Computerized Interpretation of Dynamic Breast MRI
2006-05-01
correction, tumor segmentation , extraction of computerized features that help distinguish between benign and malignant lesions, and classification. Our...for assessing tumor extent in 3D. The primary feature used for 3D tumor segmentation is the postcontrast enhancement vector. Tumor segmentation is a...Appendix B. 4. Investigation of methods for automatic tumor segmentation We developed an automatic method for assessing tumor extent in 3D. The
High resolution, MRI-based, segmented, computerized head phantom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zubal, I.G.; Harrell, C.R.; Smith, E.O.
1999-01-01
The authors have created a high-resolution software phantom of the human brain which is applicable to voxel-based radiation transport calculations yielding nuclear medicine simulated images and/or internal dose estimates. A software head phantom was created from 124 transverse MRI images of a healthy normal individual. The transverse T2 slices, recorded in a 256x256 matrix from a GE Signa 2 scanner, have isotropic voxel dimensions of 1.5 mm and were manually segmented by the clinical staff. Each voxel of the phantom contains one of 62 index numbers designating anatomical, neurological, and taxonomical structures. The result is stored as a 256x256x128 bytemore » array. Internal volumes compare favorably to those described in the ICRP Reference Man. The computerized array represents a high resolution model of a typical human brain and serves as a voxel-based anthropomorphic head phantom suitable for computer-based modeling and simulation calculations. It offers an improved realism over previous mathematically described software brain phantoms, and creates a reference standard for comparing results of newly emerging voxel-based computations. Such voxel-based computations lead the way to developing diagnostic and dosimetry calculations which can utilize patient-specific diagnostic images. However, such individualized approaches lack fast, automatic segmentation schemes for routine use; therefore, the high resolution, typical head geometry gives the most realistic patient model currently available.« less
Atlas-Guided Segmentation of Vervet Monkey Brain MRI
Fedorov, Andriy; Li, Xiaoxing; Pohl, Kilian M; Bouix, Sylvain; Styner, Martin; Addicott, Merideth; Wyatt, Chris; Daunais, James B; Wells, William M; Kikinis, Ron
2011-01-01
The vervet monkey is an important nonhuman primate model that allows the study of isolated environmental factors in a controlled environment. Analysis of monkey MRI often suffers from lower quality images compared with human MRI because clinical equipment is typically used to image the smaller monkey brain and higher spatial resolution is required. This, together with the anatomical differences of the monkey brains, complicates the use of neuroimage analysis pipelines tuned for human MRI analysis. In this paper we developed an open source image analysis framework based on the tools available within the 3D Slicer software to support a biological study that investigates the effect of chronic ethanol exposure on brain morphometry in a longitudinally followed population of male vervets. We first developed a computerized atlas of vervet monkey brain MRI, which was used to encode the typical appearance of the individual brain structures in MRI and their spatial distribution. The atlas was then used as a spatial prior during automatic segmentation to process two longitudinal scans per subject. Our evaluation confirms the consistency and reliability of the automatic segmentation. The comparison of atlas construction strategies reveals that the use of a population-specific atlas leads to improved accuracy of the segmentation for subcortical brain structures. The contribution of this work is twofold. First, we describe an image processing workflow specifically tuned towards the analysis of vervet MRI that consists solely of the open source software tools. Second, we develop a digital atlas of vervet monkey brain MRIs to enable similar studies that rely on the vervet model. PMID:22253661
Ding, Huanjun; Johnson, Travis; Lin, Muqing; Le, Huy Q.; Ducote, Justin L.; Su, Min-Ying; Molloi, Sabee
2013-01-01
Purpose: Quantification of breast density based on three-dimensional breast MRI may provide useful information for the early detection of breast cancer. However, the field inhomogeneity can severely challenge the computerized image segmentation process. In this work, the effect of the bias field in breast density quantification has been investigated with a postmortem study. Methods: T1-weighted images of 20 pairs of postmortem breasts were acquired on a 1.5 T breast MRI scanner. Two computer-assisted algorithms were used to quantify the volumetric breast density. First, standard fuzzy c-means (FCM) clustering was used on raw images with the bias field present. Then, the coherent local intensity clustering (CLIC) method estimated and corrected the bias field during the iterative tissue segmentation process. Finally, FCM clustering was performed on the bias-field-corrected images produced by CLIC method. The left–right correlation for breasts in the same pair was studied for both segmentation algorithms to evaluate the precision of the tissue classification. Finally, the breast densities measured with the three methods were compared to the gold standard tissue compositions obtained from chemical analysis. The linear correlation coefficient, Pearson's r, was used to evaluate the two image segmentation algorithms and the effect of bias field. Results: The CLIC method successfully corrected the intensity inhomogeneity induced by the bias field. In left–right comparisons, the CLIC method significantly improved the slope and the correlation coefficient of the linear fitting for the glandular volume estimation. The left–right breast density correlation was also increased from 0.93 to 0.98. When compared with the percent fibroglandular volume (%FGV) from chemical analysis, results after bias field correction from both the CLIC the FCM algorithms showed improved linear correlation. As a result, the Pearson's r increased from 0.86 to 0.92 with the bias field correction. Conclusions: The investigated CLIC method significantly increased the precision and accuracy of breast density quantification using breast MRI images by effectively correcting the bias field. It is expected that a fully automated computerized algorithm for breast density quantification may have great potential in clinical MRI applications. PMID:24320536
Ding, Huanjun; Johnson, Travis; Lin, Muqing; Le, Huy Q; Ducote, Justin L; Su, Min-Ying; Molloi, Sabee
2013-12-01
Quantification of breast density based on three-dimensional breast MRI may provide useful information for the early detection of breast cancer. However, the field inhomogeneity can severely challenge the computerized image segmentation process. In this work, the effect of the bias field in breast density quantification has been investigated with a postmortem study. T1-weighted images of 20 pairs of postmortem breasts were acquired on a 1.5 T breast MRI scanner. Two computer-assisted algorithms were used to quantify the volumetric breast density. First, standard fuzzy c-means (FCM) clustering was used on raw images with the bias field present. Then, the coherent local intensity clustering (CLIC) method estimated and corrected the bias field during the iterative tissue segmentation process. Finally, FCM clustering was performed on the bias-field-corrected images produced by CLIC method. The left-right correlation for breasts in the same pair was studied for both segmentation algorithms to evaluate the precision of the tissue classification. Finally, the breast densities measured with the three methods were compared to the gold standard tissue compositions obtained from chemical analysis. The linear correlation coefficient, Pearson's r, was used to evaluate the two image segmentation algorithms and the effect of bias field. The CLIC method successfully corrected the intensity inhomogeneity induced by the bias field. In left-right comparisons, the CLIC method significantly improved the slope and the correlation coefficient of the linear fitting for the glandular volume estimation. The left-right breast density correlation was also increased from 0.93 to 0.98. When compared with the percent fibroglandular volume (%FGV) from chemical analysis, results after bias field correction from both the CLIC the FCM algorithms showed improved linear correlation. As a result, the Pearson's r increased from 0.86 to 0.92 with the bias field correction. The investigated CLIC method significantly increased the precision and accuracy of breast density quantification using breast MRI images by effectively correcting the bias field. It is expected that a fully automated computerized algorithm for breast density quantification may have great potential in clinical MRI applications.
Fully automated chest wall line segmentation in breast MRI by using context information
NASA Astrophysics Data System (ADS)
Wu, Shandong; Weinstein, Susan P.; Conant, Emily F.; Localio, A. Russell; Schnall, Mitchell D.; Kontos, Despina
2012-03-01
Breast MRI has emerged as an effective modality for the clinical management of breast cancer. Evidence suggests that computer-aided applications can further improve the diagnostic accuracy of breast MRI. A critical and challenging first step for automated breast MRI analysis, is to separate the breast as an organ from the chest wall. Manual segmentation or user-assisted interactive tools are inefficient, tedious, and error-prone, which is prohibitively impractical for processing large amounts of data from clinical trials. To address this challenge, we developed a fully automated and robust computerized segmentation method that intensively utilizes context information of breast MR imaging and the breast tissue's morphological characteristics to accurately delineate the breast and chest wall boundary. A critical component is the joint application of anisotropic diffusion and bilateral image filtering to enhance the edge that corresponds to the chest wall line (CWL) and to reduce the effect of adjacent non-CWL tissues. A CWL voting algorithm is proposed based on CWL candidates yielded from multiple sequential MRI slices, in which a CWL representative is generated and used through a dynamic time warping (DTW) algorithm to filter out inferior candidates, leaving the optimal one. Our method is validated by a representative dataset of 20 3D unilateral breast MRI scans that span the full range of the American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-RADS) fibroglandular density categorization. A promising performance (average overlay percentage of 89.33%) is observed when the automated segmentation is compared to manually segmented ground truth obtained by an experienced breast imaging radiologist. The automated method runs time-efficiently at ~3 minutes for each breast MR image set (28 slices).
Putaminal volume and diffusion in early familial Creutzfeldt-Jakob disease.
Seror, Ilana; Lee, Hedok; Cohen, Oren S; Hoffmann, Chen; Prohovnik, Isak
2010-01-15
The putamen is centrally implicated in the pathophysiology of Creutzfeldt-Jakob Disease (CJD). To our knowledge, its volume has never been measured in this disease. We investigated whether gross putaminal atrophy can be detected by MRI in early stages, when the diffusion is already reduced. Twelve familial CJD patients with the E200K mutation and 22 healthy controls underwent structural and diffusion MRI scans. The putamen was identified in anatomical scans by two methods: manual tracing by a blinded investigator, and automatic parcellation by a computerized segmentation procedure (FSL FIRST). For each method, volume and mean Apparent Diffusion Coefficient (ADC) were calculated. ADC was significantly lower in CJD patients (697+/-64 microm(2)/s vs. 750+/-31 microm(2)/s, p<0.005), as expected, but the volume was not reduced. The computerized FIRST delineation yielded comparable ADC values to the manual method, but computerized volumes were smaller than manual tracing values. We conclude that significant diffusion reduction in the putamen can be detected by delineating the structure manually or with a computerized algorithm. Our findings confirm and extend previous voxel-based and observational studies. Putaminal volume was not reduced in our early-stage patients, thus confirming that diffusion abnormalities precede detectible atrophy in this structure.
Quantitative Rapid Assessment of Leukoaraiosis in CT : Comparison to Gold Standard MRI.
Hanning, Uta; Sporns, Peter Bernhard; Schmidt, Rene; Niederstadt, Thomas; Minnerup, Jens; Bier, Georg; Knecht, Stefan; Kemmling, André
2017-10-20
The severity of white matter lesions (WML) is a risk factor of hemorrhage and predictor of clinical outcome after ischemic stroke; however, in contrast to magnetic resonance imaging (MRI) reliable quantification for this surrogate marker is limited for computed tomography (CT), the leading stroke imaging technique. We aimed to present and evaluate a CT-based automated rater-independent method for quantification of microangiopathic white matter changes. Patients with suspected minor stroke (National Institutes of Health Stroke scale, NIHSS < 4) were screened for the analysis of non-contrast computerized tomography (NCCT) at admission and compared to follow-up MRI. The MRI-based WML volume and visual Fazekas scores were assessed as the gold standard reference. We employed a recently published probabilistic brain segmentation algorithm for CT images to determine the tissue-specific density of WM space. All voxel-wise densities were quantified in WM space and weighted according to partial probabilistic WM content. The resulting mean weighted density of WM space in NCCT, the surrogate of WML, was correlated with reference to MRI-based WML parameters. The process of CT-based tissue-specific segmentation was reliable in 79 cases with varying severity of microangiopathy. Voxel-wise weighted density within WM spaces showed a noticeable correlation (r = -0.65) with MRI-based WML volume. Particularly in patients with moderate or severe lesion load according to the visual Fazekas score the algorithm provided reliable prediction of MRI-based WML volume. Automated observer-independent quantification of voxel-wise WM density in CT significantly correlates with microangiopathic WM disease in gold standard MRI. This rapid surrogate of white matter lesion load in CT may support objective WML assessment and therapeutic decision-making during acute stroke triage.
Computerized Liver Volumetry on MRI by Using 3D Geodesic Active Contour Segmentation
Huynh, Hieu Trung; Karademir, Ibrahim; Oto, Aytekin; Suzuki, Kenji
2014-01-01
OBJECTIVE Our purpose was to develop an accurate automated 3D liver segmentation scheme for measuring liver volumes on MRI. SUBJECTS AND METHODS Our scheme for MRI liver volumetry consisted of three main stages. First, the preprocessing stage was applied to T1-weighted MRI of the liver in the portal venous phase to reduce noise and produce the boundary-enhanced image. This boundary-enhanced image was used as a speed function for a 3D fast-marching algorithm to generate an initial surface that roughly approximated the shape of the liver. A 3D geodesic-active-contour segmentation algorithm refined the initial surface to precisely determine the liver boundaries. The liver volumes determined by our scheme were compared with those manually traced by a radiologist, used as the reference standard. RESULTS The two volumetric methods reached excellent agreement (intraclass correlation coefficient, 0.98) without statistical significance (p = 0.42). The average (± SD) accuracy was 99.4% ± 0.14%, and the average Dice overlap coefficient was 93.6% ± 1.7%. The mean processing time for our automated scheme was 1.03 ± 0.13 minutes, whereas that for manual volumetry was 24.0 ± 4.4 minutes (p < 0.001). CONCLUSION The MRI liver volumetry based on our automated scheme agreed excellently with reference-standard volumetry, and it required substantially less completion time. PMID:24370139
Computerized liver volumetry on MRI by using 3D geodesic active contour segmentation.
Huynh, Hieu Trung; Karademir, Ibrahim; Oto, Aytekin; Suzuki, Kenji
2014-01-01
Our purpose was to develop an accurate automated 3D liver segmentation scheme for measuring liver volumes on MRI. Our scheme for MRI liver volumetry consisted of three main stages. First, the preprocessing stage was applied to T1-weighted MRI of the liver in the portal venous phase to reduce noise and produce the boundary-enhanced image. This boundary-enhanced image was used as a speed function for a 3D fast-marching algorithm to generate an initial surface that roughly approximated the shape of the liver. A 3D geodesic-active-contour segmentation algorithm refined the initial surface to precisely determine the liver boundaries. The liver volumes determined by our scheme were compared with those manually traced by a radiologist, used as the reference standard. The two volumetric methods reached excellent agreement (intraclass correlation coefficient, 0.98) without statistical significance (p = 0.42). The average (± SD) accuracy was 99.4% ± 0.14%, and the average Dice overlap coefficient was 93.6% ± 1.7%. The mean processing time for our automated scheme was 1.03 ± 0.13 minutes, whereas that for manual volumetry was 24.0 ± 4.4 minutes (p < 0.001). The MRI liver volumetry based on our automated scheme agreed excellently with reference-standard volumetry, and it required substantially less completion time.
A computerized MRI biomarker quantification scheme for a canine model of Duchenne muscular dystrophy
Wang, Jiahui; Fan, Zheng; Vandenborne, Krista; Walter, Glenn; Shiloh-Malawsky, Yael; An, Hongyu; Kornegay, Joe N.; Styner, Martin A.
2015-01-01
Purpose Golden retriever muscular dystrophy (GRMD) is a widely used canine model of Duchenne muscular dystrophy (DMD). Recent studies have shown that magnetic resonance imaging (MRI) can be used to non-invasively detect consistent changes in both DMD and GRMD. In this paper, we propose a semi-automated system to quantify MRI biomarkers of GRMD. Methods Our system was applied to a database of 45 MRI scans from 8 normal and 10 GRMD dogs in a longitudinal natural history study. We first segmented six proximal pelvic limb muscles using two competing schemes: 1) standard, limited muscle range segmentation and 2) semi-automatic full muscle segmentation. We then performed pre-processing, including: intensity inhomogeneity correction, spatial registration of different image sequences, intensity calibration of T2-weighted (T2w) and T2-weighted fat suppressed (T2fs) images, and calculation of MRI biomarker maps. Finally, for each of the segmented muscles, we automatically measured MRI biomarkers of muscle volume and intensity statistics over MRI biomarker maps, and statistical image texture features. Results The muscle volume and the mean intensities in T2 value, fat, and water maps showed group differences between normal and GRMD dogs. For the statistical texture biomarkers, both the histogram and run-length matrix features showed obvious group differences between normal and GRMD dogs. The full muscle segmentation shows significantly less error and variability in the proposed biomarkers when compared to the standard, limited muscle range segmentation. Conclusion The experimental results demonstrated that this quantification tool can reliably quantify MRI biomarkers in GRMD dogs, suggesting that it would also be useful for quantifying disease progression and measuring therapeutic effect in DMD patients. PMID:23299128
Wang, Jiahui; Fan, Zheng; Vandenborne, Krista; Walter, Glenn; Shiloh-Malawsky, Yael; An, Hongyu; Kornegay, Joe N; Styner, Martin A
2013-09-01
Golden retriever muscular dystrophy (GRMD) is a widely used canine model of Duchenne muscular dystrophy (DMD). Recent studies have shown that magnetic resonance imaging (MRI) can be used to non-invasively detect consistent changes in both DMD and GRMD. In this paper, we propose a semiautomated system to quantify MRI biomarkers of GRMD. Our system was applied to a database of 45 MRI scans from 8 normal and 10 GRMD dogs in a longitudinal natural history study. We first segmented six proximal pelvic limb muscles using a semiautomated full muscle segmentation method. We then performed preprocessing, including intensity inhomogeneity correction, spatial registration of different image sequences, intensity calibration of T2-weighted and T2-weighted fat-suppressed images, and calculation of MRI biomarker maps. Finally, for each of the segmented muscles, we automatically measured MRI biomarkers of muscle volume, intensity statistics over MRI biomarker maps, and statistical image texture features. The muscle volume and the mean intensities in T2 value, fat, and water maps showed group differences between normal and GRMD dogs. For the statistical texture biomarkers, both the histogram and run-length matrix features showed obvious group differences between normal and GRMD dogs. The full muscle segmentation showed significantly less error and variability in the proposed biomarkers when compared to the standard, limited muscle range segmentation. The experimental results demonstrated that this quantification tool could reliably quantify MRI biomarkers in GRMD dogs, suggesting that it would also be useful for quantifying disease progression and measuring therapeutic effect in DMD patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Hui; Liu, Yiping; Qiu, Tianshuang
2014-08-15
Purpose: To develop and evaluate a computerized semiautomatic segmentation method for accurate extraction of three-dimensional lesions from dynamic contrast-enhanced magnetic resonance images (DCE-MRIs) of the breast. Methods: The authors propose a new background distribution-based active contour model using level set (BDACMLS) to segment lesions in breast DCE-MRIs. The method starts with manual selection of a region of interest (ROI) that contains the entire lesion in a single slice where the lesion is enhanced. Then the lesion volume from the volume data of interest, which is captured automatically, is separated. The core idea of BDACMLS is a new signed pressure functionmore » which is based solely on the intensity distribution combined with pathophysiological basis. To compare the algorithm results, two experienced radiologists delineated all lesions jointly to obtain the ground truth. In addition, results generated by other different methods based on level set (LS) are also compared with the authors’ method. Finally, the performance of the proposed method is evaluated by several region-based metrics such as the overlap ratio. Results: Forty-two studies with 46 lesions that contain 29 benign and 17 malignant lesions are evaluated. The dataset includes various typical pathologies of the breast such as invasive ductal carcinoma, ductal carcinomain situ, scar carcinoma, phyllodes tumor, breast cysts, fibroadenoma, etc. The overlap ratio for BDACMLS with respect to manual segmentation is 79.55% ± 12.60% (mean ± s.d.). Conclusions: A new active contour model method has been developed and shown to successfully segment breast DCE-MRI three-dimensional lesions. The results from this model correspond more closely to manual segmentation, solve the weak-edge-passed problem, and improve the robustness in segmenting different lesions.« less
NASA Astrophysics Data System (ADS)
Ringenberg, Jordan; Deo, Makarand; Devabhaktuni, Vijay; Filgueiras-Rama, David; Pizarro, Gonzalo; Ibañez, Borja; Berenfeld, Omer; Boyers, Pamela; Gold, Jeffrey
2012-12-01
This paper presents an automated method to segment left ventricle (LV) tissues from functional and delayed-enhancement (DE) cardiac magnetic resonance imaging (MRI) scans using a sequential multi-step approach. First, a region of interest (ROI) is computed to create a subvolume around the LV using morphological operations and image arithmetic. From the subvolume, the myocardial contours are automatically delineated using difference of Gaussians (DoG) filters and GSV snakes. These contours are used as a mask to identify pathological tissues, such as fibrosis or scar, within the DE-MRI. The presented automated technique is able to accurately delineate the myocardium and identify the pathological tissue in patient sets. The results were validated by two expert cardiologists, and in one set the automated results are quantitatively and qualitatively compared with expert manual delineation. Furthermore, the method is patient-specific, performed on an entire patient MRI series. Thus, in addition to providing a quick analysis of individual MRI scans, the fully automated segmentation method is used for effectively tagging regions in order to reconstruct computerized patient-specific 3D cardiac models. These models can then be used in electrophysiological studies and surgical strategy planning.
Probabilistic atlas and geometric variability estimation to drive tissue segmentation.
Xu, Hao; Thirion, Bertrand; Allassonnière, Stéphanie
2014-09-10
Computerized anatomical atlases play an important role in medical image analysis. While an atlas usually refers to a standard or mean image also called template, which presumably represents well a given population, it is not enough to characterize the observed population in detail. A template image should be learned jointly with the geometric variability of the shapes represented in the observations. These two quantities will in the sequel form the atlas of the corresponding population. The geometric variability is modeled as deformations of the template image so that it fits the observations. In this paper, we provide a detailed analysis of a new generative statistical model based on dense deformable templates that represents several tissue types observed in medical images. Our atlas contains both an estimation of probability maps of each tissue (called class) and the deformation metric. We use a stochastic algorithm for the estimation of the probabilistic atlas given a dataset. This atlas is then used for atlas-based segmentation method to segment the new images. Experiments are shown on brain T1 MRI datasets. Copyright © 2014 John Wiley & Sons, Ltd.
Hsu, Li-Yueh; Wragg, Andrew; Anderson, Stasia A; Balaban, Robert S; Boehm, Manfred; Arai, Andrew E
2008-02-01
This study presents computerized automatic image analysis for quantitatively evaluating dynamic contrast-enhanced MRI in an ischemic rat hindlimb model. MRI at 7 T was performed on animals in a blinded placebo-controlled experiment comparing multipotent adult progenitor cell-derived progenitor cell (MDPC)-treated, phosphate buffered saline (PBS)-injected, and sham-operated rats. Ischemic and non-ischemic limb regions of interest were automatically segmented from time-series images for detecting changes in perfusion and late enhancement. In correlation analysis of the time-signal intensity histograms, the MDPC-treated limbs correlated well with their corresponding non-ischemic limbs. However, the correlation coefficient of the PBS control group was significantly lower than that of the MDPC-treated and sham-operated groups. In semi-quantitative parametric maps of contrast enhancement, there was no significant difference in hypo-enhanced area between the MDPC and PBS groups at early perfusion-dependent time frames. However, the late-enhancement area was significantly larger in the PBS than the MDPC group. The results of this exploratory study show that MDPC-treated rats could be objectively distinguished from PBS controls. The differences were primarily determined by late contrast enhancement of PBS-treated limbs. These computerized methods appear promising for assessing perfusion and late enhancement in dynamic contrast-enhanced MRI.
A spatiotemporal-based scheme for efficient registration-based segmentation of thoracic 4-D MRI.
Yang, Y; Van Reeth, E; Poh, C L; Tan, C H; Tham, I W K
2014-05-01
Dynamic three-dimensional (3-D) (four-dimensional, 4-D) magnetic resonance (MR) imaging is gaining importance in the study of pulmonary motion for respiratory diseases and pulmonary tumor motion for radiotherapy. To perform quantitative analysis using 4-D MR images, segmentation of anatomical structures such as the lung and pulmonary tumor is required. Manual segmentation of entire thoracic 4-D MRI data that typically contains many 3-D volumes acquired over several breathing cycles is extremely tedious, time consuming, and suffers high user variability. This requires the development of new automated segmentation schemes for 4-D MRI data segmentation. Registration-based segmentation technique that uses automatic registration methods for segmentation has been shown to be an accurate method to segment structures for 4-D data series. However, directly applying registration-based segmentation to segment 4-D MRI series lacks efficiency. Here we propose an automated 4-D registration-based segmentation scheme that is based on spatiotemporal information for the segmentation of thoracic 4-D MR lung images. The proposed scheme saved up to 95% of computation amount while achieving comparable accurate segmentations compared to directly applying registration-based segmentation to 4-D dataset. The scheme facilitates rapid 3-D/4-D visualization of the lung and tumor motion and potentially the tracking of tumor during radiation delivery.
Jayender, Jagadaeesan; Chikarmane, Sona; Jolesz, Ferenc A; Gombos, Eva
2014-08-01
To accurately segment invasive ductal carcinomas (IDCs) from dynamic contrast-enhanced MRI (DCE-MRI) using time series analysis based on linear dynamic system (LDS) modeling. Quantitative segmentation methods based on black-box modeling and pharmacokinetic modeling are highly dependent on imaging pulse sequence, timing of bolus injection, arterial input function, imaging noise, and fitting algorithms. We modeled the underlying dynamics of the tumor by an LDS and used the system parameters to segment the carcinoma on the DCE-MRI. Twenty-four patients with biopsy-proven IDCs were analyzed. The lesions segmented by the algorithm were compared with an expert radiologist's segmentation and the output of a commercial software, CADstream. The results are quantified in terms of the accuracy and sensitivity of detecting the lesion and the amount of overlap, measured in terms of the Dice similarity coefficient (DSC). The segmentation algorithm detected the tumor with 90% accuracy and 100% sensitivity when compared with the radiologist's segmentation and 82.1% accuracy and 100% sensitivity when compared with the CADstream output. The overlap of the algorithm output with the radiologist's segmentation and CADstream output, computed in terms of the DSC was 0.77 and 0.72, respectively. The algorithm also shows robust stability to imaging noise. Simulated imaging noise with zero mean and standard deviation equal to 25% of the base signal intensity was added to the DCE-MRI series. The amount of overlap between the tumor maps generated by the LDS-based algorithm from the noisy and original DCE-MRI was DSC = 0.95. The time-series analysis based segmentation algorithm provides high accuracy and sensitivity in delineating the regions of enhanced perfusion corresponding to tumor from DCE-MRI. © 2013 Wiley Periodicals, Inc.
Automatic Segmentation of Invasive Breast Carcinomas from DCE-MRI using Time Series Analysis
Jayender, Jagadaeesan; Chikarmane, Sona; Jolesz, Ferenc A.; Gombos, Eva
2013-01-01
Purpose Quantitative segmentation methods based on black-box modeling and pharmacokinetic modeling are highly dependent on imaging pulse sequence, timing of bolus injection, arterial input function, imaging noise and fitting algorithms. To accurately segment invasive ductal carcinomas (IDCs) from dynamic contrast enhanced MRI (DCE-MRI) using time series analysis based on linear dynamic system (LDS) modeling. Methods We modeled the underlying dynamics of the tumor by a LDS and use the system parameters to segment the carcinoma on the DCE-MRI. Twenty-four patients with biopsy-proven IDCs were analyzed. The lesions segmented by the algorithm were compared with an expert radiologist’s segmentation and the output of a commercial software, CADstream. The results are quantified in terms of the accuracy and sensitivity of detecting the lesion and the amount of overlap, measured in terms of the Dice similarity coefficient (DSC). Results The segmentation algorithm detected the tumor with 90% accuracy and 100% sensitivity when compared to the radiologist’s segmentation and 82.1% accuracy and 100% sensitivity when compared to the CADstream output. The overlap of the algorithm output with the radiologist’s segmentation and CADstream output, computed in terms of the DSC was 0.77 and 0.72 respectively. The algorithm also shows robust stability to imaging noise. Simulated imaging noise with zero mean and standard deviation equal to 25% of the base signal intensity was added to the DCE-MRI series. The amount of overlap between the tumor maps generated by the LDS-based algorithm from the noisy and original DCE-MRI was DSC=0.95. Conclusion The time-series analysis based segmentation algorithm provides high accuracy and sensitivity in delineating the regions of enhanced perfusion corresponding to tumor from DCE-MRI. PMID:24115175
Brain Tumor Image Segmentation in MRI Image
NASA Astrophysics Data System (ADS)
Peni Agustin Tjahyaningtijas, Hapsari
2018-04-01
Brain tumor segmentation plays an important role in medical image processing. Treatment of patients with brain tumors is highly dependent on early detection of these tumors. Early detection of brain tumors will improve the patient’s life chances. Diagnosis of brain tumors by experts usually use a manual segmentation that is difficult and time consuming because of the necessary automatic segmentation. Nowadays automatic segmentation is very populer and can be a solution to the problem of tumor brain segmentation with better performance. The purpose of this paper is to provide a review of MRI-based brain tumor segmentation methods. There are number of existing review papers, focusing on traditional methods for MRI-based brain tumor image segmentation. this paper, we focus on the recent trend of automatic segmentation in this field. First, an introduction to brain tumors and methods for brain tumor segmentation is given. Then, the state-of-the-art algorithms with a focus on recent trend of full automatic segmentaion are discussed. Finally, an assessment of the current state is presented and future developments to standardize MRI-based brain tumor segmentation methods into daily clinical routine are addressed.
Verhaart, René F; Fortunati, Valerio; Verduijn, Gerda M; van der Lugt, Aad; van Walsum, Theo; Veenland, Jifke F; Paulides, Margarethus M
2014-12-01
In current clinical practice, head and neck (H&N) hyperthermia treatment planning (HTP) is solely based on computed tomography (CT) images. Magnetic resonance imaging (MRI) provides superior soft-tissue contrast over CT. The purpose of the authors' study is to investigate the relevance of using MRI in addition to CT for patient modeling in H&N HTP. CT and MRI scans were acquired for 11 patients in an immobilization mask. Three observers manually segmented on CT, MRI T1 weighted (MRI-T1w), and MRI T2 weighted (MRI-T2w) images the following thermo-sensitive tissues: cerebrum, cerebellum, brainstem, myelum, sclera, lens, vitreous humor, and the optical nerve. For these tissues that are used for patient modeling in H&N HTP, the interobserver variation of manual tissue segmentation in CT and MRI was quantified with the mean surface distance (MSD). Next, the authors compared the impact of CT and CT and MRI based patient models on the predicted temperatures. For each tissue, the modality was selected that led to the lowest observer variation and inserted this in the combined CT and MRI based patient model (CT and MRI), after a deformable image registration. In addition, a patient model with a detailed segmentation of brain tissues (including white matter, gray matter, and cerebrospinal fluid) was created (CT and MRIdb). To quantify the relevance of MRI based segmentation for H&N HTP, the authors compared the predicted maximum temperatures in the segmented tissues (Tmax) and the corresponding specific absorption rate (SAR) of the patient models based on (1) CT, (2) CT and MRI, and (3) CT and MRIdb. In MRI, a similar or reduced interobserver variation was found compared to CT (maximum of median MSD in CT: 0.93 mm, MRI-T1w: 0.72 mm, MRI-T2w: 0.66 mm). Only for the optical nerve the interobserver variation is significantly lower in CT compared to MRI (median MSD in CT: 0.58 mm, MRI-T1w: 1.27 mm, MRI-T2w: 1.40 mm). Patient models based on CT (Tmax: 38.0 °C) and CT and MRI (Tmax: 38.1 °C) result in similar simulated temperatures, while CT and MRIdb (Tmax: 38.5 °C) resulted in significantly higher temperatures. The SAR corresponding to these temperatures did not differ significantly. Although MR imaging reduces the interobserver variation in most tissues, it does not affect simulated local tissue temperatures. However, the improved soft-tissue contrast provided by MRI allows generating a detailed brain segmentation, which has a strong impact on the predicted local temperatures and hence may improve simulation guided hyperthermia.
Zhou, Yongxin; Bai, Jing
2007-01-01
A framework that combines atlas registration, fuzzy connectedness (FC) segmentation, and parametric bias field correction (PABIC) is proposed for the automatic segmentation of brain magnetic resonance imaging (MRI). First, the atlas is registered onto the MRI to initialize the following FC segmentation. Original techniques are proposed to estimate necessary initial parameters of FC segmentation. Further, the result of the FC segmentation is utilized to initialize a following PABIC algorithm. Finally, we re-apply the FC technique on the PABIC corrected MRI to get the final segmentation. Thus, we avoid expert human intervention and provide a fully automatic method for brain MRI segmentation. Experiments on both simulated and real MRI images demonstrate the validity of the method, as well as the limitation of the method. Being a fully automatic method, it is expected to find wide applications, such as three-dimensional visualization, radiation therapy planning, and medical database construction.
Poynton, Clare B; Chen, Kevin T; Chonde, Daniel B; Izquierdo-Garcia, David; Gollub, Randy L; Gerstner, Elizabeth R; Batchelor, Tracy T; Catana, Ciprian
2014-01-01
We present a new MRI-based attenuation correction (AC) approach for integrated PET/MRI systems that combines both segmentation- and atlas-based methods by incorporating dual-echo ultra-short echo-time (DUTE) and T1-weighted (T1w) MRI data and a probabilistic atlas. Segmented atlases were constructed from CT training data using a leave-one-out framework and combined with T1w, DUTE, and CT data to train a classifier that computes the probability of air/soft tissue/bone at each voxel. This classifier was applied to segment the MRI of the subject of interest and attenuation maps (μ-maps) were generated by assigning specific linear attenuation coefficients (LACs) to each tissue class. The μ-maps generated with this "Atlas-T1w-DUTE" approach were compared to those obtained from DUTE data using a previously proposed method. For validation of the segmentation results, segmented CT μ-maps were considered to the "silver standard"; the segmentation accuracy was assessed qualitatively and quantitatively through calculation of the Dice similarity coefficient (DSC). Relative change (RC) maps between the CT and MRI-based attenuation corrected PET volumes were also calculated for a global voxel-wise assessment of the reconstruction results. The μ-maps obtained using the Atlas-T1w-DUTE classifier agreed well with those derived from CT; the mean DSCs for the Atlas-T1w-DUTE-based μ-maps across all subjects were higher than those for DUTE-based μ-maps; the atlas-based μ-maps also showed a lower percentage of misclassified voxels across all subjects. RC maps from the atlas-based technique also demonstrated improvement in the PET data compared to the DUTE method, both globally as well as regionally.
Using deep learning to segment breast and fibroglandular tissue in MRI volumes.
Dalmış, Mehmet Ufuk; Litjens, Geert; Holland, Katharina; Setio, Arnaud; Mann, Ritse; Karssemeijer, Nico; Gubern-Mérida, Albert
2017-02-01
Automated segmentation of breast and fibroglandular tissue (FGT) is required for various computer-aided applications of breast MRI. Traditional image analysis and computer vision techniques, such atlas, template matching, or, edge and surface detection, have been applied to solve this task. However, applicability of these methods is usually limited by the characteristics of the images used in the study datasets, while breast MRI varies with respect to the different MRI protocols used, in addition to the variability in breast shapes. All this variability, in addition to various MRI artifacts, makes it a challenging task to develop a robust breast and FGT segmentation method using traditional approaches. Therefore, in this study, we investigated the use of a deep-learning approach known as "U-net." We used a dataset of 66 breast MRI's randomly selected from our scientific archive, which includes five different MRI acquisition protocols and breasts from four breast density categories in a balanced distribution. To prepare reference segmentations, we manually segmented breast and FGT for all images using an in-house developed workstation. We experimented with the application of U-net in two different ways for breast and FGT segmentation. In the first method, following the same pipeline used in traditional approaches, we trained two consecutive (2C) U-nets: first for segmenting the breast in the whole MRI volume and the second for segmenting FGT inside the segmented breast. In the second method, we used a single 3-class (3C) U-net, which performs both tasks simultaneously by segmenting the volume into three regions: nonbreast, fat inside the breast, and FGT inside the breast. For comparison, we applied two existing and published methods to our dataset: an atlas-based method and a sheetness-based method. We used Dice Similarity Coefficient (DSC) to measure the performances of the automated methods, with respect to the manual segmentations. Additionally, we computed Pearson's correlation between the breast density values computed based on manual and automated segmentations. The average DSC values for breast segmentation were 0.933, 0.944, 0.863, and 0.848 obtained from 3C U-net, 2C U-nets, atlas-based method, and sheetness-based method, respectively. The average DSC values for FGT segmentation obtained from 3C U-net, 2C U-nets, and atlas-based methods were 0.850, 0.811, and 0.671, respectively. The correlation between breast density values based on 3C U-net and manual segmentations was 0.974. This value was significantly higher than 0.957 as obtained from 2C U-nets (P < 0.0001, Steiger's Z-test with Bonferoni correction) and 0.938 as obtained from atlas-based method (P = 0.0016). In conclusion, we applied a deep-learning method, U-net, for segmenting breast and FGT in MRI in a dataset that includes a variety of MRI protocols and breast densities. Our results showed that U-net-based methods significantly outperformed the existing algorithms and resulted in significantly more accurate breast density computation. © 2016 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verhaart, René F., E-mail: r.f.verhaart@erasmusmc.nl; Paulides, Margarethus M.; Fortunati, Valerio
Purpose: In current clinical practice, head and neck (H and N) hyperthermia treatment planning (HTP) is solely based on computed tomography (CT) images. Magnetic resonance imaging (MRI) provides superior soft-tissue contrast over CT. The purpose of the authors’ study is to investigate the relevance of using MRI in addition to CT for patient modeling in H and N HTP. Methods: CT and MRI scans were acquired for 11 patients in an immobilization mask. Three observers manually segmented on CT, MRI T1 weighted (MRI-T1w), and MRI T2 weighted (MRI-T2w) images the following thermo-sensitive tissues: cerebrum, cerebellum, brainstem, myelum, sclera, lens, vitreousmore » humor, and the optical nerve. For these tissues that are used for patient modeling in H and N HTP, the interobserver variation of manual tissue segmentation in CT and MRI was quantified with the mean surface distance (MSD). Next, the authors compared the impact of CT and CT and MRI based patient models on the predicted temperatures. For each tissue, the modality was selected that led to the lowest observer variation and inserted this in the combined CT and MRI based patient model (CT and MRI), after a deformable image registration. In addition, a patient model with a detailed segmentation of brain tissues (including white matter, gray matter, and cerebrospinal fluid) was created (CT and MRI{sub db}). To quantify the relevance of MRI based segmentation for H and N HTP, the authors compared the predicted maximum temperatures in the segmented tissues (T{sub max}) and the corresponding specific absorption rate (SAR) of the patient models based on (1) CT, (2) CT and MRI, and (3) CT and MRI{sub db}. Results: In MRI, a similar or reduced interobserver variation was found compared to CT (maximum of median MSD in CT: 0.93 mm, MRI-T1w: 0.72 mm, MRI-T2w: 0.66 mm). Only for the optical nerve the interobserver variation is significantly lower in CT compared to MRI (median MSD in CT: 0.58 mm, MRI-T1w: 1.27 mm, MRI-T2w: 1.40 mm). Patient models based on CT (T{sub max}: 38.0 °C) and CT and MRI (T{sub max}: 38.1 °C) result in similar simulated temperatures, while CT and MRI{sub db} (T{sub max}: 38.5 °C) resulted in significantly higher temperatures. The SAR corresponding to these temperatures did not differ significantly. Conclusions: Although MR imaging reduces the interobserver variation in most tissues, it does not affect simulated local tissue temperatures. However, the improved soft-tissue contrast provided by MRI allows generating a detailed brain segmentation, which has a strong impact on the predicted local temperatures and hence may improve simulation guided hyperthermia.« less
Medical image segmentation using 3D MRI data
NASA Astrophysics Data System (ADS)
Voronin, V.; Marchuk, V.; Semenishchev, E.; Cen, Yigang; Agaian, S.
2017-05-01
Precise segmentation of three-dimensional (3D) magnetic resonance imaging (MRI) image can be a very useful computer aided diagnosis (CAD) tool in clinical routines. Accurate automatic extraction a 3D component from images obtained by magnetic resonance imaging (MRI) is a challenging segmentation problem due to the small size objects of interest (e.g., blood vessels, bones) in each 2D MRA slice and complex surrounding anatomical structures. Our objective is to develop a specific segmentation scheme for accurately extracting parts of bones from MRI images. In this paper, we use a segmentation algorithm to extract the parts of bones from Magnetic Resonance Imaging (MRI) data sets based on modified active contour method. As a result, the proposed method demonstrates good accuracy in a comparison between the existing segmentation approaches on real MRI data.
Sauwen, N; Acou, M; Van Cauter, S; Sima, D M; Veraart, J; Maes, F; Himmelreich, U; Achten, E; Van Huffel, S
2016-01-01
Tumor segmentation is a particularly challenging task in high-grade gliomas (HGGs), as they are among the most heterogeneous tumors in oncology. An accurate delineation of the lesion and its main subcomponents contributes to optimal treatment planning, prognosis and follow-up. Conventional MRI (cMRI) is the imaging modality of choice for manual segmentation, and is also considered in the vast majority of automated segmentation studies. Advanced MRI modalities such as perfusion-weighted imaging (PWI), diffusion-weighted imaging (DWI) and magnetic resonance spectroscopic imaging (MRSI) have already shown their added value in tumor tissue characterization, hence there have been recent suggestions of combining different MRI modalities into a multi-parametric MRI (MP-MRI) approach for brain tumor segmentation. In this paper, we compare the performance of several unsupervised classification methods for HGG segmentation based on MP-MRI data including cMRI, DWI, MRSI and PWI. Two independent MP-MRI datasets with a different acquisition protocol were available from different hospitals. We demonstrate that a hierarchical non-negative matrix factorization variant which was previously introduced for MP-MRI tumor segmentation gives the best performance in terms of mean Dice-scores for the pathologic tissue classes on both datasets.
Volumetric Assessment of Swallowing Muscles: A Comparison of CT and MRI Segmentation.
Sporns, Kim Barbara; Hanning, Uta; Schmidt, Rene; Muhle, Paul; Wirth, Rainer; Zimmer, Sebastian; Dziewas, Rainer; Suntrup-Krueger, Sonja; Sporns, Peter Bernhard; Heindel, Walter; Schwindt, Wolfram
2018-05-01
Recent retrospective studies have proposed a high correlation between atrophy of swallowing muscles, age, severity of dysphagia and aspiration status based on computed tomography (CT). However, ionizing radiation poses an ethical barrier to research in prospective non-patient populations. Hence, there is a need to prove the efficacy of techniques that rely on noninvasive methods and produce high-resolution soft tissue images such as magnetic resonance imaging (MRI). The objective of this study was therefore to compare the segmentation results of swallowing muscles using CT and MRI. Retrospective study of 21 patients (median age: 46.6; gender: 11 female) who underwent CT and MRI of the head and neck region within a time frame of less than 50 days because of suspected head and neck cancer using contrast agent. CT and MR images were segmented by two blinded readers using Medical Imaging Toolkit (MITK) and both modalities were tested (with the equivalence test) regarding the segmented muscle volumes. Adjustment for multiple testing was performed using the Bonferroni test and the potential time effect of the muscle volumes and the time interval between the modalities was assessed by a spearman correlation. The study was approved by the local ethics committee. The median volumes for each muscle belly of the digastric muscle derived from CT were 3051 mm 3 (left) and 2969 mm 3 (right), and from MRI they were 3218 mm 3 (left) and 3027 mm 3 (right). The median volume of the geniohyoid muscle was 6580 mm 3 on CT and 6648 mm 3 on MRI. The interrater reliability was high for all segmented muscles. The mean time interval between the CT and MRI examinations was 34 days (IQR 25; 41). The muscle differences of each muscle between the two modalities did not reveal significant correlation to the time interval between the examinations (digastric left r = 0.003 and digastric right r = -0.008; geniohyoid muscle r = 0.075). CT-based segmentation and MRI-based segmentation of the digastric and geniohyoid muscle are equally feasible. The potential advantage of MRI for prospective studies is the absence of ionizing radiation. · CT-based segmentation and MRI-based segmentation of the swallowing muscles are equally feasible.. · The advantage of MRI is the absence of ionizing radiation.. · MRI should therefore be deployed for future prospective studies.. · Sporns KB, Hanning U, Schmidt R et al. Volumetric Assessment of Swallowing Muscles: A Comparison of CT and MRI Segmentation. Fortschr Röntgenstr 2018; 190: 441 - 446. © Georg Thieme Verlag KG Stuttgart · New York.
Spatially adapted augmentation of age-specific atlas-based segmentation using patch-based priors
NASA Astrophysics Data System (ADS)
Liu, Mengyuan; Seshamani, Sharmishtaa; Harrylock, Lisa; Kitsch, Averi; Miller, Steven; Chau, Van; Poskitt, Kenneth; Rousseau, Francois; Studholme, Colin
2014-03-01
One of the most common approaches to MRI brain tissue segmentation is to employ an atlas prior to initialize an Expectation- Maximization (EM) image labeling scheme using a statistical model of MRI intensities. This prior is commonly derived from a set of manually segmented training data from the population of interest. However, in cases where subject anatomy varies significantly from the prior anatomical average model (for example in the case where extreme developmental abnormalities or brain injuries occur), the prior tissue map does not provide adequate information about the observed MRI intensities to ensure the EM algorithm converges to an anatomically accurate labeling of the MRI. In this paper, we present a novel approach for automatic segmentation of such cases. This approach augments the atlas-based EM segmentation by exploring methods to build a hybrid tissue segmentation scheme that seeks to learn where an atlas prior fails (due to inadequate representation of anatomical variation in the statistical atlas) and utilize an alternative prior derived from a patch driven search of the atlas data. We describe a framework for incorporating this patch-based augmentation of EM (PBAEM) into a 4D age-specific atlas-based segmentation of developing brain anatomy. The proposed approach was evaluated on a set of MRI brain scans of premature neonates with ages ranging from 27.29 to 46.43 gestational weeks (GWs). Results indicated superior performance compared to the conventional atlas-based segmentation method, providing improved segmentation accuracy for gray matter, white matter, ventricles and sulcal CSF regions.
Segmentation precision of abdominal anatomy for MRI-based radiotherapy
Noel, Camille E.; Zhu, Fan; Lee, Andrew Y.; Yanle, Hu; Parikh, Parag J.
2014-01-01
The limited soft tissue visualization provided by computed tomography, the standard imaging modality for radiotherapy treatment planning and daily localization, has motivated studies on the use of magnetic resonance imaging (MRI) for better characterization of treatment sites, such as the prostate and head and neck. However, no studies have been conducted on MRI-based segmentation for the abdomen, a site that could greatly benefit from enhanced soft tissue targeting. We investigated the interobserver and intraobserver precision in segmentation of abdominal organs on MR images for treatment planning and localization. Manual segmentation of 8 abdominal organs was performed by 3 independent observers on MR images acquired from 14 healthy subjects. Observers repeated segmentation 4 separate times for each image set. Interobserver and intraobserver contouring precision was assessed by computing 3-dimensional overlap (Dice coefficient [DC]) and distance to agreement (Hausdorff distance [HD]) of segmented organs. The mean and standard deviation of intraobserver and interobserver DC and HD values were DCintraobserver = 0.89 ± 0.12, HDintraobserver = 3.6 mm ± 1.5, DCinterobserver = 0.89 ± 0.15, and HDinterobserver = 3.2 mm ± 1.4. Overall, metrics indicated good interobserver/intraobserver precision (mean DC > 0.7, mean HD < 4 mm). Results suggest that MRI offers good segmentation precision for abdominal sites. These findings support the utility of MRI for abdominal planning and localization, as emerging MRI technologies, techniques, and onboard imaging devices are beginning to enable MRI-based radiotherapy. PMID:24726701
Segmentation precision of abdominal anatomy for MRI-based radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noel, Camille E.; Zhu, Fan; Lee, Andrew Y.
2014-10-01
The limited soft tissue visualization provided by computed tomography, the standard imaging modality for radiotherapy treatment planning and daily localization, has motivated studies on the use of magnetic resonance imaging (MRI) for better characterization of treatment sites, such as the prostate and head and neck. However, no studies have been conducted on MRI-based segmentation for the abdomen, a site that could greatly benefit from enhanced soft tissue targeting. We investigated the interobserver and intraobserver precision in segmentation of abdominal organs on MR images for treatment planning and localization. Manual segmentation of 8 abdominal organs was performed by 3 independent observersmore » on MR images acquired from 14 healthy subjects. Observers repeated segmentation 4 separate times for each image set. Interobserver and intraobserver contouring precision was assessed by computing 3-dimensional overlap (Dice coefficient [DC]) and distance to agreement (Hausdorff distance [HD]) of segmented organs. The mean and standard deviation of intraobserver and interobserver DC and HD values were DC{sub intraobserver} = 0.89 ± 0.12, HD{sub intraobserver} = 3.6 mm ± 1.5, DC{sub interobserver} = 0.89 ± 0.15, and HD{sub interobserver} = 3.2 mm ± 1.4. Overall, metrics indicated good interobserver/intraobserver precision (mean DC > 0.7, mean HD < 4 mm). Results suggest that MRI offers good segmentation precision for abdominal sites. These findings support the utility of MRI for abdominal planning and localization, as emerging MRI technologies, techniques, and onboard imaging devices are beginning to enable MRI-based radiotherapy.« less
PSNet: prostate segmentation on MRI based on a convolutional neural network.
Tian, Zhiqiang; Liu, Lizhi; Zhang, Zhenfeng; Fei, Baowei
2018-04-01
Automatic segmentation of the prostate on magnetic resonance images (MRI) has many applications in prostate cancer diagnosis and therapy. We proposed a deep fully convolutional neural network (CNN) to segment the prostate automatically. Our deep CNN model is trained end-to-end in a single learning stage, which uses prostate MRI and the corresponding ground truths as inputs. The learned CNN model can be used to make an inference for pixel-wise segmentation. Experiments were performed on three data sets, which contain prostate MRI of 140 patients. The proposed CNN model of prostate segmentation (PSNet) obtained a mean Dice similarity coefficient of [Formula: see text] as compared to the manually labeled ground truth. Experimental results show that the proposed model could yield satisfactory segmentation of the prostate on MRI.
Poynton, Clare B; Chen, Kevin T; Chonde, Daniel B; Izquierdo-Garcia, David; Gollub, Randy L; Gerstner, Elizabeth R; Batchelor, Tracy T; Catana, Ciprian
2014-01-01
We present a new MRI-based attenuation correction (AC) approach for integrated PET/MRI systems that combines both segmentation- and atlas-based methods by incorporating dual-echo ultra-short echo-time (DUTE) and T1-weighted (T1w) MRI data and a probabilistic atlas. Segmented atlases were constructed from CT training data using a leave-one-out framework and combined with T1w, DUTE, and CT data to train a classifier that computes the probability of air/soft tissue/bone at each voxel. This classifier was applied to segment the MRI of the subject of interest and attenuation maps (μ-maps) were generated by assigning specific linear attenuation coefficients (LACs) to each tissue class. The μ-maps generated with this “Atlas-T1w-DUTE” approach were compared to those obtained from DUTE data using a previously proposed method. For validation of the segmentation results, segmented CT μ-maps were considered to the “silver standard”; the segmentation accuracy was assessed qualitatively and quantitatively through calculation of the Dice similarity coefficient (DSC). Relative change (RC) maps between the CT and MRI-based attenuation corrected PET volumes were also calculated for a global voxel-wise assessment of the reconstruction results. The μ-maps obtained using the Atlas-T1w-DUTE classifier agreed well with those derived from CT; the mean DSCs for the Atlas-T1w-DUTE-based μ-maps across all subjects were higher than those for DUTE-based μ-maps; the atlas-based μ-maps also showed a lower percentage of misclassified voxels across all subjects. RC maps from the atlas-based technique also demonstrated improvement in the PET data compared to the DUTE method, both globally as well as regionally. PMID:24753982
Joint multi-object registration and segmentation of left and right cardiac ventricles in 4D cine MRI
NASA Astrophysics Data System (ADS)
Ehrhardt, Jan; Kepp, Timo; Schmidt-Richberg, Alexander; Handels, Heinz
2014-03-01
The diagnosis of cardiac function based on cine MRI requires the segmentation of cardiac structures in the images, but the problem of automatic cardiac segmentation is still open, due to the imaging characteristics of cardiac MR images and the anatomical variability of the heart. In this paper, we present a variational framework for joint segmentation and registration of multiple structures of the heart. To enable the simultaneous segmentation and registration of multiple objects, a shape prior term is introduced into a region competition approach for multi-object level set segmentation. The proposed algorithm is applied for simultaneous segmentation of the myocardium as well as the left and right ventricular blood pool in short axis cine MRI images. Two experiments are performed: first, intra-patient 4D segmentation with a given initial segmentation for one time-point in a 4D sequence, and second, a multi-atlas segmentation strategy is applied to unseen patient data. Evaluation of segmentation accuracy is done by overlap coefficients and surface distances. An evaluation based on clinical 4D cine MRI images of 25 patients shows the benefit of the combined approach compared to sole registration and sole segmentation.
Multi-atlas and label fusion approach for patient-specific MRI based skull estimation.
Torrado-Carvajal, Angel; Herraiz, Joaquin L; Hernandez-Tamames, Juan A; San Jose-Estepar, Raul; Eryaman, Yigitcan; Rozenholc, Yves; Adalsteinsson, Elfar; Wald, Lawrence L; Malpica, Norberto
2016-04-01
MRI-based skull segmentation is a useful procedure for many imaging applications. This study describes a methodology for automatic segmentation of the complete skull from a single T1-weighted volume. The skull is estimated using a multi-atlas segmentation approach. Using a whole head computed tomography (CT) scan database, the skull in a new MRI volume is detected by nonrigid image registration of the volume to every CT, and combination of the individual segmentations by label-fusion. We have compared Majority Voting, Simultaneous Truth and Performance Level Estimation (STAPLE), Shape Based Averaging (SBA), and the Selective and Iterative Method for Performance Level Estimation (SIMPLE) algorithms. The pipeline has been evaluated quantitatively using images from the Retrospective Image Registration Evaluation database (reaching an overlap of 72.46 ± 6.99%), a clinical CT-MR dataset (maximum overlap of 78.31 ± 6.97%), and a whole head CT-MRI pair (maximum overlap 78.68%). A qualitative evaluation has also been performed on MRI acquisition of volunteers. It is possible to automatically segment the complete skull from MRI data using a multi-atlas and label fusion approach. This will allow the creation of complete MRI-based tissue models that can be used in electromagnetic dosimetry applications and attenuation correction in PET/MR. © 2015 Wiley Periodicals, Inc.
Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions.
Akkus, Zeynettin; Galimzianova, Alfiia; Hoogi, Assaf; Rubin, Daniel L; Erickson, Bradley J
2017-08-01
Quantitative analysis of brain MRI is routine for many neurological diseases and conditions and relies on accurate segmentation of structures of interest. Deep learning-based segmentation approaches for brain MRI are gaining interest due to their self-learning and generalization ability over large amounts of data. As the deep learning architectures are becoming more mature, they gradually outperform previous state-of-the-art classical machine learning algorithms. This review aims to provide an overview of current deep learning-based segmentation approaches for quantitative brain MRI. First we review the current deep learning architectures used for segmentation of anatomical brain structures and brain lesions. Next, the performance, speed, and properties of deep learning approaches are summarized and discussed. Finally, we provide a critical assessment of the current state and identify likely future developments and trends.
Gupta, Vikas; Bustamante, Mariana; Fredriksson, Alexandru; Carlhäll, Carl-Johan; Ebbers, Tino
2018-01-01
Assessment of blood flow in the left ventricle using four-dimensional flow MRI requires accurate left ventricle segmentation that is often hampered by the low contrast between blood and the myocardium. The purpose of this work is to improve left-ventricular segmentation in four-dimensional flow MRI for reliable blood flow analysis. The left ventricle segmentations are first obtained using morphological cine-MRI with better in-plane resolution and contrast, and then aligned to four-dimensional flow MRI data. This alignment is, however, not trivial due to inter-slice misalignment errors caused by patient motion and respiratory drift during breath-hold based cine-MRI acquisition. A robust image registration based framework is proposed to mitigate such errors automatically. Data from 20 subjects, including healthy volunteers and patients, was used to evaluate its geometric accuracy and impact on blood flow analysis. High spatial correspondence was observed between manually and automatically aligned segmentations, and the improvements in alignment compared to uncorrected segmentations were significant (P < 0.01). Blood flow analysis from manual and automatically corrected segmentations did not differ significantly (P > 0.05). Our results demonstrate the efficacy of the proposed approach in improving left-ventricular segmentation in four-dimensional flow MRI, and its potential for reliable blood flow analysis. Magn Reson Med 79:554-560, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
van Pelt, Roy; Nguyen, Huy; ter Haar Romeny, Bart; Vilanova, Anna
2012-03-01
Quantitative analysis of vascular blood flow, acquired by phase-contrast MRI, requires accurate segmentation of the vessel lumen. In clinical practice, 2D-cine velocity-encoded slices are inspected, and the lumen is segmented manually. However, segmentation of time-resolved volumetric blood-flow measurements is a tedious and time-consuming task requiring automation. Automated segmentation of large thoracic arteries, based solely on the 3D-cine phase-contrast MRI (PC-MRI) blood-flow data, was done. An active surface model, which is fast and topologically stable, was used. The active surface model requires an initial surface, approximating the desired segmentation. A method to generate this surface was developed based on a voxel-wise temporal maximum of blood-flow velocities. The active surface model balances forces, based on the surface structure and image features derived from the blood-flow data. The segmentation results were validated using volunteer studies, including time-resolved 3D and 2D blood-flow data. The segmented surface was intersected with a velocity-encoded PC-MRI slice, resulting in a cross-sectional contour of the lumen. These cross-sections were compared to reference contours that were manually delineated on high-resolution 2D-cine slices. The automated approach closely approximates the manual blood-flow segmentations, with error distances on the order of the voxel size. The initial surface provides a close approximation of the desired luminal geometry. This improves the convergence time of the active surface and facilitates parametrization. An active surface approach for vessel lumen segmentation was developed, suitable for quantitative analysis of 3D-cine PC-MRI blood-flow data. As opposed to prior thresholding and level-set approaches, the active surface model is topologically stable. A method to generate an initial approximate surface was developed, and various features that influence the segmentation model were evaluated. The active surface segmentation results were shown to closely approximate manual segmentations.
NASA Astrophysics Data System (ADS)
Daryanani, Aditya; Dangi, Shusil; Ben-Zikri, Yehuda Kfir; Linte, Cristian A.
2016-03-01
Magnetic Resonance Imaging (MRI) is a standard-of-care imaging modality for cardiac function assessment and guidance of cardiac interventions thanks to its high image quality and lack of exposure to ionizing radiation. Cardiac health parameters such as left ventricular volume, ejection fraction, myocardial mass, thickness, and strain can be assessed by segmenting the heart from cardiac MRI images. Furthermore, the segmented pre-operative anatomical heart models can be used to precisely identify regions of interest to be treated during minimally invasive therapy. Hence, the use of accurate and computationally efficient segmentation techniques is critical, especially for intra-procedural guidance applications that rely on the peri-operative segmentation of subject-specific datasets without delaying the procedure workflow. Atlas-based segmentation incorporates prior knowledge of the anatomy of interest from expertly annotated image datasets. Typically, the ground truth atlas label is propagated to a test image using a combination of global and local registration. The high computational cost of non-rigid registration motivated us to obtain an initial segmentation using global transformations based on an atlas of the left ventricle from a population of patient MRI images and refine it using well developed technique based on graph cuts. Here we quantitatively compare the segmentations obtained from the global and global plus local atlases and refined using graph cut-based techniques with the expert segmentations according to several similarity metrics, including Dice correlation coefficient, Jaccard coefficient, Hausdorff distance, and Mean absolute distance error.
NASA Astrophysics Data System (ADS)
Ahmed, S.; Iftekharuddin, K. M.; Ogg, R. J.; Laningham, F. H.
2009-02-01
Our previous works suggest that fractal-based texture features are very useful for detection, segmentation and classification of posterior-fossa (PF) pediatric brain tumor in multimodality MRI. In this work, we investigate and compare efficacy of our texture features such as fractal and multifractional Brownian motion (mBm), and intensity along with another useful level-set based shape feature in PF tumor segmentation. We study feature selection and ranking using Kullback -Leibler Divergence (KLD) and subsequent tumor segmentation; all in an integrated Expectation Maximization (EM) framework. We study the efficacy of all four features in both multimodality as well as disparate MRI modalities such as T1, T2 and FLAIR. Both KLD feature plots and information theoretic entropy measure suggest that mBm feature offers the maximum separation between tumor and non-tumor tissues in T1 and FLAIR MRI modalities. The same metrics show that intensity feature offers the maximum separation between tumor and non-tumor tissue in T2 MRI modality. The efficacies of these features are further validated in segmenting PF tumor using both single modality and multimodality MRI for six pediatric patients with over 520 real MR images.
Ramsey, David J; Sunness, Janet S; Malviya, Poorva; Applegate, Carol; Hager, Gregory D; Handa, James T
2014-07-01
To develop a computer-based image segmentation method for standardizing the quantification of geographic atrophy (GA). The authors present an automated image segmentation method based on the fuzzy c-means clustering algorithm for the detection of GA lesions. The method is evaluated by comparing computerized segmentation against outlines of GA drawn by an expert grader for a longitudinal series of fundus autofluorescence images with paired 30° color fundus photographs for 10 patients. The automated segmentation method showed excellent agreement with an expert grader for fundus autofluorescence images, achieving a performance level of 94 ± 5% sensitivity and 98 ± 2% specificity on a per-pixel basis for the detection of GA area, but performed less well on color fundus photographs with a sensitivity of 47 ± 26% and specificity of 98 ± 2%. The segmentation algorithm identified 75 ± 16% of the GA border correctly in fundus autofluorescence images compared with just 42 ± 25% for color fundus photographs. The results of this study demonstrate a promising computerized segmentation method that may enhance the reproducibility of GA measurement and provide an objective strategy to assist an expert in the grading of images.
Computerized breast parenchymal analysis on DCE-MRI
NASA Astrophysics Data System (ADS)
Li, Hui; Giger, Maryellen L.; Yuan, Yading; Jansen, Sanaz A.; Lan, Li; Bhooshan, Neha; Newstead, Gillian M.
2009-02-01
Breast density has been shown to be associated with the risk of developing breast cancer, and MRI has been recommended for high-risk women screening, however, it is still unknown how the breast parenchymal enhancement on DCE-MRI is associated with breast density and breast cancer risk. Ninety-two DCE-MRI exams of asymptomatic women with normal MR findings were included in this study. The 3D breast volume was automatically segmented using a volume-growing based algorithm. The extracted breast volume was classified into fibroglandular and fatty regions based on the discriminant analysis method. The parenchymal kinetic curves within the breast fibroglandular region were extracted and categorized by use of fuzzy c-means clustering, and various parenchymal kinetic characteristics were extracted from the most enhancing voxels. Correlation analysis between the computer-extracted percent dense measures and radiologist-noted BIRADS density ratings yielded a correlation coefficient of 0.76 (p<0.0001). From kinetic analyses, 70% (64/92) of most enhancing curves showed persistent curve type and reached peak parenchymal intensity at the last postcontrast time point; with 89% (82/92) of most enhancing curves reaching peak intensity at either 4th or 5th post-contrast time points. Women with dense breast (BIRADS 3 and 4) were found to have more parenchymal enhancement at their peak time point (Ep) with an average Ep of 116.5% while those women with fatty breasts (BIRADS 1 and 2) demonstrated an average Ep of 62.0%. In conclusion, breast parenchymal enhancement may be associated with breast density and may be potential useful as an additional characteristic for assessing breast cancer risk.
Segmentation of human brain using structural MRI.
Helms, Gunther
2016-04-01
Segmentation of human brain using structural MRI is a key step of processing in imaging neuroscience. The methods have undergone a rapid development in the past two decades and are now widely available. This non-technical review aims at providing an overview and basic understanding of the most common software. Starting with the basis of structural MRI contrast in brain and imaging protocols, the concepts of voxel-based and surface-based segmentation are discussed. Special emphasis is given to the typical contrast features and morphological constraints of cortical and sub-cortical grey matter. In addition to the use for voxel-based morphometry, basic applications in quantitative MRI, cortical thickness estimations, and atrophy measurements as well as assignment of cortical regions and deep brain nuclei are briefly discussed. Finally, some fields for clinical applications are given.
Reproducibility of myelin content-based human habenula segmentation at 3 Tesla.
Kim, Joo-Won; Naidich, Thomas P; Joseph, Joshmi; Nair, Divya; Glasser, Matthew F; O'halloran, Rafael; Doucet, Gaelle E; Lee, Won Hee; Krinsky, Hannah; Paulino, Alejandro; Glahn, David C; Anticevic, Alan; Frangou, Sophia; Xu, Junqian
2018-03-26
In vivo morphological study of the human habenula, a pair of small epithalamic nuclei adjacent to the dorsomedial thalamus, has recently gained significant interest for its role in reward and aversion processing. However, segmenting the habenula from in vivo magnetic resonance imaging (MRI) is challenging due to the habenula's small size and low anatomical contrast. Although manual and semi-automated habenula segmentation methods have been reported, the test-retest reproducibility of the segmented habenula volume and the consistency of the boundaries of habenula segmentation have not been investigated. In this study, we evaluated the intra- and inter-site reproducibility of in vivo human habenula segmentation from 3T MRI (0.7-0.8 mm isotropic resolution) using our previously proposed semi-automated myelin contrast-based method and its fully-automated version, as well as a previously published manual geometry-based method. The habenula segmentation using our semi-automated method showed consistent boundary definition (high Dice coefficient, low mean distance, and moderate Hausdorff distance) and reproducible volume measurement (low coefficient of variation). Furthermore, the habenula boundary in our semi-automated segmentation from 3T MRI agreed well with that in the manual segmentation from 7T MRI (0.5 mm isotropic resolution) of the same subjects. Overall, our proposed semi-automated habenula segmentation showed reliable and reproducible habenula localization, while its fully-automated version offers an efficient way for large sample analysis. © 2018 Wiley Periodicals, Inc.
Soltaninejad, Mohammadreza; Yang, Guang; Lambrou, Tryphon; Allinson, Nigel; Jones, Timothy L; Barrick, Thomas R; Howe, Franklyn A; Ye, Xujiong
2018-04-01
Accurate segmentation of brain tumour in magnetic resonance images (MRI) is a difficult task due to various tumour types. Using information and features from multimodal MRI including structural MRI and isotropic (p) and anisotropic (q) components derived from the diffusion tensor imaging (DTI) may result in a more accurate analysis of brain images. We propose a novel 3D supervoxel based learning method for segmentation of tumour in multimodal MRI brain images (conventional MRI and DTI). Supervoxels are generated using the information across the multimodal MRI dataset. For each supervoxel, a variety of features including histograms of texton descriptor, calculated using a set of Gabor filters with different sizes and orientations, and first order intensity statistical features are extracted. Those features are fed into a random forests (RF) classifier to classify each supervoxel into tumour core, oedema or healthy brain tissue. The method is evaluated on two datasets: 1) Our clinical dataset: 11 multimodal images of patients and 2) BRATS 2013 clinical dataset: 30 multimodal images. For our clinical dataset, the average detection sensitivity of tumour (including tumour core and oedema) using multimodal MRI is 86% with balanced error rate (BER) 7%; while the Dice score for automatic tumour segmentation against ground truth is 0.84. The corresponding results of the BRATS 2013 dataset are 96%, 2% and 0.89, respectively. The method demonstrates promising results in the segmentation of brain tumour. Adding features from multimodal MRI images can largely increase the segmentation accuracy. The method provides a close match to expert delineation across all tumour grades, leading to a faster and more reproducible method of brain tumour detection and delineation to aid patient management. Copyright © 2018 Elsevier B.V. All rights reserved.
Rundo, Leonardo; Stefano, Alessandro; Militello, Carmelo; Russo, Giorgio; Sabini, Maria Gabriella; D'Arrigo, Corrado; Marletta, Francesco; Ippolito, Massimo; Mauri, Giancarlo; Vitabile, Salvatore; Gilardi, Maria Carla
2017-06-01
Nowadays, clinical practice in Gamma Knife treatments is generally based on MRI anatomical information alone. However, the joint use of MRI and PET images can be useful for considering both anatomical and metabolic information about the lesion to be treated. In this paper we present a co-segmentation method to integrate the segmented Biological Target Volume (BTV), using [ 11 C]-Methionine-PET (MET-PET) images, and the segmented Gross Target Volume (GTV), on the respective co-registered MR images. The resulting volume gives enhanced brain tumor information to be used in stereotactic neuro-radiosurgery treatment planning. GTV often does not match entirely with BTV, which provides metabolic information about brain lesions. For this reason, PET imaging is valuable and it could be used to provide complementary information useful for treatment planning. In this way, BTV can be used to modify GTV, enhancing Clinical Target Volume (CTV) delineation. A novel fully automatic multimodal PET/MRI segmentation method for Leksell Gamma Knife ® treatments is proposed. This approach improves and combines two computer-assisted and operator-independent single modality methods, previously developed and validated, to segment BTV and GTV from PET and MR images, respectively. In addition, the GTV is utilized to combine the superior contrast of PET images with the higher spatial resolution of MRI, obtaining a new BTV, called BTV MRI . A total of 19 brain metastatic tumors, undergone stereotactic neuro-radiosurgery, were retrospectively analyzed. A framework for the evaluation of multimodal PET/MRI segmentation is also presented. Overlap-based and spatial distance-based metrics were considered to quantify similarity concerning PET and MRI segmentation approaches. Statistics was also included to measure correlation among the different segmentation processes. Since it is not possible to define a gold-standard CTV according to both MRI and PET images without treatment response assessment, the feasibility and the clinical value of BTV integration in Gamma Knife treatment planning were considered. Therefore, a qualitative evaluation was carried out by three experienced clinicians. The achieved experimental results showed that GTV and BTV segmentations are statistically correlated (Spearman's rank correlation coefficient: 0.898) but they have low similarity degree (average Dice Similarity Coefficient: 61.87 ± 14.64). Therefore, volume measurements as well as evaluation metrics values demonstrated that MRI and PET convey different but complementary imaging information. GTV and BTV could be combined to enhance treatment planning. In more than 50% of cases the CTV was strongly or moderately conditioned by metabolic imaging. Especially, BTV MRI enhanced the CTV more accurately than BTV in 25% of cases. The proposed fully automatic multimodal PET/MRI segmentation method is a valid operator-independent methodology helping the clinicians to define a CTV that includes both metabolic and morphologic information. BTV MRI and GTV should be considered for a comprehensive treatment planning. Copyright © 2017 Elsevier B.V. All rights reserved.
A., Javadpour; A., Mohammadi
2016-01-01
Background Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging. Objective This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regional growth. Methods Among medical imaging methods, brains MRI segmentation is important due to high contrast of non-intrusive soft tissue and high spatial resolution. Size variations of brain tissues are often accompanied by various diseases such as Alzheimer’s disease. As our knowledge about the relation between various brain diseases and deviation of brain anatomy increases, MRI segmentation is exploited as the first step in early diagnosis. In this paper, regional growth method and auto-mate selection of initial points by genetic algorithm is used to introduce a new method for MRI segmentation. Primary pixels and similarity criterion are automatically by genetic algorithms to maximize the accuracy and validity in image segmentation. Results By using genetic algorithms and defining the fixed function of image segmentation, the initial points for the algorithm were found. The proposed algorithms are applied to the images and results are manually selected by regional growth in which the initial points were compared. The results showed that the proposed algorithm could reduce segmentation error effectively. Conclusion The study concluded that the proposed algorithm could reduce segmentation error effectively and help us to diagnose brain diseases. PMID:27672629
MRI Brain Tumor Segmentation and Necrosis Detection Using Adaptive Sobolev Snakes.
Nakhmani, Arie; Kikinis, Ron; Tannenbaum, Allen
2014-03-21
Brain tumor segmentation in brain MRI volumes is used in neurosurgical planning and illness staging. It is important to explore the tumor shape and necrosis regions at different points of time to evaluate the disease progression. We propose an algorithm for semi-automatic tumor segmentation and necrosis detection. Our algorithm consists of three parts: conversion of MRI volume to a probability space based on the on-line learned model, tumor probability density estimation, and adaptive segmentation in the probability space. We use manually selected acceptance and rejection classes on a single MRI slice to learn the background and foreground statistical models. Then, we propagate this model to all MRI slices to compute the most probable regions of the tumor. Anisotropic 3D diffusion is used to estimate the probability density. Finally, the estimated density is segmented by the Sobolev active contour (snake) algorithm to select smoothed regions of the maximum tumor probability. The segmentation approach is robust to noise and not very sensitive to the manual initialization in the volumes tested. Also, it is appropriate for low contrast imagery. The irregular necrosis regions are detected by using the outliers of the probability distribution inside the segmented region. The necrosis regions of small width are removed due to a high probability of noisy measurements. The MRI volume segmentation results obtained by our algorithm are very similar to expert manual segmentation.
MRI brain tumor segmentation and necrosis detection using adaptive Sobolev snakes
NASA Astrophysics Data System (ADS)
Nakhmani, Arie; Kikinis, Ron; Tannenbaum, Allen
2014-03-01
Brain tumor segmentation in brain MRI volumes is used in neurosurgical planning and illness staging. It is important to explore the tumor shape and necrosis regions at di erent points of time to evaluate the disease progression. We propose an algorithm for semi-automatic tumor segmentation and necrosis detection. Our algorithm consists of three parts: conversion of MRI volume to a probability space based on the on-line learned model, tumor probability density estimation, and adaptive segmentation in the probability space. We use manually selected acceptance and rejection classes on a single MRI slice to learn the background and foreground statistical models. Then, we propagate this model to all MRI slices to compute the most probable regions of the tumor. Anisotropic 3D di usion is used to estimate the probability density. Finally, the estimated density is segmented by the Sobolev active contour (snake) algorithm to select smoothed regions of the maximum tumor probability. The segmentation approach is robust to noise and not very sensitive to the manual initialization in the volumes tested. Also, it is appropriate for low contrast imagery. The irregular necrosis regions are detected by using the outliers of the probability distribution inside the segmented region. The necrosis regions of small width are removed due to a high probability of noisy measurements. The MRI volume segmentation results obtained by our algorithm are very similar to expert manual segmentation.
MITK-based segmentation of co-registered MRI for subject-related regional anesthesia simulation
NASA Astrophysics Data System (ADS)
Teich, Christian; Liao, Wei; Ullrich, Sebastian; Kuhlen, Torsten; Ntouba, Alexandre; Rossaint, Rolf; Ullisch, Marcus; Deserno, Thomas M.
2008-03-01
With a steadily increasing indication, regional anesthesia is still trained directly on the patient. To develop a virtual reality (VR)-based simulation, a patient model is needed containing several tissues, which have to be extracted from individual magnet resonance imaging (MRI) volume datasets. Due to the given modality and the different characteristics of the single tissues, an adequate segmentation can only be achieved by using a combination of segmentation algorithms. In this paper, we present a framework for creating an individual model from MRI scans of the patient. Our work splits in two parts. At first, an easy-to-use and extensible tool for handling the segmentation task on arbitrary datasets is provided. The key idea is to let the user create a segmentation for the given subject by running different processing steps in a purposive order and store them in a segmentation script for reuse on new datasets. For data handling and visualization, we utilize the Medical Imaging Interaction Toolkit (MITK), which is based on the Visualization Toolkit (VTK) and the Insight Segmentation and Registration Toolkit (ITK). The second part is to find suitable segmentation algorithms and respectively parameters for differentiating the tissues required by the RA simulation. For this purpose, a fuzzy c-means clustering algorithm combined with mathematical morphology operators and a geometric active contour-based approach is chosen. The segmentation process itself aims at operating with minimal user interaction, and the gained model fits the requirements of the simulation. First results are shown for both, male and female MRI of the pelvis.
NASA Astrophysics Data System (ADS)
Lee, Han Sang; Kim, Hyeun A.; Kim, Hyeonjin; Hong, Helen; Yoon, Young Cheol; Kim, Junmo
2016-03-01
In spite of its clinical importance in diagnosis of osteoarthritis, segmentation of cartilage in knee MRI remains a challenging task due to its shape variability and low contrast with surrounding soft tissues and synovial fluid. In this paper, we propose a multi-atlas segmentation of cartilage in knee MRI with sequential atlas registrations and locallyweighted voting (LWV). First, bone is segmented by sequential volume- and object-based registrations and LWV. Second, to overcome the shape variability of cartilage, cartilage is segmented by bone-mask-based registration and LWV. In experiments, the proposed method improved the bone segmentation by reducing misclassified bone region, and enhanced the cartilage segmentation by preventing cartilage leakage into surrounding similar intensity region, with the help of sequential registrations and LWV.
Albà, Xènia; Figueras I Ventura, Rosa M; Lekadir, Karim; Tobon-Gomez, Catalina; Hoogendoorn, Corné; Frangi, Alejandro F
2014-12-01
Magnetic resonance imaging (MRI), specifically late-enhanced MRI, is the standard clinical imaging protocol to assess cardiac viability. Segmentation of myocardial walls is a prerequisite for this assessment. Automatic and robust multisequence segmentation is required to support processing massive quantities of data. A generic rule-based framework to automatically segment the left ventricle myocardium is presented here. We use intensity information, and include shape and interslice smoothness constraints, providing robustness to subject- and study-specific changes. Our automatic initialization considers the geometrical and appearance properties of the left ventricle, as well as interslice information. The segmentation algorithm uses a decoupled, modified graph cut approach with control points, providing a good balance between flexibility and robustness. The method was evaluated on late-enhanced MRI images from a 20-patient in-house database, and on cine-MRI images from a 15-patient open access database, both using as reference manually delineated contours. Segmentation agreement, measured using the Dice coefficient, was 0.81±0.05 and 0.92±0.04 for late-enhanced MRI and cine-MRI, respectively. The method was also compared favorably to a three-dimensional Active Shape Model approach. The experimental validation with two magnetic resonance sequences demonstrates increased accuracy and versatility. © 2013 Wiley Periodicals, Inc.
Automatic Segmenting Structures in MRI's Based on Texture Analysis and Fuzzy Logic
NASA Astrophysics Data System (ADS)
Kaur, Mandeep; Rattan, Munish; Singh, Pushpinder
2017-12-01
The purpose of this paper is to present the variational method for geometric contours which helps the level set function remain close to the sign distance function, therefor it remove the need of expensive re-initialization procedure and thus, level set method is applied on magnetic resonance images (MRI) to track the irregularities in them as medical imaging plays a substantial part in the treatment, therapy and diagnosis of various organs, tumors and various abnormalities. It favors the patient with more speedy and decisive disease controlling with lesser side effects. The geometrical shape, the tumor's size and tissue's abnormal growth can be calculated by the segmentation of that particular image. It is still a great challenge for the researchers to tackle with an automatic segmentation in the medical imaging. Based on the texture analysis, different images are processed by optimization of level set segmentation. Traditionally, optimization was manual for every image where each parameter is selected one after another. By applying fuzzy logic, the segmentation of image is correlated based on texture features, to make it automatic and more effective. There is no initialization of parameters and it works like an intelligent system. It segments the different MRI images without tuning the level set parameters and give optimized results for all MRI's.
Multi-atlas segmentation enables robust multi-contrast MRI spleen segmentation for splenomegaly
NASA Astrophysics Data System (ADS)
Huo, Yuankai; Liu, Jiaqi; Xu, Zhoubing; Harrigan, Robert L.; Assad, Albert; Abramson, Richard G.; Landman, Bennett A.
2017-02-01
Non-invasive spleen volume estimation is essential in detecting splenomegaly. Magnetic resonance imaging (MRI) has been used to facilitate splenomegaly diagnosis in vivo. However, achieving accurate spleen volume estimation from MR images is challenging given the great inter-subject variance of human abdomens and wide variety of clinical images/modalities. Multi-atlas segmentation has been shown to be a promising approach to handle heterogeneous data and difficult anatomical scenarios. In this paper, we propose to use multi-atlas segmentation frameworks for MRI spleen segmentation for splenomegaly. To the best of our knowledge, this is the first work that integrates multi-atlas segmentation for splenomegaly as seen on MRI. To address the particular concerns of spleen MRI, automated and novel semi-automated atlas selection approaches are introduced. The automated approach interactively selects a subset of atlases using selective and iterative method for performance level estimation (SIMPLE) approach. To further control the outliers, semi-automated craniocaudal length based SIMPLE atlas selection (L-SIMPLE) is proposed to introduce a spatial prior in a fashion to guide the iterative atlas selection. A dataset from a clinical trial containing 55 MRI volumes (28 T1 weighted and 27 T2 weighted) was used to evaluate different methods. Both automated and semi-automated methods achieved median DSC > 0.9. The outliers were alleviated by the L-SIMPLE (≍1 min manual efforts per scan), which achieved 0.9713 Pearson correlation compared with the manual segmentation. The results demonstrated that the multi-atlas segmentation is able to achieve accurate spleen segmentation from the multi-contrast splenomegaly MRI scans.
Multi-atlas Segmentation Enables Robust Multi-contrast MRI Spleen Segmentation for Splenomegaly.
Huo, Yuankai; Liu, Jiaqi; Xu, Zhoubing; Harrigan, Robert L; Assad, Albert; Abramson, Richard G; Landman, Bennett A
2017-02-11
Non-invasive spleen volume estimation is essential in detecting splenomegaly. Magnetic resonance imaging (MRI) has been used to facilitate splenomegaly diagnosis in vivo. However, achieving accurate spleen volume estimation from MR images is challenging given the great inter-subject variance of human abdomens and wide variety of clinical images/modalities. Multi-atlas segmentation has been shown to be a promising approach to handle heterogeneous data and difficult anatomical scenarios. In this paper, we propose to use multi-atlas segmentation frameworks for MRI spleen segmentation for splenomegaly. To the best of our knowledge, this is the first work that integrates multi-atlas segmentation for splenomegaly as seen on MRI. To address the particular concerns of spleen MRI, automated and novel semi-automated atlas selection approaches are introduced. The automated approach interactively selects a subset of atlases using selective and iterative method for performance level estimation (SIMPLE) approach. To further control the outliers, semi-automated craniocaudal length based SIMPLE atlas selection (L-SIMPLE) is proposed to introduce a spatial prior in a fashion to guide the iterative atlas selection. A dataset from a clinical trial containing 55 MRI volumes (28 T1 weighted and 27 T2 weighted) was used to evaluate different methods. Both automated and semi-automated methods achieved median DSC > 0.9. The outliers were alleviated by the L-SIMPLE (≈1 min manual efforts per scan), which achieved 0.9713 Pearson correlation compared with the manual segmentation. The results demonstrated that the multi-atlas segmentation is able to achieve accurate spleen segmentation from the multi-contrast splenomegaly MRI scans.
Sauwen, Nicolas; Acou, Marjan; Sima, Diana M; Veraart, Jelle; Maes, Frederik; Himmelreich, Uwe; Achten, Eric; Huffel, Sabine Van
2017-05-04
Segmentation of gliomas in multi-parametric (MP-)MR images is challenging due to their heterogeneous nature in terms of size, appearance and location. Manual tumor segmentation is a time-consuming task and clinical practice would benefit from (semi-) automated segmentation of the different tumor compartments. We present a semi-automated framework for brain tumor segmentation based on non-negative matrix factorization (NMF) that does not require prior training of the method. L1-regularization is incorporated into the NMF objective function to promote spatial consistency and sparseness of the tissue abundance maps. The pathological sources are initialized through user-defined voxel selection. Knowledge about the spatial location of the selected voxels is combined with tissue adjacency constraints in a post-processing step to enhance segmentation quality. The method is applied to an MP-MRI dataset of 21 high-grade glioma patients, including conventional, perfusion-weighted and diffusion-weighted MRI. To assess the effect of using MP-MRI data and the L1-regularization term, analyses are also run using only conventional MRI and without L1-regularization. Robustness against user input variability is verified by considering the statistical distribution of the segmentation results when repeatedly analyzing each patient's dataset with a different set of random seeding points. Using L1-regularized semi-automated NMF segmentation, mean Dice-scores of 65%, 74 and 80% are found for active tumor, the tumor core and the whole tumor region. Mean Hausdorff distances of 6.1 mm, 7.4 mm and 8.2 mm are found for active tumor, the tumor core and the whole tumor region. Lower Dice-scores and higher Hausdorff distances are found without L1-regularization and when only considering conventional MRI data. Based on the mean Dice-scores and Hausdorff distances, segmentation results are competitive with state-of-the-art in literature. Robust results were found for most patients, although careful voxel selection is mandatory to avoid sub-optimal segmentation.
Huo, Yuankai; Xu, Zhoubing; Bao, Shunxing; Bermudez, Camilo; Plassard, Andrew J.; Liu, Jiaqi; Yao, Yuang; Assad, Albert; Abramson, Richard G.; Landman, Bennett A.
2018-01-01
Spleen volume estimation using automated image segmentation technique may be used to detect splenomegaly (abnormally enlarged spleen) on Magnetic Resonance Imaging (MRI) scans. In recent years, Deep Convolutional Neural Networks (DCNN) segmentation methods have demonstrated advantages for abdominal organ segmentation. However, variations in both size and shape of the spleen on MRI images may result in large false positive and false negative labeling when deploying DCNN based methods. In this paper, we propose the Splenomegaly Segmentation Network (SSNet) to address spatial variations when segmenting extraordinarily large spleens. SSNet was designed based on the framework of image-to-image conditional generative adversarial networks (cGAN). Specifically, the Global Convolutional Network (GCN) was used as the generator to reduce false negatives, while the Markovian discriminator (PatchGAN) was used to alleviate false positives. A cohort of clinically acquired 3D MRI scans (both T1 weighted and T2 weighted) from patients with splenomegaly were used to train and test the networks. The experimental results demonstrated that a mean Dice coefficient of 0.9260 and a median Dice coefficient of 0.9262 using SSNet on independently tested MRI volumes of patients with splenomegaly.
Volume estimation of brain abnormalities in MRI data
NASA Astrophysics Data System (ADS)
Suprijadi, Pratama, S. H.; Haryanto, F.
2014-02-01
The abnormality of brain tissue always becomes a crucial issue in medical field. This medical condition can be recognized through segmentation of certain region from medical images obtained from MRI dataset. Image processing is one of computational methods which very helpful to analyze the MRI data. In this study, combination of segmentation and rendering image were used to isolate tumor and stroke. Two methods of thresholding were employed to segment the abnormality occurrence, followed by filtering to reduce non-abnormality area. Each MRI image is labeled and then used for volume estimations of tumor and stroke-attacked area. The algorithms are shown to be successful in isolating tumor and stroke in MRI images, based on thresholding parameter and stated detection accuracy.
Evaluation of Spontaneous Spinal Cerebrospinal Fluid Leaks Disease by Computerized Image Processing.
Yıldırım, Mustafa S; Kara, Sadık; Albayram, Mehmet S; Okkesim, Şükrü
2016-05-17
Spontaneous Spinal Cerebrospinal Fluid Leaks (SSCFL) is a disease based on tears on the dura mater. Due to widespread symptoms and low frequency of the disease, diagnosis is problematic. Diagnostic lumbar puncture is commonly used for diagnosing SSCFL, though it is invasive and may cause pain, inflammation or new leakages. T2-weighted MR imaging is also used for diagnosis; however, the literature on T2-weighted MRI states that findings for diagnosis of SSCFL could be erroneous when differentiating the diseased and control. One another technique for diagnosis is CT-myelography, but this has been suggested to be less successful than T2-weighted MRI and it needs an initial lumbar puncture. This study aimed to develop an objective, computerized numerical analysis method using noninvasive routine Magnetic Resonance Images that can be used in the evaluation and diagnosis of SSCFL disease. Brain boundaries were automatically detected using methods of mathematical morphology, and a distance transform was employed. According to normalized distances, average densities of certain sites were proportioned and a numerical criterion related to cerebrospinal fluid distribution was calculated. The developed method was able to differentiate between 14 patients and 14 control subjects significantly with p = 0.0088 and d = 0.958. Also, the pre and post-treatment MRI of four patients was obtained and analyzed. The results were differentiated statistically (p = 0.0320, d = 0.853). An original, noninvasive and objective diagnostic test based on computerized image processing has been developed for evaluation of SSCFL. To our knowledge, this is the first computerized image processing method for evaluation of the disease. Discrimination between patients and controls shows the validity of the method. Also, post-treatment changes observed in four patients support this verdict.
Automatic brain tissue segmentation based on graph filter.
Kong, Youyong; Chen, Xiaopeng; Wu, Jiasong; Zhang, Pinzheng; Chen, Yang; Shu, Huazhong
2018-05-09
Accurate segmentation of brain tissues from magnetic resonance imaging (MRI) is of significant importance in clinical applications and neuroscience research. Accurate segmentation is challenging due to the tissue heterogeneity, which is caused by noise, bias filed and partial volume effects. To overcome this limitation, this paper presents a novel algorithm for brain tissue segmentation based on supervoxel and graph filter. Firstly, an effective supervoxel method is employed to generate effective supervoxels for the 3D MRI image. Secondly, the supervoxels are classified into different types of tissues based on filtering of graph signals. The performance is evaluated on the BrainWeb 18 dataset and the Internet Brain Segmentation Repository (IBSR) 18 dataset. The proposed method achieves mean dice similarity coefficient (DSC) of 0.94, 0.92 and 0.90 for the segmentation of white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF) for BrainWeb 18 dataset, and mean DSC of 0.85, 0.87 and 0.57 for the segmentation of WM, GM and CSF for IBSR18 dataset. The proposed approach can well discriminate different types of brain tissues from the brain MRI image, which has high potential to be applied for clinical applications.
de Bresser, Jeroen; Hendrikse, Jeroen; Siero, Jeroen C. W.; Petersen, Esben T.; De Vis, Jill B.
