Sample records for mrna cap structures

  1. Serum-deprivation stimulates cap-binding by PARN at the expense of eIF4E, consistent with the observed decrease in mRNA stability

    PubMed Central

    Seal, Ruth; Temperley, Richard; Wilusz, Jeffrey; Lightowlers, Robert N.; Chrzanowska-Lightowlers, Zofia M. A.

    2005-01-01

    PARN, a poly(A)-specific ribonuclease, binds the 5′ cap-structure of mRNA and initiates deadenylation-dependent decay. Eukaryotic initiation factor 4E (eIF4E) also binds to the cap structure, an interaction that is critical for initiating cap-dependent translation. The stability of various mRNA transcripts in human cell lines is reduced under conditions of serum starvation as determined by both functional and chemical half-lives. Serum starvation also leads to enhanced cap association by PARN. In contrast, the 5′ cap occupancy by eIF4E decreases under serum-deprivation, as does the translation of reporter transcripts. Further, we show that PARN is a phosphoprotein and that this modification can be modulated by serum status. Taken together, these data are consistent with a natural competition existing at the 5′ cap structure between PARN and eIF4E that may be regulated by changes in post-translational modifications. These phosphorylation-induced changes in the interplay of PARN and eIF4E may determine whether the mRNA is translated or decayed. PMID:15653638

  2. Capped mRNAs with reduced secondary structure can function in extracts from poliovirus-infected cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonenberg, N.; Guertin, D.; Lee, K.A.W.

    1982-12-01

    Extracts form poliovirus-infected HeLa cells were used to study ribosome binding of native and denatured reovirus mRNAs and translation of capped mRNAs with different degrees of secondary structure. Here, the authors demonstrate that ribosomes in extracts from poliovirus-infected cells could form initiation complexes with denatured reovirus mRNA, in contrast to their inability to bind native reovirus mRNA. Furthermore, the capped alfalfa mosiac virus 4 RNA, which is most probable devoid of stable secondary structure at its 5' end, could be translated at much higher efficiency than could other capped mRNAs in extracts from poliovirus-infected cells.

  3. Structure of human IFIT1 with capped RNA reveals adaptable mRNA binding and mechanisms for sensing N1 and N2 ribose 2′-O methylations

    PubMed Central

    Laudenbach, Beatrice Theres; Martínez-Montero, Saúl; Cencic, Regina; Habjan, Matthias; Pichlmair, Andreas; Damha, Masad J.; Pelletier, Jerry; Nagar, Bhushan

    2017-01-01

    IFIT1 (IFN-induced protein with tetratricopeptide repeats-1) is an effector of the host innate immune antiviral response that prevents propagation of virus infection by selectively inhibiting translation of viral mRNA. It relies on its ability to compete with the translation initiation factor eIF4F to specifically recognize foreign capped mRNAs, while remaining inactive against host mRNAs marked by ribose 2′-O methylation at the first cap-proximal nucleotide (N1). We report here several crystal structures of RNA-bound human IFIT1, including a 1.6-Å complex with capped RNA. IFIT1 forms a water-filled, positively charged RNA-binding tunnel with a separate hydrophobic extension that unexpectedly engages the cap in multiple conformations (syn and anti) giving rise to a relatively plastic and nonspecific mode of binding, in stark contrast to eIF4E. Cap-proximal nucleotides encircled by the tunnel provide affinity to compete with eIF4F while allowing IFIT1 to select against N1 methylated mRNA. Gel-shift binding assays confirm that N1 methylation interferes with IFIT1 binding, but in an RNA-dependent manner, whereas translation assays reveal that N1 methylation alone is not sufficient to prevent mRNA recognition at high IFIT1 concentrations. Structural and functional analysis show that 2′-O methylation at N2, another abundant mRNA modification, is also detrimental for RNA binding, thus revealing a potentially synergistic role for it in self- versus nonself-mRNA discernment. Finally, structure-guided mutational analysis confirms the importance of RNA binding for IFIT1 restriction of a human coronavirus mutant lacking viral N1 methylation. Our structural and biochemical analysis sheds new light on the molecular basis for IFIT1 translational inhibition of capped viral RNA. PMID:28251928

  4. A Point Mutation in the Exon Junction Complex Factor Y14 Disrupts Its Function in mRNA Cap Binding and Translation Enhancement*

    PubMed Central

    Chuang, Tzu-Wei; Lee, Kuo-Ming; Lou, Yuan-Chao; Lu, Chia-Chen; Tarn, Woan-Yuh

    2016-01-01

    Eukaryotic mRNA biogenesis involves a series of interconnected steps mediated by RNA-binding proteins. The exon junction complex core protein Y14 is required for nonsense-mediated mRNA decay (NMD) and promotes translation. Moreover, Y14 binds the cap structure of mRNAs and inhibits the activity of the decapping enzyme Dcp2. In this report, we show that an evolutionarily conserved tryptophan residue (Trp-73) of Y14 is critical for its binding to the mRNA cap structure. A Trp-73 mutant (W73V) bound weakly to mRNAs and failed to protect them from degradation. However, this mutant could still interact with the NMD and mRNA degradation factors and retained partial NMD activity. In addition, we found that the W73V mutant could not interact with translation initiation factors. Overexpression of W73V suppressed reporter mRNA translation in vitro and in vivo and reduced the level of a set of nascent proteins. These results reveal a residue of Y14 that confers cap-binding activity and is essential for Y14-mediated enhancement of translation. Finally, we demonstrated that Y14 may selectively and differentially modulate protein biosynthesis. PMID:26887951

  5. La-related protein 1 (LARP1) repression of TOP mRNA translation is mediated through its cap-binding domain and controlled by an adjacent regulatory region

    PubMed Central

    Philippe, Lucas; Vasseur, Jean-Jacques; Debart, Françoise

    2018-01-01

    Abstract Cell growth is a complex process shaped by extensive and coordinated changes in gene expression. Among these is the tightly regulated translation of a family of growth-related mRNAs defined by a 5′ terminal oligopyrimidine (TOP) motif. TOP mRNA translation is partly controlled via the eukaryotic initiation factor 4F (eIF4F), a translation factor that recognizes the mRNA 5′ cap structure. Recent studies have also implicated La-related protein 1 (LARP1), which competes with eIF4F for binding to mRNA 5′ ends. However, it has remained controversial whether LARP1 represses TOP mRNA translation directly and, if so, what features define its mRNA targets. Here, we show that the C-terminal half of LARP1 is necessary and sufficient to control TOP mRNA translation in cells. This fragment contains the DM15 cap-binding domain as well as an adjacent regulatory region that we identified. We further demonstrate that purified LARP1 represses TOP mRNA translation in vitro through the combined recognition of both the TOP sequence and cap structure, and that its intrinsic repressive activity and affinity for these features are subject to regulation. These results support a model whereby the translation of TOP mRNAs is controlled by a growth-regulated competition between eIF4F and LARP1 for their 5′ ends. PMID:29244122

  6. A Point Mutation in the Exon Junction Complex Factor Y14 Disrupts Its Function in mRNA Cap Binding and Translation Enhancement.

    PubMed

    Chuang, Tzu-Wei; Lee, Kuo-Ming; Lou, Yuan-Chao; Lu, Chia-Chen; Tarn, Woan-Yuh

    2016-04-15

    Eukaryotic mRNA biogenesis involves a series of interconnected steps mediated by RNA-binding proteins. The exon junction complex core protein Y14 is required for nonsense-mediated mRNA decay (NMD) and promotes translation. Moreover, Y14 binds the cap structure of mRNAs and inhibits the activity of the decapping enzyme Dcp2. In this report, we show that an evolutionarily conserved tryptophan residue (Trp-73) of Y14 is critical for its binding to the mRNA cap structure. A Trp-73 mutant (W73V) bound weakly to mRNAs and failed to protect them from degradation. However, this mutant could still interact with the NMD and mRNA degradation factors and retained partial NMD activity. In addition, we found that the W73V mutant could not interact with translation initiation factors. Overexpression of W73V suppressed reporter mRNA translation in vitro and in vivo and reduced the level of a set of nascent proteins. These results reveal a residue of Y14 that confers cap-binding activity and is essential for Y14-mediated enhancement of translation. Finally, we demonstrated that Y14 may selectively and differentially modulate protein biosynthesis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Characterization of a Trifunctional Mimivirus mRNA Capping Enzyme and Crystal Structure of the RNA Triphosphatase Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benarroch,D.; Smith, P.; Shuman, S.

    2008-01-01

    The RNA triphosphatase (RTPase) components of the mRNA capping apparatus are a bellwether of eukaryal taxonomy. Fungal and protozoal RTPases belong to the triphosphate tunnel metalloenzyme (TTM) family, exemplified by yeast Cet1. Several large DNA viruses encode metal-dependent RTPases unrelated to the cysteinyl-phosphatase RTPases of their metazoan host organisms. The origins of DNA virus RTPases are unclear because they are structurally uncharacterized. Mimivirus, a giant virus of amoeba, resembles poxviruses in having a trifunctional capping enzyme composed of a metal-dependent RTPase module fused to guanylyltransferase (GTase) and guanine-N7 methyltransferase domains. The crystal structure of mimivirus RTPase reveals a minimized tunnelmore » fold and an active site strikingly similar to that of Cet1. Unlike homodimeric fungal RTPases, mimivirus RTPase is a monomer. The mimivirus TTM-type RTPase-GTase fusion resembles the capping enzymes of amoebae, providing evidence that the ancestral large DNA virus acquired its capping enzyme from a unicellular host.« less

  8. The Nematode Eukaryotic Translation Initiation Factor 4E/G Complex Works with a trans-Spliced Leader Stem-Loop To Enable Efficient Translation of Trimethylguanosine-Capped RNAs ▿ †

    PubMed Central

    Wallace, Adam; Filbin, Megan E.; Veo, Bethany; McFarland, Craig; Stepinski, Janusz; Jankowska-Anyszka, Marzena; Darzynkiewicz, Edward; Davis, Richard E.

    2010-01-01

    Eukaryotic mRNA translation begins with recruitment of the 40S ribosome complex to the mRNA 5′ end through the eIF4F initiation complex binding to the 5′ m7G-mRNA cap. Spliced leader (SL) RNA trans splicing adds a trimethylguanosine (TMG) cap and a sequence, the SL, to the 5′ end of mRNAs. Efficient translation of TMG-capped mRNAs in nematodes requires the SL sequence. Here we define a core set of nucleotides and a stem-loop within the 22-nucleotide nematode SL that stimulate translation of mRNAs with a TMG cap. The structure and core nucleotides are conserved in other nematode SLs and correspond to regions of SL1 required for early Caenorhabditis elegans development. These SL elements do not facilitate translation of m7G-capped RNAs in nematodes or TMG-capped mRNAs in mammalian or plant translation systems. Similar stem-loop structures in phylogenetically diverse SLs are predicted. We show that the nematode eukaryotic translation initiation factor 4E/G (eIF4E/G) complex enables efficient translation of the TMG-SL RNAs in diverse in vitro translation systems. TMG-capped mRNA translation is determined by eIF4E/G interaction with the cap and the SL RNA, although the SL does not increase the affinity of eIF4E/G for capped RNA. These results suggest that the mRNA 5′ untranslated region (UTR) can play a positive and novel role in translation initiation through interaction with the eIF4E/G complex in nematodes and raise the issue of whether eIF4E/G-RNA interactions play a role in the translation of other eukaryotic mRNAs. PMID:20154140

  9. The nematode eukaryotic translation initiation factor 4E/G complex works with a trans-spliced leader stem-loop to enable efficient translation of trimethylguanosine-capped RNAs.

    PubMed

    Wallace, Adam; Filbin, Megan E; Veo, Bethany; McFarland, Craig; Stepinski, Janusz; Jankowska-Anyszka, Marzena; Darzynkiewicz, Edward; Davis, Richard E

    2010-04-01

    Eukaryotic mRNA translation begins with recruitment of the 40S ribosome complex to the mRNA 5' end through the eIF4F initiation complex binding to the 5' m(7)G-mRNA cap. Spliced leader (SL) RNA trans splicing adds a trimethylguanosine (TMG) cap and a sequence, the SL, to the 5' end of mRNAs. Efficient translation of TMG-capped mRNAs in nematodes requires the SL sequence. Here we define a core set of nucleotides and a stem-loop within the 22-nucleotide nematode SL that stimulate translation of mRNAs with a TMG cap. The structure and core nucleotides are conserved in other nematode SLs and correspond to regions of SL1 required for early Caenorhabditis elegans development. These SL elements do not facilitate translation of m(7)G-capped RNAs in nematodes or TMG-capped mRNAs in mammalian or plant translation systems. Similar stem-loop structures in phylogenetically diverse SLs are predicted. We show that the nematode eukaryotic translation initiation factor 4E/G (eIF4E/G) complex enables efficient translation of the TMG-SL RNAs in diverse in vitro translation systems. TMG-capped mRNA translation is determined by eIF4E/G interaction with the cap and the SL RNA, although the SL does not increase the affinity of eIF4E/G for capped RNA. These results suggest that the mRNA 5' untranslated region (UTR) can play a positive and novel role in translation initiation through interaction with the eIF4E/G complex in nematodes and raise the issue of whether eIF4E/G-RNA interactions play a role in the translation of other eukaryotic mRNAs.

  10. Broad spectrum antiviral agent ribavirin inhibits capping of mRNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goswami, B.B.; Borek, E.; Sharma, O.K.

    1979-08-13

    Ribavirin (1-..beta..-D-ribofuranosyl-1,2,4-triazole-3-carboxamide) is a broad spectrum antiviral substance active against a wide range of both DNA and RNA viruses. It is, however, virtually inactive against polio virus. Its pharmacological mechanism of action was obscure. A possible common target for a chemotherapeutic agent in both DNA and RNA viruses is the capping reaction of mRNAs which inter alia involves the formation of a guanine pyrophosphate structure at the 5' terminus by mRNA guanylyl transferase. We have observed that Ribavirin triphosphate is a potent competitive inhibitor of the capping guanylation of viral mRNA. This finding could account for the antiviral potency ofmore » the drug against both DNA and RNA viruses and its ineffectiveness against a virus in which the mRNAs derived from them are not capped.« less

  11. 5'-Phospho-RNA Acceptor Specificity of GDP Polyribonucleotidyltransferase of Vesicular Stomatitis Virus in mRNA Capping.

    PubMed

    Ogino, Minako; Ogino, Tomoaki

    2017-03-15

    The GDP polyribonucleotidyltransferase (PRNTase) domain of the multifunctional L protein of rhabdoviruses, such as vesicular stomatitis virus (VSV) and rabies virus, catalyzes the transfer of 5'-phospho-RNA (pRNA) from 5'-triphospho-RNA (pppRNA) to GDP via a covalent enzyme-pRNA intermediate to generate a 5'-cap structure (GpppA). Here, using an improved oligo-RNA capping assay with the VSV L protein, we showed that the Michaelis constants for GDP and pppAACAG (VSV mRNA-start sequence) are 0.03 and 0.4 μM, respectively. A competition assay between GDP and GDP analogues in the GpppA formation and pRNA transfer assay using GDP analogues as pRNA acceptors indicated that the PRNTase domain recognizes the C-2-amino group, but not the C-6-oxo group, N-1-hydrogen, or N-7-nitrogen, of GDP for the cap formation. 2,6-Diaminopurine-riboside (DAP), 7-deazaguanosine (7-deaza-G), and 7-methylguanosine (m 7 G) diphosphates efficiently accepted pRNA, resulting in the formation of DAPpppA, 7-deaza-GpppA, and m 7 GpppA (cap 0), respectively. Furthermore, either the 2'- or 3'-hydroxyl group of GDP was found to be required for efficient pRNA transfer. A 5'-diphosphate form of antiviral ribavirin weakly inhibited the GpppA formation but did not act as a pRNA acceptor. These results indicate that the PRNTase domain has a unique guanosine-binding mode different from that of eukaryotic mRNA capping enzyme, guanylyltransferase. IMPORTANCE mRNAs of nonsegmented negative-strand (NNS) RNA viruses, such as VSV, possess a fully methylated cap structure, which is required for mRNA stability, efficient translation, and evasion of antiviral innate immunity in host cells. GDP polyribonucleotidyltransferase (PRNTase) is an unconventional mRNA capping enzyme of NNS RNA viruses that is distinct from the eukaryotic mRNA capping enzyme, guanylyltransferase. In this study, we studied the pRNA acceptor specificity of VSV PRNTase using various GDP analogues and identified chemical groups of GDP as essential for the substrate activity. The findings presented here are useful not only for understanding the mechanism of the substrate recognition with PRNTase but also for designing antiviral agents targeting this enzyme. Copyright © 2017 American Society for Microbiology.

  12. 5′-Phospho-RNA Acceptor Specificity of GDP Polyribonucleotidyltransferase of Vesicular Stomatitis Virus in mRNA Capping

    PubMed Central

    Ogino, Minako

    2017-01-01

    ABSTRACT The GDP polyribonucleotidyltransferase (PRNTase) domain of the multifunctional L protein of rhabdoviruses, such as vesicular stomatitis virus (VSV) and rabies virus, catalyzes the transfer of 5′-phospho-RNA (pRNA) from 5′-triphospho-RNA (pppRNA) to GDP via a covalent enzyme-pRNA intermediate to generate a 5′-cap structure (GpppA). Here, using an improved oligo-RNA capping assay with the VSV L protein, we showed that the Michaelis constants for GDP and pppAACAG (VSV mRNA-start sequence) are 0.03 and 0.4 μM, respectively. A competition assay between GDP and GDP analogues in the GpppA formation and pRNA transfer assay using GDP analogues as pRNA acceptors indicated that the PRNTase domain recognizes the C-2-amino group, but not the C-6-oxo group, N-1-hydrogen, or N-7-nitrogen, of GDP for the cap formation. 2,6-Diaminopurine-riboside (DAP), 7-deazaguanosine (7-deaza-G), and 7-methylguanosine (m7G) diphosphates efficiently accepted pRNA, resulting in the formation of DAPpppA, 7-deaza-GpppA, and m7GpppA (cap 0), respectively. Furthermore, either the 2′- or 3′-hydroxyl group of GDP was found to be required for efficient pRNA transfer. A 5′-diphosphate form of antiviral ribavirin weakly inhibited the GpppA formation but did not act as a pRNA acceptor. These results indicate that the PRNTase domain has a unique guanosine-binding mode different from that of eukaryotic mRNA capping enzyme, guanylyltransferase. IMPORTANCE mRNAs of nonsegmented negative-strand (NNS) RNA viruses, such as VSV, possess a fully methylated cap structure, which is required for mRNA stability, efficient translation, and evasion of antiviral innate immunity in host cells. GDP polyribonucleotidyltransferase (PRNTase) is an unconventional mRNA capping enzyme of NNS RNA viruses that is distinct from the eukaryotic mRNA capping enzyme, guanylyltransferase. In this study, we studied the pRNA acceptor specificity of VSV PRNTase using various GDP analogues and identified chemical groups of GDP as essential for the substrate activity. The findings presented here are useful not only for understanding the mechanism of the substrate recognition with PRNTase but also for designing antiviral agents targeting this enzyme. PMID:28053102

  13. Generation of human induced pluripotent stem cells using non-synthetic mRNA.

    PubMed

    Rohani, L; Fabian, C; Holland, H; Naaldijk, Y; Dressel, R; Löffler-Wirth, H; Binder, H; Arnold, A; Stolzing, A

    2016-05-01

    Here we describe some of the crucial steps to generate induced pluripotent stem cells (iPSCs) using mRNA transfection. Our approach uses a V. virus-derived capping enzyme instead of a cap-analog, ensuring 100% proper cap orientation for in vitro transcribed mRNA. V. virus' 2'-O-Methyltransferase enzyme creates a cap1 structure found in higher eukaryotes and has higher translation efficiency compared to other methods. Use of the polymeric transfection reagent polyethylenimine proved superior to other transfection methods. The mRNA created via this method did not trigger an intracellular immune response via human IFN-gamma (hIFN-γ) or alpha (hIFN-α) release, thus circumventing the use of suppressors. Resulting mRNA and protein were expressed at high levels for over 48h, thus obviating daily transfections. Using this method, we demonstrated swift activation of pluripotency associated genes in human fibroblasts. Low oxygen conditions further facilitated colony formation. Differentiation into different germ layers was confirmed via teratoma assay. Reprogramming with non-synthetic mRNA holds great promise for safe generation of iPSCs of human origin. Using the protocols described herein we hope to make this method more accessible to other groups as a fast, inexpensive, and non-viral reprogramming approach. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Human beta-globin mRNAs that harbor a nonsense codon are degraded in murine erythroid tissues to intermediates lacking regions of exon I or exons I and II that have a cap-like structure at the 5' termini.

    PubMed Central

    Lim, S K; Maquat, L E

    1992-01-01

    Previous studies have demonstrated that nonsense codons within beta zero-thalassemic or in vitro-mutagenized human beta-globin transgenes result in the production of mRNAs that are degraded abnormally rapidly in the cytoplasm of murine erythroid cells. As a consequence, three RNA degradative intermediates are formed that lack sequences from either exon I or exons I and II. We show here that the intermediates, like the full-length mRNA from which they derive and the endogenous murine beta maj-globin mRNA, bind to the anticap monoclonal antibody H-20 in a way that is competed by the cap analogue m7G and eliminated by prior exposure to tobacco acid pyrophosphatase. Furthermore, the intermediates, like the two full-length mRNAs, are resistant to a 5'----3' exonuclease activity isolated from HeLa cell nuclei that degrades uncapped but not capped ribopolymers. Based on these observations, the intermediates appear to possess a structure that is indistinguishable from the cap at the 5' end of mRNA, i.e. a methylated nucleoside that is linked to the RNA by a 5'-5' phosphodiester bond. Detection of the intermediates during murine development was concomitant with detection of full-length thalassemic mRNA. Intermediate production appears to be influenced by RNA structure as indicated by the products that derive from a beta zero-thalassemic beta-globin transgene harboring a structural alteration (a 4 bp deletion) that was larger than any of those previously studied. Images PMID:1324170

  15. Characterization of hMTr1, a Human Cap1 2′-O-Ribose Methyltransferase*

    PubMed Central

    Bélanger, François; Stepinski, Janusz; Darzynkiewicz, Edward; Pelletier, Jerry

    2010-01-01

    Cellular eukaryotic mRNAs are capped at their 5′ ends with a 7-methylguanosine nucleotide, a structural feature that has been shown to be important for conferring mRNA stability, stimulating mRNA biogenesis (splicing, poly(A) addition, nucleocytoplasmic transport), and increasing translational efficiency. Whereas yeast mRNAs have no additional modifications to the cap, called cap0, higher eukaryotes are methylated at the 2′-O-ribose of the first or the first and second transcribed nucleotides, called cap1 and cap2, respectively. In the present study, we identify the methyltransferase responsible for cap1 formation in human cells, which we call hMTr1 (also known as FTSJD2 and ISG95). We show in vitro that hMTr1 catalyzes specific methylation of the 2′-O-ribose of the first nucleotide of a capped RNA transcript. Using siRNA-mediated knockdown of hMTr1 in HeLa cells, we demonstrate that hMTr1 is responsible for cap1 formation in vivo. PMID:20713356

  16. Functional 5' UTR mRNA structures in eukaryotic translation regulation and how to find them.

    PubMed

    Leppek, Kathrin; Das, Rhiju; Barna, Maria

    2018-03-01

    RNA molecules can fold into intricate shapes that can provide an additional layer of control of gene expression beyond that of their sequence. In this Review, we discuss the current mechanistic understanding of structures in 5' untranslated regions (UTRs) of eukaryotic mRNAs and the emerging methodologies used to explore them. These structures may regulate cap-dependent translation initiation through helicase-mediated remodelling of RNA structures and higher-order RNA interactions, as well as cap-independent translation initiation through internal ribosome entry sites (IRESs), mRNA modifications and other specialized translation pathways. We discuss known 5' UTR RNA structures and how new structure probing technologies coupled with prospective validation, particularly compensatory mutagenesis, are likely to identify classes of structured RNA elements that shape post-transcriptional control of gene expression and the development of multicellular organisms.

  17. On the base-stacking in the 5'-terminal cap structure of mRNA: a fluorescence study.

    PubMed Central

    Nishimura, Y; Takahashi, S; Yamamoto, T; Tsuboi, M; Hattori, M; Miura, K; Yamaguchi, K; Ohtani, S; Hata, T

    1980-01-01

    The fluorescence at 370 nm of the 7-methylguanosine residue (m7G) is found to be quenched when the base residue is involved in a stacking interaction with the adenosine residue in the cap structure m7G5' pppA of an eukaryotic mRNA. On the basis of the observed degree of quenching, the amounts of the stacked and unstacked forms in the cap structure have been determined at various temperatures and pH's. It has been found that at pH 6.2 effective enthalpy and entropy in the unstacked leads to stacked change are delta H degrees = 4.4 +/- 0.1 kcal/mole and delta S degrees = - 14.3 +/- 0.2 e.u., respectively. The pka value for the m7G residue is found to be 7.7 at 10 degrees C and 7.3 at 30 degrees C. The stacked structure seems to be less favourable in the deprotonated form that occurs in the higher pH solution. A similar analysis of some other cap structures indicates that the stacked form in m7G5' pppN structure is favourable if N is a purine nucleoside or a 2'-O-methylpyrimidine nucleoside but not for an unmethylated pyrimidine nucleoside. PMID:7443542

  18. Structure of a human cap-dependent 48S translation pre-initiation complex

    PubMed Central

    Eliseev, Boris; Yeramala, Lahari; Leitner, Alexander; Karuppasamy, Manikandan; Raimondeau, Etienne; Huard, Karine; Alkalaeva, Elena; Aebersold, Ruedi

    2018-01-01

    Abstract Eukaryotic translation initiation is tightly regulated, requiring a set of conserved initiation factors (eIFs). Translation of a capped mRNA depends on the trimeric eIF4F complex and eIF4B to load the mRNA onto the 43S pre-initiation complex comprising 40S and initiation factors 1, 1A, 2, 3 and 5 as well as initiator-tRNA. Binding of the mRNA is followed by mRNA scanning in the 48S pre-initiation complex, until a start codon is recognised. Here, we use a reconstituted system to prepare human 48S complexes assembled on capped mRNA in the presence of eIF4B and eIF4F. The highly purified h-48S complexes are used for cross-linking/mass spectrometry, revealing the protein interaction network in this complex. We report the electron cryo-microscopy structure of the h-48S complex at 6.3 Å resolution. While the majority of eIF4B and eIF4F appear to be flexible with respect to the ribosome, additional density is detected at the entrance of the 40S mRNA channel which we attribute to the RNA-recognition motif of eIF4B. The eight core subunits of eIF3 are bound at the 40S solvent-exposed side, as well as the subunits eIF3d, eIF3b and eIF3i. elF2 and initiator-tRNA bound to the start codon are present at the 40S intersubunit side. This cryo-EM structure represents a molecular snap-shot revealing the h-48S complex following start codon recognition. PMID:29401259

  19. Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them

    PubMed Central

    Leppek, Kathrin; Das, Rhiju; Barna, Maria

    2017-01-01

    RNA molecules can fold into intricate shapes that can provide an additional layer of control of gene expression beyond that of their sequence. In this Review, we discuss the current mechanistic understanding of structures in 5′ untranslated regions (UTRs) of eukaryotic mRNAs and the emerging methodologies used to explore them. These structures may regulate cap-dependent translation initiation through helicase-mediated remodelling of RNA structures and higher-order RNA interactions, as well as cap-independent translation initiation through internal ribosome entry sites (IRESs), mRNA modifications and other specialized translation pathways. We discuss known 5′ UTR RNA structures and how new structure probing technologies coupled with prospective validation, particularly compensatory mutagenesis, are likely to identify classes of structured RNA elements that shape post-transcriptional control of gene expression and the development of multicellular organisms. PMID:29165424

  20. A novel route for preparing 5′ cap mimics and capped RNAs: phosphate-modified cap analogues obtained via click chemistry† †Electronic supplementary information (ESI) available: Tables S1–S6 and Fig. S1–S10, experimental procedures, HPLC profiles, NMR and HRMS spectra. See DOI: 10.1039/c6sc02437h Click here for additional data file. Click here for additional data file.

    PubMed Central

    Walczak, Sylwia; Nowicka, Anna; Kubacka, Dorota; Fac, Kaja; Wanat, Przemyslaw; Mroczek, Seweryn; Kowalska, Joanna

    2017-01-01

    The significant biological role of the mRNA 5′ cap in translation initiation makes it an interesting subject for chemical modifications aimed at producing useful tools for the selective modulation of intercellular processes and development of novel therapeutic interventions. However, traditional approaches to the chemical synthesis of cap analogues are time-consuming and labour-intensive, which impedes the development of novel compounds and their applications. Here, we explore a different approach for synthesizing 5′ cap mimics, making use of click chemistry (CuAAC) to combine two mononucleotide units and yield a novel class of dinucleotide cap analogues containing a triazole ring within the oligophosphate chain. As a result, we synthesized a library of 36 mRNA cap analogues differing in the location of the triazole ring, the polyphosphate chain length, and the type of linkers joining the phosphate and the triazole moieties. After biochemical evaluation, we identified two analogues that, when incorporated into mRNA, produced transcripts translated with efficiency similar to compounds unmodified in the oligophosphate bridge obtained by traditional synthesis. Moreover, we demonstrated that the triazole-modified cap structures can be generated at the RNA 5′ end using two alternative capping strategies: either the typical co-transcriptional approach, or a new post-transcriptional approach based on CuAAC. Our findings open new possibilities for developing chemically modified mRNAs for research and therapeutic applications, including RNA-based vaccinations. PMID:28451173

  1. Sequence and structure determinants of Drosophila Hsp70 mRNA translation: 5'UTR secondary structure specifically inhibits heat shock protein mRNA translation.

    PubMed Central

    Hess, M A; Duncan, R F

    1996-01-01

    Preferential translation of Drosophila heat shock protein 70 (Hsp70) mRNA requires only the 5'-untranslated region (5'-UTR). The sequence of this region suggests that it has relatively little secondary structure, which may facilitate efficient protein synthesis initiation. To determine whether minimal 5'-UTR secondary structure is required for preferential translation during heat shock, the effect of introducing stem-loops into the Hsp70 mRNA 5'-UTR was measured. Stem-loops of -11 kcal/mol abolished translation during heat shock, but did not reduce translation in non-heat shocked cells. A -22 kcal/mol stem-loop was required to comparably inhibit translation during growth at normal temperatures. To investigate whether specific sequence elements are also required for efficient preferential translation, deletion and mutation analyses were conducted in a truncated Hsp70 5'-UTR containing only the cap-proximal and AUG-proximal segments. Linker-scanner mutations in the cap-proximal segment (+1 to +37) did not impair translation. Re-ordering the segments reduced mRNA translational efficiency by 50%. Deleting the AUG-proximal segment severely inhibited translation. A 5-extension of the full-length leader specifically impaired heat shock translation. These results indicate that heat shock reduces the capacity to unwind 5-UTR secondary structure, allowing only mRNAs with minimal 5'-UTR secondary structure to be efficiently translated. A function for specific sequences is also suggested. PMID:8710519

  2. MYC Mediates mRNA Cap Methylation of Canonical Wnt/β-catenin Signaling Transcripts by Recruiting CDK7 and RNA Methyltransferase

    PubMed Central

    Posternak, Valeriya; Ung, Matthew H.; Cheng, Chao; Cole, Michael D.

    2016-01-01

    MYC is a pleiotropic transcription factor that activates and represses a wide range of target genes and is frequently deregulated in human tumors. While much is known about the role of MYC in transcriptional activation and repression, MYC can also regulate mRNA cap methylation through a mechanism that has remained poorly understood. Here it is reported that MYC enhances mRNA cap methylation of transcripts globally, specifically increasing mRNA cap methylation of genes involved in Wnt/β-catenin signaling. Elevated mRNA cap methylation of Wnt signaling transcripts in response to MYC leads to augmented translational capacity, elevated protein levels, and enhanced Wnt signaling activity. Mechanistic evidence indicates that MYC promotes recruitment of RNA methyltransferase (RNMT) to Wnt signaling gene promoters by enhancing phosphorylation of serine 5 on the RNA Polymerase II Carboxy-Terminal Domain, mediated in part through an interaction between the TIP60 acetyltransferase complex and TFIIH. Implications MYC enhances mRNA cap methylation above and beyond transcriptional induction. PMID:27899423

  3. Creatine kinase and alpha-actin mRNA levels decrease in diabetic rat hearts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popovich, B.; Barrieux, A.; Dillmann, W.H.

    1987-05-01

    Diabetic cardiomyopathy is associated with cardiac atrophy and isoenzyme redistribution. To determine if tissue specific changes occur in mRNAs coding for ..cap alpha..-actin and creatine kinase (CK), they performed RNA blot analysis. Total ventricular RNA from control (C) and 4 wk old diabetic (D) rats were hybridized with /sup 32/P cDNA probes for ..cap alpha..-actin and CK. A tissue independent cDNA probe, CHOA was also used. Signal intensity was quantified by photodensitometry. D CK mRNA was 47 +/- 16% lower in D vs C. Insulin increases CK mRNA by 20% at 1.5 hs, and completely reverses the deficit after 4more » wks. D ..cap alpha..-actin mRNA is 66 +/- 18% lower in D vs C. Insulin normalized ..cap alpha..-actin mRNA by 5 hs. CHOA mRNA is unchanged in D vs C, but D + insulin CHOA mRNA is 30 +/- 2% lower than C. In rats with diabetic cardiomyopathy, muscle specific CK and ..cap alpha..-actin mRNAs are decreased. Insulin treatment reverses these changes.« less

  4. La-related protein 1 (LARP1) binds the mRNA cap, blocking eIF4F assembly on TOP mRNAs.

    PubMed

    Lahr, Roni M; Fonseca, Bruno D; Ciotti, Gabrielle E; Al-Ashtal, Hiba A; Jia, Jian-Jun; Niklaus, Marius R; Blagden, Sarah P; Alain, Tommy; Berman, Andrea J

    2017-04-07

    The 5'terminal oligopyrimidine (5'TOP) motif is a cis -regulatory RNA element located immediately downstream of the 7-methylguanosine [m 7 G] cap of TOP mRNAs, which encode ribosomal proteins and translation factors. In eukaryotes, this motif coordinates the synchronous and stoichiometric expression of the protein components of the translation machinery. La-related protein 1 (LARP1) binds TOP mRNAs, regulating their stability and translation. We present crystal structures of the human LARP1 DM15 region in complex with a 5'TOP motif, a cap analog (m 7 GTP), and a capped cytidine (m 7 GpppC), resolved to 2.6, 1.8 and 1.7 Å, respectively. Our binding, competition, and immunoprecipitation data corroborate and elaborate on the mechanism of 5'TOP motif binding by LARP1. We show that LARP1 directly binds the cap and adjacent 5'TOP motif of TOP mRNAs, effectively impeding access of eIF4E to the cap and preventing eIF4F assembly. Thus, LARP1 is a specialized TOP mRNA cap-binding protein that controls ribosome biogenesis.

  5. Cap-independent translation of poliovirus mRNA is conferred by sequence elements within the 5' noncoding region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelletier, J.; Kaplan, G.; Racaniello, V.R.

    1988-03-01

    Poliovirus polysomal RNA is naturally uncapped, and as such, its translation must bypass any 5' cap-dependent ribosome recognition event. To elucidate the manner by which poliovirus mRNA is translated, the authors determined the translational efficiencies of a series of deletion mutants within the 5' noncoding region of the mRNA. They found striking differences in translatability among the altered mRNAs when assayed in mock-infected and poliovirus-infected HeLa cell extracts. The results identify a functional cis-acting element within the 5' noncoding region of the poliovirus mRNA which enables it to translate in a cap-independent fashion. The major determinant of this element mapsmore » between nucleotides 320 and 631 of the 5' end of the poliovirus mRNA. They also show that this region (320 to 631), when fused to a heterologous mRNA, can function in cis to render the mRNA cap independent in translation.« less

  6. Magnesium Induced Nucleophile Activation in the Guanylyltransferase mRNA Capping Enzyme

    PubMed Central

    Swift, Robert V.; Ong, Chau D.; Amaro, Rommie E.

    2012-01-01

    The messenger RNA guanylyltransferase, or mRNA capping enzyme, co-transcriptionally caps the 5′-end of nascent mRNA with GMP during the second in a set of three enzymatic reactions that result in the formation of an N7-methyl guanosine cap during mRNA maturation. The mRNA capping enzyme is characterized, in part, by a conserved lysine nucleophile that attacks the alpha-phosphorous atom of GTP, forming a lysine-GMP intermediate. Experiments have firmly established that magnesium is required for efficient intermediate formation, but have provided little insight into the requirement’s molecular origins. Using empirical and thermodynamic integration pKa estimates, along with conventional MD simulations, we show that magnesium binding likely activates the lysine nucleophile by increasing its acidity and by biasing the deprotonated nucleophile into conformations conducive to intermediate formation. These results provide additional functional understanding of an important enzyme in the mRNA transcript life cycle and allow functional analogies to be drawn that affect our understanding of the metal dependence of related superfamily members. PMID:23205906

  7. Light-regulated protein and mRNA synthesis in root caps of maize

    NASA Technical Reports Server (NTRS)

    Feldman, L. J.; Piechulla, B.; Sun, P. S.

    1988-01-01

    Illumination of maize roots initiates changes in mRNA levels and in the activities of proteins within the root cap. Using Northern analysis we showed a 5-6 fold increase in the levels of three specific mRNAs and a 14-fold increase in plastid mRNA. This increase is rapid, occurring within 30 minutes of illumination. With prolonged periods of darkness following illumination, messages return to levels observed in dark, control caps. For two species of mRNA illumination results in a reduction in message levels. Light-stimulated increases in the levels of specific mRNAs are proportionally greater than are increases in the activities of corresponding proteins. We suggest that the light-stimulated increase in protein activity in root caps may be preceded by and occur as a consequence of enhanced levels of mRNA. Our work suggests that photomorphogenesis in roots could involve changes in the levels of a wide variety of mRNAs within the root cap.

  8. Innate immune restriction and antagonism of viral RNA lacking 2'-O methylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyde, Jennifer L.; Diamond, Michael S., E-mail: diamond@borcim.wustl.edu; Molecular Microbiology, Washington University School of Medicine, St Louis., MO 63110

    N-7 and 2′-O methylation of host cell mRNA occurs in the nucleus and results in the generation of cap structures (cap 0, m{sup 7}GpppN; cap 1, m{sup 7}GpppNm) that control gene expression by modulating nuclear export, splicing, turnover, and protein synthesis. Remarkably, RNA cap modification also contributes to mammalian cell host defense as viral RNA lacking 2′-O methylation is sensed and inhibited by IFIT1, an interferon (IFN) stimulated gene (ISG). Accordingly, pathogenic viruses that replicate in the cytoplasm have evolved mechanisms to circumvent IFIT1 restriction and facilitate infection of mammalian cells. These include: (a) generating cap 1 structures on theirmore » RNA through cap-snatching or virally-encoded 2′-O methyltransferases, (b) using cap-independent means of translation, or (c) using RNA secondary structural motifs to antagonize IFIT1 binding. This review will discuss new insights as to how specific modifications at the 5′-end of viral RNA modulate host pathogen recognition responses to promote infection and disease.« less

  9. La-related protein 1 (LARP1) binds the mRNA cap, blocking eIF4F assembly on TOP mRNAs

    PubMed Central

    Lahr, Roni M; Fonseca, Bruno D; Ciotti, Gabrielle E; Al-Ashtal, Hiba A; Jia, Jian-Jun; Niklaus, Marius R; Blagden, Sarah P; Alain, Tommy; Berman, Andrea J

    2017-01-01

    The 5’terminal oligopyrimidine (5’TOP) motif is a cis-regulatory RNA element located immediately downstream of the 7-methylguanosine [m7G] cap of TOP mRNAs, which encode ribosomal proteins and translation factors. In eukaryotes, this motif coordinates the synchronous and stoichiometric expression of the protein components of the translation machinery. La-related protein 1 (LARP1) binds TOP mRNAs, regulating their stability and translation. We present crystal structures of the human LARP1 DM15 region in complex with a 5’TOP motif, a cap analog (m7GTP), and a capped cytidine (m7GpppC), resolved to 2.6, 1.8 and 1.7 Å, respectively. Our binding, competition, and immunoprecipitation data corroborate and elaborate on the mechanism of 5’TOP motif binding by LARP1. We show that LARP1 directly binds the cap and adjacent 5’TOP motif of TOP mRNAs, effectively impeding access of eIF4E to the cap and preventing eIF4F assembly. Thus, LARP1 is a specialized TOP mRNA cap-binding protein that controls ribosome biogenesis. DOI: http://dx.doi.org/10.7554/eLife.24146.001 PMID:28379136

  10. The Rabies Virus L Protein Catalyzes mRNA Capping with GDP Polyribonucleotidyltransferase Activity.

    PubMed

    Ogino, Minako; Ito, Naoto; Sugiyama, Makoto; Ogino, Tomoaki

    2016-05-21

    The large (L) protein of rabies virus (RABV) plays multiple enzymatic roles in viral RNA synthesis and processing. However, none of its putative enzymatic activities have been directly demonstrated in vitro. In this study, we expressed and purified a recombinant form of the RABV L protein and verified its guanosine 5'-triphosphatase and GDP polyribonucleotidyltransferase (PRNTase) activities, which are essential for viral mRNA cap formation by the unconventional mechanism. The RABV L protein capped 5'-triphosphorylated but not 5'-diphosphorylated RABV mRNA-start sequences, 5'-AACA(C/U), with GDP to generate the 5'-terminal cap structure G(5')ppp(5')A. The 5'-AAC sequence in the substrate RNAs was found to be strictly essential for RNA capping with the RABV L protein. Furthermore, site-directed mutagenesis showed that some conserved amino acid residues (G1112, T1170, W1201, H1241, R1242, F1285, and Q1286) in the PRNTase motifs A to E of the RABV L protein are required for cap formation. These findings suggest that the putative PRNTase domain in the RABV L protein catalyzes the rhabdovirus-specific capping reaction involving covalent catalysis of the pRNA transfer to GDP, thus offering this domain as a target for developing anti-viral agents.

  11. 5'-Phosphorothiolate Dinucleotide Cap Analogues: Reagents for Messenger RNA Modification and Potent Small-Molecular Inhibitors of Decapping Enzymes.

    PubMed

    Wojtczak, Blazej A; Sikorski, Pawel J; Fac-Dabrowska, Kaja; Nowicka, Anna; Warminski, Marcin; Kubacka, Dorota; Nowak, Elzbieta; Nowotny, Marcin; Kowalska, Joanna; Jemielity, Jacek

    2018-05-09

    The 5' cap consists of 7-methylguanosine (m 7 G) linked by a 5'-5'-triphosphate bridge to messenger RNA (mRNA) and acts as the master regulator of mRNA turnover and translation initiation in eukaryotes. Cap analogues that influence mRNA translation and turnover (either as small molecules or as part of an RNA transcript) are valuable tools for studying gene expression, which is often also of therapeutic relevance. Here, we synthesized a series of 15 dinucleotide cap (m 7 GpppG) analogues containing a 5'-phosphorothiolate (5'-PSL) moiety (i.e., an O-to-S substitution within the 5'-phosphoester) and studied their biological properties in the context of three major cap-binding proteins: translation initiation factor 4E (eIF4E) and two decapping enzymes, DcpS and Dcp2. While the 5'-PSL moiety was neutral or slightly stabilizing for cap interactions with eIF4E, it significantly influenced susceptibility to decapping. Replacing the γ-phosphoester with the 5'-PSL moiety (γ-PSL) prevented β-γ-pyrophosphate bond cleavage by DcpS and conferred strong inhibitory properties. Combining the γ-PSL moiety with α-PSL and β-phosphorothioate (PS) moiety afforded first cap-derived hDcpS inhibitor with low nanomolar potency. Susceptibility to Dcp2 and translational properties were studied after incorporation of the new analogues into mRNA transcripts by RNA polymerase. Transcripts containing the γ-PSL moiety were resistant to cleavage by Dcp2. Surprisingly, superior translational properties were observed for mRNAs containing the α-PSL moiety, which were Dcp2-susceptible. The overall protein expression measured in HeLa cells for this mRNA was comparable to mRNA capped with the translation augmenting β-PS analogue reported previously. Overall, our study highlights 5'-PSL as a synthetically accessible cap modification, which, depending on the substitution site, can either reduce susceptibility to decapping or confer superior translational properties on the mRNA. The 5'-PSL-analogues may find application as reagents for the preparation of efficiently expressed mRNA or for investigation of the role of decapping enzymes in mRNA processing or neuromuscular disorders associated with decapping.

  12. RNA Cap Methyltransferase Activity Assay

    PubMed Central

    Trotman, Jackson B.; Schoenberg, Daniel R.

    2018-01-01

    Methyltransferases that methylate the guanine-N7 position of the mRNA 5′ cap structure are ubiquitous among eukaryotes and commonly encoded by viruses. Here we provide a detailed protocol for the biochemical analysis of RNA cap methyltransferase activity of biological samples. This assay involves incubation of cap-methyltransferase-containing samples with a [32P]G-capped RNA substrate and S-adenosylmethionine (SAM) to produce RNAs with N7-methylated caps. The extent of cap methylation is then determined by P1 nuclease digestion, thin-layer chromatography (TLC), and phosphorimaging. The protocol described here includes additional steps for generating the [32P]G-capped RNA substrate and for preparing nuclear and cytoplasmic extracts from mammalian cells. This assay is also applicable to analyzing the cap methyltransferase activity of other biological samples, including recombinant protein preparations and fractions from analytical separations and immunoprecipitation/pulldown experiments. PMID:29644259

  13. The human insulin mRNA is partly translated via a cap- and eIF4A-independent mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fred, Rikard G., E-mail: Rikard.Fred@mcb.uu.se; Sandberg, Monica; Pelletier, Jerry

    Highlights: {yields} The polypyrimidine tract binding protein binds to the 5'-UTR of the insulin mRNA. {yields} Insulin mRNA can be translated via a cap-independent mechanism. {yields} The fraction cap-independent insulin synthesis increases during conditions of stress. {yields} The {beta}-cell is able to uphold basal insulin biosynthesis under conditions of stress. -- Abstract: The aim of this study was to investigate whether cap-independent insulin mRNA translation occurs in human pancreatic islets at basal conditions, during stimulation at a high glucose concentration and at conditions of nitrosative stress. We also aimed at correlating cap-independent insulin mRNA translation with binding of the IRESmore » trans-acting factor polypyrimidine tract binding protein (PTB) to the 5'-UTR of insulin mRNA. For this purpose, human islets were incubated for 2 h in the presence of low (1.67 mM) or high glucose (16.7 mM). Nitrosative stress was induced by addition of 1 mM DETA/NO and cap-dependent mRNA translation was inhibited with hippuristanol. Insulin biosynthesis rates were determined by radioactive labeling and immunoprecipitation. PTB affinity to insulin mRNA 5'-UTR was assessed by a magnetic micro bead pull-down procedure. We observed that in the presence of 1.67 mM glucose, approximately 70% of the insulin mRNA translation was inhibited by hippuristanol. Corresponding value from islets incubated at 16.7 mM glucose was 93%. DETA/NO treatment significantly decreased the translation of insulin by 85% in high glucose incubated islets, and by 50% at a low glucose concentration. The lowered insulin biosynthesis rates of DETA/NO-exposed islets were further suppressed by hippuristanol with 55% at 16.7 mM glucose but not at 1.67 mM glucose. Thus, hippuristanol-induced inhibition of insulin biosynthesis was less pronounced in DETA/NO-treated islets as compared to control islets. We observed also that PTB bound specifically to the insulin mRNA 5'-UTR in vitro, and that this binding corresponded well with rates of cap-independent insulin biosynthesis at the different conditions. In conclusion, our studies show that insulin biosynthesis is mainly cap-dependent at a high glucose concentration, but that the cap-independent biosynthesis of insulin can constitute as much as 40-100% of all insulin biosynthesis during conditions of nitrosative stress. These data suggest that the pancreatic {beta}-cell is able to uphold basal insulin synthesis at conditions of starvation and stress via a cap- and eIF4A-independent mechanism, possibly mediated by the binding of PTB to the 5'-UTR of the human insulin mRNA.« less

  14. Injury downregulates the expression of the human cathelicidin protein hCAP18/LL-37 in atopic dermatitis.

    PubMed

    Mallbris, Lotus; Carlén, Lina; Wei, Tianling; Heilborn, Johan; Nilsson, Margareta Frohm; Granath, Fredrik; Ståhle, Mona

    2010-05-01

    Reduced production of antimicrobial peptides was proposed to contribute to susceptibility for skin infections in atopic dermatitis (AD). Focusing on the human cathelicidin protein, hCAP18, the aim of the present study was to explore whether reduced hCAP18 expression is a constitutive trait in AD and if established inducers affect the expression of hCAP18 in the skin of AD. First, we compared levels of hCAP18 mRNA between lesional skin in AD and psoriasis and verified significantly lower expression of hCAP18 mRNA in AD. In non-lesional skin, however, there was no difference between AD, psoriasis and healthy, indicating that there is no constitutive defect in the production of hCAP18 in AD patients. In healthy skin, hCAP18 was reported to be rapidly induced following wounding and here we verified this pattern in healthy controls and in psoriasis. In AD lesions, however, the expression of hCAP18 mRNA was markedly suppressed following wounding. Obviously, the inflammation in AD lesions neutralizes the expected induction of hCAP18 and even induces suppression. Notably, the mechanism to upregulate hCAP18 following vitamin D treatment was functional in lesional as well as in non-lesional AD indicating that the CAMP gene is normally regulated in this respect. In addition, cultured primary keratinocytes from non-lesional skin of psoriasis, AD and healthy skin, upregulated hCAP18mRNA following treatment with vitamin D. Itching is a hallmark of AD and scratching inevitably injures the skin. Failure to upregulate hCAP18 in eczema following injury is likely to affect antimicrobial protection and tissue repair in AD.

  15. Translation initiation mediated by nuclear cap-binding protein complex.

    PubMed

    Ryu, Incheol; Kim, Yoon Ki

    2017-04-01

    In mammals, cap-dependent translation of mRNAs is initiated by two distinct mechanisms: cap-binding complex (CBC; a heterodimer of CBP80 and 20)-dependent translation (CT) and eIF4E-dependent translation (ET). Both translation initiation mechanisms share common features in driving cap- dependent translation; nevertheless, they can be distinguished from each other based on their molecular features and biological roles. CT is largely associated with mRNA surveillance such as nonsense-mediated mRNA decay (NMD), whereas ET is predominantly involved in the bulk of protein synthesis. However, several recent studies have demonstrated that CT and ET have similar roles in protein synthesis and mRNA surveillance. In a subset of mRNAs, CT preferentially drives the cap-dependent translation, as ET does, and ET is responsible for mRNA surveillance, as CT does. In this review, we summarize and compare the molecular features of CT and ET with a focus on the emerging roles of CT in translation. [BMB Reports 2017; 50(4): 186-193].

  16. mRNA Cap Methyltransferase, RNMT-RAM, Promotes RNA Pol II-Dependent Transcription.

    PubMed

    Varshney, Dhaval; Lombardi, Olivia; Schweikert, Gabriele; Dunn, Sianadh; Suska, Olga; Cowling, Victoria H

    2018-05-01

    mRNA cap addition occurs early during RNA Pol II-dependent transcription, facilitating pre-mRNA processing and translation. We report that the mammalian mRNA cap methyltransferase, RNMT-RAM, promotes RNA Pol II transcription independent of mRNA capping and translation. In cells, sublethal suppression of RNMT-RAM reduces RNA Pol II occupancy, net mRNA synthesis, and pre-mRNA levels. Conversely, expression of RNMT-RAM increases transcription independent of cap methyltransferase activity. In isolated nuclei, recombinant RNMT-RAM stimulates transcriptional output; this requires the RAM RNA binding domain. RNMT-RAM interacts with nascent transcripts along their entire length and with transcription-associated factors including the RNA Pol II subunits SPT4, SPT6, and PAFc. Suppression of RNMT-RAM inhibits transcriptional markers including histone H2BK120 ubiquitination, H3K4 and H3K36 methylation, RNA Pol II CTD S5 and S2 phosphorylation, and PAFc recruitment. These findings suggest that multiple interactions among RNMT-RAM, RNA Pol II factors, and RNA along the transcription unit stimulate transcription. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Translational efficiency of poliovirus mRNA: mapping inhibitory cis-acting elements within the 5' noncoding region.

    PubMed Central

    Pelletier, J; Kaplan, G; Racaniello, V R; Sonenberg, N

    1988-01-01

    Poliovirus mRNA contains a long 5' noncoding region of about 750 nucleotides (the exact number varies among the three virus serotypes), which contains several AUG codons upstream of the major initiator AUG. Unlike most eucaryotic mRNAs, poliovirus does not contain a m7GpppX (where X is any nucleotide) cap structure at its 5' end and is translated by a cap-independent mechanism. To study the manner by which poliovirus mRNA is expressed, we examined the translational efficiencies of a series of deletion mutants within the 5' noncoding region of the mRNA. In this paper we report striking translation system-specific differences in the ability of the altered mRNAs to be translated. The results suggest the existence of an inhibitory cis-acting element(s) within the 5' noncoding region of poliovirus (between nucleotides 70 and 381) which restricts mRNA translation in reticulocyte lysate, wheat germ extract, and Xenopus oocytes, but not in HeLa cell extracts. In addition, we show that HeLa cell extracts contain a trans-acting factor(s) that overcomes this restriction. Images PMID:2836606

  18. Viral and Cellular mRNA Translation in Coronavirus-Infected Cells

    PubMed Central

    Nakagawa, K.; Lokugamage, K.G.; Makino, S.

    2017-01-01

    Coronaviruses have large positive-strand RNA genomes that are 5′ capped and 3′ polyadenylated. The 5′-terminal two-thirds of the genome contain two open reading frames (ORFs), 1a and 1b, that together make up the viral replicase gene and encode two large polyproteins that are processed by viral proteases into 15–16 nonstructural proteins, most of them being involved in viral RNA synthesis. ORFs located in the 3′-terminal one-third of the genome encode structural and accessory proteins and are expressed from a set of 5′ leader-containing subgenomic mRNAs that are synthesized by a process called discontinuous transcription. Coronavirus protein synthesis not only involves cap-dependent translation mechanisms but also employs regulatory mechanisms, such as ribosomal frameshifting. Coronavirus replication is known to affect cellular translation, involving activation of stress-induced signaling pathways, and employing viral proteins that affect cellular mRNA translation and RNA stability. This chapter describes our current understanding of the mechanisms involved in coronavirus mRNA translation and changes in host mRNA translation observed in coronavirus-infected cells. PMID:27712623

  19. VHL negatively regulates SARS coronavirus replication by modulating nsp16 ubiquitination and stability.

    PubMed

    Yu, Xiao; Chen, Shuliang; Hou, Panpan; Wang, Min; Chen, Yu; Guo, Deyin

    2015-04-03

    Eukaryotic cellular and most viral RNAs carry a 5'-terminal cap structure, a 5'-5' triphosphate linkage between the 5' end of the RNA and a guanosine nucleotide (cap-0). SARS coronavirus (SARS-CoV) nonstructural protein nsp16 functions as a methyltransferase, to methylate mRNA cap-0 structure at the ribose 2'-O position of the first nucleotide to form cap-1 structures. However, whether there is interplay between nsp16 and host proteins was not yet clear. In this report, we identified several potential cellular nsp16-interacting proteins from a human thymus cDNA library by yeast two-hybrid screening. VHL, one of these proteins, was proven to interact with nsp16 both in vitro and in vivo. Further studies showed that VHL can inhibit SARS-CoV replication by regulating nsp16 ubiquitination and promoting its degradation. Our results have revealed the role of cellular VHL in the regulation of SARS-CoV replication. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Modifying the 5'-Cap for Click Reactions of Eukaryotic mRNA and To Tune Translation Efficiency in Living Cells.

    PubMed

    Holstein, Josephin M; Anhäuser, Lea; Rentmeister, Andrea

    2016-08-26

    The 5'-cap is a hallmark of eukaryotic mRNAs and plays fundamental roles in RNA metabolism, ranging from quality control to export and translation. Modifying the 5'-cap may thus enable modulation of the underlying processes and investigation or tuning of several biological functions. A straightforward approach is presented for the efficient production of a range of N7-modified caps based on the highly promiscuous methyltransferase Ecm1. We show that these, as well as N(2) -modified 5'-caps, can be used to tune translation of the respective mRNAs both in vitro and in cells. Appropriate modifications allow subsequent bioorthogonal chemistry, as demonstrated by intracellular live-cell labeling of a target mRNA. The efficient and versatile N7 manipulation of the mRNA cap makes mRNAs amenable to both modulation of their biological function and intracellular labeling, and represents a valuable addition to the chemical biology toolbox. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Cap analogs modified with 1,2-dithiodiphosphate moiety protect mRNA from decapping and enhance its translational potential

    PubMed Central

    Strenkowska, Malwina; Grzela, Renata; Majewski, Maciej; Wnek, Katarzyna; Kowalska, Joanna; Lukaszewicz, Maciej; Zuberek, Joanna; Darzynkiewicz, Edward; Kuhn, Andreas N.; Sahin, Ugur; Jemielity, Jacek

    2016-01-01

    Along with a growing interest in mRNA-based gene therapies, efforts are increasingly focused on reaching the full translational potential of mRNA, as a major obstacle for in vivo applications is sufficient expression of exogenously delivered mRNA. One method to overcome this limitation is chemically modifying the 7-methylguanosine cap at the 5′ end of mRNA (m7Gppp-RNA). We report a novel class of cap analogs designed as reagents for mRNA modification. The analogs carry a 1,2-dithiodiphosphate moiety at various positions along a tri- or tetraphosphate bridge, and thus are termed 2S analogs. These 2S analogs have high affinities for translation initiation factor 4E, and some exhibit remarkable resistance against the SpDcp1/2 decapping complex when introduced into RNA. mRNAs capped with 2S analogs combining these two features exhibit high translation efficiency in cultured human immature dendritic cells. These properties demonstrate that 2S analogs are potentially beneficial for mRNA-based therapies such as anti-cancer immunization. PMID:27903882

  2. Comparative Structural and Functional Analysis of Bunyavirus and Arenavirus Cap-Snatching Endonucleases

    PubMed Central

    Reguera, Juan; Gerlach, Piotr; Rosenthal, Maria; Gaudon, Stephanie; Coscia, Francesca; Günther, Stephan; Cusack, Stephen

    2016-01-01

    Segmented negative strand RNA viruses of the arena-, bunya- and orthomyxovirus families uniquely carry out viral mRNA transcription by the cap-snatching mechanism. This involves cleavage of host mRNAs close to their capped 5′ end by an endonuclease (EN) domain located in the N-terminal region of the viral polymerase. We present the structure of the cap-snatching EN of Hantaan virus, a bunyavirus belonging to hantavirus genus. Hantaan EN has an active site configuration, including a metal co-ordinating histidine, and nuclease activity similar to the previously reported La Crosse virus and Influenza virus ENs (orthobunyavirus and orthomyxovirus respectively), but is more active in cleaving a double stranded RNA substrate. In contrast, Lassa arenavirus EN has only acidic metal co-ordinating residues. We present three high resolution structures of Lassa virus EN with different bound ion configurations and show in comparative biophysical and biochemical experiments with Hantaan, La Crosse and influenza ENs that the isolated Lassa EN is essentially inactive. The results are discussed in the light of EN activation mechanisms revealed by recent structures of full-length influenza virus polymerase. PMID:27304209

  3. DNA sequence analysis of simian virus 40 mutants with deletions mapping in the leader region of the late viral mRNA's: mutants with deletions similar in size and position exhibit varied phenotypes.

    PubMed

    Barkan, A; Mertz, J E

    1981-02-01

    The nucleotide sequences of 10 viable yet partially defective deletion mutants of simian virus 40 were determined. The deletions mapped within, and, in many cases, 5' to, the predominant leader sequence of the late viral mRNA's. They ranged from 74 to 187 nucleotide pairs in length. Six of the mutants had lost the sequence that corresponds to the "cap" site (5' terminus) of the most abundant class of 16S mRNA's. One of these mutants had a deletion that extended 103 nucleotide pairs into the region preceding this primary cap site and, therefore, was missing many secondary cap sites as well. A seventh mutant lacked the entire major 16S leader sequence except for the first six nucleotides at its 5' end and the last nine at its 3' end. Although these mutants differed in the size and position of their deletions, we were unable to discover any simple correlations between their growth characteristics and their DNA sequences. This finding indicates that the secondary structures of the RNA transcripts may play a more important role than the exact nucleotide sequence of the RNAs in determining how they function within the cell.

  4. Toward the mechanism of eIF4F-mediated ribosomal attachment to mammalian capped mRNAs.

    PubMed

    Kumar, Parimal; Hellen, Christopher U T; Pestova, Tatyana V

    2016-07-01

    Ribosomal attachment to mammalian capped mRNAs is achieved through the cap-eukaryotic initiation factor 4E (eIF4E)-eIF4G-eIF3-40S chain of interactions, but the mechanism by which mRNA enters the mRNA-binding channel of the 40S subunit remains unknown. To investigate this process, we recapitulated initiation on capped mRNAs in vitro using a reconstituted translation system. Formation of initiation complexes at 5'-terminal AUGs was stimulated by the eIF4E-cap interaction and followed "the first AUG" rule, indicating that it did not occur by backward scanning. Initiation complexes formed even at the very 5' end of mRNA, implying that Met-tRNAi (Met) inspects mRNA from the first nucleotide and that initiation does not have a "blind spot." In assembled initiation complexes, the cap was no longer associated with eIF4E. Omission of eIF4A or disruption of eIF4E-eIF4G-eIF3 interactions converted eIF4E into a specific inhibitor of initiation on capped mRNAs. Taken together, these results are consistent with the model in which eIF4E-eIF4G-eIF3-40S interactions place eIF4E at the leading edge of the 40S subunit, and mRNA is threaded into the mRNA-binding channel such that Met-tRNAi (Met) can inspect it from the first nucleotide. Before entering, eIF4E likely dissociates from the cap to overcome steric hindrance. We also found that the m(7)G cap specifically interacts with eIF3l. © 2016 Kumar et al.; Published by Cold Spring Harbor Laboratory Press.

  5. Diphosphates at the 5' end of the positive strand of yeast L-A double-stranded RNA virus as a molecular self-identity tag.

    PubMed

    Fujimura, Tsutomu; Esteban, Rosa

    2016-10-01

    The 5'end of RNA conveys important information on self-identity. In mammalian cells, double-stranded RNA (dsRNA) with 5'di- or triphosphates generated during virus infection is recognized as foreign and elicits the host innate immune response. Here, we analyze the 5' ends of the dsRNA genome of the yeast L-A virus. The positive strand has largely diphosphates with a minor amount of triphosphates, while the negative strand has only diphosphates. Although the virus can produce capped transcripts by cap snatching, neither strand carried a cap structure, suggesting that only non-capped transcripts serve as genomic RNA for encapsidation. We also found that the 5' diphosphates of the positive but not the negative strand within the dsRNA genome are crucial for transcription in vitro. Furthermore, the presence of a cap structure in the dsRNA abrogated its template activity. Given that the 5' diphosphates of the transcripts are also essential for cap acquisition and that host cytosolic RNAs (mRNA, rRNA, and tRNA) are uniformly devoid of 5' pp-structures, the L-A virus takes advantage of its 5' terminal diphosphates, using them as a self-identity tag to propagate in the host cytoplasm. © 2016 John Wiley & Sons Ltd.

  6. Genomic organization and sequence of the Gus-s/sup a/ allele of the murine. beta. -glucuronidase gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funkenstein, B.; Leary, S.L.; Stein, J.C.

    1988-03-01

    The Gus-s/sup ..cap alpha../ allele of the mouse ..beta..-glucuronidase gene exhibits a high degree of inducibility by androgens due to its linkage with the Gus-r/sup ..cap alpha../ regulatory locus. The authors isolated Gus-s/sup ..cap alpha../ on a 28-kilobase pair fragment of mouse chromosome 5 and found that it contains 12 exons and 11 intervening sequences spanning 14 kilobase pairs of this genomic segment. The mRNA cap site was identified by ribonuclease protection and primer extension analyses which revealed an unusually short 5' noncoding sequence of 12 nucleotides. Proximal regulatory sequences in the 5'-flanking DNA and the complete sequence of themore » Gus-s/sup ..cap alpha../ mRNA transcript were also determined. Comparison of the amino acid sequence determined from the Gus-s/sup ..cap alpha../ nucleotide sequence with that of human ..beta..-glucuronidase indicated that the two human mRNA species differ due to alternate splicing of an exon homologous to exon 6 of the mouse gene.« less

  7. African Swine Fever Virus NP868R Capping Enzyme Promotes Reovirus Rescue during Reverse Genetics by Promoting Reovirus Protein Expression, Virion Assembly, and RNA Incorporation into Infectious Virions

    PubMed Central

    Eaton, Heather E.; Kobayashi, Takeshi; Dermody, Terence S.; Johnston, Randal N.

    2017-01-01

    ABSTRACT Reoviruses, like many eukaryotic viruses, contain an inverted 7-methylguanosine (m7G) cap linked to the 5′ nucleotide of mRNA. The traditional functions of capping are to promote mRNA stability, protein translation, and concealment from cellular proteins that recognize foreign RNA. To address the role of mRNA capping during reovirus replication, we assessed the benefits of adding the African swine fever virus NP868R capping enzyme during reovirus rescue. C3P3, a fusion protein containing T7 RNA polymerase and NP868R, was found to increase protein expression 5- to 10-fold compared to T7 RNA polymerase alone while enhancing reovirus rescue from the current reverse genetics system by 100-fold. Surprisingly, RNA stability was not increased by C3P3, suggesting a direct effect on protein translation. A time course analysis revealed that C3P3 increased protein synthesis within the first 2 days of a reverse genetics transfection. This analysis also revealed that C3P3 enhanced processing of outer capsid μ1 protein to μ1C, a previously described hallmark of reovirus assembly. Finally, to determine the rate of infectious-RNA incorporation into new virions, we developed a new recombinant reovirus S1 gene that expressed the fluorescent protein UnaG. Following transfection of cells with UnaG and infection with wild-type virus, passage of UnaG through progeny was significantly enhanced by C3P3. These data suggest that capping provides nontraditional functions to reovirus, such as promoting assembly and infectious-RNA incorporation. IMPORTANCE Our findings expand our understanding of how viruses utilize capping, suggesting that capping provides nontraditional functions to reovirus, such as promoting assembly and infectious-RNA incorporation, in addition to enhancing protein translation. Beyond providing mechanistic insight into reovirus replication, our findings also show that reovirus reverse genetics rescue is enhanced 100-fold by the NP868R capping enzyme. Since reovirus shows promise as a cancer therapy, efficient reovirus reverse genetics rescue will accelerate production of recombinant reoviruses as candidates to enhance therapeutic potency. NP868R-assisted reovirus rescue will also expedite production of recombinant reovirus for mechanistic insights into reovirus protein function and structure. PMID:28298603

  8. A sequence of basic residues in the porcine circovirus type 2 capsid protein is crucial for its co-expression and co-localization with the replication protein.

    PubMed

    Huang, Liping; Van Renne, Nicolaas; Liu, Changming; Nauwynck, Hans J

    2015-12-01

    Porcine circovirus type 2 (PCV2) encodes two major proteins: the replication protein (Rep) and the capsid protein (Cap). Cap displays a conserved stretch of basic residues situated on the inside of the capsid, whose role is so far unknown. We used a reverse-genetics approach to investigate its function and found that mutations in these amino acids hindered Cap mRNA translation and hampered Cap/Rep co-localization, yielding unfit viruses. Intriguingly, co-transfection with a WT PCV2 of a different genotype partially rescued mutant Cap expression, showing the importance of this basic pattern for efficient translation of Cap mRNA into protein. Our results show that Cap and Rep are expressed independently of each other, and that this amino acid sequence of Cap is vital for virus propagation. This study provides a method for studying unfit PCV2 virions and offers new insights into the intracellular modus vivendi of PCV2.

  9. Structural basis for LeishIF4E-1 modulation by an interacting protein in the human parasite Leishmania major.

    PubMed

    Meleppattu, Shimi; Arthanari, Haribabu; Zinoviev, Alexandra; Boeszoermenyi, Andras; Wagner, Gerhard; Shapira, Michal; Léger-Abraham, Mélissa

    2018-03-19

    Leishmania parasites are unicellular pathogens that are transmitted to humans through the bite of infected sandflies. Most of the regulation of their gene expression occurs post-transcriptionally, and the different patterns of gene expression required throughout the parasites' life cycle are regulated at the level of translation. Here, we report the X-ray crystal structure of the Leishmania cap-binding isoform 1, LeishIF4E-1, bound to a protein fragment of previously unknown function, Leish4E-IP1, that binds tightly to LeishIF4E-1. The molecular structure, coupled to NMR spectroscopy experiments and in vitro cap-binding assays, reveal that Leish4E-IP1 allosterically destabilizes the binding of LeishIF4E-1 to the 5' mRNA cap. We propose mechanisms through which Leish4E-IP1-mediated LeishIF4E-1 inhibition could regulate translation initiation in the human parasite.

  10. HNF1(beta) is required for mesoderm induction in the Xenopus embryo.

    PubMed

    Vignali, R; Poggi, L; Madeddu, F; Barsacchi, G

    2000-04-01

    XHNF1(&bgr;) is a homeobox-containing gene initially expressed at the blastula stage in the vegetal part of the Xenopus embryo. We investigated its early role by functional ablation, through mRNA injection of an XHNF1(beta)/engrailed repressor fusion construct (XHNF1(beta)/EngR). Dorsal injections of XHNF1(beta)/EngR mRNA abolish dorsal mesoderm formation, leading to axial deficiencies; ventral injections disrupt ventral mesoderm formation without affecting axial development. XHNF1(beta)/EngR phenotypic effects specifically depend on the DNA-binding activity of its homeodomain and are fully rescued by coinjection of XHNF1(beta) mRNA. Vegetal injection of XHNF1(beta)/EngR mRNA blocks the mesoderm-inducing ability of vegetal explants. Both B-Vg1 and VegT maternal determinants trigger XHNF1(beta) expression in animal caps. XHNF1(beta)/EngR mRNA blocks B-Vg1-mediated, but not by eFGF-mediated, mesoderm induction in animals caps. However, wild-type XHNF1(beta) mRNA does not trigger Xbra expression in animal caps. We conclude that XHNF1(beta) function is essential, though not sufficient, for mesoderm induction in the Xenopus embryo.

  11. Reversible methylation of m6Am in the 5′ cap controls mRNA stability

    PubMed Central

    Mauer, Jan; Luo, Xiaobing; Blanjoie, Alexandre; Jiao, Xinfu; Grozhik, Anya V.; Patil, Deepak P.; Linder, Bastian; Pickering, Brian F.; Vasseur, Jean-Jacques; Chen, Qiuying; Gross, Steven S.; Elemento, Olivier; Debart, Françoise; Kiledjian, Megerditch; Jaffrey, Samie R.

    2017-01-01

    Internal bases in mRNA can be subjected to modifications that influence the fate of mRNA in cells. One of the most prevalent modified bases is found at the 5′ end of mRNA, at the first encoded nucleotide adjacent to the 7-methylguanosine cap. Here we show that this nucleotide, N6,2′-O-dimethyladenosine (m6Am), is a reversible modification that influences cellular mRNA fate. Using a transcriptome-wide map of m6Am we find that m6Am-initiated transcripts are markedly more stable than mRNAs that begin with other nucleotides. We show that the enhanced stability of m6Am-initiated transcripts is due to resistance to the mRNA-decapping enzyme DCP2. Moreover, we find that m6Am is selectively demethylated by fat mass and obesity-associated protein (FTO). FTO preferentially demethylates m6Am rather than N6-methyladenosine (m6A), and reduces the stability of m6Am mRNAs. Together, these findings show that the methylation status of m6Am in the 5′ cap is a dynamic and reversible epitranscriptomic modification that determines mRNA stability. PMID:28002401

  12. Kinetics of hairpin ribozyme cleavage in yeast.

    PubMed Central

    Donahue, C P; Fedor, M J

    1997-01-01

    Hairpin ribozymes catalyze a self-cleavage reaction that provides a simple model for quantitative analyses of intracellular mechanisms of RNA catalysis. Decay rates of chimeric mRNAs containing self-cleaving ribozymes give a direct measure of intracellular cleavage kinetics in yeast. Intracellular ribozyme-mediated cleavage occurs at similar rates and shows similar inhibition by ribozyme mutations as ribozyme-mediated reactions in vitro, but only when ribozymes are located in a favorable mRNA sequence context. The impact of cleavage on mRNA abundance is shown to depend directly on intrinsic mRNA stability. Surprisingly, cleavage products are no more labile than uncleaved mRNAs despite the loss of terminal cap structures or poly (A). PMID:9292496

  13. Successful expression in pollen of various plant species of in vitro synthesized mRNA introduced by particle bombardment.

    PubMed

    Tanaka, T; Nishihara, M; Seki, M; Sakamoto, A; Tanaka, K; Irifune, K; Morikawa, H

    1995-05-01

    Gold particles coated with beta-glucuronidase (GUS) mRNA with a 5' cap structure that had been synthesized in vitro were introduced, by use of a pneumatic particle gun, into pollen grains of lily (Lilium longiflorum), freesia (Freesia refracta) and tulip (Tulipa gesneriana). A fluorometric assay for the GUS activity indicated that in vitro synthesized GUS mRNA introduced into these pollen cells by particle bombardment was successfully expressed. GUS activity in extracts of the bombarded lily pollen became detectable fluorometrically within 30 min after bombardment, peaked at 6 h, then gradually decreased. This activity changed as a function of the developmental stage of the pollen cell of lily.

  14. Cap-independent translation of plant viral RNAs

    PubMed Central

    Pettit Kneller, Elizabeth L.; Rakotondrafara, Aurélie M.; Miller, W. Allen

    2007-01-01

    The RNAs of many plant viruses lack a 5′ cap and must be translated by a cap-independent mechanism. Here, we discuss the remarkably diverse cap-independent translation elements that have been identified in members of the Potyviridae, Luteoviridae, and Tombusviridae families, and genus Tobamovirus. Many other plant viruses have uncapped RNAs but their translation control elements are uncharacterized. Cap-independent translation elements of plant viruses differ strikingly from those of animal viruses: they are smaller (<200 nt), some are located in the 3′ untranslated region, some require ribosome scanning from the 5′ end of the mRNA, and the 5′ UTR elements are much less structured than those of animal viruses. We discuss how these elements may interact with host translation factors, and speculate on their mechanism of action and their roles in the virus replication cycle. Much remains to be learned about how these elements enable plant viruses to usurp the host translational machinery. PMID:16360925

  15. Remodeling of the pioneer translation initiation complex involves translation and the karyopherin importin β

    PubMed Central

    Sato, Hanae; Maquat, Lynne E.

