more. Compared to adults, imaging of the developing brain has attracted less attention from MVA researchers, however, remarkable MVA growth has occurred in recent years. This paper presents the results of a systematic review of the literature focusing on MVA technologies applied to brain injury and cancer in neurological fetal, neonatal, and pediatric magnetic resonance imaging (MRI). With a wide variety of MRI modalities providing physiologically meaningful biomarkers and new biomarker measurements constantly under development, MVA techniques hold enormous potential toward combining available measurements toward improving basic research and the creation of technologies that contribute to improving patient care. PMID:27446888

  7. MRI versus breast-specific gamma imaging (BSGI) in newly diagnosed ductal cell carcinoma-in-situ: a prospective head-to-head trial.

    PubMed

    Keto, Jessica L; Kirstein, Laurie; Sanchez, Diana P; Fulop, Tamara; McPartland, Laura; Cohen, Ilona; Boolbol, Susan K

    2012-01-01

    Mammography remains the standard imaging technique for the diagnosis of ductal carcinoma-in-situ (DCIS). Functional breast imaging, including breast magnetic resonance imaging (MRI), has known limitations in evaluating DCIS. To date, there are limited data on the utility of breast-specific gamma imaging (BSGI) in DCIS. We sought to prospectively compare the sensitivity of BSGI to MRI in newly diagnosed DCIS patients. Patients with newly diagnosed DCIS from June 1, 2009, through May 31, 2010, underwent a protocol with both breast MRI and BSGI. Each imaging study was read by a separate dedicated breast radiologist. Patients were excluded if excisional biopsy was performed for diagnosis, if their MRI was performed at an outside facility, or if final pathology revealed invasive carcinoma. There were 18 patients enrolled onto the study that had both MRI and BSGI for newly diagnosed DCIS. The sensitivity for MRI was 94% and for BSGI was 89% (P > 0.5, NS). There was one index tumor not seen on either MRI or BSGI, and one index tumor seen on MRI but not visualized on BSGI. Although BSGI has previously been shown to be as sensitive as MRI for detecting known invasive breast carcinoma, this study shows that BSGI is equally as sensitive as MRI at detecting newly diagnosed DCIS. As a result of the limited number of patients enrolled onto the study, larger prospective studies need to be performed to determine the true sensitivity and specificity of BSGI.

  8. Pharmacological MRI (phMRI) of the Human Central Nervous System.

    PubMed

    Lanfermann, H; Schindler, C; Jordan, J; Krug, N; Raab, P

    2015-10-01

    Pharmacological magnetic resonance imaging (phMRI) of the central nervous system (CNS) addresses the increasing demands in the biopharma industry for new methods that can accurately predict, as early as possible, whether novel CNS agents will be effective and safe. Imaging of physiological and molecular-level function can provide a more direct measure of a drug mechanism of action, enabling more predictive measures of drug activity. The availability of phMRI of the nervous system within the professional infrastructure of the Clinical Research Center (CRC) Hannover as proof of concept center ensures that advances in basic science progress swiftly into benefits for patients. Advanced standardized MRI techniques including quantitative MRI, kurtosis determination, functional MRI, and spectroscopic imaging of the entire brain are necessary for phMRI. As a result, MR scanners will evolve into high-precision measuring instruments for assessment of desirable and undesirable effects of drugs as the basic precondition for individually tailored therapy. The CRC's Imaging Unit with high-end large-scale equipment will allow the following unique opportunities: for example, identification of MR-based biomarkers to assess the effect of drugs (surrogate parameters), establishment of normal levels and reference ranges for MRI-based biomarkers, evaluation of the most relevant MRI sequences for drug monitoring in outpatient care. Another very important prerequisite for phMRI is the MHH Core Facility as the scientific and operational study unit of the CRC partner Hannover Medical School. This unit is responsible for the study coordination, conduction, complete study logistics, administration, and application of the quality assurance system based on required industry standards.

  9. Causal mapping of emotion networks in the human brain: Framework and initial findings.

    PubMed

    Dubois, Julien; Oya, Hiroyuki; Tyszka, J Michael; Howard, Matthew; Eberhardt, Frederick; Adolphs, Ralph

    2017-11-13

    Emotions involve many cortical and subcortical regions, prominently including the amygdala. It remains unknown how these multiple network components interact, and it remains unknown how they cause the behavioral, autonomic, and experiential effects of emotions. Here we describe a framework for combining a novel technique, concurrent electrical stimulation with fMRI (es-fMRI), together with a novel analysis, inferring causal structure from fMRI data (causal discovery). We outline a research program for investigating human emotion with these new tools, and provide initial findings from two large resting-state datasets as well as case studies in neurosurgical patients with electrical stimulation of the amygdala. The overarching goal is to use causal discovery methods on fMRI data to infer causal graphical models of how brain regions interact, and then to further constrain these models with direct stimulation of specific brain regions and concurrent fMRI. We conclude by discussing limitations and future extensions. The approach could yield anatomical hypotheses about brain connectivity, motivate rational strategies for treating mood disorders with deep brain stimulation, and could be extended to animal studies that use combined optogenetic fMRI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Evaluation of vascular variations at cerebellopontine angle by 3D T2WI magnetic-resonance imaging in patients with vertigo.

    PubMed

    Beyazal Celiker, Fatma; Dursun, Engin; Celiker, Metin; Durakoglugil, Tugba; Beyazal, Mehmet; Inecikli, Mehmet Fatih; Ozgur, Abdulkadir; Terzi, Suat

    2017-01-01

    Vascular loops of the anterior-inferior cerebellar artery (AICA) at the cerebellopontine angle (CPA) are considered related to auditory-vestibular symptoms. Clinical association of these anatomical aberrations, which can be grouped together as vascular compression syndromes, is controversial. Magnetic resonance imaging (MRI) is widely used to visualize this anatomical region, given its high sensitivity and specificity. To elucidate the clinical relationship of vertigo symptoms with vascular loop compression syndrome by evaluating the neurovascular contacts of the vestibulocochlear nerve (VCN) and AICA at the CPA and internal auditory canal via high-resolution MRI. The study included 417 patients (178 with vertigo and 239 without vertigo) undergoing MRI for various clinical causes. MRI scans were assessed to study the presence of vascular abnormalities at the CPA. According to our findings, type 1 vascular variation was observed most frequently in both sides. MRI findings were similar for the patients with and without vertigo. Identifying the prevalence of the vascular loops of the AICA primarily depends on diagnostic technique, and our results identified a slightly higher prevalence than those of previous studies, which might be partly related to the high-sensitivity of 3-dimensional T2-weighted MRI.

  11. Surgical treatment of pituitary adenomas using low-field intraoperative magnetic resonance imaging.

    PubMed

    Tabakow, Paweł; Czyz, Margin; Jarmundowicz, Włodzimierz; Lechowicz-Głogowska, Ewa

    2012-01-01

    Intraoperative magnetic resonance imaging (iMRI) is a new technique for imaging of the brain and is used with increasing frequency during neurosurgical operations, enabling the surgeon to make decisions based on real-time images. This paper presents the technique for the surgical treatment of pituitary adenomas using low-field iMRI, evaluates the safety of iMRI usage in pituitary surgery and examines the influence of iMRI on the extent of tumor removal. From October 2008 to December 2010, 18 patients were treated for pituitary adenomas using the low-field iMRI system Polestar N20. The procedures were conducted via the transsphenoidal approach, using the microscopic technique in 15 cases and endoscopically in three cases. The patients' mean age was 56 +/- 15 years; their mean American Society of Anesthesiologists (ASA) score was 2; 67% of them were male. Most of the patients were operated on for macroadenomas, 83% of which were hormonally inactive. The analysis concerned the technical aspects of iMRI usage, such as preparation and surgery time and the quality of the iMRI-scans performed. The safety of iMRI and its influence on decisions regarding further tumor resection. The operations on pituitary adenomas using iMRI were safe. Only two hemorrhagic complications were noted, and they were not related to iMRI usage. The mean preparation and surgery times were 109 +/- 37 minutes and 238 +/- 188 minutes, respectively. The iMRI images of sella turcica were of satisfactory quality in 16 patients. In 50% of the cases, iMRI conducted when the surgeon believed that the desired extent of tumor resection had been attained showed that there were still tumor remnants to be resected. In 67% of these cases, continued tumor removal lead to achievement of the desired degree of resection. Low-field iMRI-guided operations on pituitary tumors are safe and feasible, and they ensure an increased radicality of tumor resection.

  12. Validation of a motion-robust 2D sequential technique for quantification of hepatic proton density fat fraction during free breathing.

    PubMed

    Pooler, B Dustin; Hernando, Diego; Ruby, Jeannine A; Ishii, Hiroshi; Shimakawa, Ann; Reeder, Scott B

    2018-04-17

    Current chemical-shift-encoded (CSE) MRI techniques for measuring hepatic proton density fat fraction (PDFF) are sensitive to motion artifacts. Initial validation of a motion-robust 2D-sequential CSE-MRI technique for quantification of hepatic PDFF. Phantom study and prospective in vivo cohort. Fifty adult patients (27 women, 23 men, mean age 57.2 years). 3D, 2D-interleaved, and 2D-sequential CSE-MRI acquisitions at 1.5T. Three CSE-MRI techniques (3D, 2D-interleaved, 2D-sequential) were performed in a PDFF phantom and in vivo. Reference standards were 3D CSE-MRI PDFF measurements for the phantom study and single-voxel MR spectroscopy hepatic PDFF measurements (MRS-PDFF) in vivo. In vivo hepatic MRI-PDFF measurements were performed during a single breath-hold (BH) and free breathing (FB), and were repeated by a second reader for the FB 2D-sequential sequence to assess interreader variability. Correlation plots to validate the 2D-sequential CSE-MRI against the phantom and in vivo reference standards. Bland-Altman analysis of FB versus BH CSE-MRI acquisitions to evaluate robustness to motion. Bland-Altman analysis to assess interreader variability. Phantom 2D-sequential CSE-MRI PDFF measurements demonstrated excellent agreement and correlation (R 2 > 0.99) with 3D CSE-MRI. In vivo, the mean (±SD) hepatic PDFF was 8.8 ± 8.7% (range 0.6-28.5%). Compared with BH acquisitions, FB hepatic PDFF measurements demonstrated bias of +0.15% for 2D-sequential compared with + 0.53% for 3D and +0.94% for 2D-interleaved. 95% limits of agreement (LOA) were narrower for 2D-sequential (±0.99%), compared with 3D (±3.72%) and 2D-interleaved (±3.10%). All CSE-MRI techniques had excellent correlation with MRS (R 2 > 0.97). The FB 2D-sequential acquisition demonstrated little interreader variability, with mean bias of +0.07% and 95% LOA of ± 1.53%. This motion-robust 2D-sequential CSE-MRI can accurately measure hepatic PDFF during free breathing in a patient population with a range of PDFF values of 0.6-28.5%, permitting accurate quantification of liver fat content without the need for suspended respiration. 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.

  13. Velocity Measurement in Carotid Artery: Quantitative Comparison of Time-Resolved 3D Phase-Contrast MRI and Image-based Computational Fluid Dynamics

    PubMed Central

    Sarrami-Foroushani, Ali; Nasr Esfahany, Mohsen; Nasiraei Moghaddam, Abbas; Saligheh Rad, Hamidreza; Firouznia, Kavous; Shakiba, Madjid; Ghanaati, Hossein; Wilkinson, Iain David; Frangi, Alejandro Federico

    2015-01-01

    Background: Understanding hemodynamic environment in vessels is important for realizing the mechanisms leading to vascular pathologies. Objectives: Three-dimensional velocity vector field in carotid bifurcation is visualized using TR 3D phase-contrast magnetic resonance imaging (TR 3D PC MRI) and computational fluid dynamics (CFD). This study aimed to present a qualitative and quantitative comparison of the velocity vector field obtained by each technique. Subjects and Methods: MR imaging was performed on a 30-year old male normal subject. TR 3D PC MRI was performed on a 3 T scanner to measure velocity in carotid bifurcation. 3D anatomical model for CFD was created using images obtained from time-of-flight MR angiography. Velocity vector field in carotid bifurcation was predicted using CFD and PC MRI techniques. A statistical analysis was performed to assess the agreement between the two methods. Results: Although the main flow patterns were the same for the both techniques, CFD showed a greater resolution in mapping the secondary and circulating flows. Overall root mean square (RMS) errors for all the corresponding data points in PC MRI and CFD were 14.27% in peak systole and 12.91% in end diastole relative to maximum velocity measured at each cardiac phase. Bland-Altman plots showed a very good agreement between the two techniques. However, this study was not aimed to validate any of methods, instead, the consistency was assessed to accentuate the similarities and differences between Time-resolved PC MRI and CFD. Conclusion: Both techniques provided quantitatively consistent results of in vivo velocity vector fields in right internal carotid artery (RCA). PC MRI represented a good estimation of main flow patterns inside the vasculature, which seems to be acceptable for clinical use. However, limitations of each technique should be considered while interpreting results. PMID:26793288

  14. Imaging transplanted stem cells in real time using an MRI dual-contrast method

    PubMed Central

    Ngen, Ethel J.; Wang, Lee; Kato, Yoshinori; Krishnamachary, Balaji; Zhu, Wenlian; Gandhi, Nishant; Smith, Barbara; Armour, Michael; Wong, John; Gabrielson, Kathleen; Artemov, Dmitri

    2015-01-01

    Stem cell therapies are currently being investigated for the repair of brain injuries. Although exogenous stem cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) prior to transplantation provides a means to noninvasively monitor stem cell transplantation by magnetic resonance imaging (MRI), monitoring cell death is still a challenge. Here, we investigate the feasibility of using an MRI dual-contrast technique to detect cell delivery, cell migration and cell death after stem cell transplantation. Human mesenchymal stem cells were dual labelled with SPIONs and gadolinium-based chelates (GdDTPA). The viability, proliferation rate, and differentiation potential of the labelled cells were then evaluated. The feasibility of this MRI technique to distinguish between live and dead cells was next evaluated using MRI phantoms, and in vivo using both immune-competent and immune-deficient mice, following the induction of brain injury in the mice. All results were validated with bioluminescence imaging. In live cells, a negative (T2/T2*) MRI contrast predominates, and is used to track cell delivery and cell migration. Upon cell death, a diffused positive (T1) MRI contrast is generated in the vicinity of the dead cells, and serves as an imaging marker for cell death. Ultimately, this technique could be used to manage stem cell therapies. PMID:26330231

  15. Vessel calibre—a potential MRI biomarker of tumour response in clinical trials

    PubMed Central

    Emblem, Kyrre E.; Farrar, Christian T.; Gerstner, Elizabeth R.; Batchelor, Tracy T.; Borra, Ronald J. H.; Rosen, Bruce R.; Sorensen, A. Gregory; Jain, Rakesh K.

    2015-01-01

    Our understanding of the importance of blood vessels and angiogenesis in cancer has increased considerably over the past decades, and the assessment of tumour vessel calibre and structure has become increasingly important for in vivo monitoring of therapeutic response. The preferred method for in vivo imaging of most solid cancers is MRI, and the concept of vessel-calibre MRI has evolved since its initial inception in the early 1990s. Almost a quarter of a century later, unlike traditional contrast-enhanced MRI techniques, vessel-calibre MRI remains widely inaccessible to the general clinical community. The narrow availability of the technique is, in part, attributable to limited awareness and a lack of imaging standardization. Thus, the role of vessel-calibre MRI in early phase clinical trials remains to be determined. By contrast, regulatory approvals of antiangiogenic agents that are not directly cytotoxic have created an urgent need for clinical trials incorporating advanced imaging analyses, going beyond traditional assessments of tumour volume. To this end, we review the field of vessel-calibre MRI and summarize the emerging evidence supporting the use of this technique to monitor response to anticancer therapy. We also discuss the potential use of this biomarker assessment in clinical imaging trials and highlight relevant avenues for future research. PMID:25113840

  16. Imaging transplanted stem cells in real time using an MRI dual-contrast method.

    PubMed

    Ngen, Ethel J; Wang, Lee; Kato, Yoshinori; Krishnamachary, Balaji; Zhu, Wenlian; Gandhi, Nishant; Smith, Barbara; Armour, Michael; Wong, John; Gabrielson, Kathleen; Artemov, Dmitri

    2015-09-02

    Stem cell therapies are currently being investigated for the repair of brain injuries. Although exogenous stem cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) prior to transplantation provides a means to noninvasively monitor stem cell transplantation by magnetic resonance imaging (MRI), monitoring cell death is still a challenge. Here, we investigate the feasibility of using an MRI dual-contrast technique to detect cell delivery, cell migration and cell death after stem cell transplantation. Human mesenchymal stem cells were dual labelled with SPIONs and gadolinium-based chelates (GdDTPA). The viability, proliferation rate, and differentiation potential of the labelled cells were then evaluated. The feasibility of this MRI technique to distinguish between live and dead cells was next evaluated using MRI phantoms, and in vivo using both immune-competent and immune-deficient mice, following the induction of brain injury in the mice. All results were validated with bioluminescence imaging. In live cells, a negative (T2/T2*) MRI contrast predominates, and is used to track cell delivery and cell migration. Upon cell death, a diffused positive (T1) MRI contrast is generated in the vicinity of the dead cells, and serves as an imaging marker for cell death. Ultimately, this technique could be used to manage stem cell therapies.

  17. Oncologic PET/MRI, part 1: tumors of the brain, head and neck, chest, abdomen, and pelvis.

    PubMed

    Buchbender, Christian; Heusner, Till A; Lauenstein, Thomas C; Bockisch, Andreas; Antoch, Gerald

    2012-06-01

    In oncology, staging forms the basis for prognostic consideration and directly influences patient care by determining the therapeutic approach. Cross-sectional imaging techniques, especially when combined with PET information, play an important role in cancer staging. With the recent introduction of integrated whole-body PET/MRI into clinical practice, a novel metabolic-anatomic imaging technique is now available. PET/MRI seems to be highly accurate in T-staging of tumor entities for which MRI has traditionally been favored, such as squamous cell carcinomas of the head and neck. By adding functional MRI to PET, PET/MRI may further improve diagnostic accuracy in the differentiation of scar tissue from recurrence of tumors such as rectal cancer. This hypothesis will have to be assessed in future studies. With regard to N-staging, PET/MRI does not seem to provide a considerable benefit as compared with PET/CT but provides similar N-staging accuracy when applied as a whole-body staging approach. M-staging will benefit from MRI accuracy in the brain and the liver. The purpose of this review is to summarize the available first experiences with PET/MRI and to outline the potential value of PET/MRI in oncologic applications for which data on PET/MRI are still lacking.

  18. ROCKETSHIP: a flexible and modular software tool for the planning, processing and analysis of dynamic MRI studies.

    PubMed

    Barnes, Samuel R; Ng, Thomas S C; Santa-Maria, Naomi; Montagne, Axel; Zlokovic, Berislav V; Jacobs, Russell E

    2015-06-16

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a promising technique to characterize pathology and evaluate treatment response. However, analysis of DCE-MRI data is complex and benefits from concurrent analysis of multiple kinetic models and parameters. Few software tools are currently available that specifically focuses on DCE-MRI analysis with multiple kinetic models. Here, we developed ROCKETSHIP, an open-source, flexible and modular software for DCE-MRI analysis. ROCKETSHIP incorporates analyses with multiple kinetic models, including data-driven nested model analysis. ROCKETSHIP was implemented using the MATLAB programming language. Robustness of the software to provide reliable fits using multiple kinetic models is demonstrated using simulated data. Simulations also demonstrate the utility of the data-driven nested model analysis. Applicability of ROCKETSHIP for both preclinical and clinical studies is shown using DCE-MRI studies of the human brain and a murine tumor model. A DCE-MRI software suite was implemented and tested using simulations. Its applicability to both preclinical and clinical datasets is shown. ROCKETSHIP was designed to be easily accessible for the beginner, but flexible enough for changes or additions to be made by the advanced user as well. The availability of a flexible analysis tool will aid future studies using DCE-MRI. A public release of ROCKETSHIP is available at https://github.com/petmri/ROCKETSHIP .

  19. Diffusion fMRI detects white-matter dysfunction in mice with acute optic neuritis

    PubMed Central

    Lin, Tsen-Hsuan; Spees, William M.; Chiang, Chia-Wen; Trinkaus, Kathryn; Cross, Anne H.; Song, Sheng-Kwei

    2014-01-01

    Optic neuritis is a frequent and early symptom of multiple sclerosis (MS). Conventional magnetic resonance (MR) techniques provide means to assess multiple MS-related pathologies, including axonal injury, demyelination, and inflammation. A method to directly and non-invasively probe white-matter function could further elucidate the interplay of underlying pathologies and functional impairments. Previously, we demonstrated a significant 27% activation-associated decrease in the apparent diffusion coefficient of water perpendicular to the axonal fibers (ADC⊥) in normal C57BL/6 mouse optic nerve with visual stimulation using diffusion fMRI. Here we apply this approach to explore the relationship between visual acuity, optic nerve pathology, and diffusion fMRI in the experimental autoimmune encephalomyelitis (EAE) mouse model of optic neuritis. Visual stimulation produced a significant 25% (vs. baseline) ADC⊥ decrease in sham EAE optic nerves, while only a 7% (vs. baseline) ADC⊥ decrease was seen in EAE mice with acute optic neuritis. The reduced activation-associated ADC⊥ response correlated with post-MRI immunohistochemistry determined pathologies (including inflammation, demyelination, and axonal injury). The negative correlation between activation-associated ADC⊥ response and visual acuity was also found when pooling EAE-affected and sham groups under our experimental criteria. Results suggest that reduction in diffusion fMRI directly reflects impaired axonal-activation in EAE mice with optic neuritis. Diffusion fMRI holds promise for directly gauging in vivo white-matter dysfunction or therapeutic responses in MS patients. PMID:24632420

  20. Technological challenges in Magnetic Resonance Imaging: enhancing sensitivity, moving to quantitative imaging and searching for disease biomarkers

    NASA Astrophysics Data System (ADS)

    Retico, A.

    2018-02-01

    Diagnostic imaging based on the Nuclear Magnetic Resonance phenomenon has increasingly spread in the recent few decades, mainly owing to its exquisite capability in depicting a contrast between soft tissues, to its generally non-invasive nature, and to the priceless advantage of using non-ionizing radiation. Magnetic Resonance (MR)-based acquisition techniques allow gathering information on the structure (through Magnetic Resonance Imaging— MRI), the metabolic composition (through Magnetic Resonance Spectroscopy—MRS), and the functioning (through functional MRI —fMRI) of the human body. MR investigations are the methods of choice for studying the brain in vivo, including anatomy, structural wiring and functional connectivity, in healthy and pathological conditions. Alongside the efforts of the clinical research community in extending the acquisition protocols to allow the exploration of a large variety of pathologies affecting diverse body regions, some relevant technological improvements are on the way to maximize the impact of MR in medical diagnostic. The development of MR scanners operating at ultra-high magnetic field (UHF) strength (>= 7 tesla), is pushing forward the spatial resolution of MRI and the spectral resolution of MRS, and it is increasing the specificity of fMRI to grey matter signal. UHF MR systems are currently in use for research purposes only; nevertheless, UHF technological advances are positively affecting MR investigations at clinical field strengths. To overcome the current major limitation of MRI, which is mostly based on contrast between tissues rather than on absolute measurements of physical quantities, a new acquisition modality is under development, which is referred as Magnetic Resonance Fingerprinting technique. Finally, as neuroimaging data acquired worldwide are reaching the typical size of Big Data, dedicated technical solutions are required to mine large amount of information and to identify specific biomarkers of pathological conditions.

  1. Noninvasive Longitudinal Study of a Magnetic Resonance Imaging Biomarker for the Quantification of Colon Inflammation in a Mouse Model of Colitis.

    PubMed

    Bianchi, Andrea; Bluhmki, Teresa; Schönberger, Tanja; Kaaru, Eric; Beltzer, Anne; Raymond, Ernest; Wunder, Andreas; Thakker, Paresh; Stierstorfer, Birgit; Stiller, Detlef

    2016-06-01

    Colonoscopy is the gold standard to diagnose and follow up the evolution of inflammatory bowel diseases. However, this technique can still present a risk of severe complications, a general discomfort in patients, and its diagnostic value is limited to the visualization of the colon mucosal changes. Magnetic resonance imaging (MRI) is emerging as a noninvasive imaging technique of choice to overcome these limitations. The aim of this work was to evaluate the potential of colon wall thickness measured using MRI as an in vivo imaging biomarker of inflammation for inflammatory bowel disease in an animal model of this disease. On day 0, 2% or 3% Dextran sodium sulfate was added to the drinking water of mice (n = 10/group) for 5 days. Six mice were left as controls. Animals were imaged with colonoscopy and MRI on days 7, 11, and 21 to study the colitis progression. Histology was performed at the end of the protocol. The colon wall thickness measured in Dextran sodium sulfate-treated animals was shown to be significantly and dose dependently increased compared to controls. Colonoscopy showed similar results and excellently correlated with MRI measurements and histology. The proposed protocol showed high robustness, with negligible interoperator and intraoperator variability. The findings of this investigation suggest the feasibility of using MRI for the noninvasive assessment of colon wall thickness as a robust surrogate biomarker for colon inflammation detection and follow-up. The data presented show the potential of MRI in in vivo preclinical longitudinal studies, including testing of new drugs or investigation of inflammatory bowel disease development mechanisms.

  2. Functional Imaging of the Lungs with Gas Agents

    PubMed Central

    Kruger, Stanley J.; Nagle, Scott K.; Couch, Marcus J.; Ohno, Yoshiharu; Albert, Mitchell; Fain, Sean B.

    2015-01-01

    This review focuses on the state-of-the-art of the three major classes of gas contrast agents used in magnetic resonance imaging (MRI) – hyperpolarized (HP) gas, molecular oxygen, and fluorinated gas – and their application to clinical pulmonary research. During the past several years there has been accelerated development of pulmonary MRI. This has been driven in part by concerns regarding ionizing radiation using multi-detector computed tomography (CT). However, MRI also offers capabilities for fast multi-spectral and functional imaging using gas agents that are not technically feasible with CT. Recent improvements in gradient performance and radial acquisition methods using ultra-short echo time (UTE) have contributed to advances in these functional pulmonary MRI techniques. Relative strengths and weaknesses of the main functional imaging methods and gas agents are compared and applications to measures of ventilation, diffusion, and gas exchange are presented. Functional lung MRI methods using these gas agents are improving our understanding of a wide range of chronic lung diseases, including chronic obstructive pulmonary disease (COPD), asthma, and cystic fibrosis (CF) in both adults and children. PMID:26218920

  3. Solid-Cryogen Cooling Technique for Superconducting Magnets of NMR and MRI

    NASA Astrophysics Data System (ADS)

    Iwasa, Yukikazu; Bascuñán, Juan; Hahn, Seungyong; Park, Dong Keun

    This paper describes a solid-cryogen cooling technique currently being developed at the M.I.T. Francis Bitter Magnet Laboratory for application to superconducting magnets of NMR and MRI. The technique is particularly appropriate for "dry" magnets that do not rely on liquid cryogen, e.g., liquid helium (LHe), as their primary cooling sources. In addition, the advantages of a cryocirculator (a combination of a cryocooler and a working fluid circulator) over a cryocooler as the primary cooling source for dry magnets are described. The four magnets described here, all incorporating this cooling technique described and currently being developed at the FBML, are: 1) a solid-nitrogen (SN2)-cooled Nb3Sn 500-MHz/200-mm MRI magnet with an operating temperature range between 4.2 K (nominal) and 6.0 K (maximum with its primary cooling source off); 2) an SN2-cooled MgB2 0.5-T/800-mm MRI magnet, 1015 K; 3) an SN2-cooled compact YBCO "annulus" 100-MHz/9-mm NMR magnet, 10-15 K; 4) an SN2-cooled 1.5T/75-mm NbTi magnet for slow magic-angle-spinning NMR/MRI, 4.5-5.5 K.

  4. Quantitative Imaging Biomarkers of NAFLD

    PubMed Central

    Kinner, Sonja; Reeder, Scott B.

    2016-01-01

    Conventional imaging modalities, including ultrasonography (US), computed tomography (CT), and magnetic resonance (MR), play an important role in the diagnosis and management of patients with nonalcoholic fatty liver disease (NAFLD) by allowing noninvasive diagnosis of hepatic steatosis. However, conventional imaging modalities are limited as biomarkers of NAFLD for various reasons. Multi-parametric quantitative MRI techniques overcome many of the shortcomings of conventional imaging and allow comprehensive and objective evaluation of NAFLD. MRI can provide unconfounded biomarkers of hepatic fat, iron, and fibrosis in a single examination—a virtual biopsy has become a clinical reality. In this article, we will review the utility and limitation of conventional US, CT, and MR imaging for the diagnosis NAFLD. Recent advances in imaging biomarkers of NAFLD are also discussed with an emphasis in multi-parametric quantitative MRI. PMID:26848588

  5. Understanding MRI: basic MR physics for physicians.

    PubMed

    Currie, Stuart; Hoggard, Nigel; Craven, Ian J; Hadjivassiliou, Marios; Wilkinson, Iain D

    2013-04-01

    More frequently hospital clinicians are reviewing images from MR studies of their patients before seeking formal radiological opinion. This practice is driven by a multitude of factors, including an increased demand placed on hospital services, the wide availability of the picture archiving and communication system, time pressures for patient treatment (eg, in the management of acute stroke) and an inherent desire for the clinician to learn. Knowledge of the basic physical principles behind MRI is essential for correct image interpretation. This article, written for the general hospital physician, describes the basic physics of MRI taking into account the machinery, contrast weighting, spin- and gradient-echo techniques and pertinent safety issues. Examples provided are primarily referenced to neuroradiology reflecting the subspecialty for which MR currently has the greatest clinical application.

  6. Atlas-based fuzzy connectedness segmentation and intensity nonuniformity correction applied to brain MRI.

    PubMed

    Zhou, Yongxin; Bai, Jing

    2007-01-01

    A framework that combines atlas registration, fuzzy connectedness (FC) segmentation, and parametric bias field correction (PABIC) is proposed for the automatic segmentation of brain magnetic resonance imaging (MRI). First, the atlas is registered onto the MRI to initialize the following FC segmentation. Original techniques are proposed to estimate necessary initial parameters of FC segmentation. Further, the result of the FC segmentation is utilized to initialize a following PABIC algorithm. Finally, we re-apply the FC technique on the PABIC corrected MRI to get the final segmentation. Thus, we avoid expert human intervention and provide a fully automatic method for brain MRI segmentation. Experiments on both simulated and real MRI images demonstrate the validity of the method, as well as the limitation of the method. Being a fully automatic method, it is expected to find wide applications, such as three-dimensional visualization, radiation therapy planning, and medical database construction.

  7. Reproducibility of EEG-fMRI results in a patient with fixation-off sensitivity.

    PubMed

    Formaggio, Emanuela; Storti, Silvia Francesca; Galazzo, Ilaria Boscolo; Bongiovanni, Luigi Giuseppe; Cerini, Roberto; Fiaschi, Antonio; Manganotti, Paolo

    2014-07-01

    Blood oxygenation level-dependent (BOLD) activation associated with interictal epileptiform discharges in a patient with fixation-off sensitivity (FOS) was studied using a combined electroencephalography-functional magnetic resonance imaging (EEG-fMRI) technique. An automatic approach for combined EEG-fMRI analysis and a subject-specific hemodynamic response function was used to improve general linear model analysis of the fMRI data. The EEG showed the typical features of FOS, with continuous epileptiform discharges during elimination of central vision by eye opening and closing and fixation; modification of this pattern was clearly visible and recognizable. During all 3 recording sessions EEG-fMRI activations indicated a BOLD signal decrease related to epileptiform activity in the parietal areas. This study can further our understanding of this EEG phenomenon and can provide some insight into the reliability of the EEG-fMRI technique in localizing the irritative zone.

  8. An Investigation of the Relationship Between fMRI and ERP Source Localized Measurements of Brain Activity during Face Processing

    PubMed Central

    Richards, Todd; Webb, Sara Jane; Murias, Michael; Merkle, Kristen; Kleinhans, Natalia M.; Johnson, L. Clark; Poliakov, Andrew; Aylward, Elizabeth; Dawson, Geraldine

    2013-01-01

    Brain activity patterns during face processing have been extensively explored with functional magnetic resonance imaging (fMRI) and event-related potentials (ERPs). ERP source localization adds a spatial dimension to the ERP time series recordings, which allows for a more direct comparison and integration with fMRI findings. The goals for this study were (1) to compare the spatial descriptions of neuronal activity during face processing obtained with fMRI and ERP source localization using low-resolution electro-magnetic tomography (LORETA), and (2) to use the combined information from source localization and fMRI to explore how the temporal sequence of brain activity during face processing is summarized in fMRI activation maps. fMRI and high-density ERP data were acquired in separate sessions for 17 healthy adult males for a face and object processing task. LORETA statistical maps for the comparison of viewing faces and viewing houses were coregistered and compared to fMRI statistical maps for the same conditions. The spatial locations of face processing-sensitive activity measured by fMRI and LORETA were found to overlap in a number of areas including the bilateral fusiform gyri, the right superior, middle and inferior temporal gyri, and the bilateral precuneus. Both the fMRI and LORETA solutions additionally demon-strated activity in regions that did not overlap. fMRI and LORETA statistical maps of face processing-sensitive brain activity were found to converge spatially primarily at LORETA solution latencies that were within 18 ms of the N170 latency. The combination of data from these techniques suggested that electrical brain activity at the latency of the N170 is highly represented in fMRI statistical maps. PMID:19322649

  9. MR signal intensity: staying on the bright side in MR image interpretation

    PubMed Central

    Bloem, Johan L; Reijnierse, Monique; Huizinga, Tom W J

    2018-01-01

    In 2003, the Nobel Prize for Medicine was awarded for contribution to the invention of MRI, reflecting the incredible value of MRI for medicine. Since 2003, enormous technical advancements have been made in acquiring MR images. However, MRI has a complicated, accident-prone dark side; images are not calibrated and respective images are dependent on all kinds of subjective choices in the settings of the machine, acquisition technique parameters, reconstruction techniques, data transmission, filtering and postprocessing techniques. The bright side is that understanding MR techniques increases opportunities to unravel characteristics of tissue. In this viewpoint, we summarise the different subjective choices that can be made to generate MR images and stress the importance of communication between radiologists and rheumatologists to correctly interpret images.

  10. Verification bias: an under-recognized source of error in assessing the efficacy of MRI of the meniscii.

    PubMed

    Richardson, Michael L; Petscavage, Jonelle M

    2011-11-01

    The sensitivity and specificity of magnetic resonance imaging (MRI) for diagnosis of meniscal tears has been studied extensively, with tears usually verified by surgery. However, surgically unverified cases are often not considered in these studies, leading to verification bias, which can falsely increase the sensitivity and decrease the specificity estimates. Our study suggests that such bias may be very common in the meniscal MRI literature, and illustrates techniques to detect and correct for such bias. PubMed was searched for articles estimating sensitivity and specificity of MRI for meniscal tears. These were assessed for verification bias, deemed potentially present if a study included any patients whose MRI findings were not surgically verified. Retrospective global sensitivity analysis (GSA) was performed when possible. Thirty-nine of the 314 studies retrieved from PubMed specifically dealt with meniscal tears. All 39 included unverified patients, and hence, potential verification bias. Only seven articles included sufficient information to perform GSA. Of these, one showed definite verification bias, two showed no bias, and four others showed bias within certain ranges of disease prevalence. Only 9 of 39 acknowledged the possibility of verification bias. Verification bias is underrecognized and potentially common in published estimates of the sensitivity and specificity of MRI for the diagnosis of meniscal tears. When possible, it should be avoided by proper study design. If unavoidable, it should be acknowledged. Investigators should tabulate unverified as well as verified data. Finally, verification bias should be estimated; if present, corrected estimates of sensitivity and specificity should be used. Our online web-based calculator makes this process relatively easy. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.

  11. [MRI methods for pulmonary ventilation and perfusion imaging].

    PubMed

    Sommer, G; Bauman, G

    2016-02-01

    Separate assessment of respiratory mechanics, gas exchange and pulmonary circulation is essential for the diagnosis and therapy of pulmonary diseases. Due to the global character of the information obtained clinical lung function tests are often not sufficiently specific in the differential diagnosis or have a limited sensitivity in the detection of early pathological changes. The standard procedures of pulmonary imaging are computed tomography (CT) for depiction of the morphology as well as perfusion/ventilation scintigraphy and single photon emission computed tomography (SPECT) for functional assessment. Magnetic resonance imaging (MRI) with hyperpolarized gases, O2-enhanced MRI, MRI with fluorinated gases and Fourier decomposition MRI (FD-MRI) are available for assessment of pulmonary ventilation. For assessment of pulmonary perfusion dynamic contrast-enhanced MRI (DCE-MRI), arterial spin labeling (ASL) and FD-MRI can be used. Imaging provides a more precise insight into the pathophysiology of pulmonary function on a regional level. The advantages of MRI are a lack of ionizing radiation, which allows a protective acquisition of dynamic data as well as the high number of available contrasts and therefore accessible lung function parameters. Sufficient clinical data exist only for certain applications of DCE-MRI. For the other techniques, only feasibility studies and case series of different sizes are available. The clinical applicability of hyperpolarized gases is limited for technical reasons. The clinical application of the techniques described, except for DCE-MRI, should be restricted to scientific studies.

  12. Comparison of gadobenate dimeglumine-enhanced breast MRI and gadopentetate dimeglumine-enhanced breast MRI with mammography and ultrasound for the detection of breast cancer.

    PubMed

    Gilbert, Fiona J; van den Bosch, Harrie C M; Petrillo, Antonella; Siegmann, Katja; Heverhagen, Johannes T; Panizza, Pietro; Gehl, Hans-Björn; Pediconi, Federica; Diekmann, Felix; Peng, Wei-Jun; Ma, Lin; Sardanelli, Francesco; Belli, Paolo; Corcione, Stefano; Zechmann, Christian M; Faivre-Pierret, Matthieu; Martincich, Laura

    2014-05-01

    To compare gadobenate dimeglumine-enhanced magnetic resonance imaging (MRI) with gadopentetate dimeglumine-enhanced MRI, mammography, and ultrasound for breast cancer detection across different malignant lesion types and across different densities of breast tissue. In all, 153 women with Breast Imaging Reporting and Data System (BI-RADS) 3–5 findings on mammography and/or ultrasound underwent identical breast MRI exams at 1.5T with gadobenate dimeglumine and gadopentetate dimeglumine. Images were evaluated by three independent blinded radiologists. Mammography, ultrasound, and combined mammography and/or ultrasound findings were available for 108, 109, and 131 women. Imaging findings were matched with histology data by a fourth, independent, blinded radiologist. Malignant lesion detection rates and diagnostic performance were compared. In all, 120, 120, and 140 confirmed malignant lesions were present in patients undergoing MRI+mammography, MRI+ultrasound, and MRI+mammography and/or ultrasound, respectively. Significantly greater cancer detection rates were noted by all three readers for comparisons of gadobenate dimeglumine-enhanced MRI with mammography (Δ15.8–17.5%; P < 0.0001), ultrasound (Δ18.3–20.0%; P < 0.0001), and mammography and/or ultrasound (Δ8.6–10.7%; P ≤ 0.0105) but not for comparisons of gadopentetate dimeglumine-enhanced MRI with conventional techniques (P > 0.05). The false-positive detection rates were lower on gadobenate dimeglumine-enhanced MRI than on conventional imaging (4.0–5.5% vs. 11.1% at mammography; 6.3–8.4% vs. 15.5% at ultrasound). Significantly improved cancer detection on MRI was noted in heterogeneously dense breast (91.2–97.3% on gadobenate dimeglumine-enhanced MRI vs. 77.2–84.9% on gadopentetate dimeglumine-enhanced MRI vs. 71.9-84.9% with conventional techniques) and for invasive cancers (93.2–96.2% for invasive ductal carcinoma [IDC] on gadobenate dimeglumine-enhanced MRI vs. 79.7–88.5% on gadopentetate dimeglumine-enhanced MRI vs. 77.0–84.4% with conventional techniques). Overall diagnostic performance for the detection of cancer was superior on gadobenate dimeglumine-enhanced MRI than on conventional imaging or gadopentetate dimeglumine-enhanced MRI. Gadobenate dimeglumine-enhanced MRI significantly improves cancer detection compared to gadopentetate dimeglumine-enhanced MRI, mammography, and ultrasound in a selected group of patients undergoing breast MRI for preoperative staging or because of inconclusive findings at conventional imaging.

  13. Functional Imaging and Related Techniques: An Introduction for Rehabilitation Researchers

    PubMed Central

    Crosson, Bruce; Ford, Anastasia; McGregor, Keith M.; Meinzer, Marcus; Cheshkov, Sergey; Li, Xiufeng; Walker-Batson, Delaina; Briggs, Richard W.

    2010-01-01

    Functional neuroimaging and related neuroimaging techniques are becoming important tools for rehabilitation research. Functional neuroimaging techniques can be used to determine the effects of brain injury or disease on brain systems related to cognition and behavior and to determine how rehabilitation changes brain systems. These techniques include: functional magnetic resonance imaging (fMRI), positron emission tomography (PET), electroencephalography (EEG), magnetoencephalography (MEG), near infrared spectroscopy (NIRS), and transcranial magnetic stimulation (TMS). Related diffusion weighted magnetic resonance imaging techniques (DWI), including diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI), can quantify white matter integrity. With the proliferation of these imaging techniques in rehabilitation research, it is critical that rehabilitation researchers, as well as consumers of rehabilitation research, become familiar with neuroimaging techniques, what they can offer, and their strengths and weaknesses The purpose to this review is to provide such an introduction to these neuroimaging techniques. PMID:20593321

  14. The role of magnetic resonance imaging in the diagnosis of Parkinson's disease: a review.

    PubMed

    Al-Radaideh, Ali M; Rababah, Eman M

    2016-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's in elderly people. Different structural and functional neuroimaging methods play a great role in the early diagnosis of neurodegenerative diseases. This review discusses the role of magnetic resonance imaging (MRI) in the diagnosis of PD. MRI provides clinicians with structural and functional information of human brain noninvasively. Advanced quantitative MRI techniques have shown promise for detecting pathological changes related to different stages of PD. Collectively, advanced MRI techniques at high and ultrahigh magnetic fields aid in better understanding of the nature and progression of PD. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. 25 years of neuroimaging in amyotrophic lateral sclerosis.

    PubMed

    Foerster, Bradley R; Welsh, Robert C; Feldman, Eva L

    2013-09-01

    Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease for which a precise cause has not yet been identified. Standard CT or MRI evaluation does not demonstrate gross structural nervous system changes in ALS, so conventional neuroimaging techniques have provided little insight into the pathophysiology of this disease. Advanced neuroimaging techniques--such as structural MRI, diffusion tensor imaging and proton magnetic resonance spectroscopy--allow evaluation of alterations of the nervous system in ALS. These alterations include focal loss of grey and white matter and reductions in white matter tract integrity, as well as changes in neural networks and in the chemistry, metabolism and receptor distribution in the brain. Given their potential for investigation of both brain structure and function, advanced neuroimaging methods offer important opportunities to improve diagnosis, guide prognosis, and direct future treatment strategies in ALS. In this article, we review the contributions made by various advanced neuroimaging techniques to our understanding of the impact of ALS on different brain regions, and the potential role of such measures in biomarker development.

  16. Cardiac T1 Imaging

    PubMed Central

    Jerosch-Herold, Michael; Kwong, Raymond Y.

    2014-01-01

    T1 mapping of the heart has evolved into a valuable tool to evaluate myocardial tissue properties, with or without contrast injection, including assessment of myocardial edema and free water content, extra-cellular volume (expansion), and most recently cardiomyocyte hypertrophy. The MRI pulse sequence techniques developed for these applications have had to address at least two important considerations for cardiac applications: measure magnetization inversion recoveries during cardiac motion with sufficient temporal resolution for the shortest expected T1 values, and, secondly, obtain these measurements within a time during which a patient can comfortably suspend breathing. So-called Look-Locker techniques, and variants thereof, which all sample multiple points of a magnetization recovery after each magnetization preparation have therefore become a mainstay in this field. The rapid pace of advances and new findings based on cardiac T1 mapping for assessment of diffuse fibrosis, or myocardial edema show that these techniques enrich the capabilities of MRI for myocardial tissue profiling, which is arguably unmatched by other cardiac imaging modalities. PMID:24509619

  17. "Black Bone" MRI: a novel imaging technique for 3D printing.

    PubMed

    Eley, Karen A; Watt-Smith, Stephen R; Golding, Stephen J

    2017-03-01

    Three-dimensionally printed anatomical models are rapidly becoming an integral part of pre-operative planning of complex surgical cases. We have previously reported the "Black Bone" MRI technique as a non-ionizing alternative to CT. Segmentation of bone becomes possible by minimizing soft tissue contrast to enhance the bone-soft tissue boundary. The objectives of this study were to ascertain the potential of utilizing this technique to produce three-dimensional (3D) printed models. "Black Bone" MRI acquired from adult volunteers and infants with craniosynostosis were 3D rendered and 3D printed. A custom phantom provided a surrogate marker of accuracy permitting comparison between direct measurements and 3D printed models created by segmenting both CT and "Black Bone" MRI data sets using two different software packages. "Black Bone" MRI was successfully utilized to produce 3D models of the craniofacial skeleton in both adults and an infant. Measurements of the cube phantom and 3D printed models demonstrated submillimetre discrepancy. In this novel preliminary study exploring the potential of 3D printing from "Black Bone" MRI data, the feasibility of producing anatomical 3D models has been demonstrated, thus offering a potential non-ionizing alterative to CT for the craniofacial skeleton.

  18. Detection of prostate cancer in peripheral zone: comparison of MR diffusion tensor imaging, quantitative dynamic contrast-enhanced MRI, and the two techniques combined at 3.0 T.

    PubMed

    Li, Chunmei; Chen, Min; Li, Saying; Zhao, Xuna; Zhang, Chen; Luo, Xiaojie; Zhou, Cheng

    2014-03-01

    Previous studies have shown that the diagnostic accuracy for prostate cancer improved with diffusion tensor imaging (DTI) or quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) only. However, the efficacy of combined DTI and quantitative DCE-MRI in detecting prostate cancer at 3.0 T is still indeterminate. To investigate the utility of diffusion tensor imaging (DTI), quantitative DCE-MRI, and the two techniques combined at 3.0 T in detecting prostate cancer of the peripheral zone (PZ). DTI and DCE-MRI of 33 patients was acquired prior to prostate biopsy. Regions of interest (ROIs) were drawn according to biopsy zones which were apex, mid-gland, and base on each side of the PZ. Apparent diffusion coefficient (ADC), fractional anisotropy (FA), volume transfer constant (K(trans)), and rate constant (kep) values of cancerous sextants and non-cancerous sextants in PZ were calculated. Logistic regression models were generated for DTI, DCE-MRI, and DTI + DCE-MRI. Receiver-operating characteristic (ROC) curves were used to compare the ability of these models to differentiate cancerous sextants from non-cancerous sextants of PZ. There were significant differences in the ADC, FA, K(trans), and kep values between cancerous sextants and non-cancerous sextants in PZ (P < 0.0001, P < 0.0001, P < 0.0001, and P < 0.0001, respectively). The area under curve (AUC) for DTI + DCE-MRI was significantly greater than that for either DTI (0.93 vs. 0.86, P = 0.0017) or DCE-MRI (0.93 vs. 0.84, P = 0.0034) alone. The combination of DTI and quantitative DCE-MRI has better diagnostic performance in detecting prostate cancer of the PZ than either technique alone.

  19. Multiparametric Magnetic Resonance Imaging of the Prostate for Tumour Detection and Local Staging: Imaging in 1.5T and Histopathologic Correlation.