2018-01-01
Objective In previous work we have developed a fast sequence that focusses on cerebrospinal fluid (CSF) based on the long T2 of CSF. By processing the data obtained with this CSF MRI sequence, brain parenchymal volume (BPV) and intracranial volume (ICV) can be automatically obtained. The aim of this study was to assess the precision of the BPV and ICV measurements of the CSF MRI sequence and to validate the CSF MRI sequence by comparison with 3D T1-based brain segmentation methods. Materials and methods Ten healthy volunteers (2 females; median age 28 years) were scanned (3T MRI) twice with repositioning in between. The scan protocol consisted of a low resolution (LR) CSF sequence (0:57min), a high resolution (HR) CSF sequence (3:21min) and a 3D T1-weighted sequence (6:47min). Data of the HR 3D-T1-weighted images were downsampled to obtain LR T1-weighted images (reconstructed imaging time: 1:59 min). Data of the CSF MRI sequences was automatically segmented using in-house software. The 3D T1-weighted images were segmented using FSL (5.0), SPM12 and FreeSurfer (5.3.0). Results The mean absolute differences for BPV and ICV between the first and second scan for CSF LR (BPV/ICV: 12±9/7±4cc) and CSF HR (5±5/4±2cc) were comparable to FSL HR (9±11/19±23cc), FSL LR (7±4, 6±5cc), FreeSurfer HR (5±3/14±8cc), FreeSurfer LR (9±8, 12±10cc), and SPM HR (5±3/4±7cc), and SPM LR (5±4, 5±3cc). The correlation between the measured volumes of the CSF sequences and that measured by FSL, FreeSurfer and SPM HR and LR was very good (all Pearson’s correlation coefficients >0.83, R2 .67–.97). The results from the downsampled data and the high-resolution data were similar. Conclusion Both CSF MRI sequences have a precision comparable to, and a very good correlation with established 3D T1-based automated segmentations methods for the segmentation of BPV and ICV. However, the short imaging time of the fast CSF MRI sequence is superior to the 3D T1 sequence on which segmentation with established methods is performed. PMID:29672584
van der Kleij, Lisa A; de Bresser, Jeroen; Hendrikse, Jeroen; Siero, Jeroen C W; Petersen, Esben T; De Vis, Jill B
2018-01-01
In previous work we have developed a fast sequence that focusses on cerebrospinal fluid (CSF) based on the long T2 of CSF. By processing the data obtained with this CSF MRI sequence, brain parenchymal volume (BPV) and intracranial volume (ICV) can be automatically obtained. The aim of this study was to assess the precision of the BPV and ICV measurements of the CSF MRI sequence and to validate the CSF MRI sequence by comparison with 3D T1-based brain segmentation methods. Ten healthy volunteers (2 females; median age 28 years) were scanned (3T MRI) twice with repositioning in between. The scan protocol consisted of a low resolution (LR) CSF sequence (0:57min), a high resolution (HR) CSF sequence (3:21min) and a 3D T1-weighted sequence (6:47min). Data of the HR 3D-T1-weighted images were downsampled to obtain LR T1-weighted images (reconstructed imaging time: 1:59 min). Data of the CSF MRI sequences was automatically segmented using in-house software. The 3D T1-weighted images were segmented using FSL (5.0), SPM12 and FreeSurfer (5.3.0). The mean absolute differences for BPV and ICV between the first and second scan for CSF LR (BPV/ICV: 12±9/7±4cc) and CSF HR (5±5/4±2cc) were comparable to FSL HR (9±11/19±23cc), FSL LR (7±4, 6±5cc), FreeSurfer HR (5±3/14±8cc), FreeSurfer LR (9±8, 12±10cc), and SPM HR (5±3/4±7cc), and SPM LR (5±4, 5±3cc). The correlation between the measured volumes of the CSF sequences and that measured by FSL, FreeSurfer and SPM HR and LR was very good (all Pearson's correlation coefficients >0.83, R2 .67-.97). The results from the downsampled data and the high-resolution data were similar. Both CSF MRI sequences have a precision comparable to, and a very good correlation with established 3D T1-based automated segmentations methods for the segmentation of BPV and ICV. However, the short imaging time of the fast CSF MRI sequence is superior to the 3D T1 sequence on which segmentation with established methods is performed.
Milne, Marjorie E; Steward, Christopher; Firestone, Simon M; Long, Sam N; O'Brien, Terrence J; Moffat, Bradford A
2016-04-01
To develop representative MRI atlases of the canine brain and to evaluate 3 methods of atlas-based segmentation (ABS). 62 dogs without clinical signs of epilepsy and without MRI evidence of structural brain disease. The MRI scans from 44 dogs were used to develop 4 templates on the basis of brain shape (brachycephalic, mesaticephalic, dolichocephalic, and combined mesaticephalic and dolichocephalic). Atlas labels were generated by segmenting the brain, ventricular system, hippocampal formation, and caudate nuclei. The MRI scans from the remaining 18 dogs were used to evaluate 3 methods of ABS (manual brain extraction and application of a brain shape-specific template [A], automatic brain extraction and application of a brain shape-specific template [B], and manual brain extraction and application of a combined template [C]). The performance of each ABS method was compared by calculation of the Dice and Jaccard coefficients, with manual segmentation used as the gold standard. Method A had the highest mean Jaccard coefficient and was the most accurate ABS method assessed. Measures of overlap for ABS methods that used manual brain extraction (A and C) ranged from 0.75 to 0.95 and compared favorably with repeated measures of overlap for manual extraction, which ranged from 0.88 to 0.97. Atlas-based segmentation was an accurate and repeatable method for segmentation of canine brain structures. It could be performed more rapidly than manual segmentation, which should allow the application of computer-assisted volumetry to large data sets and clinical cases and facilitate neuroimaging research and disease diagnosis.
Rule-based fuzzy vector median filters for 3D phase contrast MRI segmentation
NASA Astrophysics Data System (ADS)
Sundareswaran, Kartik S.; Frakes, David H.; Yoganathan, Ajit P.
2008-02-01
Recent technological advances have contributed to the advent of phase contrast magnetic resonance imaging (PCMRI) as standard practice in clinical environments. In particular, decreased scan times have made using the modality more feasible. PCMRI is now a common tool for flow quantification, and for more complex vector field analyses that target the early detection of problematic flow conditions. Segmentation is one component of this type of application that can impact the accuracy of the final product dramatically. Vascular segmentation, in general, is a long-standing problem that has received significant attention. Segmentation in the context of PCMRI data, however, has been explored less and can benefit from object-based image processing techniques that incorporate fluids specific information. Here we present a fuzzy rule-based adaptive vector median filtering (FAVMF) algorithm that in combination with active contour modeling facilitates high-quality PCMRI segmentation while mitigating the effects of noise. The FAVMF technique was tested on 111 synthetically generated PC MRI slices and on 15 patients with congenital heart disease. The results were compared to other multi-dimensional filters namely the adaptive vector median filter, the adaptive vector directional filter, and the scalar low pass filter commonly used in PC MRI applications. FAVMF significantly outperformed the standard filtering methods (p < 0.0001). Two conclusions can be drawn from these results: a) Filtering should be performed after vessel segmentation of PC MRI; b) Vector based filtering methods should be used instead of scalar techniques.
Li, Sheng; Zöllner, Frank G; Merrem, Andreas D; Peng, Yinghong; Roervik, Jarle; Lundervold, Arvid; Schad, Lothar R
2012-03-01
Renal diseases can lead to kidney failure that requires life-long dialysis or renal transplantation. Early detection and treatment can prevent progression towards end stage renal disease. MRI has evolved into a standard examination for the assessment of the renal morphology and function. We propose a wavelet-based clustering to group the voxel time courses and thereby, to segment the renal compartments. This approach comprises (1) a nonparametric, discrete wavelet transform of the voxel time course, (2) thresholding of the wavelet coefficients using Stein's Unbiased Risk estimator, and (3) k-means clustering of the wavelet coefficients to segment the kidneys. Our method was applied to 3D dynamic contrast enhanced (DCE-) MRI data sets of human kidney in four healthy volunteers and three patients. On average, the renal cortex in the healthy volunteers could be segmented at 88%, the medulla at 91%, and the pelvis at 98% accuracy. In the patient data, with aberrant voxel time courses, the segmentation was also feasible with good results for the kidney compartments. In conclusion wavelet based clustering of DCE-MRI of kidney is feasible and a valuable tool towards automated perfusion and glomerular filtration rate quantification. Copyright © 2011 Elsevier Ltd. All rights reserved.
Automatic MRI 2D brain segmentation using graph searching technique.
Pedoia, Valentina; Binaghi, Elisabetta
2013-09-01
Accurate and efficient segmentation of the whole brain in magnetic resonance (MR) images is a key task in many neuroscience and medical studies either because the whole brain is the final anatomical structure of interest or because the automatic extraction facilitates further analysis. The problem of segmenting brain MRI images has been extensively addressed by many researchers. Despite the relevant achievements obtained, automated segmentation of brain MRI imagery is still a challenging problem whose solution has to cope with critical aspects such as anatomical variability and pathological deformation. In the present paper, we describe and experimentally evaluate a method for segmenting brain from MRI images basing on two-dimensional graph searching principles for border detection. The segmentation of the whole brain over the entire volume is accomplished slice by slice, automatically detecting frames including eyes. The method is fully automatic and easily reproducible by computing the internal main parameters directly from the image data. The segmentation procedure is conceived as a tool of general applicability, although design requirements are especially commensurate with the accuracy required in clinical tasks such as surgical planning and post-surgical assessment. Several experiments were performed to assess the performance of the algorithm on a varied set of MRI images obtaining good results in terms of accuracy and stability. Copyright © 2012 John Wiley & Sons, Ltd.
A Unified Framework for Brain Segmentation in MR Images
Yazdani, S.; Yusof, R.; Karimian, A.; Riazi, A. H.; Bennamoun, M.
2015-01-01
Brain MRI segmentation is an important issue for discovering the brain structure and diagnosis of subtle anatomical changes in different brain diseases. However, due to several artifacts brain tissue segmentation remains a challenging task. The aim of this paper is to improve the automatic segmentation of brain into gray matter, white matter, and cerebrospinal fluid in magnetic resonance images (MRI). We proposed an automatic hybrid image segmentation method that integrates the modified statistical expectation-maximization (EM) method and the spatial information combined with support vector machine (SVM). The combined method has more accurate results than what can be achieved with its individual techniques that is demonstrated through experiments on both real data and simulated images. Experiments are carried out on both synthetic and real MRI. The results of proposed technique are evaluated against manual segmentation results and other methods based on real T1-weighted scans from Internet Brain Segmentation Repository (IBSR) and simulated images from BrainWeb. The Kappa index is calculated to assess the performance of the proposed framework relative to the ground truth and expert segmentations. The results demonstrate that the proposed combined method has satisfactory results on both simulated MRI and real brain datasets. PMID:26089978
Bagci, Ulas; Udupa, Jayaram K.; Mendhiratta, Neil; Foster, Brent; Xu, Ziyue; Yao, Jianhua; Chen, Xinjian; Mollura, Daniel J.
2013-01-01
We present a novel method for the joint segmentation of anatomical and functional images. Our proposed methodology unifies the domains of anatomical and functional images, represents them in a product lattice, and performs simultaneous delineation of regions based on random walk image segmentation. Furthermore, we also propose a simple yet effective object/background seed localization method to make the proposed segmentation process fully automatic. Our study uses PET, PET-CT, MRI-PET, and fused MRI-PET-CT scans (77 studies in all) from 56 patients who had various lesions in different body regions. We validated the effectiveness of the proposed method on different PET phantoms as well as on clinical images with respect to the ground truth segmentation provided by clinicians. Experimental results indicate that the presented method is superior to threshold and Bayesian methods commonly used in PET image segmentation, is more accurate and robust compared to the other PET-CT segmentation methods recently published in the literature, and also it is general in the sense of simultaneously segmenting multiple scans in real-time with high accuracy needed in routine clinical use. PMID:23837967
3D knee segmentation based on three MRI sequences from different planes.
Zhou, L; Chav, R; Cresson, T; Chartrand, G; de Guise, J
2016-08-01
In clinical practice, knee MRI sequences with 3.5~5 mm slice distance in sagittal, coronal, and axial planes are often requested for the knee examination since its acquisition is faster than high-resolution MRI sequence in a single plane, thereby reducing the probability of motion artifact. In order to take advantage of the three sequences from different planes, a 3D segmentation method based on the combination of three knee models obtained from the three sequences is proposed in this paper. In the method, the sub-segmentation is respectively performed with sagittal, coronal, and axial MRI sequence in the image coordinate system. With each sequence, an initial knee model is hierarchically deformed, and then the three deformed models are mapped to reference coordinate system defined by the DICOM standard and combined to obtain a patient-specific model. The experimental results verified that the three sub-segmentation results can complement each other, and their integration can compensate for the insufficiency of boundary information caused by 3.5~5 mm gap between consecutive slices. Therefore, the obtained patient-specific model is substantially more accurate than each sub-segmentation results.
Multi-Sectional Views Textural Based SVM for MS Lesion Segmentation in Multi-Channels MRIs
Abdullah, Bassem A; Younis, Akmal A; John, Nigel M
2012-01-01
In this paper, a new technique is proposed for automatic segmentation of multiple sclerosis (MS) lesions from brain magnetic resonance imaging (MRI) data. The technique uses a trained support vector machine (SVM) to discriminate between the blocks in regions of MS lesions and the blocks in non-MS lesion regions mainly based on the textural features with aid of the other features. The classification is done on each of the axial, sagittal and coronal sectional brain view independently and the resultant segmentations are aggregated to provide more accurate output segmentation. The main contribution of the proposed technique described in this paper is the use of textural features to detect MS lesions in a fully automated approach that does not rely on manually delineating the MS lesions. In addition, the technique introduces the concept of the multi-sectional view segmentation to produce verified segmentation. The proposed textural-based SVM technique was evaluated using three simulated datasets and more than fifty real MRI datasets. The results were compared with state of the art methods. The obtained results indicate that the proposed method would be viable for use in clinical practice for the detection of MS lesions in MRI. PMID:22741026
Brain tumor segmentation using holistically nested neural networks in MRI images.
Zhuge, Ying; Krauze, Andra V; Ning, Holly; Cheng, Jason Y; Arora, Barbara C; Camphausen, Kevin; Miller, Robert W
2017-10-01
Gliomas are rapidly progressive, neurologically devastating, largely fatal brain tumors. Magnetic resonance imaging (MRI) is a widely used technique employed in the diagnosis and management of gliomas in clinical practice. MRI is also the standard imaging modality used to delineate the brain tumor target as part of treatment planning for the administration of radiation therapy. Despite more than 20 yr of research and development, computational brain tumor segmentation in MRI images remains a challenging task. We are presenting a novel method of automatic image segmentation based on holistically nested neural networks that could be employed for brain tumor segmentation of MRI images. Two preprocessing techniques were applied to MRI images. The N4ITK method was employed for correction of bias field distortion. A novel landmark-based intensity normalization method was developed so that tissue types have a similar intensity scale in images of different subjects for the same MRI protocol. The holistically nested neural networks (HNN), which extend from the convolutional neural networks (CNN) with a deep supervision through an additional weighted-fusion output layer, was trained to learn the multiscale and multilevel hierarchical appearance representation of the brain tumor in MRI images and was subsequently applied to produce a prediction map of the brain tumor on test images. Finally, the brain tumor was obtained through an optimum thresholding on the prediction map. The proposed method was evaluated on both the Multimodal Brain Tumor Image Segmentation (BRATS) Benchmark 2013 training datasets, and clinical data from our institute. A dice similarity coefficient (DSC) and sensitivity of 0.78 and 0.81 were achieved on 20 BRATS 2013 training datasets with high-grade gliomas (HGG), based on a two-fold cross-validation. The HNN model built on the BRATS 2013 training data was applied to ten clinical datasets with HGG from a locally developed database. DSC and sensitivity of 0.83 and 0.85 were achieved. A quantitative comparison indicated that the proposed method outperforms the popular fully convolutional network (FCN) method. In terms of efficiency, the proposed method took around 10 h for training with 50,000 iterations, and approximately 30 s for testing of a typical MRI image in the BRATS 2013 dataset with a size of 160 × 216 × 176, using a DELL PRECISION workstation T7400, with an NVIDIA Tesla K20c GPU. An effective brain tumor segmentation method for MRI images based on a HNN has been developed. The high level of accuracy and efficiency make this method practical in brain tumor segmentation. It may play a crucial role in both brain tumor diagnostic analysis and in the treatment planning of radiation therapy. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
TU-F-BRF-06: 3D Pancreas MRI Segmentation Using Dictionary Learning and Manifold Clustering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gou, S; Rapacchi, S; Hu, P
2014-06-15
Purpose: The recent advent of MRI guided radiotherapy machines has lent an exciting platform for soft tissue target localization during treatment. However, tools to efficiently utilize MRI images for such purpose have not been developed. Specifically, to efficiently quantify the organ motion, we develop an automated segmentation method using dictionary learning and manifold clustering (DLMC). Methods: Fast 3D HASTE and VIBE MR images of 2 healthy volunteers and 3 patients were acquired. A bounding box was defined to include pancreas and surrounding normal organs including the liver, duodenum and stomach. The first slice of the MRI was used for dictionarymore » learning based on mean-shift clustering and K-SVD sparse representation. Subsequent images were iteratively reconstructed until the error is less than a preset threshold. The preliminarily segmentation was subject to the constraints of manifold clustering. The segmentation results were compared with the mean shift merging (MSM), level set (LS) and manual segmentation methods. Results: DLMC resulted in consistently higher accuracy and robustness than comparing methods. Using manual contours as the ground truth, the mean Dices indices for all subjects are 0.54, 0.56 and 0.67 for MSM, LS and DLMC, respectively based on the HASTE image. The mean Dices indices are 0.70, 0.77 and 0.79 for the three methods based on VIBE images. DLMC is clearly more robust on the patients with the diseased pancreas while LS and MSM tend to over-segment the pancreas. DLMC also achieved higher sensitivity (0.80) and specificity (0.99) combining both imaging techniques. LS achieved equivalent sensitivity on VIBE images but was more computationally inefficient. Conclusion: We showed that pancreas and surrounding normal organs can be reliably segmented based on fast MRI using DLMC. This method will facilitate both planning volume definition and imaging guidance during treatment.« less
A new method based on Dempster-Shafer theory and fuzzy c-means for brain MRI segmentation
NASA Astrophysics Data System (ADS)
Liu, Jie; Lu, Xi; Li, Yunpeng; Chen, Xiaowu; Deng, Yong
2015-10-01
In this paper, a new method is proposed to decrease sensitiveness to motion noise and uncertainty in magnetic resonance imaging (MRI) segmentation especially when only one brain image is available. The method is approached with considering spatial neighborhood information by fusing the information of pixels with their neighbors with Dempster-Shafer (DS) theory. The basic probability assignment (BPA) of each single hypothesis is obtained from the membership function of applying fuzzy c-means (FCM) clustering to the gray levels of the MRI. Then multiple hypotheses are generated according to the single hypothesis. Then we update the objective pixel’s BPA by fusing the BPA of the objective pixel and those of its neighbors to get the final result. Some examples in MRI segmentation are demonstrated at the end of the paper, in which our method is compared with some previous methods. The results show that the proposed method is more effective than other methods in motion-blurred MRI segmentation.
Magnetic resonance imaging and computerized tomography in malignant external otitis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gherini, S.G.; Brackmann, D.E.; Bradley, W.G.
1986-05-01
In malignant external otitis (MEO), determining the anatomic extent of disease and evaluating the physiologic response to therapy remain a problem. Magnetic resonance imaging (MRI) has recently become available in limited clinical settings. Four patients with MEO were evaluated using MRI, computerized tomography (CT), technetium-99 (Tc-99) bone scanning, and gallium-67 citrate (Ga-67 citrate) scanning. MRI is superior to CT, Tc-99 bone scanning, and Ga-67 citrate scanning in evaluating the anatomic extent of soft tissue changes in MEO. MRI alone cannot be relied upon to determine the physiologic response to therapy. MRI can, however, serve as a valuable guide to themore » interpretation of Tc-99 bone and Ga-67 citrate scans, and in this respect, MRI is extremely useful in the treatment of MEO.« less
Dolz, Jose; Laprie, Anne; Ken, Soléakhéna; Leroy, Henri-Arthur; Reyns, Nicolas; Massoptier, Laurent; Vermandel, Maximilien
2016-01-01
To constrain the risk of severe toxicity in radiotherapy and radiosurgery, precise volume delineation of organs at risk is required. This task is still manually performed, which is time-consuming and prone to observer variability. To address these issues, and as alternative to atlas-based segmentation methods, machine learning techniques, such as support vector machines (SVM), have been recently presented to segment subcortical structures on magnetic resonance images (MRI). SVM is proposed to segment the brainstem on MRI in multicenter brain cancer context. A dataset composed by 14 adult brain MRI scans is used to evaluate its performance. In addition to spatial and probabilistic information, five different image intensity values (IIVs) configurations are evaluated as features to train the SVM classifier. Segmentation accuracy is evaluated by computing the Dice similarity coefficient (DSC), absolute volumes difference (AVD) and percentage volume difference between automatic and manual contours. Mean DSC for all proposed IIVs configurations ranged from 0.89 to 0.90. Mean AVD values were below 1.5 cm(3), where the value for best performing IIVs configuration was 0.85 cm(3), representing an absolute mean difference of 3.99% with respect to the manual segmented volumes. Results suggest consistent volume estimation and high spatial similarity with respect to expert delineations. The proposed approach outperformed presented methods to segment the brainstem, not only in volume similarity metrics, but also in segmentation time. Preliminary results showed that the approach might be promising for adoption in clinical use.
Statistical evaluation of manual segmentation of a diffuse low-grade glioma MRI dataset.
Ben Abdallah, Meriem; Blonski, Marie; Wantz-Mezieres, Sophie; Gaudeau, Yann; Taillandier, Luc; Moureaux, Jean-Marie
2016-08-01
Software-based manual segmentation is critical to the supervision of diffuse low-grade glioma patients and to the optimal treatment's choice. However, manual segmentation being time-consuming, it is difficult to include it in the clinical routine. An alternative to circumvent the time cost of manual segmentation could be to share the task among different practitioners, providing it can be reproduced. The goal of our work is to assess diffuse low-grade gliomas' manual segmentation's reproducibility on MRI scans, with regard to practitioners, their experience and field of expertise. A panel of 13 experts manually segmented 12 diffuse low-grade glioma clinical MRI datasets using the OSIRIX software. A statistical analysis gave promising results, as the practitioner factor, the medical specialty and the years of experience seem to have no significant impact on the average values of the tumor volume variable.
NASA Astrophysics Data System (ADS)
Heydarian, Mohammadreza; Kirby, Miranda; Wheatley, Andrew; Fenster, Aaron; Parraga, Grace
2012-03-01
A semi-automated method for generating hyperpolarized helium-3 (3He) measurements of individual slice (2D) or whole lung (3D) gas distribution was developed. 3He MRI functional images were segmented using two-dimensional (2D) and three-dimensional (3D) hierarchical K-means clustering of the 3He MRI signal and in addition a seeded region-growing algorithm was employed for segmentation of the 1H MRI thoracic cavity volume. 3He MRI pulmonary function measurements were generated following two-dimensional landmark-based non-rigid registration of the 3He and 1H pulmonary images. We applied this method to MRI of healthy subjects and subjects with chronic obstructive lung disease (COPD). The results of hierarchical K-means 2D and 3D segmentation were compared to an expert observer's manual segmentation results using linear regression, Pearson correlations and the Dice similarity coefficient. 2D hierarchical K-means segmentation of ventilation volume (VV) and ventilation defect volume (VDV) was strongly and significantly correlated with manual measurements (VV: r=0.98, p<.0001 VDV: r=0.97, p<.0001) and mean Dice coefficients were greater than 92% for all subjects. 3D hierarchical K-means segmentation of VV and VDV was also strongly and significantly correlated with manual measurements (VV: r=0.98, p<.0001 VDV: r=0.64, p<.0001) and the mean Dice coefficients were greater than 91% for all subjects. Both 2D and 3D semi-automated segmentation of 3He MRI gas distribution provides a way to generate novel pulmonary function measurements.
SU-E-J-168: Automated Pancreas Segmentation Based On Dynamic MRI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gou, S; Rapacchi, S; Hu, P
2014-06-01
Purpose: MRI guided radiotherapy is particularly attractive for abdominal targets with low CT contrast. To fully utilize this modality for pancreas tracking, automated segmentation tools are needed. A hybrid gradient, region growth and shape constraint (hGReS) method to segment 2D upper abdominal dynamic MRI is developed for this purpose. Methods: 2D coronal dynamic MR images of 2 healthy volunteers were acquired with a frame rate of 5 f/second. The regions of interest (ROIs) included the liver, pancreas and stomach. The first frame was used as the source where the centers of the ROIs were annotated. These center locations were propagatedmore » to the next dynamic MRI frame. 4-neighborhood region transfer growth was performed from these initial seeds for rough segmentation. To improve the results, gradient, edge and shape constraints were applied to the ROIs before final refinement using morphological operations. Results from hGReS and 3 other automated segmentation methods using edge detection, region growth and level set were compared to manual contouring. Results: For the first patient, hGReS resulted in the organ segmentation accuracy as measure by the Dices index (0.77) for the pancreas. The accuracy was slightly superior to the level set method (0.72), and both are significantly more accurate than the edge detection (0.53) and region growth methods (0.42). For the second healthy volunteer, hGReS reliably segmented the pancreatic region, achieving a Dices index of 0.82, 0.92 and 0.93 for the pancreas, stomach and liver, respectively, comparing to manual segmentation. Motion trajectories derived from the hGReS, level set and manual segmentation methods showed high correlation to respiratory motion calculated using a lung blood vessel as the reference while the other two methods showed substantial motion tracking errors. hGReS was 10 times faster than level set. Conclusion: We have shown the feasibility of automated segmentation of the pancreas anatomy based on dynamic MRI.« less
Comprehensive Digital Imaging Network Project At Georgetown University Hospital
NASA Astrophysics Data System (ADS)
Mun, Seong K.; Stauffer, Douglas; Zeman, Robert; Benson, Harold; Wang, Paul; Allman, Robert
1987-10-01
The radiology practice is going through rapid changes due to the introduction of state-of-the-art computed based technologies. For the last twenty years we have witnessed the introduction of many new medical diagnostic imaging systems such as x-ray computed tomo-graphy, digital subtraction angiography (DSA), computerized nuclear medicine, single pho-ton emission computed tomography (SPECT), positron emission tomography (PET) and more re-cently, computerized digital radiography and nuclear magnetic resonance imaging (MRI). Other than the imaging systems, there has been a steady introduction of computed based information systems for radiology departments and hospitals.
A contrast enhancement method for improving the segmentation of breast lesions on ultrasonography.
Flores, Wilfrido Gómez; Pereira, Wagner Coelho de Albuquerque
2017-01-01
This paper presents an adaptive contrast enhancement method based on sigmoidal mapping function (SACE) used for improving the computerized segmentation of breast lesions on ultrasound. First, from the original ultrasound image an intensity variation map is obtained, which is used to generate local sigmoidal mapping functions related to distinct contextual regions. Then, a bilinear interpolation scheme is used to transform every original pixel to a new gray level value. Also, four contrast enhancement techniques widely used in breast ultrasound enhancement are implemented: histogram equalization (HEQ), contrast limited adaptive histogram equalization (CLAHE), fuzzy enhancement (FEN), and sigmoid based enhancement (SEN). In addition, these contrast enhancement techniques are considered in a computerized lesion segmentation scheme based on watershed transformation. The performance comparison among techniques is assessed in terms of both the quality of contrast enhancement and the segmentation accuracy. The former is quantified by the measure, where the greater the value, the better the contrast enhancement, whereas the latter is calculated by the Jaccard index, which should tend towards unity to indicate adequate segmentation. The experiments consider a data set with 500 breast ultrasound images. The results show that SACE outperforms its counterparts, where the median values for the measure are: SACE: 139.4, SEN: 68.2, HEQ: 64.1, CLAHE: 62.8, and FEN: 7.9. Considering the segmentation performance results, the SACE method presents the largest accuracy, where the median values for the Jaccard index are: SACE: 0.81, FEN: 0.80, CLAHE: 0.79, HEQ: 77, and SEN: 0.63. The SACE method performs well due to the combination of three elements: (1) the intensity variation map reduces intensity variations that could distort the real response of the mapping function, (2) the sigmoidal mapping function enhances the gray level range where the transition between lesion and background is found, and (3) the adaptive enhancing scheme for coping with local contrasts. Hence, the SACE approach is appropriate for enhancing contrast before computerized lesion segmentation. Copyright © 2016 Elsevier Ltd. All rights reserved.
An in vivo MRI Template Set for Morphometry, Tissue Segmentation, and fMRI Localization in Rats
Valdés-Hernández, Pedro Antonio; Sumiyoshi, Akira; Nonaka, Hiroi; Haga, Risa; Aubert-Vásquez, Eduardo; Ogawa, Takeshi; Iturria-Medina, Yasser; Riera, Jorge J.; Kawashima, Ryuta
2011-01-01
Over the last decade, several papers have focused on the construction of highly detailed mouse high field magnetic resonance image (MRI) templates via non-linear registration to unbiased reference spaces, allowing for a variety of neuroimaging applications such as robust morphometric analyses. However, work in rats has only provided medium field MRI averages based on linear registration to biased spaces with the sole purpose of approximate functional MRI (fMRI) localization. This precludes any morphometric analysis in spite of the need of exploring in detail the neuroanatomical substrates of diseases in a recent advent of rat models. In this paper we present a new in vivo rat T2 MRI template set, comprising average images of both intensity and shape, obtained via non-linear registration. Also, unlike previous rat template sets, we include white and gray matter probabilistic segmentations, expanding its use to those applications demanding prior-based tissue segmentation, e.g., statistical parametric mapping (SPM) voxel-based morphometry. We also provide a preliminary digitalization of latest Paxinos and Watson atlas for anatomical and functional interpretations within the cerebral cortex. We confirmed that, like with previous templates, forepaw and hindpaw fMRI activations can be correctly localized in the expected atlas structure. To exemplify the use of our new MRI template set, were reported the volumes of brain tissues and cortical structures and probed their relationships with ontogenetic development. Other in vivo applications in the near future can be tensor-, deformation-, or voxel-based morphometry, morphological connectivity, and diffusion tensor-based anatomical connectivity. Our template set, freely available through the SPM extension website, could be an important tool for future longitudinal and/or functional extensive preclinical studies. PMID:22275894
Comparative analysis of nonlinear dimensionality reduction techniques for breast MRI segmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akhbardeh, Alireza; Jacobs, Michael A.; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
2012-04-15
Purpose: Visualization of anatomical structures using radiological imaging methods is an important tool in medicine to differentiate normal from pathological tissue and can generate large amounts of data for a radiologist to read. Integrating these large data sets is difficult and time-consuming. A new approach uses both supervised and unsupervised advanced machine learning techniques to visualize and segment radiological data. This study describes the application of a novel hybrid scheme, based on combining wavelet transform and nonlinear dimensionality reduction (NLDR) methods, to breast magnetic resonance imaging (MRI) data using three well-established NLDR techniques, namely, ISOMAP, local linear embedding (LLE), andmore » diffusion maps (DfM), to perform a comparative performance analysis. Methods: Twenty-five breast lesion subjects were scanned using a 3T scanner. MRI sequences used were T1-weighted, T2-weighted, diffusion-weighted imaging (DWI), and dynamic contrast-enhanced (DCE) imaging. The hybrid scheme consisted of two steps: preprocessing and postprocessing of the data. The preprocessing step was applied for B{sub 1} inhomogeneity correction, image registration, and wavelet-based image compression to match and denoise the data. In the postprocessing step, MRI parameters were considered data dimensions and the NLDR-based hybrid approach was applied to integrate the MRI parameters into a single image, termed the embedded image. This was achieved by mapping all pixel intensities from the higher dimension to a lower dimensional (embedded) space. For validation, the authors compared the hybrid NLDR with linear methods of principal component analysis (PCA) and multidimensional scaling (MDS) using synthetic data. For the clinical application, the authors used breast MRI data, comparison was performed using the postcontrast DCE MRI image and evaluating the congruence of the segmented lesions. Results: The NLDR-based hybrid approach was able to define and segment both synthetic and clinical data. In the synthetic data, the authors demonstrated the performance of the NLDR method compared with conventional linear DR methods. The NLDR approach enabled successful segmentation of the structures, whereas, in most cases, PCA and MDS failed. The NLDR approach was able to segment different breast tissue types with a high accuracy and the embedded image of the breast MRI data demonstrated fuzzy boundaries between the different types of breast tissue, i.e., fatty, glandular, and tissue with lesions (>86%). Conclusions: The proposed hybrid NLDR methods were able to segment clinical breast data with a high accuracy and construct an embedded image that visualized the contribution of different radiological parameters.« less
3D geometric split-merge segmentation of brain MRI datasets.
Marras, Ioannis; Nikolaidis, Nikolaos; Pitas, Ioannis
2014-05-01
In this paper, a novel method for MRI volume segmentation based on region adaptive splitting and merging is proposed. The method, called Adaptive Geometric Split Merge (AGSM) segmentation, aims at finding complex geometrical shapes that consist of homogeneous geometrical 3D regions. In each volume splitting step, several splitting strategies are examined and the most appropriate is activated. A way to find the maximal homogeneity axis of the volume is also introduced. Along this axis, the volume splitting technique divides the entire volume in a number of large homogeneous 3D regions, while at the same time, it defines more clearly small homogeneous regions within the volume in such a way that they have greater probabilities of survival at the subsequent merging step. Region merging criteria are proposed to this end. The presented segmentation method has been applied to brain MRI medical datasets to provide segmentation results when each voxel is composed of one tissue type (hard segmentation). The volume splitting procedure does not require training data, while it demonstrates improved segmentation performance in noisy brain MRI datasets, when compared to the state of the art methods. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Dongqing; Icke, Ilknur; Dogdas, Belma; Parimal, Sarayu; Sampath, Smita; Forbes, Joseph; Bagchi, Ansuman; Chin, Chih-Liang; Chen, Antong
2018-03-01
In the development of treatments for cardiovascular diseases, short axis cardiac cine MRI is important for the assessment of various structural and functional properties of the heart. In short axis cardiac cine MRI, Cardiac properties including the ventricle dimensions, stroke volume, and ejection fraction can be extracted based on accurate segmentation of the left ventricle (LV) myocardium. One of the most advanced segmentation methods is based on fully convolutional neural networks (FCN) and can be successfully used to do segmentation in cardiac cine MRI slices. However, the temporal dependency between slices acquired at neighboring time points is not used. Here, based on our previously proposed FCN structure, we proposed a new algorithm to segment LV myocardium in porcine short axis cardiac cine MRI by incorporating convolutional long short-term memory (Conv-LSTM) to leverage the temporal dependency. In this approach, instead of processing each slice independently in a conventional CNN-based approach, the Conv-LSTM architecture captures the dynamics of cardiac motion over time. In a leave-one-out experiment on 8 porcine specimens (3,600 slices), the proposed approach was shown to be promising by achieving average mean Dice similarity coefficient (DSC) of 0.84, Hausdorff distance (HD) of 6.35 mm, and average perpendicular distance (APD) of 1.09 mm when compared with manual segmentations, which improved the performance of our previous FCN-based approach (average mean DSC=0.84, HD=6.78 mm, and APD=1.11 mm). Qualitatively, our model showed robustness against low image quality and complications in the surrounding anatomy due to its ability to capture the dynamics of cardiac motion.
Multi-atlas segmentation of subcortical brain structures via the AutoSeg software pipeline
Wang, Jiahui; Vachet, Clement; Rumple, Ashley; Gouttard, Sylvain; Ouziel, Clémentine; Perrot, Emilie; Du, Guangwei; Huang, Xuemei; Gerig, Guido; Styner, Martin
2014-01-01
Automated segmenting and labeling of individual brain anatomical regions, in MRI are challenging, due to the issue of individual structural variability. Although atlas-based segmentation has shown its potential for both tissue and structure segmentation, due to the inherent natural variability as well as disease-related changes in MR appearance, a single atlas image is often inappropriate to represent the full population of datasets processed in a given neuroimaging study. As an alternative for the case of single atlas segmentation, the use of multiple atlases alongside label fusion techniques has been introduced using a set of individual “atlases” that encompasses the expected variability in the studied population. In our study, we proposed a multi-atlas segmentation scheme with a novel graph-based atlas selection technique. We first paired and co-registered all atlases and the subject MR scans. A directed graph with edge weights based on intensity and shape similarity between all MR scans is then computed. The set of neighboring templates is selected via clustering of the graph. Finally, weighted majority voting is employed to create the final segmentation over the selected atlases. This multi-atlas segmentation scheme is used to extend a single-atlas-based segmentation toolkit entitled AutoSeg, which is an open-source, extensible C++ based software pipeline employing BatchMake for its pipeline scripting, developed at the Neuro Image Research and Analysis Laboratories of the University of North Carolina at Chapel Hill. AutoSeg performs N4 intensity inhomogeneity correction, rigid registration to a common template space, automated brain tissue classification based skull-stripping, and the multi-atlas segmentation. The multi-atlas-based AutoSeg has been evaluated on subcortical structure segmentation with a testing dataset of 20 adult brain MRI scans and 15 atlas MRI scans. The AutoSeg achieved mean Dice coefficients of 81.73% for the subcortical structures. PMID:24567717
MRI Segmentation of the Human Brain: Challenges, Methods, and Applications
Despotović, Ivana
2015-01-01
Image segmentation is one of the most important tasks in medical image analysis and is often the first and the most critical step in many clinical applications. In brain MRI analysis, image segmentation is commonly used for measuring and visualizing the brain's anatomical structures, for analyzing brain changes, for delineating pathological regions, and for surgical planning and image-guided interventions. In the last few decades, various segmentation techniques of different accuracy and degree of complexity have been developed and reported in the literature. In this paper we review the most popular methods commonly used for brain MRI segmentation. We highlight differences between them and discuss their capabilities, advantages, and limitations. To address the complexity and challenges of the brain MRI segmentation problem, we first introduce the basic concepts of image segmentation. Then, we explain different MRI preprocessing steps including image registration, bias field correction, and removal of nonbrain tissue. Finally, after reviewing different brain MRI segmentation methods, we discuss the validation problem in brain MRI segmentation. PMID:25945121
Multiresolution texture models for brain tumor segmentation in MRI.
Iftekharuddin, Khan M; Ahmed, Shaheen; Hossen, Jakir
2011-01-01
In this study we discuss different types of texture features such as Fractal Dimension (FD) and Multifractional Brownian Motion (mBm) for estimating random structures and varying appearance of brain tissues and tumors in magnetic resonance images (MRI). We use different selection techniques including KullBack - Leibler Divergence (KLD) for ranking different texture and intensity features. We then exploit graph cut, self organizing maps (SOM) and expectation maximization (EM) techniques to fuse selected features for brain tumors segmentation in multimodality T1, T2, and FLAIR MRI. We use different similarity metrics to evaluate quality and robustness of these selected features for tumor segmentation in MRI for real pediatric patients. We also demonstrate a non-patient-specific automated tumor prediction scheme by using improved AdaBoost classification based on these image features.
2012-08-01
respiratory motions using 4D tagged magnetic resonance imaging ( MRI ) data and 4D high-resolution respiratory-gated CT data respectively. Both...dimensional segmented human anatomy. Medical Physics, 1994. 21(2): p. 299-302. 6. Zubal, I.G., et al. High resolution, MRI -based, segmented...the beam direction. T2-weighted images were acquired after 24 hours with a 3T- MRI scanner using a turbo spin-echo sequence. Imaging parameters were
Catana, Ciprian; van der Kouwe, Andre; Benner, Thomas; Michel, Christian J; Hamm, Michael; Fenchel, Matthias; Fischl, Bruce; Rosen, Bruce; Schmand, Matthias; Sorensen, A Gregory
2010-09-01
Several factors have to be considered for implementing an accurate attenuation-correction (AC) method in a combined MR-PET scanner. In this work, some of these challenges were investigated, and an AC method based entirely on the MRI data obtained with a single dedicated sequence was developed and used for neurologic studies performed with the MR-PET human brain scanner prototype. The focus was on the problem of bone-air segmentation, selection of the linear attenuation coefficient for bone, and positioning of the radiofrequency coil. The impact of these factors on PET data quantification was studied in simulations and experimental measurements performed on the combined MR-PET scanner. A novel dual-echo ultrashort echo time (DUTE) MRI sequence was proposed for head imaging. Simultaneous MR-PET data were acquired, and the PET images reconstructed using the proposed DUTE MRI-based AC method were compared with the PET images that had been reconstructed using a CT-based AC method. Our data suggest that incorrectly accounting for the bone tissue attenuation can lead to large underestimations (>20%) of the radiotracer concentration in the cortex. Assigning a linear attenuation coefficient of 0.143 or 0.151 cm(-1) to bone tissue appears to give the best trade-off between bias and variability in the resulting images. Not identifying the internal air cavities introduces large overestimations (>20%) in adjacent structures. On the basis of these results, the segmented CT AC method was established as the silver standard for the segmented MRI-based AC method. For an integrated MR-PET scanner, in particular, ignoring the radiofrequency coil attenuation can cause large underestimations (i.e.,
Automatic segmentation of left ventricle in cardiac cine MRI images based on deep learning
NASA Astrophysics Data System (ADS)
Zhou, Tian; Icke, Ilknur; Dogdas, Belma; Parimal, Sarayu; Sampath, Smita; Forbes, Joseph; Bagchi, Ansuman; Chin, Chih-Liang; Chen, Antong
2017-02-01
In developing treatment of cardiovascular diseases, short axis cine MRI has been used as a standard technique for understanding the global structural and functional characteristics of the heart, e.g. ventricle dimensions, stroke volume and ejection fraction. To conduct an accurate assessment, heart structures need to be segmented from the cine MRI images with high precision, which could be a laborious task when performed manually. Herein a fully automatic framework is proposed for the segmentation of the left ventricle from the slices of short axis cine MRI scans of porcine subjects using a deep learning approach. For training the deep learning models, which generally requires a large set of data, a public database of human cine MRI scans is used. Experiments on the 3150 cine slices of 7 porcine subjects have shown that when comparing the automatic and manual segmentations the mean slice-wise Dice coefficient is about 0.930, the point-to-curve error is 1.07 mm, and the mean slice-wise Hausdorff distance is around 3.70 mm, which demonstrates the accuracy and robustness of the proposed inter-species translational approach.
Real time MRI prostate segmentation based on wavelet multiscale products flow tracking.
Flores-Tapia, Daniel; Venugopal, Niranjan; Thomas, Gabriel; McCurdy, Boyd; Ryner, Lawrence; Pistorius, Stephen
2010-01-01
Currently, prostate cancer is the third leading cause of cancer-related deaths among men in North America. As with many others types of cancer, early detection and treatment greatly increases the patient's chance of survival. Combined Magnetic Resonance Imaging and Spectroscopic Imaging (MRI/MRSI) techniques have became a reliable tool for early stage prostate cancer detection. Nevertheless, their performance is strongly affected by the determination of the region of interest (ROI) prior to data acquisition process. The process of executing prostate MRI/MRSI techniques can be significantly enhanced by segmenting the whole prostate. A novel method for segmentation of the prostate in MRI datasets is presented. This method exploits the different behavior presented by signal singularities and noise in the wavelet domain in order to accurately detect the borders around the prostate. The prostate contour is then traced by using a set of spatially variant rules that are based on prior knowledge about the general shape of the prostate. The proposed method yielded promising results when applied to clinical datasets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padgett, K; Pollack, A; Stoyanova, R
Purpose: Automatically generated prostate MRI contours can be used to aid in image registration with CT or ultrasound and to reduce the burden of contouring for radiation treatment planning. In addition, prostate and zonal contours can assist to automate quantitative imaging features extraction and the analyses of longitudinal MRI studies. These potential gains are limited if the solutions are not compatible across different MRI vendors. The goal of this study is to characterize an atlas based automatic segmentation procedure of the prostate collected on MRI systems from multiple vendors. Methods: The prostate and peripheral zone (PZ) were manually contoured bymore » an expert radiation oncologist on T2-weighted scans acquired on both GE (n=31) and Siemens (n=33) 3T MRI systems. A leave-one-out approach was utilized where the target subject is removed from the atlas before the segmentation algorithm is initiated. The atlas-segmentation method finds the best nine matched atlas subjects and then performs a normalized intensity-based free-form deformable registration of these subjects to the target subject. These nine contours are then merged into a single contour using Simultaneous Truth and Performance Level Estimation (STAPLE). Contour comparisons were made using Dice similarity coefficients (DSC) and Hausdorff distances. Results: Using the T2 FatSat (FS) GE datasets the atlas generated contours resulted in an average DSC of 0.83±0.06 for prostate, 0.57±0.12 for PZ and 0.75±0.09 for CG. Similar results were found when using the Siemens data with a DSC of 0.79±0.14 for prostate, 0.54±0.16 and 0.70±0.9. Contrast between prostate and surrounding anatomy and between the PZ and CG contours for both vendors demonstrated superior contrast separation; significance was found for all comparisons p-value < 0.0001. Conclusion: Atlas-based segmentation yielded promising results for all contours compared to expertly defined contours in both Siemens and GE 3T systems providing fast and automatic segmentation of the prostate. Funding Support, Disclosures, and Conflict of Interest: AS Nelson is a partial owner of MIM Software, Inc. AS Nelson, and A Swallen are current employees at MIM Software, Inc.« less
Computerized PET/CT image analysis in the evaluation of tumour response to therapy
Wang, J; Zhang, H H
2015-01-01
Current cancer therapy strategy is mostly population based, however, there are large differences in tumour response among patients. It is therefore important for treating physicians to know individual tumour response. In recent years, many studies proposed the use of computerized positron emission tomography/CT image analysis in the evaluation of tumour response. Results showed that computerized analysis overcame some major limitations of current qualitative and semiquantitative analysis and led to improved accuracy. In this review, we summarize these studies in four steps of the analysis: image registration, tumour segmentation, image feature extraction and response evaluation. Future works are proposed and challenges described. PMID:25723599
Iglesias, Juan Eugenio; Augustinack, Jean C; Nguyen, Khoa; Player, Christopher M; Player, Allison; Wright, Michelle; Roy, Nicole; Frosch, Matthew P; McKee, Ann C; Wald, Lawrence L; Fischl, Bruce; Van Leemput, Koen
2015-07-15
Automated analysis of MRI data of the subregions of the hippocampus requires computational atlases built at a higher resolution than those that are typically used in current neuroimaging studies. Here we describe the construction of a statistical atlas of the hippocampal formation at the subregion level using ultra-high resolution, ex vivo MRI. Fifteen autopsy samples were scanned at 0.13 mm isotropic resolution (on average) using customized hardware. The images were manually segmented into 13 different hippocampal substructures using a protocol specifically designed for this study; precise delineations were made possible by the extraordinary resolution of the scans. In addition to the subregions, manual annotations for neighboring structures (e.g., amygdala, cortex) were obtained from a separate dataset of in vivo, T1-weighted MRI scans of the whole brain (1mm resolution). The manual labels from the in vivo and ex vivo data were combined into a single computational atlas of the hippocampal formation with a novel atlas building algorithm based on Bayesian inference. The resulting atlas can be used to automatically segment the hippocampal subregions in structural MRI images, using an algorithm that can analyze multimodal data and adapt to variations in MRI contrast due to differences in acquisition hardware or pulse sequences. The applicability of the atlas, which we are releasing as part of FreeSurfer (version 6.0), is demonstrated with experiments on three different publicly available datasets with different types of MRI contrast. The results show that the atlas and companion segmentation method: 1) can segment T1 and T2 images, as well as their combination, 2) replicate findings on mild cognitive impairment based on high-resolution T2 data, and 3) can discriminate between Alzheimer's disease subjects and elderly controls with 88% accuracy in standard resolution (1mm) T1 data, significantly outperforming the atlas in FreeSurfer version 5.3 (86% accuracy) and classification based on whole hippocampal volume (82% accuracy). Copyright © 2015. Published by Elsevier Inc.
Brain tumor segmentation based on local independent projection-based classification.
Huang, Meiyan; Yang, Wei; Wu, Yao; Jiang, Jun; Chen, Wufan; Feng, Qianjin
2014-10-01
Brain tumor segmentation is an important procedure for early tumor diagnosis and radiotherapy planning. Although numerous brain tumor segmentation methods have been presented, enhancing tumor segmentation methods is still challenging because brain tumor MRI images exhibit complex characteristics, such as high diversity in tumor appearance and ambiguous tumor boundaries. To address this problem, we propose a novel automatic tumor segmentation method for MRI images. This method treats tumor segmentation as a classification problem. Additionally, the local independent projection-based classification (LIPC) method is used to classify each voxel into different classes. A novel classification framework is derived by introducing the local independent projection into the classical classification model. Locality is important in the calculation of local independent projections for LIPC. Locality is also considered in determining whether local anchor embedding is more applicable in solving linear projection weights compared with other coding methods. Moreover, LIPC considers the data distribution of different classes by learning a softmax regression model, which can further improve classification performance. In this study, 80 brain tumor MRI images with ground truth data are used as training data and 40 images without ground truth data are used as testing data. The segmentation results of testing data are evaluated by an online evaluation tool. The average dice similarities of the proposed method for segmenting complete tumor, tumor core, and contrast-enhancing tumor on real patient data are 0.84, 0.685, and 0.585, respectively. These results are comparable to other state-of-the-art methods.
Research on the lesion segmentation of breast tumor MR images based on FCM-DS theory
NASA Astrophysics Data System (ADS)
Zhang, Liangbin; Ma, Wenjun; Shen, Xing; Li, Yuehua; Zhu, Yuemin; Chen, Li; Zhang, Su
2017-03-01
Magnetic resonance imaging (MRI) plays an important role in the treatment of breast tumor by high intensity focused ultrasound (HIFU). The doctors evaluate the scale, distribution and the statement of benign or malignancy of breast tumor by analyzing variety modalities of MRI, such as the T2, DWI and DCE images for making accurate preoperative treatment plan and evaluating the effect of the operation. This paper presents a method of lesion segmentation of breast tumor based on FCM-DS theory. Fuzzy c-means clustering (FCM) algorithm combined with Dempster-Shafer (DS) theory is used to process the uncertainty of information, segmenting the lesion areas on DWI and DCE modalities of MRI and reducing the scale of the uncertain parts. Experiment results show that FCM-DS can fuse the DWI and DCE images to achieve accurate segmentation and display the statement of benign or malignancy of lesion area by Time-Intensity Curve (TIC), which could be beneficial in making preoperative treatment plan and evaluating the effect of the therapy.
Chen, Zhaoxue; Yu, Haizhong; Chen, Hao
2013-12-01
To solve the problem of traditional K-means clustering in which initial clustering centers are selected randomly, we proposed a new K-means segmentation algorithm based on robustly selecting 'peaks' standing for White Matter, Gray Matter and Cerebrospinal Fluid in multi-peaks gray histogram of MRI brain image. The new algorithm takes gray value of selected histogram 'peaks' as the initial K-means clustering center and can segment the MRI brain image into three parts of tissue more effectively, accurately, steadily and successfully. Massive experiments have proved that the proposed algorithm can overcome many shortcomings caused by traditional K-means clustering method such as low efficiency, veracity, robustness and time consuming. The histogram 'peak' selecting idea of the proposed segmentootion method is of more universal availability.
NASA Astrophysics Data System (ADS)
Luo, Yun-Gang; Ko, Jacky Kl; Shi, Lin; Guan, Yuefeng; Li, Linong; Qin, Jing; Heng, Pheng-Ann; Chu, Winnie Cw; Wang, Defeng
2015-07-01
Myocardial iron loading thalassemia patients could be identified using T2* magnetic resonance images (MRI). To quantitatively assess cardiac iron loading, we proposed an effective algorithm to segment aligned free induction decay sequential myocardium images based on morphological operations and geodesic active contour (GAC). Nine patients with thalassemia major were recruited (10 male and 16 female) to undergo a thoracic MRI scan in the short axis view. Free induction decay images were registered for T2* mapping. The GAC were utilized to segment aligned MR images with a robust initialization. Segmented myocardium regions were divided into sectors for a region-based quantification of cardiac iron loading. Our proposed automatic segmentation approach achieve a true positive rate at 84.6% and false positive rate at 53.8%. The area difference between manual and automatic segmentation was 25.5% after 1000 iterations. Results from T2* analysis indicated that regions with intensity lower than 20 ms were suffered from heavy iron loading in thalassemia major patients. The proposed method benefited from abundant edge information of the free induction decay sequential MRI. Experiment results demonstrated that the proposed method is feasible in myocardium segmentation and was clinically applicable to measure myocardium iron loading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Y; Chen, I; Kashani, R
Purpose: In MRI-guided online adaptive radiation therapy, re-contouring of bowel is time-consuming and can impact the overall time of patients on table. The study aims to auto-segment bowel on volumetric MR images by using an interactive multi-region labeling algorithm. Methods: 5 Patients with locally advanced pancreatic cancer underwent fractionated radiotherapy (18–25 fractions each, total 118 fractions) on an MRI-guided radiation therapy system with a 0.35 Tesla magnet and three Co-60 sources. At each fraction, a volumetric MR image of the patient was acquired when the patient was in the treatment position. An interactive two-dimensional multi-region labeling technique based on graphmore » cut solver was applied on several typical MRI images to segment the large bowel and small bowel, followed by a shape based contour interpolation for generating entire bowel contours along all image slices. The resulted contours were compared with the physician’s manual contouring by using metrics of Dice coefficient and Hausdorff distance. Results: Image data sets from the first 5 fractions of each patient were selected (total of 25 image data sets) for the segmentation test. The algorithm segmented the large and small bowel effectively and efficiently. All bowel segments were successfully identified, auto-contoured and matched with manual contours. The time cost by the algorithm for each image slice was within 30 seconds. For large bowel, the calculated Dice coefficients and Hausdorff distances (mean±std) were 0.77±0.07 and 13.13±5.01mm, respectively; for small bowel, the corresponding metrics were 0.73±0.08and 14.15±4.72mm, respectively. Conclusion: The preliminary results demonstrated the potential of the proposed algorithm in auto-segmenting large and small bowel on low field MRI images in MRI-guided adaptive radiation therapy. Further work will be focused on improving its segmentation accuracy and lessening human interaction.« less
NASA Astrophysics Data System (ADS)
Wierts, R.; Jentzen, W.; Quick, H. H.; Wisselink, H. J.; Pooters, I. N. A.; Wildberger, J. E.; Herrmann, K.; Kemerink, G. J.; Backes, W. H.; Mottaghy, F. M.
2018-01-01
The aim was to investigate the quantitative performance of 124I PET/MRI for pre-therapy lesion dosimetry in differentiated thyroid cancer (DTC). Phantom measurements were performed on a PET/MRI system (Biograph mMR, Siemens Healthcare) using 124I and 18F. The PET calibration factor and the influence of radiofrequency coil attenuation were determined using a cylindrical phantom homogeneously filled with radioactivity. The calibration factor was 1.00 ± 0.02 for 18F and 0.88 ± 0.02 for 124I. Near the radiofrequency surface coil an underestimation of less than 5% in radioactivity concentration was observed. Soft-tissue sphere recovery coefficients were determined using the NEMA IEC body phantom. Recovery coefficients were systematically higher for 18F than for 124I. In addition, the six spheres of the phantom were segmented using a PET-based iterative segmentation algorithm. For all 124I measurements, the deviations in segmented lesion volume and mean radioactivity concentration relative to the actual values were smaller than 15% and 25%, respectively. The effect of MR-based attenuation correction (three- and four-segment µ-maps) on bone lesion quantification was assessed using radioactive spheres filled with a K2HPO4 solution mimicking bone lesions. The four-segment µ-map resulted in an underestimation of the imaged radioactivity concentration of up to 15%, whereas the three-segment µ-map resulted in an overestimation of up to 10%. For twenty lesions identified in six patients, a comparison of 124I PET/MRI to PET/CT was performed with respect to segmented lesion volume and radioactivity concentration. The interclass correlation coefficients showed excellent agreement in segmented lesion volume and radioactivity concentration (0.999 and 0.95, respectively). In conclusion, it is feasible that accurate quantitative 124I PET/MRI could be used to perform radioiodine pre-therapy lesion dosimetry in DTC.
Segmentation of knee MRI using structure enhanced local phase filtering
NASA Astrophysics Data System (ADS)
Lim, Mikhiel; Hacihaliloglu, Ilker
2016-03-01
The segmentation of bone surfaces from magnetic resonance imaging (MRI) data has applications in the quanti- tative measurement of knee osteoarthritis, surgery planning for patient specific total knee arthroplasty and its subsequent fabrication of artificial implants. However, due to the problems associated with MRI imaging such as low contrast between bone and surrounding tissues, noise, bias fields, and the partial volume effect, segmentation of bone surfaces continues to be a challenging operation. In this paper, a new framework is presented for the enhancement of knee MRI scans prior to segmentation in order to obtain high contrast bone images. During the first stage, a new contrast enhanced relative total variation (RTV) regularization method is used in order to remove textural noise from the bone structures and surrounding soft tissue interface. This salient bone edge information is further enhanced using a sparse gradient counting method based on L0 gradient minimization, which globally controls how many non-zero gradients are resulted in order to approximate prominent bone structures in a structure-sparsity-management manner. The last stage of the framework involves incorporation of local phase bone boundary information in order to provide an intensity invariant enhancement of contrast between the bone and surrounding soft tissue. The enhanced images are segmented using a fast random walker algorithm. Validation against expert segmentation was performed on 10 clinical knee MRI images, and achieved a mean dice similarity coefficient (DSC) of 0.975.
Assessment of liver function in primary biliary cirrhosis using Gd-EOB-DTPA-enhanced liver MRI.
Nilsson, Henrik; Blomqvist, Lennart; Douglas, Lena; Nordell, Anders; Jonas, Eduard
2010-10-01
Gd-EOB-DTPA (gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid) is a gadolinium-based hepatocyte-specific contrast agent for magnetic resonance imaging (MRI). The aim of this study was to determine whether the hepatic uptake and excretion of Gd-EOB-DTPA differ between patients with primary biliary cirrhosis (PBC) and healthy controls, and whether differences could be quantified. Gd-EOB-DTPA-enhanced liver MRI was performed in 20 healthy volunteers and 12 patients with PBC. The uptake of Gd-EOB-DTPA was assessed using traditional semi-quantitative parameters (C(max) , T(max) and T(1/2) ), as well as model-free parameters derived after deconvolutional analysis (hepatic extraction fraction [HEF], input-relative blood flow [irBF] and mean transit time [MTT]). In each individual, all parameters were calculated for each liver segment and the median of the segmental values was used to define a global liver median (GLM). Although the PBC patients had relatively mild disease according to their Model for End-stage Liver Disease (MELD), Child-Pugh and Mayo risk scores, they had significantly lower HEF and shorter MTT values compared with the healthy controls. These differences significantly increased with increasing MELD and Child-Pugh scores. Dynamic hepatocyte-specific contrast-enhanced MRI (DHCE-MRI) has a potential role as an imaging-based liver function test. The high spatial resolution of MRI enables hepatic function to be assessed on segmental and sub-segmental levels. © 2010 International Hepato-Pancreato-Biliary Association.
Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images.
Pereira, Sergio; Pinto, Adriano; Alves, Victor; Silva, Carlos A
2016-05-01
Among brain tumors, gliomas are the most common and aggressive, leading to a very short life expectancy in their highest grade. Thus, treatment planning is a key stage to improve the quality of life of oncological patients. Magnetic resonance imaging (MRI) is a widely used imaging technique to assess these tumors, but the large amount of data produced by MRI prevents manual segmentation in a reasonable time, limiting the use of precise quantitative measurements in the clinical practice. So, automatic and reliable segmentation methods are required; however, the large spatial and structural variability among brain tumors make automatic segmentation a challenging problem. In this paper, we propose an automatic segmentation method based on Convolutional Neural Networks (CNN), exploring small 3 ×3 kernels. The use of small kernels allows designing a deeper architecture, besides having a positive effect against overfitting, given the fewer number of weights in the network. We also investigated the use of intensity normalization as a pre-processing step, which though not common in CNN-based segmentation methods, proved together with data augmentation to be very effective for brain tumor segmentation in MRI images. Our proposal was validated in the Brain Tumor Segmentation Challenge 2013 database (BRATS 2013), obtaining simultaneously the first position for the complete, core, and enhancing regions in Dice Similarity Coefficient metric (0.88, 0.83, 0.77) for the Challenge data set. Also, it obtained the overall first position by the online evaluation platform. We also participated in the on-site BRATS 2015 Challenge using the same model, obtaining the second place, with Dice Similarity Coefficient metric of 0.78, 0.65, and 0.75 for the complete, core, and enhancing regions, respectively.
... seen on a brain-imaging test, such as magnetic resonance imaging (MRI) or computerized tomography (CT). On ... A cohort study. PLOS One. 2013;8:e71467. Magnetic resonance imaging (MRI). National Multiple Sclerosis Society. http:// ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, Najeeb; Toth, Robert; Chappelow, Jonathan
2012-04-15
Purpose: Prostate gland segmentation is a critical step in prostate radiotherapy planning, where dose plans are typically formulated on CT. Pretreatment MRI is now beginning to be acquired at several medical centers. Delineation of the prostate on MRI is acknowledged as being significantly simpler to perform, compared to delineation on CT. In this work, the authors present a novel framework for building a linked statistical shape model (LSSM), a statistical shape model (SSM) that links the shape variation of a structure of interest (SOI) across multiple imaging modalities. This framework is particularly relevant in scenarios where accurate boundary delineations ofmore » the SOI on one of the modalities may not be readily available, or difficult to obtain, for training a SSM. In this work the authors apply the LSSM in the context of multimodal prostate segmentation for radiotherapy planning, where the prostate is concurrently segmented on MRI and CT. Methods: The framework comprises a number of logically connected steps. The first step utilizes multimodal registration of MRI and CT to map 2D boundary delineations of the prostate from MRI onto corresponding CT images, for a set of training studies. Hence, the scheme obviates the need for expert delineations of the gland on CT for explicitly constructing a SSM for prostate segmentation on CT. The delineations of the prostate gland on MRI and CT allows for 3D reconstruction of the prostate shape which facilitates the building of the LSSM. In order to perform concurrent prostate MRI and CT segmentation using the LSSM, the authors employ a region-based level set approach where the authors deform the evolving prostate boundary to simultaneously fit to MRI and CT images in which voxels are classified to be either part of the prostate or outside the prostate. The classification is facilitated by using a combination of MRI-CT probabilistic spatial atlases and a random forest classifier, driven by gradient and Haar features. Results: The authors acquire a total of 20 MRI-CT patient studies and use the leave-one-out strategy to train and evaluate four different LSSMs. First, a fusion-based LSSM (fLSSM) is built using expert ground truth delineations of the prostate on MRI alone, where the ground truth for the gland on CT is obtained via coregistration of the corresponding MRI and CT slices. The authors compare the fLSSM against another LSSM (xLSSM), where expert delineations of the gland on both MRI and CT are employed in the model building; xLSSM representing the idealized LSSM. The authors also compare the fLSSM against an exclusive CT-based SSM (ctSSM), built from expert delineations of the gland on CT alone. In addition, two LSSMs trained using trainee delineations (tLSSM) on CT are compared with the fLSSM. The results indicate that the xLSSM, tLSSMs, and the fLSSM perform equivalently, all of them out-performing the ctSSM. Conclusions: The fLSSM provides an accurate alternative to SSMs that require careful expert delineations of the SOI that may be difficult or laborious to obtain. Additionally, the fLSSM has the added benefit of providing concurrent segmentations of the SOI on multiple imaging modalities.« less
Yang, Xiaofeng; Wu, Ning; Cheng, Guanghui; Zhou, Zhengyang; Yu, David S; Beitler, Jonathan J; Curran, Walter J; Liu, Tian
2014-12-01
To develop an automated magnetic resonance imaging (MRI) parotid segmentation method to monitor radiation-induced parotid gland changes in patients after head and neck radiation therapy (RT). The proposed method combines the atlas registration method, which captures the global variation of anatomy, with a machine learning technology, which captures the local statistical features, to automatically segment the parotid glands from the MRIs. The segmentation method consists of 3 major steps. First, an atlas (pre-RT MRI and manually contoured parotid gland mask) is built for each patient. A hybrid deformable image registration is used to map the pre-RT MRI to the post-RT MRI, and the transformation is applied to the pre-RT parotid volume. Second, the kernel support vector machine (SVM) is trained with the subject-specific atlas pair consisting of multiple features (intensity, gradient, and others) from the aligned pre-RT MRI and the transformed parotid volume. Third, the well-trained kernel SVM is used to differentiate the parotid from surrounding tissues in the post-RT MRIs by statistically matching multiple texture features. A longitudinal study of 15 patients undergoing head and neck RT was conducted: baseline MRI was acquired prior to RT, and the post-RT MRIs were acquired at 3-, 6-, and 12-month follow-up examinations. The resulting segmentations were compared with the physicians' manual contours. Successful parotid segmentation was achieved for all 15 patients (42 post-RT MRIs). The average percentage of volume differences between the automated segmentations and those of the physicians' manual contours were 7.98% for the left parotid and 8.12% for the right parotid. The average volume overlap was 91.1% ± 1.6% for the left parotid and 90.5% ± 2.4% for the right parotid. The parotid gland volume reduction at follow-up was 25% at 3 months, 27% at 6 months, and 16% at 12 months. We have validated our automated parotid segmentation algorithm in a longitudinal study. This segmentation method may be useful in future studies to address radiation-induced xerostomia in head and neck radiation therapy. Copyright © 2014 Elsevier Inc. All rights reserved.
Wan, Tao; Madabhushi, Anant; Phinikaridou, Alkystis; Hamilton, James A.; Hua, Ning; Pham, Tuan; Danagoulian, Jovanna; Kleiman, Ross; Buckler, Andrew J.
2014-01-01
Purpose: To develop a new spatio-temporal texture (SpTeT) based method for distinguishing vulnerable versus stable atherosclerotic plaques on DCE-MRI using a rabbit model of atherothrombosis. Methods: Aortic atherosclerosis was induced in 20 New Zealand White rabbits by cholesterol diet and endothelial denudation. MRI was performed before (pretrigger) and after (posttrigger) inducing plaque disruption with Russell's-viper-venom and histamine. Of the 30 vascular targets (segments) under histology analysis, 16 contained thrombus (vulnerable) and 14 did not (stable). A total of 352 voxel-wise computerized SpTeT features, including 192 Gabor, 36 Kirsch, 12 Sobel, 52 Haralick, and 60 first-order textural features, were extracted on DCE-MRI to capture subtle texture changes in the plaques over the course of contrast uptake. Different combinations of SpTeT feature sets, in which the features were ranked by a minimum-redundancy-maximum-relevance feature selection technique, were evaluated via a random forest classifier. A 500 iterative 2-fold cross validation was performed for discriminating the vulnerable atherosclerotic plaque and stable atherosclerotic plaque on per voxel basis. Four quantitative metrics were utilized to measure the classification results in separating between vulnerable and stable plaques. Results: The quantitative results show that the combination of five classes of SpTeT features can distinguish between vulnerable (disrupted plaques with an overlying thrombus) and stable plaques with the best AUC values of 0.9631 ± 0.0088, accuracy of 89.98% ± 0.57%, sensitivity of 83.71% ± 1.71%, and specificity of 94.55% ± 0.48%. Conclusions: Vulnerable and stable plaque can be distinguished by SpTeT based features. The SpTeT features, following validation on larger datasets, could be established as effective and reliable imaging biomarkers for noninvasively assessing atherosclerotic risk. PMID:24694153
Quantification of esophageal wall thickness in CT using atlas-based segmentation technique
NASA Astrophysics Data System (ADS)
Wang, Jiahui; Kang, Min Kyu; Kligerman, Seth; Lu, Wei
2015-03-01
Esophageal wall thickness is an important predictor of esophageal cancer response to therapy. In this study, we developed a computerized pipeline for quantification of esophageal wall thickness using computerized tomography (CT). We first segmented the esophagus using a multi-atlas-based segmentation scheme. The esophagus in each atlas CT was manually segmented to create a label map. Using image registration, all of the atlases were aligned to the imaging space of the target CT. The deformation field from the registration was applied to the label maps to warp them to the target space. A weighted majority-voting label fusion was employed to create the segmentation of esophagus. Finally, we excluded the lumen from the esophagus using a threshold of -600 HU and measured the esophageal wall thickness. The developed method was tested on a dataset of 30 CT scans, including 15 esophageal cancer patients and 15 normal controls. The mean Dice similarity coefficient (DSC) and mean absolute distance (MAD) between the segmented esophagus and the reference standard were employed to evaluate the segmentation results. Our method achieved a mean Dice coefficient of 65.55 ± 10.48% and mean MAD of 1.40 ± 1.31 mm for all the cases. The mean esophageal wall thickness of cancer patients and normal controls was 6.35 ± 1.19 mm and 6.03 ± 0.51 mm, respectively. We conclude that the proposed method can perform quantitative analysis of esophageal wall thickness and would be useful for tumor detection and tumor response evaluation of esophageal cancer.
Bibliography of the Edwards Aquifer, Texas, through 1993
Menard, J.A.
1995-01-01
The bibliography comprises 1,022 multidisciplinary references to technical and general literature for the three regions of the Edwards aquifer, Texas-San Antonio area; Barton Springs segment, Austin area; and northern segment, Austin area. The references in the bibliography were compiled from computerized data bases and from published bibliographies and reports. Dates of references range from the late 1800's through 1993. Subject and author indexes are included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aouadi, S; McGarry, M; Hammoud, R
Purpose: To develop and validate a 4 class tissue segmentation approach (air cavities, background, bone and soft-tissue) on T1 -weighted brain MRI and to create a pseudo-CT for MRI-only radiation therapy verification. Methods: Contrast-enhanced T1-weighted fast-spin-echo sequences (TR = 756ms, TE= 7.152ms), acquired on a 1.5T GE MRI-Simulator, are used.MRIs are firstly pre-processed to correct for non uniformity using the non parametric, non uniformity intensity normalization algorithm. Subsequently, a logarithmic inverse scaling log(1/image) is applied, prior to segmentation, to better differentiate bone and air from soft-tissues. Finally, the following method is enrolled to classify intensities into air cavities, background, bonemore » and soft-tissue:Thresholded region growing with seed points in image corners is applied to get a mask of Air+Bone+Background. The background is, afterward, separated by the scan-line filling algorithm. The air mask is extracted by morphological opening followed by a post-processing based on knowledge about air regions geometry. The remaining rough bone pre-segmentation is refined by applying 3D geodesic active contours; bone segmentation evolves by the sum of internal forces from contour geometry and external force derived from image gradient magnitude.Pseudo-CT is obtained by assigning −1000HU to air and background voxels, performing linear mapping of soft-tissue MR intensities in [-400HU, 200HU] and inverse linear mapping of bone MR intensities in [200HU, 1000HU]. Results: Three brain patients having registered MRI and CT are used for validation. CT intensities classification into 4 classes is performed by thresholding. Dice and misclassification errors are quantified. Correct classifications for soft-tissue, bone, and air are respectively 89.67%, 77.8%, and 64.5%. Dice indices are acceptable for bone (0.74) and soft-tissue (0.91) but low for air regions (0.48). Pseudo-CT produces DRRs with acceptable clinical visual agreement to CT-based DRR. Conclusion: The proposed approach makes it possible to use T1-weighted MRI to generate accurate pseudo-CT from 4-class segmentation.« less
Arabi, Hossein; Koutsouvelis, Nikolaos; Rouzaud, Michel; Miralbell, Raymond; Zaidi, Habib
2016-09-07
Magnetic resonance imaging (MRI)-guided attenuation correction (AC) of positron emission tomography (PET) data and/or radiation therapy (RT) treatment planning is challenged by the lack of a direct link between MRI voxel intensities and electron density. Therefore, even if this is not a trivial task, a pseudo-computed tomography (CT) image must be predicted from MRI alone. In this work, we propose a two-step (segmentation and fusion) atlas-based algorithm focusing on bone tissue identification to create a pseudo-CT image from conventional MRI sequences and evaluate its performance against the conventional MRI segmentation technique and a recently proposed multi-atlas approach. The clinical studies consisted of pelvic CT, PET and MRI scans of 12 patients with loco-regionally advanced rectal disease. In the first step, bone segmentation of the target image is optimized through local weighted atlas voting. The obtained bone map is then used to assess the quality of deformed atlases to perform voxel-wise weighted atlas fusion. To evaluate the performance of the method, a leave-one-out cross-validation (LOOCV) scheme was devised to find optimal parameters for the model. Geometric evaluation of the produced pseudo-CT images and quantitative analysis of the accuracy of PET AC were performed. Moreover, a dosimetric evaluation of volumetric modulated arc therapy photon treatment plans calculated using the different pseudo-CT images was carried out and compared to those produced using CT images serving as references. The pseudo-CT images produced using the proposed method exhibit bone identification accuracy of 0.89 based on the Dice similarity metric compared to 0.75 achieved by the other atlas-based method. The superior bone extraction resulted in a mean standard uptake value bias of -1.5 ± 5.0% (mean ± SD) in bony structures compared to -19.9 ± 11.8% and -8.1 ± 8.2% achieved by MRI segmentation-based (water-only) and atlas-guided AC. Dosimetric evaluation using dose volume histograms and the average difference between minimum/maximum absorbed doses revealed a mean error of less than 1% for the both target volumes and organs at risk. Two-dimensional (2D) gamma analysis of the isocenter dose distributions at 1%/1 mm criterion revealed pass rates of 91.40 ± 7.56%, 96.00 ± 4.11% and 97.67 ± 3.6% for MRI segmentation, atlas-guided and the proposed methods, respectively. The proposed method generates accurate pseudo-CT images from conventional Dixon MRI sequences with improved bone extraction accuracy. The approach is promising for potential use in PET AC and MRI-only or hybrid PET/MRI-guided RT treatment planning.
NASA Astrophysics Data System (ADS)
Arabi, Hossein; Koutsouvelis, Nikolaos; Rouzaud, Michel; Miralbell, Raymond; Zaidi, Habib
2016-09-01
Magnetic resonance imaging (MRI)-guided attenuation correction (AC) of positron emission tomography (PET) data and/or radiation therapy (RT) treatment planning is challenged by the lack of a direct link between MRI voxel intensities and electron density. Therefore, even if this is not a trivial task, a pseudo-computed tomography (CT) image must be predicted from MRI alone. In this work, we propose a two-step (segmentation and fusion) atlas-based algorithm focusing on bone tissue identification to create a pseudo-CT image from conventional MRI sequences and evaluate its performance against the conventional MRI segmentation technique and a recently proposed multi-atlas approach. The clinical studies consisted of pelvic CT, PET and MRI scans of 12 patients with loco-regionally advanced rectal disease. In the first step, bone segmentation of the target image is optimized through local weighted atlas voting. The obtained bone map is then used to assess the quality of deformed atlases to perform voxel-wise weighted atlas fusion. To evaluate the performance of the method, a leave-one-out cross-validation (LOOCV) scheme was devised to find optimal parameters for the model. Geometric evaluation of the produced pseudo-CT images and quantitative analysis of the accuracy of PET AC were performed. Moreover, a dosimetric evaluation of volumetric modulated arc therapy photon treatment plans calculated using the different pseudo-CT images was carried out and compared to those produced using CT images serving as references. The pseudo-CT images produced using the proposed method exhibit bone identification accuracy of 0.89 based on the Dice similarity metric compared to 0.75 achieved by the other atlas-based method. The superior bone extraction resulted in a mean standard uptake value bias of -1.5 ± 5.0% (mean ± SD) in bony structures compared to -19.9 ± 11.8% and -8.1 ± 8.2% achieved by MRI segmentation-based (water-only) and atlas-guided AC. Dosimetric evaluation using dose volume histograms and the average difference between minimum/maximum absorbed doses revealed a mean error of less than 1% for the both target volumes and organs at risk. Two-dimensional (2D) gamma analysis of the isocenter dose distributions at 1%/1 mm criterion revealed pass rates of 91.40 ± 7.56%, 96.00 ± 4.11% and 97.67 ± 3.6% for MRI segmentation, atlas-guided and the proposed methods, respectively. The proposed method generates accurate pseudo-CT images from conventional Dixon MRI sequences with improved bone extraction accuracy. The approach is promising for potential use in PET AC and MRI-only or hybrid PET/MRI-guided RT treatment planning.
Fetal brain volumetry through MRI volumetric reconstruction and segmentation
Estroff, Judy A.; Barnewolt, Carol E.; Connolly, Susan A.; Warfield, Simon K.
2013-01-01
Purpose Fetal MRI volumetry is a useful technique but it is limited by a dependency upon motion-free scans, tedious manual segmentation, and spatial inaccuracy due to thick-slice scans. An image processing pipeline that addresses these limitations was developed and tested. Materials and methods The principal sequences acquired in fetal MRI clinical practice are multiple orthogonal single-shot fast spin echo scans. State-of-the-art image processing techniques were used for inter-slice motion correction and super-resolution reconstruction of high-resolution volumetric images from these scans. The reconstructed volume images were processed with intensity non-uniformity correction and the fetal brain extracted by using supervised automated segmentation. Results Reconstruction, segmentation and volumetry of the fetal brains for a cohort of twenty-five clinically acquired fetal MRI scans was done. Performance metrics for volume reconstruction, segmentation and volumetry were determined by comparing to manual tracings in five randomly chosen cases. Finally, analysis of the fetal brain and parenchymal volumes was performed based on the gestational age of the fetuses. Conclusion The image processing pipeline developed in this study enables volume rendering and accurate fetal brain volumetry by addressing the limitations of current volumetry techniques, which include dependency on motion-free scans, manual segmentation, and inaccurate thick-slice interpolation. PMID:20625848
NASA Astrophysics Data System (ADS)
Lecoeur, Jérémy; Ferré, Jean-Christophe; Collins, D. Louis; Morrisey, Sean P.; Barillot, Christian
2009-02-01
A new segmentation framework is presented taking advantage of multimodal image signature of the different brain tissues (healthy and/or pathological). This is achieved by merging three different modalities of gray-level MRI sequences into a single RGB-like MRI, hence creating a unique 3-dimensional signature for each tissue by utilising the complementary information of each MRI sequence. Using the scale-space spectral gradient operator, we can obtain a spatial gradient robust to intensity inhomogeneity. Even though it is based on psycho-visual color theory, it can be very efficiently applied to the RGB colored images. More over, it is not influenced by the channel assigment of each MRI. Its optimisation by the graph cuts paradigm provides a powerful and accurate tool to segment either healthy or pathological tissues in a short time (average time about ninety seconds for a brain-tissues classification). As it is a semi-automatic method, we run experiments to quantify the amount of seeds needed to perform a correct segmentation (dice similarity score above 0.85). Depending on the different sets of MRI sequences used, this amount of seeds (expressed as a relative number in pourcentage of the number of voxels of the ground truth) is between 6 to 16%. We tested this algorithm on brainweb for validation purpose (healthy tissue classification and MS lesions segmentation) and also on clinical data for tumours and MS lesions dectection and tissues classification.
A voxel-based investigation for MRI-only radiotherapy of the brain using ultra short echo times
NASA Astrophysics Data System (ADS)
Edmund, Jens M.; Kjer, Hans M.; Van Leemput, Koen; Hansen, Rasmus H.; Andersen, Jon AL; Andreasen, Daniel
2014-12-01
Radiotherapy (RT) based on magnetic resonance imaging (MRI) as the only modality, so-called MRI-only RT, would remove the systematic registration error between MR and computed tomography (CT), and provide co-registered MRI for assessment of treatment response and adaptive RT. Electron densities, however, need to be assigned to the MRI images for dose calculation and patient setup based on digitally reconstructed radiographs (DRRs). Here, we investigate the geometric and dosimetric performance for a number of popular voxel-based methods to generate a so-called pseudo CT (pCT). Five patients receiving cranial irradiation, each containing a co-registered MRI and CT scan, were included. An ultra short echo time MRI sequence for bone visualization was used. Six methods were investigated for three popular types of voxel-based approaches; (1) threshold-based segmentation, (2) Bayesian segmentation and (3) statistical regression. Each approach contained two methods. Approach 1 used bulk density assignment of MRI voxels into air, soft tissue and bone based on logical masks and the transverse relaxation time T2 of the bone. Approach 2 used similar bulk density assignments with Bayesian statistics including or excluding additional spatial information. Approach 3 used a statistical regression correlating MRI voxels with their corresponding CT voxels. A similar photon and proton treatment plan was generated for a target positioned between the nasal cavity and the brainstem for all patients. The CT agreement with the pCT of each method was quantified and compared with the other methods geometrically and dosimetrically using both a number of reported metrics and introducing some novel metrics. The best geometrical agreement with CT was obtained with the statistical regression methods which performed significantly better than the threshold and Bayesian segmentation methods (excluding spatial information). All methods agreed significantly better with CT than a reference water MRI comparison. The mean dosimetric deviation for photons and protons compared to the CT was about 2% and highest in the gradient dose region of the brainstem. Both the threshold based method and the statistical regression methods showed the highest dosimetrical agreement. Generation of pCTs using statistical regression seems to be the most promising candidate for MRI-only RT of the brain. Further, the total amount of different tissues needs to be taken into account for dosimetric considerations regardless of their correct geometrical position.
Siozopoulos, Achilleas; Thomaidis, Vasilios; Prassopoulos, Panos; Fiska, Aliki
2018-02-01
Literature includes a number of studies using structural MRI (sMRI) to determine the volume of the amygdala, which is modified in various pathologic conditions. The reported values vary widely mainly because of different anatomical approaches to the complex. This study aims at estimating of the normal amygdala volume from sMRI scans using a recent anatomical definition described in a study based on post-mortem material. The amygdala volume has been calculated in 106 healthy subjects, using sMRI and anatomical-based segmentation. The resulting volumes have been analyzed for differences related to hemisphere, sex, and age. The mean amygdalar volume was estimated at 1.42 cm 3 . The mean right amygdala volume has been found larger than the left, but the difference for the raw values was within the limits of the method error. No intersexual differences or age-related alterations have been observed. The study provides a method for determining the boundaries of the amygdala in sMRI scans based on recent anatomical considerations and an estimation of the mean normal amygdala volume from a quite large number of scans for future use in comparative studies.
Cui, Shaoguo; Mao, Lei; Jiang, Jingfeng; Liu, Chang; Xiong, Shuyu
2018-01-01
Brain tumors can appear anywhere in the brain and have vastly different sizes and morphology. Additionally, these tumors are often diffused and poorly contrasted. Consequently, the segmentation of brain tumor and intratumor subregions using magnetic resonance imaging (MRI) data with minimal human interventions remains a challenging task. In this paper, we present a novel fully automatic segmentation method from MRI data containing in vivo brain gliomas. This approach can not only localize the entire tumor region but can also accurately segment the intratumor structure. The proposed work was based on a cascaded deep learning convolutional neural network consisting of two subnetworks: (1) a tumor localization network (TLN) and (2) an intratumor classification network (ITCN). The TLN, a fully convolutional network (FCN) in conjunction with the transfer learning technology, was used to first process MRI data. The goal of the first subnetwork was to define the tumor region from an MRI slice. Then, the ITCN was used to label the defined tumor region into multiple subregions. Particularly, ITCN exploited a convolutional neural network (CNN) with deeper architecture and smaller kernel. The proposed approach was validated on multimodal brain tumor segmentation (BRATS 2015) datasets, which contain 220 high-grade glioma (HGG) and 54 low-grade glioma (LGG) cases. Dice similarity coefficient (DSC), positive predictive value (PPV), and sensitivity were used as evaluation metrics. Our experimental results indicated that our method could obtain the promising segmentation results and had a faster segmentation speed. More specifically, the proposed method obtained comparable and overall better DSC values (0.89, 0.77, and 0.80) on the combined (HGG + LGG) testing set, as compared to other methods reported in the literature. Additionally, the proposed approach was able to complete a segmentation task at a rate of 1.54 seconds per slice.
NASA Astrophysics Data System (ADS)
Álvarez, Charlens; Martínez, Fabio; Romero, Eduardo
2015-01-01
The pelvic magnetic Resonance images (MRI) are used in Prostate cancer radiotherapy (RT), a process which is part of the radiation planning. Modern protocols require a manual delineation, a tedious and variable activity that may take about 20 minutes per patient, even for trained experts. That considerable time is an important work ow burden in most radiological services. Automatic or semi-automatic methods might improve the efficiency by decreasing the measure times while conserving the required accuracy. This work presents a fully automatic atlas- based segmentation strategy that selects the more similar templates for a new MRI using a robust multi-scale SURF analysis. Then a new segmentation is achieved by a linear combination of the selected templates, which are previously non-rigidly registered towards the new image. The proposed method shows reliable segmentations, obtaining an average DICE Coefficient of 79%, when comparing with the expert manual segmentation, under a leave-one-out scheme with the training database.
2010-10-01
facial trustworthiness; facial displays of anger) presented subliminally . Furthermore, the responsiveness of these regions to subliminal stimulation ...develop, or program the computerized stimulation paradigms for use during functional neuroimaging (i.e., MJT; BMAT; EFAT). These paradigms will be...programming began on the computerized functional MRI stimulation paradigms using e-prime software. • Quarter #2: Programming of all computerized functional
Improved brain tumor segmentation by utilizing tumor growth model in longitudinal brain MRI
NASA Astrophysics Data System (ADS)
Pei, Linmin; Reza, Syed M. S.; Li, Wei; Davatzikos, Christos; Iftekharuddin, Khan M.
2017-03-01
In this work, we propose a novel method to improve texture based tumor segmentation by fusing cell density patterns that are generated from tumor growth modeling. To model tumor growth, we solve the reaction-diffusion equation by using Lattice-Boltzmann method (LBM). Computational tumor growth modeling obtains the cell density distribution that potentially indicates the predicted tissue locations in the brain over time. The density patterns is then considered as novel features along with other texture (such as fractal, and multifractal Brownian motion (mBm)), and intensity features in MRI for improved brain tumor segmentation. We evaluate the proposed method with about one hundred longitudinal MRI scans from five patients obtained from public BRATS 2015 data set, validated by the ground truth. The result shows significant improvement of complete tumor segmentation using ANOVA analysis for five patients in longitudinal MR images.
Improved brain tumor segmentation by utilizing tumor growth model in longitudinal brain MRI.
Pei, Linmin; Reza, Syed M S; Li, Wei; Davatzikos, Christos; Iftekharuddin, Khan M
2017-02-11
In this work, we propose a novel method to improve texture based tumor segmentation by fusing cell density patterns that are generated from tumor growth modeling. In order to model tumor growth, we solve the reaction-diffusion equation by using Lattice-Boltzmann method (LBM). Computational tumor growth modeling obtains the cell density distribution that potentially indicates the predicted tissue locations in the brain over time. The density patterns is then considered as novel features along with other texture (such as fractal, and multifractal Brownian motion (mBm)), and intensity features in MRI for improved brain tumor segmentation. We evaluate the proposed method with about one hundred longitudinal MRI scans from five patients obtained from public BRATS 2015 data set, validated by the ground truth. The result shows significant improvement of complete tumor segmentation using ANOVA analysis for five patients in longitudinal MR images.
Schmidt, Paul; Schmid, Volker J; Gaser, Christian; Buck, Dorothea; Bührlen, Susanne; Förschler, Annette; Mühlau, Mark
2013-01-01
Aiming at iron-related T2-hypointensity, which is related to normal aging and neurodegenerative processes, we here present two practicable approaches, based on Bayesian inference, for preprocessing and statistical analysis of a complex set of structural MRI data. In particular, Markov Chain Monte Carlo methods were used to simulate posterior distributions. First, we rendered a segmentation algorithm that uses outlier detection based on model checking techniques within a Bayesian mixture model. Second, we rendered an analytical tool comprising a Bayesian regression model with smoothness priors (in the form of Gaussian Markov random fields) mitigating the necessity to smooth data prior to statistical analysis. For validation, we used simulated data and MRI data of 27 healthy controls (age: [Formula: see text]; range, [Formula: see text]). We first observed robust segmentation of both simulated T2-hypointensities and gray-matter regions known to be T2-hypointense. Second, simulated data and images of segmented T2-hypointensity were analyzed. We found not only robust identification of simulated effects but also a biologically plausible age-related increase of T2-hypointensity primarily within the dentate nucleus but also within the globus pallidus, substantia nigra, and red nucleus. Our results indicate that fully Bayesian inference can successfully be applied for preprocessing and statistical analysis of structural MRI data.
[Tumor segmentation of brain MRI with adaptive bandwidth mean shift].
Hou, Xiaowen; Liu, Qi
2014-10-01
In order to get the adaptive bandwidth of mean shift to make the tumor segmentation of brain magnetic resonance imaging (MRI) to be more accurate, we in this paper present an advanced mean shift method. Firstly, we made use of the space characteristics of brain image to eliminate the impact on segmentation of skull; and then, based on the characteristics of spatial agglomeration of different tissues of brain (includes tumor), we applied edge points to get the optimal initial mean value and the respectively adaptive bandwidth, in order to improve the accuracy of tumor segmentation. The results of experiment showed that, contrast to the fixed bandwidth mean shift method, the method in this paper could segment the tumor more accurately.
Oghli, Mostafa Ghelich; Dehlaghi, Vahab; Zadeh, Ali Mohammad; Fallahi, Alireza; Pooyan, Mohammad
2014-07-01
Assessment of cardiac right-ventricle functions plays an essential role in diagnosis of arrhythmogenic right ventricular dysplasia (ARVD). Among clinical tests, cardiac magnetic resonance imaging (MRI) is now becoming the most valid imaging technique to diagnose ARVD. Fatty infiltration of the right ventricular free wall can be visible on cardiac MRI. Finding right-ventricle functional parameters from cardiac MRI images contains segmentation of right-ventricle in each slice of end diastole and end systole phases of cardiac cycle and calculation of end diastolic and end systolic volume and furthermore other functional parameters. The main problem of this task is the segmentation part. We used a robust method based on deformable model that uses shape information for segmentation of right-ventricle in short axis MRI images. After segmentation of right-ventricle from base to apex in end diastole and end systole phases of cardiac cycle, volume of right-ventricle in these phases calculated and then, ejection fraction calculated. We performed a quantitative evaluation of clinical cardiac parameters derived from the automatic segmentation by comparison against a manual delineation of the ventricles. The manually and automatically determined quantitative clinical parameters were statistically compared by means of linear regression. This fits a line to the data such that the root-mean-square error (RMSE) of the residuals is minimized. The results show low RMSE for Right Ventricle Ejection Fraction and Volume (≤ 0.06 for RV EF, and ≤ 10 mL for RV volume). Evaluation of segmentation results is also done by means of four statistical measures including sensitivity, specificity, similarity index and Jaccard index. The average value of similarity index is 86.87%. The Jaccard index mean value is 83.85% which shows a good accuracy of segmentation. The average of sensitivity is 93.9% and mean value of the specificity is 89.45%. These results show the reliability of proposed method in these cases that manual segmentation is inapplicable. Huge shape variety of right-ventricle led us to use a shape prior based method and this work can develop by four-dimensional processing for determining the first ventricular slices.
Besemer, Abigail E; Titz, Benjamin; Grudzinski, Joseph J; Weichert, Jamey P; Kuo, John S; Robins, H Ian; Hall, Lance T; Bednarz, Bryan P
2017-07-06
Variations in tumor volume segmentation methods in targeted radionuclide therapy (TRT) may lead to dosimetric uncertainties. This work investigates the impact of PET and MRI threshold-based tumor segmentation on TRT dosimetry in patients with primary and metastatic brain tumors. In this study, PET/CT images of five brain cancer patients were acquired at 6, 24, and 48 h post-injection of 124 I-CLR1404. The tumor volume was segmented using two standardized uptake value (SUV) threshold levels, two tumor-to-background ratio (TBR) threshold levels, and a T1 Gadolinium-enhanced MRI threshold. The dice similarity coefficient (DSC), jaccard similarity coefficient (JSC), and overlap volume (OV) metrics were calculated to compare differences in the MRI and PET contours. The therapeutic 131 I-CLR1404 voxel-level dose distribution was calculated from the 124 I-CLR1404 activity distribution using RAPID, a Geant4 Monte Carlo internal dosimetry platform. The TBR, SUV, and MRI tumor volumes ranged from 2.3-63.9 cc, 0.1-34.7 cc, and 0.4-11.8 cc, respectively. The average ± standard deviation (range) was 0.19 ± 0.13 (0.01-0.51), 0.30 ± 0.17 (0.03-0.67), and 0.75 ± 0.29 (0.05-1.00) for the JSC, DSC, and OV, respectively. The DSC and JSC values were small and the OV values were large for both the MRI-SUV and MRI-TBR combinations because the regions of PET uptake were generally larger than the MRI enhancement. Notable differences in the tumor dose volume histograms were observed for each patient. The mean (standard deviation) 131 I-CLR1404 tumor doses ranged from 0.28-1.75 Gy GBq -1 (0.07-0.37 Gy GBq -1 ). The ratio of maximum-to-minimum mean doses for each patient ranged from 1.4-2.0. The tumor volume and the interpretation of the tumor dose is highly sensitive to the imaging modality, PET enhancement metric, and threshold level used for tumor volume segmentation. The large variations in tumor doses clearly demonstrate the need for standard protocols for multimodality tumor segmentation in TRT dosimetry.