    2009-01-01

    Mammalian mRNAs lose and acquire proteins throughout their life span while undergoing processing, transport, translation, and decay. How translation affects messenger RNA (mRNA)–protein interactions is largely unknown. The pioneer round of translation uses newly synthesized mRNA that is bound by cap-binding protein 80 (CBP80)–CBP20 (also known as the cap-binding complex [CBC]) at the cap, poly(A)-binding protein N1 (PABPN1) and PABPC1 at the poly(A) tail, and, provided biogenesis involves pre-mRNA splicing, exon junction complexes (EJCs) at exon–exon junctions. Subsequent rounds of translation engage mRNA that is bound by eukaryotic translation initiation factor 4E (eIF4E) at the cap and PABPC1 at the poly(A) tail, but that lacks detectable EJCs and PABPN1. Using the level of intracellular iron to regulate the translation of specific mRNAs, we show that translation promotes not only removal of EJC constituents, including the eIF4AIII anchor, but also replacement of PABPN1 by PABPC1. Remarkably, translation does not affect replacement of CBC by eIF4E. Instead, replacement of CBC by eIF4E is promoted by importin β (IMPβ): Inhibiting the binding of IMPβ to the complex of CBC–IMPα at an mRNA cap using the IMPα IBB (IMPβ-binding) domain or a RAN variant increases the amount of CBC-bound mRNA and decreases the amount of eIF4E-bound mRNA. Our studies uncover a previously unappreciated role for IMPβ and a novel paradigm for how newly synthesized messenger ribonucleoproteins (mRNPs) are matured. PMID:19884259

  16. Single step production of Cas9 mRNA for zygote injection.

    PubMed

    Redel, Bethany K; Beaton, Benjamin P; Spate, Lee D; Benne, Joshua A; Murphy, Stephanie L; O'Gorman, Chad W; Spate, Anna M; Prather, Randall S; Wells, Kevin D

    2018-03-01

    Production of Cas9 mRNA in vitro typically requires the addition of a 5´ cap and 3´ polyadenylation. A plasmid was constructed that harbored the T7 promoter followed by the EMCV IRES and a Cas9 coding region. We hypothesized that the use of the metastasis associated lung adenocarcinoma transcript 1 (Malat1) triplex structure downstream of an IRES/Cas9 expression cassette would make polyadenylation of in vitro produced mRNA unnecessary. A sequence from the mMalat1 gene was cloned downstream of the IRES/Cas9 cassette described above. An mRNA concentration curve was constructed with either commercially available Cas9 mRNA or the IRES/ Cas9/triplex, by injection into porcine zygotes. Blastocysts were genotyped to determine if differences existed in the percent of embryos modified. The concentration curve identified differences due to concentration and RNA type injected. Single step production of Cas9 mRNA provides an alternative source of Cas9 for use in zygote injections.

  17. Hypoxia induces IGFBP3 in esophageal squamous cancer cells through HIF-1α-mediated mRNA transcription and continuous protein synthesis

    PubMed Central

    Natsuizaka, Mitsuteru; Naganuma, Seiji; Kagawa, Shingo; Ohashi, Shinya; Ahmadi, Azal; Subramanian, Harry; Chang, Sanders; Nakagawa, Kei J.; Ji, Xinjun; Liebhaber, Stephen A.; Klein-Szanto, Andres J.; Nakagawa, Hiroshi

    2012-01-01

    Insulin-like growth factor binding protein (IGFBP)-3 regulates cell proliferation and apoptosis in esophageal squamous cell carcinoma (ESCC) cells. We have investigated how the hypoxic tumor microenvironment in ESCC fosters the induction of IGFBP3. RNA interference experiments revealed that hypoxia-inducible factor (HIF)-1α, but not HIF-2α, regulates IGFBP3 mRNA induction. By chromatin immunoprecipitation and transfection assays, HIF-1α was found to transactivate IGFBP3 through a novel hypoxia responsive element (HRE) located at 57 kb upstream from the transcription start site. Metabolic labeling experiments demonstrated hypoxia-mediated inhibition of global protein synthesis. 7-Methyl GTP-cap binding assays suggested that hypoxia suppresses cap-dependent translation. Experiments using pharmacological inhibitors for mammalian target of rapamycin (mTOR) suggested that a relatively weak mTOR activity may be sufficient for cap-dependent translation of IGFBP3 under hypoxic conditions. Bicistronic RNA reporter transfection assays did not validate the possibility of an internal ribosome entry site as a potential mechanism for cap-independent translation for IGFBP3 mRNA. Finally, IGFBP3 mRNA was found enriched to the polysomes. In aggregate, our study establishes IGFBP3 as a direct HIF-1α target gene and that polysome enrichment of IGFBP3 mRNA may permit continuous translation under hypoxic conditions.—Natsuizaka, M., Naganuma, S., Kagawa, S., Ohashi, S., Ahmadi, A., Subramanian, H., Chang, S., Nakagawa, K. J., Ji, X., Liebhaber, S. A., Klein-Szanto, A. J., Nakagawa, H. Hypoxia induces IGFBP3 in esophageal squamous cancer cells through HIF-1α-mediated mRNA transcription and continuous protein synthesis. PMID:22415309

  18. [Cytochemical localization and properties of selected nucleolytic enzymes].

    PubMed

    Sierakowska, Halina

    2015-01-01

    In the article there are shortly outlined studies on cytochemical localization of selected nucleolytic enzymes carried out between 1957-1986 by David Shugar and his coworkers. The histochemical localization of several nucleolytic enzymes in animal and plant tissues was determined by synthesis of specific substrates, alpha-naphthyl esters of 5'- and 3'-nucleotides and their derivatives. In rat tissues phosphodiesterase I was localized in the plasma membrane whereas phosphodiesterase II in the lizosomes, reflecting their physiological roles. The localization of pancreatic type ribonuclease in animal tissues was determined, indicating its role in extracellular digestion. Plant nucleotide pyrophosphatase was localized in several tissues, purified to near homogeneity from potato tubers and its properties and substrate specificity were determined. Application of this enzyme for removal of m7GMP from the "cap" of eukaryotic mRNA allowed to elucidate the role of "cap" in mRNA binding to ribosomes in the process of translation. Furthermore, cyclic nucleotide phosphodiesterase was isolated from potato tubers and its physicochemical properties, oligomeric structure and substrate specificity were elucidated.

  19. Transcriptome-wide studies uncover the diversity of modes of mRNA recruitment to eukaryotic ribosomes.

    PubMed

    Shatsky, Ivan N; Dmitriev, Sergey E; Andreev, Dmitri E; Terenin, Ilya M

    2014-01-01

    The conventional paradigm of translation initiation in eukaryotes states that the cap-binding protein complex eIF4F (consisting of eIF4E, eIF4G and eIF4A) plays a central role in the recruitment of capped mRNAs to ribosomes. However, a growing body of evidence indicates that this paradigm should be revised. This review summarizes the data which have been mostly accumulated in a post-genomic era owing to revolutionary techniques of transcriptome-wide analysis. Unexpectedly, these techniques have uncovered remarkable diversity in the recruitment of cellular mRNAs to eukaryotic ribosomes. These data enable a preliminary classification of mRNAs into several groups based on their requirement for particular components of eIF4F. They challenge the widely accepted concept which relates eIF4E-dependence to the extent of secondary structure in the 5' untranslated regions of mRNAs. Moreover, some mRNA species presumably recruit ribosomes to their 5' ends without the involvement of either the 5' m(7)G-cap or eIF4F but instead utilize eIF4G or eIF4G-like auxiliary factors. The long-standing concept of internal ribosome entry site (IRES)-elements in cellular mRNAs is also discussed.

  20. Influenza Polymerase Can Adopt an Alternative Configuration Involving a Radical Repacking of PB2 Domains.

    PubMed

    Thierry, Eric; Guilligay, Delphine; Kosinski, Jan; Bock, Thomas; Gaudon, Stephanie; Round, Adam; Pflug, Alexander; Hengrung, Narin; El Omari, Kamel; Baudin, Florence; Hart, Darren J; Beck, Martin; Cusack, Stephen

    2016-01-07

    Influenza virus polymerase transcribes or replicates the segmented RNA genome (vRNA) into respectively viral mRNA or full-length copies and initiates RNA synthesis by binding the conserved 3' and 5' vRNA ends (the promoter). In recent structures of promoter-bound polymerase, the cap-binding and endonuclease domains are configured for cap snatching, which generates capped transcription primers. Here, we present a FluB polymerase structure with a bound complementary cRNA 5' end that exhibits a major rearrangement of the subdomains within the C-terminal two-thirds of PB2 (PB2-C). Notably, the PB2 nuclear localization signal (NLS)-containing domain translocates ∼90 Å to bind to the endonuclease domain. FluA PB2-C alone and RNA-free FluC polymerase are similarly arranged. Biophysical and cap-dependent endonuclease assays show that in solution the polymerase explores different conformational distributions depending on which RNA is bound. The inherent flexibility of the polymerase allows it to adopt alternative conformations that are likely important during polymerase maturation into active progeny RNPs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Effect of emodin on mobility signal transduction system of gallbladder smooth muscle in Guinea pig with cholelithiasis.

    PubMed

    Fang, Bang-Jiang; Shen, Jun-Yi; Zhang, Hua; Zhou, Shuang; Lyu, Chuan-Zhu; Xie, Yi-Qiang

    2016-10-01

    To study the effect of emodin on protein and gene expressions of the massagers in mobility signal transduction system of cholecyst smooth muscle cells in guinea pig with cholesterol calculus. The guinea pigs were randomly divided into 4 groups, such as control group, gall-stone (GS) group, emodin group and ursodeoxycholic acid (UA) group. Cholesterol calculus models were induced in guinea pigs of GS, emodin and UA groups by lithogenic diet, while emodin or UA were given to the corresponding group for 7 weeks. The histomorphological and ultrastructure change of gallbladder were detected by microscope and electron microscope, the content of plasma cholecystokinin (CCK) and [Ca 2+ ] i were analyzed successively by radioimmunoassay and flow cytometry. The protein and mRNA of Gsα, Giα and Cap in cholecyst cells were determined by western blotting and real time polymerase chain reaction (RT-PCR). Emodin or UA can relieve pathogenic changes in epithelial cells and muscle cells in gallbladder of guinea pig with cholesterol calculus by microscope and transmission electron microscope. In the cholecyst cells of GS group, CCK levels in plasma and [Ca 2+ ] i decreased, the protein and mRNA of GS were down-regulated, the protein and mRNA of Gi and Cap were up-regulated. Emodin significantly decreased the formative rate of gallstone, improved the pathogenic change in epithelial cells and muscle cells, increased CCK levels in plasma and [Ca 2+ ] i in cholecyst cells, enhanced the protein and mRNA of Gs in cholecyst cells, reduced the protein and mRNA of Gi and Cap in cholecyst cells in guinea pig with cholesterol calculus. The dysfunction of gallbladder contraction gives rise to the disorders of mobility signal transduction system in cholecyst smooth muscle cells, including low content of plasma CCK and [Ca 2+ ] i in cholecyst cells, abnormal protein and mRNA of Gs, Gi and Cap. Emodin can enhance the contractibility of gallbladder and alleviate cholestasis by regulating plasma CCK levels, [Ca 2+ ] i in cholecyst cells and the protein and mRNA of Gs, Gi and Cap. Copyright © 2016 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  2. A search for structurally similar cellular internal ribosome entry sites

    PubMed Central

    Baird, Stephen D.; Lewis, Stephen M.; Turcotte, Marcel; Holcik, Martin

    2007-01-01

    Internal ribosome entry sites (IRES) allow ribosomes to be recruited to mRNA in a cap-independent manner. Some viruses that impair cap-dependent translation initiation utilize IRES to ensure that the viral RNA will efficiently compete for the translation machinery. IRES are also employed for the translation of a subset of cellular messages during conditions that inhibit cap-dependent translation initiation. IRES from viruses like Hepatitis C and Classical Swine Fever virus share a similar structure/function without sharing primary sequence similarity. Of the cellular IRES structures derived so far, none were shown to share an overall structural similarity. Therefore, we undertook a genome-wide search of human 5′UTRs (untranslated regions) with an empirically derived structure of the IRES from the key inhibitor of apoptosis, X-linked inhibitor of apoptosis protein (XIAP), to identify novel IRES that share structure/function similarity. Three of the top matches identified by this search that exhibit IRES activity are the 5′UTRs of Aquaporin 4, ELG1 and NF-kappaB repressing factor (NRF). The structures of AQP4 and ELG1 IRES have limited similarity to the XIAP IRES; however, they share trans-acting factors that bind the XIAP IRES. We therefore propose that cellular IRES are not defined by overall structure, as viral IRES, but are instead dependent upon short motifs and trans-acting factors for their function. PMID:17591613

  3. Synthesis, properties, and biological activity of boranophosphate analogs of the mRNA cap: versatile tools for manipulation of therapeutically relevant cap-dependent processes

    PubMed Central

    Kowalska, Joanna; Wypijewska del Nogal, Anna; Darzynkiewicz, Zbigniew M.; Buck, Janina; Nicola, Corina; Kuhn, Andreas N.; Lukaszewicz, Maciej; Zuberek, Joanna; Strenkowska, Malwina; Ziemniak, Marcin; Maciejczyk, Maciej; Bojarska, Elzbieta; Rhoads, Robert E.; Darzynkiewicz, Edward; Sahin, Ugur; Jemielity, Jacek

    2014-01-01

    Modified mRNA cap analogs aid in the study of mRNA-related processes and may enable creation of novel therapeutic interventions. We report the synthesis and properties of 11 dinucleotide cap analogs bearing a single boranophosphate modification at either the α-, β- or γ-position of the 5′,5′-triphosphate chain. The compounds can potentially serve either as inhibitors of translation in cancer cells or reagents for increasing expression of therapeutic proteins in vivo from exogenous mRNAs. The BH3-analogs were tested as substrates and binding partners for two major cytoplasmic cap-binding proteins, DcpS, a decapping pyrophosphatase, and eIF4E, a translation initiation factor. The susceptibility to DcpS was different between BH3-analogs and the corresponding analogs containing S instead of BH3 (S-analogs). Depending on its placement, the boranophosphate group weakened the interaction with DcpS but stabilized the interaction with eIF4E. The first of the properties makes the BH3-analogs more stable and the second, more potent as inhibitors of protein biosynthesis. Protein expression in dendritic cells was 2.2- and 1.7-fold higher for mRNAs capped with m27,2′-OGppBH3pG D1 and m27,2′-OGppBH3pG D2, respectively, than for in vitro transcribed mRNA capped with m27,3′-OGpppG. Higher expression of cancer antigens would make mRNAs containing m27,2′-OGppBH3pG D1 and m27,2′-OGppBH3pG D2 favorable for anticancer immunization. PMID:25150148

  4. Control of eIF4E cellular localization by eIF4E-binding proteins, 4E-BPs.

    PubMed

    Rong, Liwei; Livingstone, Mark; Sukarieh, Rami; Petroulakis, Emmanuel; Gingras, Anne-Claude; Crosby, Katherine; Smith, Bradley; Polakiewicz, Roberto D; Pelletier, Jerry; Ferraiuolo, Maria A; Sonenberg, Nahum

    2008-07-01

    Eukaryotic initiation factor (eIF) 4E, the mRNA 5'-cap-binding protein, mediates the association of eIF4F with the mRNA 5'-cap structure to stimulate cap-dependent translation initiation in the cytoplasm. The assembly of eIF4E into the eIF4F complex is negatively regulated through a family of repressor proteins, called the eIF4E-binding proteins (4E-BPs). eIF4E is also present in the nucleus, where it is thought to stimulate nuclear-cytoplasmic transport of certain mRNAs. eIF4E is transported to the nucleus via its interaction with 4E-T (4E-transporter), but it is unclear how it is retained in the nucleus. Here we show that a sizable fraction (approximately 30%) of 4E-BP1 is localized to the nucleus, where it binds eIF4E. In mouse embryo fibroblasts (MEFs) subjected to serum starvation and/or rapamycin treatment, nuclear 4E-BPs sequester eIF4E in the nucleus. A dramatic loss of nuclear 4E-BP1 occurs in c-Ha-Ras-expressing MEFs, which fail to show starvation-induced nuclear accumulation of eIF4E. Therefore, 4E-BP1 is a regulator of eIF4E cellular localization.

  5. Control of eIF4E cellular localization by eIF4E-binding proteins, 4E-BPs

    PubMed Central

    Rong, Liwei; Livingstone, Mark; Sukarieh, Rami; Petroulakis, Emmanuel; Gingras, Anne-Claude; Crosby, Katherine; Smith, Bradley; Polakiewicz, Roberto D.; Pelletier, Jerry; Ferraiuolo, Maria A.; Sonenberg, Nahum

    2008-01-01

    Eukaryotic initiation factor (eIF) 4E, the mRNA 5′-cap-binding protein, mediates the association of eIF4F with the mRNA 5′-cap structure to stimulate cap-dependent translation initiation in the cytoplasm. The assembly of eIF4E into the eIF4F complex is negatively regulated through a family of repressor proteins, called the eIF4E-binding proteins (4E-BPs). eIF4E is also present in the nucleus, where it is thought to stimulate nuclear-cytoplasmic transport of certain mRNAs. eIF4E is transported to the nucleus via its interaction with 4E-T (4E-transporter), but it is unclear how it is retained in the nucleus. Here we show that a sizable fraction (∼30%) of 4E-BP1 is localized to the nucleus, where it binds eIF4E. In mouse embryo fibroblasts (MEFs) subjected to serum starvation and/or rapamycin treatment, nuclear 4E-BPs sequester eIF4E in the nucleus. A dramatic loss of nuclear 4E-BP1 occurs in c-Ha-Ras–expressing MEFs, which fail to show starvation-induced nuclear accumulation of eIF4E. Therefore, 4E-BP1 is a regulator of eIF4E cellular localization. PMID:18515545

  6. Synthesis and biological activity of artificial mRNA prepared with novel phosphorylating reagents

    PubMed Central

    Nagata, Seigo; Hamasaki, Tomohiro; Uetake, Koichi; Masuda, Hirofumi; Takagaki, Kazuchika; Oka, Natsuhisa; Wada, Takeshi; Ohgi, Tadaaki; Yano, Junichi

    2010-01-01

    Though medicines that target mRNA are under active investigation, there has been little or no effort to develop mRNA itself as a medicine. Here, we report the synthesis of a 130-nt mRNA sequence encoding a 33-amino-acid peptide that includes the sequence of glucagon-like peptide-1, a peptide that stimulates glucose-dependent insulin secretion from the pancreas. The synthesis method used, which had previously been developed in our laboratory, was based on the use of 2-cyanoethoxymethyl as the 2′-hydroxy protecting group. We also developed novel, highly reactive phosphotriester pyrophosphorylating reagents to pyrophosphorylate the 5′-end of the 130-mer RNA in preparation for capping. We completed the synthesis of the artificial mRNA by the enzymatic addition of a 5′-cap and a 3′-poly(A) tail to the pyrophosphorylated 130-mer and showed that the resulting mRNA supported protein synthesis in a cell-free system and in whole cells. As far as we know, this is the first time that mRNA has been prepared from a chemically synthesized RNA sequence. As well as providing a research tool for the intracellular expression of peptides, the technology described here may be used for the production of mRNA for medical applications. PMID:20660478

  7. Immediate Translation of Formin DIAPH1 mRNA after Its Exiting the Nucleus Is Required for Its Perinuclear Localization in Fibroblasts

    PubMed Central

    Liao, Guoning; Liu, Gang

    2013-01-01

    DIAPH1 is a formin protein which promotes actin polymerization, stabilizes microtubules and consequently is involved in cytoskeleton dynamics, cell migration and differentiation. In contrast to the relatively well-understood signaling cascades that regulate DIAPH1 activity, its spatial regulation of biogenesis is not understood. A recent report showed that synthesis of DIAPH1 is confined in the perinuclear ER compartment through translation-dependent mRNA targeting. However, the underlying mechanism of DIAPH1 local synthesis is yet to be elucidated. Here, we provide evidence to demonstrate that the 5′-cap-mediated immediate translation of DIAPH1 mRNA upon exiting nucleus is required for localizing the mRNA in the perinuclear ER compartment. This is supported by data: 1) Delayed translation of DIAPH1 mRNA resulted in loss of perinuclear localization of the mRNA; 2) Once delocalized, DIAPH1 mRNA could not be retargeted to the perinuclear region; and 3) The translation of DIAPH1 mRNA is 5′-cap dependent. These results provide new insights into the novel mechanism of DIAPH1 local synthesis. In addition, these findings have led to the development of new approaches for manipulating DIAPH1 mRNA localization and local protein synthesis in cells for functional studies. Furthermore, a correlation of DIAPH1 mRNA and DIAPH1 protein localization has been demonstrated using a new method to quantify the intracellular distribution of protein. PMID:23840831

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kyoung Mi; Cho, Hana; Kim, Yoon Ki, E-mail: yk-kim@korea.ac.kr

    Highlights: Black-Right-Pointing-Pointer CDKN1A mRNA is a bona fide NMD substrate. Black-Right-Pointing-Pointer The uORF of CDKN1A mRNA is efficiently translated. Black-Right-Pointing-Pointer Translation of downstream main ORF is negatively regulated by translation of uORF in CDKN1A mRNA. -- Abstract: The first round of translation occurs on mRNAs bound by nuclear cap-binding complex (CBC), which is composed of nuclear cap-binding protein 80 and 20 (CBP80/20). During this round of translation, aberrant mRNAs are recognized and downregulated in abundance by nonsense-mediated mRNA decay (NMD), which is one of the mRNA quality control mechanisms. Here, our microarray analysis reveals that the level of cyclin-dependent kinasemore » inhibitor 1A (CDKN1A; also known as Waf1/p21) mRNAs increases in cells depleted of cellular NMD factors. Intriguingly, CDKN1A mRNA contains an upstream open reading frame (uORF), which is a NMD-inducing feature. Using chimeric reporter constructs, we find that the uORF of CDKN1A mRNA negatively modulates translation of the main downstream ORF. These findings provide biological insights into the possible role of NMD in diverse biological pathways mediated by CDKN1A.« less

  9. A Sequence-Independent, Unstructured Internal Ribosome Entry Site Is Responsible for Internal Expression of the Coat Protein of Turnip Crinkle Virus

    PubMed Central

    May, Jared; Johnson, Philip; Saleem, Huma

    2017-01-01

    ABSTRACT To maximize the coding potential of viral genomes, internal ribosome entry sites (IRES) can be used to bypass the traditional requirement of a 5′ cap and some/all of the associated translation initiation factors. Although viral IRES typically contain higher-order RNA structure, an unstructured sequence of about 84 nucleotides (nt) immediately upstream of the Turnip crinkle virus (TCV) coat protein (CP) open reading frame (ORF) has been found to promote internal expression of the CP from the genomic RNA (gRNA) both in vitro and in vivo. An absence of extensive RNA structure was predicted using RNA folding algorithms and confirmed by selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) RNA structure probing. Analysis of the IRES region in vitro by use of both the TCV gRNA and reporter constructs did not reveal any sequence-specific elements but rather suggested that an overall lack of structure was an important feature for IRES activity. The CP IRES is A-rich, independent of orientation, and strongly conserved among viruses in the same genus. The IRES was dependent on eIF4G, but not eIF4E, for activity. Low levels of CP accumulated in vivo in the absence of detectable TCV subgenomic RNAs, strongly suggesting that the IRES was active in the gRNA in vivo. Since the TCV CP also serves as the viral silencing suppressor, early translation of the CP from the viral gRNA is likely important for countering host defenses. Cellular mRNA IRES also lack extensive RNA structures or sequence conservation, suggesting that this viral IRES and cellular IRES may have similar strategies for internal translation initiation. IMPORTANCE Cap-independent translation is a common strategy among positive-sense, single-stranded RNA viruses for bypassing the host cell requirement of a 5′ cap structure. Viral IRES, in general, contain extensive secondary structure that is critical for activity. In contrast, we demonstrate that a region of viral RNA devoid of extensive secondary structure has IRES activity and produces low levels of viral coat protein in vitro and in vivo. Our findings may be applicable to cellular mRNA IRES that also have little or no sequences/structures in common. PMID:28179526

  10. Phylogenetic analysis of eIF4E-family members

    PubMed Central

    Joshi, Bhavesh; Lee, Kibwe; Maeder, Dennis L; Jagus, Rosemary

    2005-01-01

    Background Translation initiation in eukaryotes involves the recruitment of mRNA to the ribosome which is controlled by the translation factor eIF4E. eIF4E binds to the 5'-m7Gppp cap-structure of mRNA. Three dimensional structures of eIF4Es bound to cap-analogues resemble 'cupped-hands' in which the cap-structure is sandwiched between two conserved Trp residues (Trp-56 and Trp-102 of H. sapiens eIF4E). A third conserved Trp residue (Trp-166 of H. sapiens eIF4E) recognizes the 7-methyl moiety of the cap-structure. Assessment of GenBank NR and dbEST databases reveals that many organisms encode a number of proteins with homology to eIF4E. Little is understood about the relationships of these structurally related proteins to each other. Results By combining sequence data deposited in the Genbank databases, we have identified sequences encoding 411 eIF4E-family members from 230 species. These sequences have been deposited into an internet-accessible database designed for sequence comparisons of eIF4E-family members. Most members can be grouped into one of three classes. Class I members carry Trp residues equivalent to Trp-43 and Trp-56 of H. sapiens eIF4E and appear to be present in all eukaryotes. Class II members, possess Trp→Tyr/Phe/Leu and Trp→Tyr/Phe substitutions relative to Trp-43 and Trp-56 of H. sapiens eIF4E, and can be identified in Metazoa, Viridiplantae, and Fungi. Class III members possess a Trp residue equivalent to Trp-43 of H. sapiens eIF4E but carry a Trp→Cys/Tyr substitution relative to Trp-56 of H. sapiens eIF4E, and can be identified in Coelomata and Cnidaria. Some eIF4E-family members from Protista show extension or compaction relative to prototypical eIF4E-family members. Conclusion The expansion of sequenced cDNAs and genomic DNAs from all eukaryotic kingdoms has revealed a variety of proteins related in structure to eIF4E. Evolutionarily it seems that a single early eIF4E gene has undergone multiple gene duplications generating multiple structural classes, such that it is no longer possible to predict function from the primary amino acid sequence of an eIF4E-family member. The variety of eIF4E-family members provides a source of alternatives on the eIF4E structural theme that will benefit structure/function analyses and therapeutic drug design. PMID:16191198

  11. Glucocorticoids inhibit coordinated translation of. cap alpha. - and. beta. -globin mRNAs in Friend erythroleukemia cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papaconstantinou, J.; Stewart, J.A.; Rabek, J.P.

    The dimethylsulfoxide (Me/sub 2/SO)-mediated induction of hemoglobin synthesis in Friend erythroleukemia cells is inhibited by the glucocorticoids hydrocortisone, dexamethasone, and fluocinolone acetonide; hydrocortisone, at concentrations of 10/sup -5/ to 10/sup -8/ M inhibits by 90-30% and fluocinolone acetonide at concentrations of 10/sup -8/ to 10/sup -11/ M shows a greater than 90% inhibition. At these concentrations the hormones have no effect on cell growth or viability. In this study it has been shown that there is a group of proteins, including the ..cap alpha..- and ..beta..-globins, whose regulation is associated with the induction of Friend erythroleukemia cell differentiation, and thatmore » the expression of these, in addition to ..cap alpha..- and ..beta..-globin, is affected by glucocorticoids. It is concluded that, although the translation of ..cap alpha..- and ..beta..-globin mRNA is a major site of inhibition by glucocorticoids, there is a detectable amount of ..cap alpha..- and ..beta..-globin mRNA translation which results in unequal amounts of globin synthesis and an overall more potent inhibition of hemoglobin formation.« less

  12. Translational control of human acetyl-CoA carboxylase 1 mRNA is mediated by an internal ribosome entry site in response to ER stress, serum deprivation or hypoxia mimetic CoCl2.

    PubMed

    Damiano, Fabrizio; Testini, Mariangela; Tocci, Romina; Gnoni, Gabriele V; Siculella, Luisa

    2018-04-01

    Acetyl-CoA carboxylase 1 (ACC1) is a cytosolic enzyme catalyzing the rate limiting step in de novo fatty acid biosynthesis. There is mounting evidence showing that ACC1 is susceptible to dysregulation and that it is over-expressed in liver diseases associated with lipid accumulation and in several cancers. In the present study, ACC1 regulation at the translational level is reported. Using several experimental approaches, the presence of an internal ribosome entry site (IRES) has been established in the 5' untranslated region (5' UTR) of the ACC1 mRNA. Transfection experiments with the ACC1 5' UTR inserted in a dicistronic reporter vector show a remarkable increase in the downstream cistron translation, through a cap-independent mechanism. The endoplasmic reticulum (ER) stress condition and the related unfolded protein response (UPR), triggered by treatment with thapsigargin and tunicamycin, cause an increase of the cap-independent translation of ACC1 mRNA in HepG2 cells, despite the overall reduction in global protein synthesis. Other stress conditions, such as serum starvation and incubation with hypoxia mimetic agent CoCl 2 , up-regulate ACC1 expression in HepG2 cells at the translational level. Overall, these findings indicate that the presence of an IRES in the ACC1 5' UTR allows ACC1 mRNA translation in conditions that are inhibitory to cap-dependent translation. A potential involvement of the cap-independent translation of ACC1 in several pathologies, such as obesity and cancer, has been discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Expression analysis and clinical utility of L-Dopa decarboxylase (DDC) in prostate cancer.

    PubMed

    Avgeris, Margaritis; Koutalellis, Georgios; Fragoulis, Emmanuel G; Scorilas, Andreas

    2008-10-01

    L-Dopa decarboxylase (DDC) is a pyridoxal 5'-phosphate-dependent enzyme that was found to be involved in many malignancies. The aim of this study was to investigate the mRNA expression levels of DDC in prostate tissues and to evaluate its clinical utility in prostate cancer (CaP). Total RNA was isolated from 118 tissue specimens from benign prostate hyperplasia (BPH) and CaP patients and a highly sensitive quantitative real-time RT-PCR (qRT-PCR) method for DDC mRNA quantification has been developed using the SYBR Green chemistry. LNCaP prostate cancer cell line was used as a calibrator and GAPDH as a housekeeping gene. DDC was found to be overexpressed, at the mRNA level, in the specimens from prostate cancer patients, in comparison to those from benign prostate hyperplasia patients (p<0.001). Logistic regression and ROC analysis have demonstrated that the DDC expression has significant discriminatory value between CaP and BPH (p<0.001). DDC expression status was compared with other established prognostic factors, in prostate cancer. High expression levels of DDC were found more frequently in high Gleason's score tumors (p=0.022) as well as in advanced stage patients (p=0.032). Our data reveal the potential of DDC expression, at the mRNA level, as a novel biomarker in prostate cancer.

  14. Translational control of aberrant stress responses as a hallmark of cancer.

    PubMed

    El-Naggar, Amal M; Sorensen, Poul H

    2018-04-01

    Altered mRNA translational control is emerging as a critical factor in cancer development and progression. Targeting specific elements of the translational machinery, such as mTORC1 or eIF4E, is emerging as a new strategy for innovative cancer therapy. While translation of most mRNAs takes place through cap-dependent mechanisms, a sub-population of cellular mRNA species, particularly stress-inducible mRNAs with highly structured 5'-UTR regions, are primarily translated through cap-independent mechanisms. Intriguingly, many of these mRNAs encode proteins that are involved in tumour cell adaptation to microenvironmental stress, and thus linked to aggressive behaviour including tumour invasion and metastasis. This necessitates a rigorous search for links between microenvironmental stress and aggressive tumour phenotypes. Under stress, cells block global protein synthesis to preserve energy while maintaining selective synthesis of proteins that support cell survival. One highly conserved mechanism to regulate protein synthesis under cell stress is to sequester mRNAs into cytosolic aggregates called stress granules (SGs), where their translation is silenced. SGs confer survival advantages and chemotherapeutic resistance to tumour cells under stress. Recently, it has been shown that genetically blocking SG formation dramatically reduces tumour invasive and metastatic capacity in vivo. Therefore, targeting SG formation might represent a potential treatment strategy to block cancer metastasis. Here, we present the critical link between selective mRNA translation, stress adaptation, SGs, and tumour progression. Further, we also explain how deciphering mechanisms of selective mRNA translation occurs under cell stress holds great promise for the identification of new targets in the treatment of cancer. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  15. 7-methylguanosine diphosphate (m(7)GDP) is not hydrolyzed but strongly bound by decapping scavenger (DcpS) enzymes and potently inhibits their activity.

    PubMed

    Wypijewska, Anna; Bojarska, Elzbieta; Lukaszewicz, Maciej; Stepinski, Janusz; Jemielity, Jacek; Davis, Richard E; Darzynkiewicz, Edward

    2012-10-09

    Decapping scavenger (DcpS) enzymes catalyze the cleavage of a residual cap structure following 3' → 5' mRNA decay. Some previous studies suggested that both m(7)GpppG and m(7)GDP were substrates for DcpS hydrolysis. Herein, we show that mononucleoside diphosphates, m(7)GDP (7-methylguanosine diphosphate) and m(3)(2,2,7)GDP (2,2,7-trimethylguanosine diphosphate), resulting from mRNA decapping by the Dcp1/2 complex in the 5' → 3' mRNA decay, are not degraded by recombinant DcpS proteins (human, nematode, and yeast). Furthermore, whereas mononucleoside diphosphates (m(7)GDP and m(3)(2,2,7)GDP) are not hydrolyzed by DcpS, mononucleoside triphosphates (m(7)GTP and m(3)(2,2,7)GTP) are, demonstrating the importance of a triphosphate chain for DcpS hydrolytic activity. m(7)GTP and m(3)(2,2,7)GTP are cleaved at a slower rate than their corresponding dinucleotides (m(7)GpppG and m(3)(2,2,7)GpppG, respectively), indicating an involvement of the second nucleoside for efficient DcpS-mediated digestion. Although DcpS enzymes cannot hydrolyze m(7)GDP, they have a high binding affinity for m(7)GDP and m(7)GDP potently inhibits DcpS hydrolysis of m(7)GpppG, suggesting that m(7)GDP may function as an efficient DcpS inhibitor. Our data have important implications for the regulatory role of m(7)GDP in mRNA metabolic pathways due to its possible interactions with different cap-binding proteins, such as DcpS or eIF4E.

  16. Neutrophil-derived alpha defensins control inflammation by inhibiting macrophage mRNA translation

    PubMed Central

    Tomlinson, Gareth H.; Miles, Katherine; Smith, Richard W. P.; Rossi, Adriano G.; Hiemstra, Pieter S.; van ’t Wout, Emily F. A.; Dean, Jonathan L. E.; Gray, Nicola K.; Lu, Wuyuan; Gray, Mohini

    2016-01-01

    Neutrophils are the first and most numerous cells to arrive at the site of an inflammatory insult and are among the first to die. We previously reported that alpha defensins, released from apoptotic human neutrophils, augmented the antimicrobial capacity of macrophages while also inhibiting the biosynthesis of proinflammatory cytokines. In vivo, alpha defensin administration protected mice from inflammation, induced by thioglychollate-induced peritonitis or following infection with Salmonella enterica serovar Typhimurium. We have now dissected the antiinflammatory mechanism of action of the most abundant neutrophil alpha defensin, Human Neutrophil Peptide 1 (HNP1). Herein we show that HNP1 enters macrophages and inhibits protein translation without inducing the unfolded-protein response or affecting mRNA stability. In a cell-free in vitro translation system, HNP1 powerfully inhibited both cap-dependent and cap-independent mRNA translation while maintaining mRNA polysomal association. This is, to our knowledge, the first demonstration of a peptide released from one cell type (neutrophils) directly regulating mRNA translation in another (macrophages). By preventing protein translation, HNP1 functions as a “molecular brake” on macrophage-driven inflammation, ensuring both pathogen clearance and the resolution of inflammation with minimal bystander tissue damage. PMID:27044108

  17. Coupling mRNA processing with transcription in time and space

    PubMed Central

    Bentley, David L.

    2015-01-01

    Maturation of mRNA precursors often occurs simultaneously with their synthesis by RNA polymerase II (Pol II). The co-transcriptional nature of mRNA processing has permitted the evolution of coupling mechanisms that coordinate transcription with mRNA capping, splicing, editing and 3′ end formation. Recent experiments using sophisticated new methods for analysis of nascent RNA have provided important insights into the relative amount of co-transcriptional and post-transcriptional processing, the relationship between mRNA elongation and processing, and the role of the Pol II carboxy-terminal domain (CTD) in regulating these processes. PMID:24514444

  18. The 5'-poly(A) leader of poxvirus mRNA confers a translational advantage that can be achieved in cells with impaired cap-dependent translation

    PubMed Central

    Dhungel, Pragyesh; Cao, Shuai

    2017-01-01

    The poly(A) leader at the 5’-untranslated region (5’-UTR) is an unusually striking feature of all poxvirus mRNAs transcribed after viral DNA replication (post-replicative mRNAs). These poly(A) leaders are non-templated and of heterogeneous lengths; and their function during poxvirus infection remains a long-standing question. Here, we discovered that a 5’-poly(A) leader conferred a selective translational advantage to mRNA in poxvirus-infected cells. A constitutive and uninterrupted 5’-poly(A) leader with 12 residues was optimal. Because the most frequent lengths of the 5’-poly(A) leaders are 8–12 residues, the result suggests that the poly(A) leader has been evolutionarily optimized to boost poxvirus protein production. A 5’-poly(A) leader also could increase protein production in the bacteriophage T7 promoter-based expression system of vaccinia virus, the prototypic member of poxviruses. Interestingly, although vaccinia virus post-replicative mRNAs do have 5’- methylated guanosine caps and can use cap-dependent translation, in vaccinia virus-infected cells, mRNA with a 5’-poly(A) leader could also be efficiently translated in cells with impaired cap-dependent translation. However, the translation was not mediated through an internal ribosome entry site (IRES). These results point to a fundamental mechanism poxvirus uses to efficiently translate its post-replicative mRNAs. PMID:28854224

  19. Structural domains within the HIV-1 mRNA and the ribosomal protein S25 influence cap-independent translation initiation.

    PubMed

    Carvajal, Felipe; Vallejos, Maricarmen; Walters, Beth; Contreras, Nataly; Hertz, Marla I; Olivares, Eduardo; Cáceres, Carlos J; Pino, Karla; Letelier, Alejandro; Thompson, Sunnie R; López-Lastra, Marcelo

    2016-07-01

    The 5' leader of the HIV-1 genomic RNA is a multifunctional region that folds into secondary/tertiary structures that regulate multiple processes during viral replication including translation initiation. In this work, we examine the internal ribosome entry site (IRES) located in the 5' leader that drives translation initiation of the viral Gag protein under conditions that hinder cap-dependent translation initiation. We show that activity of the HIV-1 IRES relies on ribosomal protein S25 (eS25). Additionally, a mechanistic and mutational analysis revealed that the HIV-1 IRES is modular in nature and that once the 40S ribosomal subunit is recruited to the IRES, translation initiates without the need of ribosome scanning. These findings elucidate a mechanism of initiation by the HIV-1 IRES whereby a number of highly structured sites present within the HIV-1 5' leader leads to the recruitment of the 40S subunit directly at the site of initiation of protein synthesis. © 2016 Federation of European Biochemical Societies.

  20. Structural domains within the HIV-1 mRNA and the ribosomal protein S25 influence cap-independent translation initiation

    PubMed Central

    Carvajal, Felipe; Vallejos, Maricarmen; Walters, Beth A.; Contreras, Nataly; Hertz, Marla I.; Olivares, Eduardo; Cáceres, C. Joaquín; Pino, Karla; Letelier, Alejandro; Thompson, Sunnie R.; López-Lastra, Marcelo

    2016-01-01

    The 5′leader of the HIV-1 genomic RNA is a multifunctional region that folds into secondary/tertiary structures that regulate multiple processes during viral replication including translation initiation. In this work we examine the internal ribosome entry site (IRES) located in the 5′leader that drives translation initiation of the viral Gag protein under conditions that hinder cap-dependent translation initiation. We show that activity of the HIV-1 IRES relies on ribosomal protein S25 (eS25). Additionally, a mechanistic and mutational analysis revealed that the HIV-1 IRES is modular in nature and that once the 40S ribosomal subunit is recruited to the IRES, translation initiates without the need of ribosome scanning. These findings elucidate a mechanism of initiation by the HIV-1 IRES whereby a number of highly structured sites present within the HIV-1 5′leader leads to the recruitment of the 40S subunit directly at the site of initiation of protein synthesis. PMID:27191820

  1. Class I β-1,3-Glucanase and Chitinase Are Expressed in the Micropylar Endosperm of Tomato Seeds Prior to Radicle Emergence1

    PubMed Central

    Wu, Chun-Ta; Leubner-Metzger, Gerhard; Meins, Frederick; Bradford, Kent J.

    2001-01-01

    β-1,3-Glucanase (EC 3.2.1.39) and chitinase (EC 3.2.1.14) mRNAs, proteins, and enzyme activities were expressed specifically in the micropylar tissues of imbibed tomato (Lycopersicon esculentum Mill.) seeds prior to radicle emergence. RNA hybridization and immunoblotting demonstrated that both enzymes were class I basic isoforms. β-1,3-Glucanase was expressed exclusively in the endosperm cap tissue, whereas chitinase localized to both endosperm cap and radicle tip tissues. β-1,3-Glucanase and chitinase appeared in the micropylar tissues of gibberellin-deficient gib-1 tomato seeds only when supplied with gibberellin. Accumulation of β-1,3-glucanase mRNA, protein and enzyme activity was reduced by 100 μM abscisic acid, which delayed or prevented radicle emergence but not endosperm cap weakening. In contrast, expression of chitinase mRNA, protein, and enzyme activity was not affected by abscisic acid. Neither of these enzymes significantly hydrolyzed isolated tomato endosperm cap cell walls. Although both β-1,3-glucanase and chitinase were expressed in tomato endosperm cap tissue prior to radicle emergence, we found no evidence that they were directly involved in cell wall modification or tissue weakening. Possible functions of these hydrolases during tomato seed germination are discussed. PMID:11457981

  2. Dynamic m(6)A mRNA methylation directs translational control of heat shock response.

    PubMed

    Zhou, Jun; Wan, Ji; Gao, Xiangwei; Zhang, Xingqian; Jaffrey, Samie R; Qian, Shu-Bing

    2015-10-22

    The most abundant mRNA post-transcriptional modification is N(6)-methyladenosine (m(6)A), which has broad roles in RNA biology. In mammalian cells, the asymmetric distribution of m(6)A along mRNAs results in relatively less methylation in the 5' untranslated region (5'UTR) compared to other regions. However, whether and how 5'UTR methylation is regulated is poorly understood. Despite the crucial role of the 5'UTR in translation initiation, very little is known about whether m(6)A modification influences mRNA translation. Here we show that in response to heat shock stress, certain adenosines within the 5'UTR of newly transcribed mRNAs are preferentially methylated. We find that the dynamic 5'UTR methylation is a result of stress-induced nuclear localization of YTHDF2, a well-characterized m(6)A 'reader'. Upon heat shock stress, the nuclear YTHDF2 preserves 5'UTR methylation of stress-induced transcripts by limiting the m(6)A 'eraser' FTO from demethylation. Remarkably, the increased 5'UTR methylation in the form of m(6)A promotes cap-independent translation initiation, providing a mechanism for selective mRNA translation under heat shock stress. Using Hsp70 mRNA as an example, we demonstrate that a single m(6)A modification site in the 5'UTR enables translation initiation independent of the 5' end N(7)-methylguanosine cap. The elucidation of the dynamic features of 5'UTR methylation and its critical role in cap-independent translation not only expands the breadth of physiological roles of m(6)A, but also uncovers a previously unappreciated translational control mechanism in heat shock response.

  3. Untranslated regions of diverse plant viral RNAs vary greatly in translation enhancement efficiency

    PubMed Central

    2012-01-01

    Background Whole plants or plant cell cultures can serve as low cost bioreactors to produce massive amounts of a specific protein for pharmacological or industrial use. To maximize protein expression, translation of mRNA must be optimized. Many plant viral RNAs harbor extremely efficient translation enhancers. However, few of these different translation elements have been compared side-by-side. Thus, it is unclear which are the most efficient translation enhancers. Here, we compare the effects of untranslated regions (UTRs) containing translation elements from six plant viruses on translation in wheat germ extract and in monocotyledenous and dicotyledenous plant cells. Results The highest expressing uncapped mRNAs contained viral UTRs harboring Barley yellow dwarf virus (BYDV)-like cap-independent translation elements (BTEs). The BYDV BTE conferred the most efficient translation of a luciferase reporter in wheat germ extract and oat protoplasts, while uncapped mRNA containing the BTE from Tobacco necrosis virus-D translated most efficiently in tobacco cells. Capped mRNA containing the Tobacco mosaic virus omega sequence was the most efficient mRNA in tobacco cells. UTRs from Satellite tobacco necrosis virus, Tomato bushy stunt virus, and Crucifer-infecting tobamovirus (crTMV) did not stimulate translation efficiently. mRNA with the crTMV 5′ UTR was unstable in tobacco protoplasts. Conclusions BTEs confer the highest levels of translation of uncapped mRNAs in vitro and in vivo, while the capped omega sequence is most efficient in tobacco cells. These results provide a basis for understanding mechanisms of translation enhancement, and for maximizing protein synthesis in cell-free systems, transgenic plants, or in viral expression vectors. PMID:22559081

  4. A biochemical framework for eIF4E-dependent mRNA export and nuclear recycling of the export machinery.

    PubMed

    Volpon, Laurent; Culjkovic-Kraljacic, Biljana; Sohn, Hye Seon; Blanchet-Cohen, Alexis; Osborne, Michael J; Borden, Katherine L B

    2017-06-01

    The eukaryotic translation initiation factor eIF4E acts in the nuclear export and translation of a subset of mRNAs. Both of these functions contribute to its oncogenic potential. While the biochemical mechanisms that underlie translation are relatively well understood, the molecular basis for eIF4E's role in mRNA export remains largely unexplored. To date, over 3000 transcripts, many encoding oncoproteins, were identified as potential nuclear eIF4E export targets. These target RNAs typically contain a ∼50-nucleotide eIF4E sensitivity element (4ESE) in the 3' UTR and a 7-methylguanosine cap on the 5' end. While eIF4E associates with the cap, an unknown factor recognizes the 4ESE element. We previously identified cofactors that functionally interacted with eIF4E in mammalian cell nuclei including the leucine-rich pentatricopeptide repeat protein LRPPRC and the export receptor CRM1/XPO1. LRPPRC simultaneously interacts with both eIF4E bound to the 5' mRNA cap and the 4ESE element in the 3' UTR. In this way, LRPPRC serves as a specificity factor to recruit 4ESE-containing RNAs within the nucleus. Further, we show that CRM1 directly binds LRPPRC likely acting as the export receptor for the LRPPRC-eIF4E-4ESE RNA complex. We also found that Importin 8, the nuclear importer for cap-free eIF4E, imports RNA-free LRPPRC, potentially providing both coordinated nuclear recycling of the export machinery and an important surveillance mechanism to prevent futile export cycles. Our studies provide the first biochemical framework for the eIF4E-dependent mRNA export pathway. © 2017 Volpon et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  5. Eukaryotic Initiation Factor (eIF) 4F Binding to Barley Yellow Dwarf Virus (BYDV) 3′-Untranslated Region Correlates with Translation Efficiency*

    PubMed Central

    Banerjee, Bidisha; Goss, Dixie J.

    2014-01-01

    Eukaryotic initiation factor (eIF) 4F binding to mRNA is the first committed step in cap-dependent protein synthesis. Barley yellow dwarf virus (BYDV) employs a cap-independent mechanism of translation initiation that is mediated by a structural BYDV translation element (BTE) located in the 3′-UTR of its mRNA. eIF4F bound the BTE and a translationally inactive mutant with high affinity, thus questioning the role of eIF4F in translation of BYDV. To examine the effects of eIF4F in BYDV translation initiation, BTE mutants with widely different in vitro translation efficiencies ranging from 5 to 164% compared with WT were studied. Using fluorescence anisotropy to obtain quantitative data, we show 1) the equilibrium binding affinity (complex stability) correlated well with translation efficiency, whereas the “on” rate of binding did not; 2) other unidentified proteins or small molecules in wheat germ extract prevented eIF4F binding to mutant BTE but not WT BTE; 3) BTE mutant-eIF4F interactions were found to be both enthalpically and entropically favorable with an enthalpic contribution of 52–90% to ΔG° at 25 °C, suggesting that hydrogen bonding contributes to stability; and 4) in contrast to cap-dependent and tobacco etch virus internal ribosome entry site interaction with eIF4F, poly(A)-binding protein did not increase eIF4F binding. Further, the eIF4F bound to the 3′ BTE with higher affinity than for either m7G cap or tobacco etch virus internal ribosome entry site, suggesting that the 3′ BTE may play a role in sequestering host cell initiation factors and possibly regulating the switch from replication to translation. PMID:24379412

  6. Structure and Function of the Splice Variants of TMPRSS2-ERG, a Prevalent Genomic Alteration in Prostate Cancer

    DTIC Science & Technology

    2009-09-01

    binding ETS domain) and five type II (without ETS domain). Fusion-positive type I– and type II–containing phages were amplified with T3 and T7 primers...will be performed to identify the authentic 3’ UTRs from the mRNA pool from CaP patient specimens. Using phage excision strategy, we will use to... phage DNA sequences plasmids (cDNA) clones were generated by using phage excision strategy. Figure 1. ERG splice variants in prostate cancer

  7. Methylation of the PMEPA1 gene, a negative regulator of the androgen receptor in prostate cancer.

    PubMed

    Sharad, Shashwat; Ravindranath, Lakshmi; Haffner, Michael C; Li, Hua; Yan, Wusheng; Sesterhenn, Isabell A; Chen, Yongmei; Ali, Amina; Srinivasan, Alagarsamy; McLeod, David G; Yegnasubramanian, Srinivasan; Srivastava, Shiv; Dobi, Albert; Petrovics, Gyorgy

    2014-06-01

    The prostate transmembrane protein androgen induced 1 (PMEPA1) gene is highly expressed in prostate epithelial cells and is a direct transcriptional target for the androgen receptor (AR). AR protein levels are controlled by the AR-PMEPA1 negative feedback loop through NEDD4-E3 ligase. Reduced expression of PMEPA1 observed in prostate tumors, suggests that loss of PMEPA1 may play critical roles in prostate tumorigenesis. This study focuses on epigenetic mechanisms of reduced PMEPA1 expression in the cancer of the prostate (CaP). Benign (n = 77) and matched malignant (n = 77) prostate epithelial cells were laser capture micro-dissected from optimum cutting temperature embedded frozen prostate sections from 42 Caucasian American (CA) and 35 African American (AA) cases. Purified DNA specimens were analyzed for CpG methylation of the PMEPA1 gene. PMEPA1 mRNA expression levels were evaluated by qRT-PCR. Analysis of PMEPA1 methylation and mRNA expression in the same tumor cell populations indicated a significant inverse correlation between mRNA expression and methylation in CaP (P = 0.0115). We noted higher frequency of CpG methylation within the evaluated first intronic region of the PMEPA1 gene in prostate tumors of CA men as compared with AA. In CaP cell lines, PMEPA1 expression was induced and AR protein levels were diminished in response to treatment with the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (decitabine). Cell culture-based studies demonstrated that decitabine restores PMEPA1 expression in AR-positive CaP cell lines. This report reveals the potential role of PMEPA1 gene methylation in the regulation of AR stability. Thus, downregulation of PMEPA1 may result in increased AR protein levels and function in CaP cells, contributing to prostate tumorigenesis.

  8. Methylation of the PMEPA1 gene, a negative regulator of the androgen receptor in prostate cancer

    PubMed Central

    Sharad, Shashwat; Ravindranath, Lakshmi; Haffner, Michael C; Li, Hua; Yan, Wusheng; Sesterhenn, Isabell A; Chen, Yongmei; Ali, Amina; Srinivasan, Alagarsamy; McLeod, David G; Yegnasubramanian, Srinivasan; Srivastava, Shiv; Dobi, Albert; Petrovics, Gyorgy

    2014-01-01

    The prostate transmembrane protein androgen induced 1 (PMEPA1) gene is highly expressed in prostate epithelial cells and is a direct transcriptional target for the androgen receptor (AR). AR protein levels are controlled by the AR-PMEPA1 negative feedback loop through NEDD4-E3 ligase. Reduced expression of PMEPA1 observed in prostate tumors, suggests that loss of PMEPA1 may play critical roles in prostate tumorigenesis. This study focuses on epigenetic mechanisms of reduced PMEPA1 expression in the cancer of the prostate (CaP). Benign (n = 77) and matched malignant (n = 77) prostate epithelial cells were laser capture micro-dissected from optimum cutting temperature embedded frozen prostate sections from 42 Caucasian American (CA) and 35 African American (AA) cases. Purified DNA specimens were analyzed for CpG methylation of the PMEPA1 gene. PMEPA1 mRNA expression levels were evaluated by qRT-PCR. Analysis of PMEPA1 methylation and mRNA expression in the same tumor cell populations indicated a significant inverse correlation between mRNA expression and methylation in CaP (P = 0.0115). We noted higher frequency of CpG methylation within the evaluated first intronic region of the PMEPA1 gene in prostate tumors of CA men as compared with AA. In CaP cell lines, PMEPA1 expression was induced and AR protein levels were diminished in response to treatment with the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (decitabine). Cell culture-based studies demonstrated that decitabine restores PMEPA1 expression in AR-positive CaP cell lines. This report reveals the potential role of PMEPA1 gene methylation in the regulation of AR stability. Thus, downregulation of PMEPA1 may result in increased AR protein levels and function in CaP cells, contributing to prostate tumorigenesis. PMID:24694733

  9. Vesicular LL-37 Contributes to Inflammation of the Lesional Skin of Palmoplantar Pustulosis

    PubMed Central

    Murakami, Masamoto; Kaneko, Takaaki; Nakatsuji, Teruaki; Kameda, Kenji; Okazaki, Hidenori; Dai, Xiuju; Hanakawa, Yasushi; Tohyama, Mikiko; Ishida-Yamamoto, Akemi; Sayama, Koji

    2014-01-01

    “Pustulosis palmaris et plantaris”, or palmoplantar pustulosis (PPP), is a chronic pustular dermatitis characterized by intraepidermal palmoplantar pustules. Although early stage vesicles (preceding the pustular phase) formed in the acrosyringium contain the antimicrobial peptides cathelicidin (hCAP-18/LL-37) and dermcidin, the details of hCAP-18/LL-37 expression in such vesicles remain unclear. The principal aim of the present study was to clarify the manner of hCAP-18/LL-37 expression in PPP vesicles and to determine whether this material contributed to subsequent inflammation of lesional skin. PPP vesicle fluid (PPP-VF) induced the expression of mRNAs encoding IL-17C, IL-8, IL-1α, and IL-1β in living skin equivalents, but the level of only IL-8 mRNA decreased significantly upon stimulation of PPP vesicle with depletion of endogenous hCAP-18/LL-37 by affinity chromatography (dep-PPP-VF). Semi-quantitative dot-blot analysis revealed higher concentrations of hCAP-18/LL-37 in PPP-VF compared to healthy sweat (2.87±0.93 µM vs. 0.09±0.09 µM). This concentration of hCAP-18/LL-37 in PPP-VF could upregulate expression of IL-17C, IL-8, IL-1α, and IL-1β at both the mRNA and protein levels. Recombinant hCAP-18 was incubated with dep-PPP-VF. Proteinase 3, which converts hCAP-18 to the active form (LL-37), was present in PPP-VF. Histopathological and immunohistochemical examination revealed that early stage vesicles contained many mononuclear cells but no polymorphonuclear cells, and the mononuclear cells were CD68-positive. The epidermis surrounding the vesicle expresses monocyte chemotactic chemokine, CCL2. In conclusion, PPP-VF contains the proteinase required for LL-37 processing and also may directly upregulate IL-8 in lesional keratinocytes, in turn contributing to the subsequent inflammation of PPP lesional skin. PMID:25330301

  10. The human insulin receptor mRNA contains a functional internal ribosome entry segment

    PubMed Central

    Spriggs, Keith A.; Cobbold, Laura C.; Ridley, Simon H.; Coldwell, Mark; Bottley, Andrew; Bushell, Martin; Willis, Anne E.; Siddle, Kenneth

    2009-01-01

    Regulation of mRNA translation is an important mechanism determining the level of expression of proteins in eukaryotic cells. Translation is most commonly initiated by cap-dependent scanning, but many eukaryotic mRNAs contain internal ribosome entry segments (IRESs), providing an alternative means of initiation capable of independent regulation. Here, we show by using dicistronic luciferase reporter vectors that the 5′-UTR of the mRNA encoding human insulin receptor (hIR) contains a functional IRES. RNAi-mediated knockdown showed that the protein PTB was required for maximum IRES activity. Electrophoretic mobility shift assays confirmed that PTB1, PTB2 and nPTB, but not unr or PTB4, bound to hIR mRNA, and deletion mapping implicated a CCU motif 448 nt upstream of the initiator AUG in PTB binding. The IR-IRES was functional in a number of cell lines, and most active in cells of neuronal origin, as assessed by luciferase reporter assays. The IRES was more active in confluent than sub-confluent cells, but activity did not change during differentiation of 3T3-L1 fibroblasts to adipocytes. IRES activity was stimulated by insulin in sub-confluent cells. The IRES may function to maintain expression of IR protein in tissues such as the brain where mRNA translation by cap-dependent scanning is less effective. PMID:19654240

  11. Cap-independent translation of human SP-A 5′-UTR variants: a double-loop structure and cis-element contribution

    PubMed Central

    Wang, Guirong; Guo, Xiaoxuan; Silveyra, Patricia; Kimball, Scot R.; Floros, Joanna

    2009-01-01

    Human surfactant protein A (hSP-A), a molecule of innate immunity and surfactant-related functions, consists of two functional genes, SP-A1 and SP-A2. SP-A expression is regulated by several factors including environmental stressors. SP-A1 and SP-A2 5′-untranslated region (5′-UTR) splice variants have a differential impact on translation efficiency and mRNA stability. To study whether these variants mediate internal ribosome entry site (IRES) activity (i.e., cap-independent translation), we performed transient transfection experiments in H441 cells with constructs containing one SP-A1 (A′D′, AB′D′, or A′CD′) or SP-A2 (ABD) 5′-UTR splice variant between the Renilla and firefly luciferase genes of a bicistronic reporter vector. We found that 1) variants A′D′, ABD, and AB′D′ exhibit significantly higher IRES activities than negative control (no SP-A 5′-UTR) and A′CD′ has no activity; the order of highest IRES activity was ABD > A′D′ > AB′D; 2) IRES activity of ABD significantly increased in response to diesel particulate matter (20 μg/ml) but not in response to ozone (1 ppm for 1 h); 3) deletion mutants of ABD revealed regulatory elements associated with IRES activity; one at the end of exon A attenuated activity, whereas a region containing a short adenosine-rich motif in the second half of exon B and the start of exon D enhanced activity; 4) elimination of a predicted double-loop structure or increase in free energy significantly reduced IRES activity; 5) elimination of one or both double-loop structures in A′D′ did not affect cap-dependent translation activity. Thus several factors, including cis-elements and secondary structure type and stability, are required for hSP-A 5′-UTR variant-mediated cap-independent translation. PMID:19181744

  12. Probing the closed-loop model of mRNA translation in living cells

    PubMed Central

    Archer, Stuart K; Shirokikh, Nikolay E; Hallwirth, Claus V; Beilharz, Traude H; Preiss, Thomas

    2015-01-01

    The mRNA closed-loop, formed through interactions between the cap structure, poly(A) tail, eIF4E, eIF4G and PAB, features centrally in models of eukaryotic translation initiation, although direct support for its existence in vivo is not well established. Here, we investigated the closed-loop using a combination of mRNP isolation from rapidly cross-linked cells and high-throughput qPCR. Using the interaction between these factors and the opposing ends of mRNAs as a proxy for the closed-loop, we provide evidence that it is prevalent for eIF4E/4G-bound but unexpectedly sparse for PAB1-bound mRNAs, suggesting it primarily occurs during a distinct phase of polysome assembly. We observed mRNA-specific variation in the extent of closed-loop formation, consistent with a role for polysome topology in the control of gene expression. PMID:25826658

  13. Effects of pulpotomy using mineral trioxide aggregate on prostaglandin transporter and receptors in rat molars.

    PubMed

    Ohkura, Naoto; Edanami, Naoki; Takeuchi, Ryosuke; Tohma, Aiko; Ohkura, Mariko; Yoshiba, Nagako; Yoshiba, Kunihiko; Ida-Yonemochi, Hiroko; Ohshima, Hayato; Okiji, Takashi; Noiri, Yuichiro

    2017-07-31

    Mineral trioxide aggregate (MTA) is a commonly used dental pulp-capping material with known effects in promoting reparative dentinogenesis. However, the mechanism by which MTA induces dentine repair remains unclear. The aim of the present study was to investigate the role of prostaglandin E 2 (PGE 2 ) in dentine repair by examining the localisation and mRNA expression levels of its transporter (Pgt) and two of its receptors (Ep2 and Ep4) in a rat model of pulpotomy with MTA capping. Ep2 expression was detected in odontoblasts, endothelial cells, and nerve fibres in normal and pulpotomised tissues, whereas Pgt and Ep4 were immunolocalised only in the odontoblasts. Moreover, mRNA expression of Slco2a1 (encoding Pgt), Ptger2 (encoding Ep2), and Ptger4 (encoding Ep4) was significantly upregulated in pulpotomised dental pulp and trigeminal ganglia after MTA capping. Our results provide insights into the functions of PGE 2 via Pgt and Ep receptors in the healing dentine/pulp complex and may be helpful in developing new therapeutic targets for dental disease.

  14. A region rich in aspartic acid, arginine, tyrosine, and glycine (DRYG) mediates eukaryotic initiation factor 4B (eIF4B) self-association and interaction with eIF3.

    PubMed Central

    Méthot, N; Song, M S; Sonenberg, N

    1996-01-01

    The binding of mRNA to the ribosome is mediated by eukaryotic initiation factors eukaryotic initiation factor 4F (eIF4F), eIF4B, eIF4A, and eIF3, eIF4F binds to the mRNA cap structure and, in combination with eIF4B, is believed to unwind the secondary structure in the 5' untranslated region to facilitate ribosome binding. eIF3 associates with the 40S ribosomal subunit prior to mRNA binding. eIF4B copurifies with eIF3 and eIF4F through several purification steps, suggesting the involvement of a multisubunit complex during translation initiation. To understand the mechanism by which eIF4B promotes 40S ribosome binding to the mRNA, we studied its interactions with partner proteins by using a filter overlay (protein-protein [far Western]) assay and the two-hybrid system. In this report, we show that eIF4B self-associates and also interacts directly with the p170 subunit of eIF3. A region rich in aspartic acid, arginine, tyrosine, and glycine, termed the DRYG domain, is sufficient for self-association of eIF4B, both in vitro and in vivo, and for interaction with the p170 subunit of eIF3. These experiments suggest that eIF4B participates in mRNA-ribosome binding by acting as an intermediary between the mRNA and eIF3, via a direct interaction with the p170 subunit of eIF3. PMID:8816444

  15. Nuclear Export of Messenger RNA

    PubMed Central

    Katahira, Jun

    2015-01-01

    Transport of messenger RNA (mRNA) from the nucleus to the cytoplasm is an essential step of eukaryotic gene expression. In the cell nucleus, a precursor mRNA undergoes a series of processing steps, including capping at the 5' ends, splicing and cleavage/polyadenylation at the 3' ends. During this process, the mRNA associates with a wide variety of proteins, forming a messenger ribonucleoprotein (mRNP) particle. Association with factors involved in nuclear export also occurs during transcription and processing, and thus nuclear export is fully integrated into mRNA maturation. The coupling between mRNA maturation and nuclear export is an important mechanism for providing only fully functional and competent mRNA to the cytoplasmic translational machinery, thereby ensuring accuracy and swiftness of gene expression. This review describes the molecular mechanism of nuclear mRNA export mediated by the principal transport factors, including Tap-p15 and the TREX complex. PMID:25836925

  16. A Dual Interaction Between the 5'- and 3'-Ends of the Melon Necrotic Spot Virus (MNSV) RNA Genome Is Required for Efficient Cap-Independent Translation.

    PubMed

    Miras, Manuel; Rodríguez-Hernández, Ana M; Romero-López, Cristina; Berzal-Herranz, Alfredo; Colchero, Jaime; Aranda, Miguel A; Truniger, Verónica

    2018-01-01

    In eukaryotes, the formation of a 5'-cap and 3'-poly(A) dependent protein-protein bridge is required for translation of its mRNAs. In contrast, several plant virus RNA genomes lack both of these mRNA features, but instead have a 3'-CITE (for cap-independent translation enhancer), a RNA element present in their 3'-untranslated region that recruits translation initiation factors and is able to control its cap-independent translation. For several 3'-CITEs, direct RNA-RNA long-distance interactions based on sequence complementarity between the 5'- and 3'-ends are required for efficient translation, as they bring the translation initiation factors bound to the 3'-CITE to the 5'-end. For the carmovirus melon necrotic spot virus (MNSV), a 3'-CITE has been identified, and the presence of its 5'-end in cis has been shown to be required for its activity. Here, we analyze the secondary structure of the 5'-end of the MNSV RNA genome and identify two highly conserved nucleotide sequence stretches that are complementary to the apical loop of its 3'-CITE. In in vivo cap-independent translation assays with mutant constructs, by disrupting and restoring sequence complementarity, we show that the interaction between the 3'-CITE and at least one complementary sequence in the 5'-end is essential for virus RNA translation, although efficient virus translation and multiplication requires both connections. The complementary sequence stretches are invariant in all MNSV isolates, suggesting that the dual 5'-3' RNA:RNA interactions are required for optimal MNSV cap-independent translation and multiplication.

  17. Hydrogen peroxide yields mechanistic insights into human mRNA capping enzyme function

    PubMed Central

    Mullen, Nicholas J.

    2017-01-01

    Capping of nascent RNA polymerase II (Pol II) transcripts is required for gene expression and the first two steps are catalyzed by separate 5′ triphosphatase and guanylyltransferase activities of the human capping enzyme (HCE). The cap is added co-transcriptionally, but how the two activities are coordinated is unclear. Our previous in vitro work has suggested that an unidentified factor modulates the minimum length at which nascent transcripts can be capped. Using the same well-established in vitro system with hydrogen peroxide as a capping inhibitor, we show that this unidentified factor targets the guanylyltransferase activity of HCE. We also uncover the mechanism of HCE inhibition by hydrogen peroxide, and by using mass spectrometry demonstrate that the active site cysteine residue of the HCE triphosphatase domain becomes oxidized. Using recombinant proteins for the two separated HCE domains, we provide evidence that the triphosphatase normally acts on transcripts shorter than can be acted upon by the guanylyltransferase. Our further characterization of the capping reaction dependence on transcript length and its interaction with the unidentified modulator of capping raises the interesting possibility that the capping reaction could be regulated. PMID:29028835

  18. A new MIF4G domain-containing protein, CTIF, directs nuclear cap-binding protein CBP80/20-dependent translation

    PubMed Central

    Kim, Kyoung Mi; Cho, Hana; Choi, Kobong; Kim, Jaedong; Kim, Bong-Woo; Ko, Young-Gyu; Jang, Sung Key; Kim, Yoon Ki

    2009-01-01

    During or right after mRNA export via the nuclear pore complex (NPC) in mammalian cells, mRNAs undergo translation mediated by nuclear cap-binding proteins 80 and 20 (CBP80/20). After CBP80/20-dependent translation, CBP80/20 is replaced by cytoplasmic cap-binding protein eIF4E, which directs steady-state translation. Nonsense-mediated mRNA decay (NMD), one of the best-characterized mRNA surveillance mechanisms, has been shown to occur on CBP80/20-bound mRNAs. However, despite the tight link between CBP80/20-dependent translation and NMD, the underlying molecular mechanism and cellular factors that mediate CBP80/20-dependent translation remain obscure. Here, we identify a new MIF4G domain-containing protein, CTIF (CBP80/20-dependent translation initiation factor). CTIF interacts directly with CBP80 and is part of the CBP80/20-dependent translation initiation complex. Depletion of endogenous CTIF from an in vitro translation system selectively blocks the translation of CBP80-bound mRNAs, while addition of purified CTIF restores it. Accordingly, down-regulation of endogenous CTIF abrogates NMD. Confocal microscopy shows that CTIF is localized to the perinuclear region. Our observations demonstrate the existence of CBP80/20-dependent translation and support the idea that CBP80/20-dependent translation is mechanistically different from steady-state translation through identification of a specific cellular protein, CTIF. PMID:19648179

  19. Alternative Ways to Think about Cellular Internal Ribosome Entry*

    PubMed Central

    Gilbert, Wendy V.

    2010-01-01

    Internal ribosome entry sites (IRESs) are specialized mRNA elements that allow recruitment of eukaryotic ribosomes to naturally uncapped mRNAs or to capped mRNAs under conditions in which cap-dependent translation is inhibited. Putative cellular IRESs have been proposed to play crucial roles in stress responses, development, apoptosis, cell cycle control, and neuronal function. However, most of the evidence for cellular IRES activity rests on bicistronic reporter assays, the reliability of which has been questioned. Here, the mechanisms underlying cap-independent translation of cellular mRNAs and the contributions of such translation to cellular protein synthesis are discussed. I suggest that the division of cellular mRNAs into mutually exclusive categories of “cap-dependent” and “IRES-dependent” should be reconsidered and that the implications of cellular IRES activity need to be incorporated into our models of cap-dependent initiation. PMID:20576611

  20. Human cytomegalovirus TRS1 protein associates with the 7-methylguanosine mRNA cap and facilitates translation.

    PubMed

    Ziehr, Benjamin; Lenarcic, Erik; Vincent, Heather A; Cecil, Chad; Garcia, Benjamin; Shenk, Thomas; Moorman, Nathaniel J

    2015-06-01

    Viruses rely on the host translation machinery for the synthesis of viral proteins. Human cells have evolved sensors that recognize viral RNAs and inhibit mRNA translation in order to limit virus replication. Understanding how viruses manipulate the host translation machinery to gain access to ribosomes and disable the antiviral response is therefore a critical aspect of the host/pathogen interface. In this study, we used a proteomics approach to identify human cytomegalovirus (HCMV) proteins that might contribute to viral mRNA translation. The HCMV TRS1 protein (pTRS1) associated with the 7-methylguanosine mRNA cap, increased the total level of protein synthesis, and colocalized with mRNAs undergoing translation initiation during infection. pTRS1 stimulated translation of a nonviral reporter gene and increased the translation of a reporter containing an HCMV 5' untranslated region (5'UTR) to a greater extent. The preferential effect of pTRS1 on translation of an mRNA containing a viral 5'UTR required the pTRS1 RNA and double-stranded RNA-dependent protein kinase (PKR)-binding domains, and was likely the result of PKR inhibition. However, pTRS1 also stimulated the total level of protein synthesis and translation directed by an HCMV 5'UTR in cells lacking PKR. Thus our results demonstrate that pTRS1 stimulates translation through both PKR-dependent and PKR-independent mechanisms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Human cytomegalovirus TRS1 protein associates with the 7-methylguanosine mRNA cap and facilitates translation

    PubMed Central

    Ziehr, Benjamin; Lenarcic, Erik; Vincent, Heather A.; Cecil, Chad; Garcia, Benjamin; Shenk, Thomas; Moorman, Nathaniel J.

    2015-01-01

    Viruses rely on the host translation machinery for the synthesis of viral proteins. Human cells have evolved sensors that recognize viral RNAs and inhibit mRNA translation in order to limit virus replication. Understanding how viruses manipulate the host translation machinery to gain access to ribosomes and disable the antiviral response is therefore a critical aspect of the host:pathogen interface. In this study we used a proteomics approach to identify human cytomegalovirus (HCMV) proteins that might contribute to viral mRNA translation. The HCMV TRS1 protein (pTRS1) associated with the 7-methylguanosine (m7G) mRNA cap, increased the total level of protein synthesis, and co-localized with mRNAs undergoing translation initiation during infection. pTRS1 stimulated translation of a non-viral reporter gene and increased the translation of a reporter containing an HCMV 5’ untranslated region (5’UTR) to a greater extent. The preferential effect of pTRS1 on translation of an mRNA containing a viral 5’UTR required the pTRS1 RNA and PKR binding domains, and was likely the result of PKR inhibition. However pTRS1 also stimulated the total level of protein synthesis and translation directed by an HCMV 5’UTR in cells lacking PKR. Thus our results demonstrate that pTRS1 stimulates translation through both PKR-dependent and PKR-independent mechanisms. PMID:25894605

  2. Protein Translation and Signaling in Human Eosinophils

    PubMed Central

    Esnault, Stephane; Shen, Zhong-Jian; Malter, James S.

    2017-01-01

    We have recently reported that, unlike IL-5 and GM-CSF, IL-3 induces increased translation of a subset of mRNAs. In addition, we have demonstrated that Pin1 controls the activity of mRNA binding proteins, leading to enhanced mRNA stability, GM-CSF protein production and prolonged eosinophil (EOS) survival. In this review, discussion will include an overview of cap-dependent protein translation and its regulation by intracellular signaling pathways. We will address the more general process of mRNA post-transcriptional regulation, especially regarding mRNA binding proteins, which are critical effectors of protein translation. Furthermore, we will focus on (1) the roles of IL-3-driven sustained signaling on enhanced protein translation in EOS, (2) the mechanisms regulating mRNA binding proteins activity in EOS, and (3) the potential targeting of IL-3 signaling and the signaling leading to mRNA binding activity changes to identify therapeutic targets to treat EOS-associated diseases. PMID:28971096

  3. Comparison of mRNA, Protein, and Urinary Nucleic Acid Levels of S100A8 and S100A9 between Prostate Cancer and BPH.

    PubMed

    Yun, Seok Joong; Yan, Chunri; Jeong, Pildu; Kang, Ho Won; Kim, Ye-Hwan; Kim, Eun-Ah; Lee, Ok-Jun; Kim, Won Tae; Moon, Sung-Kwon; Kim, Isaac Yi; Choi, Yung-Hyun; Kim, Wun-Jae

    2015-07-01

    Infections and inflammation in the prostate play a critical role in carcinogenesis, and S100A8 and S100A9 are key mediators in acute and chronic inflammation. Therefore, we investigated the differences of S100A8/A9 expression between prostate cancer (CaP) and benign prostatic hyperplasia (BPH) tissues, and we evaluated the possibilities of urinary nucleic acids of S100A8/A9 as diagnostic and prognostic markers. Tissues from 132 CaP patients who underwent prostatectomy or transurethral resection and 90 BPH patients who underwent transurethral prostatectomy were assessed.sd In addition, S100A8 and S100A9 nucleic acid levels were measured in the urine of 283 CaP patients and 363 BPH controls. S100A8 and S100A9 mRNA levels were lower in CaP than BPH tissues (P < 0.001). S100A8 and S100A9 expression was increased in cancer tissues with poorer prognosis. In 69 specimens from prostatectomy patients, S100A8/A9 were the independent predictor of biochemical recurrence (hazard ratio 5.22, 95 % confidence interval 1.800-15.155, P = 0.002). Immunohistochemical staining revealed that BPH tissues stained more strongly for both S100A8 and S100A9 than CaP tissues (P < 0.001). S100A8 and S100A9 urinary nucleic acid levels were lower in CaP than in BPH (P = 0.001 and <0.001, respectively). S100A8/A9 levels are lower in CaP than in BPH. Both were more highly expressed in patients with aggressive disease and shorter biochemical recurrence-free time. S100A8/A9 urinary cell-free nucleic acid levels correlated positively with expression levels obtained from tissue staining. Therefore, S100A8/A9 measurement in tissues and urine may have diagnostic and prognostic value in CaP.