    PubMed

    Loggitsi, Dimitra; Gyftopoulos, Anastasios; Economopoulos, Nikolaos; Apostolaki, Aikaterini; Kalogeropoulos, Theodoros; Thanos, Anastasios; Alexopoulou, Efthimia; Kelekis, Nikolaos L

    2017-11-01

    The study sought to prospectively evaluate which technique among T2-weighted images, dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI), diffusion-weighted (DW) MRI, or a combination of the 2, is best suited for prostate cancer detection and local staging. Twenty-seven consecutive patients with biopsy-proven adenocarcinoma of the prostate underwent MRI on a 1.5T scanner with a surface phased-array coil prior radical prostatectomy. Combined anatomical and functional imaging was performed with the use of T2-weighted sequences, DCE MRI, and DW MRI. We compared the imaging results with whole mount histopathology. For the multiparametric approach, significantly higher sensitivity values, that is, 53% (95% confidence interval [CI]: 41.0-64.1) were obtained as compared with each modality alone or any combination of the 3 modalities (P < .05). The specificity for this multiparametric approach, being 90.3% (95% CI: 86.3-93.3) was not significantly higher (P < .05) as compared with the values of the combination of T2+DCE MRI, DW+DCE MRI, or DCE MRI alone. Among the 3 techniques, DCE had the best performance for tumour detection in both the peripheral and the transition zone. High negative predictive value rates (>86%) were obtained for both tumour detection and local staging. The combination of T2-weighted sequences, DCE MRI, and DW MRI yields higher diagnostic performance for tumour detection and local staging than can any of these techniques alone or even any combination of them. Copyright © 2017 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  20. Perfluorocarbons enhance a T2*-based MRI technique for identifying the penumbra in a rat model of acute ischemic stroke

    PubMed Central

    Deuchar, Graeme A; Brennan, David; Griffiths, Hugh; Macrae, I  Mhairi; Santosh, Celestine

    2013-01-01

    Accurate imaging of ischemic penumbra is crucial for improving the management of acute stroke patients. T2* magnetic resonance imaging (MRI) combined with a T2*oxygen challenge (T2*OC) is being developed to detect penumbra based on changes in blood deoxyhemoglobin. Using 100% O2, T2*OC-defined penumbra exhibits ongoing glucose metabolism and tissue recovery on reperfusion. However, potential limitations in translating this technique include a sinus artefact in human scans with delivery of 100% OC and relatively small signal changes. Here we investigate whether an oxygen-carrying perfluorocarbon (PFC) emulsion can enhance the sensitivity of the technique, enabling penumbra detection with lower levels of inspired oxygen. Stroke was induced in male Sprague-Dawley rats (n=17) with ischemic injury and perfusion deficit determined by diffusion and perfusion MRI, respectively. T2* signal change was measured in regions of interest (ROIs) located within ischemic core, T2*OC-defined penumbra and equivalent contralateral areas during 40% O2±prior PFC injection. Region of interest analyses between groups showed that PFC significantly enhanced the T2* response to 40% O2 in T2*-defined penumbra (mean increase of 10.6±2.3% compared to 5.6±1.5% with 40% O2, P<0.001). This enhancement was specific to the penumbra ROI. Perfluorocarbon emulsions therefore enhances the translational potential of the T2*OC technique for identifying penumbra in acute stroke patients. PMID:23801243

  1. Living With Anxiety Disorders, Worried Sick | NIH MedlinePlus the Magazine

    MedlinePlus

    ... behaviors. Using an imaging technique called functional MRI (fMRI), scientists are scanning the brain in action as ... Bishop of the University of California, Berkeley, uses fMRI to study people at high risk for anxiety ...

  2. Correlation between liver histology and novel magnetic resonance imaging in adult patients with non-alcoholic fatty liver disease - MRI accurately quantifies hepatic steatosis in NAFLD.

    PubMed

    Permutt, Z; Le, T-A; Peterson, M R; Seki, E; Brenner, D A; Sirlin, C; Loomba, R

    2012-07-01

    Conventional magnetic resonance imaging (MRI) techniques that measure hepatic steatosis are limited by T1 bias, T(2)* decay and multi-frequency signal-interference effects of protons in fat. Newer MR techniques such as the proton density-fat fraction (PDFF) that correct for these factors have not been specifically compared to liver biopsy in adult patients with non-alcoholic fatty liver disease (NAFLD). To examine the association between MRI-determined PDFF and histology-determined steatosis grade, and their association with fibrosis. A total of 51 adult patients with biopsy-confirmed NAFLD underwent metabolic-biochemical profiling, MRI-determined PDFF measurement of hepatic steatosis and liver biopsy assessment according to NASH-CRN histological scoring system. The average MRI-determined PDFF increased significantly with increasing histology-determined steatosis grade: 8.9% at grade-1, 16.3% at grade-2, and 25.0% at grade-3 with P ≤ 0.0001 (correlation: r(2) = 0.56, P < 0.0001). Patients with stage-4 fibrosis, when compared with patients with stage 0-3 fibrosis, had significantly lower hepatic steatosis by both MRI-determined PDFF (7.6% vs. 17.8%, P < 0.005) and histology-determined steatosis grade (1.4 vs. 2.2, P < 0.05). NAFLD patients with grade 1 steatosis were more likely to have characteristics of advanced liver disease including higher average AST:ALT (0.87 vs. 0.60, P < 0.02), GGT (140 vs. 67, P < 0.01), and INR (1.06 vs. 0.99, P < 0.01), higher stage of fibrosis and hepatocellular ballooning. MRI-determined proton density-fat fraction correlates with histology-determined steatosis grade in adults with NAFLD. Steatosis is non-linearly related to fibrosis progression. In patients with NAFLD, a low amount of hepatic steatosis on imaging does not necessarily indicate mild disease. © 2012 Blackwell Publishing Ltd.

  3. MRI EVALUATION OF KNEE CARTILAGE

    PubMed Central

    Rodrigues, Marcelo Bordalo; Camanho, Gilberto Luís

    2015-01-01

    Through the ability of magnetic resonance imaging (MRI) to characterize soft tissue noninvasively, it has become an excellent method for evaluating cartilage. The development of new and faster methods allowed increased resolution and contrast in evaluating chondral structure, with greater diagnostic accuracy. In addition, physiological techniques for cartilage assessment that can detect early changes before the appearance of cracks and erosion have been developed. In this updating article, the various techniques for chondral assessment using knee MRI will be discussed and demonstrated. PMID:27022562

  4. Changes of Visual Pathway and Brain Connectivity in Glaucoma: A Systematic Review

    PubMed Central

    Nuzzi, Raffaele; Dallorto, Laura; Rolle, Teresa

    2018-01-01

    Background: Glaucoma is a leading cause of irreversible blindness worldwide. The increasing interest in the involvement of the cortical visual pathway in glaucomatous patients is due to the implications in recent therapies, such as neuroprotection and neuroregeneration. Objective: In this review, we outline the current understanding of brain structural, functional, and metabolic changes detected with the modern techniques of neuroimaging in glaucomatous subjects. Methods: We screened MEDLINE, EMBASE, CINAHL, CENTRAL, LILACS, Trip Database, and NICE for original contributions published until 31 October 2017. Studies with at least six patients affected by any type of glaucoma were considered. We included studies using the following neuroimaging techniques: functional Magnetic Resonance Imaging (fMRI), resting-state fMRI (rs-fMRI), magnetic resonance spectroscopy (MRS), voxel- based Morphometry (VBM), surface-based Morphometry (SBM), diffusion tensor MRI (DTI). Results: Over a total of 1,901 studies, 56 case series with a total of 2,381 patients were included. Evidence of neurodegenerative process in glaucomatous patients was found both within and beyond the visual system. Structural alterations in visual cortex (mainly reduced cortex thickness and volume) have been demonstrated with SBM and VBM; these changes were not limited to primary visual cortex but also involved association visual areas. Other brain regions, associated with visual function, demonstrated a certain grade of increased or decreased gray matter volume. Functional and metabolic abnormalities resulted within primary visual cortex in all studies with fMRI and MRS. Studies with rs-fMRI found disrupted connectivity between the primary and higher visual cortex and between visual cortex and associative visual areas in the task-free state of glaucomatous patients. Conclusions: This review contributes to the better understanding of brain abnormalities in glaucoma. It may stimulate further speculation about brain plasticity at a later age and therapeutic strategies, such as the prevention of cortical degeneration in patients with glaucoma. Structural, functional, and metabolic neuroimaging methods provided evidence of changes throughout the visual pathway in glaucomatous patients. Other brain areas, not directly involved in the processing of visual information, also showed alterations. PMID:29896087

  5. Magnetic resonance imaging in laboratory petrophysical core analysis

    NASA Astrophysics Data System (ADS)

    Mitchell, J.; Chandrasekera, T. C.; Holland, D. J.; Gladden, L. F.; Fordham, E. J.

    2013-05-01

    Magnetic resonance imaging (MRI) is a well-known technique in medical diagnosis and materials science. In the more specialized arena of laboratory-scale petrophysical rock core analysis, the role of MRI has undergone a substantial change in focus over the last three decades. Initially, alongside the continual drive to exploit higher magnetic field strengths in MRI applications for medicine and chemistry, the same trend was followed in core analysis. However, the spatial resolution achievable in heterogeneous porous media is inherently limited due to the magnetic susceptibility contrast between solid and fluid. As a result, imaging resolution at the length-scale of typical pore diameters is not practical and so MRI of core-plugs has often been viewed as an inappropriate use of expensive magnetic resonance facilities. Recently, there has been a paradigm shift in the use of MRI in laboratory-scale core analysis. The focus is now on acquiring data in the laboratory that are directly comparable to data obtained from magnetic resonance well-logging tools (i.e., a common physics of measurement). To maintain consistency with well-logging instrumentation, it is desirable to measure distributions of transverse (T2) relaxation time-the industry-standard metric in well-logging-at the laboratory-scale. These T2 distributions can be spatially resolved over the length of a core-plug. The use of low-field magnets in the laboratory environment is optimal for core analysis not only because the magnetic field strength is closer to that of well-logging tools, but also because the magnetic susceptibility contrast is minimized, allowing the acquisition of quantitative image voxel (or pixel) intensities that are directly scalable to liquid volume. Beyond simple determination of macroscopic rock heterogeneity, it is possible to utilize the spatial resolution for monitoring forced displacement of oil by water or chemical agents, determining capillary pressure curves, and estimating wettability. The history of MRI in petrophysics is reviewed and future directions considered, including advanced data processing techniques such as compressed sensing reconstruction and Bayesian inference analysis of under-sampled data. Although this review focuses on rock core analysis, the techniques described are applicable in a wider context to porous media in general, such as cements, soils, ceramics, and catalytic materials.

  6. Use of a Volume Navigation Technique for Combining Real-Time Ultrasound and Contrast-Enhanced MRI: Accuracy and Feasibility of a Novel Technique for Locating Breast Lesions.

    PubMed

    Kucukkaya, Fikret; Aribal, Erkin; Tureli, Derya; Altas, Hilal; Kaya, Handan

    2016-01-01

    The objective of this study was to evaluate the accuracy of the volume navigation technique for combining real-time ultrasound and contrast-enhanced MRI (CE-MRI) of breast lesions. Thirty-eight women with single breast lesions underwent 3-T MRI. A 3.5-minute CE-MRI sequence was used, as was a flexible body coil. Patients underwent imaging in the supine position, with three markers placed on their breasts. Real-time sonographic images were coregistered to the preloaded breast CE-MRI volume by coupling skin markers, with the use of an electromagnetic transmitter positioned next to the subjects. The transmitter detected the spatial positions of the two electromagnetic sensors mounted on the transducer bracket. After this fusion process in 3D space was completed, divergences in the location of the center of each lesion on CE-MRI and ultrasound images were analyzed. The mean lesion size was 17.4 mm on ultrasound and 17.9 mm on MRI, whereas the mean (± SD) misalignment of the lesion centers on CE-MRI and ultrasound was 3.9 ± 2.5 mm on the x-axis (mediolateral view), 3.6 ± 2.7 mm on the y-axis (anteroposterior view), and 4.3 ± 2.6 mm on the z-axis (craniocaudal view). No lesion had a misalignment greater than 10 mm on any of three axes. The accuracy of volume navigation was independent of patient age and the lesion size, location, and histopathologic findings (p > 0.05). Intermediate lesions, which had a depth of center of 11-20 mm on ultrasound had a mean misalignment of 2.6 ± 1.9 mm, compared with 5.5 ± 2.2 mm for deep lesions, which had a depth of center greater than 20 mm (p = 0.049). The volume navigation technique is an accurate method for coregistration of CE-MRI and sonographic images, enabling lesion localization within a limited volume.

  7. Applicability of three-dimensional imaging techniques in fetal medicine*

    PubMed Central

    Werner Júnior, Heron; dos Santos, Jorge Lopes; Belmonte, Simone; Ribeiro, Gerson; Daltro, Pedro; Gasparetto, Emerson Leandro; Marchiori, Edson

    2016-01-01

    Objective To generate physical models of fetuses from images obtained with three-dimensional ultrasound (3D-US), magnetic resonance imaging (MRI), and, occasionally, computed tomography (CT), in order to guide additive manufacturing technology. Materials and Methods We used 3D-US images of 31 pregnant women, including 5 who were carrying twins. If abnormalities were detected by 3D-US, both MRI and in some cases CT scans were then immediately performed. The images were then exported to a workstation in DICOM format. A single observer performed slice-by-slice manual segmentation using a digital high resolution screen. Virtual 3D models were obtained from software that converts medical images into numerical models. Those models were then generated in physical form through the use of additive manufacturing techniques. Results Physical models based upon 3D-US, MRI, and CT images were successfully generated. The postnatal appearance of either the aborted fetus or the neonate closely resembled the physical models, particularly in cases of malformations. Conclusion The combined use of 3D-US, MRI, and CT could help improve our understanding of fetal anatomy. These three screening modalities can be used for educational purposes and as tools to enable parents to visualize their unborn baby. The images can be segmented and then applied, separately or jointly, in order to construct virtual and physical 3D models. PMID:27818540

  8. A narrative overview of the current status of MRI of the hip and its relevance for osteoarthritis research - what we know, what has changed and where are we going?

    PubMed

    Crema, M D; Watts, G J; Guermazi, A; Kim, Y-J; Kijowski, R; Roemer, F W

    2017-01-01

    To review and discuss the role of magnetic resonance imaging (MRI) in the context of hip osteoarthritis (OA) research. The content of this narrative review, based on an extensive PubMed database research including English literature only, describes the advances in MRI of the hip joint and its potential usefulness in hip OA research, reviews the relevance of different MRI features in regard to symptomatic and structural progression in hip OA, and gives an outlook regarding future use of MRI in hip OA research endeavors. Recent technical advances have helped to overcome many of the past difficulties related to MRI assessment of hip OA. MRI-based morphologic scoring systems allow for detailed assessment of several hip joint tissues and, in combination with the recent advances in MRI, may increase reproducibility and sensitivity to change. Compositional MRI techniques may add to our understanding of disease onset and progression. Knowledge about imaging pitfalls and anatomical variants is crucial to avoid misinterpretation. In comparison to research on knee OA, the associations between MRI features and the incidence and progression of disease as well as with clinical symptoms have been little explored. Anatomic alterations of the hip joint as seen in femoro-acetabular impingement (FAI) seem to play a role in the onset and progression of structural damage. With the technical advances occurring in recent years, MRI may play a major role in investigating the natural history of hip OA and provide an improved method for assessment of the efficacy of new therapeutic approaches. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  9. Correlation between brain circuit segregation and obesity.

    PubMed

    Chao, Seh-Huang; Liao, Yin-To; Chen, Vincent Chin-Hung; Li, Cheng-Jui; McIntyre, Roger S; Lee, Yena; Weng, Jun-Cheng

    2018-01-30

    Obesity is a major public health problem. Herein, we aim to identify the correlation between brain circuit segregation and obesity using multimodal functional magnetic resonance imaging (fMRI) techniques and analysis. Twenty obese patients (BMI=37.66±5.07) and 30 healthy controls (BMI=22.64±3.45) were compared using neuroimaging and assessed for symptoms of anxiety and depression using the Hospital Anxiety and Depression Scale (HADS). All participants underwent resting-state fMRI (rs-fMRI) and T1-weighted imaging using a 1.5T MRI. Multimodal MRI techniques and analyses were used to assess obese patients, including the functional connectivity (FC), amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo), graph theoretical analysis (GTA), and voxel-based morphometry (VBM). Correlations between brain circuit segregation and obesity were also calculated. In the VBM, obese patients showed altered gray matter volumes in the amygdala, thalamus and putamen. In the FC, the obesity group showed increased functional connectivity in the bilateral anterior cingulate cortex and decreased functional connectivity in the frontal gyrus of default mode network. The obesity group also exhibited altered ALFF and ReHo in the prefrontal cortex and precuneus. In the GTA, the obese patients showed a significant decrease in local segregation and a significant increase in global integration, suggesting a shift toward randomization in their functional networks. Our results may provide additional evidence for potential structural and functional imaging markers for clinical diagnosis and future research, and they may improve our understanding of the underlying pathophysiology of obesity. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Dynamic contrast-enhanced MRI evaluation of cerebral cavernous malformations.

    PubMed

    Hart, Blaine L; Taheri, Saeid; Rosenberg, Gary A; Morrison, Leslie A

    2013-10-01

    The aim of this study is to quantitatively evaluate the behavior of CNS cavernous malformations (CCMs) using a dynamic contrast-enhanced MRI (DCEMRI) technique sensitive for slow transfer rates of gadolinium. The prospective study was approved by the institutional review board and was HIPPA compliant. Written informed consent was obtained from 14 subjects with familial CCMs (4 men and 10 women, ages 22-76 years, mean 48.1 years). Following routine anatomic MRI of the brain, DCEMRI was performed for six slices, using T1 mapping with partial inversion recovery (TAPIR) to calculate T1 values, following administration of 0.025 mmol/kg gadolinium DTPA. The transfer rate (Ki) was calculated using the Patlak model, and Ki within CCMs was compared to normal-appearing white matter as well as to 17 normal control subjects previously studied. All subjects had typical MRI appearance of CCMs. Thirty-nine CCMs were studied using DCEMRI. Ki was low or normal in 12 lesions and elevated from 1.4 to 12 times higher than background in the remaining 27 lesions. Ki ranged from 2.1E-6 to 9.63E-4 min(-1), mean 3.55E-4. Normal-appearing white matter in the CCM patients had a mean Ki of 1.57E-4, not statistically different from mean WM Ki of 1.47E-4 in controls. TAPIR-based DCEMRI technique permits quantifiable assessment of CCMs in vivo and reveals considerable differences not seen with conventional MRI. Potential applications include correlation with biologic behavior such as lesion growth or hemorrage, and measurement of drug effects.

  11. Dynamic Contrast-Enhanced MRI Evaluation of Cerebral Cavernous Malformations

    PubMed Central

    Hart, B. L.; Taheri, S.; Rosenberg, G. A.; Morrison, L. A.

    2013-01-01

    The aim of this study is to quantitatively evaluate the behavior of CNS cavernous malformations (CCMs) using a dynamic contrast-enhanced MRI (DCEMRI) technique sensitive for slow transfer rates of gadolinium. The prospective study was approved by the institutional review board and was HIPPA compliant. Written informed consent was obtained from 14 subjects with familial CCMs (4 men and 10 women, ages 22–76 years, mean 48.1 years). Following routine anatomic MRI of the brain, DCEMRI was performed for six slices, using T1 mapping with partial inversion recovery (TAPIR) to calculate T1 values, following administration of 0.025 mmol/kg gadolinium DTPA. The transfer rate (Ki) was calculated using the Patlak model, and Ki within CCMs was compared to normal-appearing white matter as well as to 17 normal control subjects previously studied. All subjects had typical MRI appearance of CCMs. Thirty-nine CCMs were studied using DCEMRI. Ki was low or normal in 12 lesions and elevated from 1.4 to 12 times higher than background in the remaining 27 lesions. Ki ranged from 2.1E–6 to 9.63E–4 min−1, mean 3.55E–4. Normal-appearing white matter in the CCM patients had a mean Ki of 1.57E–4, not statistically different from mean WM Ki of 1.47E–4 in controls. TAPIR-based DCEMRI technique permits quantifiable assessment of CCMs in vivo and reveals considerable differences not seen with conventional MRI. Potential applications include correlation with biologic behavior such as lesion growth or hemorrage, and measurement of drug effects. PMID:24323376

  12. Spatially resolved D-T(2) correlation NMR of porous media.

    PubMed

    Zhang, Yan; Blümich, Bernhard

    2014-05-01

    Within the past decade, 2D Laplace nuclear magnetic resonance (NMR) has been developed to analyze pore geometry and diffusion of fluids in porous media on the micrometer scale. Many objects like rocks and concrete are heterogeneous on the macroscopic scale, and an integral analysis of microscopic properties provides volume-averaged information. Magnetic resonance imaging (MRI) resolves this spatial average on the contrast scale set by the particular MRI technique. Desirable contrast parameters for studies of fluid transport in porous media derive from the pore-size distribution and the pore connectivity. These microscopic parameters are accessed by 1D and 2D Laplace NMR techniques. It is therefore desirable to combine MRI and 2D Laplace NMR to image functional information on fluid transport in porous media. Because 2D Laplace resolved MRI demands excessive measuring time, this study investigates the possibility to restrict the 2D Laplace analysis to the sum signals from low-resolution pixels, which correspond to pixels of similar amplitude in high-resolution images. In this exploratory study spatially resolved D-T2 correlation maps from glass beads and mortar are analyzed. Regions of similar contrast are first identified in high-resolution images to locate corresponding pixels in low-resolution images generated with D-T2 resolved MRI for subsequent pixel summation to improve the signal-to-noise ratio of contrast-specific D-T2 maps. This method is expected to contribute valuable information on correlated sample heterogeneity from the macroscopic and the microscopic scales in various types of porous materials including building materials and rock. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Potential Audiological and MRI Markers of Tinnitus.

    PubMed

    Gopal, Kamakshi V; Thomas, Binu P; Nandy, Rajesh; Mao, Deng; Lu, Hanzhang

    2017-09-01

    Subjective tinnitus, or ringing sensation in the ear, is a common disorder with no accepted objective diagnostic markers. The purpose of this study was to identify possible objective markers of tinnitus by combining audiological and imaging-based techniques. Case-control studies. Twenty adults drawn from our audiology clinic served as participants. The tinnitus group consisted of ten participants with chronic bilateral constant tinnitus, and the control group consisted of ten participants with no history of tinnitus. Each participant with tinnitus was closely matched with a control participant on the basis of age, gender, and hearing thresholds. Data acquisition focused on systematic administration and evaluation of various audiological tests, including auditory-evoked potentials (AEP) and otoacoustic emissions, and magnetic resonance imaging (MRI) tests. A total of 14 objective test measures (predictors) obtained from audiological and MRI tests were subjected to statistical analyses to identify the best predictors of tinnitus group membership. The least absolute shrinkage and selection operator technique for feature extraction, supplemented by the leave-one-out cross-validation technique, were used to extract the best predictors. This approach provided a conservative model that was highly regularized with its error within 1 standard error of the minimum. The model selected increased frontal cortex (FC) functional MRI activity to pure tones matching their respective tinnitus pitch, and augmented AEP wave N₁ amplitude growth in the tinnitus group as the top two predictors of tinnitus group membership. These findings suggest that the amplified responses to acoustic signals and hyperactivity in attention regions of the brain may be a result of overattention among individuals that experience chronic tinnitus. These results suggest that increased functional MRI activity in the FC to sounds and augmented N₁ amplitude growth may potentially be the objective diagnostic indicators of tinnitus. However, due to the small sample size and lack of subgroups within the tinnitus population in this study, more research is needed before generalizing these findings. American Academy of Audiology

  14. Arterial Spin Labeling - Fast Imaging with Steady-State Free Precession (ASL-FISP): A Rapid and Quantitative Perfusion Technique for High Field MRI

    PubMed Central

    Gao, Ying; Goodnough, Candida L.; Erokwu, Bernadette O.; Farr, George W.; Darrah, Rebecca; Lu, Lan; Dell, Katherine M.; Yu, Xin; Flask, Chris A.

    2014-01-01

    Arterial Spin Labeling (ASL) is a valuable non-contrast perfusion MRI technique with numerous clinical applications. Many previous ASL MRI studies have utilized either Echo-Planar Imaging (EPI) or True Fast Imaging with Steady-State Free Precession (True FISP) readouts that are prone to off-resonance artifacts on high field MRI scanners. We have developed a rapid ASL-FISP MRI acquisition for high field preclinical MRI scanners providing perfusion-weighted images with little or no artifacts in less than 2 seconds. In this initial implementation, a FAIR (Flow-Sensitive Alternating Inversion Recovery) ASL preparation was combined with a rapid, centrically-encoded FISP readout. Validation studies on healthy C57/BL6 mice provided consistent estimation of in vivo mouse brain perfusion at 7 T and 9.4 T (249±38 ml/min/100g and 241±17 ml/min/100g, respectively). The utility of this method was further demonstrated in detecting significant perfusion deficits in a C57/BL6 mouse model of ischemic stroke. Reasonable kidney perfusion estimates were also obtained for a healthy C57/BL6 mouse exhibiting differential perfusion in the renal cortex and medulla. Overall, the ASL-FISP technique provides a rapid and quantitative in vivo assessment of tissue perfusion for high field MRI scanners with minimal image artifacts. PMID:24891124

  15. Conventional digital subtractional vs non-invasive MR angiography in the assessment of brain arteriovenous malformation.

    PubMed

    Cuong, Nguyen Ngoc; Luu, Vu Dang; Tuan, Tran Anh; Linh, Le Tuan; Hung, Kieu Dinh; Ngoc, Vo Truong Nhu; Sharma, Kulbhushan; Pham, Van Huy; Chu, Dinh-Toi

    2018-06-01

    Digital subtractional angiography (DSA) is the standard method for diagnosis, assessment and management of arteriovenous malformation in the brain. Conventional DSA (cDSA) is an invasive imaging modality that is often indicated before interventional treatments (embolization, open surgery, gamma knife). Here, we aimed to compare this technique with a non-invasive MR angiography (MRI DSA) for brain arteriovenous malformation (bAVM). Fourteen patients with ruptured brain AVM underwent embolization treatment pre-operation. Imaging was performed for all patients using MRI (1.5 T). After injecting contrast Gadolinium, dynamic MRI was performed with 40 phases, each phase of a duration of 1.2 s and having 70 images. The MRI results were independently assessed by experienced radiologist blinded to the cDSA. The AVM nidus was depicted in all patients using cDSA and MRI DSA; there was an excellent correlation between these techniques in terms of the maximum diameter and Spetzler Martin grading. Of the fourteen patients, the drainage vein was depicted in 13 by both cDSA and MRI DSA showing excellent correlation between the techniques used. MRI DSA is a non-invasive imaging modality that can give the images in dynamic view. It can be considered as an adjunctive method with cDSA to plan the strategy treatment for bAVM. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. International Veterinary Epilepsy Task Force recommendations for a veterinary epilepsy-specific MRI protocol.

    PubMed

    Rusbridge, Clare; Long, Sam; Jovanovik, Jelena; Milne, Marjorie; Berendt, Mette; Bhatti, Sofie F M; De Risio, Luisa; Farqhuar, Robyn G; Fischer, Andrea; Matiasek, Kaspar; Muñana, Karen; Patterson, Edward E; Pakozdy, Akos; Penderis, Jacques; Platt, Simon; Podell, Michael; Potschka, Heidrun; Stein, Veronika M; Tipold, Andrea; Volk, Holger A

    2015-08-28

    Epilepsy is one of the most common chronic neurological diseases in veterinary practice. Magnetic resonance imaging (MRI) is regarded as an important diagnostic test to reach the diagnosis of idiopathic epilepsy. However, given that the diagnosis requires the exclusion of other differentials for seizures, the parameters for MRI examination should allow the detection of subtle lesions which may not be obvious with existing techniques. In addition, there are several differentials for idiopathic epilepsy in humans, for example some focal cortical dysplasias, which may only apparent with special sequences, imaging planes and/or particular techniques used in performing the MRI scan. As a result, there is a need to standardize MRI examination in veterinary patients with techniques that reliably diagnose subtle lesions, identify post-seizure changes, and which will allow for future identification of underlying causes of seizures not yet apparent in the veterinary literature.There is a need for a standardized veterinary epilepsy-specific MRI protocol which will facilitate more detailed examination of areas susceptible to generating and perpetuating seizures, is cost efficient, simple to perform and can be adapted for both low and high field scanners. Standardisation of imaging will improve clinical communication and uniformity of case definition between research studies. A 6-7 sequence epilepsy-specific MRI protocol for veterinary patients is proposed and further advanced MR and functional imaging is reviewed.

  17. Towards Optical Coherence Tomography-based elastographic evaluation of human cartilage.

    PubMed

    Nebelung, Sven; Brill, Nicolai; Müller, Felix; Tingart, Markus; Pufe, Thomas; Merhof, Dorit; Schmitt, Robert; Jahr, Holger; Truhn, Daniel

    2016-03-01

    Optical Coherence Tomography (OCT) is an imaging technique that allows the surface and subsurface evaluation of semitransparent tissues by generating microscopic cross-sectional images in real time, to millimetre depths and at micrometre resolutions. As the differentiation of cartilage degeneration remains diagnostically challenging to standard imaging modalities, an OCT- and MRI-compatible indentation device for the assessment of cartilage functional properties was developed and validated in the present study. After describing the system design and performing its comprehensive validation, macroscopically intact human cartilage samples (n=5) were indented under control of displacement (δ1=202µm; δ2=405µm; δ3=607µm; δ4=810µm) and simultaneous OCT imaging through a transparent indenter piston in direct contact with the sample; thus, 3-D OCT datasets from surface and subsurface areas were obtained. OCT-based evaluation of loading-induced changes included qualitative assessment of image morphology and signal characteristics. For inter-method cross referencing, the device׳s compatibility with MRI as well as qualitative morphology changes under analogous indentation loading conditions were evaluated by a series of T2 weighted gradient echo sequences. Cartilage thickness measurements were performed using the needle-probe technique prior to OCT and MRI imaging, and subsequently referenced to sample thickness as determined by MRI and histology. Dynamic indentation testing was performed to determine Young׳s modulus for biomechanical reference purposes. Distinct differences in sample thickness as well as corresponding strains were found; however, no significant differences in cartilage thickness were found between the used techniques. Qualitative assessment of OCT and MRI images revealed either distinct or absent sample-specific patterns of morphological changes in relation to indentation loading. For OCT, the tissue area underneath the indenter piston could be qualitatively assessed and displayed in multiple reconstructions, while for MRI, T2 signal characteristics indicated the presence of water and related tissue pressurisation within the sample. In conclusion, the present indentation device has been developed, constructed and validated for qualitative assessment of human cartilage and its response to loading by OCT and MRI. Thereby, it may provide the basis for future quantitative approaches that measure loading-induced deformations within the tissue to generate maps of local tissue properties as well as investigate their relation to degeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The role of intraoperative MRI in resective epilepsy surgery for peri-eloquent cortex cortical dysplasias and heterotopias in pediatric patients.

    PubMed

    Sacino, Matthew F; Ho, Cheng-Ying; Murnick, Jonathan; Keating, Robert F; Gaillard, William D; Oluigbo, Chima O

    2016-03-01

    Previous studies have demonstrated that an important factor in seizure freedom following surgery for lesional epilepsy in the peri-eloquent cortex is completeness of resection. However, aggressive resection of epileptic tissue localized to this region must be balanced with the competing objective of retaining postoperative neurological functioning. The objective of this study was to investigate the role of intraoperative MRI (iMRI) as a complement to existing epilepsy protocol techniques and to compare rates of seizure freedom and neurological deficit in pediatric patients undergoing resection of perieloquent lesions. The authors retrospectively reviewed the medical records of pediatric patients who underwent resection of focal cortical dysplasia (FCD) or heterotopia localized to eloquent cortex regions at the Children's National Health System between March 2005 and August 2015. Patients were grouped into two categories depending on whether they underwent conventional resection (n = 18) or iMRI-assisted resection (n = 11). Patient records were reviewed for factors including demographics, length of hospitalization, postoperative seizure freedom, postoperative neurological deficit, and need for reoperation. Postsurgical seizure outcome was assessed at the last postoperative follow-up evaluation using the Engel Epilepsy Surgery Outcome Scale. At the time of the last postoperative follow-up examination, 9 (82%) of the 11 patients in the iMRI resection group were seizure free (Engel Class I), compared with 7 (39%) of the 18 patients in the control resection group (p = 0.05). Ten (91%) of the 11 patients in the iMRI cohort achieved gross-total resection (GTR), compared with 8 (44%) of 18 patients in the conventional resection cohort (p = 0.02). One patient in the iMRI-assisted resection group underwent successful reoperation at a later date for residual dysplasia, compared with 7 patients in the conventional resection cohort (with 2/7 achieving complete resection). Four (36%) of the patients in the iMRI cohort developed postoperative neurological deficits, compared with 15 patients (83%) in the conventional resection cohort (p = 0.02). These results suggest that in comparison with a conventional surgical protocol and technique for resection of epileptic lesions in peri-eloquent cortex, the incorporation of iMRI led to elevated rates of GTR and postoperative seizure freedom. Furthermore, this study suggests that iMRI-assisted surgeries are associated with a reduction in neurological deficits due to intraoperative damage of eloquent cortex.

  19. TU-F-17A-04: Respiratory Phase-Resolved 3D MRI with Isotropic High Spatial Resolution: Determination of the Average Breathing Motion Pattern for Abdominal Radiotherapy Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Z; Pang, J; Yang, W

    Purpose: To develop a retrospective 4D-MRI technique (respiratory phase-resolved 3D-MRI) for providing an accurate assessment of tumor motion secondary to respiration. Methods: A 3D projection reconstruction (PR) sequence with self-gating (SG) was developed for 4D-MRI on a 3.0T MRI scanner. The respiration-induced shift of the imaging target was recorded by SG signals acquired in the superior-inferior direction every 15 radial projections (i.e. temporal resolution 98 ms). A total of 73000 radial projections obtained in 8-min were retrospectively sorted into 10 time-domain evenly distributed respiratory phases based on the SG information. Ten 3D image sets were then reconstructed offline. The techniquemore » was validated on a motion phantom (gadolinium-doped water-filled box, frequency of 10 and 18 cycles/min) and humans (4 healthy and 2 patients with liver tumors). Imaging protocol included 8-min 4D-MRI followed by 1-min 2D-realtime (498 ms/frame) MRI as a reference. Results: The multiphase 3D image sets with isotropic high spatial resolution (1.56 mm) permits flexible image reformatting and visualization. No intra-phase motion-induced blurring was observed. Comparing to 2D-realtime, 4D-MRI yielded similar motion range (phantom: 10.46 vs. 11.27 mm; healthy subject: 25.20 vs. 17.9 mm; patient: 11.38 vs. 9.30 mm), reasonable displacement difference averaged over the 10 phases (0.74mm; 3.63mm; 1.65mm), and excellent cross-correlation (0.98; 0.96; 0.94) between the two displacement series. Conclusion: Our preliminary study has demonstrated that the 4D-MRI technique can provide high-quality respiratory phase-resolved 3D images that feature: a) isotropic high spatial resolution, b) a fixed scan time of 8 minutes, c) an accurate estimate of average motion pattern, and d) minimal intra-phase motion artifact. This approach has the potential to become a viable alternative solution to assess the impact of breathing on tumor motion and determine appropriate treatment margins. Comparison with 4D-CT in a clinical setting is warranted to assess the value of 4D-MRI in radiotherapy planning. This work supported in part by grant 1R03CA173273-01.« less

  20. A review of orbital and intracranial magnetic resonance imaging in 79 canine and 13 feline patients (2004-2010).

    PubMed

    Armour, Micki D; Broome, Michael; Dell'Anna, Giuseppe; Blades, Natalie J; Esson, Douglas W

    2011-07-01

    To review the distribution of orbital and intracranial disease in canine and feline patients undergoing magnetic resonance imaging (MRI) following referral to a veterinary ophthalmologist and to correlate results of MRI with pathologic conditions including neoplasia, suspected optic neuritis (ON) and orbital cellulitis. Recognized and emerging imaging techniques are reviewed. Medical records of 79 canine and 13 feline patients were reviewed. Neoplasia was diagnosed in 53/92 (57.6%) of patients. The most prevalent types of neoplasia were carcinoma (16/53, 30.1%), sarcoma (11/53, 20.8%), lymphoma (8/53, 15.1%) and presumptive meningioma (9/53, 17.0%). Carcinomas and sarcomas were characterized by bony lysis and intracranial/sinonasal extension. Lymphoma was generally unilateral, less invasive and originated from the ventromedial orbit. Intracranial masses representing presumptive meningiomas frequently exhibited a 'dural tail' sign. Diagnosis of suspected ON was made in 13 of 92 (14.1%) patients. Results of MRI in patients with suspected ON included unilateral optic nerve hyperintensity (3/13, 23.0%), bilateral optic nerve hyperintensity (1/13, 7.7%) and optic chiasmal hyperintensity (3/13, 23.0%). Seven suspected ON patients demonstrated intracranial multifocal patchy contrast enhancement (7/13, 53.8%). Diagnosis of orbital cellulitis was made in 12/92 (13.0%) patients. Orbital neoplasia was the most common pathologic condition detected. Essential Roentgen characteristics are helpful when diagnosing pathologic processes and providing prognoses in cases of orbital or intracranial disease. Magnetic resonance imaging comprises an important diagnostic component in cases of suspected ON. Emerging contrast and functional MRI techniques as well as SI data may increase our ability to characterize disease processes. © 2011 American College of Veterinary Ophthalmologists.

  1. Evaluation of Nonradiative Clinical Imaging Techniques for the Longitudinal Assessment of Tumour Growth in Murine CT26 Colon Carcinoma

    PubMed Central

    Doan, Bich-Thuy; Latorre Ossa, Heldmuth; Jugé, Lauriane; Gennisson, Jean-Luc; Tanter, Mickaël; Scherman, Daniel; Chabot, Guy G.; Mignet, Nathalie

    2013-01-01

    Background and Objectives. To determine the most appropriate technique for tumour followup in experimental therapeutics, we compared ultrasound (US) and magnetic resonance imaging (MRI) to characterize ectopic and orthotopic colon carcinoma models. Methods. CT26 tumours were implanted subcutaneously (s.c.) in Balb/c mice for the ectopic model or into the caecum for the orthotopic model. Tumours were evaluated by histology, spectrofluorescence, MRI, and US. Results. Histology of CT26 tumour showed homogeneously dispersed cancer cells and blood vessels. The visualization of the vascular network using labelled albumin showed that CT26 tumours were highly vascularized and disorganized. MRI allowed high-resolution and accurate 3D tumour measurements and provided additional anatomical and functional information. Noninvasive US imaging allowed good delineation of tumours despite an hypoechogenic signal. Monitoring of tumour growth with US could be accomplished as early as 5 days after implantation with a shorter acquisition time (<5 min) compared to MRI. Conclusion. MRI and US afforded excellent noninvasive imaging techniques to accurately follow tumour growth of ectopic and orthotopic CT26 tumours. These two techniques can be appropriately used for tumour treatment followup, with a preference for US imaging, due to its short acquisition time and simplicity of use. PMID:23936648

  2. Single-shot turbo spin echo acquisition for in vivo cardiac diffusion MRI.

    PubMed

    Edalati, Masoud; Lee, Gregory R; Hui Wang; Taylor, Michael D; Li, Yu Y

    2016-08-01

    Diffusion MRI offers the ability to noninvasively characterize the microstructure of myocardium tissue and detect disease related pathology in cardiovascular examination. This study investigates the feasibility of in vivo cardiac diffusion MRI under free-breathing condition. A high-speed imaging technique, correlation imaging, is used to enable single-shot turbo spin echo for free-breathing cardiac data acquisition. The obtained in vivo cardiac diffusion-weighted images illustrate robust image quality and minor geometry distortions. The resultant diffusion scalar maps show reliable quantitative values consistent with those previously published in the literature. It is demonstrated that this technique has the potential for in vivo free-breathing cardiac diffusion MRI.

  3. Comparison of FSE T2 W PROPELLER and 3D-FIESTA of 3 T MR for the internal auditory canal.

    PubMed

    Wu, Hai-Bo; Yuan, Hui-Shu; Ma, Furong; Zhao, Qiang

    The study compared the use of periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) technique fast spin echo (FSE) T2 W and the sequence of three-dimensional fast imaging employing steady-state acquisition (3D-FIESTA) technique in the MRI of the internal auditory canal for overall image quality improvement. One hundred thirty-two patients undergoing FSE T2 W PROPELLER and 3D-FIESTA examinations of the internal auditory canal were included. All examinations were performed at 3.0 T with comparison of a sagittal oblique FSE T2 W sequence with the PROPELLER technique to 3D-FIESTA in the same reconstructed orientation with PROPELLER. Image quality was evaluated by two radiologists using a 4-point scale. The Wilcoxon signed rank test was used to compare the data of the two techniques. The image quality of FSE T2 W PROPELLER was significantly improved compared to the reconstructed images of 3D-FIESTA. Observer 1: median FSE T2 W with PROPELLER, 4 [mean, 3.455] versus median reconstructed 3D-FIESTA, 3 [mean, 3.15], (P<.001); Observer 2: median FSE T2 W with PROPELLER, 4 [mean, 3.47] versus median reconstructed 3D-FIESTA, 3 [mean, 3.25], (P<.001). Interobserver agreement was good (k value, 0.73) for the rating of the overall image quality. The FSE T2 W PROPELLER technique for MRI of internal auditory canal reduced uncertainty caused by motion artifact and improved the quality of the image compared to the reconstructed 3D-FIESTA. It was affected by different parameters including the blade width, echo train length (ETL). This is explained by data oversampling at the center region of k-space, which requires additional imaging time over conventional MRI techniques. Increasing blade was expected to improve motion correction effects but also the signal-to-noise ratio. ETL increases the image sharpness and the overall image quality. Copyright © 2016. Published by Elsevier Inc.

  4. State of the art MRI in head and neck cancer.

    PubMed

    Dai, Y L; King, A D

    2018-01-01

    Head and neck cancer affects more than 11,000 new patients per year in the UK 1 and imaging has an important role in the diagnosis, treatment planning, and assessment, and post-treatment surveillance of these patients. The anatomical detail produced by magnetic resonance imaging (MRI) is ideally suited to staging and follow-up of primary tumours and cervical nodal metastases in the head and neck; however, anatomical images have limitations in cancer imaging and so increasingly functional-based MRI techniques, which provide molecular, metabolic, and physiological information, are being incorporated into MRI protocols. This article reviews the state of the art of these functional MRI techniques with emphasis on those that are most relevant to the current management of patients with head and neck cancer. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  5. Magnetic resonance imaging of placenta accreta

    PubMed Central

    Varghese, Binoj; Singh, Navdeep; George, Regi A.N; Gilvaz, Sareena

    2013-01-01

    Placenta accreta (PA) is a severe pregnancy complication which occurs when the chorionic villi (CV) invade the myometrium abnormally. Optimal management requires accurate prenatal diagnosis. Ultrasonography (USG) and magnetic resonance imaging (MRI) are the modalities for prenatal diagnosis of PA, although USG remains the primary investigation of choice. MRI is a complementary technique and reserved for further characterization when USG is inconclusive or incomplete. Breath-hold T2-weighted half-Fourier rapid acquisition with relaxation enhancement (RARE) and balanced steady-state free precession imaging in the three orthogonal planes is the key MRI technique. Markedly heterogeneous placenta, thick intraplacental dark bands on half-Fourier acquisition single-shot turbo spin-echo (HASTE), and disorganized abnormal intraplacental vascularity are the cardinal MRI features of PA. MRI is less reliable in differentiating between different degrees of placental invasion, especially between accreta vera and increta. PMID:24604945

  6. MRI-based methods for quantification of the cerebral metabolic rate of oxygen

    PubMed Central

    Rodgers, Zachary B; Detre, John A

    2016-01-01

    The brain depends almost entirely on oxidative metabolism to meet its significant energy requirements. As such, the cerebral metabolic rate of oxygen (CMRO2) represents a key measure of brain function. Quantification of CMRO2 has helped elucidate brain functional physiology and holds potential as a clinical tool for evaluating neurological disorders including stroke, brain tumors, Alzheimer’s disease, and obstructive sleep apnea. In recent years, a variety of magnetic resonance imaging (MRI)-based CMRO2 quantification methods have emerged. Unlike positron emission tomography – the current “gold standard” for measurement and mapping of CMRO2 – MRI is non-invasive, relatively inexpensive, and ubiquitously available in modern medical centers. All MRI-based CMRO2 methods are based on modeling the effect of paramagnetic deoxyhemoglobin on the magnetic resonance signal. The various methods can be classified in terms of the MRI contrast mechanism used to quantify CMRO2: T2*, T2′, T2, or magnetic susceptibility. This review article provides an overview of MRI-based CMRO2 quantification techniques. After a brief historical discussion motivating the need for improved CMRO2 methodology, current state-of-the-art MRI-based methods are critically appraised in terms of their respective tradeoffs between spatial resolution, temporal resolution, and robustness, all of critical importance given the spatially heterogeneous and temporally dynamic nature of brain energy requirements. PMID:27089912

  7. Estimation of trabecular bone parameters in children from multisequence MRI using texture-based regression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lekadir, Karim, E-mail: karim.lekadir@upf.edu; Hoogendoorn, Corné; Armitage, Paul

    Purpose: This paper presents a statistical approach for the prediction of trabecular bone parameters from low-resolution multisequence magnetic resonance imaging (MRI) in children, thus addressing the limitations of high-resolution modalities such as HR-pQCT, including the significant exposure of young patients to radiation and the limited applicability of such modalities to peripheral bones in vivo. Methods: A statistical predictive model is constructed from a database of MRI and HR-pQCT datasets, to relate the low-resolution MRI appearance in the cancellous bone to the trabecular parameters extracted from the high-resolution images. The description of the MRI appearance is achieved between subjects by usingmore » a collection of feature descriptors, which describe the texture properties inside the cancellous bone, and which are invariant to the geometry and size of the trabecular areas. The predictive model is built by fitting to the training data a nonlinear partial least square regression between the input MRI features and the output trabecular parameters. Results: Detailed validation based on a sample of 96 datasets shows correlations >0.7 between the trabecular parameters predicted from low-resolution multisequence MRI based on the proposed statistical model and the values extracted from high-resolution HRp-QCT. Conclusions: The obtained results indicate the promise of the proposed predictive technique for the estimation of trabecular parameters in children from multisequence MRI, thus reducing the need for high-resolution radiation-based scans for a fragile population that is under development and growth.« less

  8. Can fMRI safely replace the Wada test for preoperative assessment of language lateralisation? A meta-analysis and systematic review.

    PubMed

    Bauer, Prisca R; Reitsma, Johannes B; Houweling, Bernard M; Ferrier, Cyrille H; Ramsey, Nick F

    2014-05-01

    Recent studies have shown that fMRI (functional magnetic resonance imaging) may be of value for pre-surgical assessment of language lateralisation. The aim of this study was to systematically review and analyse the available literature. A systematic electronic search for studies comparing fMRI with Wada testing was conducted in the PubMed database between March 2009 and November 2011. Studies involving unilateral Wada testing, study population consisting exclusively of children younger than 12 years of age or involving five patients or fewer were excluded. 22 studies (504 patients) were included. A random effects meta-analysis was conducted to obtain pooled estimates of the positive and negative predictive values of the fMRI using the Wada test as the reference standard. The impact of several study features on the performance of fMRI was assessed. The results showed that 81% of patients were correctly classified as having left or right language dominance or mixed language representation. Techniques were discordant in 19% of patients. fMRI and Wada test agreed in 94% for typical language lateralisation and in 51% for atypical language lateralisation. Language production or language comprehension tasks and different regions of interest did not yield statistically significant different results. It can be concluded that fMRI is reliable when there is strong left-lateralised language. The Wada test is warranted when fMRI fails to show clear left-lateralisation.

  9. Measurement of the distribution of ventilation-perfusion ratios in the human lung with proton MRI: comparison with the multiple inert-gas elimination technique.

    PubMed

    Sá, Rui Carlos; Henderson, A Cortney; Simonson, Tatum; Arai, Tatsuya J; Wagner, Harrieth; Theilmann, Rebecca J; Wagner, Peter D; Prisk, G Kim; Hopkins, Susan R

    2017-07-01

    We have developed a novel functional proton magnetic resonance imaging (MRI) technique to measure regional ventilation-perfusion (V̇ A /Q̇) ratio in the lung. We conducted a comparison study of this technique in healthy subjects ( n = 7, age = 42 ± 16 yr, Forced expiratory volume in 1 s = 94% predicted), by comparing data measured using MRI to that obtained from the multiple inert gas elimination technique (MIGET). Regional ventilation measured in a sagittal lung slice using Specific Ventilation Imaging was combined with proton density measured using a fast gradient-echo sequence to calculate regional alveolar ventilation, registered with perfusion images acquired using arterial spin labeling, and divided on a voxel-by-voxel basis to obtain regional V̇ A /Q̇ ratio. LogSDV̇ and LogSDQ̇, measures of heterogeneity derived from the standard deviation (log scale) of the ventilation and perfusion vs. V̇ A /Q̇ ratio histograms respectively, were calculated. On a separate day, subjects underwent study with MIGET and LogSDV̇ and LogSDQ̇ were calculated from MIGET data using the 50-compartment model. MIGET LogSDV̇ and LogSDQ̇ were normal in all subjects. LogSDQ̇ was highly correlated between MRI and MIGET (R = 0.89, P = 0.007); the intercept was not significantly different from zero (-0.062, P = 0.65) and the slope did not significantly differ from identity (1.29, P = 0.34). MIGET and MRI measures of LogSDV̇ were well correlated (R = 0.83, P = 0.02); the intercept differed from zero (0.20, P = 0.04) and the slope deviated from the line of identity (0.52, P = 0.01). We conclude that in normal subjects, there is a reasonable agreement between MIGET measures of heterogeneity and those from proton MRI measured in a single slice of lung. NEW & NOTEWORTHY We report a comparison of a new proton MRI technique to measure regional V̇ A /Q̇ ratio against the multiple inert gas elimination technique (MIGET). The study reports good relationships between measures of heterogeneity derived from MIGET and those derived from MRI. Although currently limited to a single slice acquisition, these data suggest that single sagittal slice measures of V̇ A /Q̇ ratio provide an adequate means to assess heterogeneity in the normal lung. Copyright © 2017 the American Physiological Society.