NASA Astrophysics Data System (ADS)
Besemer, Abigail E.; Titz, Benjamin; Grudzinski, Joseph J.; Weichert, Jamey P.; Kuo, John S.; Robins, H. Ian; Hall, Lance T.; Bednarz, Bryan P.
2017-08-01
Variations in tumor volume segmentation methods in targeted radionuclide therapy (TRT) may lead to dosimetric uncertainties. This work investigates the impact of PET and MRI threshold-based tumor segmentation on TRT dosimetry in patients with primary and metastatic brain tumors. In this study, PET/CT images of five brain cancer patients were acquired at 6, 24, and 48 h post-injection of 124I-CLR1404. The tumor volume was segmented using two standardized uptake value (SUV) threshold levels, two tumor-to-background ratio (TBR) threshold levels, and a T1 Gadolinium-enhanced MRI threshold. The dice similarity coefficient (DSC), jaccard similarity coefficient (JSC), and overlap volume (OV) metrics were calculated to compare differences in the MRI and PET contours. The therapeutic 131I-CLR1404 voxel-level dose distribution was calculated from the 124I-CLR1404 activity distribution using RAPID, a Geant4 Monte Carlo internal dosimetry platform. The TBR, SUV, and MRI tumor volumes ranged from 2.3-63.9 cc, 0.1-34.7 cc, and 0.4-11.8 cc, respectively. The average ± standard deviation (range) was 0.19 ± 0.13 (0.01-0.51), 0.30 ± 0.17 (0.03-0.67), and 0.75 ± 0.29 (0.05-1.00) for the JSC, DSC, and OV, respectively. The DSC and JSC values were small and the OV values were large for both the MRI-SUV and MRI-TBR combinations because the regions of PET uptake were generally larger than the MRI enhancement. Notable differences in the tumor dose volume histograms were observed for each patient. The mean (standard deviation) 131I-CLR1404 tumor doses ranged from 0.28-1.75 Gy GBq-1 (0.07-0.37 Gy GBq-1). The ratio of maximum-to-minimum mean doses for each patient ranged from 1.4-2.0. The tumor volume and the interpretation of the tumor dose is highly sensitive to the imaging modality, PET enhancement metric, and threshold level used for tumor volume segmentation. The large variations in tumor doses clearly demonstrate the need for standard protocols for multimodality tumor segmentation in TRT dosimetry.
Gao, Shan; van 't Klooster, Ronald; Kitslaar, Pieter H; Coolen, Bram F; van den Berg, Alexandra M; Smits, Loek P; Shahzad, Rahil; Shamonin, Denis P; de Koning, Patrick J H; Nederveen, Aart J; van der Geest, Rob J
2017-10-01
The quantification of vessel wall morphology and plaque burden requires vessel segmentation, which is generally performed by manual delineations. The purpose of our work is to develop and evaluate a new 3D model-based approach for carotid artery wall segmentation from dual-sequence MRI. The proposed method segments the lumen and outer wall surfaces including the bifurcation region by fitting a subdivision surface constructed hierarchical-tree model to the image data. In particular, a hybrid segmentation which combines deformable model fitting with boundary classification was applied to extract the lumen surface. The 3D model ensures the correct shape and topology of the carotid artery, while the boundary classification uses combined image information of 3D TOF-MRA and 3D BB-MRI to promote accurate delineation of the lumen boundaries. The proposed algorithm was validated on 25 subjects (48 arteries) including both healthy volunteers and atherosclerotic patients with 30% to 70% carotid stenosis. For both lumen and outer wall border detection, our result shows good agreement between manually and automatically determined contours, with contour-to-contour distance less than 1 pixel as well as Dice overlap greater than 0.87 at all different carotid artery sections. The presented 3D segmentation technique has demonstrated the capability of providing vessel wall delineation for 3D carotid MRI data with high accuracy and limited user interaction. This brings benefits to large-scale patient studies for assessing the effect of pharmacological treatment of atherosclerosis by reducing image analysis time and bias between human observers. © 2017 American Association of Physicists in Medicine.
TuMore: generation of synthetic brain tumor MRI data for deep learning based segmentation approaches
NASA Astrophysics Data System (ADS)
Lindner, Lydia; Pfarrkirchner, Birgit; Gsaxner, Christina; Schmalstieg, Dieter; Egger, Jan
2018-03-01
Accurate segmentation and measurement of brain tumors plays an important role in clinical practice and research, as it is critical for treatment planning and monitoring of tumor growth. However, brain tumor segmentation is one of the most challenging tasks in medical image analysis. Since manual segmentations are subjective, time consuming and neither accurate nor reliable, there exists a need for objective, robust and fast automated segmentation methods that provide competitive performance. Therefore, deep learning based approaches are gaining interest in the field of medical image segmentation. When the training data set is large enough, deep learning approaches can be extremely effective, but in domains like medicine, only limited data is available in the majority of cases. Due to this reason, we propose a method that allows to create a large dataset of brain MRI (Magnetic Resonance Imaging) images containing synthetic brain tumors - glioblastomas more specifically - and the corresponding ground truth, that can be subsequently used to train deep neural networks.
Applications of magnetic resonance image segmentation in neurology
NASA Astrophysics Data System (ADS)
Heinonen, Tomi; Lahtinen, Antti J.; Dastidar, Prasun; Ryymin, Pertti; Laarne, Paeivi; Malmivuo, Jaakko; Laasonen, Erkki; Frey, Harry; Eskola, Hannu
1999-05-01
After the introduction of digital imagin devices in medicine computerized tissue recognition and classification have become important in research and clinical applications. Segmented data can be applied among numerous research fields including volumetric analysis of particular tissues and structures, construction of anatomical modes, 3D visualization, and multimodal visualization, hence making segmentation essential in modern image analysis. In this research project several PC based software were developed in order to segment medical images, to visualize raw and segmented images in 3D, and to produce EEG brain maps in which MR images and EEG signals were integrated. The software package was tested and validated in numerous clinical research projects in hospital environment.
Neural and Behavioral Sequelae of Blast-Related Traumatic Brain Injury
2012-11-01
testing and advanced MRI techniques [task-activated functional MRI (fMRI) and diffusion tensor imaging ( DTI )] to gain a comprehensive understanding of... DTI fiber tracking) and neurobehavioral testing (computerized assessment and standard neuropsychological testing) on 60 chronic trauma patients: 15...data analysis. 15. SUBJECT TERMS Blast-related traumatic brain injury (TBI), fMRI, DTI , cognition 16. SECURITY CLASSIFICATION OF: 17. LIMITATION
NASA Astrophysics Data System (ADS)
Ertas, Gokhan; Doran, Simon; Leach, Martin O.
2011-12-01
In this study, we introduce a novel, robust and accurate computerized algorithm based on volumetric principal component maps and template matching that facilitates lesion detection on dynamic contrast-enhanced MR. The study dataset comprises 24 204 contrast-enhanced breast MR images corresponding to 4034 axial slices from 47 women in the UK multi-centre study of MRI screening for breast cancer and categorized as high risk. The scans analysed here were performed on six different models of scanner from three commercial vendors, sited in 13 clinics around the UK. 1952 slices from this dataset, containing 15 benign and 13 malignant lesions, were used for training. The remaining 2082 slices, with 14 benign and 12 malignant lesions, were used for test purposes. To prevent false positives being detected from other tissues and regions of the body, breast volumes are segmented from pre-contrast images using a fast semi-automated algorithm. Principal component analysis is applied to the centred intensity vectors formed from the dynamic contrast-enhanced T1-weighted images of the segmented breasts, followed by automatic thresholding to eliminate fatty tissues and slowly enhancing normal parenchyma and a convolution and filtering process to minimize artefacts from moderately enhanced normal parenchyma and blood vessels. Finally, suspicious lesions are identified through a volumetric sixfold neighbourhood connectivity search and calculation of two morphological features: volume and volumetric eccentricity, to exclude highly enhanced blood vessels, nipples and normal parenchyma and to localize lesions. This provides satisfactory lesion localization. For a detection sensitivity of 100%, the overall false-positive detection rate of the system is 1.02/lesion, 1.17/case and 0.08/slice, comparing favourably with previous studies. This approach may facilitate detection of lesions in multi-centre and multi-instrument dynamic contrast-enhanced breast MR data.
Zhou, Yongxia; Lui, Yvonne W; Zuo, Xi-Nian; Milham, Michael P.; Reaume, Joseph; Grossman, Robert I.; Ge, Yulin
2013-01-01
Purpose To examine thalamic and cortical injuries using fractional amplitude of low-frequency fluctuations (fALFF) and functional connectivity MRI (fcMRI) based on resting state (RS) and task-related fMRI in patients with mild traumatic brain injury (MTBI). Materials and Methods Twenty-seven patients and 27 age-matched controls were recruited. 3T fMRI at RS and finger tapping task were used to assess fALFF and fcMRI patterns. fALFF was computed with filtering (0.01-0.08Hz) and scaling after preprocessing. fcMRI was performed using a standard seed-based correlation method, and delayed fcMRI (coherence) in frequency domain were also performed between thalamus and cortex. Results In comparison with controls, MTBI patients exhibited significantly decreased fALFF in the thalamus (and frontal/temporal sub segments) and cortical frontal and temporal lobes; as well as decreased thalamo-thalamo and thalamo-frontal/thalamo-temporal fcMRI at rest based on RS-fMRI (corrected P<0.05). This thalamic and cortical disruption also existed at task-related condition in patients. Conclusion The decreased fALFF (i.e. lower neuronal activity) in the thalamus and its segments provides additional evidence of thalamic injury in patients with MTBI. Our findings of fALFF and fcMRI changes during motor task and resting state may offer insights into the underlying cause and primary location of disrupted thalamo-cortical networks after MTBI. PMID:24014176
Lavdas, Ioannis; Glocker, Ben; Kamnitsas, Konstantinos; Rueckert, Daniel; Mair, Henrietta; Sandhu, Amandeep; Taylor, Stuart A; Aboagye, Eric O; Rockall, Andrea G
2017-10-01
As part of a program to implement automatic lesion detection methods for whole body magnetic resonance imaging (MRI) in oncology, we have developed, evaluated, and compared three algorithms for fully automatic, multiorgan segmentation in healthy volunteers. The first algorithm is based on classification forests (CFs), the second is based on 3D convolutional neural networks (CNNs) and the third algorithm is based on a multi-atlas (MA) approach. We examined data from 51 healthy volunteers, scanned prospectively with a standardized, multiparametric whole body MRI protocol at 1.5 T. The study was approved by the local ethics committee and written consent was obtained from the participants. MRI data were used as input data to the algorithms, while training was based on manual annotation of the anatomies of interest by clinical MRI experts. Fivefold cross-validation experiments were run on 34 artifact-free subjects. We report three overlap and three surface distance metrics to evaluate the agreement between the automatic and manual segmentations, namely the dice similarity coefficient (DSC), recall (RE), precision (PR), average surface distance (ASD), root-mean-square surface distance (RMSSD), and Hausdorff distance (HD). Analysis of variances was used to compare pooled label metrics between the three algorithms and the DSC on a 'per-organ' basis. A Mann-Whitney U test was used to compare the pooled metrics between CFs and CNNs and the DSC on a 'per-organ' basis, when using different imaging combinations as input for training. All three algorithms resulted in robust segmenters that were effectively trained using a relatively small number of datasets, an important consideration in the clinical setting. Mean overlap metrics for all the segmented structures were: CFs: DSC = 0.70 ± 0.18, RE = 0.73 ± 0.18, PR = 0.71 ± 0.14, CNNs: DSC = 0.81 ± 0.13, RE = 0.83 ± 0.14, PR = 0.82 ± 0.10, MA: DSC = 0.71 ± 0.22, RE = 0.70 ± 0.34, PR = 0.77 ± 0.15. Mean surface distance metrics for all the segmented structures were: CFs: ASD = 13.5 ± 11.3 mm, RMSSD = 34.6 ± 37.6 mm and HD = 185.7 ± 194.0 mm, CNNs; ASD = 5.48 ± 4.84 mm, RMSSD = 17.0 ± 13.3 mm and HD = 199.0 ± 101.2 mm, MA: ASD = 4.22 ± 2.42 mm, RMSSD = 6.13 ± 2.55 mm, and HD = 38.9 ± 28.9 mm. The pooled performance of CFs improved when all imaging combinations (T2w + T1w + DWI) were used as input, while the performance of CNNs deteriorated, but in neither case, significantly. CNNs with T2w images as input, performed significantly better than CFs with all imaging combinations as input for all anatomical labels, except for the bladder. Three state-of-the-art algorithms were developed and used to automatically segment major organs and bones in whole body MRI; good agreement to manual segmentations performed by clinical MRI experts was observed. CNNs perform favorably, when using T2w volumes as input. Using multimodal MRI data as input to CNNs did not improve the segmentation performance. © 2017 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Uchiyama, Yoshikazu; Asano, Tatsunori; Hara, Takeshi; Fujita, Hiroshi; Kinosada, Yasutomi; Asano, Takahiko; Kato, Hiroki; Kanematsu, Masayuki; Hoshi, Hiroaki; Iwama, Toru
2009-02-01
The detection of cerebrovascular diseases such as unruptured aneurysm, stenosis, and occlusion is a major application of magnetic resonance angiography (MRA). However, their accurate detection is often difficult for radiologists. Therefore, several computer-aided diagnosis (CAD) schemes have been developed in order to assist radiologists with image interpretation. The purpose of this study was to develop a computerized method for segmenting cerebral arteries, which is an essential component of CAD schemes. For the segmentation of vessel regions, we first used a gray level transformation to calibrate voxel values. To adjust for variations in the positioning of patients, registration was subsequently employed to maximize the overlapping of the vessel regions in the target image and reference image. The vessel regions were then segmented from the background using gray-level thresholding and region growing techniques. Finally, rule-based schemes with features such as size, shape, and anatomical location were employed to distinguish between vessel regions and false positives. Our method was applied to 854 clinical cases obtained from two different hospitals. The segmentation of cerebral arteries in 97.1%(829/854) of the MRA studies was attained as an acceptable result. Therefore, our computerized method would be useful in CAD schemes for the detection of cerebrovascular diseases in MRA images.
A superpixel-based framework for automatic tumor segmentation on breast DCE-MRI
NASA Astrophysics Data System (ADS)
Yu, Ning; Wu, Jia; Weinstein, Susan P.; Gaonkar, Bilwaj; Keller, Brad M.; Ashraf, Ahmed B.; Jiang, YunQing; Davatzikos, Christos; Conant, Emily F.; Kontos, Despina
2015-03-01
Accurate and efficient automated tumor segmentation in breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is highly desirable for computer-aided tumor diagnosis. We propose a novel automatic segmentation framework which incorporates mean-shift smoothing, superpixel-wise classification, pixel-wise graph-cuts partitioning, and morphological refinement. A set of 15 breast DCE-MR images, obtained from the American College of Radiology Imaging Network (ACRIN) 6657 I-SPY trial, were manually segmented to generate tumor masks (as ground truth) and breast masks (as regions of interest). Four state-of-the-art segmentation approaches based on diverse models were also utilized for comparison. Based on five standard evaluation metrics for segmentation, the proposed framework consistently outperformed all other approaches. The performance of the proposed framework was: 1) 0.83 for Dice similarity coefficient, 2) 0.96 for pixel-wise accuracy, 3) 0.72 for VOC score, 4) 0.79 mm for mean absolute difference, and 5) 11.71 mm for maximum Hausdorff distance, which surpassed the second best method (i.e., adaptive geodesic transformation), a semi-automatic algorithm depending on precise initialization. Our results suggest promising potential applications of our segmentation framework in assisting analysis of breast carcinomas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, AS; Piper, J; Curry, K
2015-06-15
Purpose: Prostate MRI plays an important role in diagnosis, biopsy guidance, and therapy planning for prostate cancer. Prostate MRI contours can be used to aid in image fusion for ultrasound biopsy guidance and delivery of radiation. Our goal in this study is to evaluate an automatic atlas-based segmentation method for generating prostate and peripheral zone (PZ) contours on MRI. Methods: T2-weighted MRIs were acquired on 3T-Discovery MR750 System (GE, Milwaukee). The Volumes of Interest (VOIs): prostate and PZ were outlined by an expert radiation oncologist and used to create an atlas library for atlas-based segmentation. The atlas-segmentation accuracy was evaluatedmore » using a leave-one-out analysis. The method involved automatically finding the atlas subject that best matched the test subject followed by a normalized intensity-based free-form deformable registration of the atlas subject to the test subject. The prostate and PZ contours were transformed to the test subject using the same deformation. For each test subject the three best matches were used and the final contour was combined using Majority Vote. The atlas-segmentation process was fully automatic. Dice similarity coefficients (DSC) and mean Hausdorff values were used for comparison. Results: VOIs contours were available for 28 subjects. For the prostate, the atlas-based segmentation method resulted in an average DSC of 0.88+/−0.08 and a mean Hausdorff distance of 1.1+/−0.9mm. The number of patients (#) in DSC ranges are as follows: 0.60–0.69(1), 0.70–0.79(2), 0.80–0.89(13), >0.89(11). For the PZ, the average DSC was 0.72+/−0.17 and average Hausdorff of 0.9+/−0.9mm. The number of patients (#) in DSC ranges are as follows: <0.60(4), 0.60–0.69(6), 0.70–0.79(7), 0.80–0.89(9), >0.89(1). Conclusion: The MRI atlas-based segmentation method achieved good results for both the whole prostate and PZ compared to expert defined VOIs. The technique is fast, fully automatic, and has the potential to provide significant time savings for prostate VOI definition. AS Nelson and J Piper are partial owners of MIM Software, Inc. AS Nelson, J Piper, K Curry, and A Swallen are current employees at MIM Software, Inc.« less
Registration of MRI to Intraoperative Radiographs for Target Localization in Spinal Interventions
De Silva, T; Uneri, A; Ketcha, M D; Reaungamornrat, S; Goerres, J; Jacobson, M W; Vogt, S; Kleinszig, G; Khanna, A J; Wolinsky, J-P; Siewerdsen, J H
2017-01-01
Purpose Decision support to assist in target vertebra localization could provide a useful aid to safe and effective spine surgery. Previous solutions have shown 3D-2D registration of preoperative CT to intraoperative radiographs to reliably annotate vertebral labels for assistance during level localization. We present an algorithm (referred to as MR-LevelCheck) to perform 3D-2D registration based on a preoperative MRI to accommodate the increasingly common clinical scenario in which MRI is used instead of CT for preoperative planning. Methods Straightforward adaptation of gradient/intensity-based methods appropriate to CT-to-radiograph registration is confounded by large mismatch and noncorrespondence in image intensity between MRI and radiographs. The proposed method overcomes such challenges with a simple vertebrae segmentation step using vertebra centroids as seed points (automatically defined within existing workflow). Forwards projections are computed using segmented MRI and registered to radiographs via gradient orientation (GO) similarity and the CMA-ES (Covariance-Matrix-Adaptation Evolutionary-Strategy) optimizer. The method was tested in an IRB-approved study involving 10 patients undergoing cervical, thoracic, or lumbar spine surgery following preoperative MRI. Results The method successfully registered each preoperative MRI to intraoperative radiographs and maintained desirable properties of robustness against image content mismatch and large capture range. Robust registration performance was achieved with projection distance error (PDE) (median ± iqr) = 4.3 ± 2.6 mm (median ± iqr) and 0% failure rate. Segmentation accuracy for the continuous max-flow method yielded Dice coefficient = 88.1 ± 5.2, Accuracy = 90.6 ± 5.7, RMSE = 1.8 ± 0.6 mm, and contour affinity ratio (CAR) = 0.82 ± 0.08. Registration performance was found to be robust for segmentation methods exhibiting RMSE < 3 mm and CAR > 0.50. Conclusion The MR-LevelCheck method provides a potentially valuable extension to a previously developed decision support tool for spine surgery target localization by extending its utility to preoperative MRI while maintaining characteristics of accuracy and robustness. PMID:28050972
Multiclass feature selection for improved pediatric brain tumor segmentation
NASA Astrophysics Data System (ADS)
Ahmed, Shaheen; Iftekharuddin, Khan M.
2012-03-01
In our previous work, we showed that fractal-based texture features are effective in detection, segmentation and classification of posterior-fossa (PF) pediatric brain tumor in multimodality MRI. We exploited an information theoretic approach such as Kullback-Leibler Divergence (KLD) for feature selection and ranking different texture features. We further incorporated the feature selection technique with segmentation method such as Expectation Maximization (EM) for segmentation of tumor T and non tumor (NT) tissues. In this work, we extend the two class KLD technique to multiclass for effectively selecting the best features for brain tumor (T), cyst (C) and non tumor (NT). We further obtain segmentation robustness for each tissue types by computing Bay's posterior probabilities and corresponding number of pixels for each tissue segments in MRI patient images. We evaluate improved tumor segmentation robustness using different similarity metric for 5 patients in T1, T2 and FLAIR modalities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaofeng; Wu, Ning; Cheng, Guanghui
Purpose: To develop an automated magnetic resonance imaging (MRI) parotid segmentation method to monitor radiation-induced parotid gland changes in patients after head and neck radiation therapy (RT). Methods and Materials: The proposed method combines the atlas registration method, which captures the global variation of anatomy, with a machine learning technology, which captures the local statistical features, to automatically segment the parotid glands from the MRIs. The segmentation method consists of 3 major steps. First, an atlas (pre-RT MRI and manually contoured parotid gland mask) is built for each patient. A hybrid deformable image registration is used to map the pre-RTmore » MRI to the post-RT MRI, and the transformation is applied to the pre-RT parotid volume. Second, the kernel support vector machine (SVM) is trained with the subject-specific atlas pair consisting of multiple features (intensity, gradient, and others) from the aligned pre-RT MRI and the transformed parotid volume. Third, the well-trained kernel SVM is used to differentiate the parotid from surrounding tissues in the post-RT MRIs by statistically matching multiple texture features. A longitudinal study of 15 patients undergoing head and neck RT was conducted: baseline MRI was acquired prior to RT, and the post-RT MRIs were acquired at 3-, 6-, and 12-month follow-up examinations. The resulting segmentations were compared with the physicians' manual contours. Results: Successful parotid segmentation was achieved for all 15 patients (42 post-RT MRIs). The average percentage of volume differences between the automated segmentations and those of the physicians' manual contours were 7.98% for the left parotid and 8.12% for the right parotid. The average volume overlap was 91.1% ± 1.6% for the left parotid and 90.5% ± 2.4% for the right parotid. The parotid gland volume reduction at follow-up was 25% at 3 months, 27% at 6 months, and 16% at 12 months. Conclusions: We have validated our automated parotid segmentation algorithm in a longitudinal study. This segmentation method may be useful in future studies to address radiation-induced xerostomia in head and neck radiation therapy.« less
Soltaninejad, Mohammadreza; Yang, Guang; Lambrou, Tryphon; Allinson, Nigel; Jones, Timothy L; Barrick, Thomas R; Howe, Franklyn A; Ye, Xujiong
2017-02-01
We propose a fully automated method for detection and segmentation of the abnormal tissue associated with brain tumour (tumour core and oedema) from Fluid- Attenuated Inversion Recovery (FLAIR) Magnetic Resonance Imaging (MRI). The method is based on superpixel technique and classification of each superpixel. A number of novel image features including intensity-based, Gabor textons, fractal analysis and curvatures are calculated from each superpixel within the entire brain area in FLAIR MRI to ensure a robust classification. Extremely randomized trees (ERT) classifier is compared with support vector machine (SVM) to classify each superpixel into tumour and non-tumour. The proposed method is evaluated on two datasets: (1) Our own clinical dataset: 19 MRI FLAIR images of patients with gliomas of grade II to IV, and (2) BRATS 2012 dataset: 30 FLAIR images with 10 low-grade and 20 high-grade gliomas. The experimental results demonstrate the high detection and segmentation performance of the proposed method using ERT classifier. For our own cohort, the average detection sensitivity, balanced error rate and the Dice overlap measure for the segmented tumour against the ground truth are 89.48 %, 6 % and 0.91, respectively, while, for the BRATS dataset, the corresponding evaluation results are 88.09 %, 6 % and 0.88, respectively. This provides a close match to expert delineation across all grades of glioma, leading to a faster and more reproducible method of brain tumour detection and delineation to aid patient management.
An unsupervised approach for measuring myocardial perfusion in MR image sequences
NASA Astrophysics Data System (ADS)
Discher, Antoine; Rougon, Nicolas; Preteux, Francoise
2005-08-01
Quantitatively assessing myocardial perfusion is a key issue for the diagnosis, therapeutic planning and patient follow-up of cardio-vascular diseases. To this end, perfusion MRI (p-MRI) has emerged as a valuable clinical investigation tool thanks to its ability of dynamically imaging the first pass of a contrast bolus in the framework of stress/rest exams. However, reliable techniques for automatically computing regional first pass curves from 2D short-axis cardiac p-MRI sequences remain to be elaborated. We address this problem and develop an unsupervised four-step approach comprising: (i) a coarse spatio-temporal segmentation step, allowing to automatically detect a region of interest for the heart over the whole sequence, and to select a reference frame with maximal myocardium contrast; (ii) a model-based variational segmentation step of the reference frame, yielding a bi-ventricular partition of the heart into left ventricle, right ventricle and myocardium components; (iii) a respiratory/cardiac motion artifacts compensation step using a novel region-driven intensity-based non rigid registration technique, allowing to elastically propagate the reference bi-ventricular segmentation over the whole sequence; (iv) a measurement step, delivering first-pass curves over each region of a segmental model of the myocardium. The performance of this approach is assessed over a database of 15 normal and pathological subjects, and compared with perfusion measurements delivered by a MRI manufacturer software package based on manual delineations by a medical expert.
Image segmentation and 3D visualization for MRI mammography
NASA Astrophysics Data System (ADS)
Li, Lihua; Chu, Yong; Salem, Angela F.; Clark, Robert A.
2002-05-01
MRI mammography has a number of advantages, including the tomographic, and therefore three-dimensional (3-D) nature, of the images. It allows the application of MRI mammography to breasts with dense tissue, post operative scarring, and silicon implants. However, due to the vast quantity of images and subtlety of difference in MR sequence, there is a need for reliable computer diagnosis to reduce the radiologist's workload. The purpose of this work was to develop automatic breast/tissue segmentation and visualization algorithms to aid physicians in detecting and observing abnormalities in breast. Two segmentation algorithms were developed: one for breast segmentation, the other for glandular tissue segmentation. In breast segmentation, the MRI image is first segmented using an adaptive growing clustering method. Two tracing algorithms were then developed to refine the breast air and chest wall boundaries of breast. The glandular tissue segmentation was performed using an adaptive thresholding method, in which the threshold value was spatially adaptive using a sliding window. The 3D visualization of the segmented 2D slices of MRI mammography was implemented under IDL environment. The breast and glandular tissue rendering, slicing and animation were displayed.
Shen, Shan; Szameitat, André J; Sterr, Annette
2008-07-01
Detection of infarct lesions using traditional segmentation methods is always problematic due to intensity similarity between lesions and normal tissues, so that multispectral MRI modalities were often employed for this purpose. However, the high costs of MRI scan and the severity of patient conditions restrict the collection of multiple images. Therefore, in this paper, a new 3-D automatic lesion detection approach was proposed, which required only a single type of anatomical MRI scan. It was developed on a theory that, when lesions were present, the voxel-intensity-based segmentation and the spatial-location-based tissue distribution should be inconsistent in the regions of lesions. The degree of this inconsistency was calculated, which indicated the likelihood of tissue abnormality. Lesions were identified when the inconsistency exceeded a defined threshold. In this approach, the intensity-based segmentation was implemented by the conventional fuzzy c-mean (FCM) algorithm, while the spatial location of tissues was provided by prior tissue probability maps. The use of simulated MRI lesions allowed us to quantitatively evaluate the performance of the proposed method, as the size and location of lesions were prespecified. The results showed that our method effectively detected lesions with 40-80% signal reduction compared to normal tissues (similarity index > 0.7). The capability of the proposed method in practice was also demonstrated on real infarct lesions from 15 stroke patients, where the lesions detected were in broad agreement with true lesions. Furthermore, a comparison to a statistical segmentation approach presented in the literature suggested that our 3-D lesion detection approach was more reliable. Future work will focus on adapting the current method to multiple sclerosis lesion detection.
NASA Astrophysics Data System (ADS)
Antropova, Natasha; Huynh, Benjamin; Giger, Maryellen
2017-03-01
Intuitive segmentation-based CADx/radiomic features, calculated from the lesion segmentations of dynamic contrast-enhanced magnetic resonance images (DCE-MRIs) have been utilized in the task of distinguishing between malignant and benign lesions. Additionally, transfer learning with pre-trained deep convolutional neural networks (CNNs) allows for an alternative method of radiomics extraction, where the features are derived directly from the image data. However, the comparison of computer-extracted segmentation-based and CNN features in MRI breast lesion characterization has not yet been conducted. In our study, we used a DCE-MRI database of 640 breast cases - 191 benign and 449 malignant. Thirty-eight segmentation-based features were extracted automatically using our quantitative radiomics workstation. Also, 2D ROIs were selected around each lesion on the DCE-MRIs and directly input into a pre-trained CNN AlexNet, yielding CNN features. Each method was investigated separately and in combination in terms of performance in the task of distinguishing between benign and malignant lesions. Area under the ROC curve (AUC) served as the figure of merit. Both methods yielded promising classification performance with round-robin cross-validated AUC values of 0.88 (se =0.01) and 0.76 (se=0.02) for segmentationbased and deep learning methods, respectively. Combination of the two methods enhanced the performance in malignancy assessment resulting in an AUC value of 0.91 (se=0.01), a statistically significant improvement over the performance of the CNN method alone.
Kim, Eun Young; Magnotta, Vincent A; Liu, Dawei; Johnson, Hans J
2014-09-01
Machine learning (ML)-based segmentation methods are a common technique in the medical image processing field. In spite of numerous research groups that have investigated ML-based segmentation frameworks, there remains unanswered aspects of performance variability for the choice of two key components: ML algorithm and intensity normalization. This investigation reveals that the choice of those elements plays a major part in determining segmentation accuracy and generalizability. The approach we have used in this study aims to evaluate relative benefits of the two elements within a subcortical MRI segmentation framework. Experiments were conducted to contrast eight machine-learning algorithm configurations and 11 normalization strategies for our brain MR segmentation framework. For the intensity normalization, a Stable Atlas-based Mapped Prior (STAMP) was utilized to take better account of contrast along boundaries of structures. Comparing eight machine learning algorithms on down-sampled segmentation MR data, it was obvious that a significant improvement was obtained using ensemble-based ML algorithms (i.e., random forest) or ANN algorithms. Further investigation between these two algorithms also revealed that the random forest results provided exceptionally good agreement with manual delineations by experts. Additional experiments showed that the effect of STAMP-based intensity normalization also improved the robustness of segmentation for multicenter data sets. The constructed framework obtained good multicenter reliability and was successfully applied on a large multicenter MR data set (n>3000). Less than 10% of automated segmentations were recommended for minimal expert intervention. These results demonstrate the feasibility of using the ML-based segmentation tools for processing large amount of multicenter MR images. We demonstrated dramatically different result profiles in segmentation accuracy according to the choice of ML algorithm and intensity normalization chosen. Copyright © 2014 Elsevier Inc. All rights reserved.
[RSF model optimization and its application to brain tumor segmentation in MRI].
Cheng, Zhaoning; Song, Zhijian
2013-04-01
Magnetic resonance imaging (MRI) is usually obscure and non-uniform in gray, and the tumors inside are poorly circumscribed, hence the automatic tumor segmentation in MRI is very difficult. Region-scalable fitting (RSF) energy model is a new segmentation approach for some uneven grayscale images. However, the level set formulation (LSF) of RSF model is not suitable for the environment with different grey level distribution inside and outside the intial contour, and the complex intensity environment of MRI always makes it hard to get ideal segmentation results. Therefore, we improved the model by a new LSF and combined it with the mean shift method, which can be helpful for tumor segmentation and has better convergence and target direction. The proposed method has been utilized in a series of studies for real MRI images, and the results showed that it could realize fast, accurate and robust segmentations for brain tumors in MRI, which has great clinical significance.
Semiautomatic tumor segmentation with multimodal images in a conditional random field framework.
Hu, Yu-Chi; Grossberg, Michael; Mageras, Gikas
2016-04-01
Volumetric medical images of a single subject can be acquired using different imaging modalities, such as computed tomography, magnetic resonance imaging (MRI), and positron emission tomography. In this work, we present a semiautomatic segmentation algorithm that can leverage the synergies between different image modalities while integrating interactive human guidance. The algorithm provides a statistical segmentation framework partly automating the segmentation task while still maintaining critical human oversight. The statistical models presented are trained interactively using simple brush strokes to indicate tumor and nontumor tissues and using intermediate results within a patient's image study. To accomplish the segmentation, we construct the energy function in the conditional random field (CRF) framework. For each slice, the energy function is set using the estimated probabilities from both user brush stroke data and prior approved segmented slices within a patient study. The progressive segmentation is obtained using a graph-cut-based minimization. Although no similar semiautomated algorithm is currently available, we evaluated our method with an MRI data set from Medical Image Computing and Computer Assisted Intervention Society multimodal brain segmentation challenge (BRATS 2012 and 2013) against a similar fully automatic method based on CRF and a semiautomatic method based on grow-cut, and our method shows superior performance.
Weakly supervised automatic segmentation and 3D modeling of the knee joint from MR images
NASA Astrophysics Data System (ADS)
Amami, Amal; Ben Azouz, Zouhour
2013-12-01
Automatic segmentation and 3D modeling of the knee joint from MR images, is a challenging task. Most of the existing techniques require the tedious manual segmentation of a training set of MRIs. We present an approach that necessitates the manual segmentation of one MR image. It is based on a volumetric active appearance model. First, a dense tetrahedral mesh is automatically created on a reference MR image that is arbitrary selected. Second, a pairwise non-rigid registration between each MRI from a training set and the reference MRI is computed. The non-rigid registration is based on a piece-wise affine deformation using the created tetrahedral mesh. The minimum description length is then used to bring all the MR images into a correspondence. An average image and tetrahedral mesh, as well as a set of main modes of variations, are generated using the established correspondence. Any manual segmentation of the average MRI can be mapped to other MR images using the AAM. The proposed approach has the advantage of simultaneously generating 3D reconstructions of the surface as well as a 3D solid model of the knee joint. The generated surfaces and tetrahedral meshes present the interesting property of fulfilling a correspondence between different MR images. This paper shows preliminary results of the proposed approach. It demonstrates the automatic segmentation and 3D reconstruction of a knee joint obtained by mapping a manual segmentation of a reference image.
NASA Astrophysics Data System (ADS)
Li, Xiaobing; Qiu, Tianshuang; Lebonvallet, Stephane; Ruan, Su
2010-02-01
This paper presents a brain tumor segmentation method which automatically segments tumors from human brain MRI image volume. The presented model is based on the symmetry of human brain and level set method. Firstly, the midsagittal plane of an MRI volume is searched, the slices with potential tumor of the volume are checked out according to their symmetries, and an initial boundary of the tumor in the slice, in which the tumor is in the largest size, is determined meanwhile by watershed and morphological algorithms; Secondly, the level set method is applied to the initial boundary to drive the curve evolving and stopping to the appropriate tumor boundary; Lastly, the tumor boundary is projected one by one to its adjacent slices as initial boundaries through the volume for the whole tumor. The experiment results are compared with hand tracking of the expert and show relatively good accordance between both.
Haufe, William M; Wolfson, Tanya; Hooker, Catherine A; Hooker, Jonathan C; Covarrubias, Yesenia; Schlein, Alex N; Hamilton, Gavin; Middleton, Michael S; Angeles, Jorge E; Hernando, Diego; Reeder, Scott B; Schwimmer, Jeffrey B; Sirlin, Claude B
2017-12-01
To assess and compare the accuracy of magnitude-based magnetic resonance imaging (MRI-M) and complex-based MRI (MRI-C) for estimating hepatic proton density fat fraction (PDFF) in children, using MR spectroscopy (MRS) as the reference standard. A secondary aim was to assess the agreement between MRI-M and MRI-C. This was a HIPAA-compliant, retrospective analysis of data collected in children enrolled in prospective, Institutional Review Board (IRB)-approved studies between 2012 and 2014. Informed consent was obtained from 200 children (ages 8-19 years) who subsequently underwent 3T MR exams that included MRI-M, MRI-C, and T 1 -independent, T 2 -corrected, single-voxel stimulated echo acquisition mode (STEAM) MRS. Both MRI methods acquired six echoes at low flip angles. T2*-corrected PDFF parametric maps were generated. PDFF values were recorded from regions of interest (ROIs) drawn on the maps in each of the nine Couinaud segments and three ROIs colocalized to the MRS voxel location. Regression analyses assessing agreement with MRS were performed to evaluate the accuracy of each MRI method, and Bland-Altman and intraclass correlation coefficient (ICC) analyses were performed to assess agreement between the MRI methods. MRI-M and MRI-C PDFF were accurate relative to the colocalized MRS reference standard, with regression intercepts of 0.63% and -0.07%, slopes of 0.998 and 0.975, and proportion-of-explained-variance values (R 2 ) of 0.982 and 0.979, respectively. For individual Couinaud segments and for the whole liver averages, Bland-Altman biases between MRI-M and MRI-C were small (ranging from 0.04 to 1.11%) and ICCs were high (≥0.978). Both MRI-M and MRI-C accurately estimated hepatic PDFF in children, and high intermethod agreement was observed. 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017;46:1641-1647. © 2017 International Society for Magnetic Resonance in Medicine.
ARL Summer Student Research Symposium. Volume 1: Select Papers
2012-08-01
deploying Android smart phones and tablets on the battlefield, which may be a target for malware. In our research, we attempt to improve static...network. (a) The T1 and MRI images are (b) segmented into different material components. The segmented geometry is then used to create (c) a finite element...towards finding a method to detect mTBI non-invasively. One method in particular includes the use of a magnetic resonance image ( MRI )-based imaging
Application of Quantitative MRI for Brain Tissue Segmentation at 1.5 T and 3.0 T Field Strengths
West, Janne; Blystad, Ida; Engström, Maria; Warntjes, Jan B. M.; Lundberg, Peter
2013-01-01
Background Brain tissue segmentation of white matter (WM), grey matter (GM), and cerebrospinal fluid (CSF) are important in neuroradiological applications. Quantitative Mri (qMRI) allows segmentation based on physical tissue properties, and the dependencies on MR scanner settings are removed. Brain tissue groups into clusters in the three dimensional space formed by the qMRI parameters R1, R2 and PD, and partial volume voxels are intermediate in this space. The qMRI parameters, however, depend on the main magnetic field strength. Therefore, longitudinal studies can be seriously limited by system upgrades. The aim of this work was to apply one recently described brain tissue segmentation method, based on qMRI, at both 1.5 T and 3.0 T field strengths, and to investigate similarities and differences. Methods In vivo qMRI measurements were performed on 10 healthy subjects using both 1.5 T and 3.0 T MR scanners. The brain tissue segmentation method was applied for both 1.5 T and 3.0 T and volumes of WM, GM, CSF and brain parenchymal fraction (BPF) were calculated on both field strengths. Repeatability was calculated for each scanner and a General Linear Model was used to examine the effect of field strength. Voxel-wise t-tests were also performed to evaluate regional differences. Results Statistically significant differences were found between 1.5 T and 3.0 T for WM, GM, CSF and BPF (p<0.001). Analyses of main effects showed that WM was underestimated, while GM and CSF were overestimated on 1.5 T compared to 3.0 T. The mean differences between 1.5 T and 3.0 T were -66 mL WM, 40 mL GM, 29 mL CSF and -1.99% BPF. Voxel-wise t-tests revealed regional differences of WM and GM in deep brain structures, cerebellum and brain stem. Conclusions Most of the brain was identically classified at the two field strengths, although some regional differences were observed. PMID:24066153
Ahmed, Shaheen; Iftekharuddin, Khan M; Vossough, Arastoo
2011-03-01
Our previous works suggest that fractal texture feature is useful to detect pediatric brain tumor in multimodal MRI. In this study, we systematically investigate efficacy of using several different image features such as intensity, fractal texture, and level-set shape in segmentation of posterior-fossa (PF) tumor for pediatric patients. We explore effectiveness of using four different feature selection and three different segmentation techniques, respectively, to discriminate tumor regions from normal tissue in multimodal brain MRI. We further study the selective fusion of these features for improved PF tumor segmentation. Our result suggests that Kullback-Leibler divergence measure for feature ranking and selection and the expectation maximization algorithm for feature fusion and tumor segmentation offer the best results for the patient data in this study. We show that for T1 and fluid attenuation inversion recovery (FLAIR) MRI modalities, the best PF tumor segmentation is obtained using the texture feature such as multifractional Brownian motion (mBm) while that for T2 MRI is obtained by fusing level-set shape with intensity features. In multimodality fused MRI (T1, T2, and FLAIR), mBm feature offers the best PF tumor segmentation performance. We use different similarity metrics to evaluate quality and robustness of these selected features for PF tumor segmentation in MRI for ten pediatric patients.
Charron, Odelin; Lallement, Alex; Jarnet, Delphine; Noblet, Vincent; Clavier, Jean-Baptiste; Meyer, Philippe
2018-04-01
Stereotactic treatments are today the reference techniques for the irradiation of brain metastases in radiotherapy. The dose per fraction is very high, and delivered in small volumes (diameter <1 cm). As part of these treatments, effective detection and precise segmentation of lesions are imperative. Many methods based on deep-learning approaches have been developed for the automatic segmentation of gliomas, but very little for that of brain metastases. We adapted an existing 3D convolutional neural network (DeepMedic) to detect and segment brain metastases on MRI. At first, we sought to adapt the network parameters to brain metastases. We then explored the single or combined use of different MRI modalities, by evaluating network performance in terms of detection and segmentation. We also studied the interest of increasing the database with virtual patients or of using an additional database in which the active parts of the metastases are separated from the necrotic parts. Our results indicated that a deep network approach is promising for the detection and the segmentation of brain metastases on multimodal MRI. Copyright © 2018 Elsevier Ltd. All rights reserved.
Automatic Structural Parcellation of Mouse Brain MRI Using Multi-Atlas Label Fusion
Ma, Da; Cardoso, Manuel J.; Modat, Marc; Powell, Nick; Wells, Jack; Holmes, Holly; Wiseman, Frances; Tybulewicz, Victor; Fisher, Elizabeth; Lythgoe, Mark F.; Ourselin, Sébastien
2014-01-01
Multi-atlas segmentation propagation has evolved quickly in recent years, becoming a state-of-the-art methodology for automatic parcellation of structural images. However, few studies have applied these methods to preclinical research. In this study, we present a fully automatic framework for mouse brain MRI structural parcellation using multi-atlas segmentation propagation. The framework adopts the similarity and truth estimation for propagated segmentations (STEPS) algorithm, which utilises a locally normalised cross correlation similarity metric for atlas selection and an extended simultaneous truth and performance level estimation (STAPLE) framework for multi-label fusion. The segmentation accuracy of the multi-atlas framework was evaluated using publicly available mouse brain atlas databases with pre-segmented manually labelled anatomical structures as the gold standard, and optimised parameters were obtained for the STEPS algorithm in the label fusion to achieve the best segmentation accuracy. We showed that our multi-atlas framework resulted in significantly higher segmentation accuracy compared to single-atlas based segmentation, as well as to the original STAPLE framework. PMID:24475148
Statistical segmentation of multidimensional brain datasets
NASA Astrophysics Data System (ADS)
Desco, Manuel; Gispert, Juan D.; Reig, Santiago; Santos, Andres; Pascau, Javier; Malpica, Norberto; Garcia-Barreno, Pedro
2001-07-01
This paper presents an automatic segmentation procedure for MRI neuroimages that overcomes part of the problems involved in multidimensional clustering techniques like partial volume effects (PVE), processing speed and difficulty of incorporating a priori knowledge. The method is a three-stage procedure: 1) Exclusion of background and skull voxels using threshold-based region growing techniques with fully automated seed selection. 2) Expectation Maximization algorithms are used to estimate the probability density function (PDF) of the remaining pixels, which are assumed to be mixtures of gaussians. These pixels can then be classified into cerebrospinal fluid (CSF), white matter and grey matter. Using this procedure, our method takes advantage of using the full covariance matrix (instead of the diagonal) for the joint PDF estimation. On the other hand, logistic discrimination techniques are more robust against violation of multi-gaussian assumptions. 3) A priori knowledge is added using Markov Random Field techniques. The algorithm has been tested with a dataset of 30 brain MRI studies (co-registered T1 and T2 MRI). Our method was compared with clustering techniques and with template-based statistical segmentation, using manual segmentation as a gold-standard. Our results were more robust and closer to the gold-standard.
NASA Astrophysics Data System (ADS)
Kinkingnehun, Serge R. J.; du Boisgueheneuc, Foucaud; Golmard, Jean-Louis; Zhang, Sandy X.; Levy, Richard; Dubois, Bruno
2004-04-01
We have developed a new technique to analyze correlations between brain anatomy and its neurological functions. The technique is based on the anatomic MRI of patients with brain lesions who are administered neuropsychological tests. Brain lesions of the MRI scans are first manually segmented. The MRI volumes are then normalized to a reference map, using the segmented area as a mask. After normalization, the brain lesions of the MRI are segmented again in order to redefine the border of the lesions in the context of the normalized brain. Once the MRI is segmented, the patient's score on the neuropsychological test is assigned to each voxel in the lesioned area, while the rest of the voxels of the image are set to 0. Subsequently, the individual patient's MRI images are superimposed, and each voxel is reassigned the average score of the patients who have a lesion at that voxel. A threshold is applied to remove regions having less than three overlaps. This process leads to an anatomo-functional map that links brain areas to functional loss. Other maps can be created to aid in analyzing the functional maps, such as one that indicates the 95% confidence interval of the averaged scores for each area. This anatomo-clinical overlapping map (AnaCOM) method was used to obtain functional maps from patients with lesions in the superior frontal gyrus. By finding particular subregions more responsible for a particular deficit, this method can generate new hypotheses to be tested by conventional group methods.
Plexiform neurofibroma tissue classification
NASA Astrophysics Data System (ADS)
Weizman, L.; Hoch, L.; Ben Sira, L.; Joskowicz, L.; Pratt, L.; Constantini, S.; Ben Bashat, D.
2011-03-01
Plexiform Neurofibroma (PN) is a major complication of NeuroFibromatosis-1 (NF1), a common genetic disease that involving the nervous system. PNs are peripheral nerve sheath tumors extending along the length of the nerve in various parts of the body. Treatment decision is based on tumor volume assessment using MRI, which is currently time consuming and error prone, with limited semi-automatic segmentation support. We present in this paper a new method for the segmentation and tumor mass quantification of PN from STIR MRI scans. The method starts with a user-based delineation of the tumor area in a single slice and automatically detects the PN lesions in the entire image based on the tumor connectivity. Experimental results on seven datasets yield a mean volume overlap difference of 25% as compared to manual segmentation by expert radiologist with a mean computation and interaction time of 12 minutes vs. over an hour for manual annotation. Since the user interaction in the segmentation process is minimal, our method has the potential to successfully become part of the clinical workflow.
Development of a histologically validated segmentation protocol for the hippocampal body.
Steve, Trevor A; Yasuda, Clarissa L; Coras, Roland; Lail, Mohjevan; Blumcke, Ingmar; Livy, Daniel J; Malykhin, Nikolai; Gross, Donald W
2017-08-15
Recent findings have demonstrated that hippocampal subfields can be selectively affected in different disease states, which has led to efforts to segment the human hippocampus with in vivo magnetic resonance imaging (MRI). However, no studies have examined the histological accuracy of subfield segmentation protocols. The presence of MRI-visible anatomical landmarks with known correspondence to histology represents a fundamental prerequisite for in vivo hippocampal subfield segmentation. In the present study, we aimed to: 1) develop a novel method for hippocampal body segmentation, based on two MRI-visible anatomical landmarks (stratum lacunosum moleculare [SLM] & dentate gyrus [DG]), and assess its accuracy in comparison to the gold standard direct histological measurements; 2) quantify the accuracy of two published segmentation strategies in comparison to the histological gold standard; and 3) apply the novel method to ex vivo MRI and correlate the results with histology. Ultra-high resolution ex vivo MRI was performed on six whole cadaveric hippocampal specimens, which were then divided into 22 blocks and histologically processed. The hippocampal bodies were segmented into subfields based on histological criteria and subfield boundaries and areas were directly measured. A novel method was developed using mean percentage of the total SLM distance to define subfield boundaries. Boundary distances and subfield areas on histology were then determined using the novel method and compared to the gold standard histological measurements. The novel method was then used to determine ex vivo MRI measures of subfield boundaries and areas, which were compared to histological measurements. For direct histological measurements, the mean percentages of total SLM distance were: Subiculum/CA1 = 9.7%, CA1/CA2 = 78.4%, CA2/CA3 = 97.5%. When applied to histology, the novel method provided accurate measures for CA1/CA2 (ICC = 0.93) and CA2/CA3 (ICC = 0.97) boundaries, but not for the Subiculum/CA1 (ICC = -0.04) boundary. Accuracy was poorer using previous techniques for CA1/CA2 (maximum ICC = 0.85) and CA2/CA3 (maximum ICC = 0.88), with the previously reported techniques also performing poorly in defining the Subiculum/CA1 boundary (maximum ICC = 0.00). Ex vivo MRI measurements using the novel method were linearly related to direct measurements of SLM length (r 2 = 0.58), CA1/CA2 boundary (r 2 = 0.39) and CA2/CA3 boundary (r 2 = 0.47), but not for Subiculum/CA1 boundary (r 2 = 0.01). Subfield areas measured with the novel method on histology and ex vivo MRI were linearly related to gold standard histological measures for CA1, CA2, and CA3/CA4/DG. In this initial proof of concept study, we used ex vivo MRI and histology of cadaveric hippocampi to develop a novel segmentation protocol for the hippocampal body. The novel method utilized two anatomical landmarks, SLM & DG, and provided accurate measurements of CA1, CA2, and CA3/CA4/DG subfields in comparison to the gold standard histological measurements. The relationships demonstrated between histology and ex vivo MRI supports the potential feasibility of applying this method to in vivo MRI studies. Copyright © 2017. Published by Elsevier Inc.
MRBrainS Challenge: Online Evaluation Framework for Brain Image Segmentation in 3T MRI Scans.
Mendrik, Adriënne M; Vincken, Koen L; Kuijf, Hugo J; Breeuwer, Marcel; Bouvy, Willem H; de Bresser, Jeroen; Alansary, Amir; de Bruijne, Marleen; Carass, Aaron; El-Baz, Ayman; Jog, Amod; Katyal, Ranveer; Khan, Ali R; van der Lijn, Fedde; Mahmood, Qaiser; Mukherjee, Ryan; van Opbroek, Annegreet; Paneri, Sahil; Pereira, Sérgio; Persson, Mikael; Rajchl, Martin; Sarikaya, Duygu; Smedby, Örjan; Silva, Carlos A; Vrooman, Henri A; Vyas, Saurabh; Wang, Chunliang; Zhao, Liang; Biessels, Geert Jan; Viergever, Max A
2015-01-01
Many methods have been proposed for tissue segmentation in brain MRI scans. The multitude of methods proposed complicates the choice of one method above others. We have therefore established the MRBrainS online evaluation framework for evaluating (semi)automatic algorithms that segment gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) on 3T brain MRI scans of elderly subjects (65-80 y). Participants apply their algorithms to the provided data, after which their results are evaluated and ranked. Full manual segmentations of GM, WM, and CSF are available for all scans and used as the reference standard. Five datasets are provided for training and fifteen for testing. The evaluated methods are ranked based on their overall performance to segment GM, WM, and CSF and evaluated using three evaluation metrics (Dice, H95, and AVD) and the results are published on the MRBrainS13 website. We present the results of eleven segmentation algorithms that participated in the MRBrainS13 challenge workshop at MICCAI, where the framework was launched, and three commonly used freeware packages: FreeSurfer, FSL, and SPM. The MRBrainS evaluation framework provides an objective and direct comparison of all evaluated algorithms and can aid in selecting the best performing method for the segmentation goal at hand.
MRBrainS Challenge: Online Evaluation Framework for Brain Image Segmentation in 3T MRI Scans
Mendrik, Adriënne M.; Vincken, Koen L.; Kuijf, Hugo J.; Breeuwer, Marcel; Bouvy, Willem H.; de Bresser, Jeroen; Alansary, Amir; de Bruijne, Marleen; Carass, Aaron; El-Baz, Ayman; Jog, Amod; Katyal, Ranveer; Khan, Ali R.; van der Lijn, Fedde; Mahmood, Qaiser; Mukherjee, Ryan; van Opbroek, Annegreet; Paneri, Sahil; Pereira, Sérgio; Rajchl, Martin; Sarikaya, Duygu; Smedby, Örjan; Silva, Carlos A.; Vrooman, Henri A.; Vyas, Saurabh; Wang, Chunliang; Zhao, Liang; Biessels, Geert Jan; Viergever, Max A.
2015-01-01
Many methods have been proposed for tissue segmentation in brain MRI scans. The multitude of methods proposed complicates the choice of one method above others. We have therefore established the MRBrainS online evaluation framework for evaluating (semi)automatic algorithms that segment gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) on 3T brain MRI scans of elderly subjects (65–80 y). Participants apply their algorithms to the provided data, after which their results are evaluated and ranked. Full manual segmentations of GM, WM, and CSF are available for all scans and used as the reference standard. Five datasets are provided for training and fifteen for testing. The evaluated methods are ranked based on their overall performance to segment GM, WM, and CSF and evaluated using three evaluation metrics (Dice, H95, and AVD) and the results are published on the MRBrainS13 website. We present the results of eleven segmentation algorithms that participated in the MRBrainS13 challenge workshop at MICCAI, where the framework was launched, and three commonly used freeware packages: FreeSurfer, FSL, and SPM. The MRBrainS evaluation framework provides an objective and direct comparison of all evaluated algorithms and can aid in selecting the best performing method for the segmentation goal at hand. PMID:26759553
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schramm, Georg, E-mail: georg.schramm@kuleuven.be; Maus, Jens; Hofheinz, Frank
Purpose: MR-based attenuation correction (MRAC) in routine clinical whole-body positron emission tomography and magnetic resonance imaging (PET/MRI) is based on tissue type segmentation. Due to lack of MR signal in cortical bone and the varying signal of spongeous bone, standard whole-body segmentation-based MRAC ignores the higher attenuation of bone compared to the one of soft tissue (MRAC{sub nobone}). The authors aim to quantify and reduce the bias introduced by MRAC{sub nobone} in the standard uptake value (SUV) of spinal and pelvic lesions in 20 PET/MRI examinations with [{sup 18}F]NaF. Methods: The authors reconstructed 20 PET/MR [{sup 18}F]NaF patient data setsmore » acquired with a Philips Ingenuity TF PET/MRI. The PET raw data were reconstructed with two different attenuation images. First, the authors used the vendor-provided MRAC algorithm that ignores the higher attenuation of bone to reconstruct PET{sub nobone}. Second, the authors used a threshold-based algorithm developed in their group to automatically segment bone structures in the [{sup 18}F]NaF PET images. Subsequently, an attenuation coefficient of 0.11 cm{sup −1} was assigned to the segmented bone regions in the MRI-based attenuation image (MRAC{sub bone}) which was used to reconstruct PET{sub bone}. The automatic bone segmentation algorithm was validated in six PET/CT [{sup 18}F]NaF examinations. Relative SUV{sub mean} and SUV{sub max} differences between PET{sub bone} and PET{sub nobone} of 8 pelvic and 41 spinal lesions, and of other regions such as lung, liver, and bladder, were calculated. By varying the assigned bone attenuation coefficient from 0.11 to 0.13 cm{sup −1}, the authors investigated its influence on the reconstructed SUVs of the lesions. Results: The comparison of [{sup 18}F]NaF-based and CT-based bone segmentation in the six PET/CT patients showed a Dice similarity of 0.7 with a true positive rate of 0.72 and a false discovery rate of 0.33. The [{sup 18}F]NaF-based bone segmentation worked well in the pelvis and spine. However, it showed artifacts in the skull and in the extremities. The analysis of the 20 [{sup 18}F]NaF PET/MRI examinations revealed relative SUV{sub max} differences between PET{sub nobone} and PET{sub bone} of (−8.8% ± 2.7%, p = 0.01) and (−8.1% ± 1.9%, p = 2.4 × 10{sup −8}) in pelvic and spinal lesions, respectively. A maximum SUV{sub max} underestimation of −13.7% was found in lesion in the third cervical spine. The averaged SUV{sub mean} differences in volumes of interests in lung, liver, and bladder were below 3%. The average SUV{sub max} differences in pelvic and spinal lesions increased from −9% to −18% and −8% to −17%, respectively, when increasing the assigned bone attenuation coefficient from 0.11 to 0.13 cm{sup −1}. Conclusions: The developed automatic [{sup 18}F]NaF PET-based bone segmentation allows to include higher bone attenuation in whole-body MRAC and thus improves quantification accuracy for pelvic and spinal lesions in [{sup 18}F]NaF PET/MRI examinations. In nonbone structures (e.g., lung, liver, and bladder), MRAC{sub nobone} yields clinically acceptable accuracy.« less
Mao, Lei; Liu, Chang; Xiong, Shuyu
2018-01-01
Brain tumors can appear anywhere in the brain and have vastly different sizes and morphology. Additionally, these tumors are often diffused and poorly contrasted. Consequently, the segmentation of brain tumor and intratumor subregions using magnetic resonance imaging (MRI) data with minimal human interventions remains a challenging task. In this paper, we present a novel fully automatic segmentation method from MRI data containing in vivo brain gliomas. This approach can not only localize the entire tumor region but can also accurately segment the intratumor structure. The proposed work was based on a cascaded deep learning convolutional neural network consisting of two subnetworks: (1) a tumor localization network (TLN) and (2) an intratumor classification network (ITCN). The TLN, a fully convolutional network (FCN) in conjunction with the transfer learning technology, was used to first process MRI data. The goal of the first subnetwork was to define the tumor region from an MRI slice. Then, the ITCN was used to label the defined tumor region into multiple subregions. Particularly, ITCN exploited a convolutional neural network (CNN) with deeper architecture and smaller kernel. The proposed approach was validated on multimodal brain tumor segmentation (BRATS 2015) datasets, which contain 220 high-grade glioma (HGG) and 54 low-grade glioma (LGG) cases. Dice similarity coefficient (DSC), positive predictive value (PPV), and sensitivity were used as evaluation metrics. Our experimental results indicated that our method could obtain the promising segmentation results and had a faster segmentation speed. More specifically, the proposed method obtained comparable and overall better DSC values (0.89, 0.77, and 0.80) on the combined (HGG + LGG) testing set, as compared to other methods reported in the literature. Additionally, the proposed approach was able to complete a segmentation task at a rate of 1.54 seconds per slice. PMID:29755716
Optimal reinforcement of training datasets in semi-supervised landmark-based segmentation
NASA Astrophysics Data System (ADS)
Ibragimov, Bulat; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž
2015-03-01
During the last couple of decades, the development of computerized image segmentation shifted from unsupervised to supervised methods, which made segmentation results more accurate and robust. However, the main disadvantage of supervised segmentation is a need for manual image annotation that is time-consuming and subjected to human error. To reduce the need for manual annotation, we propose a novel learning approach for training dataset reinforcement in the area of landmark-based segmentation, where newly detected landmarks are optimally combined with reference landmarks from the training dataset and therefore enriches the training process. The approach is formulated as a nonlinear optimization problem, where the solution is a vector of weighting factors that measures how reliable are the detected landmarks. The detected landmarks that are found to be more reliable are included into the training procedure with higher weighting factors, whereas the detected landmarks that are found to be less reliable are included with lower weighting factors. The approach is integrated into the landmark-based game-theoretic segmentation framework and validated against the problem of lung field segmentation from chest radiographs.
Model-Based Segmentation of Cortical Regions of Interest for Multi-subject Analysis of fMRI Data
NASA Astrophysics Data System (ADS)
Engel, Karin; Brechmann, Andr'e.; Toennies, Klaus
The high inter-subject variability of human neuroanatomy complicates the analysis of functional imaging data across subjects. We propose a method for the correct segmentation of cortical regions of interest based on the cortical surface. First results on the segmentation of Heschl's gyrus indicate the capability of our approach for correct comparison of functional activations in relation to individual cortical patterns.
NASA Astrophysics Data System (ADS)
Wasserthal, Christian; Engel, Karin; Rink, Karsten; Brechmann, Andr'e.
We propose an automatic procedure for the correct segmentation of grey and white matter in MR data sets of the human brain. Our method exploits general anatomical knowledge for the initial segmentation and for the subsequent refinement of the estimation of the cortical grey matter. Our results are comparable to manual segmentations.
Khalilzadeh, Mohammad Mahdi; Fatemizadeh, Emad; Behnam, Hamid
2013-06-01
Automatic extraction of the varying regions of magnetic resonance images is required as a prior step in a diagnostic intelligent system. The sparsest representation and high-dimensional feature are provided based on learned dictionary. The classification is done by employing the technique that computes the reconstruction error locally and non-locally of each pixel. The acquired results from the real and simulated images are superior to the best MRI segmentation method with regard to the stability advantages. In addition, it is segmented exactly through a formula taken from the distance and sparse factors. Also, it is done automatically taking sparse factor in unsupervised clustering methods whose results have been improved. Copyright © 2013 Elsevier Inc. All rights reserved.
Bonte, Stijn; Goethals, Ingeborg; Van Holen, Roel
2018-05-07
Brain tumour segmentation in medical images is a very challenging task due to the large variety in tumour shape, position, appearance, scanning modalities and scanning parameters. Most existing segmentation algorithms use information from four different MRI-sequences, but since this is often not available, there is need for a method able to delineate the different tumour tissues based on a minimal amount of data. We present a novel approach using a Random Forests model combining voxelwise texture and abnormality features on a contrast-enhanced T1 and FLAIR MRI. We transform the two scans into 275 feature maps. A random forest model next calculates the probability to belong to 4 tumour classes or 5 normal classes. Afterwards, a dedicated voxel clustering algorithm provides the final tumour segmentation. We trained our method on the BraTS 2013 database and validated it on the larger BraTS 2017 dataset. We achieve median Dice scores of 40.9% (low-grade glioma) and 75.0% (high-grade glioma) to delineate the active tumour, and 68.4%/80.1% for the total abnormal region including edema. Our fully automated brain tumour segmentation algorithm is able to delineate contrast enhancing tissue and oedema with high accuracy based only on post-contrast T1-weighted and FLAIR MRI, whereas for non-enhancing tumour tissue and necrosis only moderate results are obtained. This makes the method especially suitable for high-grade glioma. Copyright © 2018 Elsevier Ltd. All rights reserved.
Registration-based interpolation applied to cardiac MRI
NASA Astrophysics Data System (ADS)
Ólafsdóttir, Hildur; Pedersen, Henrik; Hansen, Michael S.; Lyksborg, Mark; Hansen, Mads Fogtmann; Darkner, Sune; Larsen, Rasmus
2010-03-01
Various approaches have been proposed for segmentation of cardiac MRI. An accurate segmentation of the myocardium and ventricles is essential to determine parameters of interest for the function of the heart, such as the ejection fraction. One problem with MRI is the poor resolution in one dimension. A 3D registration algorithm will typically use a trilinear interpolation of intensities to determine the intensity of a deformed template image. Due to the poor resolution across slices, such linear approximation is highly inaccurate since the assumption of smooth underlying intensities is violated. Registration-based interpolation is based on 2D registrations between adjacent slices and is independent of segmentations. Hence, rather than assuming smoothness in intensity, the assumption is that the anatomy is consistent across slices. The basis for the proposed approach is the set of 2D registrations between each pair of slices, both ways. The intensity of a new slice is then weighted by (i) the deformation functions and (ii) the intensities in the warped images. Unlike the approach by Penney et al. 2004, this approach takes into account deformation both ways, which gives more robustness where correspondence between slices is poor. We demonstrate the approach on a toy example and on a set of cardiac CINE MRI. Qualitative inspection reveals that the proposed approach provides a more convincing transition between slices than images obtained by linear interpolation. A quantitative validation reveals significantly lower reconstruction errors than both linear and registration-based interpolation based on one-way registrations.
Quantification of osteolytic bone lesions in a preclinical rat trial
NASA Astrophysics Data System (ADS)
Fränzle, Andrea; Bretschi, Maren; Bäuerle, Tobias; Giske, Kristina; Hillengass, Jens; Bendl, Rolf
2013-10-01
In breast cancer, most of the patients who died, have developed bone metastasis as disease progression. Bone metastases in case of breast cancer are mainly bone destructive (osteolytic). To understand pathogenesis and to analyse response to different treatments, animal models, in our case rats, are examined. For assessment of treatment response to bone remodelling therapies exact segmentations of osteolytic lesions are needed. Manual segmentations are not only time-consuming but lack in reproducibility. Computerized segmentation tools are essential. In this paper we present an approach for the computerized quantification of osteolytic lesion volumes using a comparison to a healthy reference model. The presented qualitative and quantitative evaluation of the reconstructed bone volumes show, that the automatically segmented lesion volumes complete missing bone in a reasonable way.
Ha, Richard; Mema, Eralda; Guo, Xiaotao; Mango, Victoria; Desperito, Elise; Ha, Jason; Wynn, Ralph; Zhao, Binsheng
2016-04-01
The amount of fibroglandular tissue (FGT) has been linked to breast cancer risk based on mammographic density studies. Currently, the qualitative assessment of FGT on mammogram (MG) and magnetic resonance imaging (MRI) is prone to intra and inter-observer variability. The purpose of this study is to develop an objective quantitative FGT measurement tool for breast MRI that could provide significant clinical value. An IRB approved study was performed. Sixty breast MRI cases with qualitative assessment of mammographic breast density and MRI FGT were randomly selected for quantitative analysis from routine breast MRIs performed at our institution from 1/2013 to 12/2014. Blinded to the qualitative data, whole breast and FGT contours were delineated on T1-weighted pre contrast sagittal images using an in-house, proprietary segmentation algorithm which combines the region-based active contours and a level set approach. FGT (%) was calculated by: [segmented volume of FGT (mm(3))/(segmented volume of whole breast (mm(3))] ×100. Statistical correlation analysis was performed between quantified FGT (%) on MRI and qualitative assessments of mammographic breast density and MRI FGT. There was a significant positive correlation between quantitative MRI FGT assessment and qualitative MRI FGT (r=0.809, n=60, P<0.001) and mammographic density assessment (r=0.805, n=60, P<0.001). There was a significant correlation between qualitative MRI FGT assessment and mammographic density assessment (r=0.725, n=60, P<0.001). The four qualitative assessment categories of FGT correlated with the calculated mean quantitative FGT (%) of 4.61% (95% CI, 0-12.3%), 8.74% (7.3-10.2%), 18.1% (15.1-21.1%), 37.4% (29.5-45.3%). Quantitative measures of FGT (%) were computed with data derived from breast MRI and correlated significantly with conventional qualitative assessments. This quantitative technique may prove to be a valuable tool in clinical use by providing computer generated standardized measurements with limited intra or inter-observer variability.
Lin, Muqing; Chan, Siwa; Chen, Jeon-Hor; Chang, Daniel; Nie, Ke; Chen, Shih-Ting; Lin, Cheng-Ju; Shih, Tzu-Ching; Nalcioglu, Orhan; Su, Min-Ying
2011-01-01
Quantitative breast density is known as a strong risk factor associated with the development of breast cancer. Measurement of breast density based on three-dimensional breast MRI may provide very useful information. One important step for quantitative analysis of breast density on MRI is the correction of field inhomogeneity to allow an accurate segmentation of the fibroglandular tissue (dense tissue). A new bias field correction method by combining the nonparametric nonuniformity normalization (N3) algorithm and fuzzy-C-means (FCM)-based inhomogeneity correction algorithm is developed in this work. The analysis is performed on non-fat-sat T1-weighted images acquired using a 1.5 T MRI scanner. A total of 60 breasts from 30 healthy volunteers was analyzed. N3 is known as a robust correction method, but it cannot correct a strong bias field on a large area. FCM-based algorithm can correct the bias field on a large area, but it may change the tissue contrast and affect the segmentation quality. The proposed algorithm applies N3 first, followed by FCM, and then the generated bias field is smoothed using Gaussian kernal and B-spline surface fitting to minimize the problem of mistakenly changed tissue contrast. The segmentation results based on the N3+FCM corrected images were compared to the N3 and FCM alone corrected images and another method, coherent local intensity clustering (CLIC), corrected images. The segmentation quality based on different correction methods were evaluated by a radiologist and ranked. The authors demonstrated that the iterative N3+FCM correction method brightens the signal intensity of fatty tissues and that separates the histogram peaks between the fibroglandular and fatty tissues to allow an accurate segmentation between them. In the first reading session, the radiologist found (N3+FCM > N3 > FCM) ranking in 17 breasts, (N3+FCM > N3 = FCM) ranking in 7 breasts, (N3+FCM = N3 > FCM) in 32 breasts, (N3+FCM = N3 = FCM) in 2 breasts, and (N3 > N3+FCM > FCM) in 2 breasts. The results of the second reading session were similar. The performance in each pairwise Wilcoxon signed-rank test is significant, showing N3+FCM superior to both N3 and FCM, and N3 superior to FCM. The performance of the new N3+FCM algorithm was comparable to that of CLIC, showing equivalent quality in 57/60 breasts. Choosing an appropriate bias field correction method is a very important preprocessing step to allow an accurate segmentation of fibroglandular tissues based on breast MRI for quantitative measurement of breast density. The proposed algorithm combining N3+FCM and CLIC both yield satisfactory results.
Development and Assessment of a New 3D Neuroanatomy Teaching Tool for MRI Training
ERIC Educational Resources Information Center
Drapkin, Zachary A.; Lindgren, Kristen A.; Lopez, Michael J.; Stabio, Maureen E.
2015-01-01
A computerized three-dimensional (3D) neuroanatomy teaching tool was developed for training medical students to identify subcortical structures on a magnetic resonance imaging (MRI) series of the human brain. This program allows the user to transition rapidly between two-dimensional (2D) MRI slices, 3D object composites, and a combined model in…
Localized-atlas-based segmentation of breast MRI in a decision-making framework.
Fooladivanda, Aida; Shokouhi, Shahriar B; Ahmadinejad, Nasrin
2017-03-01
Breast-region segmentation is an important step for density estimation and Computer-Aided Diagnosis (CAD) systems in Magnetic Resonance Imaging (MRI). Detection of breast-chest wall boundary is often a difficult task due to similarity between gray-level values of fibroglandular tissue and pectoral muscle. This paper proposes a robust breast-region segmentation method which is applicable for both complex cases with fibroglandular tissue connected to the pectoral muscle, and simple cases with high contrast boundaries. We present a decision-making framework based on geometric features and support vector machine (SVM) to classify breasts in two main groups, complex and simple. For complex cases, breast segmentation is done using a combination of intensity-based and atlas-based techniques; however, only intensity-based operation is employed for simple cases. A novel atlas-based method, that is called localized-atlas, accomplishes the processes of atlas construction and registration based on the region of interest (ROI). Atlas-based segmentation is performed by relying on the chest wall template. Our approach is validated using a dataset of 210 cases. Based on similarity between automatic and manual segmentation results, the proposed method achieves Dice similarity coefficient, Jaccard coefficient, total overlap, false negative, and false positive values of 96.3, 92.9, 97.4, 2.61 and 4.77%, respectively. The localization error of the breast-chest wall boundary is 1.97 mm, in terms of averaged deviation distance. The achieved results prove that the suggested framework performs the breast segmentation with negligible errors and efficient computational time for different breasts from the viewpoints of size, shape, and density pattern.
Schlaeger, Sarah; Freitag, Friedemann; Klupp, Elisabeth; Dieckmeyer, Michael; Weidlich, Dominik; Inhuber, Stephanie; Deschauer, Marcus; Schoser, Benedikt; Bublitz, Sarah; Montagnese, Federica; Zimmer, Claus; Rummeny, Ernst J; Karampinos, Dimitrios C; Kirschke, Jan S; Baum, Thomas
2018-01-01
Magnetic resonance imaging (MRI) can non-invasively assess muscle anatomy, exercise effects and pathologies with different underlying causes such as neuromuscular diseases (NMD). Quantitative MRI including fat fraction mapping using chemical shift encoding-based water-fat MRI has emerged for reliable determination of muscle volume and fat composition. The data analysis of water-fat images requires segmentation of the different muscles which has been mainly performed manually in the past and is a very time consuming process, currently limiting the clinical applicability. An automatization of the segmentation process would lead to a more time-efficient analysis. In the present work, the manually segmented thigh magnetic resonance imaging database MyoSegmenTUM is presented. It hosts water-fat MR images of both thighs of 15 healthy subjects and 4 patients with NMD with a voxel size of 3.2x2x4 mm3 with the corresponding segmentation masks for four functional muscle groups: quadriceps femoris, sartorius, gracilis, hamstrings. The database is freely accessible online at https://osf.io/svwa7/?view_only=c2c980c17b3a40fca35d088a3cdd83e2. The database is mainly meant as ground truth which can be used as training and test dataset for automatic muscle segmentation algorithms. The segmentation allows extraction of muscle cross sectional area (CSA) and volume. Proton density fat fraction (PDFF) of the defined muscle groups from the corresponding images and quadriceps muscle strength measurements/neurological muscle strength rating can be used for benchmarking purposes.
Image analysis for skeletal evaluation of carpal bones
NASA Astrophysics Data System (ADS)
Ko, Chien-Chuan; Mao, Chi-Wu; Lin, Chi-Jen; Sun, Yung-Nien
1995-04-01
The assessment of bone age is an important field to the pediatric radiology. It provides very important information for treatment and prediction of skeletal growth in a developing child. So far, various computerized algorithms for automatically assessing the skeletal growth have been reported. Most of these methods made attempt to analyze the phalangeal growth. The most fundamental step in these automatic measurement methods is the image segmentation that extracts bones from soft-tissue and background. These automatic segmentation methods of hand radiographs can roughly be categorized into two main approaches that are edge and region based methods. This paper presents a region-based carpal-bone segmentation approach. It is organized into four stages: contrast enhancement, moment-preserving thresholding, morphological processing, and region-growing labeling.
A scalable method to improve gray matter segmentation at ultra high field MRI.
Gulban, Omer Faruk; Schneider, Marian; Marquardt, Ingo; Haast, Roy A M; De Martino, Federico
2018-01-01
High-resolution (functional) magnetic resonance imaging (MRI) at ultra high magnetic fields (7 Tesla and above) enables researchers to study how anatomical and functional properties change within the cortical ribbon, along surfaces and across cortical depths. These studies require an accurate delineation of the gray matter ribbon, which often suffers from inclusion of blood vessels, dura mater and other non-brain tissue. Residual segmentation errors are commonly corrected by browsing the data slice-by-slice and manually changing labels. This task becomes increasingly laborious and prone to error at higher resolutions since both work and error scale with the number of voxels. Here we show that many mislabeled, non-brain voxels can be corrected more efficiently and semi-automatically by representing three-dimensional anatomical images using two-dimensional histograms. We propose both a uni-modal (based on first spatial derivative) and multi-modal (based on compositional data analysis) approach to this representation and quantify the benefits in 7 Tesla MRI data of nine volunteers. We present an openly accessible Python implementation of these approaches and demonstrate that editing cortical segmentations using two-dimensional histogram representations as an additional post-processing step aids existing algorithms and yields improved gray matter borders. By making our data and corresponding expert (ground truth) segmentations openly available, we facilitate future efforts to develop and test segmentation algorithms on this challenging type of data.
A scalable method to improve gray matter segmentation at ultra high field MRI
De Martino, Federico
2018-01-01
High-resolution (functional) magnetic resonance imaging (MRI) at ultra high magnetic fields (7 Tesla and above) enables researchers to study how anatomical and functional properties change within the cortical ribbon, along surfaces and across cortical depths. These studies require an accurate delineation of the gray matter ribbon, which often suffers from inclusion of blood vessels, dura mater and other non-brain tissue. Residual segmentation errors are commonly corrected by browsing the data slice-by-slice and manually changing labels. This task becomes increasingly laborious and prone to error at higher resolutions since both work and error scale with the number of voxels. Here we show that many mislabeled, non-brain voxels can be corrected more efficiently and semi-automatically by representing three-dimensional anatomical images using two-dimensional histograms. We propose both a uni-modal (based on first spatial derivative) and multi-modal (based on compositional data analysis) approach to this representation and quantify the benefits in 7 Tesla MRI data of nine volunteers. We present an openly accessible Python implementation of these approaches and demonstrate that editing cortical segmentations using two-dimensional histogram representations as an additional post-processing step aids existing algorithms and yields improved gray matter borders. By making our data and corresponding expert (ground truth) segmentations openly available, we facilitate future efforts to develop and test segmentation algorithms on this challenging type of data. PMID:29874295
Template-based automatic breast segmentation on MRI by excluding the chest region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Muqing; Chen, Jeon-Hor; Wang, Xiaoyong
2013-12-15
Purpose: Methods for quantification of breast density on MRI using semiautomatic approaches are commonly used. In this study, the authors report on a fully automatic chest template-based method. Methods: Nonfat-suppressed breast MR images from 31 healthy women were analyzed. Among them, one case was randomly selected and used as the template, and the remaining 30 cases were used for testing. Unlike most model-based breast segmentation methods that use the breast region as the template, the chest body region on a middle slice was used as the template. Within the chest template, three body landmarks (thoracic spine and bilateral boundary ofmore » the pectoral muscle) were identified for performing the initial V-shape cut to determine the posterior lateral boundary of the breast. The chest template was mapped to each subject's image space to obtain a subject-specific chest model for exclusion. On the remaining image, the chest wall muscle was identified and excluded to obtain clean breast segmentation. The chest and muscle boundaries determined on the middle slice were used as the reference for the segmentation of adjacent slices, and the process continued superiorly and inferiorly until all 3D slices were segmented. The segmentation results were evaluated by an experienced radiologist to mark voxels that were wrongly included or excluded for error analysis. Results: The breast volumes measured by the proposed algorithm were very close to the radiologist's corrected volumes, showing a % difference ranging from 0.01% to 3.04% in 30 tested subjects with a mean of 0.86% ± 0.72%. The total error was calculated by adding the inclusion and the exclusion errors (so they did not cancel each other out), which ranged from 0.05% to 6.75% with a mean of 3.05% ± 1.93%. The fibroglandular tissue segmented within the breast region determined by the algorithm and the radiologist were also very close, showing a % difference ranging from 0.02% to 2.52% with a mean of 1.03% ± 1.03%. The total error by adding the inclusion and exclusion errors ranged from 0.16% to 11.8%, with a mean of 2.89% ± 2.55%. Conclusions: The automatic chest template-based breast MRI segmentation method worked well for cases with different body and breast shapes and different density patterns. Compared to the radiologist-established truth, the mean difference in segmented breast volume was approximately 1%, and the total error by considering the additive inclusion and exclusion errors was approximately 3%. This method may provide a reliable tool for MRI-based segmentation of breast density.« less
NASA Astrophysics Data System (ADS)
León, Madeleine; Escalante-Ramirez, Boris
2013-11-01
Knee osteoarthritis (OA) is characterized by the morphological degeneration of cartilage. Efficient segmentation of cartilage is important for cartilage damage diagnosis and to support therapeutic responses. We present a method for knee cartilage segmentation in magnetic resonance images (MRI). Our method incorporates the Hermite Transform to obtain a hierarchical decomposition of contours which describe knee cartilage shapes. Then, we compute a statistical model of the contour of interest from a set of training images. Thereby, our Hierarchical Active Shape Model (HASM) captures a large range of shape variability even from a small group of training samples, improving segmentation accuracy. The method was trained with a training set of 16- MRI of knee and tested with leave-one-out method.
Geiger, Daniel; Bae, Won C.; Statum, Sheronda; Du, Jiang; Chung, Christine B.
2014-01-01
Objective Temporomandibular dysfunction involves osteoarthritis of the TMJ, including degeneration and morphologic changes of the mandibular condyle. Purpose of this study was to determine accuracy of novel 3D-UTE MRI versus micro-CT (μCT) for quantitative evaluation of mandibular condyle morphology. Material & Methods Nine TMJ condyle specimens were harvested from cadavers (2M, 3F; Age 85 ± 10 yrs., mean±SD). 3D-UTE MRI (TR=50ms, TE=0.05 ms, 104 μm isotropic-voxel) was performed using a 3-T MR scanner and μCT (18 μm isotropic-voxel) was performed. MR datasets were spatially-registered with μCT dataset. Two observers segmented bony contours of the condyles. Fibrocartilage was segmented on MR dataset. Using a custom program, bone and fibrocartilage surface coordinates, Gaussian curvature, volume of segmented regions and fibrocartilage thickness were determined for quantitative evaluation of joint morphology. Agreement between techniques (MRI vs. μCT) and observers (MRI vs. MRI) for Gaussian curvature, mean curvature and segmented volume of the bone were determined using intraclass correlation correlation (ICC) analyses. Results Between MRI and μCT, the average deviation of surface coordinates was 0.19±0.15 mm, slightly higher than spatial resolution of MRI. Average deviation of the Gaussian curvature and volume of segmented regions, from MRI to μCT, was 5.7±6.5% and 6.6±6.2%, respectively. ICC coefficients (MRI vs. μCT) for Gaussian curvature, mean curvature and segmented volumes were respectively 0.892, 0.893 and 0.972. Between observers (MRI vs. MRI), the ICC coefficients were 0.998, 0.999 and 0.997 respectively. Fibrocartilage thickness was 0.55±0.11 mm, as previously described in literature for grossly normal TMJ samples. Conclusion 3D-UTE MR quantitative evaluation of TMJ condyle morphology ex-vivo, including surface, curvature and segmented volume, shows high correlation against μCT and between observers. In addition, UTE MRI allows quantitative evaluation of the fibrocartilaginous condylar component. PMID:24092237
NASA Astrophysics Data System (ADS)
Wei, Dong; Weinstein, Susan; Hsieh, Meng-Kang; Pantalone, Lauren; Kontos, Despina
2018-03-01
The relative amount of fibroglandular tissue (FGT) in the breast has been shown to be a risk factor for breast cancer. However, automatic segmentation of FGT in breast MRI is challenging due mainly to its wide variation in anatomy (e.g., amount, location and pattern, etc.), and various imaging artifacts especially the prevalent bias-field artifact. Motivated by a previous work demonstrating improved FGT segmentation with 2-D a priori likelihood atlas, we propose a machine learning-based framework using 3-D FGT context. The framework uses features specifically defined with respect to the breast anatomy to capture spatially varying likelihood of FGT, and allows (a) intuitive standardization across breasts of different sizes and shapes, and (b) easy incorporation of additional information helpful to the segmentation (e.g., texture). Extended from the concept of 2-D atlas, our framework not only captures spatial likelihood of FGT in 3-D context, but also broadens its applicability to both sagittal and axial breast MRI rather than being limited to the plane in which the 2-D atlas is constructed. Experimental results showed improved segmentation accuracy over the 2-D atlas method, and demonstrated further improvement by incorporating well-established texture descriptors.
Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images
Jain, Saurabh; Sima, Diana M.; Ribbens, Annemie; Cambron, Melissa; Maertens, Anke; Van Hecke, Wim; De Mey, Johan; Barkhof, Frederik; Steenwijk, Martijn D.; Daams, Marita; Maes, Frederik; Van Huffel, Sabine; Vrenken, Hugo; Smeets, Dirk
2015-01-01
The location and extent of white matter lesions on magnetic resonance imaging (MRI) are important criteria for diagnosis, follow-up and prognosis of multiple sclerosis (MS). Clinical trials have shown that quantitative values, such as lesion volumes, are meaningful in MS prognosis. Manual lesion delineation for the segmentation of lesions is, however, time-consuming and suffers from observer variability. In this paper, we propose MSmetrix, an accurate and reliable automatic method for lesion segmentation based on MRI, independent of scanner or acquisition protocol and without requiring any training data. In MSmetrix, 3D T1-weighted and FLAIR MR images are used in a probabilistic model to detect white matter (WM) lesions as an outlier to normal brain while segmenting the brain tissue into grey matter, WM and cerebrospinal fluid. The actual lesion segmentation is performed based on prior knowledge about the location (within WM) and the appearance (hyperintense on FLAIR) of lesions. The accuracy of MSmetrix is evaluated by comparing its output with expert reference segmentations of 20 MRI datasets of MS patients. Spatial overlap (Dice) between the MSmetrix and the expert lesion segmentation is 0.67 ± 0.11. The intraclass correlation coefficient (ICC) equals 0.8 indicating a good volumetric agreement between the MSmetrix and expert labelling. The reproducibility of MSmetrix' lesion volumes is evaluated based on 10 MS patients, scanned twice with a short interval on three different scanners. The agreement between the first and the second scan on each scanner is evaluated through the spatial overlap and absolute lesion volume difference between them. The spatial overlap was 0.69 ± 0.14 and absolute total lesion volume difference between the two scans was 0.54 ± 0.58 ml. Finally, the accuracy and reproducibility of MSmetrix compare favourably with other publicly available MS lesion segmentation algorithms, applied on the same data using default parameter settings. PMID:26106562
A novel Hessian based algorithm for rat kidney glomerulus detection in 3D MRI
NASA Astrophysics Data System (ADS)
Zhang, Min; Wu, Teresa; Bennett, Kevin M.
2015-03-01
The glomeruli of the kidney perform the key role of blood filtration and the number of glomeruli in a kidney is correlated with susceptibility to chronic kidney disease and chronic cardiovascular disease. This motivates the development of new technology using magnetic resonance imaging (MRI) to measure the number of glomeruli and nephrons in vivo. However, there is currently a lack of computationally efficient techniques to perform fast, reliable and accurate counts of glomeruli in MR images due to the issues inherent in MRI, such as acquisition noise, partial volume effects (the mixture of several tissue signals in a voxel) and bias field (spatial intensity inhomogeneity). Such challenges are particularly severe because the glomeruli are very small, (in our case, a MRI image is ~16 million voxels, each glomerulus is in the size of 8~20 voxels), and the number of glomeruli is very large. To address this, we have developed an efficient Hessian based Difference of Gaussians (HDoG) detector to identify the glomeruli on 3D rat MR images. The image is first smoothed via DoG followed by the Hessian process to pre-segment and delineate the boundary of the glomerulus candidates. This then provides a basis to extract regional features used in an unsupervised clustering algorithm, completing segmentation by removing the false identifications occurred in the pre-segmentation. The experimental results show that Hessian based DoG has the potential to automatically detect glomeruli,from MRI in 3D, enabling new measurements of renal microstructure and pathology in preclinical and clinical studies.
Ma, Zelan; Chen, Xin; Huang, Yanqi; He, Lan; Liang, Cuishan; Liang, Changhong; Liu, Zaiyi
2015-01-01
Accurate and repeatable measurement of the gross tumour volume(GTV) of subcutaneous xenografts is crucial in the evaluation of anti-tumour therapy. Formula and image-based manual segmentation methods are commonly used for GTV measurement but are hindered by low accuracy and reproducibility. 3D Slicer is open-source software that provides semiautomatic segmentation for GTV measurements. In our study, subcutaneous GTVs from nude mouse xenografts were measured by semiautomatic segmentation with 3D Slicer based on morphological magnetic resonance imaging(mMRI) or diffusion-weighted imaging(DWI)(b = 0,20,800 s/mm2) . These GTVs were then compared with those obtained via the formula and image-based manual segmentation methods with ITK software using the true tumour volume as the standard reference. The effects of tumour size and shape on GTVs measurements were also investigated. Our results showed that, when compared with the true tumour volume, segmentation for DWI(P = 0.060–0.671) resulted in better accuracy than that mMRI(P < 0.001) and the formula method(P < 0.001). Furthermore, semiautomatic segmentation for DWI(intraclass correlation coefficient, ICC = 0.9999) resulted in higher reliability than manual segmentation(ICC = 0.9996–0.9998). Tumour size and shape had no effects on GTV measurement across all methods. Therefore, DWI-based semiautomatic segmentation, which is accurate and reproducible and also provides biological information, is the optimal GTV measurement method in the assessment of anti-tumour treatments. PMID:26489359
NASA Astrophysics Data System (ADS)
Yang, Guang; Zhuang, Xiahai; Khan, Habib; Haldar, Shouvik; Nyktari, Eva; Li, Lei; Ye, Xujiong; Slabaugh, Greg; Wong, Tom; Mohiaddin, Raad; Keegan, Jennifer; Firmin, David
2017-02-01
Late Gadolinium-Enhanced Cardiac MRI (LGE CMRI) is a non-invasive technique, which has shown promise in detecting native and post-ablation atrial scarring. To visualize the scarring, a precise segmentation of the left atrium (LA) and pulmonary veins (PVs) anatomy is performed as a first step—usually from an ECG gated CMRI roadmap acquisition—and the enhanced scar regions from the LGE CMRI images are superimposed. The anatomy of the LA and PVs in particular is highly variable and manual segmentation is labor intensive and highly subjective. In this paper, we developed a multi-atlas propagation based whole heart segmentation (WHS) to delineate the LA and PVs from ECG gated CMRI roadmap scans. While this captures the anatomy of the atrium well, the PVs anatomy is less easily visualized. The process is therefore augmented by semi-automated manual strokes for PVs identification in the registered LGE CMRI data. This allows us to extract more accurate anatomy than the fully automated WHS. Both qualitative visualization and quantitative assessment with respect to manual segmented ground truth showed that our method is efficient and effective with an overall mean Dice score of 0.91.
Rios Piedra, Edgar A; Taira, Ricky K; El-Saden, Suzie; Ellingson, Benjamin M; Bui, Alex A T; Hsu, William
2016-02-01
Brain tumor analysis is moving towards volumetric assessment of magnetic resonance imaging (MRI), providing a more precise description of disease progression to better inform clinical decision-making and treatment planning. While a multitude of segmentation approaches exist, inherent variability in the results of these algorithms may incorrectly indicate changes in tumor volume. In this work, we present a systematic approach to characterize variability in tumor boundaries that utilizes equivalence tests as a means to determine whether a tumor volume has significantly changed over time. To demonstrate these concepts, 32 MRI studies from 8 patients were segmented using four different approaches (statistical classifier, region-based, edge-based, knowledge-based) to generate different regions of interest representing tumor extent. We showed that across all studies, the average Dice coefficient for the superset of the different methods was 0.754 (95% confidence interval 0.701-0.808) when compared to a reference standard. We illustrate how variability obtained by different segmentations can be used to identify significant changes in tumor volume between sequential time points. Our study demonstrates that variability is an inherent part of interpreting tumor segmentation results and should be considered as part of the interpretation process.