  4. The 5′ Untranslated Region of the Human T-Cell Lymphotropic Virus Type 1 mRNA Enables Cap-Independent Translation Initiation

    PubMed Central

    Olivares, Eduardo; Landry, Dori M.; Cáceres, C. Joaquín; Pino, Karla; Rossi, Federico; Navarrete, Camilo; Huidobro-Toro, Juan Pablo; Thompson, Sunnie R.

    2014-01-01

    ABSTRACT The human T-cell leukemia virus type 1 (HTLV-1) is a complex human retrovirus that causes adult T cell leukemia and of HTLV-associated myelopathy/tropical spastic paraparesis. The mRNA of some complex retroviruses, including the human and simian immunodeficiency viruses (HIV and SIV), can initiate translation using a canonical cap-dependent mechanism or through an internal ribosome entry site (IRES). In this study, we present strong evidence showing that like HIV-1 and SIV, the 5′-untranslated region (5′UTR) of the HTLV-1 full-length mRNA harbors an IRES. Cap-independent translational activity was evaluated and demonstrated using dual luciferase bicistronic mRNAs in rabbit reticulocyte lysate, in mammalian cell culture, and in Xenopus laevis oocytes. Characterization of the HTLV-1 IRES shows that its activity is dependent on the ribosomal protein S25 (RPS25) and that its function is highly sensitive to the drug edeine. Together, these findings suggest that the 5′UTR of the HTLV-1 full-length mRNA enables internal recruitment of the eukaryotic translation initiation complex. However, the recognition of the initiation codon requires ribosome scanning. These results suggest that, after internal recruitment by the HTLV-1 IRES, a scanning step takes place for the 40S ribosomal subunit to be positioned at the translation initiation codon. IMPORTANCE The mechanism by which retroviral mRNAs recruit the 40S ribosomal subunit internally is not understood. This study provides new insights into the mechanism of translation initiation used by the human T-cell lymphotropic virus type 1 (HTLV-1). The results show that the HTLV-1 mRNA can initiate translation via a noncanonical mechanism mediated by an internal ribosome entry site (IRES). This study also provides evidence showing the involvement of cellular proteins in HTLV-1 IRES-mediated translation initiation. Together, the data presented in this report significantly contribute to the understanding of HTLV-1 gene expression. PMID:24623421

  5. LIM-domain proteins, LIMD1, Ajuba, and WTIP are required for microRNA-mediated gene silencing

    PubMed Central

    James, Victoria; Zhang, Yining; Foxler, Daniel E.; de Moor, Cornelia H.; Kong, Yi Wen; Webb, Thomas M.; Self, Tim J.; Feng, Yungfeng; Lagos, Dimitrios; Chu, Chia-Ying; Rana, Tariq M.; Morley, Simon J.; Longmore, Gregory D.; Bushell, Martin; Sharp, Tyson V.

    2010-01-01

    In recent years there have been major advances with respect to the identification of the protein components and mechanisms of microRNA (miRNA) mediated silencing. However, the complete and precise repertoire of components and mechanism(s) of action remain to be fully elucidated. Herein we reveal the identification of a family of three LIM domain-containing proteins, LIMD1, Ajuba and WTIP (Ajuba LIM proteins) as novel mammalian processing body (P-body) components, which highlight a novel mechanism of miRNA-mediated gene silencing. Furthermore, we reveal that LIMD1, Ajuba, and WTIP bind to Ago1/2, RCK, Dcp2, and eIF4E in vivo, that they are required for miRNA-mediated, but not siRNA-mediated gene silencing and that all three proteins bind to the mRNA 5′ m7GTP cap–protein complex. Mechanistically, we propose the Ajuba LIM proteins interact with the m7GTP cap structure via a specific interaction with eIF4E that prevents 4EBP1 and eIF4G interaction. In addition, these LIM-domain proteins facilitate miRNA-mediated gene silencing by acting as an essential molecular link between the translationally inhibited eIF4E-m7GTP-5′cap and Ago1/2 within the miRISC complex attached to the 3′-UTR of mRNA, creating an inhibitory closed-loop complex. PMID:20616046

  6. Linking nuclear mRNP assembly and cytoplasmic destiny.

    PubMed

    Kuersten, Scott; Goodwin, Elizabeth B

    2005-06-01

    From the very beginning, mRNAs have a complex existence. They are transcribed, capped, spliced, modified at the 3'end, exported from the nucleus, translated, and eventually degraded. These many events not only affect the overall survival and properties of an mRNA, but are also carefully co-ordinated and integrated with quality control mechanisms that function to ensure that only 'proper' mRNAs are translated at the correct developmental time and place. This does not mean that all mRNAs follow a single or uniform path from synthesis to death. Instead, there are diverse means by which the activities of specific mRNAs are regulated, and these controls often depend upon multiple events in the mRNA's life. mRNAs are not found naked in the cell, instead they are part of complex RNPs (ribonucleoproteins) that consist of many factors. These RNPs are highly dynamic structures that change during the lifetime of a given RNA; linking events such as synthesis and processing to the final fate of the mRNA. Here, we will discuss what is known of the assembly of RNPs in general, with specific reference to the myriad of connections between different nuclear events and the cytoplasmic activity of an mRNA. Due to space limitations this review is not comprehensive, instead we focus on specific examples to illustrate these emerging themes in gene expression.

  7. The mRNA cap-binding protein Cbc1 is required for high and timely expression of genes by promoting the accumulation of gene-specific activators at promoters.

    PubMed

    Li, Tianlu; De Clercq, Nikki; Medina, Daniel A; Garre, Elena; Sunnerhagen, Per; Pérez-Ortín, José E; Alepuz, Paula

    2016-02-01

    The highly conserved Saccharomyces cerevisiae cap-binding protein Cbc1/Sto1 binds mRNA co-transcriptionally and acts as a key coordinator of mRNA fate. Recently, Cbc1 has also been implicated in transcription elongation and pre-initiation complex (PIC) formation. Previously, we described Cbc1 to be required for cell growth under osmotic stress and to mediate osmostress-induced translation reprogramming. Here, we observe delayed global transcription kinetics in cbc1Δ during osmotic stress that correlates with delayed recruitment of TBP and RNA polymerase II to osmo-induced promoters. Interestingly, we detect an interaction between Cbc1 and the MAPK Hog1, which controls most gene expression changes during osmostress, and observe that deletion of CBC1 delays the accumulation of the activator complex Hot1-Hog1 at osmostress promoters. Additionally, CBC1 deletion specifically reduces transcription rates of highly transcribed genes under non-stress conditions, such as ribosomal protein (RP) genes, while having low impact on transcription of weakly expressed genes. For RP genes, we show that recruitment of the specific activator Rap1, and subsequently TBP, to promoters is Cbc1-dependent. Altogether, our results indicate that binding of Cbc1 to the capped mRNAs is necessary for the accumulation of specific activators as well as PIC components at the promoters of genes whose expression requires high and rapid transcription. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Cot/tpl2-MKK1/2-Erk1/2 controls mTORC1-mediated mRNA translation in Toll-like receptor–activated macrophages

    PubMed Central

    López-Pelaéz, Marta; Fumagalli, Stefano; Sanz, Carlos; Herrero, Clara; Guerra, Susana; Fernandez, Margarita; Alemany, Susana

    2012-01-01

    Cot/tpl2 is the only MAP3K that activates MKK1/2-Erk1/2 in Toll-like receptor–activated macrophages. Here we show that Cot/tpl2 regulates RSK, S6 ribosomal protein, and 4E-BP phosphorylation after stimulation of bone marrow–derived macrophages with lipopolysaccharide (LPS), poly I:C, or zymosan. The dissociation of the 4E-BP–eIF4E complex, a key event in the cap-dependent mRNA translation initiation, is dramatically reduced in LPS-stimulated Cot/tpl2-knockout (KO) macrophages versus LPS-stimulated wild-type (Wt) macrophages. Accordingly, after LPS activation, increased cap-dependent translation is observed in Wt macrophages but not in Cot/tpl2 KO macrophages. In agreement with these data, Cot/tpl2 increases the polysomal recruitment of the 5´ TOP eEF1α and eEF2 mRNAs, as well as of inflammatory mediator gene–encoding mRNAs, such as tumor necrosis factor α (TNFα), interleukin-6 (IL-6), and KC in LPS-stimulated macrophages. In addition, Cot/tpl2 deficiency also reduces total TNFα, IL-6, and KC mRNA expression in LPS-stimulated macrophages, which is concomitant with a decrease in their mRNA half-lives. Macrophages require rapid fine control of translation to provide an accurate and not self-damaging response to host infection, and our data show that Cot/tpl2 controls inflammatory mediator gene–encoding mRNA translation in Toll-like receptor–activated macrophages. PMID:22675026

  9. Cot/tpl2-MKK1/2-Erk1/2 controls mTORC1-mediated mRNA translation in Toll-like receptor-activated macrophages.

    PubMed

    López-Pelaéz, Marta; Fumagalli, Stefano; Sanz, Carlos; Herrero, Clara; Guerra, Susana; Fernandez, Margarita; Alemany, Susana

    2012-08-01

    Cot/tpl2 is the only MAP3K that activates MKK1/2-Erk1/2 in Toll-like receptor-activated macrophages. Here we show that Cot/tpl2 regulates RSK, S6 ribosomal protein, and 4E-BP phosphorylation after stimulation of bone marrow-derived macrophages with lipopolysaccharide (LPS), poly I:C, or zymosan. The dissociation of the 4E-BP-eIF4E complex, a key event in the cap-dependent mRNA translation initiation, is dramatically reduced in LPS-stimulated Cot/tpl2-knockout (KO) macrophages versus LPS-stimulated wild-type (Wt) macrophages. Accordingly, after LPS activation, increased cap-dependent translation is observed in Wt macrophages but not in Cot/tpl2 KO macrophages. In agreement with these data, Cot/tpl2 increases the polysomal recruitment of the 5´ TOP eEF1α and eEF2 mRNAs, as well as of inflammatory mediator gene-encoding mRNAs, such as tumor necrosis factor α (TNFα), interleukin-6 (IL-6), and KC in LPS-stimulated macrophages. In addition, Cot/tpl2 deficiency also reduces total TNFα, IL-6, and KC mRNA expression in LPS-stimulated macrophages, which is concomitant with a decrease in their mRNA half-lives. Macrophages require rapid fine control of translation to provide an accurate and not self-damaging response to host infection, and our data show that Cot/tpl2 controls inflammatory mediator gene-encoding mRNA translation in Toll-like receptor-activated macrophages.

  10. Characterization of the functional role of nucleotides within the URE2 IRES element and the requirements for eIF2A-mediated repression.

    PubMed

    Reineke, Lucas C; Merrick, William C

    2009-12-01

    Cap-independent initiation of translation is thought to promote protein synthesis on some mRNAs during times when cap-dependent initiation is down-regulated. However, the mechanism of cap-independent initiation is poorly understood. We have previously reported the secondary structure within the yeast minimal URE2 IRES element. In this study, we sought to investigate the mechanism of internal initiation in yeast by assessing the functional role of nucleotides within the minimal URE2 IRES element, and delineating the cis-sequences that modulate levels of internal initiation using a monocistronic reporter vector. Furthermore, we compared the eIF2A sensitivity of the URE2 IRES element with some of the invasive growth IRES elements using DeltaeIF2A yeast. We found that the stability of the stem-loop structure within the minimal URE2 IRES element is not a critical determinant of optimal IRES activity, and the downstream sequences that modulate URE2 IRES-mediated translation can be defined to discrete regions within the URE2 coding region. Repression of internal initiation on the URE2 minimal IRES element by eIF2A is not dependent on the stability of the secondary structure within the URE2 IRES element. Our data also indicate that eIF2A-mediated repression is not specific to the URE2 IRES element, as both the GIC1 and PAB1 IRES elements are repressed by eIF2A. These data provide valuable insights into the mRNA requirements for internal initiation in yeast, and insights into the mechanism of eIF2A-mediated suppression.

  11. Cooperative modulation by eIF4G of eIF4E-binding to the mRNA 5' cap in yeast involves a site partially shared by p20.

    PubMed Central

    Ptushkina, M; von der Haar, T; Vasilescu, S; Frank, R; Birkenhäger, R; McCarthy, J E

    1998-01-01

    Interaction between the mRNA 5'-cap-binding protein eIF4E and the multiadaptor protein eIF4G has been demonstrated in all eukaryotic translation assemblies examined so far. This study uses immunological, genetic and biochemical methods to map the surface amino acids on eIF4E that contribute to eIF4G binding. Cap-analogue chromatography and surface plasmon resonance (SPR) analyses demonstrate that one class of mutations in these surface regions disrupts eIF4E-eIF4G association, and thereby polysome formation and growth. The residues at these positions in wild-type eIF4E mediate positive cooperativity between the binding of eIF4G to eIF4E and the latter's cap-affinity. Moreover, two of the mutations confer temperature sensitivity in eIF4G binding to eIF4E which correlates with the formation of large numbers of inactive ribosome 80S couples in vivo and the loss of cellular protein synthesis activity. The yeast 4E-binding protein p20 is estimated by SPR to have a ten times lower binding affinity than eIF4G for eIF4E. Investigation of a second class of eIF4E mutations reveals that p20 shares only part of eIF4G's binding site on the cap-binding protein. The results presented provide a basis for understanding how cycling of eIF4E and eIF4G occurs in yeast translation and explains how p20 can act as a fine, but not as a coarse, regulator of protein synthesis. PMID:9707439

  12. Crimean-Congo Hemorrhagic Fever Virus Nucleocapsid Protein Augments mRNA Translation.

    PubMed

    Jeeva, Subbiah; Cheng, Erdong; Ganaie, Safder S; Mir, Mohammad A

    2017-08-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne Nairovirus of the Bunyaviridae family, causing severe illness with high mortality rates in humans. Here, we demonstrate that CCHFV nucleocapsid protein (CCHFV-NP) augments mRNA translation. CCHFV-NP binds to the viral mRNA 5' untranslated region (UTR) with high affinity. It facilitates the translation of reporter mRNA both in vivo and in vitro with the assistance of the viral mRNA 5' UTR. CCHFV-NP equally favors the translation of both capped and uncapped mRNAs, demonstrating the independence of this translation strategy on the 5' cap. Unlike the canonical host translation machinery, inhibition of eIF4F complex, an amalgam of three initiation factors, eIF4A, eIF4G, and eIF4E, by the chemical inhibitor 4E1RCat did not impact the CCHFV-NP-mediated translation mechanism. However, the proteolytic degradation of eIF4G alone by the human rhinovirus 2A protease abrogated this translation strategy. Our results demonstrate that eIF4F complex formation is not required but eIF4G plays a critical role in this translation mechanism. Our results suggest that CCHFV has adopted a unique translation mechanism to facilitate the translation of viral mRNAs in the host cell cytoplasm where cellular transcripts are competing for the same translation apparatus. IMPORTANCE Crimean-Congo hemorrhagic fever, a highly contagious viral disease endemic to more than 30 countries, has limited treatment options. Our results demonstrate that NP favors the translation of a reporter mRNA harboring the viral mRNA 5' UTR. It is highly likely that CCHFV uses an NP-mediated translation strategy for the rapid synthesis of viral proteins during the course of infection. Shutdown of this translation mechanism might selectively impact viral protein synthesis, suggesting that an NP-mediated translation strategy is a target for therapeutic intervention against this viral disease. Copyright © 2017 American Society for Microbiology.

  13. GIGYF1/2 proteins use auxiliary sequences to selectively bind to 4EHP and repress target mRNA expression

    PubMed Central

    Peter, Daniel; Weber, Ramona; Sandmeir, Felix; Wohlbold, Lara; Helms, Sigrun; Bawankar, Praveen; Valkov, Eugene; Igreja, Cátia; Izaurralde, Elisa

    2017-01-01

    The eIF4E homologous protein (4EHP) is thought to repress translation by competing with eIF4E for binding to the 5′ cap structure of specific mRNAs to which it is recruited through interactions with various proteins, including the GRB10-interacting GYF (glycine–tyrosine–phenylalanine domain) proteins 1 and 2 (GIGYF1/2). Despite its similarity to eIF4E, 4EHP does not interact with eIF4G and therefore fails to initiate translation. In contrast to eIF4G, GIGYF1/2 bind selectively to 4EHP but not eIF4E. Here, we present crystal structures of the 4EHP-binding regions of GIGYF1 and GIGYF2 in complex with 4EHP, which reveal the molecular basis for the selectivity of the GIGYF1/2 proteins for 4EHP. Complementation assays in a GIGYF1/2-null cell line using structure-based mutants indicate that 4EHP requires interactions with GIGYF1/2 to down-regulate target mRNA expression. Our studies provide structural insights into the assembly of 4EHP–GIGYF1/2 repressor complexes and reveal that rather than merely facilitating 4EHP recruitment to transcripts, GIGYF1/2 proteins are required for repressive activity. PMID:28698298

  14. Eukaryotic Translation Initiation Factor 4E Availability Controls the Switch between Cap-Dependent and Internal Ribosomal Entry Site-Mediated Translation†

    PubMed Central

    Svitkin, Yuri V.; Herdy, Barbara; Costa-Mattioli, Mauro; Gingras, Anne-Claude; Raught, Brian; Sonenberg, Nahum

    2005-01-01

    Translation of m7G-capped cellular mRNAs is initiated by recruitment of ribosomes to the 5′ end of mRNAs via eukaryotic translation initiation factor 4F (eIF4F), a heterotrimeric complex comprised of a cap-binding subunit (eIF4E) and an RNA helicase (eIF4A) bridged by a scaffolding molecule (eIF4G). Internal translation initiation bypasses the requirement for the cap and eIF4E and occurs on viral and cellular mRNAs containing internal ribosomal entry sites (IRESs). Here we demonstrate that eIF4E availability plays a critical role in the switch from cap-dependent to IRES-mediated translation in picornavirus-infected cells. When both capped and IRES-containing mRNAs are present (as in intact cells or in vitro translation extracts), a decrease in the amount of eIF4E associated with the eIF4F complex elicits a striking increase in IRES-mediated viral mRNA translation. This effect is not observed in translation extracts depleted of capped mRNAs, indicating that capped mRNAs compete with IRES-containing mRNAs for translation. These data explain numerous reported observations where viral mRNAs are preferentially translated during infection. PMID:16287867

  15. Eukaryotic translation initiation factor 4E availability controls the switch between cap-dependent and internal ribosomal entry site-mediated translation.

    PubMed

    Svitkin, Yuri V; Herdy, Barbara; Costa-Mattioli, Mauro; Gingras, Anne-Claude; Raught, Brian; Sonenberg, Nahum

    2005-12-01

    Translation of m7G-capped cellular mRNAs is initiated by recruitment of ribosomes to the 5' end of mRNAs via eukaryotic translation initiation factor 4F (eIF4F), a heterotrimeric complex comprised of a cap-binding subunit (eIF4E) and an RNA helicase (eIF4A) bridged by a scaffolding molecule (eIF4G). Internal translation initiation bypasses the requirement for the cap and eIF4E and occurs on viral and cellular mRNAs containing internal ribosomal entry sites (IRESs). Here we demonstrate that eIF4E availability plays a critical role in the switch from cap-dependent to IRES-mediated translation in picornavirus-infected cells. When both capped and IRES-containing mRNAs are present (as in intact cells or in vitro translation extracts), a decrease in the amount of eIF4E associated with the eIF4F complex elicits a striking increase in IRES-mediated viral mRNA translation. This effect is not observed in translation extracts depleted of capped mRNAs, indicating that capped mRNAs compete with IRES-containing mRNAs for translation. These data explain numerous reported observations where viral mRNAs are preferentially translated during infection.

  16. Distinct roles for the 5' and 3' untranslated regions in the degradation and accumulation of chloroplast tufA mRNA: identification of an early intermediate in the in vivo degradation pathway.

    PubMed

    Zicker, Alicia A; Kadakia, Crystal S; Herrin, David L

    2007-03-01

    Elongation factor Tu in Chlamydomonas reinhardtii is a chloroplast-encoded gene (tufA) whose 1.7-kb mRNA has a relatively short half-life. In the presence of chloramphenicol (CAP), which freezes translating chloroplast ribosomes, a 1.5-kb tufA RNA becomes prominent. Rifampicin-chase analysis indicates that the 1.5-kb RNA is a degradation intermediate, and mapping studies show that it is missing 176-180 nucleotides from the 5' end of tufA. The 5' terminus of the intermediate maps to a section of the untranslated region (UTR) predicted to be highly structured and to encode a small ORF. The intermediate could be detected in older cultures in the absence of CAP, indicating that it is not an artifact of drug treatment. Also, it did not overaccumulate in the chloroplast ribosome-deficient mutant, ac20 cr1, indicating its stabilization is specific to elongation-arrested ribosomes. To determine if the 5' UTR of tufA is destabilizing, the corresponding region of the atpA-aadA-rbcL gene was replaced with the tufA sequence, and introduced into the chloroplast genome; the 3' UTR was also substituted for comparison. Analysis of these transformants showed that the transcripts containing the tufA 3'-UTR accumulate to significantly lower levels. Data from constructs based on the vital reporter, Renilla luciferase, confirmed the importance of the tufA 3'-UTR in determining RNA levels, and suggested that the 5' UTR of tufA affects translation efficiency. These data indicate that the in vivo degradation of tufA mRNA begins in the 5' UTR, and is promoted by translation. The data also suggest, however, that the level of the mature RNA is determined more by the 3' UTR than the 5' UTR.

  17. Importin 8 mediates m7G cap-sensitive nuclear import of the eukaryotic translation initiation factor eIF4E

    PubMed Central

    Volpon, Laurent; Culjkovic-Kraljacic, Biljana; Osborne, Michael J.; Ramteke, Anup; Sun, Qingxiang; Niesman, Ashley; Chook, Yuh Min; Borden, Katherine L. B.

    2016-01-01

    Regulation of nuclear-cytoplasmic trafficking of oncoproteins is critical for growth homeostasis. Dysregulated trafficking contributes to malignancy, whereas understanding the process can reveal unique therapeutic opportunities. Here, we focus on eukaryotic translation initiation factor 4E (eIF4E), a prooncogenic protein highly elevated in many cancers, including acute myeloid leukemia (AML). Typically, eIF4E is localized to both the nucleus and cytoplasm, where it acts in export and translation of specific methyl 7-guanosine (m7G)–capped mRNAs, respectively. Nuclear accumulation of eIF4E in patients who have AML is correlated with increased eIF4E-dependent export of transcripts encoding oncoproteins. The subcellular localization of eIF4E closely correlates with patients’ responses. During clinical responses to the m7G-cap competitor ribavirin, eIF4E is mainly cytoplasmic. At relapse, eIF4E reaccumulates in the nucleus, leading to elevated eIF4E-dependent mRNA export. We have identified importin 8 as a factor that directly imports eIF4E into the nucleus. We found that importin 8 is highly elevated in untreated patients with AML, leading to eIF4E nuclear accumulation. Importin 8 only imports cap-free eIF4E. Cap-dependent changes to the structure of eIF4E underpin this selectivity. Indeed, m7G cap analogs or ribavirin prevents nuclear entry of eIF4E, which mirrors the trafficking phenotypes observed in patients with AML. Our studies also suggest that nuclear entry is important for the prooncogenic activity of eIF4E, at least in this context. These findings position nuclear trafficking of eIF4E as a critical step in its regulation and position the importin 8–eIF4E complex as a novel therapeutic target. PMID:27114554

  18. Some Biochemical Properties of an Acido-Thermophilic Archae-Bacterium Sulfolobus Acidocaldarius

    NASA Astrophysics Data System (ADS)

    Oshima, Tairo; Ohba, Masayuki; Wagaki, Takayoshi

    1984-12-01

    To elucidate the phylogenic status of archaebacteria, some basic cellular components of an acido-thermophilic archaebacterium,Sulfolobus acidocaldarius, were studied. Poly(A) containing RNA was present in the cells, and performed the role of mRNA in a cell-free extract of reticulocyte or the archaebacteria. Poly(A) containing RNA was also found in other archaebacterial cells. The absence of cap structure was suggested in these RNAs. The cell-free protein synthesis using the archaebacterial extract was inhibited by anisomycin, a specific inhibitor for eukaryotic ribosomes. Two unique membrane-bound ATPases were detected. Based on resistance to H+-ATPase inhibitors, these enzymes seemed not to be F0F1-ATPase.

  19. IFIT3 and IFIT2/3 promote IFIT1-mediated translation inhibition by enhancing binding to non-self RNA.

    PubMed

    Fleith, Renata C; Mears, Harriet V; Leong, Xin Yun; Sanford, Thomas J; Emmott, Edward; Graham, Stephen C; Mansur, Daniel S; Sweeney, Trevor R

    2018-06-01

    Interferon-induced proteins with tetratricopeptide repeats (IFITs) are highly expressed during the cell-intrinsic immune response to viral infection. IFIT1 inhibits translation by binding directly to the 5' end of foreign RNAs, particularly those with non-self cap structures, precluding the recruitment of the cap-binding eukaryotic translation initiation factor 4F and ribosome recruitment. The presence of IFIT1 imposes a requirement on viruses that replicate in the cytoplasm to maintain mechanisms to avoid its restrictive effects. Interaction of different IFIT family members is well described, but little is known of the molecular basis of IFIT association or its impact on function. Here, we reconstituted different complexes of IFIT1, IFIT2 and IFIT3 in vitro, which enabled us to reveal critical aspects of IFIT complex assembly. IFIT1 and IFIT3 interact via a YxxxL motif present in the C-terminus of each protein. IFIT2 and IFIT3 homodimers dissociate to form a more stable heterodimer that also associates with IFIT1. We show for the first time that IFIT3 stabilizes IFIT1 protein expression, promotes IFIT1 binding to a cap0 Zika virus reporter mRNA and enhances IFIT1 translation inhibition. This work reveals molecular aspects of IFIT interaction and provides an important missing link between IFIT assembly and function.

  20. Genome-scale characterization of RNA tertiary structures and their functional impact by RNA solvent accessibility prediction.

    PubMed

    Yang, Yuedong; Li, Xiaomei; Zhao, Huiying; Zhan, Jian; Wang, Jihua; Zhou, Yaoqi

    2017-01-01

    As most RNA structures are elusive to structure determination, obtaining solvent accessible surface areas (ASAs) of nucleotides in an RNA structure is an important first step to characterize potential functional sites and core structural regions. Here, we developed RNAsnap, the first machine-learning method trained on protein-bound RNA structures for solvent accessibility prediction. Built on sequence profiles from multiple sequence alignment (RNAsnap-prof), the method provided robust prediction in fivefold cross-validation and an independent test (Pearson correlation coefficients, r, between predicted and actual ASA values are 0.66 and 0.63, respectively). Application of the method to 6178 mRNAs revealed its positive correlation to mRNA accessibility by dimethyl sulphate (DMS) experimentally measured in vivo (r = 0.37) but not in vitro (r = 0.07), despite the lack of training on mRNAs and the fact that DMS accessibility is only an approximation to solvent accessibility. We further found strong association across coding and noncoding regions between predicted solvent accessibility of the mutation site of a single nucleotide variant (SNV) and the frequency of that variant in the population for 2.2 million SNVs obtained in the 1000 Genomes Project. Moreover, mapping solvent accessibility of RNAs to the human genome indicated that introns, 5' cap of 5' and 3' cap of 3' untranslated regions, are more solvent accessible, consistent with their respective functional roles. These results support conformational selections as the mechanism for the formation of RNA-protein complexes and highlight the utility of genome-scale characterization of RNA tertiary structures by RNAsnap. The server and its stand-alone downloadable version are available at http://sparks-lab.org. © 2016 Yang et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  1. Molecular cloning and expression profile analysis of porcine TCAP gene.

    PubMed

    Cheng, Hunjun; Xu, Xuewen; Zhao, Shuhong; Liu, Bang; Yu, Mei; Fan, Bin

    2010-03-01

    The gradually discovered sarcomeric proteins play important roles for structural integrity and signal transduction of sarcomere during myofibril genesis. TCAP (also described as telethonin, T-cap), one of the sarcomeric protein genes, is regulated developmentally. In this study, we reported the molecular characteristics of porcine TCAP gene. A 979 bp TCAP cDNA nucleotide sequence was obtained in pig and the deduced amino acid sequence had 92 and 91% identity to those of human and mouse homologous genes, respectively. One SNP was discovered and the allele frequency analysis showed that G allele frequency was low among 221 unrelated pigs from seven breeds. The tissue distribution patterns revealed that TCAP mRNA was expressed abundantly in skeletal and heart muscle tissue. Real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) results displayed TCAP mRNA was up-regulated in both Tongcheng and Landrace pigs during prenatal skeletal muscle development stages. This study suggested that TCAP gene might be a prospective candidate gene affecting muscle mass and meat quality traits in the pig, and also implicated the possible significance of TCAP on sarcomere assembly.

  2. A comparative study of internally and externally capped balloons using small scale test balloons

    NASA Technical Reports Server (NTRS)

    Bell, Douglas P.

    1994-01-01

    Caps have been used to structurally reinforce scientific research balloons since the late 1950's. The scientific research balloons used by the National Aeronautics and Space Administration (NASA) use internal caps. A NASA cap placement specification does not exist since no empirical information exisits concerning cap placement. To develop a cap placement specification, NASA has completed two in-hangar inflation tests comparing the structural contributions of internal caps and external caps. The tests used small scale test balloons designed to develop the highest possible stresses within the constraints of the hangar and balloon materials. An externally capped test balloon and an internally capped test balloon were designed, built, inflated and simulated to determine the structural contributions and benefits of each. The results of the tests and simulations are presented.

  3. The Choice of Alternative 5' Splice Sites in Influenza Virus M1 mRNA is Regulated by the Viral Polymerase Complex

    NASA Astrophysics Data System (ADS)

    Shih, Shin-Ru; Nemeroff, Martin E.; Krug, Robert M.

    1995-07-01

    The influenza virus M1 mRNA has two alternative 5' splice sites: a distal 5' splice site producing mRNA_3 that has the coding potential for 9 amino acids and a proximal 5' splice site producing M2 mRNA encoding the essential M2 ion-channel protein. Only mRNA_3 was made in uninfected cells transfected with DNA expressing M1 mRNA. Similarly, using nuclear extracts from uninfected cells, in vitro splicing of M1 mRNA yielded only mRNA_3. Only when the mRNA_3 5' splice site was inactivated by mutation was M2 mRNA made in uninfected cells and in uninfected cell extracts. In influenza virus-infected cells, M2 mRNA was made, but only after a delay, suggesting that newly synthesized viral gene product(s) were needed to activate the M2 5' splice site. We present strong evidence that these gene products are the complex of the three polymerase proteins, the same complex that functions in the transcription and replication of the viral genome. Gel shift experiments showed that the viral polymerase complex bound to the 5' end of the viral M1 mRNA in a sequence-specific and cap-dependent manner. During in vitro splicing catalyzed by uninfected cell extracts, the binding of the viral polymerase complex blocked the mRNA_3 5' splice site, resulting in the switch to the M2 mRNA 5' splice site and the production of M2 mRNA.

  4. No Escaping the Rat Race: Simulated Night Shift Work Alters the Time-of-Day Variation in BMAL1 Translational Activity in the Prefrontal Cortex.

    PubMed

    Marti, Andrea R; Patil, Sudarshan; Mrdalj, Jelena; Meerlo, Peter; Skrede, Silje; Pallesen, Ståle; Pedersen, Torhild T; Bramham, Clive R; Grønli, Janne

    2017-01-01

    Millions of people worldwide work during the night, resulting in disturbed circadian rhythms and sleep loss. This may cause deficits in cognitive functions, impaired alertness and increased risk of errors and accidents. Disturbed circadian rhythmicity resulting from night shift work could impair brain function and cognition through disrupted synthesis of proteins involved in synaptic plasticity and neuronal function. Recently, the circadian transcription factor brain-and-muscle arnt-like protein 1 (BMAL1) has been identified as a promoter of mRNA translation initiation, the most highly regulated step in protein synthesis, through binding to the mRNA "cap". In this study we investigated the effects of simulated shift work on protein synthesis markers. Male rats ( n = 40) were exposed to forced activity, either in their rest phase (simulated night shift work) or in their active phase (simulated day shift work) for 3 days. Following the third work shift, experimental animals and time-matched undisturbed controls were euthanized (rest work at ZT12; active work at ZT0). Tissue lysates from two brain regions (prefrontal cortex, PFC and hippocampus) implicated in cognition and sleep loss, were analyzed with m 7 GTP (cap) pull-down to examine time-of-day variation and effects of simulated shift work on cap-bound protein translation. The results show time-of-day variation of protein synthesis markers in PFC, with increased protein synthesis at ZT12. In the hippocampus there was little difference between ZT0 and ZT12. Active phase work did not induce statistically significant changes in protein synthesis markers at ZT0 compared to time-matched undisturbed controls. Rest work, however, resulted in distinct brain-region specific changes of protein synthesis markers compared to time-matched controls at ZT12. While no changes were observed in the hippocampus, phosphorylation of cap-bound BMAL1 and its regulator S6 kinase beta-1 (S6K1) was significantly reduced in the PFC, together with significant reduction in the synaptic plasticity associated protein activity-regulatedcytoskeleton-associated protein (Arc). Our results indicate considerable time-of-day and brain-region specific variation in cap-dependent translation initiation. We concludethat simulated night shift work in rats disrupts the pathways regulating the circadian component of the translation of mRNA in the PFC, and that this may partly explain impaired waking function during night shift work.

  5. Subunits of the Drosophila Actin-Capping Protein Heterodimer Regulate Each Other at Multiple Levels

    PubMed Central

    Amândio, Ana Rita; Gaspar, Pedro; Whited, Jessica L.; Janody, Florence

    2014-01-01

    The actin-Capping Protein heterodimer, composed of the α and β subunits, is a master F-actin regulator. In addition to its role in many cellular processes, Capping Protein acts as a main tumor suppressor module in Drosophila and in humans, in part, by restricting the activity of Yorkie/YAP/TAZ oncogenes. We aimed in this report to understand how both subunits regulate each other in vivo. We show that the levels and capping activities of both subunits must be tightly regulated to control F-actin levels and consequently growth of the Drosophila wing. Overexpressing capping protein α and β decreases both F-actin levels and tissue growth, while expressing forms of Capping Protein that have dominant negative effects on F-actin promote tissue growth. Both subunits regulate each other's protein levels. In addition, overexpressing one of the subunit in tissues knocked-down for the other increases the mRNA and protein levels of the subunit knocked-down and compensates for its loss. We propose that the ability of the α and β subunits to control each other's levels assures that a pool of functional heterodimer is produced in sufficient quantities to restrict the development of tumor but not in excess to sustain normal tissue growth. PMID:24788460

  6. Structure of a two-CAP-domain protein from the human hookworm parasite Necator americanus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asojo, Oluwatoyin A., E-mail: oasojo@unmc.edu

    2011-05-01

    The first structure of a two-CAP-domain protein, Na-ASP-1, from the major human hookworm parasite N. americanus refined to a resolution limit of 2.2 Å is presented. Major proteins secreted by the infective larval stage hookworms upon host entry include Ancylostoma secreted proteins (ASPs), which are characterized by one or two CAP (cysteine-rich secretory protein/antigen 5/pathogenesis related-1) domains. The CAP domain has been reported in diverse phylogenetically unrelated proteins, but has no confirmed function. The first structure of a two-CAP-domain protein, Na-ASP-1, from the major human hookworm parasite Necator americanus was refined to a resolution limit of 2.2 Å. The structuremore » was solved by molecular replacement (MR) using Na-ASP-2, a one-CAP-domain ASP, as the search model. The correct MR solution could only be obtained by truncating the polyalanine model of Na-ASP-2 and removing several loops. The structure reveals two CAP domains linked by an extended loop. Overall, the carboxyl-terminal CAP domain is more similar to Na-ASP-2 than to the amino-terminal CAP domain. A large central cavity extends from the amino-terminal CAP domain to the carboxyl-terminal CAP domain, encompassing the putative CAP-binding cavity. The putative CAP-binding cavity is a characteristic cavity in the carboxyl-terminal CAP domain that contains a His and Glu pair. These residues are conserved in all single-CAP-domain proteins, but are absent in the amino-terminal CAP domain. The conserved His residues are oriented such that they appear to be capable of directly coordinating a zinc ion as observed for CAP proteins from reptile venoms. This first structure of a two-CAP-domain ASP can serve as a template for homology modeling of other two-CAP-domain proteins.« less

  7. Cap analog and Potato virus A HC-Pro silencing suppressor improve GFP transient expression using an infectious virus vector in Nicotiana benthamiana.

    PubMed

    Tahmasebi, Amin-Alah; Afsharifar, Alireza

    2017-06-01

    Transient expression of proteins in plants has become a choice to facilitate recombinant protein production with its fast and easy application. On the other hand, host defensive mechanisms have been reported to reduce the efficiency of transient expression in plants. Hence, this study was designed to evaluate the effect of cap analog and Potato virus A helper component proteinase (PVA HC-Pro) on green fluorescent protein (GFP) expression efficiency. N . benthamiana leaves were inoculated with capped or un-capped RNA transcripts of a Turnip crinkle virus (TCV) construct containing a green fluorescent protein reporter gene (TCV-sGFP) in place of its coat protein (CP) ORF. PVA HC-Pro as a viral suppressor of RNA silencing was infiltrated in trans by Agrobacterium tumefaciens , increased the GFP foci diameter to six and even more cells in both capped and un capped treatments. The expression level of GFP in inoculated plants with TCV-sGFP transcript pre-infiltrated with PVA HC-Pro was 12.97-fold higher than the GFP accumulation level in pre-infiltrated leaves with empty plasmid (EP) control. Also, the yield of GFP in inoculated N. benthamiana plants with capped TCV-sGFP transcript pre-infiltrated with EP and PVA HC-Pro was 1.54 and 1.2-fold respectively, greater than the level of GFP expressed without cap analog application at 5 days post inoculation (dpi). In addition, the movement of TCV-sGFP was increased in some cells of inoculated leaves with capped transcripts. Results of this study indicated that PVA HC-Pro and mRNA capping can increase GFP expression and its cell to cell movement in N. benthamiana .

  8. Inhibition of Poly(A)-binding protein with a synthetic RNA mimic reduces pain sensitization in mice.

    PubMed

    Barragán-Iglesias, Paulino; Lou, Tzu-Fang; Bhat, Vandita D; Megat, Salim; Burton, Michael D; Price, Theodore J; Campbell, Zachary T

    2018-01-02

    Nociceptors rely on cap-dependent translation to rapidly induce protein synthesis in response to pro-inflammatory signals. Comparatively little is known regarding the role of the regulatory factors bound to the 3' end of mRNA in nociceptor sensitization. Poly(A)-binding protein (PABP) stimulates translation initiation by bridging the Poly(A) tail to the eukaryotic initiation factor 4F complex associated with the mRNA cap. Here, we use unbiased assessment of PABP binding specificity to generate a chemically modified RNA-based competitive inhibitor of PABP. The resulting RNA mimic, which we designated as the Poly(A) SPOT-ON, is more stable than unmodified RNA and binds PABP with high affinity and selectivity in vitro. We show that injection of the Poly(A) SPOT-ON at the site of an injury can attenuate behavioral response to pain. Collectively, these results suggest that PABP is integral for nociceptive plasticity. The general strategy described here provides a broad new source of mechanism-based inhibitors for RNA-binding proteins and is applicable for in vivo studies.

  9. Uncapped mRNA introduced into tobacco protoplasts can be imported into the nucleus and is trapped by leptomycin B.

    PubMed

    Stuger, Rogier; Forreiter, Christoph

    2004-08-01

    The mechanism of nuclear export of RNAs in yeast and animal cells is rapidly being uncovered, but RNA export in plants has received little attention. We introduced capped and uncapped fluorescent mRNAs into tobacco (Nicotiana plumbaginifolia) protoplasts and studied their cellular localization. Following insertion, capped transcripts were found in the cytoplasm, while uncapped messengers transiently appeared in the nucleus in about one-quarter to one-third of the cells. These mRNAs were trapped by the nuclear export-inhibiting drug leptomycin B, pointing to an export mechanism in plants similar to Rev-NES-mediated RNP export in other organisms.

  10. Preliminary characterization of (nucleoside-2′-O-)-methyltransferase crystals from Meaban and Yokose flaviviruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mastrangelo, Eloise; Bollati, Michela; Milani, Mario

    2006-08-01

    Two methyltransferases from flaviviruses (Meaban and Yokose viruses) have been overexpressed and crystallized. Diffraction data and characterization of the two crystal forms are presented, together with a preliminary molecular-replacement solution for both enzymes. Viral methyltranferases (MTase) are involved in the third step of the mRNA-capping process, transferring a methyl group from S-adenosyl-l-methionine (SAM) to the capped mRNA. MTases are classified into two groups: (guanine-N7)-methyltransferases (N7MTases), which add a methyl group onto the N7 atom of guanine, and (nucleoside-2′-O-)-methyltransferases (2′OMTases), which add a methyl group to a ribose hydroxyl. The MTases of two flaviviruses, Meaban and Yokose viruses, have been overexpressed,more » purified and crystallized in complex with SAM. Characterization of the crystals together with details of preliminary X-ray diffraction data collection (at 2.8 and 2.7 Å resolution, respectively) are reported here. The sequence homology relative to Dengue virus 2′OMTase and the structural conservation of specific residues in the putative active sites suggest that both enzymes belong to the 2′OMTase subgroup.« less

  11. Crystallinity of tellurium capping and epitaxy of ferromagnetic topological insulator films on SrTiO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jihwey; Soh, Yeong-Ah; Aeppli, Gabriel

    2015-06-30

    Thin films of topological insulators are often capped with an insulating layer since topological insulators are known to be fragile to degradation. However, capping can hinder the observation of novel transport properties of the surface states. To understand the influence of capping on the surface states, it is crucial to understand the crystal structure and the atomic arrangement at the interfaces. Here, we use x-ray diffraction to establish the crystal structure of magnetic topological insulator Cr-doped (Bi,Sb) 2Te 3 (CBST) films grown on SrTiO 3 (1 1 1) substrates with and without a Te capping layer. We find that bothmore » the film and capping layer are single crystal and that the crystal quality of the film is independent of the presence of the capping layer, but that x-rays cause sublimation of the CBST film, which is prevented by the capping layer. Our findings show that the different transport properties of capped films cannot be attributed to a lower crystal quality but to a more subtle effect such as a different electronic structure at the interface with the capping layer. Our results on the crystal structure and atomic arrangements of the topological heterostructure will enable modelling the electronic structure and design of topological heterostructures.« less

  12. Serine protease activity in m-1 cortical collecting duct cells.

    PubMed

    Liu, Lian; Hering-Smith, Kathleen S; Schiro, Faith R; Hamm, L Lee

    2002-04-01

    An apical serine protease, channel-activating protease 1 (CAP1), augments sodium transport in A6 cells. Prostasin, a novel serine protease originally purified from seminal fluid, has been proposed to be the mammalian ortholog of CAP1. We have recently found functional evidence for a similar protease activity in the M-1 cortical collecting duct cell line. The purposes of the present studies were to determine whether prostasin (or CAP1) is present in collecting duct cells by use of mouse M-1 cells, to sequence mouse prostasin, and to further characterize the identity of the serine protease activity and additional functional features in M-1 cells. Using mouse expressed sequence tag sequences that are highly homologous to the published human prostasin sequence as templates, reverse transcription-polymerase chain reaction and RACE (rapid amplification of cDNA ends) were used to sequence mouse prostasin mRNA, which shows 99% identical to published mouse CAP1 sequence. A single 1800-bp transcript was found by Northern analysis, and this was not altered by aldosterone. Equivalent short-circuit current (I(eq)), which represents sodium transport in these cells, dropped to 59+/-3% of control value within 1 hour of incubation with aprotinin, a serine protease inhibitor. Trypsin increased the I(eq) in aprotinin-treated cells to the value of the control group within 5 minutes. Application of aprotinin not only inhibited amiloride sensitive I(eq) but also reduced transepithelial resistance (R(te)) to 43+/-2%, an effect not expected with simple inhibition of sodium channels. Trypsin partially reversed the effect of aprotinin on R(te). Another serine protease inhibitor, soybean trypsin inhibitor (STI), decreased I(eq) in M-1 cells. STI inhibited I(eq) gradually over 6 hours, and the inhibition of I(eq) by 2 inhibitors was additive. STI decreased transepithelial resistance much less than did aprotinin. Neither aldosterone nor dexamethasone significantly augmented protease activity or prostasin mRNA levels, and in fact, dexamethasone decreased prostasin mRNA expression. In conclusion, although prostasin is present in M-1 cells and probably augments sodium transport in these cells, serine proteases probably have other effects (eg, resistance) in the collecting duct in addition to effects on sodium channels. Steroids do not alter these effects in M-1 cells. Additional proteases are likely also present in mouse collecting duct cells.

  13. Therapy of prostate cancer using a novel cancer terminator virus and a small molecule BH-3 mimetic.

    PubMed

    Sarkar, Siddik; Quinn, Bridget A; Shen, Xue-Ning; Dash, Rupesh; Das, Swadesh K; Emdad, Luni; Klibanov, Alexander L; Wang, Xiang-Yang; Pellecchia, Maurizio; Sarkar, Devanand; Fisher, Paul B

    2015-05-10

    Despite recent advances, treatment options for advanced prostate cancer (CaP) remain limited. We are pioneering approaches to treat advanced CaP that employ conditionally replication-competent oncolytic adenoviruses that simultaneously produce a systemically active cancer-specific therapeutic cytokine, mda-7/IL-24, Cancer Terminator Viruses (CTV). A truncated version of the CCN1/CYR61 gene promoter, tCCN1-Prom, was more active than progression elevated gene-3 promoter (PEG-Prom) in regulating transformation-selective transgene expression in CaP and oncogene-transformed rat embryo cells. Accordingly, we developed a new CTV, Ad.tCCN1-CTV-m7, which displayed dose-dependent killing of CaP without harming normal prostate epithelial cells in vitro with significant anti-cancer activity in vivo in both nude mouse CaP xenograft and transgenic Hi-Myc mice (using ultrasound-targeted microbubble (MB)-destruction, UTMD, with decorated MBs). Resistance to mda-7/IL-24-induced cell death correlated with overexpression of Bcl-2 family proteins. Inhibiting Mcl-1 using an enhanced BH3 mimetic, BI-97D6, sensitized CaP cell lines to mda-7/IL-24-induced apoptosis. Combining BI-97D6 with Ads expressing mda-7/IL-24 promoted ER stress, decreased anti-apoptotic Mcl-1 expression and enhanced mda-7/IL-24 expression through mRNA stabilization selectively in CaP cells. In Hi-myc mice, the combination induced enhanced apoptosis and tumor growth suppression. These studies highlight therapeutic efficacy of combining a BH3 mimetic with a novel CTV, supporting potential clinical applications for treating advanced CaP.

  14. Canonical Initiation Factor Requirements of the Myc Family of Internal Ribosome Entry Segments▿ †

    PubMed Central

    Spriggs, Keith A.; Cobbold, Laura C.; Jopling, Catherine L.; Cooper, Rebecca E.; Wilson, Lindsay A.; Stoneley, Mark; Coldwell, Mark J.; Poncet, Didier; Shen, Ya-Ching; Morley, Simon J.; Bushell, Martin; Willis, Anne E.

    2009-01-01

    Initiation of protein synthesis in eukaryotes requires recruitment of the ribosome to the mRNA and its translocation to the start codon. There are at least two distinct mechanisms by which this process can be achieved; the ribosome can be recruited either to the cap structure at the 5′ end of the message or to an internal ribosome entry segment (IRES), a complex RNA structural element located in the 5′ untranslated region (5′-UTR) of the mRNA. However, it is not well understood how cellular IRESs function to recruit the ribosome or how the 40S ribosomal subunits translocate from the initial recruitment site on the mRNA to the AUG initiation codon. We have investigated the canonical factors that are required by the IRESs found in the 5′-UTRs of c-, L-, and N-myc, using specific inhibitors and a tissue culture-based assay system, and have shown that they differ considerably in their requirements. The L-myc IRES requires the eIF4F complex and the association of PABP and eIF3 with eIF4G for activity. The minimum requirements of the N- and c-myc IRESs are the C-terminal domain of eIF4G to which eIF4A is bound and eIF3, although interestingly this protein does not appear to be recruited to the IRES RNA via eIF4G. Finally, our data show that all three IRESs require a ternary complex, although in contrast to c- and L-myc IRESs, the N-myc IRES has a lesser requirement for a ternary complex. PMID:19124605

  15. Exposure to Concentrated Ambient PM2.5 Shortens Lifespan and Induces Inflammation-Associated Signaling and Oxidative Stress in Drosophila.

    PubMed

    Wang, Xiaoke; Chen, Minjie; Zhong, Mianhua; Hu, Ziying; Qiu, Lianglin; Rajagopalan, Sanjay; Fossett, Nancy G; Chen, Lung-Chi; Ying, Zhekang

    2017-03-01

    Exposure to ambient PM 2.5 is associated with human premature mortality. However, it has not yet been toxicologically replicated, likely due to the lack of suitable animal models. Drosophila is frequently used in longevity research due to many incomparable merits. The present study aims to validate Drosophila models for PM 2.5 toxicity study through characterizing their biological responses to exposure to concentrated ambient PM 2.5 (CAP). The survivorship curve demonstrated that exposure to CAP markedly reduced lifespan of Drosophila. This antilongevity effect of CAP exposure was observed in both male and female Drosophila, and by comparison, the male was more sensitive [50% survivals: 20 and 48 days, CAP- and filtered air (FA)-exposed males, respectively; 21 and 40 days, CAP- and FA-exposed females, respectively]. Similar to its putative pathogenesis in humans, CAP exposure-induced premature mortality in Drosophila was also coincided with activation of pro-inflammatory signaling pathways including Jak, Jnk, and Nf-κb and increased systemic oxidative stress. Furthermore, like in humans and mammals, exposure to CAP significantly increased whole-body and circulating glucose levels and increased mRNA expression of Ilp2 and Ilp5 , indicating that CAP exposure induces dysregulated insulin signaling in Drosophila. Similar to effects on humans exposure to CAP leads to premature mortality likely through induction of inflammation-associated signaling, oxidative stress, and metabolic abnormality in Drosophila, strongly supporting that it can be a useful model organism for PM 2.5 toxicity study. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Vitamin D3 analog maxacalcitol (OCT) induces hCAP-18/LL-37 production in human oral epithelial cells.

    PubMed

    Tada, Hiroyuki; Shimizu, Takamitsu; Nagaoka, Isao; Takada, Haruhiko

    2016-01-01

    Maxacalcitol (22-oxacalcitriol: OCT) is a synthetic vitamin D3 analog with a limited calcemic effect. In this study, we investigated whether OCT increases the production of LL-37/CAP-18, a human cathelicidin antimicrobial peptide, in human gingival/oral epithelial cells. A human gingival epithelial cell line (Ca9-22) and human oral epithelial cell lines (HSC-2, HSC-3, and HSC-4) exhibited the enhanced expression of LL-37 mRNA upon stimulation with OCT as well as active metabolites of vitamins D3 and D2. Among the human epithelial cell lines, Ca9-22 exhibited the strongest response to these vitamin D-related compounds. OCT induced the higher production of CAP-18 (ng/mL order) until 6 days time-dependently in Ca9-22 cells in culture. The periodontal pathogen Porphyromonas gingivalis was killed by treatment with the LL-37 peptide. These findings suggest that OCT induces the production of hCAP-18/LL-37 in a manner similar to that induced by the active metabolite of vitamin D3.

  17. Structural and functional characterization of the CAP domain of pathogen-related yeast 1 (Pry1) protein

    NASA Astrophysics Data System (ADS)

    Darwiche, Rabih; Kelleher, Alan; Hudspeth, Elissa M.; Schneiter, Roger; Asojo, Oluwatoyin A.

    2016-06-01

    The production, crystal structure, and functional characterization of the C-terminal cysteine-rich secretory protein/antigen 5/pathogenesis related-1 (CAP) domain of pathogen-related yeast protein-1 (Pry1) from Saccharomyces cerevisiae is presented. The CAP domain of Pry1 (Pry1CAP) is functional in vivo as its expression restores cholesterol export to yeast mutants lacking endogenous Pry1 and Pry2. Recombinant Pry1CAP forms dimers in solution, is sufficient for in vitro cholesterol binding, and has comparable binding properties as full-length Pry1. Two crystal structures of Pry1CAP are reported, one with Mg2+ coordinated to the conserved CAP tetrad (His208, Glu215, Glu233 and His250) in spacegroup I41 and the other without divalent cations in spacegroup P6122. The latter structure contains four 1,4-dioxane molecules from the crystallization solution, one of which sits in the cholesterol binding site. Both structures reveal that the divalent cation and cholesterol binding sites are connected upon dimerization, providing a structural basis for the observed Mg2+-dependent sterol binding by Pry1.

  18. 77 FR 57197 - Proposed Collection; Comment Request for Form 1099-CAP

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ... 1099-CAP AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice and request for comments... Form 1099-CAP, Changes in Corporate Control and Capital Structure. DATES: Written comments should be... Structure. OMB Number: 1545-1814. Form Number: 1099-CAP. Abstract: Any corporation that undergoes...

  19. Sequencing the cap-snatching repertoire of H1N1 influenza provides insight into the mechanism of viral transcription initiation

    PubMed Central

    Koppstein, David; Ashour, Joseph; Bartel, David P.

    2015-01-01

    The influenza polymerase cleaves host RNAs ∼10–13 nucleotides downstream of their 5′ ends and uses this capped fragment to prime viral mRNA synthesis. To better understand this process of cap snatching, we used high-throughput sequencing to determine the 5′ ends of A/WSN/33 (H1N1) influenza mRNAs. The sequences provided clear evidence for nascent-chain realignment during transcription initiation and revealed a strong influence of the viral template on the frequency of realignment. After accounting for the extra nucleotides inserted through realignment, analysis of the capped fragments indicated that the different viral mRNAs were each prepended with a common set of sequences and that the polymerase often cleaved host RNAs after a purine and often primed transcription on a single base pair to either the terminal or penultimate residue of the viral template. We also developed a bioinformatic approach to identify the targeted host transcripts despite limited information content within snatched fragments and found that small nuclear RNAs and small nucleolar RNAs contributed the most abundant capped leaders. These results provide insight into the mechanism of viral transcription initiation and reveal the diversity of the cap-snatched repertoire, showing that noncoding transcripts as well as mRNAs are used to make influenza mRNAs. PMID:25901029

  20. Abrasion resistant track shoe grouser

    DOEpatents

    Fischer, Keith D; Diekevers, Mark S; Afdahl, Curt D; Steiner, Kevin L; Barnes, Christopher A

    2013-04-23

    A track shoe for a track-type vehicle. The track shoe includes a base plate and a grouser projecting away from the base plate. A capping surface structure of substantially horseshoe shaped cross-section is disposed across a distal portion of the grouser. The capping surface structure covers portions of a distal edge surface and adjacent lateral surfaces. The capping surface structure is formed from an material characterized by enhanced wear resistance relative to portions of the grouser underlying the capping surface structure.

  1. Simulation studies on structural and thermal properties of alkane thiol capped gold nanoparticles.

    PubMed

    Devi, J Meena

    2017-06-01

    The structural and thermal properties of the passivated gold nanoparticles were explored employing molecular dynamics simulation for the different surface coverage densities of the self-assembled monolayer (SAM) of alkane thiol. The structural properties of the monolayer protected gold nanoparticles such us overall shape, organization and conformation of the capping alkane thiol chains were found to be influenced by the capping density. The structural order of the thiol capped gold nanoparticles enhances with the increase in the surface coverage density. The specific heat capacity of the alkane thiol capped gold nanoparticles was found to increase linearly with the thiol coverage density. This may be attributed to the enhancement in the lattice vibrational energy. The present simulation results suggest, that the structural and thermal properties of the alkane thiol capped gold nanoparticles may be modified by the suitable selection of the SAM coverage density. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Identification of functional domains in Arabidopsis thaliana mRNA decapping enzyme (AtDcp2)

    PubMed Central

    Gunawardana, Dilantha; Cheng, Heung-Chin; Gayler, Kenwyn R.

    2008-01-01

    The Arabidopsis thaliana decapping enzyme (AtDcp2) was characterized by bioinformatics analysis and by biochemical studies of the enzyme and mutants produced by recombinant expression. Three functionally significant regions were detected: (i) a highly disordered C-terminal region with a putative PSD-95, Discs-large, ZO-1 (PDZ) domain-binding motif, (ii) a conserved Nudix box constituting the putative active site and (iii) a putative RNA binding domain consisting of the conserved Box B and a preceding loop region. Mutation of the putative PDZ domain-binding motif improved the stability of recombinant AtDcp2 and secondary mutants expressed in Escherichia coli. Such recombinant AtDcp2 specifically hydrolysed capped mRNA to produce 7-methyl GDP and decapped RNA. AtDcp2 activity was Mn2+- or Mg2+-dependent and was inhibited by the product 7-methyl GDP. Mutation of the conserved glutamate-154 and glutamate-158 in the Nudix box reduced AtDcp2 activity up to 400-fold and showed that AtDcp2 employs the catalytic mechanism conserved amongst Nudix hydrolases. Unlike many Nudix hydrolases, AtDcp2 is refractory to inhibition by fluoride ions. Decapping was dependent on binding to the mRNA moiety rather than to the 7-methyl diguanosine triphosphate cap of the substrate. Mutational analysis of the putative RNA-binding domain confirmed the functional significance of an 11-residue loop region and the conserved Box B. PMID:18025047

  3. The HIV-1 transcriptional activator Tat has potent nucleic acid chaperoning activities in vitro.

    PubMed

    Kuciak, Monika; Gabus, Caroline; Ivanyi-Nagy, Roland; Semrad, Katharina; Storchak, Roman; Chaloin, Olivier; Muller, Sylviane; Mély, Yves; Darlix, Jean-Luc

    2008-06-01

    The human immunodeficiency virus type 1 (HIV-1) is a primate lentivirus that causes the acquired immunodeficiency syndrome (AIDS). In addition to the virion structural proteins and enzyme precursors, that are Gag, Env and Pol, HIV-1 encodes several regulatory proteins, notably a small nuclear transcriptional activator named Tat. The Tat protein is absolutely required for virus replication since it controls proviral DNA transcription to generate the full-length viral mRNA. Tat can also regulate mRNA capping and splicing and was recently found to interfere with the cellular mi- and siRNA machinery. Because of its extensive interplay with nucleic acids, and its basic and disordered nature we speculated that Tat had nucleic acid-chaperoning properties. This prompted us to examine in vitro the nucleic acid-chaperoning activities of Tat and Tat peptides made by chemical synthesis. Here we report that Tat has potent nucleic acid-chaperoning activities according to the standard DNA annealing, DNA and RNA strand exchange, RNA ribozyme cleavage and trans-splicing assays. The active Tat(44-61) peptide identified here corresponds to the smallest known sequence with DNA/RNA chaperoning properties.

  4. The HIV-1 transcriptional activator Tat has potent nucleic acid chaperoning activities in vitro

    PubMed Central

    Kuciak, Monika; Gabus, Caroline; Ivanyi-Nagy, Roland; Semrad, Katharina; Storchak, Roman; Chaloin, Olivier; Muller, Sylviane; Mély, Yves; Darlix, Jean-Luc

    2008-01-01

    The human immunodeficiency virus type 1 (HIV-1) is a primate lentivirus that causes the acquired immunodeficiency syndrome (AIDS). In addition to the virion structural proteins and enzyme precursors, that are Gag, Env and Pol, HIV-1 encodes several regulatory proteins, notably a small nuclear transcriptional activator named Tat. The Tat protein is absolutely required for virus replication since it controls proviral DNA transcription to generate the full-length viral mRNA. Tat can also regulate mRNA capping and splicing and was recently found to interfere with the cellular mi- and siRNA machinery. Because of its extensive interplay with nucleic acids, and its basic and disordered nature we speculated that Tat had nucleic acid-chaperoning properties. This prompted us to examine in vitro the nucleic acid-chaperoning activities of Tat and Tat peptides made by chemical synthesis. Here we report that Tat has potent nucleic acid-chaperoning activities according to the standard DNA annealing, DNA and RNA strand exchange, RNA ribozyme cleavage and trans-splicing assays. The active Tat(44–61) peptide identified here corresponds to the smallest known sequence with DNA/RNA chaperoning properties. PMID:18442994

  5. Characterization of the African Swine Fever Virus Decapping Enzyme during Infection

    PubMed Central

    Quintas, Ana; Pérez-Núñez, Daniel; Sánchez, Elena G.; Nogal, Maria L.; Hentze, Matthias W.; Castelló, Alfredo

    2017-01-01

    ABSTRACT African swine fever virus (ASFV) infection is characterized by a progressive decrease in cellular protein synthesis with a concomitant increase in viral protein synthesis, though the mechanism by which the virus achieves this is still unknown. Decrease of cellular mRNA is observed during ASFV infection, suggesting that inhibition of cellular proteins is due to an active mRNA degradation process. ASFV carries a gene (Ba71V D250R/Malawi g5R) that encodes a decapping protein (ASFV-DP) that has a Nudix hydrolase motif and decapping activity in vitro. Here, we show that ASFV-DP was expressed from early times and accumulated throughout the infection with a subcellular localization typical of the endoplasmic reticulum, colocalizing with the cap structure and interacting with the ribosomal protein L23a. ASFV-DP was capable of interaction with poly(A) RNA in cultured cells, primarily mediated by the N-terminal region of the protein. ASFV-DP also interacted with viral and cellular RNAs in the context of infection, and its overexpression in infected cells resulted in decreased levels of both types of transcripts. This study points to ASFV-DP as a viral decapping enzyme involved in both the degradation of cellular mRNA and the regulation of viral transcripts. IMPORTANCE Virulent ASFV strains cause a highly infectious and lethal disease in domestic pigs for which there is no vaccine. Since 2007, an outbreak in the Caucasus region has spread to Russia, jeopardizing the European pig population and making it essential to deepen knowledge about the virus. Here, we demonstrate that ASFV-DP is a novel RNA-binding protein implicated in the regulation of mRNA metabolism during infection, making it a good target for vaccine development. PMID:29021398

  6. Characterization of the African Swine Fever Virus Decapping Enzyme during Infection.

    PubMed

    Quintas, Ana; Pérez-Núñez, Daniel; Sánchez, Elena G; Nogal, Maria L; Hentze, Matthias W; Castelló, Alfredo; Revilla, Yolanda

    2017-12-15

    African swine fever virus (ASFV) infection is characterized by a progressive decrease in cellular protein synthesis with a concomitant increase in viral protein synthesis, though the mechanism by which the virus achieves this is still unknown. Decrease of cellular mRNA is observed during ASFV infection, suggesting that inhibition of cellular proteins is due to an active mRNA degradation process. ASFV carries a gene (Ba71V D250R/Malawi g5R) that encodes a decapping protein (ASFV-DP) that has a Nudix hydrolase motif and decapping activity in vitro Here, we show that ASFV-DP was expressed from early times and accumulated throughout the infection with a subcellular localization typical of the endoplasmic reticulum, colocalizing with the cap structure and interacting with the ribosomal protein L23a. ASFV-DP was capable of interaction with poly(A) RNA in cultured cells, primarily mediated by the N-terminal region of the protein. ASFV-DP also interacted with viral and cellular RNAs in the context of infection, and its overexpression in infected cells resulted in decreased levels of both types of transcripts. This study points to ASFV-DP as a viral decapping enzyme involved in both the degradation of cellular mRNA and the regulation of viral transcripts. IMPORTANCE Virulent ASFV strains cause a highly infectious and lethal disease in domestic pigs for which there is no vaccine. Since 2007, an outbreak in the Caucasus region has spread to Russia, jeopardizing the European pig population and making it essential to deepen knowledge about the virus. Here, we demonstrate that ASFV-DP is a novel RNA-binding protein implicated in the regulation of mRNA metabolism during infection, making it a good target for vaccine development. Copyright © 2017 Quintas et al.

  7. Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms.

    PubMed

    Kahvejian, Avak; Svitkin, Yuri V; Sukarieh, Rami; M'Boutchou, Marie-Noël; Sonenberg, Nahum

    2005-01-01

    Translation initiation is a multistep process involving several canonical translation factors, which assemble at the 5'-end of the mRNA to promote the recruitment of the ribosome. Although the 3' poly(A) tail of eukaryotic mRNAs and its major bound protein, the poly(A)-binding protein (PABP), have been studied extensively, their mechanism of action in translation is not well understood and is confounded by differences between in vivo and in vitro systems. Here, we provide direct evidence for the involvement of PABP in key steps of the translation initiation pathway. Using a new technique to deplete PABP from mammalian cell extracts, we show that extracts lacking PABP exhibit dramatically reduced rates of translation, reduced efficiency of 48S and 80S ribosome initiation complex formation, and impaired interaction of eIF4E with the mRNA cap structure. Supplementing PABP-depleted extracts with wild-type PABP completely rectified these deficiencies, whereas a mutant of PABP, M161A, which is incapable of interacting with eIF4G, failed to restore translation. In addition, a stronger inhibition (approximately twofold) of 80S as compared to 48S ribosome complex formation (approximately 65% vs. approximately 35%, respectively) by PABP depletion suggests that PABP plays a direct role in 60S subunit joining. PABP can thus be considered a canonical translation initiation factor, integral to initiation complex formation at the 5'-end of mRNA.

  8. Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms

    PubMed Central

    Kahvejian, Avak; Svitkin, Yuri V.; Sukarieh, Rami; M'Boutchou, Marie-Noël; Sonenberg, Nahum

    2005-01-01

    Translation initiation is a multistep process involving several canonical translation factors, which assemble at the 5′-end of the mRNA to promote the recruitment of the ribosome. Although the 3′ poly(A) tail of eukaryotic mRNAs and its major bound protein, the poly(A)-binding protein (PABP), have been studied extensively, their mechanism of action in translation is not well understood and is confounded by differences between in vivo and in vitro systems. Here, we provide direct evidence for the involvement of PABP in key steps of the translation initiation pathway. Using a new technique to deplete PABP from mammalian cell extracts, we show that extracts lacking PABP exhibit dramatically reduced rates of translation, reduced efficiency of 48S and 80S ribosome initiation complex formation, and impaired interaction of eIF4E with the mRNA cap structure. Supplementing PABP-depleted extracts with wild-type PABP completely rectified these deficiencies, whereas a mutant of PABP, M161A, which is incapable of interacting with eIF4G, failed to restore translation. In addition, a stronger inhibition (approximately twofold) of 80S as compared to 48S ribosome complex formation (∼65% vs. ∼35%, respectively) by PABP depletion suggests that PABP plays a direct role in 60S subunit joining. PABP can thus be considered a canonical translation initiation factor, integral to initiation complex formation at the 5′-end of mRNA. PMID:15630022

  9. A short conserved motif in ALYREF directs cap- and EJC-dependent assembly of export complexes on spliced mRNAs

    PubMed Central

    Gromadzka, Agnieszka M.; Steckelberg, Anna-Lena; Singh, Kusum K.; Hofmann, Kay; Gehring, Niels H.

    2016-01-01

    The export of messenger RNAs (mRNAs) is the final of several nuclear posttranscriptional steps of gene expression. The formation of export-competent mRNPs involves the recruitment of export factors that are assumed to facilitate transport of the mature mRNAs. Using in vitro splicing assays, we show that a core set of export factors, including ALYREF, UAP56 and DDX39, readily associate with the spliced RNAs in an EJC (exon junction complex)- and cap-dependent manner. In order to elucidate how ALYREF and other export adaptors mediate mRNA export, we conducted a computational analysis and discovered four short, conserved, linear motifs present in RNA-binding proteins. We show that mutation in one of the new motifs (WxHD) in an unstructured region of ALYREF reduced RNA binding and abolished the interaction with eIF4A3 and CBP80. Additionally, the mutation impaired proper localization to nuclear speckles and export of a spliced reporter mRNA. Our results reveal important details of the orchestrated recruitment of export factors during the formation of export competent mRNPs. PMID:26773052

  10. Human Cells Cultured under Physiological Oxygen Utilize Two Cap-binding Proteins to recruit Distinct mRNAs for Translation*

    PubMed Central

    Timpano, Sara; Uniacke, James

    2016-01-01

    Translation initiation is a focal point of translational control and requires the binding of eIF4E to the 5′ cap of mRNA. Under conditions of extreme oxygen depletion (hypoxia), human cells repress eIF4E and switch to an alternative cap-dependent translation mediated by a homolog of eIF4E, eIF4E2. This homolog forms a complex with the oxygen-regulated hypoxia-inducible factor 2α and can escape translation repression. This complex mediates cap-dependent translation under cell culture conditions of 1% oxygen (to mimic tumor microenvironments), whereas eIF4E mediates cap-dependent translation at 21% oxygen (ambient air). However, emerging evidence suggests that culturing cells in ambient air, or “normoxia,” is far from physiological or “normal.” In fact, oxygen in human tissues ranges from 1–11% or “physioxia.” Here we show that two distinct modes of cap-dependent translation initiation are active during physioxia and act on separate pools of mRNAs. The oxygen-dependent activities of eIF4E and eIF4E2 are elucidated by observing their polysome association and the status of mammalian target of rapamycin complex 1 (eIF4E-dependent) or hypoxia-inducible factor 2α expression (eIF4E2-dependent). We have identified oxygen conditions where eIF4E is the dominant cap-binding protein (21% normoxia or standard cell culture conditions), where eIF4E2 is the dominant cap-binding protein (1% hypoxia or ischemic diseases and cancerous tumors), and where both cap-binding proteins act simultaneously to initiate the translation of distinct mRNAs (1–11% physioxia or during development and stem cell differentiation). These data suggest that the physioxic proteome is generated by initiating translation of mRNAs via two distinct but complementary cap-binding proteins. PMID:27002144

  11. Toughened uni-piece, fibrous, reinforced, oxidization-resistant composite

    NASA Technical Reports Server (NTRS)

    Stewart, David A. (Inventor); Leiser, Daniel B. (Inventor)

    2008-01-01

    A composite thermal protection structure, for applications such as atmospheric re-entry vehicles, that can withstand temperatures as high as 3600.degree. F. The structure includes an exposed surface cap having a specially formulated coating, an insulator base adjacent to the cap with another specially formulated coating, and one or more pins that extend from the cap through the insulator base to tie the cap and base together, through ceramic bonding and mechanical attachment. The cap and insulator base have corresponding depressions and projections that mate and allow for differences in thermal expansion of the cap and base. A thin coating of a reaction cured glass formulation is optionally provided on the structure to allow reduce oxidization and/or to reduce catalytic efficiency.

  12. Cis- and trans-regulation of luteovirus gene expression by the 3’ end of the viral genome

    PubMed Central

    Miller, W. Allen; Jackson, Jacquelyn; Feng, Ying

    2016-01-01

    Translation of the 5.7 kb luteovirus genome is controlled by the 3’ untranslated region (UTR). Base pairing between regions of the 3’ UTR and sequences kilobases upstream is required for cap-independent translation and ribosomal frameshifting needed to synthesize the viral replicase. Luteoviruses produce subgenomic RNAs, which can serve as mRNA, but one sgRNA also regulates translation initiation in trans. As on all viruses, the 3’ and 5’ ends contain structures that are presumed to facilitate RNA synthesis. This review describes the structures and interactions of Barley yellow dwarf virus RNA that facilitate the complex interplay between the above events and result in a successful virus infection. We also present surprising results on the apparent lack of need for some subgenomic RNAs for the virus to infect cells or whole plants. In summary, the UTRs of luteoviruses are highly complex entities that control and fine-tune many key events of the virus replication cycle. PMID:25858272

  13. High-Pressure NMR and SAXS Reveals How Capping Modulates Folding Cooperativity of the pp32 Leucine-rich Repeat Protein.