  10. Forensic age estimation based on magnetic resonance imaging of third molars: converting 2D staging into 3D staging.

    PubMed

    De Tobel, Jannick; Hillewig, Elke; Verstraete, Koenraad

    2017-03-01

    Established methods to stage development of third molars for forensic age estimation are based on the evaluation of radiographs, which show a 2D projection. It has not been investigated whether these methods require any adjustments in order to apply them to stage third molars on magnetic resonance imaging (MRI), which shows 3D information. To prospectively study root stage assessment of third molars in age estimation using 3 Tesla MRI and to compare this with panoramic radiographs, in order to provide considerations for converting 2D staging into 3D staging and to determine the decisive root. All third molars were evaluated in 52 healthy participants aged 14-26 years using MRI in three planes. Three staging methods were investigated by two observers. In sixteen of the participants, MRI findings were compared with findings on panoramic radiographs. Decisive roots were palatal in upper third molars and distal in lower third molars. Fifty-seven per cent of upper third molars were not assessable on the radiograph, while 96.9% were on MRI. Upper third molars were more difficult to evaluate on radiographs than on MRI (p < .001). Lower third molars were equally assessable on both imaging techniques (93.8% MRI, 98.4% radiograph), with no difference in level of difficulty (p = .375). Inter- and intra-observer agreement for evaluation was higher in MRI than in radiographs. In both imaging techniques lower third molars showed greater inter- and intra-observer agreement compared to upper third molars. MR images in the sagittal plane proved to be essential for staging. In age estimation, 3T MRI of third molars could be valuable. Some considerations are, however, necessary to transfer known staging methods to this 3D technique.

  11. Awake craniotomy, electrophysiologic mapping, and tumor resection with high-field intraoperative MRI.

    PubMed

    Parney, Ian F; Goerss, Stephan J; McGee, Kiaran; Huston, John; Perkins, William J; Meyer, Frederic B

    2010-05-01

    Awake craniotomy and electrophysiologic mapping (EPM) is an established technique to facilitate the resection of near eloquent cortex. Intraoperative magnetic resonance imaging (iMRI) is increasingly used to aid in the resection of intracranial lesions. Standard draping protocols in high-field iMRI units make awake craniotomies challenging, and only two groups have previously reported combined EPM and high-field iMRI. We present an illustrative case describing a simple technique for combining awake craniotomy and EPM with high-field iMRI. A movable platter is used to transfer the patient from the operating table to a transport trolley and into the adjacent MRI and still maintaining the patient's surgical position. This system allows excess drapes to be removed, facilitating awake craniotomy. A 57-year-old right-handed man presented with new onset seizures. Magnetic resonance imaging demonstrated a large left temporal mass. The patient underwent an awake, left frontotemporal craniotomy. The EPM demonstrated a single critical area for speech in his inferior frontal gyrus. After an initial tumor debulking, the scalp flap was loosely approximated, the wound was covered with additional drapes, and the excess surrounding drapes were trimmed. An iMRI was obtained. The image-guidance system was re-registered and the patient was redraped. Additional resection was performed, allowing extensive removal of what proved to be an anaplastic astrocytoma. The patient tolerated this well without any new neurological deficits. Standard protocols for positioning and draping in high-field iMRI units make awake craniotomies problematic. This straightforward technique for combined awake EPM and iMRI may facilitate safe removal of large lesions in eloquent cortex. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Neural and Behavioral Sequelae of Blast-Related Traumatic Brain Injury

    DTIC Science & Technology

    2012-11-01

    testing and advanced MRI techniques [task-activated functional MRI (fMRI) and diffusion tensor imaging ( DTI )] to gain a comprehensive understanding of... DTI fiber tracking) and neurobehavioral testing (computerized assessment and standard neuropsychological testing) on 60 chronic trauma patients: 15...data analysis. 15. SUBJECT TERMS Blast-related traumatic brain injury (TBI), fMRI, DTI , cognition 16. SECURITY CLASSIFICATION OF: 17. LIMITATION

  13. SU-E-I-84: MRI Relaxation Properties of a Pre-Clinical Hypoxia-Sensitive MRI Contrast Agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yee, S; Wilson, G; Chavez, F

    2014-06-01

    Purpose: A possible hypoxia-sensitive MRI agent, hexamethyldisiloxane (HMDSO), has been tried to image oxygen level in proton-based MRI (Kodibagkar et al, NMR Biomed, 2008). The induced changes of T1 (or R1) value by the HMDSO as the oxygenation level changes are the principle that the hypoxia agent is based on: the R1 increases as the oxygen level increases. However, as reported previously, the range of R1 values (0.1–0.3 s-1, corresponding to 3–10 s of T1) is not in the range where a regular MRI technique can easily detect the change. In order for this agent to be widely applied inmore » an MRI environment, more relaxation properties of this agent, including T1 in the rotating frame (T1rho) and T2, need to be explored. Here, the relaxation properties of this agent are explored. Methods: A phantom was made with HMDSO, water and mineral oil, each of which was prepared with oxygen and nitrogen, and was imaged in a 3T MRI system. The T1 properties were explored by the inversion recovery (TR=3000ms, TE=65ms) while varying the inversion time (TI), and also by the fast-field-echo (TR=2 ms, TE=2.8ms) while varying the flip angle (FA). T1rho was explored with a 5-pulse spin-locking technique (TR=5000ms, TE=10ms, spin-lock field=500Hz) while varying the spin-lock duration. T2 was explored with multi-shot TSE (TR=2500ms) while varying TE. Results: With the variable FA and TI, the signals of HMDSO with oxygen and nitrogen change in a similar way and do not respond well by the change of oxygen level, which confirms the large T1 value of HMDSO. The T1rho and T2, however, have a better sensitivity. Conclusion: For the possible pre-clinical hypoxia MRI agent (HMDSO), the detection of T1 (or R1) changes may be more challenging than the detection of other relaxation properties, particularly T2, as the oxygen level changes.« less

  14. [Role and responsibility of multimodal imaging in head and neck cancer].

    PubMed

    Gõdény, Mária

    2013-09-01

    Hungary is first in head and neck cancer mortality in Europe in men and also in women. Head and neck (HN) is a difficult region, its anatomy and also pathology is very complex, various connection points exist between the sites which determine the extension of the disease. Diagnostic algorithms as well as imaging techniques have to be optimized to examine in standard manner. Like most other cancers, prognosis depends largely on the stage of the tumor. Accuracy of tumor detection and evaluation is very important because it affects treatment planning. As non-surgical organ-preserving therapeutic modalities (chemotherapy, chemoradiotherapy, targeted biological therapy) gain general acceptance, the importance of noninvasive diagnostic accuracy as well as radiologic evaluation of the extent of the tumor has increased. Clinical examinations including endoscopy should be combined with radiologic imaging to assess the precise local (T), regional nodal (N), and distant (M) extent of the tumor. Computed tomography (CT) and magnetic resonance imaging (MRI) have become basic tools in the diagnosis of head and neck tumors. They are both useful for assessing deep tumor extensions, able to detect changes missed by endoscopy. It has been shown that the primary determined tumor stage increases in up to 90% of patients after the results of cross sectional imaging. MRI is being increasingly used and has become the gold standard in head and neck cancer for staging, assessing tumor response, finding recurrent tumor and also for treatment planning in radiotherapy. The field strength of MRI scanners has been increasing to 1.5 T and now 3 T with better signal-to-noise ratio, higher resolution images and better tissue diagnosis. Functional MR techniques such as dynamic contrast enhanced MRI (DCE-MRI) and diffusion weighted MRI (DW-MRI) may provide further characterization. PET/CT is beneficial in detecting unsuspected metastatic nodes, distant disease and second primary tumor. PET/CT and MRI both appeared almost similarly accurate in the detection of an occult primary tumor. The effective management of patients depends highly on the competece of radiologists and requires close collaboration between clinical and surgical oncologists, diagnostic and therapeutic radiologists as well as pathologists.

  15. Neonatal Pulmonary MRI of Bronchopulmonary Dysplasia Predicts Short-term Clinical Outcomes.

    PubMed

    Higano, Nara S; Spielberg, David R; Fleck, Robert J; Schapiro, Andrew H; Walkup, Laura L; Hahn, Andrew D; Tkach, Jean A; Kingma, Paul S; Merhar, Stephanie L; Fain, Sean B; Woods, Jason C

    2018-05-23

    Bronchopulmonary dysplasia (BPD) is a serious neonatal pulmonary condition associated with premature birth, but the underlying parenchymal disease and trajectory are poorly characterized. The current NICHD/NHLBI definition of BPD severity is based on degree of prematurity and extent of oxygen requirement. However, no clear link exists between initial diagnosis and clinical outcomes. We hypothesized that magnetic resonance imaging (MRI) of structural parenchymal abnormalities will correlate with NICHD-defined BPD disease severity and predict short-term respiratory outcomes. Forty-two neonates (20 severe BPD, 6 moderate, 7 mild, 9 non-BPD controls; 40±3 weeks post-menstrual age) underwent quiet-breathing structural pulmonary MRI (ultrashort echo-time and gradient echo) in a NICU-sited, neonatal-sized 1.5T scanner, without sedation or respiratory support unless already clinically prescribed. Disease severity was scored independently by two radiologists. Mean scores were compared to clinical severity and short-term respiratory outcomes. Outcomes were predicted using univariate and multivariable models including clinical data and scores. MRI scores significantly correlated with severities and predicted respiratory support at NICU discharge (P<0.0001). In multivariable models, MRI scores were by far the strongest predictor of respiratory support duration over clinical data, including birth weight and gestational age. Notably, NICHD severity level was not predictive of discharge support. Quiet-breathing neonatal pulmonary MRI can independently assess structural abnormalities of BPD, describe disease severity, and predict short-term outcomes more accurately than any individual standard clinical measure. Importantly, this non-ionizing technique can be implemented to phenotype disease and has potential to serially assess efficacy of individualized therapies.

  16. A digital 3D atlas of the marmoset brain based on multi-modal MRI.

    PubMed

    Liu, Cirong; Ye, Frank Q; Yen, Cecil Chern-Chyi; Newman, John D; Glen, Daniel; Leopold, David A; Silva, Afonso C

    2018-04-01

    The common marmoset (Callithrix jacchus) is a New-World monkey of growing interest in neuroscience. Magnetic resonance imaging (MRI) is an essential tool to unveil the anatomical and functional organization of the marmoset brain. To facilitate identification of regions of interest, it is desirable to register MR images to an atlas of the brain. However, currently available atlases of the marmoset brain are mainly based on 2D histological data, which are difficult to apply to 3D imaging techniques. Here, we constructed a 3D digital atlas based on high-resolution ex-vivo MRI images, including magnetization transfer ratio (a T1-like contrast), T2w images, and multi-shell diffusion MRI. Based on the multi-modal MRI images, we manually delineated 54 cortical areas and 16 subcortical regions on one hemisphere of the brain (the core version). The 54 cortical areas were merged into 13 larger cortical regions according to their locations to yield a coarse version of the atlas, and also parcellated into 106 sub-regions using a connectivity-based parcellation method to produce a refined atlas. Finally, we compared the new atlas set with existing histology atlases and demonstrated its applications in connectome studies, and in resting state and stimulus-based fMRI. The atlas set has been integrated into the widely-distributed neuroimaging data analysis software AFNI and SUMA, providing a readily usable multi-modal template space with multi-level anatomical labels (including labels from the Paxinos atlas) that can facilitate various neuroimaging studies of marmosets. Published by Elsevier Inc.

  17. FPGA-based RF interference reduction techniques for simultaneous PET–MRI

    PubMed Central

    Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, P K; Schulz, V

    2016-01-01

    Abstract The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET–MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling–decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion IID PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector. PMID:27049898

  18. FPGA-based RF interference reduction techniques for simultaneous PET-MRI.

    PubMed

    Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, P K; Schulz, V

    2016-05-07

    The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II (D) PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector.

  19. FPGA-based RF interference reduction techniques for simultaneous PET-MRI

    NASA Astrophysics Data System (ADS)

    Gebhardt, P.; Wehner, J.; Weissler, B.; Botnar, R.; Marsden, P. K.; Schulz, V.

    2016-05-01

    The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II D PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector.

  20. The emerging potential of magnetic resonance imaging in personalizing radiotherapy for head and neck cancer: an oncologist's perspective.

    PubMed

    Wong, Kee H; Panek, Rafal; Bhide, Shreerang A; Nutting, Christopher M; Harrington, Kevin J; Newbold, Katie L

    2017-03-01

    Head and neck cancer (HNC) is a challenging tumour site for radiotherapy delivery owing to its complex anatomy and proximity to organs at risk (OARs) such as the spinal cord and optic apparatus. Despite significant advances in radiotherapy planning techniques, radiation-induced morbidities remain substantial. Further improvement would require high-quality imaging and tailored radiotherapy based on intratreatment response. For these reasons, the use of MRI in radiotherapy planning for HNC is rapidly gaining popularity. MRI provides superior soft-tissue contrast in comparison with CT, allowing better definition of the tumour and OARs. The lack of additional radiation exposure is another attractive feature for intratreatment monitoring. In addition, advanced MRI techniques such as diffusion-weighted, dynamic contrast-enhanced and intrinsic susceptibility-weighted MRI techniques are capable of characterizing tumour biology further by providing quantitative functional parameters such as tissue cellularity, vascular permeability/perfusion and hypoxia. These functional parameters are known to have radiobiological relevance, which potentially could guide treatment adaptation based on their changes prior to or during radiotherapy. In this article, we first present an overview of the applications of anatomical MRI sequences in head and neck radiotherapy, followed by the potentials and limitations of functional MRI sequences in personalizing therapy.

  1. Phosphorus-31 MRI of bones using quadratic echo line-narrowing

    NASA Astrophysics Data System (ADS)

    Frey, Merideth; Barrett, Sean; Insogna, Karl; Vanhouten, Joshua

    2012-02-01

    There is a great need to probe the internal composition of bone on the sub-0.1 mm length scale, both to study normal features and to look for signs of disease. Despite the obvious importance of the mineral fraction to the biomechanical properties of skeletal tissue, few non-destructive techniques are available to evaluate changes in its chemical structure and functional microarchitecture on the interior of bones. MRI would be an excellent candidate, but bone is a particularly challenging tissue to study given the relatively low water density and wider linewidths of its solid components. Recent fundamental research in quantum computing gave rise to a new NMR pulse sequence - the quadratic echo - that can be used to narrow the broad NMR spectrum of solids. This offers a new route to do high spatial resolution, 3D ^31P MRI of bone that complements conventional MRI and x-ray based techniques to study bone physiology and structure. We have used our pulse sequence to do 3D ^31P MRI of ex vivo bones with a spatial resolution of (sub-450 μm)^3, limited only by the specifications of a conventional 4 Tesla liquid-state MRI system. We will describe our plans to push this technique towards the factor of 1000 increase in spatial resolution imposed by fundamental limits.

  2. Wavelet-based de-noising algorithm for images acquired with parallel magnetic resonance imaging (MRI).

    PubMed

    Delakis, Ioannis; Hammad, Omer; Kitney, Richard I

    2007-07-07

    Wavelet-based de-noising has been shown to improve image signal-to-noise ratio in magnetic resonance imaging (MRI) while maintaining spatial resolution. Wavelet-based de-noising techniques typically implemented in MRI require that noise displays uniform spatial distribution. However, images acquired with parallel MRI have spatially varying noise levels. In this work, a new algorithm for filtering images with parallel MRI is presented. The proposed algorithm extracts the edges from the original image and then generates a noise map from the wavelet coefficients at finer scales. The noise map is zeroed at locations where edges have been detected and directional analysis is also used to calculate noise in regions of low-contrast edges that may not have been detected. The new methodology was applied on phantom and brain images and compared with other applicable de-noising techniques. The performance of the proposed algorithm was shown to be comparable with other techniques in central areas of the images, where noise levels are high. In addition, finer details and edges were maintained in peripheral areas, where noise levels are low. The proposed methodology is fully automated and can be applied on final reconstructed images without requiring sensitivity profiles or noise matrices of the receiver coils, therefore making it suitable for implementation in a clinical MRI setting.

  3. The emerging potential of magnetic resonance imaging in personalizing radiotherapy for head and neck cancer: an oncologist's perspective

    PubMed Central

    Panek, Rafal; Bhide, Shreerang A; Nutting, Christopher M; Harrington, Kevin J; Newbold, Katie L

    2017-01-01

    Head and neck cancer (HNC) is a challenging tumour site for radiotherapy delivery owing to its complex anatomy and proximity to organs at risk (OARs) such as the spinal cord and optic apparatus. Despite significant advances in radiotherapy planning techniques, radiation-induced morbidities remain substantial. Further improvement would require high-quality imaging and tailored radiotherapy based on intratreatment response. For these reasons, the use of MRI in radiotherapy planning for HNC is rapidly gaining popularity. MRI provides superior soft-tissue contrast in comparison with CT, allowing better definition of the tumour and OARs. The lack of additional radiation exposure is another attractive feature for intratreatment monitoring. In addition, advanced MRI techniques such as diffusion-weighted, dynamic contrast-enhanced and intrinsic susceptibility-weighted MRI techniques are capable of characterizing tumour biology further by providing quantitative functional parameters such as tissue cellularity, vascular permeability/perfusion and hypoxia. These functional parameters are known to have radiobiological relevance, which potentially could guide treatment adaptation based on their changes prior to or during radiotherapy. In this article, we first present an overview of the applications of anatomical MRI sequences in head and neck radiotherapy, followed by the potentials and limitations of functional MRI sequences in personalizing therapy. PMID:28256151

  4. Geometric validation of self-gating k-space-sorted 4D-MRI vs 4D-CT using a respiratory motion phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Yong, E-mail: yong.yue@cshs.org; Yang, Wensha; McKenzie, Elizabeth

    Purpose: MRI is increasingly being used for radiotherapy planning, simulation, and in-treatment-room motion monitoring. To provide more detailed temporal and spatial MR data for these tasks, we have recently developed a novel self-gated (SG) MRI technique with advantage of k-space phase sorting, high isotropic spatial resolution, and high temporal resolution. The current work describes the validation of this 4D-MRI technique using a MRI- and CT-compatible respiratory motion phantom and comparison to 4D-CT. Methods: The 4D-MRI sequence is based on a spoiled gradient echo-based 3D projection reconstruction sequence with self-gating for 4D-MRI at 3 T. Respiratory phase is resolved by usingmore » SG k-space lines as the motion surrogate. 4D-MRI images are reconstructed into ten temporal bins with spatial resolution 1.56 × 1.56 × 1.56 mm{sup 3}. A MRI-CT compatible phantom was designed to validate the performance of the 4D-MRI sequence and 4D-CT imaging. A spherical target (diameter 23 mm, volume 6.37 ml) filled with high-concentration gadolinium (Gd) gel is embedded into a plastic box (35 × 40 × 63 mm{sup 3}) and stabilized with low-concentration Gd gel. The phantom, driven by an air pump, is able to produce human-type breathing patterns between 4 and 30 respiratory cycles/min. 4D-CT of the phantom has been acquired in cine mode, and reconstructed into ten phases with slice thickness 1.25 mm. The 4D images sets were imported into a treatment planning software for target contouring. The geometrical accuracy of the 4D MRI and CT images has been quantified using target volume, flattening, and eccentricity. The target motion was measured by tracking the centroids of the spheres in each individual phase. Motion ground-truth was obtained from input signals and real-time video recordings. Results: The dynamic phantom has been operated in four respiratory rate (RR) settings, 6, 10, 15, and 20/min, and was scanned with 4D-MRI and 4D-CT. 4D-CT images have target-stretching, partial-missing, and other motion artifacts in various phases, whereas the 4D-MRI images are visually free of those artifacts. Volume percentage difference for the 6.37 ml target ranged from 5.3% ± 4.3% to 10.3% ± 5.9% for 4D-CT, and 1.47 ± 0.52 to 2.12 ± 1.60 for 4D-MRI. With an increase of respiratory rate, the target volumetric and geometric deviations increase for 4D-CT images while remaining stable for the 4D-MRI images. Target motion amplitude errors at different RRs were measured with a range of 0.66–1.25 mm for 4D-CT and 0.2–0.42 mm for 4D-MRI. The results of Mann–Whitney tests indicated that 4D-MRI significantly outperforms 4D-CT in phase-based target volumetric (p = 0.027) and geometric (p < 0.001) measures. Both modalities achieve equivalent accuracy in measuring motion amplitude (p = 0.828). Conclusions: The k-space self-gated 4D-MRI technique provides a robust method for accurately imaging phase-based target motion and geometry. Compared to 4D-CT, the current 4D-MRI technique demonstrates superior spatiotemporal resolution, and robust resistance to motion artifacts caused by fast target motion and irregular breathing patterns. The technique can be used extensively in abdominal targeting, motion gating, and toward implementing MRI-based adaptive radiotherapy.« less

  5. Susceptibility-Weighted Imaging and Quantitative Susceptibility Mapping in the Brain

    PubMed Central

    Liu, Chunlei; Li, Wei; Tong, Karen A.; Yeom, Kristen W.; Kuzminski, Samuel

    2015-01-01

    Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) technique that enhances image contrast by using the susceptibility differences between tissues. It is created by combining both magnitude and phase in the gradient echo data. SWI is sensitive to both paramagnetic and diamagnetic substances which generate different phase shift in MRI data. SWI images can be displayed as a minimum intensity projection that provides high resolution delineation of the cerebral venous architecture, a feature that is not available in other MRI techniques. As such, SWI has been widely applied to diagnose various venous abnormalities. SWI is especially sensitive to deoxygenated blood and intracranial mineral deposition and, for that reason, has been applied to image various pathologies including intracranial hemorrhage, traumatic brain injury, stroke, neoplasm, and multiple sclerosis. SWI, however, does not provide quantitative measures of magnetic susceptibility. This limitation is currently being addressed with the development of quantitative susceptibility mapping (QSM) and susceptibility tensor imaging (STI). While QSM treats susceptibility as isotropic, STI treats susceptibility as generally anisotropic characterized by a tensor quantity. This article reviews the basic principles of SWI, its clinical and research applications, the mechanisms governing brain susceptibility properties, and its practical implementation, with a focus on brain imaging. PMID:25270052

  6. International Cognition and Cancer Task Force Recommendations for Neuroimaging Methods in the Study of Cognitive Impairment in Non-CNS Cancer Patients.

    PubMed

    Deprez, Sabine; Kesler, Shelli R; Saykin, Andrew J; Silverman, Daniel H S; de Ruiter, Michiel B; McDonald, Brenna C

    2018-03-01

    Cancer- and treatment-related cognitive changes have been a focus of increasing research since the early 1980s, with meta-analyses demonstrating poorer performance in cancer patients in cognitive domains including executive functions, processing speed, and memory. To facilitate collaborative efforts, in 2011 the International Cognition and Cancer Task Force (ICCTF) published consensus recommendations for core neuropsychological tests for studies of cancer populations. Over the past decade, studies have used neuroimaging techniques, including structural and functional magnetic resonance imaging (fMRI) and positron emission tomography, to examine the underlying brain basis for cancer- and treatment-related cognitive declines. As yet, however, there have been no consensus recommendations to guide researchers new to this field or to promote the ability to combine data sets. We first discuss important methodological issues with regard to neuroimaging study design, scanner considerations, and sequence selection, focusing on concerns relevant to cancer populations. We propose a minimum recommended set of sequences, including a high-resolution T1-weighted volume and a resting state fMRI scan. Additional advanced imaging sequences are discussed for consideration when feasible, including task-based fMRI and diffusion tensor imaging. Important image data processing and analytic considerations are also reviewed. These recommendations are offered to facilitate increased use of neuroimaging in studies of cancer- and treatment-related cognitive dysfunction. They are not intended to discourage investigator-initiated efforts to develop cutting-edge techniques, which will be helpful in advancing the state of the knowledge. Use of common imaging protocols will facilitate multicenter and data-pooling initiatives, which are needed to address critical mechanistic research questions.

  7. Association of quantitative magnetic resonance imaging parameters with histological findings from MRI/ultrasound fusion prostate biopsy.

    PubMed

    Dianat, Seyed Saeid; Carter, H Ballentine; Schaeffer, Edward M; Hamper, Ulrik M; Epstein, Jonathan I; Macura, Katarzyna J

    2015-10-01

    Purpose of this pilot study was to correlate quantitative parameters derived from the multiparametric magnetic resonance imaging (MP-MRI) of the prostate with results from MRI guided transrectal ultrasound (MRI/TRUS) fusion prostate biopsy in men with suspected prostate cancer. Thirty-nine consecutive patients who had 3.0T MP-MRI and subsequent MRI/TRUS fusion prostate biopsy were included and 73 MRI-identified targets were sampled by 177 cores. The pre-biopsy MP-MRI consisted of T2-weighted, diffusion weighted (DWI), and dynamic contrast enhanced (DCE) images. The association of quantitative MRI measurements with biopsy histopathology findings was assessed by Mann-Whitney U- test and Kruskal-Wallis test. Of 73 targets, biopsy showed benign prostate tissue in 46 (63%), cancer in 23 (31.5%), and atypia/high grade prostatic intraepithelial neoplasia in four (5.5%) targets. The median volume of cancer-positive targets was 1.3 cm3. The cancer-positive targets were located in the peripheral zone (56.5%), transition zone (39.1%), and seminal vesicle (4.3%). Nine of 23 (39.1%) cancer-positive targets were higher grade cancer (Gleason grade > 6). Higher grade targets and cancer-positive targets compared to benign lesions exhibited lower mean apparent diffusion coefficient (ADC) value (952.7 < 1167.9 < 1278.9), and lower minimal extracellular volume fraction (ECF) (0.13 < 0.185 < 0.213), respectively. The difference in parameters was more pronounced between higher grade cancer and benign lesions. Our findings from a pilot study indicate that quantitative MRI parameters can predict malignant histology on MRI/TRUS fusion prostate biopsy, which is a valuable technique to ensure adequate sampling of MRI-visible suspicious lesions under TRUS guidance and may impact patient management. The DWI-based quantitative measurement exhibits a stronger association with biopsy findings than the other MRI parameters.

  8. Comparison of propofol and dexmedetomedine techniques in children undergoing magnetic resonance imaging.

    PubMed

    Wu, Junzheng; Mahmoud, Mohamed; Schmitt, Megan; Hossain, Md; Kurth, Dean

    2014-08-01

    Propofol (PRO) and dexmedetomidine (DEX) are commonly used to produce anesthesia and sedation for routine MRI procedures. Children with complex conditions often require much lengthy MRI for multi-body-part scans with frequent scanner coil changes and patient body reposition. This study compared PRO and DEX techniques on outcomes for the particular MRI setting with longer than 1 h duration. 95 children, aged from 1 to 7 years, scheduled for MRI >75 min were randomly assigned to PRO or DEX group. After induced with sevoflurane, a loading dose of PRO (2 mg·kg(-1)) was administrated and followed by continuous infusion (200 μg·kg(-1) ·min(-1)); a loading dose of DEX (2 μg·kg(-1)) was administrated and followed by continuous infusion (2 μg·kg(-1) ·h(-1)). Patients received O(2) by nasal cannula. The observed outcomes were times for induction, MRI, emergence, and recovery, and total time (induction to discharge); MRI pauses from patient movement; incidence of technique failure and critical events; emergence and behavior in postanesthesia care unit (PACU); parental satisfaction; and arterial pressure (BP) and heart rate (HR) during anesthesia. PRO compared with DEX showed significantly less time for anesthesia induction (16.3 versus 24.2 min), emergence (21.2 versus 39.9 min), PACU (35.7 versus 62.5 min), and total time (135 versus 173 min) (all P < 0.001). There were significantly fewer pauses during MRI and lower failure rate to complete MRI in PRO versus DEX (0.22 versus 0.81, P = 0.01 and 1 versus 15, P < 0.001), less behavioral disturbances in PACU, and higher parental satisfaction in PRO versus DEX (P < 0.01). There were no critical events in either group: In PRO, mean BP during MRI (from 52 ± 8 to 58 ± mmHg) was significantly less than before anesthesia (80 ± 12 mmHg), while HR remained relatively constant (range of 97-103) at its baseline of 108 ± 21, but in DEX, mean BP remained unchanged (from 76 ± 12 to 78 ± 15) during anesthesia compared with before anesthesia (79 ± 14 mmHg), while HR decreased (74 ± 16 to 78 ± 15) during anesthesia from its baseline (102 ± 17). For children undergoing lengthy multicomponent MRI, the propofol technique yielded overall better outcomes than the dexmedetomedine technique in terms of timeliness, PACU emergence characteristics, and parental satisfaction. © 2014 John Wiley & Sons Ltd.

  9. Imaging of brain metastases.

    PubMed

    Fink, Kathleen R; Fink, James R

    2013-01-01

    Imaging plays a key role in the diagnosis of central nervous system (CNS) metastasis. Imaging is used to detect metastases in patients with known malignancies and new neurological signs or symptoms, as well as to screen for CNS involvement in patients with known cancer. Computed tomography (CT) and magnetic resonance imaging (MRI) are the key imaging modalities used in the diagnosis of brain metastases. In difficult cases, such as newly diagnosed solitary enhancing brain lesions in patients without known malignancy, advanced imaging techniques including proton magnetic resonance spectroscopy (MRS), contrast enhanced magnetic resonance perfusion (MRP), diffusion weighted imaging (DWI), and diffusion tensor imaging (DTI) may aid in arriving at the correct diagnosis. This image-rich review discusses the imaging evaluation of patients with suspected intracranial involvement and malignancy, describes typical imaging findings of parenchymal brain metastasis on CT and MRI, and provides clues to specific histological diagnoses such as the presence of hemorrhage. Additionally, the role of advanced imaging techniques is reviewed, specifically in the context of differentiating metastasis from high-grade glioma and other solitary enhancing brain lesions. Extra-axial CNS involvement by metastases, including pachymeningeal and leptomeningeal metastases is also briefly reviewed.

  10. Fast Room Temperature Very Low Field-Magnetic Resonance Imaging System Compatible with MagnetoEncephaloGraphy Environment

    PubMed Central

    Galante, Angelo; Sinibaldi, Raffaele; Conti, Allegra; De Luca, Cinzia; Catallo, Nadia; Sebastiani, Piero; Pizzella, Vittorio; Romani, Gian Luca; Sotgiu, Antonello; Della Penna, Stefania

    2015-01-01

    In recent years, ultra-low field (ULF)-MRI is being given more and more attention, due to the possibility of integrating ULF-MRI and Magnetoencephalography (MEG) in the same device. Despite the signal-to-noise ratio (SNR) reduction, there are several advantages to operating at ULF, including increased tissue contrast, reduced cost and weight of the scanners, the potential to image patients that are not compatible with clinical scanners, and the opportunity to integrate different imaging modalities. The majority of ULF-MRI systems are based, until now, on magnetic field pulsed techniques for increasing SNR, using SQUID based detectors with Larmor frequencies in the kHz range. Although promising results were recently obtained with such systems, it is an open question whether similar SNR and reduced acquisition time can be achieved with simpler devices. In this work a room-temperature, MEG-compatible very-low field (VLF)-MRI device working in the range of several hundred kHz without sample pre-polarization is presented. This preserves many advantages of ULF-MRI, but for equivalent imaging conditions and SNR we achieve reduced imaging time based on preliminary results using phantoms and ex-vivo rabbits heads. PMID:26630172

  11. Nuclear Magnetic Resonance Imaging in Endodontics: A Review.

    PubMed

    Di Nardo, Dario; Gambarini, Gianluca; Capuani, Silvia; Testarelli, Luca

    2018-04-01

    This review analyzes the increasing role of magnetic resonance imaging (MRI) in dentistry and its relevance in endodontics. Limits and new strategies to develop MRI protocols for endodontic purposes are reported and discussed. Eligible studies were identified by searching the PubMed databases. Only original articles on dental structures, anatomy, and endodontics investigated by in vitro and in vivo MRI were included in this review. Original articles on MRI in dentistry not concerning anatomy and endodontics were excluded. All the consulted studies showed well-defined images of pathological conditions such as caries and microcracks. The enhanced contrast of pulp provided a high-quality reproduction of the tooth shape and root canal in vitro and in vivo. Assessment of periapical lesions is possible even without the use of contrast medium. MRI is a nonionizing technique characterized by high tissue contrast and high image resolution of soft tissues; it could be considered a valid and safe diagnostic investigation in endodontics because of its potential to identify pulp tissues, define root canal shape, and locate periapical lesions. Copyright © 2018 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Ultrasound and magnetic resonance imaging in sports-related muscle injuries.

    PubMed

    Megliola, A; Eutropi, F; Scorzelli, A; Gambacorta, D; De Marchi, A; De Filippo, M; Faletti, C; Ferrari, F S

    2006-09-01

    The objective of this study was to evaluate the role of magnetic resonance imaging (MRI) and ultrasonography (US) in the diagnosis of traumatic muscle injuries. From June 2003 to June 2004, 81 football players with a history of traumatic muscle injuries to the lower limbs were examined. US was performed shortly after the trauma (from 6 to 72 h afterwards) and MRI within a maximum of 5 days. MRI revealed 26 minor and 55 major traumas. MRI and US showed complete concordance in 71 patients (site, type and extent of injury). US produced ten false negative results, including six minor lesions and four major lesions. US had a sensitivity of 87.65% in the correct identification of muscle injuries; its sensitivity was 92.72% for major lesions and 76.92% for minor lesions, 57% for delayed-onset muscle soreness (DOMS), 80% for lengthenings, 83% for contractures, 84% for strains, 87.5% for mild contusions and 100% for severe contusions. US is the first-line technique for examination of muscle injuries. MRI is able to reveal lesions that may be missed at US and provide a more accurate assessment of site and extent of injury.

  13. MR imaging guidance for minimally invasive procedures

    NASA Astrophysics Data System (ADS)

    Wong, Terence Z.; Kettenbach, Joachim; Silverman, Stuart G.; Schwartz, Richard B.; Morrison, Paul R.; Kacher, Daniel F.; Jolesz, Ferenc A.

    1998-04-01

    Image guidance is one of the major challenges common to all minimally invasive procedures including biopsy, thermal ablation, endoscopy, and laparoscopy. This is essential for (1) identifying the target lesion, (2) planning the minimally invasive approach, and (3) monitoring the therapy as it progresses. MRI is an ideal imaging modality for this purpose, providing high soft tissue contrast and multiplanar imaging, capability with no ionizing radiation. An interventional/surgical MRI suite has been developed at Brigham and Women's Hospital which provides multiplanar imaging guidance during surgery, biopsy, and thermal ablation procedures. The 0.5T MRI system (General Electric Signa SP) features open vertical access, allowing intraoperative imaging to be performed. An integrated navigational system permits near real-time control of imaging planes, and provides interactive guidance for positioning various diagnostic and therapeutic probes. MR imaging can also be used to monitor cryotherapy as well as high temperature thermal ablation procedures sing RF, laser, microwave, or focused ultrasound. Design features of the interventional MRI system will be discussed, and techniques will be described for interactive image acquisition and tracking of interventional instruments. Applications for interactive and near-real-time imaging will be presented as well as examples of specific procedures performed using MRI guidance.

  14. [Magnetic resonance imaging of the penis. Its normal anatomy].

    PubMed

    Banchik, E L; Mineev, N I; Mitusov, V V; Dombrovskiĭ, V I; Kogan, M I

    2012-01-01

    To estimate the capabilities of magnetic resonance imaging (MRI) to identify penile anatomic structures and their topographic relationships. Penile MRI results were analyzed in 52 men of different ages who had no history, clinical, laboratory, and radiological data in favor of diseases of this organ. Penile imaging technology and its algorithm, including patient preparation and posi-tioning and a list of impulse sequences and their parameters, are proposed. Penile MRI and anatomy are described in detail; magnetic resonance signal characteristics of the main structural elements of the organ and its adjacent tissues on T1- and T2-weighted images are specified. The MRI morphometry results of the cavernous and spongy bodies, urethra, and penis as a whole, which agree well with the similar known literature data, are given. The investigation has provided evidence for the high informative value of the technique in recognizing the relatively small anatomic structures of the penis, which is comparable with that of the morphological study of a gross specimen of this organ, which in turn predetermines a further investigation of the capabilities of MRI to diagnose penile diseases and to estimate the quality of their treatment.

  15. Navigation-supported diagnosis of the substantia nigra by matching midbrain sonography and MRI

    NASA Astrophysics Data System (ADS)

    Salah, Zein; Weise, David; Preim, Bernhard; Classen, Joseph; Rose, Georg

    2012-03-01

    Transcranial sonography (TCS) is a well-established neuroimaging technique that allows for visualizing several brainstem structures, including the substantia nigra, and helps for the diagnosis and differential diagnosis of various movement disorders, especially in Parkinsonian syndromes. However, proximate brainstem anatomy can hardly be recognized due to the limited image quality of B-scans. In this paper, a visualization system for the diagnosis of the substantia nigra is presented, which utilizes neuronavigated TCS to reconstruct tomographical slices from registered MRI datasets and visualizes them simultaneously with corresponding TCS planes in realtime. To generate MRI tomographical slices, the tracking data of the calibrated ultrasound probe are passed to an optimized slicing algorithm, which computes cross sections at arbitrary positions and orientations from the registered MRI dataset. The extracted MRI cross sections are finally fused with the region of interest from the ultrasound image. The system allows for the computation and visualization of slices at a near real-time rate. Primary tests of the system show an added value to the pure sonographic imaging. The system also allows for reconstructing volumetric (3D) ultrasonic data of the region of interest, and thus contributes to enhancing the diagnostic yield of midbrain sonography.

  16. Do magnetic resonance imaging and computed tomography provide equivalent measures of rotator cuff muscle size in glenohumeral osteoarthritis?

    PubMed

    Chalmers, Peter N; Beck, Lindsay; Stertz, Irene; Aleem, Alexander; Keener, Jay D; Henninger, Heath B; Tashjian, Robert Z

    2018-05-10

    Rotator cuff muscle volume is associated with outcomes after cuff repair and total shoulder arthroplasty. Muscle area on select magnetic resonance imaging (MRI) slices has been shown to be a surrogate for muscle volume. The purpose of this study was to determine whether computed tomography (CT) provides an equivalent measurement of cuff muscle area to a previously validated MRI measurement. We included 30 patients before they were undergoing total shoulder arthroplasty with both preoperative CT and MRI scans performed within 30 days of one another at 1 institution using a consistent protocol. We reoriented CT sagittal and MRI sagittal T1 series orthogonal to the scapular plane. On both CT and MRI scans, we measured the area of the supraspinatus, infraspinatus-teres minor, and subscapularis on 2 standardized slices as previously described. We calculated intraclass correlation coefficients and mean differences. For the 30 subjects included, when MRI and CT were compared, the mean intraclass correlation coefficients were 0.989 (95% confidence interval [CI], 0.976-0.995) for the supraspinatus, 0.978 (95% CI, 0.954-0.989) for the infraspinatus-teres minor, and 0.977 (95% CI, 0.952-0.989) for the subscapularis. The mean differences were 0.2 cm 2 (95% CI, 0.0-0.4 cm 2 ) for the supraspinatus (P = .052), 0.8 cm 2 (95% CI, 0.1-1.4 cm 2 ) for the infraspinatus-teres minor (P = .029), and -0.3 cm 2 (95% CI, -1.2 to 0.5 cm 2 ) for the subscapularis (P = .407). CT provides nearly equivalent measures of cuff muscle area to an MRI technique with previously validated reliability and accuracy. While CT underestimates the infraspinatus area as compared with MRI, the difference is less than 1 cm 2 and thus likely clinically insignificant. Copyright © 2018 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  17. MRI of placental adhesive disorder

    PubMed Central

    Prapaisilp, P; Bangchokdee, S

    2014-01-01

    Placental adhesive disorder (PAD) is a serious pregnancy complication that occurs when the chorionic villi invade the myometrium. Placenta praevia and prior caesarean section are the two important risk factors. PAD is classified on the basis of the depth of myometrial invasion (placenta accreta, placenta increta and placenta percreta). MRI is the preferred image modality for pre-natal diagnosis of PAD and as complementary technique when ultrasonography is inconclusive. Imaging findings that are helpful for the diagnosis include dark intraplacental bands, direct invasion of adjacent structures by placental tissue, interruption of normal trilayered myometrium and uterine bulging. Clinicians should be aware of imaging features of PAD to facilitate optimal patient management. PMID:25060799

  18. Neural and Behavioral Sequelae of Blast-Related Traumatic Brain Injury

    DTIC Science & Technology

    2012-09-01

    fMRI, DTI , cognition 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a...techniques [task-activated functional MRI (fMRI) and diffusion tensor imaging ( DTI )] to gain a comprehensive understanding of the neural changes...orthopedic injuries. We accomplished this goal by conducting advanced neuroimaging (task-activated fMRI and DTI fiber tracking) and neurobehavioral

  19. Free-breathing quantification of hepatic fat in healthy children and children with nonalcoholic fatty liver disease using a multi-echo 3-D stack-of-radial MRI technique.

    PubMed

    Armstrong, Tess; Ly, Karrie V; Murthy, Smruthi; Ghahremani, Shahnaz; Kim, Grace Hyun J; Calkins, Kara L; Wu, Holden H

    2018-05-04

    In adults, noninvasive chemical shift encoded Cartesian magnetic resonance imaging (MRI) and single-voxel magnetic resonance (MR) spectroscopy (SVS) accurately quantify hepatic steatosis but require breath-holding. In children, especially young and sick children, breath-holding is often limited or not feasible. Sedation can facilitate breath-holding but is highly undesirable. For these reasons, there is a need to develop free-breathing MRI technology that accurately quantifies steatosis in all children. This study aimed to compare non-sedated free-breathing multi-echo 3-D stack-of-radial (radial) MRI versus standard breath-holding MRI and SVS techniques in a group of children for fat quantification with respect to image quality, accuracy and repeatability. Healthy children (n=10, median age [±interquartile range]: 10.9 [±3.3] years) and overweight children with nonalcoholic fatty liver disease (NAFLD) (n=9, median age: 15.2 [±3.2] years) were imaged at 3 Tesla using free-breathing radial MRI, breath-holding Cartesian MRI and breath-holding SVS. Acquisitions were performed twice to assess repeatability (within-subject mean difference, MD within ). Images and hepatic proton-density fat fraction (PDFF) maps were scored for image quality. Free-breathing and breath-holding PDFF were compared using linear regression (correlation coefficient, r and concordance correlation coefficient, ρ c ) and Bland-Altman analysis (mean difference). P<0.05 was considered significant. In patients with NAFLD, free-breathing radial MRI demonstrated significantly less motion artifacts compared to breath-holding Cartesian (P<0.05). Free-breathing radial PDFF demonstrated a linear relationship (P<0.001) versus breath-holding SVS PDFF and breath-holding Cartesian PDFF with r=0.996 and ρ c =0.994, and r=0.997 and ρ c =0.995, respectively. The mean difference in PDFF between free-breathing radial MRI, breath-holding Cartesian MRI and breath-holding SVS was <0.7%. Repeated free-breathing radial MRI had MD within =0.25% for PDFF. In this pediatric study, non-sedated free-breathing radial MRI provided accurate and repeatable hepatic PDFF measurements and improved image quality, compared to standard breath-holding MR techniques.

  20. The Potential for an Enhanced Role for MRI in Radiation-therapy Treatment Planning

    PubMed Central

    Metcalfe, P.; Liney, G. P.; Holloway, L.; Walker, A.; Barton, M.; Delaney, G. P.; Vinod, S.; Tomé, W.

    2013-01-01

    The exquisite soft-tissue contrast of magnetic resonance imaging (MRI) has meant that the technique is having an increasing role in contouring the gross tumor volume (GTV) and organs at risk (OAR) in radiation therapy treatment planning systems (TPS). MRI-planning scans from diagnostic MRI scanners are currently incorporated into the planning process by being registered to CT data. The soft-tissue data from the MRI provides target outline guidance and the CT provides a solid geometric and electron density map for accurate dose calculation on the TPS computer. There is increasing interest in MRI machine placement in radiotherapy clinics as an adjunct to CT simulators. Most vendors now offer 70 cm bores with flat couch inserts and specialised RF coil designs. We would refer to these devices as MR-simulators. There is also research into the future application of MR-simulators independent of CT and as in-room image-guidance devices. It is within the background of this increased interest in the utility of MRI in radiotherapy treatment planning that this paper is couched. The paper outlines publications that deal with standard MRI sequences used in current clinical practice. It then discusses the potential for using processed functional diffusion maps (fDM) derived from diffusion weighted image sequences in tracking tumor activity and tumor recurrence. Next, this paper reviews publications that describe the use of MRI in patient-management applications that may, in turn, be relevant to radiotherapy treatment planning. The review briefly discusses the concepts behind functional techniques such as dynamic contrast enhanced (DCE), diffusion-weighted (DW) MRI sequences and magnetic resonance spectroscopic imaging (MRSI). Significant applications of MR are discussed in terms of the following treatment sites: brain, head and neck, breast, lung, prostate and cervix. While not yet routine, the use of apparent diffusion coefficient (ADC) map analysis indicates an exciting future application for functional MRI. Although DW-MRI has not yet been routinely used in boost adaptive techniques, it is being assessed in cohort studies for sub-volume boosting in prostate tumors. PMID:23617289

  1. Comparison of fMRI data from passive listening and active-response story processing tasks in children

    PubMed Central

    Vannest, Jennifer J.; Karunanayaka, Prasanna R.; Altaye, Mekibib; Schmithorst, Vincent J.; Plante, Elena M.; Eaton, Kenneth J.; Rasmussen, Jerod M.; Holland, Scott K.

    2009-01-01

    Purpose To use functional MRI methods to visualize a network of auditory and language-processing brain regions associated with processing an aurally-presented story. We compare a passive listening (PL) story paradigm to an active-response (AR) version including on-line performance monitoring and a sparse acquisition technique. Materials/Methods Twenty children (ages 11−13) completed PL and AR story processing tasks. The PL version presented alternating 30-second blocks of stories and tones; the AR version presented story segments, comprehension questions, and 5s tone sequences, with fMRI acquisitions between stimuli. fMRI data was analyzed using a general linear model approach and paired t-test identifying significant group activation. Results Both tasks activated in primary auditory cortex, superior temporal gyrus bilaterally, left inferior frontal gyrus. The AR task demonstrated more extensive activation, including dorsolateral prefrontal cortex and anterior/posterior cingulate cortex. Comparison of effect size in each paradigm showed a larger effect for the AR paradigm in a left inferior frontal ROI. Conclusion Activation patterns for story processing in children are similar in passive listening and active-response tasks. Increases in extent and magnitude of activation in the AR task are likely associated with memory and attention resources engaged across acquisition intervals. PMID:19306445

  2. Visualizing the anatomical-functional correlation of the human brain

    NASA Astrophysics Data System (ADS)

    Chang, YuKuang; Rockwood, Alyn P.; Reiman, Eric M.

    1995-04-01

    Three-dimensional tomographic images obtained from different modalities or from the same modality at different times provide complementary information. For example, while PET shows brain function, images from MRI identify anatomical structures. In this paper, we investigate the problem of displaying available information about structures and function together. Several steps are described to achieve our goal. These include segmentation of the data, registration, resampling, and display. Segmentation is used to identify brain tissue from surrounding tissues, especially in the MRI data. Registration aligns the different modalities as closely as possible. Resampling arises from the registration since two data sets do not usually correspond and the rendering method is most easily achieved if the data correspond to the same grid used in display. We combine several techniques to display the data. MRI data is reconstructed from 2D slices into 3D structures from which isosurfaces are extracted and represented by approximating polygonalizations. These are then displayed using standard graphics pipelines including shaded and transparent images. PET data measures the qualitative rates of cerebral glucose utilization or oxygen consumption. PET image is best displayed as a volume of luminous particles. The combination of both display methods allows the viewer to compare the functional information contained in the PET data with the anatomically more precise MRI data.

  3. Advances in fMRI Real-Time Neurofeedback.

    PubMed

    Watanabe, Takeo; Sasaki, Yuka; Shibata, Kazuhisa; Kawato, Mitsuo

    2017-12-01

    Functional magnetic resonance imaging (fMRI) neurofeedback is a type of biofeedback in which real-time online fMRI signals are used to self-regulate brain function. Since its advent in 2003 significant progress has been made in fMRI neurofeedback techniques. Specifically, the use of implicit protocols, external rewards, multivariate analysis, and connectivity analysis has allowed neuroscientists to explore a possible causal involvement of modified brain activity in modified behavior. These techniques have also been integrated into groundbreaking new neurofeedback technologies, specifically decoded neurofeedback (DecNef) and functional connectivity-based neurofeedback (FCNef). By modulating neural activity and behavior, DecNef and FCNef have substantially advanced both basic and clinical research. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. A novel diagnostic aid for intra-abdominal adhesion detection in cine-MR imaging: Pilot study and initial diagnostic impressions.

    PubMed

    Randall, David; Joosten, Frank; ten Broek, Richard; Gillott, Richard; Bardhan, Karna Dev; Strik, Chema; Prins, Wiesje; van Goor, Harry; Fenner, John

    2017-07-14

    A non-invasive diagnostic technique for abdominal adhesions is not currently available. Capture of abdominal motion due to respiration in cine-MRI has shown promise, but is difficult to interpret. This article explores the value of a complimentary diagnostic aid to facilitate the non-invasive detection of abdominal adhesions using cine-MRI. An image processing technique was developed to quantify the amount of sliding that occurs between the organs of the abdomen and the abdominal wall in sagittal cine-MRI slices. The technique produces a 'sheargram' which depicts the amount of sliding which has occurred over 1-3 respiratory cycles. A retrospective cohort of 52 patients, scanned for suspected adhesions, made 281 cine-MRI sagittal slices available for processing. The resulting sheargrams were reported by two operators and compared to expert clinical judgement of the cine-MRI scans. The sheargram matched clinical judgement in 84% of all sagittal slices and 93-96% of positive adhesions were identified on the sheargram. The sheargram displayed a slight skew towards sensitivity over specificity, with a high positive adhesion detection rate but at the expense of false positives. Good correlation between sheargram and absence/presence of inferred adhesions indicates quantification of sliding motion has potential to aid adhesion detection in cine-MRI. Advances in Knowledge: This is the first attempt to clinically evaluate a novel image processing technique quantifying the sliding motion of the abdominal contents against the abdominal wall. The results of this pilot study reveal its potential as a diagnostic aid for detection of abdominal adhesions.