Watershed-based segmentation of the corpus callosum in diffusion MRI
NASA Astrophysics Data System (ADS)
Freitas, Pedro; Rittner, Leticia; Appenzeller, Simone; Lapa, Aline; Lotufo, Roberto
2012-02-01
The corpus callosum (CC) is one of the most important white matter structures of the brain, interconnecting the two cerebral hemispheres, and is related to several neurodegenerative diseases. Since segmentation is usually the first step for studies in this structure, and manual volumetric segmentation is a very time-consuming task, it is important to have a robust automatic method for CC segmentation. We propose here an approach for fully automatic 3D segmentation of the CC in the magnetic resonance diffusion tensor images. The method uses the watershed transform and is performed on the fractional anisotropy (FA) map weighted by the projection of the principal eigenvector in the left-right direction. The section of the CC in the midsagittal slice is used as seed for the volumetric segmentation. Experiments with real diffusion MRI data showed that the proposed method is able to quickly segment the CC without any user intervention, with great results when compared to manual segmentation. Since it is simple, fast and does not require parameter settings, the proposed method is well suited for clinical applications.
Liu, Jie; Zhuang, Xiahai; Wu, Lianming; An, Dongaolei; Xu, Jianrong; Peters, Terry; Gu, Lixu
2017-11-01
Objective: In this paper, we propose a fully automatic framework for myocardium segmentation of delayed-enhancement (DE) MRI images without relying on prior patient-specific information. Methods: We employ a multicomponent Gaussian mixture model to deal with the intensity heterogeneity of myocardium caused by the infarcts. To differentiate the myocardium from other tissues with similar intensities, while at the same time maintain spatial continuity, we introduce a coupled level set (CLS) to regularize the posterior probability. The CLS, as a spatial regularization, can be adapted to the image characteristics dynamically. We also introduce an image intensity gradient based term into the CLS, adding an extra force to the posterior probability based framework, to improve the accuracy of myocardium boundary delineation. The prebuilt atlases are propagated to the target image to initialize the framework. Results: The proposed method was tested on datasets of 22 clinical cases, and achieved Dice similarity coefficients of 87.43 ± 5.62% (endocardium), 90.53 ± 3.20% (epicardium) and 73.58 ± 5.58% (myocardium), which have outperformed three variants of the classic segmentation methods. Conclusion: The results can provide a benchmark for the myocardial segmentation in the literature. Significance: DE MRI provides an important tool to assess the viability of myocardium. The accurate segmentation of myocardium, which is a prerequisite for further quantitative analysis of myocardial infarction (MI) region, can provide important support for the diagnosis and treatment management for MI patients. Objective: In this paper, we propose a fully automatic framework for myocardium segmentation of delayed-enhancement (DE) MRI images without relying on prior patient-specific information. Methods: We employ a multicomponent Gaussian mixture model to deal with the intensity heterogeneity of myocardium caused by the infarcts. To differentiate the myocardium from other tissues with similar intensities, while at the same time maintain spatial continuity, we introduce a coupled level set (CLS) to regularize the posterior probability. The CLS, as a spatial regularization, can be adapted to the image characteristics dynamically. We also introduce an image intensity gradient based term into the CLS, adding an extra force to the posterior probability based framework, to improve the accuracy of myocardium boundary delineation. The prebuilt atlases are propagated to the target image to initialize the framework. Results: The proposed method was tested on datasets of 22 clinical cases, and achieved Dice similarity coefficients of 87.43 ± 5.62% (endocardium), 90.53 ± 3.20% (epicardium) and 73.58 ± 5.58% (myocardium), which have outperformed three variants of the classic segmentation methods. Conclusion: The results can provide a benchmark for the myocardial segmentation in the literature. Significance: DE MRI provides an important tool to assess the viability of myocardium. The accurate segmentation of myocardium, which is a prerequisite for further quantitative analysis of myocardial infarction (MI) region, can provide important support for the diagnosis and treatment management for MI patients.
Low-Grade Glioma Segmentation Based on CNN with Fully Connected CRF
Li, Zeju; Shi, Zhifeng; Guo, Yi; Chen, Liang; Mao, Ying
2017-01-01
This work proposed a novel automatic three-dimensional (3D) magnetic resonance imaging (MRI) segmentation method which would be widely used in the clinical diagnosis of the most common and aggressive brain tumor, namely, glioma. The method combined a multipathway convolutional neural network (CNN) and fully connected conditional random field (CRF). Firstly, 3D information was introduced into the CNN which makes more accurate recognition of glioma with low contrast. Then, fully connected CRF was added as a postprocessing step which purposed more delicate delineation of glioma boundary. The method was applied to T2flair MRI images of 160 low-grade glioma patients. With 59 cases of data training and manual segmentation as the ground truth, the Dice similarity coefficient (DSC) of our method was 0.85 for the test set of 101 MRI images. The results of our method were better than those of another state-of-the-art CNN method, which gained the DSC of 0.76 for the same dataset. It proved that our method could produce better results for the segmentation of low-grade gliomas. PMID:29065666
Low-Grade Glioma Segmentation Based on CNN with Fully Connected CRF.
Li, Zeju; Wang, Yuanyuan; Yu, Jinhua; Shi, Zhifeng; Guo, Yi; Chen, Liang; Mao, Ying
2017-01-01
This work proposed a novel automatic three-dimensional (3D) magnetic resonance imaging (MRI) segmentation method which would be widely used in the clinical diagnosis of the most common and aggressive brain tumor, namely, glioma. The method combined a multipathway convolutional neural network (CNN) and fully connected conditional random field (CRF). Firstly, 3D information was introduced into the CNN which makes more accurate recognition of glioma with low contrast. Then, fully connected CRF was added as a postprocessing step which purposed more delicate delineation of glioma boundary. The method was applied to T2flair MRI images of 160 low-grade glioma patients. With 59 cases of data training and manual segmentation as the ground truth, the Dice similarity coefficient (DSC) of our method was 0.85 for the test set of 101 MRI images. The results of our method were better than those of another state-of-the-art CNN method, which gained the DSC of 0.76 for the same dataset. It proved that our method could produce better results for the segmentation of low-grade gliomas.
Warping an atlas derived from serial histology to 5 high-resolution MRIs.
Tullo, Stephanie; Devenyi, Gabriel A; Patel, Raihaan; Park, Min Tae M; Collins, D Louis; Chakravarty, M Mallar
2018-06-19
Previous work from our group demonstrated the use of multiple input atlases to a modified multi-atlas framework (MAGeT-Brain) to improve subject-based segmentation accuracy. Currently, segmentation of the striatum, globus pallidus and thalamus are generated from a single high-resolution and -contrast MRI atlas derived from annotated serial histological sections. Here, we warp this atlas to five high-resolution MRI templates to create five de novo atlases. The overall goal of this work is to use these newly warped atlases as input to MAGeT-Brain in an effort to consolidate and improve the workflow presented in previous manuscripts from our group, allowing for simultaneous multi-structure segmentation. The work presented details the methodology used for the creation of the atlases using a technique previously proposed, where atlas labels are modified to mimic the intensity and contrast profile of MRI to facilitate atlas-to-template nonlinear transformation estimation. Dice's Kappa metric was used to demonstrate high quality registration and segmentation accuracy of the atlases. The final atlases are available at https://github.com/CobraLab/atlases/tree/master/5-atlas-subcortical.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Spencer; Rodrigues, George, E-mail: george.rodrigues@lhsc.on.ca; Department of Epidemiology/Biostatistics, University of Western Ontario, London
2013-01-01
Purpose: To perform a rigorous technological assessment and statistical validation of a software technology for anatomic delineations of the prostate on MRI datasets. Methods and Materials: A 3-phase validation strategy was used. Phase I consisted of anatomic atlas building using 100 prostate cancer MRI data sets to provide training data sets for the segmentation algorithms. In phase II, 2 experts contoured 15 new MRI prostate cancer cases using 3 approaches (manual, N points, and region of interest). In phase III, 5 new physicians with variable MRI prostate contouring experience segmented the same 15 phase II datasets using 3 approaches: manual,more » N points with no editing, and full autosegmentation with user editing allowed. Statistical analyses for time and accuracy (using Dice similarity coefficient) endpoints used traditional descriptive statistics, analysis of variance, analysis of covariance, and pooled Student t test. Results: In phase I, average (SD) total and per slice contouring time for the 2 physicians was 228 (75), 17 (3.5), 209 (65), and 15 seconds (3.9), respectively. In phase II, statistically significant differences in physician contouring time were observed based on physician, type of contouring, and case sequence. The N points strategy resulted in superior segmentation accuracy when initial autosegmented contours were compared with final contours. In phase III, statistically significant differences in contouring time were observed based on physician, type of contouring, and case sequence again. The average relative timesaving for N points and autosegmentation were 49% and 27%, respectively, compared with manual contouring. The N points and autosegmentation strategies resulted in average Dice values of 0.89 and 0.88, respectively. Pre- and postedited autosegmented contours demonstrated a higher average Dice similarity coefficient of 0.94. Conclusion: The software provided robust contours with minimal editing required. Observed time savings were seen for all physicians irrespective of experience level and baseline manual contouring speed.« less
Validation of automated white matter hyperintensity segmentation.
Smart, Sean D; Firbank, Michael J; O'Brien, John T
2011-01-01
Introduction. White matter hyperintensities (WMHs) are a common finding on MRI scans of older people and are associated with vascular disease. We compared 3 methods for automatically segmenting WMHs from MRI scans. Method. An operator manually segmented WMHs on MRI images from a 3T scanner. The scans were also segmented in a fully automated fashion by three different programmes. The voxel overlap between manual and automated segmentation was compared. Results. Between observer overlap ratio was 63%. Using our previously described in-house software, we had overlap of 62.2%. We investigated the use of a modified version of SPM segmentation; however, this was not successful, with only 14% overlap. Discussion. Using our previously reported software, we demonstrated good segmentation of WMHs in a fully automated fashion.
Posterior Eye Shape Measurement With Retinal OCT Compared to MRI
Kuo, Anthony N.; Verkicharla, Pavan K.; McNabb, Ryan P.; Cheung, Carol Y.; Hilal, Saima; Farsiu, Sina; Chen, Christopher; Wong, Tien Y.; Ikram, M. Kamran; Cheng, Ching Y.; Young, Terri L.; Saw, Seang M.; Izatt, Joseph A.
2016-01-01
Purpose Posterior eye shape assessment by magnetic resonance imaging (MRI) is used to study myopia. We tested the hypothesis that optical coherence tomography (OCT), as an alternative, could measure posterior eye shape similarly to MRI. Methods Macular spectral-domain OCT and brain MRI images previously acquired as part of the Singapore Epidemiology of Eye Diseases study were analyzed. The right eye in the MRI and OCT images was automatically segmented. Optical coherence tomography segmentations were corrected for optical and display distortions requiring biometry data. The segmentations were fitted to spheres and ellipsoids to obtain the posterior eye radius of curvature (Rc) and asphericity (Qxz). The differences in Rc and Qxz measured by MRI and OCT were tested using paired t-tests. Categorical assignments of prolateness or oblateness using Qxz were compared. Results Fifty-two subjects (67.8 ± 5.6 years old) with spherical equivalent refraction from +0.50 to −5.38 were included. The mean paired difference between MRI and original OCT posterior eye Rc was 24.03 ± 46.49 mm (P = 0.0005). For corrected OCT images, the difference in Rc decreased to −0.23 ± 2.47 mm (P = 0.51). The difference between MRI and OCT asphericity, Qxz, was −0.052 ± 0.343 (P = 0.28). However, categorical agreement was only moderate (κ = 0.50). Conclusions Distortion-corrected OCT measurements of Rc and Qxz were not statistically significantly different from MRI, although the moderate categorical agreement suggests that individual differences remained. This study provides evidence that with distortion correction, noninvasive office-based OCT could potentially be used instead of MRI for the study of posterior eye shape. PMID:27409473
Egger, Jan; Kappus, Christoph; Freisleben, Bernd; Nimsky, Christopher
2012-08-01
In this contribution, a medical software system for volumetric analysis of different cerebral pathologies in magnetic resonance imaging (MRI) data is presented. The software system is based on a semi-automatic segmentation algorithm and helps to overcome the time-consuming process of volume determination during monitoring of a patient. After imaging, the parameter settings-including a seed point-are set up in the system and an automatic segmentation is performed by a novel graph-based approach. Manually reviewing the result leads to reseeding, adding seed points or an automatic surface mesh generation. The mesh is saved for monitoring the patient and for comparisons with follow-up scans. Based on the mesh, the system performs a voxelization and volume calculation, which leads to diagnosis and therefore further treatment decisions. The overall system has been tested with different cerebral pathologies-glioblastoma multiforme, pituitary adenomas and cerebral aneurysms- and evaluated against manual expert segmentations using the Dice Similarity Coefficient (DSC). Additionally, intra-physician segmentations have been performed to provide a quality measure for the presented system.
Machine learning in a graph framework for subcortical segmentation
NASA Astrophysics Data System (ADS)
Guo, Zhihui; Kashyap, Satyananda; Sonka, Milan; Oguz, Ipek
2017-02-01
Automated and reliable segmentation of subcortical structures from human brain magnetic resonance images is of great importance for volumetric and shape analyses in quantitative neuroimaging studies. However, poor boundary contrast and variable shape of these structures make the automated segmentation a tough task. We propose a 3D graph-based machine learning method, called LOGISMOS-RF, to segment the caudate and the putamen from brain MRI scans in a robust and accurate way. An atlas-based tissue classification and bias-field correction method is applied to the images to generate an initial segmentation for each structure. Then a 3D graph framework is utilized to construct a geometric graph for each initial segmentation. A locally trained random forest classifier is used to assign a cost to each graph node. The max-flow algorithm is applied to solve the segmentation problem. Evaluation was performed on a dataset of T1-weighted MRI's of 62 subjects, with 42 images used for training and 20 images for testing. For comparison, FreeSurfer, FSL and BRAINSCut approaches were also evaluated using the same dataset. Dice overlap coefficients and surface-to-surfaces distances between the automated segmentation and expert manual segmentations indicate the results of our method are statistically significantly more accurate than the three other methods, for both the caudate (Dice: 0.89 +/- 0.03) and the putamen (0.89 +/- 0.03).
NASA Astrophysics Data System (ADS)
Dangi, Shusil; Linte, Cristian A.
2017-03-01
Segmentation of right ventricle from cardiac MRI images can be used to build pre-operative anatomical heart models to precisely identify regions of interest during minimally invasive therapy. Furthermore, many functional parameters of right heart such as right ventricular volume, ejection fraction, myocardial mass and thickness can also be assessed from the segmented images. To obtain an accurate and computationally efficient segmentation of right ventricle from cardiac cine MRI, we propose a segmentation algorithm formulated as an energy minimization problem in a graph. Shape prior obtained by propagating label from an average atlas using affine registration is incorporated into the graph framework to overcome problems in ill-defined image regions. The optimal segmentation corresponding to the labeling with minimum energy configuration of the graph is obtained via graph-cuts and is iteratively refined to produce the final right ventricle blood pool segmentation. We quantitatively compare the segmentation results obtained from our algorithm to the provided gold-standard expert manual segmentation for 16 cine-MRI datasets available through the MICCAI 2012 Cardiac MR Right Ventricle Segmentation Challenge according to several similarity metrics, including Dice coefficient, Jaccard coefficient, Hausdorff distance, and Mean absolute distance error.
Automated tumor volumetry using computer-aided image segmentation.
Gaonkar, Bilwaj; Macyszyn, Luke; Bilello, Michel; Sadaghiani, Mohammed Salehi; Akbari, Hamed; Atthiah, Mark A; Ali, Zarina S; Da, Xiao; Zhan, Yiqang; O'Rourke, Donald; Grady, Sean M; Davatzikos, Christos
2015-05-01
Accurate segmentation of brain tumors, and quantification of tumor volume, is important for diagnosis, monitoring, and planning therapeutic intervention. Manual segmentation is not widely used because of time constraints. Previous efforts have mainly produced methods that are tailored to a particular type of tumor or acquisition protocol and have mostly failed to produce a method that functions on different tumor types and is robust to changes in scanning parameters, resolution, and image quality, thereby limiting their clinical value. Herein, we present a semiautomatic method for tumor segmentation that is fast, accurate, and robust to a wide variation in image quality and resolution. A semiautomatic segmentation method based on the geodesic distance transform was developed and validated by using it to segment 54 brain tumors. Glioblastomas, meningiomas, and brain metastases were segmented. Qualitative validation was based on physician ratings provided by three clinical experts. Quantitative validation was based on comparing semiautomatic and manual segmentations. Tumor segmentations obtained using manual and automatic methods were compared quantitatively using the Dice measure of overlap. Subjective evaluation was performed by having human experts rate the computerized segmentations on a 0-5 rating scale where 5 indicated perfect segmentation. The proposed method addresses a significant, unmet need in the field of neuro-oncology. Specifically, this method enables clinicians to obtain accurate and reproducible tumor volumes without the need for manual segmentation. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.
Automated Tumor Volumetry Using Computer-Aided Image Segmentation
Bilello, Michel; Sadaghiani, Mohammed Salehi; Akbari, Hamed; Atthiah, Mark A.; Ali, Zarina S.; Da, Xiao; Zhan, Yiqang; O'Rourke, Donald; Grady, Sean M.; Davatzikos, Christos
2015-01-01
Rationale and Objectives Accurate segmentation of brain tumors, and quantification of tumor volume, is important for diagnosis, monitoring, and planning therapeutic intervention. Manual segmentation is not widely used because of time constraints. Previous efforts have mainly produced methods that are tailored to a particular type of tumor or acquisition protocol and have mostly failed to produce a method that functions on different tumor types and is robust to changes in scanning parameters, resolution, and image quality, thereby limiting their clinical value. Herein, we present a semiautomatic method for tumor segmentation that is fast, accurate, and robust to a wide variation in image quality and resolution. Materials and Methods A semiautomatic segmentation method based on the geodesic distance transform was developed and validated by using it to segment 54 brain tumors. Glioblastomas, meningiomas, and brain metastases were segmented. Qualitative validation was based on physician ratings provided by three clinical experts. Quantitative validation was based on comparing semiautomatic and manual segmentations. Results Tumor segmentations obtained using manual and automatic methods were compared quantitatively using the Dice measure of overlap. Subjective evaluation was performed by having human experts rate the computerized segmentations on a 0–5 rating scale where 5 indicated perfect segmentation. Conclusions The proposed method addresses a significant, unmet need in the field of neuro-oncology. Specifically, this method enables clinicians to obtain accurate and reproducible tumor volumes without the need for manual segmentation. PMID:25770633
NASA Astrophysics Data System (ADS)
Wels, Michael; Zheng, Yefeng; Huber, Martin; Hornegger, Joachim; Comaniciu, Dorin
2011-06-01
We describe a fully automated method for tissue classification, which is the segmentation into cerebral gray matter (GM), cerebral white matter (WM), and cerebral spinal fluid (CSF), and intensity non-uniformity (INU) correction in brain magnetic resonance imaging (MRI) volumes. It combines supervised MRI modality-specific discriminative modeling and unsupervised statistical expectation maximization (EM) segmentation into an integrated Bayesian framework. While both the parametric observation models and the non-parametrically modeled INUs are estimated via EM during segmentation itself, a Markov random field (MRF) prior model regularizes segmentation and parameter estimation. Firstly, the regularization takes into account knowledge about spatial and appearance-related homogeneity of segments in terms of pairwise clique potentials of adjacent voxels. Secondly and more importantly, patient-specific knowledge about the global spatial distribution of brain tissue is incorporated into the segmentation process via unary clique potentials. They are based on a strong discriminative model provided by a probabilistic boosting tree (PBT) for classifying image voxels. It relies on the surrounding context and alignment-based features derived from a probabilistic anatomical atlas. The context considered is encoded by 3D Haar-like features of reduced INU sensitivity. Alignment is carried out fully automatically by means of an affine registration algorithm minimizing cross-correlation. Both types of features do not immediately use the observed intensities provided by the MRI modality but instead rely on specifically transformed features, which are less sensitive to MRI artifacts. Detailed quantitative evaluations on standard phantom scans and standard real-world data show the accuracy and robustness of the proposed method. They also demonstrate relative superiority in comparison to other state-of-the-art approaches to this kind of computational task: our method achieves average Dice coefficients of 0.93 ± 0.03 (WM) and 0.90 ± 0.05 (GM) on simulated mono-spectral and 0.94 ± 0.02 (WM) and 0.92 ± 0.04 (GM) on simulated multi-spectral data from the BrainWeb repository. The scores are 0.81 ± 0.09 (WM) and 0.82 ± 0.06 (GM) and 0.87 ± 0.05 (WM) and 0.83 ± 0.12 (GM) for the two collections of real-world data sets—consisting of 20 and 18 volumes, respectively—provided by the Internet Brain Segmentation Repository.
Wels, Michael; Zheng, Yefeng; Huber, Martin; Hornegger, Joachim; Comaniciu, Dorin
2011-06-07
We describe a fully automated method for tissue classification, which is the segmentation into cerebral gray matter (GM), cerebral white matter (WM), and cerebral spinal fluid (CSF), and intensity non-uniformity (INU) correction in brain magnetic resonance imaging (MRI) volumes. It combines supervised MRI modality-specific discriminative modeling and unsupervised statistical expectation maximization (EM) segmentation into an integrated Bayesian framework. While both the parametric observation models and the non-parametrically modeled INUs are estimated via EM during segmentation itself, a Markov random field (MRF) prior model regularizes segmentation and parameter estimation. Firstly, the regularization takes into account knowledge about spatial and appearance-related homogeneity of segments in terms of pairwise clique potentials of adjacent voxels. Secondly and more importantly, patient-specific knowledge about the global spatial distribution of brain tissue is incorporated into the segmentation process via unary clique potentials. They are based on a strong discriminative model provided by a probabilistic boosting tree (PBT) for classifying image voxels. It relies on the surrounding context and alignment-based features derived from a probabilistic anatomical atlas. The context considered is encoded by 3D Haar-like features of reduced INU sensitivity. Alignment is carried out fully automatically by means of an affine registration algorithm minimizing cross-correlation. Both types of features do not immediately use the observed intensities provided by the MRI modality but instead rely on specifically transformed features, which are less sensitive to MRI artifacts. Detailed quantitative evaluations on standard phantom scans and standard real-world data show the accuracy and robustness of the proposed method. They also demonstrate relative superiority in comparison to other state-of-the-art approaches to this kind of computational task: our method achieves average Dice coefficients of 0.93 ± 0.03 (WM) and 0.90 ± 0.05 (GM) on simulated mono-spectral and 0.94 ± 0.02 (WM) and 0.92 ± 0.04 (GM) on simulated multi-spectral data from the BrainWeb repository. The scores are 0.81 ± 0.09 (WM) and 0.82 ± 0.06 (GM) and 0.87 ± 0.05 (WM) and 0.83 ± 0.12 (GM) for the two collections of real-world data sets-consisting of 20 and 18 volumes, respectively-provided by the Internet Brain Segmentation Repository.
NASA Astrophysics Data System (ADS)
Mazzetti, S.; Giannini, V.; Russo, F.; Regge, D.
2018-05-01
Computer-aided diagnosis (CAD) systems are increasingly being used in clinical settings to report multi-parametric magnetic resonance imaging (mp-MRI) of the prostate. Usually, CAD systems automatically highlight cancer-suspicious regions to the radiologist, reducing reader variability and interpretation errors. Nevertheless, implementing this software requires the selection of which mp-MRI parameters can best discriminate between malignant and non-malignant regions. To exploit functional information, some parameters are derived from dynamic contrast-enhanced (DCE) acquisitions. In particular, much CAD software employs pharmacokinetic features, such as K trans and k ep, derived from the Tofts model, to estimate a likelihood map of malignancy. However, non-pharmacokinetic models can be also used to describe DCE-MRI curves, without any requirement for prior knowledge or measurement of the arterial input function, which could potentially lead to large errors in parameter estimation. In this work, we implemented an empirical function derived from the phenomenological universalities (PUN) class to fit DCE-MRI. The parameters of the PUN model are used in combination with T2-weighted and diffusion-weighted acquisitions to feed a support vector machine classifier to produce a voxel-wise malignancy likelihood map of the prostate. The results were all compared to those for a CAD system based on Tofts pharmacokinetic features to describe DCE-MRI curves, using different quality aspects of image segmentation, while also evaluating the number and size of false positive (FP) candidate regions. This study included 61 patients with 70 biopsy-proven prostate cancers (PCa). The metrics used to evaluate segmentation quality between the two CAD systems were not statistically different, although the PUN-based CAD reported a lower number of FP, with reduced size compared to the Tofts-based CAD. In conclusion, the CAD software based on PUN parameters is a feasible means with which to detect PCa, without affecting segmentation quality, and hence it could be successfully applied in clinical settings, improving the automated diagnosis process and reducing computational complexity.
Voltage-based device tracking in a 1.5 Tesla MRI during imaging: initial validation in swine models.
Schmidt, Ehud J; Tse, Zion T H; Reichlin, Tobias R; Michaud, Gregory F; Watkins, Ronald D; Butts-Pauly, Kim; Kwong, Raymond Y; Stevenson, William; Schweitzer, Jeffrey; Byrd, Israel; Dumoulin, Charles L
2014-03-01
Voltage-based device-tracking (VDT) systems are commonly used for tracking invasive devices in electrophysiological cardiac-arrhythmia therapy. During electrophysiological procedures, electro-anatomic mapping workstations provide guidance by integrating VDT location and intracardiac electrocardiogram information with X-ray, computerized tomography, ultrasound, and MR images. MR assists navigation, mapping, and radiofrequency ablation. Multimodality interventions require multiple patient transfers between an MRI and the X-ray/ultrasound electrophysiological suite, increasing the likelihood of patient-motion and image misregistration. An MRI-compatible VDT system may increase efficiency, as there is currently no single method to track devices both inside and outside the MRI scanner. An MRI-compatible VDT system was constructed by modifying a commercial system. Hardware was added to reduce MRI gradient-ramp and radiofrequency unblanking pulse interference. VDT patches and cables were modified to reduce heating. Five swine cardiac VDT electro-anatomic mapping interventions were performed, navigating inside and thereafter outside the MRI. Three-catheter VDT interventions were performed at >12 frames per second both inside and outside the MRI scanner with <3 mm error. Catheters were followed on VDT- and MRI-derived maps. Simultaneous VDT and imaging was possible in repetition time >32 ms sequences with <0.5 mm errors, and <5% MRI signal-to-noise ratio (SNR) loss. At shorter repetition times, only intracardiac electrocardiogram was reliable. Radiofrequency heating was <1.5°C. An MRI-compatible VDT system is feasible. Copyright © 2013 Wiley Periodicals, Inc.
Wirtz, C R; Bonsanto, M M; Knauth, M; Tronnier, V M; Albert, F K; Staubert, A; Kunze, S
1997-01-01
We report on the first successful intraoperative update of interactive image guidance based on an intraoperatively acquired magnetic resonance imaging (MRI) date set. To date, intraoperative imaging methods such as ultrasound, computerized tomography (CT), or MRI have not been successfully used to update interactive navigation. We developed a method of imaging patients intraoperatively with the surgical field exposed in an MRI scanner (Magnetom Open; Siemens Corp., Erlangen, Germany). In 12 patients, intraoperatively acquired 3D data sets were used for successful recalibration of neuronavigation, accounting for any anatomical changes caused by surgical manipulations. The MKM Microscope (Zeiss Corp., Oberkochen, Germany) was used as navigational system. With implantable fiducial markers, an accuracy of 0.84 +/- 0.4 mm for intraoperative reregistration was achieved. Residual tumor detected on MRI was consequently resected using navigation with the intraoperative data. No adverse effects were observed from intraoperative imaging or the use of navigation with intraoperative images, demonstrating the feasibility of recalibrating navigation with intraoperative MRI.
Lung dynamic MRI deblurring using low-rank decomposition and dictionary learning.
Gou, Shuiping; Wang, Yueyue; Wu, Jiaolong; Lee, Percy; Sheng, Ke
2015-04-01
Lung dynamic MRI (dMRI) has emerged to be an appealing tool to quantify lung motion for both planning and treatment guidance purposes. However, this modality can result in blurry images due to intrinsically low signal-to-noise ratio in the lung and spatial/temporal interpolation. The image blurring could adversely affect the image processing that depends on the availability of fine landmarks. The purpose of this study is to reduce dMRI blurring using image postprocessing. To enhance the image quality and exploit the spatiotemporal continuity of dMRI sequences, a low-rank decomposition and dictionary learning (LDDL) method was employed to deblur lung dMRI and enhance the conspicuity of lung blood vessels. Fifty frames of continuous 2D coronal dMRI frames using a steady state free precession sequence were obtained from five subjects including two healthy volunteer and three lung cancer patients. In LDDL, the lung dMRI was decomposed into sparse and low-rank components. Dictionary learning was employed to estimate the blurring kernel based on the whole image, low-rank or sparse component of the first image in the lung MRI sequence. Deblurring was performed on the whole image sequences using deconvolution based on the estimated blur kernel. The deblurring results were quantified using an automated blood vessel extraction method based on the classification of Hessian matrix filtered images. Accuracy of automated extraction was calculated using manual segmentation of the blood vessels as the ground truth. In the pilot study, LDDL based on the blurring kernel estimated from the sparse component led to performance superior to the other ways of kernel estimation. LDDL consistently improved image contrast and fine feature conspicuity of the original MRI without introducing artifacts. The accuracy of automated blood vessel extraction was on average increased by 16% using manual segmentation as the ground truth. Image blurring in dMRI images can be effectively reduced using a low-rank decomposition and dictionary learning method using kernels estimated by the sparse component.
Computerized Interpretation of Dynamic Breast MRI
2005-05-01
The interpretation criteria in the current literature fall Breast MRI has emerged as a promising modality for the into two major categories: 5’ 14...is that theraphy , current interpretation schemes might not be sufficiently ro- Despite its well-recognized advantages, applications of bust. MRI in...postcontrast series For the manual delineation, a radiologist (U.B.), blinded were then taken with a time interval of 60 s. Each series to the histological
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yee, S; Wloch, J; Pirkola, M
Purpose: Quantitative fat-water segmentation is important not only because of the clinical utility of fat-suppressed MRI images in better detecting lesions of clinical significance (in the midst of bright fat signal) but also because of the possible physical need, in which CT-like images based on the materials’ photon attenuation properties may have to be generated from MR images; particularly, as in the case of MR-only radiation oncology environment to obtain radiation dose calculation or as in the case of hybrid PET/MR modality to obtain attenuation correction map for the quantitative PET reconstruction. The majority of such fat-water quantitative segmentations havemore » been performed by utilizing the Dixon’s method and its variations, which have to enforce the proper settings (often predefined) of echo time (TE) in the pulse sequences. Therefore, such methods have been unable to be directly combined with those ultrashort TE (UTE) sequences that, taking the advantage of very low TE values (∼ 10’s microsecond), might be beneficial to directly detect bones. Recently, an RF pulse-based method (http://dx.doi.org/10.1016/j.mri.2015.11.006), termed as PROD pulse method, was introduced as a method of quantitative fat-water segmentation that does not have to depend on predefined TE settings. Here, the clinical feasibility of this method is verified in brain tumor patients by combining the PROD pulse with several sequences. Methods: In a clinical 3T MRI, the PROD pulse was combined with turbo spin echo (e.g. TR=1500, TE=16 or 60, ETL=15) or turbo field echo (e.g. TR=5.6, TE=2.8, ETL=12) sequences without specifying TE values. Results: The fat-water segmentation was possible without having to set specific TE values. Conclusion: The PROD pulse method is clinically feasible. Although not yet combined with UTE sequences in our laboratory, the method is potentially compatible with UTE sequences, and thus, might be useful to directly segment fat, water, bone and air.« less
Biological Image-Guided Radiotherapy in Rectal Cancer: Challenges and Pitfalls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roels, Sarah; Slagmolen, Pieter; Nuyts, Johan
2009-11-01
Purpose: To investigate the feasibility of integrating multiple imaging modalities for image-guided radiotherapy in rectal cancer. Patients and Methods: Magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) were performed before, during, and after preoperative chemoradiotherapy (CRT) in patients with resectable rectal cancer. The FDG-PET signals were segmented with an adaptive threshold-based and a gradient-based method. Magnetic resonance tumor volumes (TVs) were manually delineated. A nonrigid registration algorithm was applied to register the images, and mismatch analyses were carried out between MR and FDG-PET TVs and between TVs over time. Tumor volumes delineated on the images after CRTmore » were compared with the pathologic TV. Results: Forty-five FDG-PET/CT and 45 MR images were analyzed from 15 patients. The mean MRI and FDG-PET TVs showed a tendency to shrink during and after CRT. In general, MRI showed larger TVs than FDG-PET. There was an approximately 50% mismatch between the FDG-PET TV and the MRI TV at baseline and during CRT. Sixty-one percent of the FDG-PET TV and 76% of the MRI TV obtained after 10 fractions of CRT remained inside the corresponding baseline TV. On MRI, residual tumor was still suspected in all 6 patients with a pathologic complete response, whereas FDG-PET showed a metabolic complete response in 3 of them. The FDG-PET TVs delineated with the gradient-based method matched closest with pathologic findings. Conclusions: Integration of MRI and FDG-PET into radiotherapy seems feasible. Gradient-based segmentation is recommended for FDG-PET. Spatial variance between MRI and FDG-PET TVs should be taken into account for target definition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, W; Wang, J; Zhang, H
Purpose: To review the literature in using computerized PET/CT image analysis for the evaluation of tumor response to therapy. Methods: We reviewed and summarized more than 100 papers that used computerized image analysis techniques for the evaluation of tumor response with PET/CT. This review mainly covered four aspects: image registration, tumor segmentation, image feature extraction, and response evaluation. Results: Although rigid image registration is straightforward, it has been shown to achieve good alignment between baseline and evaluation scans. Deformable image registration has been shown to improve the alignment when complex deformable distortions occur due to tumor shrinkage, weight loss ormore » gain, and motion. Many semi-automatic tumor segmentation methods have been developed on PET. A comparative study revealed benefits of high levels of user interaction with simultaneous visualization of CT images and PET gradients. On CT, semi-automatic methods have been developed for only tumors that show marked difference in CT attenuation between the tumor and the surrounding normal tissues. Quite a few multi-modality segmentation methods have been shown to improve accuracy compared to single-modality algorithms. Advanced PET image features considering spatial information, such as tumor volume, tumor shape, total glycolytic volume, histogram distance, and texture features have been found more informative than the traditional SUVmax for the prediction of tumor response. Advanced CT features, including volumetric, attenuation, morphologic, structure, and texture descriptors, have also been found advantage over the traditional RECIST and WHO criteria in certain tumor types. Predictive models based on machine learning technique have been constructed for correlating selected image features to response. These models showed improved performance compared to current methods using cutoff value of a single measurement for tumor response. Conclusion: This review showed that computerized PET/CT image analysis holds great potential to improve the accuracy in evaluation of tumor response. This work was supported in part by the National Cancer Institute Grant R01CA172638.« less
Karimpoor, Mahta; Tam, Fred; Strother, Stephen C.; Fischer, Corinne E.; Schweizer, Tom A.; Graham, Simon J.
2015-01-01
Neuropsychological tests behavioral tasks that very commonly involve handwriting and drawing are widely used in the clinic to detect abnormal brain function. Functional magnetic resonance imaging (fMRI) may be useful in increasing the specificity of such tests. However, performing complex pen-and-paper tests during fMRI involves engineering challenges. Previously, we developed an fMRI-compatible, computerized tablet system to address this issue. However, the tablet did not include visual feedback of hand position (VFHP), a human factors component that may be important for fMRI of certain patient populations. A real-time system was thus developed to provide VFHP and integrated with the tablet in an augmented reality display. The effectiveness of the system was initially tested in young healthy adults who performed various handwriting tasks in front of a computer display with and without VFHP. Pilot fMRI of writing tasks were performed by two representative individuals with and without VFHP. Quantitative analysis of the behavioral results indicated improved writing performance with VFHP. The pilot fMRI results suggest that writing with VFHP requires less neural resources compared to the without VFHP condition, to maintain similar behavior. Thus, the tablet system with VFHP is recommended for future fMRI studies involving patients with impaired brain function and where ecologically valid behavior is important. PMID:25859201
Validation of Automated White Matter Hyperintensity Segmentation
Smart, Sean D.; Firbank, Michael J.; O'Brien, John T.
2011-01-01
Introduction. White matter hyperintensities (WMHs) are a common finding on MRI scans of older people and are associated with vascular disease. We compared 3 methods for automatically segmenting WMHs from MRI scans. Method. An operator manually segmented WMHs on MRI images from a 3T scanner. The scans were also segmented in a fully automated fashion by three different programmes. The voxel overlap between manual and automated segmentation was compared. Results. Between observer overlap ratio was 63%. Using our previously described in-house software, we had overlap of 62.2%. We investigated the use of a modified version of SPM segmentation; however, this was not successful, with only 14% overlap. Discussion. Using our previously reported software, we demonstrated good segmentation of WMHs in a fully automated fashion. PMID:21904678
Karimi, Davood; Samei, Golnoosh; Kesch, Claudia; Nir, Guy; Salcudean, Septimiu E
2018-05-15
Most of the existing convolutional neural network (CNN)-based medical image segmentation methods are based on methods that have originally been developed for segmentation of natural images. Therefore, they largely ignore the differences between the two domains, such as the smaller degree of variability in the shape and appearance of the target volume and the smaller amounts of training data in medical applications. We propose a CNN-based method for prostate segmentation in MRI that employs statistical shape models to address these issues. Our CNN predicts the location of the prostate center and the parameters of the shape model, which determine the position of prostate surface keypoints. To train such a large model for segmentation of 3D images using small data (1) we adopt a stage-wise training strategy by first training the network to predict the prostate center and subsequently adding modules for predicting the parameters of the shape model and prostate rotation, (2) we propose a data augmentation method whereby the training images and their prostate surface keypoints are deformed according to the displacements computed based on the shape model, and (3) we employ various regularization techniques. Our proposed method achieves a Dice score of 0.88, which is obtained by using both elastic-net and spectral dropout for regularization. Compared with a standard CNN-based method, our method shows significantly better segmentation performance on the prostate base and apex. Our experiments also show that data augmentation using the shape model significantly improves the segmentation results. Prior knowledge about the shape of the target organ can improve the performance of CNN-based segmentation methods, especially where image features are not sufficient for a precise segmentation. Statistical shape models can also be employed to synthesize additional training data that can ease the training of large CNNs.
Focal liver lesions segmentation and classification in nonenhanced T2-weighted MRI.
Gatos, Ilias; Tsantis, Stavros; Karamesini, Maria; Spiliopoulos, Stavros; Karnabatidis, Dimitris; Hazle, John D; Kagadis, George C
2017-07-01
To automatically segment and classify focal liver lesions (FLLs) on nonenhanced T2-weighted magnetic resonance imaging (MRI) scans using a computer-aided diagnosis (CAD) algorithm. 71 FLLs (30 benign lesions, 19 hepatocellular carcinomas, and 22 metastases) on T2-weighted MRI scans were delineated by the proposed CAD scheme. The FLL segmentation procedure involved wavelet multiscale analysis to extract accurate edge information and mean intensity values for consecutive edges computed using horizontal and vertical analysis that were fed into the subsequent fuzzy C-means algorithm for final FLL border extraction. Texture information for each extracted lesion was derived using 42 first- and second-order textural features from grayscale value histogram, co-occurrence, and run-length matrices. Twelve morphological features were also extracted to capture any shape differentiation between classes. Feature selection was performed with stepwise multilinear regression analysis that led to a reduced feature subset. A multiclass Probabilistic Neural Network (PNN) classifier was then designed and used for lesion classification. PNN model evaluation was performed using the leave-one-out (LOO) method and receiver operating characteristic (ROC) curve analysis. The mean overlap between the automatically segmented FLLs and the manual segmentations performed by radiologists was 0.91 ± 0.12. The highest classification accuracies in the PNN model for the benign, hepatocellular carcinoma, and metastatic FLLs were 94.1%, 91.4%, and 94.1%, respectively, with sensitivity/specificity values of 90%/97.3%, 89.5%/92.2%, and 90.9%/95.6% respectively. The overall classification accuracy for the proposed system was 90.1%. Our diagnostic system using sophisticated FLL segmentation and classification algorithms is a powerful tool for routine clinical MRI-based liver evaluation and can be a supplement to contrast-enhanced MRI to prevent unnecessary invasive procedures. © 2017 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X; Jani, A; Rossi, P
Purpose: MRI has shown promise in identifying prostate tumors with high sensitivity and specificity for the detection of prostate cancer. Accurate segmentation of the prostate plays a key role various tasks: to accurately localize prostate boundaries for biopsy needle placement and radiotherapy, to initialize multi-modal registration algorithms or to obtain the region of interest for computer-aided detection of prostate cancer. However, manual segmentation during biopsy or radiation therapy can be time consuming and subject to inter- and intra-observer variation. This study’s purpose it to develop an automated method to address this technical challenge. Methods: We present an automated multi-atlas segmentationmore » for MR prostate segmentation using patch-based label fusion. After an initial preprocessing for all images, all the atlases are non-rigidly registered to a target image. And then, the resulting transformation is used to propagate the anatomical structure labels of the atlas into the space of the target image. The top L similar atlases are further chosen by measuring intensity and structure difference in the region of interest around prostate. Finally, using voxel weighting based on patch-based anatomical signature, the label that the majority of all warped labels predict for each voxel is used for the final segmentation of the target image. Results: This segmentation technique was validated with a clinical study of 13 patients. The accuracy of our approach was assessed using the manual segmentation (gold standard). The mean volume Dice Overlap Coefficient was 89.5±2.9% between our and manual segmentation, which indicate that the automatic segmentation method works well and could be used for 3D MRI-guided prostate intervention. Conclusion: We have developed a new prostate segmentation approach based on the optimal feature learning label fusion framework, demonstrated its clinical feasibility, and validated its accuracy. This segmentation technique could be a useful tool in image-guided interventions for prostate-cancer diagnosis and treatment.« less
Kainz, Hans; Hoang, Hoa X; Stockton, Chris; Boyd, Roslyn R; Lloyd, David G; Carty, Christopher P
2017-10-01
Gait analysis together with musculoskeletal modeling is widely used for research. In the absence of medical images, surface marker locations are used to scale a generic model to the individual's anthropometry. Studies evaluating the accuracy and reliability of different scaling approaches in a pediatric and/or clinical population have not yet been conducted and, therefore, formed the aim of this study. Magnetic resonance images (MRI) and motion capture data were collected from 12 participants with cerebral palsy and 6 typically developed participants. Accuracy was assessed by comparing the scaled model's segment measures to the corresponding MRI measures, whereas reliability was assessed by comparing the model's segments scaled with the experimental marker locations from the first and second motion capture session. The inclusion of joint centers into the scaling process significantly increased the accuracy of thigh and shank segment length estimates compared to scaling with markers alone. Pelvis scaling approaches which included the pelvis depth measure led to the highest errors compared to the MRI measures. Reliability was similar between scaling approaches with mean ICC of 0.97. The pelvis should be scaled using pelvic width and height and the thigh and shank segment should be scaled using the proximal and distal joint centers.
A semi-automatic method for left ventricle volume estimate: an in vivo validation study
NASA Technical Reports Server (NTRS)
Corsi, C.; Lamberti, C.; Sarti, A.; Saracino, G.; Shiota, T.; Thomas, J. D.
2001-01-01
This study aims to the validation of the left ventricular (LV) volume estimates obtained by processing volumetric data utilizing a segmentation model based on level set technique. The validation has been performed by comparing real-time volumetric echo data (RT3DE) and magnetic resonance (MRI) data. A validation protocol has been defined. The validation protocol was applied to twenty-four estimates (range 61-467 ml) obtained from normal and pathologic subjects, which underwent both RT3DE and MRI. A statistical analysis was performed on each estimate and on clinical parameters as stroke volume (SV) and ejection fraction (EF). Assuming MRI estimates (x) as a reference, an excellent correlation was found with volume measured by utilizing the segmentation procedure (y) (y=0.89x + 13.78, r=0.98). The mean error on SV was 8 ml and the mean error on EF was 2%. This study demonstrated that the segmentation technique is reliably applicable on human hearts in clinical practice.
Patient specific computerized phantoms to estimate dose in pediatric CT
NASA Astrophysics Data System (ADS)
Segars, W. P.; Sturgeon, G.; Li, X.; Cheng, L.; Ceritoglu, C.; Ratnanather, J. T.; Miller, M. I.; Tsui, B. M. W.; Frush, D.; Samei, E.
2009-02-01
We create a series of detailed computerized phantoms to estimate patient organ and effective dose in pediatric CT and investigate techniques for efficiently creating patient-specific phantoms based on imaging data. The initial anatomy of each phantom was previously developed based on manual segmentation of pediatric CT data. Each phantom was extended to include a more detailed anatomy based on morphing an existing adult phantom in our laboratory to match the framework (based on segmentation) defined for the target pediatric model. By morphing a template anatomy to match the patient data in the LDDMM framework, it was possible to create a patient specific phantom with many anatomical structures, some not visible in the CT data. The adult models contain thousands of defined structures that were transformed to define them in each pediatric anatomy. The accuracy of this method, under different conditions, was tested using a known voxelized phantom as the target. Errors were measured in terms of a distance map between the predicted organ surfaces and the known ones. We also compared calculated dose measurements to see the effect of different magnitudes of errors in morphing. Despite some variations in organ geometry, dose measurements from morphing predictions were found to agree with those calculated from the voxelized phantom thus demonstrating the feasibility of our methods.
Automated segmentation of multifocal basal ganglia T2*-weighted MRI hypointensities
Glatz, Andreas; Bastin, Mark E.; Kiker, Alexander J.; Deary, Ian J.; Wardlaw, Joanna M.; Valdés Hernández, Maria C.
2015-01-01
Multifocal basal ganglia T2*-weighted (T2*w) hypointensities, which are believed to arise mainly from vascular mineralization, were recently proposed as a novel MRI biomarker for small vessel disease and ageing. These T2*w hypointensities are typically segmented semi-automatically, which is time consuming, associated with a high intra-rater variability and low inter-rater agreement. To address these limitations, we developed a fully automated, unsupervised segmentation method for basal ganglia T2*w hypointensities. This method requires conventional, co-registered T2*w and T1-weighted (T1w) volumes, as well as region-of-interest (ROI) masks for the basal ganglia and adjacent internal capsule generated automatically from T1w MRI. The basal ganglia T2*w hypointensities were then segmented with thresholds derived with an adaptive outlier detection method from respective bivariate T2*w/T1w intensity distributions in each ROI. Artefacts were reduced by filtering connected components in the initial masks based on their standardised T2*w intensity variance. The segmentation method was validated using a custom-built phantom containing mineral deposit models, i.e. gel beads doped with 3 different contrast agents in 7 different concentrations, as well as with MRI data from 98 community-dwelling older subjects in their seventies with a wide range of basal ganglia T2*w hypointensities. The method produced basal ganglia T2*w hypointensity masks that were in substantial volumetric and spatial agreement with those generated by an experienced rater (Jaccard index = 0.62 ± 0.40). These promising results suggest that this method may have use in automatic segmentation of basal ganglia T2*w hypointensities in studies of small vessel disease and ageing. PMID:25451469
Subudhi, Badri Narayan; Thangaraj, Veerakumar; Sankaralingam, Esakkirajan; Ghosh, Ashish
2016-11-01
In this article, a statistical fusion based segmentation technique is proposed to identify different abnormality in magnetic resonance images (MRI). The proposed scheme follows seed selection, region growing-merging and fusion of multiple image segments. In this process initially, an image is divided into a number of blocks and for each block we compute the phase component of the Fourier transform. The phase component of each block reflects the gray level variation among the block but contains a large correlation among them. Hence a singular value decomposition (SVD) technique is adhered to generate a singular value of each block. Then a thresholding procedure is applied on these singular values to identify edgy and smooth regions and some seed points are selected for segmentation. By considering each seed point we perform a binary segmentation of the complete MRI and hence with all seed points we get an equal number of binary images. A parcel based statistical fusion process is used to fuse all the binary images into multiple segments. Effectiveness of the proposed scheme is tested on identifying different abnormalities: prostatic carcinoma detection, tuberculous granulomas identification and intracranial neoplasm or brain tumor detection. The proposed technique is established by comparing its results against seven state-of-the-art techniques with six performance evaluation measures. Copyright © 2016 Elsevier Inc. All rights reserved.
Registration of MRI to intraoperative radiographs for target localization in spinal interventions
NASA Astrophysics Data System (ADS)
De Silva, T.; Uneri, A.; Ketcha, M. D.; Reaungamornrat, S.; Goerres, J.; Jacobson, M. W.; Vogt, S.; Kleinszig, G.; Khanna, A. J.; Wolinsky, J.-P.; Siewerdsen, J. H.
2017-01-01
Decision support to assist in target vertebra localization could provide a useful aid to safe and effective spine surgery. Previous solutions have shown 3D-2D registration of preoperative CT to intraoperative radiographs to reliably annotate vertebral labels for assistance during level localization. We present an algorithm (referred to as MR-LevelCheck) to perform 3D-2D registration based on a preoperative MRI to accommodate the increasingly common clinical scenario in which MRI is used instead of CT for preoperative planning. Straightforward adaptation of gradient/intensity-based methods appropriate to CT-to-radiograph registration is confounded by large mismatch and noncorrespondence in image intensity between MRI and radiographs. The proposed method overcomes such challenges with a simple vertebrae segmentation step using vertebra centroids as seed points (automatically defined within existing workflow). Forwards projections are computed using segmented MRI and registered to radiographs via gradient orientation (GO) similarity and the CMA-ES (covariance-matrix-adaptation evolutionary-strategy) optimizer. The method was tested in an IRB-approved study involving 10 patients undergoing cervical, thoracic, or lumbar spine surgery following preoperative MRI. The method successfully registered each preoperative MRI to intraoperative radiographs and maintained desirable properties of robustness against image content mismatch and large capture range. Robust registration performance was achieved with projection distance error (PDE) (median ± IQR) = 4.3 ± 2.6 mm (median ± IQR) and 0% failure rate. Segmentation accuracy for the continuous max-flow method yielded dice coefficient = 88.1 ± 5.2, accuracy = 90.6 ± 5.7, RMSE = 1.8 ± 0.6 mm, and contour affinity ratio (CAR) = 0.82 ± 0.08. Registration performance was found to be robust for segmentation methods exhibiting RMSE <3 mm and CAR >0.50. The MR-LevelCheck method provides a potentially valuable extension to a previously developed decision support tool for spine surgery target localization by extending its utility to preoperative MRI while maintaining characteristics of accuracy and robustness.
Kasiri, Keyvan; Kazemi, Kamran; Dehghani, Mohammad Javad; Helfroush, Mohammad Sadegh
2013-01-01
In this paper, we present a new semi-automatic brain tissue segmentation method based on a hybrid hierarchical approach that combines a brain atlas as a priori information and a least-square support vector machine (LS-SVM). The method consists of three steps. In the first two steps, the skull is removed and the cerebrospinal fluid (CSF) is extracted. These two steps are performed using the toolbox FMRIB's automated segmentation tool integrated in the FSL software (FSL-FAST) developed in Oxford Centre for functional MRI of the brain (FMRIB). Then, in the third step, the LS-SVM is used to segment grey matter (GM) and white matter (WM). The training samples for LS-SVM are selected from the registered brain atlas. The voxel intensities and spatial positions are selected as the two feature groups for training and test. SVM as a powerful discriminator is able to handle nonlinear classification problems; however, it cannot provide posterior probability. Thus, we use a sigmoid function to map the SVM output into probabilities. The proposed method is used to segment CSF, GM and WM from the simulated magnetic resonance imaging (MRI) using Brainweb MRI simulator and real data provided by Internet Brain Segmentation Repository. The semi-automatically segmented brain tissues were evaluated by comparing to the corresponding ground truth. The Dice and Jaccard similarity coefficients, sensitivity and specificity were calculated for the quantitative validation of the results. The quantitative results show that the proposed method segments brain tissues accurately with respect to corresponding ground truth. PMID:24696800
Latha, Manohar; Kavitha, Ganesan
2018-02-03
Schizophrenia (SZ) is a psychiatric disorder that especially affects individuals during their adolescence. There is a need to study the subanatomical regions of SZ brain on magnetic resonance images (MRI) based on morphometry. In this work, an attempt was made to analyze alterations in structure and texture patterns in images of the SZ brain using the level-set method and Laws texture features. T1-weighted MRI of the brain from Center of Biomedical Research Excellence (COBRE) database were considered for analysis. Segmentation was carried out using the level-set method. Geometrical and Laws texture features were extracted from the segmented brain stem, corpus callosum, cerebellum, and ventricle regions to analyze pattern changes in SZ. The level-set method segmented multiple brain regions, with higher similarity and correlation values compared with an optimized method. The geometric features obtained from regions of the corpus callosum and ventricle showed significant variation (p < 0.00001) between normal and SZ brain. Laws texture feature identified a heterogeneous appearance in the brain stem, corpus callosum and ventricular regions, and features from the brain stem were correlated with Positive and Negative Syndrome Scale (PANSS) score (p < 0.005). A framework of geometric and Laws texture features obtained from brain subregions can be used as a supplement for diagnosis of psychiatric disorders.
NASA Astrophysics Data System (ADS)
Zhang, Jun; Saha, Ashirbani; Zhu, Zhe; Mazurowski, Maciej A.
2018-02-01
Breast tumor segmentation based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) remains an active as well as a challenging problem. Previous studies often rely on manual annotation for tumor regions, which is not only time-consuming but also error-prone. Recent studies have shown high promise of deep learning-based methods in various segmentation problems. However, these methods are usually faced with the challenge of limited number (e.g., tens or hundreds) of medical images for training, leading to sub-optimal segmentation performance. Also, previous methods cannot efficiently deal with prevalent class-imbalance problems in tumor segmentation, where the number of voxels in tumor regions is much lower than that in the background area. To address these issues, in this study, we propose a mask-guided hierarchical learning (MHL) framework for breast tumor segmentation via fully convolutional networks (FCN). Our strategy is first decomposing the original difficult problem into several sub-problems and then solving these relatively simpler sub-problems in a hierarchical manner. To precisely identify locations of tumors that underwent a biopsy, we further propose an FCN model to detect two landmarks defined on nipples. Finally, based on both segmentation probability maps and our identified landmarks, we proposed to select biopsied tumors from all detected tumors via a tumor selection strategy using the pathology location. We validate our MHL method using data for 272 patients, and achieve a mean Dice similarity coefficient (DSC) of 0.72 in breast tumor segmentation. Finally, in a radiogenomic analysis, we show that a previously developed image features show a comparable performance for identifying luminal A subtype when applied to the automatic segmentation and a semi-manual segmentation demonstrating a high promise for fully automated radiogenomic analysis in breast cancer.
Tustison, Nicholas J; Shrinidhi, K L; Wintermark, Max; Durst, Christopher R; Kandel, Benjamin M; Gee, James C; Grossman, Murray C; Avants, Brian B
2015-04-01
Segmenting and quantifying gliomas from MRI is an important task for diagnosis, planning intervention, and for tracking tumor changes over time. However, this task is complicated by the lack of prior knowledge concerning tumor location, spatial extent, shape, possible displacement of normal tissue, and intensity signature. To accommodate such complications, we introduce a framework for supervised segmentation based on multiple modality intensity, geometry, and asymmetry feature sets. These features drive a supervised whole-brain and tumor segmentation approach based on random forest-derived probabilities. The asymmetry-related features (based on optimal symmetric multimodal templates) demonstrate excellent discriminative properties within this framework. We also gain performance by generating probability maps from random forest models and using these maps for a refining Markov random field regularized probabilistic segmentation. This strategy allows us to interface the supervised learning capabilities of the random forest model with regularized probabilistic segmentation using the recently developed ANTsR package--a comprehensive statistical and visualization interface between the popular Advanced Normalization Tools (ANTs) and the R statistical project. The reported algorithmic framework was the top-performing entry in the MICCAI 2013 Multimodal Brain Tumor Segmentation challenge. The challenge data were widely varying consisting of both high-grade and low-grade glioma tumor four-modality MRI from five different institutions. Average Dice overlap measures for the final algorithmic assessment were 0.87, 0.78, and 0.74 for "complete", "core", and "enhanced" tumor components, respectively.
Xie, Long; Wisse, Laura E M; Das, Sandhitsu R; Wang, Hongzhi; Wolk, David A; Manjón, Jose V; Yushkevich, Paul A
2016-10-01
Quantification of medial temporal lobe (MTL) cortices, including entorhinal cortex (ERC) and perirhinal cortex (PRC), from in vivo MRI is desirable for studying the human memory system as well as in early diagnosis and monitoring of Alzheimer's disease. However, ERC and PRC are commonly over-segmented in T1-weighted (T1w) MRI because of the adjacent meninges that have similar intensity to gray matter in T1 contrast. This introduces errors in the quantification and could potentially confound imaging studies of ERC/PRC. In this paper, we propose to segment MTL cortices along with the adjacent meninges in T1w MRI using an established multi-atlas segmentation framework together with super-resolution technique. Experimental results comparing the proposed pipeline with existing pipelines support the notion that a large portion of meninges is segmented as gray matter by existing algorithms but not by our algorithm. Cross-validation experiments demonstrate promising segmentation accuracy. Further, agreement between the volume and thickness measures from the proposed pipeline and those from the manual segmentations increase dramatically as a result of accounting for the confound of meninges. Evaluated in the context of group discrimination between patients with amnestic mild cognitive impairment and normal controls, the proposed pipeline generates more biologically plausible results and improves the statistical power in discriminating groups in absolute terms comparing to other techniques using T1w MRI. Although the performance of the proposed pipeline is inferior to that using T2-weighted MRI, which is optimized to image MTL sub-structures, the proposed pipeline could still provide important utilities in analyzing many existing large datasets that only have T1w MRI available.
Tiwari, Pallavi; Kurhanewicz, John; Viswanath, Satish; Sridhar, Akshay; Madabhushi, Anant
2011-01-01
Rationale and Objectives To develop a computerized data integration framework (MaWERiC) for quantitatively combining structural and metabolic information from different Magnetic Resonance (MR) imaging modalities. Materials and Methods In this paper, we present a novel computerized support system that we call Multimodal Wavelet Embedding Representation for data Combination (MaWERiC) which (1) employs wavelet theory and dimensionality reduction for providing a common, uniform representation of the different imaging (T2-w) and non-imaging (spectroscopy) MRI channels, and (2) leverages a random forest classifier for automated prostate cancer detection on a per voxel basis from combined 1.5 Tesla in vivo MRI and MRS. Results A total of 36 1.5 T endorectal in vivo T2-w MRI, MRS patient studies were evaluated on a per-voxel via MaWERiC, using a three-fold cross validation scheme across 25 iterations. Ground truth for evaluation of the results was obtained via ex-vivo whole-mount histology sections which served as the gold standard for expert radiologist annotations of prostate cancer on a per-voxel basis. The results suggest that MaWERiC based MRS-T2-w meta-classifier (mean AUC, μ = 0.89 ± 0.02) significantly outperformed (i) a T2-w MRI (employing wavelet texture features) classifier (μ = 0.55± 0.02), (ii) a MRS (employing metabolite ratios) classifier (μ= 0.77 ± 0.03), (iii) a decision-fusion classifier, obtained by combining individual T2-w MRI and MRS classifier outputs (μ = 0.85 ± 0.03) and (iv) a data combination scheme involving combination of metabolic MRS and MR signal intensity features (μ = 0.66± 0.02). Conclusion A novel data integration framework, MaWERiC, for combining imaging and non-imaging MRI channels was presented. Application to prostate cancer detection via combination of T2-w MRI and MRS data demonstrated significantly higher AUC and accuracy values compared to the individual T2-w MRI, MRS modalities and other data integration strategies. PMID:21960175
NASA Astrophysics Data System (ADS)
Habas, Piotr A.; Kim, Kio; Chandramohan, Dharshan; Rousseau, Francois; Glenn, Orit A.; Studholme, Colin
2009-02-01
Recent advances in MR and image analysis allow for reconstruction of high-resolution 3D images from clinical in utero scans of the human fetal brain. Automated segmentation of tissue types from MR images (MRI) is a key step in the quantitative analysis of brain development. Conventional atlas-based methods for adult brain segmentation are limited in their ability to accurately delineate complex structures of developing tissues from fetal MRI. In this paper, we formulate a novel geometric representation of the fetal brain aimed at capturing the laminar structure of developing anatomy. The proposed model uses a depth-based encoding of tissue occurrence within the fetal brain and provides an additional anatomical constraint in a form of a laminar prior that can be incorporated into conventional atlas-based EM segmentation. Validation experiments are performed using clinical in utero scans of 5 fetal subjects at gestational ages ranging from 20.5 to 22.5 weeks. Experimental results are evaluated against reference manual segmentations and quantified in terms of Dice similarity coefficient (DSC). The study demonstrates that the use of laminar depth-encoded tissue priors improves both the overall accuracy and precision of fetal brain segmentation. Particular refinement is observed in regions of the parietal and occipital lobes where the DSC index is improved from 0.81 to 0.82 for cortical grey matter, from 0.71 to 0.73 for the germinal matrix, and from 0.81 to 0.87 for white matter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Silva, T; Uneri, A; Ketcha, M
Purpose: Accurate localization of target vertebrae is essential to safe, effective spine surgery, but wrong-level surgery occurs with surprisingly high frequency. Recent research yielded the “LevelCheck” method for 3D-2D registration of preoperative CT to intraoperative radiographs, providing decision support for level localization. We report a new method (MR-LevelCheck) to perform 3D-2D registration based on preoperative MRI, presenting a solution for the increasingly common scenario in which MRI (not CT) is used for preoperative planning. Methods: Direct extension of LevelCheck is confounded by large mismatch in image intensity between MRI and radiographs. The proposed method overcomes such challenges with a simplemore » vertebrae segmentation. Using seed points at centroids, vertebrae are segmented using continuous max-flow method and dilated by 1.8 mm to include surrounding cortical bone (inconspicuous in T2w-MRI). MRI projections are computed (analogous to DRR) using segmentation and registered to intraoperative radiographs. The method was tested in a retrospective IRB-approved study involving 11 patients undergoing cervical, thoracic, or lumbar spine surgery following preoperative MRI. Registration accuracy was evaluated in terms of projection-distance-error (PDE) between the true and estimated location of vertebrae in each radiograph. Results: The method successfully registered each preoperative MRI to intraoperative radiographs and maintained desirable properties of robustness against image content mismatch, and large capture range. Segmentation achieved Dice coefficient = 89.2 ± 2.3 and mean-absolute-distance (MAD) = 1.5 ± 0.3 mm. Registration demonstrated robust performance under realistic patient variations, with PDE = 4.0 ± 1.9 mm (median ± iqr) and converged with run-time = 23.3 ± 1.7 s. Conclusion: The MR-LevelCheck algorithm provides an important extension to a previously validated decision support tool in spine surgery by extending its utility to preoperative MRI. With initial studies demonstrating PDE <5 mm and 0% failure rate, the method is now in translation to larger scale prospective clinical studies. S. Vogt and G. Kleinszig are employees of Siemens Healthcare.« less
Ballanger, Bénédicte; Tremblay, Léon; Sgambato-Faure, Véronique; Beaudoin-Gobert, Maude; Lavenne, Franck; Le Bars, Didier; Costes, Nicolas
2013-08-15
MRI templates and digital atlases are needed for automated and reproducible quantitative analysis of non-human primate PET studies. Segmenting brain images via multiple atlases outperforms single-atlas labelling in humans. We present a set of atlases manually delineated on brain MRI scans of the monkey Macaca fascicularis. We use this multi-atlas dataset to evaluate two automated methods in terms of accuracy, robustness and reliability in segmenting brain structures on MRI and extracting regional PET measures. Twelve individual Macaca fascicularis high-resolution 3DT1 MR images were acquired. Four individual atlases were created by manually drawing 42 anatomical structures, including cortical and sub-cortical structures, white matter regions, and ventricles. To create the MRI template, we first chose one MRI to define a reference space, and then performed a two-step iterative procedure: affine registration of individual MRIs to the reference MRI, followed by averaging of the twelve resampled MRIs. Automated segmentation in native space was obtained in two ways: 1) Maximum probability atlases were created by decision fusion of two to four individual atlases in the reference space, and transformation back into the individual native space (MAXPROB)(.) 2) One to four individual atlases were registered directly to the individual native space, and combined by decision fusion (PROPAG). Accuracy was evaluated by computing the Dice similarity index and the volume difference. The robustness and reproducibility of PET regional measurements obtained via automated segmentation was evaluated on four co-registered MRI/PET datasets, which included test-retest data. Dice indices were always over 0.7 and reached maximal values of 0.9 for PROPAG with all four individual atlases. There was no significant mean volume bias. The standard deviation of the bias decreased significantly when increasing the number of individual atlases. MAXPROB performed better when increasing the number of atlases used. When all four atlases were used for the MAXPROB creation, the accuracy of morphometric segmentation approached that of the PROPAG method. PET measures extracted either via automatic methods or via the manually defined regions were strongly correlated, with no significant regional differences between methods. Intra-class correlation coefficients for test-retest data were over 0.87. Compared to single atlas extractions, multi-atlas methods improve the accuracy of region definition. They also perform comparably to manually defined regions for PET quantification. Multiple atlases of Macaca fascicularis brains are now available and allow reproducible and simplified analyses. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korhonen, Juha, E-mail: juha.p.korhonen@hus.fi; Department of Oncology, Helsinki University Central Hospital, POB-180, 00029 HUS; Kapanen, Mika
2014-01-15
Purpose: The lack of electron density information in magnetic resonance images (MRI) poses a major challenge for MRI-based radiotherapy treatment planning (RTP). In this study the authors convert MRI intensity values into Hounsfield units (HUs) in the male pelvis and thus enable accurate MRI-based RTP for prostate cancer patients with varying tissue anatomy and body fat contents. Methods: T{sub 1}/T{sub 2}*-weighted MRI intensity values and standard computed tomography (CT) image HUs in the male pelvis were analyzed using image data of 10 prostate cancer patients. The collected data were utilized to generate a dual model HU conversion technique from MRImore » intensity values of the single image set separately within and outside of contoured pelvic bones. Within the bone segment local MRI intensity values were converted to HUs by applying a second-order polynomial model. This model was tuned for each patient by two patient-specific adjustments: MR signal normalization to correct shifts in absolute intensity level and application of a cutoff value to accurately represent low density bony tissue HUs. For soft tissues, such as fat and muscle, located outside of the bone contours, a threshold-based segmentation method without requirements for any patient-specific adjustments was introduced to convert MRI intensity values into HUs. The dual model HU conversion technique was implemented by constructing pseudo-CT images for 10 other prostate cancer patients. The feasibility of these images for RTP was evaluated by comparing HUs in the generated pseudo-CT images with those in standard CT images, and by determining deviations in MRI-based dose distributions compared to those in CT images with 7-field intensity modulated radiation therapy (IMRT) with the anisotropic analytical algorithm and 360° volumetric-modulated arc therapy (VMAT) with the Voxel Monte Carlo algorithm. Results: The average HU differences between the constructed pseudo-CT images and standard CT images of each test patient ranged from −2 to 5 HUs and from 22 to 78 HUs in soft and bony tissues, respectively. The average local absolute value differences were 11 HUs in soft tissues and 99 HUs in bones. The planning target volume doses (volumes 95%, 50%, 5%) in the pseudo-CT images were within 0.8% compared to those in CT images in all of the 20 treatment plans. The average deviation was 0.3%. With all the test patients over 94% (IMRT) and 92% (VMAT) of dose points within body (lower than 10% of maximum dose suppressed) passed the 1 mm and 1% 2D gamma index criterion. The statistical tests (t- and F-tests) showed significantly improved (p ≤ 0.05) HU and dose calculation accuracies with the soft tissue conversion method instead of homogeneous representation of these tissues in MRI-based RTP images. Conclusions: This study indicates that it is possible to construct high quality pseudo-CT images by converting the intensity values of a single MRI series into HUs in the male pelvis, and to use these images for accurate MRI-based prostate RTP dose calculations.« less
Segmentation of Nerve Bundles and Ganglia in Spine MRI Using Particle Filters
Dalca, Adrian; Danagoulian, Giovanna; Kikinis, Ron; Schmidt, Ehud; Golland, Polina
2011-01-01
Automatic segmentation of spinal nerve bundles that originate within the dural sac and exit the spinal canal is important for diagnosis and surgical planning. The variability in intensity, contrast, shape and direction of nerves seen in high resolution myelographic MR images makes segmentation a challenging task. In this paper, we present an automatic tracking method for nerve segmentation based on particle filters. We develop a novel approach to particle representation and dynamics, based on Bézier splines. Moreover, we introduce a robust image likelihood model that enables delineation of nerve bundles and ganglia from the surrounding anatomical structures. We demonstrate accurate and fast nerve tracking and compare it to expert manual segmentation. PMID:22003741
Segmentation of nerve bundles and ganglia in spine MRI using particle filters.
Dalca, Adrian; Danagoulian, Giovanna; Kikinis, Ron; Schmidt, Ehud; Golland, Polina
2011-01-01
Automatic segmentation of spinal nerve bundles that originate within the dural sac and exit the spinal canal is important for diagnosis and surgical planning. The variability in intensity, contrast, shape and direction of nerves seen in high resolution myelographic MR images makes segmentation a challenging task. In this paper, we present an automatic tracking method for nerve segmentation based on particle filters. We develop a novel approach to particle representation and dynamics, based on Bézier splines. Moreover, we introduce a robust image likelihood model that enables delineation of nerve bundles and ganglia from the surrounding anatomical structures. We demonstrate accurate and fast nerve tracking and compare it to expert manual segmentation.
Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling.
Deng, Minghui; Yu, Renping; Wang, Li; Shi, Feng; Yap, Pew-Thian; Shen, Dinggang
2016-12-01
Segmentation of brain magnetic resonance (MR) images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) is crucial for brain structural measurement and disease diagnosis. Learning-based segmentation methods depend largely on the availability of good training ground truth. However, the commonly used 3T MR images are of insufficient image quality and often exhibit poor intensity contrast between WM, GM, and CSF. Therefore, they are not ideal for providing good ground truth label data for training learning-based methods. Recent advances in ultrahigh field 7T imaging make it possible to acquire images with excellent intensity contrast and signal-to-noise ratio. In this paper, the authors propose an algorithm based on random forest for segmenting 3T MR images by training a series of classifiers based on reliable labels obtained semiautomatically from 7T MR images. The proposed algorithm iteratively refines the probability maps of WM, GM, and CSF via a cascade of random forest classifiers for improved tissue segmentation. The proposed method was validated on two datasets, i.e., 10 subjects collected at their institution and 797 3T MR images from the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. Specifically, for the mean Dice ratio of all 10 subjects, the proposed method achieved 94.52% ± 0.9%, 89.49% ± 1.83%, and 79.97% ± 4.32% for WM, GM, and CSF, respectively, which are significantly better than the state-of-the-art methods (p-values < 0.021). For the ADNI dataset, the group difference comparisons indicate that the proposed algorithm outperforms state-of-the-art segmentation methods. The authors have developed and validated a novel fully automated method for 3T brain MR image segmentation. © 2016 American Association of Physicists in Medicine.
Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling.
Deng, Minghui; Yu, Renping; Wang, Li; Shi, Feng; Yap, Pew-Thian; Shen, Dinggang
2016-12-01
Segmentation of brain magnetic resonance (MR) images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) is crucial for brain structural measurement and disease diagnosis. Learning-based segmentation methods depend largely on the availability of good training ground truth. However, the commonly used 3T MR images are of insufficient image quality and often exhibit poor intensity contrast between WM, GM, and CSF. Therefore, they are not ideal for providing good ground truth label data for training learning-based methods. Recent advances in ultrahigh field 7T imaging make it possible to acquire images with excellent intensity contrast and signal-to-noise ratio. In this paper, the authors propose an algorithm based on random forest for segmenting 3T MR images by training a series of classifiers based on reliable labels obtained semiautomatically from 7T MR images. The proposed algorithm iteratively refines the probability maps of WM, GM, and CSF via a cascade of random forest classifiers for improved tissue segmentation. The proposed method was validated on two datasets, i.e., 10 subjects collected at their institution and 797 3T MR images from the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. Specifically, for the mean Dice ratio of all 10 subjects, the proposed method achieved 94.52% ± 0.9%, 89.49% ± 1.83%, and 79.97% ± 4.32% for WM, GM, and CSF, respectively, which are significantly better than the state-of-the-art methods (p-values < 0.021). For the ADNI dataset, the group difference comparisons indicate that the proposed algorithm outperforms state-of-the-art segmentation methods. The authors have developed and validated a novel fully automated method for 3T brain MR image segmentation.
Automatic brain tumor detection in MRI: methodology and statistical validation
NASA Astrophysics Data System (ADS)
Iftekharuddin, Khan M.; Islam, Mohammad A.; Shaik, Jahangheer; Parra, Carlos; Ogg, Robert
2005-04-01
Automated brain tumor segmentation and detection are immensely important in medical diagnostics because it provides information associated to anatomical structures as well as potential abnormal tissue necessary to delineate appropriate surgical planning. In this work, we propose a novel automated brain tumor segmentation technique based on multiresolution texture information that combines fractal Brownian motion (fBm) and wavelet multiresolution analysis. Our wavelet-fractal technique combines the excellent multiresolution localization property of wavelets to texture extraction of fractal. We prove the efficacy of our technique by successfully segmenting pediatric brain MR images (MRIs) from St. Jude Children"s Research Hospital. We use self-organizing map (SOM) as our clustering tool wherein we exploit both pixel intensity and multiresolution texture features to obtain segmented tumor. Our test results show that our technique successfully segments abnormal brain tissues in a set of T1 images. In the next step, we design a classifier using Feed-Forward (FF) neural network to statistically validate the presence of tumor in MRI using both the multiresolution texture and the pixel intensity features. We estimate the corresponding receiver operating curve (ROC) based on the findings of true positive fractions and false positive fractions estimated from our classifier at different threshold values. An ROC, which can be considered as a gold standard to prove the competence of a classifier, is obtained to ascertain the sensitivity and specificity of our classifier. We observe that at threshold 0.4 we achieve true positive value of 1.0 (100%) sacrificing only 0.16 (16%) false positive value for the set of 50 T1 MRI analyzed in this experiment.
Assessment of Severity of Ovine Smoke Inhalation Injury by Analysis of Computed Tomographic Scans
2003-09-01
Computerized analysis of three- dimensional reconstructed scans was also performed, based on Hounsfield unit ranges: hyperinflated, 1,000 to 900; normal...the interactive segmentation function of the software. The pulmonary parenchyma was separated into four regions based on the Hounsfield unit (HU...SII) severity. Methods: Twenty anesthetized sheep underwent graded SII: group I, no smoke; group II, 5 smoke units ; group III, 10 units ; and group IV
An Example-Based Brain MRI Simulation Framework.
He, Qing; Roy, Snehashis; Jog, Amod; Pham, Dzung L
2015-02-21
The simulation of magnetic resonance (MR) images plays an important role in the validation of image analysis algorithms such as image segmentation, due to lack of sufficient ground truth in real MR images. Previous work on MRI simulation has focused on explicitly modeling the MR image formation process. However, because of the overwhelming complexity of MR acquisition these simulations must involve simplifications and approximations that can result in visually unrealistic simulated images. In this work, we describe an example-based simulation framework, which uses an "atlas" consisting of an MR image and its anatomical models derived from the hard segmentation. The relationships between the MR image intensities and its anatomical models are learned using a patch-based regression that implicitly models the physics of the MR image formation. Given the anatomical models of a new brain, a new MR image can be simulated using the learned regression. This approach has been extended to also simulate intensity inhomogeneity artifacts based on the statistical model of training data. Results show that the example based MRI simulation method is capable of simulating different image contrasts and is robust to different choices of atlas. The simulated images resemble real MR images more than simulations produced by a physics-based model.
Bakas, Spyridon; Zeng, Ke; Sotiras, Aristeidis; Rathore, Saima; Akbari, Hamed; Gaonkar, Bilwaj; Rozycki, Martin; Pati, Sarthak; Davatzikos, Christos
2016-01-01
We present an approach for segmenting low- and high-grade gliomas in multimodal magnetic resonance imaging volumes. The proposed approach is based on a hybrid generative-discriminative model. Firstly, a generative approach based on an Expectation-Maximization framework that incorporates a glioma growth model is used to segment the brain scans into tumor, as well as healthy tissue labels. Secondly, a gradient boosting multi-class classification scheme is used to refine tumor labels based on information from multiple patients. Lastly, a probabilistic Bayesian strategy is employed to further refine and finalize the tumor segmentation based on patient-specific intensity statistics from the multiple modalities. We evaluated our approach in 186 cases during the training phase of the BRAin Tumor Segmentation (BRATS) 2015 challenge and report promising results. During the testing phase, the algorithm was additionally evaluated in 53 unseen cases, achieving the best performance among the competing methods.
2012-01-01
computerized stimulation paradigms for use during functional neuroimaging (i.e., MSIT). Accomplishments: • The following computer tasks were...and Stability Test. • Programming of all computerized functional MRI stimulation paradigms and assessment tasks using E-prime software was completed...Computer stimulation paradigms were tested in the scanner environment to ensure that they could be presented and seen by subjects in the scanner
A computerized recognition system for the home-based physiotherapy exercises using an RGBD camera.
Ar, Ilktan; Akgul, Yusuf Sinan
2014-11-01
Computerized recognition of the home based physiotherapy exercises has many benefits and it has attracted considerable interest among the computer vision community. However, most methods in the literature view this task as a special case of motion recognition. In contrast, we propose to employ the three main components of a physiotherapy exercise (the motion patterns, the stance knowledge, and the exercise object) as different recognition tasks and embed them separately into the recognition system. The low level information about each component is gathered using machine learning methods. Then, we use a generative Bayesian network to recognize the exercise types by combining the information from these sources at an abstract level, which takes the advantage of domain knowledge for a more robust system. Finally, a novel postprocessing step is employed to estimate the exercise repetitions counts. The performance evaluation of the system is conducted with a new dataset which contains RGB (red, green, and blue) and depth videos of home-based exercise sessions for commonly applied shoulder and knee exercises. The proposed system works without any body-part segmentation, bodypart tracking, joint detection, and temporal segmentation methods. In the end, favorable exercise recognition rates and encouraging results on the estimation of repetition counts are obtained.
Deep learning and texture-based semantic label fusion for brain tumor segmentation
NASA Astrophysics Data System (ADS)
Vidyaratne, L.; Alam, M.; Shboul, Z.; Iftekharuddin, K. M.
2018-02-01
Brain tumor segmentation is a fundamental step in surgical treatment and therapy. Many hand-crafted and learning based methods have been proposed for automatic brain tumor segmentation from MRI. Studies have shown that these approaches have their inherent advantages and limitations. This work proposes a semantic label fusion algorithm by combining two representative state-of-the-art segmentation algorithms: texture based hand-crafted, and deep learning based methods to obtain robust tumor segmentation. We evaluate the proposed method using publicly available BRATS 2017 brain tumor segmentation challenge dataset. The results show that the proposed method offers improved segmentation by alleviating inherent weaknesses: extensive false positives in texture based method, and the false tumor tissue classification problem in deep learning method, respectively. Furthermore, we investigate the effect of patient's gender on the segmentation performance using a subset of validation dataset. Note the substantial improvement in brain tumor segmentation performance proposed in this work has recently enabled us to secure the first place by our group in overall patient survival prediction task at the BRATS 2017 challenge.
Deep Learning and Texture-Based Semantic Label Fusion for Brain Tumor Segmentation.
Vidyaratne, L; Alam, M; Shboul, Z; Iftekharuddin, K M
2018-01-01
Brain tumor segmentation is a fundamental step in surgical treatment and therapy. Many hand-crafted and learning based methods have been proposed for automatic brain tumor segmentation from MRI. Studies have shown that these approaches have their inherent advantages and limitations. This work proposes a semantic label fusion algorithm by combining two representative state-of-the-art segmentation algorithms: texture based hand-crafted, and deep learning based methods to obtain robust tumor segmentation. We evaluate the proposed method using publicly available BRATS 2017 brain tumor segmentation challenge dataset. The results show that the proposed method offers improved segmentation by alleviating inherent weaknesses: extensive false positives in texture based method, and the false tumor tissue classification problem in deep learning method, respectively. Furthermore, we investigate the effect of patient's gender on the segmentation performance using a subset of validation dataset. Note the substantial improvement in brain tumor segmentation performance proposed in this work has recently enabled us to secure the first place by our group in overall patient survival prediction task at the BRATS 2017 challenge.
Neubauer, Henning; Pabst, Thomas; Dick, Anke; Machann, Wolfram; Evangelista, Laura; Wirth, Clemens; Köstler, Herbert; Hahn, Dietbert; Beer, Meinrad
2013-01-01
Small-bowel MRI based on contrast-enhanced T1-weighted sequences has been challenged by diffusion-weighted imaging (DWI) for detection of inflammatory bowel lesions and complications in patients with Crohn disease. To evaluate free-breathing DWI, as compared to contrast-enhanced MRI, in children, adolescents and young adults with Crohn disease. This retrospective study included 33 children and young adults with Crohn disease ages 17 ± 3 years (mean ± standard deviation) and 27 matched controls who underwent small-bowel MRI with contrast-enhanced T1-weighted sequences and DWI at 1.5 T. The detectability of Crohn manifestations was determined. Concurrent colonoscopy as reference was available in two-thirds of the children with Crohn disease. DWI and contrast-enhanced MRI correctly identified 32 and 31 patients, respectively. All 22 small-bowel lesions and all Crohn complications were detected. False-positive findings (two on DWI, one on contrast-enhanced MRI), compared to colonoscopy, were a result of large-bowel lumen collapse. Inflammatory wall thickening was comparable on DWI and contrast-enhanced MRI. DWI was superior to contrast-enhanced MRI for detection of lesions in 27% of the assessed bowel segments and equal to contrast-enhanced MRI in 71% of segments. DWI facilitates fast, accurate and comprehensive workup in Crohn disease without the need for intravenous administration of contrast medium. Contrast-enhanced MRI is superior in terms of spatial resolution and multiplanar acquisition.
Active appearance model and deep learning for more accurate prostate segmentation on MRI
NASA Astrophysics Data System (ADS)
Cheng, Ruida; Roth, Holger R.; Lu, Le; Wang, Shijun; Turkbey, Baris; Gandler, William; McCreedy, Evan S.; Agarwal, Harsh K.; Choyke, Peter; Summers, Ronald M.; McAuliffe, Matthew J.
2016-03-01
Prostate segmentation on 3D MR images is a challenging task due to image artifacts, large inter-patient prostate shape and texture variability, and lack of a clear prostate boundary specifically at apex and base levels. We propose a supervised machine learning model that combines atlas based Active Appearance Model (AAM) with a Deep Learning model to segment the prostate on MR images. The performance of the segmentation method is evaluated on 20 unseen MR image datasets. The proposed method combining AAM and Deep Learning achieves a mean Dice Similarity Coefficient (DSC) of 0.925 for whole 3D MR images of the prostate using axial cross-sections. The proposed model utilizes the adaptive atlas-based AAM model and Deep Learning to achieve significant segmentation accuracy.
Serag, Ahmed; Wilkinson, Alastair G.; Telford, Emma J.; Pataky, Rozalia; Sparrow, Sarah A.; Anblagan, Devasuda; Macnaught, Gillian; Semple, Scott I.; Boardman, James P.
2017-01-01
Quantitative volumes from brain magnetic resonance imaging (MRI) acquired across the life course may be useful for investigating long term effects of risk and resilience factors for brain development and healthy aging, and for understanding early life determinants of adult brain structure. Therefore, there is an increasing need for automated segmentation tools that can be applied to images acquired at different life stages. We developed an automatic segmentation method for human brain MRI, where a sliding window approach and a multi-class random forest classifier were applied to high-dimensional feature vectors for accurate segmentation. The method performed well on brain MRI data acquired from 179 individuals, analyzed in three age groups: newborns (38–42 weeks gestational age), children and adolescents (4–17 years) and adults (35–71 years). As the method can learn from partially labeled datasets, it can be used to segment large-scale datasets efficiently. It could also be applied to different populations and imaging modalities across the life course. PMID:28163680
Comparison of atlas-based techniques for whole-body bone segmentation.
Arabi, Hossein; Zaidi, Habib
2017-02-01
We evaluate the accuracy of whole-body bone extraction from whole-body MR images using a number of atlas-based segmentation methods. The motivation behind this work is to find the most promising approach for the purpose of MRI-guided derivation of PET attenuation maps in whole-body PET/MRI. To this end, a variety of atlas-based segmentation strategies commonly used in medical image segmentation and pseudo-CT generation were implemented and evaluated in terms of whole-body bone segmentation accuracy. Bone segmentation was performed on 23 whole-body CT/MR image pairs via leave-one-out cross validation procedure. The evaluated segmentation techniques include: (i) intensity averaging (IA), (ii) majority voting (MV), (iii) global and (iv) local (voxel-wise) weighting atlas fusion frameworks implemented utilizing normalized mutual information (NMI), normalized cross-correlation (NCC) and mean square distance (MSD) as image similarity measures for calculating the weighting factors, along with other atlas-dependent algorithms, such as (v) shape-based averaging (SBA) and (vi) Hofmann's pseudo-CT generation method. The performance evaluation of the different segmentation techniques was carried out in terms of estimating bone extraction accuracy from whole-body MRI using standard metrics, such as Dice similarity (DSC) and relative volume difference (RVD) considering bony structures obtained from intensity thresholding of the reference CT images as the ground truth. Considering the Dice criterion, global weighting atlas fusion methods provided moderate improvement of whole-body bone segmentation (DSC= 0.65 ± 0.05) compared to non-weighted IA (DSC= 0.60 ± 0.02). The local weighed atlas fusion approach using the MSD similarity measure outperformed the other strategies by achieving a DSC of 0.81 ± 0.03 while using the NCC and NMI measures resulted in a DSC of 0.78 ± 0.05 and 0.75 ± 0.04, respectively. Despite very long computation time, the extracted bone obtained from both SBA (DSC= 0.56 ± 0.05) and Hofmann's methods (DSC= 0.60 ± 0.02) exhibited no improvement compared to non-weighted IA. Finding the optimum parameters for implementation of the atlas fusion approach, such as weighting factors and image similarity patch size, have great impact on the performance of atlas-based segmentation approaches. The voxel-wise atlas fusion approach exhibited excellent performance in terms of cancelling out the non-systematic registration errors leading to accurate and reliable segmentation results. Denoising and normalization of MR images together with optimization of the involved parameters play a key role in improving bone extraction accuracy. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreibmann, E; Shu, H; Cordova, J
Purpose: We report on an automated segmentation algorithm for defining radiation therapy target volumes using spectroscopic MR images (sMRI) acquired at nominal voxel resolution of 100 microliters. Methods: Wholebrain sMRI combining 3D echo-planar spectroscopic imaging, generalized auto-calibrating partially-parallel acquisitions, and elliptical k-space encoding were conducted on 3T MRI scanner with 32-channel head coil array creating images. Metabolite maps generated include choline (Cho), creatine (Cr), and N-acetylaspartate (NAA), as well as Cho/NAA, Cho/Cr, and NAA/Cr ratio maps. Automated segmentation was achieved by concomitantly considering sMRI metabolite maps with standard contrast enhancing (CE) imaging in a pipeline that first uses the watermore » signal for skull stripping. Subsequently, an initial blob of tumor region is identified by searching for regions of FLAIR abnormalities that also display reduced NAA activity using a mean ratio correlation and morphological filters. These regions are used as starting point for a geodesic level-set refinement that adapts the initial blob to the fine details specific to each metabolite. Results: Accuracy of the segmentation model was tested on a cohort of 12 patients that had sMRI datasets acquired pre, mid and post-treatment, providing a broad range of enhancement patterns. Compared to classical imaging, where heterogeneity in the tumor appearance and shape across posed a greater challenge to the algorithm, sMRI’s regions of abnormal activity were easily detected in the sMRI metabolite maps when combining the detail available in the standard imaging with the local enhancement produced by the metabolites. Results can be imported in the treatment planning, leading in general increase in the target volumes (GTV60) when using sMRI+CE MRI compared to the standard CE MRI alone. Conclusion: Integration of automated segmentation of sMRI metabolite maps into planning is feasible and will likely streamline acceptance of this new acquisition modality in clinical practice.« less
Cha, Kenny H.; Hadjiiski, Lubomir; Samala, Ravi K.; Chan, Heang-Ping; Caoili, Elaine M.; Cohan, Richard H.
2016-01-01
Purpose: The authors are developing a computerized system for bladder segmentation in CT urography (CTU) as a critical component for computer-aided detection of bladder cancer. Methods: A deep-learning convolutional neural network (DL-CNN) was trained to distinguish between the inside and the outside of the bladder using 160 000 regions of interest (ROI) from CTU images. The trained DL-CNN was used to estimate the likelihood of an ROI being inside the bladder for ROIs centered at each voxel in a CTU case, resulting in a likelihood map. Thresholding and hole-filling were applied to the map to generate the initial contour for the bladder, which was then refined by 3D and 2D level sets. The segmentation performance was evaluated using 173 cases: 81 cases in the training set (42 lesions, 21 wall thickenings, and 18 normal bladders) and 92 cases in the test set (43 lesions, 36 wall thickenings, and 13 normal bladders). The computerized segmentation accuracy using the DL likelihood map was compared to that using a likelihood map generated by Haar features and a random forest classifier, and that using our previous conjoint level set analysis and segmentation system (CLASS) without using a likelihood map. All methods were evaluated relative to the 3D hand-segmented reference contours. Results: With DL-CNN-based likelihood map and level sets, the average volume intersection ratio, average percent volume error, average absolute volume error, average minimum distance, and the Jaccard index for the test set were 81.9% ± 12.1%, 10.2% ± 16.2%, 14.0% ± 13.0%, 3.6 ± 2.0 mm, and 76.2% ± 11.8%, respectively. With the Haar-feature-based likelihood map and level sets, the corresponding values were 74.3% ± 12.7%, 13.0% ± 22.3%, 20.5% ± 15.7%, 5.7 ± 2.6 mm, and 66.7% ± 12.6%, respectively. With our previous CLASS with local contour refinement (LCR) method, the corresponding values were 78.0% ± 14.7%, 16.5% ± 16.8%, 18.2% ± 15.0%, 3.8 ± 2.3 mm, and 73.9% ± 13.5%, respectively. Conclusions: The authors demonstrated that the DL-CNN can overcome the strong boundary between two regions that have large difference in gray levels and provides a seamless mask to guide level set segmentation, which has been a problem for many gradient-based segmentation methods. Compared to our previous CLASS with LCR method, which required two user inputs to initialize the segmentation, DL-CNN with level sets achieved better segmentation performance while using a single user input. Compared to the Haar-feature-based likelihood map, the DL-CNN-based likelihood map could guide the level sets to achieve better segmentation. The results demonstrate the feasibility of our new approach of using DL-CNN in combination with level sets for segmentation of the bladder. PMID:27036584
Age-specific MRI templates for pediatric neuroimaging
Sanchez, Carmen E.; Richards, John E.; Almli, C. Robert
2012-01-01
This study created a database of pediatric age-specific MRI brain templates for normalization and segmentation. Participants included children from 4.5 through 19.5 years, totaling 823 scans from 494 subjects. Open-source processing programs (FSL, SPM, ANTS) constructed head, brain and segmentation templates in 6 month intervals. The tissue classification (WM, GM, CSF) showed changes over age similar to previous reports. A volumetric analysis of age-related changes in WM and GM based on these templates showed expected increase/decrease pattern in GM and an increase in WM over the sampled ages. This database is available for use for neuroimaging studies (blindedforreview). PMID:22799759
Garteiser, Philippe; Doblas, Sabrina; Towner, Rheal A; Griffin, Timothy M
2013-11-01
To use an automated water-suppressed magnetic resonance imaging (MRI) method to objectively assess adipose tissue (AT) volumes in whole body and specific regional body components (subcutaneous, thoracic and peritoneal) of obese and lean mice. Water-suppressed MR images were obtained on a 7T, horizontal-bore MRI system in whole bodies (excluding head) of 26 week old male C57BL6J mice fed a control (10% kcal fat) or high-fat diet (60% kcal fat) for 20 weeks. Manual (outlined regions) versus automated (Gaussian fitting applied to threshold-weighted images) segmentation procedures were compared for whole body AT and regional AT volumes (i.e., subcutaneous, thoracic, and peritoneal). The AT automated segmentation method was compared to dual-energy X-ray (DXA) analysis. The average AT volumes for whole body and individual compartments correlated well between the manual outlining and the automated methods (R2>0.77, p<0.05). Subcutaneous, peritoneal, and total body AT volumes were increased 2-3 fold and thoracic AT volume increased more than 5-fold in diet-induced obese mice versus controls (p<0.05). MRI and DXA-based method comparisons were highly correlative (R2=0.94, p<0.0001). Automated AT segmentation of water-suppressed MRI data using a global Gaussian filtering algorithm resulted in a fairly accurate assessment of total and regional AT volumes in a pre-clinical mouse model of obesity. © 2013 Elsevier Inc. All rights reserved.