    PubMed

    Zhang, Yi; Berghaus, Melanie; Klein, Sean; Jenkins, Kelly; Zhang, Siwen; McCallum, Scott A; Morgan, Joel E; Winter, Roland; Barrick, Doug; Royer, Catherine A

    2018-04-27

    Many repeat proteins contain capping motifs, which serve to shield the hydrophobic core from solvent and maintain structural integrity. While the role of capping motifs in enhancing the stability and structural integrity of repeat proteins is well documented, their contribution to folding cooperativity is not. Here we examined the role of capping motifs in defining the folding cooperativity of the leucine-rich repeat protein, pp32, by monitoring the pressure- and urea-induced unfolding of an N-terminal capping motif (N-cap) deletion mutant, pp32-∆N-cap, and a C-terminal capping motif destabilization mutant pp32-Y131F/D146L, using residue-specific NMR and small-angle X-ray scattering. Destabilization of the C-terminal capping motif resulted in higher cooperativity for the unfolding transition compared to wild-type pp32, as these mutations render the stability of the C-terminus similar to that of the rest of the protein. In contrast, deletion of the N-cap led to strong deviation from two-state unfolding. In both urea- and pressure-induced unfolding, residues in repeats 1-3 of pp32-ΔN-cap lost their native structure first, while the C-terminal half was more stable. The residue-specific free energy changes in all regions of pp32-ΔN-cap were larger in urea compared to high pressure, indicating a less cooperative destabilization by pressure. Moreover, in contrast to complete structural disruption of pp32-ΔN-cap at high urea concentration, its pressure unfolded state remained compact. The contrasting effects of the capping motifs on folding cooperativity arise from the differential local stabilities of pp32, whereas the contrasting effects of pressure and urea on the pp32-ΔN-cap variant arise from their distinct mechanisms of action. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Induction of cap-independent BiP (hsp-3) and Bcl-2 (ced-9) translation in response to eIF4G (IFG-1) depletion in C. elegans

    PubMed Central

    Morrison, J Kaitlin; Friday, Andrew J; Henderson, Melissa A; Hao, Enhui; Keiper, Brett D

    2014-01-01

    During apoptosis, activated caspases cleave the translation initiation factor eIF4G. This cleavage disrupts cap-dependent mRNA translation initiation within the cell. However, a specific subset of mRNAs can still be recruited for protein synthesis in a cap-independent manner by the residual initiation machinery. Many of these mRNAs, including cell death related mRNAs, contain internal ribosome entry sites (IRESes) that promote their enhanced translation during apoptosis. Still other mRNAs have little dependence on the cap recognition mechanism. The expression of the encoded proteins, both anti- and pro-apoptotic, allows for an initial period of attempted cell survival, then commitment to cell death when damage is extensive. In this study we address the translational regulation of the stress and apoptosis-related mRNAs in C. elegans: BiP (hsp-3) (hsp-4), Hif-1 (hif-1), p53 (cep-1), Bcl-2 (ced-9) and Apaf-1 (ced-4). Altered translational efficiency of these messages was observed upon depletion of cap-dependent translation and induction of apoptosis within the C. elegans gonad. Our findings suggest a physiological link between the cap-independent mechanism and the enhanced translation of hsp-3 and ced-9. This increase in the efficiency of translation may be integral to the stress response during the induction of physiological apoptosis. PMID:26779406

  15. Toughened uni-piece, fibrous, reinforced, oxidization-resistant composite

    NASA Technical Reports Server (NTRS)

    Stewart, David A. (Inventor); Leiser, Daniel B. (Inventor)

    2008-01-01

    A composite thermal protection structure, for applications such as atmospheric re-entry vehicles, that can withstand temperatures as high as 3600.degree F. The structure includes an exposed surface cap having a specially formulated coating, an insulator base adjacent to the cap with another specially formulated coating, and one or more pins that extend from the cap through the insulator base to tie the cap and base together, through ceramic bonding and mechanical attachment. The cap and insulator base have corresponding depressions and projections that mate and allow for differences in thermal expansion of the cap and base.

  16. Heat pipe with improved wick structures

    DOEpatents

    Benson, David A.; Robino, Charles V.; Palmer, David W.; Kravitz, Stanley H.

    2000-01-01

    An improved planar heat pipe wick structure having projections formed by micromachining processes. The projections form arrays of interlocking, semi-closed structures with multiple flow paths on the substrate. The projections also include overhanging caps at their tops to increase the capillary pumping action of the wick structure. The capped projections can be formed in stacked layers. Another layer of smaller, more closely spaced projections without caps can also be formed on the substrate in between the capped projections. Inexpensive materials such as Kovar can be used as substrates, and the projections can be formed by electrodepositing nickel through photoresist masks.

  17. Entrapping ribosomes for viral translation: tRNA mimicry as a molecular Trojan horse.

    PubMed

    Barends, Sharief; Bink, Hugo H J; van den Worm, Sjoerd H E; Pleij, Cornelis W A; Kraal, Barend

    2003-01-10

    Turnip yellow mosaic virus (TYMV) has a genomic plus-strand RNA with a 5' cap followed by overlapping and different reading frames for the movement protein and polyprotein, while the distal coat protein cistron is translated from a subgenomic RNA. The 3'-untranslated region harbors a tRNA-like structure (TLS) to which a valine moiety can be added and it is indispensable for virus viability. Here, we report about a surprising interaction between TYMV-RNA-programmed ribosomes and 3'-valylated TLS that yields polyprotein with the valine N terminally incorporated by a translation mechanism resistant to regular initiation inhibitors. Disruption of the TLS exclusively abolishes polyprotein synthesis, which can be restored by adding excess TLS in trans. Our observations imply a novel eukaryotic mechanism for internal initiation of mRNA translation.

  18. New AdoMet Analogues as Tools for Enzymatic Transfer of Photo-Cross-Linkers and Capturing RNA-Protein Interactions.

    PubMed

    Muttach, Fabian; Mäsing, Florian; Studer, Armido; Rentmeister, Andrea

    2017-05-02

    Elucidation of biomolecular interactions is of utmost importance in biochemistry. Photo-cross-linking offers the possibility to precisely determine RNA-protein interactions. However, despite the inherent specificity of enzymes, approaches for site-specific introduction of photo-cross-linking moieties into nucleic acids are scarce. Methyltransferases in combination with synthetic analogues of their natural cosubstrate S-adenosyl-l-methionine (AdoMet) allow for the post-synthetic site-specific modification of biomolecules. We report on three novel AdoMet analogues bearing the most widespread photo-cross-linking moieties (aryl azide, diazirine, and benzophenone). We show that these photo-cross-linkers can be enzymatically transferred to the methyltransferase target, that is, the mRNA cap, with high efficiency. Photo-cross-linking of the resulting modified mRNAs with the cap interacting protein eIF4E was successful with aryl azide and diazirine but not benzophenone, reflecting the affinity of the modified 5' caps. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Structural analysis and immunoregulation activity comparison of five polysaccharides from Angelica sinensis.

    PubMed

    Wang, Junmin; Ge, Beilei; Li, Zihong; Guan, Fangxia; Li, Feifei

    2016-04-20

    Four fractional polysaccharides (CAPS30, CAPS50, CAPS70 and CAPS80) and total polysaccharides (CAPSt) were obtained from Angelica sinensis. Their structures were identified by Fourier transform-infrared spectroscopy (FT-IR), molecular weights were evaluated by high performance gel permeation chromatography (HPGPC) and compositions were analyzed by gas chromatography-mass spectrometry (GC-MS). Their immunoregulation activities were further compared in vitro. The results showed that they displayed different structural features and immuno-enhancement activities. They all could cause the proliferation of the lymphocyte, up-regulate stimulate the productions of IFN-γ, IL-2, IL-6 and TNF-α secretion in the peripheral lymphocytes. Further experiments showed that CAPS50 and CAPS70 could increase the ratio of CD3(+)CD56(+) cells to some extent. These indicated that five CAPSs displayed different activities which were associated with their different structural characteristics and CAPS70, with the molecular weights of 20.82kDa and consisting of mannose and glucose in the molar ratio of 1.20:1.01, possessed the strongest immuno-enhancement activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. 75 FR 68728 - Airworthiness Directives; Bombardier, Inc. Model CL-215-1A10 (CL-215), CL-215-6B11 (CL-215T...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-09

    ... structure in the potential line of trajectory of a failed screw cap/end cap for each accumulator has been..., potentially resulting in fuel spillage, uncommanded flap movement, or loss of aileron control [and consequent... and structure in the potential line of trajectory of a failed screw cap/end cap for each accumulator...

  1. Cyclin B Translation Depends on mTOR Activity after Fertilization in Sea Urchin Embryos

    PubMed Central

    Boulben, Sandrine; Glippa, Virginie; Morales, Julia; Cormier, Patrick

    2016-01-01

    The cyclin B/CDK1 complex is a key regulator of mitotic entry. Using PP242, a specific ATP-competitive inhibitor of mTOR kinase, we provide evidence that the mTOR signalling pathway controls cyclin B mRNA translation following fertilization in Sphaerechinus granularis and Paracentrotus lividus. We show that PP242 inhibits the degradation of the cap-dependent translation repressor 4E-BP (eukaryotic initiation factor 4E-Binding Protein). PP242 inhibits global protein synthesis, delays cyclin B accumulation, cyclin B/CDK1 complex activation and consequently entry into the mitotic phase of the cell cycle triggered by fertilization. PP242 inhibits cyclin B mRNA recruitment into active polysomes triggered by fertilization. An amount of cyclin B mRNA present in active polysomes appears to be insensitive to PP242 treatment. Taken together, our results suggest that, following sea urchin egg fertilization, cyclin B mRNA translation is controlled by two independent mechanisms: a PP242-sensitive and an additional PP242-insentitive mechanism. PMID:26962866

  2. The maize stripe virus major noncapsid protein messenger RNA transcripts contain heterogeneous leader sequences at their 5' termini.

    PubMed

    Huiet, L; Feldstein, P A; Tsai, J H; Falk, B W

    1993-12-01

    Primer extension analyses and a PCR-based cloning strategy were used to identify and characterize 5' nucleotide sequences on the maize stripe virus (MStV) RNA4 mRNA transcripts encoding the major noncapsid protein (NCP). Direct RNA sequence analysis by primer extension showed that the NCP mRNA transcripts had 10-15 nucleotides beyond the 5' terminus of the MStV RNA4 nucleotide sequence. MStV genomic RNAs isolated from ribonucleoprotein particles (RNPs) lacked the additional 5' nucleotides. cDNA clones representing the 5' region of the mRNA transcripts were constructed, and the nucleotide sequences of the 5' regions were determined for 16 clones. Each was found to have a distinct 10-15 nucleotide sequence immediately 5' of the MStV RNA4 sequence. Eleven of 16 clones had the correct MStV RNA4 5' nucleotide sequence, while five showed minor variations at or near the 5' most MStV RNA4 nucleotide. These characteristics show strong similarities to other viral mRNA transcripts which are synthesized by cap snatching.

  3. Mechanical tensile stress effects on the expression of bone sialoprotein in bovine cementoblasts.

    PubMed

    Yu, Hongyou; Ren, Yijin; Sandham, Andrew; Ren, Aishu; Huang, Lan; Bai, Ding

    2009-03-01

    To develop a new cementoblast culture method and to detect bone sialoprotein (BSP) expression in response to high and low mechanical tensile stress in cementoblast in vitro. Cementoblasts were collected from the roots of newborn bovine teeth and were identified with cementum-derived attachment protein (CAP) antibody 3G9. Cell proliferation was evaluated by MTT [3-(4,5-dimethylthazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay, and mineralization was confirmed by von Kossa staining. Mechanical tensile stress was applied in vitro to the cementoblast with the use of a uniaxial four-point bending system with 2000 or 4000 microstrains, at a frequency of 0.5 Hz for 3, 6, 12, 24, or 36 hours. BSP mRNA level was quantified by real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). A large amount of cementoblast was observed to be expressing CAP. Cementoblasts had a proliferation tendency similar to that of osteoblasts but different from that of periodontal ligament (PDL) cells. Cementoblasts had the ability to become mineralized between osteoblasts and PDL cells. The mechanical tensile stress significantly up-regulated BSP mRNA expression, which reached a peak at 24 hours in both 2000 and 4000 microstrain groups (P < .01) and was tenfold and sixfold higher than that of controls, respectively. BSP expression dropped toward baseline levels at 36 hours in both groups. Mechanical tensile stress up-regulated the expression of BSP. Low mechanical tensile stress induced earlier and more intensive up-regulation of BSP mRNA; this might represent the optimal stimuli for cementoblast activity.

  4. Systematic identification of non-coding RNA 2,2,7-trimethylguanosine cap structures in Caenorhabditis elegans

    PubMed Central

    Jia, Dong; Cai, Lun; He, Housheng; Skogerbø, Geir; Li, Tiantian; Aftab, Muhammad Nauman; Chen, Runsheng

    2007-01-01

    Background The 2,2,7-trimethylguanosine (TMG) cap structure is an important functional characteristic of ncRNAs with critical cellular roles, such as some snRNAs. Here we used immunoprecipitation with both K121 and R1131 anti-TMG antibodies to systematically identify the TMG cap structures for all presently characterized ncRNAs in C. elegans. Results The two anti-TMG antibodies precipitated a similar group of the C. elegans ncRNAs. All snRNAs known to have a TMG cap structure were found in the precipitate, indicating that our identification system was efficient. Other ncRNA families related to splicing, such as SL RNAs and Sm Y RNAs, were also found in the precipitate, as were 7 C/D box snoRNAs. Further analysis showed that the SL RNAs and the Sm Y RNAs shared a very similar Sm binding site element (AAU4–5GGA), which sequence composition differed somewhat from those of other U snRNAs. There were also 16 ncRNAs without an Sm binding site element in the precipitate, suggesting that for these ncRNAs, TMG formation may occur independently of Sm proteins. Conclusion Our results showed that most ncRNAs predicted to be transcribed by RNA polymerase II had a TMG cap, while those predicted to be transcribed by RNA plymerase III or located in introns did not have a TMG cap structure. Compared to ncRNAs without a TMG cap, TMG-capped ncRNAs tended to have higher expression levels. Five functionally non-annotated ncRNAs also have a TMG cap structure, which might be helpful for identifying the cellular roles of these ncRNAs. PMID:17903271

  5. Systematic identification of non-coding RNA 2,2,7-trimethylguanosine cap structures in Caenorhabditis elegans.

    PubMed

    Jia, Dong; Cai, Lun; He, Housheng; Skogerbø, Geir; Li, Tiantian; Aftab, Muhammad Nauman; Chen, Runsheng

    2007-09-29

    The 2,2,7-trimethylguanosine (TMG) cap structure is an important functional characteristic of ncRNAs with critical cellular roles, such as some snRNAs. Here we used immunoprecipitation with both K121 and R1131 anti-TMG antibodies to systematically identify the TMG cap structures for all presently characterized ncRNAs in C. elegans. The two anti-TMG antibodies precipitated a similar group of the C. elegans ncRNAs. All snRNAs known to have a TMG cap structure were found in the precipitate, indicating that our identification system was efficient. Other ncRNA families related to splicing, such as SL RNAs and Sm Y RNAs, were also found in the precipitate, as were 7 C/D box snoRNAs. Further analysis showed that the SL RNAs and the Sm Y RNAs shared a very similar Sm binding site element (AAU4-5GGA), which sequence composition differed somewhat from those of other U snRNAs. There were also 16 ncRNAs without an Sm binding site element in the precipitate, suggesting that for these ncRNAs, TMG formation may occur independently of Sm proteins. Our results showed that most ncRNAs predicted to be transcribed by RNA polymerase II had a TMG cap, while those predicted to be transcribed by RNA plymerase III or located in introns did not have a TMG cap structure. Compared to ncRNAs without a TMG cap, TMG-capped ncRNAs tended to have higher expression levels. Five functionally non-annotated ncRNAs also have a TMG cap structure, which might be helpful for identifying the cellular roles of these ncRNAs.

  6. Regulatory effects of cotranscriptional RNA structure formation and transitions.

    PubMed

    Liu, Sheng-Rui; Hu, Chun-Gen; Zhang, Jin-Zhi

    2016-09-01

    RNAs, which play significant roles in many fundamental biological processes of life, fold into sophisticated and precise structures. RNA folding is a dynamic and intricate process, which conformation transition of coding and noncoding RNAs form the primary elements of genetic regulation. The cellular environment contains various intrinsic and extrinsic factors that potentially affect RNA folding in vivo, and experimental and theoretical evidence increasingly indicates that the highly flexible features of the RNA structure are affected by these factors, which include the flanking sequence context, physiochemical conditions, cis RNA-RNA interactions, and RNA interactions with other molecules. Furthermore, distinct RNA structures have been identified that govern almost all steps of biological processes in cells, including transcriptional activation and termination, transcriptional mutagenesis, 5'-capping, splicing, 3'-polyadenylation, mRNA export and localization, and translation. Here, we briefly summarize the dynamic and complex features of RNA folding along with a wide variety of intrinsic and extrinsic factors that affect RNA folding. We then provide several examples to elaborate RNA structure-mediated regulation at the transcriptional and posttranscriptional levels. Finally, we illustrate the regulatory roles of RNA structure and discuss advances pertaining to RNA structure in plants. WIREs RNA 2016, 7:562-574. doi: 10.1002/wrna.1350 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  7. The effect of crystal structure of TiO2 nanotubes on the formation of calcium phosphate coatings during biomimetic deposition

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Kim, Sun; McLeod, John A.; Li, Jun; Guo, Xiaoxuan; Sham, Tsun-Kong; Liu, Lijia

    2017-02-01

    The crystallization process of bioactive calcium phosphate (CaP) species via biomimetic deposition onto anodic TiO2 nanotubes is investigated. The porous surface of nanostructured TiO2 provides an ideal substrate for CaP crystallization. The compositions of CaP coatings are studied using X-ray absorption near-edge structures (XANES) at the Ca K-edge. Using detection modes with different probing depths, both the surface of the CaP coating and the CaP-TiO2 interface are simultaneously analyzed. Calcium phosphate (CaP) species, such as hydroxyapatite (HAp), octacalcium phosphate (Ca8(HPO4)2(PO4)4·5H2O, OCP), brushite (CaHPO4·2H2O, DCPD), and amorphous calcium phosphate (ACP), are found in the CaP coatings. TiO2 nanotubes of amorphous and anatase phases are comparatively studied to determine their effect on the efficiency of CaP formation and the phase transformation among CaP species in prolonged deposition time. It is found the composition of CaP coating has a strong dependency on the crystal structure of TiO2 substrate and the kinetics (deposition time).

  8. Transcriptional regulation of ceruloplasmin gene expression during inflammation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gitlin, J.D.

    1988-05-05

    Mixed sequence oligonucleotides were used to isolate a series of acute-phase human liver cDNA clones corresponding to the serum ..cap alpha../sub 2/-globulin ceruloplasmin. These clones were characterized, sequenced, and used to analyze changes in hepatic ceruloplasmin mRNA content during inflammation. In all species examined, hepatic ceruloplasmin mRNA content increased approximately 6-10-fold over control values within 24 h following the induction of inflammation. The mechanisms leading to this increase in hepatic ceruloplasmin mRNA content were studied following turpentine-induced inflammation in Syrian hamsters. Nuclear run-on assays demonstrated an increase in the relative rate of transcription of the ceruloplasmin gene within 3 hmore » following induction, reaching maximum values by 18 h. Hepatic ceruloplasmin mRNA content increased 2-fold within 12 h following induction, reached maximum values by 24 h, and returned to control within 72 h. In contrast, serum ceruloplasmin concentration did not increase until 36 h, reached maximal levels by 120 h, and remained elevated for the course of the study. These data indicate that inflammation leads to a rapid increase in hepatic ceruloplasmin mRNA content. This increase is largely the result of increased ceruloplasmin gene transcription, but comparison of the relative rate of transcription and mRNA accumulation suggests that changes in ceruloplasmin mRNA turnover are also involved. In addition, translational and/or post-translational mechanisms must account for the observed changes in serum ceruloplasmin concentration seen during inflammation.« less

  9. A Sub-Element in PRE enhances nuclear export of intronless mRNAs by recruiting the TREX complex via ZC3H18

    PubMed Central

    Chi, Binkai; Wang, Ke; Du, Yanhua; Gui, Bin; Chang, Xingya; Wang, Lantian; Fan, Jing; Chen, She; Wu, Xudong; Li, Guohui; Cheng, Hong

    2014-01-01

    Viral RNA elements that facilitate mRNA export are useful tools for identifying cellular RNA export factors. Here we show that hepatitis B virus post-transcriptional element (PRE) is one such element, and using PRE several new cellular mRNA export factors were identified. We found that PRE drastically enhances the cytoplasmic accumulation of cDNA transcripts independent of any viral protein. Systematic deletion analysis revealed the existence of a 116 nt functional Sub-Element of PRE (SEP1). The RNP that forms on the SEP1 RNA was affinity purified, in which TREX components as well as several other proteins were identified. TREX components and the SEP1-associating protein ZC3H18 are required for SEP1-mediated mRNA export. Significantly, ZC3H18 directly binds to the SEP1 RNA, interacts with TREX and is required for stable association of TREX with the SEP1-containing mRNA. Requirements for SEP1-mediated mRNA export are similar to those for splicing-dependent mRNA export. Consistent with these similarities, several SEP1-interacting proteins, including ZC3H18, ARS2, Acinus and Brr2, are required for efficient nuclear export of polyA RNAs. Together, our data indicate that SEP1 enhances mRNA export by recruiting TREX via ZC3H18. The new mRNA export factors that we identified might be involved in cap- and splicing-dependent TREX recruitment to cellular mRNAs. PMID:24782531

  10. A Reaction Path Study of the Catalysis and Inhibition of the Bacillus anthracis CapD gamma-Glutamyl Transpeptidase

    DTIC Science & Technology

    2014-10-21

    lases.11,30,31 The first bound structure of CapD [Protein Data Bank ( PDB ) entry 3G9K] was determined with a di-α-L-Glu ligand.29 The di-α-L-Glu ligand...Article dx.doi.org/10.1021/bi500623c | Biochemistry 2014, 53, 6954−69676956 into the CapD structure ( PDB entry 3G9K29) identified two principal...in capsule anchoring and remodeling makes the enzyme a promising target for anthrax medical countermeasures. Although the structure of CapD is known

  11. Wnt/β-Catenin Pathway Regulates Cementogenic Differentiation of Adipose Tissue-Deprived Stem Cells in Dental Follicle Cell-Conditioned Medium

    PubMed Central

    Nie, Xin; Zhang, Bo; Zhou, Xia; Deng, Manjing

    2014-01-01

    The formation and attachment of new cementum is crucial for periodontium regeneration. Tissue engineering is currently explored to achieve complete, reliable and reproducible regeneration of the periodontium. The capacity of multipotency and self-renewal makes adipose tissue-deprived stem cells (ADSCs) an excellent cell source for tissue regeneration and repair. After rat ADSCs were cultured in dental follicle cell-conditioned medium (DFC-CM) supplemented with DKK-1, an inhibitor of the Wnt pathway, followed by 7 days of induction, they exhibited several phenotypic characteristics of cementoblast lineages, as indicated by upregulated expression levels of CAP, ALP, BSP and OPN mRNA, and accelerated expression of BSP and CAP proteins. The Wnt/β-catenin signaling pathway controls differentiation of stem cells by regulating the expression of target genes. Cementoblasts share phenotypical features with osteoblasts. In this study, we demonstrated that culturing ADSCs in DFC-CM supplemented with DKK-1 results in inhibition of β-catenin nuclear translocation and down-regulates TCF-4 and LEF-1 mRNA expression levels. We also found that DKK-1 could promote cementogenic differentiation of ADSCs, which was evident by the up-regulation of CAP, ALP, BSP and OPN gene expressions. On the other hand, culturing ADSCs in DFC-CM supplemented with 100 ng/mL Wnt3a, which activates the Wnt/β-catenin pathway, abrogated this effect. Taken together, our study indicates that the Wnt/β-catenin signaling pathway plays an important role in regulating cementogenic differentiation of ADSCs cultured in DFC-CM. These results raise the possibility of using ADSCs for periodontal regeneration by modifying the Wnt/β-catenin pathway. PMID:24806734

  12. Mechanism and Regulation of Protein Synthesis in Saccharomyces cerevisiae

    PubMed Central

    Dever, Thomas E.; Kinzy, Terri Goss; Pavitt, Graham D.

    2016-01-01

    In this review, we provide an overview of protein synthesis in the yeast Saccharomyces cerevisiae. The mechanism of protein synthesis is well conserved between yeast and other eukaryotes, and molecular genetic studies in budding yeast have provided critical insights into the fundamental process of translation as well as its regulation. The review focuses on the initiation and elongation phases of protein synthesis with descriptions of the roles of translation initiation and elongation factors that assist the ribosome in binding the messenger RNA (mRNA), selecting the start codon, and synthesizing the polypeptide. We also examine mechanisms of translational control highlighting the mRNA cap-binding proteins and the regulation of GCN4 and CPA1 mRNAs. PMID:27183566

  13. A short conserved motif in ALYREF directs cap- and EJC-dependent assembly of export complexes on spliced mRNAs.

    PubMed

    Gromadzka, Agnieszka M; Steckelberg, Anna-Lena; Singh, Kusum K; Hofmann, Kay; Gehring, Niels H

    2016-03-18

    The export of messenger RNAs (mRNAs) is the final of several nuclear posttranscriptional steps of gene expression. The formation of export-competent mRNPs involves the recruitment of export factors that are assumed to facilitate transport of the mature mRNAs. Using in vitro splicing assays, we show that a core set of export factors, including ALYREF, UAP56 and DDX39, readily associate with the spliced RNAs in an EJC (exon junction complex)- and cap-dependent manner. In order to elucidate how ALYREF and other export adaptors mediate mRNA export, we conducted a computational analysis and discovered four short, conserved, linear motifs present in RNA-binding proteins. We show that mutation in one of the new motifs (WxHD) in an unstructured region of ALYREF reduced RNA binding and abolished the interaction with eIF4A3 and CBP80. Additionally, the mutation impaired proper localization to nuclear speckles and export of a spliced reporter mRNA. Our results reveal important details of the orchestrated recruitment of export factors during the formation of export competent mRNPs. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Osteoprotegerin Promotes Cementoblastic Activity of Murine Cementoblast Cell Line in vitro.

    PubMed

    Zhang, Ying Ying; Zhao, Hua Xiang; Chen, Zhi Bin; Lin, Jiu Xiang; Liu, Yan

    2016-06-01

    To investigate the effect of osteoprotegerin (OPG) on the cementoblastic activity of a clonal population of immortalised murine cementoblasts (OCCM-30) in vitro. OCCM-30 cells were transiently transfected with the mouse OPG using the Avalanche transfection reagent. The ectopic expression of OPG was confirmed by enzyme-linked immunosorbent assay and quantitative polymerase chain reaction. The cell counting Kit-8 assay was used to investigate the effect of OPG on cell proliferation. The expression levels of cementoblastic-related mRNA and protein in the transfected OCCM-30 cells were detected using real-time PCR, Western blotting and immunohistochemical staining. Satisfactory transfection efficiency was observed 48 h after transfection. The results of the cell proliferation assay indicated that the expansion rate of the OPG transfection group was greater than that of the control group at both 72 h and 96 h. The mRNA levels of osterix (Osx), protein kinase B (Akt1), cementum attachment protein (CAP) and osteopontin (Opn) were significantly upregulated (P < 0.05) in the OPG group. Protein levels of OPN, bone sialoprotein II (BSP II), osteocalcin (OC) and CAP, which are responsible for osteogenetic and cementoblastic activity, were significantly increased in the OPG-overexpressing group. Overexpression of OPG in OCCM-30 cells promotes cementoblastic activity.

  15. Adverse effects of 4-tert-octylphenol on the production of oxytocin and hCG in pregnant rats

    PubMed Central

    Kim, Jun; Kang, Eun-Jin; Park, Mee-Na; Lee, Jae-Eon; Hong, So-Hye; An, Sung-Min; Kim, Seung-Chul; Hwang, Dae-Youn

    2014-01-01

    Endocrine-disrupting chemicals (EDCs) are exogenous substances that alter the structure or function of the endocrine system. 4-Tert-octylphenol (OP) is one of the most representative EDCs and has estrogenic effects. In this study, we examined the effects of ethinyl estradiol (EE) and OP on the pituitary gland, placenta, and uterus of pregnant rats. Expression levels of human chorionic gonadotropin (hCG), oxytocin (OT), and contraction-associated proteins (CAPs) were determined, and uterine contractile activity was measured by uterine contraction assay. EE and OP both increased mRNA expression of OT and hCG in the pituitary gland but not the placenta. Since OT and hCG control uterine contraction, we next examined CAP expression in the uterus. Expression of 15-hydroxyprostaglandin-dehydrogenase (PGDH) was upregulated by OP, whereas expression of other CAPs was unaffected. To clarify the effect of OP on uterine contraction in pregnant rats, uterine contraction assay was performed. The 17β-Estradiol (E2) did not affect contraction of primary uterine cells harvested from pregnant rats in a 3D collagen gel model. However, OP showed different effects from E2 by significantly reducing contraction activity. In summary, we demonstrated that OP interferes with regulation of OT and hCG in the pituitary gland as well as PGDH in the uterus, thereby reducing uterine contraction activity. This result differs from the action of endogenous E2. Collectively, these findings suggest that exposure to EDCs such as OP during pregnancycan reduce uterine contractile ability, which may result in contraction-associated adverse effects such as metratonia, bradytocia, and uterine leiomyomata. PMID:25324873

  16. Expression of the GM2 activator protein in mouse testis.

    PubMed

    Li, Yu-Teh; Li, Su-Chen; Chen, I-Li

    2017-12-01

    The GM2-activator protein (GM2-AP), revealed by Li et al. in 1973 in human liver, was initially identified as a protein cofactor that stimulated β-hexosaminidase A to hydrolyze N-acetylgalactosamine from GM2 ganglioside. This cofactor was found to be missing in human variant AB Tay-Sachs disease. Over the years, the GM2-AP has also been shown to be involved in kidney vesicular transport, lipid presentation by CD1 molecule to T-cells, and interaction of human sperm with zona pellucida. Since the expression of the GM2-AP via mRNA detection in mouse tissues was found to be the highest in testis, we became interested in the localization of the GM2-AP at cellular level in mouse testis during spermatogenesis. Using immunohistochemical analysis and electron microscopy, we found that the GM2-AP was predominantly localized in the basal cytoplasm and the attenuated processes of Sertoli cells. The stained structure appeared to be lysosomes. The most interesting finding was the association of the GM2-AP with the acrosomal apparatus in early spermatids. A modest to intense staining was observed in some acrosomal granules and acrosomal caps. The GM2-AP seemed to disappear from acrosomal caps in the later stage of spermatids, in which the nucleus became elongated and condensed. These results suggest that the GM2-AP may be involved in the normal functions of Sertoli cells and play important roles during the development of acrosomal caps in the early spermatids. Copyright © 2017 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  17. Structure of apo-CAP reveals that large conformational changes are necessary for DNA binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Hitesh; Yu, Shaoning; Kong, Jilie

    2009-10-21

    The binding of cAMP to the Escherichia coli catabolite gene activator protein (CAP) produces a conformational change that enables it to bind specific DNA sequences and regulate transcription, which it cannot do in the absence of the nucleotide. The crystal structures of the unliganded CAP containing a D138L mutation and the unliganded WT CAP were determined at 2.3 and 3.6 {angstrom} resolution, respectively, and reveal that the two DNA binding domains have dimerized into one rigid body and their two DNA recognition helices become buried. The WT structure shows multiple orientations of this rigid body relative to the nucleotide bindingmore » domain supporting earlier biochemical data suggesting that the inactive form exists in an equilibrium among different conformations. Comparison of the structures of the liganded and unliganded CAP suggests that cAMP stabilizes the active DNA binding conformation of CAP through the interactions that the N{sup 6} of the adenosine makes with the C-helices. These interactions are associated with the reorientation and elongation of the C-helices that precludes the formation of the inactive structure.« less

  18. 14-3-3η Amplifies Androgen Receptor Actions in Prostate Cancer

    PubMed Central

    Titus, Mark A.; Tan, Jiann-an; Gregory, Christopher W.; Ford, O. Harris; Subramanian, Romesh R.; Fu, Haian; Wilson, Elizabeth M.; Mohler, James L.; French, Frank S.

    2009-01-01

    Purpose Androgen receptor (AR) abundance and AR-regulated gene expression in castration-recurrent prostate cancer (CaP) are indicative of AR activation in the absence of testicular androgen. AR transactivation of target genes in castration-recurrent CaP occurs in part through mitogen signaling that amplifies the actions of AR and its coregulators. Herein we report on the role of 14-3-3η in AR action. Experimental Design and Results AR and 14-3-3η co-localized in COS cell nuclei with and without androgen and 14-3-3η promoted AR nuclear localization in the absence of androgen. 14-3-3η interacted with AR in cell-free binding and coimmunoprecipitation assays. In the recurrent human CaP cell line, CWR-R1, native endogenous AR transcriptional activation was stimulated by 14-3-3η at low DHT concentrations and was increased by EGF. Moreover, the DHT and EGF dependent increase in AR transactivation was inhibited by a dominant negative 14-3-3η. In the CWR22 CaP xenograft model, 14-3-3η expression was increased by androgen, suggesting a feed-forward mechanism that potentiates both 14-3-3η and AR actions. 14-3-3η mRNA and protein decreased following castration of tumor bearing mice and increased in tumors of castrate mice after treatment with testosterone. CWR22 tumors that recurred 5 months after castration contained 14-3-3η levels similar to the androgen-stimulated tumors removed before castration. In a human prostate tissue microarray of clinical specimens, 14-3-3η localized with AR in nuclei and the similar amounts expressed in castration-recurrent CaP, androgen-stimulated CaP and benign prostatic hyperplasia were consistent with AR activation in recurrent CaP. Conclusion 14-3-3η enhances androgen and mitogen induced AR transcriptional activity in castration-recurrent CaP. PMID:19996220

  19. Effect of NiFeCr seed and capping layers on exchange bias and planar Hall voltage response of NiFe/Au/IrMn trilayer structures

    NASA Astrophysics Data System (ADS)

    Talantsev, Artem; Elzwawy, Amir; Kim, CheolGi

    2018-05-01

    Thin films and cross junctions, based on NiFe/Au/IrMn structures, were grown on Ta and NiFeCr seed layers by magnetron sputtering. The effects of substitution of Ta with NiFeCr in seed and capping layers on an exchange bias field are studied. A threefold improvement of the exchange bias value in the structures, grown with NiFeCr seed and capping layers, is demonstrated. The reasons for this effect are discussed. Formation of clusters in the NiFeCr capping layer is proved by atomic force microscopy technique. Ta replacement on NiFeCr in the capping layer results in the enhancement of magnetoresistive response and a reduction of noise.

  20. Ground penetrating radar imaging of cap rock, caliche and carbonate strata

    USGS Publications Warehouse

    Kruse, S.E.; Schneider, J.C.; Campagna, D.J.; Inman, J.A.; Hickey, T.D.

    2000-01-01

    Field experiments show ground penetrating radar (GPR) can be used to image shallow carbonate stratigraphy effectively in a variety of settings. In south Florida, the position and structure of cap rock cover on limestone can be an important control on surface water flow and vegetation, but larger scale outcrops (tens of meters) of cap rock are sparse. GPR mapping through south Florida prairie, cypress swamp and hardwood hammock resolves variations in thickness and structure of cap rock to ~3 m and holds the potential to test theories for cap rock-vegetation relationships. In other settings, carbonate strata are mapped to test models for the formation of local structural anomalies. A test of GPR imaging capabilities on an arid caliche (calcrete) horizon in southeastern Nevada shows depth penetration to ~2 m with resolution of the base of caliche. GPR profiling also succeeds in resolving more deeply buried (~5 m) limestone discontinuity surfaces that record subaerial exposure in south Florida. (C) 2000 Elsevier Science B.V. All rights reserved.Field experiments show ground penetrating radar (GPR) can be used to image shallow carbonate stratigraphy effectively in a variety of settings. In south Florida, the position and structure of cap rock cover on limestone can be an important control on surface water flow and vegetation, but larger scale outcrops (tens of meters) of cap rock are sparse. GPR mapping through south Florida prairie, cypress swamp and hardwood hammock resolves variations in thickness and structure of cap rock to approx. 3 m and holds the potential to test theories for cap rock-vegetation relationships. In other settings, carbonate strata are mapped to test models for the formation of local structural anomalies. A test of GPR imaging capabilities on an arid caliche (calcrete) horizon in southeastern Nevada shows depth penetration to approx. 2 m with resolution of the base of caliche. GPR profiling also succeeds in resolving more deeply buried (approx. 5 m) limestone discontinuity surfaces that record subaerial exposure in south Florida.

  1. Capsaicin and N-arachidonoyl-dopamine (NADA) decrease tension by activating both cannabinoid and vanilloid receptors in fast skeletal muscle fibers of the frog.

    PubMed

    Trujillo, Xóchitl; Ortiz-Mesina, Mónica; Uribe, Tannia; Castro, Elena; Montoya-Pérez, Rocío; Urzúa, Zorayda; Feria-Velasco, Alfredo; Huerta, Miguel

    2015-02-01

    Previous studies have indicated that vanilloid receptor (VR1) mRNA is expressed in muscle fibers. In this study, we evaluated the functional effects of VR1 activation. We measured caffeine-induced contractions in bundles of the extensor digitorum longus muscle of Rana pipiens. Isometric tension measurements showed that two VR1 agonists, capsaicin (CAP) and N-arachidonoyl-dopamine (NADA), reduced muscle peak tension to 57 ± 4 % and 71 ± 3% of control, respectively. The effect of CAP was partially blocked by a VR1 blocker, capsazepine (CPZ), but the effect of NADA was not changed by CPZ. Because NADA is able to act on cannabinoid receptors, which are also present in muscle fibers, we tested the cannabinoid antagonist AM281. We found that AM281 antagonized both CAP and NADA effects. AM281 alone reduced peak tension to 80 ± 6 % of control. With both antagonists, the CAP effect was completely blocked, and the NADA effect was partially blocked. These results provide pharmacological evidence of the functional presence of the VR1 receptor in fast skeletal muscle fibers of the frog and suggest that capsaicin and NADA reduce tension by activating both cannabinoid and vanilloid receptors.

  2. ZNF9 Activation of IRES-Mediated Translation of the Human ODC mRNA Is Decreased in Myotonic Dystrophy Type 2

    PubMed Central

    Sammons, Morgan A.; Antons, Amanda K.; Bendjennat, Mourad; Udd, Bjarne; Krahe, Ralf; Link, Andrew J.

    2010-01-01

    Myotonic dystrophy types 1 and 2 (DM1 and DM2) are forms of muscular dystrophy that share similar clinical and molecular manifestations, such as myotonia, muscle weakness, cardiac anomalies, cataracts, and the presence of defined RNA-containing foci in muscle nuclei. DM2 is caused by an expansion of the tetranucleotide CCTG repeat within the first intron of ZNF9, although the mechanism by which the expanded nucleotide repeat causes the debilitating symptoms of DM2 is unclear. Conflicting studies have led to two models for the mechanisms leading to the problems associated with DM2. First, a gain-of-function disease model hypothesizes that the repeat expansions in the transcribed RNA do not directly affect ZNF9 function. Instead repeat-containing RNAs are thought to sequester proteins in the nucleus, causing misregulation of normal cellular processes. In the alternative model, the repeat expansions impair ZNF9 function and lead to a decrease in the level of translation. Here we examine the normal in vivo function of ZNF9. We report that ZNF9 associates with actively translating ribosomes and functions as an activator of cap-independent translation of the human ODC mRNA. This activity is mediated by direct binding of ZNF9 to the internal ribosome entry site sequence (IRES) within the 5′UTR of ODC mRNA. ZNF9 can activate IRES-mediated translation of ODC within primary human myoblasts, and this activity is reduced in myoblasts derived from a DM2 patient. These data identify ZNF9 as a regulator of cap-independent translation and indicate that ZNF9 activity may contribute mechanistically to the myotonic dystrophy type 2 phenotype. PMID:20174632

  3. Size and shape tunability of self-assembled InAs/GaAs nanostructures through the capping rate

    NASA Astrophysics Data System (ADS)

    Utrilla, Antonio D.; Grossi, Davide F.; Reyes, Daniel F.; Gonzalo, Alicia; Braza, Verónica; Ben, Teresa; González, David; Guzman, Alvaro; Hierro, Adrian; Koenraad, Paul M.; Ulloa, Jose M.

    2018-06-01

    The practical realization of epitaxial quantum dot (QD) nanocrystals led before long to impressive experimental advances in optoelectronic devices, as well as to the emergence of new technological fields. However, the necessary capping process is well-known to hinder a precise control of the QD morphology and therefore of the possible electronic structure required for certain applications. A straightforward approach is shown to tune the structural and optical properties of InAs/GaAs QDs without the need for any capping material different from GaAs or annealing process. The mere adjust of the capping rate allows controlling kinetically the QD dissolution process induced by the surface In-Ga intermixing taking place during overgrowth, determining the final metastable structure. While low capping rates make QDs evolve into more thermodynamically favorable quantum ring structures, increasing capping rates help preserve the QD height and shape, simultaneously improving the luminescence properties. Indeed, a linear relationship between capping rate and QD height is found, resulting in a complete preservation of the original QD geometry for rates above ∼2.0 ML s-1. In addition, the inhibition of In diffusion from the QDs top to the areas in between them yields thinner WLs, what could improve the performance of several QD-based optoelectronic devices.

  4. Surface Plasmon Coupling and Control Using Spherical Cap Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Yu; Joly, Alan G.; Zhang, Xin

    2017-06-05

    Propagating surface plasmons (PSPs) launched from a protruded silver spherical cap structure are investigated using photoemission electron microscopy (PEEM) and finite difference time domain (FDTD) calculations. Our combined experimental and theoretical findings reveal that PSP coupling efficiency is comparable to conventional etched-in plasmonic coupling structures. Additionally, plasmon propagation direction can be varied by a linear rotation of the driving laser polarization. A simple geometric model is proposed in which the plasmon direction selectivity is proportional to the projection of the linear laser polarization on the surface normal. An application for the spherical cap coupler as a gate device is proposed.more » Overall, our results indicate that protruded cap structures hold great promise as elements in emerging surface plasmon applications.« less

  5. Evolution of the Mauthner axon cap.

    PubMed

    Bierman, Hilary S; Zottoli, Steven J; Hale, Melina E

    2009-01-01

    Studies of vertebrate brain evolution have focused primarily on patterns of gene expression or changes in size and organization of major brain regions. The Mauthner cell, an important reticulospinal neuron that functions in the startle response of many species, provides an opportunity for evolutionary comparisons at the cellular level. Despite broad interspecific similarities in Mauthner cell morphology, the motor patterns and startle behaviors it initiates vary markedly. Response diversity has been hypothesized to result, in part, from differences in the structure and function of the Mauthner cell-associated axon cap. We used light microscopy techniques to compare axon cap morphology across a wide range of species, including all four extant basal actinopterygian orders, representatives of a variety of teleost lineages and lungfishes, and we combined our data with published descriptions of axon cap structure. The 'composite' axon cap, observed in teleosts, is an organized conglomeration of glia and fibers of inhibitory and excitatory interneurons. Lungfish, amphibian tadpoles and several basal actinopterygian fishes have 'simple' axon caps that appear to lack glia and include few fibers. Several other basal actinopterygian fishes have 'simple-dense' caps that include greater numbers of fibers than simple caps, but lack the additional elements and organization of composite caps. Phylogenetic mapping shows that through evolution there are discrete transitions in axon cap morphology occurring at the base of gnathostomes, within basal actinopterygians, and at the base of the teleost radiation. Comparing axon cap evolution to the evolution of startle behavior and motor pattern provides insight into the relationship between Mauthner cell-associated structures and their functions in behavior. Copyright 2009 S. Karger AG, Basel.

  6. Controlling self-assembly of diphenylalanine peptides at high pH using heterocyclic capping groups.

    PubMed

    Martin, Adam D; Wojciechowski, Jonathan P; Robinson, Andrew B; Heu, Celine; Garvey, Christopher J; Ratcliffe, Julian; Waddington, Lynne J; Gardiner, James; Thordarson, Pall

    2017-03-08

    Using small angle neutron scattering (SANS), it is shown that the existence of pre-assembled structures at high pH for a capped diphenylalanine hydrogel is controlled by the selection of N-terminal heterocyclic capping group, namely indole or carbazole. At high pH, changing from a somewhat hydrophilic indole capping group to a more hydrophobic carbazole capping group results in a shift from a high proportion of monomers to self-assembled fibers or wormlike micelles. The presence of these different self-assembled structures at high pH is confirmed through NMR and circular dichroism spectroscopy, scanning probe microscopy and cryogenic transmission electron microscopy.

  7. TFIIH and P-TEFb Coordinate Transcription with Capping Enzyme Recruitment at Specific Genes in Fission Yeast

    PubMed Central

    Viladevall, Laia; St. Amour, Courtney V.; Rosebrock, Adam; Schneider, Susanne; Zhang, Chao; Allen, Jasmina J.; Shokat, Kevan M.; Schwer, Beate; Leatherwood, Janet K.; Fisher, Robert P.

    2009-01-01

    Summary Cyclin-dependent kinases (CDKs) are subunits of transcription factor (TF) IIH and positive transcription elongation factor b (P-TEFb). To define their functions, we mutated the TFIIH-associated kinase Mcs6 and P-TEFb homologs Cdk9 and Lsk1 of fission yeast, making them sensitive to bulky purine analogs. Selective inhibition of Mcs6 or Cdk9 blocks cell division, alters RNA polymerase (Pol) II carboxyl-terminal domain (CTD) phosphorylation and represses specific, overlapping subsets of transcripts. At a common target gene, both CDKs must be active for normal Pol II occupancy, and Spt5—a CDK substrate and regulator of elongation—accumulates disproportionately to Pol II when either kinase is inhibited. In contrast, Mcs6 activity is sufficient, and necessary, to recruit the Cdk9/Pcm1 (mRNA cap methyltransferase) complex. In vitro, phosphorylation of the CTD by Mcs6 stimulates subsequent phosphorylation by Cdk9. We propose that TFIIH primes the CTD and promotes recruitment of P-TEFb/Pcm1, serving to couple elongation and capping of select pre-mRNAs. PMID:19328067

  8. Host defence peptides in human burns.

    PubMed

    Kaus, Aljoscha; Jacobsen, Frank; Sorkin, Michael; Rittig, Andrea; Voss, Bruno; Daigeler, Adrien; Sudhoff, Holger; Steinau, Hans-Ulrich; Steinstraesser, Lars

    2008-02-01

    The goal of this study was to analyse expression profiles of human epithelial host defence peptides in burned and unburned skin tissue, samples of which were obtained during debridements and snap-frozen in liquid nitrogen. Total RNA was isolated, and cDNA of epithelial host defence peptides and proteins (hCAP-18/LL-37, hBD1-hBD4, dermcidin, S100A7/psoriasin and RNAse7) was quantified by qRT-PCR. In situ hybridisation and immunohistochemical staining localised gene expression of hCAP-18/LL-37, hBD2 and hBD3 in histological sections. Most of the analysed host defence peptides and proteins showed higher mRNA levels in partial-thickness burns than in unburned tissue. In situ hybridisation revealed expression of hCAP-18/LL-37, hBD2 and hBD3 at the surface of burns that was independent of burn depth. However, the finding of higher host defence peptide gene expression rates does not correlate with the incidence of wound infection in burns. We hypothesise that the epithelial innate immune response in burns is complex.

  9. Effects of S-containing ligands on the structure and electronic properties of CdnSen/CdnTen nanoparticles (n = 3, 4, 6, and 9)

    NASA Astrophysics Data System (ADS)

    Lim, Emmanuel; Kuznetsov, Aleksey E.; Beratan, David N.

    2012-10-01

    To understand ligand capping effects on the structure and electronic properties of CdnXn (X = Se, Te; n = 3, 4, 6, and 9) species, we performed density functional theory studies of SCH2COOH-, SCH2CH2CO2H-, and SCH2CH2NH2-capped nanoparticles. CdnXn capping with all three capping groups was found to produce significant NP distortions. All three ligands destabilize the NP HOMOs and either stabilize or destabilize their LUMOs, leading to closure of the HOMO/LUMO gaps for all of the capped species, because the HOMO destabilization effect is generally large than the LUMO destabilization effect. The calculated absorption spectra of bare and capped NPs, exemplified by CdnXn with n = 4 and 6, show that all capping groups cause noticeable red shifts for n = 4 and mostly blue shifts for n = 6.

  10. A comparative analysis of green synthesis approach starch capped metal oxides (ZnO & CdO) nanoparticles and its bacterial activity

    NASA Astrophysics Data System (ADS)

    Vidhya, K.; Devarajan, V. P.; Viswanathan, C.; Nataraj, D.; Bhoopathi, G.

    2013-06-01

    In this study, we have investigated the bacterial activity of starch capped ZnO & CdO NPs. The NPs were prepared through green technique under room temperature and then obtained samples were characterized by using XRD and PL techniques. XRD pattern confirms the crystal nature it shows hexagonal structure for ZnO NPs and monoclinic structure for CdO NPs and their average particle size is ±20 nm. Further, the optical properties of NPs were investigated using PL technique in which the starch capped ZnO NPs shows maximum emission at 440 nm whereas starch capped CdO NPs shows maximum emission at 545 nm. Finally, toxic test was performed with E.coli bacteria and their results were investigated. Hence, starch capped ZnO NPs induced less killing effect when compared with starch capped CdO NPs. Therefore, we conclude that the starch capped ZnO NPs may be less toxic to microorganisms when compared with starch capped CdO NPs. In addition, starch capped ZnO NPs is also suitable for anti-microbial activity.

  11. Post-genomics of microsporidia, with emphasis on a model of minimal eukaryotic proteome: a review.

    PubMed

    Texier, Catherine; Brosson, Damien; El Alaoui, Hicham; Méténier, Guy; Vivarès, Christian P

    2005-05-01

    The genome sequence of the microsporidian parasite Encephalitozoon cuniculi Levaditi, Nicolau et Schoen, 1923 contains about 2,000 genes that are representative of a non-redundant potential proteome composed of 1,909 protein chains. The purpose of this review is to relate some advances in the characterisation of this proteome through bioinformatics and experimental approaches. The reduced diversity of the set of E. cuniculi proteins is perceptible in all the compilations of predicted domains, orthologs, families and superfamilies, available in several public databases. The phyletic patterns of orthologs for seven eukaryotic organisms support an extensive gene loss in the fungal clade, with additional deletions in E. cuniculi. Most microsporidial orthologs are the smallest ones among eukaryotes, justifying an interest in the use of these compacted proteins to better discriminate between essential and non-essential regions. The three components of the E. cuniculi mRNA capping apparatus have been especially well characterized and the three-dimensional structure of the cap methyltransferase has been elucidated following the crystallisation of the microsporidial enzyme Ecm1. So far, our mass spectrometry-based analyses of the E. cuniculi spore proteome has led to the identification of about 170 proteins, one-quarter of these having no clearly predicted function. Immunocytochemical studies are in progress to determine the subcellular localisation of microsporidia-specific proteins. Post-translational modifications such as phosphorylation and glycosylation are expected to be soon explored.

  12. Tropomodulins: pointed-end capping proteins that regulate actin filament architecture in diverse cell types

    PubMed Central

    Yamashiro, Sawako; Gokhin, David S.; Kimura, Sumiko; Nowak, Roberta B.; Fowler, Velia M.

    2012-01-01

    Tropomodulins are a family of four proteins (Tmods 1–4) that cap the pointed ends of actin filaments in actin cytoskeletal structures in a developmentally regulated and tissue-specific manner. Unique among capping proteins, Tmods also bind tropomyosins (TMs), which greatly enhance the actin filament pointed-end capping activity of Tmods. Tmods are defined by a tropomyosin (TM)-regulated/Pointed-End Actin Capping (TM-Cap) domain in their unstructured N-terminal portion, followed by a compact, folded Leucine-Rich Repeat/Pointed-End Actin Capping (LRR-Cap) domain. By inhibiting actin monomer association and dissociation from pointed ends, Tmods regulate regulate actin dynamics and turnover, stabilizing actin filament lengths and cytoskeletal architecture. In this review, we summarize the genes, structural features, molecular and biochemical properties, actin regulatory mechanisms, expression patterns, and cell and tissue functions of Tmods. By understanding Tmods’ functions in the context of their molecular structure, actin regulation, binding partners, and related variants (leiomodins 1–3), we can draw broad conclusions that can explain the diverse morphological and functional phenotypes that arise from Tmod perturbation experiments in vitro and in vivo. Tmod-based stabilization and organization of intracellular actin filament networks provide key insights into how the emergent properties of the actin cytoskeleton drive tissue morphogenesis and physiology. PMID:22488942

  13. Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications.

    PubMed

    Eliaz, Noam; Metoki, Noah

    2017-03-24

    Calcium phosphate (CaP) bioceramics are widely used in the field of bone regeneration, both in orthopedics and in dentistry, due to their good biocompatibility, osseointegration and osteoconduction. The aim of this article is to review the history, structure, properties and clinical applications of these materials, whether they are in the form of bone cements, paste, scaffolds, or coatings. Major analytical techniques for characterization of CaPs, in vitro and in vivo tests, and the requirements of the US Food and Drug Administration (FDA) and international standards from CaP coatings on orthopedic and dental endosseous implants, are also summarized, along with the possible effect of sterilization on these materials. CaP coating technologies are summarized, with a focus on electrochemical processes. Theories on the formation of transient precursor phases in biomineralization, the dissolution and reprecipitation as bone of CaPs are discussed. A wide variety of CaPs are presented, from the individual phases to nano-CaP, biphasic and triphasic CaP formulations, composite CaP coatings and cements, functionally graded materials (FGMs), and antibacterial CaPs. We conclude by foreseeing the future of CaPs.

  14. Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications

    PubMed Central

    Eliaz, Noam; Metoki, Noah

    2017-01-01

    Calcium phosphate (CaP) bioceramics are widely used in the field of bone regeneration, both in orthopedics and in dentistry, due to their good biocompatibility, osseointegration and osteoconduction. The aim of this article is to review the history, structure, properties and clinical applications of these materials, whether they are in the form of bone cements, paste, scaffolds, or coatings. Major analytical techniques for characterization of CaPs, in vitro and in vivo tests, and the requirements of the US Food and Drug Administration (FDA) and international standards from CaP coatings on orthopedic and dental endosseous implants, are also summarized, along with the possible effect of sterilization on these materials. CaP coating technologies are summarized, with a focus on electrochemical processes. Theories on the formation of transient precursor phases in biomineralization, the dissolution and reprecipitation as bone of CaPs are discussed. A wide variety of CaPs are presented, from the individual phases to nano-CaP, biphasic and triphasic CaP formulations, composite CaP coatings and cements, functionally graded materials (FGMs), and antibacterial CaPs. We conclude by foreseeing the future of CaPs. PMID:28772697

  15. The unique Leishmania EIF4E4 N-terminus is a target for multiple phosphorylation events and participates in critical interactions required for translation initiation.

    PubMed

    de Melo Neto, Osvaldo P; da Costa Lima, Tamara D C; Xavier, Camila C; Nascimento, Larissa M; Romão, Tatiany P; Assis, Ludmila A; Pereira, Mariana M C; Reis, Christian R S; Papadopoulou, Barbara

    2015-01-01

    The eukaryotic initiation factor 4E (eIF4E) recognizes the mRNA cap structure and, together with eIF4G and eIF4A, form the eIF4F complex that regulates translation initiation in eukaryotes. In trypanosomatids, 2 eIF4E homologues (EIF4E3 and EIF4E4) have been shown to be part of eIF4F-like complexes with presumed roles in translation initiation. Both proteins possess unique N-terminal extensions, which can be targeted for phosphorylation. Here, we provide novel insights on the Leishmania infantum EIF4E4 function and regulation. We show that EIF4E4 is constitutively expressed throughout the parasite development but is preferentially phosphorylated in exponentially grown promastigote and amastigote life stages, hence correlating with high levels of translation. Phosphorylation targets multiple serine-proline or threonine-proline residues within the N-terminal extension of EIF4E4 but does not require binding to the EIF4E4's partner, EIF4G3, or to the cap structure. We also report that EIF4E4 interacts with PABP1 through 3 conserved boxes at the EIF4E4 N-terminus and that this interaction is a prerequisite for efficient EIF4E4 phosphorylation. EIF4E4 is essential for Leishmania growth and an EIF4E4 null mutant was only obtained in the presence of an ectopically provided wild type gene. Complementation for the loss of EIF4E4 with several EIF4E4 mutant proteins affecting either phosphorylation or binding to mRNA or to EIF4E4 protein partners revealed that, in contrast to other eukaryotes, only the EIF4E4-PABP1 interaction but neither the binding to EIF4G3 nor phosphorylation is essential for translation. These studies also demonstrated that the lack of both EIF4E4 phosphorylation and EIF4G3 binding leads to a non-functional protein. Altogether, these findings further highlight the unique features of the translation initiation process in trypanosomatid protozoa.

  16. The unique Leishmania EIF4E4 N-terminus is a target for multiple phosphorylation events and participates in critical interactions required for translation initiation

    PubMed Central

    de Melo Neto, Osvaldo P; da Costa Lima, Tamara D C; Xavier, Camila C; Nascimento, Larissa M; Romão, Tatiany P; Assis, Ludmila A; Pereira, Mariana M C; Reis, Christian R S; Papadopoulou, Barbara

    2015-01-01

    The eukaryotic initiation factor 4E (eIF4E) recognizes the mRNA cap structure and, together with eIF4G and eIF4A, form the eIF4F complex that regulates translation initiation in eukaryotes. In trypanosomatids, 2 eIF4E homologues (EIF4E3 and EIF4E4) have been shown to be part of eIF4F-like complexes with presumed roles in translation initiation. Both proteins possess unique N-terminal extensions, which can be targeted for phosphorylation. Here, we provide novel insights on the Leishmania infantum EIF4E4 function and regulation. We show that EIF4E4 is constitutively expressed throughout the parasite development but is preferentially phosphorylated in exponentially grown promastigote and amastigote life stages, hence correlating with high levels of translation. Phosphorylation targets multiple serine-proline or threonine-proline residues within the N-terminal extension of EIF4E4 but does not require binding to the EIF4E4's partner, EIF4G3, or to the cap structure. We also report that EIF4E4 interacts with PABP1 through 3 conserved boxes at the EIF4E4 N-terminus and that this interaction is a prerequisite for efficient EIF4E4 phosphorylation. EIF4E4 is essential for Leishmania growth and an EIF4E4 null mutant was only obtained in the presence of an ectopically provided wild type gene. Complementation for the loss of EIF4E4 with several EIF4E4 mutant proteins affecting either phosphorylation or binding to mRNA or to EIF4E4 protein partners revealed that, in contrast to other eukaryotes, only the EIF4E4-PABP1 interaction but neither the binding to EIF4G3 nor phosphorylation is essential for translation. These studies also demonstrated that the lack of both EIF4E4 phosphorylation and EIF4G3 binding leads to a non-functional protein. Altogether, these findings further highlight the unique features of the translation initiation process in trypanosomatid protozoa. PMID:26338184

  17. Crystal structure of Bacillus anthracis transpeptidase enzyme CapD.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, R.; Richter, S.; Zhang, R.

    2009-09-04

    Bacillus anthracis elaborates a poly-{gamma}-d-glutamic acid capsule that protects bacilli from phagocytic killing during infection. The enzyme CapD generates amide bonds with peptidoglycan cross-bridges to anchor capsular material within the cell wall envelope of B. anthracis. The capsular biosynthetic pathway is essential for virulence during anthrax infections and can be targeted for anti-infective inhibition with small molecules. Here, we present the crystal structures of the {gamma}-glutamyltranspeptidase CapD with and without {alpha}-l-Glu-l-Glu dipeptide, a non-hydrolyzable analog of poly-{gamma}-d-glutamic acid, in the active site. Purified CapD displays transpeptidation activity in vitro, and its structure reveals an active site broadly accessible for poly-{gamma}-glutamatemore » binding and processing. Using structural and biochemical information, we derive a mechanistic model for CapD catalysis whereby Pro{sup 427}, Gly{sup 428}, and Gly{sup 429} activate the catalytic residue of the enzyme, Thr{sup 352}, and stabilize an oxyanion hole via main chain amide hydrogen bonds.« less

  18. PRMT5 is essential for the eIF4E-mediated 5′-cap dependent translation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Ji-Hong; Lee, Yoon-Mi; Lee, Gibok

    2014-10-03

    Highlights: • PRMT5 participates in syntheses of HIF-1α, c-Myc and cyclin D1 proteins. • PRMT5 promotes the 5′-cap dependent translation. • PRMT5 is required for eIF4E binding to mRNA 5′-cap. • PRMT5 is essential for eIF4E-dependent cell proliferation. - Abstract: It is becoming clear that PRMT5 plays essential roles in cell cycle progression, survival, and responses to external stresses. However, the precise mechanisms underlying such roles of PRMT5 have not been clearly understood. Previously, we have demonstrated that PRMT5 participates in cellular adaptation to hypoxia by ensuring 5′-cap dependent translation of HIF-1α. Given that c-Myc and cyclin D1 expressions aremore » also tightly regulated in 5′-cap dependent manner, we here tested the possibility that PRMT5 promotes cell proliferation by increasing de novo syntheses of the oncoproteins. c-Myc and cyclin D1 were found to be noticeably downregulated by PRMT5 knock-down. A RNA immunoprecipitation analysis, which can identify RNA–protein interactions, showed that PRMT5 is required for the interaction among eIF4E and 5′-UTRs of HIF-1α, c-Myc and cyclin D1 mRNAs. In addition, PRMT5 knock-down inhibited cell proliferation by inducing cell cycle arrest at the G1 phase. More importantly, ectopic expression of eIF4E significantly rescued the cell cycle progression and cell proliferation even in PRMT5-deficeint condition. Based on these results, we propose that PRMT5 determines cell fate by regulating 5′-cap dependent translation of proteins essential for proliferation and survival.« less

  19. A remarkable member of the polyoxometalates: the eight-nickel-capped alpha-keggin polyoxoazonickelate.

    PubMed

    Dong, Lanjun; Huang, Rudan; Wei, Yongge; Chu, Wei

    2009-08-17

    The eight-nickel-capped polyoxoazonickelate, [Ni(20)(OH)(24)(MMT)(12)(SO(4))](NO(3))(2).6H(2)O (1; MMT = 2-mercapto-5-methyl-1,3,4-thiadiazole), has been synthesized, which has an alpha-Keggin structure with eight nickel caps. In this structure, the polyatom is the late transition metal Ni(II); the central heteroatom is S, and the organic terminal ligand becomes the primary part of the Keggin structure. This is a Keplerate-type cluster, which shows a central Ni(II)(12) cuboctahedron formed by the 12 Ni(II) centers of the classical alpha-Keggin core and a Ni(II)(8) hexahedron formed by the eight nickel caps.

  20. Controlling self-assembly of diphenylalanine peptides at high pH using heterocyclic capping groups

    PubMed Central

    Martin, Adam D.; Wojciechowski, Jonathan P.; Robinson, Andrew B.; Heu, Celine; Garvey, Christopher J.; Ratcliffe, Julian; Waddington, Lynne J.; Gardiner, James; Thordarson, Pall

    2017-01-01

    Using small angle neutron scattering (SANS), it is shown that the existence of pre-assembled structures at high pH for a capped diphenylalanine hydrogel is controlled by the selection of N-terminal heterocyclic capping group, namely indole or carbazole. At high pH, changing from a somewhat hydrophilic indole capping group to a more hydrophobic carbazole capping group results in a shift from a high proportion of monomers to self-assembled fibers or wormlike micelles. The presence of these different self-assembled structures at high pH is confirmed through NMR and circular dichroism spectroscopy, scanning probe microscopy and cryogenic transmission electron microscopy. PMID:28272523

  1. Capped RNA primer binding to influenza polymerase and implications for the mechanism of cap-binding inhibitors

    PubMed Central

    Pflug, Alexander; Gaudon, Stephanie; Resa-Infante, Patricia; Lethier, Mathilde; Reich, Stefan; Schulze, Wiebke M

    2018-01-01

    Abstract Influenza polymerase uses short capped primers snatched from nascent Pol II transcripts to initiate transcription of viral mRNAs. Here we describe crystal structures of influenza A and B polymerase bound to a capped primer in a configuration consistent with transcription initiation (’priming state’) and show by functional assays that conserved residues from both the PB2 midlink and cap-binding domains are important for positioning the capped RNA. In particular, mutation of PB2 Arg264, which interacts with the triphosphate linkage in the cap, significantly and specifically decreases cap-dependent transcription. We also compare the configuration of the midlink and cap-binding domains in the priming state with their very different relative arrangement (called the ‘apo’ state) in structures where the potent cap-binding inhibitor VX-787, or a close analogue, is bound. In the ‘apo’ state the inhibitor makes additional interactions to the midlink domain that increases its affinity beyond that to the cap-binding domain alone. The comparison suggests that the mechanism of resistance of certain mutations that allow virus to escape from VX-787, notably PB2 N510T, can only be rationalized if VX-787 has a dual mode of action, direct inhibition of capped RNA binding as well as stabilization of the transcriptionally inactive ‘apo’ state. PMID:29202182

  2. T-Cap Pull-Off and Bending Behavior for Stitched Structure

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.; Leone, Frank A., Jr.

    2016-01-01

    The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a structural concept that was developed by The Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body aircraft configuration. An important design feature required for assembly is the integrally stitched T-cap, which provides connectivity of the corner (orthogonal) joint between adjacent panels. A series of tests were conducted on T-cap test articles, with and without a rod stiffener penetrating the T-cap web, under tension (pull-off) and bending loads. Three designs were tested, including the baseline design used in largescale test articles. The baseline had only the manufacturing stitch row adjacent to the fillet at the base of the T-cap web. Two new designs added stitching rows to the T-cap web at either 0.5- or 1.0-inch spacing along the height of the web. Testing was conducted at NASA Langley Research Center to determine the behavior of the T-cap region resulting from the applied loading. Results show that stitching arrests the initial delamination failures so that the maximum strength capability exceeds the load at which the initial delaminations develop. However, it was seen that the added web stitching had very little effect on the initial delamination failure load, but actually decreased the initial delamination failure load for tension loading of test articles without a stiffener passing through the web. Additionally, the added web stitching only increased the maximum load capability by between 1% and 12.5%. The presence of the stiffener, however, did increase the initial and maximum loads for both tension and bending loading as compared to the stringerless baseline design. Based on the results of the few samples tested, the additional stitching in the T-cap web showed little advantage over the baseline design in terms of structural failure at the T-cap web/skin junction for the current test articles.

  3. The mechanism of RNA 5' capping with NAD +, NADH and desphospho-CoA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, Jeremy G.; Zhang, Yu; Tian, Yuan

    The chemical nature of the 5' end of RNA is a key determinant of RNA stability, processing, localization and translation efficiency and has been proposed to provide a layer of ‘epitranscriptomic’ gene regulation. Recently it has been shown that some bacterial RNA species carry a 5'-end structure reminiscent of the 5' 7-methylguanylate ‘cap’ in eukaryotic RNA. In particular, RNA species containing a 5'-end nicotinamide adenine dinucleotide (NAD+) or 3'-desphospho-coenzyme A (dpCoA) have been identified in both Gram-negative and Gram-positive bacteria. It has been proposed that NAD+, reduced NAD+ (NADH) and dpCoA caps are added to RNA after transcription initiation, inmore » a manner analogous to the addition of 7-methylguanylate caps. Here we show instead that NAD+, NADH and dpCoA are incorporated into RNA during transcription initiation, by serving as non-canonical initiating nucleotides (NCINs) for de novo transcription initiation by cellular RNA polymerase (RNAP). We further show that both bacterial RNAP and eukaryotic RNAP II incorporate NCIN caps, that promoter DNA sequences at and upstream of the transcription start site determine the efficiency of NCIN capping, that NCIN capping occurs in vivo, and that NCIN capping has functional consequences. We report crystal structures of transcription initiation complexes containing NCIN-capped RNA products. Our results define the mechanism and structural basis of NCIN capping, and suggest that NCIN-mediated ‘ab initio capping’ may occur in all organisms.« less

  4. DcpS is a transcript-specific modulator of RNA in mammalian cells

    PubMed Central

    Zhou, Mi; Bail, Sophie; Plasterer, Heather L.; Rusche, James

    2015-01-01

    The scavenger decapping enzyme DcpS is a multifunctional protein initially identified by its property to hydrolyze the resulting cap structure following 3′ end mRNA decay. In Saccharomyces cerevisiae, the DcpS homolog Dcs1 is an obligate cofactor for the 5′-3′ exoribonuclease Xrn1 while the Caenorhabditis elegans homolog Dcs-1, facilitates Xrn1 mediated microRNA turnover. In both cases, this function is independent of the decapping activity. Whether DcpS and its decapping activity can affect mRNA steady state or stability in mammalian cells remains unknown. We sought to determine DcpS target genes in mammalian cells using a cell-permeable DcpS inhibitor compound, RG3039 initially developed for therapeutic treatment of spinal muscular atrophy. Global mRNA levels were examined following DcpS decapping inhibition with RG3039. The steady-state levels of 222 RNAs were altered upon RG3039 treatment. Of a subset selected for validation, two transcripts that appear to be long noncoding RNAs HS370762 and BC011766, were dependent on DcpS and its scavenger decapping catalytic activity and referred to as DcpS-responsive noncoding transcripts (DRNT) 1 and 2, respectively. Interestingly, only the increase in DRNT1 transcript was accompanied with an increase of its RNA stability and this increase was dependent on both DcpS and Xrn1. Importantly, unlike in yeast where the DcpS homolog is an obligate cofactor for Xrn1, stability of additional Xrn1 dependent RNAs were not altered by a reduction in DcpS levels. Collectively, our data demonstrate that DcpS in conjunction with Xrn1 has the potential to regulate RNA stability in a transcript-selective manner in mammalian cells. PMID:26001796

  5. How to find the optimal partner--studies of snurportin 1 interactions with U snRNA 5' TMG-cap analogues containing modified 2-amino group of 7-methylguanosine.

    PubMed

    Piecyk, Karolina; Niedzwiecka, Anna; Ferenc-Mrozek, Aleksandra; Lukaszewicz, Maciej; Darzynkiewicz, Edward; Jankowska-Anyszka, Marzena

    2015-08-01

    Snurportin 1 is an adaptor protein that mediates the active nuclear import of uridine-rich small nuclear RNAs (U snRNA) by the importin-β receptor pathway. Its cellular activity influences the overall transport yield of small ribonucleoprotein complexes containing N(2),N(2),7-trimethylguanosine (TMG) capped U snRNA. So far little is still known about structural requirements related to molecular recognition of the trimethylguanosine moiety by snurportin in solution. Since these interactions are of a great biomedical importance, we synthesized a series of new 7-methylguanosine cap analogues with extended substituents at the exocyclic 2-amino group to gain a deeper insight into how the TMG-cap is adapted into the snurportin cap-binding pocket. Prepared chemical tools were applied in binding assays using emission spectroscopy. Surprisingly, our results revealed strict selectivity of snurportin towards the TMG-cap structure that relied mainly on its structural stiffness and compactness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Cbp80 is needed for the expression of piRNA components and piRNAs

    PubMed Central

    Colombo, Martino; Hernandez, Greco; Beuchle, Dirk; Berger, Fabienne; Peischl, Stephan; Bruggmann, Rémy

    2017-01-01

    Cap binding protein 80 (Cbp80) is the larger subunit of the nuclear cap-binding complex (nCBC), which is known to play important roles in nuclear mRNA processing, export, stability and quality control events. Reducing Cbp80 mRNA levels in the female germline revealed that Cbp80 is also involved in defending the germline against transposable elements. Combining such knockdown experiments with large scale sequencing of small RNAs further showed that Cbp80 is involved in the initial biogenesis of piRNAs as well as in the secondary biogenesis pathway, the ping-pong amplification cycle. We further found that Cbp80 knockdown not only led to the upregulation of transposons, but also to delocalization of Piwi, Aub and Ago3, key factors in the piRNA biosynthesis pathway. Furthermore, compared to controls, levels of Piwi and Aub were also reduced upon knock down of Cbp80. On the other hand, with the same treatment we could not detect significant changes in levels or subcellular distribution (nuage localization) of piRNA precursor transcripts. This shows that Cbp80 plays an important role in the production and localization of the protein components of the piRNA pathway and it seems to be less important for the production and export of the piRNA precursor transcripts. PMID:28746365

  7. NAT1/DAP5/p97 and Atypical Translational Control in the Drosophila Circadian Oscillator

    PubMed Central

    Bradley, Sean; Narayanan, Siddhartha; Rosbash, Michael

    2012-01-01

    Circadian rhythms are driven by gene expression feedback loops in metazoans. Based on the success of genetic screens for circadian mutants in Drosophila melanogaster, we undertook a targeted RNAi screen to study the impact of translation control genes on circadian locomotor activity rhythms in flies. Knockdown of vital translation factors in timeless protein-positive circadian neurons caused a range of effects including lethality. Knockdown of the atypical translation factor NAT1 had the strongest effect and lengthened circadian period. It also dramatically reduced PER protein levels in pigment dispersing factor (PDF) neurons. BELLE (BEL) protein was also reduced by the NAT1 knockdown, presumably reflecting a role of NAT1 in belle mRNA translation. belle and NAT1 are also targets of the key circadian transcription factor Clock (CLK). Further evidence for a role of NAT1 is that inhibition of the target of rapamycin (TOR) kinase increased oscillator activity in cultured wings, which is absent under conditions of NAT1 knockdown. Moreover, the per 5′- and 3′-UTRs may function together to facilitate cap-independent translation under conditions of TOR inhibition. We suggest that NAT1 and cap-independent translation are important for per mRNA translation, which is also important for the circadian oscillator. A circadian translation program may be especially important in fly pacemaker cells. PMID:22904033

  8. Ge-cap quantum-well bulk FinFET for 5 nm node CMOS integration

    NASA Astrophysics Data System (ADS)

    Dwi Kurniawan, Erry; Peng, Kang-Hui; Yang, Shang-Yi; Yang, Yi-Yun; Thirunavukkarasu, Vasanthan; Lin, Yu-Hsien; Wu, Yung-Chun

    2018-04-01

    We propose the use of Ge-cap quantum-well (QW) bulk FinFET for 5 nm CMOS integration, which is a Si channel wrapped with Ge around three sides of the fin channel. The simulation results show that the Ge-cap FinFET structure demonstrates better performance than pure Si, pure Ge, and Si-cap FinFET structures. By optimizing Si fin width and Ge-cap thickness, the on-state current of nFET and pFET can also be symmetric without changing the total fin width (F Wp = F Wn). The electrons in Ge-cap nFinFET concentrate in the Si channel because of QWs formed in the lowest conduction band of the Ge and Si heterostructure, while the holes in Ge-cap pFinFET prefer to stay in Ge surfaces owing to QWs formed in the Ge valence band. The physics studies of this device have made the design rules relevant for the application of the CMOS inverter and static random access memory (SRAM) application technology.

  9. Structure-Activity Relationships for in vitro Diuretic Activity of CAP2b in the Housefly

    DTIC Science & Technology

    2007-01-01

    p e p t i d e s 2 8 ( 2 0 0 7 ) 5 7 – 6 1Structure-activity relationships for in vitro diuretic activity of CAP2b in the housefly Ronald J. Nachman a...the peptide Manse-CAP2b (pELYAFPRV-NH2) were assayed for diuretic activity on Malpighian tubules of the housefly Musca domestica (M. domestica). The C...required the C-terminal heptapeptide, which was equipotent with the most active of the native housefly CAP2b peptides. Replacement of Arg7 and Val8 with

  10. Curved cap corrugated sheet

    NASA Technical Reports Server (NTRS)

    Davis, R. C.; Bales, T. T.; Royster, D. M.; Jackson, L. R. (Inventor)

    1984-01-01

    The report describes a structure for a strong, lightweight corrugated sheet. The sheet is planar or curved and includes a plurality of corrugation segments, each segment being comprised of a generally U-shaped corrugation with a part-cylindrical crown and cap strip, and straight side walls and with secondary corrugations oriented at right angles to said side walls. The cap strip is bonded to the crown and the longitudinal edge of said cap strip extends beyond edge at the intersection between said crown and said side walls. The high strength relative to weight of the structure makes it desirable for use in aircraft or spacecraft.