  5. [Principles of MR-guided interventions, surgery, navigation, and robotics].

    PubMed

    Melzer, A

    2010-08-01

    The application of magnetic resonance imaging (MRI) as an imaging technique in interventional and surgical techniques provides a new dimension of soft tissue-oriented precise procedures without exposure to ionizing radiation and nephrotoxic allergenic, iodine-containing contrast agents. The technical capabilities of MRI in combination with interventional devices and systems, navigation, and robotics are discussed.

  6. Clinical applications of advanced magnetic resonance imaging techniques for arthritis evaluation

    PubMed Central

    Martín Noguerol, Teodoro; Luna, Antonio; Gómez Cabrera, Marta; Riofrio, Alexie D

    2017-01-01

    Magnetic resonance imaging (MRI) has allowed a comprehensive evaluation of articular disease, increasing the detection of early cartilage involvement, bone erosions, and edema in soft tissue and bone marrow compared to other imaging techniques. In the era of functional imaging, new advanced MRI sequences are being successfully applied for articular evaluation in cases of inflammatory, infectious, and degenerative arthropathies. Diffusion weighted imaging, new fat suppression techniques such as DIXON, dynamic contrast enhanced-MRI, and specific T2 mapping cartilage sequences allow a better understanding of the physiopathological processes that underlie these different arthropathies. They provide valuable quantitative information that aids in their differentiation and can be used as potential biomarkers of articular disease course and treatment response. PMID:28979849

  7. Lying about Facial Recognition: An fMRI Study

    ERIC Educational Resources Information Center

    Bhatt, S.; Mbwana, J.; Adeyemo, A.; Sawyer, A.; Hailu, A.; VanMeter, J.

    2009-01-01

    Novel deception detection techniques have been in creation for centuries. Functional magnetic resonance imaging (fMRI) is a neuroscience technology that non-invasively measures brain activity associated with behavior and cognition. A number of investigators have explored the utilization and efficiency of fMRI in deception detection. In this study,…

  8. Voxel-wise prostate cell density prediction using multiparametric magnetic resonance imaging and machine learning.

    PubMed

    Sun, Yu; Reynolds, Hayley M; Wraith, Darren; Williams, Scott; Finnegan, Mary E; Mitchell, Catherine; Murphy, Declan; Haworth, Annette

    2018-04-26

    There are currently no methods to estimate cell density in the prostate. This study aimed to develop predictive models to estimate prostate cell density from multiparametric magnetic resonance imaging (mpMRI) data at a voxel level using machine learning techniques. In vivo mpMRI data were collected from 30 patients before radical prostatectomy. Sequences included T2-weighted imaging, diffusion-weighted imaging and dynamic contrast-enhanced imaging. Ground truth cell density maps were computed from histology and co-registered with mpMRI. Feature extraction and selection were performed on mpMRI data. Final models were fitted using three regression algorithms including multivariate adaptive regression spline (MARS), polynomial regression (PR) and generalised additive model (GAM). Model parameters were optimised using leave-one-out cross-validation on the training data and model performance was evaluated on test data using root mean square error (RMSE) measurements. Predictive models to estimate voxel-wise prostate cell density were successfully trained and tested using the three algorithms. The best model (GAM) achieved a RMSE of 1.06 (± 0.06) × 10 3 cells/mm 2 and a relative deviation of 13.3 ± 0.8%. Prostate cell density can be quantitatively estimated non-invasively from mpMRI data using high-quality co-registered data at a voxel level. These cell density predictions could be used for tissue classification, treatment response evaluation and personalised radiotherapy.

  9. A Randomized Controlled Trial to Assess Pain and Magnetic Resonance Imaging-Based (MRI-Based) Structural Spine Changes in Low Back Pain Patients After Yoga Practice

    PubMed Central

    Telles, Shirley; Bhardwaj, Abhishek K.; Gupta, Ram K.; Sharma, Sachin K.; Monro, Robin; Balkrishna, Acharya

    2016-01-01

    Background The present study aimed at determining whether 12 weeks of yoga practice in patients with chronic LBP and MRI-based degenerative changes would result in differences in: (i) self-reported pain, anxiety, and spinal flexibility; and (ii) the structure of the discs or vertebrae. Material/Methods Sixty-two persons with MRI-proven degenerative intervertebral discs (group mean ±S.D., 36.2±6.4 years; 30 females) were randomly assigned to yoga and control groups. However, testing was conducted on only 40 subjects, so only their data are included in this study. The assessments were: self-reported pain, state anxiety, spinal flexibility, and MRI of the lumbosacral spine, performed using a 1.5 Tesla system with a spinal surface column. The yoga group was taught light exercises, physical postures, breathing techniques, and yoga relaxation techniques for 1 hour daily for 3 months. No intervention was given to the control group except for routine medical care. A repeated-measures analysis of variance (ANOVA) with post hoc analyses (which was Bonferroni-adjusted) was used. The Ethics Committee of Patanjali Research Foundation had approved the study which had been registered in the Clinical Trials Registry of India (CTRI/2012/11/003094). Results The yoga group showed a significant reduction in self-reported pain and state anxiety in a before/after comparison at 12 weeks. A few patients in both groups showed changes in the discs and vertebrae at post-intervention assessment. Conclusions Within 12 weeks, yoga practice reduced pain and state anxiety but did not alter MRI-proven changes in the intervertebral discs and in the vertebrae.

  10. Identifying Rodent Resting-State Brain Networks with Independent Component Analysis

    PubMed Central

    Bajic, Dusica; Craig, Michael M.; Mongerson, Chandler R. L.; Borsook, David; Becerra, Lino

    2017-01-01

    Rodent models have opened the door to a better understanding of the neurobiology of brain disorders and increased our ability to evaluate novel treatments. Resting-state functional magnetic resonance imaging (rs-fMRI) allows for in vivo exploration of large-scale brain networks with high spatial resolution. Its application in rodents affords researchers a powerful translational tool to directly assess/explore the effects of various pharmacological, lesion, and/or disease states on known neural circuits within highly controlled settings. Integration of animal and human research at the molecular-, systems-, and behavioral-levels using diverse neuroimaging techniques empowers more robust interrogations of abnormal/ pathological processes, critical for evolving our understanding of neuroscience. We present a comprehensive protocol to evaluate resting-state brain networks using Independent Component Analysis (ICA) in rodent model. Specifically, we begin with a brief review of the physiological basis for rs-fMRI technique and overview of rs-fMRI studies in rodents to date, following which we provide a robust step-by-step approach for rs-fMRI investigation including data collection, computational preprocessing, and brain network analysis. Pipelines are interwoven with underlying theory behind each step and summarized methodological considerations, such as alternative methods available and current consensus in the literature for optimal results. The presented protocol is designed in such a way that investigators without previous knowledge in the field can implement the analysis and obtain viable results that reliably detect significant differences in functional connectivity between experimental groups. Our goal is to empower researchers to implement rs-fMRI in their respective fields by incorporating technical considerations to date into a workable methodological framework. PMID:29311770

  11. Hyperpolarized Magnetic Resonance: A Novel Technique for the In Vivo Assessment of Cardiovascular Disease

    PubMed Central

    Schroeder, Marie A.; Clarke, Kieran; Neubauer, Stefan; Tyler, Damian J.

    2011-01-01

    Non-invasive imaging plays a central role in cardiovascular disease for determining diagnosis, prognosis, and optimizing patient management. Recent experimental studies have demonstrated that monitoring hyperpolarized 13C-labelled tracers with magnetic resonance imaging and spectroscopy (MRI and MRS) offers a new way to investigate the normal and diseased heart, and that the technology may be useful in patients with heart disease. In this review, we show how hyperpolarized 13C-labelled tracers are generated and have been applied experimentally, and outline the methodological advances currently underway to enable translation of hyperpolarized 13C MRI and MRS into the clinic. Using hyperpolarized 13C-labelled metabolites and metabolic MRI and MRS could help assessment of many human cardiovascular diseases, including coronary artery disease, heart failure and metabolic cardiomyopathies. We discuss the clinical areas in which the technology may, in the future, aid in the diagnosis and management of patients with cardiovascular diseases, including dynamic investigations of in vivo metabolism, coronary angiography and quantitative perfusion imaging. It is possible that, in the future, hyperpolarized magnetic resonance will play a major role in clinical cardiology. PMID:21969318

  12. Practical use of imaging technique for management of bone and soft tissue tumors.

    PubMed

    Miwa, Shinji; Otsuka, Takanobu

    2017-05-01

    Imaging modalities including radiography, computed tomography (CT), and magnetic resonance imaging (MRI) are necessary for the diagnosis of bone and soft tissue tumors. The history of imaging began with the discovery of X-rays in the 19th century. The development of CT, MRI, ultrasonography, and positron emission tomography (PET) have improved the management of bone and soft tissue tumors. X-ray imaging and CT scans enable the evaluation of bone destruction, periosteal reaction, sclerotic changes in lesions, condition of cortical bone, and ossification. MRI enables the assessment of tissue characteristics, tumor extent, and the reactive areas. Functional imaging modalities including 201 thallium ( 201 Tl) scintigraphy can be used to differentiate benign lesions from malignant lesions and to assess chemotherapeutic effects. Real-time assessment of soft tissue tumors by ultrasonography enables accurate and safe performance of surgery and biopsy. This article describes useful imaging modalities and characteristic findings in the management of bone and soft tissue tumors. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  13. High density event-related potential data acquisition in cognitive neuroscience.

    PubMed

    Slotnick, Scott D

    2010-04-16

    Functional magnetic resonance imaging (fMRI) is currently the standard method of evaluating brain function in the field of Cognitive Neuroscience, in part because fMRI data acquisition and analysis techniques are readily available. Because fMRI has excellent spatial resolution but poor temporal resolution, this method can only be used to identify the spatial location of brain activity associated with a given cognitive process (and reveals virtually nothing about the time course of brain activity). By contrast, event-related potential (ERP) recording, a method that is used much less frequently than fMRI, has excellent temporal resolution and thus can track rapid temporal modulations in neural activity. Unfortunately, ERPs are under utilized in Cognitive Neuroscience because data acquisition techniques are not readily available and low density ERP recording has poor spatial resolution. In an effort to foster the increased use of ERPs in Cognitive Neuroscience, the present article details key techniques involved in high density ERP data acquisition. Critically, high density ERPs offer the promise of excellent temporal resolution and good spatial resolution (or excellent spatial resolution if coupled with fMRI), which is necessary to capture the spatial-temporal dynamics of human brain function.

  14. Benefit from NASA

    NASA Image and Video Library

    2001-01-01

    The high-tech art of digital signal processing (DSP) was pioneered at NASA's Jet Propulsion Laboratory (JPL) in the mid-1960s for use in the Apollo Lunar Landing Program. Designed to computer enhance pictures of the Moon, this technology became the basis for the Landsat Earth resources satellites and subsequently has been incorporated into a broad range of Earthbound medical and diagnostic tools. DSP is employed in advanced body imaging techniques including Computer-Aided Tomography, also known as CT and CATScan, and Magnetic Resonance Imaging (MRI). CT images are collected by irradiating a thin slice of the body with a fan-shaped x-ray beam from a number of directions around the body's perimeter. A tomographic (slice-like) picture is reconstructed from these multiple views by a computer. MRI employs a magnetic field and radio waves, rather than x-rays, to create images. In this photograph, a patient undergoes an open MRI.

  15. Biochemical and physiological MR imaging of skeletal muscle at 7 tesla and above.

    PubMed

    Chang, Gregory; Wang, Ligong; Cárdenas-Blanco, Arturo; Schweitzer, Mark E; Recht, Michael P; Regatte, Ravinder R

    2010-06-01

    Ultra-high field (UHF; >or=7 T) magnetic resonance imaging (MRI), with its greater signal-to-noise ratio, offers the potential for increased spatial resolution, faster scanning, and, above all, improved biochemical and physiological imaging of skeletal muscle. The increased spectral resolution and greater sensitivity to low-gamma nuclei available at UHF should allow techniques such as (1)H MR spectroscopy (MRS), (31)P MRS, and (23)Na MRI to be more easily implemented. Numerous technical challenges exist in the performance of UHF MRI, including changes in relaxation values, increased chemical shift and susceptibility artifact, radiofrequency (RF) coil design/B (1)(+) field inhomogeneity, and greater RF energy deposition. Nevertheless, the possibility of improved functional and metabolic imaging at UHF will likely drive research efforts in the near future to overcome these challenges and allow studies of human skeletal muscle physiology and pathophysiology to be possible at >or=7 T.

  16. The MRI features of placental adhesion disorder—a pictorial review

    PubMed Central

    Teixidor Vinas, Mireia; Whitby, Elspeth

    2016-01-01

    Placental adhesion disorder (PAD) comprises placenta accreta, increta and percreta lesions; these are classified according to the depth of uterine invasion. Although PAD is considered a rare condition, its incidence has increased 10-fold in the last 50 years. Ultrasound is the primary imaging modality for the assessment of the placenta and in the majority of cases, it is sufficient for diagnosis; however, when ultrasound findings are suspicious or inconclusive, MRI is recommended as an adjunct imaging technique. Numerous MRI features of PAD have been described, including dark intraplacental bands, disorganized intraplacental vascularity and abnormal uterine bulging. This pictorial review describes and illustrates these characteristics and discusses their implications in planning delivery. In addition, we present a series of “pitfall” cases to aid the interpreting radiologist and discuss management of PAD. PAD is a clinical and diagnostic challenge that is encountered with increasing frequency, requiring a cohesive multidisciplinary approach to its management. PMID:27355318

  17. Analysis of a simulation algorithm for direct brain drug delivery

    PubMed Central

    Rosenbluth, Kathryn Hammond; Eschermann, Jan Felix; Mittermeyer, Gabriele; Thomson, Rowena; Mittermeyer, Stephan; Bankiewicz, Krystof S.

    2011-01-01

    Convection enhanced delivery (CED) achieves targeted delivery of drugs with a pressure-driven infusion through a cannula placed stereotactically in the brain. This technique bypasses the blood brain barrier and gives precise distributions of drugs, minimizing off-target effects of compounds such as viral vectors for gene therapy or toxic chemotherapy agents. The exact distribution is affected by the cannula positioning, flow rate and underlying tissue structure. This study presents an analysis of a simulation algorithm for predicting the distribution using baseline MRI images acquired prior to inserting the cannula. The MRI images included diffusion tensor imaging (DTI) to estimate the tissue properties. The algorithm was adapted for the devices and protocols identified for upcoming trials and validated with direct MRI visualization of Gadolinium in 20 infusions in non-human primates. We found strong agreement between the size and location of the simulated and gadolinium volumes, demonstrating the clinical utility of this surgical planning algorithm. PMID:21945468

  18. Applications of Magnetic Resonance Imaging of the Thorax in Pleural Diseases: A State-of-the-Art Review.

    PubMed

    Pessôa, Fernanda Miraldi Clemente; de Melo, Alessandro Severo Alves; Souza, Arthur Soares; de Souza, Luciana Soares; Hochhegger, Bruno; Zanetti, Gláucia; Marchiori, Edson

    2016-08-01

    The aim of this review was to present the main aspects of pleural diseases seen with conventional and advanced magnetic resonance imaging (MRI) techniques. This modality is considered to be the gold standard for the evaluation of the pleural interface, characterization of complex pleural effusion, and identification of exudate and hemorrhage, as well as in the analysis of superior sulcus tumors, as it enables more accurate staging. The indication for MRI of the thorax in the identification of these conditions is increasing in comparison to computerized tomography, and it can also be used to support the diagnosis of pulmonary illnesses. This literature review describes the morphological and functional aspects of the main benign and malignant pleural diseases assessed with MRI, including mesothelioma, metastasis, lymphoma, fibroma, lipoma, endometriosis, asbestos-related pleural disease, empyema, textiloma, and splenosis.

  19. Imaging Patterns of Muscle Atrophy.

    PubMed

    Weber, Marc-André; Wolf, Marcel; Wattjes, Mike P

    2018-07-01

    The role of muscle imaging in the diagnosis of inherited and acquired muscle diseases has gained clinical relevance. In particular, magnetic resonance imaging (MRI) is increasingly being used for diagnostic purposes, especially with its capability of whole-body musculature assessment. The assessment and quantification of muscle involvement in muscle diseases can be of diagnostic value by identifying a certain involvement pattern and thus narrowing the differential diagnosis and supporting the clinical diagnosis. In addition, more recently the role of imaging has gone beyond diagnostic purposes and includes disease as well as treatment monitoring. Conventional and quantitative muscle MRI techniques allow for the detection of subclinical disease progression (e.g., in muscular dystrophies) and is a powerful surrogate outcome measure in clinical trials. We present and discuss recent data on the role of conventional and quantitative MRI in the diagnosis and monitoring of inherited dystrophic muscle diseases as well as muscle denervation. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  20. Model–Free Visualization of Suspicious Lesions in Breast MRI Based on Supervised and Unsupervised Learning

    PubMed Central

    Twellmann, Thorsten; Meyer-Baese, Anke; Lange, Oliver; Foo, Simon; Nattkemper, Tim W.

    2008-01-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has become an important tool in breast cancer diagnosis, but evaluation of multitemporal 3D image data holds new challenges for human observers. To aid the image analysis process, we apply supervised and unsupervised pattern recognition techniques for computing enhanced visualizations of suspicious lesions in breast MRI data. These techniques represent an important component of future sophisticated computer-aided diagnosis (CAD) systems and support the visual exploration of spatial and temporal features of DCE-MRI data stemming from patients with confirmed lesion diagnosis. By taking into account the heterogeneity of cancerous tissue, these techniques reveal signals with malignant, benign and normal kinetics. They also provide a regional subclassification of pathological breast tissue, which is the basis for pseudo-color presentations of the image data. Intelligent medical systems are expected to have substantial implications in healthcare politics by contributing to the diagnosis of indeterminate breast lesions by non-invasive imaging. PMID:19255616

  1. Biological and Health Effects of Electromagnetic Fields Related to the Operation of MRI/TMS

    NASA Astrophysics Data System (ADS)

    Shigemitsu, Tsukasa; Ueno, Shoogo

    This paper reviews issues of biological effects and safety aspects of the electromagnetic fields related to both Magnetic Resonance Imaging (MRI) and Transcranial Magnetic Stimulation (TMS) as a diagnostic technique. The noninvasive character of these diagnostic techniques is based on the utilization of the electromagnetic fields such as the static magnetic field, time-varying magnetic field, and radiofrequency electromagnetic field. Following the short view of the history and the principle of these noninvasive techniques, we review the biological effects of the electromagnetic fields, the health effects and safety issues related to MRI/TMS environments. Through a discussion of biological and health effects, it shows briefly guidelines which provide a consideration in human risk for both patients and medical staff. Finally, safety issues related to MRI/TMS are discussed with the highlighting of the guideline such as the International Commission on NonIonizing Radiation Protection (ICNIRP) and EMF Directive (Directve2013/35/EU) of European Union.

  2. Cerebral microbleeds: a guide to detection and interpretation.

    PubMed

    Greenberg, Steven M; Vernooij, Meike W; Cordonnier, Charlotte; Viswanathan, Anand; Al-Shahi Salman, Rustam; Warach, Steven; Launer, Lenore J; Van Buchem, Mark A; Breteler, Monique Mb

    2009-02-01

    Cerebral microbleeds (CMBs) are increasingly recognised neuroimaging findings in individuals with cerebrovascular disease and dementia, and in normal ageing. There has been substantial progress in the understanding of CMBs in recent years, particularly in the development of newer MRI methods for the detection of CMBs and the application of these techniques to population-based samples of elderly people. In this Review, we focus on these recent developments and their effects on two main questions: how CMBs are detected, and how CMBs should be interpreted. The number of CMBs detected depends on MRI characteristics, such as pulse sequence, sequence parameters, spatial resolution, magnetic field strength, and image post-processing, emphasising the importance of taking into account MRI technique in the interpretation of study results. Recent investigations with sensitive MRI techniques have indicated a high prevalence of CMBs in community-dwelling elderly people. We propose a procedural guide for identification of CMBs and suggest possible future approaches for elucidating the role of these common lesions as markers for, and contributors to, small-vessel brain disease.

  3. Pictorial review: MRI of the sternum and sternoclavicular joints.

    PubMed

    Aslam, M; Rajesh, A; Entwisle, J; Jeyapalan, K

    2002-07-01

    The sternum and sternoclavicular joints are difficult to evaluate with plain radiographs. The value of CT in assessing lesions of the sternum and sternoclavicular joints has been well documented, but the potential role of MRI has not been emphasized. We present the MRI techniques, normal appearances and a spectrum of abnormalities, and emphasize the role of MRI as a useful radiological investigation for the sternum and sternoclavicular joints.

  4. Compressed Sensing for fMRI: Feasibility Study on the Acceleration of Non-EPI fMRI at 9.4T

    PubMed Central

    Kim, Seong-Gi; Ye, Jong Chul

    2015-01-01

    Conventional functional magnetic resonance imaging (fMRI) technique known as gradient-recalled echo (GRE) echo-planar imaging (EPI) is sensitive to image distortion and degradation caused by local magnetic field inhomogeneity at high magnetic fields. Non-EPI sequences such as spoiled gradient echo and balanced steady-state free precession (bSSFP) have been proposed as an alternative high-resolution fMRI technique; however, the temporal resolution of these sequences is lower than the typically used GRE-EPI fMRI. One potential approach to improve the temporal resolution is to use compressed sensing (CS). In this study, we tested the feasibility of k-t FOCUSS—one of the high performance CS algorithms for dynamic MRI—for non-EPI fMRI at 9.4T using the model of rat somatosensory stimulation. To optimize the performance of CS reconstruction, different sampling patterns and k-t FOCUSS variations were investigated. Experimental results show that an optimized k-t FOCUSS algorithm with acceleration by a factor of 4 works well for non-EPI fMRI at high field under various statistical criteria, which confirms that a combination of CS and a non-EPI sequence may be a good solution for high-resolution fMRI at high fields. PMID:26413503

  5. Imaging laminar structures in the gray matter with diffusion MRI.

    PubMed

    Assaf, Yaniv

    2018-01-05

    The cortical layers define the architecture of the gray matter and its neuroanatomical regions and are essential for brain function. Abnormalities in cortical layer development, growth patterns, organization, or size can affect brain physiology and cognition. Unfortunately, while large population studies are underway that will greatly increase our knowledge about these processes, current non-invasive techniques for characterizing the cortical layers remain inadequate. For decades, high-resolution T1 and T2 Weighted Magnetic Resonance Imaging (MRI) have been the method-of-choice for gray matter and layer characterization. In the past few years, however, diffusion MRI has shown increasing promise for its unique insights into the fine structure of the cortex. Several different methods, including surface analysis, connectivity exploration, and sub-voxel component modeling, are now capable of exploring the diffusion characteristics of the cortex. In this review, we will discuss current advances in the application of diffusion imaging for cortical characterization and its unique features, with a particular emphasis on its spatial resolution, arguably its greatest limitation. In addition, we will explore the relationship between the diffusion MRI signal and the cellular components of the cortex, as visualized by histology. While the obstacles facing the widespread application of cortical diffusion imaging remain daunting, the information it can reveal may prove invaluable. Within the next few years, we predict a surge in the application of this technique and a concomitant expansion of our knowledge of cortical layers. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Evaluation and reduction of magnetic resonance imaging artifacts induced by distinct plates for osseous fixation: an in vitro study @ 3T.

    PubMed

    Rendenbach, Carsten; Schoellchen, Maximilian; Bueschel, Julie; Gauer, Tobias; Sedlacik, Jan; Kutzner, Daniel; Vallittu, Pekka K; Heiland, Max; Smeets, Ralf; Fiehler, Jens; Siemonsen, Susanne

    2018-05-02

    To analyze Magnetic Resonance Imaging (MRI) artifact induced at 3 Tesla by bioresorbable, titanium and glass fiber reinforced composite (GFRC) plates for osseous reconstruction. Fixation plates including bioresorbable polymers (Inion CPS, Inion Oy, Tampere, Finland; Rapidsorb, DePuy Synthes, Umkirch, Germany; Resorb X, Gebrueder KLS Martin GmbH, Tuttlingen, Germany), Glass fiber reinforced composite (Skulle Implants Oy, Turku, Finland) and titanium plates of varying thickness and design (DePuy Synthes, Umkirch, Germany) were embedded in agarose gel and a 3T MRI was performed using a standard protocol for head and neck imaging including T1w and T2w sequences. Additionally, different artifact reducing sequence techniques (slice encoding for metal artifact reduction (SEMAC) & ultrashort echotime (UTE)) were used and their impact on the extent of artifacts evaluated for each material. All titanium plates induced significantly more artefacts than resorbable plates in T1w and T2w sequences. Glass fiber-reinforced composites induced the least artefacts in both sequences. The total extent of artefacts increased with plate thickness and height. Plate thickness had no influence on the percentage of overestimation in all three dimensions. Titanium induced artefacts were significantly reduced by both artifact reducing sequence techniques. Polylactide, glass fiber-reinforced composite and magnesium plates produce less susceptibility artefacts in MRI compared to titanium, while the dimensions of titanium plates directly influence artifact extension. SEMAC and UTE significantly reduce metal artefacts at the expense of image resolution.

  7. Comparison of conventional DCE-MRI and a novel golden-angle radial multicoil compressed sensing method for the evaluation of breast lesion conspicuity.

    PubMed

    Heacock, Laura; Gao, Yiming; Heller, Samantha L; Melsaether, Amy N; Babb, James S; Block, Tobias K; Otazo, Ricardo; Kim, Sungheon G; Moy, Linda

    2017-06-01

    To compare a novel multicoil compressed sensing technique with flexible temporal resolution, golden-angle radial sparse parallel (GRASP), to conventional fat-suppressed spoiled three-dimensional (3D) gradient-echo (volumetric interpolated breath-hold examination, VIBE) MRI in evaluating the conspicuity of benign and malignant breast lesions. Between March and August 2015, 121 women (24-84 years; mean, 49.7 years) with 180 biopsy-proven benign and malignant lesions were imaged consecutively at 3.0 Tesla in a dynamic contrast-enhanced (DCE) MRI exam using sagittal T1-weighted fat-suppressed 3D VIBE in this Health Insurance Portability and Accountability Act-compliant, retrospective study. Subjects underwent MRI-guided breast biopsy (mean, 13 days [1-95 days]) using GRASP DCE-MRI, a fat-suppressed radial "stack-of-stars" 3D FLASH sequence with golden-angle ordering. Three readers independently evaluated breast lesions on both sequences. Statistical analysis included mixed models with generalized estimating equations, kappa-weighted coefficients and Fisher's exact test. All lesions demonstrated good conspicuity on VIBE and GRASP sequences (4.28 ± 0.81 versus 3.65 ± 1.22), with no significant difference in lesion detection (P = 0.248). VIBE had slightly higher lesion conspicuity than GRASP for all lesions, with VIBE 12.6% (0.63/5.0) more conspicuous (P < 0.001). Masses and nonmass enhancement (NME) were more conspicuous on VIBE (P < 0.001), with a larger difference for NME (14.2% versus 9.4% more conspicuous). Malignant lesions were more conspicuous than benign lesions (P < 0.001) on both sequences. GRASP DCE-MRI, a multicoil compressed sensing technique with high spatial resolution and flexible temporal resolution, has near-comparable performance to conventional VIBE imaging for breast lesion evaluation. 3 Technical Efficacy: Stage 3 J. MAGN. RESON. IMAGING 2017;45:1746-1752. © 2016 International Society for Magnetic Resonance in Medicine.

  8. Contactless Abdominal Fat Reduction With Selective RF™ Evaluated by Magnetic Resonance Imaging (MRI): Case Study.

    PubMed

    Downie, Jeanine; Kaspar, Miroslav

    2016-04-01

    Noninvasive body shaping methods seem to be an ascending part of the aesthetics market. As a result, the pressure to develop reliable methods for the collection and presentation of their results has also increased. The most used techniques currently include ultrasound measurements of fat thickness in the treated area, caliper measurements, bioimpedance-based scale measurements or circumferential tape measurements. Although these are the most used techniques, almost all of them have some limitations in reproducibility and/or accuracy. This study shows Magnetic Resonance Imaging (MRI) as the new method for the presentation of results in the body shaping industry. Six subjects were treated by a contactless selective radiofrequency device (BTL Vanquish ME, BTL Industries Inc., Boston, MA). The MRI fat thickness was measured at the baseline and at 4-weeks following the treatment. In addition to MRI images and measurements, digital photographs and anthropometric evaluations such as weight, abdominal circumference, and caliper fat thickness measurements were recorded. Abdominal fat thickness measurements from the MRI were performed from the same slices determined by the same tissue artefacts. The MRI fat thickness difference between the baseline measurement and follow up visit showed an average reduction of 5.36 mm as calculated from the data of 5 subjects. One subject dropped out of study due to non-study related issues. The results were statistically significant based on the Student's T-test evaluation. Magnetic resonance imaging abdominal fat thickness measurements seems to be the best method for the evaluation of fat thickness reduction after non-invasive body shaping treatments. In this study, this method shows average fat thickness reduction of 5.36 mm while the weight of the subjects didn't change significantly. A large spot size measuring 1317 cm(2) (204 square inches) covers the abdomen flank to flank. The average thickness of 5.36 mm of the fat layer reduced under the applicator translates into significant cumulative circumferential reduction. The reduction was not related with dieting.

  9. Clinical utility of resting-state functional connectivity magnetic resonance imaging for mood and cognitive disorders.

    PubMed

    Takamura, T; Hanakawa, T

    2017-07-01

    Although functional magnetic resonance imaging (fMRI) has long been used to assess task-related brain activity in neuropsychiatric disorders, it has not yet become a widely available clinical tool. Resting-state fMRI (rs-fMRI) has been the subject of recent attention in the fields of basic and clinical neuroimaging research. This method enables investigation of the functional organization of the brain and alterations of resting-state networks (RSNs) in patients with neuropsychiatric disorders. Rs-fMRI does not require participants to perform a demanding task, in contrast to task fMRI, which often requires participants to follow complex instructions. Rs-fMRI has a number of advantages over task fMRI for application with neuropsychiatric patients, for example, although applications of task fMR to participants for healthy are easy. However, it is difficult to apply these applications to patients with psychiatric and neurological disorders, because they may have difficulty in performing demanding cognitive task. Here, we review the basic methodology and analysis techniques relevant to clinical studies, and the clinical applications of the technique for examining neuropsychiatric disorders, focusing on mood disorders (major depressive disorder and bipolar disorder) and dementia (Alzheimer's disease and mild cognitive impairment).

  10. Diffusion MRI in early cancer therapeutic response assessment

    PubMed Central

    Galbán, C. J.; Hoff, B. A.; Chenevert, T. L.; Ross, B. D.

    2016-01-01

    Imaging biomarkers for the predictive assessment of treatment response in patients with cancer earlier than standard tumor volumetric metrics would provide new opportunities to individualize therapy. Diffusion-weighted MRI (DW-MRI), highly sensitive to microenvironmental alterations at the cellular level, has been evaluated extensively as a technique for the generation of quantitative and early imaging biomarkers of therapeutic response and clinical outcome. First demonstrated in a rodent tumor model, subsequent studies have shown that DW-MRI can be applied to many different solid tumors for the detection of changes in cellularity as measured indirectly by an increase in the apparent diffusion coefficient (ADC) of water molecules within the lesion. The introduction of quantitative DW-MRI into the treatment management of patients with cancer may aid physicians to individualize therapy, thereby minimizing unnecessary systemic toxicity associated with ineffective therapies, saving valuable time, reducing patient care costs and ultimately improving clinical outcome. This review covers the theoretical basis behind the application of DW-MRI to monitor therapeutic response in cancer, the analytical techniques used and the results obtained from various clinical studies that have demonstrated the efficacy of DW-MRI for the prediction of cancer treatment response. PMID:26773848

  11. Custom fit 3D-printed brain holders for comparison of histology with MRI in marmosets.

    PubMed

    Guy, Joseph R; Sati, Pascal; Leibovitch, Emily; Jacobson, Steven; Silva, Afonso C; Reich, Daniel S

    2016-01-15

    MRI has the advantage of sampling large areas of tissue and locating areas of interest in 3D space in both living and ex vivo systems, whereas histology has the ability to examine thin slices of ex vivo tissue with high detail and specificity. Although both are valuable tools, it is currently difficult to make high-precision comparisons between MRI and histology due to large differences inherent to the techniques. A method combining the advantages would be an asset to understanding the pathological correlates of MRI. 3D-printed brain holders were used to maintain marmoset brains in the same orientation during acquisition of ex vivo MRI and pathologic cutting of the tissue. The results of maintaining this same orientation show that sub-millimeter, discrete neuropathological features in marmoset brain consistently share size, shape, and location between histology and ex vivo MRI, which facilitates comparison with serial imaging acquired in vivo. Existing methods use computational approaches sensitive to data input in order to warp histologic images to match large-scale features on MRI, but the new method requires no warping of images, due to a preregistration accomplished in the technique, and is insensitive to data formatting and artifacts in both MRI and histology. The simple method of using 3D-printed brain holders to match brain orientation during pathologic sectioning and MRI acquisition enables rapid and precise comparison of small features seen on MRI to their underlying histology. Published by Elsevier B.V.

  12. Identifying relevant biomarkers of brain injury from structural MRI: Validation using automated approaches in children with unilateral cerebral palsy

    PubMed Central

    Dowson, Nicholas; Doecke, James; Fiori, Simona; Bradley, Andrew P.; Boyd, Roslyn N.; Rose, Stephen

    2017-01-01

    Previous studies have proposed that the early elucidation of brain injury from structural Magnetic Resonance Images (sMRI) is critical for the clinical assessment of children with cerebral palsy (CP). Although distinct aetiologies, including cortical maldevelopments, white and grey matter lesions and ventricular enlargement, have been categorised, these injuries are commonly only assessed in a qualitative fashion. As a result, sMRI remains relatively underexploited for clinical assessments, despite its widespread use. In this study, several automated and validated techniques to automatically quantify these three classes of injury were generated in a large cohort of children (n = 139) aged 5–17, including 95 children diagnosed with unilateral CP. Using a feature selection approach on a training data set (n = 97) to find severity of injury biomarkers predictive of clinical function (motor, cognitive, communicative and visual function), cortical shape and regional lesion burden were most often chosen associated with clinical function. Validating the best models on the unseen test data (n = 42), correlation values ranged between 0.545 and 0.795 (p<0.008), indicating significant associations with clinical function. The measured prevalence of injury, including ventricular enlargement (70%), white and grey matter lesions (55%) and cortical malformations (30%), were similar to the prevalence observed in other cohorts of children with unilateral CP. These findings support the early characterisation of injury from sMRI into previously defined aetiologies as part of standard clinical assessment. Furthermore, the strong and significant association between quantifications of injury observed on structural MRI and multiple clinical scores accord with empirically established structure-function relationships. PMID:28763455

  13. Brain abscesses as a metastatic manifestation of strangles: symptomatology and the use of magnetic resonance imaging as a diagnostic aid.

    PubMed

    Spoormakers, T J P; Ensink, J M; Goehring, L S; Koeman, J P; Ter Braake, F; van der Vlugt-Meijer, R H; van den Belt, A J M

    2003-03-01

    The occurrence of unexpectedly high numbers of horses with neurological signs during two outbreaks of strangles required prompt in-depth researching of these cases, including the exploration of magnetic resonance imaging (MRI) as a possible diagnostic technique. To describe the case series and assess the usefulness of MRI as an imaging modality for cases suspected of space-occupying lesions in the cerebral cavity. Four cases suspected of suffering from cerebral damage due to Streptococcus equi subsp. equi infection were examined clinically, pathologically, bacteriologically, by clinical chemistry (3 cases) and MRI (2 cases). In one case, MRI findings were compared to images acquired using computer tomography (CT). In all cases, cerebral abscesses positive for Streptococcus equi subsp. equi were found, which explained the clinical signs. Although the lesions could be visualised with CT, MRI images were superior in representing the exact anatomic reality of the soft tissue lesions. The diagnosis of bastard strangles characterised by metastatic brain abscesses was confirmed. MRI appeared to be an excellent tool for the imaging of cerebral lesions in the horse. The high incidence of neurological complications could not be explained but possibly indicated a change in virulence of certain strains of Streptococcus equi subsp. equi. MRI images were very detailed, permitting visualisation of much smaller lesions than demonstrated in this study and this could allow prompt clinical intervention in less advanced cases with a better prognosis. Further, MRI could assist in the surgical treatment of brain abscesses, as has been described earlier for CT.

  14. In-vivo Imaging of Magnetic Fields Induced by Transcranial Direct Current Stimulation (tDCS) in Human Brain using MRI

    NASA Astrophysics Data System (ADS)

    Jog, Mayank V.; Smith, Robert X.; Jann, Kay; Dunn, Walter; Lafon, Belen; Truong, Dennis; Wu, Allan; Parra, Lucas; Bikson, Marom; Wang, Danny J. J.

    2016-10-01

    Transcranial direct current stimulation (tDCS) is an emerging non-invasive neuromodulation technique that applies mA currents at the scalp to modulate cortical excitability. Here, we present a novel magnetic resonance imaging (MRI) technique, which detects magnetic fields induced by tDCS currents. This technique is based on Ampere’s law and exploits the linear relationship between direct current and induced magnetic fields. Following validation on a phantom with a known path of electric current and induced magnetic field, the proposed MRI technique was applied to a human limb (to demonstrate in-vivo feasibility using simple biological tissue) and human heads (to demonstrate feasibility in standard tDCS applications). The results show that the proposed technique detects tDCS induced magnetic fields as small as a nanotesla at millimeter spatial resolution. Through measurements of magnetic fields linearly proportional to the applied tDCS current, our approach opens a new avenue for direct in-vivo visualization of tDCS target engagement.

  15. Spatiotemporal characteristics and vascular sources of neural-specific and -nonspecific fMRI signals at submillimeter columnar resolution

    PubMed Central

    Moon, Chan Hong; Fukuda, Mitsuhiro; Kim, Seong-Gi

    2012-01-01

    The neural specificity of hemodynamic-based functional magnetic resonance imaging (fMRI) signals are dependent on both the vascular regulation and the sensitivity of the applied fMRI technique to different types and sizes of blood vessels. In order to examine the specificity of MRI-detectable hemodynamic responses, submillimeter blood oxygenation-level dependent (BOLD) and cerebral blood volume (CBV) fMRI studies were performed in a well-established cat orientation column model at 9.4 Tesla. Neural-nonspecific and -specific signals were separated by comparing the fMRI responses of orthogonal orientation stimuli. The BOLD response was dominantly neural-nonspecific, mostly originating from pial and intracortical emerging veins, and thus was highly correlated with baseline blood volume. Uneven baseline CBV may displace or distort small functional domains in high-resolution BOLD maps. The CBV response in the parenchyma exhibited dual spatiotemporal characteristics, a fast and early neural-nonspecific response (with 4.3-s time constant) and a slightly slower and delayed neural-specific response (with 9.4-s time constant). The nonspecific CBV signal originates from early-responding arteries and arterioles, while the specific CBV response, which is not correlated with baseline blood volume, arises from late-responding microvessels including small pre-capillary arterioles and capillaries. Our data indicate that although the neural specificity of CBV fMRI signals is dependent on stimulation duration, high-resolution functional maps can be obtained from steady-state CBV studies. PMID:22960251

  16. Chondrocalcinosis of the hyaline cartilage of the knee: MRI manifestations.

    PubMed

    Beltran, J; Marty-Delfaut, E; Bencardino, J; Rosenberg, Z S; Steiner, G; Aparisi, F; Padrón, M

    1998-07-01

    To determine the ability of MRI to detect the presence of crystals of calcium pyrophosphate in the articular cartilage of the knee. The MR studies of 12 knees (11 cases) were reviewed retrospectively and correlated with radiographs (12 cases) and the findings at arthroscopy (2 cases) and surgery (1 case). A total of 72 articular surfaces were evaluated. Radiographic, surgical or arthroscopic demonstration of chondrocalcinosis was used as the gold standard. Additionally, two fragments of the knee of a patient who underwent total knee replacement and demonstrated extensive chondrocalcinosis were studied with radiography and MRI using spin-echo T1-, T2- and proton-density-weighted images as well as two- and three-dimensional fat saturation (2D and 3D Fat Sat) gradient recalled echo (GRE) and STIR sequences. MRI revealed multiple hypointense foci within the articular cartilage in 34 articular surfaces, better shown on 2D and 3D GRE sequences. Radiographs showed 12 articular surfaces with chondrocalcinosis. In three cases with arthroscopic or surgical correlation, MRI demonstrated more diffuse involvement of the articular cartilage than did the radiographs. The 3D Fat Sat GRE sequences were the best for demonstrating articular calcification in vitro. In no case was meniscal calcification identified with MRI. Hyperintense halos around some of the calcifications were seen on the MR images. MRI can depict articular cartilage calcification as hypointense foci using GRE techniques. Differential diagnosis includes loose bodies, post-surgical changes, marginal osteophytes and hemosiderin deposition.

  17. Review: Magnetic resonance imaging techniques in ophthalmology

    PubMed Central

    Fagan, Andrew J.

    2012-01-01

    Imaging the eye with magnetic resonance imaging (MRI) has proved difficult due to the eye’s propensity to move involuntarily over typical imaging timescales, obscuring the fine structure in the eye due to the resulting motion artifacts. However, advances in MRI technology help to mitigate such drawbacks, enabling the acquisition of high spatiotemporal resolution images with a variety of contrast mechanisms. This review aims to classify the MRI techniques used to date in clinical and preclinical ophthalmologic studies, describing the qualitative and quantitative information that may be extracted and how this may inform on ocular pathophysiology. PMID:23112569

  18. A comparison of liver fat content as determined by magnetic resonance imaging-proton density fat fraction and MRS versus liver histology in non-alcoholic fatty liver disease.

    PubMed

    Idilman, Ilkay S; Keskin, Onur; Celik, Azim; Savas, Berna; Elhan, Atilla Halil; Idilman, Ramazan; Karcaaltincaba, Musturay

    2016-03-01

    Many imaging methods have been defined for quantification of hepatic steatosis in non-alcoholic fatty liver disease (NAFLD). However, studies comparing the efficiency of magnetic resonance imaging-proton density fat fraction (MRI-PDFF), magnetic resonance spectroscopy (MRS), and liver histology for quantification of liver fat content are limited. To compare the efficiency of MRI-PDFF and MRS in the quantification of liver fat content in individuals with NAFLD. A total of 19 NAFLD patients underwent MRI-PDFF, MRS, and liver biopsy for quantification of liver fat content. The MR examinations were performed on a 1.5 HDx MRI system. The MRI protocol included T1-independent volumetric multi-echo gradient-echo imaging with T2* correction and spectral fat modeling and MRS with STEAM technique. A close correlation was observed between liver MRI-PDFF- and histology- determined steatosis (r = 0.743, P < 0.001) and between liver MRS- and histology-determined steatosis (r = 0.712, P < 0.001), with no superiority between them (ƶ = 0.19, P = 0.849). For quantification of hepatic steatosis, a high correlation was observed between the two MRI methods (r = 0.986, P < 0.001). MRI-PDFF and MRS accurately differentiated moderate/severe steatosis from mild/no hepatic steatosis (P = 0.007 and 0.013, respectively), with no superiority between them (AUCMRI-PDFF = 0.881 ± 0.0856 versus AUCMRS = 0.857 ± 0.0924, P = 0.461). Both MRI-PDFF and MRS can be used for accurate quantification of hepatic steatosis. © The Foundation Acta Radiologica 2015.

  19. Brain–heart interactions: challenges and opportunities with functional magnetic resonance imaging at ultra-high field

    PubMed Central

    Raven, Erika P.; Duyn, Jeff H.

    2016-01-01

    Magnetic resonance imaging (MRI) at ultra-high field (UHF) strengths (7 T and above) offers unique opportunities for studying the human brain with increased spatial resolution, contrast and sensitivity. However, its reliability can be compromised by factors such as head motion, image distortion and non-neural fluctuations of the functional MRI signal. The objective of this review is to provide a critical discussion of the advantages and trade-offs associated with UHF imaging, focusing on the application to studying brain–heart interactions. We describe how UHF MRI may provide contrast and resolution benefits for measuring neural activity of regions involved in the control and mediation of autonomic processes, and in delineating such regions based on anatomical MRI contrast. Limitations arising from confounding signals are discussed, including challenges with distinguishing non-neural physiological effects from the neural signals of interest that reflect cardiorespiratory function. We also consider how recently developed data analysis techniques may be applied to high-field imaging data to uncover novel information about brain–heart interactions. PMID:27044994

  20. Brain-heart interactions: challenges and opportunities with functional magnetic resonance imaging at ultra-high field.

    PubMed

    Chang, Catie; Raven, Erika P; Duyn, Jeff H

    2016-05-13

    Magnetic resonance imaging (MRI) at ultra-high field (UHF) strengths (7 T and above) offers unique opportunities for studying the human brain with increased spatial resolution, contrast and sensitivity. However, its reliability can be compromised by factors such as head motion, image distortion and non-neural fluctuations of the functional MRI signal. The objective of this review is to provide a critical discussion of the advantages and trade-offs associated with UHF imaging, focusing on the application to studying brain-heart interactions. We describe how UHF MRI may provide contrast and resolution benefits for measuring neural activity of regions involved in the control and mediation of autonomic processes, and in delineating such regions based on anatomical MRI contrast. Limitations arising from confounding signals are discussed, including challenges with distinguishing non-neural physiological effects from the neural signals of interest that reflect cardiorespiratory function. We also consider how recently developed data analysis techniques may be applied to high-field imaging data to uncover novel information about brain-heart interactions. © 2016 The Author(s).

  1. [New ASAS criteria for the diagnosis of spondyloarthritis: diagnosing sacroiliitis by magnetic resonance imaging].

    PubMed

    Banegas Illescas, M E; López Menéndez, C; Rozas Rodríguez, M L; Fernández Quintero, R M

    2014-01-01

    Radiographic sacroiliitis has been included in the diagnostic criteria for spondyloarthropathies since the Rome criteria were defined in 1961. However, in the last ten years, magnetic resonance imaging (MRI) has proven more sensitive in the evaluation of the sacroiliac joints in patients with suspected spondyloarthritis and symptoms of sacroiliitis; MRI has proven its usefulness not only for diagnosis of this disease, but also for the follow-up of the disease and response to treatment in these patients. In 2009, The Assessment of SpondyloArthritis international Society (ASAS) developed a new set of criteria for classifying and diagnosing patients with spondyloarthritis; one important development with respect to previous classifications is the inclusion of MRI positive for sacroiliitis as a major diagnostic criterion. This article focuses on the radiologic part of the new classification. We describe and illustrate the different alterations that can be seen on MRI in patients with sacroiliitis, pointing out the limitations of the technique and diagnostic pitfalls. Copyright © 2013 SERAM. Published by Elsevier Espana. All rights reserved.

  2. New Insights into Signed Path Coefficient Granger Causality Analysis.

    PubMed

    Zhang, Jian; Li, Chong; Jiang, Tianzi

    2016-01-01

    Granger causality analysis, as a time series analysis technique derived from econometrics, has been applied in an ever-increasing number of publications in the field of neuroscience, including fMRI, EEG/MEG, and fNIRS. The present study mainly focuses on the validity of "signed path coefficient Granger causality," a Granger-causality-derived analysis method that has been adopted by many fMRI researches in the last few years. This method generally estimates the causality effect among the time series by an order-1 autoregression, and defines a positive or negative coefficient as an "excitatory" or "inhibitory" influence. In the current work we conducted a series of computations from resting-state fMRI data and simulation experiments to illustrate the signed path coefficient method was flawed and untenable, due to the fact that the autoregressive coefficients were not always consistent with the real causal relationships and this would inevitablely lead to erroneous conclusions. Overall our findings suggested that the applicability of this kind of causality analysis was rather limited, hence researchers should be more cautious in applying the signed path coefficient Granger causality to fMRI data to avoid misinterpretation.

  3. Relationship Between Audio-Vestibular Functional Tests and Inner Ear MRI in Meniere's Disease.

    PubMed

    Quatre, Raphaële; Attyé, Arnaud; Karkas, Alexandre; Job, Agnès; Dumas, Georges; Schmerber, Sébastien

    2018-04-25

    Meniere's disease is an inner ear disorder generally attributed to an endolymphatic hydrops. Different electrophysiological tests and imaging techniques have been developed to improve endolymphatic hydrops diagnosis. The goal of our study was to compare the sensitivity and the specificity of delayed inner ear magnetic resonance imaging (MRI) after intravenous injection of gadolinium with extratympanic clicks electrocochleography (EcochG), phase shift of distortion product otoacoustic emissions (shift-DPOAEs), and cervical vestibular-evoked myogenic potentials (cVEMP) for the diagnosis of Meniere's disease. Forty-one patients, with a total of 50 affected ears, were included prospectively from April 2015 to April 2016 in our institution. Patients included had definite or possible Meniere's disease based on the latest American Academy of Otolaryngology-Head and Neck Surgery guidelines revised in 2015. All patients went through delayed inner ear MRI after intravenous injection of gadolinium (three dimension-fluid attenuated inversion recovery sequences), pure-tone audiometry, extratympanic clicks EcochG, shift-DPOAEs, and cVEMP on the same day. Endolymphatic hydrops was graded on MRI using the saccule to utricle ratio inversion defined as when the saccule appeared equal or larger than the utricle. Abnormal EcochG and shift-DPOAEs in patients with definite Meniere's disease (DMD) were found in 68 and 64.5%, respectively. The two methods were significantly associated in DMD group. In DMD group, 25.7% had a positive MRI. The correlation between MRI versus EcochG and MRI versus shift-DPOAEs was not significant. MRI hydrops detection was correlated with hearing loss. Finally, 22.9% of DMD group had positive cVEMP. EcochG and shift-DPOAEs were both well correlated with clinical criteria of Meniere's disease. Inner ear MRI showed hydrops when hearing loss was higher than 35 dB. The shift-DPOAEs presented the advantage of a rapid and easy measurement if DPOAEs could be recorded (i.e., hearing threshold <60dB). In contrast, EcochG can be performed regardless of hearing loss. In combination with shift-DPOAEs, it enhances the chances to confirm the diagnosis with a better confidence.