Automatic initialization and quality control of large-scale cardiac MRI segmentations.
Albà, Xènia; Lekadir, Karim; Pereañez, Marco; Medrano-Gracia, Pau; Young, Alistair A; Frangi, Alejandro F
2018-01-01
Continuous advances in imaging technologies enable ever more comprehensive phenotyping of human anatomy and physiology. Concomitant reduction of imaging costs has resulted in widespread use of imaging in large clinical trials and population imaging studies. Magnetic Resonance Imaging (MRI), in particular, offers one-stop-shop multidimensional biomarkers of cardiovascular physiology and pathology. A wide range of analysis methods offer sophisticated cardiac image assessment and quantification for clinical and research studies. However, most methods have only been evaluated on relatively small databases often not accessible for open and fair benchmarking. Consequently, published performance indices are not directly comparable across studies and their translation and scalability to large clinical trials or population imaging cohorts is uncertain. Most existing techniques still rely on considerable manual intervention for the initialization and quality control of the segmentation process, becoming prohibitive when dealing with thousands of images. The contributions of this paper are three-fold. First, we propose a fully automatic method for initializing cardiac MRI segmentation, by using image features and random forests regression to predict an initial position of the heart and key anatomical landmarks in an MRI volume. In processing a full imaging database, the technique predicts the optimal corrective displacements and positions in relation to the initial rough intersections of the long and short axis images. Second, we introduce for the first time a quality control measure capable of identifying incorrect cardiac segmentations with no visual assessment. The method uses statistical, pattern and fractal descriptors in a random forest classifier to detect failures to be corrected or removed from subsequent statistical analysis. Finally, we validate these new techniques within a full pipeline for cardiac segmentation applicable to large-scale cardiac MRI databases. The results obtained based on over 1200 cases from the Cardiac Atlas Project show the promise of fully automatic initialization and quality control for population studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Shimol, Eli Ben; Joskowicz, Leo; Eliahou, Ruth; Shoshan, Yigal
2018-02-01
Stereotactic radiosurgery (SRS) is a common treatment for intracranial meningiomas. SRS is planned on a pre-therapy gadolinium-enhanced T1-weighted MRI scan (Gd-T1w MRI) in which the meningioma contours have been delineated. Post-SRS therapy serial Gd-T1w MRI scans are then acquired for longitudinal treatment evaluation. Accurate tumor volume change quantification is required for treatment efficacy evaluation and for treatment continuation. We present a new algorithm for the automatic segmentation and volumetric assessment of meningioma in post-therapy Gd-T1w MRI scans. The inputs are the pre- and post-therapy Gd-T1w MRI scans and the meningioma delineation in the pre-therapy scan. The output is the meningioma delineations and volumes in the post-therapy scan. The algorithm uses the pre-therapy scan and its meningioma delineation to initialize an extended Chan-Vese active contour method and as a strong patient-specific intensity and shape prior for the post-therapy scan meningioma segmentation. The algorithm is automatic, obviates the need for independent tumor localization and segmentation initialization, and incorporates the same tumor delineation criteria in both the pre- and post-therapy scans. Our experimental results on retrospective pre- and post-therapy scans with a total of 32 meningiomas with volume ranges 0.4-26.5 cm[Formula: see text] yield a Dice coefficient of [Formula: see text]% with respect to ground-truth delineations in post-therapy scans created by two clinicians. These results indicate a high correspondence to the ground-truth delineations. Our algorithm yields more reliable and accurate tumor volume change measurements than other stand-alone segmentation methods. It may be a useful tool for quantitative meningioma prognosis evaluation after SRS.
Vu, Kim-Nhien; Gilbert, Guillaume; Chalut, Marianne; Chagnon, Miguel; Chartrand, Gabriel; Tang, An
2016-05-01
To assess the agreement between published magnetic resonance imaging (MRI)-based regions of interest (ROI) sampling methods using liver mean proton density fat fraction (PDFF) as the reference standard. This retrospective, internal review board-approved study was conducted in 35 patients with type 2 diabetes. Liver PDFF was measured by magnetic resonance spectroscopy (MRS) using a stimulated-echo acquisition mode sequence and MRI using a multiecho spoiled gradient-recalled echo sequence at 3.0T. ROI sampling methods reported in the literature were reproduced and liver mean PDFF obtained by whole-liver segmentation was used as the reference standard. Intraclass correlation coefficients (ICCs), Bland-Altman analysis, repeated-measures analysis of variance (ANOVA), and paired t-tests were performed. ICC between MRS and MRI-PDFF was 0.916. Bland-Altman analysis showed excellent intermethod agreement with a bias of -1.5 ± 2.8%. The repeated-measures ANOVA found no systematic variation of PDFF among the nine liver segments. The correlation between liver mean PDFF and ROI sampling methods was very good to excellent (0.873 to 0.975). Paired t-tests revealed significant differences (P < 0.05) with ROI sampling methods that exclusively or predominantly sampled the right lobe. Significant correlations with mean PDFF were found with sampling methods that included higher number of segments, total area equal or larger than 5 cm(2) , or sampled both lobes (P = 0.001, 0.023, and 0.002, respectively). MRI-PDFF quantification methods should sample each liver segment in both lobes and include a total surface area equal or larger than 5 cm(2) to provide a close estimate of the liver mean PDFF. © 2015 Wiley Periodicals, Inc.
Liu, Hon-Man; Chen, Shan-Kai; Chen, Ya-Fang; Lee, Chung-Wei; Yeh, Lee-Ren
2016-01-01
Purpose To assess the inter session reproducibility of automatic segmented MRI-derived measures by FreeSurfer in a group of subjects with normal-appearing MR images. Materials and Methods After retrospectively reviewing a brain MRI database from our institute consisting of 14,758 adults, those subjects who had repeat scans and had no history of neurodegenerative disorders were selected for morphometry analysis using FreeSurfer. A total of 34 subjects were grouped by MRI scanner model. After automatic segmentation using FreeSurfer, label-wise comparison (involving area, thickness, and volume) was performed on all segmented results. An intraclass correlation coefficient was used to estimate the agreement between sessions. Wilcoxon signed rank test was used to assess the population mean rank differences across sessions. Mean-difference analysis was used to evaluate the difference intervals across scanners. Absolute percent difference was used to estimate the reproducibility errors across the MRI models. Kruskal-Wallis test was used to determine the across-scanner effect. Results The agreement in segmentation results for area, volume, and thickness measurements of all segmented anatomical labels was generally higher in Signa Excite and Verio models when compared with Sonata and TrioTim models. There were significant rank differences found across sessions in some labels of different measures. Smaller difference intervals in global volume measurements were noted on images acquired by Signa Excite and Verio models. For some brain regions, significant MRI model effects were observed on certain segmentation results. Conclusions Short-term scan-rescan reliability of automatic brain MRI morphometry is feasible in the clinical setting. However, since repeatability of software performance is contingent on the reproducibility of the scanner performance, the scanner performance must be calibrated before conducting such studies or before using such software for retrospective reviewing. PMID:26812647
Simulation of brain tumors in MR images for evaluation of segmentation efficacy.
Prastawa, Marcel; Bullitt, Elizabeth; Gerig, Guido
2009-04-01
Obtaining validation data and comparison metrics for segmentation of magnetic resonance images (MRI) are difficult tasks due to the lack of reliable ground truth. This problem is even more evident for images presenting pathology, which can both alter tissue appearance through infiltration and cause geometric distortions. Systems for generating synthetic images with user-defined degradation by noise and intensity inhomogeneity offer the possibility for testing and comparison of segmentation methods. Such systems do not yet offer simulation of sufficiently realistic looking pathology. This paper presents a system that combines physical and statistical modeling to generate synthetic multi-modal 3D brain MRI with tumor and edema, along with the underlying anatomical ground truth, Main emphasis is placed on simulation of the major effects known for tumor MRI, such as contrast enhancement, local distortion of healthy tissue, infiltrating edema adjacent to tumors, destruction and deformation of fiber tracts, and multi-modal MRI contrast of healthy tissue and pathology. The new method synthesizes pathology in multi-modal MRI and diffusion tensor imaging (DTI) by simulating mass effect, warping and destruction of white matter fibers, and infiltration of brain tissues by tumor cells. We generate synthetic contrast enhanced MR images by simulating the accumulation of contrast agent within the brain. The appearance of the the brain tissue and tumor in MRI is simulated by synthesizing texture images from real MR images. The proposed method is able to generate synthetic ground truth and synthesized MR images with tumor and edema that exhibit comparable segmentation challenges to real tumor MRI. Such image data sets will find use in segmentation reliability studies, comparison and validation of different segmentation methods, training and teaching, or even in evaluating standards for tumor size like the RECIST criteria (response evaluation criteria in solid tumors).
Dolati, Parviz; Eichberg, Daniel; Golby, Alexandra; Zamani, Amir; Laws, Edward
2016-11-01
Transsphenoidal surgery (TSS) is the most common approach for the treatment of pituitary tumors. However, misdirection, vascular damage, intraoperative cerebrospinal fluid leakage, and optic nerve injuries are all well-known complications, and the risk of adverse events is more likely in less-experienced hands. This prospective study was conducted to validate the accuracy of image-based segmentation coupled with neuronavigation in localizing neurovascular structures during TSS. Twenty-five patients with a pituitary tumor underwent preoperative 3-T magnetic resonance imaging (MRI), and MRI images loaded into the navigation platform were used for segmentation and preoperative planning. After patient registration and subsequent surgical exposure, each segmented neural or vascular element was validated by manual placement of the navigation probe or Doppler probe on or as close as possible to the target. Preoperative segmentation of the internal carotid artery and cavernous sinus matched with the intraoperative endoscopic and micro-Doppler findings in all cases. Excellent correspondence between image-based segmentation and the endoscopic view was also evident at the surface of the tumor and at the tumor-normal gland interfaces. Image guidance assisted the surgeons in localizing the optic nerve and chiasm in 64% of cases. The mean accuracy of the measurements was 1.20 ± 0.21 mm. Image-based preoperative vascular and neural element segmentation, especially with 3-dimensional reconstruction, is highly informative preoperatively and potentially could assist less-experienced neurosurgeons in preventing vascular and neural injury during TSS. In addition, the accuracy found in this study is comparable to previously reported neuronavigation measurements. This preliminary study is encouraging for future prospective intraoperative validation with larger numbers of patients. Copyright © 2016 Elsevier Inc. All rights reserved.
Münnich, Timo; Klein, Jan; Hattingen, Elke; Noack, Anika; Herrmann, Eva; Seifert, Volker; Senft, Christian; Forster, Marie-Therese
2018-04-14
Tractography is a popular tool for visualizing the corticospinal tract (CST). However, results may be influenced by numerous variables, eg, the selection of seeding regions of interests (ROIs) or the chosen tracking algorithm. To compare different variable sets by correlating tractography results with intraoperative subcortical stimulation of the CST, correcting intraoperative brain shift by the use of intraoperative MRI. Seeding ROIs were created by means of motor cortex segmentation, functional MRI (fMRI), and navigated transcranial magnetic stimulation (nTMS). Based on these ROIs, tractography was run for each patient using a deterministic and a probabilistic algorithm. Tractographies were processed on pre- and postoperatively acquired data. Using a linear mixed effects statistical model, best correlation between subcortical stimulation intensity and the distance between tractography and stimulation sites was achieved by using the segmented motor cortex as seeding ROI and applying the probabilistic algorithm on preoperatively acquired imaging sequences. Tractographies based on fMRI or nTMS results differed very little, but with enlargement of positive nTMS sites the stimulation-distance correlation of nTMS-based tractography improved. Our results underline that the use of tractography demands for careful interpretation of its virtual results by considering all influencing variables.
Burton, Rebecca A.B.; Lee, Peter; Casero, Ramón; Garny, Alan; Siedlecka, Urszula; Schneider, Jürgen E.; Kohl, Peter; Grau, Vicente
2014-01-01
Aims Cardiac histo-anatomical organization is a major determinant of function. Changes in tissue structure are a relevant factor in normal and disease development, and form targets of therapeutic interventions. The purpose of this study was to test tools aimed to allow quantitative assessment of cell-type distribution from large histology and magnetic resonance imaging- (MRI) based datasets. Methods and results Rabbit heart fixation during cardioplegic arrest and MRI were followed by serial sectioning of the whole heart and light-microscopic imaging of trichrome-stained tissue. Segmentation techniques developed specifically for this project were applied to segment myocardial tissue in the MRI and histology datasets. In addition, histology slices were segmented into myocytes, connective tissue, and undefined. A bounding surface, containing the whole heart, was established for both MRI and histology. Volumes contained in the bounding surface (called ‘anatomical volume’), as well as that identified as containing any of the above tissue categories (called ‘morphological volume’), were calculated. The anatomical volume was 7.8 cm3 in MRI, and this reduced to 4.9 cm3 after histological processing, representing an ‘anatomical’ shrinkage by 37.2%. The morphological volume decreased by 48% between MRI and histology, highlighting the presence of additional tissue-level shrinkage (e.g. an increase in interstitial cleft space). The ratio of pixels classified as containing myocytes to pixels identified as non-myocytes was roughly 6:1 (61.6 vs. 9.8%; the remaining fraction of 28.6% was ‘undefined’). Conclusion Qualitative and quantitative differentiation between myocytes and connective tissue, using state-of-the-art high-resolution serial histology techniques, allows identification of cell-type distribution in whole-heart datasets. Comparison with MRI illustrates a pronounced reduction in anatomical and morphological volumes during histology processing. PMID:25362175
IntellEditS: intelligent learning-based editor of segmentations.
Harrison, Adam P; Birkbeck, Neil; Sofka, Michal
2013-01-01
Automatic segmentation techniques, despite demonstrating excellent overall accuracy, can often produce inaccuracies in local regions. As a result, correcting segmentations remains an important task that is often laborious, especially when done manually for 3D datasets. This work presents a powerful tool called Intelligent Learning-Based Editor of Segmentations (IntellEditS) that minimizes user effort and further improves segmentation accuracy. The tool partners interactive learning with an energy-minimization approach to editing. Based on interactive user input, a discriminative classifier is trained and applied to the edited 3D region to produce soft voxel labeling. The labels are integrated into a novel energy functional along with the existing segmentation and image data. Unlike the state of the art, IntellEditS is designed to correct segmentation results represented not only as masks but also as meshes. In addition, IntellEditS accepts intuitive boundary-based user interactions. The versatility and performance of IntellEditS are demonstrated on both MRI and CT datasets consisting of varied anatomical structures and resolutions.
Automated scoring of regional lung perfusion in children from contrast enhanced 3D MRI
NASA Astrophysics Data System (ADS)
Heimann, Tobias; Eichinger, Monika; Bauman, Grzegorz; Bischoff, Arved; Puderbach, Michael; Meinzer, Hans-Peter
2012-03-01
MRI perfusion images give information about regional lung function and can be used to detect pulmonary pathologies in cystic fibrosis (CF) children. However, manual assessment of the percentage of pathologic tissue in defined lung subvolumes features large inter- and intra-observer variation, making it difficult to determine disease progression consistently. We present an automated method to calculate a regional score for this purpose. First, lungs are located based on thresholding and morphological operations. Second, statistical shape models of left and right children's lungs are initialized at the determined locations and used to precisely segment morphological images. Segmentation results are transferred to perfusion maps and employed as masks to calculate perfusion statistics. An automated threshold to determine pathologic tissue is calculated and used to determine accurate regional scores. We evaluated the method on 10 MRI images and achieved an average surface distance of less than 1.5 mm compared to manual reference segmentations. Pathologic tissue was detected correctly in 9 cases. The approach seems suitable for detecting early signs of CF and monitoring response to therapy.
Sweeney, Elizabeth M; Shinohara, Russell T; Shiee, Navid; Mateen, Farrah J; Chudgar, Avni A; Cuzzocreo, Jennifer L; Calabresi, Peter A; Pham, Dzung L; Reich, Daniel S; Crainiceanu, Ciprian M
2013-01-01
Magnetic resonance imaging (MRI) can be used to detect lesions in the brains of multiple sclerosis (MS) patients and is essential for diagnosing the disease and monitoring its progression. In practice, lesion load is often quantified by either manual or semi-automated segmentation of MRI, which is time-consuming, costly, and associated with large inter- and intra-observer variability. We propose OASIS is Automated Statistical Inference for Segmentation (OASIS), an automated statistical method for segmenting MS lesions in MRI studies. We use logistic regression models incorporating multiple MRI modalities to estimate voxel-level probabilities of lesion presence. Intensity-normalized T1-weighted, T2-weighted, fluid-attenuated inversion recovery and proton density volumes from 131 MRI studies (98 MS subjects, 33 healthy subjects) with manual lesion segmentations were used to train and validate our model. Within this set, OASIS detected lesions with a partial area under the receiver operating characteristic curve for clinically relevant false positive rates of 1% and below of 0.59% (95% CI; [0.50%, 0.67%]) at the voxel level. An experienced MS neuroradiologist compared these segmentations to those produced by LesionTOADS, an image segmentation software that provides segmentation of both lesions and normal brain structures. For lesions, OASIS out-performed LesionTOADS in 74% (95% CI: [65%, 82%]) of cases for the 98 MS subjects. To further validate the method, we applied OASIS to 169 MRI studies acquired at a separate center. The neuroradiologist again compared the OASIS segmentations to those from LesionTOADS. For lesions, OASIS ranked higher than LesionTOADS in 77% (95% CI: [71%, 83%]) of cases. For a randomly selected subset of 50 of these studies, one additional radiologist and one neurologist also scored the images. Within this set, the neuroradiologist ranked OASIS higher than LesionTOADS in 76% (95% CI: [64%, 88%]) of cases, the neurologist 66% (95% CI: [52%, 78%]) and the radiologist 52% (95% CI: [38%, 66%]). OASIS obtains the estimated probability for each voxel to be part of a lesion by weighting each imaging modality with coefficient weights. These coefficients are explicit, obtained using standard model fitting techniques, and can be reused in other imaging studies. This fully automated method allows sensitive and specific detection of lesion presence and may be rapidly applied to large collections of images.
MRI brain tumor segmentation based on improved fuzzy c-means method
NASA Astrophysics Data System (ADS)
Deng, Wankai; Xiao, Wei; Pan, Chao; Liu, Jianguo
2009-10-01
This paper focuses on the image segmentation, which is one of the key problems in medical image processing. A new medical image segmentation method is proposed based on fuzzy c- means algorithm and spatial information. Firstly, we classify the image into the region of interest and background using fuzzy c means algorithm. Then we use the information of the tissues' gradient and the intensity inhomogeneities of regions to improve the quality of segmentation. The sum of the mean variance in the region and the reciprocal of the mean gradient along the edge of the region are chosen as an objective function. The minimum of the sum is optimum result. The result shows that the clustering segmentation algorithm is effective.
Temporally consistent probabilistic detection of new multiple sclerosis lesions in brain MRI.
Elliott, Colm; Arnold, Douglas L; Collins, D Louis; Arbel, Tal
2013-08-01
Detection of new Multiple Sclerosis (MS) lesions on magnetic resonance imaging (MRI) is important as a marker of disease activity and as a potential surrogate for relapses. We propose an approach where sequential scans are jointly segmented, to provide a temporally consistent tissue segmentation while remaining sensitive to newly appearing lesions. The method uses a two-stage classification process: 1) a Bayesian classifier provides a probabilistic brain tissue classification at each voxel of reference and follow-up scans, and 2) a random-forest based lesion-level classification provides a final identification of new lesions. Generative models are learned based on 364 scans from 95 subjects from a multi-center clinical trial. The method is evaluated on sequential brain MRI of 160 subjects from a separate multi-center clinical trial, and is compared to 1) semi-automatically generated ground truth segmentations and 2) fully manual identification of new lesions generated independently by nine expert raters on a subset of 60 subjects. For new lesions greater than 0.15 cc in size, the classifier has near perfect performance (99% sensitivity, 2% false detection rate), as compared to ground truth. The proposed method was also shown to exceed the performance of any one of the nine expert manual identifications.
McClymont, Darryl; Mehnert, Andrew; Trakic, Adnan; Kennedy, Dominic; Crozier, Stuart
2014-04-01
To present and evaluate a fully automatic method for segmentation (i.e., detection and delineation) of suspicious tissue in breast MRI. The method, based on mean-shift clustering and graph-cuts on a region adjacency graph, was developed and its parameters tuned using multimodal (T1, T2, DCE-MRI) clinical breast MRI data from 35 subjects (training data). It was then tested using two data sets. Test set 1 comprises data for 85 subjects (93 lesions) acquired using the same protocol and scanner system used to acquire the training data. Test set 2 comprises data for eight subjects (nine lesions) acquired using a similar protocol but a different vendor's scanner system. Each lesion was manually delineated in three-dimensions by an experienced breast radiographer to establish segmentation ground truth. The regions of interest identified by the method were compared with the ground truth and the detection and delineation accuracies quantitatively evaluated. One hundred percent of the lesions were detected with a mean of 4.5 ± 1.2 false positives per subject. This false-positive rate is nearly 50% better than previously reported for a fully automatic breast lesion detection system. The median Dice coefficient for Test set 1 was 0.76 (interquartile range, 0.17), and 0.75 (interquartile range, 0.16) for Test set 2. The results demonstrate the efficacy and accuracy of the proposed method as well as its potential for direct application across different MRI systems. It is (to the authors' knowledge) the first fully automatic method for breast lesion detection and delineation in breast MRI.
MRI-based quantification of Duchenne muscular dystrophy in a canine model
NASA Astrophysics Data System (ADS)
Wang, Jiahui; Fan, Zheng; Kornegay, Joe N.; Styner, Martin A.
2011-03-01
Duchenne muscular dystrophy (DMD) is a progressive and fatal X-linked disease caused by mutations in the DMD gene. Magnetic resonance imaging (MRI) has shown potential to provide non-invasive and objective biomarkers for monitoring disease progression and therapeutic effect in DMD. In this paper, we propose a semi-automated scheme to quantify MRI features of golden retriever muscular dystrophy (GRMD), a canine model of DMD. Our method was applied to a natural history data set and a hydrodynamic limb perfusion data set. The scheme is composed of three modules: pre-processing, muscle segmentation, and feature analysis. The pre-processing module includes: calculation of T2 maps, spatial registration of T2 weighted (T2WI) images, T2 weighted fat suppressed (T2FS) images, and T2 maps, and intensity calibration of T2WI and T2FS images. We then manually segment six pelvic limb muscles. For each of the segmented muscles, we finally automatically measure volume and intensity statistics of the T2FS images and T2 maps. For the natural history study, our results showed that four of six muscles in affected dogs had smaller volumes and all had higher mean intensities in T2 maps as compared to normal dogs. For the perfusion study, the muscle volumes and mean intensities in T2FS were increased in the post-perfusion MRI scans as compared to pre-perfusion MRI scans, as predicted. We conclude that our scheme successfully performs quantitative analysis of muscle MRI features of GRMD.
NASA Astrophysics Data System (ADS)
Lemieux, Louis
2001-07-01
A new fully automatic algorithm for the segmentation of the brain and cerebro-spinal fluid (CSF) from T1-weighted volume MRI scans of the head was specifically developed in the context of serial intra-cranial volumetry. The method is an extension of a previously published brain extraction algorithm. The brain mask is used as a basis for CSF segmentation based on morphological operations, automatic histogram analysis and thresholding. Brain segmentation is then obtained by iterative tracking of the brain-CSF interface. Grey matter (GM), white matter (WM) and CSF volumes are calculated based on a model of intensity probability distribution that includes partial volume effects. Accuracy was assessed using a digital phantom scan. Reproducibility was assessed by segmenting pairs of scans from 20 normal subjects scanned 8 months apart and 11 patients with epilepsy scanned 3.5 years apart. Segmentation accuracy as measured by overlap was 98% for the brain and 96% for the intra-cranial tissues. The volume errors were: total brain (TBV): -1.0%, intra-cranial (ICV):0.1%, CSF: +4.8%. For repeated scans, matching resulted in improved reproducibility. In the controls, the coefficient of reliability (CR) was 1.5% for the TVB and 1.0% for the ICV. In the patients, the Cr for the ICV was 1.2%.
NASA Astrophysics Data System (ADS)
Khateri, Parisa; Rad, Hamidreza Saligheh; Jafari, Amir Homayoun; Ay, Mohammad Reza
2014-01-01
Quantitative PET image reconstruction requires an accurate map of attenuation coefficients of the tissue under investigation at 511 keV (μ-map), and in order to correct the emission data for attenuation. The use of MRI-based attenuation correction (MRAC) has recently received lots of attention in the scientific literature. One of the major difficulties facing MRAC has been observed in the areas where bone and air collide, e.g. ethmoidal sinuses in the head area. Bone is intrinsically not detectable by conventional MRI, making it difficult to distinguish air from bone. Therefore, development of more versatile MR sequences to label the bone structure, e.g. ultra-short echo-time (UTE) sequences, certainly plays a significant role in novel methodological developments. However, long acquisition time and complexity of UTE sequences limit its clinical applications. To overcome this problem, we developed a novel combination of Short-TE (ShTE) pulse sequence to detect bone signal with a 2-point Dixon technique for water-fat discrimination, along with a robust image segmentation method based on fuzzy clustering C-means (FCM) to segment the head area into four classes of air, bone, soft tissue and adipose tissue. The imaging protocol was set on a clinical 3 T Tim Trio and also 1.5 T Avanto (Siemens Medical Solution, Erlangen, Germany) employing a triple echo time pulse sequence in the head area. The acquisition parameters were as follows: TE1/TE2/TE3=0.98/4.925/6.155 ms, TR=8 ms, FA=25 on the 3 T system, and TE1/TE2/TE3=1.1/2.38/4.76 ms, TR=16 ms, FA=18 for the 1.5 T system. The second and third echo-times belonged to the Dixon decomposition to distinguish soft and adipose tissues. To quantify accuracy, sensitivity and specificity of the bone segmentation algorithm, resulting classes of MR-based segmented bone were compared with the manual segmented one by our expert neuro-radiologist. Results for both 3 T and 1.5 T systems show that bone segmentation applied in several slices yields average accuracy, sensitivity and specificity higher than 90%. Results indicate that FCM is an appropriate technique for tissue classification in the sinusoidal area where there is air-bone interface. Furthermore, using Dixon method, fat and brain tissues were successfully separated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciller, Carlos, E-mail: carlos.cillerruiz@unil.ch; Ophthalmic Technology Group, ARTORG Center of the University of Bern, Bern; Centre d’Imagerie BioMédicale, University of Lausanne, Lausanne
Purpose: Proper delineation of ocular anatomy in 3-dimensional (3D) imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic resonance imaging (MRI) is presently used in clinical practice for diagnosis confirmation and treatment planning for treatment of retinoblastoma in infants, where it serves as a source of information, complementary to the fundus or ultrasonographic imaging. Here we present a framework to fully automatically segment the eye anatomy for MRI based on 3D active shape models (ASM), and we validate the results and present a proof of concept to automatically segment pathological eyes. Methods and Materials: Manualmore » and automatic segmentation were performed in 24 images of healthy children's eyes (3.29 ± 2.15 years of age). Imaging was performed using a 3-T MRI scanner. The ASM consists of the lens, the vitreous humor, the sclera, and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens, and the optic nerve, and then aligning the model and fitting it to the patient. We validated our segmentation method by using a leave-one-out cross-validation. The segmentation results were evaluated by measuring the overlap, using the Dice similarity coefficient (DSC) and the mean distance error. Results: We obtained a DSC of 94.90 ± 2.12% for the sclera and the cornea, 94.72 ± 1.89% for the vitreous humor, and 85.16 ± 4.91% for the lens. The mean distance error was 0.26 ± 0.09 mm. The entire process took 14 seconds on average per eye. Conclusion: We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor, and the lens, using MRI. We additionally present a proof of concept for fully automatically segmenting eye pathology. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor.« less
Ciller, Carlos; De Zanet, Sandro I; Rüegsegger, Michael B; Pica, Alessia; Sznitman, Raphael; Thiran, Jean-Philippe; Maeder, Philippe; Munier, Francis L; Kowal, Jens H; Cuadra, Meritxell Bach
2015-07-15
Proper delineation of ocular anatomy in 3-dimensional (3D) imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic resonance imaging (MRI) is presently used in clinical practice for diagnosis confirmation and treatment planning for treatment of retinoblastoma in infants, where it serves as a source of information, complementary to the fundus or ultrasonographic imaging. Here we present a framework to fully automatically segment the eye anatomy for MRI based on 3D active shape models (ASM), and we validate the results and present a proof of concept to automatically segment pathological eyes. Manual and automatic segmentation were performed in 24 images of healthy children's eyes (3.29 ± 2.15 years of age). Imaging was performed using a 3-T MRI scanner. The ASM consists of the lens, the vitreous humor, the sclera, and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens, and the optic nerve, and then aligning the model and fitting it to the patient. We validated our segmentation method by using a leave-one-out cross-validation. The segmentation results were evaluated by measuring the overlap, using the Dice similarity coefficient (DSC) and the mean distance error. We obtained a DSC of 94.90 ± 2.12% for the sclera and the cornea, 94.72 ± 1.89% for the vitreous humor, and 85.16 ± 4.91% for the lens. The mean distance error was 0.26 ± 0.09 mm. The entire process took 14 seconds on average per eye. We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor, and the lens, using MRI. We additionally present a proof of concept for fully automatically segmenting eye pathology. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor. Copyright © 2015 Elsevier Inc. All rights reserved.
López-Linares, Karen; Aranjuelo, Nerea; Kabongo, Luis; Maclair, Gregory; Lete, Nerea; Ceresa, Mario; García-Familiar, Ainhoa; Macía, Iván; González Ballester, Miguel A
2018-05-01
Computerized Tomography Angiography (CTA) based follow-up of Abdominal Aortic Aneurysms (AAA) treated with Endovascular Aneurysm Repair (EVAR) is essential to evaluate the progress of the patient and detect complications. In this context, accurate quantification of post-operative thrombus volume is required. However, a proper evaluation is hindered by the lack of automatic, robust and reproducible thrombus segmentation algorithms. We propose a new fully automatic approach based on Deep Convolutional Neural Networks (DCNN) for robust and reproducible thrombus region of interest detection and subsequent fine thrombus segmentation. The DetecNet detection network is adapted to perform region of interest extraction from a complete CTA and a new segmentation network architecture, based on Fully Convolutional Networks and a Holistically-Nested Edge Detection Network, is presented. These networks are trained, validated and tested in 13 post-operative CTA volumes of different patients using a 4-fold cross-validation approach to provide more robustness to the results. Our pipeline achieves a Dice score of more than 82% for post-operative thrombus segmentation and provides a mean relative volume difference between ground truth and automatic segmentation that lays within the experienced human observer variance without the need of human intervention in most common cases. Copyright © 2018 Elsevier B.V. All rights reserved.
Segmentation of Image Ensembles via Latent Atlases
Van Leemput, Koen; Menze, Bjoern H.; Wells, William M.; Golland, Polina
2010-01-01
Spatial priors, such as probabilistic atlases, play an important role in MRI segmentation. However, the availability of comprehensive, reliable and suitable manual segmentations for atlas construction is limited. We therefore propose a method for joint segmentation of corresponding regions of interest in a collection of aligned images that does not require labeled training data. Instead, a latent atlas, initialized by at most a single manual segmentation, is inferred from the evolving segmentations of the ensemble. The algorithm is based on probabilistic principles but is solved using partial differential equations (PDEs) and energy minimization criteria. We evaluate the method on two datasets, segmenting subcortical and cortical structures in a multi-subject study and extracting brain tumors in a single-subject multi-modal longitudinal experiment. We compare the segmentation results to manual segmentations, when those exist, and to the results of a state-of-the-art atlas-based segmentation method. The quality of the results supports the latent atlas as a promising alternative when existing atlases are not compatible with the images to be segmented. PMID:20580305
Hori, Daisuke; Katsuragawa, Shigehiko; Murakami, Ryuuji; Hirai, Toshinori
2010-04-20
We propose a computerized method for semi-automated segmentation of the gross tumor volume (GTV) of a glioblastoma multiforme (GBM) on brain MR images for radiotherapy planning (RTP). Three-dimensional (3D) MR images of 28 cases with a GBM were used in this study. First, a sphere volume of interest (VOI) including the GBM was selected by clicking a part of the GBM region in the 3D image. Then, the sphere VOI was transformed to a two-dimensional (2D) image by use of a spiral-scanning technique. We employed active contour models (ACM) to delineate an optimal outline of the GBM in the transformed 2D image. After inverse transform of the optimal outline to the 3D space, a morphological filter was applied to smooth the shape of the 3D segmented region. For evaluation of our computerized method, we compared the computer output with manually segmented regions, which were obtained by a therapeutic radiologist using a manual tracking method. In evaluating our segmentation method, we employed the Jaccard similarity coefficient (JSC) and the true segmentation coefficient (TSC) in volumes between the computer output and the manually segmented region. The mean and standard deviation of JSC and TSC were 74.2+/-9.8% and 84.1+/-7.1%, respectively. Our segmentation method provided a relatively accurate outline for GBM and would be useful for radiotherapy planning.
Differential fMRI Activation Patterns to Noxious Heat and Tactile Stimuli in the Primate Spinal Cord
Yang, Pai-Feng; Wang, Feng
2015-01-01
Mesoscale local functional organizations of the primate spinal cord are largely unknown. Using high-resolution fMRI at 9.4 T, we identified distinct interhorn and intersegment fMRI activation patterns to tactile versus nociceptive heat stimulation of digits in lightly anesthetized monkeys. Within a spinal segment, 8 Hz vibrotactile stimuli elicited predominantly fMRI activations in the middle part of ipsilateral dorsal horn (iDH), along with significantly weaker activations in ipsilateral (iVH) and contralateral (cVH) ventral horns. In contrast, nociceptive heat stimuli evoked widespread strong activations in the superficial part of iDH, as well as in iVH and contralateral dorsal (cDH) horns. As controls, only weak signal fluctuations were detected in the white matter. The iDH responded most strongly to both tactile and heat stimuli, whereas the cVH and cDH responded selectively to tactile versus nociceptive heat, respectively. Across spinal segments, iDH activations were detected in three consecutive segments in both tactile and heat conditions. Heat responses, however, were more extensive along the cord, with strong activations in iVH and cDH in two consecutive segments. Subsequent subunit B of cholera toxin tracer histology confirmed that the spinal segments showing fMRI activations indeed received afferent inputs from the stimulated digits. Comparisons of the fMRI signal time courses in early somatosensory area 3b and iDH revealed very similar hemodynamic stimulus–response functions. In summary, we identified with fMRI distinct segmental networks for the processing of tactile and nociceptive heat stimuli in the cervical spinal cord of nonhuman primates. SIGNIFICANCE STATEMENT This is the first fMRI demonstration of distinct intrasegmental and intersegmental nociceptive heat and touch processing circuits in the spinal cord of nonhuman primates. This study provides novel insights into the local functional organizations of the primate spinal cord for pain and touch, information that will be valuable for designing and optimizing therapeutic interventions for chronic pain management. PMID:26203144
Nilsson, Henrik; Blomqvist, Lennart; Douglas, Lena; Nordell, Anders; Jacobsson, Hans; Hagen, Karin; Bergquist, Annika; Jonas, Eduard
2014-04-01
To evaluate dynamic hepatocyte-specific contrast-enhanced MRI (DHCE-MRI) for the assessment of global and segmental liver volume and function in patients with primary sclerosing cholangitis (PSC), and to explore the heterogeneous distribution of liver function in this patient group. Twelve patients with primary sclerosing cholangitis (PSC) and 20 healthy volunteers were examined using DHCE-MRI with Gd-EOB-DTPA. Segmental and total liver volume were calculated, and functional parameters (hepatic extraction fraction [HEF], input relative blood-flow [irBF], and mean transit time [MTT]) were calculated in each liver voxel using deconvolutional analysis. In each study subject, and incongruence score (IS) was constructed to describe the mismatch between segmental function and volume. Among patients, the liver function parameters were correlated to bile duct obstruction and to established scoring models for liver disease. Liver function was significantly more heterogeneously distributed in the patient group (IS 1.0 versus 0.4). There were significant correlations between biliary obstruction and segmental functional parameters (HEF rho -0.24; irBF rho -0.45), and the Mayo risk score correlated significantly with the total liver extraction capacity of Gd-EOB-DTPA (rho -0.85). The study demonstrates a new method to quantify total and segmental liver function using DHCE-MRI in patients with PSC. Copyright © 2013 Wiley Periodicals, Inc.
Computer-assisted segmentation of white matter lesions in 3D MR images using support vector machine.
Lao, Zhiqiang; Shen, Dinggang; Liu, Dengfeng; Jawad, Abbas F; Melhem, Elias R; Launer, Lenore J; Bryan, R Nick; Davatzikos, Christos
2008-03-01
Brain lesions, especially white matter lesions (WMLs), are associated with cardiac and vascular disease, but also with normal aging. Quantitative analysis of WML in large clinical trials is becoming more and more important. In this article, we present a computer-assisted WML segmentation method, based on local features extracted from multiparametric magnetic resonance imaging (MRI) sequences (ie, T1-weighted, T2-weighted, proton density-weighted, and fluid attenuation inversion recovery MRI scans). A support vector machine classifier is first trained on expert-defined WMLs, and is then used to classify new scans. Postprocessing analysis further reduces false positives by using anatomic knowledge and measures of distance from the training set. Cross-validation on a population of 35 patients from three different imaging sites with WMLs of varying sizes, shapes, and locations tests the robustness and accuracy of the proposed segmentation method, compared with the manual segmentation results from two experienced neuroradiologists.
Improved fuzzy clustering algorithms in segmentation of DC-enhanced breast MRI.
Kannan, S R; Ramathilagam, S; Devi, Pandiyarajan; Sathya, A
2012-02-01
Segmentation of medical images is a difficult and challenging problem due to poor image contrast and artifacts that result in missing or diffuse organ/tissue boundaries. Many researchers have applied various techniques however fuzzy c-means (FCM) based algorithms is more effective compared to other methods. The objective of this work is to develop some robust fuzzy clustering segmentation systems for effective segmentation of DCE - breast MRI. This paper obtains the robust fuzzy clustering algorithms by incorporating kernel methods, penalty terms, tolerance of the neighborhood attraction, additional entropy term and fuzzy parameters. The initial centers are obtained using initialization algorithm to reduce the computation complexity and running time of proposed algorithms. Experimental works on breast images show that the proposed algorithms are effective to improve the similarity measurement, to handle large amount of noise, to have better results in dealing the data corrupted by noise, and other artifacts. The clustering results of proposed methods are validated using Silhouette Method.
Functional gadoxetate disodium-enhanced MRI in patients with primary sclerosing cholangitis (PSC).
Hinrichs, Heiko; Hinrichs, Jan B; Gutberlet, Marcel; Lenzen, Henrike; Raatschen, Hans-Juergen; Wacker, Frank; Ringe, Kristina I
2016-04-01
To assess the value of variable flip angle-based T1 liver mapping on gadoxetate disodium-enhanced MRI in patients with primary sclerosing cholangitis (PSC) for evaluation of global and segmental liver function, and determine a possible correlation with disease severity. Sixty-one patients (19 female, 42 male; mean age 41 years) with PSC were included in this prospective study. T1 mapping was performed using a 3D-spoiled GRE sequence (flip angles 5°, 15°, 20°, 30°) before, 16 (HP1) and 132 min (HP2) after contrast injection. T1 values were measured and compared (Wilcoxon-Test) by placing ROIs in each liver segment. The mean reduction of T1 relaxation time at HP1 and HP2 was calculated and correlated with liver function tests (LFTs), MELD, Mayo Risk and Amsterdam Scores (Spearman correlation). Significant changes of T1 relaxation times between non-enhanced and gadoxetate disodium-enhanced MRI at HP1 and HP2 could be observed in all liver segments (p < 0.0001). A significant correlation of T1 reduction could be observed with LFTs, MELD and Mayo Risk Score (p < 0.05). T1 mapping of the liver using a variable flip angle-based sequence is a feasible technique to evaluate liver function on a global level, and may be extrapolated on a segmental level in patients with PSC. • T1 mapping enables evaluation of global liver function in PSC. • T1 relaxation time reduction correlates with the MELD and MayoRisk Score. • Extrapolated, T1 mapping may allow for segmental evaluation of liver function.
Lee, Hansang; Hong, Helen; Kim, Junmo
2014-12-01
We propose a graph-cut-based segmentation method for the anterior cruciate ligament (ACL) in knee MRI with a novel shape prior and label refinement. As the initial seeds for graph cuts, candidates for the ACL and the background are extracted from knee MRI roughly by means of adaptive thresholding with Gaussian mixture model fitting. The extracted ACL candidate is segmented iteratively by graph cuts with patient-specific shape constraints. Two shape constraints termed fence and neighbor costs are suggested such that the graph cuts prevent any leakage into adjacent regions with similar intensity. The segmented ACL label is refined by means of superpixel classification. Superpixel classification makes the segmented label propagate into missing inhomogeneous regions inside the ACL. In the experiments, the proposed method segmented the ACL with Dice similarity coefficient of 66.47±7.97%, average surface distance of 2.247±0.869, and root mean squared error of 3.538±1.633, which increased the accuracy by 14.8%, 40.3%, and 37.6% from the Boykov model, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.
Automatic tissue image segmentation based on image processing and deep learning
NASA Astrophysics Data System (ADS)
Kong, Zhenglun; Luo, Junyi; Xu, Shengpu; Li, Ting
2018-02-01
Image segmentation plays an important role in multimodality imaging, especially in fusion structural images offered by CT, MRI with functional images collected by optical technologies or other novel imaging technologies. Plus, image segmentation also provides detailed structure description for quantitative visualization of treating light distribution in the human body when incorporated with 3D light transport simulation method. Here we used image enhancement, operators, and morphometry methods to extract the accurate contours of different tissues such as skull, cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) on 5 fMRI head image datasets. Then we utilized convolutional neural network to realize automatic segmentation of images in a deep learning way. We also introduced parallel computing. Such approaches greatly reduced the processing time compared to manual and semi-automatic segmentation and is of great importance in improving speed and accuracy as more and more samples being learned. Our results can be used as a criteria when diagnosing diseases such as cerebral atrophy, which is caused by pathological changes in gray matter or white matter. We demonstrated the great potential of such image processing and deep leaning combined automatic tissue image segmentation in personalized medicine, especially in monitoring, and treatments.
Ahmad, Mansur; Hollender, Lars; Anderson, Quentin; Kartha, Krishnan; Ohrbach, Richard; Truelove, Edmond L; John, Mike T; Schiffman, Eric L
2009-06-01
As part of the Multisite Research Diagnostic Criteria For Temporomandibular Disorders (RDC/TMD) Validation Project, comprehensive temporomandibular joint diagnostic criteria were developed for image analysis using panoramic radiography, magnetic resonance imaging (MRI), and computerized tomography (CT). Interexaminer reliability was estimated using the kappa (kappa) statistic, and agreement between rater pairs was characterized by overall, positive, and negative percent agreement. Computerized tomography was the reference standard for assessing validity of other imaging modalities for detecting osteoarthritis (OA). For the radiologic diagnosis of OA, reliability of the 3 examiners was poor for panoramic radiography (kappa = 0.16), fair for MRI (kappa = 0.46), and close to the threshold for excellent for CT (kappa = 0.71). Using MRI, reliability was excellent for diagnosing disc displacements (DD) with reduction (kappa = 0.78) and for DD without reduction (kappa = 0.94) and good for effusion (kappa = 0.64). Overall percent agreement for pairwise ratings was >or=82% for all conditions. Positive percent agreement for diagnosing OA was 19% for panoramic radiography, 59% for MRI, and 84% for CT. Using MRI, positive percent agreement for diagnoses of any DD was 95% and of effusion was 81%. Negative percent agreement was >or=88% for all conditions. Compared with CT, panoramic radiography and MRI had poor and marginal sensitivity, respectively, but excellent specificity in detecting OA. Comprehensive image analysis criteria for the RDC/TMD Validation Project were developed, which can reliably be used for assessing OA using CT and for disc position and effusion using MRI.
Poplawsky, Alexander John; Fukuda, Mitsuhiro; Kang, Bok-Man; Kim, Jae Hwan; Suh, Minah; Kim, Seong-Gi
2017-08-16
Contrast-enhanced cerebral blood volume-weighted (CBVw) fMRI response peaks are specific to the layer of evoked synaptic activity (Poplawsky et al., 2015), but the spatial resolution limit of CBVw fMRI is unknown. In this study, we measured the laminar spread of the CBVw fMRI evoked response in the external plexiform layer (EPL, 265 ± 65 μm anatomical thickness, mean ± SD, n = 30 locations from 5 rats) of the rat olfactory bulb during electrical stimulation of the lateral olfactory tract and examined its potential vascular source. First, we obtained the evoked CBVw fMRI responses with a 55 × 55 μm 2 in-plane resolution and a 500-μm thickness at 9.4 T, and found that the fMRI signal peaked predominantly in the inner half of EPL (136 ± 54 μm anatomical thickness). The mean full-width at half-maximum of these fMRI peaks was 347 ± 102 μm and the functional spread was approximately 100 or 200 μm when the effects of the laminar thicknesses of EPL or inner EPL were removed, respectively. Second, we visualized the vascular architecture of EPL from a different rat using a Clear Lipid-exchanged Anatomically Rigid Imaging/immunostaining-compatible Tissue hYdrogel (CLARITY)-based tissue preparation method and confocal microscopy. Microvascular segments with an outer diameter of <11 μm accounted for 64.3% of the total vascular volume within EPL and had a mean segment length of 55 ± 40 μm (n = 472). Additionally, vessels that crossed the EPL border had a mean segment length outside of EPL equal to 73 ± 61 μm (n = 28), which is comparable to half of the functional spread (50-100 μm). Therefore, we conclude that dilation of these microvessels, including capillaries, likely dominate the CBVw fMRI response and that the biological limit of the fMRI spatial resolution is approximately the average length of 1-2 microvessel segments, which may be sufficient for examining sublaminar circuits. Copyright © 2017 Elsevier Inc. All rights reserved.
MS lesion segmentation using a multi-channel patch-based approach with spatial consistency
NASA Astrophysics Data System (ADS)
Mechrez, Roey; Goldberger, Jacob; Greenspan, Hayit
2015-03-01
This paper presents an automatic method for segmentation of Multiple Sclerosis (MS) in Magnetic Resonance Images (MRI) of the brain. The approach is based on similarities between multi-channel patches (T1, T2 and FLAIR). An MS lesion patch database is built using training images for which the label maps are known. For each patch in the testing image, k similar patches are retrieved from the database. The matching labels for these k patches are then combined to produce an initial segmentation map for the test case. Finally a novel iterative patch-based label refinement process based on the initial segmentation map is performed to ensure spatial consistency of the detected lesions. A leave-one-out evaluation is done for each testing image in the MS lesion segmentation challenge of MICCAI 2008. Results are shown to compete with the state-of-the-art methods on the MICCAI 2008 challenge.
Liukkonen, Mimmi K; Mononen, Mika E; Tanska, Petri; Saarakkala, Simo; Nieminen, Miika T; Korhonen, Rami K
2017-10-01
Manual segmentation of articular cartilage from knee joint 3D magnetic resonance images (MRI) is a time consuming and laborious task. Thus, automatic methods are needed for faster and reproducible segmentations. In the present study, we developed a semi-automatic segmentation method based on radial intensity profiles to generate 3D geometries of knee joint cartilage which were then used in computational biomechanical models of the knee joint. Six healthy volunteers were imaged with a 3T MRI device and their knee cartilages were segmented both manually and semi-automatically. The values of cartilage thicknesses and volumes produced by these two methods were compared. Furthermore, the influences of possible geometrical differences on cartilage stresses and strains in the knee were evaluated with finite element modeling. The semi-automatic segmentation and 3D geometry construction of one knee joint (menisci, femoral and tibial cartilages) was approximately two times faster than with manual segmentation. Differences in cartilage thicknesses, volumes, contact pressures, stresses, and strains between segmentation methods in femoral and tibial cartilage were mostly insignificant (p > 0.05) and random, i.e. there were no systematic differences between the methods. In conclusion, the devised semi-automatic segmentation method is a quick and accurate way to determine cartilage geometries; it may become a valuable tool for biomechanical modeling applications with large patient groups.
... either using computerized axial tomography (CAT) scans or magnetic resonance imaging (MRI) – can help to identify strokes and tumors, which can sometimes cause memory loss. “The goal is to rule out factors ...
Li, Bin; Chen, Kan; Tian, Lianfang; Yeboah, Yao; Ou, Shanxing
2013-01-01
The segmentation and detection of various types of nodules in a Computer-aided detection (CAD) system present various challenges, especially when (1) the nodule is connected to a vessel and they have very similar intensities; (2) the nodule with ground-glass opacity (GGO) characteristic possesses typical weak edges and intensity inhomogeneity, and hence it is difficult to define the boundaries. Traditional segmentation methods may cause problems of boundary leakage and "weak" local minima. This paper deals with the above mentioned problems. An improved detection method which combines a fuzzy integrated active contour model (FIACM)-based segmentation method, a segmentation refinement method based on Parametric Mixture Model (PMM) of juxta-vascular nodules, and a knowledge-based C-SVM (Cost-sensitive Support Vector Machines) classifier, is proposed for detecting various types of pulmonary nodules in computerized tomography (CT) images. Our approach has several novel aspects: (1) In the proposed FIACM model, edge and local region information is incorporated. The fuzzy energy is used as the motivation power for the evolution of the active contour. (2) A hybrid PMM Model of juxta-vascular nodules combining appearance and geometric information is constructed for segmentation refinement of juxta-vascular nodules. Experimental results of detection for pulmonary nodules show desirable performances of the proposed method.
Deformable templates guided discriminative models for robust 3D brain MRI segmentation.
Liu, Cheng-Yi; Iglesias, Juan Eugenio; Tu, Zhuowen
2013-10-01
Automatically segmenting anatomical structures from 3D brain MRI images is an important task in neuroimaging. One major challenge is to design and learn effective image models accounting for the large variability in anatomy and data acquisition protocols. A deformable template is a type of generative model that attempts to explicitly match an input image with a template (atlas), and thus, they are robust against global intensity changes. On the other hand, discriminative models combine local image features to capture complex image patterns. In this paper, we propose a robust brain image segmentation algorithm that fuses together deformable templates and informative features. It takes advantage of the adaptation capability of the generative model and the classification power of the discriminative models. The proposed algorithm achieves both robustness and efficiency, and can be used to segment brain MRI images with large anatomical variations. We perform an extensive experimental study on four datasets of T1-weighted brain MRI data from different sources (1,082 MRI scans in total) and observe consistent improvement over the state-of-the-art systems.
Jung, Kwan-Jin; Prasad, Parikshit; Qin, Yulin; Anderson, John R.
2013-01-01
A method to extract the subject's overt verbal response from the obscuring acoustic noise in an fMRI scan is developed by applying active noise cancellation with a conventional MRI microphone. Since the EPI scanning and its accompanying acoustic noise in fMRI are repetitive, the acoustic noise in one time segment was used as a reference noise in suppressing the acoustic noise in subsequent segments. However, the acoustic noise from the scanner was affected by the subject's movements, so the reference noise was adaptively adjusted as the scanner's acoustic properties varied in time. This method was successfully applied to a cognitive fMRI experiment with overt verbal responses. PMID:15723385
Wavelet-space correlation imaging for high-speed MRI without motion monitoring or data segmentation.
Li, Yu; Wang, Hui; Tkach, Jean; Roach, David; Woods, Jason; Dumoulin, Charles
2015-12-01
This study aims to (i) develop a new high-speed MRI approach by implementing correlation imaging in wavelet-space, and (ii) demonstrate the ability of wavelet-space correlation imaging to image human anatomy with involuntary or physiological motion. Correlation imaging is a high-speed MRI framework in which image reconstruction relies on quantification of data correlation. The presented work integrates correlation imaging with a wavelet transform technique developed originally in the field of signal and image processing. This provides a new high-speed MRI approach to motion-free data collection without motion monitoring or data segmentation. The new approach, called "wavelet-space correlation imaging", is investigated in brain imaging with involuntary motion and chest imaging with free-breathing. Wavelet-space correlation imaging can exceed the speed limit of conventional parallel imaging methods. Using this approach with high acceleration factors (6 for brain MRI, 16 for cardiac MRI, and 8 for lung MRI), motion-free images can be generated in static brain MRI with involuntary motion and nonsegmented dynamic cardiac/lung MRI with free-breathing. Wavelet-space correlation imaging enables high-speed MRI in the presence of involuntary motion or physiological dynamics without motion monitoring or data segmentation. © 2014 Wiley Periodicals, Inc.
Wavelet-space Correlation Imaging for High-speed MRI without Motion Monitoring or Data Segmentation
Li, Yu; Wang, Hui; Tkach, Jean; Roach, David; Woods, Jason; Dumoulin, Charles
2014-01-01
Purpose This study aims to 1) develop a new high-speed MRI approach by implementing correlation imaging in wavelet-space, and 2) demonstrate the ability of wavelet-space correlation imaging to image human anatomy with involuntary or physiological motion. Methods Correlation imaging is a high-speed MRI framework in which image reconstruction relies on quantification of data correlation. The presented work integrates correlation imaging with a wavelet transform technique developed originally in the field of signal and image processing. This provides a new high-speed MRI approach to motion-free data collection without motion monitoring or data segmentation. The new approach, called “wavelet-space correlation imaging”, is investigated in brain imaging with involuntary motion and chest imaging with free-breathing. Results Wavelet-space correlation imaging can exceed the speed limit of conventional parallel imaging methods. Using this approach with high acceleration factors (6 for brain MRI, 16 for cardiac MRI and 8 for lung MRI), motion-free images can be generated in static brain MRI with involuntary motion and nonsegmented dynamic cardiac/lung MRI with free-breathing. Conclusion Wavelet-space correlation imaging enables high-speed MRI in the presence of involuntary motion or physiological dynamics without motion monitoring or data segmentation. PMID:25470230
Negrete, Lindsey M.; Middleton, Michael S.; Clark, Lisa; Wolfson, Tanya; Gamst, Anthony C.; Lam, Jessica; Changchien, Chris; Deyoung-Dominguez, Ivan M.; Hamilton, Gavin; Loomba, Rohit; Schwimmer, Jeffrey; Sirlin, Claude B.
2013-01-01
Purpose To prospectively describe magnitude-based multi-echo gradient-echo hepatic proton density fat fraction (PDFF) inter-examination precision at 3T. Materials and Methods In this prospective, IRB approved, HIPAA compliant study, written informed consent was obtained from 29 subjects (body mass indexes > 30kg/m2). Three 3T magnetic resonance imaging (MRI) examinations were obtained over 75-90 minutes. Segmental, lobar, and whole liver PDFF were estimated (using three, four, five, or six echoes) by magnitude-based multi-echo MRI in co-localized regions of interest (ROIs). For estimate (using three, four, five, or six echoes), at each anatomic level (segmental, lobar, whole liver), three inter-examination precision metrics were computed: intra-class correlation coefficient (ICC), standard deviation (SD), and range. Results Magnitude-based PDFF estimates using each reconstruction method showed excellent inter-examination precision for each segment (ICC ≥ 0.992; SD ≤ 0.66%; range ≤ 1.24%), lobe (ICC ≥ 0.998; SD ≤ 0.34%; range ≤ 0.64%), and the whole liver (ICC = 0.999; SD ≤ 0.24%; range ≤ 0.45%). Inter-examination precision was unaffected by whether PDFF was estimated using three, four, five, or six echoes. Conclusion Magnitude-based PDFF estimation shows high inter-examination precision at segmental, lobar, and whole liver anatomic levels, supporting its use in clinical care or clinical trials. The results of this study suggest that longitudinal hepatic PDFF change greater than 1.6% is likely to represent signal rather than noise. PMID:24136736
Subject-specific body segment parameter estimation using 3D photogrammetry with multiple cameras
Morris, Mark; Sellers, William I.
2015-01-01
Inertial properties of body segments, such as mass, centre of mass or moments of inertia, are important parameters when studying movements of the human body. However, these quantities are not directly measurable. Current approaches include using regression models which have limited accuracy: geometric models with lengthy measuring procedures or acquiring and post-processing MRI scans of participants. We propose a geometric methodology based on 3D photogrammetry using multiple cameras to provide subject-specific body segment parameters while minimizing the interaction time with the participants. A low-cost body scanner was built using multiple cameras and 3D point cloud data generated using structure from motion photogrammetric reconstruction algorithms. The point cloud was manually separated into body segments, and convex hulling applied to each segment to produce the required geometric outlines. The accuracy of the method can be adjusted by choosing the number of subdivisions of the body segments. The body segment parameters of six participants (four male and two female) are presented using the proposed method. The multi-camera photogrammetric approach is expected to be particularly suited for studies including populations for which regression models are not available in literature and where other geometric techniques or MRI scanning are not applicable due to time or ethical constraints. PMID:25780778
Subject-specific body segment parameter estimation using 3D photogrammetry with multiple cameras.
Peyer, Kathrin E; Morris, Mark; Sellers, William I
2015-01-01
Inertial properties of body segments, such as mass, centre of mass or moments of inertia, are important parameters when studying movements of the human body. However, these quantities are not directly measurable. Current approaches include using regression models which have limited accuracy: geometric models with lengthy measuring procedures or acquiring and post-processing MRI scans of participants. We propose a geometric methodology based on 3D photogrammetry using multiple cameras to provide subject-specific body segment parameters while minimizing the interaction time with the participants. A low-cost body scanner was built using multiple cameras and 3D point cloud data generated using structure from motion photogrammetric reconstruction algorithms. The point cloud was manually separated into body segments, and convex hulling applied to each segment to produce the required geometric outlines. The accuracy of the method can be adjusted by choosing the number of subdivisions of the body segments. The body segment parameters of six participants (four male and two female) are presented using the proposed method. The multi-camera photogrammetric approach is expected to be particularly suited for studies including populations for which regression models are not available in literature and where other geometric techniques or MRI scanning are not applicable due to time or ethical constraints.
Rusu, Mirabela; Golden, Thea; Wang, Haibo; Gow, Andrew; Madabhushi, Anant
2015-08-01
Pulmonary inflammation is associated with a variety of diseases. Assessing pulmonary inflammation on in vivo imaging may facilitate the early detection and treatment of lung diseases. Although routinely used in thoracic imaging, computed tomography has thus far not been compellingly shown to characterize inflammation in vivo. Alternatively, magnetic resonance imaging (MRI) is a nonionizing radiation technique to better visualize and characterize pulmonary tissue. Prior to routine adoption of MRI for early characterization of inflammation in humans, a rigorous and quantitative characterization of the utility of MRI to identify inflammation is required. Such characterization may be achieved by considering ex vivo histology as the ground truth, since it enables the definitive spatial assessment of inflammation. In this study, the authors introduce a novel framework to integrate 2D histology, ex vivo and in vivo imaging to enable the mapping of the extent of disease from ex vivo histology onto in vivo imaging, with the goal of facilitating computerized feature analysis and interrogation of disease appearance on in vivo imaging. The authors' framework was evaluated in a preclinical preliminary study aimed to identify computer extracted features on in vivo MRI associated with chronic pulmonary inflammation. The authors' image analytics framework first involves reconstructing the histologic volume in 3D from individual histology slices. Second, the authors map the disease ground truth onto in vivo MRI via coregistration with 3D histology using the ex vivo lung MRI as a conduit. Finally, computerized feature analysis of the disease extent is performed to identify candidate in vivo imaging signatures of disease presence and extent. The authors evaluated the framework by assessing the quality of the 3D histology reconstruction and the histology-MRI fusion, in the context of an initial use case involving characterization of chronic inflammation in a mouse model. The authors' evaluation considered three mice, two with an inflammation phenotype and one control. The authors' iterative 3D histology reconstruction yielded a 70.1% ± 2.7% overlap with the ex vivo MRI volume. Across a total of 17 anatomic landmarks manually delineated at the division of airways, the target registration error between the ex vivo MRI and 3D histology reconstruction was 0.85 ± 0.44 mm, suggesting that a good alignment of the ex vivo 3D histology and ex vivo MRI had been achieved. The 3D histology-in vivo MRI coregistered volumes resulted in an overlap of 73.7% ± 0.9%. Preliminary computerized feature analysis was performed on an additional four control mice, for a total of seven mice considered in this study. Gabor texture filters appeared to best capture differences between the inflamed and noninflamed regions on MRI. The authors' 3D histology reconstruction and multimodal registration framework were successfully employed to reconstruct the histology volume of the lung and fuse it with in vivo MRI to create a ground truth map for inflammation on in vivo MRI. The analytic platform presented here lays the framework for a rigorous validation of the identified imaging features for chronic lung inflammation on MRI in a large prospective cohort.
Deep convolutional neural network for prostate MR segmentation
NASA Astrophysics Data System (ADS)
Tian, Zhiqiang; Liu, Lizhi; Fei, Baowei
2017-03-01
Automatic segmentation of the prostate in magnetic resonance imaging (MRI) has many applications in prostate cancer diagnosis and therapy. We propose a deep fully convolutional neural network (CNN) to segment the prostate automatically. Our deep CNN model is trained end-to-end in a single learning stage based on prostate MR images and the corresponding ground truths, and learns to make inference for pixel-wise segmentation. Experiments were performed on our in-house data set, which contains prostate MR images of 20 patients. The proposed CNN model obtained a mean Dice similarity coefficient of 85.3%+/-3.2% as compared to the manual segmentation. Experimental results show that our deep CNN model could yield satisfactory segmentation of the prostate.
SU-C-207B-04: Automated Segmentation of Pectoral Muscle in MR Images of Dense Breasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verburg, E; Waard, SN de; Veldhuis, WB
Purpose: To develop and evaluate a fully automated method for segmentation of the pectoral muscle boundary in Magnetic Resonance Imaging (MRI) of dense breasts. Methods: Segmentation of the pectoral muscle is an important part of automatic breast image analysis methods. Current methods for segmenting the pectoral muscle in breast MRI have difficulties delineating the muscle border correctly in breasts with a large proportion of fibroglandular tissue (i.e., dense breasts). Hence, an automated method based on dynamic programming was developed, incorporating heuristics aimed at shape, location and gradient features.To assess the method, the pectoral muscle was segmented in 91 randomly selectedmore » participants (mean age 56.6 years, range 49.5–75.2 years) from a large MRI screening trial in women with dense breasts (ACR BI-RADS category 4). Each MR dataset consisted of 178 or 179 T1-weighted images with voxel size 0.64 × 0.64 × 1.00 mm3. All images (n=16,287) were reviewed and scored by a radiologist. In contrast to volume overlap coefficients, such as DICE, the radiologist detected deviations in the segmented muscle border and determined whether the result would impact the ability to accurately determine the volume of fibroglandular tissue and detection of breast lesions. Results: According to the radiologist’s scores, 95.5% of the slices did not mask breast tissue in such way that it could affect detection of breast lesions or volume measurements. In 13.1% of the slices a deviation in the segmented muscle border was present which would not impact breast lesion detection. In 70 datasets (78%) at least 95% of the slices were segmented in such a way it would not affect detection of breast lesions, and in 60 (66%) datasets this was 100%. Conclusion: Dynamic programming with dedicated heuristics shows promising potential to segment the pectoral muscle in women with dense breasts.« less
Quantification of regional fat volume in rat MRI
NASA Astrophysics Data System (ADS)
Sacha, Jaroslaw P.; Cockman, Michael D.; Dufresne, Thomas E.; Trokhan, Darren
2003-05-01
Multiple initiatives in the pharmaceutical and beauty care industries are directed at identifying therapies for weight management. Body composition measurements are critical for such initiatives. Imaging technologies that can be used to measure body composition noninvasively include DXA (dual energy x-ray absorptiometry) and MRI (magnetic resonance imaging). Unlike other approaches, MRI provides the ability to perform localized measurements of fat distribution. Several factors complicate the automatic delineation of fat regions and quantification of fat volumes. These include motion artifacts, field non-uniformity, brightness and contrast variations, chemical shift misregistration, and ambiguity in delineating anatomical structures. We have developed an approach to deal practically with those challenges. The approach is implemented in a package, the Fat Volume Tool, for automatic detection of fat tissue in MR images of the rat abdomen, including automatic discrimination between abdominal and subcutaneous regions. We suppress motion artifacts using masking based on detection of implicit landmarks in the images. Adaptive object extraction is used to compensate for intensity variations. This approach enables us to perform fat tissue detection and quantification in a fully automated manner. The package can also operate in manual mode, which can be used for verification of the automatic analysis or for performing supervised segmentation. In supervised segmentation, the operator has the ability to interact with the automatic segmentation procedures to touch-up or completely overwrite intermediate segmentation steps. The operator's interventions steer the automatic segmentation steps that follow. This improves the efficiency and quality of the final segmentation. Semi-automatic segmentation tools (interactive region growing, live-wire, etc.) improve both the accuracy and throughput of the operator when working in manual mode. The quality of automatic segmentation has been evaluated by comparing the results of fully automated analysis to manual analysis of the same images. The comparison shows a high degree of correlation that validates the quality of the automatic segmentation approach.
Sweeney, Elizabeth M.; Vogelstein, Joshua T.; Cuzzocreo, Jennifer L.; Calabresi, Peter A.; Reich, Daniel S.; Crainiceanu, Ciprian M.; Shinohara, Russell T.
2014-01-01
Machine learning is a popular method for mining and analyzing large collections of medical data. We focus on a particular problem from medical research, supervised multiple sclerosis (MS) lesion segmentation in structural magnetic resonance imaging (MRI). We examine the extent to which the choice of machine learning or classification algorithm and feature extraction function impacts the performance of lesion segmentation methods. As quantitative measures derived from structural MRI are important clinical tools for research into the pathophysiology and natural history of MS, the development of automated lesion segmentation methods is an active research field. Yet, little is known about what drives performance of these methods. We evaluate the performance of automated MS lesion segmentation methods, which consist of a supervised classification algorithm composed with a feature extraction function. These feature extraction functions act on the observed T1-weighted (T1-w), T2-weighted (T2-w) and fluid-attenuated inversion recovery (FLAIR) MRI voxel intensities. Each MRI study has a manual lesion segmentation that we use to train and validate the supervised classification algorithms. Our main finding is that the differences in predictive performance are due more to differences in the feature vectors, rather than the machine learning or classification algorithms. Features that incorporate information from neighboring voxels in the brain were found to increase performance substantially. For lesion segmentation, we conclude that it is better to use simple, interpretable, and fast algorithms, such as logistic regression, linear discriminant analysis, and quadratic discriminant analysis, and to develop the features to improve performance. PMID:24781953
Sweeney, Elizabeth M; Vogelstein, Joshua T; Cuzzocreo, Jennifer L; Calabresi, Peter A; Reich, Daniel S; Crainiceanu, Ciprian M; Shinohara, Russell T
2014-01-01
Machine learning is a popular method for mining and analyzing large collections of medical data. We focus on a particular problem from medical research, supervised multiple sclerosis (MS) lesion segmentation in structural magnetic resonance imaging (MRI). We examine the extent to which the choice of machine learning or classification algorithm and feature extraction function impacts the performance of lesion segmentation methods. As quantitative measures derived from structural MRI are important clinical tools for research into the pathophysiology and natural history of MS, the development of automated lesion segmentation methods is an active research field. Yet, little is known about what drives performance of these methods. We evaluate the performance of automated MS lesion segmentation methods, which consist of a supervised classification algorithm composed with a feature extraction function. These feature extraction functions act on the observed T1-weighted (T1-w), T2-weighted (T2-w) and fluid-attenuated inversion recovery (FLAIR) MRI voxel intensities. Each MRI study has a manual lesion segmentation that we use to train and validate the supervised classification algorithms. Our main finding is that the differences in predictive performance are due more to differences in the feature vectors, rather than the machine learning or classification algorithms. Features that incorporate information from neighboring voxels in the brain were found to increase performance substantially. For lesion segmentation, we conclude that it is better to use simple, interpretable, and fast algorithms, such as logistic regression, linear discriminant analysis, and quadratic discriminant analysis, and to develop the features to improve performance.
Yang, Jinzhong; Beadle, Beth M; Garden, Adam S; Schwartz, David L; Aristophanous, Michalis
2015-09-01
To develop an automatic segmentation algorithm integrating imaging information from computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) to delineate target volume in head and neck cancer radiotherapy. Eleven patients with unresectable disease at the tonsil or base of tongue who underwent MRI, CT, and PET/CT within two months before the start of radiotherapy or chemoradiotherapy were recruited for the study. For each patient, PET/CT and T1-weighted contrast MRI scans were first registered to the planning CT using deformable and rigid registration, respectively, to resample the PET and magnetic resonance (MR) images to the planning CT space. A binary mask was manually defined to identify the tumor area. The resampled PET and MR images, the planning CT image, and the binary mask were fed into the automatic segmentation algorithm for target delineation. The algorithm was based on a multichannel Gaussian mixture model and solved using an expectation-maximization algorithm with Markov random fields. To evaluate the algorithm, we compared the multichannel autosegmentation with an autosegmentation method using only PET images. The physician-defined gross tumor volume (GTV) was used as the "ground truth" for quantitative evaluation. The median multichannel segmented GTV of the primary tumor was 15.7 cm(3) (range, 6.6-44.3 cm(3)), while the PET segmented GTV was 10.2 cm(3) (range, 2.8-45.1 cm(3)). The median physician-defined GTV was 22.1 cm(3) (range, 4.2-38.4 cm(3)). The median difference between the multichannel segmented and physician-defined GTVs was -10.7%, not showing a statistically significant difference (p-value = 0.43). However, the median difference between the PET segmented and physician-defined GTVs was -19.2%, showing a statistically significant difference (p-value =0.0037). The median Dice similarity coefficient between the multichannel segmented and physician-defined GTVs was 0.75 (range, 0.55-0.84), and the median sensitivity and positive predictive value between them were 0.76 and 0.81, respectively. The authors developed an automated multimodality segmentation algorithm for tumor volume delineation and validated this algorithm for head and neck cancer radiotherapy. The multichannel segmented GTV agreed well with the physician-defined GTV. The authors expect that their algorithm will improve the accuracy and consistency in target definition for radiotherapy.
Bertilson, Bo C; Brosjö, Eva; Billing, Hans; Strender, Lars-Erik
2010-09-10
Detection of nerve involvement originating in the spine is a primary concern in the assessment of spine symptoms. Magnetic resonance imaging (MRI) has become the diagnostic method of choice for this detection. However, the agreement between MRI and other diagnostic methods for detecting nerve involvement has not been fully evaluated. The aim of this diagnostic study was to evaluate the agreement between nerve involvement visible in MRI and findings of nerve involvement detected in a structured physical examination and a simplified pain drawing. Sixty-one consecutive patients referred for MRI of the lumbar spine were - without knowledge of MRI findings - assessed for nerve involvement with a simplified pain drawing and a structured physical examination. Agreement between findings was calculated as overall agreement, the p value for McNemar's exact test, specificity, sensitivity, and positive and negative predictive values. MRI-visible nerve involvement was significantly less common than, and showed weak agreement with, physical examination and pain drawing findings of nerve involvement in corresponding body segments. In spine segment L4-5, where most findings of nerve involvement were detected, the mean sensitivity of MRI-visible nerve involvement to a positive neurological test in the physical examination ranged from 16-37%. The mean specificity of MRI-visible nerve involvement in the same segment ranged from 61-77%. Positive and negative predictive values of MRI-visible nerve involvement in segment L4-5 ranged from 22-78% and 28-56% respectively. In patients with long-standing nerve root symptoms referred for lumbar MRI, MRI-visible nerve involvement significantly underestimates the presence of nerve involvement detected by a physical examination and a pain drawing. A structured physical examination and a simplified pain drawing may reveal that many patients with "MRI-invisible" lumbar symptoms need treatment aimed at nerve involvement. Factors other than present MRI-visible nerve involvement may be responsible for findings of nerve involvement in the physical examination and the pain drawing.
Sevel, Landrew S; Boissoneault, Jeff; Letzen, Janelle E; Robinson, Michael E; Staud, Roland
2018-05-30
Chronic fatigue syndrome (CFS) is a disorder associated with fatigue, pain, and structural/functional abnormalities seen during magnetic resonance brain imaging (MRI). Therefore, we evaluated the performance of structural MRI (sMRI) abnormalities in the classification of CFS patients versus healthy controls and compared it to machine learning (ML) classification based upon self-report (SR). Participants included 18 CFS patients and 15 healthy controls (HC). All subjects underwent T1-weighted sMRI and provided visual analogue-scale ratings of fatigue, pain intensity, anxiety, depression, anger, and sleep quality. sMRI data were segmented using FreeSurfer and 61 regions based on functional and structural abnormalities previously reported in patients with CFS. Classification was performed in RapidMiner using a linear support vector machine and bootstrap optimism correction. We compared ML classifiers based on (1) 61 a priori sMRI regional estimates and (2) SR ratings. The sMRI model achieved 79.58% classification accuracy. The SR (accuracy = 95.95%) outperformed both sMRI models. Estimates from multiple brain areas related to cognition, emotion, and memory contributed strongly to group classification. This is the first ML-based group classification of CFS. Our findings suggest that sMRI abnormalities are useful for discriminating CFS patients from HC, but SR ratings remain most effective in classification tasks.
Tang, X; Liu, H; Chen, L; Wang, Q; Luo, B; Xiang, N; He, Y; Zhu, W; Zhang, J
2018-05-24
To investigate the accuracy of two semi-automatic segmentation measurements based on magnetic resonance imaging (MRI) three-dimensional (3D) Cube fast spin echo (FSE)-flex sequence in phantoms, and to evaluate the feasibility of determining the volumetric alterations of orbital fat (OF) and total extraocular muscles (TEM) in patients with thyroid-associated ophthalmopathy (TAO) by semi-automatic segmentation. Forty-four fatty (n=22) and lean (n=22) phantoms were scanned by using Cube FSE-flex sequence with a 3 T MRI system. Their volumes were measured by manual segmentation (MS) and two semi-automatic segmentation algorithms (regional growing [RG], multi-dimensional threshold [MDT]). Pearson correlation and Bland-Altman analysis were used to evaluate the measuring accuracy of MS, RG, and MDT in phantoms as compared with the true volume. Then, OF and TEM volumes of 15 TAO patients and 15 normal controls were measured using MDT. Paired-sample t-tests were used to compare the volumes and volume ratios of different orbital tissues between TAO patients and controls. Each segmentation (MS RG, MDT) has a significant correlation (p<0.01) with true volume. There was a minimal bias for MS, and a stronger agreement between MDT and the true volume than RG and the true volume both in fatty and lean phantoms. The reproducibility of Cube FSE-flex determined MDT was adequate. The volumetric ratios of OF/globe (p<0.01), TEM/globe (p<0.01), whole orbit/globe (p<0.01) and bone orbit/globe (p<0.01) were significantly greater in TAO patients than those in healthy controls. MRI Cube FSE-flex determined MDT is a relatively accurate semi-automatic segmentation that can be used to evaluate OF and TEM volumes in clinic. Copyright © 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Multiple sclerosis lesion segmentation using an automatic multimodal graph cuts.
García-Lorenzo, Daniel; Lecoeur, Jeremy; Arnold, Douglas L; Collins, D Louis; Barillot, Christian
2009-01-01
Graph Cuts have been shown as a powerful interactive segmentation technique in several medical domains. We propose to automate the Graph Cuts in order to automatically segment Multiple Sclerosis (MS) lesions in MRI. We replace the manual interaction with a robust EM-based approach in order to discriminate between MS lesions and the Normal Appearing Brain Tissues (NABT). Evaluation is performed in synthetic and real images showing good agreement between the automatic segmentation and the target segmentation. We compare our algorithm with the state of the art techniques and with several manual segmentations. An advantage of our algorithm over previously published ones is the possibility to semi-automatically improve the segmentation due to the Graph Cuts interactive feature.
Non-Hodgkin Lymphoma (For Parents)
... chest X-ray a computerized tomography (CT or CAT) scan , which rotates around the patient and creates an ... ray (Video) Getting an MRI (Video) Getting a CAT Scan (Video) Chemotherapy Hodgkin Lymphoma Stem Cell Transplants Can ...
Hanson, Erik A; Lundervold, Arvid
2013-11-01
Multispectral, multichannel, or time series image segmentation is important for image analysis in a wide range of applications. Regularization of the segmentation is commonly performed using local image information causing the segmented image to be locally smooth or piecewise constant. A new spatial regularization method, incorporating non-local information, was developed and tested. Our spatial regularization method applies to feature space classification in multichannel images such as color images and MR image sequences. The spatial regularization involves local edge properties, region boundary minimization, as well as non-local similarities. The method is implemented in a discrete graph-cut setting allowing fast computations. The method was tested on multidimensional MRI recordings from human kidney and brain in addition to simulated MRI volumes. The proposed method successfully segment regions with both smooth and complex non-smooth shapes with a minimum of user interaction.
Adipose tissue MRI for quantitative measurement of central obesity.
Poonawalla, Aziz H; Sjoberg, Brett P; Rehm, Jennifer L; Hernando, Diego; Hines, Catherine D; Irarrazaval, Pablo; Reeder, Scott B
2013-03-01
To validate adipose tissue magnetic resonance imaging (atMRI) for rapid, quantitative volumetry of visceral adipose tissue (VAT) and total adipose tissue (TAT). Data were acquired on normal adults and clinically overweight girls with Institutional Review Board (IRB) approval/parental consent using sagittal 6-echo 3D-spoiled gradient-echo (SPGR) (26-sec single-breath-hold) at 3T. Fat-fraction images were reconstructed with quantitative corrections, permitting measurement of a physiologically based fat-fraction threshold in normals to identify adipose tissue, for automated measurement of TAT, and semiautomated measurement of VAT. TAT accuracy was validated using oil phantoms and in vivo TAT/VAT measurements validated with manual segmentation. Group comparisons were performed between normals and overweight girls using TAT, VAT, VAT-TAT-ratio (VTR), body-mass-index (BMI), waist circumference, and waist-hip-ratio (WHR). Oil phantom measurements were highly accurate (<3% error). The measured adipose fat-fraction threshold was 96% ± 2%. VAT and TAT correlated strongly with manual segmentation (normals r(2) ≥ 0.96, overweight girls r(2) ≥ 0.99). VAT segmentation required 30 ± 11 minutes/subject (14 ± 5 sec/slice) using atMRI, versus 216 ± 73 minutes/subject (99 ± 31 sec/slice) manually. Group discrimination was significant using WHR (P < 0.001) and VTR (P = 0.004). The atMRI technique permits rapid, accurate measurements of TAT, VAT, and VTR. Copyright © 2012 Wiley Periodicals, Inc.
Automatic selection of arterial input function using tri-exponential models
NASA Astrophysics Data System (ADS)
Yao, Jianhua; Chen, Jeremy; Castro, Marcelo; Thomasson, David
2009-02-01
Dynamic Contrast Enhanced MRI (DCE-MRI) is one method for drug and tumor assessment. Selecting a consistent arterial input function (AIF) is necessary to calculate tissue and tumor pharmacokinetic parameters in DCE-MRI. This paper presents an automatic and robust method to select the AIF. The first stage is artery detection and segmentation, where knowledge about artery structure and dynamic signal intensity temporal properties of DCE-MRI is employed. The second stage is AIF model fitting and selection. A tri-exponential model is fitted for every candidate AIF using the Levenberg-Marquardt method, and the best fitted AIF is selected. Our method has been applied in DCE-MRIs of four different body parts: breast, brain, liver and prostate. The success rates in artery segmentation for 19 cases are 89.6%+/-15.9%. The pharmacokinetic parameters computed from the automatically selected AIFs are highly correlated with those from manually determined AIFs (R2=0.946, P(T<=t)=0.09). Our imaging-based tri-exponential AIF model demonstrated significant improvement over a previously proposed bi-exponential model.
Avendi, M R; Kheradvar, Arash; Jafarkhani, Hamid
2016-05-01
Segmentation of the left ventricle (LV) from cardiac magnetic resonance imaging (MRI) datasets is an essential step for calculation of clinical indices such as ventricular volume and ejection fraction. In this work, we employ deep learning algorithms combined with deformable models to develop and evaluate a fully automatic LV segmentation tool from short-axis cardiac MRI datasets. The method employs deep learning algorithms to learn the segmentation task from the ground true data. Convolutional networks are employed to automatically detect the LV chamber in MRI dataset. Stacked autoencoders are used to infer the LV shape. The inferred shape is incorporated into deformable models to improve the accuracy and robustness of the segmentation. We validated our method using 45 cardiac MR datasets from the MICCAI 2009 LV segmentation challenge and showed that it outperforms the state-of-the art methods. Excellent agreement with the ground truth was achieved. Validation metrics, percentage of good contours, Dice metric, average perpendicular distance and conformity, were computed as 96.69%, 0.94, 1.81 mm and 0.86, versus those of 79.2-95.62%, 0.87-0.9, 1.76-2.97 mm and 0.67-0.78, obtained by other methods, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Meng, Qier; Kitasaka, Takayuki; Oda, Masahiro; Mori, Kensaku
2017-03-01
Airway segmentation is an important step in analyzing chest CT volumes for computerized lung cancer detection, emphysema diagnosis, asthma diagnosis, and pre- and intra-operative bronchoscope navigation. However, obtaining an integrated 3-D airway tree structure from a CT volume is a quite challenging task. This paper presents a novel airway segmentation method based on intensity structure analysis and bronchi shape structure analysis in volume of interest (VOI). This method segments the bronchial regions by applying the cavity enhancement filter (CEF) to trace the bronchial tree structure from the trachea. It uses the CEF in each VOI to segment each branch and to predict the positions of VOIs which envelope the bronchial regions in next level. At the same time, a leakage detection is performed to avoid the leakage by analysing the pixel information and the shape information of airway candidate regions extracted in the VOI. Bronchial regions are finally obtained by unifying the extracted airway regions. The experiments results showed that the proposed method can extract most of the bronchial region in each VOI and led good results of the airway segmentation.
Wilke, Marko
2018-02-01
This dataset contains the regression parameters derived by analyzing segmented brain MRI images (gray matter and white matter) from a large population of healthy subjects, using a multivariate adaptive regression splines approach. A total of 1919 MRI datasets ranging in age from 1-75 years from four publicly available datasets (NIH, C-MIND, fCONN, and IXI) were segmented using the CAT12 segmentation framework, writing out gray matter and white matter images normalized using an affine-only spatial normalization approach. These images were then subjected to a six-step DARTEL procedure, employing an iterative non-linear registration approach and yielding increasingly crisp intermediate images. The resulting six datasets per tissue class were then analyzed using multivariate adaptive regression splines, using the CerebroMatic toolbox. This approach allows for flexibly modelling smoothly varying trajectories while taking into account demographic (age, gender) as well as technical (field strength, data quality) predictors. The resulting regression parameters described here can be used to generate matched DARTEL or SHOOT templates for a given population under study, from infancy to old age. The dataset and the algorithm used to generate it are publicly available at https://irc.cchmc.org/software/cerebromatic.php.
Mini-Stroke vs. Regular Stroke: What's the Difference?
... may need various diagnostic tests, such as a magnetic resonance imaging (MRI) scan or a computerized tomography ( ... org," "Mayo Clinic Healthy Living," and the triple-shield Mayo Clinic logo are trademarks of Mayo Foundation ...
Real-time myocardium segmentation for the assessment of cardiac function variation
NASA Astrophysics Data System (ADS)
Zoehrer, Fabian; Huellebrand, Markus; Chitiboi, Teodora; Oechtering, Thekla; Sieren, Malte; Frahm, Jens; Hahn, Horst K.; Hennemuth, Anja
2017-03-01
Recent developments in MRI enable the acquisition of image sequences with high spatio-temporal resolution. Cardiac motion can be captured without gating and triggering. Image size and contrast relations differ from conventional cardiac MRI cine sequences requiring new adapted analysis methods. We suggest a novel segmentation approach utilizing contrast invariant polar scanning techniques. It has been tested with 20 datasets of arrhythmia patients. The results do not differ significantly more between automatic and manual segmentations than between observers. This indicates that the presented solution could enable clinical applications of real-time MRI for the examination of arrhythmic cardiac motion in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katsumori, Tetsuya, E-mail: katsumo@eurus.dti.ne.jp; Kasahara, Toshiyuki; Kin, Yoko
Purpose. To assess uterine artery recanalization, together with tumor devascularization, after embolization using gelatin sponge particles alone for fibroids. Methods. Twenty-seven patients underwent uterine artery embolization (UAE) for fibroids using only gelatin sponge particles. The angiographic endpoint of embolization was defined as near stasis of contrast medium in the ascending segment of the uterine artery. All patients underwent contrast-enhanced magnetic resonance angiography (MRA) before and 4 months after UAE, and contrast-enhanced magnetic resonance imaging (CE-MRI) before, 1 week after, and 4 months after UAE. The visualization of the uterine arteries before and 4 months after UAE was assessed using MRA.more » The infarction rates of the largest tumor were assessed using CE-MRI 1 week after UAE. Results. MRA 4 months after UAE showed 100% (53/53) of the descending and transverse segments, and 88% (43/49) of the ascending segments that had been noted on baseline MRA. The visualization of the ascending segments on MRA 4 months after UAE was identical to that on baseline MRA in 20 of 27 patients (74%). CE-MRI showed complete infarction of the largest tumor in 22 of 27 patients (81%), and 90-99% infarction of the largest tumor in the remaining 5 of 27 patients (19%). Conclusion. Based on the MR study, in most cases uterine artery recanalization occurred, together with sufficient devascularization of fibroids, after UAE using gelatin sponge particles alone.« less
Measurement of segmental lumbar spine flexion and extension using ultrasound imaging.
Chleboun, Gary S; Amway, Matthew J; Hill, Jesse G; Root, Kara J; Murray, Hugh C; Sergeev, Alexander V
2012-10-01
Clinical measurement, technical note. To describe a technique to measure interspinous process distance using ultrasound (US) imaging, to assess the reliability of the technique, and to compare the US imaging measurements to magnetic resonance imaging (MRI) measurements in 3 different positions of the lumbar spine. Segmental spinal motion has been assessed using various imaging techniques, as well as surgically inserted pins. However, some imaging techniques are costly (MRI) and some require ionizing radiation (radiographs and fluoroscopy), and surgical procedures have limited use because of the invasive nature of the technique. Therefore, it is important to have an easily accessible and inexpensive technique for measuring lumbar segmental motion to more fully understand spine motion in vivo, to evaluate the changes that occur with various interventions, and to be able to accurately relate the changes in symptoms to changes in motion of individual vertebral segments. Six asymptomatic subjects participated. The distance between spinous processes at each lumbar segment (L1-2, L2-3, L3-4, L4-5) was measured digitally using MRI and US imaging. The interspinous distance was measured with subjects supine and the lumbar spine in 3 different positions (resting, lumbar flexion, and lumbar extension) for both MRI and US imaging. The differences in distance from neutral to extension, neutral to flexion, and extension to flexion were calculated. The measurement methods had excellent reliability for US imaging (intraclass correlation coefficient [ICC3,3] = 0.94; 95% confidence interval: 0.85, 0.97) and MRI (ICC3,3 = 0.98; 95% confidence interval: 0.95, 0.99). The distance measured was similar between US imaging and MRI (P>.05), except at L3-4 flexion-extension (P = .003). On average, the MRI measurements were 1.3 mm greater than the US imaging measurements. This study describes a new method for the measurement of lumbar spine segmental flexion and extension motion using US imaging. The US method may offer an alternative to other imaging techniques to monitor clinical outcomes because of its ease of use and the consistency of measurements compared to MRI.
Innovative visualization and segmentation approaches for telemedicine
NASA Astrophysics Data System (ADS)
Nguyen, D.; Roehrig, Hans; Borders, Marisa H.; Fitzpatrick, Kimberly A.; Roveda, Janet
2014-09-01
In health care applications, we obtain, manage, store and communicate using high quality, large volume of image data through integrated devices. In this paper we propose several promising methods that can assist physicians in image data process and communication. We design a new semi-automated segmentation approach for radiological images, such as CT and MRI to clearly identify the areas of interest. This approach combines the advantages from both the region-based method and boundary-based methods. It has three key steps compose: coarse segmentation by using fuzzy affinity and homogeneity operator, image division and reclassification using the Voronoi Diagram, and refining boundary lines using the level set model.
Yushkevich, Paul A.; Amaral, Robert S. C.; Augustinack, Jean C.; Bender, Andrew R.; Bernstein, Jeffrey D.; Boccardi, Marina; Bocchetta, Martina; Burggren, Alison C.; Carr, Valerie A.; Chakravarty, M. Mallar; Chetelat, Gael; Daugherty, Ana M.; Davachi, Lila; Ding, Song-Lin; Ekstrom, Arne; Geerlings, Mirjam I.; Hassan, Abdul; Huang, Yushan; Iglesias, Eugenio; La Joie, Renaud; Kerchner, Geoffrey A.; LaRocque, Karen F.; Libby, Laura A.; Malykhin, Nikolai; Mueller, Susanne G.; Olsen, Rosanna K.; Palombo, Daniela J.; Parekh, Mansi B; Pluta, John B.; Preston, Alison R.; Pruessner, Jens C.; Ranganath, Charan; Raz, Naftali; Schlichting, Margaret L.; Schoemaker, Dorothee; Singh, Sachi; Stark, Craig E. L.; Suthana, Nanthia; Tompary, Alexa; Turowski, Marta M.; Van Leemput, Koen; Wagner, Anthony D.; Wang, Lei; Winterburn, Julie L.; Wisse, Laura E.M.; Yassa, Michael A.; Zeineh, Michael M.