  11. Bioactive Surface Modification of Hydroxyapatite

    PubMed Central

    Okazaki, Yohei; Hiasa, Kyou; Yasuda, Keisuke; Nogami, Keisuke; Mizumachi, Wataru; Hirata, Isao

    2013-01-01

    The purpose of this study was to establish an acid-etching procedure for altering the Ca/P ratio of the nanostructured surface of hydroxyapatite (HAP) by using surface chemical and morphological analyses (XPS, XRD, SEM, surface roughness, and wettability) and to evaluate the in vitro response of osteoblast-like cells (MC3T3-E1 cells) to the modified surfaces. This study utilized HAP and HAP treated with 10%, 20%, 30%, 40%, 50%, or 60% phosphoric acid solution for 10 minutes at 25°C, followed by rinsing 3 times with ultrapure water. The 30% phosphoric acid etching process that provided a Ca/P ratio of 1.50, without destruction of the grain boundary of HAP, was selected as a surface-modification procedure. Additionally, HAP treated by the 30% phosphoric acid etching process was stored under dry conditions at 25°C for 12 hours, and the Ca/P ratio approximated to 1.00 accidentally. The initial adhesion, proliferation, and differentiation (alkaline phosphatase (ALP) activity and relative mRNA level for ALP) of MC3T3-E1 cells on the modified surfaces were significantly promoted (P < 0.05 and 0.01). These findings show that the 30% phosphoric acid etching process for the nanostructured HAP surface can alter the Ca/P ratio effectively and may accelerate the initial adhesion, proliferation, and differentiation of MC3T3-E1 cells. PMID:23862150

  12. Analysis of RNA binding by the dengue virus NS5 RNA capping enzyme.

    PubMed

    Henderson, Brittney R; Saeedi, Bejan J; Campagnola, Grace; Geiss, Brian J

    2011-01-01

    Flaviviruses are small, capped positive sense RNA viruses that replicate in the cytoplasm of infected cells. Dengue virus and other related flaviviruses have evolved RNA capping enzymes to form the viral RNA cap structure that protects the viral genome and directs efficient viral polyprotein translation. The N-terminal domain of NS5 possesses the methyltransferase and guanylyltransferase activities necessary for forming mature RNA cap structures. The mechanism for flavivirus guanylyltransferase activity is currently unknown, and how the capping enzyme binds its diphosphorylated RNA substrate is important for deciphering how the flavivirus guanylyltransferase functions. In this report we examine how flavivirus NS5 N-terminal capping enzymes bind to the 5' end of the viral RNA using a fluorescence polarization-based RNA binding assay. We observed that the K(D) for RNA binding is approximately 200 nM Dengue, Yellow Fever, and West Nile virus capping enzymes. Removal of one or both of the 5' phosphates reduces binding affinity, indicating that the terminal phosphates contribute significantly to binding. RNA binding affinity is negatively affected by the presence of GTP or ATP and positively affected by S-adensyl methoninine (SAM). Structural superpositioning of the dengue virus capping enzyme with the Vaccinia virus VP39 protein bound to RNA suggests how the flavivirus capping enzyme may bind RNA, and mutagenesis analysis of residues in the putative RNA binding site demonstrate that several basic residues are critical for RNA binding. Several mutants show differential binding to 5' di-, mono-, and un-phosphorylated RNAs. The mode of RNA binding appears similar to that found with other methyltransferase enzymes, and a discussion of diphosphorylated RNA binding is presented.

  13. Tunable cavity resonator including a plurality of MEMS beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peroulis, Dimitrios; Fruehling, Adam; Small, Joshua Azariah

    A tunable cavity resonator includes a substrate, a cap structure, and a tuning assembly. The cap structure extends from the substrate, and at least one of the substrate and the cap structure defines a resonator cavity. The tuning assembly is positioned at least partially within the resonator cavity. The tuning assembly includes a plurality of fixed-fixed MEMS beams configured for controllable movement relative to the substrate between an activated position and a deactivated position in order to tune a resonant frequency of the tunable cavity resonator.

  14. The importance of mRNA structure in determining the pathogenicity of synonymous and non-synonymous mutations in haemophilia

    PubMed Central

    Hamasaki-Katagiri, Nobuko; Lin, Brian C.; Simon, Jonathan; Hunt, Ryan C.; Schiller, Tal; Russek-Cohen, Estelle; Komar, Anton A.; Bar, Haim; Kimchi-Sarfaty, Chava

    2016-01-01

    Introduction Mutational analysis is commonly used to support the diagnosis and management of haemophilia. This has allowed for the generation of large mutation databases which provide unparalleled insight into genotype-phenotype relationships. Haemophilia is associated with inversions, deletions, insertions, nonsense and missense mutations. Both synonymous and non-synonymous mutations influence the base pairing of messenger RNA (mRNA), which can alter mRNA structure, cellular half-life and ribosome processivity/elongation. However, the role of mRNA structure in determining the pathogenicity of point mutations in haemophilia has not been evaluated. Aim To evaluate mRNA thermodynamic stability and associated RNA prediction software as a means to distinguish between neutral and disease-associated mutations in haemophilia. Methods Five mRNA structure prediction software programs were used to assess the thermodynamic stability of mRNA fragments carrying neutral vs. disease-associated and synonymous vs. non-synonymous point mutations in F8, F9 and a third X-linked gene, DMD (dystrophin). Results In F8 and DMD, disease-associated mutations tend to occur in more structurally stable mRNA regions, represented by lower MFE (minimum free energy) levels. In comparing multiple software packages for mRNA structure prediction, a 101–151 nucleotide fragment length appears to be a feasible range for structuring future studies. Conclusion mRNA thermodynamic stability is one predictive characteristic, which when combined with other RNA and protein features, may offer significant insight when screening sequencing data for novel disease-associated mutations. Our results also suggest potential utility in evaluating the mRNA thermodynamic stability profile of a gene when determining the viability of interchanging codons for biological and therapeutic applications. PMID:27933712

  15. Structure of catabolite activator protein with cobalt(II) and sulfate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Ramya R.; Lawson, Catherine L., E-mail: cathy.lawson@rutgers.edu

    2014-04-15

    The crystal structure of E. coli catabolite activator protein with bound cobalt(II) and sulfate ions at 1.97 Å resolution is reported. The crystal structure of cyclic AMP–catabolite activator protein (CAP) from Escherichia coli containing cobalt(II) chloride and ammonium sulfate is reported at 1.97 Å resolution. Each of the two CAP subunits in the asymmetric unit binds one cobalt(II) ion, in each case coordinated by N-terminal domain residues His19, His21 and Glu96 plus an additional acidic residue contributed via a crystal contact. The three identified N-terminal domain cobalt-binding residues are part of a region of CAP that is important for transcriptionmore » activation at class II CAP-dependent promoters. Sulfate anions mediate additional crystal lattice contacts and occupy sites corresponding to DNA backbone phosphate positions in CAP–DNA complex structures.« less

  16. Self-assembly of short aβ(16-22) peptides: effect of terminal capping and the role of electrostatic interaction.

    PubMed

    Tao, Kai; Wang, Jiqian; Zhou, Peng; Wang, Chengdong; Xu, Hai; Zhao, Xiubo; Lu, Jian R

    2011-03-15

    We report the characterization of self-assembly of two short β-amyloid (Aβ) peptides (16-22), KLVFFAE and Ac-KLVFFAE-NH2, focusing on examining the effect of terminal capping. At pH 2.0, TEM and AFM imaging revealed that the uncapped peptide self-assembled into long, straight, and unbranched nanofibrils with a diameter of 3.8 ± 1.0 nm while the capped one formed nanotapes with a width of 70.0 ± 25.0 nm. CD analysis indicated the formation of β-sheet structures in both aggregated systems, but the characteristic CD peaks were less intense and less red-shifted for the uncapped than the capped one, indicative of weaker hydrogen bonding and weaker π-π stacking. Fluorescence and rheological measurements also confirmed stronger intermolecular attraction associated with the capped nanotapes. At acidic pH 2, each uncapped KLVFFAE molecule carries two positive charges at the N-terminus, and the strong electrostatic repulsion favors interfacial curving and twisting within the β-sheet, causing weakening of hydrogen bonds and π-π stacking. In contrast, capping reduces the charge by half, and intermolecular electrostatic repulsion is drastically reduced. As a result, the lateral attraction of β-sheets favors stronger lamellar structuring, leading to the formation of rather flat nanotapes. Flat tapes with similar morphological structure were also formed by the capped peptide at pH 12.0 where the charge on the capping end was reversed. This study has thus demonstrated how self-assembled nanostructures of small peptides can be manipulated through simple molecular structure design and tuning of electrostatic interaction.

  17. Atomic-resolution structure of the CAP-Gly domain of dynactin on polymeric microtubules determined by magic angle spinning NMR spectroscopy.

    PubMed

    Yan, Si; Guo, Changmiao; Hou, Guangjin; Zhang, Huilan; Lu, Xingyu; Williams, John Charles; Polenova, Tatyana

    2015-11-24

    Microtubules and their associated proteins perform a broad array of essential physiological functions, including mitosis, polarization and differentiation, cell migration, and vesicle and organelle transport. As such, they have been extensively studied at multiple levels of resolution (e.g., from structural biology to cell biology). Despite these efforts, there remain significant gaps in our knowledge concerning how microtubule-binding proteins bind to microtubules, how dynamics connect different conformational states, and how these interactions and dynamics affect cellular processes. Structures of microtubule-associated proteins assembled on polymeric microtubules are not known at atomic resolution. Here, we report a structure of the cytoskeleton-associated protein glycine-rich (CAP-Gly) domain of dynactin motor on polymeric microtubules, solved by magic angle spinning NMR spectroscopy. We present the intermolecular interface of CAP-Gly with microtubules, derived by recording direct dipolar contacts between CAP-Gly and tubulin using double rotational echo double resonance (dREDOR)-filtered experiments. Our results indicate that the structure adopted by CAP-Gly varies, particularly around its loop regions, permitting its interaction with multiple binding partners and with the microtubules. To our knowledge, this study reports the first atomic-resolution structure of a microtubule-associated protein on polymeric microtubules. Our approach lays the foundation for atomic-resolution structural analysis of other microtubule-associated motors.

  18. Pharmacogenetic Inhibition of eIF4E-Dependent Mmp9 mRNA Translation Reverses Fragile X Syndrome-like Phenotypes

    PubMed Central

    Gkogkas, Christos G.; Khoutorsky, Arkady; Cao, Ruifeng; Jafarnejad, Seyed Mehdi; Prager-Khoutorsky, Masha; Giannakas, Nikolaos; Kaminari, Archontia; Fragkouli, Apostolia; Nader, Karim; Price, Theodore J.; Konicek, Bruce W.; Graff, Jeremy R.; Tzinia, Athina K.; Lacaille, Jean-Claude; Sonenberg, Nahum

    2015-01-01

    SUMMARY Fragile X syndrome (FXS) is the leading genetic cause of autism. Mutations in Fmr1 (fragile X mental retardation 1 gene) engender exaggerated translation resulting in dendritic spine dysmorphogenesis, synaptic plasticity alterations, and behavioral deficits in mice, which are reminiscent of FXS pheno-types. Using postmortem brains from FXS patients and Fmr1 knockout mice (Fmr1 −/y), we show that phosphorylation of the mRNA 5′ cap binding protein, eukaryotic initiation factor 4E (eIF4E), is elevated concomitant with increased expression of matrix metalloproteinase 9 (MMP-9) protein. Genetic or pharmacological reduction of eIF4E phosphorylation rescued core behavioral deficits, synaptic plasticity alterations, and dendritic spine morphology defects via reducing exaggerated translation of Mmp9 mRNA in Fmr1 −/y mice, whereas MMP-9 overexpression produced several FXS-like phenotypes. These results uncover a mechanism of regulation of synaptic function by translational control of Mmp-9 in FXS, which opens the possibility of new treatment avenues for the diverse neurological and psychiatric aspects of FXS. PMID:25466251

  19. Efficient initiation of mammalian mRNA translation at a CUG codon.

    PubMed Central

    Dasso, M C; Jackson, R J

    1989-01-01

    Nucleotide substitutions were made at the initiation codon of an influenza virus NS cDNA clone in a vector carrying the bacteriophage T7 promoter. When capped mRNA transcripts of these constructs were translated in the rabbit reticulocyte lysate, a change in the initiation codon from...AUAAUGG...to...AUACUGG...reduced the in vitro translational efficiency by only 50-60%, and resulted in only a small increase in the yield of short products presumed to be initiated at downstream sites. Synthesis of the full-length product was initiated exclusively at the mutated codon, with negligible use either of in-frame upstream CUG or GUG codons, or of an in-frame downstream GUG codon. We conclude that CUG has the potential to function as an efficient initiation codon in mammalian systems, at least in certain contexts. Images PMID:2780285

  20. Synthesis and structure-activity relationship of histone deacetylase (HDAC) inhibitors with triazole-linked cap group.

    PubMed

    Chen, Po C; Patil, Vishal; Guerrant, William; Green, Patience; Oyelere, Adegboyega K

    2008-05-01

    Histone deacetylase (HDAC) inhibition is a recent, clinically validated therapeutic strategy for cancer treatment. Small molecule HDAC inhibitors identified so far fall in to three distinct structural motifs: the zinc-binding group (ZBG), a hydrophobic linker, and a recognition cap group. Here we report the suitability of a 1,2,3-triazole ring as a surface recognition cap group-linking moiety in suberoylanilide hydroxamic acid-like (SAHA-like) HDAC inhibitors. Using "click" chemistry (Huisgen cycloaddition reaction), several triazole-linked SAHA-like hydroxamates were synthesized. Structure-activity relationship revealed that the position of the triazole moiety as well as the identity of the cap group markedly affected the in vitro HDAC inhibition and cell growth inhibitory activities of this class of compounds.

  1. DFT Studies of Graphene-Functionalised Derivatives of Capecitabine

    NASA Astrophysics Data System (ADS)

    Aramideh, Mehdi; Mirzaei, Mahmoud; Khodarahmi, Ghadamali; Gülseren, Oğuz

    2017-11-01

    Cancer is one of the major problems for so many people around the world; therefore, dedicating efforts to explore efficient therapeutic methodologies is very important for researchers of life sciences. In this case, nanostructures are expected to be carriers of medicinal compounds for targeted drug design and delivery purposes. Within this work, the graphene (Gr)-functionalised derivatives of capecitabine (CAP), as a representative anticancer, have been studied based on density functional theory calculations. Two different sizes of Gr molecular models have been used for the functionalisation of CAP counterparts, CAP-Gr3 and CAP-Gr5, to explore the effects of Gr-functionalisation on the original properties of CAP. All singular and functionalised molecular models have been optimised and the molecular and atomic scale properties have been evaluated for the optimised structures. Higher formation favourability has been obtained for CAP-Gr5 in comparison with CAP-Gr3 and better structural stability has been obtained in the water-solvated system than the isolated gas-phase system for all models. The CAP-Gr5 model could play a better role of electron transferring in comparison with the CAP-Gr3 model. As a concluding remark, the molecular properties of CAP changed from singular to functionalised models whereas the atomic properties remained almost unchanged, which is expected for a carrier not to use significant perturbations to the original properties of the carried counterpart.

  2. Tension and Bending Testing of an Integral T-Cap for Stitched Composite Airframe Joints

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.; Leone, Frank A., Jr.

    2016-01-01

    The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a structural concept that was developed by The Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body aircraft configuration. An important design feature required for assembly is the integrally stitched T-cap, which provides connectivity of the corner (orthogonal) joint between adjacent panels. A series of tests were conducted on T-cap test articles, with and without a rod stiffener penetrating the T-cap web, under tension (pull-off) and bending loads. Three designs were tested, including the baseline design used in large-scale test articles. The baseline had only the manufacturing stitch row adjacent to the fillet at the base of the T-cap web. Two new designs added stitching rows to the T-cap web at either 0.5- or 1.0-inch spacing along the height of the web. Testing was conducted at NASA Langley Research Center to determine the behavior of the T-cap region resulting from the applied loading. Results show that stitching arrests the initial delamination failures so that the maximum strength capability exceeds the load at which the initial delaminations develop. However, it was seen that the added web stitching had very little effect on the initial delamination failure load, but actually decreased the initial delamination failure load for tension loading of test articles without a stiffener passing through the web. Additionally, the added web stitching only increased the maximum load capability by between 1% and 12.5%. The presence of the stiffener, however, did increase the initial and maximum loads for both tension and bending loading as compared to the stringerless baseline design. Based on the results of the few samples tested, the additional stitching in the T-cap web showed little advantage over the baseline design in terms of structural failure at the T-cap web/skin junction for the current test articles.

  3. Production of porous Calcium Phosphate (CaP) ceramics with aligned pores using ceramic/camphene-based co-extrusion.

    PubMed

    Choi, Won-Young; Kim, Hyoun-Ee; Moon, Young-Wook; Shin, Kwan-Ha; Koh, Young-Hag

    2015-01-01

    Calcium phosphate (CaP) ceramics are one of the most valuable biomaterials for uses as the bone scaffold owing to their outstanding biocompatability, bioactivity, and biodegradation nature. In particular, these materials with an open porous structure can stimulate bone ingrowth into their 3-dimensionally interconnected pores. However, the creation of pores in bulk materials would inevitably cause a severe reduction in mechanical properties. Thus, it is a challenge to explore new ways of improving the mechanical properties of porous CaP scaffolds without scarifying their high porosity. Porous CaP ceramic scaffolds with aligned pores were successfully produced using ceramic/camphene-based co-extrusion. This aligned porous structure allowed for the achievement of high compressive strength when tested parallel to the direction of aligned pores. In addition, the overall porosity and mechanical properties of the aligned porous CaP ceramic scaffolds could be tailored simply by adjusting the initial CaP content in the CaP/camphene slurry. The porous CaP scaffolds showed excellent in vitro biocompatibility, suggesting their potential as the bone scaffold. Aligned porous CaP ceramic scaffolds with considerably enhanced mechanical properties and tailorable porosity would find very useful applications as the bone scaffold.

  4. Mitotic protein kinase CDK1 phosphorylation of mRNA translation regulator 4E-BP1 Ser83 may contribute to cell transformation

    DOE PAGES

    Velasquez, Celestino; Cheng, Erdong; Shuda, Masahiro; ...

    2016-07-11

    mTOR-directed 4E-BP1 phosphorylation promotes cap-dependent translation and tumorigen-esis. During mitosis, CDK1 substitutes for mTOR and fully phosphorylates 4E-BP1 at canoni-cal as well a non-canonical S83 site resulting in a mitosis-specific hyperphosphorylated δ isoform. Colocalization studies with a phospho-S83 specific antibody indicate that 4E-BP1 S83 phosphorylation accumulates at centrosomes during prophase, peaks at metaphase, and decreases through telophase. While S83 phosphorylation of 4E-BP1 does not affect in vitro cap-dependent translation, nor eIF4G/4E-BP1 cap-binding, expression of an alanine substitution mutant 4E-BP1.S83A partially reverses rodent cell transformation induced by Merkel cell polyomavirus (MCV) small T (sT) antigen viral oncoprotein. In contrast to inhibitorymore » mTOR 4E-BP1 phosphorylation, these findings suggest that mitotic CDK1-directed phosphorylation of δ-4E-BP1 may yield a gain-of-function, distinct from translation regulation, that may be important in tumorigenesis and mitotic centrosome function.« less

  5. A protein tyrosine phosphatase-like protein from baculovirus has RNA 5′-triphosphatase and diphosphatase activities

    PubMed Central

    Takagi, Toshimitsu; Taylor, Gregory S.; Kusakabe, Takahiro; Charbonneau, Harry; Buratowski, Stephen

    1998-01-01

    The superfamily of protein tyrosine phosphatases (PTPs) includes at least one enzyme with an RNA substrate. We recently showed that the RNA triphosphatase domain of the Caenorhabditis elegans mRNA capping enzyme is related to the PTP enzyme family by sequence similarity and mechanism. The PTP most similar in sequence to the capping enzyme triphosphatase is BVP, a dual-specificity PTP encoded by the Autographa californica nuclear polyhedrosis virus. Although BVP previously has been shown to have modest tyrosine and serine/threonine phosphatase activity, we find that it is much more potent as an RNA 5′-phosphatase. BVP sequentially removes γ and β phosphates from the 5′ end of triphosphate-terminated RNA, leaving a 5′-monophosphate end. The activity was specific for polynucleotides; nucleotide triphosphates were not hydrolyzed. A mutant protein in which the active site cysteine was replaced with serine was inactive. Three other dual-specificity PTPs (VH1, VHR, and Cdc14) did not exhibit detectable RNA phosphatase activity. Therefore, capping enzyme and BVP are members of a distinct PTP-like subfamily that can remove phosphates from RNA. PMID:9707557

  6. The cyclic nucleotide gated cation channel AtCNGC10 traffics from the ER via Golgi vesicles to the plasma membrane of Arabidopsis root and leaf cells.

    PubMed

    Christopher, David A; Borsics, Tamas; Yuen, Christen Y L; Ullmer, Wendy; Andème-Ondzighi, Christine; Andres, Marilou A; Kang, Byung-Ho; Staehelin, L Andrew

    2007-09-19

    The cyclic nucleotide-gated ion channels (CNGCs) maintain cation homeostasis essential for a wide range of physiological processes in plant cells. However, the precise subcellular locations and trafficking of these membrane proteins are poorly understood. This is further complicated by a general deficiency of information about targeting pathways of membrane proteins in plants. To investigate CNGC trafficking and localization, we have measured Atcngc5 and Atcngc10 expression in roots and leaves, analyzed AtCNGC10-GFP fusions transiently expressed in protoplasts, and conducted immunofluorescence labeling of protoplasts and immunoelectron microscopic analysis of high pressure frozen leaves and roots. AtCNGC10 mRNA and protein levels were 2.5-fold higher in roots than leaves, while AtCNGC5 mRNA and protein levels were nearly equal in these tissues. The AtCNGC10-EGFP fusion was targeted to the plasma membrane in leaf protoplasts, and lightly labeled several intracellular structures. Immunofluorescence microscopy with affinity purified CNGC-specific antisera indicated that AtCNGC5 and AtCNGC10 are present in the plasma membrane of protoplasts. Immunoelectron microscopy demonstrated that AtCNGC10 was associated with the plasma membrane of mesophyll, palisade parenchyma and epidermal cells of leaves, and the meristem, columella and cap cells of roots. AtCNCG10 was also observed in the endoplasmic reticulum and Golgi cisternae and vesicles of 50-150 nm in size. Patch clamp assays of an AtCNGC10-GFP fusion expressed in HEK293 cells measured significant cation currents. AtCNGC5 and AtCNGC10 are plasma membrane proteins. We postulate that AtCNGC10 traffics from the endoplasmic reticulum via the Golgi apparatus and associated vesicles to the plasma membrane. The presence of the cation channel, AtCNGC10, in root cap meristem cells, cell plate, and gravity-sensing columella cells, combined with the previously reported antisense phenotypes of decreased gravitropic and cell enlargement responses, suggest roles of AtCNGC10 in modulating cation balance required for root gravitropism, cell division and growth.

  7. Size-related cytotoxicological aspects of polyvinylpyrrolidone-capped platinum nanoparticles.

    PubMed

    Buchtelova, Hana; Dostalova, Simona; Michalek, Petr; Krizkova, Sona; Strmiska, Vladislav; Kopel, Pavel; Hynek, David; Richtera, Lukas; Ridoskova, Andrea; Adam, Pavlina; Kynicky, Jindrich; Brtnicky, Martin; Heger, Zbynek; Adam, Vojtech

    2017-07-01

    The nanotechnological concept is based on size-dependent properties of particles in the 1-100 nm range. Nevertheless, the connection between their size and effect is still not clear. Thus, we focused on reductive colloidal synthesis, characterization and biological testing of Pt nanoparticles (PtNPs) capped with biocompatible polymer polyvinylpyrrolidone (PVP). Synthesized PtNPs were of 3 different primary sizes (approx. ∼10; ∼14 and > 20 nm) and demonstrated exceptional haemocompatibility. In vitro treatment of three different types of malignant cells (prostate - LNCaP, breast - MDA-MB-231 and neuroblastoma - GI-ME-N) revealed that even marginal differences in PtNPs diameter resulted in changes in their cytotoxicity. The highest cytotoxicity was observed using the smallest PtNPs-10, where 24IC 50 was lower (3.1-6.2 μg/mL) than for cisplatin (8.1-19.8 μg/mL). In contrast to MDA-MB-231 and LNCaP cells, in GI-ME-N cells PtNPs caused noticeable changes in their cellular structure without influencing their viability. Post-exposure analyses revealed that PtNPs-29 and PtNPs-40 were capable of forming considerably higher amount of reactive oxygen species with consequent stimulation of expression of metallothionein (MT1/2 and MT3), at both mRNA and protein level. Overall, our pilot study demonstrates that in the nanoscaled world even the smallest differences can have crucial biological effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. L-serine capped ZnS:Mn nanocrystals for plant cell biological studies and as a growth enhancing agent for micropropagation of Bacopa monnieri Linn. (Brahmi:Scrophulariaceae)

    NASA Astrophysics Data System (ADS)

    Augustine, M. Sajimol; Mathew, Lizzy; Alex, Roselin; Deepa, G. D.; Jayalekshmi, S.

    2014-01-01

    In the present work, the prospects of ZnS:Mn nanocrystals capped with L- serine, a bio-compatible amino acid, synthesized by wet chemical route, as efficient fluorescent probes for plant cell biological studies have been investigated. The present synthesis route using bio-compatible material is a low cost and easy to control method. The colloidal stability of the capped nano crystals is very good as they remain stable without settling down for long time. It is observed that L- serine significantly modifies the structural and optical characteristics of the ZnS:Mn nanocrystals and hence is suitable as a bio-compatible capping agent. The structural properties of L- serine capped nanocrystals were investigated by XRD technique. The size of the L- serine capped ZnS:Mn nanocrystals is found to be around 2 nm . The optical characterization of the nanocrystals was carried out on the basis of photoluminescence (PL) spectroscopic studies. The intense photoluminescence emission observed around 597nm for L-serine capped ZnS:Mn offers high prospects of applications in bio-imaging fields. The unique optical properties of nanoparticles make them appealing as in vivo and in vitro fluorophores in a variety of biological investigations. In the present study, L-serine capped ZnS:Mn nanocrystals were used as a staining dye in fluorescent microscope for observing cell division, cell structure etc. These nanocrystals were also incorporated into the culture media along with the normal auxin- cytokinin hormone combinations in Murashige and Skoog (MS) medium for micropropagation of Bacopa monnieri Linn. (Brahmi:Scrophulariaceae), an Ayurvedic medicine. The results suggest that L-serine capped ZnS:Mn nanocrystals can act as efficient enhancers towards quick callusing and shoot proliferation.

  9. Origin of interfacial perpendicular magnetic anisotropy in MgO/CoFe/metallic capping layer structures

    NASA Astrophysics Data System (ADS)

    Peng, Shouzhong; Wang, Mengxing; Yang, Hongxin; Zeng, Lang; Nan, Jiang; Zhou, Jiaqi; Zhang, Youguang; Hallal, Ali; Chshiev, Mairbek; Wang, Kang L.; Zhang, Qianfan; Zhao, Weisheng

    2015-12-01

    Spin-transfer-torque magnetic random access memory (STT-MRAM) attracts extensive attentions due to its non-volatility, high density and low power consumption. The core device in STT-MRAM is CoFeB/MgO-based magnetic tunnel junction (MTJ), which possesses a high tunnel magnetoresistance ratio as well as a large value of perpendicular magnetic anisotropy (PMA). It has been experimentally proven that a capping layer coating on CoFeB layer is essential to obtain a strong PMA. However, the physical mechanism of such effect remains unclear. In this paper, we investigate the origin of the PMA in MgO/CoFe/metallic capping layer structures by using a first-principles computation scheme. The trend of PMA variation with different capping materials agrees well with experimental results. We find that interfacial PMA in the three-layer structures comes from both the MgO/CoFe and CoFe/capping layer interfaces, which can be analyzed separately. Furthermore, the PMAs in the CoFe/capping layer interfaces are analyzed through resolving the magnetic anisotropy energy by layer and orbital. The variation of PMA with different capping materials is attributed to the different hybridizations of both d and p orbitals via spin-orbit coupling. This work can significantly benefit the research and development of nanoscale STT-MRAM.

  10. Origin of interfacial perpendicular magnetic anisotropy in MgO/CoFe/metallic capping layer structures.

    PubMed

    Peng, Shouzhong; Wang, Mengxing; Yang, Hongxin; Zeng, Lang; Nan, Jiang; Zhou, Jiaqi; Zhang, Youguang; Hallal, Ali; Chshiev, Mairbek; Wang, Kang L; Zhang, Qianfan; Zhao, Weisheng

    2015-12-11

    Spin-transfer-torque magnetic random access memory (STT-MRAM) attracts extensive attentions due to its non-volatility, high density and low power consumption. The core device in STT-MRAM is CoFeB/MgO-based magnetic tunnel junction (MTJ), which possesses a high tunnel magnetoresistance ratio as well as a large value of perpendicular magnetic anisotropy (PMA). It has been experimentally proven that a capping layer coating on CoFeB layer is essential to obtain a strong PMA. However, the physical mechanism of such effect remains unclear. In this paper, we investigate the origin of the PMA in MgO/CoFe/metallic capping layer structures by using a first-principles computation scheme. The trend of PMA variation with different capping materials agrees well with experimental results. We find that interfacial PMA in the three-layer structures comes from both the MgO/CoFe and CoFe/capping layer interfaces, which can be analyzed separately. Furthermore, the PMAs in the CoFe/capping layer interfaces are analyzed through resolving the magnetic anisotropy energy by layer and orbital. The variation of PMA with different capping materials is attributed to the different hybridizations of both d and p orbitals via spin-orbit coupling. This work can significantly benefit the research and development of nanoscale STT-MRAM.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Shota, E-mail: shota-o@gifu-u.ac.jp; Department of Physics, Graduate School of Engineering, Yokohama National University, Yokohama 240-8501; Tanikawa, Kousei

    Revealing a universal relation between geometrical structures and electronic properties of capped carbon nanotubes (CNTs) is one of the current objectives in nanocarbon community. Here, we investigate the local curvature of capped CNTs and define the cap region by a crossover behavior of the curvature energy versus the number of carbon atoms integrated from the tip to the tube region. Clear correlations among the energy gap of the cap localized states, the curvature energy, the number of carbon atoms in the cap region, and the number of specific carbon clusters are observed. The present analysis opens the way to understandmore » the cap states.« less

  12. 76 FR 6536 - Airworthiness Directives; Bombardier, Inc. Model CL-215-1A10 (CL-215), CL-215-6B11 (CL-215T...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-07

    ... analysis of the systems and structure in the potential line of trajectory of a failed screw cap/end cap for... of aileron control [and consequent reduced controllability of the airplane]. * * * * * We are issuing... in the potential line of trajectory of a failed screw cap/end cap for each accumulator has been...

  13. Characterization of the ribonuclease activity on the skin surface

    PubMed Central

    Probst, Jochen; Brechtel, Sonja; Scheel, Birgit; Hoerr, Ingmar; Jung, Günther; Rammensee, Hans-Georg; Pascolo, Steve

    2006-01-01

    The rapid degradation of ribonucleic acids (RNA) by ubiquitous ribonucleases limits the efficacy of new therapies based on RNA molecules. Therefore, our aim was to characterize the natural ribonuclease activities on the skin and in blood plasma i.e. at sites where many drugs in development are applied. On the skin surfaces of Homo sapiens and Mus musculus we observed dominant pyrimidine-specific ribonuclease activity. This activity is not prevented by a cap structure at the 5'-end of messenger RNA (mRNA) and is not primarily of a 5'- or 3'-exonuclease type. Moreover, the ribonuclease activity on the skin or in blood plasma is not inhibited by chemical modifications introduced at the 2'OH group of cytidine or uridine residues. It is, however, inhibited by the ribonuclease inhibitor RNasin® although not by the ribonuclease inhibitor SUPERase· In™. The application of our findings in the field of medical science may result in an improved efficiency of RNA-based therapies that are currently in development. PMID:16732888

  14. Discrimination of acoustically similar conspecific and heterospecific vocalizations by black-capped chickadees (Poecile atricapillus).

    PubMed

    Hahn, Allison H; Campbell, Kimberley A; Congdon, Jenna V; Hoang, John; McMillan, Neil; Scully, Erin N; Yong, Joshua J H; Elie, Julie E; Sturdy, Christopher B

    2017-07-01

    Chickadees produce a multi-note chick-a-dee call in multiple socially relevant contexts. One component of this call is the D note, which is a low-frequency and acoustically complex note with a harmonic-like structure. In the current study, we tested black-capped chickadees on a between-category operant discrimination task using vocalizations with acoustic structures similar to black-capped chickadee D notes, but produced by various songbird species, in order to examine the role that phylogenetic distance plays in acoustic perception of vocal signals. We assessed the extent to which discrimination performance was influenced by the phylogenetic relatedness among the species producing the vocalizations and by the phylogenetic relatedness between the subjects' species (black-capped chickadees) and the vocalizers' species. We also conducted a bioacoustic analysis and discriminant function analysis in order to examine the acoustic similarities among the discrimination stimuli. A previous study has shown that neural activation in black-capped chickadee auditory and perceptual brain regions is similar following the presentation of these vocalization categories. However, we found that chickadees had difficulty discriminating between forward and reversed black-capped chickadee D notes, a result that directly corresponded to the bioacoustic analysis indicating that these stimulus categories were acoustically similar. In addition, our results suggest that the discrimination between vocalizations produced by two parid species (chestnut-backed chickadees and tufted titmice) is perceptually difficult for black-capped chickadees, a finding that is likely in part because these vocalizations contain acoustic similarities. Overall, our results provide evidence that black-capped chickadees' perceptual abilities are influenced by both phylogenetic relatedness and acoustic structure.

  15. Inhibitory effects of opioids on compound action potentials in frog sciatic nerves and their chemical structures.

    PubMed

    Mizuta, Kotaro; Fujita, Tsugumi; Nakatsuka, Terumasa; Kumamoto, Eiichi

    2008-08-01

    An opioid tramadol more effectively inhibits compound action potentials (CAPs) than its metabolite mono-O-demethyl-tramadol (M1). To address further this issue, we examined the effects of opioids (morphine, codeine, ethylmorphine and dihydrocodeine) and cocaine on CAPs by applying the air-gap method to the frog sciatic nerve. All of the opioids at concentrations less than 10 mM reduced the peak amplitude of the CAP in a reversible and dose-dependent manner. The sequence of the CAP peak amplitude reductions was ethylmorphine>codeine>dihydrocodeine> or = morphine; the effective concentration for half-maximal inhibition (IC(50)) of ethylmorphine was 4.6 mM. All of the CAP inhibitions by opioids were resistant to a non-specific opioid-receptor antagonist naloxone. The CAP peak amplitude reductions produced by morphine, codeine and ethylmorphine were related to their chemical structures in such that this extent enhanced with an increase in the number of -CH(2) in a benzene ring, as seen in the inhibitory actions of tramadol and M1. Cocaine reduced CAP peak amplitudes with an IC(50) value of 0.80 mM. It is concluded that opioids reduce CAP peak amplitudes in a manner being independent of opioid-receptor activation and with an efficacy being much less than that of cocaine. It is suggested that the substituted groups of -OH bound to the benzene ring of morphine, codeine and ethylmorphine as well as of tramadol and M1, the structures of which are quite different from those of the opioids, may play an important role in producing nerve conduction block.

  16. Association of RETN and CAP1 SNPs, Expression and Serum Resistin Levels with Breast Cancer in Mexican Women.

    PubMed

    Muñoz-Palomeque, Alejandrina; Guerrero-Ramirez, Miguel Angel; Rubio-Chavez, Lidia Ariadna; Rosales-Gomez, Roberto Carlos; Lopez-Cardona, Maria Guadalupe; Barajas-Avila, Victor Hugo; Delgadillo-Barrera, Alfredo; Canton-Romero, Juan Carlos; Montoya-Fuentes, Hector; Garcia-Cobian, Teresa Arcelia; Gutierrez-Rubio, Susan Andrea

    2018-04-01

    Breast cancer is the most common cancer in women worldwide. Approximately 70% of female breast cancer patients have a body mass index (BMI) >25. In obesity, adipose tissue secretes additional resistin, which prompts a proinflammatory effect through its action on adenylate cyclase-associated protein 1 (CAP1). Several studies have associated the RETN gene single nucleotide polymorphism (SNP) rs1862513 (-420C

  17. Discovery of novel dengue virus NS5 methyltransferase non-nucleoside inhibitors by fragment-based drug design.

    PubMed

    Benmansour, Fatiha; Trist, Iuni; Coutard, Bruno; Decroly, Etienne; Querat, Gilles; Brancale, Andrea; Barral, Karine

    2017-01-05

    With the aim to help drug discovery against dengue virus (DENV), a fragment-based drug design approach was applied to identify ligands targeting a main component of DENV replication complex: the NS5 AdoMet-dependent mRNA methyltransferase (MTase) domain, playing an essential role in the RNA capping process. Herein, we describe the identification of new inhibitors developed using fragment-based, structure-guided linking and optimization techniques. Thermal-shift assay followed by a fragment-based X-ray crystallographic screening lead to the identification of three fragment hits binding DENV MTase. We considered linking two of them, which bind to proximal sites of the AdoMet binding pocket, in order to improve their potency. X-ray crystallographic structures and computational docking were used to guide the fragment linking, ultimately leading to novel series of non-nucleoside inhibitors of flavivirus MTase, respectively N-phenyl-[(phenylcarbamoyl)amino]benzene-1-sulfonamide and phenyl [(phenylcarbamoyl)amino]benzene-1-sulfonate derivatives, that show a 10-100-fold stronger inhibition of 2'-O-MTase activity compared to the initial fragments. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. HnRNP-like proteins as post-transcriptional regulators.

    PubMed

    Yeap, Wan-Chin; Namasivayam, Parameswari; Ho, Chai-Ling

    2014-10-01

    Plant cells contain a diverse repertoire of RNA-binding proteins (RBPs) that coordinate a network of post-transcriptional regulation. RBPs govern diverse developmental processes by modulating the gene expression of specific transcripts. Recent gene annotation and RNA sequencing clearly showed that heterogeneous nuclear ribonucleoprotein (hnRNP)-like proteins which form a family of RBPs, are also expressed in higher plants and serve specific plant functions. In addition to their involvement in post-transcriptional regulation from mRNA capping to translation, they are also involved in telomere regulation, gene silencing and regulation in chloroplast. Here, we review the involvement of plant hnRNP-like proteins in post-transcription regulation of RNA processes and their functional roles in control of plant developmental processes especially plant-specific functions including flowering, chloroplastic-specific mRNA regulation, long-distance phloem transportation and plant responses to environmental stresses. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Update: Mechanisms underlying N6-methyladenosine modification of eukaryotic mRNA

    PubMed Central

    Wang, Yang; Zhao, Jing Crystal

    2016-01-01

    Summary Eukaryotic messenger RNA (mRNA) undergoes chemical modification both at the 5′cap [1, 2] and internally [3–14]. Among internal modifications, m6A, by far the most abundant, is present in all eukaryotes examined, including mammals [3–6], flies [15], plants [16, 17] and yeast [18, 19]. m6A modification plays an essential role in diverse biological processes. Over the past few years, our knowledge relevant to establishment and function of this modification has grown rapidly. This review focuses on technologies that have facilitated m6A detection in mRNAs, identification of m6A methylation enzymes and binding proteins, and potential functions of the modification at the molecular level. Regarding m6A function at cellular or organismal levels or in disease, please refer to other recent reviews [20–23]. PMID:27793360

  20. Structural basis for m7G recognition and 2'-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devarkar, Swapnil C.; Wang, Chen; Miller, Matthew T.

    The cytosolic innate immune receptor Retinoic Acid Inducible Gene-I (RIG-I) is the principal detector of pathogenic RNAs carrying a 5'-triphosphate (5'ppp). Self RNAs like mRNAs evade recognition by RIG-I due to posttranscriptional modifications like 5'-end capping with 7-methyl guanosine (m7G) and 2'-O-methylation of 5'-end nucleotides. Viruses have also evolved mechanisms to mimic these modifications, which in part is believed to aid in immune evasion. Currently, it is unclear how these modifications modulate RIG-I recognition. This paper provides structural and mechanistic insights into the roles of the m7G cap and 2'-O-methylation in RIG-I evasion. We show that RIG-I accommodates the m7Gmore » base while maintaining the 5'ppp contacts and can recognize Cap-0 RNAs but not Cap-1.« less

  1. Perceptions of medical graduates and their workplace supervisors towards a medical school clinical audit program.

    PubMed

    Davis, Stephanie; O'Ferrall, Ilse; Hoare, Samuel; Caroline, Bulsara; Mak, Donna B

    2017-07-07

    This study explores how medical graduates and their workplace supervisors perceive the value of a structured clinical audit program (CAP) undertaken during medical school. Medical students at the University of Notre Dame Fremantle complete a structured clinical audit program in their final year of medical school.  Semi-structured interviews were conducted with 12 Notre Dame graduates (who had all completed the CAP), and seven workplace supervisors (quality and safety staff and clinical supervisors).  Purposeful sampling was used to recruit participants and data were analysed using thematic analysis. Both graduates and workplace supervisors perceived the CAP to be valuable. A major theme was that the CAP made a contribution to individual graduate's medical practice, including improved knowledge in some areas of patient care as well as awareness of healthcare systems issues and preparedness to undertake scientifically rigorous quality improvement activities. Graduates perceived that as a result of the CAP, they were confident in undertaking a clinical audit after graduation.  Workplace supervisors perceived the value of the CAP beyond an educational experience and felt that the audits undertaken by students improved quality and safety of patient care. It is vital that health professionals, including medical graduates, be able to carry out quality and safety activities in the workplace. This study provides evidence that completing a structured clinical audit during medical school prepares graduates to undertake quality and safety activities upon workplace entry. Other health professional faculties may be interested in incorporating a similar program in their curricula.

  2. Crystal Structure of Serine Racemase that Produces Neurotransmitter d-Serine for Stimulation of the NMDA Receptor

    NASA Astrophysics Data System (ADS)

    Goto, Masaru

    d-Serine is an endogenous coagonist for the N-methyl-d-aspartate receptor and is involved in excitatory neurotransmission in the brain. Mammalian pyridoxal 5’-phosphate-dependent serine racemase, which is localized in the mammalian brain, catalyzes the racemization of l-serine to yield d-serine and vice versa. We have determined the structures of three forms of the mammalian enzyme homolog from Schizosaccharomyces pombe. Lys57 and Ser82 located on the protein and solvent sides, respectively, with respect to the cofactor plane, are acid-base catalysts that shuttle protons to the substrate. The modified enzyme, which has a unique lysino-d-alanyl residue at the active site, also binds the substrate serine in the active site, suggesting that the lysino-d-alanyl residue acts as a catalytic base in the same manner as Lys57 of the wild type enzyme.

  3. Martian Polar Caps: Folding, Faulting, Flowing Glaciers of Multiple Interbedded Ices

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.

    2001-12-01

    The Martian south polar cap (permanent CO2 cap and polar layered deposits), exhibit abundant, varied, and widespread deformational phenomena. Folding and boudinage are very common. Strike-slip or normal faults are rarer. Common in the vicinity of major troughs and scarps are signs of convergent flow tectonics manifested as wrinkle-ridge-like surface folds, thrust faults, and viscous forebulges with thin-skinned extensional crevasses and wrinkle-ridge folds. Such flow convergence is predicted by theory. Boudinage and folding at the 300-m wavelength scale, indicating rheologically contrasting materials, is widely exposed at deep levels along erosional scarps. Independent morphologic evidence indicates south polar materials of contrasting volatility. Hence, the south polar cap appears to be a multiphase structure of interbedded ices. The north polar cap locally also exhibits flow indicators, though they are neither as common nor as varied as in the south. The large-scale quasi-spiral structure of the polar caps could be a manifestation of large-scale boudinage. According to this scenario, deep-level boudinage continuously originates under the glacial divide (the polar cap summit). Rod-like boudin structures are oriented transverse to flow and migrate outward with the large-scale flow field. Troughs develop over areas between major boudins. A dynamic competition, and possibly a rough balance, develops between the local flow field in the vicinity of a trough (which tends to close the trough by lateral closure and upwelling flow) and sublimation erosion (which tends to widen and deepen them). Over time, the troughs flow to the margins of the polar cap where they, along with other polar structures, are destroyed by sublimation. Major ice types contributing to rheological and volatility layering may include, in order of highest to lowest mechanical strength, CO2 clathrate hydrate, water ice containing inert/insoluble dust, pure water ice, water ice containing traces of liquid-soluble salts, water ice containing traces of solid-soluble acids, CO2 ice. This is also nearly the same sequence of highest to lowest melting/dissociation points, but it is different than the sequence of volatility. This geologic-structural interpretation and specific chemical models are amenable to testing by computational means and point the way toward future needed observations, including complete high-resolution imaging of the polar caps, measurement of flow fields (possibly by laser interferometry), mapping of subsurface structures (by radar and/or seismic methods), and determination of composition (by penetrators, drillers, or borers). New lab data are needed on the physical properties of candidate ices.

  4. Range Condition Assessment Report for Naval Surface Warfare Center, Dahlgren Laboratory Ranges, Dahlgren, Virginia

    DTIC Science & Technology

    2010-09-01

    following alternative: vegetative soil cap, offsite disposal of sediments, and phytoremediation to control groundwater levels beneath the landfill. The...cap. These issues include poor condition of the phytoremediation trees on the surface of the landfill cap and blockage of the pond outfall structure...to be completed in January 2009. Based on the poor condition of the phytoremediation trees on the landfill cap, a supplemental tree planting

  5. Functional hypervariability and gene diversity of cardioactive neuropeptides.

    PubMed

    Möller, Carolina; Melaun, Christian; Castillo, Cecilia; Díaz, Mary E; Renzelman, Chad M; Estrada, Omar; Kuch, Ulrich; Lokey, Scott; Marí, Frank

    2010-12-24

    Crustacean cardioactive peptide (CCAP) and related peptides are multifunctional regulatory neurohormones found in invertebrates. We isolated a CCAP-related peptide (conoCAP-a, for cone snail CardioActive Peptide) and cloned the cDNA of its precursor from venom of Conus villepinii. The precursor of conoCAP-a encodes for two additional CCAP-like peptides: conoCAP-b and conoCAP-c. This multi-peptide precursor organization is analogous to recently predicted molluscan CCAP-like preprohormones, and suggests a mechanism for the generation of biological diversification without gene amplification. While arthropod CCAP is a cardio-accelerator, we found that conoCAP-a decreases the heart frequency in Drosophila larvae, demonstrating that conoCAP-a and CCAP have opposite effects. Intravenous injection of conoCAP-a in rats caused decreased heart frequency and blood pressure in contrast to the injection of CCAP, which did not elicit any cardiac effect. Perfusion of rat ventricular cardiac myocytes with conoCAP-a decreased systolic calcium, indicating that conoCAP-a cardiac negative inotropic effects might be mediated via impairment of intracellular calcium trafficking. The contrasting cardiac effects of conoCAP-a and CCAP indicate that molluscan CCAP-like peptides have functions that differ from those of their arthropod counterparts. Molluscan CCAP-like peptides sequences, while homologous, differ between taxa and have unique sequences within a species. This relates to the functional hypervariability of these peptides as structure activity relationship studies demonstrate that single amino acids variations strongly affect cardiac activity. The discovery of conoCAPs in cone snail venom emphasizes the significance of their gene plasticity to have mutations as an adaptive evolution in terms of structure, cellular site of expression, and physiological functions.

  6. Functional Hypervariability and Gene Diversity of Cardioactive Neuropeptides*

    PubMed Central

    Möller, Carolina; Melaun, Christian; Castillo, Cecilia; Díaz, Mary E.; Renzelman, Chad M.; Estrada, Omar; Kuch, Ulrich; Lokey, Scott; Marí, Frank

    2010-01-01

    Crustacean cardioactive peptide (CCAP) and related peptides are multifunctional regulatory neurohormones found in invertebrates. We isolated a CCAP-related peptide (conoCAP-a, for cone snail CardioActive Peptide) and cloned the cDNA of its precursor from venom of Conus villepinii. The precursor of conoCAP-a encodes for two additional CCAP-like peptides: conoCAP-b and conoCAP-c. This multi-peptide precursor organization is analogous to recently predicted molluscan CCAP-like preprohormones, and suggests a mechanism for the generation of biological diversification without gene amplification. While arthropod CCAP is a cardio-accelerator, we found that conoCAP-a decreases the heart frequency in Drosophila larvae, demonstrating that conoCAP-a and CCAP have opposite effects. Intravenous injection of conoCAP-a in rats caused decreased heart frequency and blood pressure in contrast to the injection of CCAP, which did not elicit any cardiac effect. Perfusion of rat ventricular cardiac myocytes with conoCAP-a decreased systolic calcium, indicating that conoCAP-a cardiac negative inotropic effects might be mediated via impairment of intracellular calcium trafficking. The contrasting cardiac effects of conoCAP-a and CCAP indicate that molluscan CCAP-like peptides have functions that differ from those of their arthropod counterparts. Molluscan CCAP-like peptides sequences, while homologous, differ between taxa and have unique sequences within a species. This relates to the functional hypervariability of these peptides as structure activity relationship studies demonstrate that single amino acids variations strongly affect cardiac activity. The discovery of conoCAPs in cone snail venom emphasizes the significance of their gene plasticity to have mutations as an adaptive evolution in terms of structure, cellular site of expression, and physiological functions. PMID:20923766

  7. Structure and expression of the human XPBC/ERCC-3 gene involved in DNA repair disorders xeroderma pigmentosum and Cockayne's syndrome.

    PubMed Central

    Weeda, G; Ma, L B; van Ham, R C; van der Eb, A J; Hoeijmakers, J H

    1991-01-01

    The human XPBC/ERCC-3 was cloned by virtue of its ability to correct the excision repair defect of UV-sensitive rodent mutants of complementation group 3. The gene appeared to be in addition implicated in the human, cancer prone repair disorder xeroderma pigmentosum group B, which is also associated with Cockayne's syndrome. Here we present the genomic architecture of the gene and its expression. The XPBC/ERCC-3 gene consists of at least 14 exons spread over approximately 45 kb. Notably, the donor splice site of the third exon contains a GC instead of the canonical GT dinucleotide. The promoter region, first exon and intron comprise a CpG island with several putative GC boxes. The promoter was confined to a region of 260 bp upstream of the presumed cap site and acts bidirectionally. Like the promoter of another excision repair gene, ERCC-1, it lacks classical promoter elements such as CAAT and TATA boxes, but it shares with ERCC-1 a hitherto unknown 12 nucleotide sequence element, preceding a polypyrimidine track. Despite the presence of (AU)-rich elements in the 3'-untranslated region, which are thought to be associated with short mRNA half-life actinomycin-D experiments indicate that the mRNA is very stable (t 1/2 greater than 3h). Southern blot analysis revealed the presence of XPBC/ERCC-3 cross-hybridizing fragments elsewhere in the genome, which may belong to a related gene. Images PMID:1956789

  8. Stimulation of translation by human Unr requires cold shock domains 2 and 4, and correlates with poly(A) binding protein interaction.

    PubMed

    Ray, Swagat; Anderson, Emma C

    2016-03-03

    The RNA binding protein Unr, which contains five cold shock domains, has several specific roles in post-transcriptional control of gene expression. It can act as an activator or inhibitor of translation initiation, promote mRNA turnover, or stabilise mRNA. Its role depends on the mRNA and other proteins to which it binds, which includes cytoplasmic poly(A) binding protein 1 (PABP1). Since PABP1 binds to all polyadenylated mRNAs, and is involved in translation initiation by interaction with eukaryotic translation initiation factor 4G (eIF4G), we investigated whether Unr has a general role in translational control. We found that Unr strongly stimulates translation in vitro, and mutation of cold shock domains 2 or 4 inhibited its translation activity. The ability of Unr and its mutants to stimulate translation correlated with its ability to bind RNA, and to interact with PABP1. We found that Unr stimulated the binding of PABP1 to mRNA, and that Unr was required for the stable interaction of PABP1 and eIF4G in cells. siRNA-mediated knockdown of Unr reduced the overall level of cellular translation in cells, as well as that of cap-dependent and IRES-dependent reporters. These data describe a novel role for Unr in regulating cellular gene expression.

  9. Natural antioxidants exhibit chemopreventive characteristics through the regulation of CNC b-Zip transcription factors in estrogen-induced breast carcinogenesis.

    PubMed

    Chatterjee, Anwesha; Ronghe, Amruta; Singh, Bhupendra; Bhat, Nimee K; Chen, Jie; Bhat, Hari K

    2014-12-01

    The objective of the present study was to characterize the role of resveratrol (Res) and vitamin C (VC) in prevention of estrogen-induced breast cancer through regulation of cap "n"collar (CNC) b-zip transcription factors. Human breast epithelial cell line MCF-10A was treated with 17β-estradiol (E2) and VC or Res with or without E2. mRNA and protein expression levels of CNC b-zip transcription factors nuclear factor erythroid 2-related factor 1 (Nrf1), nuclear factor erythroid 2 related factor 2 (Nrf2), nuclear factor erythroid 2 related factor 3 (Nrf3), and Nrf2-regulated antioxidant enzymes superoxide dismutase 3 (SOD3) and quinone oxidoreductase 1 (NQO1) were quantified. The treatment with E2 suppressed, whereas VC and Res prevented E2-mediated decrease in the expression levels of SOD3, NQO1, Nrf2 mRNA, and protein in MCF-10A cells. The treatment with E2, Res, or VC significantly increased mRNA and protein expression levels of Nrf1. 17β-Estradiol treatment significantly increased but VC or Res decreased Nrf3 mRNA and protein expression levels. Our studies demonstrate that estrogen-induced breast cancer might be prevented through upregulation of antioxidant enzymes via Nrf-dependent pathways. © 2014 Wiley Periodicals, Inc.

  10. Modeling polar cap F-region patches using time varying convection

    NASA Technical Reports Server (NTRS)

    Sojka, J. J.; Bowline, M. D.; Schunk, R. W.; Decker, D. T.; Valladares, C. E.; Sheehan, R.; Anderson, D. N.; Heelis, R. A.

    1993-01-01

    Creation of polar cap F-region patches are simulated for the first time using two independent physical models of the high latitude ionosphere. The patch formation is achieved by temporally varying the magnetospheric electric field (ionospheric convection) input to the models. The imposed convection variations are comparable to changes in the convection that result from changes in the B(y) IMF component for southward IMF. Solar maximum-winter simulations show that simple changes in the convection pattern lead to significant changes in the polar cap plasma structuring. Specifically, in winter, as enhanced dayside plasma convects into the polar cap to form the classic tongue-of-ionization the convection changes produce density structures that are indistinguishable from the observed patches.

  11. A morphometric analysis of cellular differentiation in caps of primary and lateral roots of Helianthus annuus

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1985-01-01

    In order to determine if patterns of cell differentiation are similar in primary and lateral roots, I performed a morphometric analysis of the ultrastructure of calyptrogen, columella, and peripheral cells in primary and lateral roots of Helianthus annuus. Each cell type is characterized by a unique ultrastructure, and the ultrastructural changes characteristic of cellular differentiation in root caps are organelle specific. No major structural differences exist in the structures of the composite cell types, or in patterns of cell differentiation in caps of primary vs. lateral roots.

  12. DNA 3' pp 5' G de-capping activity of aprataxin: effect of cap nucleoside analogs and structural basis for guanosine recognition

    DOE PAGES

    Chauleau, Mathieu; Jacewicz, Agata; Shuman, Stewart

    2015-05-24

    DNA 3' pp 5'G caps synthesized by the 3'-PO 4/5'-OH ligase RtcB have a strong impact on enzymatic reactions at DNA 3'-OH ends. Aprataxin, an enzyme that repairs A5'pp5'DNA ends formed during abortive ligation by classic 3'-OH/5'-PO 4 ligases, is also a DNA 3' de-capping enzyme, converting DNAppG to DNA 3'p and GMP. By taking advantage of RtcB's ability to utilize certain GTP analogs to synthesize DNAppN caps, we show that aprataxin hydrolyzes inosine and 6-O-methylguanosine caps, but is not adept at removing a deoxyguanosine cap. We report a 1.5 Å crystal structure of aprataxin in a complex with GMP,more » which reveals that: (i) GMP binds at the same position and in the same anti nucleoside conformation as AMP; and (ii) aprataxin makes more extensive nucleobase contacts with guanine than with adenine, via a hydrogen bonding network to the guanine O6, N1, N2 base edge. Alanine mutations of catalytic residues His147 and His149 abolish DNAppG de-capping activity, suggesting that the 3' de-guanylylation and 5' de-adenylylation reactions follow the same pathway of nucleotidyl transfer through a covalent aprataxin-(His147)–NMP intermediate. Alanine mutation of Asp63, which coordinates the guanosine ribose hydroxyls, impairs DNAppG de-capping.« less

  13. The X-ray Crystal Structures of Human {alpha}-Phosphomannomutase 1 Reveal the Structural Basis of Congenital Disorder of Glycosylation Type 1a

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silvaggi,N.; Zhang, C.; Lu, Z.

    2006-01-01

    Carbohydrate-deficient glycoprotein syndrome type 1a (CDG-1a) is a congenital disease characterized by severe defects in nervous system development. It is caused by mutations in alpha -phosphomannomutase (of which there are two isozymes, {alpha}-PMM1 and {alpha}-PPM2). Here we report the X-ray crystal structures of human {alpha}-PMM1 in the open conformation, with and without the bound substrate, {alpha}-D-mannose 1-phosphate. {alpha}-PMM1, like most Haloalkanoic Acid Dehalogenase Superfamily (HADSF) members, consists of two domains, the cap and core, which open to bind substrate and then close to provide a solvent exclusive environment for catalysis. The substrate phosphate group is observed at a positively chargedmore » site of the cap domain, rather than at the core domain phosphoryl-transfer site defined by the D19 nucleophile and Mg{sup 2+} cofactor. This suggests that substrate binds first to the cap and then is swept into the active site upon cap closure. The orientation of the acid/base residue D21 suggests that {alpha}-PMM uses a different method of protecting the aspartylphosphate from hydrolysis than the HADSF member {beta}-phosphoglucomutase. It is hypothesized that the electrostatic repulsion of positive charges at the interface of the cap and core domains stabilizes {alpha}-PMM1 in the open conformation, and that the negatively charged substrate binds to the cap, thereby facilitating its closure over the core domain. The two isozymes {alpha}-PMM1 and {alpha}-PMM2 are shown to have a conserved active-site structure and to display similar kinetic properties. Analysis of the known mutation sites in the context of the structures reveals the genotype-phenotype relationship underlying CDG-1a.« less

  14. Topological structure prediction in binary nanoparticle superlattices

    DOE PAGES

    Travesset, A.

    2017-04-27

    Systems of spherical nanoparticles with capping ligands have been shown to self-assemble into beautiful superlattices of fascinating structure and complexity. Here, I show that the spherical geometry of the nanoparticle imposes constraints on the nature of the topological defects associated with the capping ligand and that such topological defects control the structure and stability of the superlattices that can be assembled. Furthermore, all of these considerations form the basis for the orbifold topological model (OTM) described in this paper. Finally, the model quantitatively predicts the structure of super-lattices where capping ligands are hydrocarbon chains in excellent agreement with experimental results,more » explains the appearance of low packing fraction lattices as equilibrium, why certain similar structures are more stable (bccAB 6vs. CaB 6, AuCu vs. CsCl, etc.) and many other experimental observations.« less

  15. Pharmacogenetic inhibition of eIF4E-dependent Mmp9 mRNA translation reverses fragile X syndrome-like phenotypes.

    PubMed

    Gkogkas, Christos G; Khoutorsky, Arkady; Cao, Ruifeng; Jafarnejad, Seyed Mehdi; Prager-Khoutorsky, Masha; Giannakas, Nikolaos; Kaminari, Archontia; Fragkouli, Apostolia; Nader, Karim; Price, Theodore J; Konicek, Bruce W; Graff, Jeremy R; Tzinia, Athina K; Lacaille, Jean-Claude; Sonenberg, Nahum

    2014-12-11

    Fragile X syndrome (FXS) is the leading genetic cause of autism. Mutations in Fmr1 (fragile X mental retardation 1 gene) engender exaggerated translation resulting in dendritic spine dysmorphogenesis, synaptic plasticity alterations, and behavioral deficits in mice, which are reminiscent of FXS phenotypes. Using postmortem brains from FXS patients and Fmr1 knockout mice (Fmr1(-/y)), we show that phosphorylation of the mRNA 5' cap binding protein, eukaryotic initiation factor 4E (eIF4E), is elevated concomitant with increased expression of matrix metalloproteinase 9 (MMP-9) protein. Genetic or pharmacological reduction of eIF4E phosphorylation rescued core behavioral deficits, synaptic plasticity alterations, and dendritic spine morphology defects via reducing exaggerated translation of Mmp9 mRNA in Fmr1(-/y) mice, whereas MMP-9 overexpression produced several FXS-like phenotypes. These results uncover a mechanism of regulation of synaptic function by translational control of Mmp-9 in FXS, which opens the possibility of new treatment avenues for the diverse neurological and psychiatric aspects of FXS. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Suppression of gate leakage current in in-situ grown AlN/InAlN/AlN/GaN heterostructures based on the control of internal polarization fields

    NASA Astrophysics Data System (ADS)

    Kotani, Junji; Yamada, Atsushi; Ishiguro, Tetsuro; Yamaguchi, Hideshi; Nakamura, Norikazu

    2017-03-01

    This paper investigates the gate leakage characteristics of in-situ AlN capped InAlN/AlN/GaN heterostructures grown by metal-organic vapor phase epitaxy. It was revealed that the leakage characteristics of AlN capped InAlN/AlN/GaN heterostructures are strongly dependent on the growth temperature of the AlN cap. For an AlN capped structure with an AlN growth temperature of 740 °C, the leakage current even increased although there exists a large bandgap material on InAlN/AlN/GaN heterostructures. On the other hand, a large reduction of the gate leakage current by 4-5 orders of magnitudes was achieved with a very low AlN growth temperature of 430 °C. X-ray diffraction analysis of the AlN cap grown at 740 °C indicated that the AlN layer is tensile-strained. In contrast to this result, the amorphous structure was confirmed for the AlN cap grown at 430 °C by transmission electron microscopy. Furthermore, theoretical analysis based on one-dimensional band simulation was carried out, and the large increase in two-dimensional electron gas (2DEG) observed in Hall measurements was well reproduced by taking into account the spontaneous and piezo-electric polarization in the AlN layer grown at 740 °C. For the AlN capped structure grown at 430 °C, it is believed that the reduced polarization field in the AlN cap suppressed the penetration of 2DEG into the InAlN barrier layer, resulting in a small impact on 2DEG mobility and density. We believe that an in-situ grown AlN cap with a very low growth temperature of 430 °C is a promising candidate for high-frequency/high-power GaN-based devices with low gate leakage current.

  17. L-serine capped ZnS:Mn nanocrystals for plant cell biological studies and as a growth enhancing agent for micropropagation of Bacopa monnieri Linn. (Brahmi:Scrophulariaceae)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustine, M. Sajimol, E-mail: sajimollazar@gmail.com; Mathew, Lizzy; Alex, Roselin

    2014-01-28

    In the present work, the prospects of ZnS:Mn nanocrystals capped with L- serine, a bio-compatible amino acid, synthesized by wet chemical route, as efficient fluorescent probes for plant cell biological studies have been investigated. The present synthesis route using bio-compatible material is a low cost and easy to control method. The colloidal stability of the capped nano crystals is very good as they remain stable without settling down for long time. It is observed that L- serine significantly modifies the structural and optical characteristics of the ZnS:Mn nanocrystals and hence is suitable as a bio-compatible capping agent. The structural propertiesmore » of L- serine capped nanocrystals were investigated by XRD technique. The size of the L- serine capped ZnS:Mn nanocrystals is found to be around 2 nm . The optical characterization of the nanocrystals was carried out on the basis of photoluminescence (PL) spectroscopic studies. The intense photoluminescence emission observed around 597nm for L-serine capped ZnS:Mn offers high prospects of applications in bio-imaging fields. The unique optical properties of nanoparticles make them appealing as in vivo and in vitro fluorophores in a variety of biological investigations. In the present study, L-serine capped ZnS:Mn nanocrystals were used as a staining dye in fluorescent microscope for observing cell division, cell structure etc. These nanocrystals were also incorporated into the culture media along with the normal auxin- cytokinin hormone combinations in Murashige and Skoog (MS) medium for micropropagation of Bacopa monnieri Linn. (Brahmi:Scrophulariaceae), an Ayurvedic medicine. The results suggest that L-serine capped ZnS:Mn nanocrystals can act as efficient enhancers towards quick callusing and shoot proliferation.« less

  18. Conservation of mRNA secondary structures may filter out mutations in Escherichia coli evolution

    PubMed Central

    Chursov, Andrey; Frishman, Dmitrij; Shneider, Alexander

    2013-01-01

    Recent reports indicate that mutations in viral genomes tend to preserve RNA secondary structure, and those mutations that disrupt secondary structural elements may reduce gene expression levels, thereby serving as a functional knockout. In this article, we explore the conservation of secondary structures of mRNA coding regions, a previously unknown factor in bacterial evolution, by comparing the structural consequences of mutations in essential and nonessential Escherichia coli genes accumulated over 40 000 generations in the course of the ‘long-term evolution experiment’. We monitored the extent to which mutations influence minimum free energy (MFE) values, assuming that a substantial change in MFE is indicative of structural perturbation. Our principal finding is that purifying selection tends to eliminate those mutations in essential genes that lead to greater changes of MFE values and, therefore, may be more disruptive for the corresponding mRNA secondary structures. This effect implies that synonymous mutations disrupting mRNA secondary structures may directly affect the fitness of the organism. These results demonstrate that the need to maintain intact mRNA structures imposes additional evolutionary constraints on bacterial genomes, which go beyond preservation of structure and function of the encoded proteins. PMID:23783573

  19. PERK Signal-Modulated Protein Translation Promotes the Survivability of Dengue 2 Virus-Infected Mosquito Cells and Extends Viral Replication.

    PubMed

    Hou, Jiun-Nan; Chen, Tien-Huang; Chiang, Yi-Hsuan; Peng, Jing-Yun; Yang, Tsong-Han; Cheng, Chih-Chieh; Sofiyatun, Eny; Chiu, Cheng-Hsun; Chiang-Ni, Chuan; Chen, Wei-June

    2017-09-20

    Survival of mosquitoes from dengue virus (DENV) infection is a prerequisite of viral transmission to the host. This study aimed to see how mosquito cells can survive the infection during prosperous replication of the virus. In C6/36 cells, global protein translation was shut down after infection by DENV type 2 (DENV2). However, it returned to a normal level when infected cells were treated with an inhibitor of the protein kinase RNA (PKR)-like ER kinase (PERK) signaling pathway. Based on a 7-Methylguanosine 5'-triphosphate (m7GTP) pull-down assay, the eukaryotic translation initiation factor 4F (eIF4F) complex was also identified in DENV2-infected cells. This suggests that most mosquito proteins are synthesized via canonical cap-dependent translation. When the PERK signal pathway was inhibited, both accumulation of reactive oxygen species and changes in the mitochondrial membrane potential increased. This suggested that ER stress response was alleviated through the PERK-mediated shutdown of global proteins in DENV2-infected C6/36 cells. In the meantime, the activities of caspases-9 and -3 and the apoptosis-related cell death rate increased in C6/36 cells with PERK inhibition. This reflected that the PERK-signaling pathway is involved in determining cell survival, presumably by reducing DENV2-induced ER stress. Looking at the PERK downstream target, α-subunit of eukaryotic initiation factor 2 (eIF2α), an increased phosphorylation status was only shown in infected C6/36 cells. This indicated that recruitment of ribosome binding to the mRNA 5'-cap structure could have been impaired in cap-dependent translation. It turned out that shutdown of cellular protein translation resulted in a pro-survival effect on mosquito cells in response to DENV2 infection. As synthesis of viral proteins was not affected by the PERK signal pathway, an alternate mode other than cap-dependent translation may be utilized. This finding provides insights into elucidating how the PERK signal pathway modulates dynamic translation of proteins and helps mosquito cells survive continuous replication of the DENV2. It was ecologically important for virus amplification in mosquitoes and transmission to humans.

  20. PERK Signal-Modulated Protein Translation Promotes the Survivability of Dengue 2 Virus-Infected Mosquito Cells and Extends Viral Replication

    PubMed Central

    Hou, Jiun-Nan; Chen, Tien-Huang; Chiang, Yi-Hsuan; Peng, Jing-Yun; Yang, Tsong-Han; Cheng, Chih-Chieh; Sofiyatun, Eny; Chiu, Cheng-Hsun; Chiang-Ni, Chuan; Chen, Wei-June

    2017-01-01

    Survival of mosquitoes from dengue virus (DENV) infection is a prerequisite of viral transmission to the host. This study aimed to see how mosquito cells can survive the infection during prosperous replication of the virus. In C6/36 cells, global protein translation was shut down after infection by DENV type 2 (DENV2). However, it returned to a normal level when infected cells were treated with an inhibitor of the protein kinase RNA (PKR)-like ER kinase (PERK) signaling pathway. Based on a 7-Methylguanosine 5′-triphosphate (m7GTP) pull-down assay, the eukaryotic translation initiation factor 4F (eIF4F) complex was also identified in DENV2-infected cells. This suggests that most mosquito proteins are synthesized via canonical cap-dependent translation. When the PERK signal pathway was inhibited, both accumulation of reactive oxygen species and changes in the mitochondrial membrane potential increased. This suggested that ER stress response was alleviated through the PERK-mediated shutdown of global proteins in DENV2-infected C6/36 cells. In the meantime, the activities of caspases-9 and -3 and the apoptosis-related cell death rate increased in C6/36 cells with PERK inhibition. This reflected that the PERK-signaling pathway is involved in determining cell survival, presumably by reducing DENV2-induced ER stress. Looking at the PERK downstream target, α-subunit of eukaryotic initiation factor 2 (eIF2α), an increased phosphorylation status was only shown in infected C6/36 cells. This indicated that recruitment of ribosome binding to the mRNA 5′-cap structure could have been impaired in cap-dependent translation. It turned out that shutdown of cellular protein translation resulted in a pro-survival effect on mosquito cells in response to DENV2 infection. As synthesis of viral proteins was not affected by the PERK signal pathway, an alternate mode other than cap-dependent translation may be utilized. This finding provides insights into elucidating how the PERK signal pathway modulates dynamic translation of proteins and helps mosquito cells survive continuous replication of the DENV2. It was ecologically important for virus amplification in mosquitoes and transmission to humans. PMID:28930151

  1. Schistosoma mansoni venom allergen-like protein 4 (SmVAL4) is a novel lipid-binding SCP/TAPS protein that lacks the prototypical CAP motifs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelleher, Alan; Darwiche, Rabih; Rezende, Wanderson C.

    2014-08-01

    The first structure of an S. mansoni venom allergen-like protein is presented. Schistosomiasis is a parasitic disease that affects over 200 million people. Vaccine candidates have been identified, including Schistosoma mansoni venom allergen-like proteins (SmVALs) from the SCP/TAPS (sperm-coating protein/Tpx/antigen 5/pathogenesis related-1/Sc7) superfamily. The first SmVAL structure, SmVAL4, was refined to a resolution limit of 2.16 Å. SmVAL4 has a unique structure that could not be predicted from homologous structures, with longer loops and an unusual C-terminal extension. SmVAL4 has the characteristic α/β-sandwich and central SCP/TAPS cavity. Furthermore, SmVAL4 has only one of the signature CAP cavity tetrad amino-acid residuesmore » and is missing the histidines that coordinate divalent cations such as Zn{sup 2+} in other SCP/TAPS proteins. SmVAL4 has a cavity between α-helices 1 and 4 that was observed to bind lipids in tablysin-15, suggesting the ability to bind lipids. Subsequently, SmVAL4 was shown to bind cholesterol in vitro. Additionally, SmVAL4 was shown to complement the in vivo sterol-export phenotype of yeast mutants lacking their endogenous CAP proteins. Expression of SmVAL4 in yeast cells lacking endogenous CAP function restores the block in sterol export. These studies suggest an evolutionarily conserved lipid-binding function shared by CAP proteins such as SmVAL4 and yeast CAP proteins such as Pry1.« less

  2. Perceptions of medical graduates and their workplace supervisors towards a medical school clinical audit program

    PubMed Central

    O'Ferrall, Ilse; Hoare, Samuel; Caroline, Bulsara; Mak, Donna B.

    2017-01-01

    Objectives This study explores how medical graduates and their workplace supervisors perceive the value of a structured clinical audit program (CAP) undertaken during medical school. Methods Medical students at the University of Notre Dame Fremantle complete a structured clinical audit program in their final year of medical school.  Semi-structured interviews were conducted with 12 Notre Dame graduates (who had all completed the CAP), and seven workplace supervisors (quality and safety staff and clinical supervisors).  Purposeful sampling was used to recruit participants and data were analysed using thematic analysis. Results Both graduates and workplace supervisors perceived the CAP to be valuable. A major theme was that the CAP made a contribution to individual graduate’s medical practice, including improved knowledge in some areas of patient care as well as awareness of healthcare systems issues and preparedness to undertake scientifically rigorous quality improvement activities. Graduates perceived that as a result of the CAP, they were confident in undertaking a clinical audit after graduation.  Workplace supervisors perceived the value of the CAP beyond an educational experience and felt that the audits undertaken by students improved quality and safety of patient care. Conclusions It is vital that health professionals, including medical graduates, be able to carry out quality and safety activities in the workplace. This study provides evidence that completing a structured clinical audit during medical school prepares graduates to undertake quality and safety activities upon workplace entry. Other health professional faculties may be interested in incorporating a similar program in their curricula.  PMID:28692425

  3. The Cyclase-Associated Protein Cap1 Is Important for Proper Regulation of Infection-Related Morphogenesis in Magnaporthe oryzae

    PubMed Central

    Zhou, Xiaoying; Zhang, Haifeng; Li, Guotian; Shaw, Brian; Xu, Jin-Rong

    2012-01-01

    Surface recognition and penetration are critical steps in the infection cycle of many plant pathogenic fungi. In Magnaporthe oryzae, cAMP signaling is involved in surface recognition and pathogenesis. Deletion of the MAC1 adenylate cyclase gene affected appressorium formation and plant infection. In this study, we used the affinity purification approach to identify proteins that are associated with Mac1 in vivo. One of the Mac1-interacting proteins is the adenylate cyclase-associated protein named Cap1. CAP genes are well-conserved in phytopathogenic fungi but none of them have been functionally characterized. Deletion of CAP1 blocked the effects of a dominant RAS2 allele and resulted in defects in invasive growth and a reduced intracellular cAMP level. The Δcap1 mutant was defective in germ tube growth, appressorium formation, and formation of typical blast lesions. Cap1-GFP had an actin-like localization pattern, localizing to the apical regions in vegetative hyphae, at the periphery of developing appressoria, and in circular structures at the base of mature appressoria. Interestingly, Cap1, similar to LifeAct, did not localize to the apical regions in invasive hyphae, suggesting that the apical actin cytoskeleton differs between vegetative and invasive hyphae. Domain deletion analysis indicated that the proline-rich region P2 but not the actin-binding domain (AB) of Cap1 was responsible for its subcellular localization. Nevertheless, the AB domain of Cap1 must be important for its function because CAP1 ΔAB only partially rescued the Δcap1 mutant. Furthermore, exogenous cAMP induced the formation of appressorium-like structures in non-germinated conidia in CAP1 ΔAB transformants. This novel observation suggested that AB domain deletion may result in overstimulation of appressorium formation by cAMP treatment. Overall, our results indicated that CAP1 is important for the activation of adenylate cyclase, appressorium morphogenesis, and plant infection in M. oryzae. CAP1 may also play a role in feedback inhibition of Ras2 signaling when Pmk1 is activated. PMID:22969430

  4. Adaptive fiber optics collimator based on flexible hinges.

    PubMed

    Zhi, Dong; Ma, Yanxing; Ma, Pengfei; Si, Lei; Wang, Xiaolin; Zhou, Pu

    2014-08-20

    In this manuscript, we present a new design for an adaptive fiber optics collimator (AFOC) based on flexible hinges by using piezoelectric stacks actuators for X-Y displacement. Different from traditional AFOC, the new structure is based on flexible hinges to drive the fiber end cap instead of naked fiber. We fabricated a real AFOC based on flexible hinges, and the end cap's deviation and resonance frequency of the device were measured. Experimental results show that this new AFOC can provide fast control of tip-tilt deviation of the laser beam emitting from the end cap. As a result, the fiber end cap can support much higher power than naked fiber, which makes the new structure ideal for tip-tilt controlling in a high-power fiber laser system.