  4. Functional Magnetic Resonance Imaging and Spectroscopic Imaging of the Brain: Application of fMRI and fMRS to Reading Disabilities and Education.

    ERIC Educational Resources Information Center

    Richards, Todd L.

    2001-01-01

    This tutorial/review covers functional brain-imaging methods and results used to study language and reading disabilities. Although the emphasis is on magnetic resonance imaging and functional magnetic resonance spectroscopy, other imaging techniques are also discussed including positron emission tomography, electroencephalography,…

  5. Further fMRI Validation of the Visual Half Field Technique as an Indicator of Language Laterality: A Large-Group Analysis

    ERIC Educational Resources Information Center

    Van der Haegen, Lise; Cai, Qing; Seurinck, Ruth; Brysbaert, Marc

    2011-01-01

    The best established lateralized cerebral function is speech production, with the majority of the population having left hemisphere dominance. An important question is how to best assess the laterality of this function. Neuroimaging techniques such as functional Magnetic Resonance Imaging (fMRI) are increasingly used in clinical settings to…

  6. A feasibility study for compressed sensing combined phase contrast MR angiography reconstruction

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Hoon; Hong, Cheol-Pyo; Lee, Man-Woo; Han, Bong-Soo

    2012-02-01

    Phase contrast magnetic resonance angiography (PC MRA) is a technique for flow velocity measurement and vessels visualization, simultaneously. The PC MRA takes long scan time because each flow encoding gradients which are composed bipolar gradient type need to reconstruct the angiography image. Moreover, it takes more image acquisition time when we use the PC MRA at the low-tesla MRI system. In this study, we studied and evaluation of feasibility for CS MRI reconstruction combined PC MRA which data acquired by low-tesla MRI system. We used non-linear reconstruction algorithm which named Bregman iteration for CS image reconstruction and validate the usefulness of CS combined PC MRA reconstruction technique. The results of CS reconstructed PC MRA images provide similar level of image quality between fully sampled reconstruction data and sparse sampled reconstruction using CS technique. Although our results used half of sampling ratio and do not used specification hardware device or performance which are improving the temporal resolution of MR image acquisition such as parallel imaging reconstruction using phased array coil or non-cartesian trajectory, we think that CS combined PC MRA technique will be helpful to increase the temporal resolution and at low-tesla MRI system.

  7. SQUIDs vs. Faraday coils for ultlra-low field nuclear magnetic resonance: experimental and simulation comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matlashov, Andrei N; Espy, Michelle A; Kraus, Robert H

    2010-01-01

    Nuclear magnetic resonance (NMR) methods are widely used in medicine, chemistry and industry. One application area is magnetic resonance imaging or MRI. Recently it has become possible to perform NMR and MRI in ultra-low field (ULF) regime that requires measurement field strengths only of the order of 1 Gauss. These techniques exploit the advantages offered by superconducting quantum interference devices or SQUIDs. Our group at LANL has built SQUID based MRI systems for brain imaging and for liquid explosives detection at airports security checkpoints. The requirement for liquid helium cooling limits potential applications of ULF MRI for liquid identification andmore » security purposes. Our experimental comparative investigation shows that room temperature inductive magnetometers provide enough sensitivity in the 3-10 kHz range and can be used for fast liquid explosives detection based on ULF NMR/MRI technique. We describe an experimental and computer simulation comparison of the world's first multichannel SQUID based and Faraday coils based instruments that are capable of performing ULF MRI for liquids identification.« less

  8. Real-time magnetic resonance imaging of cardiac function and flow—recent progress

    PubMed Central

    Zhang, Shuo; Joseph, Arun A.; Voit, Dirk; Schaetz, Sebastian; Merboldt, Klaus-Dietmar; Unterberg-Buchwald, Christina; Hennemuth, Anja; Lotz, Joachim

    2014-01-01

    Cardiac structure, function and flow are most commonly studied by ultrasound, X-ray and magnetic resonance imaging (MRI) techniques. However, cardiovascular MRI is hitherto limited to electrocardiogram (ECG)-synchronized acquisitions and therefore often results in compromised quality for patients with arrhythmias or inabilities to comply with requested protocols—especially with breath-holding. Recent advances in the development of novel real-time MRI techniques now offer dynamic imaging of the heart and major vessels with high spatial and temporal resolution, so that examinations may be performed without the need for ECG synchronization and during free breathing. This article provides an overview of technical achievements, physiological validations, preliminary patient studies and translational aspects for a future clinical scenario of cardiovascular MRI in real time. PMID:25392819

  9. New insights into lung diseases using hyperpolarized gas MRI.

    PubMed

    Flors, L; Altes, T A; Mugler, J P; de Lange, E E; Miller, G W; Mata, J F; Ruset, I C; Hersman, F W

    2015-01-01

    Hyperpolarized (HP) gases are a new class of contrast agents that permit to obtain high temporal and spatial resolution magnetic resonance images (MRI) of the lung airspaces. HP gas MRI has become important research tool not only for morphological and functional evaluation of normal pulmonary physiology but also for regional quantification of pathologic changes occurring in several lung diseases. The purpose of this work is to provide an introduction to MRI using HP noble gases, describing both the basic principles of the technique and the new information about lung disease provided by clinical studies with this method. The applications of the technique in normal subjects, smoking related lung disease, asthma, and cystic fibrosis are reviewed. Copyright © 2014 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  10. Blood oxygenation level-dependent MRI for assessment of renal oxygenation

    PubMed Central

    Neugarten, Joel; Golestaneh, Ladan

    2014-01-01

    Blood oxygen level-dependent magnetic resonance imaging (BOLD MRI) has recently emerged as an important noninvasive technique to assess intrarenal oxygenation under physiologic and pathophysiologic conditions. Although this tool represents a major addition to our armamentarium of methodologies to investigate the role of hypoxia in the pathogenesis of acute kidney injury and progressive chronic kidney disease, numerous technical limitations confound interpretation of data derived from this approach. BOLD MRI has been utilized to assess intrarenal oxygenation in numerous experimental models of kidney disease and in human subjects with diabetic and nondiabetic chronic kidney disease, acute kidney injury, renal allograft rejection, contrast-associated nephropathy, and obstructive uropathy. However, confidence in conclusions based on data derived from BOLD MRI measurements will require continuing advances and technical refinements in the use of this technique. PMID:25473304

  11. Timed function tests, motor function measure, and quantitative thigh muscle MRI in ambulant children with Duchenne muscular dystrophy: A cross-sectional analysis.

    PubMed

    Schmidt, Simone; Hafner, Patricia; Klein, Andrea; Rubino-Nacht, Daniela; Gocheva, Vanya; Schroeder, Jonas; Naduvilekoot Devasia, Arjith; Zuesli, Stephanie; Bernert, Guenther; Laugel, Vincent; Bloetzer, Clemens; Steinlin, Maja; Capone, Andrea; Gloor, Monika; Tobler, Patrick; Haas, Tanja; Bieri, Oliver; Zumbrunn, Thomas; Fischer, Dirk; Bonati, Ulrike

    2018-01-01

    The development of new therapeutic agents for the treatment of Duchenne muscular dystrophy has put a focus on defining outcome measures most sensitive to capture treatment effects. This cross-sectional analysis investigates the relation between validated clinical assessments such as the 6-minute walk test, motor function measure and quantitative muscle MRI of thigh muscles in ambulant Duchenne muscular dystrophy patients, aged 6.5 to 10.8 years (mean 8.2, SD 1.1). Quantitative muscle MRI included the mean fat fraction using a 2-point Dixon technique, and transverse relaxation time (T2) measurements. All clinical assessments were highly significantly inter-correlated with p < 0.001. The strongest correlation with the motor function measure and its D1-subscore was shown by the 6-minute walk test. Clinical assessments showed no correlation with age. Importantly, quantitative muscle MRI values significantly correlated with all clinical assessments with the extensors showing the strongest correlation. In contrast to the clinical assessments, quantitative muscle MRI values were highly significantly correlated with age. In conclusion, the motor function measure and timed function tests measure disease severity in a highly comparable fashion and all tests correlated with quantitative muscle MRI values quantifying fatty muscle degeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. State-of-the-art magnetic resonance imaging of pancreatic cancer.

    PubMed

    Schima, Wolfgang; Ba-Ssalamah, Ahmed; Goetzinger, Peter; Scharitzer, Martina; Koelblinger, Claus

    2007-12-01

    Technical advances of magnetic resonance imaging (MRI), including ultrahigh-field magnetic resonance at 3.0 T, parallel imaging techniques, and multichannel receive coils of the abdomen, have promoted MRI of the pancreas. For adenocarcinoma, which is the most common malignant pancreatic tumor, helical CT has been most often used for detection and staging, but it has limitations in the detection of small cancers 2 cm in diameter or less (sensitivity, 63%). Moreover, it is not very accurate in determining nonresectability, because small liver metastases, peritoneal carcinomatosis, and subtle signs of vascular infiltration may be missed. At ultrahigh field at 3.0 T, gadolinium-enhanced MRI using volume-interpolated 3-dimensional gradient-recalled echo pulse sequences with near-isotropic voxels are very useful for detection of subtle abnormalities. Mangafodipir-enhanced MRI reveals a very high tumor-pancreas contrast, which helps to diagnose small cancers. Contrast-enhanced MRI is a problem-solving tool in case of equivocal CT: it helps to differentiate between cancer and focal pancreatitis. Neuroendocrine carcinoma may present with a spectrum of appearances at MRI, but the primary tumor and liver metastases are hypervascular in approximately 70%. In this article, pancreas imaging protocols for 1.5 and 3.0 T are explained. We present the imaging features of pancreatic cancer and the important questions in staging, which should be addressed by the radiologist.

  13. Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project.

    PubMed

    Bastiani, Matteo; Andersson, Jesper L R; Cordero-Grande, Lucilio; Murgasova, Maria; Hutter, Jana; Price, Anthony N; Makropoulos, Antonios; Fitzgibbon, Sean P; Hughes, Emer; Rueckert, Daniel; Victor, Suresh; Rutherford, Mary; Edwards, A David; Smith, Stephen M; Tournier, Jacques-Donald; Hajnal, Joseph V; Jbabdi, Saad; Sotiropoulos, Stamatios N

    2018-05-28

    The developing Human Connectome Project is set to create and make available to the scientific community a 4-dimensional map of functional and structural cerebral connectivity from 20 to 44 weeks post-menstrual age, to allow exploration of the genetic and environmental influences on brain development, and the relation between connectivity and neurocognitive function. A large set of multi-modal MRI data from fetuses and newborn infants is currently being acquired, along with genetic, clinical and developmental information. In this overview, we describe the neonatal diffusion MRI (dMRI) image processing pipeline and the structural connectivity aspect of the project. Neonatal dMRI data poses specific challenges, and standard analysis techniques used for adult data are not directly applicable. We have developed a processing pipeline that deals directly with neonatal-specific issues, such as severe motion and motion-related artefacts, small brain sizes, high brain water content and reduced anisotropy. This pipeline allows automated analysis of in-vivo dMRI data, probes tissue microstructure, reconstructs a number of major white matter tracts, and includes an automated quality control framework that identifies processing issues or inconsistencies. We here describe the pipeline and present an exemplar analysis of data from 140 infants imaged at 38-44 weeks post-menstrual age. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Associations of resting-state fMRI functional connectivity with flow-BOLD coupling and regional vasculature.

    PubMed

    Tak, Sungho; Polimeni, Jonathan R; Wang, Danny J J; Yan, Lirong; Chen, J Jean

    2015-04-01

    There has been tremendous interest in applying functional magnetic resonance imaging-based resting-state functional connectivity (rs-fcMRI) measurements to the study of brain function. However, a lack of understanding of the physiological mechanisms of rs-fcMRI limits their ability to interpret rs-fcMRI findings. In this work, the authors examine the regional associations between rs-fcMRI estimates and dynamic coupling between the blood oxygenation level-dependent (BOLD) and cerebral blood flow (CBF), as well as resting macrovascular volume. Resting-state BOLD and CBF data were simultaneously acquired using a dual-echo pseudocontinuous arterial spin labeling (pCASL) technique, whereas macrovascular volume fraction was estimated using time-of-flight MR angiography. Functional connectivity within well-known functional networks—including the default mode, frontoparietal, and primary sensory-motor networks—was calculated using a conventional seed-based correlation approach. They found the functional connectivity strength to be significantly correlated with the regional increase in CBF-BOLD coupling strength and inversely proportional to macrovascular volume fraction. These relationships were consistently observed within all functional networks considered. Their findings suggest that highly connected networks observed using rs-fcMRI are not likely to be mediated by common vascular drainage linking distal cortical areas. Instead, high BOLD functional connectivity is more likely to reflect tighter neurovascular connections, attributable to neuronal pathways.

  15. [Value of MR imaging and MR angiography in the differential diagnosis of carotid space tumour].

    PubMed

    Liu, Pei-fang; Li, Xin; Bao, Run-xian; Liu, Jing-zu; Ge, Zheng-jin

    2004-04-01

    To determine the imaging features of magnetic resonance imaging (MRI) and 2D time of flight (TOF) MR angiography (MRA) and study the value in the differential diagnosis and surgical planning for carotid space tumors. Twenty-six patients with suspected pulsatile carotid space mass were imaged by MRI and 2D TOF MRA from 1996 to 2003. Its characteristic findings were analyzed for lesion shape, margin, signal intensity, angle of common carotid bifurcation, and the relationship between the great vessels and carotid space mass. Of the 26 patients, 22 were verified histopathologically, including 15 carotid body tumors (1 patient had bilateral carotid body tumors), 4 carotid artery aneurysms, 3 schwannomas, and 1 metastatic carcinoma. The rest four patients had clinical pseudomasses proved by MRI and MRA as considerable dilated or tortuous carotid artery as compared with the contralateral one. Combined MRI and MRA assessment of carotid body tumors and carotid artery aneurysm yielded an accuracy of 100%. It was also revealed that the anatomy shown on the MRI and axial MRA source images was consistent with that found by surgery. MRI in combination with MRA is considered as non-invasive imaging technique for the evaluation of carotid space tumor showing superiority to other modalities in the differential diagnosis between vascular versus non-vascular tumours. This method may take the place of traumatic carotid angiography.

  16. No Difference on Quantitative Magnetic Resonance Imaging in Patellofemoral Cartilage Composition Between Patients With Patellofemoral Pain and Healthy Controls.

    PubMed

    van der Heijden, Rianne A; Oei, Edwin H G; Bron, Esther E; van Tiel, Jasper; van Veldhoven, Peter L J; Klein, Stefan; Verhaar, Jan A N; Krestin, Gabriel P; Bierma-Zeinstra, Sita M A; van Middelkoop, Marienke

    2016-05-01

    Retropatellar cartilage damage has been suggested as an etiological factor for patellofemoral pain (PFP), a common knee condition among young and physically active individuals. To date, there is no conclusive evidence for an association between cartilage defects and PFP. Nowadays, advanced quantitative magnetic resonance imaging (MRI) techniques enable estimation of cartilage composition. To investigate differences in patellofemoral cartilage composition between patients with PFP and healthy control subjects using quantitative MRI. Cross-sectional study; Level of evidence, 3. Patients with PFP and healthy control subjects underwent 3.0-T MRI including delayed gadolinium-enhanced MRI of cartilage and T1ρ and T2 mapping. Differences in relaxation times of patellofemoral cartilage were compared between groups by linear regression analyses, adjusted for age, body mass index, sex, sports participation, and time of image acquisition. This case-control study included 64 patients and 70 controls. The mean (±SD) age was 23.2 ± 6.4 years and the mean body mass index was 22.9 ± 3.4 kg/m(2); 56.7% were female. For delayed gadolinium-enhanced MRI of cartilage, the mean T1GD relaxation times of patellar (657.8 vs 669.4 ms) and femoral cartilage (661.6 vs 659.8 ms) did not significantly differ between patients and controls. In addition, no significant difference was found in mean T1ρ relaxation times of patellar (46.9 vs 46.0 ms) and femoral cartilage (50.8 vs 50.2 ms) and mean T2 relaxation times of patellar (33.2 vs 32.9 ms) and femoral cartilage (36.7 vs 36.6 ms) between patients and controls. Analysis of prespecified medial and lateral subregions within the patellofemoral cartilage also revealed no significant differences. There was no difference in composition of the patellofemoral cartilage, estimated with multiple quantitative MRI techniques, between patients with PFP and healthy control subjects. However, clinically relevant differences could not be ruled out for T1ρ in the adolescent population. Retropatellar cartilage damage has long been hypothesized as an important factor in the pathogenesis of PFP, but study findings suggest that diminished patellofemoral cartilage composition is not associated with PFP. © 2016 The Author(s).

  17. The brain's silent messenger: using selective attention to decode human thought for brain-based communication.

    PubMed

    Naci, Lorina; Cusack, Rhodri; Jia, Vivian Z; Owen, Adrian M

    2013-05-29

    The interpretation of human thought from brain activity, without recourse to speech or action, is one of the most provoking and challenging frontiers of modern neuroscience. In particular, patients who are fully conscious and awake, yet, due to brain damage, are unable to show any behavioral responsivity, expose the limits of the neuromuscular system and the necessity for alternate forms of communication. Although it is well established that selective attention can significantly enhance the neural representation of attended sounds, it remains, thus far, untested as a response modality for brain-based communication. We asked whether its effect could be reliably used to decode answers to binary (yes/no) questions. Fifteen healthy volunteers answered questions (e.g., "Do you have brothers or sisters?") in the fMRI scanner, by selectively attending to the appropriate word ("yes" or "no"). Ninety percent of the answers were decoded correctly based on activity changes within the attention network. The majority of volunteers conveyed their answers with less than 3 min of scanning, suggesting that this technique is suited for communication in a reasonable amount of time. Formal comparison with the current best-established fMRI technique for binary communication revealed improved individual success rates and scanning times required to detect responses. This novel fMRI technique is intuitive, easy to use in untrained participants, and reliably robust within brief scanning times. Possible applications include communication with behaviorally nonresponsive patients.

  18. Dental magnetic resonance imaging: making the invisible visible.

    PubMed

    Idiyatullin, Djaudat; Corum, Curt; Moeller, Steen; Prasad, Hari S; Garwood, Michael; Nixdorf, Donald R

    2011-06-01

    Clinical dentistry is in need of noninvasive and accurate diagnostic methods to better evaluate dental pathosis. The purpose of this work was to assess the feasibility of a recently developed magnetic resonance imaging (MRI) technique, called SWeep Imaging with Fourier Transform (SWIFT), to visualize dental tissues. Three in vitro teeth, representing a limited range of clinical conditions of interest, imaged using a 9.4T system with scanning times ranging from 100 seconds to 25 minutes. In vivo imaging of a subject was performed using a 4T system with a 10-minute scanning time. SWIFT images were compared with traditional two-dimensional radiographs, three-dimensional cone-beam computed tomography (CBCT) scanning, gradient-echo MRI technique, and histological sections. A resolution of 100 μm was obtained from in vitro teeth. SWIFT also identified the presence and extent of dental caries and fine structures of the teeth, including cracks and accessory canals, which are not visible with existing clinical radiography techniques. Intraoral positioning of the radiofrequency coil produced initial images of multiple adjacent teeth at a resolution of 400 μm. SWIFT MRI offers simultaneous three-dimensional hard- and soft-tissue imaging of teeth without the use of ionizing radiation. Furthermore, it has the potential to image minute dental structures within clinically relevant scanning times. This technology has implications for endodontists because it offers a potential method to longitudinally evaluate teeth where pulp and root structures have been regenerated. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Diagnosis of hepatic metastasis: comparison of respiration-triggered diffusion-weighted echo-planar MRI and five t2-weighted turbo spin-echo sequences.

    PubMed

    Bruegel, Melanie; Gaa, Jochen; Waldt, Simone; Woertler, Klaus; Holzapfel, Konstantin; Kiefer, Berthold; Rummeny, Ernst J

    2008-11-01

    The purpose of this study was to compare the value of respiration-triggered diffusion-weighted (DW) single-shot echo-planar MRI (EPI) and five variants of T2-weighted turbo spin-echo (TSE) sequences in the diagnosis of hepatic metastasis. Fifty-two patients with extrahepatic primary malignant tumors underwent 1.5-T MRI that included DW EPI and the following variants of T2-weighted TSE techniques: breath-hold fat-suppressed HASTE, breath-hold fat-supressed TSE, respiration-triggered fat-suppressed TSE, breath-hold STIR, and respiration-triggered STIR. Images were reviewed independently by two blinded observers who used a 5-point confidence scale to identify lesions. Results were correlated with surgical and histopathologic findings and follow-up imaging findings. The accuracy of each technique was measured with free-response receiver operating characteristic analysis. A total of 118 hepatic metastatic lesions (mean diameter, 12.8 mm; range, 3-84 mm) were evaluated. Accuracy values were higher (p < 0.001) with DW EPI (0.91-0.92) than with the T2-weighted TSE techniques (0.47-0.67). Imaging with the HASTE sequence (0.47-0.52) was less accurate (p < 0.05) than imaging with the breath-hold TSE, breath-hold STIR, respiration-triggered TSE, and respiration-triggered STIR sequences (0.59-0.67). Sensitivity was higher (p < 0.001) with DW EPI (0.88-0.91) than with T2-weighted TSE techniques (0.45-0.62). For small (< or = 10 mm) metastatic lesions only, the differences in sensitivity between DW EPI (0.85) and T2-weighted TSE techniques (0.26-0.44) were even more pronounced. DW EPI was more sensitive and more accurate than imaging with T2-weighted TSE techniques. Because of the black-blood effect on vessels and low susceptibility to motion artifacts, DW EPI was particularly useful for the detection of small (< or = 10 mm) metastatic lesions.

  20. Neuroimaging and Other Biomarkers for Alzheimer's Disease: The Changing Landscape of Early Detection

    PubMed Central

    Risacher, Shannon L.; Saykin, Andrew J.

    2014-01-01

    The goal of this review is to provide an overview of biomarkers for Alzheimer's disease (AD), with emphasis on neuroimaging and cerebrospinal fluid (CSF) biomarkers. We first review biomarker changes in patients with late-onset AD, including findings from studies using structural and functional magnetic resonance imaging (MRI), advanced MRI techniques (diffusion tensor imaging, magnetic resonance spectroscopy, perfusion), positron emission tomography with fluorodeoxyglucose, amyloid tracers, and other neurochemical tracers, and CSF protein levels. Next, we evaluate findings from these biomarkers in preclinical and prodromal stages of AD including mild cognitive impairment (MCI) and pre-MCI conditions conferring elevated risk. We then discuss related findings in patients with dominantly inherited AD. We conclude with a discussion of the current theoretical framework for the role of biomarkers in AD and emergent directions for AD biomarker research. PMID:23297785

  1. [MRI and CT-scan in presumed benign ovarian tumors].

    PubMed

    Thomassin-Naggara, I; Bazot, M

    2013-12-01

    Radiological examinations are required for the assessment of complex or indeterminate ovarian masses, mainly using MRI and CT-scan. MRI provides better tissue characterization than Doppler ultrasound or CT-scan (LE2). Pelvic MRI is recommended in case of an indeterminate or complex ovarian ultrasonographic mass (grade B). The protocol of a pelvic MRI should include morphological T1 and T2 sequences (grade B). In case of solid portion, perfusion and diffusion sequences are recommended (grade C). In case of doubt about the diagnosis of ovarian origin, pelvic MRI is preferred over the CT-scan (grade C). MRI is the technique of choice for the difference between functional and organic ovarian lesion diagnosis (grade C). It can be useful in case of clinical diagnostic uncertainty between polycystic ovary syndrome and ovarian hyperstimulation and multilocular ovarian tumor syndrome (grade C). No MRI classification for ovarian masses is currently validated. The establishment of a presumption of risk of malignancy is required in a MRI report of adnexal mass with if possible a guidance on the histological diagnosis. In the absence of clinical or sonographic diagnosis, pelvic CT-scan is recommended in the context of acute painful pelvic mass in non-pregnant patients (grade C). It specifies the anomalies and allows the differential diagnosis with digestive and urinary diseases (LE4). Given the lack of data in the literature, the precautionary principle must be applied to the realization of a pelvic MRI in a pregnant patient. A risk-benefit balance should be evaluated case by case by the clinician and the radiologist and information should be given to the patient. In an emergency situation during pregnancy, pelvic MRI is an alternative to CT-scan for the exploration of acute pelvic pain in case of uncertain sonographic diagnosis (grade C). Copyright © 2013. Published by Elsevier Masson SAS.

  2. Accuracy of low-field magnetic resonance imaging versus radiography for guiding injection of equine distal interphalangeal joint collateral ligaments.

    PubMed

    Lamb, Megan M; Barrett, Jennifer G; White, Nathaniel A; Werre, Stephen R

    2014-01-01

    Desmopathy of the distal interphalangeal joint collateral ligament is a common cause of lameness in the horse and carries a variable prognosis for soundness. Intralesional treatment has been proposed for improving outcome; however, limited reports describe methods for injecting this ligament. The purpose of this study was to compare accuracy of low-field magnetic resonance imaging (MRI) vs. radiography for injecting the collateral ligament of the distal interphalangeal joint. Equine cadaver digit pairs (n = 10) were divided by random assignment to injection of the ligament by either technique. An observer unaware of injection technique determined injection success based on postinjection MRI and/or gross sections acquired from the proximal, middle, and distal portions of the ligament. McNemar's test was performed to determine statistical difference between injection techniques, the number of injection attempts, and injection of the medial or lateral collateral ligament. Magnetic resonance imaging guided injection was successful more frequently than radiographic-guided injection based on postinjection MRI (24 of 30 vs. 9 of 30; P = 0.0006) and gross sections (26 of 30 vs. 13 of 30; P = 0.0008). At each level of the ligament (proximal, middle, and distal), MRI-guided injection resulted in more successful injections than radiographic guidance. Statistical significance occurred at the proximal aspect of the collateral ligament based on postinjection MRI (P = 0.0143) and the middle portion of the ligament based on gross sections (P = 0.0253). Findings supported future testing of standing, low-field MRI as a technique for delivering intralesional regenerative therapy in live horses with desmopathy of these collateral ligaments. © 2013 American College of Veterinary Radiology.

  3. Dynamic multi-coil technique (DYNAMITE) shimming for echo-planar imaging of the human brain at 7 Tesla.

    PubMed

    Juchem, Christoph; Umesh Rudrapatna, S; Nixon, Terence W; de Graaf, Robin A

    2015-01-15

    Gradient-echo echo-planar imaging (EPI) is the primary method of choice in functional MRI and other methods relying on fast MRI to image brain activation and connectivity. However, the high susceptibility of EPI towards B0 magnetic field inhomogeneity poses serious challenges. Conventional magnetic field shimming with low-order spherical harmonic (SH) functions is capable of compensating shallow field distortions, but performs poorly for global brain shimming or on specific areas with strong susceptibility-induced B0 distortions such as the prefrontal cortex (PFC). Excellent B0 homogeneity has been demonstrated recently in the human brain at 7 Tesla with the DYNAmic Multi-coIl TEchnique (DYNAMITE) for magnetic field shimming (J Magn Reson (2011) 212:280-288). Here, we report the benefits of DYNAMITE shimming for multi-slice EPI and T2* mapping. A standard deviation of 13Hz was achieved for the residual B0 distribution in the human brain at 7 Tesla with DYNAMITE shimming and was 60% lower compared to conventional shimming that employs static zero through third order SH shapes. The residual field inhomogeneity with SH shimming led to an average 8mm shift at acquisition parameters commonly used for fMRI and was reduced to 1.5-3mm with DYNAMITE shimming. T2* values obtained from the prefrontal and temporal cortices with DYNAMITE shimming were 10-50% longer than those measured with SH shimming. The reduction of the confounding macroscopic B0 field gradients with DYNAMITE shimming thereby promises improved access to the relevant microscopic T2* effects. The combination of high spatial resolution and DYNAMITE shimming allows largely artifact-free EPI and T2* mapping throughout the brain, including prefrontal and temporal lobe areas. DYNAMITE shimming is expected to critically benefit a wide range of MRI applications that rely on excellent B0 magnetic field conditions including EPI-based fMRI to study various cognitive processes and assessing large-scale brain connectivity in vivo. As such, DYNAMITE shimming has the potential to replace conventional SH shim systems in human MR scanners. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. SU-E-J-07: A Functional MR Protocol for the Pancreatic Tumor Delineation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreychenko, A; Heerkens, H; Meijer, G

    2014-06-01

    Purpose: Pancreatic cancer is one of the cancers with the poorest survival prognosis. At the time of diagnosis most of pancreatic cancers are unresectable and those patients can be treated by radiotherapy. Radiotherapy for pancreatic cancer is limited due to uncertainties in CT-based delineations. MRI provides an excellent soft tissue contrast. Here, an MR protocol is developed to improve delineations for radiotherapy treatment of pancreatic cancer. In a later stage this protocol can also be used for on-line visualization of the pancreas during MRI guided treatments. Methods: Nine pancreatic cancer patients were included. The MR protocol included T2 weighted(T2w), T1more » weighted(T1w), diffusion weighted(DWI) and dynamic contrast enhanced(DCE) techniques. The tumor was delineated on T2w and T1w MRI by an experienced radiation oncologist. Healthy pancreas or pancreatitis (assigned by the oncologist based on T2w) areas were also delineated. Apparent diffusion coefficient(ADC), and area under the curve(AUC)/time to peak(TTP) maps were obtained from DWI and DCE scans, respectively. Results: A clear demarcation of tumor area was visible on b800 DWI images in 5 patients. ADC maps of those patients characterized tumor as an area with restricted water diffusion. Tumor delineations based on solely DCE were possible in 7 patients. In 6 of those patients AUC maps demonstrated tumor heterogeneity: a hypointense area with a hyperintense ring. TTP values clearly discriminated the tumor and the healthy pancreas but could not distinguish tumor and the pancreatitis accurately. Conclusion: MR imaging results in a more pronounced tumor contrast than contrast enhanced CT. The addition of quantitative, functional MRI provides valuable, additional information to the radiation oncologist on the spatial tumor extent by discriminating tumor from the healthy pancreas(TTP, DWI) and characterizing the tumor(ADC). Our findings indicate that tumor delineation in pancreatic cancer can greatly benefit from the addition of MRI and especially functional MR techniques.« less

  5. Dynamic Multi-Coil Technique (DYNAMITE) Shimming for Echo-Planar Imaging of the Human Brain at 7 Tesla

    PubMed Central

    Juchem, Christoph; Rudrapatna, S. Umesh; Nixon, Terence W.; de Graaf, Robin A.

    2014-01-01

    Gradient-echo echo-planar imaging (EPI) is the primary method of choice in functional MRI and other methods relying on fast MRI to image brain activation and connectivity. However, the high susceptibility of EPI towards B0 magnetic field inhomogeneity poses serious challenges. Conventional magnetic field shimming with low-order spherical harmonic (SH) functions is capable of compensating shallow field distortions, but performs poorly for global brain shimming or on specific areas with strong susceptibility-induced B0 distortions such as the prefrontal cortex (PFC). Excellent B0 homogeneity has been demonstrated recently in the human brain at 7 Tesla with the DYNAmic Multi-coIl TEchnique (DYNAMITE) for magnetic field shimming (Juchem et al., J Magn Reson (2011) 212:280-288). Here, we report the benefits of DYNAMITE shimming for multi-slice EPI and T2* mapping. A standard deviation of 13 Hz was achieved for the residual B0 distribution in the human brain at 7 Tesla with DYNAMITE shimming and was 60% lower compared to conventional shimming that employs static zero through third order SH shapes. The residual field inhomogeneity with SH shimming led to an average 8 mm shift at acquisition parameters commonly used for fMRI and was reduced to 1.5-3 mm with DYNAMITE shimming. T2* values obtained from the prefrontal and temporal cortices with DYNAMITE shimming were 10-50% longer than those measured with SH shimming. The reduction of the confounding macroscopic B0 field gradients with DYNAMITE shimming thereby promises improved access to the relevant microscopic T2* effects. The combination of high spatial resolution and DYNAMITE shimming allows largely artifact-free EPI and T2* mapping throughout the brain, including prefrontal and temporal lobe areas. DYNAMITE shimming is expected to critically benefit a wide range of MRI applications that rely on excellent B0 magnetic field conditions including EPI-based fMRI to study various cognitive processes and assessing large-scale brain connectivity in vivo. As such, DYNAMITE shimming has the potential to replace conventional SH shim systems in human MR scanners. PMID:25462795

  6. High Field Small Animal Magnetic Resonance Oncology Studies

    PubMed Central

    Bokacheva, Louisa; Ackerstaff, Ellen; LeKaye, H. Carl; Zakian, Kristen; Koutcher, Jason A.

    2014-01-01

    This review focuses on the applications of high magnetic field magnetic resonance imaging (MRI) and spectroscopy (MRS) to cancer studies in small animals. High field MRI can provide information about tumor physiology, the microenvironment, metabolism, vascularity and cellularity. Such studies are invaluable for understanding tumor growth and proliferation, response to treatment and drug development. The MR techniques reviewed here include 1H, 31P, Chemical Exchange Saturation Transfer (CEST) imaging, and hyperpolarized 13C MR spectroscopy as well as diffusion-weighted, Blood Oxygen Level Dependent (BOLD) contrast imaging, and dynamic contrast-enhanced MR imaging. These methods have been proven effective in animal studies and are highly relevant to human clinical studies. PMID:24374985

  7. Online Reduction of Artifacts in EEG of Simultaneous EEG-fMRI Using Reference Layer Adaptive Filtering (RLAF).

    PubMed

    Steyrl, David; Krausz, Gunther; Koschutnig, Karl; Edlinger, Günter; Müller-Putz, Gernot R

    2018-01-01

    Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) allow us to study the active human brain from two perspectives concurrently. Signal processing based artifact reduction techniques are mandatory for this, however, to obtain reasonable EEG quality in simultaneous EEG-fMRI. Current artifact reduction techniques like average artifact subtraction (AAS), typically become less effective when artifact reduction has to be performed on-the-fly. We thus present and evaluate a new technique to improve EEG quality online. This technique adds up with online AAS and combines a prototype EEG-cap for reference recordings of artifacts, with online adaptive filtering and is named reference layer adaptive filtering (RLAF). We found online AAS + RLAF to be highly effective in improving EEG quality. Online AAS + RLAF outperformed online AAS and did so in particular online in terms of the chosen performance metrics, these being specifically alpha rhythm amplitude ratio between closed and opened eyes (3-45% improvement), signal-to-noise-ratio of visual evoked potentials (VEP) (25-63% improvement), and VEPs variability (16-44% improvement). Further, we found that EEG quality after online AAS + RLAF is occasionally even comparable with the offline variant of AAS at a 3T MRI scanner. In conclusion RLAF is a very effective add-on tool to enable high quality EEG in simultaneous EEG-fMRI experiments, even when online artifact reduction is necessary.

  8. SQUIDs vs. Induction Coils for Ultra-Low Field Nuclear Magnetic Resonance: Experimental and Simulation Comparison

    PubMed Central

    Matlashov, Andrei N.; Schultz, Larry J.; Espy, Michelle A.; Kraus, Robert H.; Savukov, Igor M.; Volegov, Petr L.; Wurden, Caroline J.

    2011-01-01

    Nuclear magnetic resonance (NMR) is widely used in medicine, chemistry and industry. One application area is magnetic resonance imaging (MRI). Recently it has become possible to perform NMR and MRI in the ultra-low field (ULF) regime requiring measurement field strengths of the order of only 1 Gauss. This technique exploits the advantages offered by superconducting quantum interference devices or SQUIDs. Our group has built SQUID based MRI systems for brain imaging and for liquid explosives detection at airport security checkpoints. The requirement for liquid helium cooling limits potential applications of ULF MRI for liquid identification and security purposes. Our experimental comparative investigation shows that room temperature inductive magnetometers may provide enough sensitivity in the 3–10 kHz range and can be used for fast liquid explosives detection based on ULF NMR technique. We describe experimental and computer-simulation results comparing multichannel SQUID based and induction coils based instruments that are capable of performing ULF MRI for liquid identification. PMID:21747638

  9. Magnetic resonance imaging of pelvic endometriosis.

    PubMed

    Méndez Fernández, R; Barrera Ortega, J

    Endometriosis is common in women of reproductive age; it can cause pelvic pain and infertility. It is important to diagnose endometriosis and to thoroughly evaluate its extension, especially when surgical treatment is being considered. Magnetic resonance imaging (MRI) with careful examination technique and interpretation enables more accurate and complete diagnosis and staging than ultrasonography, especially in cases of deep pelvic endometriosis. Furthermore, MRI can identify implants in sites that can be difficult to access in endoscopic or laparoscopic explorations. In this article, we describe the appropriate MRI protocol for the study of pelvic endometriosis and the MRI signs of pelvic organ involvement. It is necessary to know the subtle findings and to look for them so we can ensure that they are not overlooked. We describe clinical grading systems for endometriosis and review the diagnostic efficacy of MRI in comparison with other imaging techniques and surgery. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. A hybrid method for classifying cognitive states from fMRI data.

    PubMed

    Parida, S; Dehuri, S; Cho, S-B; Cacha, L A; Poznanski, R R

    2015-09-01

    Functional magnetic resonance imaging (fMRI) makes it possible to detect brain activities in order to elucidate cognitive-states. The complex nature of fMRI data requires under-standing of the analyses applied to produce possible avenues for developing models of cognitive state classification and improving brain activity prediction. While many models of classification task of fMRI data analysis have been developed, in this paper, we present a novel hybrid technique through combining the best attributes of genetic algorithms (GAs) and ensemble decision tree technique that consistently outperforms all other methods which are being used for cognitive-state classification. Specifically, this paper illustrates the combined effort of decision-trees ensemble and GAs for feature selection through an extensive simulation study and discusses the classification performance with respect to fMRI data. We have shown that our proposed method exhibits significant reduction of the number of features with clear edge classification accuracy over ensemble of decision-trees.

  11. Comparison of abdominal ultrasound and magnetic resonance imaging for detection of abdominal lymphadenopathy in dogs with metastatic apocrine gland adenocarcinoma of the anal sac.

    PubMed

    Anderson, C L; MacKay, C S; Roberts, G D; Fidel, J

    2015-06-01

    Imaging studies in humans with anal and rectal cancer indicate that magnetic resonance imaging (MRI) is a more sensitive technique than abdominal ultrasound (AUS) for the detection of abdominal lymphadenopathy. The purpose of this retrospective study was to directly compare the efficacy of these two techniques in detecting abdominal lymphadenopathy in dogs with apocrine gland adenocarcinoma of the anal sac (AGAAS). Six dogs with histologically confirmed AGAAS and histopathologic confirmation of metastasis to abdominal lymph nodes (LNs) had AUS and abdominal MRI. AUS identified lymphadenopathy in two of six dogs, whereas MRI identified lymphadenopathy in all the six dogs. Lymphadenopathy was predominantly sacral in location, with involvement of the medial iliac and hypogastric LNs in only two cases. These data suggest that MRI is more sensitive than AUS for detecting sacral abdominal lymphadenopathy in dogs with AGAAS. As such, MRI could be considered in any patient with AGAAS for initial staging of this disease. © 2013 Blackwell Publishing Ltd.

  12. Motion Correction in PROPELLER and Turboprop-MRI

    PubMed Central

    Tamhane, Ashish A.; Arfanakis, Konstantinos

    2009-01-01

    PROPELLER and Turboprop-MRI are characterized by greatly reduced sensitivity to motion, compared to their predecessors, fast spin-echo and gradient and spin-echo, respectively. This is due to the inherent self-navigation and motion correction of PROPELLER-based techniques. However, it is unknown how various acquisition parameters that determine k-space sampling affect the accuracy of motion correction in PROPELLER and Turboprop-MRI. The goal of this work was to evaluate the accuracy of motion correction in both techniques, to identify an optimal rotation correction approach, and determine acquisition strategies for optimal motion correction. It was demonstrated that, blades with multiple lines allow more accurate estimation of motion than blades with fewer lines. Also, it was shown that Turboprop-MRI is less sensitive to motion than PROPELLER. Furthermore, it was demonstrated that the number of blades does not significantly affect motion correction. Finally, clinically appropriate acquisition strategies that optimize motion correction were discussed for PROPELLER and Turboprop-MRI. PMID:19365858

  13. [Initial diagnosis of Parkinson's disease - neuroradiological diagnosis].

    PubMed

    Orimo, Satoshi

    2013-01-01

    Brain MRI is essential for differentiating Parkinson's disease (PD) from other parkinsonian syndromes. The purpose of performing brain MRI is not to make a diagnosis of PD but is to exclude other parkinsonian syndromes. Recently, several new MRI techniques such as voxel based morphometry, relaxometry, magnetization transfer, spectroscopy, tractography, and functional MRI have been introduced in the diagnosis of PD. Neuromelanin imaging is one of the new techniques and can be useful to make an initial diagnosis of PD. MIBG myocardial scintigraphy is a sensitive imaging tool to differentiate PD from other parkinsonian syndromes and is one of the good tools to make an initial diagnosis of PD. Brain perfusion imaging is sometimes useful to make an initial diagnosis of PD, because reduced brain perfusion area can be detected before brain MRI detects morphological changes of the brain. Dopamine transporter imaging, not available in Japan, is a sensitive tool to detect very early parkinsonism and is useful to make an initial diagnosis of PD. However, it is difficult to differentiate PD from other parkinsonian syndromes.

  14. Ex vivo diffusion MRI of the human brain: Technical challenges and recent advances.

    PubMed

    Roebroeck, Alard; Miller, Karla L; Aggarwal, Manisha

    2018-06-04

    This review discusses ex vivo diffusion magnetic resonance imaging (dMRI) as an important research tool for neuroanatomical investigations and the validation of in vivo dMRI techniques, with a focus on the human brain. We review the challenges posed by the properties of post-mortem tissue, and discuss state-of-the-art tissue preparation methods and recent advances in pulse sequences and acquisition techniques to tackle these. We then review recent ex vivo dMRI studies of the human brain, highlighting the validation of white matter orientation estimates and the atlasing and mapping of large subcortical structures. We also give particular emphasis to the delineation of layered gray matter structure with ex vivo dMRI, as this application illustrates the strength of its mesoscale resolution over large fields of view. We end with a discussion and outlook on future and potential directions of the field. © 2018 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  15. Visibility of Different Intraorbital Foreign Bodies Using Plain Radiography, Computed Tomography, Magnetic Resonance Imaging, and Cone-Beam Computed Tomography: An In Vitro Study.

    PubMed

    Javadrashid, Reza; Golamian, Masoud; Shahrzad, Maryam; Hajalioghli, Parisa; Shahmorady, Zahra; Fouladi, Daniel F; Sadrarhami, Shohreh; Akhoundzadeh, Leila

    2017-05-01

    The study sought to compare the usefulness of 4 imaging modalities in visualizing various intraorbital foreign bodies (IOFBs) in different sizes. Six different materials including metal, wood, plastic, stone, glass. and graphite were cut in cylindrical shapes in 4 sizes (dimensions: 0.5, 1, 2, and 3 mm) and placed intraorbitally in the extraocular space of fresh sheep's head. Four skilled radiologists rated the visibility of the objects individually using plain radiography, spiral computed tomography (CT), magnetic resonance imaging (MRI), and cone-beam computed tomography (CBCT) in accordance with a previously described grading system. Excluding wood, all embedded foreign bodies were best visualized in CT and CBCT images with almost equal accuracies. Wood could only be detected using MRI, and then only when fragments were more than 2 mm in size. There were 3 false-positive MRI reports, suggesting air bubbles as wood IOFBs. Because of lower cost and using less radiation in comparison with conventional CT, CBCT can be used as the initial imaging technique in cases with suspected IOFBs. Optimal imaging technique for wood IOFBs is yet to be defined. Copyright © 2016 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  16. Automatic MRI 2D brain segmentation using graph searching technique.

    PubMed

    Pedoia, Valentina; Binaghi, Elisabetta

    2013-09-01

    Accurate and efficient segmentation of the whole brain in magnetic resonance (MR) images is a key task in many neuroscience and medical studies either because the whole brain is the final anatomical structure of interest or because the automatic extraction facilitates further analysis. The problem of segmenting brain MRI images has been extensively addressed by many researchers. Despite the relevant achievements obtained, automated segmentation of brain MRI imagery is still a challenging problem whose solution has to cope with critical aspects such as anatomical variability and pathological deformation. In the present paper, we describe and experimentally evaluate a method for segmenting brain from MRI images basing on two-dimensional graph searching principles for border detection. The segmentation of the whole brain over the entire volume is accomplished slice by slice, automatically detecting frames including eyes. The method is fully automatic and easily reproducible by computing the internal main parameters directly from the image data. The segmentation procedure is conceived as a tool of general applicability, although design requirements are especially commensurate with the accuracy required in clinical tasks such as surgical planning and post-surgical assessment. Several experiments were performed to assess the performance of the algorithm on a varied set of MRI images obtaining good results in terms of accuracy and stability. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Effects of citalopram and escitalopram on fMRI response to affective stimuli in healthy volunteers selected by serotonin transporter genotype.

    PubMed

    Henry, Michael E; Lauriat, Tara L; Lowen, Steven B; Churchill, Jeffrey H; Hodgkinson, Colin A; Goldman, David; Renshaw, Perry F

    2013-09-30

    This study was designed to assess whether functional magnetic resonance imaging (fMRI) following antidepressant administration (pharmaco-fMRI) is sufficiently sensitive to detect differences in patterns of activation between enantiomers of the same compound. Healthy adult males (n=11) participated in a randomized, double-blind, cross-over trial with three medication periods during which they received citalopram (racemic mixture), escitalopram (S-citalopram alone), or placebo for 2 weeks. All participants had high expression serotonin transporter genotypes. An fMRI scan that included passive viewing of overt and covert affective faces and affective words was performed after each medication period. Activation in response to overt faces was greater following escitalopram than following citalopram in the right insula, thalamus, and putamen when the faces were compared with a fixation stimulus. For the rapid covert presentation, a greater response was observed in the left middle temporal gyrus in the happy versus fearful contrast following escitalopram than following citalopram. Thus, the combination of genomics and fMRI was successful in discriminating between two very similar drugs. However, the pattern of activation observed suggests that further studies are indicated to understand how to optimally combine the two techniques. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Effects of citalopram and escitalopram on fMRI response to affective stimuli in healthy volunteers selected by serotonin transporter genotype

    PubMed Central

    Henry, Michael E.; Lauriat, Tara L.; Lowen, Steven B.; Churchill, Jeffrey H.; Hodgkinson, Colin A.; Goldman, David; Renshaw, Perry F.

    2015-01-01

    This study was designed to assess whether functional magnetic resonance imaging (fMRI) following antidepressant administration (pharmaco-fMRI) is sufficiently sensitive to detect differences in patterns of activation between enantiomers of the same compound. Healthy adult males (n = 11) participated in a randomized, double-blind, cross-over trial with three medication periods during which they received citalopram (racemic mixture), escitalopram (S-citalopram alone), or placebo for 2 weeks. All participants had high expression serotonin transporter genotypes. An fMRI scan that included passive viewing of overt and covert affective faces and affective words was performed after each medication period. Activation in response to overt faces was greater following escitalopram than following citalopram in the right insula, thalamus, and putamen when the faces were compared with a fixation stimulus. For the rapid covert presentation, a greater response was observed in the left middle temporal gyrus in the happy versus fearful contrast following escitalopram than following citalopram. Thus, the combination of genomics and fMRI was successful in discriminating between two very similar drugs. However, the pattern of activation observed suggests that further studies are indicated to understand how to optimally combine the two techniques. PMID:23845563

  19. Design considerations for a novel MRI compatible manipulator for prostate cryoablation.

    PubMed

    Abdelaziz, S; Esteveny, L; Renaud, P; Bayle, B; Barbé, L; De Mathelin, M; Gangi, A

    2011-11-01

    Prostate carcinoma is a commonly diagnosed cancer in men. Nonsurgical treatment of early stage prostate cancer is an important alternative. The use of MRI for tumor cryoablation is of particular interest: it offers lower morbidity compared with other localized techniques. However, the current manual procedure is very time-consuming and has limited accuracy. A novel robotic assistant is therefore designed for prostate cancer cryotherapy treatment under MRI guidance to improve efficiency and accuracy. Gesture definition was achieved based on actions of interventional radiologists at University Hospital of Strasbourg. A transperineal approach with a semiautonomous prostatic cryoprobe localization procedure was developed where the needle axis is automatically positioned before manual insertion. The workflow was developed simultaneously with the robotic assistant used for needle positioning. The design and the associated workflow of an original wire-driven manipulator were developed. The device is compact and has a low weight: its overall dimensions in the scanner are 100 × 100 × 40 mm with a weight of 120 g. Very good MRI compatibility was demonstrated. A novel cryoablation procedure based on the use of a robotic assistant is proposed. The device design was presented with demonstration of MRI compatibility. Further developments include automatic registration and in vivo experimental testing.