2015-01-01
OBJECTIVE An increasing number of human in vivo magnetic resonance imaging (MRI) studies have focused on examining the structure and function of the subfields of the hippocampal formation (the dentate gyrus, CA fields 1–3, and the subiculum) and subregions of the parahippocampal gyrus (entorhinal, perirhinal, and parahippocampal cortices). The ability to interpret the results of such studies and to relate them to each other would be improved if a common standard existed for labeling hippocampal subfields and parahippocampal subregions. Currently, research groups label different subsets of structures and use different rules, landmarks, and cues to define their anatomical extents. This paper characterizes, both qualitatively and quantitatively, the variability in the existing manual segmentation protocols for labeling hippocampal and parahippocampal substructures in MRI, with the goal of guiding subsequent work on developing a harmonized substructure segmentation protocol. METHOD MRI scans of a single healthy adult human subject were acquired both at 3 Tesla and 7 Tesla. Representatives from 21 research groups applied their respective manual segmentation protocols to the MRI modalities of their choice. The resulting set of 21 segmentations was analyzed in a common anatomical space to quantify similarity and identify areas of agreement. RESULTS The differences between the 21 protocols include the region within which segmentation is performed, the set of anatomical labels used, and the extents of specific anatomical labels. The greatest overall disagreement among the protocols is at the CA1/subiculum boundary, and disagreement across all structures is greatest in the anterior portion of the hippocampal formation relative to the body and tail. CONCLUSIONS The combined examination of the 21 protocols in the same dataset suggests possible strategies towards developing a harmonized subfield segmentation protocol and facilitates comparison between published studies. PMID:25596463
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Jun; McKenzie, Elizabeth; Fan, Zhaoyang
Purpose: To denoise self-gated k-space sorted 4-dimensional magnetic resonance imaging (SG-KS-4D-MRI) by applying a nonlocal means denoising filter, block-matching and 3-dimensional filtering (BM3D), to test its impact on the accuracy of 4D image deformable registration and automated tumor segmentation for pancreatic cancer patients. Methods and Materials: Nine patients with pancreatic cancer and abdominal SG-KS-4D-MRI were included in the study. Block-matching and 3D filtering was adapted to search in the axial slices/frames adjacent to the reference image patch in the spatial and temporal domains. The patches with high similarity to the reference patch were used to collectively denoise the 4D-MRI image. Themore » pancreas tumor was manually contoured on the first end-of-exhalation phase for both the raw and the denoised 4D-MRI. B-spline deformable registration was applied to the subsequent phases for contour propagation. The consistency of tumor volume defined by the standard deviation of gross tumor volumes from 10 breathing phases (σ-GTV), tumor motion trajectories in 3 cardinal motion planes, 4D-MRI imaging noise, and image contrast-to-noise ratio were compared between the raw and denoised groups. Results: Block-matching and 3D filtering visually and quantitatively reduced image noise by 52% and improved image contrast-to-noise ratio by 56%, without compromising soft tissue edge definitions. Automatic tumor segmentation is statistically more consistent on the denoised 4D-MRI (σ-GTV = 0.6 cm{sup 3}) than on the raw 4D-MRI (σ-GTV = 0.8 cm{sup 3}). Tumor end-of-exhalation location is also more reproducible on the denoised 4D-MRI than on the raw 4D-MRI in all 3 cardinal motion planes. Conclusions: Block-matching and 3D filtering can significantly reduce random image noise while maintaining structural features in the SG-KS-4D-MRI datasets. In this study of pancreatic tumor segmentation, automatic segmentation of GTV in the registered image sets is shown to be more consistent on the denoised 4D-MRI than on the raw 4D-MRI.« less
Unsupervised MRI segmentation of brain tissues using a local linear model and level set.
Rivest-Hénault, David; Cheriet, Mohamed
2011-02-01
Real-world magnetic resonance imaging of the brain is affected by intensity nonuniformity (INU) phenomena which makes it difficult to fully automate the segmentation process. This difficult task is accomplished in this work by using a new method with two original features: (1) each brain tissue class is locally modeled using a local linear region representative, which allows us to account for the INU in an implicit way and to more accurately position the region's boundaries; and (2) the region models are embedded in the level set framework, so that the spatial coherence of the segmentation can be controlled in a natural way. Our new method has been tested on the ground-truthed Internet Brain Segmentation Repository (IBSR) database and gave promising results, with Tanimoto indexes ranging from 0.61 to 0.79 for the classification of the white matter and from 0.72 to 0.84 for the gray matter. To our knowledge, this is the first time a region-based level set model has been used to perform the segmentation of real-world MRI brain scans with convincing results. Copyright © 2011 Elsevier Inc. All rights reserved.
Statistical Validation of Image Segmentation Quality Based on a Spatial Overlap Index1
Zou, Kelly H.; Warfield, Simon K.; Bharatha, Aditya; Tempany, Clare M.C.; Kaus, Michael R.; Haker, Steven J.; Wells, William M.; Jolesz, Ferenc A.; Kikinis, Ron
2005-01-01
Rationale and Objectives To examine a statistical validation method based on the spatial overlap between two sets of segmentations of the same anatomy. Materials and Methods The Dice similarity coefficient (DSC) was used as a statistical validation metric to evaluate the performance of both the reproducibility of manual segmentations and the spatial overlap accuracy of automated probabilistic fractional segmentation of MR images, illustrated on two clinical examples. Example 1: 10 consecutive cases of prostate brachytherapy patients underwent both preoperative 1.5T and intraoperative 0.5T MR imaging. For each case, 5 repeated manual segmentations of the prostate peripheral zone were performed separately on preoperative and on intraoperative images. Example 2: A semi-automated probabilistic fractional segmentation algorithm was applied to MR imaging of 9 cases with 3 types of brain tumors. DSC values were computed and logit-transformed values were compared in the mean with the analysis of variance (ANOVA). Results Example 1: The mean DSCs of 0.883 (range, 0.876–0.893) with 1.5T preoperative MRI and 0.838 (range, 0.819–0.852) with 0.5T intraoperative MRI (P < .001) were within and at the margin of the range of good reproducibility, respectively. Example 2: Wide ranges of DSC were observed in brain tumor segmentations: Meningiomas (0.519–0.893), astrocytomas (0.487–0.972), and other mixed gliomas (0.490–0.899). Conclusion The DSC value is a simple and useful summary measure of spatial overlap, which can be applied to studies of reproducibility and accuracy in image segmentation. We observed generally satisfactory but variable validation results in two clinical applications. This metric may be adapted for similar validation tasks. PMID:14974593
Bayesian segmentation of atrium wall using globally-optimal graph cuts on 3D meshes.
Veni, Gopalkrishna; Fu, Zhisong; Awate, Suyash P; Whitaker, Ross T
2013-01-01
Efficient segmentation of the left atrium (LA) wall from delayed enhancement MRI is challenging due to inconsistent contrast, combined with noise, and high variation in atrial shape and size. We present a surface-detection method that is capable of extracting the atrial wall by computing an optimal a-posteriori estimate. This estimation is done on a set of nested meshes, constructed from an ensemble of segmented training images, and graph cuts on an associated multi-column, proper-ordered graph. The graph/mesh is a part of a template/model that has an associated set of learned intensity features. When this mesh is overlaid onto a test image, it produces a set of costs which lead to an optimal segmentation. The 3D mesh has an associated weighted, directed multi-column graph with edges that encode smoothness and inter-surface penalties. Unlike previous graph-cut methods that impose hard constraints on the surface properties, the proposed method follows from a Bayesian formulation resulting in soft penalties on spatial variation of the cuts through the mesh. The novelty of this method also lies in the construction of proper-ordered graphs on complex shapes for choosing among distinct classes of base shapes for automatic LA segmentation. We evaluate the proposed segmentation framework on simulated and clinical cardiac MRI.
NASA Astrophysics Data System (ADS)
Seow, P.; Win, M. T.; Wong, J. H. D.; Abdullah, N. A.; Ramli, N.
2016-03-01
Gliomas are tumours arising from the interstitial tissue of the brain which are heterogeneous, infiltrative and possess ill-defined borders. Tumour subregions (e.g. solid enhancing part, edema and necrosis) are often used for tumour characterisation. Tumour demarcation into substructures facilitates glioma staging and provides essential information. Manual segmentation had several drawbacks that include laborious, time consuming, subjected to intra and inter-rater variability and hindered by diversity in the appearance of tumour tissues. In this work, active contour model (ACM) was used to segment the solid enhancing subregion of the tumour. 2D brain image acquisition data using 3T MRI fast spoiled gradient echo sequence in post gadolinium of four histologically proven high-grade glioma patients were obtained. Preprocessing of the images which includes subtraction and skull stripping were performed and then followed by ACM segmentation. The results of the automatic segmentation method were compared against the manual delineation of the tumour by a trainee radiologist. Both results were further validated by an experienced neuroradiologist and a brief quantitative evaluations (pixel area and difference ratio) were performed. Preliminary results of the clinical data showed the potential of ACM model in the application of fast and large scale tumour segmentation in medical imaging.
Automated methods for hippocampus segmentation: the evolution and a review of the state of the art.
Dill, Vanderson; Franco, Alexandre Rosa; Pinho, Márcio Sarroglia
2015-04-01
The segmentation of the hippocampus in Magnetic Resonance Imaging (MRI) has been an important procedure to diagnose and monitor several clinical situations. The precise delineation of the borders of this brain structure makes it possible to obtain a measure of the volume and estimate its shape, which can be used to diagnose some diseases, such as Alzheimer's disease, schizophrenia and epilepsy. As the manual segmentation procedure in three-dimensional images is highly time consuming and the reproducibility is low, automated methods introduce substantial gains. On the other hand, the implementation of those methods is a challenge because of the low contrast of this structure in relation to the neighboring areas of the brain. Within this context, this research presents a review of the evolution of automatized methods for the segmentation of the hippocampus in MRI. Many proposed methods for segmentation of the hippocampus have been published in leading journals in the medical image processing area. This paper describes these methods presenting the techniques used and quantitatively comparing the methods based on Dice Similarity Coefficient. Finally, we present an evaluation of those methods considering the degree of user intervention, computational cost, segmentation accuracy and feasibility of application in a clinical routine.
NASA Astrophysics Data System (ADS)
Chen, Jingyun; Palmer, Samantha J.; Khan, Ali R.; Mckeown, Martin J.; Beg, Mirza Faial
2009-02-01
We apply a recently developed automated brain segmentation method, FS+LDDMM, to brain MRI scans from Parkinson's Disease (PD) subjects, and normal age-matched controls and compare the results to manual segmentation done by trained neuroscientists. The data set consisted of 14 PD subjects and 12 age-matched control subjects without neurologic disease and comparison was done on six subcortical brain structures (left and right caudate, putamen and thalamus). Comparison between automatic and manual segmentation was based on Dice Similarity Coefficient (Overlap Percentage), L1 Error, Symmetrized Hausdorff Distance and Symmetrized Mean Surface Distance. Results suggest that FS+LDDMM is well-suited for subcortical structure segmentation and further shape analysis in Parkinson's Disease. The asymmetry of the Dice Similarity Coefficient over shape change is also discussed based on the observation and measurement of FS+LDDMM segmentation results.
Kulinowski, Piotr; Dorożyński, Przemysław; Młynarczyk, Anna; Węglarz, Władysław P
2011-05-01
The purpose of the study was to present a methodology for the processing of Magnetic Resonance Imaging (MRI) data for the quantification of the dosage form matrix evolution during drug dissolution. The results of the study were verified by comparison with other approaches presented in literature. A commercially available, HPMC-based quetiapine fumarate tablet was studied with a 4.7T MR system. Imaging was performed inside an MRI probe-head coupled with a flow-through cell for 12 h in circulating water. The images were segmented into three regions using threshold-based segmentation algorithms due to trimodal structure of the image intensity histograms. Temporal evolution of dry glassy, swollen glassy and gel regions was monitored. The characteristic features were observed: initial high expansion rate of the swollen glassy and gel layers due to initial water uptake, dry glassy core disappearance and maximum area of swollen glassy region at 4 h, and subsequent gel layer thickness increase at the expense of swollen glassy layer. The temporal evolution of an HPMC-based tablet by means of noninvasive MRI integrated with USP Apparatus 4 was found to be consistent with both the theoretical model based on polymer disentanglement concentration and experimental VIS/FTIR studies.
An Efficient Implementation of Deep Convolutional Neural Networks for MRI Segmentation.
Hoseini, Farnaz; Shahbahrami, Asadollah; Bayat, Peyman
2018-02-27
Image segmentation is one of the most common steps in digital image processing, classifying a digital image into different segments. The main goal of this paper is to segment brain tumors in magnetic resonance images (MRI) using deep learning. Tumors having different shapes, sizes, brightness and textures can appear anywhere in the brain. These complexities are the reasons to choose a high-capacity Deep Convolutional Neural Network (DCNN) containing more than one layer. The proposed DCNN contains two parts: architecture and learning algorithms. The architecture and the learning algorithms are used to design a network model and to optimize parameters for the network training phase, respectively. The architecture contains five convolutional layers, all using 3 × 3 kernels, and one fully connected layer. Due to the advantage of using small kernels with fold, it allows making the effect of larger kernels with smaller number of parameters and fewer computations. Using the Dice Similarity Coefficient metric, we report accuracy results on the BRATS 2016, brain tumor segmentation challenge dataset, for the complete, core, and enhancing regions as 0.90, 0.85, and 0.84 respectively. The learning algorithm includes the task-level parallelism. All the pixels of an MR image are classified using a patch-based approach for segmentation. We attain a good performance and the experimental results show that the proposed DCNN increases the segmentation accuracy compared to previous techniques.
Local contrast-enhanced MR images via high dynamic range processing.
Chandra, Shekhar S; Engstrom, Craig; Fripp, Jurgen; Neubert, Ales; Jin, Jin; Walker, Duncan; Salvado, Olivier; Ho, Charles; Crozier, Stuart
2018-09-01
To develop a local contrast-enhancing and feature-preserving high dynamic range (HDR) image processing algorithm for multichannel and multisequence MR images of multiple body regions and tissues, and to evaluate its performance for structure visualization, bias field (correction) mitigation, and automated tissue segmentation. A multiscale-shape and detail-enhancement HDR-MRI algorithm is applied to data sets of multichannel and multisequence MR images of the brain, knee, breast, and hip. In multisequence 3T hip images, agreement between automatic cartilage segmentations and corresponding synthesized HDR-MRI series were computed for mean voxel overlap established from manual segmentations for a series of cases. Qualitative comparisons between the developed HDR-MRI and standard synthesis methods were performed on multichannel 7T brain and knee data, and multisequence 3T breast and knee data. The synthesized HDR-MRI series provided excellent enhancement of fine-scale structure from multiple scales and contrasts, while substantially reducing bias field effects in 7T brain gradient echo, T 1 and T 2 breast images and 7T knee multichannel images. Evaluation of the HDR-MRI approach on 3T hip multisequence images showed superior outcomes for automatic cartilage segmentations with respect to manual segmentation, particularly around regions with hyperintense synovial fluid, across a set of 3D sequences. The successful combination of multichannel/sequence MR images into a single-fused HDR-MR image format provided consolidated visualization of tissues within 1 omnibus image, enhanced definition of thin, complex anatomical structures in the presence of variable or hyperintense signals, and improved tissue (cartilage) segmentation outcomes. © 2018 International Society for Magnetic Resonance in Medicine.
Petridou, E; Kibiro, M; Gladwell, C; Malcolm, P; Toms, A; Juette, A; Borga, M; Dahlqvist Leinhard, O; Romu, T; Kasmai, B; Denton, E
2017-07-01
To compare magnetic resonance imaging (MRI)-derived breast density measurements using automatic segmentation algorithms with radiologist estimations using the Breast Imaging Reporting and Data Systems (BI-RADS) density classification. Forty women undergoing mammography and dynamic breast MRI as part of their clinical management were recruited. Fat-water separated MRI images derived from a two-point Dixon technique, phase-sensitive reconstruction, and atlas-based segmentation were obtained before and after intravenous contrast medium administration. Breast density was assessed using software from Advanced MR Analytics (AMRA), Linköping, Sweden, with results compared to the widely used four-quartile quantitative BI-RADS scale. The proportion of glandular tissue in the breast on MRI was derived from the AMRA sequence. The mean unenhanced breast density was 0.31±0.22 (mean±SD; left) and 0.29±0.21 (right). Mean breast density on post-contrast images was 0.32±0.19 (left) and 0.32±0.2 (right). There was "almost perfect" correlation between pre- and post-contrast breast density quantification: Spearman's correlation rho=0.98 (95% confidence intervals [CI]: 0.97-0.99; left) and rho=0.99 (95% CI: 0.98-0.99; right). The 95% limits of agreement were -0.11-0.08 (left) and -0.08-0.03 (right). Interobserver reliability for BI-RADS was "substantial": weighted Kappa k=0.8 (95% CI: 0.74-0.87). The Spearman correlation coefficient between BI-RADS and MRI breast density was rho=0.73 (95% CI: 0.60-0.82; left) and rho=0.75 (95% CI: 0.63-0.83; right) which was also "substantial". The AMRA sequence provides a fully automated, reproducible, objective assessment of fibroglandular breast tissue proportion that correlates well with mammographic assessment of breast density with the added advantage of avoidance of ionising radiation. Copyright © 2017 The Royal College of Radiologists. All rights reserved.
Biopsy: Types of Biopsy Procedures Used to Diagnose Cancer
... procedure — such as X-ray, computerized tomography (CT), magnetic resonance imaging (MRI) or ultrasound — with a needle ... org," "Mayo Clinic Healthy Living," and the triple-shield Mayo Clinic logo are trademarks of Mayo Foundation ...
Magnetic resonance image segmentation using multifractal techniques
NASA Astrophysics Data System (ADS)
Yu, Yue-e.; Wang, Fang; Liu, Li-lin
2015-11-01
In order to delineate target region for magnetic resonance image (MRI) with diseases, the classical multifractal spectrum (MFS)-segmentation method and latest multifractal detrended fluctuation spectrum (MF-DFS)-based segmentation method are employed in our study. One of our main conclusions from experiments is that both of the two multifractal-based methods are workable for handling MRIs. The best result is obtained by MF-DFS-based method using Lh10 as local characteristic. The anti-noises experiments also suppot the conclusion. This interest finding shows that the features can be better represented by the strong fluctuations instead of the weak fluctuations for the MRIs. By comparing the multifractal nature between lesion and non-lesion area on the basis of the segmentation results, an interest finding is that the gray value's fluctuation in lesion area is much severer than that in non-lesion area.
Link, Daphna; Braginsky, Michael B; Joskowicz, Leo; Ben Sira, Liat; Harel, Shaul; Many, Ariel; Tarrasch, Ricardo; Malinger, Gustavo; Artzi, Moran; Kapoor, Cassandra; Miller, Elka; Ben Bashat, Dafna
2018-01-01
Accurate fetal brain volume estimation is of paramount importance in evaluating fetal development. The aim of this study was to develop an automatic method for fetal brain segmentation from magnetic resonance imaging (MRI) data, and to create for the first time a normal volumetric growth chart based on a large cohort. A semi-automatic segmentation method based on Seeded Region Growing algorithm was developed and applied to MRI data of 199 typically developed fetuses between 18 and 37 weeks' gestation. The accuracy of the algorithm was tested against a sub-cohort of ground truth manual segmentations. A quadratic regression analysis was used to create normal growth charts. The sensitivity of the method to identify developmental disorders was demonstrated on 9 fetuses with intrauterine growth restriction (IUGR). The developed method showed high correlation with manual segmentation (r2 = 0.9183, p < 0.001) as well as mean volume and volume overlap differences of 4.77 and 18.13%, respectively. New reference data on 199 normal fetuses were created, and all 9 IUGR fetuses were at or below the third percentile of the normal growth chart. The proposed method is fast, accurate, reproducible, user independent, applicable with retrospective data, and is suggested for use in routine clinical practice. © 2017 S. Karger AG, Basel.
Multiprotocol MR image segmentation in multiple sclerosis: experience with over 1000 studies
NASA Astrophysics Data System (ADS)
Udupa, Jayaram K.; Nyul, Laszlo G.; Ge, Yulin; Grossman, Robert I.
2000-06-01
Multiple Sclerosis (MS) is an acquired disease of the central nervous system. Subjective cognitive and ambulatory test scores on a scale called EDSS are currently utilized to assess the disease severity. Various MRI protocols are being investigated to study the disease based on how it manifests itself in the images. In an attempt to eventually replace EDSS by an objective measure to assess the natural course of the disease and its response to therapy, we have developed image segmentation methods based on fuzzy connectedness to quantify various objects in multiprotocol MRI. These include the macroscopic objects such as lesions, the gray matter (GM), white matter (WM), cerebrospinal fluid (CSF), and brain parenchyma as well as the microscopic aspects of the diseased WM. Over 1000 studies have been processed to date. By far the strongest correlations with the clinical measures were demonstrated by the Magnetization Transfer Ratio (MTR) histogram parameters obtained for the various segmented tissue regions emphasizing the importance of considering the microscopic/diffused nature of the disease in the individual tissue regions. Brain parenchymal volume also demonstrated a strong correlation with the clinical measures indicating that brain atrophy is an important indicator of the disease. Fuzzy connectedness is a viable segmentation method for studying MS.
Yang, Yu Xin; Chong, Mei Sian; Tay, Laura; Yew, Suzanne; Yeo, Audrey; Tan, Cher Heng
2016-10-01
To develop and validate a machine learning based automated segmentation method that jointly analyzes the four contrasts provided by Dixon MRI technique for improved thigh composition segmentation accuracy. The automatic detection of body composition is formulized as a three-class classification issue. Each image voxel in the training dataset is assigned with a correct label. A voxel classifier is trained and subsequently used to predict unseen data. Morphological operations are finally applied to generate volumetric segmented images for different structures. We applied this algorithm on datasets of (1) four contrast images, (2) water and fat images, and (3) unsuppressed images acquired from 190 subjects. The proposed method using four contrasts achieved most accurate and robust segmentation compared to the use of combined fat and water images and the use of unsuppressed image, average Dice coefficients of 0.94 ± 0.03, 0.96 ± 0.03, 0.80 ± 0.03, and 0.97 ± 0.01 has been achieved to bone region, subcutaneous adipose tissue (SAT), inter-muscular adipose tissue (IMAT), and muscle respectively. Our proposed method based on machine learning produces accurate tissue quantification and showed an effective use of large information provided by the four contrast images from Dixon MRI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rusu, Mirabela, E-mail: mirabela.rusu@gmail.com; Wang, Haibo; Madabhushi, Anant
Purpose: Pulmonary inflammation is associated with a variety of diseases. Assessing pulmonary inflammation on in vivo imaging may facilitate the early detection and treatment of lung diseases. Although routinely used in thoracic imaging, computed tomography has thus far not been compellingly shown to characterize inflammation in vivo. Alternatively, magnetic resonance imaging (MRI) is a nonionizing radiation technique to better visualize and characterize pulmonary tissue. Prior to routine adoption of MRI for early characterization of inflammation in humans, a rigorous and quantitative characterization of the utility of MRI to identify inflammation is required. Such characterization may be achieved by considering exmore » vivo histology as the ground truth, since it enables the definitive spatial assessment of inflammation. In this study, the authors introduce a novel framework to integrate 2D histology, ex vivo and in vivo imaging to enable the mapping of the extent of disease from ex vivo histology onto in vivo imaging, with the goal of facilitating computerized feature analysis and interrogation of disease appearance on in vivo imaging. The authors’ framework was evaluated in a preclinical preliminary study aimed to identify computer extracted features on in vivo MRI associated with chronic pulmonary inflammation. Methods: The authors’ image analytics framework first involves reconstructing the histologic volume in 3D from individual histology slices. Second, the authors map the disease ground truth onto in vivo MRI via coregistration with 3D histology using the ex vivo lung MRI as a conduit. Finally, computerized feature analysis of the disease extent is performed to identify candidate in vivo imaging signatures of disease presence and extent. Results: The authors evaluated the framework by assessing the quality of the 3D histology reconstruction and the histology—MRI fusion, in the context of an initial use case involving characterization of chronic inflammation in a mouse model. The authors’ evaluation considered three mice, two with an inflammation phenotype and one control. The authors’ iterative 3D histology reconstruction yielded a 70.1% ± 2.7% overlap with the ex vivo MRI volume. Across a total of 17 anatomic landmarks manually delineated at the division of airways, the target registration error between the ex vivo MRI and 3D histology reconstruction was 0.85 ± 0.44 mm, suggesting that a good alignment of the ex vivo 3D histology and ex vivo MRI had been achieved. The 3D histology-in vivo MRI coregistered volumes resulted in an overlap of 73.7% ± 0.9%. Preliminary computerized feature analysis was performed on an additional four control mice, for a total of seven mice considered in this study. Gabor texture filters appeared to best capture differences between the inflamed and noninflamed regions on MRI. Conclusions: The authors’ 3D histology reconstruction and multimodal registration framework were successfully employed to reconstruct the histology volume of the lung and fuse it with in vivo MRI to create a ground truth map for inflammation on in vivo MRI. The analytic platform presented here lays the framework for a rigorous validation of the identified imaging features for chronic lung inflammation on MRI in a large prospective cohort.« less
Analysis on the use of Multi-Sequence MRI Series for Segmentation of Abdominal Organs
NASA Astrophysics Data System (ADS)
Selver, M. A.; Selvi, E.; Kavur, E.; Dicle, O.
2015-01-01
Segmentation of abdominal organs from MRI data sets is a challenging task due to various limitations and artefacts. During the routine clinical practice, radiologists use multiple MR sequences in order to analyze different anatomical properties. These sequences have different characteristics in terms of acquisition parameters (such as contrast mechanisms and pulse sequence designs) and image properties (such as pixel spacing, slice thicknesses and dynamic range). For a complete understanding of the data, computational techniques should combine the information coming from these various MRI sequences. These sequences are not acquired in parallel but in a sequential manner (one after another). Therefore, patient movements and respiratory motions change the position and shape of the abdominal organs. In this study, the amount of these effects is measured using three different symmetric surface distance metrics performed to three dimensional data acquired from various MRI sequences. The results are compared to intra and inter observer differences and discussions on using multiple MRI sequences for segmentation and the necessities for registration are presented.
Pixel-based meshfree modelling of skeletal muscles.
Chen, Jiun-Shyan; Basava, Ramya Rao; Zhang, Yantao; Csapo, Robert; Malis, Vadim; Sinha, Usha; Hodgson, John; Sinha, Shantanu
2016-01-01
This paper introduces the meshfree Reproducing Kernel Particle Method (RKPM) for 3D image-based modeling of skeletal muscles. This approach allows for construction of simulation model based on pixel data obtained from medical images. The material properties and muscle fiber direction obtained from Diffusion Tensor Imaging (DTI) are input at each pixel point. The reproducing kernel (RK) approximation allows a representation of material heterogeneity with smooth transition. A multiphase multichannel level set based segmentation framework is adopted for individual muscle segmentation using Magnetic Resonance Images (MRI) and DTI. The application of the proposed methods for modeling the human lower leg is demonstrated.
Extraction of skin lesions from non-dermoscopic images for surgical excision of melanoma.
Jafari, M Hossein; Nasr-Esfahani, Ebrahim; Karimi, Nader; Soroushmehr, S M Reza; Samavi, Shadrokh; Najarian, Kayvan
2017-06-01
Computerized prescreening of suspicious moles and lesions for malignancy is of great importance for assessing the need and the priority of the removal surgery. Detection can be done by images captured by standard cameras, which are more preferable due to low cost and availability. One important step in computerized evaluation is accurate detection of lesion's region, i.e., segmentation of an image into two regions as lesion and normal skin. In this paper, a new method based on deep neural networks is proposed for accurate extraction of a lesion region. The input image is preprocessed, and then, its patches are fed to a convolutional neural network. Local texture and global structure of the patches are processed in order to assign pixels to lesion or normal classes. A method for effective selection of training patches is proposed for more accurate detection of a lesion's border. Our results indicate that the proposed method could reach the accuracy of 98.7% and the sensitivity of 95.2% in segmentation of lesion regions over the dataset of clinical images. The experimental results of qualitative and quantitative evaluations demonstrate that our method can outperform other state-of-the-art algorithms exist in the literature.
von Krosigk, F; Steinmetz, A; Ellenberger, C; Oechtering, G
2012-01-01
This two-part study describes the clinical usefulness and value of ultrasound and magnetic resonance imaging (MRI) in dogs and cats with ocular (n=30) and orbital diseases (n=31). MRI and ultrasonography characteristics are described in single cases with ocular and orbital disease. Ultrasonography and MRI were performed in 15 dogs and 15 cats with intraocular neoplasia or intraocular inflammatory disease. In all patients with intraocular neoplasia, sonography revealed masses with increased echogenicity and fairly uniform echotexture, thus allowing the tentative diagnosis of an intraocular tumour. In these cases, MRI often proved to be a valuable diagnostic tool in showing the complete extent of intraocular lesion. An additional benefit of MRI was seen in the tissue characterization of tumours based on MRI signal characteristics and pattern of contrast enhancement. Discreet intraocular inflammatory alterations, in particular to the anterior and posterior segment of the eyeball, were more clearly shown by ultrasound than by MRI. Neoplasia could be excluded and inflammatory disease was successfully diagnosed using MRI due to the different image sequences with or without contrast medium administration. Traumatic ruptures of the lens capsule and the globe after trauma were depicted more clearly with MRI. When opacity of the anterior eye segment is present, various intraocular changes can be quickly diagnosed by ultrasound with high accuracy, without requiring anaesthesia of the patient. MRI of the globe allows differentiation of diverse pathologies, gives detailed information of infiltration in orbital structures and the exact degree of ocular lesions after trauma. This additional evidence often makes it easier to predict the correct prognosis and choose the best therapy.
Ghose, Soumya; Greer, Peter B; Sun, Jidi; Pichler, Peter; Rivest-Henault, David; Mitra, Jhimli; Richardson, Haylea; Wratten, Chris; Martin, Jarad; Arm, Jameen; Best, Leah; Dowling, Jason A
2017-10-27
In MR only radiation therapy planning, generation of the tissue specific HU map directly from the MRI would eliminate the need of CT image acquisition and may improve radiation therapy planning. The aim of this work is to generate and validate substitute CT (sCT) scans generated from standard T2 weighted MR pelvic scans in prostate radiation therapy dose planning. A Siemens Skyra 3T MRI scanner with laser bridge, flat couch and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole pelvis MRI (1.6 mm 3D isotropic T2w SPACE sequence) was acquired. Patients received a routine planning CT scan. Co-registered whole pelvis CT and T2w MRI pairs were used as training images. Advanced tissue specific non-linear regression models to predict HU for the fat, muscle, bladder and air were created from co-registered CT-MRI image pairs. On a test case T2w MRI, the bones and bladder were automatically segmented using a novel statistical shape and appearance model, while other soft tissues were separated using an Expectation-Maximization based clustering model. The CT bone in the training database that was most 'similar' to the segmented bone was then transformed with deformable registration to create the sCT component of the test case T2w MRI bone tissue. Predictions for the bone, air and soft tissue from the separate regression models were successively combined to generate a whole pelvis sCT. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same IMRT dose plan was found to be [Formula: see text] (mean ± standard deviation) for 39 patients. The 3D Gamma pass rate was [Formula: see text] (2 mm/2%). The novel hybrid model is computationally efficient, generating an sCT in 20 min from standard T2w images for prostate cancer radiation therapy dose planning and DRR generation.
NASA Astrophysics Data System (ADS)
Ghose, Soumya; Greer, Peter B.; Sun, Jidi; Pichler, Peter; Rivest-Henault, David; Mitra, Jhimli; Richardson, Haylea; Wratten, Chris; Martin, Jarad; Arm, Jameen; Best, Leah; Dowling, Jason A.
2017-11-01
In MR only radiation therapy planning, generation of the tissue specific HU map directly from the MRI would eliminate the need of CT image acquisition and may improve radiation therapy planning. The aim of this work is to generate and validate substitute CT (sCT) scans generated from standard T2 weighted MR pelvic scans in prostate radiation therapy dose planning. A Siemens Skyra 3T MRI scanner with laser bridge, flat couch and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole pelvis MRI (1.6 mm 3D isotropic T2w SPACE sequence) was acquired. Patients received a routine planning CT scan. Co-registered whole pelvis CT and T2w MRI pairs were used as training images. Advanced tissue specific non-linear regression models to predict HU for the fat, muscle, bladder and air were created from co-registered CT-MRI image pairs. On a test case T2w MRI, the bones and bladder were automatically segmented using a novel statistical shape and appearance model, while other soft tissues were separated using an Expectation-Maximization based clustering model. The CT bone in the training database that was most ‘similar’ to the segmented bone was then transformed with deformable registration to create the sCT component of the test case T2w MRI bone tissue. Predictions for the bone, air and soft tissue from the separate regression models were successively combined to generate a whole pelvis sCT. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same IMRT dose plan was found to be 0.3%+/-0.9% (mean ± standard deviation) for 39 patients. The 3D Gamma pass rate was 99.8+/-0.00 (2 mm/2%). The novel hybrid model is computationally efficient, generating an sCT in 20 min from standard T2w images for prostate cancer radiation therapy dose planning and DRR generation.
Segmentation propagation for the automated quantification of ventricle volume from serial MRI
NASA Astrophysics Data System (ADS)
Linguraru, Marius George; Butman, John A.
2009-02-01
Accurate ventricle volume estimates could potentially improve the understanding and diagnosis of communicating hydrocephalus. Postoperative communicating hydrocephalus has been recognized in patients with brain tumors where the changes in ventricle volume can be difficult to identify, particularly over short time intervals. Because of the complex alterations of brain morphology in these patients, the segmentation of brain ventricles is challenging. Our method evaluates ventricle size from serial brain MRI examinations; we (i) combined serial images to increase SNR, (ii) automatically segmented this image to generate a ventricle template using fast marching methods and geodesic active contours, and (iii) propagated the segmentation using deformable registration of the original MRI datasets. By applying this deformation to the ventricle template, serial volume estimates were obtained in a robust manner from routine clinical images (0.93 overlap) and their variation analyzed.
Three-Dimensional Assessment of Temporomandibular Joint Using MRI-CBCT Image Registration
Lagravere, Manuel; Boulanger, Pierre; Jaremko, Jacob L.; Major, Paul W.
2017-01-01
Purpose To introduce a new approach to reconstruct a 3D model of the TMJ using magnetic resonance imaging (MRI) and cone-beam computed tomography (CBCT) registered images, and to evaluate the intra-examiner reproducibility values of reconstructing the 3D models of the TMJ. Methods MRI and CBCT images of five patients (10 TMJs) were obtained. Multiple MRIs and CBCT images were registered using a mutual information based algorithm. The articular disc, condylar head and glenoid fossa were segmented at two different occasions, at least one-week apart, by one investigator, and 3D models were reconstructed. Differences between the segmentation at two occasions were automatically measured using the surface contours (Average Perpendicular Distance) and the volume overlap (Dice Similarity Index) of the 3D models. Descriptive analysis of the changes at 2 occasions, including means and standard deviation (SD) were reported to describe the intra-examiner reproducibility. Results The automatic segmentation of the condyle revealed maximum distance change of 1.9±0.93 mm, similarity index of 98% and root mean squared distance of 0.1±0.08 mm, and the glenoid fossa revealed maximum distance change of 2±0.52 mm, similarity index of 96% and root mean squared distance of 0.2±0.04 mm. The manual segmentation of the articular disc revealed maximum distance change of 3.6±0.32 mm, similarity index of 80% and root mean squared distance of 0.3±0.1 mm. Conclusion The MRI-CBCT registration provides a reliable tool to reconstruct 3D models of the TMJ’s soft and hard tissues, allows quantification of the articular disc morphology and position changes with associated differences of the condylar head and glenoid fossa, and facilitates measuring tissue changes over time. PMID:28095486
Three-Dimensional Assessment of Temporomandibular Joint Using MRI-CBCT Image Registration.
Al-Saleh, Mohammed A Q; Punithakumar, Kumaradevan; Lagravere, Manuel; Boulanger, Pierre; Jaremko, Jacob L; Major, Paul W
2017-01-01
To introduce a new approach to reconstruct a 3D model of the TMJ using magnetic resonance imaging (MRI) and cone-beam computed tomography (CBCT) registered images, and to evaluate the intra-examiner reproducibility values of reconstructing the 3D models of the TMJ. MRI and CBCT images of five patients (10 TMJs) were obtained. Multiple MRIs and CBCT images were registered using a mutual information based algorithm. The articular disc, condylar head and glenoid fossa were segmented at two different occasions, at least one-week apart, by one investigator, and 3D models were reconstructed. Differences between the segmentation at two occasions were automatically measured using the surface contours (Average Perpendicular Distance) and the volume overlap (Dice Similarity Index) of the 3D models. Descriptive analysis of the changes at 2 occasions, including means and standard deviation (SD) were reported to describe the intra-examiner reproducibility. The automatic segmentation of the condyle revealed maximum distance change of 1.9±0.93 mm, similarity index of 98% and root mean squared distance of 0.1±0.08 mm, and the glenoid fossa revealed maximum distance change of 2±0.52 mm, similarity index of 96% and root mean squared distance of 0.2±0.04 mm. The manual segmentation of the articular disc revealed maximum distance change of 3.6±0.32 mm, similarity index of 80% and root mean squared distance of 0.3±0.1 mm. The MRI-CBCT registration provides a reliable tool to reconstruct 3D models of the TMJ's soft and hard tissues, allows quantification of the articular disc morphology and position changes with associated differences of the condylar head and glenoid fossa, and facilitates measuring tissue changes over time.
Rachmadi, Muhammad Febrian; Valdés-Hernández, Maria Del C; Agan, Maria Leonora Fatimah; Di Perri, Carol; Komura, Taku
2018-06-01
We propose an adaptation of a convolutional neural network (CNN) scheme proposed for segmenting brain lesions with considerable mass-effect, to segment white matter hyperintensities (WMH) characteristic of brains with none or mild vascular pathology in routine clinical brain magnetic resonance images (MRI). This is a rather difficult segmentation problem because of the small area (i.e., volume) of the WMH and their similarity to non-pathological brain tissue. We investigate the effectiveness of the 2D CNN scheme by comparing its performance against those obtained from another deep learning approach: Deep Boltzmann Machine (DBM), two conventional machine learning approaches: Support Vector Machine (SVM) and Random Forest (RF), and a public toolbox: Lesion Segmentation Tool (LST), all reported to be useful for segmenting WMH in MRI. We also introduce a way to incorporate spatial information in convolution level of CNN for WMH segmentation named global spatial information (GSI). Analysis of covariance corroborated known associations between WMH progression, as assessed by all methods evaluated, and demographic and clinical data. Deep learning algorithms outperform conventional machine learning algorithms by excluding MRI artefacts and pathologies that appear similar to WMH. Our proposed approach of incorporating GSI also successfully helped CNN to achieve better automatic WMH segmentation regardless of network's settings tested. The mean Dice Similarity Coefficient (DSC) values for LST-LGA, SVM, RF, DBM, CNN and CNN-GSI were 0.2963, 0.1194, 0.1633, 0.3264, 0.5359 and 5389 respectively. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, H; Fatemi, A; Sahgal, A
Purpose: Investigating a new approach in MRI based treatment planning using the combination of (Ultrashort Echo Time) UTE and T1 weighted spin echo pulse sequences to delineate air, bone and water (soft tissues) in generating pseudo CT images comparable with CT. Methods: A gel phantom containing chicken bones, ping pang balls filled with distilled water and air bubbles, was made. It scanned with MRI using UTE and 2D T1W SE pulse sequences with (in plane resolution= 0.53mm, slice thickness= 2 mm) and CT with (in plane resolution= 0.5 mm and slice thickness= 0.75mm) as a ground truth for geometrical accuracy.more » The UTE and T1W SE images were registered with CT using mutual information registration algorithm provided by Philips Pinnacle treatment planning system. The phantom boundaries were detected using Canny edge detection algorithm for CT, and MR images. The bone, air bubbles and water in ping pong balls were segmented from CT images using threshold 300HU, - 950HU and 0HU, respectively. These tissue inserts were automatically segmented from combined UTE and T1W SE images using edge detection and relative intensity histograms of the phantom. The obtained segmentations of air, bone and water inserts were evaluated with those obtained from CT. Results: Bone and air can be clearly differentiated in UTE images comparable to CT. Combining UTE and T1W SE images successfully segmented the air, bone and water. The maximum segmentation differences from combine MRI images (UTE and T1W SE) and CT are within 1.3 mm, 1.1mm for bone, air, respectively. The geometric distortion of UTE sequence is small less than 1 pixel (0.53 mm) of MR image resolution. Conclusion: Our approach indicates that MRI can be used solely for treatment planning and its quality is comparable with CT.« less
Longitudinal Neuroimaging Hippocampal Markers for Diagnosing Alzheimer's Disease.
Platero, Carlos; Lin, Lin; Tobar, M Carmen
2018-05-21
Hippocampal atrophy measures from magnetic resonance imaging (MRI) are powerful tools for monitoring Alzheimer's disease (AD) progression. In this paper, we introduce a longitudinal image analysis framework based on robust registration and simultaneous hippocampal segmentation and longitudinal marker classification of brain MRI of an arbitrary number of time points. The framework comprises two innovative parts: a longitudinal segmentation and a longitudinal classification step. The results show that both steps of the longitudinal pipeline improved the reliability and the accuracy of the discrimination between clinical groups. We introduce a novel approach to the joint segmentation of the hippocampus across multiple time points; this approach is based on graph cuts of longitudinal MRI scans with constraints on hippocampal atrophy and supported by atlases. Furthermore, we use linear mixed effect (LME) modeling for differential diagnosis between clinical groups. The classifiers are trained from the average residue between the longitudinal marker of the subjects and the LME model. In our experiments, we analyzed MRI-derived longitudinal hippocampal markers from two publicly available datasets (Alzheimer's Disease Neuroimaging Initiative, ADNI and Minimal Interval Resonance Imaging in Alzheimer's Disease, MIRIAD). In test/retest reliability experiments, the proposed method yielded lower volume errors and significantly higher dice overlaps than the cross-sectional approach (volume errors: 1.55% vs 0.8%; dice overlaps: 0.945 vs 0.975). To diagnose AD, the discrimination ability of our proposal gave an area under the receiver operating characteristic (ROC) curve (AUC) [Formula: see text] 0.947 for the control vs AD, AUC [Formula: see text] 0.720 for mild cognitive impairment (MCI) vs AD, and AUC [Formula: see text] 0.805 for the control vs MCI.
Jha, Abhinav K.; Kupinski, Matthew A.; Rodríguez, Jeffrey J.; Stephen, Renu M.; Stopeck, Alison T.
2012-01-01
In many studies, the estimation of the apparent diffusion coefficient (ADC) of lesions in visceral organs in diffusion-weighted (DW) magnetic resonance images requires an accurate lesion-segmentation algorithm. To evaluate these lesion-segmentation algorithms, region-overlap measures are used currently. However, the end task from the DW images is accurate ADC estimation, and the region-overlap measures do not evaluate the segmentation algorithms on this task. Moreover, these measures rely on the existence of gold-standard segmentation of the lesion, which is typically unavailable. In this paper, we study the problem of task-based evaluation of segmentation algorithms in DW imaging in the absence of a gold standard. We first show that using manual segmentations instead of gold-standard segmentations for this task-based evaluation is unreliable. We then propose a method to compare the segmentation algorithms that does not require gold-standard or manual segmentation results. The no-gold-standard method estimates the bias and the variance of the error between the true ADC values and the ADC values estimated using the automated segmentation algorithm. The method can be used to rank the segmentation algorithms on the basis of both accuracy and precision. We also propose consistency checks for this evaluation technique. PMID:22713231
2010-01-01
Background Detection of nerve involvement originating in the spine is a primary concern in the assessment of spine symptoms. Magnetic resonance imaging (MRI) has become the diagnostic method of choice for this detection. However, the agreement between MRI and other diagnostic methods for detecting nerve involvement has not been fully evaluated. The aim of this diagnostic study was to evaluate the agreement between nerve involvement visible in MRI and findings of nerve involvement detected in a structured physical examination and a simplified pain drawing. Methods Sixty-one consecutive patients referred for MRI of the lumbar spine were - without knowledge of MRI findings - assessed for nerve involvement with a simplified pain drawing and a structured physical examination. Agreement between findings was calculated as overall agreement, the p value for McNemar's exact test, specificity, sensitivity, and positive and negative predictive values. Results MRI-visible nerve involvement was significantly less common than, and showed weak agreement with, physical examination and pain drawing findings of nerve involvement in corresponding body segments. In spine segment L4-5, where most findings of nerve involvement were detected, the mean sensitivity of MRI-visible nerve involvement to a positive neurological test in the physical examination ranged from 16-37%. The mean specificity of MRI-visible nerve involvement in the same segment ranged from 61-77%. Positive and negative predictive values of MRI-visible nerve involvement in segment L4-5 ranged from 22-78% and 28-56% respectively. Conclusion In patients with long-standing nerve root symptoms referred for lumbar MRI, MRI-visible nerve involvement significantly underestimates the presence of nerve involvement detected by a physical examination and a pain drawing. A structured physical examination and a simplified pain drawing may reveal that many patients with "MRI-invisible" lumbar symptoms need treatment aimed at nerve involvement. Factors other than present MRI-visible nerve involvement may be responsible for findings of nerve involvement in the physical examination and the pain drawing. PMID:20831785
Magnetic resonance imaging for the ophthalmologist: A primer
Simha, Arathi; Irodi, Aparna; David, Sarada
2012-01-01
Magnetic resonance imaging (MRI) and computerized tomography (CT) have added a new dimension in the diagnosis and management of ocular and orbital diseases. Although CT is more widely used, MRI is the modality of choice in select conditions and can be complimentary to CT in certain situations. The diagnostic yield is best when the ophthalmologist and radiologist work together. Ophthalmologists should be able to interpret these complex imaging modalities as better clinical correlation is then possible. In this article, we attempt to describe the basic principles of MRI and its interpretation, avoiding confusing technical terms. PMID:22824600
Breast mass segmentation in mammography using plane fitting and dynamic programming.
Song, Enmin; Jiang, Luan; Jin, Renchao; Zhang, Lin; Yuan, Yuan; Li, Qiang
2009-07-01
Segmentation is an important and challenging task in a computer-aided diagnosis (CAD) system. Accurate segmentation could improve the accuracy in lesion detection and characterization. The objective of this study is to develop and test a new segmentation method that aims at improving the performance level of breast mass segmentation in mammography, which could be used to provide accurate features for classification. This automated segmentation method consists of two main steps and combines the edge gradient, the pixel intensity, as well as the shape characteristics of the lesions to achieve good segmentation results. First, a plane fitting method was applied to a background-trend corrected region-of-interest (ROI) of a mass to obtain the edge candidate points. Second, dynamic programming technique was used to find the "optimal" contour of the mass from the edge candidate points. Area-based similarity measures based on the radiologist's manually marked annotation and the segmented region were employed as criteria to evaluate the performance level of the segmentation method. With the evaluation criteria, the new method was compared with 1) the dynamic programming method developed by Timp and Karssemeijer, and 2) the normalized cut segmentation method, based on 337 ROIs extracted from a publicly available image database. The experimental results indicate that our segmentation method can achieve a higher performance level than the other two methods, and the improvements in segmentation performance level were statistically significant. For instance, the mean overlap percentage for the new algorithm was 0.71, whereas those for Timp's dynamic programming method and the normalized cut segmentation method were 0.63 (P < .001) and 0.61 (P < .001), respectively. We developed a new segmentation method by use of plane fitting and dynamic programming, which achieved a relatively high performance level. The new segmentation method would be useful for improving the accuracy of computerized detection and classification of breast cancer in mammography.
Surface displacement based shape analysis of central brain structures in preterm-born children
NASA Astrophysics Data System (ADS)
Garg, Amanmeet; Grunau, Ruth E.; Popuri, Karteek; Miller, Steven; Bjornson, Bruce; Poskitt, Kenneth J.; Beg, Mirza Faisal
2016-03-01
Many studies using T1 magnetic resonance imaging (MRI) data have found associations between changes in global metrics (e.g. volume) of brain structures and preterm birth. In this work, we use the surface displacement feature extracted from the deformations of the surface models of the third ventricle, fourth ventricle and brainstem to capture the variation in shape in these structures at 8 years of age that may be due to differences in the trajectory of brain development as a result of very preterm birth (24-32 weeks gestation). Understanding the spatial patterns of shape alterations in these structures in children who were born very preterm as compared to those who were born at full term may lead to better insights into mechanisms of differing brain development between these two groups. The T1 MRI data for the brain was acquired from children born full term (FT, n=14, 8 males) and preterm (PT, n=51, 22 males) at age 8-years. Accurate segmentation labels for these structures were obtained via a multi-template fusion based segmentation method. A high dimensional non-rigid registration algorithm was utilized to register the target segmentation labels to a set of segmentation labels defined on an average-template. The surface displacement data for the brainstem and the third ventricle were found to be significantly different (p < 0.05) between the PT and FT groups. Further, spatially localized clusters with inward and outward deformation were found to be associated with lower gestational age. The results from this study present a shape analysis method for pediatric MRI data and reveal shape changes that may be due to preterm birth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanoun, Salim, E-mail: Salim.kanoun@gmail.com; LE2I UMR6306, Centre national de la recherche scientifique, Arts et Métiers, Université Bourgogne Franche-Comté, Dijon; MRI Unit, Centre Hospitalier Régional Universitaire, Hôpital François Mitterrand, Dijon
Purpose: To compare the diagnostic performance of {sup 18}F-fluorocholine positron emission tomography/computed tomography (FCH-PET/CT), multiparametric prostate magnetic resonance imaging (mpMRI), and a combination of both techniques for the detection of local recurrence of prostate cancer initially treated by radiation therapy. Methods and Materials: This was a retrospective, single-institution study of 32 patients with suspected prostate cancer recurrence who underwent both FCH-PET/CT and 3T mpMRI within 3 months of one another for the detection of recurrence. All included patients had to be cleared for metastatic recurrence. The reference procedure was systematic 3-dimensional (3D)-transperineal prostate biopsy for the final assessment of local recurrence.more » Both imaging modalities were analyzed by 2 experienced readers blinded to clinical data. The analysis was made per-patient and per-segment using a 4-segment model. Results: The median prostate-specific antigen value at the time of imaging was 2.92 ng/mL. The mean prostate-specific antigen doubling time was 14 months. Of the 32 patients, 31 had a positive 3D-transperineal mapping biopsy for a local relapse. On a patient-based analysis, the detection rate was 71% (22 of 31) for mpMRI and 74% (23 of 31) for FCH-PET/CT. On a segment-based analysis, the sensitivity and specificity were, respectively, 32% and 87% for mpMRI, 34% and 87% for FCH-PET/CT, and 43% and 83% for the combined analysis of both techniques. Accuracy was 64%, 65%, and 66%, respectively. The interobserver agreement was κ = 0.92 for FCH-PET/CT and κ = 0.74 for mpMRI. Conclusions: Both mpMRI and FCH-PET/CT show limited sensitivity but good specificity for the detection of local cancer recurrence after radiation therapy, when compared with 3D-transperineal mapping biopsy. Prostate biopsy still seems to be mandatory to diagnose local relapse and select patients who could benefit from local salvage therapy.« less
White matter lesion extension to automatic brain tissue segmentation on MRI.
de Boer, Renske; Vrooman, Henri A; van der Lijn, Fedde; Vernooij, Meike W; Ikram, M Arfan; van der Lugt, Aad; Breteler, Monique M B; Niessen, Wiro J
2009-05-01
A fully automated brain tissue segmentation method is optimized and extended with white matter lesion segmentation. Cerebrospinal fluid (CSF), gray matter (GM) and white matter (WM) are segmented by an atlas-based k-nearest neighbor classifier on multi-modal magnetic resonance imaging data. This classifier is trained by registering brain atlases to the subject. The resulting GM segmentation is used to automatically find a white matter lesion (WML) threshold in a fluid-attenuated inversion recovery scan. False positive lesions are removed by ensuring that the lesions are within the white matter. The method was visually validated on a set of 209 subjects. No segmentation errors were found in 98% of the brain tissue segmentations and 97% of the WML segmentations. A quantitative evaluation using manual segmentations was performed on a subset of 6 subjects for CSF, GM and WM segmentation and an additional 14 for the WML segmentations. The results indicated that the automatic segmentation accuracy is close to the interobserver variability of manual segmentations.
Fully automated segmentation of the pectoralis muscle boundary in breast MR images
NASA Astrophysics Data System (ADS)
Wang, Lei; Filippatos, Konstantinos; Friman, Ola; Hahn, Horst K.
2011-03-01
Dynamic Contrast Enhanced MRI (DCE-MRI) of the breast is emerging as a novel tool for early tumor detection and diagnosis. The segmentation of the structures in breast DCE-MR images, such as the nipple, the breast-air boundary and the pectoralis muscle, serves as a fundamental step for further computer assisted diagnosis (CAD) applications, e.g. breast density analysis. Moreover, the previous clinical studies show that the distance between the posterior breast lesions and the pectoralis muscle can be used to assess the extent of the disease. To enable automatic quantification of the distance from a breast tumor to the pectoralis muscle, a precise delineation of the pectoralis muscle boundary is required. We present a fully automatic segmentation method based on the second derivative information represented by the Hessian matrix. The voxels proximal to the pectoralis muscle boundary exhibit roughly the same Eigen value patterns as a sheet-like object in 3D, which can be enhanced and segmented by a Hessian-based sheetness filter. A vector-based connected component filter is then utilized such that only the pectoralis muscle is preserved by extracting the largest connected component. The proposed method was evaluated quantitatively with a test data set which includes 30 breast MR images by measuring the average distances between the segmented boundary and the annotated surfaces in two ground truth sets, and the statistics showed that the mean distance was 1.434 mm with the standard deviation of 0.4661 mm, which shows great potential for integration of the approach in the clinical routine.
Buonaccorsi, G A; Rose, C J; O'Connor, J P B; Roberts, C; Watson, Y; Jackson, A; Jayson, G C; Parker, G J M
2010-01-01
Clinical trials of anti-angiogenic and vascular-disrupting agents often use biomarkers derived from DCE-MRI, typically reporting whole-tumor summary statistics and so overlooking spatial parameter variations caused by tissue heterogeneity. We present a data-driven segmentation method comprising tracer-kinetic model-driven registration for motion correction, conversion from MR signal intensity to contrast agent concentration for cross-visit normalization, iterative principal components analysis for imputation of missing data and dimensionality reduction, and statistical outlier detection using the minimum covariance determinant to obtain a robust Mahalanobis distance. After applying these techniques we cluster in the principal components space using k-means. We present results from a clinical trial of a VEGF inhibitor, using time-series data selected because of problems due to motion and outlier time series. We obtained spatially-contiguous clusters that map to regions with distinct microvascular characteristics. This methodology has the potential to uncover localized effects in trials using DCE-MRI-based biomarkers.
Demonstration of a Conduction Cooled React and Wind MgB2 Coil Segment for MRI Applications
Kim, H. S.; Kovacs, C.; Rindfleisch, M.; Yue, J.; Doll, D.; Tomsic, M.; Sumption, M. D.; Collings, E. W.
2016-01-01
This study is a contribution to the development of technology for an MgB2-based, cryogen-free, superconducting magnet for an MRI system. Specifically, we aim to demonstrate that a react and wind coil can be made using high performance in-situ route MgB2 conductor, and that the conductor could be operated in conduction mode with low levels of temperature gradient. In this work, an MgB2 conductor was used for the winding of a sub-size, MRI-like coil segment. The MgB2 coil was wound on a 457 mm ID 101 OFE copper former using a react-and-wind approach. The total length of conductor used was 330 m. The coil was epoxy impregnated and then instrumented for low temperature testing. After the initial cool down (conduction cooling) the coil Ic was measured as a function of temperature (15-30 K), and an Ic of 200 A at 15 K was measured. PMID:27857508
Helyar, Vincent G; Gupta, Yuri; Blakeway, Lyndall; Charles-Edwards, Geoff; Katsanos, Konstantinos; Karunanithy, Narayan
2018-02-01
This study evaluates the use of balanced steady-state free precession MRI (bSSFP-MRI) in the diagnostic work-up of patients undergoing interventional deep venous reconstruction (I-DVR). Intravenous digital subtraction angiography (IVDSA) was used as the gold-standard for comparison to assess disease extent and severity. A retrospective comparison of bSSFP-MRI to IVDSA was performed in all patients undergoing both examinations for treatment planning prior to I-DVR. The severity of disease in each venous segment was graded by two board-certified radiologists working independently, according to a predetermined classification system. In total, 44 patients (225 venous segments) fulfilled the inclusion criteria. A total of 156 abnormal venous segments were diagnosed using bSSFP-MRI compared with 151 using IVDSA. The prevalence of disease was higher in the iliac and femoral segments (range, 79.6-88.6%). Overall sensitivity, specificity, positive likelihood ratio, negative likelihood ratio and the diagnostic ratio for bSSFP-MRI were 99.3%, 91.9%, 12.3, 0.007 and 1700, respectively. This study supports the use of non-contrast balanced SSFP-MRI in the assessment of the deep veins of the lower limb prior to I-DVR. The technique offers an accurate, fast and non-invasive alternative to IVDSA. Advances in Knowledge: Although balanced SSFP-MRI is commonly used in cardiac imaging, its use elsewhere is limited and its use in evaluating the deep veins prior to interventional reconstruction is not described. Our study demonstrates the usefulness of this technique in the work-up of patients awaiting interventional venous reconstruction compared with the current gold standard.
NASA Astrophysics Data System (ADS)
Uchiyama, Yoshikazu; Gao, Xin; Hara, Takeshi; Fujita, Hiroshi; Ando, Hiromichi; Yamakawa, Hiroyasu; Asano, Takahiko; Kato, Hiroki; Iwama, Toru; Kanematsu, Masayuki; Hoshi, Hiroaki
2008-03-01
The detection of unruptured aneurysms is a major subject in magnetic resonance angiography (MRA). However, their accurate detection is often difficult because of the overlapping between the aneurysm and the adjacent vessels on maximum intensity projection images. The purpose of this study is to develop a computerized method for the detection of unruptured aneurysms in order to assist radiologists in image interpretation. The vessel regions were first segmented using gray-level thresholding and a region growing technique. The gradient concentration (GC) filter was then employed for the enhancement of the aneurysms. The initial candidates were identified in the GC image using a gray-level threshold. For the elimination of false positives (FPs), we determined shape features and an anatomical location feature. Finally, rule-based schemes and quadratic discriminant analysis were employed along with these features for distinguishing between the aneurysms and the FPs. The sensitivity for the detection of unruptured aneurysms was 90.0% with 1.52 FPs per patient. Our computerized scheme can be useful in assisting the radiologists in the detection of unruptured aneurysms in MRA images.
Bayesian automated cortical segmentation for neonatal MRI
NASA Astrophysics Data System (ADS)
Chou, Zane; Paquette, Natacha; Ganesh, Bhavana; Wang, Yalin; Ceschin, Rafael; Nelson, Marvin D.; Macyszyn, Luke; Gaonkar, Bilwaj; Panigrahy, Ashok; Lepore, Natasha
2017-11-01
Several attempts have been made in the past few years to develop and implement an automated segmentation of neonatal brain structural MRI. However, accurate automated MRI segmentation remains challenging in this population because of the low signal-to-noise ratio, large partial volume effects and inter-individual anatomical variability of the neonatal brain. In this paper, we propose a learning method for segmenting the whole brain cortical grey matter on neonatal T2-weighted images. We trained our algorithm using a neonatal dataset composed of 3 fullterm and 4 preterm infants scanned at term equivalent age. Our segmentation pipeline combines the FAST algorithm from the FSL library software and a Bayesian segmentation approach to create a threshold matrix that minimizes the error of mislabeling brain tissue types. Our method shows promising results with our pilot training set. In both preterm and full-term neonates, automated Bayesian segmentation generates a smoother and more consistent parcellation compared to FAST, while successfully removing the subcortical structure and cleaning the edges of the cortical grey matter. This method show promising refinement of the FAST segmentation by considerably reducing manual input and editing required from the user, and further improving reliability and processing time of neonatal MR images. Further improvement will include a larger dataset of training images acquired from different manufacturers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jinzhong; Aristophanous, Michalis, E-mail: MAristophanous@mdanderson.org; Beadle, Beth M.
2015-09-15
Purpose: To develop an automatic segmentation algorithm integrating imaging information from computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) to delineate target volume in head and neck cancer radiotherapy. Methods: Eleven patients with unresectable disease at the tonsil or base of tongue who underwent MRI, CT, and PET/CT within two months before the start of radiotherapy or chemoradiotherapy were recruited for the study. For each patient, PET/CT and T1-weighted contrast MRI scans were first registered to the planning CT using deformable and rigid registration, respectively, to resample the PET and magnetic resonance (MR) images to themore » planning CT space. A binary mask was manually defined to identify the tumor area. The resampled PET and MR images, the planning CT image, and the binary mask were fed into the automatic segmentation algorithm for target delineation. The algorithm was based on a multichannel Gaussian mixture model and solved using an expectation–maximization algorithm with Markov random fields. To evaluate the algorithm, we compared the multichannel autosegmentation with an autosegmentation method using only PET images. The physician-defined gross tumor volume (GTV) was used as the “ground truth” for quantitative evaluation. Results: The median multichannel segmented GTV of the primary tumor was 15.7 cm{sup 3} (range, 6.6–44.3 cm{sup 3}), while the PET segmented GTV was 10.2 cm{sup 3} (range, 2.8–45.1 cm{sup 3}). The median physician-defined GTV was 22.1 cm{sup 3} (range, 4.2–38.4 cm{sup 3}). The median difference between the multichannel segmented and physician-defined GTVs was −10.7%, not showing a statistically significant difference (p-value = 0.43). However, the median difference between the PET segmented and physician-defined GTVs was −19.2%, showing a statistically significant difference (p-value =0.0037). The median Dice similarity coefficient between the multichannel segmented and physician-defined GTVs was 0.75 (range, 0.55–0.84), and the median sensitivity and positive predictive value between them were 0.76 and 0.81, respectively. Conclusions: The authors developed an automated multimodality segmentation algorithm for tumor volume delineation and validated this algorithm for head and neck cancer radiotherapy. The multichannel segmented GTV agreed well with the physician-defined GTV. The authors expect that their algorithm will improve the accuracy and consistency in target definition for radiotherapy.« less
Sensitivity analysis of brain morphometry based on MRI-derived surface models
NASA Astrophysics Data System (ADS)
Klein, Gregory J.; Teng, Xia; Schoenemann, P. T.; Budinger, Thomas F.
1998-07-01
Quantification of brain structure is important for evaluating changes in brain size with growth and aging and for characterizing neurodegeneration disorders. Previous quantification efforts using ex vivo techniques suffered considerable error due to shrinkage of the cerebrum after extraction from the skull, deformation of slices during sectioning, and numerous other factors. In vivo imaging studies of brain anatomy avoid these problems and allow repetitive studies following progression of brain structure changes due to disease or natural processes. We have developed a methodology for obtaining triangular mesh models of the cortical surface from MRI brain datasets. The cortex is segmented from nonbrain tissue using a 2D region-growing technique combined with occasional manual edits. Once segmented, thresholding and image morphological operations (erosions and openings) are used to expose the regions between adjacent surfaces in deep cortical folds. A 2D region- following procedure is then used to find a set of contours outlining the cortical boundary on each slice. The contours on all slices are tiled together to form a closed triangular mesh model approximating the cortical surface. This model can be used for calculation of cortical surface area and volume, as well as other parameters of interest. Except for the initial segmentation of the cortex from the skull, the technique is automatic and requires only modest computation time on modern workstations. Though the use of image data avoids many of the pitfalls of ex vivo and sectioning techniques, our MRI-based technique is still vulnerable to errors that may impact the accuracy of estimated brain structure parameters. Potential inaccuracies include segmentation errors due to incorrect thresholding, missed deep sulcal surfaces, falsely segmented holes due to image noise and surface tiling artifacts. The focus of this paper is the characterization of these errors and how they affect measurements of cortical surface area and volume.
Glial brain tumor detection by using symmetry analysis
NASA Astrophysics Data System (ADS)
Pedoia, Valentina; Binaghi, Elisabetta; Balbi, Sergio; De Benedictis, Alessandro; Monti, Emanuele; Minotto, Renzo
2012-02-01
In this work a fully automatic algorithm to detect brain tumors by using symmetry analysis is proposed. In recent years a great effort of the research in field of medical imaging was focused on brain tumors segmentation. The quantitative analysis of MRI brain tumor allows to obtain useful key indicators of disease progression. The complex problem of segmenting tumor in MRI can be successfully addressed by considering modular and multi-step approaches mimicking the human visual inspection process. The tumor detection is often an essential preliminary phase to solvethe segmentation problem successfully. In visual analysis of the MRI, the first step of the experts cognitive process, is the detection of an anomaly respect the normal tissue, whatever its nature. An healthy brain has a strong sagittal symmetry, that is weakened by the presence of tumor. The comparison between the healthy and ill hemisphere, considering that tumors are generally not symmetrically placed in both hemispheres, was used to detect the anomaly. A clustering method based on energy minimization through Graph-Cut is applied on the volume computed as a difference between the left hemisphere and the right hemisphere mirrored across the symmetry plane. Differential analysis involves the loss the knowledge of the tumor side. Through an histogram analysis the ill hemisphere is recognized. Many experiments are performed to assess the performance of the detection strategy on MRI volumes in presence of tumors varied in terms of shapes positions and intensity levels. The experiments showed good results also in complex situations.
Multi-channel MRI segmentation of eye structures and tumors using patient-specific features
Ciller, Carlos; De Zanet, Sandro; Kamnitsas, Konstantinos; Maeder, Philippe; Glocker, Ben; Munier, Francis L.; Rueckert, Daniel; Thiran, Jean-Philippe
2017-01-01
Retinoblastoma and uveal melanoma are fast spreading eye tumors usually diagnosed by using 2D Fundus Image Photography (Fundus) and 2D Ultrasound (US). Diagnosis and treatment planning of such diseases often require additional complementary imaging to confirm the tumor extend via 3D Magnetic Resonance Imaging (MRI). In this context, having automatic segmentations to estimate the size and the distribution of the pathological tissue would be advantageous towards tumor characterization. Until now, the alternative has been the manual delineation of eye structures, a rather time consuming and error-prone task, to be conducted in multiple MRI sequences simultaneously. This situation, and the lack of tools for accurate eye MRI analysis, reduces the interest in MRI beyond the qualitative evaluation of the optic nerve invasion and the confirmation of recurrent malignancies below calcified tumors. In this manuscript, we propose a new framework for the automatic segmentation of eye structures and ocular tumors in multi-sequence MRI. Our key contribution is the introduction of a pathological eye model from which Eye Patient-Specific Features (EPSF) can be computed. These features combine intensity and shape information of pathological tissue while embedded in healthy structures of the eye. We assess our work on a dataset of pathological patient eyes by computing the Dice Similarity Coefficient (DSC) of the sclera, the cornea, the vitreous humor, the lens and the tumor. In addition, we quantitatively show the superior performance of our pathological eye model as compared to the segmentation obtained by using a healthy model (over 4% DSC) and demonstrate the relevance of our EPSF, which improve the final segmentation regardless of the classifier employed. PMID:28350816
Wu, Dan; Ma, Ting; Ceritoglu, Can; Li, Yue; Chotiyanonta, Jill; Hou, Zhipeng; Hsu, John; Xu, Xin; Brown, Timothy; Miller, Michael I; Mori, Susumu
2016-01-15
Technologies for multi-atlas brain segmentation of T1-weighted MRI images have rapidly progressed in recent years, with highly promising results. This approach, however, relies on a large number of atlases with accurate and consistent structural identifications. Here, we introduce our atlas inventories (n=90), which cover ages 4-82years with unique hierarchical structural definitions (286 structures at the finest level). This multi-atlas library resource provides the flexibility to choose appropriate atlases for various studies with different age ranges and structure-definition criteria. In this paper, we describe the details of the atlas resources and demonstrate the improved accuracy achievable with a dynamic age-matching approach, in which atlases that most closely match the subject's age are dynamically selected. The advanced atlas creation strategy, together with atlas pre-selection principles, is expected to support the further development of multi-atlas image segmentation. Copyright © 2015 Elsevier Inc. All rights reserved.
The Brain/MINDS 3D digital marmoset brain atlas
Woodward, Alexander; Hashikawa, Tsutomu; Maeda, Masahide; Kaneko, Takaaki; Hikishima, Keigo; Iriki, Atsushi; Okano, Hideyuki; Yamaguchi, Yoko
2018-01-01
We present a new 3D digital brain atlas of the non-human primate, common marmoset monkey (Callithrix jacchus), with MRI and coregistered Nissl histology data. To the best of our knowledge this is the first comprehensive digital 3D brain atlas of the common marmoset having normalized multi-modal data, cortical and sub-cortical segmentation, and in a common file format (NIfTI). The atlas can be registered to new data, is useful for connectomics, functional studies, simulation and as a reference. The atlas was based on previously published work but we provide several critical improvements to make this release valuable for researchers. Nissl histology images were processed to remove illumination and shape artifacts and then normalized to the MRI data. Brain region segmentation is provided for both hemispheres. The data is in the NIfTI format making it easy to integrate into neuroscience pipelines, whereas the previous atlas was in an inaccessible file format. We also provide cortical, mid-cortical and white matter boundary segmentations useful for visualization and analysis. PMID:29437168
Enhancement pattern of the normal facial nerve at 3.0 T temporal MRI.
Hong, H S; Yi, B-H; Cha, J-G; Park, S-J; Kim, D H; Lee, H K; Lee, J-D
2010-02-01
The purpose of this study was to evaluate the enhancement pattern of the normal facial nerve at 3.0 T temporal MRI. We reviewed the medical records of 20 patients and evaluated 40 clinically normal facial nerves demonstrated by 3.0 T temporal MRI. The grade of enhancement of the facial nerve was visually scaled from 0 to 3. The patients comprised 11 men and 9 women, and the mean age was 39.7 years. The reasons for the MRI were sudden hearing loss (11 patients), Méniàre's disease (6) and tinnitus (7). Temporal MR scans were obtained by fluid-attenuated inversion-recovery (FLAIR) and diffusion-weighted imaging of the brain; three-dimensional (3D) fast imaging employing steady-state acquisition (FIESTA) images of the temporal bone with a 0.77 mm thickness, and pre-contrast and contrast-enhanced 3D spoiled gradient record acquisition in the steady state (SPGR) of the temporal bone with a 1 mm thickness, were obtained with 3.0 T MR scanning. 40 nerves (100%) were visibly enhanced along at least one segment of the facial nerve. The enhanced segments included the geniculate ganglion (77.5%), tympanic segment (37.5%) and mastoid segment (100%). Even the facial nerve in the internal auditory canal (15%) and labyrinthine segments (5%) showed mild enhancement. The use of high-resolution, high signal-to-noise ratio (with 3 T MRI), thin-section contrast-enhanced 3D SPGR sequences showed enhancement of the normal facial nerve along the whole course of the nerve; however, only mild enhancement was observed in areas associated with acute neuritis, namely the canalicular and labyrinthine segment.
3D fully convolutional networks for subcortical segmentation in MRI: A large-scale study.
Dolz, Jose; Desrosiers, Christian; Ben Ayed, Ismail
2018-04-15
This study investigates a 3D and fully convolutional neural network (CNN) for subcortical brain structure segmentation in MRI. 3D CNN architectures have been generally avoided due to their computational and memory requirements during inference. We address the problem via small kernels, allowing deeper architectures. We further model both local and global context by embedding intermediate-layer outputs in the final prediction, which encourages consistency between features extracted at different scales and embeds fine-grained information directly in the segmentation process. Our model is efficiently trained end-to-end on a graphics processing unit (GPU), in a single stage, exploiting the dense inference capabilities of fully CNNs. We performed comprehensive experiments over two publicly available datasets. First, we demonstrate a state-of-the-art performance on the ISBR dataset. Then, we report a large-scale multi-site evaluation over 1112 unregistered subject datasets acquired from 17 different sites (ABIDE dataset), with ages ranging from 7 to 64 years, showing that our method is robust to various acquisition protocols, demographics and clinical factors. Our method yielded segmentations that are highly consistent with a standard atlas-based approach, while running in a fraction of the time needed by atlas-based methods and avoiding registration/normalization steps. This makes it convenient for massive multi-site neuroanatomical imaging studies. To the best of our knowledge, our work is the first to study subcortical structure segmentation on such large-scale and heterogeneous data. Copyright © 2017 Elsevier Inc. All rights reserved.
Unsupervised segmentation of MRI knees using image partition forests
NASA Astrophysics Data System (ADS)
Marčan, Marija; Voiculescu, Irina
2016-03-01
Nowadays many people are affected by arthritis, a condition of the joints with limited prevention measures, but with various options of treatment the most radical of which is surgical. In order for surgery to be successful, it can make use of careful analysis of patient-based models generated from medical images, usually by manual segmentation. In this work we show how to automate the segmentation of a crucial and complex joint -- the knee. To achieve this goal we rely on our novel way of representing a 3D voxel volume as a hierarchical structure of partitions which we have named Image Partition Forest (IPF). The IPF contains several partition layers of increasing coarseness, with partitions nested across layers in the form of adjacency graphs. On the basis of a set of properties (size, mean intensity, coordinates) of each node in the IPF we classify nodes into different features. Values indicating whether or not any particular node belongs to the femur or tibia are assigned through node filtering and node-based region growing. So far we have evaluated our method on 15 MRI knee images. Our unsupervised segmentation compared against a hand-segmented gold standard has achieved an average Dice similarity coefficient of 0.95 for femur and 0.93 for tibia, and an average symmetric surface distance of 0.98 mm for femur and 0.73 mm for tibia. The paper also discusses ways to introduce stricter morphological and spatial conditioning in the bone labelling process.
Model-based registration for assessment of spinal deformities in idiopathic scoliosis
NASA Astrophysics Data System (ADS)
Forsberg, Daniel; Lundström, Claes; Andersson, Mats; Knutsson, Hans
2014-01-01
Detailed analysis of spinal deformity is important within orthopaedic healthcare, in particular for assessment of idiopathic scoliosis. This paper addresses this challenge by proposing an image analysis method, capable of providing a full three-dimensional spine characterization. The proposed method is based on the registration of a highly detailed spine model to image data from computed tomography. The registration process provides an accurate segmentation of each individual vertebra and the ability to derive various measures describing the spinal deformity. The derived measures are estimated from landmarks attached to the spine model and transferred to the patient data according to the registration result. Evaluation of the method provides an average point-to-surface error of 0.9 mm ± 0.9 (comparing segmentations), and an average target registration error of 2.3 mm ± 1.7 (comparing landmarks). Comparing automatic and manual measurements of axial vertebral rotation provides a mean absolute difference of 2.5° ± 1.8, which is on a par with other computerized methods for assessing axial vertebral rotation. A significant advantage of our method, compared to other computerized methods for rotational measurements, is that it does not rely on vertebral symmetry for computing the rotational measures. The proposed method is fully automatic and computationally efficient, only requiring three to four minutes to process an entire image volume covering vertebrae L5 to T1. Given the use of landmarks, the method can be readily adapted to estimate other measures describing a spinal deformity by changing the set of employed landmarks. In addition, the method has the potential to be utilized for accurate segmentations of the vertebrae in routine computed tomography examinations, given the relatively low point-to-surface error.
Validating a new methodology for optical probe design and image registration in fNIRS studies
Wijeakumar, Sobanawartiny; Spencer, John P.; Bohache, Kevin; Boas, David A.; Magnotta, Vincent A.
2015-01-01
Functional near-infrared spectroscopy (fNIRS) is an imaging technique that relies on the principle of shining near-infrared light through tissue to detect changes in hemodynamic activation. An important methodological issue encountered is the creation of optimized probe geometry for fNIRS recordings. Here, across three experiments, we describe and validate a processing pipeline designed to create an optimized, yet scalable probe geometry based on selected regions of interest (ROIs) from the functional magnetic resonance imaging (fMRI) literature. In experiment 1, we created a probe geometry optimized to record changes in activation from target ROIs important for visual working memory. Positions of the sources and detectors of the probe geometry on an adult head were digitized using a motion sensor and projected onto a generic adult atlas and a segmented head obtained from the subject's MRI scan. In experiment 2, the same probe geometry was scaled down to fit a child's head and later digitized and projected onto the generic adult atlas and a segmented volume obtained from the child's MRI scan. Using visualization tools and by quantifying the amount of intersection between target ROIs and channels, we show that out of 21 ROIs, 17 and 19 ROIs intersected with fNIRS channels from the adult and child probe geometries, respectively. Further, both the adult atlas and adult subject-specific MRI approaches yielded similar results and can be used interchangeably. However, results suggest that segmented heads obtained from MRI scans be used for registering children's data. Finally, in experiment 3, we further validated our processing pipeline by creating a different probe geometry designed to record from target ROIs involved in language and motor processing. PMID:25705757
Dera, Dimah; Bouaynaya, Nidhal; Fathallah-Shaykh, Hassan M
2016-07-01
We address the problem of fully automated region discovery and robust image segmentation by devising a new deformable model based on the level set method (LSM) and the probabilistic nonnegative matrix factorization (NMF). We describe the use of NMF to calculate the number of distinct regions in the image and to derive the local distribution of the regions, which is incorporated into the energy functional of the LSM. The results demonstrate that our NMF-LSM method is superior to other approaches when applied to synthetic binary and gray-scale images and to clinical magnetic resonance images (MRI) of the human brain with and without a malignant brain tumor, glioblastoma multiforme. In particular, the NMF-LSM method is fully automated, highly accurate, less sensitive to the initial selection of the contour(s) or initial conditions, more robust to noise and model parameters, and able to detect as small distinct regions as desired. These advantages stem from the fact that the proposed method relies on histogram information instead of intensity values and does not introduce nuisance model parameters. These properties provide a general approach for automated robust region discovery and segmentation in heterogeneous images. Compared with the retrospective radiological diagnoses of two patients with non-enhancing grade 2 and 3 oligodendroglioma, the NMF-LSM detects earlier progression times and appears suitable for monitoring tumor response. The NMF-LSM method fills an important need of automated segmentation of clinical MRI.
NASA Astrophysics Data System (ADS)
B. Shokouhi, Shahriar; Fooladivanda, Aida; Ahmadinejad, Nasrin
2017-12-01
A computer-aided detection (CAD) system is introduced in this paper for detection of breast lesions in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The proposed CAD system firstly compensates motion artifacts and segments the breast region. Then, the potential lesion voxels are detected and used as the initial seed points for the seeded region-growing algorithm. A new and robust region-growing algorithm incorporating with Fuzzy C-means (FCM) clustering and vesselness filter is proposed to segment any potential lesion regions. Subsequently, the false positive detections are reduced by applying a discrimination step. This is based on 3D morphological characteristics of the potential lesion regions and kinetic features which are fed to the support vector machine (SVM) classifier. The performance of the proposed CAD system is evaluated using the free-response operating characteristic (FROC) curve. We introduce our collected dataset that includes 76 DCE-MRI studies, 63 malignant and 107 benign lesions. The prepared dataset has been used to verify the accuracy of the proposed CAD system. At 5.29 false positives per case, the CAD system accurately detects 94% of the breast lesions.
Agner, Shannon C; Xu, Jun; Madabhushi, Anant
2013-03-01
Segmentation of breast lesions on dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) is the first step in lesion diagnosis in a computer-aided diagnosis framework. Because manual segmentation of such lesions is both time consuming and highly susceptible to human error and issues of reproducibility, an automated lesion segmentation method is highly desirable. Traditional automated image segmentation methods such as boundary-based active contour (AC) models require a strong gradient at the lesion boundary. Even when region-based terms are introduced to an AC model, grayscale image intensities often do not allow for clear definition of foreground and background region statistics. Thus, there is a need to find alternative image representations that might provide (1) strong gradients at the margin of the object of interest (OOI); and (2) larger separation between intensity distributions and region statistics for the foreground and background, which are necessary to halt evolution of the AC model upon reaching the border of the OOI. In this paper, the authors introduce a spectral embedding (SE) based AC (SEAC) for lesion segmentation on breast DCE-MRI. SE, a nonlinear dimensionality reduction scheme, is applied to the DCE time series in a voxelwise fashion to reduce several time point images to a single parametric image where every voxel is characterized by the three dominant eigenvectors. This parametric eigenvector image (PrEIm) representation allows for better capture of image region statistics and stronger gradients for use with a hybrid AC model, which is driven by both boundary and region information. They compare SEAC to ACs that employ fuzzy c-means (FCM) and principal component analysis (PCA) as alternative image representations. Segmentation performance was evaluated by boundary and region metrics as well as comparing lesion classification using morphological features from SEAC, PCA+AC, and FCM+AC. On a cohort of 50 breast DCE-MRI studies, PrEIm yielded overall better region and boundary-based statistics compared to the original DCE-MR image, FCM, and PCA based image representations. Additionally, SEAC outperformed a hybrid AC applied to both PCA and FCM image representations. Mean dice similarity coefficient (DSC) for SEAC was significantly better (DSC = 0.74 ± 0.21) than FCM+AC (DSC = 0.50 ± 0.32) and similar to PCA+AC (DSC = 0.73 ± 0.22). Boundary-based metrics of mean absolute difference and Hausdorff distance followed the same trends. Of the automated segmentation methods, breast lesion classification based on morphologic features derived from SEAC segmentation using a support vector machine classifier also performed better (AUC = 0.67 ± 0.05; p < 0.05) than FCM+AC (AUC = 0.50 ± 0.07), and PCA+AC (AUC = 0.49 ± 0.07). In this work, we presented SEAC, an accurate, general purpose AC segmentation tool that could be applied to any imaging domain that employs time series data. SE allows for projection of time series data into a PrEIm representation so that every voxel is characterized by the dominant eigenvectors, capturing the global and local time-intensity curve similarities in the data. This PrEIm allows for the calculation of strong tensor gradients and better region statistics than the original image intensities or alternative image representations such as PCA and FCM. The PrEIm also allows for building a more accurate hybrid AC scheme.
Njeh, Ines; Sallemi, Lamia; Ayed, Ismail Ben; Chtourou, Khalil; Lehericy, Stephane; Galanaud, Damien; Hamida, Ahmed Ben
2015-03-01
This study investigates a fast distribution-matching, data-driven algorithm for 3D multimodal MRI brain glioma tumor and edema segmentation in different modalities. We learn non-parametric model distributions which characterize the normal regions in the current data. Then, we state our segmentation problems as the optimization of several cost functions of the same form, each containing two terms: (i) a distribution matching prior, which evaluates a global similarity between distributions, and (ii) a smoothness prior to avoid the occurrence of small, isolated regions in the solution. Obtained following recent bound-relaxation results, the optima of the cost functions yield the complement of the tumor region or edema region in nearly real-time. Based on global rather than pixel wise information, the proposed algorithm does not require an external learning from a large, manually-segmented training set, as is the case of the existing methods. Therefore, the ensuing results are independent of the choice of a training set. Quantitative evaluations over the publicly available training and testing data set from the MICCAI multimodal brain tumor segmentation challenge (BraTS 2012) demonstrated that our algorithm yields a highly competitive performance for complete edema and tumor segmentation, among nine existing competing methods, with an interesting computing execution time (less than 0.5s per image). Copyright © 2014 Elsevier Ltd. All rights reserved.
Knee cartilage extraction and bone-cartilage interface analysis from 3D MRI data sets
NASA Astrophysics Data System (ADS)
Tamez-Pena, Jose G.; Barbu-McInnis, Monica; Totterman, Saara
2004-05-01
This works presents a robust methodology for the analysis of the knee joint cartilage and the knee bone-cartilage interface from fused MRI sets. The proposed approach starts by fusing a set of two 3D MR images the knee. Although the proposed method is not pulse sequence dependent, the first sequence should be programmed to achieve good contrast between bone and cartilage. The recommended second pulse sequence is one that maximizes the contrast between cartilage and surrounding soft tissues. Once both pulse sequences are fused, the proposed bone-cartilage analysis is done in four major steps. First, an unsupervised segmentation algorithm is used to extract the femur, the tibia, and the patella. Second, a knowledge based feature extraction algorithm is used to extract the femoral, tibia and patellar cartilages. Third, a trained user corrects cartilage miss-classifications done by the automated extracted cartilage. Finally, the final segmentation is the revisited using an unsupervised MAP voxel relaxation algorithm. This final segmentation has the property that includes the extracted bone tissue as well as all the cartilage tissue. This is an improvement over previous approaches where only the cartilage was segmented. Furthermore, this approach yields very reproducible segmentation results in a set of scan-rescan experiments. When these segmentations were coupled with a partial volume compensated surface extraction algorithm the volume, area, thickness measurements shows precisions around 2.6%
Computer Based Melanocytic and Nevus Image Enhancement and Segmentation.
Jamil, Uzma; Akram, M Usman; Khalid, Shehzad; Abbas, Sarmad; Saleem, Kashif
2016-01-01
Digital dermoscopy aids dermatologists in monitoring potentially cancerous skin lesions. Melanoma is the 5th common form of skin cancer that is rare but the most dangerous. Melanoma is curable if it is detected at an early stage. Automated segmentation of cancerous lesion from normal skin is the most critical yet tricky part in computerized lesion detection and classification. The effectiveness and accuracy of lesion classification are critically dependent on the quality of lesion segmentation. In this paper, we have proposed a novel approach that can automatically preprocess the image and then segment the lesion. The system filters unwanted artifacts including hairs, gel, bubbles, and specular reflection. A novel approach is presented using the concept of wavelets for detection and inpainting the hairs present in the cancer images. The contrast of lesion with the skin is enhanced using adaptive sigmoidal function that takes care of the localized intensity distribution within a given lesion's images. We then present a segmentation approach to precisely segment the lesion from the background. The proposed approach is tested on the European database of dermoscopic images. Results are compared with the competitors to demonstrate the superiority of the suggested approach.
Moeskops, Pim; de Bresser, Jeroen; Kuijf, Hugo J; Mendrik, Adriënne M; Biessels, Geert Jan; Pluim, Josien P W; Išgum, Ivana
2018-01-01
Automatic segmentation of brain tissues and white matter hyperintensities of presumed vascular origin (WMH) in MRI of older patients is widely described in the literature. Although brain abnormalities and motion artefacts are common in this age group, most segmentation methods are not evaluated in a setting that includes these items. In the present study, our tissue segmentation method for brain MRI was extended and evaluated for additional WMH segmentation. Furthermore, our method was evaluated in two large cohorts with a realistic variation in brain abnormalities and motion artefacts. The method uses a multi-scale convolutional neural network with a T 1 -weighted image, a T 2 -weighted fluid attenuated inversion recovery (FLAIR) image and a T 1 -weighted inversion recovery (IR) image as input. The method automatically segments white matter (WM), cortical grey matter (cGM), basal ganglia and thalami (BGT), cerebellum (CB), brain stem (BS), lateral ventricular cerebrospinal fluid (lvCSF), peripheral cerebrospinal fluid (pCSF), and WMH. Our method was evaluated quantitatively with images publicly available from the MRBrainS13 challenge ( n = 20), quantitatively and qualitatively in relatively healthy older subjects ( n = 96), and qualitatively in patients from a memory clinic ( n = 110). The method can accurately segment WMH (Overall Dice coefficient in the MRBrainS13 data of 0.67) without compromising performance for tissue segmentations (Overall Dice coefficients in the MRBrainS13 data of 0.87 for WM, 0.85 for cGM, 0.82 for BGT, 0.93 for CB, 0.92 for BS, 0.93 for lvCSF, 0.76 for pCSF). Furthermore, the automatic WMH volumes showed a high correlation with manual WMH volumes (Spearman's ρ = 0.83 for relatively healthy older subjects). In both cohorts, our method produced reliable segmentations (as determined by a human observer) in most images (relatively healthy/memory clinic: tissues 88%/77% reliable, WMH 85%/84% reliable) despite various degrees of brain abnormalities and motion artefacts. In conclusion, this study shows that a convolutional neural network-based segmentation method can accurately segment brain tissues and WMH in MR images of older patients with varying degrees of brain abnormalities and motion artefacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, F.; Graduate Program in Biomedical Engineering, University of Western Ontario, London, Ontario N6A 5B9; Svenningsen, S.
Purpose: Pulmonary magnetic-resonance-imaging (MRI) and x-ray computed-tomography have provided strong evidence of spatially and temporally persistent lung structure-function abnormalities in asthmatics. This has generated a shift in their understanding of lung disease and supports the use of imaging biomarkers as intermediate endpoints of asthma severity and control. In particular, pulmonary {sup 1}H MRI can be used to provide quantitative lung structure-function measurements longitudinally and in response to treatment. However, to translate such biomarkers of asthma, robust methods are required to segment the lung from pulmonary {sup 1}H MRI. Therefore, their objective was to develop a pulmonary {sup 1}H MRI segmentationmore » algorithm to provide regional measurements with the precision and speed required to support clinical studies. Methods: The authors developed a method to segment the left and right lung from {sup 1}H MRI acquired in 20 asthmatics including five well-controlled and 15 severe poorly controlled participants who provided written informed consent to a study protocol approved by Health Canada. Same-day spirometry and plethysmography measurements of lung function and volume were acquired as well as {sup 1}H MRI using a whole-body radiofrequency coil and fast spoiled gradient-recalled echo sequence at a fixed lung volume (functional residual capacity + 1 l). We incorporated the left-to-right lung volume proportion prior based on the Potts model and derived a volume-proportion preserved Potts model, which was approximated through convex relaxation and further represented by a dual volume-proportion preserved max-flow model. The max-flow model led to a linear problem with convex and linear equality constraints that implicitly encoded the proportion prior. To implement the algorithm, {sup 1}H MRI was resampled into ∼3 × 3 × 3 mm{sup 3} isotropic voxel space. Two observers placed seeds on each lung and on the background of 20 pulmonary {sup 1}H MR images in a randomized dataset, on five occasions, five consecutive days in a row. Segmentation accuracy was evaluated using the Dice-similarity-coefficient (DSC) of the segmented thoracic cavity with comparison to five-rounds of manual segmentation by an expert observer. The authors also evaluated the root-mean-squared-error (RMSE) of the Euclidean distance between lung surfaces, the absolute, and percent volume error. Reproducibility was measured using the coefficient of variation (CoV) and intraclass correlation coefficient (ICC) for two observers who repeated segmentation measurements five-times. Results: For five well-controlled asthmatics, forced expiratory volume in 1 s (FEV{sub 1})/forced vital capacity (FVC) was 83% ± 7% and FEV{sub 1} was 86 ± 9%{sub pred}. For 15 severe, poorly controlled asthmatics, FEV{sub 1}/FV C = 66% ± 17% and FEV{sub 1} = 72 ± 27%{sub pred}. The DSC for algorithm and manual segmentation was 91% ± 3%, 92% ± 2% and 91% ± 2% for the left, right, and whole lung, respectively. RMSE was 4.0 ± 1.0 mm for each of the left, right, and whole lung. The absolute (percent) volume errors were 0.1 l (∼6%) for each of right and left lung and ∼0.2 l (∼6%) for whole lung. Intra- and inter-CoV (ICC) were <0.5% (>0.91%) for DSC and <4.5% (>0.93%) for RMSE. While segmentation required 10 s including ∼6 s for user interaction, the smallest detectable difference was 0.24 l for algorithm measurements which was similar to manual measurements. Conclusions: This lung segmentation approach provided the necessary and sufficient precision and accuracy required for research and clinical studies.« less
NASA Astrophysics Data System (ADS)
Islam, Atiq; Iftekharuddin, Khan M.; Ogg, Robert J.; Laningham, Fred H.; Sivakumar, Bhuvaneswari
2008-03-01
In this paper, we characterize the tumor texture in pediatric brain magnetic resonance images (MRIs) and exploit these features for automatic segmentation of posterior fossa (PF) tumors. We focus on PF tumor because of the prevalence of such tumor in pediatric patients. Due to varying appearance in MRI, we propose to model the tumor texture with a multi-fractal process, such as a multi-fractional Brownian motion (mBm). In mBm, the time-varying Holder exponent provides flexibility in modeling irregular tumor texture. We develop a detailed mathematical framework for mBm in two-dimension and propose a novel algorithm to estimate the multi-fractal structure of tissue texture in brain MRI based on wavelet coefficients. This wavelet based multi-fractal feature along with MR image intensity and a regular fractal feature obtained using our existing piecewise-triangular-prism-surface-area (PTPSA) method, are fused in segmenting PF tumor and non-tumor regions in brain T1, T2, and FLAIR MR images respectively. We also demonstrate a non-patient-specific automated tumor prediction scheme based on these image features. We experimentally show the tumor discriminating power of our novel multi-fractal texture along with intensity and fractal features in automated tumor segmentation and statistical prediction. To evaluate the performance of our tumor prediction scheme, we obtain ROCs and demonstrate how sharply the curves reach the specificity of 1.0 sacrificing minimal sensitivity. Experimental results show the effectiveness of our proposed techniques in automatic detection of PF tumors in pediatric MRIs.