  5. Morphological and functional changes in RAW264 macrophage-like cells in response to a hydrated layer of carbonate-substituted hydroxyapatite.

    PubMed

    Igeta, Kazuki; Kuwamura, Yuta; Horiuchi, Naohiro; Nozaki, Kosuke; Shiraishi, Daichi; Aizawa, Mamoru; Hashimoto, Kazuaki; Yamashita, Kimihiro; Nagai, Akiko

    2017-04-01

    Synthetic hydroxyapatite (HAp) is used clinically as a material for bone prostheses owing to its good bone-bonding ability; however, it does not contribute to bone remodeling. Carbonate-substituted hydroxyapatite (CAp) has greater bioresorption capacity than HAp while having similar bone-bonding potential, and is therefore considered as a next promising material for bone prostheses. However, the effects of the CAp instability on inflammatory and immune responses are unknown in detail. Here, we show that the surface layer of CAp is more hydrated than that of HAp and induces changes in the shape and function of macrophage-like cells. HAp and CAp were synthesized by wet method and molded into disks. The carbonate content of CAp disks was 6.2% as determined by Fourier transform (FT) infrared spectral analysis. Diffuse reflectance infrared FT analysis confirmed that physisorbed water and surface hydroxyl groups (OH - ) were increased whereas structural OH - was decreased on the CAp as compared to the HAp surface. The degree of hydroxylation in CAp was comparable to that in bone-apatite structures, and the CAp surface exhibited greater hydrophilicity and solubility than HAp. We investigated immune responses to these materials by culturing RAW264 cells (macrophage precursors) on their surfaces. Cell spreading on the CAp disk was suppressed and the secretion level of inflammatory cytokines was reduced as compared to cells grown on HAp. These results indicate that the greater surface hydration of CAp surface can attenuate adverse inflammatory responses to implanted bone prostheses composed of this material. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1063-1070, 2017. © 2017 Wiley Periodicals, Inc.

  6. Telomere Capping Proteins are Structurally Related to RPA with an additional Telomere-Specific Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelinas, A.; Paschini, M; Reyes, F

    Telomeres must be capped to preserve chromosomal stability. The conserved Stn1 and Ten1 proteins are required for proper capping of the telomere, although the mechanistic details of how they contribute to telomere maintenance are unclear. Here, we report the crystal structures of the C-terminal domain of the Saccharomyces cerevisiae Stn1 and the Schizosaccharomyces pombe Ten1 proteins. These structures reveal striking similarities to corresponding subunits in the replication protein A complex, further supporting an evolutionary link between telomere maintenance proteins and DNA repair complexes. Our structural and in vivo data of Stn1 identify a new domain that has evolved to supportmore » a telomere-specific role in chromosome maintenance. These findings endorse a model of an evolutionarily conserved mechanism of DNA maintenance that has developed as a result of increased chromosomal structural complexity.« less

  7. Development of a unique laboratory standard: Indium gallium arsenide detector for the 500-1700 nm spectral region

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A planar (5 mm diameter) indium gallium arsenide detector having a high (greater than 50 pct) quantum efficiency from the visible into the infrared spectrum (500 to 1700 nm) was fabricated. Quantum efficiencies as high as 37 pct at 510 nm, 58 pct at 820 nm and 62 pct at 1300 nm and 1550 nm were measured. A planar InP/InGaAs detector structure was also fabricated using vapor phase epitaxy to grow device structures with 0, 0.2, 0.4 and 0.6 micrometer thick InP caps. Quantum efficiency was studied as a function of cap thickness. Conventional detector structures were also used by completely etching off the InP cap after zinc diffusion. Calibrated quantum efficiencies were measured. Best results were obtained with devices whose caps were completely removed by etching. Certain problems still remain with these detectors including non-uniform shunt resistance, reproducibility, contact resistance and narrow band anti-reflection coatings.

  8. Rethinking the polar cap: Eccentric dipole structuring of ULF power at the highest corrected geomagnetic latitudes

    NASA Astrophysics Data System (ADS)

    Urban, Kevin D.; Gerrard, Andrew J.; Lanzerotti, Louis J.; Weatherwax, Allan T.

    2016-09-01

    The day-to-day evolution and statistical features of Pc3-Pc7 band ultralow frequency (ULF) power throughout the southern polar cap suggest that the corrected geomagnetic (CGM) coordinates do not adequately organize the observed hydromagnetic spatial structure. It is shown that that the local-time distribution of ULF power at sites along CGM latitudinal parallels exhibit fundamental differences and that the CGM latitude of a site in general is not indicative of the site's projection into the magnetosphere. Thus, ULF characteristics observed at a single site in the polar cap cannot be freely generalized to other sites of similar CGM latitude but separated in magnetic local time, and the inadequacy of CGM coordinates in the polar cap has implications for conjugacy/mapping studies in general. In seeking alternative, observationally motivated systems of "polar cap latitudes," it is found that eccentric dipole (ED) coordinates have several strengths in organizing the hydromagnetic spatial structure in the polar cap region. ED latitudes appear to better classify the local-time ULF power in both magnitude and morphology and better differentiate the "deep polar cap" (where the ULF power is largely UT dependent and nearly free of local-time structure) from the "peripheral polar cap" (where near-magnetic noon pulsations dominate at lower and lower frequencies as one increases in ED latitude). Eccentric local time is shown to better align the local-time profiles in the magnetic east component over several PcX bands but worsen in the magnetic north component. It is suggested that a hybrid ED-CGM coordinate system might capture the strengths of both CGM and ED coordinates. It is shown that the local-time morphology of median ULF power at high-latitude sites is dominantly driven by where they project into the magnetosphere, which is best quantified by their proximity to the low-altitude cusp on the dayside (which is not necessarily quantified by a site's CGM latitude), and that variations in the local-time morphology at sites similar in ED latitude are due to both geographic local-time control (relative amplification or dampening by the diurnal variation in the local ionospheric conductivity) and geomagnetic coastal effects (enhanced power in a coastally mediated direction). Regardless of cause, it is emphasized that the application of CGM latitudes in the polar cap region is not entirely meaningful and likely should be dispensed with in favor of a scheme that is in better accord with the observed hydromagnetic spatial structure.

  9. Translation initiation on mRNAs bound by nuclear cap-binding protein complex CBP80/20 requires interaction between CBP80/20-dependent translation initiation factor and eukaryotic translation initiation factor 3g.

    PubMed

    Choe, Junho; Oh, Nara; Park, Sungjin; Lee, Ye Kyung; Song, Ok-Kyu; Locker, Nicolas; Chi, Sung-Gil; Kim, Yoon Ki

    2012-05-25

    In the cytoplasm of mammalian cells, either cap-binding proteins 80 and 20 (CBP80/20) or eukaryotic translation initiation factor (eIF) 4E can direct the initiation of translation. Although the recruitment of ribosomes to mRNAs during eIF4E-dependent translation (ET) is well characterized, the molecular mechanism for CBP80/20-dependent translation (CT) remains obscure. Here, we show that CBP80/20-dependent translation initiation factor (CTIF), which has been shown to be preferentially involved in CT but not ET, specifically interacts with eIF3g, a component of the eIF3 complex involved in ribosome recruitment. By interacting with eIF3g, CTIF serves as an adaptor protein to bridge the CBP80/20 and the eIF3 complex, leading to efficient ribosome recruitment during CT. Accordingly, down-regulation of CTIF using a small interfering RNA causes a redistribution of CBP80 from polysome fractions to subpolysome fractions, without significant consequence to eIF4E distribution. In addition, down-regulation of eIF3g inhibits the efficiency of nonsense-mediated mRNA decay, which is tightly coupled to CT but not to ET. Moreover, the artificial tethering of CTIF to an intercistronic region of dicistronic mRNA results in translation of the downstream cistron in an eIF3-dependent manner. These findings support the idea that CT mechanistically differs from ET.

  10. A Capped Dipeptide Which Simultaneously Exhibits Gelation and Crystallization Behavior.

    PubMed

    Martin, Adam D; Wojciechowski, Jonathan P; Bhadbhade, Mohan M; Thordarson, Pall

    2016-03-08

    Short peptides capped at their N-terminus are often highly efficient gelators, yet notoriously difficult to crystallize. This is due to strong unidirectional interactions within fibers, resulting in structure propagation only along one direction. Here, we synthesize the N-capped dipeptide, benzimidazole-diphenylalanine, which forms both hydrogels and single crystals. Even more remarkably, we show using atomic force microscopy the coexistence of these two distinct phases. We then use powder X-ray diffraction to investigate whether the single crystal structure can be extrapolated to the molecular arrangement within the hydrogel. The results suggest parallel β-sheet arrangement as the dominant structural motif, challenging existing models for gelation of short peptides, and providing new directions for the future rational design of short peptide gelators.

  11. Impact of target mRNA structure on siRNA silencing efficiency: A large-scale study.

    PubMed

    Gredell, Joseph A; Berger, Angela K; Walton, S Patrick

    2008-07-01

    The selection of active siRNAs is generally based on identifying siRNAs with certain sequence and structural properties. However, the efficiency of RNA interference has also been shown to depend on the structure of the target mRNA, primarily through studies using exogenous transcripts with well-defined secondary structures in the vicinity of the target sequence. While these studies provide a means for examining the impact of target sequence and structure independently, the predicted secondary structures for these transcripts are often not reflective of structures that form in full-length, native mRNAs where interactions can occur between relatively remote segments of the mRNAs. Here, using a combination of experimental results and analysis of a large dataset, we demonstrate that the accessibility of certain local target structures on the mRNA is an important determinant in the gene silencing ability of siRNAs. siRNAs targeting the enhanced green fluorescent protein were chosen using a minimal siRNA selection algorithm followed by classification based on the predicted minimum free energy structures of the target transcripts. Transfection into HeLa and HepG2 cells revealed that siRNAs targeting regions of the mRNA predicted to have unpaired 5'- and 3'-ends resulted in greater gene silencing than regions predicted to have other types of secondary structure. These results were confirmed by analysis of gene silencing data from previously published siRNAs, which showed that mRNA target regions unpaired at either the 5'-end or 3'-end were silenced, on average, approximately 10% more strongly than target regions unpaired in the center or primarily paired throughout. We found this effect to be independent of the structure of the siRNA guide strand. Taken together, these results suggest minimal requirements for nucleation of hybridization between the siRNA guide strand and mRNA and that both mRNA and guide strand structure should be considered when choosing candidate siRNAs. (c) 2008 Wiley Periodicals, Inc.

  12. Impact of target mRNA structure on siRNA silencing efficiency: a large-scale study

    PubMed Central

    Gredell, Joseph A.; Berger, Angela K.; Walton, S. Patrick

    2009-01-01

    The selection of active siRNAs is generally based on identifying siRNAs with certain sequence and structural properties. However, the efficiency of RNA interference has also been shown to depend on the structure of the target mRNA, primarily through studies using exogenous transcripts with well-defined secondary structures in the vicinity of the target sequence. While these studies provide a means for examining the impact of target sequence and structure independently, the predicted secondary structures for these transcripts are often not reflective of structures that form in full-length, native mRNAs where interactions can occur between relatively remote segments of the mRNAs. Here, using a combination of experimental results and analysis of a large dataset, we demonstrate that the accessibility of certain local target structures on the mRNA is an important determinant in the gene silencing ability of siRNAs. siRNAs targeting the enhanced green fluorescent protein were chosen using a minimal siRNA selection algorithm followed by classification based on the predicted minimum free energy structures of the target transcripts. Transfection into HeLa and HepG2 cells revealed that siRNAs targeting regions of the mRNA predicted to have unpaired 5’- and 3’-ends resulted in greater gene silencing than regions predicted to have other types of secondary structure. These results were confirmed by analysis of gene silencing data from previously published siRNAs, which showed that mRNA target regions unpaired at either the 5’-end or 3’-end were silenced, on average, ~10% more strongly than target regions unpaired in the center or primarily paired throughout. We found this effect to be independent of the structure of the siRNA guide strand. Taken together, these results suggest minimal requirements for nucleation of hybridization between the siRNA guide strand and mRNA and that both mRNA and guide strand structure should be considered when choosing candidate siRNAs. PMID:18306428

  13. Amplified in Breast Cancer Regulates Transcription and Translation in Breast Cancer Cells.

    PubMed

    Ochnik, Aleksandra M; Peterson, Mark S; Avdulov, Svetlana V; Oh, Annabell S; Bitterman, Peter B; Yee, Douglas

    2016-02-01

    Control of mRNA translation is fundamentally altered in cancer. Insulin-like growth factor-I (IGF-I) signaling regulates key translation mediators to modulate protein synthesis (e.g. eIF4E, 4E-BP1, mTOR, and S6K1). Importantly the Amplified in Breast Cancer (AIB1) oncogene regulates transcription and is also a downstream mediator of IGF-I signaling. To determine if AIB1 also affects mRNA translation, we conducted gain and loss of AIB1 function experiments in estrogen receptor alpha (ERα)(+) (MCF-7L) and ERα(-) (MDA-MB-231, MDA-MB-435 and LCC6) breast cancer cells. AIB1 positively regulated IGF-I-induced mRNA translation in both ERα(+) and ERα(-) cells. Formation of the eIF4E-4E-BP1 translational complex was altered in the AIB1 ERα(+) and ERα(-) knockdown cells, leading to a reduction in the eIF4E/4E-BP1 and eIF4G/4E-BP1 ratios. In basal and IGF-I stimulated MCF-7 and LCC6 cells, knockdown of AIB1 decreased the integrity of the cap-binding complex, reduced global IGF-I stimulated polyribosomal mRNA recruitment with a concomitant decrease in ten of the thirteen genes tested in polysome-bound mRNAs mapping to proliferation, cell cycle, survival, transcription, translation and ribosome biogenesis ontologies. Specifically, knockdown of AIB1 decreased ribosome-bound mRNA and steady-state protein levels of the transcription factors ERα and E2F1 in addition to reduced ribosome-bound mRNA of the ribosome biogenesis factor BYSL in a cell-line specific manner to regulate mRNA translation. The oncogenic transcription factor AIB1 has a novel role in the regulation of polyribosome recruitment and formation of the translational complex. Combinatorial therapies targeting IGF signaling and mRNA translation in AIB1 expressing breast cancers may have clinical benefit and warrants further investigation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Convection flow structure in the central polar cap

    NASA Astrophysics Data System (ADS)

    Bristow, W. A.

    2017-12-01

    A previous study of spatially averaged flow velocity in the central polar cap [Bristow et al., 2015] observed under steady IMF conditions found that it was extremely rare for the average to exceed 850 m/s (less than 0.2 % of the time). Anecdotally, however it is not uncommon to observe line-of-sight velocities in excess of 100 m/s in the McMurdo radar field of view directly over the magnetic pole. This discrepancy motivated this study, which examines the conditions under which high-velocity flows are observed at latitudes greater than 80° magnetic latitude. It was found that highly structured flows are common in the central polar cap, which leads to the flow within regions to have significant deviation from the average. In addition, the high-speed flow regions are usually directed away from the earth-sun line. No specific set of driving conditions was identified to be associated with high-speed flows. The study did conclude that 1)Polar cap velocities are generally highly structured. 2)Flow patterns typically illustrate narrow channels, vortical flow regions, and propagating features. 3) Persistent waves are a regular occurrence. 3)Features are observed to propagate from day side to night side, and from night side to day side.. 4)Convection often exhibits significant difference between the two hemispheres. And 5)About 10% of the time the velocity somewhere in the cap exceeds 1 Km/s The presentation will conclude with a discussion of the physical reasons for the flow structure. Bristow, W. A., E. Amata, J. Spaleta, and M. F. Marcucci (2015), Observations of the relationship between ionospheric central polar cap and dayside throat convection velocities, and solar wind/IMF driving, J. Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021199.

  15. Plasma turbulence and coherent structures in the polar cap observed by the ICI-2 sounding rocket

    NASA Astrophysics Data System (ADS)

    Spicher, A.; Miloch, W. J.; Clausen, L. B. N.; Moen, J. I.

    2015-12-01

    The electron density data from the ICI-2 sounding rocket experiment in the high-latitude F region ionosphere are analyzed using the higher-order spectra and higher-order statistics. Two regions of enhanced fluctuations are chosen for detailed analysis: the trailing edge of a polar cap patch and an electron density enhancement associated with particle precipitation. While these two regions exhibit similar power spectra, our analysis reveals that their internal structures are significantly different. The structures on the edge of the polar cap patch are likely due to nonlinear wave interactions since this region is characterized by intermittency and significant coherent mode coupling. The plasma enhancement subjected to precipitation, however, exhibits stronger random characteristics with uncorrelated phases of density fluctuations. These results suggest that particle precipitation plays a fundamental role in ionospheric plasma structuring creating turbulent-like structures. We discuss the physical mechanisms that cause plasma structuring as well as the possible processes for the low-frequency part of the spectrum in terms of plasma instabilities.

  16. Structural and Biological Characterization of a Capsular Polysaccharide Produced by Staphylococcus haemolyticus▿

    PubMed Central

    Flahaut, Sigrid; Vinogradov, Evgeny; Kelley, Kathryn A.; Brennan, Shannon; Hiramatsu, Keiichi; Lee, Jean C.

    2008-01-01

    The DNA sequence of the genome of Staphylococcus haemolyticus JCSC1435 revealed a putative capsule operon composed of 13 genes in tandem. The first seven genes (capABCDEFGSh) showed ≥57% similarity with the Staphylococcus aureus cap5 or cap8 locus. However, the capHIJKLMSh genes are unique to S. haemolyticus and include genes encoding a putative flippase, an aminotransferase, two glycosyltransferases, and a transcriptional regulator. Capsule-like material was readily apparent by immunoelectron microscopy on bacteria harvested in the postexponential phase of growth. Electron micrographs of a JCSC1435 mutant with a deleted cap region lacked the capsule-like material. Both strains produced small amounts of surface-associated material that reacted with antibodies to polyglutamic acid. S. haemolyticus cap genes were amplified from four of seven clinical isolates of S. haemolyticus from humans, and three of these strains produced a serologically cross-reactive capsular polysaccharide. In vitro assays demonstrated that the acapsular mutant strain showed greater biofilm formation but was more susceptible to complement-mediated opsonophagocytic killing than the parent strain. Structural characterization of capsule purified from S. haemolyticus strain JCSC1435 showed a trisaccharide repeating unit: −3-α-l-FucNAc-3-(2-NAc-4-N-Asp-2,4,6-trideoxy-β-d-Glc)-4-α-d-GlcNAc-. This structure is unique among staphylococcal polysaccharides in that its composition includes a trideoxy sugar residue with aspartic acid as an N-acyl substituent. PMID:18165309

  17. Structural and biological characterization of a capsular polysaccharide produced by Staphylococcus haemolyticus.

    PubMed

    Flahaut, Sigrid; Vinogradov, Evgeny; Kelley, Kathryn A; Brennan, Shannon; Hiramatsu, Keiichi; Lee, Jean C

    2008-03-01

    The DNA sequence of the genome of Staphylococcus haemolyticus JCSC1435 revealed a putative capsule operon composed of 13 genes in tandem. The first seven genes (capABCDEFG(Sh)) showed > or = 57% similarity with the Staphylococcus aureus cap5 or cap8 locus. However, the capHIJKLM(Sh) genes are unique to S. haemolyticus and include genes encoding a putative flippase, an aminotransferase, two glycosyltransferases, and a transcriptional regulator. Capsule-like material was readily apparent by immunoelectron microscopy on bacteria harvested in the postexponential phase of growth. Electron micrographs of a JCSC1435 mutant with a deleted cap region lacked the capsule-like material. Both strains produced small amounts of surface-associated material that reacted with antibodies to polyglutamic acid. S. haemolyticus cap genes were amplified from four of seven clinical isolates of S. haemolyticus from humans, and three of these strains produced a serologically cross-reactive capsular polysaccharide. In vitro assays demonstrated that the acapsular mutant strain showed greater biofilm formation but was more susceptible to complement-mediated opsonophagocytic killing than the parent strain. Structural characterization of capsule purified from S. haemolyticus strain JCSC1435 showed a trisaccharide repeating unit: -3-alpha-L-FucNAc-3-(2-NAc-4-N-Asp-2,4,6-trideoxy-beta-D-Glc)-4-alpha-D-GlcNAc-. This structure is unique among staphylococcal polysaccharides in that its composition includes a trideoxy sugar residue with aspartic acid as an N-acyl substituent.

  18. Patterns of gene expression in atrophying skeletal muscles: response to food deprivation

    NASA Technical Reports Server (NTRS)

    Jagoe, R. Thomas; Lecker, Stewart H.; Gomes, Marcelo; Goldberg, Alfred L.

    2002-01-01

    During fasting and many systemic diseases, muscle undergoes rapid loss of protein and functional capacity. To define the transcriptional changes triggering muscle atrophy and energy conservation in fasting, we used cDNA microarrays to compare mRNAs from muscles of control and food-deprived mice. Expression of >94% of genes did not change, but interesting patterns emerged among genes that were differentially expressed: 1) mRNAs encoding polyubiquitin, ubiquitin extension proteins, and many (but not all) proteasome subunits increased, which presumably contributes to accelerated protein breakdown; 2) a dramatic increase in mRNA for the ubiquitin ligase, atrogin-1, but not most E3s; 3) a significant suppression of mRNA for myosin binding protein H (but not other myofibrillar proteins) and IGF binding protein 5, which may favor cell protein loss; 4) decreases in mRNAs for several glycolytic enzymes and phosphorylase kinase subunits, and dramatic increases in mRNAs for pyruvate dehydrogenase kinase 4 and glutamine synthase, which should promote glucose sparing and gluconeogenesis. During fasting, metallothionein mRNA increased dramatically, mRNAs for extracellular matrix components fell, and mRNAs that may favor cap-independent mRNA translation rose. Significant changes occurred in mRNAs for many growth-related proteins and transcriptional regulators. These transcriptional changes indicate a complex adaptive program that should favor protein degradation and suppress glucose oxidation in muscle. Similar analysis of muscles atrophying for other causes is allowing us to identify a set of atrophy-specific changes in gene expression.

  19. Psychometric Properties and Factor Structure of the German Version of the Clinician-Administered PTSD Scale for DSM-5.

    PubMed

    Müller-Engelmann, Meike; Schnyder, Ulrich; Dittmann, Clara; Priebe, Kathlen; Bohus, Martin; Thome, Janine; Fydrich, Thomas; Pfaltz, Monique C; Steil, Regina

    2018-05-01

    The Clinician-Administered PTSD Scale (CAPS) is a widely used diagnostic interview for posttraumatic stress disorder (PTSD). Following fundamental modifications in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition ( DSM-5), the CAPS had to be revised. This study examined the psychometric properties (internal consistency, interrater reliability, convergent and discriminant validity, and structural validity) of the German version of the CAPS-5 in a trauma-exposed sample ( n = 223 with PTSD; n =51 without PTSD). The results demonstrated high internal consistency (αs = .65-.93) and high interrater reliability (ICCs = .81-.89). With regard to convergent and discriminant validity, we found high correlations between the CAPS severity score and both the Posttraumatic Diagnostic Scale sum score ( r = .87) and the Beck Depression Inventory total score ( r = .72). Regarding the underlying factor structure, the hybrid model demonstrated the best fit, followed by the anhedonia model. However, we encountered some nonpositive estimates for the correlations of the latent variables (factors) for both models. The model with the best fit without methodological problems was the externalizing behaviors model, but the results also supported the DSM-5 model. Overall, the results demonstrate that the German version of the CAPS-5 is a psychometrically sound measure.

  20. Carbon Nanotubes: On the Origin of Helicity

    NASA Astrophysics Data System (ADS)

    Harutyunyan, Avetik

    2015-03-01

    The mechanism of helicity formation of carbon nanotubes still remains elusive that hinders their applications. Current explanations mainly rely on the planar interrelationship between the structure of nanotube and corresponding facet of catalyst in 2D geometry that could amend the structure of grown carbon layer, specifically due to the epitaxial interaction. Yet, the structure of carbon nanotube and circumference of the rims assume involvement of more than one facet i.e. it is 3D problem. By aiming this problem we find that the nanotube nucleation is initiated by cap formation via evolving of graphene embryo across the adjacent facets of catalyst particle. As a result the graphene embryos incorporate in their hexagonic network various polygons to accommodate the curved 3D geometry that initiates cap formation following by elongation of the circumferential rims. Based on these results, also on the census of nanotube caps and the fact that given cap fit only one nanotube wall, we consider carbon cap responsible for the helicity of carbon nanotube. This understanding could provide new avenues towards engineering particles to explicitly accommodate certain helicities via exploitation of the angular distribution of catalyst adjacent facets. Our recent progresses in production of carbon nanotubes, nanotube reinforced composites and their potential applications also will be presented.

  1. Identification and characterization of protein interactions in the mammalian mRNA processing body using a novel two-hybrid assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloch, Donald B., E-mail: bloch@helix.mgh.harvard.edu; Nobre, Rita A.; Bernstein, Gillian A.

    2011-09-10

    Components of the mRNA processing body (P-body) regulate critical steps in mRNA storage, transport, translation and degradation. At the core of the P-body is the decapping complex, which removes the 5' cap from de-adenylated mRNAs and mediates an irreversible step in mRNA degradation. The assembly of P-bodies in Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster has been previously described. Less is known about the assembly of mammalian P-bodies. To investigate the interactions that occur between components of mammalian P-bodies, we developed a fluorescence-based, two-hybrid assay system. The assay depends on the ability of one P-body component, fused to an exogenousmore » nuclear localization sequence (NLS), to recruit other P-body components to the nucleus. The assay was used to investigate interactions between P-body components Ge-1, DCP2, DCP1, EDC3, RAP55, and RCK. The results of this study show that the modified two-hybrid assay can be used to identify protein interactions that occur in a macromolecular complex. The assay can also be used to efficiently detect protein interaction domains. The results provide important insights into mammalian P-body assembly and demonstrate similarities, and critical differences, between P-body assembly in mammalian cells compared with that of other species. -- Research highlights: {yields} A two-hybrid assay was developed to study interactions in macromolecular complexes. {yields} The assay was applied to interactions between components of mRNA P-bodies. {yields} The assay effectively and efficiently identified protein interaction domains. {yields} P-body assembly in mammalian cells differs from that in other species.« less

  2. A Genome-Wide RNAi Screen Identifies FOXO4 as a Metastasis-Suppressor through Counteracting PI3K/AKT Signal Pathway in Prostate Cancer

    PubMed Central

    Su, Bing; Gao, Lingqiu; Baranowski, Catherine; Gillard, Bryan; Wang, Jianmin; Ransom, Ryan; Ko, Hyun-Kyung; Gelman, Irwin H.

    2014-01-01

    Activation of the PI3K/AKT signal pathway is a known driving force for the progression to castration-recurrent prostate cancer (CR-CaP), which constitutes the major lethal phenotype of CaP. Here, we identify using a genomic shRNA screen the PI3K/AKT-inactivating downstream target, FOXO4, as a potential CaP metastasis suppressor. FOXO4 protein levels inversely correlate with the invasive potential of a panel of human CaP cell lines, with decreased mRNA levels correlating with increased incidence of clinical metastasis. Knockdown (KD) of FOXO4 in human LNCaP cells causes increased invasion in vitro and lymph node (LN) metastasis in vivo without affecting indices of proliferation or apoptosis. Increased Matrigel invasiveness was found by KD of FOXO1 but not FOXO3. Comparison of differentially expressed genes affected by FOXO4-KD in LNCaP cells in culture, in primary tumors and in LN metastases identified a panel of upregulated genes, including PIP, CAMK2N1, PLA2G16 and PGC, which, if knocked down by siRNA, could decrease the increased invasiveness associated with FOXO4 deficiency. Although only some of these genes encode FOXO promoter binding sites, they are all RUNX2-inducible, and RUNX2 binding to the PIP promoter is increased in FOXO4-KD cells. Indeed, the forced expression of FOXO4 reversed the increased invasiveness of LNCaP/shFOXO4 cells; the forced expression of FOXO4 did not alter RUNX2 protein levels, yet it decreased RUNX2 binding to the PIP promoter, resulting in PIP downregulation. Finally, there was a correlation between FOXO4, but not FOXO1 or FOXO3, downregulation and decreased metastasis-free survival in human CaP patients. Our data strongly suggest that increased PI3K/AKT-mediated metastatic invasiveness in CaP is associated with FOXO4 loss, and that mechanisms to induce FOXO4 re-expression might suppress CaP metastatic aggressiveness. PMID:24983969

  3. The human papillomavirus type 16 E6 oncoprotein activates mTORC1 signaling and increases protein synthesis.

    PubMed

    Spangle, Jennifer M; Münger, Karl

    2010-09-01

    The mammalian target of rapamycin (mTOR) kinase acts as a cellular rheostat that integrates signals from a variety of cellular signal transduction pathways that sense growth factor and nutrient availability as well as intracellular energy status. It was previously reported that the human papillomavirus type 16 (HPV16) E6 oncoprotein may activate the S6 protein kinase (S6K) through binding and E6AP-mediated degradation of the mTOR inhibitor tuberous sclerosis complex 2 (TSC2) (Z. Lu, X. Hu, Y. Li, L. Zheng, Y. Zhou, H. Jiang, T. Ning, Z. Basang, C. Zhang, and Y. Ke, J. Biol. Chem. 279:35664-35670, 2004; L. Zheng, H. Ding, Z. Lu, Y. Li, Y. Pan, T. Ning, and Y. Ke, Genes Cells 13:285-294, 2008). Our results confirmed that HPV16 E6 expression causes an increase in mTORC1 activity through enhanced phosphorylation of mTOR and activation of downstream signaling pathways S6K and eukaryotic initiation factor binding protein 1 (4E-BP1). However, we did not detect a decrease in TSC2 levels in HPV16 E6-expressing cells. We discovered, however, that HPV16 E6 expression causes AKT activation through the upstream kinases PDK1 and mTORC2 under conditions of nutrient deprivation. We show that HPV16 E6 expression causes an increase in protein synthesis by enhancing translation initiation complex assembly at the 5' mRNA cap and an increase in cap-dependent translation. The increase in cap-dependent translation likely results from HPV16 E6-induced AKT/mTORC1 activation, as the assembly of the translation initiation complex and cap-dependent translation are rapamycin sensitive. Lastly, coexpression of the HPV16 E6 and E7 oncoproteins does not affect HPV16 E6-induced activation of mTORC1 and cap-dependent translation. HPV16 E6-mediated activation of mTORC1 signaling and cap-dependent translation may be a mechanism to promote viral replication under conditions of limited nutrient supply in differentiated, HPV oncoprotein-expressing proliferating cells.

  4. Structure of polyhydroxyalkanoate (PHA) synthase PhaC from Chromobacterium sp. USM2, producing biodegradable plastics.

    PubMed

    Chek, Min Fey; Kim, Sun-Yong; Mori, Tomoyuki; Arsad, Hasni; Samian, Mohammed Razip; Sudesh, Kumar; Hakoshima, Toshio

    2017-07-13

    Polyhydroxyalkanoate (PHA) is a promising candidate for use as an alternative bioplastic to replace petroleum-based plastics. Our understanding of PHA synthase PhaC is poor due to the paucity of available three-dimensional structural information. Here we present a high-resolution crystal structure of the catalytic domain of PhaC from Chromobacterium sp. USM2, PhaC Cs -CAT. The structure shows that PhaC Cs -CAT forms an α/β hydrolase fold comprising α/β core and CAP subdomains. The active site containing Cys291, Asp447 and His477 is located at the bottom of the cavity, which is filled with water molecules and is covered by the partly disordered CAP subdomain. We designated our structure as the closed form, which is distinct from the recently reported catalytic domain from Cupriavidus necator (PhaC Cn -CAT). Structural comparison showed PhaC Cn -CAT adopting a partially open form maintaining a narrow substrate access channel to the active site, but no product egress. PhaC Cs -CAT forms a face-to-face dimer mediated by the CAP subdomains. This arrangement of the dimer is also distinct from that of the PhaC Cn -CAT dimer. These findings suggest that the CAP subdomain should undergo a conformational change during catalytic activity that involves rearrangement of the dimer to facilitate substrate entry and product formation and egress from the active site.

  5. Nuclear TRIM25 Specifically Targets Influenza Virus Ribonucleoproteins to Block the Onset of RNA Chain Elongation.

    PubMed

    Meyerson, Nicholas R; Zhou, Ligang; Guo, Yusong R; Zhao, Chen; Tao, Yizhi J; Krug, Robert M; Sawyer, Sara L

    2017-11-08

    TRIM25 is an E3 ubiquitin ligase that activates RIG-I to promote the antiviral interferon response. The NS1 protein from all strains of influenza A virus binds TRIM25, although not all virus strains block the interferon response, suggesting alternative mechanisms for TRIM25 action. Here we present a nuclear role for TRIM25 in specifically restricting influenza A virus replication. TRIM25 inhibits viral RNA synthesis through a direct mechanism that is independent of its ubiquitin ligase activity and the interferon pathway. This activity can be inhibited by the viral NS1 protein. TRIM25 inhibition of viral RNA synthesis results from its binding to viral ribonucleoproteins (vRNPs), the structures containing individual viral RNA segments, the viral polymerase, and multiple viral nucleoproteins. TRIM25 binding does not inhibit initiation of capped-RNA-primed viral mRNA synthesis by the viral polymerase. Rather, the onset of RNA chain elongation is inhibited because TRIM25 prohibits the movement of RNA into the polymerase complex. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Two stage serial impingement cooling for isogrid structures

    DOEpatents

    Lee, Ching-Pang; Morrison, Jay A.

    2014-09-09

    A system for cooling a wall (24) of a component having an outer surface with raised ribs (12) defining a structural pocket (10), including: an inner wall (26) within the structural pocket and separating the wall outer surface within the pocket into a first region (28) outside of the inner wall and a second region (40) enclosed by the inner wall; a plate (14) disposed atop the raised ribs and enclosing the structural pocket, the plate having a plate impingement hole (16) to direct cooling air onto an impingement cooled area (38) of the first region; a cap having a skirt (50) in contact with the inner wall, the cap having a cap impingement hole (20) configured to direct the cooling air onto an impingement cooled area (44) of the second region, and; a film cooling hole (22) formed through the wall in the second region.

  7. Synthesis of RNA 5'-Azides from 2'-O-Pivaloyloxymethyl-Protected RNAs and Their Reactivity in Azide-Alkyne Cycloaddition Reactions.

    PubMed

    Warminski, Marcin; Kowalska, Joanna; Jemielity, Jacek

    2017-07-07

    Commercially available 2'-O-pivaloyloxymethyl (PivOM) phosphoramidites were employed in an SPS protocol for RNA 5' azides. The utility of the N 3 -RNAs in CuAAC and SPAAC was demonstrated by RNA 5' labeling, chemical ligation including fragment joining and cyclization, and bioconjugation. As a result, several new RNA conjugates that may be valuable tools for studies on biological events such as innate immune response (cyclic dinucleotides), post-transcriptional gene regulation (circular RNAs), or mRNA turnover (m 7 G capped RNAs) were obtained.

  8. The ribosome uses two active mechanisms to unwind messenger RNA during translation.

    PubMed

    Qu, Xiaohui; Wen, Jin-Der; Lancaster, Laura; Noller, Harry F; Bustamante, Carlos; Tinoco, Ignacio

    2011-07-06

    The ribosome translates the genetic information encoded in messenger RNA into protein. Folded structures in the coding region of an mRNA represent a kinetic barrier that lowers the peptide elongation rate, as the ribosome must disrupt structures it encounters in the mRNA at its entry site to allow translocation to the next codon. Such structures are exploited by the cell to create diverse strategies for translation regulation, such as programmed frameshifting, the modulation of protein expression levels, ribosome localization and co-translational protein folding. Although strand separation activity is inherent to the ribosome, requiring no exogenous helicases, its mechanism is still unknown. Here, using a single-molecule optical tweezers assay on mRNA hairpins, we find that the translation rate of identical codons at the decoding centre is greatly influenced by the GC content of folded structures at the mRNA entry site. Furthermore, force applied to the ends of the hairpin to favour its unfolding significantly speeds translation. Quantitative analysis of the force dependence of its helicase activity reveals that the ribosome, unlike previously studied helicases, uses two distinct active mechanisms to unwind mRNA structure: it destabilizes the helical junction at the mRNA entry site by biasing its thermal fluctuations towards the open state, increasing the probability of the ribosome translocating unhindered; and it mechanically pulls apart the mRNA single strands of the closed junction during the conformational changes that accompany ribosome translocation. The second of these mechanisms ensures a minimal basal rate of translation in the cell; specialized, mechanically stable structures are required to stall the ribosome temporarily. Our results establish a quantitative mechanical basis for understanding the mechanism of regulation of the elongation rate of translation by structured mRNAs. ©2011 Macmillan Publishers Limited. All rights reserved

  9. Fragile X mental retardation protein recognizes a G quadruplex structure within the survival motor neuron domain containing 1 mRNA 5'-UTR.

    PubMed

    McAninch, Damian S; Heinaman, Ashley M; Lang, Cara N; Moss, Kathryn R; Bassell, Gary J; Rita Mihailescu, Mihaela; Evans, Timothy L

    2017-07-25

    G quadruplex structures have been predicted by bioinformatics to form in the 5'- and 3'-untranslated regions (UTRs) of several thousand mature mRNAs and are believed to play a role in translation regulation. Elucidation of these roles has primarily been focused on the 3'-UTR, with limited focus on characterizing the G quadruplex structures and functions in the 5'-UTR. Investigation of the affinity and specificity of RNA binding proteins for 5'-UTR G quadruplexes and the resulting regulatory effects have also been limited. Among the mRNAs predicted to form a G quadruplex structure within the 5'-UTR is the survival motor neuron domain containing 1 (SMNDC1) mRNA, encoding a protein that is critical to the spliceosome. Additionally, this mRNA has been identified as a potential target of the fragile X mental retardation protein (FMRP), whose loss of expression leads to fragile X syndrome. FMRP is an RNA binding protein involved in translation regulation that has been shown to bind mRNA targets that form G quadruplex structures. In this study we have used biophysical methods to investigate G quadruplex formation in the 5'-UTR of SMNDC1 mRNA and analyzed its interactions with FMRP. Our results show that SMNDC1 mRNA 5'-UTR forms an intramolecular, parallel G quadruplex structure comprised of three G quartet planes, which is bound specifically by FMRP both in vitro and in mouse brain lysates. These findings suggest a model by which FMRP might regulate the translation of a subset of its mRNA targets by recognizing the G quadruplex structure present in their 5'-UTR, and affecting their accessibility by the protein synthesis machinery.

  10. Importance of the lid and cap domains for the catalytic activity of gastric lipases.

    PubMed

    Miled, N; Bussetta, C; De caro, A; Rivière, M; Berti, L; Canaan, S

    2003-09-01

    Human gastric lipase (HGL) is an enzyme secreted by the stomach, which is stable and active despite the highly acidic environment. It has been clearly established that this enzyme is responsible for 30% of the fat digestion processes occurring in human. This globular protein belongs to the alpha/beta hydrolase fold family and its catalytic serine is deeply buried under a domain called the extrusion domain, which is composed of a 'cap' domain and a segment consisting of 58 residues, which can be defined as a lid. The exact roles played by the cap and the lid domains during the catalytic step have not yet been elucidated. We have recently solved the crystal structure of the open form of the dog gastric lipase in complex with a covalent inhibitor. The detergent molecule and the inhibitor were mimicking a triglyceride substrate that would interact with residues belonging to both the cap and the lid domains. In this study, we have investigated the role of the cap and the lid domains, using site-directed mutagenesis procedures. We have produced truncated mutants lacking the lid and the cap. After expressing these mutants and purifying them, their activity was found to have decreased drastically in comparison with the wild type HGL. The lid and the cap domains play an important role in the catalytic reaction mechanism. Based on these results and the structural data (open form of DGL), we have pointed out the cap and the lid residues involved in the binding with the lipidic substrate.

  11. Engineering ellipsoidal cap-like hydrogel particles as building blocks or sacrificial templates for three-dimensional cell culture.

    PubMed

    Zhang, Weiwei; Huang, Guoyou; Ng, Kelvin; Ji, Yuan; Gao, Bin; Huang, Liqing; Zhou, Jinxiong; Lu, Tian Jian; Xu, Feng

    2018-03-26

    Hydrogel particles that can be engineered to compartmentally culture cells in a three-dimensional (3D) and high-throughput manner have attracted increasing interest in the biomedical area. However, the ability to generate hydrogel particles with specially designed structures and their potential biomedical applications need to be further explored. This work introduces a method for fabricating hydrogel particles in an ellipsoidal cap-like shape (i.e., ellipsoidal cap-like hydrogel particles) by employing an open-pore anodic aluminum oxide membrane. Hydrogel particles of different sizes are fabricated. The ability to produce ellipsoidal cap-like magnetic hydrogel particles with controlled distribution of magnetic nanoparticles is demonstrated. Encapsulated cells show high viability, indicating the potential for using these hydrogel particles as structure- and remote-controllable building blocks for tissue engineering application. Moreover, the hydrogel particles are also used as sacrificial templates for fabricating ellipsoidal cap-like concave wells, which are further applied for producing size controllable cell aggregates. The results are beneficial for the development of hydrogel particles and their applications in 3D cell culture.

  12. Heterogeneous ribonucleoprotein R regulates arylalkylamine N-acetyltransferase synthesis via internal ribosomal entry site-mediated translation in a circadian manner.

    PubMed

    Lee, Hwa-Rim; Kim, Tae-Don; Kim, Hyo-Jin; Jung, Youngseob; Lee, Dohyun; Lee, Kyung-Ha; Kim, Do-Yeon; Woo, Kyung-Chul; Kim, Kyong-Tai

    2015-11-01

    Rhythmic arylalkylamine N-acetyltransferase (AANAT) synthesis is a prominent circadian-controlled response that occurs in most mammals. AANAT is the core enzyme in melatonin production; because melatonin participates in many physiological processes, the regulation of AANAT is an important research topic. In this study, we focused on the role of heterogeneous ribonucleoprotein R (hnRNP R) in the translation of AANAT. A novel RNA-binding protein hnRNP R widely interacted with the 5' untranslated region (UTR) of AANAT mRNA and contributed to translation through an internal ribosomal entry site (IRES). Fine-tuning of AANAT protein synthesis occurred in response to knockdown and overexpression of hnRNP R. Nocturnal elevation of AANAT protein was dependent on the rhythmic changes of hnRNP R, whose levels are elevated in the pineal gland during nighttime. Increases in hnRNP R additionally improved AANAT production in rat pinealocytes under norepinephrine (NE) treatment. These results suggest that cap-independent translation of AANAT mRNA plays a role in the rhythmic synthesis of melatonin through the recruitment of translational machinery to hnRNP R-bound AANAT mRNA. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Genomic overview of mRNA 5′-leader trans-splicing in the ascidian Ciona intestinalis

    PubMed Central

    Satou, Yutaka; Hamaguchi, Makoto; Takeuchi, Keisuke; Hastings, Kenneth E. M.; Satoh, Nori

    2006-01-01

    Although spliced leader (SL) trans-splicing in the chordates was discovered in the tunicate Ciona intestinalis there has been no genomic overview analysis of the extent of trans-splicing or the make-up of the trans-spliced and non-trans-spliced gene populations of this model organism. Here we report such an analysis for Ciona based on the oligo-capping full-length cDNA approach. We randomly sampled 2078 5′-full-length ESTs representing 668 genes, or 4.2% of the entire genome. Our results indicate that Ciona contains a single major SL, which is efficiently trans-spliced to mRNAs transcribed from a specific set of genes representing ∼50% of the total number of expressed genes, and that individual trans-spliced mRNA species are, on average, 2–3-fold less abundant than non-trans-spliced mRNA species. Our results also identify a relationship between trans-splicing status and gene functional classification; ribosomal protein genes fall predominantly into the non-trans-spliced category. In addition, our data provide the first evidence for the occurrence of polycistronic transcription in Ciona. An interesting feature of the Ciona polycistronic transcription units is that the great majority entirely lack intercistronic sequences. PMID:16822859

  14. Alternate promoter selection within a human cytomegalovirus immediate-early and early transcription unit (UL119-115) defines true late transcripts containing open reading frames for putative viral glycoproteins.

    PubMed Central

    Leatham, M P; Witte, P R; Stinski, M F

    1991-01-01

    The human cytomegalovirus open reading frames (ORFs) UL119 through UL115 (UL119-115) are located downstream of the immediate-early 1 and 2 transcription units. The promoter upstream of UL119 is active at all times after infection and drives the synthesis of a spliced 3.1-kb mRNA. The viral mRNA initiates in UL119, contains UL119-117 and UL116, and terminates just downstream of UL115. True late transcripts that are detected only after viral DNA synthesis originate from this transcription unit. True late mRNAs of 2.1 kb, containing ORFs UL116 and UL115, and 1.2 kb, containing ORF UL115 only, are synthesized. The true late viral mRNAs are 3' coterminal with the 3.1-kb mRNA. This transcription unit is an example of late promoters nested within an immediate-early-early transcription unit. The gene products of UL119-117, UL116, and UL115 are predicted to be glycoproteins. Efficient expression of the downstream ORFs at late times after infection may be related to alternate promoter usage and downstream cap site selection. Images PMID:1717716

  15. An inorganic capping strategy for the seeded growth of versatile bimetallic nanostructures

    DOE PAGES

    Pei, Yuchen; Maligal-Ganesh, Raghu V.; Xiao, Chaoxian; ...

    2015-09-11

    Metal nanostructures have attracted great attention in various fields due to their tunable properties through precisely tailored sizes, compositions and structures. Using mesoporous silica (mSiO 2) as the inorganic capping agent and encapsulated Pt nanoparticles as the seeds, we developed a robust seeded growth method to prepare uniform bimetallic nanoparticles encapsulated in mesoporous silica shells (PtM@mSiO 2, M = Pd, Rh, Ni and Cu). Unexpectedly, we found that the inorganic silica shell is able to accommodate an eight-fold volume increase in the metallic core by reducing its thickness. The bimetallic nanoparticles encapsulated in mesoporous silica shells showed enhanced catalytic propertiesmore » and thermal stabilities compared with those prepared with organic capping agents. As a result, this inorganic capping strategy could find a broad application in the synthesis of versatile bimetallic nanostructures with exceptional structural control and enhanced catalytic properties.« less

  16. Optical and structural characteristics of high indium content InGaN/GaN multi-quantum wells with varying GaN cap layer thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, J.; Zhao, D. G., E-mail: dgzhao@red.semi.ac.cn; Jiang, D. S.

    2015-02-07

    The optical and structural properties of InGaN/GaN multi-quantum wells (MQWs) with different thicknesses of low temperature grown GaN cap layers are investigated. It is found that the MQW emission energy red-shifts and the peak intensity decreases with increasing GaN cap layer thickness, which may be partly caused by increased floating indium atoms accumulated at quantum well (QW) surface. They will result in the increased interface roughness, higher defect density, and even lead to a thermal degradation of QW layers. An extra growth interruption introduced before the growth of GaN cap layer can help with evaporating the floating indium atoms, andmore » therefore is an effective method to improve the optical properties of high indium content InGaN/GaN MQWs.« less

  17. High Performance 0.1 μm GaAs Pseudomorphic High Electron Mobility Transistors with Si Pulse-Doped Cap Layer for 77 GHz Car Radar Applications

    NASA Astrophysics Data System (ADS)

    Kim, Sungwon; Noh, Hunhee; Jang, Kyoungchul; Lee, JaeHak; Seo, Kwangseok

    2005-04-01

    In this study, 0.1 μm double-recessed T-gate GaAs pseudomorphic high electron mobility transistors (PHEMT’s), in which an InGaAs layer and a Si pulse-doped layer in the cap structure are inserted, have been successfully fabricated. This cap structure improves ohmic contact. The ohmic contact resistance is as small as 0.07 Ωmm, consequently the source resistance is reduced by about 20% compared to that of a conventional cap structure. This device shows good DC and microwave performance such as an extrinsic transconductance of 620 mS/mm, a maximum saturated drain current of 780 mA/mm, a cut-off frequency fT of 140 GHz and a maximum oscillation frequency of 260 GHz. The reverse breakdown is 5.7 V at a gate current density of 1 mA/mm. The maximum available gain is about 7 dB at 77 GHz. It is well suited for car radar monolithic microwave integrated circuits (MMICs).

  18. The material and biological characteristics of osteoinductive calcium phosphate ceramics

    PubMed Central

    Tang, Zhurong; Li, Xiangfeng; Tan, Yanfei

    2018-01-01

    Abstract The discovery of osteoinductivity of calcium phosphate (Ca-P) ceramics has set an enduring paradigm of conferring biological regenerative activity to materials with carefully designed structural characteristics. The unique phase composition and porous structural features of osteoinductive Ca-P ceramics allow it to interact with signaling molecules and extracellular matrices in the host system, creating a local environment conducive to new bone formation. Mounting evidence now indicate that the osteoinductive activity of Ca-P ceramics is linked to their physicochemical and three-dimensional structural properties. Inspired by this conceptual breakthrough, many laboratories have shown that other materials can be also enticed to join the rank of tissue-inducing biomaterials, and besides the bones, other tissues such as cartilage, nerves and blood vessels were also regenerated with the assistance of biomaterials. Here, we give a brief historical recount about the discovery of the osteoinductivity of Ca-P ceramics, summarize the underlying material factors and biological characteristics, and discuss the mechanism of osteoinduction concerning protein adsorption, and the interaction with different types of cells, and the involvement of the vascular and immune systems. PMID:29423267

  19. On Relevance of Codon Usage to Expression of Synthetic and Natural Genes in Escherichia coli

    PubMed Central

    Supek, Fran; Šmuc, Tomislav

    2010-01-01

    A recent investigation concluded that codon bias did not affect expression of green fluorescent protein (GFP) variants in Escherichia coli, while stability of an mRNA secondary structure near the 5′ end played a dominant role. We demonstrate that combining the two variables using regression trees or support vector regression yields a biologically plausible model with better support in the GFP data set and in other experimental data: codon usage is relevant for protein levels if the 5′ mRNA structures are not strong. Natural E. coli genes had weaker 5′ mRNA structures than the examined set of GFP variants and did not exhibit a correlation between the folding free energy of 5′ mRNA structures and protein expression. PMID:20421604

  20. The Clinician-Administered PTSD Scale for DSM-5 (CAPS-5): Development and initial psychometric evaluation in military veterans.

    PubMed

    Weathers, Frank W; Bovin, Michelle J; Lee, Daniel J; Sloan, Denise M; Schnurr, Paula P; Kaloupek, Danny G; Keane, Terence M; Marx, Brian P

    2018-03-01

    The Clinician-Administered PTSD Scale (CAPS) is an extensively validated and widely used structured diagnostic interview for posttraumatic stress disorder (PTSD). The CAPS was recently revised to correspond with PTSD criteria in the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5; American Psychiatric Association, 2013). This article describes the development of the CAPS for DSM-5 (CAPS-5) and presents the results of an initial psychometric evaluation of CAPS-5 scores in 2 samples of military veterans (Ns = 165 and 207). CAPS-5 diagnosis demonstrated strong interrater reliability (к = .78 to 1.00, depending on the scoring rule) and test-retest reliability (к = .83), as well as strong correspondence with a diagnosis based on the CAPS for DSM-IV (CAPS-IV; к = .84 when optimally calibrated). CAPS-5 total severity score demonstrated high internal consistency (α = .88) and interrater reliability (ICC = .91) and good test-retest reliability (ICC = .78). It also demonstrated good convergent validity with total severity score on the CAPS-IV (r = .83) and PTSD Checklist for DSM-5 (r = .66) and good discriminant validity with measures of anxiety, depression, somatization, functional impairment, psychopathy, and alcohol abuse (rs = .02 to .54). Overall, these results indicate that the CAPS-5 is a psychometrically sound measure of DSM-5 PTSD diagnosis and symptom severity. Importantly, the CAPS-5 strongly corresponds with the CAPS-IV, which suggests that backward compatibility with the CAPS-IV was maintained and that the CAPS-5 provides continuity in evidence-based assessment of PTSD in the transition from DSM-IV to DSM-5 criteria. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  1. Mutational Analysis of Plant Cap-Binding Protein eIF4E Reveals Key Amino Acids Involved in Biochemical Functions and Potyvirus Infection▿

    PubMed Central

    German-Retana, Sylvie; Walter, Jocelyne; Doublet, Bénédicte; Roudet-Tavert, Geneviève; Nicaise, Valérie; Lecampion, Cécile; Houvenaghel, Marie-Christine; Robaglia, Christophe; Michon, Thierry; Le Gall, Olivier

    2008-01-01

    The eukaryotic translation initiation factor 4E (eIF4E) (the cap-binding protein) is involved in natural resistance against several potyviruses in plants. In lettuce, the recessive resistance genes mo11 and mo12 against Lettuce mosaic virus (LMV) are alleles coding for forms of eIF4E unable, or less effective, to support virus accumulation. A recombinant LMV expressing the eIF4E of a susceptible lettuce variety from its genome was able to produce symptoms in mo11 or mo12 varieties. In order to identify the eIF4E amino acid residues necessary for viral infection, we constructed recombinant LMV expressing eIF4E with point mutations affecting various amino acids and compared the abilities of these eIF4E mutants to complement LMV infection in resistant plants. Three types of mutations were produced in order to affect different biochemical functions of eIF4E: cap binding, eIF4G binding, and putative interaction with other virus or host proteins. Several mutations severely reduced the ability of eIF4E to complement LMV accumulation in a resistant host and impeded essential eIF4E functions in yeast. However, the ability of eIF4E to bind a cap analogue or to fully interact with eIF4G appeared unlinked to LMV infection. In addition to providing a functional mutational map of a plant eIF4E, this suggests that the role of eIF4E in the LMV cycle might be distinct from its physiological function in cellular mRNA translation. PMID:18480444

  2. KSC-04pd0965

    NASA Image and Video Library

    2004-04-28

    KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility remove Ground Support Equipment used to install Discovery’s nose cap on Friday. The nose cap had been removed from the vehicle in the summer of 2003 and returned to the vendor, where it underwent numerous forms of Non-Destructive Evaluation. These tests included X-ray, ultrasound and eddy current to ensure its structural integrity prior to installation on the vehicle. The nose cap was also recoated. Once returned to KSC, new Thermal Protection System blankets were assembled inside of the nose cap and thermography was performed prior to installation on the orbiter.

  3. KSC-04pd0964

    NASA Image and Video Library

    2004-04-28

    KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility get ready to remove Ground Support Equipment used to install Discovery’s nose cap on Friday. The nose cap had been removed from the vehicle in the summer of 2003 and returned to the vendor, where it underwent numerous forms of Non-Destructive Evaluation. These tests included X-ray, ultrasound and eddy current to ensure its structural integrity prior to installation on the vehicle. The nose cap was also recoated. Once returned to KSC, new Thermal Protection System blankets were assembled inside of the nose cap and thermography was performed prior to installation on the orbiter.

  4. A DFT study on NEA GaN photocathode with an ultrathin n-type Si-doped GaN cap layer

    NASA Astrophysics Data System (ADS)

    Xia, Sihao; Liu, Lei; Kong, Yike; Diao, Yu

    2016-10-01

    Due to the drawbacks of conventional negative electron affinity (NEA) GaN photocathodes activated by Cs or Cs/O, a new-type NEA GaN photocathodes with heterojunction surface dispense with Cs activation are proposed. This structure can be obtained through the coverage of an ultrathin n-type Si-doped GaN cap layer on the p-type Mg-doped GaN emission layer. The influences of the cap layer on the photocathode are calculated using DFT. This study indicates that the n-type cap layer can promote the photoemission characteristics of GaN photocathode and demonstrates the probability of the preparation of a NEA GaN photocathode with an n-type cap layer.

  5. Magnetic vortices in nanocaps induced by curvature

    NASA Astrophysics Data System (ADS)

    Abdelgawad, Ahmed M.; Nambiar, Nikhil; Bapna, Mukund; Chen, Hao; Majetich, Sara A.

    2018-05-01

    Magnetic nanoparticles with room temperature remanent magnetic vortices stabilized by their curvature are very intriguing due to their potential use in biomedicine. In the present study, we investigate room temperature magnetic chirality in 100 nm diameter permalloy spherical caps with 10 nm and 30 nm thicknesses. Micromagnetic OOMMF simulations predict the equilibrium spin structure for these caps to form a vortex state. We fabricate the permalloy caps by sputtering permalloy on both close-packed and sparse arrays of polystyrene nanoparticles. Magnetic force microscopy scans show a clear signature of a vortex state in close-packed caps of both 10 nm and 30 nm thicknesses. Alternating gradient magnetometry measurements of the caps are consistent with a remnant vortex state in 30 nm thick caps and a transition to an onion state followed by a vortex state in 10 nm thick caps. Out-of-plane measurements supported by micromagnetic simulations shows that an out-of-plane field can stabilize a vortex state down to a diameter of 15 nm.

  6. Structure of the antiviral assembly inhibitor CAP-1 complex with the HIV-1 CA protein.

    PubMed

    Kelly, Brian N; Kyere, Sampson; Kinde, Isaac; Tang, Chun; Howard, Bruce R; Robinson, Howard; Sundquist, Wesley I; Summers, Michael F; Hill, Christopher P

    2007-10-19

    The CA domain of the human immunodeficiency virus type 1 (HIV-1) Gag polyprotein plays critical roles in both the early and late phases of viral replication and is therefore an attractive antiviral target. Compounds with antiviral activity were recently identified that bind to the N-terminal domain of CA (CA N) and inhibit capsid assembly during viral maturation. We have determined the structure of the complex between CA N and the antiviral assembly inhibitor N-(3-chloro-4-methylphenyl)-N'-{2-[({5-[(dimethylamino)-methyl]-2-furyl}-methyl)-sulfanyl]ethyl}-urea) (CAP-1) using a combination of NMR spectroscopy and X-ray crystallography. The protein undergoes a remarkable conformational change upon CAP-1 binding, in which Phe32 is displaced from its buried position in the protein core to open a deep hydrophobic cavity that serves as the ligand binding site. The aromatic ring of CAP-1 inserts into the cavity, with the urea NH groups forming hydrogen bonds with the backbone oxygen of Val59 and the dimethylamonium group interacting with the side-chains of Glu28 and Glu29. Elements that could be exploited to improve binding affinity are apparent in the structure. The displacement of Phe32 by CAP-1 appears to be facilitated by a strained main-chain conformation, which suggests a potential role for a Phe32 conformational switch during normal capsid assembly.

  7. O2 and CO binding to tetraaza-tripodal-capped iron(II) porphyrins.

    PubMed

    Ruzié, Christian; Even, Pascale; Ricard, David; Roisnel, Thierry; Boitrel, Bernard

    2006-02-06

    A series of tris(2-aminoethylamine) (tren) capped iron(II) porphyrins has been synthesized and characterized and their affinities for dioxygen and carbon monoxide measured. The X-ray structure of the basic scaffold with nickel inserted in the porphyrin is also reported. All the ligands differ by the nature of the group(s) attached to the secondary amine functions of the cap. These various substitutions were introduced to probe if a hydrogen bond with these secondary amine groups acting as the donor could rationalize the high affinity of these myoglobin models. This work clearly indicates that the cage structure of the tren predominates over all the other appended groups with the exception of p-nitrophenol.

  8. Age structure and mortality of walleyes in Kansas reservoirs: Use of mortality caps to establish realistic management objectives

    USGS Publications Warehouse

    Quist, M.C.; Stephen, J.L.; Guy, C.S.; Schultz, R.D.

    2004-01-01

    Age structure, total annual mortality, and mortality caps (maximum mortality thresholds established by managers) were investigated for walleye Sander vitreus (formerly Stizostedion vitreum) populations sampled from eight Kansas reservoirs during 1991-1999. We assessed age structure by examining the relative frequency of different ages in the population; total annual mortality of age-2 and older walleyes was estimated by use of a weighted catch curve. To evaluate the utility of mortality caps, we modeled threshold values of mortality by varying growth rates and management objectives. Estimated mortality thresholds were then compared with observed growth and mortality rates. The maximum age of walleyes varied from 5 to 11 years across reservoirs. Age structure was dominated (???72%) by walleyes age 3 and younger in all reservoirs, corresponding to ages that were not yet vulnerable to harvest. Total annual mortality rates varied from 40.7% to 59.5% across reservoirs and averaged 51.1% overall (SE = 2.3). Analysis of mortality caps indicated that a management objective of 500 mm for the mean length of walleyes harvested by anglers was realistic for all reservoirs with a 457-mm minimum length limit but not for those with a 381-mm minimum length limit. For a 500-mm mean length objective to be realized for reservoirs with a 381-mm length limit, managers must either reduce mortality rates (e.g., through restrictive harvest regulations) or increase growth of walleyes. When the assumed objective was to maintain the mean length of harvested walleyes at current levels, the observed annual mortality rates were below the mortality cap for all reservoirs except one. Mortality caps also provided insight on management objectives expressed in terms of proportional stock density (PSD). Results indicated that a PSD objective of 20-40 was realistic for most reservoirs. This study provides important walleye mortality information that can be used for monitoring or for inclusion into population models; these results can also be combined with those of other studies to investigate large-scale differences in walleye mortality. Our analysis illustrates the utility of mortality caps for monitoring walleye populations and for establishing realistic management goals.

  9. The structure-mechanical relationship of palm vascular tissue.

    PubMed

    Wang, Ningling; Liu, Wangyu; Huang, Jiale; Ma, Ke

    2014-08-01

    The structure-mechanical relationship of palm sheath is studied with numerical and experimental methods. The cellular structure of the vascular tissue is rebuilt with an image-based reconstruction method and used to create finite element models. The validity of the models is firstly verified with the results from the tensile tests. Then, the cell walls inside each of the specific regions (fiber cap, vessel, xylem, etc.) are randomly removed to obtain virtually imperfect structures. By comparing the magnitudes of performance degradation in the different imperfect structures, the influences of each region on the overall mechanical performances of the vascular tissue are discussed. The longitudinal stiffness and yield strength are sensitive to the defects in the vessel regions. While in the transverse directions (including the radial and tangential directions), the parenchymatous tissue determines the mechanical properties of the vascular tissue. Moreover, the hydraulic, dynamic response and energy absorption behavior of the vascular tissue are numerically explored. The flexibility of natural palm tissue enhances its impact resistance. Under the quasi-static compression, the cell walls connecting the fiber cap and the vessel dissipate more energy. The dominant role of the fiber cap in the plastic energy dissipation under high-speed impact is observed. And the radially-arranged fiber cap also allows the palm tissue to improve its tangential mechanical performances under hydraulic pressure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Reflections on the history of pre-mRNA processing and highlights of current knowledge: A unified picture

    PubMed Central

    Darnell, James E.

    2013-01-01

    Several strong conclusions emerge concerning pre-mRNA processing from both old and newer experiments. The RNAPII complex is involved with pre-mRNA processing through binding of processing proteins to the CTD (carboxyl terminal domain) of the largest RNAPII subunit. These interactions are necessary for efficient processing, but whether factor binding to the CTD and delivery to splicing sites is obligatory or facilitatory is unsettled. Capping, addition of an m7Gppp residue (cap) to the initial transcribed residue of a pre-mRNA, occurs within seconds. Splicing of pre-mRNA by spliceosomes at particular sites is most likely committed during transcription by the binding of initiating processing factors and ∼50% of the time is completed in mammalian cells before completion of the primary transcript. This fact has led to an outpouring in the literature about “cotranscriptional splicing.” However splicing requires several minutes for completion and can take longer. The RNAPII complex moves through very long introns and also through regions dense with alternating exons and introns at an average rate of ∼3 kb per min and is, therefore, not likely detained at each splice site for more than a few seconds, if at all. Cleavage of the primary transcript at the 3′ end and polyadenylation occurs within 30 sec or less at recognized polyA sites, and the majority of newly polyadenylated pre-mRNA molecules are much larger than the average mRNA. Finally, it seems quite likely that the nascent RNA most often remains associated with the chromosomal locus being transcribed until processing is complete, possibly acquiring factors related to the transport of the new mRNA to the cytoplasm. PMID:23440351

  11. Direct Regulation of Androgen Receptor Activity by Potent CYP17 Inhibitors in Prostate Cancer Cells*

    PubMed Central

    Soifer, Harris S.; Souleimanian, Naira; Wu, Sijian; Voskresenskiy, Anatoliy M.; Kisaayak Collak, Filiz; Cinar, Bekir; Stein, Cy A.

    2012-01-01

    TOK-001 and abiraterone are potent 17-heteroarylsteroid (17-HAS) inhibitors of Cyp17, one of the rate-limiting enzymes in the biosynthesis of testosterone from cholesterol in prostate cancer cells. Nevertheless, the molecular mechanism underlying the prevention of prostate cell growth by 17-HASs still remains elusive. Here, we assess the effects of 17-HASs on androgen receptor (AR) activity in LNCaP and LAPC-4 cells. We demonstrate that both TOK-001 and abiraterone reduced AR protein and mRNA expression, and antagonized AR-dependent promoter activation induced by androgen. TOK-001, but not abiraterone, is an effective apparent competitor of the radioligand [3H]R1881 for binding to the wild type and various mutant AR (W741C, W741L) proteins. In agreement with these data, TOK-001 is a consistently superior inhibitor than abiraterone of R1881-induced transcriptional activity of both wild type and mutant AR. However, neither agent was able to trans-activate the AR in the absence of R1881. Our data demonstrate that phospho-4EBP1 levels are significantly reduced by TOK-001 and to a lesser extent by abiraterone alcohol, and suggest a mechanism by which cap-dependent translation is suppressed by blocking assembly of the eIF4F and eIF4G complex to the mRNA 5′ cap. Thus, the effects of these 17-HASs on AR signaling are complex, ranging from a decrease in testosterone production through the inhibition of Cyp17 as previously described, to directly reducing both AR protein expression and R1881-induced AR trans-activation. PMID:22174412

  12. All-aromatic biphenylene end-capped polyquinoline and polyimide matrix resins

    NASA Technical Reports Server (NTRS)

    Droske, J. P.; Stille, J. K.; Alston, W. B.

    1985-01-01

    Biphenylene end-capped polyquinoline and polyimide resins afford low void content graphite-reinforced composites with good initial properties. However, with both resins, rapid degradation occurs during oxidative isothermal aging at elevated temperatures. The degradation is not observed during isothermal aging under a nitrogen atmosphere which suggests that the biphenylene end-cap (or the resulting crosslink/chain extension structures) is not particularly thermooxidatively stable. The nature of the thermooxidative instability is currently under investigation.

  13. Influenza A Virus Host Shutoff Disables Antiviral Stress-Induced Translation Arrest

    PubMed Central

    Khaperskyy, Denys A.; Emara, Mohamed M.; Johnston, Benjamin P.; Anderson, Paul; Hatchette, Todd F.; McCormick, Craig

    2014-01-01

    Influenza A virus (IAV) polymerase complexes function in the nucleus of infected cells, generating mRNAs that bear 5′ caps and poly(A) tails, and which are exported to the cytoplasm and translated by host machinery. Host antiviral defences include mechanisms that detect the stress of virus infection and arrest cap-dependent mRNA translation, which normally results in the formation of cytoplasmic aggregates of translationally stalled mRNA-protein complexes known as stress granules (SGs). It remains unclear how IAV ensures preferential translation of viral gene products while evading stress-induced translation arrest. Here, we demonstrate that at early stages of infection both viral and host mRNAs are sensitive to drug-induced translation arrest and SG formation. By contrast, at later stages of infection, IAV becomes partially resistant to stress-induced translation arrest, thereby maintaining ongoing translation of viral gene products. To this end, the virus deploys multiple proteins that block stress-induced SG formation: 1) non-structural protein 1 (NS1) inactivates the antiviral double-stranded RNA (dsRNA)-activated kinase PKR, thereby preventing eIF2α phosphorylation and SG formation; 2) nucleoprotein (NP) inhibits SG formation without affecting eIF2α phosphorylation; 3) host-shutoff protein polymerase-acidic protein-X (PA-X) strongly inhibits SG formation concomitant with dramatic depletion of cytoplasmic poly(A) RNA and nuclear accumulation of poly(A)-binding protein. Recombinant viruses with disrupted PA-X host shutoff function fail to effectively inhibit stress-induced SG formation. The existence of three distinct mechanisms of IAV-mediated SG blockade reveals the magnitude of the threat of stress-induced translation arrest during viral replication. PMID:25010204

  14. Human recombinant cementum attachment protein (hrPTPLa/CAP) promotes hydroxyapatite crystal formation in vitro and bone healing in vivo.

    PubMed

    Montoya, Gonzalo; Arenas, Jesús; Romo, Enrique; Zeichner-David, Margarita; Alvarez, Marco; Narayanan, A Sampath; Velázquez, Ulises; Mercado, Gabriela; Arzate, Higinio

    2014-12-01

    Cementum extracellular matrix is similar to other mineralized tissues; however, this unique tissue contains molecules only present in cementum. A cDNA of these molecules, cementum attachment protein (hrPTPLa/CAP) was cloned and expressed in a prokaryotic system. This molecule is an alternative splicing of protein tyrosine phosphatase-like A (PTPLa). In this study, we wanted to determine the structural and functional characteristics of this protein. Our results indicate that hrPTPLa/CAP contains a 43.2% α-helix, 8.9% β-sheet, 2% β-turn and 45.9% random coil secondary structure. Dynamic light scattering shows that this molecule has a size distribution of 4.8 nm and aggregates as an estimated mass of 137 kDa species. AFM characterization and FE-SEM studies indicate that this protein self-assembles into nanospheres with sizes ranging from 7.0 to 27 nm in diameter. Functional studies demonstrate that hrPTPLa/CAP promotes hydroxyapatite crystal nucleation: EDS analysis revealed that hrPTPLa/CAP-induced crystals had a 1.59 ± 0.06 Ca/P ratio. Further confirmation with MicroRaman spectrometry and TEM confirm the presence of hydroxyapatite. In vivo studies using critical-size defects in rat cranium showed that hrPTPLa/CAP promoted 73% ± 2.19% and 87% ± 1.97% new bone formation at 4 and 8 weeks respectively. Although originally identified in cementum, PTPLa/CAP is very effective at inducing bone repair and healing and therefore this novel molecule has a great potential to be used for mineralized tissue bioengineering and tissue regeneration. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Ruthenium (Ru) peeling and predicting robustness of the capping layer using finite element method (FEM) modeling

    NASA Astrophysics Data System (ADS)

    Jang, Il-Yong; John, Arun; Goodwin, Frank; Lee, Su-Young; Kim, Byung-Gook; Kim, Seong-Sue; Jeon, Chan-Uk; Kim, Jae Hyung; Jang, Yong Hoon

    2014-07-01

    Ruthenium (Ru) film used as capping layer in extreme ultraviolet (EUV) mask peeled off after annealing and in-situ UV (IUV) cleaning. We investigated Ru peeling and found out that the mechanical stress caused by the formation of Si oxide due to the penetration of oxygen atoms from ambient or cleaning media to top-Si of ML is the root cause for the problem. To support our experimental results, we developed a numerical model of finite element method (FEM) using commercial software (ABAQUS™) to calculate the stress and displacement forced on the capping layer. By using this model, we could observe that the displacement agrees well with the actual results measured from the transmission electron microscopy (TEM) image. Using the ion beam deposition (IBD) tool at SEMATECH, we developed four new types of alternative capping materials (RuA, RuB, B4C, B4C-buffered Ru). The durability of each new alternative capping layer observed by experiment was better than that of conventional Ru. The stress and displacement calculated from each new alternative capping layer, using modeling, also agreed well with the experimental results. A new EUV mask structure is proposed, inserting a layer of B4C (B4C-buffered Ru) at the interface between the capping layer (Ru) and the top-Si layer. The modeling results showed that the maximum displacement and bending stress observed from the B4C-buffered Ru are significantly lower than that of single capping layer cases. The durability investigated from the experiment also showed that the B4C-buffered structure is at least 3X stronger than that of conventional Ru.

  16. Structural efficiency studies of corrugated compression panels with curved caps and beaded webs

    NASA Technical Reports Server (NTRS)

    Davis, R. C.; Mills, C. T.; Prabhakaran, R.; Jackson, L. R.

    1984-01-01

    Curved cross-sectional elements are employed in structural concepts for minimum-mass compression panels. Corrugated panel concepts with curved caps and beaded webs are optimized by using a nonlinear mathematical programming procedure and a rigorous buckling analysis. These panel geometries are shown to have superior structural efficiencies compared with known concepts published in the literature. Fabrication of these efficient corrugation concepts became possible by advances made in the art of superplastically forming of metals. Results of the mass optimization studies of the concepts are presented as structural efficiency charts for axial compression.

  17. Method to improve commercial bonded SOI material

    DOEpatents

    Maris, Humphrey John; Sadana, Devendra Kumar

    2000-07-11

    A method of improving the bonding characteristics of a previously bonded silicon on insulator (SOI) structure is provided. The improvement in the bonding characteristics is achieved in the present invention by, optionally, forming an oxide cap layer on the silicon surface of the bonded SOI structure and then annealing either the uncapped or oxide capped structure in a slightly oxidizing ambient at temperatures greater than 1200.degree. C. Also provided herein is a method for detecting the bonding characteristics of previously bonded SOI structures. According to this aspect of the present invention, a pico-second laser pulse technique is employed to determine the bonding imperfections of previously bonded SOI structures.