  20. Development of contrast agents targeted to macrophage scavenger receptors for MRI of vascular inflammation

    PubMed Central

    Gustafsson, Björn; Youens, Susan; Louie, Angelique Y.

    2008-01-01

    Atherosclerosis is a leading cause of death in the U.S. Because there is a potential to prevent coronary and arterial diseases through early diagnosis, there is a need for methods to image arteries in the sub-clinical stage as well as clinical stage using various non-invasive techniques, including Magnetic Resonance Imaging (MRI). We describe a development of a novel MRI contrast agent targeted to plaques that will allow imaging of lesion formation. The contrast agent is directed to macrophages, one of the earliest components of developing plaques. Macrophages are labeled through the macrophage scavenger receptor A, a macrophage specific cell surface protein, using an MRI contrast agent derived from scavenger receptor ligands. We have synthesized and characterized these contrast agents with a range of relaxivities. In vitro studies show that the targeted contrast agent accumulates in macrophages and solution studies indicate that micromolar concentrations are sufficient to produce contrast in an MR image. Cell toxicity and initial biodistribution studies indicate low toxicity, no detectable retention in normal blood vessels, and rapid clearance from blood. The promising performance of this contrast agent targeted towards vascular inflammation opens doors to tracking of other inflammatory diseases such as tumor immunotherapy and transplant acceptance using MRI. PMID:16536488

  1. Quantitative magnetic resonance imaging phantoms: A review and the need for a system phantom.

    PubMed

    Keenan, Kathryn E; Ainslie, Maureen; Barker, Alex J; Boss, Michael A; Cecil, Kim M; Charles, Cecil; Chenevert, Thomas L; Clarke, Larry; Evelhoch, Jeffrey L; Finn, Paul; Gembris, Daniel; Gunter, Jeffrey L; Hill, Derek L G; Jack, Clifford R; Jackson, Edward F; Liu, Guoying; Russek, Stephen E; Sharma, Samir D; Steckner, Michael; Stupic, Karl F; Trzasko, Joshua D; Yuan, Chun; Zheng, Jie

    2018-01-01

    The MRI community is using quantitative mapping techniques to complement qualitative imaging. For quantitative imaging to reach its full potential, it is necessary to analyze measurements across systems and longitudinally. Clinical use of quantitative imaging can be facilitated through adoption and use of a standard system phantom, a calibration/standard reference object, to assess the performance of an MRI machine. The International Society of Magnetic Resonance in Medicine AdHoc Committee on Standards for Quantitative Magnetic Resonance was established in February 2007 to facilitate the expansion of MRI as a mainstream modality for multi-institutional measurements, including, among other things, multicenter trials. The goal of the Standards for Quantitative Magnetic Resonance committee was to provide a framework to ensure that quantitative measures derived from MR data are comparable over time, between subjects, between sites, and between vendors. This paper, written by members of the Standards for Quantitative Magnetic Resonance committee, reviews standardization attempts and then details the need, requirements, and implementation plan for a standard system phantom for quantitative MRI. In addition, application-specific phantoms and implementation of quantitative MRI are reviewed. Magn Reson Med 79:48-61, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Dynamic causal modelling on infant fNIRS data: A validation study on a simultaneously recorded fNIRS-fMRI dataset.

    PubMed

    Bulgarelli, Chiara; Blasi, Anna; Arridge, Simon; Powell, Samuel; de Klerk, Carina C J M; Southgate, Victoria; Brigadoi, Sabrina; Penny, William; Tak, Sungho; Hamilton, Antonia

    2018-04-12

    Tracking the connectivity of the developing brain from infancy through childhood is an area of increasing research interest, and fNIRS provides an ideal method for studying the infant brain as it is compact, safe and robust to motion. However, data analysis methods for fNIRS are still underdeveloped compared to those available for fMRI. Dynamic causal modelling (DCM) is an advanced connectivity technique developed for fMRI data, that aims to estimate the coupling between brain regions and how this might be modulated by changes in experimental conditions. DCM has recently been applied to adult fNIRS, but not to infants. The present paper provides a proof-of-principle for the application of this method to infant fNIRS data and a demonstration of the robustness of this method using a simultaneously recorded fMRI-fNIRS single case study, thereby allowing the use of this technique in future infant studies. fMRI and fNIRS were simultaneously recorded from a 6-month-old sleeping infant, who was presented with auditory stimuli in a block design. Both fMRI and fNIRS data were preprocessed using SPM, and analysed using a general linear model approach. The main challenges that adapting DCM for fNIRS infant data posed included: (i) the import of the structural image of the participant for spatial pre-processing, (ii) the spatial registration of the optodes on the structural image of the infant, (iii) calculation of an accurate 3-layer segmentation of the structural image, (iv) creation of a high-density mesh as well as (v) the estimation of the NIRS optical sensitivity functions. To assess our results, we compared the values obtained for variational Free Energy (F), Bayesian Model Selection (BMS) and Bayesian Model Average (BMA) with the same set of possible models applied to both the fMRI and fNIRS datasets. We found high correspondence in F, BMS, and BMA between fMRI and fNIRS data, therefore showing for the first time high reliability of DCM applied to infant fNIRS data. This work opens new avenues for future research on effective connectivity in infancy by contributing a data analysis pipeline and guidance for applying DCM to infant fNIRS data. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Impact of nonrigid motion correction technique on pixel-wise pharmacokinetic analysis of free-breathing pulmonary dynamic contrast-enhanced MR imaging.

    PubMed

    Tokuda, Junichi; Mamata, Hatsuho; Gill, Ritu R; Hata, Nobuhiko; Kikinis, Ron; Padera, Robert F; Lenkinski, Robert E; Sugarbaker, David J; Hatabu, Hiroto

    2011-04-01

    To investigates the impact of nonrigid motion correction on pixel-wise pharmacokinetic analysis of free-breathing DCE-MRI in patients with solitary pulmonary nodules (SPNs). Misalignment of focal lesions due to respiratory motion in free-breathing dynamic contrast-enhanced MRI (DCE-MRI) precludes obtaining reliable time-intensity curves, which are crucial for pharmacokinetic analysis for tissue characterization. Single-slice 2D DCE-MRI was obtained in 15 patients. Misalignments of SPNs were corrected using nonrigid B-spline image registration. Pixel-wise pharmacokinetic parameters K(trans) , v(e) , and k(ep) were estimated from both original and motion-corrected DCE-MRI by fitting the two-compartment pharmacokinetic model to the time-intensity curve obtained in each pixel. The "goodness-of-fit" was tested with χ(2) -test in pixel-by-pixel basis to evaluate the reliability of the parameters. The percentages of reliable pixels within the SPNs were compared between the original and motion-corrected DCE-MRI. In addition, the parameters obtained from benign and malignant SPNs were compared. The percentage of reliable pixels in the motion-corrected DCE-MRI was significantly larger than the original DCE-MRI (P = 4 × 10(-7) ). Both K(trans) and k(ep) derived from the motion-corrected DCE-MRI showed significant differences between benign and malignant SPNs (P = 0.024, 0.015). The study demonstrated the impact of nonrigid motion correction technique on pixel-wise pharmacokinetic analysis of free-breathing DCE-MRI in SPNs. Copyright © 2011 Wiley-Liss, Inc.

  4. MRI brain imaging.

    PubMed

    Skinner, Sarah

    2013-11-01

    General practitioners (GPs) are expected to be allowed to request MRI scans for adults for selected clinically appropriate indications from November 2013 as part of the expansion of Medicare-funded MRI services announced by the Federal Government in 2011. This article aims to give a brief overview of MRI brain imaging relevant to GPs, which will facilitate explanation of scan findings and management planning with their patients. Basic imaging techniques, common findings and terminology are presented using some illustrative case examples.

  5. Magnetorotational instability: nonmodal growth and the relationship of global modes to the shearing box

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Squire, J.; Bhattacharjee, A.

    2014-12-10

    We study magnetorotational instability (MRI) using nonmodal stability techniques. Despite the spectral instability of many forms of MRI, this proves to be a natural method of analysis that is well-suited to deal with the non-self-adjoint nature of the linear MRI equations. We find that the fastest growing linear MRI structures on both local and global domains can look very different from the eigenmodes, invariably resembling waves shearing with the background flow (shear waves). In addition, such structures can grow many times faster than the least stable eigenmode over long time periods, and be localized in a completely different region ofmore » space. These ideas lead—for both axisymmetric and non-axisymmetric modes—to a natural connection between the global MRI and the local shearing box approximation. By illustrating that the fastest growing global structure is well described by the ordinary differential equations (ODEs) governing a single shear wave, we find that the shearing box is a very sensible approximation for the linear MRI, contrary to many previous claims. Since the shear wave ODEs are most naturally understood using nonmodal analysis techniques, we conclude by analyzing local MRI growth over finite timescales using these methods. The strong growth over a wide range of wave-numbers suggests that nonmodal linear physics could be of fundamental importance in MRI turbulence.« less

  6. [Role of MRI for detection and characterization of pulmonary nodules].

    PubMed

    Sommer, G; Koenigkam-Santos, M; Biederer, J; Puderbach, M

    2014-05-01

    Due to physical and technical limitations, magnetic resonance imaging (MRI) has hitherto played only a minor role in image-based diagnostics of the lungs. However, as a consequence of important methodological developments during recent years, MRI has developed into a technically mature and clinically well-proven method for specific pulmonary questions. The purpose of this article is to provide an overview on the currently available sequences and techniques for assessment of pulmonary nodules and analyzes the clinical significance according to the current literature. The main focus is on the detection of lung metastases, the detection of primary pulmonary malignancies in high-risk individuals and the differentiation between pulmonary nodules of benign and malignant character. The MRI technique has a sensitivity of approximately 80 % for detection of malignant pulmonary nodules compared to the reference standard low-dose computed tomography (CT) and is thus somewhat inferior to CT. Advantages of MRI on the other hand are a higher specificity in differentiating malignant and benign pulmonary nodules and the absence of ionizing radiation exposure. A systematic use of MRI as a primary tool for detection and characterization of pulmonary nodules is currently not recommended due to insufficient data. The diagnostic potential of MRI for early detection and staging of malignant pulmonary diseases, however, seems promising. Therefore, further evaluation of MRI as a secondary imaging modality in clinical trials is highly warranted.

  7. Small mammal MRI imaging in spinal cord injury: a novel practical technique for using a 1.5 T MRI.

    PubMed

    Levene, Howard B; Mohamed, Feroze B; Faro, Scott H; Seshadri, Asha B; Loftus, Christopher M; Tuma, Ronald F; Jallo, Jack I

    2008-07-30

    The field of spinal cord injury research is an active one. The pathophysiology of SCI is not yet entirely revealed. As such, animal models are required for the exploration of new therapies and treatments. We present a novel technique using available hospital MRI machines to examine SCI in a mouse SCI model. The model is a 60 kdyne direct contusion injury in a mouse thoracic spine. No new electronic equipment is required. A 1.5T MRI machine with a human wrist coil is employed. A standard multisection 2D fast spin-echo (FSE) T2-weighted sequence is used for imaging the mouse. The contrast-to-noise ratio (CNR) between the injured and normal area of the spinal cord showed a three-fold increase in the contrast between these two regions. The MRI findings could be correlated with kinematic outcome scores of ambulation, such as BBB or BMS. The ability to follow a SCI in the same animal over time should improve the quality of data while reducing the quantity of animals required in SCI research. It is the aim of the authors to share this non-invasive technique and to make it available to the scientific research community.

  8. Using quantitative magnetic resonance methods to understand better the gel-layer formation on polymer-matrix tablets.

    PubMed

    Mikac, Urša; Kristl, Julijana; Baumgartner, Saša

    2011-05-01

    Magnetic resonance imaging is a powerful, non-invasive technique that can help improve our understanding of the hydrogel layer formed on swellable, polymer-matrix tablets, as well as the layer's properties and its influence on drug release. In this paper, the authors review the NMR and MRI investigations of hydrophilic, swellable polymers published since 1994. The review covers NMR studies on the properties of water and drugs within hydrated polymers. In addition, MRI studies using techniques for determining the different moving-front positions within the swollen tablets, the polymer concentration profiles across them, the influence of the incorporated drug, and so on, are presented. Some complementary methods are also briefly presented and discussed. Using MRI, the formation of a hydrogel along with simultaneous determination of the drug's position within it can be observed non-invasively. However, the MRI parameters can influence the signal's intensity and therefore they need to be considered carefully in order to prevent any misinterpretation of the results. MRI makes possible an in situ investigation of swollen-matrix tablets and provides valuable information that can lead, when combined with other techniques, to a better understanding of polymeric systems and a more effective development of optimal dosage forms.

  9. Cartilage Repair Surgery: Outcome Evaluation by Using Noninvasive Cartilage Biomarkers Based on Quantitative MRI Techniques?

    PubMed Central

    Jungmann, Pia M.; Baum, Thomas; Bauer, Jan S.; Karampinos, Dimitrios C.; Link, Thomas M.; Li, Xiaojuan; Trattnig, Siegfried; Rummeny, Ernst J.; Woertler, Klaus; Welsch, Goetz H.

    2014-01-01

    Background. New quantitative magnetic resonance imaging (MRI) techniques are increasingly applied as outcome measures after cartilage repair. Objective. To review the current literature on the use of quantitative MRI biomarkers for evaluation of cartilage repair at the knee and ankle. Methods. Using PubMed literature research, studies on biochemical, quantitative MR imaging of cartilage repair were identified and reviewed. Results. Quantitative MR biomarkers detect early degeneration of articular cartilage, mainly represented by an increasing water content, collagen disruption, and proteoglycan loss. Recently, feasibility of biochemical MR imaging of cartilage repair tissue and surrounding cartilage was demonstrated. Ultrastructural properties of the tissue after different repair procedures resulted in differences in imaging characteristics. T2 mapping, T1rho mapping, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), and diffusion weighted imaging (DWI) are applicable on most clinical 1.5 T and 3 T MR scanners. Currently, a standard of reference is difficult to define and knowledge is limited concerning correlation of clinical and MR findings. The lack of histological correlations complicates the identification of the exact tissue composition. Conclusions. A multimodal approach combining several quantitative MRI techniques in addition to morphological and clinical evaluation might be promising. Further investigations are required to demonstrate the potential for outcome evaluation after cartilage repair. PMID:24877139

  10. Investigation of subdural electrode displacement in invasive epilepsy surgery workup using neuronavigation and intraoperative MRI.

    PubMed

    Sommer, Bjoern; Rampp, Stefan; Doerfler, Arnd; Stefan, Hermann; Hamer, Hajo M; Buchfelder, Michael; Roessler, Karl

    2018-06-19

    One of the main obstacles of electrode implantation in epilepsy surgery is the electrode shift between implantation and the day of explantation. We evaluated this possible electrode displacement using intraoperative MRI (iopMRI) data and CT/MRI reconstruction. Thirteen patients (nine female, four male, median age 26 ± 9.4 years) suffering from drug-resistant epilepsy were examined. After implantation, the position of subdural electrodes was evaluated by 3.0 T-MRI and thin-slice CCT for 3D reconstruction. Localization of electrodes was performed with the volume-rendering technique. Post-implantation and pre-explantation 1.5 T-iopMRI scans were coregistered with the 3D reconstructions to determine the extent of electrode dislocation. Intraoperative MRI at the time of explantation revealed a relevant electrode shift in one patient (8%) of 10 mm. Median electrode displacement was 1.7 ± 2.6 mm with a coregistration error of 1.9 ± 0.7 mm. The median accuracy of the neuronavigation system was 2.2 ± 0.9 mm. Six of twelve patients undergoing resective surgery were seizure free (Engel class 1A, median follow-up 37.5 ± 11.8 months). Comparison of pre-explantation and post-implantation iopMRI scans with CT/MRI data using the volume-rendering technique resulted in an accurate placement of electrodes. In one patient with a considerable electrode dislocation, the surgical approach and extent was changed due to the detected electrode shift. ECoG: electrocorticography; EZ: epileptogenic zone; iEEG: invasive EEG; iopMRI: intraoperative MRI; MEG: magnetoencephalography; PET: positron emission tomography; SPECT: single photon emission computed tomography; 3D: three-dimensional.

  11. Comparison of Echo and MRI in the Imaging Evaluation of Intracardiac Masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulati, G., E-mail: gulatigurpreet@rediffmail.com; Sharma, S.; Kothari, S.S.

    We compared the efficacy of echocardiography (ECHO) and magnetic resonance imaging (MRI) for evaluating intracardiac masses. Over an 8-yr period, 28 patients, 21 males, 7 females, 16 days-60 years of age (mean 25 years) with a suspected intracardiac mass on ECHO (transthoracic in all; transesophageal in 9) underwent an MRI examination. Five patients had a contrast-enhanced MRI. ECHO and MRI were compared with respect to their technical adequacy, ability to detect and suggest the likely etiology of the mass, and provide additional information (masses not seen with the other technique, inflow or outflow obstruction, and intramural component of an intracavitarymore » mass). With MRI, the image morphology (including signal intensity changes on the various sequences) and extracardiac manifestations were also evaluated. The diagnosis was confirmed by histopathology in 18, surgical inspection in 4, by follow- up imaging on conservative management in 5, and by typical extracardiac manifestations of the disease in 1 patient.Fifteen (54%) patients had tumors (benign 12, malignant 3), 5 had a thrombus or hematoma, and 4 each had infective or vascular lesions. Thirty-four masses (13 in ventricle, 11 septal, 7 atrial, 2 on valve and 1 in pulmonary artery) were seen on MRI, 28 of which were detected by ECHO. Transthoracic ECHO (TTE) and MRI were technically optimal in 82% and 100% of cases, respectively. Nine patients needed an additional transesophageal ECHO (TEE). Overall, MRI showed a mass in all patients, whereas ECHO missed it in 2 cases. In cases with a mass on both modalities, MRI detected 4 additional masses not seen on ECHO. MRI suggested the etiology in 21 (75%) cases, while the same was possible with ECHO (TTE and TEE) in 8 (29%) cases. Intramural component, extension into the inflow or outflow, outflow tract obstruction, and associated pericardial or extracardiac masses were better depicted on MRI. We conclude that MRI is advantageous over a combination of TTE and TEE for the detection and complete morphological and functional evaluation (hemodynamic effects) of cardiac masses.« less

  12. Magnetic resonance electrical impedance tomography (MREIT): simulation study of J-substitution algorithm.

    PubMed

    Kwon, Ohin; Woo, Eung Je; Yoon, Jeong-Rock; Seo, Jin Keun

    2002-02-01

    We developed a new image reconstruction algorithm for magnetic resonance electrical impedance tomography (MREIT). MREIT is a new EIT imaging technique integrated into magnetic resonance imaging (MRI) system. Based on the assumption that internal current density distribution is obtained using magnetic resonance imaging (MRI) technique, the new image reconstruction algorithm called J-substitution algorithm produces cross-sectional static images of resistivity (or conductivity) distributions. Computer simulations show that the spatial resolution of resistivity image is comparable to that of MRI. MREIT provides accurate high-resolution cross-sectional resistivity images making resistivity values of various human tissues available for many biomedical applications.

  13. Reducing surgical levels by paraspinal mapping and diffusion tensor imaging techniques in lumbar spinal stenosis.

    PubMed

    Chen, Hua-Biao; Wan, Qi; Xu, Qi-Feng; Chen, Yi; Bai, Bo

    2016-04-25

    Correlating symptoms and physical examination findings with surgical levels based on common imaging results is not reliable. In patients who have no concordance between radiological and clinical symptoms, the surgical levels determined by conventional magnetic resonance imaging (MRI) and neurogenic examination (NE) may lead to a more extensive surgery and significant complications. We aimed to confirm that whether the use of diffusion tensor imaging (DTI) and paraspinal mapping (PM) techniques can further prevent the occurrence of false positives with conventional MRI, distinguish which are clinically relevant from levels of cauda equina and/or nerve root lesions based on MRI, and determine and reduce the decompression levels of lumbar spinal stenosis than MRI + NE, while ensuring or improving surgical outcomes. We compared the data between patients who underwent MRI + (PM or DTI) and patients who underwent conventional MRI + NE to determine levels of decompression for the treatment of lumbar spinal stenosis. Outcome measures were assessed at 2 weeks, 3 months, 6 months, and 12 months postoperatively. One hundred fourteen patients (59 in the control group, 54 in the experimental group) underwent decompression. The levels of decompression determined by MRI + (PM or DTI) in the experimental group were significantly less than that determined by MRI + NE in the control group (p = 0.000). The surgical time, blood loss, and surgical transfusion were significantly less in the experimental group (p = 0.001, p = 0.011, p = 0.001, respectively). There were no differences in improvement of the visual analog scale back and leg pain (VAS-BP, VAS-LP) scores and Oswestry Disability Index (ODI) scores at 2 weeks, 3 months, 6 months, and 12 months after operation between the experimental and control groups. MRI + (PM or DTI) showed clear benefits in determining decompression levels of lumbar spinal stenosis than MRI + NE. In patients with lumbar spinal stenosis, the use of PM and DTI techniques reduces decompression levels and increases safety and benefits of surgery.

  14. Assessment of a high-SNR chemical-shift-encoded MRI with complex reconstruction for proton density fat fraction (PDFF) estimation overall and in the low-fat range.

    PubMed

    Park, Charlie C; Hooker, Catherine; Hooker, Jonathan C; Bass, Emily; Haufe, William; Schlein, Alexandra; Covarrubias, Yesenia; Heba, Elhamy; Bydder, Mark; Wolfson, Tanya; Gamst, Anthony; Loomba, Rohit; Schwimmer, Jeffrey; Hernando, Diego; Reeder, Scott B; Middleton, Michael; Sirlin, Claude B; Hamilton, Gavin

    2018-04-29

    Improving the signal-to-noise ratio (SNR) of chemical-shift-encoded MRI acquisition with complex reconstruction (MRI-C) may improve the accuracy and precision of noninvasive proton density fat fraction (PDFF) quantification in patients with hepatic steatosis. To assess the accuracy of high SNR (Hi-SNR) MRI-C versus standard MRI-C acquisition to estimate hepatic PDFF in adult and pediatric nonalcoholic fatty liver disease (NAFLD) using an MR spectroscopy (MRS) sequence as the reference standard. Prospective. In all, 231 adult and pediatric patients with known or suspected NAFLD. PDFF estimated at 3T by three MR techniques: standard MRI-C; a Hi-SNR MRI-C variant with increased slice thickness, decreased matrix size, and no parallel imaging; and MRS (reference standard). MRI-PDFF was measured by image analysts using a region of interest coregistered with the MRS-PDFF voxel. Linear regression analyses were used to assess accuracy and precision of MRI-estimated PDFF for MRS-PDFF as a function of MRI-PDFF using the standard and Hi-SNR MRI-C for all patients and for patients with MRS-PDFF <10%. In all, 271 exams from 231 patients were included (mean MRS-PDFF: 12.6% [SD: 10.4]; range: 0.9-41.9). High agreement between MRI-PDFF and MRS-PDFF was demonstrated across the overall range of PDFF, with a regression slope of 1.035 for the standard MRI-C and 1.008 for Hi-SNR MRI-C. Hi-SNR MRI-C, compared to standard MRI-C, provided small but statistically significant improvements in the slope (respectively, 1.008 vs. 1.035, P = 0.004) and mean bias (0.412 vs. 0.673, P < 0.0001) overall. In the low-fat patients only, Hi-SNR MRI-C provided improvements in the slope (1.058 vs. 1.190, P = 0.002), mean bias (0.168 vs. 0.368, P = 0.007), intercept (-0.153 vs. -0.796, P < 0.0001), and borderline improvement in the R 2 (0.888 vs. 0.813, P = 0.01). Compared to standard MRI-C, Hi-SNR MRI-C provides slightly higher MRI-PDFF estimation accuracy across the overall range of PDFF and improves both accuracy and precision in the low PDFF range. 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.

  15. Cardiac CT and MRI for congenital heart disease in Asian countries: recent trends in publication based on a scientific database.

    PubMed

    Tsai, I-Chen; Goo, Hyun Woo

    2013-06-01

    In the past 12 years, during the process of imaging congenital heart disease (CHD), Asian doctors have not only made every effort to adhere to established magnetic resonance imaging (MRI) protocols as in Western countries, but also have developed Computed tomography (CT) as an alternative problem-solving technique. Databases have shown that Asian doctors were more inclined to utilize CT than MRI in evaluating CHD. Articles in the literature focusing on CT have been cited more frequently than articles on MRI. Additionally, several repeatedly cited CT articles have become seminal papers in this field. The database reflects a trend suggesting that Asian doctors actively adapt to new techniques and flexibly develop unique strategies to overcome limitations caused by the relatively limited resources often available to them.

  16. OdorMapComparer: an application for quantitative analyses and comparisons of fMRI brain odor maps.

    PubMed

    Liu, Nian; Xu, Fuqiang; Miller, Perry L; Shepherd, Gordon M

    2007-01-01

    Brain odor maps are reconstructed flat images that describe the spatial activity patterns in the glomerular layer of the olfactory bulbs in animals exposed to different odor stimuli. We have developed a software application, OdorMapComparer, to carry out quantitative analyses and comparisons of the fMRI odor maps. This application is an open-source window program that first loads two odor map images being compared. It allows image transformations including scaling, flipping, rotating, and warping so that the two images can be appropriately aligned to each other. It performs simple subtraction, addition, and average of signals in the two images. It also provides comparative statistics including the normalized correlation (NC) and spatial correlation coefficient. Experimental studies showed that the rodent fMRI odor maps for aliphatic aldehydes displayed spatial activity patterns that are similar in gross outlines but somewhat different in specific subregions. Analyses with OdorMapComparer indicate that the similarity between odor maps decreases with increasing difference in the length of carbon chains. For example, the map of butanal is more closely related to that of pentanal (with a NC = 0.617) than to that of octanal (NC = 0.082), which is consistent with animal behavioral studies. The study also indicates that fMRI odor maps are statistically odor-specific and repeatable across both the intra- and intersubject trials. OdorMapComparer thus provides a tool for quantitative, statistical analyses and comparisons of fMRI odor maps in a fashion that is integrated with the overall odor mapping techniques.

  17. Non-invasive therapeutic use of High-Intensity Focused Ultrasound (HIFU) with 3 Tesla Magnetic Resonance Imaging in women with symptomatic uterine fibroids.

    PubMed

    Łoziński, Tomasz; Filipowska, Justyna; Gurynowicz, Grzegorz; Gabriel, Iwona; Czekierdowski, Artur

    2017-01-01

    Benign uterine fibroids are common female genital tract tumors and if symptomatic often require extensive surgery. When tumors are multiple and large or unusually located, the operative treatment may lead to significant morbidity and compromise quality of life. Recovery period after surgical treatment may be complicated by patient's medical condition and wound healing problems. Currently used other non-surgical treatment modalities usually provide only a temporal symptoms relief and may not be efficient in all affected women. In the last decade, minimally invasive treatment of uterine fibroids called Magnetic Resonance guided High-Intensity Focused Ultrasound (MRI HIFU) was introduced. This technique uses thermal ablation simultaneously with MRI imaging of the mass and tissue temperature measurements during the procedure where a focused ultrasound beam is applied externally to destroy tumors located in the human body. Successful application of MRI HIFU has been recently described in patients with various malignancies, such as breast, prostate and hepatocellular cancers as well as soft tissue and bone tumors. This technique is innovative and has been proven to be safe and effective but there are several limitations for treatment. The article highlights the relative advantages and disadvantages of MRI guided HIFU in women with uterine fibroids. The authors also describe high-resolution MRI technique on 3T MRI, along with the approach to interpretation of HIFU results applied to uterine fibroids that has been experienced at one institution.

  18. Motion-compensated compressed sensing for dynamic imaging

    NASA Astrophysics Data System (ADS)

    Sundaresan, Rajagopalan; Kim, Yookyung; Nadar, Mariappan S.; Bilgin, Ali

    2010-08-01

    The recently introduced Compressed Sensing (CS) theory explains how sparse or compressible signals can be reconstructed from far fewer samples than what was previously believed possible. The CS theory has attracted significant attention for applications such as Magnetic Resonance Imaging (MRI) where long acquisition times have been problematic. This is especially true for dynamic MRI applications where high spatio-temporal resolution is needed. For example, in cardiac cine MRI, it is desirable to acquire the whole cardiac volume within a single breath-hold in order to avoid artifacts due to respiratory motion. Conventional MRI techniques do not allow reconstruction of high resolution image sequences from such limited amount of data. Vaswani et al. recently proposed an extension of the CS framework to problems with partially known support (i.e. sparsity pattern). In their work, the problem of recursive reconstruction of time sequences of sparse signals was considered. Under the assumption that the support of the signal changes slowly over time, they proposed using the support of the previous frame as the "known" part of the support for the current frame. While this approach works well for image sequences with little or no motion, motion causes significant change in support between adjacent frames. In this paper, we illustrate how motion estimation and compensation techniques can be used to reconstruct more accurate estimates of support for image sequences with substantial motion (such as cardiac MRI). Experimental results using phantoms as well as real MRI data sets illustrate the improved performance of the proposed technique.

  19. Advanced imaging in COPD: insights into pulmonary pathophysiology

    PubMed Central

    Milne, Stephen

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) involves a complex interaction of structural and functional abnormalities. The two have long been studied in isolation. However, advanced imaging techniques allow us to simultaneously assess pathological processes and their physiological consequences. This review gives a comprehensive account of the various advanced imaging modalities used to study COPD, including computed tomography (CT), magnetic resonance imaging (MRI), and the nuclear medicine techniques positron emission tomography (PET) and single-photon emission computed tomography (SPECT). Some more recent developments in imaging technology, including micro-CT, synchrotron imaging, optical coherence tomography (OCT) and electrical impedance tomography (EIT), are also described. The authors identify the pathophysiological insights gained from these techniques, and speculate on the future role of advanced imaging in both clinical and research settings. PMID:25478198

  20. Comparison of Maximal Wall Thickness in Hypertrophic Cardiomyopathy Differs Between Magnetic Resonance Imaging and Transthoracic Echocardiography.

    PubMed

    Bois, John P; Geske, Jeffrey B; Foley, Thomas A; Ommen, Steve R; Pellikka, Patricia A

    2017-02-15

    Left ventricular (LV) wall thickness is a prognostic marker in hypertrophic cardiomyopathy (HC). LV wall thickness ≥30 mm (massive hypertrophy) is independently associated with sudden cardiac death. Presence of massive hypertrophy is used to guide decision making for cardiac defibrillator implantation. We sought to determine whether measurements of maximal LV wall thickness differ between cardiac magnetic resonance imaging (MRI) and transthoracic echocardiography (TTE). Consecutive patients were studied who had HC without previous septal ablation or myectomy and underwent both cardiac MRI and TTE at a single tertiary referral center. Reported maximal LV wall thickness was compared between the imaging techniques. Patients with ≥1 technique reporting massive hypertrophy received subset analysis. In total, 618 patients were evaluated from January 1, 2003, to December 21, 2012 (mean [SD] age, 53 [15] years; 381 men [62%]). In 75 patients (12%), reported maximal LV wall thickness was identical between MRI and TTE. Median difference in reported maximal LV wall thickness between the techniques was 3 mm (maximum difference, 17 mm). Of the 63 patients with ≥1 technique measuring maximal LV wall thickness ≥30 mm, 44 patients (70%) had discrepant classification regarding massive hypertrophy. MRI identified 52 patients (83%) with massive hypertrophy; TTE, 30 patients (48%). Although guidelines recommend MRI or TTE imaging to assess cardiac anatomy in HC, this study shows discrepancy between the techniques for maximal reported LV wall thickness assessment. In conclusion, because this measure clinically affects prognosis and therapeutic decision making, efforts to resolve these discrepancies are critical. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. MEG-SIM: a web portal for testing MEG analysis methods using realistic simulated and empirical data.

    PubMed

    Aine, C J; Sanfratello, L; Ranken, D; Best, E; MacArthur, J A; Wallace, T; Gilliam, K; Donahue, C H; Montaño, R; Bryant, J E; Scott, A; Stephen, J M

    2012-04-01

    MEG and EEG measure electrophysiological activity in the brain with exquisite temporal resolution. Because of this unique strength relative to noninvasive hemodynamic-based measures (fMRI, PET), the complementary nature of hemodynamic and electrophysiological techniques is becoming more widely recognized (e.g., Human Connectome Project). However, the available analysis methods for solving the inverse problem for MEG and EEG have not been compared and standardized to the extent that they have for fMRI/PET. A number of factors, including the non-uniqueness of the solution to the inverse problem for MEG/EEG, have led to multiple analysis techniques which have not been tested on consistent datasets, making direct comparisons of techniques challenging (or impossible). Since each of the methods is known to have their own set of strengths and weaknesses, it would be beneficial to quantify them. Toward this end, we are announcing the establishment of a website containing an extensive series of realistic simulated data for testing purposes ( http://cobre.mrn.org/megsim/ ). Here, we present: 1) a brief overview of the basic types of inverse procedures; 2) the rationale and description of the testbed created; and 3) cases emphasizing functional connectivity (e.g., oscillatory activity) suitable for a wide assortment of analyses including independent component analysis (ICA), Granger Causality/Directed transfer function, and single-trial analysis.

  2. MEG-SIM: A Web Portal for Testing MEG Analysis Methods using Realistic Simulated and Empirical Data

    PubMed Central

    Aine, C. J.; Sanfratello, L.; Ranken, D.; Best, E.; MacArthur, J. A.; Wallace, T.; Gilliam, K.; Donahue, C. H.; Montaño, R.; Bryant, J. E.; Scott, A.; Stephen, J. M.

    2012-01-01

    MEG and EEG measure electrophysiological activity in the brain with exquisite temporal resolution. Because of this unique strength relative to noninvasive hemodynamic-based measures (fMRI, PET), the complementary nature of hemodynamic and electrophysiological techniques is becoming more widely recognized (e.g., Human Connectome Project). However, the available analysis methods for solving the inverse problem for MEG and EEG have not been compared and standardized to the extent that they have for fMRI/PET. A number of factors, including the non-uniqueness of the solution to the inverse problem for MEG/EEG, have led to multiple analysis techniques which have not been tested on consistent datasets, making direct comparisons of techniques challenging (or impossible). Since each of the methods is known to have their own set of strengths and weaknesses, it would be beneficial to quantify them. Toward this end, we are announcing the establishment of a website containing an extensive series of realistic simulated data for testing purposes (http://cobre.mrn.org/megsim/). Here, we present: 1) a brief overview of the basic types of inverse procedures; 2) the rationale and description of the testbed created; and 3) cases emphasizing functional connectivity (e.g., oscillatory activity) suitable for a wide assortment of analyses including independent component analysis (ICA), Granger Causality/Directed transfer function, and single-trial analysis. PMID:22068921

  3. Evaluation of MRI-US Fusion Technology in Sports-Related Musculoskeletal Injuries.

    PubMed

    Wong-On, Manuel; Til-Pérez, Lluís; Balius, Ramón

    2015-06-01

    A combination of magnetic resonance imaging (MRI) with real-time high-resolution ultrasound (US) known as fusion imaging may improve visualization of musculoskeletal (MSK) sports medicine injuries. The aim of this study was to evaluate the applicability of MRI-US fusion technology in MSK sports medicine. This study was conducted by the medical services of the FC Barcelona. The participants included volunteers and referred athletes with symptomatic and asymptomatic MSK injuries. All cases underwent MRI which was loaded into the US system for manual registration on the live US image and fusion imaging examination. After every test, an evaluation form was completed in terms of advantages, disadvantages, and anatomic fusion landmarks. From November 2014 to March 2015, we evaluated 20 subjects who underwent fusion imaging, 5 non-injured volunteers and 15 injured athletes, 11 symptomatic and 4 asymptomatic, age range 16-50 years, mean 22. We describe some of the anatomic landmarks used to guide fusion in different regions. This technology allowed us to examine muscle and tendon injuries simultaneously in US and MRI, and the correlation of both techniques, especially low-grade muscular injuries. This has also helped compensate for the limited field of view with US. It improves spatial orientation of cartilage, labrum and meniscal injuries. However, a high-quality MRI image is essential in achieving an adequate fusion image, and 3D sequences need to be added in MRI protocols to improve navigation. The combination of real-time MRI and US image fusion and navigation is relatively easy to perform and is helping to improve understanding of MSK injuries. However, it requires specific skills in MSK imaging and still needs further research in sports-related injuries. Toshiba Medical Systems Corporation.

  4. An Open-Source Hardware and Software System for Acquisition and Real-Time Processing of Electrophysiology during High Field MRI

    PubMed Central

    Purdon, Patrick L.; Millan, Hernan; Fuller, Peter L.; Bonmassar, Giorgio

    2008-01-01

    Simultaneous recording of electrophysiology and functional magnetic resonance imaging (fMRI) is a technique of growing importance in neuroscience. Rapidly evolving clinical and scientific requirements have created a need for hardware and software that can be customized for specific applications. Hardware may require customization to enable a variety of recording types (e.g., electroencephalogram, local field potentials, or multi-unit activity) while meeting the stringent and costly requirements of MRI safety and compatibility. Real-time signal processing tools are an enabling technology for studies of learning, attention, sleep, epilepsy, neurofeedback, and neuropharmacology, yet real-time signal processing tools are difficult to develop. We describe an open source system for simultaneous electrophysiology and fMRI featuring low-noise (< 0.6 uV p-p input noise), electromagnetic compatibility for MRI (tested up to 7 Tesla), and user-programmable real-time signal processing. The hardware distribution provides the complete specifications required to build an MRI-compatible electrophysiological data acquisition system, including circuit schematics, print circuit board (PCB) layouts, Gerber files for PCB fabrication and robotic assembly, a bill of materials with part numbers, data sheets, and vendor information, and test procedures. The software facilitates rapid implementation of real-time signal processing algorithms. This system has used in human EEG/fMRI studies at 3 and 7 Tesla examining the auditory system, visual system, sleep physiology, and anesthesia, as well as in intracranial electrophysiological studies of the non-human primate visual system during 3 Tesla fMRI, and in human hyperbaric physiology studies at depths of up to 300 feet below sea level. PMID:18761038

  5. Hemispheric asymmetries in dorsal language pathway white-matter tracts: A magnetic resonance imaging tractography and functional magnetic resonance imaging study.

    PubMed

    Silva, Guilherme; Citterio, Alberto

    2017-10-01

    Introduction Previous studies have shown that the arcuate fasciculus has a leftward asymmetry in right-handers that could be correlated with the language lateralisation defined by functional magnetic resonance imaging. Nonetheless, information about the asymmetry of the other fibres that constitute the dorsal language pathway is scarce. Objectives This study investigated the asymmetry of the white-matter tracts involved in the dorsal language pathway through the diffusion tensor imaging (DTI) technique, in relation to language hemispheric dominance determined by task-dependent functional magnetic resonance imaging (fMRI). Methods We selected 11 patients (10 right-handed) who had been studied with task-dependent fMRI for language areas and DTI and who had no language impairment or structural abnormalities that could compromise magnetic resonance tractography of the fibres involved in the dorsal language pathway. Laterality indices (LI) for fMRI and for the volumes of each tract were calculated. Results In fMRI, all the right-handers had left hemispheric lateralisation, and the ambidextrous subject presented right hemispheric dominance. The arcuate fasciculus LI was strongly correlated with fMRI LI ( r = 0.739, p = 0.009), presenting the same lateralisation of fMRI in seven subjects (including the right hemispheric dominant). It was not asymmetric in three cases and had opposite lateralisation in one case. The other tracts presented predominance for rightward lateralisation, especially superior longitudinal fasciculus (SLF) II/III (nine subjects), but their LI did not correlate (directly or inversely) with fMRI LI. Conclusion The fibres that constitute the dorsal language pathway have an asymmetric distribution in the cerebral hemispheres. Only the asymmetry of the arcuate fasciculus is correlated with fMRI language lateralisation.

  6. An open-source hardware and software system for acquisition and real-time processing of electrophysiology during high field MRI.

    PubMed

    Purdon, Patrick L; Millan, Hernan; Fuller, Peter L; Bonmassar, Giorgio

    2008-11-15

    Simultaneous recording of electrophysiology and functional magnetic resonance imaging (fMRI) is a technique of growing importance in neuroscience. Rapidly evolving clinical and scientific requirements have created a need for hardware and software that can be customized for specific applications. Hardware may require customization to enable a variety of recording types (e.g., electroencephalogram, local field potentials, or multi-unit activity) while meeting the stringent and costly requirements of MRI safety and compatibility. Real-time signal processing tools are an enabling technology for studies of learning, attention, sleep, epilepsy, neurofeedback, and neuropharmacology, yet real-time signal processing tools are difficult to develop. We describe an open-source system for simultaneous electrophysiology and fMRI featuring low-noise (<0.6microV p-p input noise), electromagnetic compatibility for MRI (tested up to 7T), and user-programmable real-time signal processing. The hardware distribution provides the complete specifications required to build an MRI-compatible electrophysiological data acquisition system, including circuit schematics, print circuit board (PCB) layouts, Gerber files for PCB fabrication and robotic assembly, a bill of materials with part numbers, data sheets, and vendor information, and test procedures. The software facilitates rapid implementation of real-time signal processing algorithms. This system has been used in human EEG/fMRI studies at 3 and 7T examining the auditory system, visual system, sleep physiology, and anesthesia, as well as in intracranial electrophysiological studies of the non-human primate visual system during 3T fMRI, and in human hyperbaric physiology studies at depths of up to 300 feet below sea level.

  7. Magnetic resonance imaging of female prostate pathology.

    PubMed

    Wimpissinger, Florian; Tscherney, Robert; Stackl, Walter

    2009-06-01

    The female prostate (paraurethral glands) is a well-known, yet poorly understood, anatomic structure. Imaging studies of the female prostate, its physiology, and pathologies are still highly controversial. To study the anatomy of the female prostate with contemporary magnetic resonance imaging (MRI) techniques and correlate these findings to clinical features. Female prostate pathologic anatomy on MRI. Women with clinical signs of function (or dysfunction) of paraurethral glands have been examined with 1.5 or 3 Tesla MRI and urethroscopy. Seven women aged 17 to 62 years (median 40 years) have been prospectively included into the study. Clinically, one of the seven women reported ejaculation at orgasm, whereas three women presented with occasional secretions independent of sexual stimulation. In two women, paraurethral glands have been randomly found on MRI that has been performed in the diagnostic workup of other diseases. One woman presented with swelling of the external urethral meatus at puberty. In this woman, a paraurethral gland has been found, besides the erectile tissue at the external meatus. Two women reported lower urinary tract symptoms (LUTS) with mainly urethral symptoms (recurrent infections in one and paraurethral stones in the other). On MRI, paraurethral glands could be visualized in six of the seven patients. There was no relation between glandular volume and ejaculation status. In cases where glands or related pathologies could be found on physical examination, there was a clear correlation with MRI anatomy. MRI has the potential to become the standard imaging modality for female prostate pathology. Exact visualization of this highly variable structure is possible by tailored MRI protocols. This tool can aid in understanding an individual woman's symptoms related to paraurethral glands with an impact on her sexual life.

  8. Portal hypertension in patients with cirrhosis: indirect assessment of hepatic venous pressure gradient by measuring azygos flow with 2D-cine phase-contrast magnetic resonance imaging.

    PubMed

    Gouya, Hervé; Grabar, Sophie; Vignaux, Olivier; Saade, Anastasia; Pol, Stanislas; Legmann, Paul; Sogni, Philippe

    2016-07-01

    To measure azygos, portal and aortic flow by two-dimensional cine phase-contrast magnetic resonance imaging (2D-cine PC MRI), and to compare the MRI values to hepatic venous pressure gradient (HVPG) measurements, in patients with cirrhosis. Sixty-nine patients with cirrhosis were prospectively included. All patients underwent HVPG measurements, upper gastrointestinal endoscopy and 2D-cine PC MRI measurements of azygos, portal and aortic blood flow. Univariate and multivariate regression analyses were used to evaluate the correlation between the blood flow and HVPG. The performance of 2D-cine PC MRI to diagnose severe portal hypertension (HVPG ≥ 16 mmHg) was determined by receiver operating characteristic curve (ROC) analysis, and area under the curves (AUC) were compared. Azygos and aortic flow values were associated with HVPG in univariate linear regression model. Azygos flow (p < 10(-3)), aortic flow (p = 0.001), age (p = 0.001) and presence of varices (p < 10(-3)) were independently associated with HVPG. Azygos flow (AUC = 0.96 (95 % CI [0.91-1.00]) had significantly higher AUC than aortic (AUC = 0.64 (95 % CI [0.51-0.77]) or portal blood flow (AUC = 0.40 (95 % CI [0.25-0.54]). 2D-cine PC MRI is a promising technique to evaluate significant portal hypertension in patients with cirrhosis. • Noninvasive HVPG assessment can be performed with MRI azygos flow. • Azygos MRI flow is an easy-to-measure marker to detect significant portal hypertension. • MRI flow is more specific that varice grade to detect portal hypertension.

  9. Initial observations of electronic medical record usage during CT and MRI interpretation: Frequency of use and impact on workflow.

    PubMed

    Lin, Abraham; Harris, Mitchell; Zalis, Michael

    2010-07-01

    Electronic medical record (EMR) systems permit integration of contextual nonimaging EMR data into examination interpretation; however, the extra effort required to search and review these nonradiologic data are not well characterized. We assessed the gross frequency and pattern of EMR usage in the interpretation of diagnostic CT and MRI examinations. We defined nonradiologic EMR data as laboratory data, nonimaging specialty report, clinical note, and administrative data not available on PACS. For abdominal, neuroradiologic, and musculoskeletal CT and MRI, we prospectively recorded the time required for image analysis (including prior imaging studies and their reports), nonradiologic EMR use, and initial report drafting by fellows and staff in randomized sessions. We assessed EMR use as a fraction of work activity and according to technique, subspecialty, inpatient status, and radiologist experience. We observed 372 CT and MRI interpretations by 33 radiologists. For CT, radiologists used the EMR in 34% of abdominal, 57% of neuroradiologic, and 38% of musculoskeletal interpretations. For MRI, EMR was used in 73% of abdominal, 56% of neuroradiologic, and 33% of musculoskeletal interpretations. For CT, EMR usage comprised 18%, 14%, and 18% of diagnostic effort (image analysis plus EMR use) for abdominal, neuroradiologic, and musculoskeletal interpretations, respectively; for MRI, EMR usage comprised 21%, 16%, and 15% of diagnostic effort for abdominal, neuroradiologic, and musculoskeletal interpretations, respectively. Frequency of EMR use was significantly greater for neuroradiology CT and abdominal MRI (p < 0.05, Fisher's test). EMR usage was not consistently related to inpatient status for CT or radiologist experience. For CT and MRI interpretation, EMR usage is frequent and comprises a significant fraction of diagnostic effort.

  10. Lung volume quantified by MRI reflects extracellular-matrix deposition and altered pulmonary function in bleomycin models of fibrosis: effects of SOM230.

    PubMed

    Egger, Christine; Gérard, Christelle; Vidotto, Nella; Accart, Nathalie; Cannet, Catherine; Dunbar, Andrew; Tigani, Bruno; Piaia, Alessandro; Jarai, Gabor; Jarman, Elizabeth; Schmid, Herbert A; Beckmann, Nicolau

    2014-06-15

    Idiopathic pulmonary fibrosis is a progressive and lethal disease, characterized by loss of lung elasticity and alveolar surface area, secondary to alveolar epithelial cell injury, reactive inflammation, proliferation of fibroblasts, and deposition of extracellular matrix. The effects of oropharyngeal aspiration of bleomycin in Sprague-Dawley rats and C57BL/6 mice, as well as of intratracheal administration of ovalbumin to actively sensitized Brown Norway rats on total lung volume as assessed noninvasively by magnetic resonance imaging (MRI) were investigated here. Lung injury and volume were quantified by using nongated or respiratory-gated MRI acquisitions [ultrashort echo time (UTE) or gradient-echo techniques]. Lung function of bleomycin-challenged rats was examined additionally using a flexiVent system. Postmortem analyses included histology of collagen and hydroxyproline assays. Bleomycin induced an increase of MRI-assessed total lung volume, lung dry and wet weights, and hydroxyproline content as well as collagen amount. In bleomycin-treated rats, gated MRI showed an increased volume of the lung in the inspiratory and expiratory phases of the respiratory cycle and a temporary decrease of tidal volume. Decreased dynamic lung compliance was found in bleomycin-challenged rats. Bleomycin-induced increase of MRI-detected lung volume was consistent with tissue deposition during fibrotic processes resulting in decreased lung elasticity, whereas influences by edema or emphysema could be excluded. In ovalbumin-challenged rats, total lung volume quantified by MRI remained unchanged. The somatostatin analog, SOM230, was shown to have therapeutic effects on established bleomycin-induced fibrosis in rats. This work suggests MRI-detected total lung volume as readout for tissue-deposition in small rodent bleomycin models of pulmonary fibrosis. Copyright © 2014 the American Physiological Society.