Valcarcel, Alessandra M; Linn, Kristin A; Vandekar, Simon N; Satterthwaite, Theodore D; Muschelli, John; Calabresi, Peter A; Pham, Dzung L; Martin, Melissa Lynne; Shinohara, Russell T
2018-03-08
Magnetic resonance imaging (MRI) is crucial for in vivo detection and characterization of white matter lesions (WMLs) in multiple sclerosis. While WMLs have been studied for over two decades using MRI, automated segmentation remains challenging. Although the majority of statistical techniques for the automated segmentation of WMLs are based on single imaging modalities, recent advances have used multimodal techniques for identifying WMLs. Complementary modalities emphasize different tissue properties, which help identify interrelated features of lesions. Method for Inter-Modal Segmentation Analysis (MIMoSA), a fully automatic lesion segmentation algorithm that utilizes novel covariance features from intermodal coupling regression in addition to mean structure to model the probability lesion is contained in each voxel, is proposed. MIMoSA was validated by comparison with both expert manual and other automated segmentation methods in two datasets. The first included 98 subjects imaged at Johns Hopkins Hospital in which bootstrap cross-validation was used to compare the performance of MIMoSA against OASIS and LesionTOADS, two popular automatic segmentation approaches. For a secondary validation, a publicly available data from a segmentation challenge were used for performance benchmarking. In the Johns Hopkins study, MIMoSA yielded average Sørensen-Dice coefficient (DSC) of .57 and partial AUC of .68 calculated with false positive rates up to 1%. This was superior to performance using OASIS and LesionTOADS. The proposed method also performed competitively in the segmentation challenge dataset. MIMoSA resulted in statistically significant improvements in lesion segmentation performance compared with LesionTOADS and OASIS, and performed competitively in an additional validation study. Copyright © 2018 by the American Society of Neuroimaging.
Automatic knee cartilage delineation using inheritable segmentation
NASA Astrophysics Data System (ADS)
Dries, Sebastian P. M.; Pekar, Vladimir; Bystrov, Daniel; Heese, Harald S.; Blaffert, Thomas; Bos, Clemens; van Muiswinkel, Arianne M. C.
2008-03-01
We present a fully automatic method for segmentation of knee joint cartilage from fat suppressed MRI. The method first applies 3-D model-based segmentation technology, which allows to reliably segment the femur, patella, and tibia by iterative adaptation of the model according to image gradients. Thin plate spline interpolation is used in the next step to position deformable cartilage models for each of the three bones with reference to the segmented bone models. After initialization, the cartilage models are fine adjusted by automatic iterative adaptation to image data based on gray value gradients. The method has been validated on a collection of 8 (3 left, 5 right) fat suppressed datasets and demonstrated the sensitivity of 83+/-6% compared to manual segmentation on a per voxel basis as primary endpoint. Gross cartilage volume measurement yielded an average error of 9+/-7% as secondary endpoint. For cartilage being a thin structure, already small deviations in distance result in large errors on a per voxel basis, rendering the primary endpoint a hard criterion.
Bayesian Inference for Functional Dynamics Exploring in fMRI Data.
Guo, Xuan; Liu, Bing; Chen, Le; Chen, Guantao; Pan, Yi; Zhang, Jing
2016-01-01
This paper aims to review state-of-the-art Bayesian-inference-based methods applied to functional magnetic resonance imaging (fMRI) data. Particularly, we focus on one specific long-standing challenge in the computational modeling of fMRI datasets: how to effectively explore typical functional interactions from fMRI time series and the corresponding boundaries of temporal segments. Bayesian inference is a method of statistical inference which has been shown to be a powerful tool to encode dependence relationships among the variables with uncertainty. Here we provide an introduction to a group of Bayesian-inference-based methods for fMRI data analysis, which were designed to detect magnitude or functional connectivity change points and to infer their functional interaction patterns based on corresponding temporal boundaries. We also provide a comparison of three popular Bayesian models, that is, Bayesian Magnitude Change Point Model (BMCPM), Bayesian Connectivity Change Point Model (BCCPM), and Dynamic Bayesian Variable Partition Model (DBVPM), and give a summary of their applications. We envision that more delicate Bayesian inference models will be emerging and play increasingly important roles in modeling brain functions in the years to come.
NASA Astrophysics Data System (ADS)
Morais, Pedro; Queirós, Sandro; Heyde, Brecht; Engvall, Jan; 'hooge, Jan D.; Vilaça, João L.
2017-09-01
Cardiovascular diseases are among the leading causes of death and frequently result in local myocardial dysfunction. Among the numerous imaging modalities available to detect these dysfunctional regions, cardiac deformation imaging through tagged magnetic resonance imaging (t-MRI) has been an attractive approach. Nevertheless, fully automatic analysis of these data sets is still challenging. In this work, we present a fully automatic framework to estimate left ventricular myocardial deformation from t-MRI. This strategy performs automatic myocardial segmentation based on B-spline explicit active surfaces, which are initialized using an annular model. A non-rigid image-registration technique is then used to assess myocardial deformation. Three experiments were set up to validate the proposed framework using a clinical database of 75 patients. First, automatic segmentation accuracy was evaluated by comparing against manual delineations at one specific cardiac phase. The proposed solution showed an average perpendicular distance error of 2.35 ± 1.21 mm and 2.27 ± 1.02 mm for the endo- and epicardium, respectively. Second, starting from either manual or automatic segmentation, myocardial tracking was performed and the resulting strain curves were compared. It is shown that the automatic segmentation adds negligible differences during the strain-estimation stage, corroborating its accuracy. Finally, segmental strain was compared with scar tissue extent determined by delay-enhanced MRI. The results proved that both strain components were able to distinguish between normal and infarct regions. Overall, the proposed framework was shown to be accurate, robust, and attractive for clinical practice, as it overcomes several limitations of a manual analysis.
Keller, Simon S; O'Muircheartaigh, Jonathan; Traynor, Catherine; Towgood, Karren; Barker, Gareth J; Richardson, Mark P
2014-02-01
Thalamic abnormality in temporal lobe epilepsy (TLE) is well known from imaging studies, but evidence is lacking regarding connectivity profiles of the thalamus and their involvement in the disease process. We used a novel multisequence magnetic resonance imaging (MRI) protocol to elucidate the relationship between mesial temporal and thalamic pathology in TLE. For 23 patients with TLE and 23 healthy controls, we performed T1 -weighted (for analysis of tissue structure), diffusion tensor imaging (tissue connectivity), and T1 and T2 relaxation (tissue integrity) MRI across the whole brain. We used connectivity-based segmentation to determine connectivity patterns of thalamus to ipsilateral cortical regions (occipital, parietal, prefrontal, postcentral, precentral, and temporal). We subsequently determined volumes, mean tractography streamlines, and mean T1 and T2 relaxometry values for each thalamic segment preferentially connecting to a given cortical region, and of the hippocampus and entorhinal cortex. As expected, patients had significant volume reduction and increased T2 relaxation time in ipsilateral hippocampus and entorhinal cortex. There was bilateral volume loss, mean streamline reduction, and T2 increase of the thalamic segment preferentially connected to temporal lobe, corresponding to anterior, dorsomedial, and pulvinar thalamic regions, with no evidence of significant change in any other thalamic segments. Left and right thalamotemporal segment volume and T2 were significantly correlated with volume and T2 of ipsilateral (epileptogenic), but not contralateral (nonepileptogenic), mesial temporal structures. These convergent and robust data indicate that thalamic abnormality in TLE is restricted to the area of the thalamus that is preferentially connected to the epileptogenic temporal lobe. The degree of thalamic pathology is related to the extent of mesial temporal lobe damage in TLE. © 2014 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.
Computer aided detection of tumor and edema in brain FLAIR magnetic resonance image using ANN
NASA Astrophysics Data System (ADS)
Pradhan, Nandita; Sinha, A. K.
2008-03-01
This paper presents an efficient region based segmentation technique for detecting pathological tissues (Tumor & Edema) of brain using fluid attenuated inversion recovery (FLAIR) magnetic resonance (MR) images. This work segments FLAIR brain images for normal and pathological tissues based on statistical features and wavelet transform coefficients using k-means algorithm. The image is divided into small blocks of 4×4 pixels. The k-means algorithm is used to cluster the image based on the feature vectors of blocks forming different classes representing different regions in the whole image. With the knowledge of the feature vectors of different segmented regions, supervised technique is used to train Artificial Neural Network using fuzzy back propagation algorithm (FBPA). Segmentation for detecting healthy tissues and tumors has been reported by several researchers by using conventional MRI sequences like T1, T2 and PD weighted sequences. This work successfully presents segmentation of healthy and pathological tissues (both Tumors and Edema) using FLAIR images. At the end pseudo coloring of segmented and classified regions are done for better human visualization.
Virtual surgical planning in endoscopic skull base surgery.
Haerle, Stephan K; Daly, Michael J; Chan, Harley H L; Vescan, Allan; Kucharczyk, Walter; Irish, Jonathan C
2013-12-01
Skull base surgery (SBS) involves operative tasks in close proximity to critical structures in a complex three-dimensional (3D) anatomy. The aim was to investigate the value of virtual planning (VP) based on preoperative magnetic resonance imaging (MRI) for surgical planning in SBS and to compare the effects of virtual planning with 3D contours between the expert and the surgeon in training. Retrospective analysis. Twelve patients with manually segmented anatomical structures based on preoperative MRI were evaluated by eight surgeons in a randomized order using a validated National Aeronautics and Space Administration Task Load Index (NASA-TLX) questionnaire. Multivariate analysis revealed significant reduction of workload when using VP (P<.0001) compared to standard planning. Further, it showed that the experience level of the surgeon had a significant effect on the NASA-TLX differences (P<.05). Additional subanalysis did not reveal any significant findings regarding which type of surgeon benefits the most (P>.05). Preoperative anatomical segmentation with virtual surgical planning using contours in endoscopic SBS significantly reduces the workload for the expert and the surgeon in training. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.
2012-02-27
audiogram, magnetic resonance imaging ( MRI ) scan, and a battery of neuro-vestibular tests, etc. (see appendix B). Many of the findings are detailed...bills108/s1217.html 19 E.g., driven by a laptop, tablet PC, or PDA. 42 The authors also considered testing needs immediately after referral (by the... MRI scan 72 Neuro-vestibular testing o Dynamic Computerized Postu rography o Rotat ional chair t est ing of gain, phase, and symmet ry o Step
NASA Astrophysics Data System (ADS)
Beig, Niha; Patel, Jay; Prasanna, Prateek; Partovi, Sasan; Varadan, Vinay; Madabhushi, Anant; Tiwari, Pallavi
2017-03-01
Glioblastoma Multiforme (GBM) is a highly aggressive brain tumor with a median survival of 14 months. Hypoxia is a hallmark trait in GBM that is known to be associated with angiogenesis, tumor growth, and resistance to conventional therapy, thereby limiting treatment options for GBM patients. There is thus an urgent clinical need for non-invasively capturing tumor hypoxia in GBM towards identifying a subset of patients who would likely benefit from anti-angiogenic therapies (bevacizumab) in the adjuvant setting. In this study, we employed radiomic descriptors to (a) capture molecular variations of tumor hypoxia on routine MRI that are otherwise not appreciable; and (b) employ the radiomic correlates of hypoxia to discriminate patients with short-term survival (STS, overall survival (OS) < 7 months), mid-term survival (MTS) (7 months
Retrospective case series of the imaging findings of facial nerve hemangioma.
Yue, Yunlong; Jin, Yanfang; Yang, Bentao; Yuan, Hui; Li, Jiandong; Wang, Zhenchang
2015-09-01
The aim was to compare high-resolution computed tomography (HRCT) and thin-section magnetic resonance imaging (MRI) findings of facial nerve hemangioma. The HRCT and MRI characteristics of 17 facial nerve hemangiomas diagnosed between 2006 and 2013 were retrospectively analyzed. All patients included in the study suffered from a space-occupying lesion of soft tissues at the geniculate ganglion fossa. Affected nerve was compared for size and shape with the contralateral unaffected nerve. HRCT showed irregular expansion and broadening of the facial nerve canal, damage of the bone wall and destruction of adjacent bone, with "point"-like or "needle"-like calcifications in 14 cases. The average CT value was 320.9 ± 141.8 Hu. Fourteen patients had a widened labyrinthine segment; 6/17 had a tympanic segment widening; 2/17 had a greater superficial petrosal nerve canal involvement, and 2/17 had an affected internal auditory canal (IAC) segment. On MRI, all lesions were significantly enhanced due to high blood supply. Using 2D FSE T2WI, the lesion detection rate was 82.4 % (14/17). 3D fast imaging employing steady-state acquisition (3D FIESTA) revealed the lesions in all patients. HRCT showed that the average number of involved segments in the facial nerve canal was 2.41, while MRI revealed an average of 2.70 segments (P < 0.05). HRCT and MR findings of facial nerve hemangioma were typical, revealing irregular masses growing along the facial nerve canal, with calcifications and rich blood supply. Thin-section enhanced MRI was more accurate in lesion detection and assessment compared with HRCT.
Tensor-product kernel-based representation encoding joint MRI view similarity.
Alvarez-Meza, A; Cardenas-Pena, D; Castro-Ospina, A E; Alvarez, M; Castellanos-Dominguez, G
2014-01-01
To support 3D magnetic resonance image (MRI) analysis, a marginal image similarity (MIS) matrix holding MR inter-slice relationship along every axis view (Axial, Coronal, and Sagittal) can be estimated. However, mutual inference from MIS view information poses a difficult task since relationships between axes are nonlinear. To overcome this issue, we introduce a Tensor-Product Kernel-based Representation (TKR) that allows encoding brain structure patterns due to patient differences, gathering all MIS matrices into a single joint image similarity framework. The TKR training strategy is carried out into a low dimensional projected space to get less influence of voxel-derived noise. Obtained results for classifying the considered patient categories (gender and age) on real MRI database shows that the proposed TKR training approach outperforms the conventional voxel-wise sum of squared differences. The proposed approach may be useful to support MRI clustering and similarity inference tasks, which are required on template-based image segmentation and atlas construction.
Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge
Litjens, Geert; Toth, Robert; van de Ven, Wendy; Hoeks, Caroline; Kerkstra, Sjoerd; van Ginneken, Bram; Vincent, Graham; Guillard, Gwenael; Birbeck, Neil; Zhang, Jindang; Strand, Robin; Malmberg, Filip; Ou, Yangming; Davatzikos, Christos; Kirschner, Matthias; Jung, Florian; Yuan, Jing; Qiu, Wu; Gao, Qinquan; Edwards, Philip “Eddie”; Maan, Bianca; van der Heijden, Ferdinand; Ghose, Soumya; Mitra, Jhimli; Dowling, Jason; Barratt, Dean; Huisman, Henkjan; Madabhushi, Anant
2014-01-01
Prostate MRI image segmentation has been an area of intense research due to the increased use of MRI as a modality for the clinical workup of prostate cancer. Segmentation is useful for various tasks, e.g. to accurately localize prostate boundaries for radiotherapy or to initialize multi-modal registration algorithms. In the past, it has been difficult for research groups to evaluate prostate segmentation algorithms on multi-center, multi-vendor and multi-protocol data. Especially because we are dealing with MR images, image appearance, resolution and the presence of artifacts are affected by differences in scanners and/or protocols, which in turn can have a large influence on algorithm accuracy. The Prostate MR Image Segmentation (PROMISE12) challenge was setup to allow a fair and meaningful comparison of segmentation methods on the basis of performance and robustness. In this work we will discuss the initial results of the online PROMISE12 challenge, and the results obtained in the live challenge workshop hosted by the MICCAI2012 conference. In the challenge, 100 prostate MR cases from 4 different centers were included, with differences in scanner manufacturer, field strength and protocol. A total of 11 teams from academic research groups and industry participated. Algorithms showed a wide variety in methods and implementation, including active appearance models, atlas registration and level sets. Evaluation was performed using boundary and volume based metrics which were combined into a single score relating the metrics to human expert performance. The winners of the challenge where the algorithms by teams Imorphics and ScrAutoProstate, with scores of 85.72 and 84.29 overall. Both algorithms where significantly better than all other algorithms in the challenge (p < 0.05) and had an efficient implementation with a run time of 8 minutes and 3 second per case respectively. Overall, active appearance model based approaches seemed to outperform other approaches like multi-atlas registration, both on accuracy and computation time. Although average algorithm performance was good to excellent and the Imorphics algorithm outperformed the second observer on average, we showed that algorithm combination might lead to further improvement, indicating that optimal performance for prostate segmentation is not yet obtained. All results are available online at http://promise12.grand-challenge.org/. PMID:24418598
Blessy, S A Praylin Selva; Sulochana, C Helen
2015-01-01
Segmentation of brain tumor from Magnetic Resonance Imaging (MRI) becomes very complicated due to the structural complexities of human brain and the presence of intensity inhomogeneities. To propose a method that effectively segments brain tumor from MR images and to evaluate the performance of unsupervised optimal fuzzy clustering (UOFC) algorithm for segmentation of brain tumor from MR images. Segmentation is done by preprocessing the MR image to standardize intensity inhomogeneities followed by feature extraction, feature fusion and clustering. Different validation measures are used to evaluate the performance of the proposed method using different clustering algorithms. The proposed method using UOFC algorithm produces high sensitivity (96%) and low specificity (4%) compared to other clustering methods. Validation results clearly show that the proposed method with UOFC algorithm effectively segments brain tumor from MR images.
Hammer, Niels; Hirschfeld, Ulrich; Strunz, Hendrik; Werner, Michael; Wolfskämpf, Thomas; Löffler, Sabine
2017-01-01
Introduction . The triangular fibrocartilage complex (TFCC) provides both mobility and stability of the radiocarpal joint. TFCC lesions are difficult to diagnose due to the complex anatomy. The standard treatment for TFCC lesions is arthroscopy, posing surgery-related risks onto the patients. This feasibility study aimed at developing a workup for soft-tissue reconstruction using clinical imaging, to verify these results in retrospective patient data. Methods . Microcomputed tomography ( μ -CT), 3 T magnetic resonance imaging (MRI), and plastination were used to visualize the TFCC in cadaveric specimens applying segmentation-based 3D reconstruction. This approach further trialed the MRI dataset of a patient with minor radiological TFCC alterations but persistent pain. Results . TFCC reconstruction was impossible using μ -CT only but feasible using MRI, resulting in an appreciation of its substructures, as seen in the plastinates. Applying this approach allowed for visualizing a Palmer 2C lesion in a patient, confirming ex postum the arthroscopy findings, being markedly different from MRI (Palmer 1B). Discussion . This preliminary study showed that image-based TFCC reconstruction may help to identify pathologies invisible in standard MRI. The combined approach of μ -CT, MRI, and plastination allowed for a three-dimensional appreciation of the TFCC. Image quality and time expenditure limit the approach's usefulness as a diagnostic tool.
Hirschfeld, Ulrich; Strunz, Hendrik; Werner, Michael; Wolfskämpf, Thomas; Löffler, Sabine
2017-01-01
Introduction. The triangular fibrocartilage complex (TFCC) provides both mobility and stability of the radiocarpal joint. TFCC lesions are difficult to diagnose due to the complex anatomy. The standard treatment for TFCC lesions is arthroscopy, posing surgery-related risks onto the patients. This feasibility study aimed at developing a workup for soft-tissue reconstruction using clinical imaging, to verify these results in retrospective patient data. Methods. Microcomputed tomography (μ-CT), 3 T magnetic resonance imaging (MRI), and plastination were used to visualize the TFCC in cadaveric specimens applying segmentation-based 3D reconstruction. This approach further trialed the MRI dataset of a patient with minor radiological TFCC alterations but persistent pain. Results. TFCC reconstruction was impossible using μ-CT only but feasible using MRI, resulting in an appreciation of its substructures, as seen in the plastinates. Applying this approach allowed for visualizing a Palmer 2C lesion in a patient, confirming ex postum the arthroscopy findings, being markedly different from MRI (Palmer 1B). Discussion. This preliminary study showed that image-based TFCC reconstruction may help to identify pathologies invisible in standard MRI. The combined approach of μ-CT, MRI, and plastination allowed for a three-dimensional appreciation of the TFCC. Image quality and time expenditure limit the approach's usefulness as a diagnostic tool. PMID:28246600
Open-source image registration for MRI-TRUS fusion-guided prostate interventions.
Fedorov, Andriy; Khallaghi, Siavash; Sánchez, C Antonio; Lasso, Andras; Fels, Sidney; Tuncali, Kemal; Sugar, Emily Neubauer; Kapur, Tina; Zhang, Chenxi; Wells, William; Nguyen, Paul L; Abolmaesumi, Purang; Tempany, Clare
2015-06-01
We propose two software tools for non-rigid registration of MRI and transrectal ultrasound (TRUS) images of the prostate. Our ultimate goal is to develop an open-source solution to support MRI-TRUS fusion image guidance of prostate interventions, such as targeted biopsy for prostate cancer detection and focal therapy. It is widely hypothesized that image registration is an essential component in such systems. The two non-rigid registration methods are: (1) a deformable registration of the prostate segmentation distance maps with B-spline regularization and (2) a finite element-based deformable registration of the segmentation surfaces in the presence of partial data. We evaluate the methods retrospectively using clinical patient image data collected during standard clinical procedures. Computation time and Target Registration Error (TRE) calculated at the expert-identified anatomical landmarks were used as quantitative measures for the evaluation. The presented image registration tools were capable of completing deformable registration computation within 5 min. Average TRE was approximately 3 mm for both methods, which is comparable with the slice thickness in our MRI data. Both tools are available under nonrestrictive open-source license. We release open-source tools that may be used for registration during MRI-TRUS-guided prostate interventions. Our tools implement novel registration approaches and produce acceptable registration results. We believe these tools will lower the barriers in development and deployment of interventional research solutions and facilitate comparison with similar tools.
Probabilistic brain tissue segmentation in neonatal magnetic resonance imaging.
Anbeek, Petronella; Vincken, Koen L; Groenendaal, Floris; Koeman, Annemieke; van Osch, Matthias J P; van der Grond, Jeroen
2008-02-01
A fully automated method has been developed for segmentation of four different structures in the neonatal brain: white matter (WM), central gray matter (CEGM), cortical gray matter (COGM), and cerebrospinal fluid (CSF). The segmentation algorithm is based on information from T2-weighted (T2-w) and inversion recovery (IR) scans. The method uses a K nearest neighbor (KNN) classification technique with features derived from spatial information and voxel intensities. Probabilistic segmentations of each tissue type were generated. By applying thresholds on these probability maps, binary segmentations were obtained. These final segmentations were evaluated by comparison with a gold standard. The sensitivity, specificity, and Dice similarity index (SI) were calculated for quantitative validation of the results. High sensitivity and specificity with respect to the gold standard were reached: sensitivity >0.82 and specificity >0.9 for all tissue types. Tissue volumes were calculated from the binary and probabilistic segmentations. The probabilistic segmentation volumes of all tissue types accurately estimated the gold standard volumes. The KNN approach offers valuable ways for neonatal brain segmentation. The probabilistic outcomes provide a useful tool for accurate volume measurements. The described method is based on routine diagnostic magnetic resonance imaging (MRI) and is suitable for large population studies.
Thomas, Marianna S; Newman, David; Leinhard, Olof Dahlqvist; Kasmai, Bahman; Greenwood, Richard; Malcolm, Paul N; Karlsson, Anette; Rosander, Johannes; Borga, Magnus; Toms, Andoni P
2014-09-01
To measure the test-retest reproducibility of an automated system for quantifying whole body and compartmental muscle volumes using wide bore 3 T MRI. Thirty volunteers stratified by body mass index underwent whole body 3 T MRI, two-point Dixon sequences, on two separate occasions. Water-fat separation was performed, with automated segmentation of whole body, torso, upper and lower leg volumes, and manually segmented lower leg muscle volumes. Mean automated total body muscle volume was 19·32 L (SD9·1) and 19·28 L (SD9·12) for first and second acquisitions (Intraclass correlation coefficient (ICC) = 1·0, 95% level of agreement -0·32-0·2 L). ICC for all automated test-retest muscle volumes were almost perfect (0·99-1·0) with 95% levels of agreement 1.8-6.6% of mean volume. Automated muscle volume measurements correlate closely with manual quantification (right lower leg: manual 1·68 L (2SD0·6) compared to automated 1·64 L (2SD 0·6), left lower leg: manual 1·69 L (2SD 0·64) compared to automated 1·63 L (SD0·61), correlation coefficients for automated and manual segmentation were 0·94-0·96). Fully automated whole body and compartmental muscle volume quantification can be achieved rapidly on a 3 T wide bore system with very low margins of error, excellent test-retest reliability and excellent correlation to manual segmentation in the lower leg. Sarcopaenia is an important reversible complication of a number of diseases. Manual quantification of muscle volume is time-consuming and expensive. Muscles can be imaged using in and out of phase MRI. Automated atlas-based segmentation can identify muscle groups. Automated muscle volume segmentation is reproducible and can replace manual measurements.
Moosavi Tayebi, Rohollah; Wirza, Rahmita; Sulaiman, Puteri S B; Dimon, Mohd Zamrin; Khalid, Fatimah; Al-Surmi, Aqeel; Mazaheri, Samaneh
2015-04-22
Computerized tomographic angiography (3D data representing the coronary arteries) and X-ray angiography (2D X-ray image sequences providing information about coronary arteries and their stenosis) are standard and popular assessment tools utilized for medical diagnosis of coronary artery diseases. At present, the results of both modalities are individually analyzed by specialists and it is difficult for them to mentally connect the details of these two techniques. The aim of this work is to assist medical diagnosis by providing specialists with the relationship between computerized tomographic angiography and X-ray angiography. In this study, coronary arteries from two modalities are registered in order to create a 3D reconstruction of the stenosis position. The proposed method starts with coronary artery segmentation and labeling for both modalities. Then, stenosis and relevant labeled artery in X-ray angiography image are marked by a specialist. Proper control points for the marked artery in both modalities are automatically detected and normalized. Then, a geometrical transformation function is computed using these control points. Finally, this function is utilized to register the marked artery from the X-ray angiography image on the computerized tomographic angiography and get the 3D position of the stenosis lesion. The result is a 3D informative model consisting of stenosis and coronary arteries' information from the X-ray angiography and computerized tomographic angiography modalities. The results of the proposed method for coronary artery segmentation, labeling and 3D reconstruction are evaluated and validated on the dataset containing both modalities. The advantage of this method is to aid specialists to determine a visual relationship between the correspondent coronary arteries from two modalities and also set up a connection between stenosis points from an X-ray angiography along with their 3D positions on the coronary arteries from computerized tomographic angiography. Moreover, another benefit of this work is that the medical acquisition standards remain unchanged, which means that no calibration in the acquisition devices is required. It can be applied on most computerized tomographic angiography and angiography devices.
Computerized detection of leukocytes in microscopic leukorrhea images.
Zhang, Jing; Zhong, Ya; Wang, Xiangzhou; Ni, Guangming; Du, Xiaohui; Liu, Juanxiu; Liu, Lin; Liu, Yong
2017-09-01
Detection of leukocytes is critical for the routine leukorrhea exam, which is widely used in gynecological examinations. An elevated vaginal leukocyte count in women with bacterial vaginosis is a strong predictor of vaginal or cervical infections. In the routine leukorrhea exam, the counting of leukocytes is primarily performed by manual techniques. However, the viewing and counting of leukocytes from multiple high-power viewing fields on a glass slide under a microscope leads to subjectivity, low efficiency, and low accuracy. To date, many biological cells in stool, blood, and breast cancer have been studied to realize computerized detection; however, the detection of leukocytes in microscopic leukorrhea images has not been studied. Thus, there is an increasing need for computerized detection of leukocytes. There are two key processes in the computerized detection of leukocytes in digital image processing. One is segmentation; the other is intelligent classification. In this paper, we propose a combined ensemble to detect leukocytes in the microscopic leukorrhea image. After image segmentation and selecting likely leukocyte subimages, we obtain the leukocyte candidates. Then, for intelligent classification, we adopt two methods: feature extraction and classification by a support vector machine (SVM); applying a modified convolutional neural network (CNN) to the larger subimages. If different methods classify a candidate in the same category, the process is finished. If not, the outputs of the methods are provided to a classifier to further classify the candidate. After acquiring leukocyte candidates, we attempted three methods to perform classification. The first approach using features and SVM achieved 88% sensitivity, 97% specificity, and 92.5% accuracy. The second method using CNN achieved 95% sensitivity, 84% specificity, and 89.5% accuracy. Then, in the combination approach, we achieved 92% sensitivity, 95% specificity, and 93.5% accuracy. Finally, the images with marked and counted leukocytes were obtained. A novel computerized detection system was developed for automated detection of leukocytes in microscopic images. Different methods resulted in comparable overall qualities by enabling computerized detection of leukocytes. The proposed approach further improved the performance. This preliminary study proves the feasibility of computerized detection of leukocytes in clinical use. © 2017 American Association of Physicists in Medicine.
Fully Convolutional Neural Networks Improve Abdominal Organ Segmentation.
Bobo, Meg F; Bao, Shunxing; Huo, Yuankai; Yao, Yuang; Virostko, Jack; Plassard, Andrew J; Lyu, Ilwoo; Assad, Albert; Abramson, Richard G; Hilmes, Melissa A; Landman, Bennett A
2018-03-01
Abdominal image segmentation is a challenging, yet important clinical problem. Variations in body size, position, and relative organ positions greatly complicate the segmentation process. Historically, multi-atlas methods have achieved leading results across imaging modalities and anatomical targets. However, deep learning is rapidly overtaking classical approaches for image segmentation. Recently, Zhou et al. showed that fully convolutional networks produce excellent results in abdominal organ segmentation of computed tomography (CT) scans. Yet, deep learning approaches have not been applied to whole abdomen magnetic resonance imaging (MRI) segmentation. Herein, we evaluate the applicability of an existing fully convolutional neural network (FCNN) designed for CT imaging to segment abdominal organs on T2 weighted (T2w) MRI's with two examples. In the primary example, we compare a classical multi-atlas approach with FCNN on forty-five T2w MRI's acquired from splenomegaly patients with five organs labeled (liver, spleen, left kidney, right kidney, and stomach). Thirty-six images were used for training while nine were used for testing. The FCNN resulted in a Dice similarity coefficient (DSC) of 0.930 in spleens, 0.730 in left kidneys, 0.780 in right kidneys, 0.913 in livers, and 0.556 in stomachs. The performance measures for livers, spleens, right kidneys, and stomachs were significantly better than multi-atlas (p < 0.05, Wilcoxon rank-sum test). In a secondary example, we compare the multi-atlas approach with FCNN on 138 distinct T2w MRI's with manually labeled pancreases (one label). On the pancreas dataset, the FCNN resulted in a median DSC of 0.691 in pancreases versus 0.287 for multi-atlas. The results are highly promising given relatively limited training data and without specific training of the FCNN model and illustrate the potential of deep learning approaches to transcend imaging modalities.
Fully convolutional neural networks improve abdominal organ segmentation
NASA Astrophysics Data System (ADS)
Bobo, Meg F.; Bao, Shunxing; Huo, Yuankai; Yao, Yuang; Virostko, Jack; Plassard, Andrew J.; Lyu, Ilwoo; Assad, Albert; Abramson, Richard G.; Hilmes, Melissa A.; Landman, Bennett A.
2018-03-01
Abdominal image segmentation is a challenging, yet important clinical problem. Variations in body size, position, and relative organ positions greatly complicate the segmentation process. Historically, multi-atlas methods have achieved leading results across imaging modalities and anatomical targets. However, deep learning is rapidly overtaking classical approaches for image segmentation. Recently, Zhou et al. showed that fully convolutional networks produce excellent results in abdominal organ segmentation of computed tomography (CT) scans. Yet, deep learning approaches have not been applied to whole abdomen magnetic resonance imaging (MRI) segmentation. Herein, we evaluate the applicability of an existing fully convolutional neural network (FCNN) designed for CT imaging to segment abdominal organs on T2 weighted (T2w) MRI's with two examples. In the primary example, we compare a classical multi-atlas approach with FCNN on forty-five T2w MRI's acquired from splenomegaly patients with five organs labeled (liver, spleen, left kidney, right kidney, and stomach). Thirty-six images were used for training while nine were used for testing. The FCNN resulted in a Dice similarity coefficient (DSC) of 0.930 in spleens, 0.730 in left kidneys, 0.780 in right kidneys, 0.913 in livers, and 0.556 in stomachs. The performance measures for livers, spleens, right kidneys, and stomachs were significantly better than multi-atlas (p < 0.05, Wilcoxon rank-sum test). In a secondary example, we compare the multi-atlas approach with FCNN on 138 distinct T2w MRI's with manually labeled pancreases (one label). On the pancreas dataset, the FCNN resulted in a median DSC of 0.691 in pancreases versus 0.287 for multi-atlas. The results are highly promising given relatively limited training data and without specific training of the FCNN model and illustrate the potential of deep learning approaches to transcend imaging modalities. 1
Functional brain segmentation using inter-subject correlation in fMRI.
Kauppi, Jukka-Pekka; Pajula, Juha; Niemi, Jari; Hari, Riitta; Tohka, Jussi
2017-05-01
The human brain continuously processes massive amounts of rich sensory information. To better understand such highly complex brain processes, modern neuroimaging studies are increasingly utilizing experimental setups that better mimic daily-life situations. A new exploratory data-analysis approach, functional segmentation inter-subject correlation analysis (FuSeISC), was proposed to facilitate the analysis of functional magnetic resonance (fMRI) data sets collected in these experiments. The method provides a new type of functional segmentation of brain areas, not only characterizing areas that display similar processing across subjects but also areas in which processing across subjects is highly variable. FuSeISC was tested using fMRI data sets collected during traditional block-design stimuli (37 subjects) as well as naturalistic auditory narratives (19 subjects). The method identified spatially local and/or bilaterally symmetric clusters in several cortical areas, many of which are known to be processing the types of stimuli used in the experiments. The method is not only useful for spatial exploration of large fMRI data sets obtained using naturalistic stimuli, but also has other potential applications, such as generation of a functional brain atlases including both lower- and higher-order processing areas. Finally, as a part of FuSeISC, a criterion-based sparsification of the shared nearest-neighbor graph was proposed for detecting clusters in noisy data. In the tests with synthetic data, this technique was superior to well-known clustering methods, such as Ward's method, affinity propagation, and K-means ++. Hum Brain Mapp 38:2643-2665, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Uterus segmentation in dynamic MRI using LBP texture descriptors
NASA Astrophysics Data System (ADS)
Namias, R.; Bellemare, M.-E.; Rahim, M.; Pirró, N.
2014-03-01
Pelvic floor disorders cover pathologies of which physiopathology is not well understood. However cases get prevalent with an ageing population. Within the context of a project aiming at modelization of the dynamics of pelvic organs, we have developed an efficient segmentation process. It aims at alleviating the radiologist with a tedious one by one image analysis. From a first contour delineating the uterus-vagina set, the organ border is tracked along a dynamic mri sequence. The process combines movement prediction, local intensity and texture analysis and active contour geometry control. Movement prediction allows a contour intitialization for next image in the sequence. Intensity analysis provides image-based local contour detection enhanced by local binary pattern (lbp) texture descriptors. Geometry control prohibits self intersections and smoothes the contour. Results show the efficiency of the method with images produced in clinical routine.
Construction of brain atlases based on a multi-center MRI dataset of 2020 Chinese adults
Liang, Peipeng; Shi, Lin; Chen, Nan; Luo, Yishan; Wang, Xing; Liu, Kai; Mok, Vincent CT; Chu, Winnie CW; Wang, Defeng; Li, Kuncheng
2015-01-01
Despite the known morphological differences (e.g., brain shape and size) in the brains of populations of different origins (e.g., age and race), the Chinese brain atlas is less studied. In the current study, we developed a statistical brain atlas based on a multi-center high quality magnetic resonance imaging (MRI) dataset of 2020 Chinese adults (18–76 years old). We constructed 12 Chinese brain atlas from the age 20 year to the age 75 at a 5 years interval. New Chinese brain standard space, coordinates, and brain area labels were further defined. The new Chinese brain atlas was validated in brain registration and segmentation. It was found that, as contrast to the MNI152 template, the proposed Chinese atlas showed higher accuracy in hippocampus segmentation and relatively smaller shape deformations during registration. These results indicate that a population-specific time varying brain atlas may be more appropriate for studies involving Chinese populations. PMID:26678304
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Shandong; Weinstein, Susan P.; Conant, Emily F.
Purpose: Breast magnetic resonance imaging (MRI) plays an important role in the clinical management of breast cancer. Studies suggest that the relative amount of fibroglandular (i.e., dense) tissue in the breast as quantified in MR images can be predictive of the risk for developing breast cancer, especially for high-risk women. Automated segmentation of the fibroglandular tissue and volumetric density estimation in breast MRI could therefore be useful for breast cancer risk assessment. Methods: In this work the authors develop and validate a fully automated segmentation algorithm, namely, an atlas-aided fuzzy C-means (FCM-Atlas) method, to estimate the volumetric amount of fibroglandularmore » tissue in breast MRI. The FCM-Atlas is a 2D segmentation method working on a slice-by-slice basis. FCM clustering is first applied to the intensity space of each 2D MR slice to produce an initial voxelwise likelihood map of fibroglandular tissue. Then a prior learned fibroglandular tissue likelihood atlas is incorporated to refine the initial FCM likelihood map to achieve enhanced segmentation, from which the absolute volume of the fibroglandular tissue (|FGT|) and the relative amount (i.e., percentage) of the |FGT| relative to the whole breast volume (FGT%) are computed. The authors' method is evaluated by a representative dataset of 60 3D bilateral breast MRI scans (120 breasts) that span the full breast density range of the American College of Radiology Breast Imaging Reporting and Data System. The automated segmentation is compared to manual segmentation obtained by two experienced breast imaging radiologists. Segmentation performance is assessed by linear regression, Pearson's correlation coefficients, Student's pairedt-test, and Dice's similarity coefficients (DSC). Results: The inter-reader correlation is 0.97 for FGT% and 0.95 for |FGT|. When compared to the average of the two readers’ manual segmentation, the proposed FCM-Atlas method achieves a correlation ofr = 0.92 for FGT% and r = 0.93 for |FGT|, and the automated segmentation is not statistically significantly different (p = 0.46 for FGT% and p = 0.55 for |FGT|). The bilateral correlation between left breasts and right breasts for the FGT% is 0.94, 0.92, and 0.95 for reader 1, reader 2, and the FCM-Atlas, respectively; likewise, for the |FGT|, it is 0.92, 0.92, and 0.93, respectively. For the spatial segmentation agreement, the automated algorithm achieves a DSC of 0.69 ± 0.1 when compared to reader 1 and 0.61 ± 0.1 for reader 2, respectively, while the DSC between the two readers’ manual segmentation is 0.67 ± 0.15. Additional robustness analysis shows that the segmentation performance of the authors' method is stable both with respect to selecting different cases and to varying the number of cases needed to construct the prior probability atlas. The authors' results also show that the proposed FCM-Atlas method outperforms the commonly used two-cluster FCM-alone method. The authors' method runs at ∼5 min for each 3D bilateral MR scan (56 slices) for computing the FGT% and |FGT|, compared to ∼55 min needed for manual segmentation for the same purpose. Conclusions: The authors' method achieves robust segmentation and can serve as an efficient tool for processing large clinical datasets for quantifying the fibroglandular tissue content in breast MRI. It holds a great potential to support clinical applications in the future including breast cancer risk assessment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Shandong; Weinstein, Susan P.; Conant, Emily F.
2013-12-15
Purpose: Breast magnetic resonance imaging (MRI) plays an important role in the clinical management of breast cancer. Studies suggest that the relative amount of fibroglandular (i.e., dense) tissue in the breast as quantified in MR images can be predictive of the risk for developing breast cancer, especially for high-risk women. Automated segmentation of the fibroglandular tissue and volumetric density estimation in breast MRI could therefore be useful for breast cancer risk assessment. Methods: In this work the authors develop and validate a fully automated segmentation algorithm, namely, an atlas-aided fuzzy C-means (FCM-Atlas) method, to estimate the volumetric amount of fibroglandularmore » tissue in breast MRI. The FCM-Atlas is a 2D segmentation method working on a slice-by-slice basis. FCM clustering is first applied to the intensity space of each 2D MR slice to produce an initial voxelwise likelihood map of fibroglandular tissue. Then a prior learned fibroglandular tissue likelihood atlas is incorporated to refine the initial FCM likelihood map to achieve enhanced segmentation, from which the absolute volume of the fibroglandular tissue (|FGT|) and the relative amount (i.e., percentage) of the |FGT| relative to the whole breast volume (FGT%) are computed. The authors' method is evaluated by a representative dataset of 60 3D bilateral breast MRI scans (120 breasts) that span the full breast density range of the American College of Radiology Breast Imaging Reporting and Data System. The automated segmentation is compared to manual segmentation obtained by two experienced breast imaging radiologists. Segmentation performance is assessed by linear regression, Pearson's correlation coefficients, Student's pairedt-test, and Dice's similarity coefficients (DSC). Results: The inter-reader correlation is 0.97 for FGT% and 0.95 for |FGT|. When compared to the average of the two readers’ manual segmentation, the proposed FCM-Atlas method achieves a correlation ofr = 0.92 for FGT% and r = 0.93 for |FGT|, and the automated segmentation is not statistically significantly different (p = 0.46 for FGT% and p = 0.55 for |FGT|). The bilateral correlation between left breasts and right breasts for the FGT% is 0.94, 0.92, and 0.95 for reader 1, reader 2, and the FCM-Atlas, respectively; likewise, for the |FGT|, it is 0.92, 0.92, and 0.93, respectively. For the spatial segmentation agreement, the automated algorithm achieves a DSC of 0.69 ± 0.1 when compared to reader 1 and 0.61 ± 0.1 for reader 2, respectively, while the DSC between the two readers’ manual segmentation is 0.67 ± 0.15. Additional robustness analysis shows that the segmentation performance of the authors' method is stable both with respect to selecting different cases and to varying the number of cases needed to construct the prior probability atlas. The authors' results also show that the proposed FCM-Atlas method outperforms the commonly used two-cluster FCM-alone method. The authors' method runs at ∼5 min for each 3D bilateral MR scan (56 slices) for computing the FGT% and |FGT|, compared to ∼55 min needed for manual segmentation for the same purpose. Conclusions: The authors' method achieves robust segmentation and can serve as an efficient tool for processing large clinical datasets for quantifying the fibroglandular tissue content in breast MRI. It holds a great potential to support clinical applications in the future including breast cancer risk assessment.« less
Technical report on semiautomatic segmentation using the Adobe Photoshop.
Park, Jin Seo; Chung, Min Suk; Hwang, Sung Bae; Lee, Yong Sook; Har, Dong-Hwan
2005-12-01
The purpose of this research is to enable users to semiautomatically segment the anatomical structures in magnetic resonance images (MRIs), computerized tomographs (CTs), and other medical images on a personal computer. The segmented images are used for making 3D images, which are helpful to medical education and research. To achieve this purpose, the following trials were performed. The entire body of a volunteer was scanned to make 557 MRIs. On Adobe Photoshop, contours of 19 anatomical structures in the MRIs were semiautomatically drawn using MAGNETIC LASSO TOOL and manually corrected using either LASSO TOOL or DIRECT SELECTION TOOL to make 557 segmented images. In a similar manner, 13 anatomical structures in 8,590 anatomical images were segmented. Proper segmentation was verified by making 3D images from the segmented images. Semiautomatic segmentation using Adobe Photoshop is expected to be widely used for segmentation of anatomical structures in various medical images.
Dynamic deformable models for 3D MRI heart segmentation
NASA Astrophysics Data System (ADS)
Zhukov, Leonid; Bao, Zhaosheng; Gusikov, Igor; Wood, John; Breen, David E.
2002-05-01
Automated or semiautomated segmentation of medical images decreases interstudy variation, observer bias, and postprocessing time as well as providing clincally-relevant quantitative data. In this paper we present a new dynamic deformable modeling approach to 3D segmentation. It utilizes recently developed dynamic remeshing techniques and curvature estimation methods to produce high-quality meshes. The approach has been implemented in an interactive environment that allows a user to specify an initial model and identify key features in the data. These features act as hard constraints that the model must not pass through as it deforms. We have employed the method to perform semi-automatic segmentation of heart structures from cine MRI data.
Interactive experimenters' planning procedures and mission control
NASA Technical Reports Server (NTRS)
Desjardins, R. L.
1973-01-01
The computerized mission control and planning system routinely generates a 24-hour schedule in one hour of operator time by including time dimensions into experimental planning procedures. Planning is validated interactively as it is being generated segment by segment in the frame of specific event times. The planner simply points a light pen at the time mark of interest on the time line for entering specific event times into the schedule.
Investigation of computer-aided colonic crypt pattern analysis
NASA Astrophysics Data System (ADS)
Qi, Xin; Pan, Yinsheng; Sivak, Michael V., Jr.; Olowe, Kayode; Rollins, Andrew M.
2007-02-01
Colorectal cancer is the second leading cause of cancer-related death in the United States. Approximately 50% of these deaths could be prevented by earlier detection through screening. Magnification chromoendoscopy is a technique which utilizes tissue stains applied to the gastrointestinal mucosa and high-magnification endoscopy to better visualize and characterize lesions. Prior studies have shown that shapes of colonic crypts change with disease and show characteristic patterns. Current methods for assessing colonic crypt patterns are somewhat subjective and not standardized. Computerized algorithms could be used to standardize colonic crypt pattern assessment. We have imaged resected colonic mucosa in vitro (N = 70) using methylene blue dye and a surgical microscope to approximately simulate in vivo imaging with magnification chromoendoscopy. We have developed a method of computerized processing to analyze the crypt patterns in the images. The quantitative image analysis consists of three steps. First, the crypts within the region of interest of colonic tissue are semi-automatically segmented using watershed morphological processing. Second, crypt size and shape parameters are extracted from the segmented crypts. Third, each sample is assigned to a category according to the Kudo criteria. The computerized classification is validated by comparison with human classification using the Kudo classification criteria. The computerized colonic crypt pattern analysis algorithm will enable a study of in vivo magnification chromoendoscopy of colonic crypt pattern correlated with risk of colorectal cancer. This study will assess the feasibility of screening and surveillance of the colon using magnification chromoendoscopy.
Fully automated contour detection of the ascending aorta in cardiac 2D phase-contrast MRI.
Codari, Marina; Scarabello, Marco; Secchi, Francesco; Sforza, Chiarella; Baselli, Giuseppe; Sardanelli, Francesco
2018-04-01
In this study we proposed a fully automated method for localizing and segmenting the ascending aortic lumen with phase-contrast magnetic resonance imaging (PC-MRI). Twenty-five phase-contrast series were randomly selected out of a large population dataset of patients whose cardiac MRI examination, performed from September 2008 to October 2013, was unremarkable. The local Ethical Committee approved this retrospective study. The ascending aorta was automatically identified on each phase of the cardiac cycle using a priori knowledge of aortic geometry. The frame that maximized the area, eccentricity, and solidity parameters was chosen for unsupervised initialization. Aortic segmentation was performed on each frame using active contouring without edges techniques. The entire algorithm was developed using Matlab R2016b. To validate the proposed method, the manual segmentation performed by a highly experienced operator was used. Dice similarity coefficient, Bland-Altman analysis, and Pearson's correlation coefficient were used as performance metrics. Comparing automated and manual segmentation of the aortic lumen on 714 images, Bland-Altman analysis showed a bias of -6.68mm 2 , a coefficient of repeatability of 91.22mm 2 , a mean area measurement of 581.40mm 2 , and a reproducibility of 85%. Automated and manual segmentation were highly correlated (R=0.98). The Dice similarity coefficient versus the manual reference standard was 94.6±2.1% (mean±standard deviation). A fully automated and robust method for identification and segmentation of ascending aorta on PC-MRI was developed. Its application on patients with a variety of pathologic conditions is advisable. Copyright © 2017 Elsevier Inc. All rights reserved.
Nielsen, Flemming K; Egund, Niels; Jørgensen, Anette; Peters, David A; Jurik, Anne Grethe
2016-11-16
Bone marrow lesions (BMLs) in knee osteoarthritis (OA) can be assessed using fluid sensitive and contrast enhanced sequences. The association between BMLs and symptoms has been investigated in several studies but only using fluid sensitive sequences. Our aims were to assess BMLs by contrast enhanced MRI sequences in comparison with a fluid sensitive STIR sequence using two different segmentation methods and to analyze the association between the MR findings and disability and pain. Twenty-two patients (mean age 61 years, range 41-79 years) with medial femoro-tibial knee OA obtained MRI and filled out a WOMAC questionnaire at baseline and follow-up (median interval of 334 days). STIR, dynamic contrast enhanced-MRI (DCE-MRI) and fat saturated T1 post-contrast (T1 CE FS) MRI sequences were obtained. All STIR and T1 CE FS sequences were assessed independently by two readers for STIR-BMLs and contrast enhancing areas of BMLs (CEA-BMLs) using manual segmentation and computer assisted segmentation, and the measurements were compared. DCE-MRIs were assessed for the relative distribution of voxels with an inflammatory enhancement pattern, N voxel , in the bone marrow. All findings were compared to WOMAC scores, including pain and overall symptoms, and changes from baseline to follow-up were analyzed. The average volume of CEA-BML was smaller than the STIR-BML volume by manual segmentation. The opposite was found for computer assisted segmentation where the average CEA-BML volume was larger than the STIR-BML volume. The contradictory finding by computer assisted segmentation was partly caused by a number of outliers with an apparent generally increased signal intensity in the anterior parts of the femoral condyle and tibial plateau causing an overestimation of the CEA-BML volume. Both CEA-BML, STIR-BML and N voxel were significantly correlated with symptoms and to a similar degree. A significant reduction in total WOMAC score was seen at follow-up, but no significant changes were observed for either CEA-BML, STIR-BML or N voxel . Neither the degree nor the volume of contrast enhancement in BMLs seems to add any clinical information compared to BMLs visualized by fluid sensitive sequences. Manual segmentation may be needed to obtain valid CEA-BML measurements.
Multi-temporal MRI carpal bone volumes analysis by principal axes registration
NASA Astrophysics Data System (ADS)
Ferretti, Roberta; Dellepiane, Silvana
2016-03-01
In this paper, a principal axes registration technique is presented, with the relevant application to segmented volumes. The purpose of the proposed registration is to compare multi-temporal volumes of carpal bones from Magnetic Resonance Imaging (MRI) acquisitions. Starting from the study of the second-order moment matrix, the eigenvectors are calculated to allow the rotation of volumes with respect to reference axes. Then the volumes are spatially translated to become perfectly overlapped. A quantitative evaluation of the results obtained is carried out by computing classical indices from the confusion matrix, which depict similarity measures between the volumes of the same organ as extracted from MRI acquisitions executed at different moments. Within the medical field, the way a registration can be used to compare multi-temporal images is of great interest, since it provides the physician with a tool which allows a visual monitoring of a disease evolution. The segmentation method used herein is based on the graph theory and is a robust, unsupervised and parameters independent method. Patients affected by rheumatic diseases have been considered.
Semi-Automatic Segmentation Software for Quantitative Clinical Brain Glioblastoma Evaluation
Zhu, Y; Young, G; Xue, Z; Huang, R; You, H; Setayesh, K; Hatabu, H; Cao, F; Wong, S.T.
2012-01-01
Rationale and Objectives Quantitative measurement provides essential information about disease progression and treatment response in patients with Glioblastoma multiforme (GBM). The goal of this paper is to present and validate a software pipeline for semi-automatic GBM segmentation, called AFINITI (Assisted Follow-up in NeuroImaging of Therapeutic Intervention), using clinical data from GBM patients. Materials and Methods Our software adopts the current state-of-the-art tumor segmentation algorithms and combines them into one clinically usable pipeline. Both the advantages of the traditional voxel-based and the deformable shape-based segmentation are embedded into the software pipeline. The former provides an automatic tumor segmentation scheme based on T1- and T2-weighted MR brain data, and the latter refines the segmentation results with minimal manual input. Results Twenty six clinical MR brain images of GBM patients were processed and compared with manual results. The results can be visualized using the embedded graphic user interface (GUI). Conclusion Validation results using clinical GBM data showed high correlation between the AFINITI results and manual annotation. Compared to the voxel-wise segmentation, AFINITI yielded more accurate results in segmenting the enhanced GBM from multimodality MRI data. The proposed pipeline could be used as additional information to interpret MR brain images in neuroradiology. PMID:22591720
Myocardial scar segmentation from magnetic resonance images using convolutional neural network
NASA Astrophysics Data System (ADS)
Zabihollahy, Fatemeh; White, James A.; Ukwatta, Eranga
2018-02-01
Accurate segmentation of the myocardial fibrosis or scar may provide important advancements for the prediction and management of malignant ventricular arrhythmias in patients with cardiovascular disease. In this paper, we propose a semi-automated method for segmentation of myocardial scar from late gadolinium enhancement magnetic resonance image (LGE-MRI) using a convolutional neural network (CNN). In contrast to image intensitybased methods, CNN-based algorithms have the potential to improve the accuracy of scar segmentation through the creation of high-level features from a combination of convolutional, detection and pooling layers. Our developed algorithm was trained using 2,336,703 image patches extracted from 420 slices of five 3D LGE-MR datasets, then validated on 2,204,178 patches from a testing dataset of seven 3D LGE-MR images including 624 slices, all obtained from patients with chronic myocardial infarction. For evaluation of the algorithm, we compared the algorithmgenerated segmentations to manual delineations by experts. Our CNN-based method reported an average Dice similarity coefficient (DSC), precision, and recall of 94.50 +/- 3.62%, 96.08 +/- 3.10%, and 93.96 +/- 3.75% as the accuracy of segmentation, respectively. As compared to several intensity threshold-based methods for scar segmentation, the results of our developed method have a greater agreement with manual expert segmentation.
van der Palen, Roel L F; Roest, Arno A W; van den Boogaard, Pieter J; de Roos, Albert; Blom, Nico A; Westenberg, Jos J M
2018-05-26
The aim was to investigate scan-rescan reproducibility and observer variability of segmental aortic 3D systolic wall shear stress (WSS) by phase-specific segmentation with 4D flow MRI in healthy volunteers. Ten healthy volunteers (age 26.5 ± 2.6 years) underwent aortic 4D flow MRI twice. Maximum 3D systolic WSS (WSSmax) and mean 3D systolic WSS (WSSmean) for five thoracic aortic segments over five systolic cardiac phases by phase-specific segmentations were calculated. Scan-rescan analysis and observer reproducibility analysis were performed. Scan-rescan data showed overall good reproducibility for WSSmean (coefficient of variation, COV 10-15%) with moderate-to-strong intraclass correlation coefficient (ICC 0.63-0.89). The variability in WSSmax was high (COV 16-31%) with moderate-to-good ICC (0.55-0.79) for different aortic segments. Intra- and interobserver reproducibility was good-to-excellent for regional aortic WSSmax (ICC ≥ 0.78; COV ≤ 17%) and strong-to-excellent for WSSmean (ICC ≥ 0.86; COV ≤ 11%). In general, ascending aortic segments showed more WSSmax/WSSmean variability compared to aortic arch or descending aortic segments for scan-rescan, intraobserver and interobserver comparison. Scan-rescan reproducibility was good for WSSmean and moderate for WSSmax for all thoracic aortic segments over multiple systolic phases in healthy volunteers. Intra/interobserver reproducibility for segmental WSS assessment was good-to-excellent. Variability of WSSmax is higher and should be taken into account in case of individual follow-up or in comparative rest-stress studies to avoid misinterpretation.
Brain tissue segmentation based on DTI data
Liu, Tianming; Li, Hai; Wong, Kelvin; Tarokh, Ashley; Guo, Lei; Wong, Stephen T.C.
2008-01-01
We present a method for automated brain tissue segmentation based on the multi-channel fusion of diffusion tensor imaging (DTI) data. The method is motivated by the evidence that independent tissue segmentation based on DTI parametric images provides complementary information of tissue contrast to the tissue segmentation based on structural MRI data. This has important applications in defining accurate tissue maps when fusing structural data with diffusion data. In the absence of structural data, tissue segmentation based on DTI data provides an alternative means to obtain brain tissue segmentation. Our approach to the tissue segmentation based on DTI data is to classify the brain into two compartments by utilizing the tissue contrast existing in a single channel. Specifically, because the apparent diffusion coefficient (ADC) values in the cerebrospinal fluid (CSF) are more than twice that of gray matter (GM) and white matter (WM), we use ADC images to distinguish CSF and non-CSF tissues. Additionally, fractional anisotropy (FA) images are used to separate WM from non-WM tissues, as highly directional white matter structures have much larger fractional anisotropy values. Moreover, other channels to separate tissue are explored, such as eigenvalues of the tensor, relative anisotropy (RA), and volume ratio (VR). We developed an approach based on the Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm that combines these two-class maps to obtain a complete tissue segmentation map of CSF, GM, and WM. Evaluations are provided to demonstrate the performance of our approach. Experimental results of applying this approach to brain tissue segmentation and deformable registration of DTI data and spoiled gradient-echo (SPGR) data are also provided. PMID:17804258
Buisson, Anthony; Pereira, Bruno; Goutte, Marion; Reymond, Maud; Allimant, Christophe; Obritin-Guilhen, Hélène; Bommelaer, Gilles; Hordonneau, Constance
2017-11-01
Magnetic resonance index of activity (MaRIA) and Clermont score are currently the two main MRI indices that have been validated compared to endoscopy in Crohn's disease (CD). To compare the accuracy of MaRIA and Clermont score in assessing CD mucosal healing. Fourty-four CD patients underwent prospectively and consecutively MRI and colonoscopy. Considering 207 segments, MaRIA>7 and Clermont score>8.4 demonstrated substantial accuracy to detect endoscopic ulcerations (73.9% and 74.0%, respectively) and presented with high specificity (82.1% and 81.3%) and high negative predictive value (NPV) (82.1% and 82.4%) for MaRIA and Clermont score, respectively. The sensitivity for detecting deep ulcerations was 90.9% for both MaRIA>11 and Clermont score>12.5, with a specificity of 82.0% and 80.0%, respectively. Among 44 patients, deep MRI remission predicted mucosal healing with specificity=85.3% and NPV=85.3% according to Barcelona criteria (no segmental MaRIA>7), and specificity=88.2% and NPV=85.7% according to Clermont criteria (no segmental Clermont score>8.4). In addition, MRI remission predicted mucosal healing with specificity=76.5% and NPV=86.7% according to Barcelona criteria (no segmental MaRIA>11), and specificity=79.4% and NPV=84.4% according to Clermont criteria (no segmental Clermont score>12.5). MaRIA and Clermont score are equally effective in detecting CD endoscopic ulcerations supporting their use as therapeutic endpoints. Copyright © 2017 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
Liu, Yan; Stojadinovic, Strahinja; Hrycushko, Brian; Wardak, Zabi; Lau, Steven; Lu, Weiguo; Yan, Yulong; Jiang, Steve B; Zhen, Xin; Timmerman, Robert; Nedzi, Lucien; Gu, Xuejun
2017-01-01
Accurate and automatic brain metastases target delineation is a key step for efficient and effective stereotactic radiosurgery (SRS) treatment planning. In this work, we developed a deep learning convolutional neural network (CNN) algorithm for segmenting brain metastases on contrast-enhanced T1-weighted magnetic resonance imaging (MRI) datasets. We integrated the CNN-based algorithm into an automatic brain metastases segmentation workflow and validated on both Multimodal Brain Tumor Image Segmentation challenge (BRATS) data and clinical patients' data. Validation on BRATS data yielded average DICE coefficients (DCs) of 0.75±0.07 in the tumor core and 0.81±0.04 in the enhancing tumor, which outperformed most techniques in the 2015 BRATS challenge. Segmentation results of patient cases showed an average of DCs 0.67±0.03 and achieved an area under the receiver operating characteristic curve of 0.98±0.01. The developed automatic segmentation strategy surpasses current benchmark levels and offers a promising tool for SRS treatment planning for multiple brain metastases.
Interactive surface correction for 3D shape based segmentation
NASA Astrophysics Data System (ADS)
Schwarz, Tobias; Heimann, Tobias; Tetzlaff, Ralf; Rau, Anne-Mareike; Wolf, Ivo; Meinzer, Hans-Peter
2008-03-01
Statistical shape models have become a fast and robust method for segmentation of anatomical structures in medical image volumes. In clinical practice, however, pathological cases and image artifacts can lead to local deviations of the detected contour from the true object boundary. These deviations have to be corrected manually. We present an intuitively applicable solution for surface interaction based on Gaussian deformation kernels. The method is evaluated by two radiological experts on segmentations of the liver in contrast-enhanced CT images and of the left heart ventricle (LV) in MRI data. For both applications, five datasets are segmented automatically using deformable shape models, and the resulting surfaces are corrected manually. The interactive correction step improves the average surface distance against ground truth from 2.43mm to 2.17mm for the liver, and from 2.71mm to 1.34mm for the LV. We expect this method to raise the acceptance of automatic segmentation methods in clinical application.
Meng, Qier; Kitasaka, Takayuki; Nimura, Yukitaka; Oda, Masahiro; Ueno, Junji; Mori, Kensaku
2017-02-01
Airway segmentation plays an important role in analyzing chest computed tomography (CT) volumes for computerized lung cancer detection, emphysema diagnosis and pre- and intra-operative bronchoscope navigation. However, obtaining a complete 3D airway tree structure from a CT volume is quite a challenging task. Several researchers have proposed automated airway segmentation algorithms basically based on region growing and machine learning techniques. However, these methods fail to detect the peripheral bronchial branches, which results in a large amount of leakage. This paper presents a novel approach for more accurate extraction of the complex airway tree. This proposed segmentation method is composed of three steps. First, Hessian analysis is utilized to enhance the tube-like structure in CT volumes; then, an adaptive multiscale cavity enhancement filter is employed to detect the cavity-like structure with different radii. In the second step, support vector machine learning will be utilized to remove the false positive (FP) regions from the result obtained in the previous step. Finally, the graph-cut algorithm is used to refine the candidate voxels to form an integrated airway tree. A test dataset including 50 standard-dose chest CT volumes was used for evaluating our proposed method. The average extraction rate was about 79.1 % with the significantly decreased FP rate. A new method of airway segmentation based on local intensity structure and machine learning technique was developed. The method was shown to be feasible for airway segmentation in a computer-aided diagnosis system for a lung and bronchoscope guidance system.
NASA Astrophysics Data System (ADS)
Cheng, Guanghui; Yang, Xiaofeng; Wu, Ning; Xu, Zhijian; Zhao, Hongfu; Wang, Yuefeng; Liu, Tian
2013-02-01
Xerostomia (dry mouth), resulting from radiation damage to the parotid glands, is one of the most common and distressing side effects of head-and-neck cancer radiotherapy. Recent MRI studies have demonstrated that the volume reduction of parotid glands is an important indicator for radiation damage and xerostomia. In the clinic, parotid-volume evaluation is exclusively based on physicians' manual contours. However, manual contouring is time-consuming and prone to inter-observer and intra-observer variability. Here, we report a fully automated multi-atlas-based registration method for parotid-gland delineation in 3D head-and-neck MR images. The multi-atlas segmentation utilizes a hybrid deformable image registration to map the target subject to multiple patients' images, applies the transformation to the corresponding segmented parotid glands, and subsequently uses the multiple patient-specific pairs (head-and-neck MR image and transformed parotid-gland mask) to train support vector machine (SVM) to reach consensus to segment the parotid gland of the target subject. This segmentation algorithm was tested with head-and-neck MRIs of 5 patients following radiotherapy for the nasopharyngeal cancer. The average parotid-gland volume overlapped 85% between the automatic segmentations and the physicians' manual contours. In conclusion, we have demonstrated the feasibility of an automatic multi-atlas based segmentation algorithm to segment parotid glands in head-and-neck MR images.
Zamboglou, Constantinos; Drendel, Vanessa; Jilg, Cordula A.; Rischke, Hans C.; Beck, Teresa I.; Schultze-Seemann, Wolfgang; Krauss, Tobias; Mix, Michael; Schiller, Florian; Wetterauer, Ulrich; Werner, Martin; Langer, Mathias; Bock, Michael; Meyer, Philipp T.; Grosu, Anca L.
2017-01-01
Purpose: The exact detection and delineation of the intraprostatic tumour burden is crucial for treatment planning in primary prostate cancer (PCa). We compared 68Ga-HBED-CC-PSMA PET/CT with multiparametric MRI (mpMRI) for diagnosis and tumour delineation in patients with primary PCa based on slice by slice correlation with histopathological reference material. Methodology: Seven patients with histopathologically proven primary PCa underwent 68Ga-HBED-CC-PSMA PET/CT and MRI followed by radical prostatectomy. Resected prostates were scanned by ex-vivo CT in a special localizer and prepared for histopathology. Invasive PCa was delineated on a HE stained histologic tissue slide and matched to ex-vivo CT to obtain gross tumor volume (GTV-)histo. Ex-vivo CT including GTV-histo and MRI data were matched to in-vivo CT(PET). Consensus contours based on MRI (GTV-MRI), PSMA PET (GTV-PET) or the combination of both (GTV-union/-intersection) were created. In each in-vivo CT slice the prostate was separated into 4 equal segments and sensitivity and specificity for PSMA PET and mpMRI were assessed by comparison with histological reference material. Furthermore, the spatial overlap between GTV-histo and GTV-PET/-MRI and the Sørensen-Dice coefficient (DSC) were calculated. In the case of multifocal PCa (4/7 patients), SUV values (PSMA PET) and ADC-values (diffusion weighted MRI) were obtained for each lesion. Results: PSMA PET and mpMRI detected PCa in all patients. GTV-histo was detected in 225 of 340 segments (66.2%). Sensitivity and specificity for GTV-PET, GTV-MRI, GTV-union and GTV-intersection were 75% and 87%, 70% and 82%, 82% and 67%, 55% and 99%, respectively. GTV-histo had on average the highest overlap with GTV-union (57±22%), which was significantly higher than overlap with GTV-MRI (p=0.016) and GTV-PET (p=0.016), respectively. The mean DSC for GTV-union, GTV-PET and GTV-MRI was 0.51 (±0.18), 0.45 (±0.17) and 0.48 (±0.19), respectively. In every patient with multifocal PCa there was one lesion which had both the highest SUV and the lowest ADC-value (mean and max). Conclusion: In a slice by slice analysis with histopathology, 68Ga-HBED-CC-PSMA PET/CT and mpMRI showed high sensitivity and specificity in detection of primary PCa. A combination of both methods performed even better in terms of sensitivity (GTV-union) and specificity (GTV-intersection). A moderate to good spatial overlap with GTV-histo was observed for PSMA PET/CT and mpMRI alone which was significantly improved by GTV-union. Further studies are warranted to analyse the impact of these preliminary findings for diagnostic (multimodal guided TRUS biopsy) and therapeutic (focal therapy) strategies in primary PCa. PMID:28042330
Reconstruction of 7T-Like Images From 3T MRI
Bahrami, Khosro; Shi, Feng; Zong, Xiaopeng; Shin, Hae Won; An, Hongyu
2016-01-01
In the recent MRI scanning, ultra-high-field (7T) MR imaging provides higher resolution and better tissue contrast compared to routine 3T MRI, which may help in more accurate and early brain diseases diagnosis. However, currently, 7T MRI scanners are more expensive and less available at clinical and research centers. These motivate us to propose a method for the reconstruction of images close to the quality of 7T MRI, called 7T-like images, from 3T MRI, to improve the quality in terms of resolution and contrast. By doing so, the post-processing tasks, such as tissue segmentation, can be done more accurately and brain tissues details can be seen with higher resolution and contrast. To do this, we have acquired a unique dataset which includes paired 3T and 7T images scanned from same subjects, and then propose a hierarchical reconstruction based on group sparsity in a novel multi-level Canonical Correlation Analysis (CCA) space, to improve the quality of 3T MR image to be 7T-like MRI. First, overlapping patches are extracted from the input 3T MR image. Then, by extracting the most similar patches from all the aligned 3T and 7T images in the training set, the paired 3T and 7T dictionaries are constructed for each patch. It is worth noting that, for the training, we use pairs of 3T and 7T MR images from each training subject. Then, we propose multi-level CCA to map the paired 3T and 7T patch sets to a common space to increase their correlations. In such space, each input 3T MRI patch is sparsely represented by the 3T dictionary and then the obtained sparse coefficients are used together with the corresponding 7T dictionary to reconstruct the 7T-like patch. Also, to have the structural consistency between adjacent patches, the group sparsity is employed. This reconstruction is performed with changing patch sizes in a hierarchical framework. Experiments have been done using 13 subjects with both 3T and 7T MR images. The results show that our method outperforms previous methods and is able to recover better structural details. Also, to place our proposed method in a medical application context, we evaluated the influence of post-processing methods such as brain tissue segmentation on the reconstructed 7T-like MR images. Results show that our 7T-like images lead to higher accuracy in segmentation of white matter (WM), gray matter (GM), cerebrospinal fluid (CSF), and skull, compared to segmentation of 3T MR images. PMID:27046894
Real-Time Ultrasound Segmentation, Analysis and Visualisation of Deep Cervical Muscle Structure.
Cunningham, Ryan J; Harding, Peter J; Loram, Ian D
2017-02-01
Despite widespread availability of ultrasound and a need for personalised muscle diagnosis (neck/back pain-injury, work related disorder, myopathies, neuropathies), robust, online segmentation of muscles within complex groups remains unsolved by existing methods. For example, Cervical Dystonia (CD) is a prevalent neurological condition causing painful spasticity in one or multiple muscles in the cervical muscle system. Clinicians currently have no method for targeting/monitoring treatment of deep muscles. Automated methods of muscle segmentation would enable clinicians to study, target, and monitor the deep cervical muscles via ultrasound. We have developed a method for segmenting five bilateral cervical muscles and the spine via ultrasound alone, in real-time. Magnetic Resonance Imaging (MRI) and ultrasound data were collected from 22 participants (age: 29.0±6.6, male: 12). To acquire ultrasound muscle segment labels, a novel multimodal registration method was developed, involving MRI image annotation, and shape registration to MRI-matched ultrasound images, via approximation of the tissue deformation. We then applied polynomial regression to transform our annotations and textures into a mean space, before using shape statistics to generate a texture-to-shape dictionary. For segmentation, test images were compared to dictionary textures giving an initial segmentation, and then we used a customized Active Shape Model to refine the fit. Using ultrasound alone, on unseen participants, our technique currently segments a single image in [Formula: see text] to over 86% accuracy (Jaccard index). We propose this approach is applicable generally to segment, extrapolate and visualise deep muscle structure, and analyse statistical features online.
3D Registration of mpMRI for Assessment of Prostate Cancer Focal Therapy.
Orczyk, Clément; Rosenkrantz, Andrew B; Mikheev, Artem; Villers, Arnauld; Bernaudin, Myriam; Taneja, Samir S; Valable, Samuel; Rusinek, Henry
2017-12-01
This study aimed to assess a novel method of three-dimensional (3D) co-registration of prostate magnetic resonance imaging (MRI) examinations performed before and after prostate cancer focal therapy. We developed a software platform for automatic 3D deformable co-registration of prostate MRI at different time points and applied this method to 10 patients who underwent focal ablative therapy. MRI examinations were performed preoperatively, as well as 1 week and 6 months post treatment. Rigid registration served as reference for assessing co-registration accuracy and precision. Segmentation of preoperative and postoperative prostate revealed a significant postoperative volume decrease of the gland that averaged 6.49 cc (P = .017). Applying deformable transformation based on mutual information from 120 pairs of MRI slices, we refined by 2.9 mm (max. 6.25 mm) the alignment of the ablation zone, segmented from contrast-enhanced images on the 1-week postoperative examination, to the 6-month postoperative T2-weighted images. This represented a 500% improvement over the rigid approach (P = .001), corrected by volume. The dissimilarity by Dice index of the mapped ablation zone using deformable transformation vs rigid control was significantly (P = .04) higher at the ablation site than in the whole gland. Our findings illustrate our method's ability to correct for deformation at the ablation site. The preliminary analysis suggests that deformable transformation computed from mutual information of preoperative and follow-up MRI is accurate in co-registration of MRI examinations performed before and after focal therapy. The ability to localize the previously ablated tissue in 3D space may improve targeting for image-guided follow-up biopsy within focal therapy protocols. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, Ashirbani, E-mail: as698@duke.edu; Grimm, La
Purpose: To assess the interobserver variability of readers when outlining breast tumors in MRI, study the reasons behind the variability, and quantify the effect of the variability on algorithmic imaging features extracted from breast MRI. Methods: Four readers annotated breast tumors from the MRI examinations of 50 patients from one institution using a bounding box to indicate a tumor. All of the annotated tumors were biopsy proven cancers. The similarity of bounding boxes was analyzed using Dice coefficients. An automatic tumor segmentation algorithm was used to segment tumors from the readers’ annotations. The segmented tumors were then compared between readersmore » using Dice coefficients as the similarity metric. Cases showing high interobserver variability (average Dice coefficient <0.8) after segmentation were analyzed by a panel of radiologists to identify the reasons causing the low level of agreement. Furthermore, an imaging feature, quantifying tumor and breast tissue enhancement dynamics, was extracted from each segmented tumor for a patient. Pearson’s correlation coefficients were computed between the features for each pair of readers to assess the effect of the annotation on the feature values. Finally, the authors quantified the extent of variation in feature values caused by each of the individual reasons for low agreement. Results: The average agreement between readers in terms of the overlap (Dice coefficient) of the bounding box was 0.60. Automatic segmentation of tumor improved the average Dice coefficient for 92% of the cases to the average value of 0.77. The mean agreement between readers expressed by the correlation coefficient for the imaging feature was 0.96. Conclusions: There is a moderate variability between readers when identifying the rectangular outline of breast tumors on MRI. This variability is alleviated by the automatic segmentation of the tumors. Furthermore, the moderate interobserver variability in terms of the bounding box does not translate into a considerable variability in terms of assessment of enhancement dynamics. The authors propose some additional ways to further reduce the interobserver variability.« less
Karimpoor, Mahta; Churchill, Nathan W.; Tam, Fred; Fischer, Corinne E.; Schweizer, Tom A.; Graham, Simon J.
2018-01-01
Handwriting is a complex human activity that engages a blend of cognitive and visual motor skills. Current understanding of the neural correlates of handwriting has largely come from lesion studies of patients with impaired handwriting. Task-based fMRI studies would be useful to supplement this work. To address concerns over ecological validity, previously we developed a fMRI-compatible, computerized tablet system for writing and drawing including visual feedback of hand position and an augmented reality display. The purpose of the present work is to use the tablet system in proof-of-concept to characterize brain activity associated with clinically relevant handwriting tasks, originally developed to characterize handwriting impairments in Alzheimer’s disease patients. As a prelude to undertaking fMRI studies of patients, imaging was performed of twelve young healthy subjects who copied sentences, phone numbers, and grocery lists using the fMRI-compatible tablet. Activation maps for all handwriting tasks consisted of a distributed network of regions in reasonable agreement with previous studies of handwriting performance. In addition, differences in brain activity were observed between the test subcomponents consistent with different demands of neural processing for successful task performance, as identified by investigating three quantitative behavioral metrics (writing speed, stylus contact force and stylus in air time). This study provides baseline behavioral and brain activity results for fMRI studies that adopt this handwriting test to characterize patients with brain impairments. PMID:29487511
Karimpoor, Mahta; Churchill, Nathan W; Tam, Fred; Fischer, Corinne E; Schweizer, Tom A; Graham, Simon J
2018-01-01
Handwriting is a complex human activity that engages a blend of cognitive and visual motor skills. Current understanding of the neural correlates of handwriting has largely come from lesion studies of patients with impaired handwriting. Task-based fMRI studies would be useful to supplement this work. To address concerns over ecological validity, previously we developed a fMRI-compatible, computerized tablet system for writing and drawing including visual feedback of hand position and an augmented reality display. The purpose of the present work is to use the tablet system in proof-of-concept to characterize brain activity associated with clinically relevant handwriting tasks, originally developed to characterize handwriting impairments in Alzheimer's disease patients. As a prelude to undertaking fMRI studies of patients, imaging was performed of twelve young healthy subjects who copied sentences, phone numbers, and grocery lists using the fMRI-compatible tablet. Activation maps for all handwriting tasks consisted of a distributed network of regions in reasonable agreement with previous studies of handwriting performance. In addition, differences in brain activity were observed between the test subcomponents consistent with different demands of neural processing for successful task performance, as identified by investigating three quantitative behavioral metrics (writing speed, stylus contact force and stylus in air time). This study provides baseline behavioral and brain activity results for fMRI studies that adopt this handwriting test to characterize patients with brain impairments.
MRI and Additive Manufacturing of Nasal Alar Constructs for Patient-specific Reconstruction.
Visscher, Dafydd O; van Eijnatten, Maureen; Liberton, Niels P T J; Wolff, Jan; Hofman, Mark B M; Helder, Marco N; Don Griot, J Peter W; Zuijlen, Paul P M van
2017-08-30
Surgical reconstruction of cartilaginous defects remains a major challenge. In the current study, we aimed to identify an imaging strategy for the development of patient-specific constructs that aid in the reconstruction of nasal deformities. Magnetic Resonance Imaging (MRI) was performed on a human cadaver head to find the optimal MRI sequence for nasal cartilage. This sequence was subsequently used on a volunteer. Images of both were assessed by three independent researchers to determine measurement error and total segmentation time. Three dimensionally (3D) reconstructed alar cartilage was then additively manufactured. Validity was assessed by comparing manually segmented MR images to the gold standard (micro-CT). Manual segmentation allowed delineation of the nasal cartilages. Inter- and intra-observer agreement was acceptable in the cadaver (coefficient of variation 4.6-12.5%), but less in the volunteer (coefficient of variation 0.6-21.9%). Segmentation times did not differ between observers (cadaver P = 0.36; volunteer P = 0.6). The lateral crus of the alar cartilage was consistently identified by all observers, whereas part of the medial crus was consistently missed. This study suggests that MRI is a feasible imaging modality for the development of 3D alar constructs for patient-specific reconstruction.
Wang, Lijia; Pei, Mengchao; Codella, Noel C F; Kochar, Minisha; Weinsaft, Jonathan W; Li, Jianqi; Prince, Martin R; Wang, Yi
2015-01-01
CMR quantification of LV chamber volumes typically and manually defines the basal-most LV, which adds processing time and user-dependence. This study developed an LV segmentation method that is fully automated based on the spatiotemporal continuity of the LV (LV-FAST). An iteratively decreasing threshold region growing approach was used first from the midventricle to the apex, until the LV area and shape discontinued, and then from midventricle to the base, until less than 50% of the myocardium circumference was observable. Region growth was constrained by LV spatiotemporal continuity to improve robustness of apical and basal segmentations. The LV-FAST method was compared with manual tracing on cardiac cine MRI data of 45 consecutive patients. Of the 45 patients, LV-FAST and manual selection identified the same apical slices at both ED and ES and the same basal slices at both ED and ES in 38, 38, 38, and 41 cases, respectively, and their measurements agreed within -1.6 ± 8.7 mL, -1.4 ± 7.8 mL, and 1.0 ± 5.8% for EDV, ESV, and EF, respectively. LV-FAST allowed LV volume-time course quantitatively measured within 3 seconds on a standard desktop computer, which is fast and accurate for processing the cine volumetric cardiac MRI data, and enables LV filling course quantification over the cardiac cycle.
NASA Astrophysics Data System (ADS)
Taheri, Shaghayegh; Fevens, Thomas; Bui, Tien D.
2017-02-01
Computerized assessments for diagnosis or malignancy grading of cyto-histopathological specimens have drawn increased attention in the field of digital pathology. Automatic segmentation of cell nuclei is a fundamental step in such automated systems. Despite considerable research, nuclei segmentation is still a challenging task due noise, nonuniform illumination, and most importantly, in 2D projection images, overlapping and touching nuclei. In most published approaches, nuclei refinement is a post-processing step after segmentation, which usually refers to the task of detaching the aggregated nuclei or merging the over-segmented nuclei. In this work, we present a novel segmentation technique which effectively addresses the problem of individually segmenting touching or overlapping cell nuclei during the segmentation process. The proposed framework is a region-based segmentation method, which consists of three major modules: i) the image is passed through a color deconvolution step to extract the desired stains; ii) then the generalized fast radial symmetry transform is applied to the image followed by non-maxima suppression to specify the initial seed points for nuclei, and their corresponding GFRS ellipses which are interpreted as the initial nuclei borders for segmentation; iii) finally, these nuclei border initial curves are evolved through the use of a statistical level-set approach along with topology preserving criteria for segmentation and separation of nuclei at the same time. The proposed method is evaluated using Hematoxylin and Eosin, and fluorescent stained images, performing qualitative and quantitative analysis, showing that the method outperforms thresholding and watershed segmentation approaches.
Han, Kai-Wei; Zhang, Dan-Feng; Chen, Ji-Gang; Hou, Li-Jun
2016-11-01
To explore whether segmentation and 3D modeling are more accurate in the preoperative detection of the neurovascular relationship (NVR) in patients with trigeminal neuralgia (TN) compared to MRI fast imaging employing steady-state acquisition (FIESTA). Segmentation and 3D modeling using 3D Slicer were conducted for 40 patients undergoing MRI FIESTA and microsurgical vascular decompression (MVD). The NVR, as well as the offending vessel determined by MRI FIESTA and 3D Slicer, was reviewed and compared with intraoperative manifestations using SPSS. The k agreement between the MRI FIESTA and operation in determining the NVR was 0.232 and that between the 3D modeling and operation was 0.6333. There was no significant difference between these two procedures (χ 2 = 8.09, P = 0.088). The k agreement between the MRI FIESTA and operation in determining the offending vessel was 0.373, and that between the 3D modeling and operation was 0.922. There were significant differences between two of them (χ 2 = 82.01, P = 0.000). The sensitivity and specificity for MRI FIESTA in determining the NVR were 87.2 % and 100 %, respectively, and for 3D modeling were both 100 %. The segmentation and 3D modeling were more accurate than MRI FIESTA in preoperative verification of the NVR and offending vessel. This was consistent with surgical manifestations and was more helpful for the preoperative decision and surgical plan.
Is MRI-based CFD able to improve clinical treatment of coarctations of aorta?
Goubergrits, L; Riesenkampff, E; Yevtushenko, P; Schaller, J; Kertzscher, U; Berger, F; Kuehne, T
2015-01-01
Pressure drop associated with coarctation of the aorta (CoA) can be successfully treated surgically or by stent placement. However, a decreased life expectancy associated with altered aortic hemodynamics was found in long-term studies. Image-based computational fluid dynamics (CFD) is intended to support particular diagnoses, to help in choosing between treatment options, and to improve performance of treatment procedures. This study aimed to prove the ability of CFD to improve aortic hemodynamics in CoA patients. In 13 patients (6 males, 7 females; mean age 25 ± 14 years), we compared pre- and post-treatment peak systole hemodynamics [pressure drops and wall shear stress (WSS)] vs. virtual treatment as proposed by biomedical engineers. Anatomy and flow data for CFD were based on MRI and angiography. Segmentation, geometry reconstruction and virtual treatment geometry were performed using the software ZIBAmira, whereas peak systole flow conditions were simulated with the software ANSYS(®) Fluent(®). Virtual treatment significantly reduced pressure drop compared to post-treatment values by a mean of 2.8 ± 3.15 mmHg, which significantly reduced mean WSS by 3.8 Pa. Thus, CFD has the potential to improve post-treatment hemodynamics associated with poor long-term prognosis of patients with coarctation of the aorta. MRI-based CFD has a huge potential to allow the slight reduction of post-treatment pressure drop, which causes significant improvement (reduction) of the WSS at the stenosis segment.
Anastasi, Giuseppe; Cutroneo, Giuseppina; Bruschetta, Daniele; Trimarchi, Fabio; Ielitro, Giuseppe; Cammaroto, Simona; Duca, Antonio; Bramanti, Placido; Favaloro, Angelo; Vaccarino, Gianluigi; Milardi, Demetrio
2009-11-01
We have applied high-quality medical imaging techniques to study the structure of the human ankle. Direct volume rendering, using specific algorithms, transforms conventional two-dimensional (2D) magnetic resonance image (MRI) series into 3D volume datasets. This tool allows high-definition visualization of single or multiple structures for diagnostic, research, and teaching purposes. No other image reformatting technique so accurately highlights each anatomic relationship and preserves soft tissue definition. Here, we used this method to study the structure of the human ankle to analyze tendon-bone-muscle relationships. We compared ankle MRI and computerized tomography (CT) images from 17 healthy volunteers, aged 18-30 years (mean 23 years). An additional subject had a partial rupture of the Achilles tendon. The MRI images demonstrated superiority in overall quality of detail compared to the CT images. The MRI series accurately rendered soft tissue and bone in simultaneous image acquisition, whereas CT required several window-reformatting algorithms, with loss of image data quality. We obtained high-quality digital images of the human ankle that were sufficiently accurate for surgical and clinical intervention planning, as well as for teaching human anatomy. Our approach demonstrates that complex anatomical structures such as the ankle, which is rich in articular facets and ligaments, can be easily studied non-invasively using MRI data.
Anastasi, Giuseppe; Cutroneo, Giuseppina; Bruschetta, Daniele; Trimarchi, Fabio; Ielitro, Giuseppe; Cammaroto, Simona; Duca, Antonio; Bramanti, Placido; Favaloro, Angelo; Vaccarino, Gianluigi; Milardi, Demetrio
2009-01-01
We have applied high-quality medical imaging techniques to study the structure of the human ankle. Direct volume rendering, using specific algorithms, transforms conventional two-dimensional (2D) magnetic resonance image (MRI) series into 3D volume datasets. This tool allows high-definition visualization of single or multiple structures for diagnostic, research, and teaching purposes. No other image reformatting technique so accurately highlights each anatomic relationship and preserves soft tissue definition. Here, we used this method to study the structure of the human ankle to analyze tendon–bone–muscle relationships. We compared ankle MRI and computerized tomography (CT) images from 17 healthy volunteers, aged 18–30 years (mean 23 years). An additional subject had a partial rupture of the Achilles tendon. The MRI images demonstrated superiority in overall quality of detail compared to the CT images. The MRI series accurately rendered soft tissue and bone in simultaneous image acquisition, whereas CT required several window-reformatting algorithms, with loss of image data quality. We obtained high-quality digital images of the human ankle that were sufficiently accurate for surgical and clinical intervention planning, as well as for teaching human anatomy. Our approach demonstrates that complex anatomical structures such as the ankle, which is rich in articular facets and ligaments, can be easily studied non-invasively using MRI data. PMID:19678857
3D variational brain tumor segmentation on a clustered feature set
NASA Astrophysics Data System (ADS)
Popuri, Karteek; Cobzas, Dana; Jagersand, Martin; Shah, Sirish L.; Murtha, Albert
2009-02-01
Tumor segmentation from MRI data is a particularly challenging and time consuming task. Tumors have a large diversity in shape and appearance with intensities overlapping the normal brain tissues. In addition, an expanding tumor can also deflect and deform nearby tissue. Our work addresses these last two difficult problems. We use the available MRI modalities (T1, T1c, T2) and their texture characteristics to construct a multi-dimensional feature set. Further, we extract clusters which provide a compact representation of the essential information in these features. The main idea in this paper is to incorporate these clustered features into the 3D variational segmentation framework. In contrast to the previous variational approaches, we propose a segmentation method that evolves the contour in a supervised fashion. The segmentation boundary is driven by the learned inside and outside region voxel probabilities in the cluster space. We incorporate prior knowledge about the normal brain tissue appearance, during the estimation of these region statistics. In particular, we use a Dirichlet prior that discourages the clusters in the ventricles to be in the tumor and hence better disambiguate the tumor from brain tissue. We show the performance of our method on real MRI scans. The experimental dataset includes MRI scans, from patients with difficult instances, with tumors that are inhomogeneous in appearance, small in size and in proximity to the major structures in the brain. Our method shows good results on these test cases.
Automated segmentation of foveal avascular zone in fundus fluorescein angiography.
Zheng, Yalin; Gandhi, Jagdeep Singh; Stangos, Alexandros N; Campa, Claudio; Broadbent, Deborah M; Harding, Simon P
2010-07-01
PURPOSE. To describe and evaluate the performance of a computerized automated segmentation technique for use in quantification of the foveal avascular zone (FAZ). METHODS. A computerized technique for automated segmentation of the FAZ using images from fundus fluorescein angiography (FFA) was applied to 26 transit-phase images obtained from patients with various grades of diabetic retinopathy. The area containing the FAZ zone was first extracted from the original image and smoothed by a Gaussian kernel (sigma = 1.5). An initializing contour was manually placed inside the FAZ of the smoothed image and iteratively moved by the segmentation program toward the FAZ boundary. Five tests with different initializing curves were run on each of 26 images to assess reproducibility. The accuracy of the program was also validated by comparing results obtained by the program with the FAZ boundaries manually delineated by medical retina specialists. Interobserver performance was then evaluated by comparing delineations from two of the experts. RESULTS. One-way analysis of variance indicated that the disparities between different tests were not statistically significant, signifying excellent reproducibility for the computer program. There was a statistically significant linear correlation between the results obtained by automation and manual delineations by experts. CONCLUSIONS. This automated segmentation program can produce highly reproducible results that are comparable to those made by clinical experts. It has the potential to assist in the detection and management of foveal ischemia and to be integrated into automated grading systems.