  18. Mutations in a gene encoding the. cap alpha. subunit of a Saccharomyces cerevisiae G protein indicate a role in mating pheromone signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jahng, K.Y.; Ferguson, J.; Reed, S.I.

    1988-06-01

    Mutations which allowed conjugation by Saccharomyces cerevisiae cells lacking a mating pheromone receptor gene were selected. One of the genes defined by such mutations was isolated from a yeast genomic library by complementation of a temperature-sensitive mutation and is identically to the gene GPA1 (also known as SCG1), recently shown to be highly homologous to gene encoding the ..cap alpha.. subunits of mammalian G proteins. Physiological analysis of temperature-sensitive gpal mutations suggests that the encoded G protein is involved in signaling in response to mating pheromones. Mutational disruption of G-protein activity causes cell-cycle arrest in G/sub 1/, deposition of mating-specificmore » cell surface aggultinins, and induction of pheromone-specific mRNa, all of which are responses to pheromone in wild-type cells. In addition, mutants can conjugate without the benefit of mating pheromone or pheromone receptor. A model is presented where the activated G protein has a negative impact on a constitutive signal which normally keeps the pheromone response repressed.« less

  19. Impact of food model (micro)structure on the microbial inactivation efficacy of cold atmospheric plasma.

    PubMed

    Smet, C; Noriega, E; Rosier, F; Walsh, J L; Valdramidis, V P; Van Impe, J F

    2017-01-02

    The large potential of cold atmospheric plasma (CAP) for food decontamination has recently been recognized. Room-temperature gas plasmas can decontaminate foods without causing undesired changes. This innovative technology is a promising alternative for treating fresh produce. However, more fundamental studies are needed before its application in the food industry. The impact of the food structure on CAP decontamination efficacy of Salmonella Typhimurium and Listeria monocytogenes was studied. Cells were grown planktonically or as surface colonies in/on model systems. Both microorganisms were grown in lab culture media in petri dishes at 20°C until cells reached the stationary phase. Before CAP treatment, cells were deposited in a liquid carrier, on a solid(like) surface or on a filter. A dielectric barrier discharge reactor generated helium-oxygen plasma, which was used to treat samples up to 10min. Although L. monocytogenes is more resistant to CAP treatment, similar trends in inactivation behavior as for S. Typhimurium are observed, with log reductions in the range [1.0-2.9] for S. Typhimurium and [0.2-2.2] for L. monocytogenes. For both microorganisms, cells grown planktonically are easily inactivated, as compared to surface colonies. More stressing growth conditions, due to cell immobilization, result in more resistant cells during CAP treatment. The main difference between the inactivation support systems is the absence or presence of a shoulder phase. For experiments in the liquid carrier, which exhibit a long shoulder, the plasma components need to diffuse and penetrate through the medium. This explains the higher efficacies of CAP treatment on cells deposited on a solid(like) surface or on a filter. This research demonstrates that the food structure influences the cell inactivation behavior and efficacy of CAP, and indicates that food intrinsic factors need to be accounted when designing plasma treatment. Copyright © 2016. Published by Elsevier B.V.

  20. A computer program to analyze bending of bent caps.

    DOT National Transportation Integrated Search

    1966-10-01

    This report is one of a series of developments planned to facilitate the : use of computers in the analysis of highway bridge structures. It specifically : concerns a computer program for the bending analysis of bent caps. : The development of this p...

  1. High performance EUV multilayer structures insensitive to capping layer optical parameters.

    PubMed

    Pelizzo, Maria Guglielmina; Suman, Michele; Monaco, Gianni; Nicolosi, Piergiorgio; Windt, David L

    2008-09-15

    We have designed and tested a-periodic multilayer structures containing protective capping layers in order to obtain improved stability with respect to any possible changes of the capping layer optical properties (due to oxidation and contamination, for example)-while simultaneously maximizing the EUV reflection efficiency for specific applications, and in particular for EUV lithography. Such coatings may be particularly useful in EUV lithographic apparatus, because they provide both high integrated photon flux and higher stability to the harsh operating environment, which can affect seriously the performance of the multilayer-coated projector system optics. In this work, an evolutive algorithm has been developed in order to design these a-periodic structures, which have been proven to have also the property of stable performance with respect to random layer thickness errors that might occur during coating deposition. Prototypes have been fabricated, and tested with EUV and X-ray reflectometry, and secondary electron spectroscopy. The experimental results clearly show improved performance of our new a-periodic coatings design compared with standard periodic multilayer structures.

  2. Two Routes to Genetic Suppression of RNA Trimethylguanosine Cap Deficiency via C-Terminal Truncation of U1 snRNP Subunit Snp1 or Overexpression of RNA Polymerase Subunit Rpo26.

    PubMed

    Qiu, Zhicheng R; Schwer, Beate; Shuman, Stewart

    2015-04-24

    The trimethylguanosine (TMG) caps of small nuclear (sn) RNAs are synthesized by the enzyme Tgs1 via sequential methyl additions to the N2 atom of the m(7)G cap. Whereas TMG caps are inessential for Saccharomyces cerevisiae vegetative growth at 25° to 37°, tgs1∆ cells that lack TMG caps fail to thrive at 18°. The cold-sensitive defect correlates with ectopic stoichiometric association of nuclear cap-binding complex (CBC) with the residual m(7)G cap of the U1 snRNA and is suppressed fully by Cbc2 mutations that weaken cap binding. Here, we show that normal growth of tgs1∆ cells at 18° is also restored by a C-terminal deletion of 77 amino acids from the Snp1 subunit of yeast U1 snRNP. These results underscore the U1 snRNP as a focal point for TMG cap function in vivo. Casting a broader net, we conducted a dosage suppressor screen for genes that allowed survival of tgs1∆ cells at 18°. We thereby recovered RPO26 (encoding a shared subunit of all three nuclear RNA polymerases) and RPO31 (encoding the largest subunit of RNA polymerase III) as moderate and weak suppressors of tgs1∆ cold sensitivity, respectively. A structure-guided mutagenesis of Rpo26, using rpo26∆ complementation and tgs1∆ suppression as activity readouts, defined Rpo26-(78-155) as a minimized functional domain. Alanine scanning identified Glu89, Glu124, Arg135, and Arg136 as essential for rpo26∆ complementation. The E124A and R135A alleles retained tgs1∆ suppressor activity, thereby establishing a separation-of-function. These results illuminate the structure activity profile of an essential RNA polymerase component. Copyright © 2015 Qiu et al.

  3. Flavivirus RNA cap methyltransferase: structure, function, and inhibition.

    PubMed

    Liu, Lihui; Dong, Hongping; Chen, Hui; Zhang, Jing; Ling, Hua; Li, Zhong; Shi, Pei-Yong; Li, Hongmin

    2010-08-01

    Many flaviviruses are significant human pathogens. The plus-strand RNA genome of a flavivirus contains a 5' terminal cap 1 structure (m(7)GpppAmG). The flavivirus encodes one methyltransferase (MTase), located at the N-terminal portion of the NS5 RNA-dependent RNA polymerase (RdRp). Here we review recent advances in our understanding of flaviviral capping machinery and the implications for drug development. The NS5 MTase catalyzes both guanine N7 and ribose 2'-OH methylations during viral cap formation. Representative flavivirus MTases, from dengue, yellow fever, and West Nile virus (WNV), sequentially generate GpppA → m(7)GpppA → m(7)GpppAm. Despite the existence of two distinct methylation activities, the crystal structures of flavivirus MTases showed a single binding site for S-adenosyl-L-methionine (SAM), the methyl donor. This finding indicates that the substrate GpppA-RNA must be repositioned to accept the N7 and 2'-O methyl groups from SAM during the sequential reactions. Further studies demonstrated that distinct RNA elements are required for the methylations of guanine N7 on the cap and of ribose 2'-OH on the first transcribed nucleotide. Mutant enzymes with different methylation defects can trans complement one another in vitro, demonstrating that separate molecules of the enzyme can independently catalyze the two cap methylations in vitro. In the context of the infectious virus, defects in both methylations, or a defect in the N7 methylation alone, are lethal to WNV. However, viruses defective solely in 2'-O methylation are attenuated and can protect mice from later wild-type WNV challenge. The results demonstrate that the N7 methylation activity is essential for the WNV life cycle and, thus, methyltransferase represents a novel and promising target for flavivirus therapy.

  4. A novel role for the condensin II complex in cellular senescence.

    PubMed

    Yokoyama, Yuhki; Zhu, Hengrui; Zhang, Rugang; Noma, Ken-ichi

    2015-01-01

    Although cellular senescence is accompanied by global alterations in genome architecture, how the genome is restructured during the senescent processes is not well understood. Here, we show that the hCAP-H2 subunit of the condensin II complex exists as either a full-length protein or an N-terminus truncated variant (ΔN). While the full-length hCAP-H2 associates with mitotic chromosomes, the ΔN variant exists as an insoluble nuclear structure. When overexpressed, both hCAP-H2 isoforms assemble this nuclear architecture and induce senescence-associated heterochromatic foci (SAHF). The hCAP-H2ΔN protein accumulates as cells approach senescence, and hCAP-H2 knockdown inhibits oncogene-induced senescence. This study identifies a novel mechanism whereby condensin drives senescence via nuclear/genomic reorganization.

  5. Damage of multilayer optics with varying capping layers induced by focused extreme ultraviolet beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jody Corso, Alain; Nicolosi, Piergiorgio; Nardello, Marco

    2013-05-28

    Extreme ultraviolet Mo/Si multilayers protected by capping layers of different materials were exposed to 13.5 nm plasma source radiation generated with a table-top laser to study the irradiation damage mechanism. Morphology of single-shot damaged areas has been analyzed by means of atomic force microscopy. Threshold fluences were evaluated for each type of sample in order to determine the capability of the capping layer to protect the structure underneath.

  6. Method for removing strongly adsorbed surfactants and capping agents from metal to facilitate their catalytic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adzic, Radoslav R.; Gong, Kuanping; Cai, Yun

    A method of synthesizing activated electrocatalyst, preferably having a morphology of a nanostructure, is disclosed. The method includes safely and efficiently removing surfactants and capping agents from the surface of the metal structures. With regard to metal nanoparticles, the method includes synthesis of nanoparticle(s) in polar or non-polar solution with surfactants or capping agents and subsequent activation by CO-adsorption-induced surfactant/capping agent desorption and electrochemical oxidation. The method produces activated macroparticle or nanoparticle electrocatalysts without damaging the surface of the electrocatalyst that includes breaking, increasing particle thickness or increasing the number of low coordination sites.

  7. Structured copolymers and their use as absorbents, gels and carriers of metal ions

    DOEpatents

    Hedstrand, David M.; Helmer, Bradley J.; Tomalia, Donald A.

    1996-01-01

    Dense star polymers or dendrimers having a highly branched interior structure capable of associating or chelating with metal ions are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell. The modified dendrimers are useful for dispersing metal ions in a non-aqueous polymer matrix. Also dense star polymers or dendrimers having a highly branched hydrophilic interior structure are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, which modified polymers are useful as gels and surfactants.

  8. Structured copolymers and their use as absorbents, gels and carriers of metal ions

    DOEpatents

    Hedstrand, D.M.; Helmer, B.J.; Tomalia, D.A.

    1996-10-01

    Dense star polymers or dendrimers having a highly branched interior structure capable of associating or chelating with metal ions are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell. The modified dendrimers are useful for dispersing metal ions in a non-aqueous polymer matrix. Also dense star polymers or dendrimers having a highly branched hydrophilic interior structure are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, which modified polymers are useful as gels and surfactants.

  9. Space fabrication: Graphite composite truss welding and cap forming subsystems

    NASA Technical Reports Server (NTRS)

    Jenkins, L. M.; Browning, D. L.

    1980-01-01

    An automated beam builder for the fabrication of space structures is described. The beam builder forms a triangular truss 1.3 meters on a side. Flat strips of preconsolidated graphite fiber fabric in a polysulfone matrix are coiled in a storage canister. Heaters raise the material to forming temperature then the structural cap section is formed by a series of rollers. After cooling, cross members and diagonal tension cords are ultrasonically welded in place to complete the truss. The stability of fabricated structures and composite materials is also examined.

  10. Protein structure and the sequential structure of mRNA: alpha-helix and beta-sheet signals at the nucleotide level.

    PubMed

    Brunak, S; Engelbrecht, J

    1996-06-01

    A direct comparison of experimentally determined protein structures and their corresponding protein coding mRNA sequences has been performed. We examine whether real world data support the hypothesis that clusters of rare codons correlate with the location of structural units in the resulting protein. The degeneracy of the genetic code allows for a biased selection of codons which may control the translational rate of the ribosome, and may thus in vivo have a catalyzing effect on the folding of the polypeptide chain. A complete search for GenBank nucleotide sequences coding for structural entries in the Brookhaven Protein Data Bank produced 719 protein chains with matching mRNA sequence, amino acid sequence, and secondary structure assignment. By neural network analysis, we found strong signals in mRNA sequence regions surrounding helices and sheets. These signals do not originate from the clustering of rare codons, but from the similarity of codons coding for very abundant amino acid residues at the N- and C-termini of helices and sheets. No correlation between the positioning of rare codons and the location of structural units was found. The mRNA signals were also compared with conserved nucleotide features of 16S-like ribosomal RNA sequences and related to mechanisms for maintaining the correct reading frame by the ribosome.

  11. A real options approach to clinical faculty salary structure.

    PubMed

    Kahn, Marc J; Long, Hugh W

    2012-01-01

    One can use the option theory model originally developed to price financial opportunities in security markets to analyze many other economic arrangements such as the salary structures of clinical faculty in an academic medical center practice plan. If one views the underlying asset to be the portion (labeled "salary") of the economic value of the collections made for the care provided patients by the physician, then a salary guarantee can be considered a put option provided the physician, the guarantee having value to the physician only when the actual salary earned is less than the salary guarantee. Similarly, within an incentive plan, a salary cap can be thought of as a call option provided to the practice plan since a salary cap only has value to the practice plan when a physician's earnings exceed the cap. Further, based on analysis of prior earnings, the Black-Scholes options pricing model can be used both to price each option and to determine a financially neutral balance between a salary guarantee and a salary cap by equating the prices of the implied put and call options. We suggest that such analysis is superior to empirical methods for setting clinical faculty salary structure in the academic practice plan setting.

  12. Variation in structure of proteins by adjusting reactive oxygen and nitrogen species generated from dielectric barrier discharge jet

    NASA Astrophysics Data System (ADS)

    Park, Ji Hoon; Kim, Minsup; Shiratani, Masaharu; Cho, Art. E.; Choi, Eun Ha; Attri, Pankaj

    2016-10-01

    Over the last few years, the variation in liquid chemistry due to the development of radicals generated by cold atmospheric plasma (CAP) has played an important role in plasma medicine. CAP direct treatment or CAP activated media treatment in cancer cells shows promising anticancer activity for both in vivo and in vitro studies. However, the anticancer activity or antimicrobial activity varies between plasma devices due to the different abilities among plasma devices to generate the reactive oxygen and nitrogen species (RONS) at different ratios and in different concentrations. While the generation of RONS depends on many factors, the feeding gas plays the most important role among the factors. Hence, in this study we used different compositions of feeding gas while fixing all other plasma characteristics. We used Ar, Ar-O2 (at different ratios), and Ar-N2 (at different ratios) as the working gases for CAP and investigated the structural changes in proteins (Hemoglobin (Hb) and Myoglobin (Mb)). We then analyzed the influence of RONS generated in liquid on the conformations of proteins. Additionally, to determine the influence of H2O2 on the Hb and Mb structures, we used molecular dynamic simulation.

  13. Calcium phosphate coatings modified with zinc- or copper- incorporation on Ti-40Nb alloy

    NASA Astrophysics Data System (ADS)

    Komarova, E. G.; Sedelnikova, M. B.; Sharkeev, Yu P.; Kazakbaeva, A. A.; Glukhov, I. A.; Khimich, M. A.

    2017-05-01

    The influence of the microarc oxidation parameters and electrolyte composition on the structure, properties and composition of CaP coatings modified with Zn- or Cu- incorporation on the Ti-40mas.%Nb (Ti-40Nb) alloy was investigated. The linear growth of thickness, roughness, and size of structural elements with process voltage increasing has been revealed. It was shown that the CaP coatings have the low contact angles with liquids and, consequently, high free surface energy. This indicates a high hydrophilicity of the coatings. X-ray diffraction analysis showed that the coatings have X-ray amorphous structure. The increase of the process voltage leads to the formation of such crystalline phases as CaHPO4 and β-Ca2P2O7 in the coatings. The maximum Ca/P atomic ratio was equal to 0.4, and Zn or Cu contents was equal to 0.3 or 0.2 at.%, respectively.

  14. Structure of a Yeast Dyn2-Nup159 Complex and Molecular Basis for Dynein Light Chain-Nuclear Pore Interaction*

    PubMed Central

    Romes, Erin M.; Tripathy, Ashutosh; Slep, Kevin C.

    2012-01-01

    The nuclear pore complex gates nucleocytoplasmic transport through a massive, eight-fold symmetric channel capped by a nucleoplasmic basket and structurally unique, cytoplasmic fibrils whose tentacles bind and regulate asymmetric traffic. The conserved Nup82 complex, composed of Nsp1, Nup82, and Nup159, forms the unique cytoplasmic fibrils that regulate mRNA nuclear export. Although the nuclear pore complex plays a fundamental, conserved role in nuclear trafficking, structural information about the cytoplasmic fibrils is limited. Here, we investigate the structural and biochemical interactions between Saccharomyces cerevisiae Nup159 and the nucleoporin, Dyn2. We find that Dyn2 is predominantly a homodimer and binds arrayed sites on Nup159, promoting the Nup159 parallel homodimerization. We present the first structure of Dyn2, determined at 1.85 Å resolution, complexed with a Nup159 target peptide. Dyn2 resembles homologous metazoan dynein light chains, forming homodimeric composite substrate binding sites that engage two independent 10-residue target motifs, imparting a β-strand structure to each peptide via antiparallel extension of the Dyn2 core β-sandwich. Dyn2 recognizes a highly conserved QT motif while allowing sequence plasticity in the flanking residues of the peptide. Isothermal titration calorimetric analysis of the comparative binding of Dyn2 to two Nup159 target sites shows similar affinities (18 and 13 μm), but divergent thermal binding modes. Dyn2 homodimers are arrayed in the crystal lattice, likely mimicking the arrayed architecture of Dyn2 on the Nup159 multivalent binding sites. Crystallographic interdimer interactions potentially reflect a cooperative basis for Dyn2-Nup159 complex formation. Our data highlight the determinants that mediate oligomerization of the Nup82 complex and promote a directed, elongated cytoplasmic fibril architecture. PMID:22411995

  15. Observations of severe in-flight environments on airplane composite structural components

    NASA Technical Reports Server (NTRS)

    Howell, W. E.; Fisher, B. D.

    1983-01-01

    The development of relatively inexpensive, highly sophisticated avionics systems makes it now possible for general aviation aircraft to fly under more severe weather conditions than formerly. Increased instrument flying increases exposure of aircraft to potentially severe thunderstorm activity such as high rain rates, hail stones, and lightning strikes. In particular, the effects of lightning on aircraft can be catastrophic. Interest in aircraft lightning protection has been stimulated by the introduction of advanced composites as an aircraft structural material. The present investigation has the objective to report experiences with three composite components which have flown in thunderstorms, taking into account three F-106B composite fin caps. The only visible lightning strike damage to a flame sprayed aluminum coated glass/epoxy fin cap was a small area of the aluminum which was burned. Visible lightning strike damage to a Kevlar/epoxy fin cap was limited to the exterior ply of aluminum coated glass fabric. In the case of a graphite/epoxy fin cap, lightning currents could be conducted.

  16. Temperature Distribution within a Cold Cap during Nuclear Waste Vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Derek R.; Schweiger, Michael J.; Riley, Brian J.

    2015-07-21

    The kinetics of the feed-to-glass conversion affects the waste vitrification rate in an electric melter. The primary area of interest in this conversion process is the cold cap, a layer of reacting feed on top of molten glass. Knowing the temperature profile within a cold cap will help determine its characteristics and relate them to the rate of glass production. The work presented here provides an experimental determination of the temperature distribution within the cold cap. Since a direct measurement of the temperature field within the cold cap is impracticable, an indirect method was developed where the textural features inmore » a laboratory-made cold cap with a high-level waste feed were mapped as a function of position using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. To correlate the temperature distribution to microstructures within the cold cap, microstructures were identified of individual feed samples that were heat treated to set temperatures between 400°C and 1200°C and quenched. The temperature distribution within the cold cap was then established by correlating cold-cap regions with the feed samples of nearly identical structures and was compared with the temperature profile from a mathematical model.« less

  17. Structural transformation and photoluminescence modification of AgInS2 nanoparticles induced by ZnS shell formation

    NASA Astrophysics Data System (ADS)

    Hamanaka, Yasushi; Yukitoki, Daichi; Kuzuya, Toshihiro

    2015-09-01

    AgInS2 nanoparticles were capped by ZnS via a widely used procedure to fabricate core/shell nanoparticles with highly efficient luminescence. The nanoparticle structures were investigated by ultrahigh-resolution analytical electron microscopy. We found that Zn-Ag-In-S nanoparticles were created by ZnS capping at ˜480 K, which suggests that the luminescence enhancement reported for such core/shell nanoparticles is not caused by the passivation of surface defects by ZnS shells but by Zn doping. Quasi-core/shell nanoparticles could be obtained by ZnS capping without heating. However, their luminescence efficiency remained unchanged, indicating that surface passivation was ineffective when ZnS shells were formed at room temperature.

  18. Capping of rare earth silicide nanowires on Si(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appelfeller, Stephan; Franz, Martin; Kubicki, Milan

    The capping of Tb and Dy silicide nanowires grown on Si(001) was studied using scanning tunneling microscopy and cross-sectional high-resolution transmission electron microscopy. Several nanometers thick amorphous Si films deposited at room temperature allow an even capping, while the nanowires maintain their original structural properties. Subsequent recrystallization by thermal annealing leads to more compact nanowire structures and to troughs in the Si layer above the nanowires, which may even reach down to the nanowires in the case of thin Si films, as well as to V-shaped stacking faults forming along (111) lattice planes. This behavior is related to strain duemore » to the lattice mismatch between the Si overlayer and the nanowires.« less

  19. Investigating Viruses during the Transformation of Molecular Biology

    PubMed Central

    2017-01-01

    This Reflections article describes my early work on viral enzymes and the discovery of mRNA capping, how my training in medicine and biochemistry merged as I evolved into a virologist, the development of viruses as vaccine vectors, and how scientific and technological developments during the 1970s and beyond set the stage for the interrogation of nearly every step in the reproductive cycle of vaccinia virus (VACV), a large DNA virus with about 200 genes. The reader may view this article as a work in progress, because I remain actively engaged in research at the National Institutes of Health (NIH) notwithstanding 50 memorable years there. PMID:28154190

  20. Peritoneal Culture Alters Streptococcus pneumoniae Protein Profiles and Virulence Properties

    PubMed Central

    Orihuela, Carlos J.; Janssen, Rob; Robb, Christopher W.; Watson, David A.; Niesel, David W.

    2000-01-01

    We have examined the properties of Streptococcus pneumoniae cultured in the murine peritoneal cavity and compared its virulence-associated characteristics to those of cultures grown in vitro. Analysis of mRNA levels for specific virulence factors demonstrated a 2.8-fold increase in ply expression and a 2.2-fold increase in capA3 expression during murine peritoneal culture (MPC). Two-dimensional gels and immunoblots using convalescent-phase patient sera and murine sera revealed distinct differences in protein production in vivo (MPC). MPC-grown pneumococci adhered to A549 epithelial cell lines at levels 10-fold greater than those cultured in vitro. PMID:10992528

  1. Peritoneal culture alters Streptococcus pneumoniae protein profiles and virulence properties

    NASA Technical Reports Server (NTRS)

    Orihuela, C. J.; Janssen, R.; Robb, C. W.; Watson, D. A.; Niesel, D. W.

    2000-01-01

    We have examined the properties of Streptococcus pneumoniae cultured in the murine peritoneal cavity and compared its virulence-associated characteristics to those of cultures grown in vitro. Analysis of mRNA levels for specific virulence factors demonstrated a 2.8-fold increase in ply expression and a 2.2-fold increase in capA3 expression during murine peritoneal culture (MPC). Two-dimensional gels and immunoblots using convalescent-phase patient sera and murine sera revealed distinct differences in protein production in vivo (MPC). MPC-grown pneumococci adhered to A549 epithelial cell lines at levels 10-fold greater than those cultured in vitro.

  2. Design and implementation of the protective cap/biobarrier experiment at the Idaho National Engineering Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Limbach, W.E.; Ratzlaff, T.D.; Anderson, J.E.

    1994-12-31

    The Protective Cap/Biobarrier Experiment (PCBE), initiated in 1993 at the Idaho National Engineering Laboratory (INEL), is a strip-split plot experiment with three replications designed to rigorously test a 2.0-m loessal soil cap against a cap recommended by the US Environmental Protection Agency and two caps with biological intrusion barriers. Past research at INEL indicates that it should be possible to exclude water from buried wastes using natural materials and natural processes in arid environments rather than expensive materials (geotextiles) and highly engineered caps. The PCBE will also test the effects of two vegetal covers and three irrigation levels on capmore » performance. Drainage pans, located at the bottom of each plot, will monitor cap failure. Soil water profiles will be monitored biweekly by neutron probe and continuously by time domain reflectometry. The performance of each cap design will be monitored under a variety of conditions through 1998. From 1994 to 1996, the authors will assess plant establishment, rooting depths, patterns of moisture extraction and their interactions among caps, vegetal covers, and irrigation levels. In 1996, they will introduce ants and burrowing mammals to test the structural integrity of each cap design. In 1998, the authors will apply sufficient water to determine the failure limit for each cap design. The PCBE should provide reliable knowledge of the performances of the four cap designs under a variety of conditions and aid in making hazardous-waste management decisions at INEL and at disposal sites in similar environments.« less

  3. Composite propellant combustion with low aluminum agglomeration

    NASA Astrophysics Data System (ADS)

    Mullen, Jessica Christine

    Aluminum behavior---accumulation, agglomeration and ignition---is studied in a unique, wide-distribution, ammonium perchlorate/hydroxyl-terminated polybutadiene (AP/HTPB) propellant formulation that results in low Al agglomeration, even at low pressures (1--30 atm). Variations in formulation---such as fine-AP/binder ratio, Al particle size, Al loading, coarse-AP size---are also examined. A fuel-rich, oxygenated binder matrix highly loaded with fine (2-mum) AP (FAP) at 75/25:FAP/binder (by mass) is found to have premixed flame conditions that produce minimal agglomeration (without ignition) of 15-mum Al. Coarse AP (CAP) is added to the system in the form of either particles (200 or 400 mum) or pressed-AP laminates (simulated CAP). In the 2-D laminate system the CAP/oxyfuel-matrix flame structure is seen to be similar to that previously described for non-aluminized laminates with split (diffusion) and merged (partially-premixed) flame regimes, depending on pressure and fuel-matrix thickness. Both laminate and particulate systems show that with CAP present, Al can agglomerate more extensively on CAP via lateral surface migration from fuel matrix to the CAP region. The particulate CAP system also shows that Al can accumulate/agglomerate via settling on CAP from above (in the direction of burning). Both systems, but more clearly the 2-D laminates, show that with CAP present, Al is ignited by the outer CAP/fuel-matrix canopy flames. Thus, a propellant formulation is proposed for reducing overall Al agglomeration through intrinsically reduced agglomeration in the fuel-matrix and a reduced number of CAP-particle agglomerates via higher FAP/CAP ratio.

  4. Sleep modifications in acute transient global amnesia.

    PubMed

    Della Marca, Giacomo; Mazza, Marianna; Losurdo, Anna; Testani, Elisa; Broccolini, Aldobrando; Frisullo, Giovanni; Marano, Giuseppe; Morosetti, Roberta; Pilato, Fabio; Profice, Paolo; Vollono, Catello; Di Lazzaro, Vincenzo

    2013-09-15

    Transient global amnesia (TGA) is a temporary memory loss characterized by an abrupt onset of antero-grade and retrograde amnesia, totally reversible. Since sleep plays a major role in memory consolidation, and in the storage of memory-related traces into the brain cortex, the aims of the present study were: (1) to evaluate changes in sleep macro-structure in TGA; (2) to assess modifications in sleep micro-structure in TGA, with particular reference to the arousal EEG and to cyclic alternating pattern (CAP); (3) to compare sleep parameters in TGA patients with a control group of patients with acute ischemic events ("minor stroke" or transient ischemic attack [TIA]) clinically and neuroradiologically "similar" to the TGA. TGA GROUP: 17 patients, (8 men and 9 women, 60.2 ± 12.5 years). Stroke or TIA (SoT) group: 17 patients hospitalized in the Stroke Unit for recent onset of minor stroke or TIA with hemispheric localization; healthy controls (HC) group: 17 healthy volunteers, matched for age and sex. Patients and controls underwent full-night polysomnography. In the multivariate analysis (conditions TGA, SoT, and HC) a significant effect of the condition was observed for sleep efficiency index, number of awakenings longer 1 min, REM latency, CAP time, and CAP rate. TGA and SoT differed only for CAP time and CAP rate, which were lower in the TGA group. Microstructural modification associated with tga could be consequent to: (1) hippocampal dysfunction and memory impairment; (2) impairment of arousal-related structures (in particular, cholinergic pathways); (3) emotional distress.

  5. CAP payments and agricultural GHG emissions in Italy. A farm-level assessment.

    PubMed

    Coderoni, Silvia; Esposti, Roberto

    2018-06-15

    The Common Agricultural Policy (CAP) is an important external driver of European agricultural production. Nowadays and in its envisioned future structure post-2020, the CAP has among its major objectives tackling climate change, for what concerns both adaptation and mitigation strategies. However, little is known about the link between past CAP reforms and agricultural greenhouse gases (GHG) emissions. This paper investigates the possible role played by the Fischler Reform (FR) on the agricultural GHG emissions at the farm level. The FR represents a major CAP reform for which data availability allows an ex-post analysis about its actual impacts. The empirical analysis concerns a balanced panel of 6542 Italian Farm Accountancy Data Network observed over years the 2003-2007. Multinomial Logit models are estimated in sequence to express how the farm-level production choices, and the respective emissions, vary over time also in response to CAP expenditure. Results suggest that CAP expenditure had a role in the evolution of the farm-level emissions, though the direction of this effect may differ across farms and deserves further investigation. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Protein functional features are reflected in the patterns of mRNA translation speed.

    PubMed

    López, Daniel; Pazos, Florencio

    2015-07-09

    The degeneracy of the genetic code makes it possible for the same amino acid string to be coded by different messenger RNA (mRNA) sequences. These "synonymous mRNAs" may differ largely in a number of aspects related to their overall translational efficiency, such as secondary structure content and availability of the encoded transfer RNAs (tRNAs). Consequently, they may render different yields of the translated polypeptides. These mRNA features related to translation efficiency are also playing a role locally, resulting in a non-uniform translation speed along the mRNA, which has been previously related to some protein structural features and also used to explain some dramatic effects of "silent" single-nucleotide-polymorphisms (SNPs). In this work we perform the first large scale analysis of the relationship between three experimental proxies of mRNA local translation efficiency and the local features of the corresponding encoded proteins. We found that a number of protein functional and structural features are reflected in the patterns of ribosome occupancy, secondary structure and tRNA availability along the mRNA. One or more of these proxies of translation speed have distinctive patterns around the mRNA regions coding for certain protein local features. In some cases the three patterns follow a similar trend. We also show specific examples where these patterns of translation speed point to the protein's important structural and functional features. This support the idea that the genome not only codes the protein functional features as sequences of amino acids, but also as subtle patterns of mRNA properties which, probably through local effects on the translation speed, have some consequence on the final polypeptide. These results open the possibility of predicting a protein's functional regions based on a single genomic sequence, and have implications for heterologous protein expression and fine-tuning protein function.

  7. Evaluation of ZnSe(S) Quantum Dots on the Cell Viability of Prostate Cancer Cell (PC3)

    NASA Astrophysics Data System (ADS)

    Calderón-Ortiz, E. R.; Bailón-Ruiz, S.; Martínez-Ferrer, M.; Rodríguez-Orengo, J. F.; Perales-Pérez, O.

    2018-05-01

    Nanomedicine is described as the process of diagnosing, treating, and preventing disease using nanostructured materials to improve human health. Quantum dots (QDs) host suitable optical properties for light-driven therapies, e.g., photo-dynamic therapy (PDT), for cancer treatment. The efficacy of QDs-assisted PDT relies on the capability of QDs to generate reactive oxygen species, which can be enhanced by inducing structural defects at the atomic level. Furthermore, data concerning the applicability of QDs-PDT in medicine is scarce, particularly for prostate cancer cells (PC3). On this basis, and as a first step in this research, the present report focused on the direct aqueous-synthesis of water-stable ZnSe(S) QDs via a microwave-assisted synthesis approach in the presence of thioglycolic acid (TGA) and mercaptopropionic acid (MPA). XRD analysis confirmed the face centered cubic structure in host ZnS; the average crystallite size was estimated at 10 nm. The photoluminescence of MPA-capped ZnSe(S) showed a strong main emission peak around 363 nm and a trap emission, attributed to structural defects, centered on 450 nm. The photoluminescence spectrum for TGA-capped ZnSe(S) QDs exhibited only the band gap peak around 390 nm, suggesting the absence of major structural defects. In turn, cell viability assays TGA-capped ZnSe(S) were not toxic at concentrations up to 100 ppm, whereas MPA-capped ZnSe(S) evidenced cytotoxicity at a concentration of 10 ppm. The lethal dose (LD50) for the MPA-capped ZnSe(S) in the PC3 cell line was 36 ppm and 35 ppm for 24 h and 48 h, respectively.

  8. Application of a simplified calculation for full-wave microtremor H/ V spectral ratio based on the diffuse field approximation to identify underground velocity structures

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Masaki, Kazuaki; Irikura, Kojiro; Sánchez-Sesma, Francisco José

    2017-12-01

    Under the diffuse field approximation, the full-wave (FW) microtremor H/ V spectral ratio ( H/ V) is modeled as the square root of the ratio of the sum of imaginary parts of the Green's function of the horizontal components to that of the vertical one. For a given layered medium, the FW H/ V can be well approximated with only surface waves (SW) H/ V of the "cap-layered" medium which consists of the given layered medium and a new larger velocity half-space (cap layer) at large depth. Because the contribution of surface waves can be simply obtained by the residue theorem, the computation of SW H/ V of cap-layered medium is faster than that of FW H/ V evaluated by discrete wavenumber method and contour integration method. The simplified computation of SW H/ V was then applied to identify the underground velocity structures at six KiK-net strong-motion stations. The inverted underground velocity structures were used to evaluate FW H/ Vs which were consistent with the SW H/ Vs of corresponding cap-layered media. The previous study on surface waves H/ Vs proposed with the distributed surface sources assumption and a fixed Rayleigh-to-Love waves amplitude ratio for horizontal motions showed a good agreement with the SW H/ Vs of our study. The consistency between observed and theoretical spectral ratios, such as the earthquake motions of H/ V spectral ratio and spectral ratio of horizontal motions between surface and bottom of borehole, indicated that the underground velocity structures identified from SW H/ V of cap-layered medium were well resolved by the new method.[Figure not available: see fulltext.

  9. Graphoepitaxy by encapsulation

    DOEpatents

    Geis, Michael W.; Smith, Henry I.; Antoniadis, Dimitri A.; Flanders, Dale C.

    1986-01-01

    Improvements on the graphoepitaxial process for obtaining epitaxial or preferred orientation films are described wherein a cap of material is formed over the film to be oriented, artificial surface-relief structure may be present in the substrate, the cap, or both, and the film may be heated by irradiation with electromagnetic radiation.

  10. Assembly of Layered Monetite-Chitosan Nanocomposite and Its Transition to Organized Hydroxyapatite.

    PubMed

    Ruan, Qichao; Liberman, David; Zhang, Yuzheng; Ren, Dongni; Zhang, Yunpeng; Nutt, Steven; Moradian-Oldak, Janet

    2016-06-13

    Bioinspired synthesis of hierarchically structured calcium phosphate (CaP) material is a highly promising strategy for developing improved bone substitute materials. However, synthesis of CaP materials with outstanding mechanical properties still remains an ongoing challenge. Inspired by the formation of lamellar structure in nacre, we designed an organic matrix composed of chitosan and cis-butenediolic acid (maleic acid, MAc) that could assemble into a layered complex and further guide the mineralization of monetite crystals, resulting in the formation of organized and parallel arrays of monetite platelets with a brick-and-mortar structure. Using the layered monetite-chitosan composite as a precursor, we were able to synthesize hydroxyapatite (HAp) with multiscale hierarchically ordered structure via a topotactic phase transformation process. On the nanoscale, needlelike HAp crystallites assembled into organized bundles that aligned to form highly oriented plates on the microscale. On the large-scale level, these plates with different crystal orientations were stacked together to form a layered structure. The organized structures and composite feature yielded CaP materials with improved mechanical properties close to those of bone. Our study introduces a biomimetic approach that may be practical for the design of advanced, mechanically robust materials for biomedical applications.

  11. Experimental Study of the Structure of a Wingtip Vortex

    NASA Technical Reports Server (NTRS)

    Anderson, Elgin A.; Wright, Christopher T.

    2000-01-01

    A complete look at the near-field development and subsequent role-up of a wingtip vortex from a NACA 0015 wing section is investigated. Two separate but equally important surveys of the vortex structure in the region adjacent to the wingtip and approximately one chord length downstream of the trailing edge are performed. The two surveys provide qualitative flow-visualization an quantitative velocity measurement data. The near-field development and subsequent role-up of the vortex structures is strongly influenced by the angle-of-attack and the end-cap treatment of the wing section. The velocity field near the wingtip of the NACA 0015 wing section was measured with a triple-sensor hot wire probe and compared to flow visualization images produced with titanium tetrachloride smoke injection and laser illumination. The flat end-cap results indicate the formation of multiple, relatively strong vortex structures as opposed to the formation of a single vortex produced with the round end-cap. The multiple vortices generated by the flat end-cap are seen to rotate around a common ce te in a helical pattern until they eventually merge into a single vortex. Compared to a non-dimensional loading parameter, the results of the velocity and flow visualization data shows a "jetlike" axial velocity profile for loading parameter values on the order of 0.1 and a "wakelike" profile for much lower loading parameter values.

  12. Crystal structure of Au25(SePh)18 nanoclusters and insights into their electronic, optical and catalytic properties

    NASA Astrophysics Data System (ADS)

    Song, Yongbo; Zhong, Juan; Yang, Sha; Wang, Shuxin; Cao, Tiantian; Zhang, Jun; Li, Peng; Hu, Daqiao; Pei, Yong; Zhu, Manzhou

    2014-10-01

    The crystal structure of selenolate-capped Au25(SePh)18- nanoclusters has been unambiguously determined for the first time, and provides a solid basis for a deeper understanding of the structure-property relationships. The selenolate-capped Au25 cluster shows noticeable differences from the previously reported Au25(SCH2CH2Ph)18- counterpart, albeit both share the icosahedral Au13 core and semi-ring Au2(SeR)3 or Au2(SR)3 motifs. Distinct differences in the electronic structure and optical, catalytic and electrochemical properties are revealed by the coupling experiments with density functional theory (TD-DFT) calculations. Overall, the successful determination of the Au25(SePh)18- structure removes any ambiguity about its structure, and comparison with the thiolated Au25 counterpart helps us to further understand how the ligands affect the properties of the nanocluster.The crystal structure of selenolate-capped Au25(SePh)18- nanoclusters has been unambiguously determined for the first time, and provides a solid basis for a deeper understanding of the structure-property relationships. The selenolate-capped Au25 cluster shows noticeable differences from the previously reported Au25(SCH2CH2Ph)18- counterpart, albeit both share the icosahedral Au13 core and semi-ring Au2(SeR)3 or Au2(SR)3 motifs. Distinct differences in the electronic structure and optical, catalytic and electrochemical properties are revealed by the coupling experiments with density functional theory (TD-DFT) calculations. Overall, the successful determination of the Au25(SePh)18- structure removes any ambiguity about its structure, and comparison with the thiolated Au25 counterpart helps us to further understand how the ligands affect the properties of the nanocluster. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04631e

  13. Effect of capping layer on interlayer coupling in synthetic spin valves

    NASA Astrophysics Data System (ADS)

    Li, Kebin; Qiu, Jinjun; Han, Guchang; Guo, Zaibing; Zheng, Yuankai; Wu, Yihong; Li, Jinshan

    2005-01-01

    The magnetic and transport properties of high quality synthetic spin-valves with the structure of Ta/NiFe/IrMn/CoFe/Ru/CoFe/NOL/CoFe/Cu/CoFe/CL were studied by using magnetoresistance measurements. Here Ti, Hf, and Al are used as the capping layer. It is found that both the thickness and materials properties of the capping layers can affect the interlayer coupling field. The interlayer coupling field oscillates weakly with respect to the thickness of the Ti and Hf capping layers. Extremely strong ferromagnetic coupling has been observed when the thickness of the Al capping layer is in a certain range where resonant exchange coupling takes place. The strength of the interlayer coupling is inversely proportional to the square of the thickness of the spacer. It is a typical characteristic of quantum size effect.

  14. nanoCAGE reveals 5′ UTR features that define specific modes of translation of functionally related MTOR-sensitive mRNAs

    PubMed Central

    Gandin, Valentina; Masvidal, Laia; Hulea, Laura; Gravel, Simon-Pierre; Cargnello, Marie; McLaughlan, Shannon; Cai, Yutian; Balanathan, Preetika; Morita, Masahiro; Rajakumar, Arjuna; Furic, Luc; Pollak, Michael; Porco, John A.; St-Pierre, Julie; Pelletier, Jerry; Larsson, Ola; Topisirovic, Ivan

    2016-01-01

    The diversity of MTOR-regulated mRNA translation remains unresolved. Whereas ribosome-profiling suggested that MTOR almost exclusively stimulates translation of the TOP (terminal oligopyrimidine motif) and TOP-like mRNAs, polysome-profiling indicated that MTOR also modulates translation of mRNAs without the 5′ TOP motif (non-TOP mRNAs). We demonstrate that in ribosome-profiling studies, detection of MTOR-dependent changes in non-TOP mRNA translation was obscured by low sensitivity and methodology biases. Transcription start site profiling using nano-cap analysis of gene expression (nanoCAGE) revealed that not only do many MTOR-sensitive mRNAs lack the 5′ TOP motif but that 5′ UTR features distinguish two functionally and translationally distinct subsets of MTOR-sensitive mRNAs: (1) mRNAs with short 5′ UTRs enriched for mitochondrial functions, which require EIF4E but are less EIF4A1-sensitive; and (2) long 5′ UTR mRNAs encoding proliferation- and survival-promoting proteins, which are both EIF4E- and EIF4A1-sensitive. Selective inhibition of translation of mRNAs harboring long 5′ UTRs via EIF4A1 suppression leads to sustained expression of proteins involved in respiration but concomitant loss of those protecting mitochondrial structural integrity, resulting in apoptosis. Conversely, simultaneous suppression of translation of both long and short 5′ UTR mRNAs by MTOR inhibitors results in metabolic dormancy and a predominantly cytostatic effect. Thus, 5′ UTR features define different modes of MTOR-sensitive translation of functionally distinct subsets of mRNAs, which may explain the diverse impact of MTOR and EIF4A inhibitors on neoplastic cells. PMID:26984228

  15. Asymmetric metal-insulator-metal (MIM) structure formed by pulsed Nd:YAG laser deposition with titanium nitride (TiN) and aluminum nitride (AlN)

    NASA Astrophysics Data System (ADS)

    Oshikane, Yasushi

    2017-08-01

    A novel nanostructured end cap for a truncated conical apex of optical fiber has been studied experimental and numerically. The peculiar cap is composed of asymmetric metal-insulator-metal (MIM) structure coupled with subwavelength holes. The MIM structure may act as reflective band cut filter or generator of surface plasmon polariton (SPP). And nano holes in the thicker metal layer could extract the SPP from the MIM structure and lead it to outer surface of the metal layer. For the purpose, the author has started to create the asymmetric MIM structure with TiN and AlN by pulsed laser deposition (PLD). The resultant structure was diagnosed by spectroscopic analyses.

  16. Observations of the north polar region of Mars from the Mars orbiter laser altimeter.

    PubMed

    Zuber, M T; Smith, D E; Solomon, S C; Abshire, J B; Afzal, R S; Aharonson, O; Fishbaugh, K; Ford, P G; Frey, H V; Garvin, J B; Head, J W; Ivanov, A B; Johnson, C L; Muhleman, D O; Neumann, G A; Pettengill, G H; Phillips, R J; Sun, X; Zwally, H J; Banerdt, W B; Duxbury, T C

    1998-12-11

    Elevations from the Mars Orbiter Laser Altimeter (MOLA) have been used to construct a precise topographic map of the martian north polar region. The northern ice cap has a maximum elevation of 3 kilometers above its surroundings but lies within a 5-kilometer-deep hemispheric depression that is contiguous with the area into which most outflow channels emptied. Polar cap topography displays evidence of modification by ablation, flow, and wind and is consistent with a primarily H2O composition. Correlation of topography with images suggests that the cap was more spatially extensive in the past. The cap volume of 1.2 x 10(6) to 1.7 x 10(6) cubic kilometers is about half that of the Greenland ice cap. Clouds observed over the polar cap are likely composed of CO2 that condensed out of the atmosphere during northern hemisphere winter. Many clouds exhibit dynamical structure likely caused by the interaction of propagating wave fronts with surface topography.

  17. Measuring Psychological Capital: Construction and Validation of the Compound PsyCap Scale (CPC-12)

    PubMed Central

    Lorenz, Timo; Beer, Clemens; Pütz, Jan; Heinitz, Kathrin

    2016-01-01

    With the Psychological Capital Questionnaire (PCQ) being the standard measure to assess psychological capital (PsyCap) in the context of organizations, this paper aims to broaden this domain-specific approach by introducing a measure with universal claim. Two studies were conducted to create and validate a German self-report scale (CPC-12) measuring PsyCap. We performed confirmatory factor analyses and correlations with other positive psychological constructs on the data of two German samples (N1 = 321; N2 = 202). The twelve-item CPC-12 exhibits the anticipated factorial structure with a very good model fit and associations to other constructs concur with previous findings with other measures of PsyCap. PMID:27035437

  18. Graphoepitaxy by encapsulation

    DOEpatents

    Geis, M.W.; Smith, H.I.; Antoniadis, D.A.; Flanders, D.C.

    1986-01-21

    Improvements on the graphoepitaxial process for obtaining epitaxial or preferred orientation films are described wherein a cap of material is formed over the film to be oriented, artificial surface-relief structure may be present in the substrate, the cap, or both, and the film may be heated by irradiation with electromagnetic radiation. 13 figs.

  19. Genome-Wide Characterization of Light-Regulated Genes in Neurospora crassa

    PubMed Central

    Wu, Cheng; Yang, Fei; Smith, Kristina M.; Peterson, Matthew; Dekhang, Rigzin; Zhang, Ying; Zucker, Jeremy; Bredeweg, Erin L.; Mallappa, Chandrashekara; Zhou, Xiaoying; Lyubetskaya, Anna; Townsend, Jeffrey P.; Galagan, James E.; Freitag, Michael; Dunlap, Jay C.; Bell-Pedersen, Deborah; Sachs, Matthew S.

    2014-01-01

    The filamentous fungus Neurospora crassa responds to light in complex ways. To thoroughly study the transcriptional response of this organism to light, RNA-seq was used to analyze capped and polyadenylated mRNA prepared from mycelium grown for 24 hr in the dark and then exposed to light for 0 (control) 15, 60, 120, and 240 min. More than three-quarters of all defined protein coding genes (79%) were expressed in these cells. The increased sensitivity of RNA-seq compared with previous microarray studies revealed that the RNA levels for 31% of expressed genes were affected two-fold or more by exposure to light. Additionally, a large class of mRNAs, enriched for transcripts specifying products involved in rRNA metabolism, showed decreased expression in response to light, indicating a heretofore undocumented effect of light on this pathway. Based on measured changes in mRNA levels, light generally increases cellular metabolism and at the same time causes significant oxidative stress to the organism. To deal with this stress, protective photopigments are made, antioxidants are produced, and genes involved in ribosome biogenesis are transiently repressed. PMID:25053707

  20. Fission yeast RNA triphosphatase reads an Spt5 CTD code

    DOE PAGES

    Doamekpor, Selom K.; Schwer, Beate; Sanchez, Ana M.; ...

    2014-11-20

    mRNA capping enzymes are directed to nascent RNA polymerase II (Pol2) transcripts via interactions with the carboxy-terminal domains (CTDs) of Pol2 and transcription elongation factor Spt5. Fission yeast RNA triphosphatase binds to the Spt5 CTD, comprising a tandem repeat of nonapeptide motif TPAWNSGSK. Here we report the crystal structure of a Pct1·Spt5-CTD complex, which revealed two CTD docking sites on the Pct1 homodimer that engage TPAWN segments of the motif. Each Spt5 CTD interface, composed of elements from both subunits of the homodimer, is dominated by van der Waals contacts from Pct1 to the tryptophan of the CTD. The boundmore » CTD adopts a distinctive conformation in which the peptide backbone makes a tight U-turn so that the proline stacks over the tryptophan. We show that Pct1 binding to Spt5 CTD is antagonized by threonine phosphorylation. Our results fortify an emerging concept of an “Spt5 CTD code” in which (i) the Spt5 CTD is structurally plastic and can adopt different conformations that are templated by particular cellular Spt5 CTD receptor proteins; and (ii) threonine phosphorylation of the Spt5 CTD repeat inscribes a binary on–off switch that is read by diverse CTD receptors, each in its own distinctive manner.« less

  1. Fission yeast RNA triphosphatase reads an Spt5 CTD code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doamekpor, Selom K.; Schwer, Beate; Sanchez, Ana M.

    mRNA capping enzymes are directed to nascent RNA polymerase II (Pol2) transcripts via interactions with the carboxy-terminal domains (CTDs) of Pol2 and transcription elongation factor Spt5. Fission yeast RNA triphosphatase binds to the Spt5 CTD, comprising a tandem repeat of nonapeptide motif TPAWNSGSK. Here we report the crystal structure of a Pct1·Spt5-CTD complex, which revealed two CTD docking sites on the Pct1 homodimer that engage TPAWN segments of the motif. Each Spt5 CTD interface, composed of elements from both subunits of the homodimer, is dominated by van der Waals contacts from Pct1 to the tryptophan of the CTD. The boundmore » CTD adopts a distinctive conformation in which the peptide backbone makes a tight U-turn so that the proline stacks over the tryptophan. We show that Pct1 binding to Spt5 CTD is antagonized by threonine phosphorylation. Our results fortify an emerging concept of an “Spt5 CTD code” in which (i) the Spt5 CTD is structurally plastic and can adopt different conformations that are templated by particular cellular Spt5 CTD receptor proteins; and (ii) threonine phosphorylation of the Spt5 CTD repeat inscribes a binary on–off switch that is read by diverse CTD receptors, each in its own distinctive manner.« less

  2. Role of p70S6K1-mediated phosphorylation of eIF4B and PDCD4 proteins in the regulation of protein synthesis.

    PubMed

    Dennis, Michael D; Jefferson, Leonard S; Kimball, Scot R

    2012-12-14

    Modulation of mRNA binding to the 40 S ribosomal subunit during translation initiation controls not only global rates of protein synthesis but also regulates the pattern of protein expression by allowing for selective inclusion, or exclusion, of mRNAs encoding particular proteins from polysomes. The mRNA binding step is modulated by signaling through a protein kinase known as the mechanistic target of rapamycin complex 1 (mTORC1). mTORC1 directly phosphorylates the translational repressors eIF4E binding proteins (4E-BP) 1 and 2, releasing them from the mRNA cap binding protein eIF4E, thereby promoting assembly of the eIF4E·eIF4G complex. mTORC1 also phosphorylates the 70-kDa ribosomal protein S6 kinase 1 (p70S6K1), which subsequently phosphorylates eIF4B, and programmed cell death 4 (PDCD4), which sequesters eIF4A from the eIF4E·eIF4G complex, resulting in repressed translation of mRNAs with highly structured 5'-untranslated regions. In the present study, we compared the role of the 4E-BPs in the regulation of global rates of protein synthesis to that of eIF4B and PDCD4. We found that maintenance of eIF4E interaction with eIF4G was not by itself sufficient to sustain global rates of protein synthesis in the absence of mTORC1 signaling to p70S6K1; phosphorylation of both eIF4B and PDCD4 was additionally required. We also found that the interaction of eIF4E with eIF4G was maintained in the liver of fasted rats as well as in serum-deprived mouse embryo fibroblasts lacking both 4E-BP1 and 4E-BP2, suggesting that the interaction of eIF4G with eIF4E is controlled primarily through the 4E-BPs.

  3. Characterization of rat leydig cell gonadotropin receptor structure by affinity cross-linking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Q.Y.; Hwang, J.; Menon, K.M.J.

    1986-05-01

    The gonadotropin receptor from rat leydig cell has been characterized with respect to binding kinetics and physiological regulation. The present study was intended to examine the structure of the receptor. Leydig cell suspension was prepared by either collagenase digestion or by mechanical disruption of the testis. The cells were incubated with /sup 125/I-hCG and the unreacted hCG was removed by centrifugation. The /sup 125/I-hCG was then covalently linked to the cell surface receptor using cleavable (dithiobis (succinimidyl propionate)) and non-cleavable (disuccinimidyl suberate) cross-linking reagents. The extracted cross-linked membrane proteins were resolved on SDS-polyacrylamide gels under reducing and non-reducing conditions andmore » subjected to autoradiographic analysis. Under non-reducing conditions, two labeled species with M/sub r/ = 87,000 and 120,000 were detected. However, only one labeled band was detected under reducing conditions with M/sub r/ = 64,000. The binding of /sup 125/I-hCG to the receptor was inhibited by hCG and LH, but not by a number of peptides and proteins. The data suggest that hCG receptor in leydig cell is an oligomeric complex consisting of four subunits, ..cap alpha cap alpha beta gamma... The ..beta.. and ..gamma.. subunits are each linked to an ..cap alpha.. subunit through disulfide linkage and the hormone binds to each ..cap alpha.. subunit. The two dimers formed (..cap alpha beta cap alpha gamma..) are associated by noncovalent interactions.« less

  4. Preparation of Curcumin-Piperazine Coamorphous Phase and Fluorescence Spectroscopic and Density Functional Theory Simulation Studies on the Interaction with Bovine Serum Albumin.

    PubMed

    Pang, Wenzhe; Lv, Jie; Du, Shuang; Wang, Jiaojiao; Wang, Jing; Zeng, Yanli

    2017-09-05

    In the present study, a new coamorphous phase (CAP) of bioactive herbal ingredient curcumin (CUR) with high solubilitythe was screened with pharmaceutically acceptable coformers. Besides, to provide basic information for the best practice of physiological and pharmaceutical preparations of CUR-based CAP, the interaction between CUR-based CAP and bovine serum albumin (BSA) was studied at the molecular level in this paper. CAP of CUR and piperazine with molar ratio of 1:2 was prepared by EtOH-assisted grinding. The as-prepared CAP was characterized by powder X-ray diffraction, modulated temperature differential scanning calorimetry, thermogravimetric analysis, Fourier-transform infrared, and solid-state 13 C nuclear magnetic resonance. The 1:2 CAP stoichioimetry was sustained by C═O···H hydrogen bonds between the N-H group of the piperazine and the C═O group of CUR; piperazine stabilized the diketo structure of CUR in CAP. The dissolution rate of CUR-piperazine CAP in 30% ethanol-water was faster than that of CUR; the t 50 values were 243.1 min for CUR and 4.378 min for CAP. Furthermore, interactions of CUR and CUR-piperazine CAP with BSA were investigated by fluorescence spectroscopy and density functional theory (DFT) calculation. The binding constants (K b ) of CUR and CUR-piperazine CAP with BSA were 10.0 and 9.1 × 10 3 L mol -1 at 298 K, respectively. Moreover, DFT simulation indicated that the interaction energy values of hydrogen-bonded interaction in the tryptophan-CUR and tryptophan-CUR-piperazine complex were -26.1 and -17.9 kJ mol -1 , respectively. In a conclusion, after formation of CUR-piperazine CAP, the interaction forces between CUR and BSA became weaker.

  5. Recombination and Population Mosaic of a Multifunctional Viral Gene, Adeno-Associated Virus cap

    PubMed Central

    Takeuchi, Yasuhiro; Myers, Richard; Danos, Olivier

    2008-01-01

    Homologous recombination is a dominant force in evolution and results in genetic mosaics. To detect evidence of recombination events and assess the biological significance of genetic mosaics, genome sequences for various viral populations of reasonably large size are now available in the GenBank. We studied a multi-functional viral gene, the adeno-associated virus (AAV) cap gene, which codes for three capsid proteins, VP1, VP2 and VP3. VP1-3 share a common C-terminal domain corresponding to VP3, which forms the viral core structure, while the VP1 unique N-terminal part contains an enzymatic domain with phospholipase A2 activity. Our recombinant detection program (RecI) revealed five novel recombination events, four of which have their cross-over points in the N-terminal, VP1 and VP2 unique region. Comparison of phylogenetic trees for different cap gene regions confirmed discordant phylogenies for the recombinant sequences. Furthermore, differences in the phylogenetic tree structures for the VP1 unique (VP1u) region and the rest of cap highlighted the mosaic nature of cap gene in the AAV population: two dominant forms of VP1u sequences were identified and these forms are linked to diverse sequences in the rest of cap gene. This observation together with the finding of frequent recombination in the VP1 and 2 unique regions suggests that this region is a recombination hot spot. Recombination events in this region preserve protein blocks of distinctive functions and contribute to convergence in VP1u and divergence of the rest of cap. Additionally the possible biological significance of two dominant VP1u forms is inferred. PMID:18286191

  6. Advances in synthesis of calcium phosphate crystals with controlled size and shape.

    PubMed

    Lin, Kaili; Wu, Chengtie; Chang, Jiang

    2014-10-01

    Calcium phosphate (CaP) materials have a wide range of applications, including biomaterials, adsorbents, chemical engineering materials, catalysts and catalyst supports and mechanical reinforcements. The size and shape of CaP crystals and aggregates play critical roles in their applications. The main inorganic building blocks of human bones and teeth are nanocrystalline CaPs; recently, much progress has been made in the application of CaP nanocrystals and their composites for clinical repair of damaged bone and tooth. For example, CaPs with special micro- and nanostructures can better imitate the biomimetic features of human bone and tooth, and this offers significantly enhanced biological performances. Therefore, the design of CaP nano-/microcrystals, and the shape and hierarchical structures of CaPs, have great potential to revolutionize the field of hard tissue engineering, starting from bone/tooth repair and augmentation to controlled drug delivery devices. Previously, a number of reviews have reported the synthesis and properties of CaP materials, especially for hydroxyapatite (HAp). However, most of them mainly focused on the characterizations and physicochemical and biological properties of HAp particles. There are few reviews about the control of particle size and size distribution of CaPs, and in particular the control of nano-/microstructures on bulk CaP ceramic surfaces, which is a big challenge technically and may have great potential in tissue engineering applications. This review summarizes the current state of the art for the synthesis of CaP crystals with controlled sizes from the nano- to the macroscale, and the diverse shapes including the zero-dimensional shapes of particles and spheres, the one-dimensional shapes of rods, fibers, wires and whiskers, the two-dimensional shapes of sheets, disks, plates, belts, ribbons and flakes and the three-dimensional (3-D) shapes of porous, hollow, and biomimetic structures similar to biological bone and tooth. In addition, this review will also summarize studies on the controlled formation of nano-/microstructures on the surface of bulk ceramics, and the preparation of macroscopical bone grafts with 3-D architecture nano-/microstructured surfaces. Moreover, the possible directions of future research and development in this field, such as the detailed mechanisms behind the size and shape control in various strategies, the importance of theoretical simulation, self-assembly, biomineralization and sacrificial precursor strategies in the fabrication of biomimetic bone-like and enamel-like CaP materials are proposed. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Advantages of InGaN/GaN multiple quantum wells with two-step grown low temperature GaN cap layers

    NASA Astrophysics Data System (ADS)

    Zhu, Yadan; Lu, Taiping; Zhou, Xiaorun; Zhao, Guangzhou; Dong, Hailiang; Jia, Zhigang; Liu, Xuguang; Xu, Bingshe

    2017-11-01

    Two-step grown low temperature GaN cap layers (LT-cap) are employed to improve the optical and structural properties of InGaN/GaN multiple quantum wells (MQWs). The first LT-cap layer is grown in nitrogen atmosphere, while a small hydrogen flow is added to the carrier gas during the growth of the second LT-cap layer. High-resolution X-ray diffraction results indicate that the two-step growth method can improve the interface quality of MQWs. Room temperature photoluminescence (PL) tests show about two-fold enhancement in integrated PL intensity, only 25 meV blue-shift in peak energy and almost unchanged line width. On the basis of temperature-dependent PL characteristics analysis, it is concluded that the first and the second LT-cap layer play a different role during the growth of MQWs. The first LT-cap layer acts as a protective layer, which protects quantum well from serious indium loss and interface roughening resulting from the hydrogen over-etching. The hydrogen gas employed in the second LT-cap layer is in favor of reducing defect density and indium segregation. Consequently, interface/surface and optical properties are improved by adopting the two-step growth method.

  8. Chitosan capped nanoscale Fe-MIL-88B-NH2 metal-organic framework as drug carrier material for the pH responsive delivery of doxorubicin

    NASA Astrophysics Data System (ADS)

    Sivakumar, P.; Priyatharshni, S.; Nagashanmugam, K. B.; Thanigaivelan, A.; Kumar, K.

    2017-08-01

    In recent years nanoscale metal-organic frameworks (NMOFs) are contributing as an effective material for use in drug delivery and imaging applications due to their porous surfaces and easy surface modifications. In this work, Fe-MIL-88B-NH2 NMOFs were successfully synthesized on facile hydrothermal route and 2-aminoterephthalic acid (NH2-BDC) was employed as a bridging ligand to activate amine functional groups on the surface. Amine functional groups not only serve as a structure stabilizing agent but also enhance the loading efficiency of the doxorubicin (DOX) anticancer drug. A pH responsive DOX release was realized by introducing a positively charged chitosan (Chi) capping layer. Upon Chi-coating, cleavage was observed in the Fe-MIL-88B-NH2 structure at acidic pH, while gel-like insoluble structure was formed at basic pH. By utilizing this phenomenon, a pH responsive DOX release system was developed by using Chi capped Fe-MIL-88B-NH2 NMOFs under the designed pH (4.0-8.0). The results suggest the Chi capped Fe-MIL-88B-NH2 can be a promising candidate for future pH responsive drug delivery systems.

  9. Structural and Functional Diversity of Plant Virus 3'-Cap-Independent Translation Enhancers (3'-CITEs).

    PubMed

    Truniger, Verónica; Miras, Manuel; Aranda, Miguel A

    2017-01-01

    Most of the positive-strand RNA plant viruses lack the 5'-cap and/or the poly(A)-tail that act synergistically to stimulate canonical translation of cellular mRNAs. However, they have RNA elements in the 5'- or 3'-untranslated regions of their RNAs that are required for their cap-independent translation. Cap-independent translation enhancers (CITEs) have been identified in the genomic 3'-end of viruses belonging to the family Tombusviridae and the genus Luteovirus . Seven classes of 3'-CITEs have been described to date based on their different RNA structures. They generally control the efficient formation of the translation initiation complex by varying mechanisms. Some 3'-CITEs bind eukaryotic translation initiation factors, others ribosomal subunits, bridging these to the 5'-end by different mechanisms, often long-distance RNA-RNA interactions. As previously proposed and recently found in one case in nature, 3'-CITEs are functionally independent elements that are transferable through recombination between viral genomes, leading to potential advantages for virus multiplication. In this review, the knowledge on 3'-CITEs and their functioning is updated. We also suggest that there is local structural conservation in the regions interacting with eIF4E of 3'-CITEs belonging to different classes.

  10. Structural and Functional Diversity of Plant Virus 3′-Cap-Independent Translation Enhancers (3′-CITEs)

    PubMed Central

    Truniger, Verónica; Miras, Manuel; Aranda, Miguel A.

    2017-01-01

    Most of the positive-strand RNA plant viruses lack the 5′-cap and/or the poly(A)-tail that act synergistically to stimulate canonical translation of cellular mRNAs. However, they have RNA elements in the 5′- or 3′-untranslated regions of their RNAs that are required for their cap-independent translation. Cap-independent translation enhancers (CITEs) have been identified in the genomic 3′-end of viruses belonging to the family Tombusviridae and the genus Luteovirus. Seven classes of 3′-CITEs have been described to date based on their different RNA structures. They generally control the efficient formation of the translation initiation complex by varying mechanisms. Some 3′-CITEs bind eukaryotic translation initiation factors, others ribosomal subunits, bridging these to the 5′-end by different mechanisms, often long-distance RNA–RNA interactions. As previously proposed and recently found in one case in nature, 3′-CITEs are functionally independent elements that are transferable through recombination between viral genomes, leading to potential advantages for virus multiplication. In this review, the knowledge on 3′-CITEs and their functioning is updated. We also suggest that there is local structural conservation in the regions interacting with eIF4E of 3′-CITEs belonging to different classes. PMID:29238357

  11. Mesenchymal Stem Cells Stabilize Atherosclerotic Vulnerable Plaque by Anti-Inflammatory Properties.

    PubMed

    Wang, Shuang-shuang; Hu, Si-wang; Zhang, Qing-hua; Xia, Ai-xiang; Jiang, Zhi-xin; Chen, Xiao-min

    2015-01-01

    Formation and progression of atherosclerotic vulnerable plaque (VP) is the primary cause of many cardio-cerebrovascular diseases such as acute coronary syndrome and stroke. It has been reported that bone marrow mesenchymal stem cells (MSC) exhibit protective effects against many kinds of diseases including myocardial infarction. Here, we examined the effects of intravenous MSC infusion on a VP model and provide novel evidence of its influence as a therapy in this animal disease model. Thirty healthy male New Zealand white rabbits were randomly divided into a MSC, VP or stable plaque (SP) group (n = 10/group) and received high fat diet and cold-induced common carotid artery intimal injury with liquid nitrogen to form atherosclerotic plaques. Serum hs-CRP, TNF-α, IL-6 and IL-10 levels were measured by ELISA at 1, 2, 3, 7, 14, 21 and 28 days after MSC transplantation. The animals were sacrificed at 4 weeks after MSC transplantation. Lesions in the right common carotid were observed using H&E and Masson staining, and the fibrous cap/lipid core ratio of atherosclerotic plaques were calculated. The expression of nuclear factor κB (NF-κB) and matrix metalloproteinase 1, 2, 9 (MMP-1,2,9) in the plaque were detected using immunohistochemistry, and apoptotic cells in the plaques were detected by TUNEL. In addition, the level of TNF-α stimulated gene/protein 6 (TSG-6) mRNA and protein were measured by quantitative Real-Time PCR and Western blotting, respectively. Two rabbits in the VP group died of lung infection and cerebral infarction respectively at 1 week after plaque injury by liquid nitrogen. Both H&E and Masson staining revealed that the plaques from the SP and MSC groups had more stable morphological structure and a larger fibrous cap/lipid core ratio than the VP group. Serum hs-CRP, TNF-α and IL-6 were significantly down-regulated, whereas IL-10 was significantly up-regulated in the MSC group compared with the VP group. .Immunohistochemistry analysis revealed that NF-κB and MMP expression was reduced in the MSC and SP groups compared to the VP group. Cell apoptosis decreased significantly in both the MSC and SP groups in comparison to the VP group. TSG-6 mRNA and protein expression were higher in the plaques of the MSC group compared to the VP and SP groups. Our study results suggest that MSC transplantation can effectively stabilize vulnerable plaques in atherosclerotic rabbits. This may potentially offer a new clinical application of MSC in atherosclerosis.

  12. Influence of microgravity on cellular differentiation in root caps of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; Fondren, W. M.; McClelen, C. E.; Wang, C. L.

    1987-01-01

    We launched imbibed seeds of Zea mays into outer space aboard the space shuttle Columbia to determine the influence of microgravity on cellular differentiation in root caps. The influence of microgravity varied with different stages of cellular differentiation. Overall, microgravity tended to 1) increase relative volumes of hyaloplasm and lipid bodies, 2) decrease the relative volumes of plastids, mitochondria, dictyosomes, and the vacuome, and 3) exert no influence on the relative volume of nuclei in cells comprising the root cap. The reduced allocation of dictyosomal volume in peripheral cells of flight-grown seedlings correlated positively with their secretion of significantly less mucilage than peripheral cells of Earth-grown seedlings. These results indicate that 1) microgravity alters the patterns of cellular differentiation and structures of all cell types comprising the root cap, and 2) the influence of microgravity on cellular differentiation in root caps of Zea mays is organelle specific.

  13. Assessing the Role of Capping Molecules in Controlling Aggregative Growth of Gold Nanoparticles in Heated Solution.

    PubMed

    Cheng, Han-Wen; Schadt, Mark J; Zhong, Chuan-Jian

    2016-01-01

    This report describes findings of an investigation of the role of capping molecules in the size growth in the aggregative growth of pre-formed small-sized gold nanoparticles capped with alkanethiolate monolayers toward monodispersed larger sizes. The size controllability depends on the thiolate chain length and concentration in the thermal solution. The size evolution in solution at different concentrations of alkanethiols is analyzed in relation to adsorption isotherms and cohesive energy. The size dependence on thiolate chain length is also analyzed by considering the cohesive energy of the capping molecules, revealing the importance of cohesive energy in the capping structure. Theoretical and experimental comparisons of the surface plasmonic resonance optical properties have also provided new insights into the mechanism, thus enabling the exploitation of size-dependent nanoscale properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Both cell substratum regulation and hormonal regulation of milk protein gene expression are exerted primarily at the posttranscriptional level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenstein, R.S.; Rosen, J.M.

    The mechanism by which individual peptide and steroid hormones and cell-substratum interactions regulate milk protein gene expression has been studied in the COMMA-D mammary epithelial cell line. In the presence of insulin, hydrocortisone, and prolactin, growth of COMMA-D cells on floating collagen gels in comparison with that on a plastic substratum resulted in a 2.5- to 3-fold increase in the relative rate of ..beta..-casein gene transcription but a 37-fold increase in ..beta..-casein mRNA accumulation. In contrast, whey acidic protein gene transcription was constitutive in COMMA-D cells grown on either substratum, but its mRNA was unstable and little intact mature mRNAmore » was detected. Culturing COMMA-D cells on collagen also promoted increased expression of other genes expressed in differentiated mammary epithelial cells, including those encoding ..cap alpha..- and ..gamma..-casein, transferrin, malic enzyme, and phosphoenolpyruvate carboxykinase but decreased the expression of actin and histone genes. Using COMMA-D cells, the authors defined further the role of individual hormones in influencing ..beta..-casein gene transcription. With insulin alone, a basal level of ..beta..-casein gene transcription was detected in COMMA-D cells grown on floating collagen gels. Addition of prolactin but not hydrocortisone resulted in a 2.5- to 3.0-fold increase in ..beta..-casein gene transcription, but both hormones were required to elicit the maximal 73-fold induction in mRNA accumulation. The posttranscriptional effect of hormones on casein mRNA accummulation preceded any detectable changes in the relative rate of transcription. Thus, regulation by both hormones and cell substratum of casein gene expression is exerted primarily at the post transcriptional level.« less

  15. Posttranscriptional regulation of retroviral gene expression: primary RNA transcripts play three roles as pre-mRNA, mRNA, and genomic RNA

    PubMed Central

    LeBlanc, Jason; Weil, Jason; Beemon, Karen

    2013-01-01

    After reverse transcription of the retroviral RNA genome and integration of the DNA provirus into the host genome, host machinery is used for viral gene expression along with viral proteins and RNA regulatory elements. Here, we discuss co-transcriptional and posttranscriptional regulation of retroviral gene expression, comparing simple and complex retroviruses. Cellular RNA polymerase II synthesizes full-length viral primary RNA transcripts that are capped and polyadenylated. All retroviruses generate a singly spliced env mRNA from this primary transcript, which encodes the viral glycoproteins. In addition, complex viral RNAs are alternatively spliced to generate accessory proteins, such as Rev, which is involved in posttranscriptional regulation of HIV-1 RNA. Importantly, the splicing of all retroviruses is incomplete; they must maintain and export a fraction of their primary RNA transcripts. This unspliced RNA functions both as the major mRNA for Gag and Pol proteins and as the packaged genomic RNA. Different retroviruses export their unspliced viral RNA from the nucleus to the cytoplasm by either Tap-dependent or Rev/CRM1-dependent routes. Translation of the unspliced mRNA involves frame-shifting or termination codon suppression so that the Gag proteins, which make up the capsid, are expressed more abundantly than the Pol proteins, which are the viral enzymes. After the viral polyproteins assemble into viral particles and bud from the cell membrane, a viral encoded protease cleaves them. Some retroviruses have evolved mechanisms to protect their unspliced RNA from decay by nonsense-mediated RNA decay and to prevent genome editing by the cellular APOBEC deaminases. PMID:23754689

  16. In vitro evaluation of phosphorothioate oligonucleotides targeted to the E2 mRNA of papillomavirus: potential treatment for genital warts.

    PubMed Central

    Cowsert, L M; Fox, M C; Zon, G; Mirabelli, C K

    1993-01-01

    Papillomaviruses induce benign proliferative lesions, such as genital warts, in humans. The E2 gene product is thought to play a major role in the regulation of viral transcription and DNA replication and may represent a rational target for an antisense oligonucleotide drug action. Phosphorothioate oligonucleotides complementary to E2 mRNAs were synthesized and tested in a series of in vitro bovine papillomavirus (BPV) and human papillomavirus (HPV) models for the ability to inhibit E2 transactivation and virus-induced focus formation. The most active BPV-specific compounds were complementary to the mRNA cap region (ISIS 1751), the translation initiation region for the full-length E2 transactivator (ISIS 1753), and the translation initiation region for the E2 transrepressor mRNA (ISIS 1755). ISIS 1751 and ISIS 1753 were found to reduce E2-dependent transactivation and viral focus formation in a sequence-specific and concentration-dependent manner. ISIS 1755 increased E2 transactivation in a dose-dependent manner but had no effect on focus formation. Oligonucleotides with a chain length of 20 residues had optimal activity in the E2 transactivation assay. On the basis of the above observations, ISIS 2105, a 20-residue phosphorothioate oligonucleotide targeted to the translation initiation of both HPV type 6 (HPV-6) and HPV-11 E2 mRNA, was designed and shown to inhibit E2-dependent transactivation by HPV-11 E2 expressed from a surrogate promoter. These observations support the rationale of E2 as a target for antiviral therapy against papillomavirus infections and specifically identify ISIS 2105 as a candidate antisense oligonucleotide for the treatment of genital warts induced by HPV-6 and HPV-11. Images PMID:8383937

  17. Characterization of Bunyamwera virus S RNA that is transcribed and replicated by the L protein expressed from recombinant vaccinia virus.