  11. Advances in Imaging in Prostate and Bladder Cancer.

    PubMed

    Srivastava, Abhishek; Douglass, Laura M; Chernyak, Victoria; Watts, Kara L

    2017-09-01

    Recent advancements in urologic imaging techniques aim to improve the initial detection of urologic malignancies and subsequent recurrence and to more accurately stage disease. This allows the urologist to make better informed treatment decisions. In particular, exciting advances in the imaging of prostate cancer and bladder cancer have recently emerged including the use of dynamic, functional imaging with MRI and PET. In this review, we will explore these imaging modalities, in addition to new sonography techniques and CT, and how they hope to improve the diagnosis and management of prostate and bladder cancer.

  12. Application of Magnetic Resonance Imaging and Three-Dimensional Treatment Planning in the Treatment of Orbital Lymphoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudoltz, Marc S.; Ayyangar, Komanduri; Mohiuddin, Mohammed

    Radiotherapy for lymphoma of the orbit must be individualized for each patient and clinical setting. Most techniques focus on optimizing the dose to the tumor while sparing the lens. This study describes a technique utilizing magnetic resonance imaging (MRI) and three dimensional (3D) planning in the treatment of orbital lymphoma. A patient presented with an intermediate grade lymphoma of the right orbit. The prescribed tumor dose was 4050 cGy in 18 fractions. Three D planning was carried out and tumor volumes, retina, and lens were subsequently outlined. Dose calculations including dose volume histograms of the target, retina, and lens weremore » then performed. Part of the retina was outside of the treatment volume while 50% of the retina received 90% or more of the prescribed dose. The patient was clinically NED when last seen 2 years following therapy with no treatment-related morbidity. Patients with lymphomas of the orbit can be optimally treated using MRI based 3D treatment planning.« less

  13. 25 years of neuroimaging in amyotrophic lateral sclerosis

    PubMed Central

    Foerster, Bradley R.; Welsh, Robert C.; Feldman, Eva L.

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease for which a precise cause has not yet been identified. Standard CT or MRI evaluation does not demonstrate gross structural nervous system changes in ALS, so conventional neuroimaging techniques have provided little insight into the pathophysiology of this disease. Advanced neuroimaging techniques—such as structural MRI, diffusion tensor imaging and proton magnetic resonance spectroscopy—allow evaluation of alterations of the nervous system in ALS. These alterations include focal loss of grey and white matter and reductions in white matter tract integrity, as well as changes in neural networks and in the chemistry, metabolism and receptor distribution in the brain. Given their potential for investigation of both brain structure and function, advanced neuroimaging methods offer important opportunities to improve diagnosis, guide prognosis, and direct future treatment strategies in ALS. In this article, we review the contributions made by various advanced neuroimaging techniques to our understanding of the impact of ALS on different brain regions, and the potential role of such measures in biomarker development. PMID:23917850

  14. The diagnostic performance of non-contrast 3-Tesla magnetic resonance imaging (3-T MRI) versus 1.5-Tesla magnetic resonance arthrography (1.5-T MRA) in femoro-acetabular impingement.

    PubMed

    Crespo-Rodríguez, Ana M; De Lucas-Villarrubia, Jose C; Pastrana-Ledesma, Miguel; Hualde-Juvera, Ana; Méndez-Alonso, Santiago; Padron, Mario

    2017-03-01

    The aim of this study was to evaluate the diagnostic accuracy of 3-T non-contrast MRI versus 1.5-T MRA for assessing labrum and articular cartilage lesions in patients with clinical suspicion of femoro-acetabular impingement (FAI). Fifty patients (thirty men and twenty women, mean age 42.5 years) underwent 1.5-T MRA, 3-T MRI and arthroscopy on the same hip. An optimized high-resolution proton density spin echo pulse sequence was included in the 3-T non-contrast MRI protocol. The 3-T non-contrast MRI identified forty-two of the forty-three arthroscopically proven tears at the labral-chondral transitional zone (sensitivity, 97.7%; specificity, 100%; positive predictive value (PPV), 100%; negative predictive value (NPV), 87.5%; accuracy 98%). With 1.5-T MRA, forty-four tears were diagnosed. However, there was one false positive (sensitivity, 100%; specificity, 85.7%; PPV, 97.7%; NPV, 100%; accuracy 98%). Agreement between arthroscopy and MRI, whether 3-T non-contrast MRI or 1.5-T MRA, as to the degree of chondral lesion in the acetabulum was reached in half of the patients and in the femur in 76% of patients. Non-invasive assessment of the hip is possible with 3-T MR magnet. 3-T non-contrast MRI could replace MRA as the workhorse technique for assessing hip internal damage. MRA would then be reserved for young adults with a strong clinical suspicion of FAI but normal findings on 3-T non-contrast MRI. When compared with 1.5-T MRA, optimized sequences with 3-T non-contrast MRI help in detecting normal variants and in diagnosing articular cartilage lesions. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  15. Quantification of Regional Myocardial Oxygenation by Magnetic Resonance Imaging: Validation with Positron Emission Tomography

    PubMed Central

    McCommis, Kyle S.; Goldstein, Thomas A.; Abendschein, Dana R.; Herrero, Pilar; Misselwitz, Bernd; Gropler, Robert J.; Zheng, Jie

    2011-01-01

    Background A comprehensive evaluation of myocardial ischemia requires measures of both oxygen supply and demand. Positron emission tomography (PET) is currently the gold standard for such evaluations, but its use is limited due to its ionizing radiation, limited availability, and high cost. A cardiac magnetic resonance imaging (MRI) method was developed for assessing myocardial oxygenation. The purpose of this study was to evaluate and validate this technique compared to PET during pharmacologic stress in a canine model of coronary artery stenosis. Methods and Results Twenty-one beagles and small mongrel dogs without coronary artery stenosis (controls), or with moderate to severe acute coronary artery stenosis underwent MRI and PET imaging at rest and during dipyridamole vasodilation or dobutamine stress to induce a wide range of changes in cardiac perfusion and oxygenation. MRI first-pass perfusion imaging was performed to quantify myocardial blood flow (MBF) and volume (MBV). The MRI blood-oxygen-level-dependent (BOLD) technique was used to determine the myocardial oxygen extraction fraction (OEF) during pharmacologic hyperemia. Myocardial oxygen consumption (MVO2) was determined by Fick’s law. In the same dogs, 15O-water and 11C-acetate were used to measure MBF and MVO2, respectively, by PET. Regional assessments were performed for both MR and PET. MRI data correlated nicely with PET values for MBF (R2 = 0.79, P < 0.001), MVO2 (R2 = 0.74, P < 0.001), and OEF (R2 = 0.66, P < 0.01). Conclusions Cardiac MRI methods may provide an alternative to radionuclide imaging in settings of myocardial ischemia. Our newly developed quantitative MRI oxygenation imaging technique may be a valuable non-invasive tool to directly evaluate myocardial energetics and efficiency. PMID:19933371

  16. MR imaging of the fetal musculoskeletal system.

    PubMed

    Nemec, Stefan Franz; Nemec, Ursula; Brugger, Peter C; Bettelheim, Dieter; Rotmensch, Siegfried; Graham, John M; Rimoin, David L; Prayer, Daniela

    2012-03-01

    Magnetic resonance imaging (MRI) appears to be increasingly used, in addition to standard ultrasonography for the diagnosis of abnormalities in utero. Previous studies have recently drawn attention to the technical refinement of MRI to visualize the fetal bones and muscles. Beyond commonly used T2-weighted MRI, echoplanar, thick-slab T2-weighted and dynamic sequences, and three-dimensional MRI techniques, are about to provide new imaging insights into the normal and the pathological musculoskeletal system of the fetus. This review emphasizes the potential significance of MRI in the visualization of the fetal musculoskeletal system. © 2012 John Wiley & Sons, Ltd.

  17. Comparison between magnetic resonance imaging and fetopathology in the evaluation of fetal posterior fossa non-cystic abnormalities.

    PubMed

    Tilea, B; Delezoide, A L; Khung-Savatovski, S; Guimiot, F; Vuillard, E; Oury, J F; Garel, C

    2007-06-01

    To compare magnetic resonance imaging (MRI) and fetopathological findings in the evaluation of non-cystic fetal posterior fossa anomalies and to describe associated abnormalities. This was a prospective study from 2000 to 2005 of fetuses identified on ultrasound as having sonographic suspicion of posterior fossa malformation. All underwent a thorough MRI examination of the fetal brain, after which we classified each fetus as presenting one of the following pathologies: vermian hypoplasia or agenesis, cerebellar and/or brain stem hypoplasia, destructive or dysplastic lesions. All of the pregnancies were then terminated, after which the whole fetus underwent fetopathological examination. We compared the findings from MRI and fetopathological examinations and recorded the associated cerebral and extracerebral abnormalities. Twenty-five fetuses were included. MRI was performed at a mean gestational age of 31 weeks, and fetopathological examination at 33 weeks. In 12 cases we observed vermian hypoplasia, six had partial vermian agenesis, 11 had cerebellar hemisphere hypoplasia, seven had brain stem hypoplasia, four had destructive lesions and six had dysplastic lesions. The two techniques were similar in their performance with respect to the detection of vermian agenesis, brain stem hypoplasia and destructive lesions. There were four false-positive results of MRI for vermian hypoplasia and a poor agreement regarding cerebellar hemisphere hypoplasia. No dysplastic lesions were diagnosed by MRI. None of the posterior fossa malformations was isolated and many cerebral and extracerebral abnormalities were found. A systematic analysis of the posterior fossa in fetal MRI makes it possible to diagnose accurately most posterior fossa malformations. These malformations never occurred in isolation in our study.

  18. Dual-echo, chemical shift gradient-echo magnetic resonance imaging to quantify hepatic steatosis: Implications for living liver donation.

    PubMed

    Rinella, Mary E; McCarthy, Richard; Thakrar, Kiran; Finn, John Paul; Rao, Sambasiva M; Koffron, Alan J; Abecassis, Michael; Blei, Andres T

    2003-08-01

    In living liver donation, a fatty liver poses risks for both recipient and donor. Currently, liver biopsy is the standard for assessing the presence and extent of steatosis. The goals of this study were to correlate a steatosis index derived from magnetic resonance imaging (MRI) to the histologic grade on biopsy as well as to determine the topographic distribution of steatosis within the liver. We examined the ability of dual-echo, chemical shift gradient-echo MRI to predict the degree of steatosis on liver biopsy. A total of 22 subjects received both a liver biopsy and detailed MRI evaluation. These individuals included 15 potential living donors and 7 patients with nonalcoholic fatty liver disease. MRI steatosis index was then compared with histologic grade on liver biopsy. The topographic distribution of hepatic steatosis was determined from those subjects in whom MRI detected hepatic steatosis. The steatosis index had a positive correlation with grade of steatosis on liver biopsy (correlation coefficient, 0.84). There was no significant variation in the degree of steatosis among segments. A steatosis index of >0.2 had good positive and negative predictive value for the presence of significant steatosis (>15%) on biopsy. Our quantitative MRI protocol can predict the degree of hepatic steatosis when it is minimal to moderate, and may obviate the need for liver biopsy for the purpose of quantification of steatosis in living donors. Fat saturation added to the MRI protocol may further improve diagnostic accuracy. This technique may be applicable to the larger population with hepatic steatosis.

  19. Visual assessment of brain magnetic resonance imaging detects injury to cognitive regulatory sites in patients with heart failure.

    PubMed

    Pan, Alan; Kumar, Rajesh; Macey, Paul M; Fonarow, Gregg C; Harper, Ronald M; Woo, Mary A

    2013-02-01

    Heart failure (HF) patients exhibit depression and executive function impairments that contribute to HF mortality. Using specialized magnetic resonance imaging (MRI) analysis procedures, brain changes appear in areas regulating these functions (mammillary bodies, hippocampi, and frontal cortex). However, specialized MRI procedures are not part of standard clinical assessment for HF (which is usually a visual evaluation), and it is unclear whether visual MRI examination can detect changes in these structures. Using brain MRI, we visually examined the mammillary bodies and frontal cortex for global and hippocampi for global and regional tissue changes in 17 HF and 50 control subjects. Significantly global changes emerged in the right mammillary body (HF 1.18 ± 1.13 vs control 0.52 ± 0.74; P = .024), right hippocampus (HF 1.53 ± 0.94 vs control 0.80 ± 0.86; P = .005), and left frontal cortex (HF 1.76 ± 1.03 vs control 1.24 ± 0.77; P = .034). Comparison of the visual method with specialized MRI techniques corroborates right hippocampal and left frontal cortical, but not mammillary body, tissue changes. Visual examination of brain MRI can detect damage in HF in areas regulating depression and executive function, including the right hippocampus and left frontal cortex. Visual MRI assessment in HF may facilitate evaluation of injury to these structures and the assessment of the impact of potential treatments for this damage. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Studying microstructure and microstructural changes in plant tissues by advanced diffusion magnetic resonance imaging techniques

    PubMed Central

    Morozov, Darya; Tal, Iris; Pisanty, Odelia; Shani, Eilon

    2017-01-01

    Abstract As sessile organisms, plants must respond to the environment by adjusting their growth and development. Most of the plant body is formed post-embryonically by continuous activity of apical and lateral meristems. The development of lateral adventitious roots is a complex process, and therefore the development of methods that can visualize, non-invasively, the plant microstructure and organ initiation that occur during growth and development is of paramount importance. In this study, relaxation-based and advanced diffusion magnetic resonance imaging (MRI) methods including diffusion tensor (DTI), q-space diffusion imaging (QSI), and double-pulsed-field-gradient (d-PFG) MRI, at 14.1 T, were used to characterize the hypocotyl microstructure and the microstructural changes that occurred during the development of lateral adventitious roots in tomato. Better contrast was observed in relaxation-based MRI using higher in-plane resolution but this also resulted in a significant reduction in the signal-to-noise ratio of the T2-weighted MR images. Diffusion MRI revealed that water diffusion is highly anisotropic in the vascular cylinder. QSI and d-PGSE MRI showed that in the vascular cylinder some of the cells have sizes in the range of 6–10 μm. The MR images captured cell reorganization during adventitious root formation in the periphery of the primary vascular bundles, adjacent to the xylem pole that broke through the cortex and epidermis layers. This study demonstrates that MRI and diffusion MRI methods allow the non-invasive study of microstructural features of plants, and enable microstructural changes associated with adventitious root formation to be followed. PMID:28398563

  1. MR imaging of the traumatic triangular fibrocartilaginous complex tear

    PubMed Central

    Griffith, James F.; Fung, Cindy S. Y.; Lee, Ryan K. L.; Tong, Cina S. L.; Wong, Clara W. Y.; Tse, Wing Lim; Ho, Pak Cheong

    2017-01-01

    Triangular fibrocartilage complex is a major stabilizer of the distal radioulnar joint (DRUJ). However, triangular fibrocartilage complex (TFCC) tear is difficult to be diagnosed on MRI for its intrinsic small and thin structure with complex anatomy. The purpose of this article is to review the anatomy of TFCC, state of art MRI imaging technique, normal appearance and features of tear on MRI according to the Palmar’s classification. Atypical tear and limitations of MRI in diagnosis of TFCC tear are also discussed. PMID:28932701

  2. Endoscopic Endonasal Transclival Approach to the Ventral Brainstem: Anatomic Study of the Safe Entry Zones Combining Fiber Dissection Technique with 7 Tesla Magnetic Resonance Guided Neuronavigation.

    PubMed

    Weiss, Alessandro; Perrini, Paolo; De Notaris, Matteo; Soria, Guadalupe; Carlos, Alarcon; Castagna, Maura; Lutzemberger, Lodovico; Santonocito, Orazio Santo; Catapano, Giuseppe; Kassam, Amin; Galino, Alberto Prats

    2018-05-10

    Treatment of intrinsic lesions of the ventral brainstem is a surgical challenge that requires complex skull base antero- and posterolateral approaches. More recently, endoscopic endonasal transclival approach (EETA) has been reported in the treatment of selected ventral brainstem lesions. In this study we explored the endoscopic ventral brainstem anatomy with the aim to describe the degree of exposure of the ventral safe entry zones. In addition, we used a newly developed method combining traditional white matter dissection with high-resolution 7T magnetic resonance imaging (MRI) of the same specimen coregistered using a neuronavigation system. Eight fresh-frozen latex-injected cadaver heads underwent EETA. Additional 8 formalin-fixed brainstems were dissected using Klingler technique guided by ultra-high resolution MRI. The EETA allows a wide exposure of different safe entry zones located on the ventral brainstem: the exposure of perioculomotor zone requires pituitary transposition and can be hindered by superior cerebellar artery. The peritrigeminal zone was barely visible and its exposure required an extradural anterior petrosectomy. The anterolateral sulcus of the medulla was visible in most of specimens, although its close relationship with the corticospinal tract makes it suboptimal as an entry point for intrinsic lesions. In all cases, the use of 7T-MRI allowed the identification of tiny fiber bundles, improving the quality of the dissection. Exposure of the ventral brainstem with EETA requires mastering surgical maneuvers, including pituitary transposition and extradural petrosectomy. The correlation of fiber dissection with 7T-MRI neuronavigation significantly improves the understanding of the brainstem anatomy.

  3. Image-guided tissue engineering of anatomically shaped implants via MRI and micro-CT using injection molding.

    PubMed

    Ballyns, Jeffery J; Gleghorn, Jason P; Niebrzydowski, Vicki; Rawlinson, Jeremy J; Potter, Hollis G; Maher, Suzanne A; Wright, Timothy M; Bonassar, Lawrence J

    2008-07-01

    This study demonstrates for the first time the development of engineered tissues based on anatomic geometries derived from widely used medical imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI). Computer-aided design and tissue injection molding techniques have demonstrated the ability to generate living implants of complex geometry. Due to its complex geometry, the meniscus of the knee was used as an example of this technique's capabilities. MRI and microcomputed tomography (microCT) were used to design custom-printed molds that enabled the generation of anatomically shaped constructs that retained shape throughout 8 weeks of culture. Engineered constructs showed progressive tissue formation indicated by increases in extracellular matrix content and mechanical properties. The paradigm of interfacing tissue injection molding technology can be applied to other medical imaging techniques that render 3D models of anatomy, demonstrating the potential to apply the current technique to engineering of many tissues and organs.

  4. Diagnosis of deep endometriosis: clinical examination, ultrasonography, magnetic resonance imaging, and other techniques.

    PubMed

    Bazot, Marc; Daraï, Emile

    2017-12-01

    The aim of the present review was to evaluate the contribution of clinical examination and imaging techniques, mainly transvaginal sonography and magnetic resonance imaging (MRI) to diagnose deep infiltrating (DE) locations using prisma statement recommendations. Clinical examination has a relative low sensitivity and specificity to diagnose DE. Independently of DE locations, for all transvaginal sonography techniques a pooled sensitivity and specificity of 79% and 94% are observed approaching criteria for a triage test. Whatever the protocol and MRI devices, the pooled sensitivity and specificity for pelvic endometriosis diagnosis were 94% and 77%, respectively. For rectosigmoid endometriosis, pooled sensitivity and specificity of MRI were 92% and 96%, respectively fulfilling criteria of replacement test. In conclusion, advances in imaging techniques offer high sensitivity and specificity to diagnose DE with at least triage value and for rectosigmoid endometriosis replacement value imposing a revision of the concept of laparoscopy as the gold standard. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  5. Advances in locally constrained k-space-based parallel MRI.

    PubMed

    Samsonov, Alexey A; Block, Walter F; Arunachalam, Arjun; Field, Aaron S

    2006-02-01

    In this article, several theoretical and methodological developments regarding k-space-based, locally constrained parallel MRI (pMRI) reconstruction are presented. A connection between Parallel MRI with Adaptive Radius in k-Space (PARS) and GRAPPA methods is demonstrated. The analysis provides a basis for unified treatment of both methods. Additionally, a weighted PARS reconstruction is proposed, which may absorb different weighting strategies for improved image reconstruction. Next, a fast and efficient method for pMRI reconstruction of data sampled on non-Cartesian trajectories is described. In the new technique, the computational burden associated with the numerous matrix inversions in the original PARS method is drastically reduced by limiting direct calculation of reconstruction coefficients to only a few reference points. The rest of the coefficients are found by interpolating between the reference sets, which is possible due to the similar configuration of points participating in reconstruction for highly symmetric trajectories, such as radial and spirals. As a result, the time requirements are drastically reduced, which makes it practical to use pMRI with non-Cartesian trajectories in many applications. The new technique was demonstrated with simulated and actual data sampled on radial trajectories. Copyright 2006 Wiley-Liss, Inc.

  6. Elastic Versus Rigid Image Registration in Magnetic Resonance Imaging-transrectal Ultrasound Fusion Prostate Biopsy: A Systematic Review and Meta-analysis.

    PubMed

    Venderink, Wulphert; de Rooij, Maarten; Sedelaar, J P Michiel; Huisman, Henkjan J; Fütterer, Jurgen J

    2016-07-29

    The main difference between the available magnetic resonance imaging-transrectal ultrasound (MRI-TRUS) fusion platforms for prostate biopsy is the method of image registration being either rigid or elastic. As elastic registration compensates for possible deformation caused by the introduction of an ultrasound probe for example, it is expected that it would perform better than rigid registration. The aim of this meta-analysis is to compare rigid with elastic registration by calculating the detection odds ratio (OR) for both subgroups. The detection OR is defined as the ratio of the odds of detecting clinically significant prostate cancer (csPCa) by MRI-TRUS fusion biopsy compared with systematic TRUS biopsy. Secondary objectives were the OR for any PCa and the OR after pooling both registration techniques. The electronic databases PubMed, Embase, and Cochrane were systematically searched for relevant studies according to the Preferred Reporting Items for Systematic Review and Meta-analysis Statement. Studies comparing MRI-TRUS fusion and systematic TRUS-guided biopsies in the same patient were included. The quality assessment of included studies was performed using the Quality Assessment of Diagnostic Accuracy Studies version 2. Eleven papers describing elastic and 10 describing rigid registration were included. Meta-analysis showed an OR of csPCa for elastic and rigid registration of 1.45 (95% confidence interval [CI]: 1.21-1.73, p<0.0001) and 1.40 (95% CI: 1.13-1.75, p=0.002), respectively. No significant difference was seen between the subgroups (p=0.83). Pooling subgroups resulted in an OR of 1.43 (95% CI: 1.25-1.63, p<0.00001). No significant difference was identified between rigid and elastic registration for MRI-TRUS fusion-guided biopsy in the detection of csPCa; however, both techniques detected more csPCa than TRUS-guided biopsy alone. We did not identify any significant differences in prostate cancer detection between two distinct magnetic resonance imaging-transrectal ultrasound fusion systems which vary in their method of compensating for prostate deformation. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  7. Predicting individualized clinical measures by a generalized prediction framework and multimodal fusion of MRI data

    PubMed Central

    Meng, Xing; Jiang, Rongtao; Lin, Dongdong; Bustillo, Juan; Jones, Thomas; Chen, Jiayu; Yu, Qingbao; Du, Yuhui; Zhang, Yu; Jiang, Tianzi; Sui, Jing; Calhoun, Vince D.

    2016-01-01

    Neuroimaging techniques have greatly enhanced the understanding of neurodiversity (human brain variation across individuals) in both health and disease. The ultimate goal of using brain imaging biomarkers is to perform individualized predictions. Here we proposed a generalized framework that can predict explicit values of the targeted measures by taking advantage of joint information from multiple modalities. This framework also enables whole brain voxel-wise searching by combining multivariate techniques such as ReliefF, clustering, correlation-based feature selection and multiple regression models, which is more flexible and can achieve better prediction performance than alternative atlas-based methods. For 50 healthy controls and 47 schizophrenia patients, three kinds of features derived from resting-state fMRI (fALFF), sMRI (gray matter) and DTI (fractional anisotropy) were extracted and fed into a regression model, achieving high prediction for both cognitive scores (MCCB composite r = 0.7033, MCCB social cognition r = 0.7084) and symptomatic scores (positive and negative syndrome scale [PANSS] positive r = 0.7785, PANSS negative r = 0.7804). Moreover, the brain areas likely responsible for cognitive deficits of schizophrenia, including middle temporal gyrus, dorsolateral prefrontal cortex, striatum, cuneus and cerebellum, were located with different weights, as well as regions predicting PANSS symptoms, including thalamus, striatum and inferior parietal lobule, pinpointing the potential neuromarkers. Finally, compared to a single modality, multimodal combination achieves higher prediction accuracy and enables individualized prediction on multiple clinical measures. There is more work to be done, but the current results highlight the potential utility of multimodal brain imaging biomarkers to eventually inform clinical decision-making. PMID:27177764

  8. Positron emission tomography (PET) and magnetic resonance imaging (MRI) for the assessment of axillary lymph node metastases in early breast cancer: systematic review and economic evaluation.

    PubMed

    Cooper, K L; Meng, Y; Harnan, S; Ward, S E; Fitzgerald, P; Papaioannou, D; Wyld, L; Ingram, C; Wilkinson, I D; Lorenz, E

    2011-01-01

    Breast cancer is the most common type of cancer in women. Evaluation of axillary lymph node metastases is important for breast cancer staging and treatment planning. To evaluate the diagnostic accuracy, cost-effectiveness and effect on patient outcomes of positron emission tomography (PET), with or without computed tomography (CT), and magnetic resonance imaging (MRI) in the evaluation of axillary lymph node metastases in patients with newly diagnosed early-stage breast cancer. A systematic review of literature and an economic evaluation were carried out. Key databases (including MEDLINE, EMBASE and nine others) plus research registers and conference proceedings were searched for relevant studies up to April 2009. A decision-analytical model was developed to determine cost-effectiveness in the UK. One reviewer assessed titles and abstracts of studies identified by the search strategy, obtained the full text of relevant papers and screened them against inclusion criteria. Data from included studies were extracted by one reviewer using a standardised data extraction form and checked by a second reviewer. Discrepancies were resolved by discussion. Quality of included studies was assessed using the quality assessment of diagnostic accuracy studies (QUADAS) checklist, applied by one reviewer and checked by a second. Forty-five citations relating to 35 studies were included in the clinical effectiveness review: 26 studies of PET and nine studies of MRI. Two studies were included in the cost-effectiveness review: one of PET and one of MRI. Of the seven studies evaluating PET/CT (n = 862), the mean sensitivity was 56% [95% confidence interval (CI) 44% to 67%] and mean specificity 96% (95% CI 90% to 99%). Of the 19 studies evaluating PET only (n = 1729), the mean sensitivity was 66% (95% CI 50% to 79%) and mean specificity 93% (95% CI 89% to 96%). PET performed less well for small metastases; the mean sensitivity was 11% (95% CI 5% to 22%) for micrometastases (≤ 2 mm; five studies; n = 63), and 57% (95% CI 47% to 66%) for macrometastases (> 2 mm; four studies; n = 111). The smallest metastatic nodes detected by PET measured 3 mm, while PET failed to detect some nodes measuring > 15 mm. Studies in which all patients were clinically node negative showed a trend towards lower sensitivity of PET compared with studies with a mixed population. Across five studies evaluating ultrasmall super-paramagnetic iron oxide (USPIO)-enhanced MRI (n = 93), the mean sensitivity was 98% (95% CI 61% to 100%) and mean specificity 96% (95% CI 72% to 100%). Across three studies of gadolinium-enhanced MRI (n = 187), the mean sensitivity was 88% (95% CI 78% to 94%) and mean specificity 73% (95% CI 63% to 81%). In the single study of in vivo proton magnetic resonance spectroscopy (n = 27), the sensitivity was 65% (95% CI 38% to 86%) and specificity 100% (95% CI 69% to 100%). USPIO-enhanced MRI showed a trend towards higher sensitivity and specificity than gadolinium-enhanced MRI. Results of the decision modelling suggest that the MRI replacement strategy is the most cost-effective strategy and dominates the baseline 4-node sampling (4-NS) and sentinel lymph node biopsy (SLNB) strategies in most sensitivity analyses undertaken. The PET replacement strategy is not as robust as the MRI replacement strategy, as its cost-effectiveness is significantly affected by the utility decrement for lymphoedema and the probability of relapse for false-negative (FN) patients. No included studies directly compared PET and MRI. Studies demonstrated that PET and MRI have lower sensitivity and specificity than SLNB and 4-NS but are associated with fewer adverse events. Included studies indicated a significantly higher mean sensitivity for MRI than for PET, with USPIO-enhanced MRI providing the highest sensitivity. However, sensitivity and specificity of PET and MRI varied widely between studies, and MRI studies were relatively small and varied in their methods; therefore, results should be interpreted with caution. Decision modelling based on these results suggests that the most cost-effective strategy may be MRI rather than SLNB or 4-NS. This strategy reduces costs and increases quality-adjusted life-years (QALYs) because there are fewer adverse events for the majority of patients. However, this strategy leads to more FN cases at higher risk of cancer recurrence and more false- positive (FP) cases who would undergo unnecessary axillary lymph node dissection. Adding MRI prior to SLNB or 4-NS has little effect on QALYs, though this analysis is limited by lack of available data. Future research should include large, well-conducted studies of MRI, particularly using USPIO; data on the long-term impacts of lymphoedema on cost and patient utility; studies of the comparative effectiveness and cost-effectiveness of SLNB and 4-NS; and more robust UK cost data for 4-NS and SLNB as well as the cost of MRI and PET techniques. This study was funded by the Health Technology Assessment programme of the National Institute of Health Research.

  9. Comparison of quantitative regional ventilation-weighted fourier decomposition MRI with dynamic fluorinated gas washout MRI and lung function testing in COPD patients.

    PubMed

    Kaireit, Till F; Gutberlet, Marcel; Voskrebenzev, Andreas; Freise, Julia; Welte, Tobias; Hohlfeld, Jens M; Wacker, Frank; Vogel-Claussen, Jens

    2018-06-01

    Ventilation-weighted Fourier decomposition-MRI (FD-MRI) has matured as a reliable technique for quantitative measures of regional lung ventilation in recent years, but has yet not been validated in COPD patients. To compare regional fractional lung ventilation obtained by ventilation-weighted FD-MRI with dynamic fluorinated gas washout MRI ( 19 F-MRI) and lung function test parameters. Prospective study. Twenty-seven patients with chronic obstructive pulmonary disease (COPD, median age 61 [54-67] years) were included. For FD-MRI and for 19 F-MRI a spoiled gradient echo sequence was used at 1.5T. FD-MRI coronal slices were acquired in free breathing. Dynamic 19 F-MRI was performed after inhalation of 25-30 L of a mixture of 79% fluorinated gas (C 3 F 8 ) and 21% oxygen via a closed face mask tubing using a dedicated coil tuned to 59.9 MHz. 19 F washout times in numbers of breaths ( 19 F-n breaths ) as well as fractional ventilation maps for both methods (FD-FV, 19 F-FV) were calculated. Slices were matched using a landmark driven algorithm, and only corresponding slices with an overlap of >90% were coregistered for evaluation. The obtained parameters were correlated with each other using Spearman's correlation coefficient (r). FD-FV strongly correlated with 19 F-n breaths on a global (r = -0.72, P < 0.0001) as well as on a lobar level and with lung function test parameters (FD-FV vs. FEV1, r = 0.76, P < 0.0001). There was a small systematic overestimation of FD-FV compared to 19 F-FV (mean difference -0.03 (95% confidence interval [CI]: -0.097; -0.045). Regional ventilation-weighted Fourier decomposition-MRI is a promising noninvasive, radiation-free tool for quantification of regional ventilation in COPD patients. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1534-1541. © 2017 International Society for Magnetic Resonance in Medicine.

  10. Morphometricity as a measure of the neuroanatomical signature of a trait.

    PubMed

    Sabuncu, Mert R; Ge, Tian; Holmes, Avram J; Smoller, Jordan W; Buckner, Randy L; Fischl, Bruce

    2016-09-27

    Complex physiological and behavioral traits, including neurological and psychiatric disorders, often associate with distributed anatomical variation. This paper introduces a global metric, called morphometricity, as a measure of the anatomical signature of different traits. Morphometricity is defined as the proportion of phenotypic variation that can be explained by macroscopic brain morphology. We estimate morphometricity via a linear mixed-effects model that uses an anatomical similarity matrix computed based on measurements derived from structural brain MRI scans. We examined over 3,800 unique MRI scans from nine large-scale studies to estimate the morphometricity of a range of phenotypes, including clinical diagnoses such as Alzheimer's disease, and nonclinical traits such as measures of cognition. Our results demonstrate that morphometricity can provide novel insights about the neuroanatomical correlates of a diverse set of traits, revealing associations that might not be detectable through traditional statistical techniques.

  11. The neonatal brain in critical congenital heart disease: Insights and future directions.

    PubMed

    Peyvandi, Shabnam; Latal, Beatrice; Miller, Steven P; McQuillen, Patrick S

    2018-05-19

    Neurodevelopmental outcomes are impaired in survivors of critical congenital heart disease (CHD) in several developmental domains including motor, cognitive and sensory outcomes. These deficits can extend into the adolescent and early adulthood years. The cause of these neurodevelopmental impairments is multi-factorial and includes patient specific risk factors, cardiac anatomy and physiology as well as brain changes seen on MRI. Advances in imaging techniques have identified delayed brain development in the neonate with critical CHD as well as acquired brain injury. These abnormalities are seen even before corrective neonatal cardiac surgery. This review focuses on describing brain changes seen on MRI in neonates with CHD, risk factors for these changes and the association with neurodevelopmental outcome. There is an emerging focus on the impact of cardiovascular physiology on brain health and the complex heart-brain interplay that influences ultimate neurodevelopmental outcome in these patients. Copyright © 2018. Published by Elsevier Inc.

  12. Morphometricity as a measure of the neuroanatomical signature of a trait

    PubMed Central

    Sabuncu, Mert R.; Ge, Tian; Holmes, Avram J.; Smoller, Jordan W.; Buckner, Randy L.; Fischl, Bruce

    2016-01-01

    Complex physiological and behavioral traits, including neurological and psychiatric disorders, often associate with distributed anatomical variation. This paper introduces a global metric, called morphometricity, as a measure of the anatomical signature of different traits. Morphometricity is defined as the proportion of phenotypic variation that can be explained by macroscopic brain morphology. We estimate morphometricity via a linear mixed-effects model that uses an anatomical similarity matrix computed based on measurements derived from structural brain MRI scans. We examined over 3,800 unique MRI scans from nine large-scale studies to estimate the morphometricity of a range of phenotypes, including clinical diagnoses such as Alzheimer’s disease, and nonclinical traits such as measures of cognition. Our results demonstrate that morphometricity can provide novel insights about the neuroanatomical correlates of a diverse set of traits, revealing associations that might not be detectable through traditional statistical techniques. PMID:27613854

  13. [Functional neuroimaging of the brain structures associated with language in healthy individuals and patients with post-stroke aphasia].

    PubMed

    Alferova, V V; Mayorova, L A; Ivanova, E G; Guekht, A B; Shklovskij, V M

    2017-01-01

    The introduction of non-invasive functional neuroimaging techniques such as functional magnetic resonance imaging (fMRI), in the practice of scientific and clinical research can increase our knowledge about the organization of cognitive processes, including language, in normal and reorganization of these cognitive functions in post-stroke aphasia. The article discusses the results of fMRI studies of functional organization of the cortex of a healthy adult's brain in the processing of various voice information as well as the main types of speech reorganization after post-stroke aphasia in different stroke periods. The concepts of 'effective' and 'ineffective' brain plasticity in post-stroke aphasia were considered. It was concluded that there was an urgent need for further comprehensive studies, including neuropsychological testing and several complementary methods of functional neuroimaging, to develop a phased treatment plan and neurorehabilitation of patients with post-stroke aphasia.

  14. ALE Meta-Analysis of Schizophrenics Performing the N-Back Task

    NASA Astrophysics Data System (ADS)

    Harrell, Zachary

    2010-10-01

    MRI/fMRI has already proven itself as a valuable tool in the diagnosis and treatment of many illnesses of the brain, including cognitive problems. By exploiting the differences in magnetic susceptibility between oxygenated and deoxygenated hemoglobin, fMRI can measure blood flow in various regions of interest within the brain. This can determine the level of brain activity in relation to motor or cognitive functions and provide a metric for tissue damage or illness symptoms. Structural imaging techniques have shown lesions or deficiencies in tissue volumes in schizophrenics corresponding to areas primarily in the frontal and temporal lobes. These areas are currently known to be involved in working memory and attention, which many schizophrenics have trouble with. The ALE (Activation Likelihood Estimation) Meta-Analysis is able to statistically determine the significance of brain area activations based on the post-hoc combination of multiple studies. This process is useful for giving a general model of brain function in relation to a particular task designed to engage the affected areas (such as working memory for the n-back task). The advantages of the ALE Meta-Analysis include elimination of single subject anomalies, elimination of false/extremely weak activations, and verification of function/location hypotheses.

  15. Resting state brain networks in the prairie vole.

    PubMed

    Ortiz, Juan J; Portillo, Wendy; Paredes, Raul G; Young, Larry J; Alcauter, Sarael

    2018-01-19

    Resting state functional magnetic resonance imaging (rsfMRI) has shown the hierarchical organization of the human brain into large-scale complex networks, referred as resting state networks. This technique has turned into a promising translational research tool after the finding of similar resting state networks in non-human primates, rodents and other animal models of great value for neuroscience. Here, we demonstrate and characterize the presence of resting states networks in Microtus ochrogaster, the prairie vole, an extraordinary animal model to study complex human-like social behavior, with potential implications for the research of normal social development, addiction and neuropsychiatric disorders. Independent component analysis of rsfMRI data from isoflurane-anestethized prairie voles resulted in cortical and subcortical networks, including primary motor and sensory networks, but also included putative salience and default mode networks. We further discuss how future research could help to close the gap between the properties of the large scale functional organization and the underlying neurobiology of several aspects of social cognition. These results contribute to the evidence of preserved resting state brain networks across species and provide the foundations to explore the use of rsfMRI in the prairie vole for basic and translational research.

  16. Prospective Comparison of Magnetic Resonance Imaging, Transrectal and Transperineal Sonography, and Surgical Findings in Complicated Perianal Crohn Disease.

    PubMed

    Bor, Renáta; Farkas, Klaudia; Bálint, Anita; Szűcs, Mónika; Ábrahám, Szabolcs; Milassin, Ágnes; Rutka, Mariann; Nagy, Ferenc; Milassin, Péter; Szepes, Zoltán; Molnár, Tamás

    2016-11-01

    Magnetic resonance imaging (MRI) and transrectal sonography are the two accepted imaging modalities for evaluation of perianal fistulas and abscesses. Transperineal sonography is a new technique that is easy to learn and can be performed at any time. The purpose of this study was to prospectively compare the diagnostic accuracy of MRI, transrectal sonography, and transperineal sonography with surgical findings in patients with perianal Crohn disease. All patients with perianal Crohn disease underwent MRI, transrectal sonography, and transperineal sonography within a few days before surgery. Fistulas were classified as simple (43.8%) or complex (52.2%) based on surgical findings. Twenty-three patients with active perianal Crohn disease (12 women and 11 men; mean age, 29.9 years; current therapy: antibiotics, 69.6%; azathioprine, 56.5%; and biologics, 73.9%; previous surgery, 26.1%; and proportion of smokers, 39.1%) were included. Sensitivity values for MRI, transrectal sonography, and transperineal sonography for diagnosis of fistulas were 84.6%, 84.6%, and 100%, respectively. Transperineal sonography was more sensitive for diagnosis of perianal abscesses than MRI and transrectal sonography (100%, 58.8%, and 92.8%). Transperineal sonography is a very accurate diagnostic method with outstanding sensitivity compared with MRI and transrectal sonography for evaluation of complicated perianal Crohn disease. Due to its simplicity and low cost, it is recommended that transperineal sonography be the first diagnostic modality in these cases. © 2016 by the American Institute of Ultrasound in Medicine.

  17. Temporal reliability of ultra-high field resting-state MRI for single-subject sensorimotor and language mapping.

    PubMed

    Branco, Paulo; Seixas, Daniela; Castro, São Luís

    2018-03-01

    Resting-state fMRI is a well-suited technique to map functional networks in the brain because unlike task-based approaches it requires little collaboration from subjects. This is especially relevant in clinical settings where a number of subjects cannot comply with task demands. Previous studies using conventional scanner fields have shown that resting-state fMRI is able to map functional networks in single subjects, albeit with moderate temporal reliability. Ultra-high resolution (7T) imaging provides higher signal-to-noise ratio and better spatial resolution and is thus well suited to assess the temporal reliability of mapping results, and to determine if resting-state fMRI can be applied in clinical decision making including preoperative planning. We used resting-state fMRI at ultra-high resolution to examine whether the sensorimotor and language networks are reliable over time - same session and one week after. Resting-state networks were identified for all subjects and sessions with good accuracy. Both networks were well delimited within classical regions of interest. Mapping was temporally reliable at short and medium time-scales as demonstrated by high values of overlap in the same session and one week after for both networks. Results were stable independently of data quality metrics and physiological variables. Taken together, these findings provide strong support for the suitability of ultra-high field resting-state fMRI mapping at the single-subject level. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Measuring Pain for Patients Seeking Physical Therapy: Can Functional Magnetic Resonance Imaging (fMRI) Help?

    PubMed

    Elliott, James M; Owen, Meriel; Bishop, Mark D; Sparks, Cheryl; Tsao, Henry; Walton, David M; Weber, Kenneth A; Wideman, Timothy H

    2017-01-01

    In the multidisciplinary fields of pain medicine and rehabilitation, advancing techniques such as functional magnetic resonance imaging (fMRI) are used to enhance our understanding of the pain experience. Given that such measures, in some circles, are expected to help us understand the brain in pain, future research in pain measurement is undeniably rich with possibility. However, pain remains intensely personal and represents a multifaceted experience, unique to each individual; no single measure in isolation, fMRI included, can prove or quantify its magnitude beyond the patient self-report. Physical therapists should be aware of cutting-edge advances in measuring the patient's pain experience, and they should work closely with professionals in other disciplines (eg, magnetic resonance physicists, biomedical engineers, radiologists, psychologists) to guide the exploration and development of multimodal pain measurement and management on a patient-by-patient basis. The primary purpose of this perspective article is to provide a brief overview of fMRI and inform physical therapist clinicians of the pros and cons when utilized as a measure of the patient's perception of pain. A secondary purpose is to describe current known factors that influence the quality of fMRI data and its analyses, as well as the potential for future clinical applications relevant to physical therapist practice. Lastly, the interested reader is introduced and referred to existing guidelines and recommendations for reporting fMRI research. © 2017 American Physical Therapy Association.

  19. Functional MRI detects perfusion impairment in renal allografts with delayed graft function.

    PubMed

    Hueper, Katja; Gueler, Faikah; Bräsen, Jan Hinrich; Gutberlet, Marcel; Jang, Mi-Sun; Lehner, Frank; Richter, Nicolas; Hanke, Nils; Peperhove, Matti; Martirosian, Petros; Tewes, Susanne; Vo Chieu, Van Dai; Großhennig, Anika; Haller, Hermann; Wacker, Frank; Gwinner, Wilfried; Hartung, Dagmar

    2015-06-15

    Delayed graft function (DGF) after kidney transplantation is not uncommon, and it is associated with long-term allograft impairment. Our aim was to compare renal perfusion changes measured with noninvasive functional MRI in patients early after kidney transplantation to renal function and allograft histology in biopsy samples. Forty-six patients underwent MRI 4-11 days after transplantation. Contrast-free MRI renal perfusion images were acquired using an arterial spin labeling technique. Renal function was assessed by estimated glomerular filtration rate (eGFR), and renal biopsies were performed when indicated within 5 days of MRI. Twenty-six of 46 patients had DGF. Of these, nine patients had acute rejection (including borderline), and eight had other changes (e.g., tubular injury or glomerulosclerosis). Renal perfusion was significantly lower in the DGF group compared with the group with good allograft function (231 ± 15 vs. 331 ± 15 ml·min(-1)·100 g(-1), P < 0.001). Living donor allografts exhibited significantly higher perfusion values compared with deceased donor allografts (P < 0.001). Renal perfusion significantly correlated with eGFR (r = 0.64, P < 0.001), resistance index (r = -0.57, P < 0.001), and cold ischemia time (r = -0.48, P < 0.01). Furthermore, renal perfusion impairment early after transplantation predicted inferior renal outcome and graft loss. In conclusion, noninvasive functional MRI detects renal perfusion impairment early after kidney transplantation in patients with DGF. Copyright © 2015 the American Physiological Society.

  20. Single slice US-MRI registration for neurosurgical MRI-guided US

    NASA Astrophysics Data System (ADS)

    Pardasani, Utsav; Baxter, John S. H.; Peters, Terry M.; Khan, Ali R.

    2016-03-01

    Image-based ultrasound to magnetic resonance image (US-MRI) registration can be an invaluable tool in image-guided neuronavigation systems. State-of-the-art commercial and research systems utilize image-based registration to assist in functions such as brain-shift correction, image fusion, and probe calibration. Since traditional US-MRI registration techniques use reconstructed US volumes or a series of tracked US slices, the functionality of this approach can be compromised by the limitations of optical or magnetic tracking systems in the neurosurgical operating room. These drawbacks include ergonomic issues, line-of-sight/magnetic interference, and maintenance of the sterile field. For those seeking a US vendor-agnostic system, these issues are compounded with the challenge of instrumenting the probe without permanent modification and calibrating the probe face to the tracking tool. To address these challenges, this paper explores the feasibility of a real-time US-MRI volume registration in a small virtual craniotomy site using a single slice. We employ the Linear Correlation of Linear Combination (LC2) similarity metric in its patch-based form on data from MNI's Brain Images for Tumour Evaluation (BITE) dataset as a PyCUDA enabled Python module in Slicer. By retaining the original orientation information, we are able to improve on the poses using this approach. To further assist the challenge of US-MRI registration, we also present the BOXLC2 metric which demonstrates a speed improvement to LC2, while retaining a similar accuracy in this context.

  1. Lateral cephalometric analysis for treatment planning in orthodontics based on MRI compared with radiographs: A feasibility study in children and adolescents

    PubMed Central

    Lazo Gonzalez, Eduardo; Hilgenfeld, Tim; Kickingereder, Philipp; Bendszus, Martin; Heiland, Sabine; Ozga, Ann-Kathrin; Sommer, Andreas; Lux, Christopher J.; Zingler, Sebastian

    2017-01-01

    Objective The objective of this prospective study was to evaluate whether magnetic resonance imaging (MRI) is equivalent to lateral cephalometric radiographs (LCR, “gold standard”) in cephalometric analysis. Methods The applied MRI technique was optimized for short scanning time, high resolution, high contrast and geometric accuracy. Prior to orthodontic treatment, 20 patients (mean age ± SD, 13.95 years ± 5.34) received MRI and LCR. MRI datasets were postprocessed into lateral cephalograms. Cephalometric analysis was performed twice by two independent observers for both modalities with an interval of 4 weeks. Eight bilateral and 10 midsagittal landmarks were identified, and 24 widely used measurements (14 angles, 10 distances) were calculated. Statistical analysis was performed by using intraclass correlation coefficient (ICC), Bland-Altman analysis and two one-sided tests (TOST) within the predefined equivalence margin of ± 2°/mm. Results Geometric accuracy of the MRI technique was confirmed by phantom measurements. Mean intraobserver ICC were 0.977/0.975 for MRI and 0.975/0.961 for LCR. Average interobserver ICC were 0.980 for MRI and 0.929 for LCR. Bland-Altman analysis showed high levels of agreement between the two modalities, bias range (mean ± SD) was -0.66 to 0.61 mm (0.06 ± 0.44) for distances and -1.33 to 1.14° (0.06 ± 0.71) for angles. Except for the interincisal angle (p = 0.17) all measurements were statistically equivalent (p < 0.05). Conclusions This study demonstrates feasibility of orthodontic treatment planning without radiation exposure based on MRI. High-resolution isotropic MRI datasets can be transformed into lateral cephalograms allowing reliable measurements as applied in orthodontic routine with high concordance to the corresponding measurements on LCR. PMID:28334054

  2. Lateral cephalometric analysis for treatment planning in orthodontics based on MRI compared with radiographs: A feasibility study in children and adolescents.

    PubMed

    Heil, Alexander; Lazo Gonzalez, Eduardo; Hilgenfeld, Tim; Kickingereder, Philipp; Bendszus, Martin; Heiland, Sabine; Ozga, Ann-Kathrin; Sommer, Andreas; Lux, Christopher J; Zingler, Sebastian

    2017-01-01

    The objective of this prospective study was to evaluate whether magnetic resonance imaging (MRI) is equivalent to lateral cephalometric radiographs (LCR, "gold standard") in cephalometric analysis. The applied MRI technique was optimized for short scanning time, high resolution, high contrast and geometric accuracy. Prior to orthodontic treatment, 20 patients (mean age ± SD, 13.95 years ± 5.34) received MRI and LCR. MRI datasets were postprocessed into lateral cephalograms. Cephalometric analysis was performed twice by two independent observers for both modalities with an interval of 4 weeks. Eight bilateral and 10 midsagittal landmarks were identified, and 24 widely used measurements (14 angles, 10 distances) were calculated. Statistical analysis was performed by using intraclass correlation coefficient (ICC), Bland-Altman analysis and two one-sided tests (TOST) within the predefined equivalence margin of ± 2°/mm. Geometric accuracy of the MRI technique was confirmed by phantom measurements. Mean intraobserver ICC were 0.977/0.975 for MRI and 0.975/0.961 for LCR. Average interobserver ICC were 0.980 for MRI and 0.929 for LCR. Bland-Altman analysis showed high levels of agreement between the two modalities, bias range (mean ± SD) was -0.66 to 0.61 mm (0.06 ± 0.44) for distances and -1.33 to 1.14° (0.06 ± 0.71) for angles. Except for the interincisal angle (p = 0.17) all measurements were statistically equivalent (p < 0.05). This study demonstrates feasibility of orthodontic treatment planning without radiation exposure based on MRI. High-resolution isotropic MRI datasets can be transformed into lateral cephalograms allowing reliable measurements as applied in orthodontic routine with high concordance to the corresponding measurements on LCR.