Farooq, Zerwa; Behzadi, Ashkan Heshmatzadeh; Blumenfeld, Jon D; Zhao, Yize; Prince, Martin R
To compare MRI segmentation methods for measuring liver cyst volumes in autosomal dominant polycystic kidney disease (ADPKD). Liver cyst volumes in 42 ADPKD patients were measured using region growing, thresholding and cyst diameter techniques. Manual segmentation was the reference standard. Root mean square deviation was 113, 155, and 500 for cyst diameter, thresholding and region growing respectively. Thresholding error for cyst volumes below 500ml was 550% vs 17% for cyst volumes above 500ml (p<0.001). For measuring volume of a small number of cysts, cyst diameter and manual segmentation methods are recommended. For severe disease with numerous, large hepatic cysts, thresholding is an acceptable alternative. Copyright © 2017 Elsevier Inc. All rights reserved.
Live minimal path for interactive segmentation of medical images
NASA Astrophysics Data System (ADS)
Chartrand, Gabriel; Tang, An; Chav, Ramnada; Cresson, Thierry; Chantrel, Steeve; De Guise, Jacques A.
2015-03-01
Medical image segmentation is nowadays required for medical device development and in a growing number of clinical and research applications. Since dedicated automatic segmentation methods are not always available, generic and efficient interactive tools can alleviate the burden of manual segmentation. In this paper we propose an interactive segmentation tool based on image warping and minimal path segmentation that is efficient for a wide variety of segmentation tasks. While the user roughly delineates the desired organs boundary, a narrow band along the cursors path is straightened, providing an ideal subspace for feature aligned filtering and minimal path algorithm. Once the segmentation is performed on the narrow band, the path is warped back onto the original image, precisely delineating the desired structure. This tool was found to have a highly intuitive dynamic behavior. It is especially efficient against misleading edges and required only coarse interaction from the user to achieve good precision. The proposed segmentation method was tested for 10 difficult liver segmentations on CT and MRI images, and the resulting 2D overlap Dice coefficient was 99% on average..
Detection of Focal Cortical Dysplasia Lesions in MRI Using Textural Features
NASA Astrophysics Data System (ADS)
Loyek, Christian; Woermann, Friedrich G.; Nattkemper, Tim W.
Focal cortical dysplasia (FCD) is a frequent cause of medically refractory partial epilepsy. The visual identification of FCD lesions on magnetic resonance images (MRI) is a challenging task in standard radiological analysis. Quantitative image analysis which tries to assist in the diagnosis of FCD lesions is an active field of research. In this work we investigate the potential of different texture features, in order to explore to what extent they are suitable for detecting lesional tissue. As a result we can show first promising results based on segmentation and texture classification.
Abdolrahimzadeh, Solmaz; Piraino, Domenica Carmen; Plateroti, Rocco; Scuderi, Gianluca; Recupero, Santi Maria
2016-06-01
Neurofibromatosis type 1 (NF-1) is an autsomal dominant disorder which can occasionally result from somatic mosaicism and manifest as segmental forms of the disease. A 37-year-old woman with ascertained NF-1, based on clinical diagnostic criteria and genetic analysis, was referred for ophthalmological evaluation. Genetic analysis, magnetic resonance imaging (MRI), complete ophthalmological examination, and near infrared reflectance (NIR) images at 815 nm of the retina were obtained. Genetic analysis revealed a non-classified mutational variant of the NF-1 gene identified as NM_000267.3:c2084T > C (p.Leu695Pro.T). MRI demonstrated non-symptomatic bilateral optic nerve gliomas. The only cutaneous sign was a subcutaneous neurofibroma of the posterior cervical region. Slit-lamp examination showed bilateral Lisch nodules. NIR images of the retina did not show any choroidal hamartomas. We report a rare case of segmental neurofibromatosis with a non-classified mutational variant of the NF-1 gene described in only one previous case in the literature. The patient presented with clinical features of NF-1 localized to the head and neck region, compatible with diagnosis of segmental NF-1. Interestingly, ocular manifestations included bilateral optic nerve gliomas and Lisch nodules, but no choroidal hamartomas.
Katja — the 24th week of virtual pregnancy for dosimetric calculations
NASA Astrophysics Data System (ADS)
Becker, Janine; Zankl, Maria; Fill, Ute; Hoeschen, Christoph
2008-01-01
Virtual human models, a.k.a. voxel models, are currently the
Vernon, Jordyn; Andruszkiewicz, Nicole; Schneider, Laura; Schieman, Colin; Finley, Christian J; Shargall, Yaron; Fahim, Christine; Farrokhyar, Forough; Hanna, Waël C
2016-11-01
In our model of comprehensive clinical staging (CCS) for lung cancer, patients with a computerized tomography scan of the chest and upper abdomen not showing distant metastases will then routinely undergo whole body positron emission tomography/computerized tomography and magnetic resonance imaging (MRI) of the brain before any therapeutic decision. Our aim was to determine the accuracy of CCS and the value of brain MRI in this population. A retrospective analysis of a prospectively entered database was performed for all patients who underwent lung cancer resection from January 2012 to June 2014. Demographics, clinical and pathological stage (seventh edition of the American Joint Committee on Cancer/Union for International Cancer Control tumor, node, and metastasis staging manual), and costs of staging were collected. Correlation between clinical and pathological stage was determined. Of 315 patients with primary lung cancer, 55.6% were female and the mean age was 70 ± 9.6 years. When correlation was analyzed without consideration for substages A and B, 49.8% of patients (158 of 315) were staged accurately, 39.7% (125 of 315) were overstaged, and 10.5% (32 of 315) were understaged. Only 4.7% of patients (15 of 315) underwent surgery without appropriate neoadjuvant treatment. Preoperative brain MRI detected asymptomatic metastases in four of 315 patients (1.3%). At a median postoperative follow-up of 19 months (range 6-43), symptomatic brain metastases developed in seven additional patients. The total cost of CCS in Canadian dollars was $367,292 over the study period, with $117,272 (31.9%) going toward brain MRI. CCS is effective for patients with resectable lung cancer, with less than 5% of patients being denied appropriate systemic treatment before surgery. Brain MRI is a low-yield and high-cost intervention in this population, and its routine use should be questioned. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
Subject-Specific Sparse Dictionary Learning for Atlas-Based Brain MRI Segmentation.
Roy, Snehashis; He, Qing; Sweeney, Elizabeth; Carass, Aaron; Reich, Daniel S; Prince, Jerry L; Pham, Dzung L
2015-09-01
Quantitative measurements from segmentations of human brain magnetic resonance (MR) images provide important biomarkers for normal aging and disease progression. In this paper, we propose a patch-based tissue classification method from MR images that uses a sparse dictionary learning approach and atlas priors. Training data for the method consists of an atlas MR image, prior information maps depicting where different tissues are expected to be located, and a hard segmentation. Unlike most atlas-based classification methods that require deformable registration of the atlas priors to the subject, only affine registration is required between the subject and training atlas. A subject-specific patch dictionary is created by learning relevant patches from the atlas. Then the subject patches are modeled as sparse combinations of learned atlas patches leading to tissue memberships at each voxel. The combination of prior information in an example-based framework enables us to distinguish tissues having similar intensities but different spatial locations. We demonstrate the efficacy of the approach on the application of whole-brain tissue segmentation in subjects with healthy anatomy and normal pressure hydrocephalus, as well as lesion segmentation in multiple sclerosis patients. For each application, quantitative comparisons are made against publicly available state-of-the art approaches.
Quantification of tumor mobility during the breathing cycle using 3D dynamic MRI
NASA Astrophysics Data System (ADS)
Schoebinger, Max; Plathow, Christian; Wolf, Ivo; Kauczor, Hans-Ulrich; Meinzer, Hans-Peter
2006-03-01
Respiration causes movement and shape changes in thoracic tumors, which has a direct influence on the radio-therapy planning process. Current methods for the estimation of tumor mobility are either two-dimensional (fluoroscopy, 2D dynamic MRI) or based on radiation (3D (+t) CT, implanted gold markers). With current advances in dynamic MRI acquisition, 3D+t image sequences of the thorax can be acquired covering the thorax over the whole breathing cycle. In this work, methods are presented for the interactive segmentation of tumors in dynamic images, the calculation of tumor trajectories, dynamic tumor volumetry and dynamic tumor rotation/deformation based on 3D dynamic MRI. For volumetry calculation, a set of 21 related partial volume correcting volumetry algorithms has been evaluated based on tumor surrogates. Conventional volumetry based on voxel counting yielded a root mean square error of 29% compared to a root mean square error of 11% achieved by the algorithm performing best among the different volumetry methods. The new workflow has been applied to a set of 26 patients. Preliminary results indicate, that 3D dynamic MRI reveals important aspects of tumor behavior during the breathing cycle. This might imply the possibility to further improve high-precision radiotherapy techniques.
Chang, Hing-Chiu; Gaur, Pooja; Chou, Ying-hui; Chu, Mei-Lan; Chen, Nan-kuei
2014-01-01
Functional magnetic resonance imaging (fMRI) is a non-invasive and powerful imaging tool for detecting brain activities. The majority of fMRI studies are performed with single-shot echo-planar imaging (EPI) due to its high temporal resolution. Recent studies have demonstrated that, by increasing the spatial-resolution of fMRI, previously unidentified neuronal networks can be measured. However, it is challenging to improve the spatial resolution of conventional single-shot EPI based fMRI. Although multi-shot interleaved EPI is superior to single-shot EPI in terms of the improved spatial-resolution, reduced geometric distortions, and sharper point spread function (PSF), interleaved EPI based fMRI has two main limitations: 1) the imaging throughput is lower in interleaved EPI; 2) the magnitude and phase signal variations among EPI segments (due to physiological noise, subject motion, and B0 drift) are translated to significant in-plane aliasing artifact across the field of view (FOV). Here we report a method that integrates multiple approaches to address the technical limitations of interleaved EPI-based fMRI. Firstly, the multiplexed sensitivity-encoding (MUSE) post-processing algorithm is used to suppress in-plane aliasing artifacts resulting from time-domain signal instabilities during dynamic scans. Secondly, a simultaneous multi-band interleaved EPI pulse sequence, with a controlled aliasing scheme incorporated, is implemented to increase the imaging throughput. Thirdly, the MUSE algorithm is then generalized to accommodate fMRI data obtained with our multi-band interleaved EPI pulse sequence, suppressing both in-plane and through-plane aliasing artifacts. The blood-oxygenation-level-dependent (BOLD) signal detectability and the scan throughput can be significantly improved for interleaved EPI-based fMRI. Our human fMRI data obtained from 3 Tesla systems demonstrate the effectiveness of the developed methods. It is expected that future fMRI studies requiring high spatial-resolvability and fidelity will largely benefit from the reported techniques.
Signal enhancement ratio (SER) quantified from breast DCE-MRI and breast cancer risk
NASA Astrophysics Data System (ADS)
Wu, Shandong; Kurland, Brenda F.; Berg, Wendie A.; Zuley, Margarita L.; Jankowitz, Rachel C.; Sumkin, Jules; Gur, David
2015-03-01
Breast magnetic resonance imaging (MRI) is recommended as an adjunct to mammography for women who are considered at elevated risk of developing breast cancer. As a key component of breast MRI, dynamic contrast-enhanced MRI (DCE-MRI) uses a contrast agent to provide high intensity contrast between breast tissues, making it sensitive to tissue composition and vascularity. Breast DCE-MRI characterizes certain physiologic properties of breast tissue that are potentially related to breast cancer risk. Studies have shown that increased background parenchymal enhancement (BPE), which is the contrast enhancement occurring in normal cancer-unaffected breast tissues in post-contrast sequences, predicts increased breast cancer risk. Signal enhancement ratio (SER) computed from pre-contrast and post-contrast sequences in DCE-MRI measures change in signal intensity due to contrast uptake over time and is a measure of contrast enhancement kinetics. SER quantified in breast tumor has been shown potential as a biomarker for characterizing tumor response to treatments. In this work we investigated the relationship between quantitative measures of SER and breast cancer risk. A pilot retrospective case-control study was performed using a cohort of 102 women, consisting of 51 women who had diagnosed with unilateral breast cancer and 51 matched controls (by age and MRI date) with a unilateral biopsy-proven benign lesion. SER was quantified using fully-automated computerized algorithms and three SER-derived quantitative volume measures were compared between the cancer cases and controls using logistic regression analysis. Our preliminary results showed that SER is associated with breast cancer risk, after adjustment for the Breast Imaging Reporting and Data System (BI-RADS)-based mammographic breast density measures. This pilot study indicated that SER has potential for use as a risk factor for breast cancer risk assessment in women at elevated risk of developing breast cancer.
Kos, Sebastian; Huegli, Rolf; Hofmann, Eugen; Quick, Harald H; Kuehl, Hilmar; Aker, Stephanie; Kaiser, Gernot M; Borm, Paul J A; Jacob, Augustinus L; Bilecen, Deniz
2009-05-01
The purpose of this study was to demonstrate feasibility of percutaneous transluminal aortic stenting and cava filter placement under magnetic resonance imaging (MRI) guidance exclusively using a polyetheretherketone (PEEK)-based MRI-compatible guidewire. Percutaneous transluminal aortic stenting and cava filter placement were performed in 3 domestic swine. Procedures were performed under MRI-guidance in an open-bore 1.5-T scanner. The applied 0.035-inch guidewire has a PEEK core reinforced by fibres, floppy tip, hydrophilic coating, and paramagnetic markings for passive visualization. Through an 11F sheath, the guidewire was advanced into the abdominal (swine 1) or thoracic aorta (swine 2), and the stents were deployed. The guidewire was advanced into the inferior vena cava (swine 3), and the cava filter was deployed. Postmortem autopsy was performed. Procedural success, guidewire visibility, pushability, and stent support were qualitatively assessed by consensus. Procedure times were documented. Guidewire guidance into the abdominal and thoracic aortas and the inferior vena cava was successful. Stent deployments were successful in the abdominal (swine 1) and thoracic (swine 2) segments of the descending aorta. Cava filter positioning and deployment was successful. Autopsy documented good stent and filter positioning. Guidewire visibility through applied markers was rated acceptable for aortic stenting and good for venous filter placement. Steerability, pushability, and device support were good. The PEEK-based guidewire allows either percutaneous MRI-guided aortic stenting in the thoracic and abdominal segments of the descending aorta and filter placement in the inferior vena cava with acceptable to good device visibility and offers good steerability, pushability, and device support.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kos, Sebastian, E-mail: skos@gmx.d; Huegli, Rolf; Hofmann, Eugen
The purpose of this study was to demonstrate feasibility of percutaneous transluminal aortic stenting and cava filter placement under magnetic resonance imaging (MRI) guidance exclusively using a polyetheretherketone (PEEK)-based MRI-compatible guidewire. Percutaneous transluminal aortic stenting and cava filter placement were performed in 3 domestic swine. Procedures were performed under MRI-guidance in an open-bore 1.5-T scanner. The applied 0.035-inch guidewire has a PEEK core reinforced by fibres, floppy tip, hydrophilic coating, and paramagnetic markings for passive visualization. Through an 11F sheath, the guidewire was advanced into the abdominal (swine 1) or thoracic aorta (swine 2), and the stents were deployed. Themore » guidewire was advanced into the inferior vena cava (swine 3), and the cava filter was deployed. Postmortem autopsy was performed. Procedural success, guidewire visibility, pushability, and stent support were qualitatively assessed by consensus. Procedure times were documented. Guidewire guidance into the abdominal and thoracic aortas and the inferior vena cava was successful. Stent deployments were successful in the abdominal (swine 1) and thoracic (swine 2) segments of the descending aorta. Cava filter positioning and deployment was successful. Autopsy documented good stent and filter positioning. Guidewire visibility through applied markers was rated acceptable for aortic stenting and good for venous filter placement. Steerability, pushability, and device support were good. The PEEK-based guidewire allows either percutaneous MRI-guided aortic stenting in the thoracic and abdominal segments of the descending aorta and filter placement in the inferior vena cava with acceptable to good device visibility and offers good steerability, pushability, and device support.« less
MRI and CBCT image registration of temporomandibular joint: a systematic review.
Al-Saleh, Mohammed A Q; Alsufyani, Noura A; Saltaji, Humam; Jaremko, Jacob L; Major, Paul W
2016-05-10
The purpose of the present review is to systematically and critically analyze the available literature regarding the importance, applicability, and practicality of (MRI), computerized tomography (CT) or cone-beam CT (CBCT) image registration for TMJ anatomy and assessment. A systematic search of 4 databases; MEDLINE, EMBASE, EBM reviews and Scopus, was conducted by 2 reviewers. An additional manual search of the bibliography was performed. All articles discussing the magnetic resonance imaging MRI and CT or CBCT image registration for temporomandibular joint (TMJ) visualization or assessment were included. Only 3 articles satisfied the inclusion criteria. All included articles were published within the last 7 years. Two articles described MRI to CT multimodality image registration as a complementary tool to visualize TMJ. Both articles used images of one patient only to introduce the complementary concept of MRI-CT fused image. One article assessed the reliability of using MRI-CBCT registration to evaluate the TMJ disc position and osseous pathology for 10 temporomandibular disorder (TMD) patients. There are very limited studies of MRI-CT/CBCT registration to reach a conclusion regarding its accuracy or clinical use in the temporomandibular joints.
Automated MRI Segmentation for Individualized Modeling of Current Flow in the Human Head
Huang, Yu; Dmochowski, Jacek P.; Su, Yuzhuo; Datta, Abhishek; Rorden, Christopher; Parra, Lucas C.
2013-01-01
Objective High-definition transcranial direct current stimulation (HD-tDCS) and high-density electroencephalography (HD-EEG) require accurate models of current flow for precise targeting and current source reconstruction. At a minimum, such modeling must capture the idiosyncratic anatomy of brain, cerebrospinal fluid (CSF) and skull for each individual subject. Currently, the process to build such high-resolution individualized models from structural magnetic resonance images (MRI) requires labor-intensive manual segmentation, even when leveraging available automated segmentation tools. Also, accurate placement of many high-density electrodes on individual scalp is a tedious procedure. The goal was to develop fully automated techniques to reduce the manual effort in such a modeling process. Approach A fully automated segmentation technique based on Statical Parametric Mapping 8 (SPM8), including an improved tissue probability map (TPM) and an automated correction routine for segmentation errors, was developed, along with an automated electrode placement tool for high-density arrays. The performance of these automated routines was evaluated against results from manual segmentation on 4 healthy subjects and 7 stroke patients. The criteria include segmentation accuracy, the difference of current flow distributions in resulting HD-tDCS models and the optimized current flow intensities on cortical targets. Main results The segmentation tool can segment out not just the brain but also provide accurate results for CSF, skull and other soft tissues with a field of view (FOV) extending to the neck. Compared to manual results, automated segmentation deviates by only 7% and 18% for normal and stroke subjects, respectively. The predicted electric fields in the brain deviate by 12% and 29% respectively, which is well within the variability observed for various modeling choices. Finally, optimized current flow intensities on cortical targets do not differ significantly. Significance Fully automated individualized modeling may now be feasible for large-sample EEG research studies and tDCS clinical trials. PMID:24099977
Juliani, Paulo Sérgio; Costa, Eder França da; Correia, Aristides Tadeu; Monteiro, Rosangela; Jatene, Fabio Biscegli
2014-01-01
A feature of dilated cardiomyopathy is the deformation of ventricular cavity, which contributes to systolic dysfunction. Few studies have evaluated this deformation bearing in mind ventricular regions and segments of the ventricle, which could reveal important details of the remodeling process, supporting a better understanding of its role in functional impairment and the development of new therapeutic strategies. To evaluate if, in basal, equatorial and apical regions, increased internal transverse perimeter of left ventricle in idiopathic dilated cardiomyopathy occurs proportionally between the septal and non-septal segment. We performed an anatomical study with 28 adult hearts from human cadavers. One group consisted of 18 hearts with idiopathic dilated cardiomyopathy and another group with 10 normal hearts. After lamination and left ventricle digital image capture, in three different regions (base, equator and apex), the transversal internal perimeter of left ventricle was divided into two segments: septal and not septal. These segments were measured by proper software. It was established an index of proportionality between these segments, called septal and non-septal segment index. Then we determined whether this index was the same in both groups. Among patients with normal hearts and idiopathic dilated cardiomyopathy, the index of proportionality between the two segments (septal and non-septal) showed no significant difference in the three regions analyzed. The comparison results of the indices NSS/SS among normal and enlarged hearts were respectively: in base 1.99 versus 1.86 (P=0.46), in equator 2.22 versus 2.18 (P=0.79) and in apex 2.96 versus 3.56 (P=0.11). In the idiopathic dilated cardiomyopathy, the transversal dilatation of left ventricular internal perimeter occurs proportionally between the segments corresponding to the septum and free wall at the basal, equatorial and apical regions of this chamber.
A New Paradigm for Individual Subject Language Mapping: Movie-Watching fMRI.
Tie, Yanmei; Rigolo, Laura; Ozdemir Ovalioglu, Aysegul; Olubiyi, Olutayo; Doolin, Kelly L; Mukundan, Srinivasan; Golby, Alexandra J
2015-01-01
Functional MRI (fMRI) based on language tasks has been used in presurgical language mapping in patients with lesions in or near putative language areas. However, if patients have difficulty performing the tasks due to neurological deficits, it leads to unreliable or noninterpretable results. In this study, we investigate the feasibility of using a movie-watching fMRI for language mapping. A 7-minute movie clip with contrasting speech and nonspeech segments was shown to 22 right-handed healthy subjects. Based on all subjects' language functional regions-of-interest, 6 language response areas were defined, within which a language response model (LRM) was derived by extracting the main temporal activation profile. Using a leave-one-out procedure, individuals' language areas were identified as the areas that expressed highly correlated temporal responses with the LRM derived from an independent group of subjects. Compared with an antonym generation task-based fMRI, the movie-watching fMRI generated language maps with more localized activations in the left frontal language area, larger activations in the left temporoparietal language area, and significant activations in their right-hemisphere homologues. Results of 2 brain tumor patients' movie-watching fMRI using the LRM derived from the healthy subjects indicated its ability to map putative language areas; while their task-based fMRI maps were less robust and noisier. These results suggest that it is feasible to use this novel "task-free" paradigm as a complementary tool for fMRI language mapping when patients cannot perform the tasks. Its deployment in more neurosurgical patients and validation against gold-standard techniques need further investigation. Copyright © 2015 by the American Society of Neuroimaging.
A new paradigm for individual subject language mapping: Movie-watching fMRI
Tie, Yanmei; Rigolo, Laura; Ovalioglu, Aysegul Ozdemir; Olubiyi, Olutayo; Doolin, Kelly L.; Mukundan, Srinivasan; Golby, Alexandra J.
2015-01-01
Background Functional MRI (fMRI) based on language tasks has been used in pre-surgical language mapping in patients with lesions in or near putative language areas. However, if the patients have difficulty performing the tasks due to neurological deficits, it leads to unreliable or non-interpretable results. In this study, we investigate the feasibility of using a movie-watching fMRI for language mapping. Methods A 7-min movie clip with contrasting speech and non-speech segments was shown to 22 right-handed healthy subjects. Based on all subjects' language functional regions-of-interest, six language response areas were defined, within which a language response model (LRM) was derived by extracting the main temporal activation profile. Using a leave-one-out procedure, individuals' language areas were identified as the areas that expressed highly correlated temporal responses with the LRM derived from an independent group of subjects. Results Compared with an antonym generation task-based fMRI, the movie-watching fMRI generated language maps with more localized activations in the left frontal language area, larger activations in the left temporoparietal language area, and significant activations in their right-hemisphere homologues. Results of two brain tumor patients' movie-watching fMRI using the LRM derived from the healthy subjects indicated its ability to map putative language areas; while their task-based fMRI maps were less robust and noisier. Conclusions These results suggest that it is feasible to use this novel “task-free” paradigm as a complementary tool for fMRI language mapping when patients cannot perform the tasks. Its deployment in more neurosurgical patients and validation against gold-standard techniques need further investigation. PMID:25962953
Volumetric multimodality neural network for brain tumor segmentation
NASA Astrophysics Data System (ADS)
Silvana Castillo, Laura; Alexandra Daza, Laura; Carlos Rivera, Luis; Arbeláez, Pablo
2017-11-01
Brain lesion segmentation is one of the hardest tasks to be solved in computer vision with an emphasis on the medical field. We present a convolutional neural network that produces a semantic segmentation of brain tumors, capable of processing volumetric data along with information from multiple MRI modalities at the same time. This results in the ability to learn from small training datasets and highly imbalanced data. Our method is based on DeepMedic, the state of the art in brain lesion segmentation. We develop a new architecture with more convolutional layers, organized in three parallel pathways with different input resolution, and additional fully connected layers. We tested our method over the 2015 BraTS Challenge dataset, reaching an average dice coefficient of 84%, while the standard DeepMedic implementation reached 74%.
Griffanti, Ludovica; Zamboni, Giovanna; Khan, Aamira; Li, Linxin; Bonifacio, Guendalina; Sundaresan, Vaanathi; Schulz, Ursula G; Kuker, Wilhelm; Battaglini, Marco; Rothwell, Peter M; Jenkinson, Mark
2016-11-01
Reliable quantification of white matter hyperintensities of presumed vascular origin (WMHs) is increasingly needed, given the presence of these MRI findings in patients with several neurological and vascular disorders, as well as in elderly healthy subjects. We present BIANCA (Brain Intensity AbNormality Classification Algorithm), a fully automated, supervised method for WMH detection, based on the k-nearest neighbour (k-NN) algorithm. Relative to previous k-NN based segmentation methods, BIANCA offers different options for weighting the spatial information, local spatial intensity averaging, and different options for the choice of the number and location of the training points. BIANCA is multimodal and highly flexible so that the user can adapt the tool to their protocol and specific needs. We optimised and validated BIANCA on two datasets with different MRI protocols and patient populations (a "predominantly neurodegenerative" and a "predominantly vascular" cohort). BIANCA was first optimised on a subset of images for each dataset in terms of overlap and volumetric agreement with a manually segmented WMH mask. The correlation between the volumes extracted with BIANCA (using the optimised set of options), the volumes extracted from the manual masks and visual ratings showed that BIANCA is a valid alternative to manual segmentation. The optimised set of options was then applied to the whole cohorts and the resulting WMH volume estimates showed good correlations with visual ratings and with age. Finally, we performed a reproducibility test, to evaluate the robustness of BIANCA, and compared BIANCA performance against existing methods. Our findings suggest that BIANCA, which will be freely available as part of the FSL package, is a reliable method for automated WMH segmentation in large cross-sectional cohort studies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Bookwalter, Candice A; Venkatesh, Sudhakar K; Eaton, John E; Smyrk, Thomas D; Ehman, Richard L
2018-04-07
To determine correlation of liver stiffness measured by MR Elastography (MRE) with biliary abnormalities on MR Cholangiopancreatography (MRCP) and MRI parenchymal features in patients with primary sclerosing cholangitis (PSC). Fifty-five patients with PSC who underwent MRI of the liver with MRCP and MRE were retrospectively evaluated. Two board-certified abdominal radiologists in agreement reviewed the MRI, MRCP, and MRE images. The biliary tree was evaluated for stricture, dilatation, wall enhancement, and thickening at segmental duct, right main duct, left main duct, and common bile duct levels. Liver parenchyma features including signal intensity on T2W and DWI, and hyperenhancement in arterial, portal venous, and delayed phase were evaluated in nine Couinaud liver segments. Atrophy or hypertrophy of segments, cirrhotic morphology, varices, and splenomegaly were scored as present or absent. Regions of interest were placed in each of the nine segments on stiffness maps wherever available and liver stiffness (LS) was recorded. Mean segmental LS, right lobar (V-VIII), left lobar (I-III, and IVA, IVB), and global LS (average of all segments) were calculated. Spearman rank correlation analysis was performed for significant correlation. Features with significant correlation were then analyzed for significant differences in mean LS. Multiple regression analysis of MRI and MRCP features was performed for significant correlation with elevated LS. A total of 439/495 segments were evaluated and 56 segments not included in MRE slices were excluded for correlation analysis. Mean segmental LS correlated with the presence of strictures (r = 0.18, p < 0.001), T2W hyperintensity (r = 0.38, p < 0.001), DWI hyperintensity (r = 0.30, p < 0.001), and hyperenhancement of segment in all three phases. Mean LS of atrophic and hypertrophic segments were significantly higher than normal segments (7.07 ± 3.6 and 6.67 ± 3.26 vs. 5.1 ± 3.6 kPa, p < 0.001). In multiple regression analysis, only the presence of segmental strictures (p < 0.001), T2W hyperintensity (p = 0.01), and segmental hypertrophy (p < 0.001) were significantly associated with elevated segmental LS. Only left ductal stricture correlated with left lobe LS (r = 0.41, p = 0.018). Global LS correlated significantly with CBD stricture (r = 0.31, p = 0.02), number of segmental strictures (r = 0.28, p = 0.04), splenomegaly (r = 0.56, p < 0.001), and varices (r = 0.58, p < 0.001). In PSC, there is low but positive correlation between segmental LS and segmental duct strictures. Segments with increased LS show T2 hyperintensity, DWI hyperintensity, and post-contrast hyperenhancement. Global liver stiffness shows a moderate correlation with number of segmental strictures and significantly correlates with spleen stiffness, splenomegaly, and varices.
Yushkevich, Paul A.; Pluta, John B.; Wang, Hongzhi; Xie, Long; Ding, Song-Lin; Gertje, E. C.; Mancuso, Lauren; Kliot, Daria; Das, Sandhitsu R.; Wolk, David A.
2014-01-01
We evaluate a fully automatic technique for labeling hippocampal subfields and cortical subregions in the medial temporal lobe (MTL) in in vivo 3 Tesla MRI. The method performs segmentation on a T2-weighted MRI scan with 0.4 × 0.4 × 2.0 mm3 resolution, partial brain coverage, and oblique orientation. Hippocampal subfields, entorhinal cortex, and perirhinal cortex are labeled using a pipeline that combines multi-atlas label fusion and learning-based error correction. In contrast to earlier work on automatic subfield segmentation in T2-weighted MRI (Yushkevich et al., 2010), our approach requires no manual initialization, labels hippocampal subfields over a greater anterior-posterior extent, and labels the perirhinal cortex, which is further subdivided into Brodmann areas 35 and 36. The accuracy of the automatic segmentation relative to manual segmentation is measured using cross-validation in 29 subjects from a study of amnestic Mild Cognitive Impairment (aMCI), and is highest for the dentate gyrus (Dice coefficient is 0.823), CA1 (0.803), perirhinal cortex (0.797) and entorhinal cortex (0.786) labels. A larger cohort of 83 subjects is used to examine the effects of aMCI in the hippocampal region using both subfield volume and regional subfield thickness maps. Most significant differences between aMCI and healthy aging are observed bilaterally in the CA1 subfield and in the left Brodmann area 35. Thickness analysis results are consistent with volumetry, but provide additional regional specificity and suggest non-uniformity in the effects of aMCI on hippocampal subfields and MTL cortical subregions. PMID:25181316
Karlsson, Anette; Leinhard, Olof Dahlqvist; Åslund, Ulrika; West, Janne; Romu, Thobias; Smedby, Örjan; Zsigmond, Peter; Peolsson, Anneli
2016-10-01
Study Design Cross-sectional study. Background Findings of fat infiltration in cervical spine multifidus, as a sign of degenerative morphometric changes due to whiplash injury, need to be verified. Objectives To develop a method using water/fat magnetic resonance imaging (MRI) to investigate fat infiltration and cross-sectional area of multifidus muscle in individuals with whiplash-associated disorders (WADs) compared to healthy controls. Methods Fat infiltration and cross-sectional area in the multifidus muscles spanning the C4 to C7 segmental levels were investigated by manual segmentation using water/fat-separated MRI in 31 participants with WAD and 31 controls, matched for age and sex. Results Based on average values for data spanning C4 to C7, participants with severe disability related to WAD had 38% greater muscular fat infiltration compared to healthy controls (P = .03) and 45% greater fat infiltration compared to those with mild to moderate disability related to WAD (P = .02). There were no significant differences between those with mild to moderate disability and healthy controls. No significant differences between groups were found for multifidus cross-sectional area. Significant differences were observed for both cross-sectional area and fat infiltration between segmental levels. Conclusion Participants with severe disability after a whiplash injury had higher fat infiltration in the multifidus compared to controls and to those with mild/moderate disability secondary to WAD. Earlier reported findings using T1-weighted MRI were reproduced using refined imaging technology. The results of the study also indicate a risk when segmenting single cross-sectional slices, as both cross-sectional area and fat infiltration differ between cervical levels. J Orthop Sports Phys Ther 2016;46(10):886-893. Epub 2 Sep 2016. doi:10.2519/jospt.2016.6553.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai Jing; Read, Paul W.; Baisden, Joseph M.
Purpose: To evaluate the error in four-dimensional computed tomography (4D-CT) maximal intensity projection (MIP)-based lung tumor internal target volume determination using a simulation method based on dynamic magnetic resonance imaging (dMRI). Methods and Materials: Eight healthy volunteers and six lung tumor patients underwent a 5-min MRI scan in the sagittal plane to acquire dynamic images of lung motion. A MATLAB program was written to generate re-sorted dMRI using 4D-CT acquisition methods (RedCAM) by segmenting and rebinning the MRI scans. The maximal intensity projection images were generated from RedCAM and dMRI, and the errors in the MIP-based internal target area (ITA)more » from RedCAM ({epsilon}), compared with those from dMRI, were determined and correlated with the subjects' respiratory variability ({nu}). Results: Maximal intensity projection-based ITAs from RedCAM were comparatively smaller than those from dMRI in both phantom studies ({epsilon} = -21.64% {+-} 8.23%) and lung tumor patient studies ({epsilon} = -20.31% {+-} 11.36%). The errors in MIP-based ITA from RedCAM correlated linearly ({epsilon} = -5.13{nu} - 6.71, r{sup 2} = 0.76) with the subjects' respiratory variability. Conclusions: Because of the low temporal resolution and retrospective re-sorting, 4D-CT might not accurately depict the excursion of a moving tumor. Using a 4D-CT MIP image to define the internal target volume might therefore cause underdosing and an increased risk of subsequent treatment failure. Patient-specific respiratory variability might also be a useful predictor of the 4D-CT-induced error in MIP-based internal target volume determination.« less
Cai, Jing; Read, Paul W; Baisden, Joseph M; Larner, James M; Benedict, Stanley H; Sheng, Ke
2007-11-01
To evaluate the error in four-dimensional computed tomography (4D-CT) maximal intensity projection (MIP)-based lung tumor internal target volume determination using a simulation method based on dynamic magnetic resonance imaging (dMRI). Eight healthy volunteers and six lung tumor patients underwent a 5-min MRI scan in the sagittal plane to acquire dynamic images of lung motion. A MATLAB program was written to generate re-sorted dMRI using 4D-CT acquisition methods (RedCAM) by segmenting and rebinning the MRI scans. The maximal intensity projection images were generated from RedCAM and dMRI, and the errors in the MIP-based internal target area (ITA) from RedCAM (epsilon), compared with those from dMRI, were determined and correlated with the subjects' respiratory variability (nu). Maximal intensity projection-based ITAs from RedCAM were comparatively smaller than those from dMRI in both phantom studies (epsilon = -21.64% +/- 8.23%) and lung tumor patient studies (epsilon = -20.31% +/- 11.36%). The errors in MIP-based ITA from RedCAM correlated linearly (epsilon = -5.13nu - 6.71, r(2) = 0.76) with the subjects' respiratory variability. Because of the low temporal resolution and retrospective re-sorting, 4D-CT might not accurately depict the excursion of a moving tumor. Using a 4D-CT MIP image to define the internal target volume might therefore cause underdosing and an increased risk of subsequent treatment failure. Patient-specific respiratory variability might also be a useful predictor of the 4D-CT-induced error in MIP-based internal target volume determination.
Mehranian, Abolfazl; Arabi, Hossein; Zaidi, Habib
2016-04-15
In quantitative PET/MR imaging, attenuation correction (AC) of PET data is markedly challenged by the need of deriving accurate attenuation maps from MR images. A number of strategies have been developed for MRI-guided attenuation correction with different degrees of success. In this work, we compare the quantitative performance of three generic AC methods, including standard 3-class MR segmentation-based, advanced atlas-registration-based and emission-based approaches in the context of brain time-of-flight (TOF) PET/MRI. Fourteen patients referred for diagnostic MRI and (18)F-FDG PET/CT brain scans were included in this comparative study. For each study, PET images were reconstructed using four different attenuation maps derived from CT-based AC (CTAC) serving as reference, standard 3-class MR-segmentation, atlas-registration and emission-based AC methods. To generate 3-class attenuation maps, T1-weighted MRI images were segmented into background air, fat and soft-tissue classes followed by assignment of constant linear attenuation coefficients of 0, 0.0864 and 0.0975 cm(-1) to each class, respectively. A robust atlas-registration based AC method was developed for pseudo-CT generation using local weighted fusion of atlases based on their morphological similarity to target MR images. Our recently proposed MRI-guided maximum likelihood reconstruction of activity and attenuation (MLAA) algorithm was employed to estimate the attenuation map from TOF emission data. The performance of the different AC algorithms in terms of prediction of bones and quantification of PET tracer uptake was objectively evaluated with respect to reference CTAC maps and CTAC-PET images. Qualitative evaluation showed that the MLAA-AC method could sparsely estimate bones and accurately differentiate them from air cavities. It was found that the atlas-AC method can accurately predict bones with variable errors in defining air cavities. Quantitative assessment of bone extraction accuracy based on Dice similarity coefficient (DSC) showed that MLAA-AC and atlas-AC resulted in DSC mean values of 0.79 and 0.92, respectively, in all patients. The MLAA-AC and atlas-AC methods predicted mean linear attenuation coefficients of 0.107 and 0.134 cm(-1), respectively, for the skull compared to reference CTAC mean value of 0.138cm(-1). The evaluation of the relative change in tracer uptake within 32 distinct regions of the brain with respect to CTAC PET images showed that the 3-class MRAC, MLAA-AC and atlas-AC methods resulted in quantification errors of -16.2 ± 3.6%, -13.3 ± 3.3% and 1.0 ± 3.4%, respectively. Linear regression and Bland-Altman concordance plots showed that both 3-class MRAC and MLAA-AC methods result in a significant systematic bias in PET tracer uptake, while the atlas-AC method results in a negligible bias. The standard 3-class MRAC method significantly underestimated cerebral PET tracer uptake. While current state-of-the-art MLAA-AC methods look promising, they were unable to noticeably reduce quantification errors in the context of brain imaging. Conversely, the proposed atlas-AC method provided the most accurate attenuation maps, and thus the lowest quantification bias. Copyright © 2016 Elsevier Inc. All rights reserved.
Le Troter, Arnaud; Fouré, Alexandre; Guye, Maxime; Confort-Gouny, Sylviane; Mattei, Jean-Pierre; Gondin, Julien; Salort-Campana, Emmanuelle; Bendahan, David
2016-04-01
Atlas-based segmentation is a powerful method for automatic structural segmentation of several sub-structures in many organs. However, such an approach has been very scarcely used in the context of muscle segmentation, and so far no study has assessed such a method for the automatic delineation of individual muscles of the quadriceps femoris (QF). In the present study, we have evaluated a fully automated multi-atlas method and a semi-automated single-atlas method for the segmentation and volume quantification of the four muscles of the QF and for the QF as a whole. The study was conducted in 32 young healthy males, using high-resolution magnetic resonance images (MRI) of the thigh. The multi-atlas-based segmentation method was conducted in 25 subjects. Different non-linear registration approaches based on free-form deformable (FFD) and symmetric diffeomorphic normalization algorithms (SyN) were assessed. Optimal parameters of two fusion methods, i.e., STAPLE and STEPS, were determined on the basis of the highest Dice similarity index (DSI) considering manual segmentation (MSeg) as the ground truth. Validation and reproducibility of this pipeline were determined using another MRI dataset recorded in seven healthy male subjects on the basis of additional metrics such as the muscle volume similarity values, intraclass coefficient, and coefficient of variation. Both non-linear registration methods (FFD and SyN) were also evaluated as part of a single-atlas strategy in order to assess longitudinal muscle volume measurements. The multi- and the single-atlas approaches were compared for the segmentation and the volume quantification of the four muscles of the QF and for the QF as a whole. Considering each muscle of the QF, the DSI of the multi-atlas-based approach was high 0.87 ± 0.11 and the best results were obtained with the combination of two deformation fields resulting from the SyN registration method and the STEPS fusion algorithm. The optimal variables for FFD and SyN registration methods were four templates and a kernel standard deviation ranging between 5 and 8. The segmentation process using a single-atlas-based method was more robust with DSI values higher than 0.9. From the vantage of muscle volume measurements, the multi-atlas-based strategy provided acceptable results regarding the QF muscle as a whole but highly variable results regarding individual muscle. On the contrary, the performance of the single-atlas-based pipeline for individual muscles was highly comparable to the MSeg, thereby indicating that this method would be adequate for longitudinal tracking of muscle volume changes in healthy subjects. In the present study, we demonstrated that both multi-atlas and single-atlas approaches were relevant for the segmentation of individual muscles of the QF in healthy subjects. Considering muscle volume measurements, the single-atlas method provided promising perspectives regarding longitudinal quantification of individual muscle volumes.
Tong, Tong; Wolz, Robin; Coupé, Pierrick; Hajnal, Joseph V; Rueckert, Daniel
2013-08-01
We propose a novel method for the automatic segmentation of brain MRI images by using discriminative dictionary learning and sparse coding techniques. In the proposed method, dictionaries and classifiers are learned simultaneously from a set of brain atlases, which can then be used for the reconstruction and segmentation of an unseen target image. The proposed segmentation strategy is based on image reconstruction, which is in contrast to most existing atlas-based labeling approaches that rely on comparing image similarities between atlases and target images. In addition, we propose a Fixed Discriminative Dictionary Learning for Segmentation (F-DDLS) strategy, which can learn dictionaries offline and perform segmentations online, enabling a significant speed-up in the segmentation stage. The proposed method has been evaluated for the hippocampus segmentation of 80 healthy ICBM subjects and 202 ADNI images. The robustness of the proposed method, especially of our F-DDLS strategy, was validated by training and testing on different subject groups in the ADNI database. The influence of different parameters was studied and the performance of the proposed method was also compared with that of the nonlocal patch-based approach. The proposed method achieved a median Dice coefficient of 0.879 on 202 ADNI images and 0.890 on 80 ICBM subjects, which is competitive compared with state-of-the-art methods. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Soltanian-Zadeh, Hamid; Windham, Joe P.; Peck, Donald J.
1997-04-01
This paper presents development and performance evaluation of an MRI feature space method. The method is useful for: identification of tissue types; segmentation of tissues; and quantitative measurements on tissues, to obtain information that can be used in decision making (diagnosis, treatment planning, and evaluation of treatment). The steps of the work accomplished are as follows: (1) Four T2-weighted and two T1-weighted images (before and after injection of Gadolinium) were acquired for ten tumor patients. (2) Images were analyed by two image analysts according to the following algorithm. The intracranial brain tissues were segmented from the scalp and background. The additive noise was suppressed using a multi-dimensional non-linear edge- preserving filter which preserves partial volume information on average. Image nonuniformities were corrected using a modified lowpass filtering approach. The resulting images were used to generate and visualize an optimal feature space. Cluster centers were identified on the feature space. Then images were segmented into normal tissues and different zones of the tumor. (3) Biopsy samples were extracted from each patient and were subsequently analyzed by the pathology laboratory. (4) Image analysis results were compared to each other and to the biopsy results. Pre- and post-surgery feature spaces were also compared. The proposed algorithm made it possible to visualize the MRI feature space and to segment the image. In all cases, the operators were able to find clusters for normal and abnormal tissues. Also, clusters for different zones of the tumor were found. Based on the clusters marked for each zone, the method successfully segmented the image into normal tissues (white matter, gray matter, and CSF) and different zones of the lesion (tumor, cyst, edema, radiation necrosis, necrotic core, and infiltrated tumor). The results agreed with those obtained from the biopsy samples. Comparison of pre- to post-surgery and radiation feature spaces confirmed that the tumor was not present in the second study but radiation necrosis was generated as a result of radiation.
Li, Wei; Abram, François; Pelletier, Jean-Pierre; Raynauld, Jean-Pierre; Dorais, Marc; d'Anjou, Marc-André; Martel-Pelletier, Johanne
2010-01-01
Joint effusion is frequently associated with osteoarthritis (OA) flare-up and is an important marker of therapeutic response. This study aimed at developing and validating a fully automated system based on magnetic resonance imaging (MRI) for the quantification of joint effusion volume in knee OA patients. MRI examinations consisted of two axial sequences: a T2-weighted true fast imaging with steady-state precession and a T1-weighted gradient echo. An automated joint effusion volume quantification system using MRI was developed and validated (a) with calibrated phantoms (cylinder and sphere) and effusion from knee OA patients; (b) with assessment by manual quantification; and (c) by direct aspiration. Twenty-five knee OA patients with joint effusion were included in the study. The automated joint effusion volume quantification was developed as a four stage sequencing process: bone segmentation, filtering of unrelated structures, segmentation of joint effusion, and subvoxel volume calculation. Validation experiments revealed excellent coefficients of variation with the calibrated cylinder (1.4%) and sphere (0.8%) phantoms. Comparison of the OA knee joint effusion volume assessed by the developed automated system and by manual quantification was also excellent (r = 0.98; P < 0.0001), as was the comparison with direct aspiration (r = 0.88; P = 0.0008). The newly developed fully automated MRI-based system provided precise quantification of OA knee joint effusion volume with excellent correlation with data from phantoms, a manual system, and joint aspiration. Such an automated system will be instrumental in improving the reproducibility/reliability of the evaluation of this marker in clinical application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korhonen, Juha, E-mail: juha.p.korhonen@hus.fi; Kapanen, Mika; Department of Oncology, Helsinki University Central Hospital, POB-180, 00029 HUS
Purpose: The lack of electron density information in magnetic resonance images (MRI) poses a major challenge for MRI-based radiotherapy treatment planning (RTP). In this study the authors convert MRI intensity values into Hounsfield units (HUs) in the male pelvis and thus enable accurate MRI-based RTP for prostate cancer patients with varying tissue anatomy and body fat contents. Methods: T{sub 1}/T{sub 2}*-weighted MRI intensity values and standard computed tomography (CT) image HUs in the male pelvis were analyzed using image data of 10 prostate cancer patients. The collected data were utilized to generate a dual model HU conversion technique from MRImore » intensity values of the single image set separately within and outside of contoured pelvic bones. Within the bone segment local MRI intensity values were converted to HUs by applying a second-order polynomial model. This model was tuned for each patient by two patient-specific adjustments: MR signal normalization to correct shifts in absolute intensity level and application of a cutoff value to accurately represent low density bony tissue HUs. For soft tissues, such as fat and muscle, located outside of the bone contours, a threshold-based segmentation method without requirements for any patient-specific adjustments was introduced to convert MRI intensity values into HUs. The dual model HU conversion technique was implemented by constructing pseudo-CT images for 10 other prostate cancer patients. The feasibility of these images for RTP was evaluated by comparing HUs in the generated pseudo-CT images with those in standard CT images, and by determining deviations in MRI-based dose distributions compared to those in CT images with 7-field intensity modulated radiation therapy (IMRT) with the anisotropic analytical algorithm and 360° volumetric-modulated arc therapy (VMAT) with the Voxel Monte Carlo algorithm. Results: The average HU differences between the constructed pseudo-CT images and standard CT images of each test patient ranged from −2 to 5 HUs and from 22 to 78 HUs in soft and bony tissues, respectively. The average local absolute value differences were 11 HUs in soft tissues and 99 HUs in bones. The planning target volume doses (volumes 95%, 50%, 5%) in the pseudo-CT images were within 0.8% compared to those in CT images in all of the 20 treatment plans. The average deviation was 0.3%. With all the test patients over 94% (IMRT) and 92% (VMAT) of dose points within body (lower than 10% of maximum dose suppressed) passed the 1 mm and 1% 2D gamma index criterion. The statistical tests (t- and F-tests) showed significantly improved (p ≤ 0.05) HU and dose calculation accuracies with the soft tissue conversion method instead of homogeneous representation of these tissues in MRI-based RTP images. Conclusions: This study indicates that it is possible to construct high quality pseudo-CT images by converting the intensity values of a single MRI series into HUs in the male pelvis, and to use these images for accurate MRI-based prostate RTP dose calculations.« less
Axillary Lymph Node Evaluation Utilizing Convolutional Neural Networks Using MRI Dataset.
Ha, Richard; Chang, Peter; Karcich, Jenika; Mutasa, Simukayi; Fardanesh, Reza; Wynn, Ralph T; Liu, Michael Z; Jambawalikar, Sachin
2018-04-25
The aim of this study is to evaluate the role of convolutional neural network (CNN) in predicting axillary lymph node metastasis, using a breast MRI dataset. An institutional review board (IRB)-approved retrospective review of our database from 1/2013 to 6/2016 identified 275 axillary lymph nodes for this study. Biopsy-proven 133 metastatic axillary lymph nodes and 142 negative control lymph nodes were identified based on benign biopsies (100) and from healthy MRI screening patients (42) with at least 3 years of negative follow-up. For each breast MRI, axillary lymph node was identified on first T1 post contrast dynamic images and underwent 3D segmentation using an open source software platform 3D Slicer. A 32 × 32 patch was then extracted from the center slice of the segmented tumor data. A CNN was designed for lymph node prediction based on each of these cropped images. The CNN consisted of seven convolutional layers and max-pooling layers with 50% dropout applied in the linear layer. In addition, data augmentation and L2 regularization were performed to limit overfitting. Training was implemented using the Adam optimizer, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. Code for this study was written in Python using the TensorFlow module (1.0.0). Experiments and CNN training were done on a Linux workstation with NVIDIA GTX 1070 Pascal GPU. Two class axillary lymph node metastasis prediction models were evaluated. For each lymph node, a final softmax score threshold of 0.5 was used for classification. Based on this, CNN achieved a mean five-fold cross-validation accuracy of 84.3%. It is feasible for current deep CNN architectures to be trained to predict likelihood of axillary lymph node metastasis. Larger dataset will likely improve our prediction model and can potentially be a non-invasive alternative to core needle biopsy and even sentinel lymph node evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehranian, Abolfazl; Arabi, Hossein; Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch
Attenuation correction is an essential component of the long chain of data correction techniques required to achieve the full potential of quantitative positron emission tomography (PET) imaging. The development of combined PET/magnetic resonance imaging (MRI) systems mandated the widespread interest in developing novel strategies for deriving accurate attenuation maps with the aim to improve the quantitative accuracy of these emerging hybrid imaging systems. The attenuation map in PET/MRI should ideally be derived from anatomical MR images; however, MRI intensities reflect proton density and relaxation time properties of biological tissues rather than their electron density and photon attenuation properties. Therefore, inmore » contrast to PET/computed tomography, there is a lack of standardized global mapping between the intensities of MRI signal and linear attenuation coefficients at 511 keV. Moreover, in standard MRI sequences, bones and lung tissues do not produce measurable signals owing to their low proton density and short transverse relaxation times. MR images are also inevitably subject to artifacts that degrade their quality, thus compromising their applicability for the task of attenuation correction in PET/MRI. MRI-guided attenuation correction strategies can be classified in three broad categories: (i) segmentation-based approaches, (ii) atlas-registration and machine learning methods, and (iii) emission/transmission-based approaches. This paper summarizes past and current state-of-the-art developments and latest advances in PET/MRI attenuation correction. The advantages and drawbacks of each approach for addressing the challenges of MR-based attenuation correction are comprehensively described. The opportunities brought by both MRI and PET imaging modalities for deriving accurate attenuation maps and improving PET quantification will be elaborated. Future prospects and potential clinical applications of these techniques and their integration in commercial systems will also be discussed.« less
Mehranian, Abolfazl; Arabi, Hossein; Zaidi, Habib
2016-03-01
Attenuation correction is an essential component of the long chain of data correction techniques required to achieve the full potential of quantitative positron emission tomography (PET) imaging. The development of combined PET/magnetic resonance imaging (MRI) systems mandated the widespread interest in developing novel strategies for deriving accurate attenuation maps with the aim to improve the quantitative accuracy of these emerging hybrid imaging systems. The attenuation map in PET/MRI should ideally be derived from anatomical MR images; however, MRI intensities reflect proton density and relaxation time properties of biological tissues rather than their electron density and photon attenuation properties. Therefore, in contrast to PET/computed tomography, there is a lack of standardized global mapping between the intensities of MRI signal and linear attenuation coefficients at 511 keV. Moreover, in standard MRI sequences, bones and lung tissues do not produce measurable signals owing to their low proton density and short transverse relaxation times. MR images are also inevitably subject to artifacts that degrade their quality, thus compromising their applicability for the task of attenuation correction in PET/MRI. MRI-guided attenuation correction strategies can be classified in three broad categories: (i) segmentation-based approaches, (ii) atlas-registration and machine learning methods, and (iii) emission/transmission-based approaches. This paper summarizes past and current state-of-the-art developments and latest advances in PET/MRI attenuation correction. The advantages and drawbacks of each approach for addressing the challenges of MR-based attenuation correction are comprehensively described. The opportunities brought by both MRI and PET imaging modalities for deriving accurate attenuation maps and improving PET quantification will be elaborated. Future prospects and potential clinical applications of these techniques and their integration in commercial systems will also be discussed.
2016-01-01
Pennsylvania, we completed computerized volumetric analysis of the structural MRI scans of the brain collected from the study subjects, using the... pharmacological management. Brain Injury 2001;15(2):139-48. 07. Wroblewski BA, Joseph AB, Kupfer J, Kalliel K. Effectiveness of valproic acid on
Morphology-based three-dimensional segmentation of coronary artery tree from CTA scans
NASA Astrophysics Data System (ADS)
Banh, Diem Phuc T.; Kyprianou, Iacovos S.; Paquerault, Sophie; Myers, Kyle J.
2007-03-01
We developed an algorithm based on a rule-based threshold framework to segment the coronary arteries from angiographic computed tomography (CTA) data. Computerized segmentation of the coronary arteries is a challenging procedure due to the presence of diverse anatomical structures surrounding the heart on cardiac CTA data. The proposed algorithm incorporates various levels of image processing and organ information including region, connectivity and morphology operations. It consists of three successive stages. The first stage involves the extraction of the three-dimensional scaffold of the heart envelope. This stage is semiautomatic requiring a reader to review the CTA scans and manually select points along the heart envelope in slices. These points are further processed using a surface spline-fitting technique to automatically generate the heart envelope. The second stage consists of segmenting the left heart chambers and coronary arteries using grayscale threshold, size and connectivity criteria. This is followed by applying morphology operations to further detach the left and right coronary arteries from the aorta. In the final stage, the 3D vessel tree is reconstructed and labeled using an Isolated Connected Threshold technique. The algorithm was developed and tested on a patient coronary artery CTA that was graciously shared by the Department of Radiology of the Massachusetts General Hospital. The test showed that our method constantly segmented the vessels above 79% of the maximum gray-level and automatically extracted 55 of the 58 coronary segments that can be seen on the CTA scan by a reader. These results are an encouraging step toward our objective of generating high resolution models of the male and female heart that will be subsequently used as phantoms for medical imaging system optimization studies.
Shen, Jun; Baum, Thomas; Cordes, Christian; Ott, Beate; Skurk, Thomas; Kooijman, Hendrik; Rummeny, Ernst J; Hauner, Hans; Menze, Bjoern H; Karampinos, Dimitrios C
2016-09-01
To develop a fully automatic algorithm for abdominal organs and adipose tissue compartments segmentation and to assess organ and adipose tissue volume changes in longitudinal water-fat magnetic resonance imaging (MRI) data. Axial two-point Dixon images were acquired in 20 obese women (age range 24-65, BMI 34.9±3.8kg/m(2)) before and after a four-week calorie restriction. Abdominal organs, subcutaneous adipose tissue (SAT) compartments (abdominal, anterior, posterior), SAT regions along the feet-head direction and regional visceral adipose tissue (VAT) were assessed by a fully automatic algorithm using morphological operations and a multi-atlas-based segmentation method. The accuracy of organ segmentation represented by Dice coefficients ranged from 0.672±0.155 for the pancreas to 0.943±0.023 for the liver. Abdominal SAT changes were significantly greater in the posterior than the anterior SAT compartment (-11.4%±5.1% versus -9.5%±6.3%, p<0.001). The loss of VAT that was not located around any organ (-16.1%±8.9%) was significantly greater than the loss of VAT 5cm around liver, left and right kidney, spleen, and pancreas (p<0.05). The presented fully automatic algorithm showed good performance in abdominal adipose tissue and organ segmentation, and allowed the detection of SAT and VAT subcompartments changes during weight loss. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
3D variational brain tumor segmentation using Dirichlet priors on a clustered feature set.
Popuri, Karteek; Cobzas, Dana; Murtha, Albert; Jägersand, Martin
2012-07-01
Brain tumor segmentation is a required step before any radiation treatment or surgery. When performed manually, segmentation is time consuming and prone to human errors. Therefore, there have been significant efforts to automate the process. But, automatic tumor segmentation from MRI data is a particularly challenging task. Tumors have a large diversity in shape and appearance with intensities overlapping the normal brain tissues. In addition, an expanding tumor can also deflect and deform nearby tissue. In our work, we propose an automatic brain tumor segmentation method that addresses these last two difficult problems. We use the available MRI modalities (T1, T1c, T2) and their texture characteristics to construct a multidimensional feature set. Then, we extract clusters which provide a compact representation of the essential information in these features. The main idea in this work is to incorporate these clustered features into the 3D variational segmentation framework. In contrast to previous variational approaches, we propose a segmentation method that evolves the contour in a supervised fashion. The segmentation boundary is driven by the learned region statistics in the cluster space. We incorporate prior knowledge about the normal brain tissue appearance during the estimation of these region statistics. In particular, we use a Dirichlet prior that discourages the clusters from the normal brain region to be in the tumor region. This leads to a better disambiguation of the tumor from brain tissue. We evaluated the performance of our automatic segmentation method on 15 real MRI scans of brain tumor patients, with tumors that are inhomogeneous in appearance, small in size and in proximity to the major structures in the brain. Validation with the expert segmentation labels yielded encouraging results: Jaccard (58%), Precision (81%), Recall (67%), Hausdorff distance (24 mm). Using priors on the brain/tumor appearance, our proposed automatic 3D variational segmentation method was able to better disambiguate the tumor from the surrounding tissue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veeraraghavan, H; Tyagi, N; Riaz, N
2014-06-01
Purpose: Identification and image-based monitoring of lymph nodes growing due to disease, could be an attractive alternative to prophylactic head and neck irradiation. We evaluated the accuracy of the user-interactive Grow Cut algorithm for volumetric segmentation of radiotherapy relevant lymph nodes from MRI taken weekly during radiotherapy. Method: The algorithm employs user drawn strokes in the image to volumetrically segment multiple structures of interest. We used a 3D T2-wturbo spin echo images with an isotropic resolution of 1 mm3 and FOV of 492×492×300 mm3 of head and neck cancer patients who underwent weekly MR imaging during the course of radiotherapy.more » Various lymph node (LN) levels (N2, N3, N4'5) were individually contoured on the weekly MR images by an expert physician and used as ground truth in our study. The segmentation results were compared with the physician drawn lymph nodes based on DICE similarity score. Results: Three head and neck patients with 6 weekly MR images were evaluated. Two patients had level 2 LN drawn and one patient had level N2, N3 and N4'5 drawn on each MR image. The algorithm took an average of a minute to segment the entire volume (512×512×300 mm3). The algorithm achieved an overall DICE similarity score of 0.78. The time taken for initializing and obtaining the volumetric mask was about 5 mins for cases with only N2 LN and about 15 mins for the case with N2,N3 and N4'5 level nodes. The longer initialization time for the latter case was due to the need for accurate user inputs to separate overlapping portions of the different LN. The standard deviation in segmentation accuracy at different time points was utmost 0.05. Conclusions: Our initial evaluation of the grow cut segmentation shows reasonably accurate and consistent volumetric segmentations of LN with minimal user effort and time.« less
Lebenberg, Jessica; Lalande, Alain; Clarysse, Patrick; Buvat, Irene; Casta, Christopher; Cochet, Alexandre; Constantinidès, Constantin; Cousty, Jean; de Cesare, Alain; Jehan-Besson, Stephanie; Lefort, Muriel; Najman, Laurent; Roullot, Elodie; Sarry, Laurent; Tilmant, Christophe; Frouin, Frederique; Garreau, Mireille
2015-01-01
This work aimed at combining different segmentation approaches to produce a robust and accurate segmentation result. Three to five segmentation results of the left ventricle were combined using the STAPLE algorithm and the reliability of the resulting segmentation was evaluated in comparison with the result of each individual segmentation method. This comparison was performed using a supervised approach based on a reference method. Then, we used an unsupervised statistical evaluation, the extended Regression Without Truth (eRWT) that ranks different methods according to their accuracy in estimating a specific biomarker in a population. The segmentation accuracy was evaluated by estimating six cardiac function parameters resulting from the left ventricle contour delineation using a public cardiac cine MRI database. Eight different segmentation methods, including three expert delineations and five automated methods, were considered, and sixteen combinations of the automated methods using STAPLE were investigated. The supervised and unsupervised evaluations demonstrated that in most cases, STAPLE results provided better estimates than individual automated segmentation methods. Overall, combining different automated segmentation methods improved the reliability of the segmentation result compared to that obtained using an individual method and could achieve the accuracy of an expert.
Lebenberg, Jessica; Lalande, Alain; Clarysse, Patrick; Buvat, Irene; Casta, Christopher; Cochet, Alexandre; Constantinidès, Constantin; Cousty, Jean; de Cesare, Alain; Jehan-Besson, Stephanie; Lefort, Muriel; Najman, Laurent; Roullot, Elodie; Sarry, Laurent; Tilmant, Christophe
2015-01-01
This work aimed at combining different segmentation approaches to produce a robust and accurate segmentation result. Three to five segmentation results of the left ventricle were combined using the STAPLE algorithm and the reliability of the resulting segmentation was evaluated in comparison with the result of each individual segmentation method. This comparison was performed using a supervised approach based on a reference method. Then, we used an unsupervised statistical evaluation, the extended Regression Without Truth (eRWT) that ranks different methods according to their accuracy in estimating a specific biomarker in a population. The segmentation accuracy was evaluated by estimating six cardiac function parameters resulting from the left ventricle contour delineation using a public cardiac cine MRI database. Eight different segmentation methods, including three expert delineations and five automated methods, were considered, and sixteen combinations of the automated methods using STAPLE were investigated. The supervised and unsupervised evaluations demonstrated that in most cases, STAPLE results provided better estimates than individual automated segmentation methods. Overall, combining different automated segmentation methods improved the reliability of the segmentation result compared to that obtained using an individual method and could achieve the accuracy of an expert. PMID:26287691
Applicability of three-dimensional imaging techniques in fetal medicine*
Werner Júnior, Heron; dos Santos, Jorge Lopes; Belmonte, Simone; Ribeiro, Gerson; Daltro, Pedro; Gasparetto, Emerson Leandro; Marchiori, Edson
2016-01-01
Objective To generate physical models of fetuses from images obtained with three-dimensional ultrasound (3D-US), magnetic resonance imaging (MRI), and, occasionally, computed tomography (CT), in order to guide additive manufacturing technology. Materials and Methods We used 3D-US images of 31 pregnant women, including 5 who were carrying twins. If abnormalities were detected by 3D-US, both MRI and in some cases CT scans were then immediately performed. The images were then exported to a workstation in DICOM format. A single observer performed slice-by-slice manual segmentation using a digital high resolution screen. Virtual 3D models were obtained from software that converts medical images into numerical models. Those models were then generated in physical form through the use of additive manufacturing techniques. Results Physical models based upon 3D-US, MRI, and CT images were successfully generated. The postnatal appearance of either the aborted fetus or the neonate closely resembled the physical models, particularly in cases of malformations. Conclusion The combined use of 3D-US, MRI, and CT could help improve our understanding of fetal anatomy. These three screening modalities can be used for educational purposes and as tools to enable parents to visualize their unborn baby. The images can be segmented and then applied, separately or jointly, in order to construct virtual and physical 3D models. PMID:27818540
What approach to brain partial volume correction is best for PET/MRI?
NASA Astrophysics Data System (ADS)
Hutton, B. F.; Thomas, B. A.; Erlandsson, K.; Bousse, A.; Reilhac-Laborde, A.; Kazantsev, D.; Pedemonte, S.; Vunckx, K.; Arridge, S. R.; Ourselin, S.
2013-02-01
Many partial volume correction approaches make use of anatomical information, readily available in PET/MRI systems but it is not clear what approach is best. Seven novel approaches to partial volume correction were evaluated, including several post-reconstruction methods and several reconstruction methods that incorporate anatomical information. These were compared with an MRI-independent approach (reblurred van Cittert ) and uncorrected data. Monte Carlo PET data were generated for activity distributions representing both 18F FDG and amyloid tracer uptake. Post-reconstruction methods provided the best recovery with ideal segmentation but were particularly sensitive to mis-registration. Alternative approaches performed better in maintaining lesion contrast (unseen in MRI) with good noise control. These were also relatively insensitive to mis-registration errors. The choice of method will depend on the specific application and reliability of segmentation and registration algorithms.
Semi-automated brain tumor and edema segmentation using MRI.
Xie, Kai; Yang, Jie; Zhang, Z G; Zhu, Y M
2005-10-01
Manual segmentation of brain tumors from magnetic resonance images is a challenging and time-consuming task. A semi-automated method has been developed for brain tumor and edema segmentation that will provide objective, reproducible segmentations that are close to the manual results. Additionally, the method segments non-enhancing brain tumor and edema from healthy tissues in magnetic resonance images. In this study, a semi-automated method was developed for brain tumor and edema segmentation and volume measurement using magnetic resonance imaging (MRI). Some novel algorithms for tumor segmentation from MRI were integrated in this medical diagnosis system. We exploit a hybrid level set (HLS) segmentation method driven by region and boundary information simultaneously, region information serves as a propagation force which is robust and boundary information serves as a stopping functional which is accurate. Ten different patients with brain tumors of different size, shape and location were selected, a total of 246 axial tumor-containing slices obtained from 10 patients were used to evaluate the effectiveness of segmentation methods. This method was applied to 10 non-enhancing brain tumors and satisfactory results were achieved. Two quantitative measures for tumor segmentation quality estimation, namely, correspondence ratio (CR) and percent matching (PM), were performed. For the segmentation of brain tumor, the volume total PM varies from 79.12 to 93.25% with the mean of 85.67+/-4.38% while the volume total CR varies from 0.74 to 0.91 with the mean of 0.84+/-0.07. For the segmentation of edema, the volume total PM varies from 72.86 to 87.29% with the mean of 79.54+/-4.18% while the volume total CR varies from 0.69 to 0.85 with the mean of 0.79+/-0.08. The HLS segmentation method perform better than the classical level sets (LS) segmentation method in PM and CR. The results of this research may have potential applications, both as a staging procedure and a method of evaluating tumor response during treatment, this method can be used as a clinical image analysis tool for doctors or radiologists.
Diagnostic Challenges in Prostate Cancer and 68Ga-PSMA PET Imaging: A Game Changer?
Zaman, Maseeh uz; Fatima, Nosheen; Zaman, Areeba; Sajid, Mahwsih; Zaman, Unaiza; Zaman, Sidra
2017-10-26
Prostate cancer (PC) is the most frequent solid tumor in men and the third most common cause of cancer mortality among men in developed countries. Current imaging modalities like ultrasound (US), computerized tomography (CT), magnetic resonance imaging (MRI) and choline based positron emission (PET) tracing have disappointing sensitivity for detection of nodal metastasis and small tumor recurrence. This poses a diagnostic challenge in staging of intermediate to high risk PC and restaging of patients with biochemical recurrence (PSA >0.2 ng/ml). Gallium-68 labeled prostate specific membrane antigen (68Ga-PSMA) PET imaging has now emerged with a higher diagnostic yield. 68Ga-PSMA PET/CT or PET/MRI can be expected to offer a one-stop-shop for staging and restaging of PC. PSMA ligands labeled with alpha and beta emitters have also shown promising therapeutic efficacy for nodal, bone and visceral metastasis. Therefore a PSMA based theranostics approach for detection, staging, treatment, and follow-up of PC would appear to be highly valuable to achieve personalized PC treatment. Creative Commons Attribution License
Gaussian mixtures on tensor fields for segmentation: applications to medical imaging.
de Luis-García, Rodrigo; Westin, Carl-Fredrik; Alberola-López, Carlos
2011-01-01
In this paper, we introduce a new approach for tensor field segmentation based on the definition of mixtures of Gaussians on tensors as a statistical model. Working over the well-known Geodesic Active Regions segmentation framework, this scheme presents several interesting advantages. First, it yields a more flexible model than the use of a single Gaussian distribution, which enables the method to better adapt to the complexity of the data. Second, it can work directly on tensor-valued images or, through a parallel scheme that processes independently the intensity and the local structure tensor, on scalar textured images. Two different applications have been considered to show the suitability of the proposed method for medical imaging segmentation. First, we address DT-MRI segmentation on a dataset of 32 volumes, showing a successful segmentation of the corpus callosum and favourable comparisons with related approaches in the literature. Second, the segmentation of bones from hand radiographs is studied, and a complete automatic-semiautomatic approach has been developed that makes use of anatomical prior knowledge to produce accurate segmentation results. Copyright © 2010 Elsevier Ltd. All rights reserved.
Balsters, Joshua H; Mantini, Dante; Wenderoth, Nicole
2018-04-15
Autism Spectrum Disorder (ASD) has been associated with abnormal synaptic development causing a breakdown in functional connectivity. However, when measured at the macro scale using resting state fMRI, these alterations are subtle and often difficult to detect due to the large heterogeneity of the pathology. Recently, we outlined a novel approach for generating robust biomarkers of resting state functional magnetic resonance imaging (RS-fMRI) using connectivity based parcellation of gross morphological structures to improve single-subject reproducibility and generate more robust connectivity fingerprints. Here we apply this novel approach to investigating the organization and connectivity strength of the cortico-striatal system in a large sample of ASD individuals and typically developed (TD) controls (N=130 per group). Our results showed differences in the parcellation of the striatum in ASD. Specifically, the putamen was found to be one single structure in ASD, whereas this was split into anterior and posterior segments in an age, IQ, and head movement matched TD group. An analysis of the connectivity fingerprints revealed that the group differences in clustering were driven by differential connectivity between striatum and the supplementary motor area, posterior cingulate cortex, and posterior insula. Our approach for analysing RS-fMRI in clinical populations has provided clear evidence that cortico-striatal circuits are organized differently in ASD. Based on previous task-based segmentations of the striatum, we believe that the anterior putamen cluster present in TD, but not in ASD, likely contributes to social and language processes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Stojadinovic, Strahinja; Hrycushko, Brian; Wardak, Zabi; Lau, Steven; Lu, Weiguo; Yan, Yulong; Jiang, Steve B.; Zhen, Xin; Timmerman, Robert; Nedzi, Lucien
2017-01-01
Accurate and automatic brain metastases target delineation is a key step for efficient and effective stereotactic radiosurgery (SRS) treatment planning. In this work, we developed a deep learning convolutional neural network (CNN) algorithm for segmenting brain metastases on contrast-enhanced T1-weighted magnetic resonance imaging (MRI) datasets. We integrated the CNN-based algorithm into an automatic brain metastases segmentation workflow and validated on both Multimodal Brain Tumor Image Segmentation challenge (BRATS) data and clinical patients' data. Validation on BRATS data yielded average DICE coefficients (DCs) of 0.75±0.07 in the tumor core and 0.81±0.04 in the enhancing tumor, which outperformed most techniques in the 2015 BRATS challenge. Segmentation results of patient cases showed an average of DCs 0.67±0.03 and achieved an area under the receiver operating characteristic curve of 0.98±0.01. The developed automatic segmentation strategy surpasses current benchmark levels and offers a promising tool for SRS treatment planning for multiple brain metastases. PMID:28985229
Safari, Mohammad Reza; Rowe, Philip; Buis, Arjan
2012-01-01
Lower limb prosthetic socket shape and volume consistency can be quantified using MRI technology. Additionally, MRI images of the residual limb could be used as an input data for CAD-CAM technology and finite element studies. However, the accuracy of MRI when socket casting materials are used has to be defined. A number of six, 46 mm thick, cross-sections of an animal leg were used. Three specimens were wrapped with Plaster of Paris (POP) and the other three with commercially available silicone interface liner. Data was obtained by utilising MRI technology and then the segmented images compared to corresponding calliper measurement, photographic imaging, and water suspension techniques. The MRI measurement results were strongly correlated with actual diameter, surface area, and volume measurements. The results show that the selected scanning parameters and the semiautomatic segmentation method are adequate enough, considering the limit of clinical meaningful shape and volume fluctuation, for residual limb volume and the cross-sectional surface area measurements.
Safari, Mohammad Reza; Rowe, Philip; Buis, Arjan
2012-01-01
Lower limb prosthetic socket shape and volume consistency can be quantified using MRI technology. Additionally, MRI images of the residual limb could be used as an input data for CAD-CAM technology and finite element studies. However, the accuracy of MRI when socket casting materials are used has to be defined. A number of six, 46 mm thick, cross-sections of an animal leg were used. Three specimens were wrapped with Plaster of Paris (POP) and the other three with commercially available silicone interface liner. Data was obtained by utilising MRI technology and then the segmented images compared to corresponding calliper measurement, photographic imaging, and water suspension techniques. The MRI measurement results were strongly correlated with actual diameter, surface area, and volume measurements. The results show that the selected scanning parameters and the semiautomatic segmentation method are adequate enough, considering the limit of clinical meaningful shape and volume fluctuation, for residual limb volume and the cross-sectional surface area measurements. PMID:22619599
NASA Astrophysics Data System (ADS)
Yu, H.; Wang, Z.; Zhang, C.; Chen, N.; Zhao, Y.; Sawchuk, A. P.; Dalsing, M. C.; Teague, S. D.; Cheng, Y.
2014-11-01
Existing research of patient-specific computational hemodynamics (PSCH) heavily relies on software for anatomical extraction of blood arteries. Data reconstruction and mesh generation have to be done using existing commercial software due to the gap between medical image processing and CFD, which increases computation burden and introduces inaccuracy during data transformation thus limits the medical applications of PSCH. We use lattice Boltzmann method (LBM) to solve the level-set equation over an Eulerian distance field and implicitly and dynamically segment the artery surfaces from radiological CT/MRI imaging data. The segments seamlessly feed to the LBM based CFD computation of PSCH thus explicit mesh construction and extra data management are avoided. The LBM is ideally suited for GPU (graphic processing unit)-based parallel computing. The parallel acceleration over GPU achieves excellent performance in PSCH computation. An application study will be presented which segments an aortic artery from a chest CT dataset and models PSCH of the segmented artery.
Active learning based segmentation of Crohns disease from abdominal MRI.
Mahapatra, Dwarikanath; Vos, Franciscus M; Buhmann, Joachim M
2016-05-01
This paper proposes a novel active learning (AL) framework, and combines it with semi supervised learning (SSL) for segmenting Crohns disease (CD) tissues from abdominal magnetic resonance (MR) images. Robust fully supervised learning (FSL) based classifiers require lots of labeled data of different disease severities. Obtaining such data is time consuming and requires considerable expertise. SSL methods use a few labeled samples, and leverage the information from many unlabeled samples to train an accurate classifier. AL queries labels of most informative samples and maximizes gain from the labeling effort. Our primary contribution is in designing a query strategy that combines novel context information with classification uncertainty and feature similarity. Combining SSL and AL gives a robust segmentation method that: (1) optimally uses few labeled samples and many unlabeled samples; and (2) requires lower training time. Experimental results show our method achieves higher segmentation accuracy than FSL methods with fewer samples and reduced training effort. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyagi, N; Wengler, K; Mazaheri, Y
2014-06-15
Purpose: Pseudodiffusion arises from the microcirculation of blood in the randomly oriented capillary network and contributes to the signal decay acquired using a multi-b value diffusion weighted (DW)-MRI sequence. This effect is more significant at low b-values and should be properly accounted for in apparent diffusion coefficient (ADC) calculations. The purpose of this study was to separate perfusion and diffusion component based on a biexponential and a segmented monoexponential model using IVIM analysis Methods. The signal attenuation is modeled as S(b) = S0[(1−f)exp(−bD) + fexp(−bD*)]. Fitting the biexponetial decay leads to the quantification of D, the true diffusion coefficient, D*,more » the pseudodiffusion coefficient, and f, the perfusion fraction. A nonlinear least squares fit and two segmented monoexponential models were used to derive the values for D, D*,‘and f. In the segmented approach b = 200 s/mm{sup 2} was used as the cut-off value for calculation of D. DW-MRI's of a rectum cancer patient were acquired before chemotherapy, before radiation therapy (RT), and 4 weeks into RT and were investigated as an example case. Results: Mean ADC for the tumor drawn on the DWI cases was 0.93, 1.0 and 1.13 10{sup −3}×mm{sup 2}/s before chemotherapy, before RT and 4 weeks into RT. The mean (D.10{sup −3} × mm{sup 2}/s, D* 10{sup −3} × mm{sup 2}/s, and f %) based on biexponential fit was (0.67, 18.6, and 27.2%), (0.72, 17.7, and 28.9%) and (0.83,15.1, and 30.7%) at these time points. The mean (D, D* f) based on segmented fit was (0.72, 10.5, and 12.1%), (0.72, 8.2, and 17.4%) and (.82, 8.1, 16.5%) Conclusion: ADC values are typically higher than true diffusion coefficients. For tumors with significant perfusion effect, ADC should be analyzed at higher b-values or separated from the perfusion component. Biexponential fit overestimates the perfusion fraction because of increased sensitivity to noise at low b-values.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, C; Noid, G; Dalah, E
2015-06-15
Purpose: It has been reported recently that the change of CT number (CTN) during and after radiation therapy (RT) may be used to assess RT response. The purpose of this work is to develop a tool to automatically segment the regions with differentiating CTN and/or with change of CTN in a series of CTs. Methods: A software tool was developed to identify regions with differentiating CTN using K-mean Cluster of CT numbers and to automatically delineate these regions using convex hull enclosing method. Pre- and Post-RT CT, PET, or MRI images acquired for sample lung and pancreatic cancer cases weremore » used to test the software tool. K-mean cluster of CT numbers within the gross tumor volumes (GTVs) delineated based on PET SUV (standard uptake value of fludeoxyglucose) and/or MRI ADC (apparent diffusion coefficient) map was analyzed. The cluster centers with higher value were considered as active tumor volumes (ATV). The convex hull contours enclosing preset clusters were used to delineate these ATVs with color washed displays. The CTN defined ATVs were compared with the SUV- or ADC-defined ATVs. Results: CTN stability of the CT scanner used to acquire the CTs in this work is less than 1.5 Hounsfield Unit (HU) variation annually. K-mean cluster centers in the GTV have difference of ∼20 HU, much larger than variation due to CTN stability, for the lung cancer cases studied. The dice coefficient between the ATVs delineated based on convex hull enclosure of high CTN centers and the PET defined GTVs based on SUV cutoff value of 2.5 was 90(±5)%. Conclusion: A software tool was developed using K-mean cluster and convex hull contour to automatically segment high CTN regions which may not be identifiable using a simple threshold method. These CTN regions were reasonably overlapped with the PET or MRI defined GTVs.« less
Automatic 3D segmentation of spinal cord MRI using propagated deformable models
NASA Astrophysics Data System (ADS)
De Leener, B.; Cohen-Adad, J.; Kadoury, S.
2014-03-01
Spinal cord diseases or injuries can cause dysfunction of the sensory and locomotor systems. Segmentation of the spinal cord provides measures of atrophy and allows group analysis of multi-parametric MRI via inter-subject registration to a template. All these measures were shown to improve diagnostic and surgical intervention. We developed a framework to automatically segment the spinal cord on T2-weighted MR images, based on the propagation of a deformable model. The algorithm is divided into three parts: first, an initialization step detects the spinal cord position and orientation by using the elliptical Hough transform on multiple adjacent axial slices to produce an initial tubular mesh. Second, a low-resolution deformable model is iteratively propagated along the spinal cord. To deal with highly variable contrast levels between the spinal cord and the cerebrospinal fluid, the deformation is coupled with a contrast adaptation at each iteration. Third, a refinement process and a global deformation are applied on the low-resolution mesh to provide an accurate segmentation of the spinal cord. Our method was evaluated against a semi-automatic edge-based snake method implemented in ITK-SNAP (with heavy manual adjustment) by computing the 3D Dice coefficient, mean and maximum distance errors. Accuracy and robustness were assessed from 8 healthy subjects. Each subject had two volumes: one at the cervical and one at the thoracolumbar region. Results show a precision of 0.30 +/- 0.05 mm (mean absolute distance error) in the cervical region and 0.27 +/- 0.06 mm in the thoracolumbar region. The 3D Dice coefficient was of 0.93 for both regions.
Bakas, Spyridon; Akbari, Hamed; Sotiras, Aristeidis; Bilello, Michel; Rozycki, Martin; Kirby, Justin S.; Freymann, John B.; Farahani, Keyvan; Davatzikos, Christos
2017-01-01
Gliomas belong to a group of central nervous system tumors, and consist of various sub-regions. Gold standard labeling of these sub-regions in radiographic imaging is essential for both clinical and computational studies, including radiomic and radiogenomic analyses. Towards this end, we release segmentation labels and radiomic features for all pre-operative multimodal magnetic resonance imaging (MRI) (n=243) of the multi-institutional glioma collections of The Cancer Genome Atlas (TCGA), publicly available in The Cancer Imaging Archive (TCIA). Pre-operative scans were identified in both glioblastoma (TCGA-GBM, n=135) and low-grade-glioma (TCGA-LGG, n=108) collections via radiological assessment. The glioma sub-region labels were produced by an automated state-of-the-art method and manually revised by an expert board-certified neuroradiologist. An extensive panel of radiomic features was extracted based on the manually-revised labels. This set of labels and features should enable i) direct utilization of the TCGA/TCIA glioma collections towards repeatable, reproducible and comparative quantitative studies leading to new predictive, prognostic, and diagnostic assessments, as well as ii) performance evaluation of computer-aided segmentation methods, and comparison to our state-of-the-art method. PMID:28872634
Automated hippocampal subfield segmentation at 7 tesla MRI
Wisse, Laura E.M.; Kuijf, Hugo J.; Honingh, Anita M.; Wang, Hongzhi; Pluta, John B.; Das, Sandhitsu R.; Wolk, David A.; Zwanenburg, Jaco J.M.; Yushkevich, Paul A.; Geerlings, Mirjam I.
2015-01-01
Purpose We aimed to evaluate an automated technique to segment hippocampal subfields and the entorhinal cortex (ERC) at 7 tesla MRI. Materials and Methods Cornu Ammonis (CA)1, CA2, CA3, dentate gyrus (DG), subiculum (SUB) and ERC were manually segmented, covering most of the long axis of the hippocampus, on 0.70 mm3 T2-weighted 7 tesla images of twenty-six participants (59±9 years, 46% men). The Automated Segmentation of Hippocampal Subfields (ASHS) approach was applied and evaluated using leave-one-out cross-validation. Results Comparison of automated segmentations with corresponding manual segmentation yielded a Dice similarity coefficient (DSC) of >0.75 for CA1, DG, SUB and ERC; and >0.54 for CA2 and CA3. Intraclass correlation coefficients (ICC) were >0.74 for CA1, DG and SUB; and >0.43 for CA2, CA3 and the ERC. Restricting the comparison of the ERC segmentation to a smaller range along the anterior-posterior axis improved both ICCs (left: 0.71; right: 0.82) and DSCs (left: 0.78; right: 0.77). The accuracy of ASHS vs a manual rater was lower, though only slightly for most subfields, than the intra-rater reliability of an expert manual rater, but was similar or slightly higher than the accuracy of an expert vs. a manual rater with ~170h of training for almost all subfields. Conclusion This work demonstrates the feasibility of using a computational technique to automatically label hippocampal subfields and the ERC at 7 tesla MRI, with a high accuracy for most subfields that is competitive with the labor intensive manual segmentation. The software and atlas are publicly available: http://www.nitrc.org/projects/ashs/. PMID:26846925
Interrupted Time Series Versus Statistical Process Control in Quality Improvement Projects.
Andersson Hagiwara, Magnus; Andersson Gäre, Boel; Elg, Mattias
2016-01-01
To measure the effect of quality improvement interventions, it is appropriate to use analysis methods that measure data over time. Examples of such methods include statistical process control analysis and interrupted time series with segmented regression analysis. This article compares the use of statistical process control analysis and interrupted time series with segmented regression analysis for evaluating the longitudinal effects of quality improvement interventions, using an example study on an evaluation of a computerized decision support system.
Thermal comfort: research and practice.
van Hoof, Joost; Mazej, Mitja; Hensen, Jan L M
2010-01-01
Thermal comfort--the state of mind, which expresses satisfaction with the thermal environment--is an important aspect of the building design process as modern man spends most of the day indoors. This paper reviews the developments in indoor thermal comfort research and practice since the second half of the 1990s, and groups these developments around two main themes; (i) thermal comfort models and standards, and (ii) advances in computerization. Within the first theme, the PMV-model (Predicted Mean Vote), created by Fanger in the late 1960s is discussed in the light of the emergence of models of adaptive thermal comfort. The adaptive models are based on adaptive opportunities of occupants and are related to options of personal control of the indoor climate and psychology and performance. Both models have been considered in the latest round of thermal comfort standard revisions. The second theme focuses on the ever increasing role played by computerization in thermal comfort research and practice, including sophisticated multi-segmental modeling and building performance simulation, transient thermal conditions and interactions, thermal manikins.
Image Segmentation Analysis for NASA Earth Science Applications
NASA Technical Reports Server (NTRS)
Tilton, James C.
2010-01-01
NASA collects large volumes of imagery data from satellite-based Earth remote sensing sensors. Nearly all of the computerized image analysis of this data is performed pixel-by-pixel, in which an algorithm is applied directly to individual image pixels. While this analysis approach is satisfactory in many cases, it is usually not fully effective in extracting the full information content from the high spatial resolution image data that s now becoming increasingly available from these sensors. The field of object-based image analysis (OBIA) has arisen in recent years to address the need to move beyond pixel-based analysis. The Recursive Hierarchical Segmentation (RHSEG) software developed by the author is being used to facilitate moving from pixel-based image analysis to OBIA. The key unique aspect of RHSEG is that it tightly intertwines region growing segmentation, which produces spatially connected region objects, with region object classification, which groups sets of region objects together into region classes. No other practical, operational image segmentation approach has this tight integration of region growing object finding with region classification This integration is made possible by the recursive, divide-and-conquer implementation utilized by RHSEG, in which the input image data is recursively subdivided until the image data sections are small enough to successfully mitigat the combinatorial explosion caused by the need to compute the dissimilarity between each pair of image pixels. RHSEG's tight integration of region growing object finding and region classification is what enables the high spatial fidelity of the image segmentations produced by RHSEG. This presentation will provide an overview of the RHSEG algorithm and describe how it is currently being used to support OBIA or Earth Science applications such as snow/ice mapping and finding archaeological sites from remotely sensed data.
State of the art survey on MRI brain tumor segmentation.
Gordillo, Nelly; Montseny, Eduard; Sobrevilla, Pilar
2013-10-01
Brain tumor segmentation consists of separating the different tumor tissues (solid or active tumor, edema, and necrosis) from normal brain tissues: gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). In brain tumor studies, the existence of abnormal tissues may be easily detectable most of the time. However, accurate and reproducible segmentation and characterization of abnormalities are not straightforward. In the past, many researchers in the field of medical imaging and soft computing have made significant survey in the field of brain tumor segmentation. Both semiautomatic and fully automatic methods have been proposed. Clinical acceptance of segmentation techniques has depended on the simplicity of the segmentation, and the degree of user supervision. Interactive or semiautomatic methods are likely to remain dominant in practice for some time, especially in these applications where erroneous interpretations are unacceptable. This article presents an overview of the most relevant brain tumor segmentation methods, conducted after the acquisition of the image. Given the advantages of magnetic resonance imaging over other diagnostic imaging, this survey is focused on MRI brain tumor segmentation. Semiautomatic and fully automatic techniques are emphasized. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sparks, Rachel, E-mail: rachel.sparks@ucl.ac.uk; Barratt, Dean; Nicolas Bloch, B.
2015-03-15
Purpose: Transrectal ultrasound (TRUS)-guided needle biopsy is the current gold standard for prostate cancer diagnosis. However, up to 40% of prostate cancer lesions appears isoechoic on TRUS. Hence, TRUS-guided biopsy has a high false negative rate for prostate cancer diagnosis. Magnetic resonance imaging (MRI) is better able to distinguish prostate cancer from benign tissue. However, MRI-guided biopsy requires special equipment and training and a longer procedure time. MRI-TRUS fusion, where MRI is acquired preoperatively and then aligned to TRUS, allows for advantages of both modalities to be leveraged during biopsy. MRI-TRUS-guided biopsy increases the yield of cancer positive biopsies. Inmore » this work, the authors present multiattribute probabilistic postate elastic registration (MAPPER) to align prostate MRI and TRUS imagery. Methods: MAPPER involves (1) segmenting the prostate on MRI, (2) calculating a multiattribute probabilistic map of prostate location on TRUS, and (3) maximizing overlap between the prostate segmentation on MRI and the multiattribute probabilistic map on TRUS, thereby driving registration of MRI onto TRUS. MAPPER represents a significant advancement over the current state-of-the-art as it requires no user interaction during the biopsy procedure by leveraging texture and spatial information to determine the prostate location on TRUS. Although MAPPER requires manual interaction to segment the prostate on MRI, this step is performed prior to biopsy and will not substantially increase biopsy procedure time. Results: MAPPER was evaluated on 13 patient studies from two independent datasets—Dataset 1 has 6 studies acquired with a side-firing TRUS probe and a 1.5 T pelvic phased-array coil MRI; Dataset 2 has 7 studies acquired with a volumetric end-firing TRUS probe and a 3.0 T endorectal coil MRI. MAPPER has a root-mean-square error (RMSE) for expert selected fiducials of 3.36 ± 1.10 mm for Dataset 1 and 3.14 ± 0.75 mm for Dataset 2. State-of-the-art MRI-TRUS fusion methods report RMSE of 3.06–2.07 mm. Conclusions: MAPPER aligns MRI and TRUS imagery without manual intervention ensuring efficient, reproducible registration. MAPPER has a similar RMSE to state-of-the-art methods that require manual intervention.« less
3D Segmentation with an application of level set-method using MRI volumes for image guided surgery.
Bosnjak, A; Montilla, G; Villegas, R; Jara, I
2007-01-01
This paper proposes an innovation in the application for image guided surgery using a comparative study of three different method of segmentation. This segmentation method is faster than the manual segmentation of images, with the advantage that it allows to use the same patient as anatomical reference, which has more precision than a generic atlas. This new methodology for 3D information extraction is based on a processing chain structured of the following modules: 1) 3D Filtering: the purpose is to preserve the contours of the structures and to smooth the homogeneous areas; several filters were tested and finally an anisotropic diffusion filter was used. 2) 3D Segmentation. This module compares three different methods: Region growing Algorithm, Cubic spline hand assisted, and Level Set Method. It then proposes a Level Set-based on the front propagation method that allows the making of the reconstruction of the internal walls of the anatomical structures of the brain. 3) 3D visualization. The new contribution of this work consists on the visualization of the segmented model and its use in the pre-surgery planning.