  3. Vision 20/20: Magnetic resonance imaging-guided attenuation correction in PET/MRI: Challenges, solutions, and opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehranian, Abolfazl; Arabi, Hossein; Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch

    Attenuation correction is an essential component of the long chain of data correction techniques required to achieve the full potential of quantitative positron emission tomography (PET) imaging. The development of combined PET/magnetic resonance imaging (MRI) systems mandated the widespread interest in developing novel strategies for deriving accurate attenuation maps with the aim to improve the quantitative accuracy of these emerging hybrid imaging systems. The attenuation map in PET/MRI should ideally be derived from anatomical MR images; however, MRI intensities reflect proton density and relaxation time properties of biological tissues rather than their electron density and photon attenuation properties. Therefore, inmore » contrast to PET/computed tomography, there is a lack of standardized global mapping between the intensities of MRI signal and linear attenuation coefficients at 511 keV. Moreover, in standard MRI sequences, bones and lung tissues do not produce measurable signals owing to their low proton density and short transverse relaxation times. MR images are also inevitably subject to artifacts that degrade their quality, thus compromising their applicability for the task of attenuation correction in PET/MRI. MRI-guided attenuation correction strategies can be classified in three broad categories: (i) segmentation-based approaches, (ii) atlas-registration and machine learning methods, and (iii) emission/transmission-based approaches. This paper summarizes past and current state-of-the-art developments and latest advances in PET/MRI attenuation correction. The advantages and drawbacks of each approach for addressing the challenges of MR-based attenuation correction are comprehensively described. The opportunities brought by both MRI and PET imaging modalities for deriving accurate attenuation maps and improving PET quantification will be elaborated. Future prospects and potential clinical applications of these techniques and their integration in commercial systems will also be discussed.« less

  4. Vision 20/20: Magnetic resonance imaging-guided attenuation correction in PET/MRI: Challenges, solutions, and opportunities.

    PubMed

    Mehranian, Abolfazl; Arabi, Hossein; Zaidi, Habib

    2016-03-01

    Attenuation correction is an essential component of the long chain of data correction techniques required to achieve the full potential of quantitative positron emission tomography (PET) imaging. The development of combined PET/magnetic resonance imaging (MRI) systems mandated the widespread interest in developing novel strategies for deriving accurate attenuation maps with the aim to improve the quantitative accuracy of these emerging hybrid imaging systems. The attenuation map in PET/MRI should ideally be derived from anatomical MR images; however, MRI intensities reflect proton density and relaxation time properties of biological tissues rather than their electron density and photon attenuation properties. Therefore, in contrast to PET/computed tomography, there is a lack of standardized global mapping between the intensities of MRI signal and linear attenuation coefficients at 511 keV. Moreover, in standard MRI sequences, bones and lung tissues do not produce measurable signals owing to their low proton density and short transverse relaxation times. MR images are also inevitably subject to artifacts that degrade their quality, thus compromising their applicability for the task of attenuation correction in PET/MRI. MRI-guided attenuation correction strategies can be classified in three broad categories: (i) segmentation-based approaches, (ii) atlas-registration and machine learning methods, and (iii) emission/transmission-based approaches. This paper summarizes past and current state-of-the-art developments and latest advances in PET/MRI attenuation correction. The advantages and drawbacks of each approach for addressing the challenges of MR-based attenuation correction are comprehensively described. The opportunities brought by both MRI and PET imaging modalities for deriving accurate attenuation maps and improving PET quantification will be elaborated. Future prospects and potential clinical applications of these techniques and their integration in commercial systems will also be discussed.

  5. Sensitivity analysis of brain morphometry based on MRI-derived surface models

    NASA Astrophysics Data System (ADS)

    Klein, Gregory J.; Teng, Xia; Schoenemann, P. T.; Budinger, Thomas F.

    1998-07-01

    Quantification of brain structure is important for evaluating changes in brain size with growth and aging and for characterizing neurodegeneration disorders. Previous quantification efforts using ex vivo techniques suffered considerable error due to shrinkage of the cerebrum after extraction from the skull, deformation of slices during sectioning, and numerous other factors. In vivo imaging studies of brain anatomy avoid these problems and allow repetitive studies following progression of brain structure changes due to disease or natural processes. We have developed a methodology for obtaining triangular mesh models of the cortical surface from MRI brain datasets. The cortex is segmented from nonbrain tissue using a 2D region-growing technique combined with occasional manual edits. Once segmented, thresholding and image morphological operations (erosions and openings) are used to expose the regions between adjacent surfaces in deep cortical folds. A 2D region- following procedure is then used to find a set of contours outlining the cortical boundary on each slice. The contours on all slices are tiled together to form a closed triangular mesh model approximating the cortical surface. This model can be used for calculation of cortical surface area and volume, as well as other parameters of interest. Except for the initial segmentation of the cortex from the skull, the technique is automatic and requires only modest computation time on modern workstations. Though the use of image data avoids many of the pitfalls of ex vivo and sectioning techniques, our MRI-based technique is still vulnerable to errors that may impact the accuracy of estimated brain structure parameters. Potential inaccuracies include segmentation errors due to incorrect thresholding, missed deep sulcal surfaces, falsely segmented holes due to image noise and surface tiling artifacts. The focus of this paper is the characterization of these errors and how they affect measurements of cortical surface area and volume.

  6. Breast cancers not detected at MRI: review of false-negative lesions.

    PubMed

    Shimauchi, Akiko; Jansen, Sanaz A; Abe, Hiroyuki; Jaskowiak, Nora; Schmidt, Robert A; Newstead, Gillian M

    2010-06-01

    The objective of our study was to determine the sensitivity of cancer detection at breast MRI using current imaging techniques and to evaluate the characteristics of lesions with false-negative examinations. Two hundred seventeen patients with 222 newly diagnosed breast cancers or highly suspicious breast lesions that were subsequently shown to be malignant underwent breast MRI examinations for staging. Two breast imaging radiologists performed a consensus review of the breast MRI examinations. The absence of perceptible contrast enhancement at the expected site was considered to be a false-negative MRI. Histology of all lesions was reviewed by an experienced breast pathologist. Enhancement was observed in 213 (95.9%) of the 222 cancer lesions. Of the nine lesions without visible enhancement, two lesions were excluded because the entire tumor had been excised at percutaneous biopsy performed before the MRI examination and no residual tumor was noted on the final histology. The overall sensitivity of MRI for the known cancers was 96.8% (213/220); for invasive cancer, 98.3% (176/179); and for ductal carcinoma in situ, 90.2% (37/41). In a population of 220 sequentially diagnosed breast cancer lesions, we found seven (3.2%) MRI-occult cancers, fewer than seen in other published studies. Small tumor size and diffuse parenchymal enhancement were the principal reasons for these false-negative results. Although the overall sensitivity of cancer detection was high (96.8%), it should be emphasized that a negative MRI should not influence the management of a lesion that appears to be of concern on physical examination or on other imaging techniques.

  7. Imaging in rectal cancer with emphasis on local staging with MRI

    PubMed Central

    Arya, Supreeta; Das, Deepak; Engineer, Reena; Saklani, Avanish

    2015-01-01

    Imaging in rectal cancer has a vital role in staging disease, and in selecting and optimizing treatment planning. High-resolution MRI (HR-MRI) is the recommended method of first choice for local staging of rectal cancer for both primary staging and for restaging after preoperative chemoradiation (CT-RT). HR-MRI helps decide between upfront surgery and preoperative CT-RT. It provides high accuracy for prediction of circumferential resection margin at surgery, T category, and nodal status in that order. MRI also helps assess resectability after preoperative CT-RT and decide between sphincter saving or more radical surgery. Accurate technique is crucial for obtaining high-resolution images in the appropriate planes for correct staging. The phased array external coil has replaced the endorectal coil that is no longer recommended. Non-fat suppressed 2D T2-weighted (T2W) sequences in orthogonal planes to the tumor are sufficient for primary staging. Contrast-enhanced MRI is considered inappropriate for both primary staging and restaging. Diffusion-weighted sequence may be of value in restaging. Multidetector CT cannot replace MRI in local staging, but has an important role for evaluating distant metastases. Positron emission tomography-computed tomography (PET/CT) has a limited role in the initial staging of rectal cancer and is reserved for cases with resectable metastatic disease before contemplating surgery. This article briefly reviews the comprehensive role of imaging in rectal cancer, describes the role of MRI in local staging in detail, discusses the optimal MRI technique, and provides a synoptic report for both primary staging and restaging after CT-RT in routine practice. PMID:25969638

  8. Planning magnetic resonance imaging for prostate cancer intensity-modulated radiation therapy: Impact on target volumes, radiotherapy dose and androgen deprivation administration.

    PubMed

    Horsley, Patrick J; Aherne, Noel J; Edwards, Grace V; Benjamin, Linus C; Wilcox, Shea W; McLachlan, Craig S; Assareh, Hassan; Welshman, Richard; McKay, Michael J; Shakespeare, Thomas P

    2015-03-01

    Magnetic resonance imaging (MRI) scans are increasingly utilized for radiotherapy planning to contour the primary tumors of patients undergoing intensity-modulated radiation therapy (IMRT). These scans may also demonstrate cancer extent and may affect the treatment plan. We assessed the impact of planning MRI detection of extracapsular extension, seminal vesicle invasion, or adjacent organ invasion on the staging, target volume delineation, doses, and hormonal therapy of patients with prostate cancer undergoing IMRT. The records of 509 consecutive patients with planning MRI scans being treated with IMRT for prostate cancer between January 2010 and July 2012 were retrospectively reviewed. Tumor staging and treatment plans before and after MRI were compared. Of the 509 patients, 103 (20%) were upstaged and 44 (9%) were migrated to a higher risk category as a result of findings at MRI. In 94 of 509 patients (18%), the MRI findings altered management. Ninety-four of 509 patients (18%) had a change to their clinical target volume (CTV) or treatment technique, and in 41 of 509 patients (8%) the duration of hormone therapy was changed because of MRI findings. The use of radiotherapy planning MRI altered CTV design, dose and/or duration of androgen deprivation in 18% of patients in this large, single institution series of men planned for dose-escalated prostate IMRT. This has substantial implications for radiotherapy target volumes and doses, as well as duration of androgen deprivation. Further research is required to investigate whether newer MRI techniques can simultaneously fulfill staging and radiotherapy contouring roles. © 2014 Wiley Publishing Asia Pty Ltd.

  9. Novel frontiers in ultra-structural and molecular MRI of the brain.

    PubMed

    Duyn, Jeff H; Koretsky, Alan P

    2011-08-01

    Recent developments in the MRI of the brain continue to expand its use in basic and clinical neuroscience. This review highlights some areas of recent progress. Higher magnetic field strengths and improved signal detectors have allowed improved visualization of the various properties of the brain, facilitating the anatomical definition of function-specific areas and their connections. For example, by sensitizing the MRI signal to the magnetic susceptibility of tissue, it is starting to become possible to reveal the laminar structure of the cortex and identify millimeter-scale fiber bundles. Using exogenous contrast agents, and innovative ways to manipulate contrast, it is becoming possible to highlight specific fiber tracts and cell populations. These techniques are bringing us closer to understanding the evolutionary blueprint of the brain, improving the detection and characterization of disease, and help to guide treatment. Recent MRI techniques are leading to more detailed and more specific contrast in the study of the brain.

  10. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments.

    PubMed

    Gorgolewski, Krzysztof J; Auer, Tibor; Calhoun, Vince D; Craddock, R Cameron; Das, Samir; Duff, Eugene P; Flandin, Guillaume; Ghosh, Satrajit S; Glatard, Tristan; Halchenko, Yaroslav O; Handwerker, Daniel A; Hanke, Michael; Keator, David; Li, Xiangrui; Michael, Zachary; Maumet, Camille; Nichols, B Nolan; Nichols, Thomas E; Pellman, John; Poline, Jean-Baptiste; Rokem, Ariel; Schaefer, Gunnar; Sochat, Vanessa; Triplett, William; Turner, Jessica A; Varoquaux, Gaël; Poldrack, Russell A

    2016-06-21

    The development of magnetic resonance imaging (MRI) techniques has defined modern neuroimaging. Since its inception, tens of thousands of studies using techniques such as functional MRI and diffusion weighted imaging have allowed for the non-invasive study of the brain. Despite the fact that MRI is routinely used to obtain data for neuroscience research, there has been no widely adopted standard for organizing and describing the data collected in an imaging experiment. This renders sharing and reusing data (within or between labs) difficult if not impossible and unnecessarily complicates the application of automatic pipelines and quality assurance protocols. To solve this problem, we have developed the Brain Imaging Data Structure (BIDS), a standard for organizing and describing MRI datasets. The BIDS standard uses file formats compatible with existing software, unifies the majority of practices already common in the field, and captures the metadata necessary for most common data processing operations.

  11. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments

    PubMed Central

    Gorgolewski, Krzysztof J.; Auer, Tibor; Calhoun, Vince D.; Craddock, R. Cameron; Das, Samir; Duff, Eugene P.; Flandin, Guillaume; Ghosh, Satrajit S.; Glatard, Tristan; Halchenko, Yaroslav O.; Handwerker, Daniel A.; Hanke, Michael; Keator, David; Li, Xiangrui; Michael, Zachary; Maumet, Camille; Nichols, B. Nolan; Nichols, Thomas E.; Pellman, John; Poline, Jean-Baptiste; Rokem, Ariel; Schaefer, Gunnar; Sochat, Vanessa; Triplett, William; Turner, Jessica A.; Varoquaux, Gaël; Poldrack, Russell A.

    2016-01-01

    The development of magnetic resonance imaging (MRI) techniques has defined modern neuroimaging. Since its inception, tens of thousands of studies using techniques such as functional MRI and diffusion weighted imaging have allowed for the non-invasive study of the brain. Despite the fact that MRI is routinely used to obtain data for neuroscience research, there has been no widely adopted standard for organizing and describing the data collected in an imaging experiment. This renders sharing and reusing data (within or between labs) difficult if not impossible and unnecessarily complicates the application of automatic pipelines and quality assurance protocols. To solve this problem, we have developed the Brain Imaging Data Structure (BIDS), a standard for organizing and describing MRI datasets. The BIDS standard uses file formats compatible with existing software, unifies the majority of practices already common in the field, and captures the metadata necessary for most common data processing operations. PMID:27326542

  12. Evaluation of Marrow Perfusion in the Femoral Head by Dynamic Magnetic Resonance Imaging

    PubMed Central

    Tsukamoto, Hiroshi; Kang, Young S.; Jones, Lynne C.; Cova, Maria; Herold, Christian J.; McVeigh, Elliot; Hungerford, David S.; Zerhouni, Elias A.

    2007-01-01

    Rationale and Objectives There is a continuing need for a greater sensitivity of magnetic resonance imaging (MRI) in the diagnosis of avascular necrosis (AVN). Previously, it was demonstrated that a dynamic MRI method, with gadolinium-DTPA (Gd-DTPA) enhancement, can detect acute changes not seen on spin-echo images after arterial occlusion in a dog model. Because venous congestion appears to be a more directly relevant hemodynamic abnormality in a majority of clinical AVN cases, the authors extended the dynamic MRI technique to study changes in venous occlusion. Methods Dynamic MRI of the proximal femur was performed in five adult dogs before and after unilateral ligation of common iliac and lateral circumflex veins. Sixteen sequential gradient-recalled pulse sequence (GRASS) images (time resolution = 45 mseconds, echo time = 9 mseconds, flip angle = 65°) were obtained immediately after a bolus intravenous injection of 0.2 mmol/kg of Gd-DTPA. Simultaneous measurements of regional blood flow were made using the radioactive microsphere method. Results After venous ligation, there was a 25% to 45% decrease in the degree of enhancement compared with preligation values on the ligated side. The decrease in cumulative enhancement (integrated over the entire time course) was statistically significant. The occlusion technique was verified by confirming a statistically significant decrease in blood flow determined by the microsphere method. Conclusions Dynamic Gd-DTPA-enhanced fast MRI technique can detect acute changes in bone marrow perfusion due to venous occlusion. This technique may have applications in the early detection of nontraumatic AVN. PMID:1601616

  13. Magnetorotational Instability: Nonmodal Growth and the Relationship of Global Modes to the Shearing Box

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J Squire, A Bhattacharjee

    We study the magnetorotational instability (MRI) (Balbus & Hawley 1998) using non-modal stability techniques.Despite the spectral instability of many forms of the MRI, this proves to be a natural method of analysis that is well-suited to deal with the non-self-adjoint nature of the linear MRI equations. We find that the fastest growing linear MRI structures on both local and global domains can look very diff erent to the eigenmodes, invariably resembling waves shearing with the background flow (shear waves). In addition, such structures can grow many times faster than the least stable eigenmode over long time periods, and be localizedmore » in a completely di fferent region of space. These ideas lead – for both axisymmetric and non-axisymmetric modes – to a natural connection between the global MRI and the local shearing box approximation. By illustrating that the fastest growing global structure is well described by the ordinary diff erential equations (ODEs) governing a single shear wave, we find that the shearing box is a very sensible approximation for the linear MRI, contrary to many previous claims. Since the shear wave ODEs are most naturally understood using non-modal analysis techniques, we conclude by analyzing local MRI growth over finite time-scales using these methods. The strong growth over a wide range of wave-numbers suggests that non-modal linear physics could be of fundamental importance in MRI turbulence (Squire & Bhattacharjee 2014).« less

  14. High-field fMRI unveils orientation columns in humans.

    PubMed

    Yacoub, Essa; Harel, Noam; Ugurbil, Kâmil

    2008-07-29

    Functional (f)MRI has revolutionized the field of human brain research. fMRI can noninvasively map the spatial architecture of brain function via localized increases in blood flow after sensory or cognitive stimulation. Recent advances in fMRI have led to enhanced sensitivity and spatial accuracy of the measured signals, indicating the possibility of detecting small neuronal ensembles that constitute fundamental computational units in the brain, such as cortical columns. Orientation columns in visual cortex are perhaps the best known example of such a functional organization in the brain. They cannot be discerned via anatomical characteristics, as with ocular dominance columns. Instead, the elucidation of their organization requires functional imaging methods. However, because of insufficient sensitivity, spatial accuracy, and image resolution of the available mapping techniques, thus far, they have not been detected in humans. Here, we demonstrate, by using high-field (7-T) fMRI, the existence and spatial features of orientation- selective columns in humans. Striking similarities were found with the known spatial features of these columns in monkeys. In addition, we found that a larger number of orientation columns are devoted to processing orientations around 90 degrees (vertical stimuli with horizontal motion), whereas relatively similar fMRI signal changes were observed across any given active column. With the current proliferation of high-field MRI systems and constant evolution of fMRI techniques, this study heralds the exciting prospect of exploring unmapped and/or unknown columnar level functional organizations in the human brain.

  15. Preclinical Feasibility of a Technology Framework for MRI-guided Iliac Angioplasty

    PubMed Central

    Rube, Martin A.; Fernandez-Gutierrez, Fabiola; Cox, Benjamin F.; Holbrook, Andrew B.; Houston, J. Graeme; White, Richard D.; McLeod, Helen; Fatahi, Mahsa; Melzer, Andreas

    2015-01-01

    Purpose Interventional MRI has significant potential for image guidance of iliac angioplasty and related vascular procedures. A technology framework with in-room image display, control, communication and MRI-guided intervention techniques was designed and tested for its potential to provide safe, fast and efficient MRI-guided angioplasty of the iliac arteries. Methods A 1.5T MRI scanner was adapted for interactive imaging during endovascular procedures using new or modified interventional devices such as guidewires and catheters. A perfused vascular phantom was used for testing. Pre-, intra- and post-procedural visualization and measurement of vascular morphology and flow was implemented. A detailed analysis of X-Ray fluoroscopic angiography workflow was conducted and applied. Two interventional radiologists and one physician in training performed 39 procedures. All procedures were timed and analyzed. Results MRI-guided iliac angioplasty procedures were successfully performed with progressive adaptation of techniques and workflow. The workflow, setup and protocol enabled a reduction in table time for a dedicated MRI-guided procedure to 6 min 33 s with a mean procedure time of 9 min 2 s, comparable to the mean procedure time of 8 min 42 s for the standard X-Ray guided procedure. Conclusions MRI-guided iliac vascular interventions were found to be feasible and practical using this framework and optimized workflow. In particular the real-time flow analysis was found to be helpful for pre- and post-interventional assessments. Design optimization of the catheters and in vivo experiments are required before clinical evaluation. PMID:25102933

  16. Usefulness of the dynamic gadolinium-enhanced magnetic resonance imaging with simultaneous acquisition of coronal and sagittal planes for detection of pituitary microadenomas.

    PubMed

    Lee, Han Bee; Kim, Sung Tae; Kim, Hyung-Jin; Kim, Keon Ha; Jeon, Pyoung; Byun, Hong Sik; Choi, Jin Wook

    2012-03-01

    Does dynamic gadolinium-enhanced imaging with simultaneous acquisition of coronal and sagittal planes improve diagnostic accuracy of pituitary microadenomas compared with coronal images alone? Fifty-six patients underwent 3-T sella MRI including dynamic simultaneous acquisition of coronal and sagittal planes after gadolinium injection. According to conspicuity, lesions were divided into four scores (0, no; 1, possible; 2, probable; 3, definite delayed enhancing lesion). Additional information on supplementary sagittal images compared with coronal ones was evaluated with a 4-point score (0, no; 1, possible; 2, probable; 3, definite additional information). Accuracy of tumour detection was calculated. Average scores for lesion detection of a combination of two planes, coronal, and sagittal images were 2.59, 2.32, and 2.18. 6/10 lesions negative on coronal images were detected on sagittal ones. Accuracy of a combination of two planes, of coronal and of sagittal images was 92.86%, 82.14% and 75%. Six patients had probable or definite additional information on supplementary sagittal images compared with coronal ones alone (10.71%). Dynamic MRI with combined coronal and sagittal planes was more accurate for detection of pituitary microadenomas than routinely used coronal images. Simultaneous dynamic enhanced acquisition can make study time fast and costs low. We present a new dynamic MRI technique for evaluating pituitary microadenomas • This technique provides simultaneous acquisition of contrast enhanced coronal and sagittal images. • This technique makes the diagnosis more accurate and reduces the examination time. • Such MR imaging only requires one single bolus of contrast agent.

  17. Imaging the accumulation and suppression of tau pathology using multiparametric MRI

    PubMed Central

    Holmes, Holly E.; Colgan, Niall; Ismail, Ozama; Ma, Da; Powell, Nick M.; O'Callaghan, James M.; Harrison, Ian F.; Johnson, Ross A.; Murray, Tracey K.; Ahmed, Zeshan; Heggenes, Morton; Fisher, Alice; Cardoso, M.J.; Modat, Marc; Walker-Samuel, Simon; Fisher, Elizabeth M.C.; Ourselin, Sebastien; O'Neill, Michael J.; Wells, Jack A.; Collins, Emily C.; Lythgoe, Mark F.

    2016-01-01

    Mouse models of Alzheimer's disease have served as valuable tools for investigating pathogenic mechanisms relating to neurodegeneration, including tau-mediated and neurofibrillary tangle pathology—a major hallmark of the disease. In this work, we have used multiparametric magnetic resonance imaging (MRI) in a longitudinal study of neurodegeneration in the rTg4510 mouse model of tauopathy, a subset of which were treated with doxycycline at different time points to suppress the tau transgene. Using this paradigm, we investigated the sensitivity of multiparametric MRI to both the accumulation and suppression of pathologic tau. Tau-related atrophy was discernible from 5.5 months within the cortex and hippocampus. We observed markedly less atrophy in the treated rTg4510 mice, which was enhanced after doxycycline intervention from 3.5 months. We also observed differences in amide proton transfer, cerebral blood flow, and diffusion tensor imaging parameters in the rTg4510 mice, which were significantly less altered after doxycycline treatment. We propose that these non-invasive MRI techniques offer insight into pathologic mechanisms underpinning Alzheimer's disease that may be important when evaluating emerging therapeutics targeting one of more of these processes. PMID:26923415

  18. New Insights into Signed Path Coefficient Granger Causality Analysis

    PubMed Central

    Zhang, Jian; Li, Chong; Jiang, Tianzi

    2016-01-01

    Granger causality analysis, as a time series analysis technique derived from econometrics, has been applied in an ever-increasing number of publications in the field of neuroscience, including fMRI, EEG/MEG, and fNIRS. The present study mainly focuses on the validity of “signed path coefficient Granger causality,” a Granger-causality-derived analysis method that has been adopted by many fMRI researches in the last few years. This method generally estimates the causality effect among the time series by an order-1 autoregression, and defines a positive or negative coefficient as an “excitatory” or “inhibitory” influence. In the current work we conducted a series of computations from resting-state fMRI data and simulation experiments to illustrate the signed path coefficient method was flawed and untenable, due to the fact that the autoregressive coefficients were not always consistent with the real causal relationships and this would inevitablely lead to erroneous conclusions. Overall our findings suggested that the applicability of this kind of causality analysis was rather limited, hence researchers should be more cautious in applying the signed path coefficient Granger causality to fMRI data to avoid misinterpretation. PMID:27833547

  19. Real-Time Correction By Optical Tracking with Integrated Geometric Distortion Correction for Reducing Motion Artifacts in fMRI

    NASA Astrophysics Data System (ADS)

    Rotenberg, David J.

    Artifacts caused by head motion are a substantial source of error in fMRI that limits its use in neuroscience research and clinical settings. Real-time scan-plane correction by optical tracking has been shown to correct slice misalignment and non-linear spin-history artifacts, however residual artifacts due to dynamic magnetic field non-uniformity may remain in the data. A recently developed correction technique, PLACE, can correct for absolute geometric distortion using the complex image data from two EPI images, with slightly shifted k-space trajectories. We present a correction approach that integrates PLACE into a real-time scan-plane update system by optical tracking, applied to a tissue-equivalent phantom undergoing complex motion and an fMRI finger tapping experiment with overt head motion to induce dynamic field non-uniformity. Experiments suggest that including volume by volume geometric distortion correction by PLACE can suppress dynamic geometric distortion artifacts in a phantom and in vivo and provide more robust activation maps.

  20. Training Humans to Categorize Monkey Calls: Auditory Feature- and Category-Selective Neural Tuning Changes.

    PubMed

    Jiang, Xiong; Chevillet, Mark A; Rauschecker, Josef P; Riesenhuber, Maximilian

    2018-04-18

    Grouping auditory stimuli into common categories is essential for a variety of auditory tasks, including speech recognition. We trained human participants to categorize auditory stimuli from a large novel set of morphed monkey vocalizations. Using fMRI-rapid adaptation (fMRI-RA) and multi-voxel pattern analysis (MVPA) techniques, we gained evidence that categorization training results in two distinct sets of changes: sharpened tuning to monkey call features (without explicit category representation) in left auditory cortex and category selectivity for different types of calls in lateral prefrontal cortex. In addition, the sharpness of neural selectivity in left auditory cortex, as estimated with both fMRI-RA and MVPA, predicted the steepness of the categorical boundary, whereas categorical judgment correlated with release from adaptation in the left inferior frontal gyrus. These results support the theory that auditory category learning follows a two-stage model analogous to the visual domain, suggesting general principles of perceptual category learning in the human brain. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Fine-tuning convolutional deep features for MRI based brain tumor classification

    NASA Astrophysics Data System (ADS)

    Ahmed, Kaoutar B.; Hall, Lawrence O.; Goldgof, Dmitry B.; Liu, Renhao; Gatenby, Robert A.

    2017-03-01

    Prediction of survival time from brain tumor magnetic resonance images (MRI) is not commonly performed and would ordinarily be a time consuming process. However, current cross-sectional imaging techniques, particularly MRI, can be used to generate many features that may provide information on the patient's prognosis, including survival. This information can potentially be used to identify individuals who would benefit from more aggressive therapy. Rather than using pre-defined and hand-engineered features as with current radiomics methods, we investigated the use of deep features extracted from pre-trained convolutional neural networks (CNNs) in predicting survival time. We also provide evidence for the power of domain specific fine-tuning in improving the performance of a pre-trained CNN's, even though our data set is small. We fine-tuned a CNN initially trained on a large natural image recognition dataset (Imagenet ILSVRC) and transferred the learned feature representations to the survival time prediction task, obtaining over 81% accuracy in a leave one out cross validation.

  2. Respiratory motion correction in dynamic MRI using robust data decomposition registration - application to DCE-MRI.

    PubMed

    Hamy, Valentin; Dikaios, Nikolaos; Punwani, Shonit; Melbourne, Andrew; Latifoltojar, Arash; Makanyanga, Jesica; Chouhan, Manil; Helbren, Emma; Menys, Alex; Taylor, Stuart; Atkinson, David

    2014-02-01

    Motion correction in Dynamic Contrast Enhanced (DCE-) MRI is challenging because rapid intensity changes can compromise common (intensity based) registration algorithms. In this study we introduce a novel registration technique based on robust principal component analysis (RPCA) to decompose a given time-series into a low rank and a sparse component. This allows robust separation of motion components that can be registered, from intensity variations that are left unchanged. This Robust Data Decomposition Registration (RDDR) is demonstrated on both simulated and a wide range of clinical data. Robustness to different types of motion and breathing choices during acquisition is demonstrated for a variety of imaged organs including liver, small bowel and prostate. The analysis of clinically relevant regions of interest showed both a decrease of error (15-62% reduction following registration) in tissue time-intensity curves and improved areas under the curve (AUC60) at early enhancement. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  3. MEG-BIDS, the brain imaging data structure extended to magnetoencephalography

    PubMed Central

    Niso, Guiomar; Gorgolewski, Krzysztof J.; Bock, Elizabeth; Brooks, Teon L.; Flandin, Guillaume; Gramfort, Alexandre; Henson, Richard N.; Jas, Mainak; Litvak, Vladimir; T. Moreau, Jeremy; Oostenveld, Robert; Schoffelen, Jan-Mathijs; Tadel, Francois; Wexler, Joseph; Baillet, Sylvain

    2018-01-01

    We present a significant extension of the Brain Imaging Data Structure (BIDS) to support the specific aspects of magnetoencephalography (MEG) data. MEG measures brain activity with millisecond temporal resolution and unique source imaging capabilities. So far, BIDS was a solution to organise magnetic resonance imaging (MRI) data. The nature and acquisition parameters of MRI and MEG data are strongly dissimilar. Although there is no standard data format for MEG, we propose MEG-BIDS as a principled solution to store, organise, process and share the multidimensional data volumes produced by the modality. The standard also includes well-defined metadata, to facilitate future data harmonisation and sharing efforts. This responds to unmet needs from the multimodal neuroimaging community and paves the way to further integration of other techniques in electrophysiology. MEG-BIDS builds on MRI-BIDS, extending BIDS to a multimodal data structure. We feature several data-analytics software that have adopted MEG-BIDS, and a diverse sample of open MEG-BIDS data resources available to everyone. PMID:29917016

  4. MEG-BIDS, the brain imaging data structure extended to magnetoencephalography.

    PubMed

    Niso, Guiomar; Gorgolewski, Krzysztof J; Bock, Elizabeth; Brooks, Teon L; Flandin, Guillaume; Gramfort, Alexandre; Henson, Richard N; Jas, Mainak; Litvak, Vladimir; T Moreau, Jeremy; Oostenveld, Robert; Schoffelen, Jan-Mathijs; Tadel, Francois; Wexler, Joseph; Baillet, Sylvain

    2018-06-19

    We present a significant extension of the Brain Imaging Data Structure (BIDS) to support the specific aspects of magnetoencephalography (MEG) data. MEG measures brain activity with millisecond temporal resolution and unique source imaging capabilities. So far, BIDS was a solution to organise magnetic resonance imaging (MRI) data. The nature and acquisition parameters of MRI and MEG data are strongly dissimilar. Although there is no standard data format for MEG, we propose MEG-BIDS as a principled solution to store, organise, process and share the multidimensional data volumes produced by the modality. The standard also includes well-defined metadata, to facilitate future data harmonisation and sharing efforts. This responds to unmet needs from the multimodal neuroimaging community and paves the way to further integration of other techniques in electrophysiology. MEG-BIDS builds on MRI-BIDS, extending BIDS to a multimodal data structure. We feature several data-analytics software that have adopted MEG-BIDS, and a diverse sample of open MEG-BIDS data resources available to everyone.

  5. MRI Guided Brain Stimulation without the Use of a Neuronavigation System

    PubMed Central

    Vaghefi, Ehsan; Byblow, Winston D.; Stinear, Cathy M.; Thompson, Benjamin

    2015-01-01

    A key issue in the field of noninvasive brain stimulation (NIBS) is the accurate localization of scalp positions that correspond to targeted cortical areas. The current gold standard is to combine structural and functional brain imaging with a commercially available “neuronavigation” system. However, neuronavigation systems are not commonplace outside of specialized research environments. Here we describe a technique that allows for the use of participant-specific functional and structural MRI data to guide NIBS without a neuronavigation system. Surface mesh representations of the head were generated using Brain Voyager and vectors linking key anatomical landmarks were drawn on the mesh. Our technique was then used to calculate the precise distances on the scalp corresponding to these vectors. These calculations were verified using actual measurements of the head and the technique was used to identify a scalp position corresponding to a brain area localized using functional MRI. PMID:26413537

  6. Arterial Spin Labeling (ASL) fMRI: advantages, theoretical constrains, and experimental challenges in neurosciences.

    PubMed

    Borogovac, Ajna; Asllani, Iris

    2012-01-01

    Cerebral blood flow (CBF) is a well-established correlate of brain function and therefore an essential parameter for studying the brain at both normal and diseased states. Arterial spin labeling (ASL) is a noninvasive fMRI technique that uses arterial water as an endogenous tracer to measure CBF. ASL provides reliable absolute quantification of CBF with higher spatial and temporal resolution than other techniques. And yet, the routine application of ASL has been somewhat limited. In this review, we start by highlighting theoretical complexities and technical challenges of ASL fMRI for basic and clinical research. While underscoring the main advantages of ASL versus other techniques such as BOLD, we also expound on inherent challenges and confounds in ASL perfusion imaging. In closing, we expound on several exciting developments in the field that we believe will make ASL reach its full potential in neuroscience research.

  7. Physics and instrumentation for imaging in-vivo drug distribution.

    PubMed

    Singh, M; Waluch, V

    2000-03-15

    Several imaging methods are currently available to measure drugs noninvasively. Of these, two techniques are today central to such measurements: nuclear imaging and magnetic resonance imaging/spectroscopy (MRI and MRS). While other methods, such as optical techniques, are rapidly gaining in interest, they have not yet attained the degree of development that makes them effective in measuring drugs in living systems, except in a small number of examples. The following introduction provides some basic elements of the potential and the limitations of both nuclear imaging and MRI/MRS techniques, methods that will be used in the studies described in the articles in this issue. However, and for those desiring to gain a better understanding of both methods, the reader is advised to consult much more extensive reviews and books describing such methods. A suggested list of books and articles on Nuclear Imaging and MRI/MRS is given.

  8. Computed tomography and magnetic resonance imaging in diagnosing hepatocellular carcinoma.

    PubMed

    Dalla Palma, L; Pozzi-Mucelli, R S

    1992-02-01

    The evaluation of hepatocellular carcinoma (HCC) is based upon ultrasonography (US) which has proved to have a high sensitivity and is also extremely useful in guiding the percutaneous needle biopsy. The main role of computed tomography (CT) and magnetic resonance imaging (MRI) is to supplement US in evaluating the extent of HCC. The Authors discuss the different techniques of examinations of the liver both for CT and MRI as far as the modalities of contrast enhancement, site of injection, and type of contrast agents are concerned. The differences between low field and high field magnets are also discussed. The main CT and MRI findings are illustrated, depending upon the technique of examination. Finally the role of these techniques is discussed. Based upon personal experience and the data in CT literature, and if performed with updated technology and intraarterial injection (lipiodol), CT is the method of choice in order to supplement US in the evaluation of HCC.

  9. Novel technique for preoperative pedicle localization in spinal surgery with challenging anatomy.

    PubMed

    Young, Richard M; Prasad, Vikram; Wind, Joshua J; Olan, Wayne; Caputy, Anthony J

    2014-04-01

    Accurately localizing a spine level in the thoracic spine is often not easily achieved with the existing imaging modalities available in the operating room. The coordination of the preoperative imaging pathology with intraoperative imaging is even more difficult in patients with challenging anatomy. Using standard percutaneous techniques, the authors placed a radiopaque embolization coil into the pedicle of interest under biplanar fluoroscopy in 1 patient. Thoracic spine MRI along with scout MRI was then performed to confirm coil marker placement in relation to the actual spine pathology prior to surgical intervention. No complications were observed during placement of the radiopaque marker. Intraoperatively, the marker was immediately and easily visualized, leading to a confident identification of the correct thoracic spinal level. The preoperative placement of a radiopaque marker into the vertebral pedicle of the identified pathological level combined with postplacement MRI verification provides an advantage over previously proposed techniques in the literature.

  10. Thoracic respiratory motion estimation from MRI using a statistical model and a 2-D image navigator.

    PubMed

    King, A P; Buerger, C; Tsoumpas, C; Marsden, P K; Schaeffter, T

    2012-01-01

    Respiratory motion models have potential application for estimating and correcting the effects of motion in a wide range of applications, for example in PET-MR imaging. Given that motion cycles caused by breathing are only approximately repeatable, an important quality of such models is their ability to capture and estimate the intra- and inter-cycle variability of the motion. In this paper we propose and describe a technique for free-form nonrigid respiratory motion correction in the thorax. Our model is based on a principal component analysis of the motion states encountered during different breathing patterns, and is formed from motion estimates made from dynamic 3-D MRI data. We apply our model using a data-driven technique based on a 2-D MRI image navigator. Unlike most previously reported work in the literature, our approach is able to capture both intra- and inter-cycle motion variability. In addition, the 2-D image navigator can be used to estimate how applicable the current motion model is, and hence report when more imaging data is required to update the model. We also use the motion model to decide on the best positioning for the image navigator. We validate our approach using MRI data acquired from 10 volunteers and demonstrate improvements of up to 40.5% over other reported motion modelling approaches, which corresponds to 61% of the overall respiratory motion present. Finally we demonstrate one potential application of our technique: MRI-based motion correction of real-time PET data for simultaneous PET-MRI acquisition. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. FAIR exempting separate T (1) measurement (FAIREST): a novel technique for online quantitative perfusion imaging and multi-contrast fMRI.

    PubMed

    Lai, S; Wang, J; Jahng, G H

    2001-01-01

    A new pulse sequence, dubbed FAIR exempting separate T(1) measurement (FAIREST) in which a slice-selective saturation recovery acquisition is added in addition to the standard FAIR (flow-sensitive alternating inversion recovery) scheme, was developed for quantitative perfusion imaging and multi-contrast fMRI. The technique allows for clean separation between and thus simultaneous assessment of BOLD and perfusion effects, whereas quantitative cerebral blood flow (CBF) and tissue T(1) values are monitored online. Online CBF maps were obtained using the FAIREST technique and the measured CBF values were consistent with the off-line CBF maps obtained from using the FAIR technique in combination with a separate sequence for T(1) measurement. Finger tapping activation studies were carried out to demonstrate the applicability of the FAIREST technique in a typical fMRI setting for multi-contrast fMRI. The relative CBF and BOLD changes induced by finger-tapping were 75.1 +/- 18.3 and 1.8 +/- 0.4%, respectively, and the relative oxygen consumption rate change was 2.5 +/- 7.7%. The results from correlation of the T(1) maps with the activation images on a pixel-by-pixel basis show that the mean T(1) value of the CBF activation pixels is close to the T(1) of gray matter while the mean T(1) value of the BOLD activation pixels is close to the T(1) range of blood and cerebrospinal fluid. Copyright 2001 John Wiley & Sons, Ltd.

  12. Strategies to minimize sedation in pediatric body magnetic resonance imaging.

    PubMed

    Jaimes, Camilo; Gee, Michael S

    2016-05-01

    The high soft-tissue contrast of MRI and the absence of ionizing radiation make it a valuable tool for assessment of body pathology in children. Infants and young children are often unable to cooperate with awake MRI so sedation or general anesthesia might be required. However, given recent data on the costs and potential risks of anesthesia in young children, there is a need to try to decrease or avoid sedation in this population when possible. Child life specialists in radiology frequently use behavioral techniques and audiovisual support devices, and they practice with children and families using mock scanners to improve child compliance with MRI. Optimization of the MR scanner environment is also important to create a child-friendly space. If the child can remain inside the MRI scanner, a variety of emerging techniques can reduce the effect of involuntary motion. Using sequences with short acquisition times such as single-shot fast spin echo and volumetric gradient echo can decrease artifacts and improve image quality. Breath-holding, respiratory triggering and signal averaging all reduce respiratory motion. Emerging techniques such as radial and multislice k-space acquisition, navigator motion correction, as well as parallel imaging and compressed sensing reconstruction methods can further accelerate acquisition and decrease motion. Collaboration among radiologists, anesthesiologists, technologists, child life specialists and families is crucial for successful performance of MRI in young children.

  13. Use of multidimensional, multimodal imaging and PACS to support neurological diagnoses

    NASA Astrophysics Data System (ADS)

    Wong, Stephen T. C.; Knowlton, Robert C.; Hoo, Kent S.; Huang, H. K.

    1995-05-01

    Technological advances in brain imaging have revolutionized diagnosis in neurology and neurological surgery. Major imaging techniques include magnetic resonance imaging (MRI) to visualize structural anatomy, positron emission tomography (PET) to image metabolic function and cerebral blood flow, magnetoencephalography (MEG) to visualize the location of physiologic current sources, and magnetic resonance spectroscopy (MRS) to measure specific biochemicals. Each of these techniques studies different biomedical aspects of the brain, but there lacks an effective means to quantify and correlate the disparate imaging datasets in order to improve clinical decision making processes. This paper describes several techniques developed in a UNIX-based neurodiagnostic workstation to aid the noninvasive presurgical evaluation of epilepsy patients. These techniques include online access to the picture archiving and communication systems (PACS) multimedia archive, coregistration of multimodality image datasets, and correlation and quantitation of structural and functional information contained in the registered images. For illustration, we describe the use of these techniques in a patient case of nonlesional neocortical epilepsy. We also present out future work based on preliminary studies.

  14. Fusing DTI and FMRI Data: A Survey of Methods and Applications

    PubMed Central

    Zhu, Dajiang; Zhang, Tuo; Jiang, Xi; Hu, Xintao; Chen, Hanbo; Yang, Ning; Lv, Jinglei; Han, Junwei; Guo, Lei; Liu, Tianming

    2014-01-01

    The relationship between brain structure and function has been one of the centers of research in neuroimaging for decades. In recent years, diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) techniques have been widely available and popular in cognitive and clinical neurosciences for examining the brain’s white matter (WM) micro-structures and gray matter (GM) functions, respectively. Given the intrinsic integration of WM/GM and the complementary information embedded in DTI/fMRI data, it is natural and well-justified to combine these two neuroimaging modalities together to investigate brain structure and function and their relationships simultaneously. In the past decade, there have been remarkable achievements of DTI/fMRI fusion methods and applications in neuroimaging and human brain mapping community. This survey paper aims to review recent advancements on methodologies and applications in incorporating multimodal DTI and fMRI data, and offer our perspectives on future research directions. We envision that effective fusion of DTI/fMRI techniques will play increasingly important roles in neuroimaging and brain sciences in the years to come. PMID:24103849

  15. Towards Single Biomolecule Imaging via Optical Nanoscale Magnetic Resonance Imaging.

    PubMed

    Boretti, Alberto; Rosa, Lorenzo; Castelletto, Stefania

    2015-09-09

    Nuclear magnetic resonance (NMR) spectroscopy is a physical marvel in which electromagnetic radiation is charged and discharged by nuclei in a magnetic field. In conventional NMR, the specific nuclei resonance frequency depends on the strength of the magnetic field and the magnetic properties of the isotope of the atoms. NMR is routinely utilized in clinical tests by converting nuclear spectroscopy in magnetic resonance imaging (MRI) and providing 3D, noninvasive biological imaging. While this technique has revolutionized biomedical science, measuring the magnetic resonance spectrum of single biomolecules is still an intangible aspiration, due to MRI resolution being limited to tens of micrometers. MRI and NMR have, however, recently greatly advanced, with many breakthroughs in nano-NMR and nano-MRI spurred by using spin sensors based on an atomic impurities in diamond. These techniques rely on magnetic dipole-dipole interactions rather than inductive detection. Here, novel nano-MRI methods based on nitrogen vacancy centers in diamond are highlighted, that provide a solution to the imaging of single biomolecules with nanoscale resolution in-vivo and in ambient conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Motion correction in periodically-rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) and turboprop MRI.

    PubMed

    Tamhane, Ashish A; Arfanakis, Konstantinos

    2009-07-01

    Periodically-rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) and Turboprop MRI are characterized by greatly reduced sensitivity to motion, compared to their predecessors, fast spin-echo (FSE) and gradient and spin-echo (GRASE), respectively. This is due to the inherent self-navigation and motion correction of PROPELLER-based techniques. However, it is unknown how various acquisition parameters that determine k-space sampling affect the accuracy of motion correction in PROPELLER and Turboprop MRI. The goal of this work was to evaluate the accuracy of motion correction in both techniques, to identify an optimal rotation correction approach, and determine acquisition strategies for optimal motion correction. It was demonstrated that blades with multiple lines allow more accurate estimation of motion than blades with fewer lines. Also, it was shown that Turboprop MRI is less sensitive to motion than PROPELLER. Furthermore, it was demonstrated that the number of blades does not significantly affect motion correction. Finally, clinically appropriate acquisition strategies that optimize motion correction are discussed for PROPELLER and Turboprop MRI. (c) 2009 Wiley-Liss, Inc.

  17. Magnetic resonance imaging based clinical research in Alzheimer's disease.

    PubMed

    Fayed, Nicolás; Modrego, Pedro J; Salinas, Gulillermo Rojas; Gazulla, José

    2012-01-01

    Alzheimer's disease (AD) is the most common cause of dementia in elderly people in western countries. However important goals are unmet in the issue of early diagnosis and the development of new drugs for treatment. Magnetic resonance imaging (MRI) and volumetry of the medial temporal lobe structures are useful tools for diagnosis. Positron emission tomography is one of the most sensitive tests for making an early diagnosis of AD but the cost and limited availability are important caveats for its utilization. The importance of magnetic resonance techniques has increased gradually to the extent that most clinical works based on AD use these techniques as the main aid to diagnosis. However, the accuracy of structural MRI as biomarker of early AD generally reaches an accuracy of 80%, so additional biomarkers should be used to improve predictions. Other structural MRI (diffusion weighted, diffusion-tensor MRI) and functional MRI have also added interesting contribution to the understanding of the pathophysiology of AD. Magnetic resonance spectroscopy has proven useful to monitor progression and response to treatment in AD, as well as a biomarker of early AD in mild cognitive impairment.

  18. Joint fMRI analysis and subject clustering using sparse dictionary learning

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Jun; Dontaraju, Krishna K.

    2017-08-01

    Multi-subject fMRI data analysis methods based on sparse dictionary learning are proposed. In addition to identifying the component spatial maps by exploiting the sparsity of the maps, clusters of the subjects are learned by postulating that the fMRI volumes admit a subspace clustering structure. Furthermore, in order to tune the associated hyper-parameters systematically, a cross-validation strategy is developed based on entry-wise sampling of the fMRI dataset. Efficient algorithms for solving the proposed constrained dictionary learning formulations are developed. Numerical tests performed on synthetic fMRI data show promising results and provides insights into the proposed technique.

  19. A survey of GPU-based acceleration techniques in MRI reconstructions

    PubMed Central

    Wang, Haifeng; Peng, Hanchuan; Chang, Yuchou

    2018-01-01

    Image reconstruction in magnetic resonance imaging (MRI) clinical applications has become increasingly more complicated. However, diagnostic and treatment require very fast computational procedure. Modern competitive platforms of graphics processing unit (GPU) have been used to make high-performance parallel computations available, and attractive to common consumers for computing massively parallel reconstruction problems at commodity price. GPUs have also become more and more important for reconstruction computations, especially when deep learning starts to be applied into MRI reconstruction. The motivation of this survey is to review the image reconstruction schemes of GPU computing for MRI applications and provide a summary reference for researchers in MRI community. PMID:29675361

  20. A survey of GPU-based acceleration techniques in MRI reconstructions.

    PubMed

    Wang, Haifeng; Peng, Hanchuan; Chang, Yuchou; Liang, Dong

    2018-03-01

    Image reconstruction in magnetic resonance imaging (MRI) clinical applications has become increasingly more complicated. However, diagnostic and treatment require very fast computational procedure. Modern competitive platforms of graphics processing unit (GPU) have been used to make high-performance parallel computations available, and attractive to common consumers for computing massively parallel reconstruction problems at commodity price. GPUs have also become more and more important for reconstruction computations, especially when deep learning starts to be applied into MRI reconstruction. The motivation of this survey is to review the image reconstruction schemes of GPU computing for MRI applications and provide a summary reference for researchers in MRI community.

Top