    PubMed

    Jin, H; Elliott, R M

    1993-03-01

    Analysis of the 5' termini of Bunyamwera virus S segment mRNAs by cloning and sequence analysis revealed the presence of nonviral, heterogeneous sequences 12 to 17 bases long. This is similar to reports for other members of the family Bunyaviridae and is taken to indicate that mRNA transcription is primed by a "cap-snatching" mechanism. The 3' end of the Bunyamwera virus S mRNA was mapped, by using an RNase protection assay, to 100 to 110 nucleotides upstream of the 3' end of the template. Previously we reported expression of the Bunyamwera virus L (polymerase) protein by recombinant vaccinia virus and demonstrated that the recombinant L protein was functional in terms of RNA synthesis activity in a nucleocapsid transfection assay (H. Jin and R. M. Elliott, J. Virol. 65: 4182-4189, 1991). In the present study we further analyze the RNAs made by using this system and show that positive-sense RNAs contain 5' nonviral sequences. Hence the initiation of mRNA transcription by the recombinant L protein resembles that seen during authentic bunyavirus infection and suggests that the L protein has the endonuclease activity which generates the primers. Some of these positive-sense transcripts terminated at the mRNA termination site, but the majority read through to the end of the template. No primer sequences were found at the 5' terminal of negative-sense RNAs. The recombinant L protein was able to replicate negative-sense RNA supplied by transfected virion-derived nucleocapsids, and both positive- and negative-sense RNAs were synthesized. These results indicate that the recombinant L protein has both transcriptase and replicase activities.

  18. Characterization of Bunyamwera virus S RNA that is transcribed and replicated by the L protein expressed from recombinant vaccinia virus.

    PubMed Central

    Jin, H; Elliott, R M

    1993-01-01

    Analysis of the 5' termini of Bunyamwera virus S segment mRNAs by cloning and sequence analysis revealed the presence of nonviral, heterogeneous sequences 12 to 17 bases long. This is similar to reports for other members of the family Bunyaviridae and is taken to indicate that mRNA transcription is primed by a "cap-snatching" mechanism. The 3' end of the Bunyamwera virus S mRNA was mapped, by using an RNase protection assay, to 100 to 110 nucleotides upstream of the 3' end of the template. Previously we reported expression of the Bunyamwera virus L (polymerase) protein by recombinant vaccinia virus and demonstrated that the recombinant L protein was functional in terms of RNA synthesis activity in a nucleocapsid transfection assay (H. Jin and R. M. Elliott, J. Virol. 65: 4182-4189, 1991). In the present study we further analyze the RNAs made by using this system and show that positive-sense RNAs contain 5' nonviral sequences. Hence the initiation of mRNA transcription by the recombinant L protein resembles that seen during authentic bunyavirus infection and suggests that the L protein has the endonuclease activity which generates the primers. Some of these positive-sense transcripts terminated at the mRNA termination site, but the majority read through to the end of the template. No primer sequences were found at the 5' terminal of negative-sense RNAs. The recombinant L protein was able to replicate negative-sense RNA supplied by transfected virion-derived nucleocapsids, and both positive- and negative-sense RNAs were synthesized. These results indicate that the recombinant L protein has both transcriptase and replicase activities. Images PMID:8437222

  19. Taxon interactions control the distributions of cryoconite bacteria colonizing a High Arctic ice cap.

    PubMed

    Gokul, Jarishma K; Hodson, Andrew J; Saetnan, Eli R; Irvine-Fynn, Tristram D L; Westall, Philippa J; Detheridge, Andrew P; Takeuchi, Nozomu; Bussell, Jennifer; Mur, Luis A J; Edwards, Arwyn

    2016-08-01

    Microbial colonization of glacial ice surfaces incurs feedbacks which affect the melting rate of the ice surface. Ecosystems formed as microbe-mineral aggregates termed cryoconite locally reduce ice surface albedo and represent foci of biodiversity and biogeochemical cycling. Consequently, greater understanding the ecological processes in the formation of functional cryoconite ecosystems upon glacier surfaces is sought. Here, we present the first bacterial biogeography of an ice cap, evaluating the respective roles of dispersal, environmental and biotic filtration occurring at local scales in the assembly of cryoconite microbiota. 16S rRNA gene amplicon semiconductor sequencing of cryoconite colonizing a Svalbard ice cap coupled with digital elevation modelling of physical parameters reveals the bacterial community is dominated by a ubiquitous core of generalist taxa, with evidence for a moderate pairwise distance-decay relationship. While geographic position and melt season duration are prominent among environmental predictors of community structure, the core population of taxa appears highly influential in structuring the bacterial community. Taxon co-occurrence network analysis reveals a highly modular community structured by positive interactions with bottleneck taxa, predominantly Actinobacteria affiliated to isolates from soil humus. In contrast, the filamentous cyanobacterial taxon (assigned to Leptolyngbya/Phormidesmis pristleyi) which dominates the community and binds together granular cryoconite are poorly connected to other taxa. While our study targeted one ice cap, the prominent role of generalist core taxa with close environmental relatives across the global cryosphere indicate discrete roles for cosmopolitan Actinobacteria and Cyanobacteria as respective keystone taxa and ecosystem engineers of cryoconite ecosystems colonizing ice caps. © 2016 John Wiley & Sons Ltd.

  20. Consequences of metaphase II oocyte cryopreservation on mRNA content.

    PubMed

    Chamayou, S; Bonaventura, G; Alecci, C; Tibullo, D; Di Raimondo, F; Guglielmino, A; Barcellona, M L

    2011-04-01

    We studied the consequences of freezing/thawing processes on mRNA contents in MII oocytes after slow-freezing/rapid thawing (SF/RT) and vitrification/warming (V/W) protocols, and compared the results to fresh MII oocytes. We quantified the nuclear transcript mRNA responsible for the translation of proteins belonging either to trans-regulatory protein family or to functional structural proteins such as proteins involved in DNA structural organization (NAP1L1, TOP1, H1F0H1), chromosomal structure maintenance (SMC, SCC3, RAD21, SMC1A, SMC1B, STAG3, REC8), mitochondrial energetic pathways (ATP5GJ, SDHC), cell cycle regulation and processes (CLTA, MAPK6, CKS2) and staminal cell potency-development competence stage (DPPA3, OCT4, FOXJ2). Surplus MII oocytes were donated from patients in IVF cycles and divided in three groups of 15 oocytes. Group 1 was comprised of non-cryopreserved oocytes and Groups 2 and 3 underwent SF/RT and V/W procedures, respectively. There was an overall decrease of mRNA extracted from cryopreserved oocytes compared to control group. Only 39.4% of mRNA content were preserved after SF/RT while 63.3% of mRNA content were maintained after V/W. Oocyte cryopreservation is associated with molecular injury associated with the decrease of stored mRNA. However the V/W protocol is more conservative than SF/RT resulting in a level of mRNA sufficient to maintain biologic functions in the subsequent fertilized oocyte. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Perennial water ice identified in the south polar cap of Mars

    NASA Astrophysics Data System (ADS)

    Bibring, Jean-Pierre; Langevin, Yves; Poulet, François; Gendrin, Aline; Gondet, Brigitte; Berthé, Michel; Soufflot, Alain; Drossart, Pierre; Combes, Michel; Bellucci, Giancarlo; Moroz, Vassili; Mangold, Nicolas; Schmitt, Bernard; OMEGA Team; Erard, S.; Forni, O.; Manaud, N.; Poulleau, G.; Encrenaz, T.; Fouchet, T.; Melchiorri, R.; Altieri, F.; Formisano, V.; Bonello, G.; Fonti, S.; Capaccioni, F.; Cerroni, P.; Coradini, A.; Kottsov, V.; Ignatiev, N.; Titov, D.; Zasova, L.; Pinet, P.; Sotin, C.; Hauber, E.; Hoffman, H.; Jaumann, R.; Keller, U.; Arvidson, R.; Mustard, J.; Duxbury, T.; Forget, F.

    2004-04-01

    The inventory of water and carbon dioxide reservoirs on Mars are important clues for understanding the geological, climatic and potentially exobiological evolution of the planet. From the early mapping observation of the permanent ice caps on the martian poles, the northern cap was believed to be mainly composed of water ice, whereas the southern cap was thought to be constituted of carbon dioxide ice. However, recent missions (NASA missions Mars Global Surveyor and Odyssey) have revealed surface structures, altimetry profiles, underlying buried hydrogen, and temperatures of the south polar regions that are thermodynamically consistent with a mixture of surface water ice and carbon dioxide. Here we present the first direct identification and mapping of both carbon dioxide and water ice in the martian high southern latitudes, at a resolution of 2km, during the local summer, when the extent of the polar ice is at its minimum. We observe that this south polar cap contains perennial water ice in extended areas: as a small admixture to carbon dioxide in the bright regions; associated with dust, without carbon dioxide, at the edges of this bright cap; and, unexpectedly, in large areas tens of kilometres away from the bright cap.

  2. Electromagnetically induced reflectance and Fano resonance in one dimensional superconducting photonic crystal

    NASA Astrophysics Data System (ADS)

    Athe, Pratik; Srivastava, Sanjay; Thapa, Khem B.

    2018-04-01

    In the present work, we demonstrate the generation of optical Fano resonance and electromagnetically induced reflectance (EIR) in one-dimensional superconducting photonic crystal (1D SPC) by numerical simulation using transfer matrix method as analysis tool. We investigated the optical response of 1D SPC structure consisting of alternate layer of two different superconductors and observed that the optical spectra of this structure exhibit two narrow reflectance peaks with zero reflectivity of sidebands. Further, we added a dielectric cap layer to this 1D SPC structure and found that addition of dielectric cap layer transforms the line shape of sidebands around the narrow reflectance peaks which leads to the formation of Fano resonance and EIR line shape in reflectance spectra. We also studied the effects of the number of periods, refractive index and thickness of dielectric cap layer on the lineshape of EIR and Fano resonances. It was observed that the amplitude of peak reflectance of EIR achieves 100% reflectance by increasing the number of periods.

  3. Differential accumulation of nif structural gene mRNA in Azotobacter vinelandii.

    PubMed

    Hamilton, Trinity L; Jacobson, Marty; Ludwig, Marcus; Boyd, Eric S; Bryant, Donald A; Dean, Dennis R; Peters, John W

    2011-09-01

    Northern analysis was employed to investigate mRNA produced by mutant strains of Azotobacter vinelandii with defined deletions in the nif structural genes and in the intergenic noncoding regions. The results indicate that intergenic RNA secondary structures effect the differential accumulation of transcripts, supporting the high Fe protein-to-MoFe protein ratio required for optimal diazotrophic growth.

  4. Time-resolved spectroscopy of dye-labeled photoactive yellow protein suggests a pathway of light-induced structural changes in the N-terminal cap.

    PubMed

    Hoersch, Daniel; Otto, Harald; Cusanovich, Michael A; Heyn, Maarten P

    2009-07-14

    The photoreceptor PYP responds to light activation with global conformational changes. These changes are mainly located in the N-terminal cap of the protein, which is approximately 20 A away from the chromophore binding pocket and separated from it by the central beta-sheet. The question of the propagation of the structural change across the central beta-sheet is of general interest for the superfamily of PAS domain proteins, for which PYP is the structural prototype. Here we measured the kinetics of the structural changes in the N-terminal cap by transient absorption spectroscopy on the ns to second timescale. For this purpose the cysteine mutants A5C and N13C were prepared and labeled with thiol reactive 5-iodoacetamidofluorescein (IAF). A5 is located close to the N-terminus, while N13 is part of helix alpha1 near the functionally important salt bridge E12-K110 between the N-terminal cap and the central anti-parallel beta-sheet. The absorption spectrum of the dye is sensitive to its environment, and serves as a sensor for conformational changes near the labeling site. In both labeled mutants light activation results in a transient red-shift of the fluorescein absorption spectrum. To correlate the conformational changes with the photocycle intermediates of the protein, we compared the kinetics of the transient absorption signal of the dye with that of the p-hydroxycinnamoyl chromophore. While the structural change near A5 is synchronized with the rise of the I(2) intermediate, which is formed in approximately 200 mus, the change near N13 is delayed and rises with the next intermediate I(2)', which forms in approximately 2 ms. This indicates that different parts of the N-terminal cap respond to light activation with different kinetics. For the signaling pathway of photoactive yellow protein we propose a model in which the structural signal propagates from the chromophore binding pocket across the central beta-sheet via the N-terminal region to helix alpha1, resulting in a large change in the protein conformation.

  5. Lightweight Thermal Protection System for Atmospheric Entry

    NASA Technical Reports Server (NTRS)

    Stewart, David; Leiser, Daniel

    2007-01-01

    TUFROC (Toughened Uni-piece Fibrous Reinforced Oxidation-resistant Composite) has been developed as a new thermal protection system (TPS) material for wing leading edge and nose cap applications. The composite withstands temperatures up to 1,970 K, and consists of a toughened, high-temperature surface cap and a low-thermal-conductivity base, and is applicable to both sharp and blunt leading edge vehicles. This extends the possible application of fibrous insulation to the wing leading edge and/or nose cap on a hypersonic vehicle. The lightweight system comprises a treated carbonaceous cap composed of ROCCI (Refractory Oxidation-resistant Ceramic Carbon Insulation), which provides dimensional stability to the outer mold line, while the fibrous base material provides maximum thermal insulation for the vehicle structure.

  6. Mechanism of endonuclease cleavage by the HigB toxin

    PubMed Central

    Schureck, Marc A.; Repack, Adrienne; Miles, Stacey J.; Marquez, Jhomar; Dunham, Christine M.

    2016-01-01

    Bacteria encode multiple type II toxin–antitoxin modules that cleave ribosome-bound mRNAs in response to stress. All ribosome-dependent toxin family members structurally characterized to date adopt similar microbial RNase architectures despite possessing low sequence identities. Therefore, determining which residues are catalytically important in this specialized RNase family has been a challenge in the field. Structural studies of RelE and YoeB toxins bound to the ribosome provided significant insights but biochemical experiments with RelE were required to clearly demonstrate which residues are critical for acid-base catalysis of mRNA cleavage. Here, we solved an X-ray crystal structure of the wild-type, ribosome-dependent toxin HigB bound to the ribosome revealing potential catalytic residues proximal to the mRNA substrate. Using cell-based and biochemical assays, we further determined that HigB residues His54, Asp90, Tyr91 and His92 are critical for activity in vivo, while HigB H54A and Y91A variants have the largest effect on mRNA cleavage in vitro. Comparison of X-ray crystal structures of two catalytically inactive HigB variants with 70S-HigB bound structures reveal that HigB active site residues undergo conformational rearrangements likely required for recognition of its mRNA substrate. These data support the emerging concept that ribosome-dependent toxins have diverse modes of mRNA recognition. PMID:27378776

  7. A novel type of light-harvesting antenna protein of red algal origin in algae with secondary plastids.

    PubMed

    Sturm, Sabine; Engelken, Johannes; Gruber, Ansgar; Vugrinec, Sascha; Kroth, Peter G; Adamska, Iwona; Lavaud, Johann

    2013-07-30

    Light, the driving force of photosynthesis, can be harmful when present in excess; therefore, any light harvesting system requires photoprotection. Members of the extended light-harvesting complex (LHC) protein superfamily are involved in light harvesting as well as in photoprotection and are found in the red and green plant lineages, with a complex distribution pattern of subfamilies in the different algal lineages. Here, we demonstrate that the recently discovered "red lineage chlorophyll a/b-binding-like proteins" (RedCAPs) form a monophyletic family within this protein superfamily. The occurrence of RedCAPs was found to be restricted to the red algal lineage, including red algae (with primary plastids) as well as cryptophytes, haptophytes and heterokontophytes (with secondary plastids of red algal origin). Expression of a full-length RedCAP:GFP fusion construct in the diatom Phaeodactylum tricornutum confirmed the predicted plastid localisation of RedCAPs. Furthermore, we observed that similarly to the fucoxanthin chlorophyll a/c-binding light-harvesting antenna proteins also RedCAP transcripts in diatoms were regulated in a diurnal way at standard light conditions and strongly repressed at high light intensities. The absence of RedCAPs from the green lineage implies that RedCAPs evolved in the red lineage after separation from the the green lineage. During the evolution of secondary plastids, RedCAP genes therefore must have been transferred from the nucleus of the endocytobiotic alga to the nucleus of the host cell, a process that involved complementation with pre-sequences allowing import of the gene product into the secondary plastid bound by four membranes. Based on light-dependent transcription and on localisation data, we propose that RedCAPs might participate in the light (intensity and quality)-dependent structural or functional reorganisation of the light-harvesting antennae of the photosystems upon dark to light shifts as regularly experienced by diatoms in nature. Remarkably, in plastids of the red lineage as well as in green lineage plastids, the phycobilisome based cyanobacterial light harvesting system has been replaced by light harvesting systems that are based on members of the extended LHC protein superfamily, either for one of the photosystems (PS I of red algae) or for both (diatoms). In their proposed function, the RedCAP protein family may thus have played a role in the evolutionary structural remodelling of light-harvesting antennae in the red lineage.

  8. G quadruplex RNA structures in PSD-95 mRNA: potential regulators of miR-125a seed binding site accessibility.

    PubMed

    Stefanovic, Snezana; Bassell, Gary J; Mihailescu, Mihaela Rita

    2015-01-01

    Fragile X syndrome (FXS) is the most common inherited form of intellectual disability caused by the CGG trinucleotide expansion in the 3'-untranslated region of the FMR1 gene on the X chromosome, that silences the expression of the Fragile X mental retardation protein (FMRP). FMRP has been shown to bind to a G-rich region within the PSD-95 mRNA which encodes for the postsynaptic density protein 95 (PSD-95), and together with the microRNA miR-125a, to play an important role in the reversible inhibition of the PSD-95 mRNA translation in neurons. The loss of FMRP in Fmr1 KO mice disables this translation control in the production of the PSD-95 protein. Interestingly, the miR-125a binding site on PSD-95 mRNA is embedded in the G-rich region bound by FMRP and postulated to adopt one or more G quadruplex structures. In this study, we have used different biophysical techniques to validate and characterize the formation of parallel G quadruplex structures and binding of miR-125a to its complementary sequence located within the 3' UTR of PSD-95 mRNA. Our results indicate that the PSD-95 mRNA G-rich region folds into alternate G quadruplex conformations that coexist in equilibrium. miR-125a forms a stable complex with PSD-95 mRNA, as evident by characteristic Watson-Crick base-pairing that coexists with one of the G quadruplex forms, suggesting a novel mechanism for G quadruplex structures to regulate the access of miR-125a to its binding site. © 2014 Stefanovic et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  9. G quadruplex RNA structures in PSD-95 mRNA: potential regulators of miR-125a seed binding site accessibility

    PubMed Central

    Stefanovic, Snezana; Bassell, Gary J.

    2015-01-01

    Fragile X syndrome (FXS) is the most common inherited form of intellectual disability caused by the CGG trinucleotide expansion in the 3′-untranslated region of the FMR1 gene on the X chromosome, that silences the expression of the Fragile X mental retardation protein (FMRP). FMRP has been shown to bind to a G-rich region within the PSD-95 mRNA which encodes for the postsynaptic density protein 95 (PSD-95), and together with the microRNA miR-125a, to play an important role in the reversible inhibition of the PSD-95 mRNA translation in neurons. The loss of FMRP in Fmr1 KO mice disables this translation control in the production of the PSD-95 protein. Interestingly, the miR-125a binding site on PSD-95 mRNA is embedded in the G-rich region bound by FMRP and postulated to adopt one or more G quadruplex structures. In this study, we have used different biophysical techniques to validate and characterize the formation of parallel G quadruplex structures and binding of miR-125a to its complementary sequence located within the 3′ UTR of PSD-95 mRNA. Our results indicate that the PSD-95 mRNA G-rich region folds into alternate G quadruplex conformations that coexist in equilibrium. miR-125a forms a stable complex with PSD-95 mRNA, as evident by characteristic Watson–Crick base-pairing that coexists with one of the G quadruplex forms, suggesting a novel mechanism for G quadruplex structures to regulate the access of miR-125a to its binding site. PMID:25406362

  10. Mechanism of mRNA-STAR domain interaction: Molecular dynamics simulations of Mammalian Quaking STAR protein.

    PubMed

    Sharma, Monika; Anirudh, C R

    2017-10-03

    STAR proteins are evolutionary conserved mRNA-binding proteins that post-transcriptionally regulate gene expression at all stages of RNA metabolism. These proteins possess conserved STAR domain that recognizes identical RNA regulatory elements as YUAAY. Recently reported crystal structures show that STAR domain is composed of N-terminal QUA1, K-homology domain (KH) and C-terminal QUA2, and mRNA binding is mediated by KH-QUA2 domain. Here, we present simulation studies done to investigate binding of mRNA to STAR protein, mammalian Quaking protein (QKI). We carried out conventional MD simulations of STAR domain in presence and absence of mRNA, and studied the impact of mRNA on the stability, dynamics and underlying allosteric mechanism of STAR domain. Our unbiased simulations results show that presence of mRNA stabilizes the overall STAR domain by reducing the structural deviations, correlating the 'within-domain' motions, and maintaining the native contacts information. Absence of mRNA not only influenced the essential modes of motion of STAR domain, but also affected the connectivity of networks within STAR domain. We further explored the dissociation of mRNA from STAR domain using umbrella sampling simulations, and the results suggest that mRNA binding to STAR domain occurs in multi-step: first conformational selection of mRNA backbone conformations, followed by induced fit mechanism as nucleobases interact with STAR domain.

  11. Specification and spatial arrangement of cells in the germline stem cell niche of the Drosophila ovary depend on the Maf transcription factor Traffic jam

    PubMed Central

    Panchal, Trupti; Chen, Xi; Poon, James; Kouptsova, Jane

    2017-01-01

    Germline stem cells in the Drosophila ovary are maintained by a somatic niche. The niche is structurally and functionally complex and contains four cell types, the escort, cap, and terminal filament cells and the newly identified transition cell. We find that the large Maf transcription factor Traffic jam (Tj) is essential for determining niche cell fates and architecture, enabling each niche in the ovary to support a normal complement of 2–3 germline stem cells. In particular, we focused on the question of how cap cells form. Cap cells express Tj and are considered the key component of a mature germline stem cell niche. We conclude that Tj controls the specification of cap cells, as the complete loss of Tj function caused the development of additional terminal filament cells at the expense of cap cells, and terminal filament cells developed cap cell characteristics when induced to express Tj. Further, we propose that Tj controls the morphogenetic behavior of cap cells as they adopted the shape and spatial organization of terminal filament cells but otherwise appeared to retain their fate when Tj expression was only partially reduced. Our data indicate that Tj contributes to the establishment of germline stem cells by promoting the cap cell fate, and controls the stem cell-carrying capacity of the niche by regulating niche architecture. Analysis of the interactions between Tj and the Notch (N) pathway indicates that Tj and N have distinct functions in the cap cell specification program. We propose that formation of cap cells depends on the combined activities of Tj and the N pathway, with Tj promoting the cap cell fate by blocking the terminal filament cell fate, and N supporting cap cells by preventing the escort cell fate and/or controlling the number of cap cell precursors. PMID:28542174

  12. A front-end wafer-level microsystem packaging technique with micro-cap array

    NASA Astrophysics Data System (ADS)

    Chiang, Yuh-Min

    2002-09-01

    The back-end packaging process is the remaining challenge for the micromachining industry to commercialize microsystem technology (MST) devices at low cost. This dissertation presents a novel wafer level protection technique as a final step of the front-end fabrication process for MSTs. It facilitates improved manufacturing throughput and automation in package assembly, wafer level testing of devices, and enhanced device performance. The method involves the use of a wafer-sized micro-cap array, which consists of an assortment of small caps micro-molded onto a material with adjustable shapes and sizes to serve as protective structures against the hostile environments during packaging. The micro-cap array is first constructed by a micromachining process with micro-molding technique, then sealed to the device wafer at wafer level. Epoxy-based wafer-level micro cap array has been successfully fabricated and showed good compatibility with conventional back-end packaging processes. An adhesive transfer technique was demonstrated to seal the micro cap array with a MEMS device wafer. No damage or gross leak was observed while wafer dicing or later during a gross leak test. Applications of the micro cap array are demonstrated on MEMS, microactuators fabricated using CRONOS MUMPS process. Depending on the application needs, the micro-molded cap can be designed and modified to facilitate additional component functions, such as optical, electrical, mechanical, and chemical functions, which are not easily achieved in the device by traditional means. Successful fabrication of a micro cap array comprised with microlenses can provide active functions as well as passive protection. An optical tweezer array could be one possibility for applications of a micro cap with microlenses. The micro cap itself could serve as micro well for DNA or bacteria amplification as well.

  13. Investigating Viruses during the Transformation of Molecular Biology.

    PubMed

    Moss, Bernard

    2017-03-10

    This Reflections article describes my early work on viral enzymes and the discovery of mRNA capping, how my training in medicine and biochemistry merged as I evolved into a virologist, the development of viruses as vaccine vectors, and how scientific and technological developments during the 1970s and beyond set the stage for the interrogation of nearly every step in the reproductive cycle of vaccinia virus (VACV), a large DNA virus with about 200 genes. The reader may view this article as a work in progress, because I remain actively engaged in research at the National Institutes of Health (NIH) notwithstanding 50 memorable years there. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Coextrusion-Based 3D Plotting of Ceramic Pastes for Porous Calcium Phosphate Scaffolds Comprised of Hollow Filaments.

    PubMed

    Jo, In-Hwan; Koh, Young-Hag; Kim, Hyoun-Ee

    2018-05-29

    This paper demonstrates the utility of coextrusion-based 3D plotting of ceramic pastes (CoEx-3DP) as a new type of additive manufacturing (AM) technique, which can produce porous calcium phosphate (CaP) ceramic scaffolds comprised of hollow CaP filaments. In this technique, green filaments with a controlled core/shell structure can be produced by coextruding an initial feedrod, comprised of the carbon black (CB) core and CaP shell, through a fine nozzle in an acetone bath and then deposited in a controlled manner according to predetermined paths. In addition, channels in CaP filaments can be created through the removal of the CB cores during heat-treatment. Produced CaP scaffolds had two different types of pores with well-defined geometries: three-dimensionally interconnected pores (~360 × 230 μm² in sizes) and channels (>100 μm in diameter) in hollow CaP filaments. The porous scaffolds showed high compressive strengths of ~12.3 ± 2.2 MPa at a high porosity of ~73 vol % when compressed parallel to the direction of the hollow CaP filaments. In addition, the mechanical properties of porous CaP scaffolds could be tailored by adjusting their porosity, for example, compressive strengths of 4.8 ± 1.1 MPa at a porosity of ~82 vol %. The porous CaP scaffold showed good biocompatibility, which was assessed by in vitro cell tests, where several the cells adhered to and spread actively with the outer and inner surfaces of the hollow CaP filaments.

  15. Test of superplastically formed corrugated aluminum compression specimens with beaded webs

    NASA Technical Reports Server (NTRS)

    Davis, Randall C.; Royster, Dick M.; Bales, Thomas T.; James, William F.; Shinn, Joseph M., Jr.

    1991-01-01

    Corrugated wall sections provide a highly efficient structure for carrying compressive loads in aircraft and spacecraft fuselages. The superplastic forming (SPF) process offers a means to produce complex shells and panels with corrugated wall shapes. A study was made to investigate the feasibility of superplastically forming 7475-T6 aluminum sheet into a corrugated wall configuration and to demonstrate the structural integrity of the construction by testing. The corrugated configuration selected has beaded web segments separating curved-cap segments. Eight test specimens were fabricated. Two specimens were simply a single sheet of aluminum superplastically formed to a beaded-web, curved-cap corrugation configuration. Six specimens were single-sheet corrugations modified by adhesive bonding additional sheet material to selectively reinforce the curved-cap portion of the corrugation. The specimens were tested to failure by crippling in end compression at room temperature.

  16. Terahertz antireflection coating enabled by a subwavelength metallic mesh capped with a thin dielectric film

    DOE PAGES

    Huang, Li; Chen, Hou -Tong; Zeng, Beibei; ...

    2016-03-30

    Metamaterials/metasurfaces have enabled unprecedented manipulation of electromagnetic waves. Here we present a new design of metasurface structure functioning as antireflection coatings. The structure consists of a subwavelength metallic mesh capped with a thin dielectric layer on top of a substrate. By tailoring the geometric parameters of the metallic mesh and the refractive index and thickness of the capping dielectric film, reflection from the substrate can be completely eliminated at a specific frequency. Compared to traditional methods such as coatings with single- or multi-layer dielectric films, the metasurface antireflection coatings are much thinner and the requirement of index matching is largelymore » lifted. Here, this approach is particularly suitable for antireflection coatings in the technically challenging terahertz frequency range and is also applicable in other frequency regimes.« less

  17. Studies on the chemical synthesis and characterization of lead oxide nanoparticles with different organic capping agents

    NASA Astrophysics Data System (ADS)

    Arulmozhi, K. T.; Mythili, N.

    2013-12-01

    Lead oxide (PbO) nanoparticles were chemically synthesized using Lead (II) acetate as precursor. The effects of organic capping agents such as Oleic acid, Ethylene Diamine Tetra Acetic acid (EDTA) and Cetryl Tri Methyl Butoxide (CTAB) on the size and morphology of the nanoparticles were studied. Characterization techniques such as X-ray diffraction (XRD), Fourier Transform-Infrared spectroscopy (FT-IR), Photoluminescence (PL) Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive Spectroscopy (EDS) and Transmission Electron Microscopy (TEM) were used to analyse the prepared nanoparticles for their physical, structural and optical properties. The characterization studies reveal that the synthesized PbO nanoparticles had well defined crystalline structure and sizes in the range of 25 nm to 36 nm for capping agents used and 40 nm for pure PbO nanoparticles.

  18. DEAD ZONE IN THE POLAR-CAP ACCELERATOR OF PULSARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Alexander Y.; Beloborodov, Andrei M.

    We study plasma flows above pulsar polar caps using time-dependent simulations of plasma particles in the self-consistent electric field. The flow behavior is controlled by the dimensionless parameter {alpha} = j/c{rho}{sub GJ}, where j is the electric current density and {rho}{sub GJ} is the Goldreich-Julian charge density. The region of the polar cap where 0 < {alpha} < 1 is a {sup d}ead zone{sup -}in this zone, particle acceleration is inefficient and pair creation is not expected even for young, rapidly rotating pulsars. Pulsars with polar caps near the rotation axis are predicted to have a hollow-cone structure of radiomore » emission, as the dead zone occupies the central part of the polar cap. Our results apply to charge-separated flows of electrons (j < 0) or ions (j > 0). In the latter case, we consider the possibility of a mixed flow consisting of different ion species, and observe the development of two-stream instability. The dead zone at the polar cap is essential for the development of an outer gap near the null surface {rho}{sub GJ} = 0.« less

  19. New candidate markers of head and neck squamous cell carcinoma progression

    NASA Astrophysics Data System (ADS)

    Kakurina, G. V.; Kolegova, E. S.; Cheremisina, O. V.; Kulbakin, D. E.; Choinzonov, E. L.

    2017-09-01

    The tumor progression in head and neck squamous cell carcinoma (HNSCC) is one of the main causes of high mortality of the patients with HNSCC. The tumor progression, particularly the metastasis, is characterized by the changes in the composition, functions and structure of different proteins. We have previously shown that serum of HNSCC patients contains the proteins which regulate various cellular processes—adenylyl cyclase associated protein 1 (CAP1), protein phosphatase 1 B (PPM1B), etc. The levels of CAP1 and PPM1B were determined using the enzyme immunoassay. The results of this study show that CAP1 and PPM1B take a part in the progression of HNSCC. The levels of CAP1 and PPM1B in the tumor and in morphologically normal tissue depended on the prevalence of the tumor process. The CAP1 and PPM1B levels were significantly higher in tumor tissue of the patients with regional metastasis. Our data allow assuming the potential possibility for predicting the outcome of the HNSCC measuring the level of tissue CAP1.

  20. Ferritin gene transcription is regulated by iron in soybean cell cultures.

    PubMed

    Lescure, A M; Proudhon, D; Pesey, H; Ragland, M; Theil, E C; Briat, J F

    1991-09-15

    Iron-regulated ferritin synthesis in animals is dominated by translational control of stored mRNA; iron-induced transcription of ferritin genes, when it occurs, changes the subunit composition of ferritin mRNA and protein and is coupled to translational control. Ferritins in plants and animals have evolved from a common progenitor, based on the similarity of protein sequence; however, sequence divergence occurs in the C termini; structure prediction suggests that plant ferritin has the E-helix, which, in horse ferritin, forms a large channel at the tetrameric interface. In contemporary plants, a transit peptide is encoded by ferritin mRNA to target the protein to plastids. Iron-regulated synthesis of ferritin in plants and animals appears to be very different since the 50- to 60-fold increases of ferritin protein, previously observed to be induced by iron in cultured soybean cells, is accompanied by an equivalent accumulation of hybridizable ferritin mRNA and by increased transcription of ferritin genes. Ferritin mRNA from iron-induced cells and the constitutive ferritin mRNA from soybean hypocotyls are identical. The iron-induced protein is translocated normally to plastids. Differences in animal ferritin structure coincide with the various iron storage functions (reserve for iron proteins and detoxification). In contrast, the constancy of structure of soybean ferritin, iron-induced and constitutive, coupled with the potential for vacuolar storage of excess iron in plants suggest that rapid synthesis of ferritin from a stored ferritin mRNA may not be needed in plants for detoxification of iron.

  1. Co-crystallization of cholesterol and calcium phosphate as related to atherosclerosis

    NASA Astrophysics Data System (ADS)

    Hirsch, Danielle; Azoury, Reuven; Sarig, Sara

    1990-09-01

    Calcification of atherosclerotic plaques occurs very frequently and aggravates the disease. In biological systems, epitaxial relationships between crystal structures may be important in nucleating the deposit of a solid phase. The biologically preferred calcium phosphate species, apatite, and cholesterol crystal have structurally compatible crystallographic faces which allow epitaxial growth of one crystal upon another. The present study describes a new approach to explore, in vitro, the crystallization processes of calcium phosphate (CaP) with cholesterol (CS) and cholestanol (CN) which are related to atherosclerosis. Aqueous solutions containing calcium and phosphate ions or CaP crystals as hydroxyapatite were added into saturated ethanolic solutions of CS or CS and 10% CN. After precipitation, crystals were collected and analyzed by nuclear magnetic resonance (NMR), infra-red (IR), X-ray, scanning electron microscope (SEM-LINK), differential scanning calorimeter (DSC) and atomic absorption. The principal result is the well-formed crystals precipitation when an aqueous solution and CaP seed crystals were added to saturated solutions of CS and 10% CN. Cholesterol-cholestanol dihydrate (CC2W) crystals precipitated in the presence of CaP seeds were compared to the CC2W crystals obtained without the mineral compound. The results of this comparison indicate a special link between crystals of CaP and CC2W, and support the epitaxial relationship between the two kinds of crystals. The potential of CC2W crystals to be precipitated by CaP seed crystals prove likewise the possible significant role of the cholestanol metabolite in the process of cholesterol crystallization and calcification in the arteries.

  2. Intensity, frequency and spatial configuration of winter temperature inversions in the closed La Brevine valley, Switzerland

    NASA Astrophysics Data System (ADS)

    Vitasse, Yann; Klein, Geoffrey; Kirchner, James W.; Rebetez, Martine

    2017-11-01

    Some of the world's valleys are famous for having particularly cold microclimates. The La Brevine valley, in the Swiss Jura Mountains, holds the record for the lowest temperature ever measured in an inhabited location in Switzerland. We studied cold air pools (CAPs) in this valley during the winter of 2014-2015 using 44 temperature data loggers distributed between 1033 and 1293 m asl. Our goals were to (i) describe the climatic conditions under which CAPs form in the valley, (ii) examine the spatial configuration and the temperature structure of the CAPs and (iii) quantify how often temperature inversions occur in winter using long-term series of temperature from the valley floor. Our results show that CAPs occurred every second night, on average, during the winter of 2014-2015 and were typically formed under cloudless, windless and high-pressure conditions. Strong temperature inversions up to 28 °C were detected between the valley floor and the surrounding hills. The spatial temperature structure of the CAPs varies among the different inversion days, with the upper boundary of the cold pool generally situated at about 1150 m asl. Although mean temperatures have increased in this area over the period 1960-2015 in connection with climate change, the occurrences of extreme cold temperatures did not decrease in winter and are highly correlated with the North Atlantic Oscillation and the East Atlantic indices. This suggests that CAPs in sheltered valleys are largely decoupled from the free atmosphere temperature and will likely continue to occur in the next decades under warmer conditions.

  3. Microstructures of Randall's plaques and their interfaces with calcium oxalate monohydrate kidney stones reflect underlying mineral precipitation mechanisms.

    PubMed

    Sethmann, Ingo; Wendt-Nordahl, Gunnar; Knoll, Thomas; Enzmann, Frieder; Simon, Ludwig; Kleebe, Hans-Joachim

    2017-06-01

    Randall's plaques (RP) are preferred sites for the formation of calcium oxalate monohydrate (COM) kidney stones. However, although processes of interstitial calcium phosphate (CaP) plaque formation are not well understood, the potential of plaque microstructures as indicators of CaP precipitation conditions received only limited attention. We investigated RP-associated COM stones for structural details of the calcified tissues and microstructural features of plaque-stone interfaces as indicators of the initial processes of stone formation. Significantly increased CaP supersaturation can be expected for interstitial fluid, if reabsorbed ions from the tubular system continuously diffuse into the collagenous connective tissue. Densely packed, fine-grained CaP particles were found in dense textures of basement membranes while larger, laminated particles were scattered in coarse-meshed interstitial tissue, which we propose to be due to differential spatial confinements and restrictions of ion diffusion. Particle morphologies suggest an initial precipitation as metastable amorphous calcium phosphate (ACP). Morphologies and arrangements of first COM crystals at the RP-stone interface ranged from stacked euhedral platelets to skeletal morphologies and even porous, dendritic structures, indicating, in this order, increasing levels of COM supersaturation. Furthermore, these first COM crystals were often coated with CaP. On this basis, we propose that ions from CaP-supersaturated interstitial fluid may diffuse through porous RP into the urine, where a resulting local increase in COM supersaturation could trigger crystal nucleation and, hence, initiate stone formation. Ion-depleted fluid in persistent pores of initial COM layers may get replenished from interstitial fluid, leading to CaP precipitation in porous COM.

  4. Early root cap development and graviresponse in white clover (Trifolium repens) grown in space and on a two-axis clinostat

    NASA Technical Reports Server (NTRS)

    Smith, J. D.; Staehelin, L. A.; Todd, P.

    1999-01-01

    White clover (Trifolium repens) was germinated and grown in microgravity aboard the Space Shuttle (STS-60, 1994; STS-63, 1995), on Earth in stationary racks and in a slow-rotating two-axis clinostat. The objective of this study was to determine if normal root cap development and early plant gravity responses were dependent on gravitational cues. Seedlings were germinated in space and chemically fixed in orbit after 21, 40, and 72 h. Seedlings 96 h old were returned viable to earth. Germination and total seedling length were not dependent on gravity treatment. In space-flown seedlings, the number of cell stories in the root cap and the geometry of central columella cells did not differ from those of the Earth-grown seedlings. The root cap structure of clinorotated plants appeared similar to that of seedlings from microgravity, with the exception of three-day rotated plants, which displayed significant cellular damage in the columella region. Nuclear polarity did not depend on gravity; however, the positions of amyloplasts in the central columella cells were dependent on both the gravity treatment and the age of the seedlings. Seedlings from space, returned viable to earth, responded to horizontal stimulation as did 1 g controls, but seedlings rotated on the clinostat for the same duration had a reduced curvature response. This study demonstrates that initial root cap development is insensitive to either chronic clinorotation or microgravity. Soon after differentiation, however, clinorotation leads to loss of normal root cap structure and plant graviresponse while microgravity does not.

  5. Increasing Interest in Child and Adolescent Psychiatry in the Third-Year Clerkship: Results from a Post-Clerkship Survey

    ERIC Educational Resources Information Center

    Malloy, Erin; Hollar, David; Lindsey, Anthony

    2008-01-01

    Objective: The authors aimed to determine whether a structured clinical experience in child and adolescent psychiatry (CAP) during the third-year psychiatry clerkship would impact interest in pursuing careers in psychiatry and CAP. Methods: The authors constructed and administered a post-rotation survey, the Child and Adolescent Psychiatry…

  6. Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection.

    Treesearch

    Sean P. Healey; Warren B. Cohen; Yang Zhiqiang; Olga N. Krankina

    2005-01-01

    Landsat satellite data has become ubiquitous in regional-scale forest disturbance detection. The Tasseled Cap (TC) transformation for Landsat data has been used in several disturbance-mapping projects because of its ability to highlight relevant vegetation changes. We used an automated composite analysis procedure to test four multi-date variants of the TC...

  7. An Analysis and Allocation System for Library Collections Budgets: The Comprehensive Allocation Process (CAP)

    ERIC Educational Resources Information Center

    Lyons, Lucy Eleonore; Blosser, John

    2012-01-01

    The "Comprehensive Allocation Process" (CAP) is a reproducible decision-making structure for the allocation of new collections funds, for the reallocation of funds within stagnant budgets, and for budget cuts in the face of reduced funding levels. This system was designed to overcome common shortcomings of current methods. Its philosophical…

  8. Risk factors for community-acquired pneumonia in adults in Europe: a literature review

    PubMed Central

    Torres, Antoni; Peetermans, Willy E; Viegi, Giovanni; Blasi, Francesco

    2013-01-01

    Background Community-acquired pneumonia (CAP) causes considerable morbidity and mortality in adults, particularly in the elderly. Methods Structured searches of PubMed were conducted to identify up-to-date information on the incidence of CAP in adults in Europe, as well as data on lifestyle and medical risk factors for CAP. Results The overall annual incidence of CAP in adults ranged between 1.07 to 1.2 per 1000 person-years and 1.54 to 1.7 per 1000 population and increased with age (14 per 1000 person-years in adults aged ≥65 years). Incidence was also higher in men than in women and in patients with chronic respiratory disease or HIV infection. Lifestyle factors associated with an increased risk of CAP included smoking, alcohol abuse, being underweight, having regular contact with children and poor dental hygiene. The presence of comorbid conditions, including chronic respiratory and cardiovascular diseases, cerebrovascular disease, Parkinson's disease, epilepsy, dementia, dysphagia, HIV or chronic renal or liver disease all increased the risk of CAP by twofold to fourfold. Conclusion A range of lifestyle factors and underlying medical conditions are associated with an increased risk of CAP in European adults. Understanding of the types of individual at greatest risk of CAP can help to ensure that interventions to reduce the risk of infection and burden of disease are targeted appropriately. PMID:24130229

  9. Structural, optical and enhanced power filtering application of PEG capped Zn1-xCoxS quantum dots

    NASA Astrophysics Data System (ADS)

    Vineeshkumar, T. V.; Prasanth, S.; Pragash, R.; Unnikrishnan, N. V.; Sudarsanakumar, C.

    2018-04-01

    Zn1-xCoxS (x= 0.05, 0.1, 0.15 and 0.2) quantum dots were synthesized successfully using co precipitation technique in polyethylene glycol (PEG) matrix. The PEG acted as a capping agent as well as a reducing agent. The structural and optical properties of the samples were studied by x-ray diffraction (XRD), TEM analysis and UV-Visible absorption. Nonlinear optical properties were measured using open aperture z-scan technique, employing frequency doubled (532 nm) pumping sources.

  10. KSC-03pd0075

    NASA Image and Video Library

    2003-01-15

    KENNEDY SPACE CENTER, FLA. -- After rollback of the Rotating Service Structure on Launch Pad 39A, the top of Space Shuttle Columbia's external tank and solid rocket booster are bathed in sunlight. Shadows from the Fixed Service Structure stretch across the Shuttle and landscape. Visible are the orbiter access arm with the White Room extended to Columbia's cockpit, and at the top, the gaseous oxygen vent arm and cap, called the "beanie cap." Columbia is scheduled for launch Jan. 16 at 10:39 a.m. EST on mission STS-107, a research mission.

  11. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.

    PubMed

    Wang, Mian; Favi, Pelagie; Cheng, Xiaoqian; Golshan, Negar H; Ziemer, Katherine S; Keidar, Michael; Webster, Thomas J

    2016-12-01

    Three-dimensional (3D) printing is a new fabrication method for tissue engineering which can precisely control scaffold architecture at the micron-scale. However, scaffolds not only need 3D biocompatible structures that mimic the micron structure of natural tissues, they also require mimicking of the nano-scale extracellular matrix properties of the tissue they intend to replace. In order to achieve this, the objective of the present in vitro study was to use cold atmospheric plasma (CAP) as a quick and inexpensive way to modify the nano-scale roughness and chemical composition of a 3D printed scaffold surface. Water contact angles of a normal 3D printed poly-lactic-acid (PLA) scaffold dramatically dropped after CAP treatment from 70±2° to 24±2°. In addition, the nano-scale surface roughness (Rq) of the untreated 3D PLA scaffolds drastically increased (up to 250%) after 1, 3, and 5min of CAP treatment from 1.20nm to 10.50nm, 22.90nm, and 27.60nm, respectively. X-ray photoelectron spectroscopy (XPS) analysis showed that the ratio of oxygen to carbon significantly increased after CAP treatment, which indicated that the CAP treatment of PLA not only changed nano-scale roughness but also chemistry. Both changes in hydrophilicity and nano-scale roughness demonstrated a very efficient plasma treatment, which in turn significantly promoted both osteoblast (bone forming cells) and mesenchymal stem cell attachment and proliferation. These promising results suggest that CAP surface modification may have potential applications for enhancing 3D printed PLA bone tissue engineering materials (and all 3D printed materials) in a quick and an inexpensive manner and, thus, should be further studied. Three-dimensional (3D) printing is a new fabrication method for tissue engineering which can precisely control scaffold architecture at the micron-scale. Although their success is related to their ability to exactly mimic the structure of natural tissues and control mechanical properties of scaffolds, 3D printed scaffolds have shortcomings such as limited mimicking of the nanoscale extracellular matrix properties of the tissue they intend to replace. In order to achieve this, the objective of the present in vitro study was to use cold atmospheric plasma (CAP) as a quick and inexpensive way to modify the nanoscale roughness and chemical composition of a 3D printed scaffold surface. The results indicated that using CAP surface modification could achieve a positive change of roughness and surface chemistry. Results showed that both hydrophilicity and nanoscale roughness changes to these scaffolds after CAP treatment played an important role in enhancing bone cell and mesenchymal stem cell attachment and functions. More importantly, this technique could be used for many 3D printed polymer-based biomaterials to improve their properties for numerous applications. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. The polar caps

    NASA Astrophysics Data System (ADS)

    Akasofu, S.-I.

    1985-12-01

    According to the most common definition, the 'polar cap' is the region bounded by the average or statistical auroral oval. Studies of the effects of the interplanetary magnetic field (IMF) on various upper atmospheric phenomena are reviewed. The Antarctic region and the Arctic region represent an area for such investigations. Particular attention is given in this paper to those observations in the highest latitude region which provide some information concerning corresponding changes of the internal structure of the magnetosphere. A definition and working definition of the polar cap are considered along with the IMF and magnetospheric models, the entry of solar energetic electrons, statistical studies regarding the aurora, individual events, polar cap arcs, the cusp aurora, auroral electron precipitation, convection, ionospheric currents and field-aligned currents, the ionosphere, the thermosphere, polar rain, polar wind, and hopping motions of heavy ions.

  13. Microwave-Assisted Hydrothermal Rapid Synthesis of Calcium Phosphates: Structural Control and Application in Protein Adsorption

    PubMed Central

    Cai, Zhu-Yun; Peng, Fan; Zi, Yun-Peng; Chen, Feng; Qian, Qi-Rong

    2015-01-01

    Synthetic calcium phosphate (CaP)-based materials have attracted much attention in the biomedical field. In this study, we have investigated the effect of pH values on CaP nanostructures prepared using a microwave-assisted hydrothermal method. The hierarchical nanosheet-assembled hydroxyapatite (HAP) nanostructure was prepared under weak acidic conditions (pH 5), while the HAP nanorod was prepared under neutral (pH 7) and weak alkali (pH 9) condition. However, when the pH value increases to 11, a mixed product of HAP nanorod and tri-calcium phosphate nanoparticle was obtained. The results indicated that the pH value of the initial reaction solution played an important role in the phase and structure of the CaP. Furthermore, the protein adsorption and release performance of the as-prepared CaP nanostructures were investigated by using hemoglobin (Hb) as a model protein. The sample that was prepared at pH = 11 and consisted of mixed morphologies of nanorods and nanoprisms showed a higher Hb protein adsorption capacity than the sample prepared at pH 5, which could be explained by its smaller size and dispersed structure. The results revealed the relatively high protein adsorption capacity of the as-prepared CaP nanostructures, which show promise for applications in various biomedical fields such as drug delivery and protein adsorption. PMID:28347064

  14. Microwave-Assisted Hydrothermal Rapid Synthesis of Calcium Phosphates: Structural Control and Application in Protein Adsorption.

    PubMed

    Cai, Zhu-Yun; Peng, Fan; Zi, Yun-Peng; Chen, Feng; Qian, Qi-Rong

    2015-07-31

    Synthetic calcium phosphate (CaP)-based materials have attracted much attention in the biomedical field. In this study, we have investigated the effect of pH values on CaP nanostructures prepared using a microwave-assisted hydrothermal method. The hierarchical nanosheet-assembled hydroxyapatite (HAP) nanostructure was prepared under weak acidic conditions (pH 5), while the HAP nanorod was prepared under neutral (pH 7) and weak alkali (pH 9) condition. However, when the pH value increases to 11, a mixed product of HAP nanorod and tri-calcium phosphate nanoparticle was obtained. The results indicated that the pH value of the initial reaction solution played an important role in the phase and structure of the CaP. Furthermore, the protein adsorption and release performance of the as-prepared CaP nanostructures were investigated by using hemoglobin (Hb) as a model protein. The sample that was prepared at pH = 11 and consisted of mixed morphologies of nanorods and nanoprisms showed a higher Hb protein adsorption capacity than the sample prepared at pH 5, which could be explained by its smaller size and dispersed structure. The results revealed the relatively high protein adsorption capacity of the as-prepared CaP nanostructures, which show promise for applications in various biomedical fields such as drug delivery and protein adsorption.

  15. Structural determination of importin alpha in complex with beak and feather disease virus capsid nuclear localization signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, Edward I.; EH Graham Centre for Agricultural Innovation; Dombrovski, Andrew K.

    2013-09-06

    Highlights: •Circovirus capsid proteins contain large nuclear localization signals (NLS). •A method of nuclear import has not been elucidated. •Beak and feather disease virus (BFDV) capsid NLS was crystallized with importin α. •The structure showed BFDV NLS binding to the major site of importin α. •Result shows implications for mechanism of nuclear transport for all circoviruses. -- Abstract: Circoviruses represent a rapidly increasing genus of viruses that infect a variety of vertebrates. Replication requires shuttling viral molecules into the host cell nucleus, a process facilitated by capsid-associated protein (Cap). Whilst a nuclear localization signal (NLS) has been shown to mediatemore » nuclear translocation, the mode of nuclear transport remains to be elucidated. To better understand this process, beak and feather disease virus (BFDV) Cap NLS was crystallized with nuclear import receptor importin-α (Impα). Diffraction yielded structural data to 2.9 Å resolution, and the binding site on both Impα and BFDV Cap NLS were well resolved. The binding mechanism for the major site is likely conserved across circoviruses as supported by the similarity of NLSs in circovirus Caps. This finding illuminates a crucial step for infection of host cells by this viral family, and provides a platform for rational drug design against the binding interface.« less

  16. An online real time ultrasonic NDT system for the quality control of spot welding in the automotive industry

    NASA Astrophysics Data System (ADS)

    Athi, N.; Wylie, S. R.; Cullen, J. D.; Al-Jader, M.; Al-Shamma'a, A. I.; Shaw, A.

    2009-07-01

    Resistance spot welding is the main joining technique used for the fabrication of body-in-white structures in the automotive industry. The quality of the welds depends on the profile of the spot welding electrode cap. The increased use of zinc coated steel in the industry increases wear rate of the caps, making quality control more difficult. This paper presents a novel online real time ultrasonic NDE system for resistance spot welding which evaluates every weld as it is formed. SEM results are presented to show the alloying of the electrode caps.

  17. Equilibrium magnetic states in individual hemispherical permalloy caps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streubel, Robert; Schmidt, Oliver G.; Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107 Chemnitz

    2012-09-24

    The magnetization distributions in individual soft magnetic permalloy caps on non-magnetic spherical particles with sizes ranging from 50 to 800 nm are investigated. We experimentally visualize the magnetic structures at the resolution limit of the x-ray magnetic circular dichroism photoelectron emission microscopy (XMCD-PEEM). By analyzing the so-called tail contrast in XMCD-PEEM, the spatial resolution is significantly enhanced, which allowed us to explore magnetic vortices and their displacement on curved surfaces. Furthermore, cap nanostructures are modeled as extruded hemispheres to determine theoretically the phase diagram of equilibrium magnetic states. The calculated phase diagram agrees well with the experimental observations.

  18. Cementitious building material incorporating end-capped polyethylene glycol as a phase change material

    DOEpatents

    Salyer, Ival O.; Griffen, Charles W.

    1986-01-01

    A cementitious composition comprising a cementitious material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the compositions are useful in making pre-formed building materials such as concrete blocks, brick, dry wall and the like or in making poured structures such as walls or floor pads; the glycols can be encapsulated to reduce their tendency to retard set.

  19. Graphite composite truss welding and cap section forming subsystems. Volume 1: Executive summary. [large space structures

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A rolltrusion process was developed for forming of a hybrid, single-ply woven graphite and glass fiber cloth, impregnated with a polysulfone resin and coated with TI02 pigmented P-1700 resin into strips for the on-orbit fabrication of triangular truss segments. Ultrasonic welding in vacuum showed no identifiable effects on weld strength or resin flow characteristics. An existing bench model cap roll forming machine was modified and used to roll form caps for the prototype test truss and for column test specimens in order to test local buckling and torsional instability characteristics.

  20. Structural Determinants of Substrate Recognition in the HAD Superfamily Member D-glycero-D-manno-Heptose-1,7-bisphosphate Phosphatase (GmhB)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, H.; Wang, L; Huang, H

    2010-01-01

    The haloalkanoic acid dehalogenase (HAD) enzyme superfamily is the largest family of phosphohydrolases. In HAD members, the structural elements that provide the binding interactions that support substrate specificity are separated from those that orchestrate catalysis. For most HAD phosphatases, a cap domain functions in substrate recognition. However, for the HAD phosphatases that lack a cap domain, an alternate strategy for substrate selection must be operative. One such HAD phosphatase, GmhB of the HisB subfamily, was selected for structure-function analysis. Herein, the X-ray crystallographic structures of Escherichia coli GmhB in the apo form (1.6 {angstrom} resolution), in a complex with Mg{supmore » 2+} and orthophosphate (1.8 {angstrom} resolution), and in a complex with Mg{sup 2+} and D-glycero-D-manno-heptose 1{beta},7-bisphosphate (2.2 {angstrom} resolution) were determined, in addition to the structure of Bordetella bronchiseptica GmhB bound to Mg{sup 2+} and orthophosphate (1.7 {angstrom} resolution). The structures show that in place of a cap domain, the GmhB catalytic site is elaborated by three peptide inserts or loops that pack to form a concave, semicircular surface around the substrate leaving group. Structure-guided kinetic analysis of site-directed mutants was conducted in parallel with a bioinformatics study of sequence diversification within the HisB subfamily to identify loop residues that serve as substrate recognition elements and that distinguish GmhB from its subfamily counterpart, the histidinol-phosphate phosphatase domain of HisB. We show that GmhB and the histidinol-phosphate phosphatase domain use the same design of three substrate recognition loops inserted into the cap domain yet, through selective residue usage on the loops, have achieved unique substrate specificity and thus novel biochemical function.« less

  1. Localized Control of Curie Temperature in Perovskite Oxide Film by Capping-Layer-Induced Octahedral Distortion

    DOE PAGES

    Thomas, S.; Kuiper, B.; Hu, J.; ...

    2017-10-27

    With reduced dimensionality, it is often easier to modify the properties of ultrathin films than their bulk counterparts. Strain engineering, usually achieved by choosing appropriate substrates, has been proven effective in controlling the properties of perovskite oxide films. An emerging alternative route for developing new multifunctional perovskite is by modification of the oxygen octahedral structure. Here we report the control of structural oxygen octahedral rotation in ultrathin perovskite SrRuO 3 films by the deposition of a SrTiO 3 capping layer, which can be lithographically patterned to achieve local control. Here, using a scanning Sagnac magnetic microscope, we show an increasemore » in the Curie temperature of SrRuO 3 due to the suppression octahedral rotations revealed by the synchrotron x-ray diffraction. Lastly, this capping-layer-based technique may open new possibilities for developing functional oxide materials.« less

  2. Localized Control of Curie Temperature in Perovskite Oxide Film by Capping-Layer-Induced Octahedral Distortion.

    PubMed

    Thomas, S; Kuiper, B; Hu, J; Smit, J; Liao, Z; Zhong, Z; Rijnders, G; Vailionis, A; Wu, R; Koster, G; Xia, J

    2017-10-27

    With reduced dimensionality, it is often easier to modify the properties of ultrathin films than their bulk counterparts. Strain engineering, usually achieved by choosing appropriate substrates, has been proven effective in controlling the properties of perovskite oxide films. An emerging alternative route for developing new multifunctional perovskite is by modification of the oxygen octahedral structure. Here we report the control of structural oxygen octahedral rotation in ultrathin perovskite SrRuO_{3} films by the deposition of a SrTiO_{3} capping layer, which can be lithographically patterned to achieve local control. Using a scanning Sagnac magnetic microscope, we show an increase in the Curie temperature of SrRuO_{3} due to the suppression octahedral rotations revealed by the synchrotron x-ray diffraction. This capping-layer-based technique may open new possibilities for developing functional oxide materials.

  3. Identification of helix capping and β-turn motifs from NMR chemical shifts

    PubMed Central

    Shen, Yang; Bax, Ad

    2012-01-01

    We present an empirical method for identification of distinct structural motifs in proteins on the basis of experimentally determined backbone and 13Cβ chemical shifts. Elements identified include the N-terminal and C-terminal helix capping motifs and five types of β-turns: I, II, I′, II′ and VIII. Using a database of proteins of known structure, the NMR chemical shifts, together with the PDB-extracted amino acid preference of the helix capping and β-turn motifs are used as input data for training an artificial neural network algorithm, which outputs the statistical probability of finding each motif at any given position in the protein. The trained neural networks, contained in the MICS (motif identification from chemical shifts) program, also provide a confidence level for each of their predictions, and values ranging from ca 0.7–0.9 for the Matthews correlation coefficient of its predictions far exceed that attainable by sequence analysis. MICS is anticipated to be useful both in the conventional NMR structure determination process and for enhancing on-going efforts to determine protein structures solely on the basis of chemical shift information, where it can aid in identifying protein database fragments suitable for use in building such structures. PMID:22314702

  4. Microanatomy of passerine hard-cornified tissues: Beak and claw structure of the black-capped chickadee (Poecile atricapillus)

    USGS Publications Warehouse

    Van Hemert, C.; Handel, Colleen M.; Blake, J.E.; Swor, R.M.; O'Hara, T. M.

    2012-01-01

    The microanatomy of healthy beaks and claws in passerine birds has not been well described in the literature, despite the importance of these structures in avian life. Histological processing of hard-cornified tissues is notoriously challenging and only a few reports on effective techniques have been published. An emerging epizootic of beak deformities among wild birds in Alaska and the Pacific Northwest region of North America recently highlighted the need for additional baseline information about avian hard-cornified structures. In this study, we examine the beak and claw of the Black-capped Chickadee (Poecile atricapillus), a common North American passerine that is affected by what has been described as "avian keratin disorder." We use light and scanning electron microscopy and high-magnification radiography to document the healthy microanatomy of these tissues and identify features of functional importance. We also describe detailed methods for histological processing of avian hard-cornified structures and discuss the utility of special stains. Results from this study will assist in future research on the functional anatomy and pathology of hard-cornified structures and will provide a necessary reference for ongoing investigations of avian keratin disorder in Black-capped Chickadees and other wild passerine species. ?? 2011 Wiley Periodicals, Inc.

  5. Manufacturing of mushroom-shaped structures and its hydrophobic robustness analysis based on energy minimization approach

    NASA Astrophysics Data System (ADS)

    Wang, Li; Yang, Xiaonan; Wang, Quandai; Yang, Zhiqiang; Duan, Hui; Lu, Bingheng

    2017-07-01

    The construction of stable hydrophobic surfaces has increasingly gained attention owing to its wide range of potential applications. However, these surfaces may become wet and lose their slip effect owing to insufficient hydrophobic stability. Pillars with a mushroom-shaped tip are believed to enhance hydrophobicity stability. This work presents a facile method of manufacturing mushroom-shaped structures, where, compared with the previously used method, the modulation of the cap thickness, cap diameter, and stem height of the structures is more convenient. The effects of the development time on the cap diameter and overhanging angle are investigated and well-defined mushroom-shaped structures are demonstrated. The effect of the microstructure geometry on the contact state of a droplet is predicted by taking an energy minimization approach and is experimentally validated with nonvolatile ultraviolet-curable polymer with a low surface tension by inspecting the profiles of liquid-vapor interface deformation and tracking the trace of the receding contact line after exposure to ultraviolet light. Theoretical and experimental results show that, compared with regular pillar arrays having a vertical sidewall, the mushroom-like structures can effectively enhance hydrophobic stability. The proposed manufacturing method will be useful for fabricating robust hydrophobic surfaces in a cost-effective and convenient manner.

  6. Microanatomy of Passerine hard-cornified tissues: beak and claw structure of the Black-capped Chickadee (Poecile atricapillus)

    USGS Publications Warehouse

    Van Hemert, Caroline R.; Handel, Colleen M.; Blake, J.; Swor, Rhonda; O'Hara, Todd M.

    2012-01-01

    The microanatomy of healthy beaks and claws in passerine birds has not been well described in the literature, despite the importance of these structures in avian life. Histological processing of hard-cornified tissues is notoriously challenging and only a few reports on effective techniques have been published. An emerging epizootic of beak deformities among wild birds in Alaska and the Pacific Northwest region of North America recently highlighted the need for additional baseline information about avian hard-cornified structures. In this study, we examine the beak and claw of the Black-capped Chickadee (Poecile atricapillus), a common North American passerine that is affected by what has been described as “avian keratin disorder.” We use light and scanning electron microscopy and high-magnification radiography to document the healthy microanatomy of these tissues and identify features of functional importance. We also describe detailed methods for histological processing of avian hard-cornified structures and discuss the utility of special stains. Results from this study will assist in future research on the functional anatomy and pathology of hard-cornified structures and will provide a necessary reference for ongoing investigations of avian keratin disorder in Black-capped Chickadees and other wild passerine species.

  7. Structural Design and Analysis of the Upper Pressure Shell Section of a Composite Crew Module

    NASA Technical Reports Server (NTRS)

    Sleight, David W.; Paddock, David; Jeans, Jim W.; Hudeck, John D.

    2008-01-01

    This paper presents the results of the structural design and analysis of the upper pressure shell section of a carbon composite demonstration structure for the Composite Crew Module (CCM) Project. The project is managed by the NASA Engineering and Safety Center with participants from eight NASA Centers, the Air Force Research Laboratory, and multiple aerospace contractors including ATK/Swales, Northrop Grumman, Lockheed Martin, Collier Research Corporation, Genesis Engineering, and Janicki Industries. The paper discusses details of the upper pressure shell section design of the CCM and presents the structural analysis results using the HyperSizer structural sizing software and the MSC Nastran finite element analysis software. The HyperSizer results showed that the controlling load case driving most of the sizing in the upper pressure shell section was the internal pressure load case. The regions around the cutouts were controlled by internal pressure and the main parachute load cases. The global finite element analysis results showed that the majority of the elements of the CCM had a positive margin of safety with the exception of a few hot spots around the cutouts. These hot spots are currently being investigated with a more detailed analysis. Local finite element models of the Low Impact Docking System (LIDS) interface ring and the forward bay gussets with greater mesh fidelity were created for local sizing and analysis. The sizing of the LIDS interface ring was driven by the drogue parachute loads, Trans-Lunar Insertion (TLI) loads, and internal pressure. The drogue parachute loads controlled the sizing of the gusset cap on the drogue gusset and TLI loads controlled the sizing of the other five gusset caps. The main parachute loads controlled the sizing of the lower ends of the gusset caps on the main parachute fittings. The results showed that the gusset web/pressure shell and gusset web/gusset cap interfaces bonded using Pi-preform joints had local hot spots in the Pi-preform termination regions. These regions require a detailed three-dimensional analysis, which is currently being performed, to accurately address the load distribution near the Pi-preform termination in the upper and lower gusset caps.

  8. STEF/TIAM2-mediated Rac1 activity at the nuclear envelope regulates the perinuclear actin cap.

    PubMed

    Woroniuk, Anna; Porter, Andrew; White, Gavin; Newman, Daniel T; Diamantopoulou, Zoi; Waring, Thomas; Rooney, Claire; Strathdee, Douglas; Marston, Daniel J; Hahn, Klaus M; Sansom, Owen J; Zech, Tobias; Malliri, Angeliki

    2018-05-29

    The perinuclear actin cap is an important cytoskeletal structure that regulates nuclear morphology and re-orientation during front-rear polarisation. The mechanisms regulating the actin cap are currently poorly understood. Here, we demonstrate that STEF/TIAM2, a Rac1 selective guanine nucleotide exchange factor, localises at the nuclear envelope, co-localising with the key perinuclear proteins Nesprin-2G and Non-muscle myosin IIB (NMMIIB), where it regulates perinuclear Rac1 activity. We show that STEF depletion reduces apical perinuclear actin cables (a phenotype rescued by targeting active Rac1 to the nuclear envelope), increases nuclear height and impairs nuclear re-orientation. STEF down-regulation also reduces perinuclear pMLC and decreases myosin-generated tension at the nuclear envelope, suggesting that STEF-mediated Rac1 activity regulates NMMIIB activity to promote stabilisation of the perinuclear actin cap. Finally, STEF depletion decreases nuclear stiffness and reduces expression of TAZ-regulated genes, indicating an alteration in mechanosensing pathways as a consequence of disruption of the actin cap.

  9. Retention of Electronic Conductivity in LaAlO3/SrTiO3 Nanostructures Using a SrCuO2 Capping Layer

    NASA Astrophysics Data System (ADS)

    Aurino, P. P.; Kalabukhov, A.; Borgani, R.; Haviland, D. B.; Bauch, T.; Lombardi, F.; Claeson, T.; Winkler, D.

    2016-08-01

    The interface between two wide band-gap insulators, LaAlO3 and SrTiO3 (LAO/STO) offers a unique playground to study the interplay and competitions between different ordering phenomena in a strongly correlated two-dimensional electron gas. Recent studies of the LAO/STO interface reveal the inhomogeneous nature of the 2DEG that strongly influences electrical-transport properties. Nanowires needed in future applications may be adversely affected, and our aim is, thus, to produce a more homogeneous electron gas. In this work, we demonstrate that nanostructures fabricated in the quasi-2DEG at the LaAlO3/SrTiO3 interface, capped with a SrCuO2 layer, retain their electrical resistivity and mobility independent of the structure size, ranging from 100 nm to 30 μ m . This is in contrast to noncapped LAO/STO structures, where the room-temperature electrical resistivity significantly increases when the structure size becomes smaller than 1 μ m . High-resolution intermodulation electrostatic force microscopy reveals an inhomogeneous surface potential with "puddles" of a characteristic size of 130 nm in the noncapped samples and a more uniform surface potential with a larger characteristic size of the puddles in the capped samples. In addition, capped structures show superconductivity below 200 mK and nonlinear current-voltage characteristics with a clear critical current observed up to 700 mK. Our findings shed light on the complicated nature of the 2DEG at the LAO/STO interface and may also be used for the design of electronic devices.

  10. What is the impact of primary care model type on specialist referral rates? A cross-sectional study.

    PubMed

    Liddy, Clare; Singh, Jatinderpreet; Kelly, Ryan; Dahrouge, Simone; Taljaard, Monica; Younger, Jamie

    2014-02-03

    Several new primary care models have been implemented in Ontario, Canada over the past two decades. These practice models differ in team structure, physician remuneration, and group size. Few studies have examined the impact of these models on specialist referrals. We compared specialist referral rates amongst three primary care models: 1) Enhanced Fee-for-service, 2) Capitation- Non-Interdisciplinary (CAP-NI), 3) Capitation - Interdisciplinary (CAP-I). We conducted a cross-sectional study using health administrative data from primary care practices in Ontario from April 1st, 2008 to March 31st, 2010. The analysis included all family physicians providing comprehensive care in one of the three models, had at least 100 patients, and did not have a prolonged absence (eight consecutive weeks). The primary outcome was referral rate (# of referrals to all medical specialties/1000 patients/year). A multivariable clustered Poisson regression analysis was used to compare referral rates between models while adjusting for provider (sex, years since graduation, foreign trained, time in current model) and patient (age, sex, income, rurality, health status) characteristics. Fee-for-service had a significantly lower adjusted referral rate (676, 95% CI: 666-687) than the CAP-NI (719, 95% confidence interval (CI): 705-734) and CAP-I (694, 95% CI: 681-707) models and the interdisciplinary CAP-I group had a 3.5% lower referral rate than the CAP-NI group (RR = 0.965, 95% CI: 0.943-0.987, p = 0.002). Female and Canadian-trained physicians referred more often, while female, older, sicker and urban patients were more likely to be referred. Primary care model is significantly associated with referral rate. On a study population level, these differences equate to 111,059 and 37,391 fewer referrals by fee-for-service versus CAP-NI and CAP-I, respectively - a difference of $22.3 million in initial referral appointment costs. Whether a lower rate of referral is more appropriate or not is not known and requires further investigation. Physician remuneration and team structure likely account for the differences; however, further investigation is also required to better understand whether other organizational factors associated with primary care model also impact referral.

  11. Phase Composition Control of Calcium Phosphate Nanoparticles for Tunable Drug Delivery Kinetics and Treatment of Osteomyelitis. Part 1: Preparation and Drug Release

    PubMed Central

    Uskoković, Vuk; Desai, Tejal A.

    2012-01-01

    Developed in this study is a multifunctional material for simultaneous osseoinduction and drug delivery, potentially applicable in the treatment of osteomyelitis. It is composed of agglomerates of nanoparticles of calcium phosphate (CAP) with different monophasic contents. The drug loading capacity and the release kinetics were investigated on two model drug compounds with different chemical structures, sizes and adsorption propensities: bovine serum albumin and fluorescein. Loading of CAP powders with small molecule drugs was achieved by physisorption and desiccation-induced agglomeration of nanoparticulate subunits into microscopic blocks. The material dissolution rate and the drug release rate depended on the nature of the CAP phase, decreasing from monocalcium phosphate to monetite to amorphous CAP and calcium pyrophosphate to hydroxyapatite. The sustained release of the two model drugs was shown to be directly relatable to the degradation rate of CAP carriers. It was demonstrated that the degradation rate of the carrier and the drug release kinetics could be made tunable within the time scale of 1–2 h for the most soluble CAP phase, monocalcium phosphate, to 1–2 years for the least soluble one, hydroxyapatite. From the standpoint of antibiotic therapy for osteomyelitis, typically lasting for six weeks, the most prospective CAP powder was amorphous CAP with its release time scale for a small organic molecule, the same category to which antibiotics belong, of 1 – 2 months under the conditions applied in our experiments. By combining these different CAP phases in various proportions, drug release profiles could be tailored to the therapeutic occasion. PMID:23115118

  12. In vitro investigation of anodization and CaP deposited titanium surface using MG63 osteoblast-like cells

    NASA Astrophysics Data System (ADS)

    Lee, J. M.; Lee, J. I.; Lim, Y. J.

    2010-03-01

    The aim of the present study was to investigate surface characteristics in four different titanium surfaces (AN: anodized at 270 V; AN-CaP: anodic oxidation and CaP deposited; SLA: sandblasted and acid etched; MA: machined) and to evaluate biological behaviors such as cell adhesion, cell proliferation, cytoskeletal organization, and osteogenic protein expression of MG63 osteoblast-like cells at the early stage. Surface analysis was performed using scanning electron microscopy, thin-film X-ray diffractometry, and a confocal laser scanning microscope. In order to evaluate cellular responses, MG63 osteoblast-like cells were used. The cell viability was evaluated by MTT assay. Immunofluorescent analyses of actin, type I collagen, osteonectin and osteocalcin were performed. The anodized and CaP deposited specimen showed homogeneously distributed CaP particles around micropores and exhibited anatase type oxides, titanium, and HA crystalline structures. This experiment suggests that CaP particles on the anodic oxidation surface affect cellular attachment and spreading. When designing an in vitro biological study for CaP coated titanium, it must be taken into account that preincubation in medium prior to cell seeding and the cell culture medium may affect the CaP coatings. All these observations illustrate the importance of the experimental conditions and the physicochemical parameters of the CaP coating. It is considered that further evaluations such as long-term in vitro cellular assays and in vivo experiments should be necessary to figure out the effect of CaP deposition to biological responses.

  13. Ferritin gene transcription is regulated by iron in soybean cell cultures.

    PubMed Central

    Lescure, A M; Proudhon, D; Pesey, H; Ragland, M; Theil, E C; Briat, J F

    1991-01-01

    Iron-regulated ferritin synthesis in animals is dominated by translational control of stored mRNA; iron-induced transcription of ferritin genes, when it occurs, changes the subunit composition of ferritin mRNA and protein and is coupled to translational control. Ferritins in plants and animals have evolved from a common progenitor, based on the similarity of protein sequence; however, sequence divergence occurs in the C termini; structure prediction suggests that plant ferritin has the E-helix, which, in horse ferritin, forms a large channel at the tetrameric interface. In contemporary plants, a transit peptide is encoded by ferritin mRNA to target the protein to plastids. Iron-regulated synthesis of ferritin in plants and animals appears to be very different since the 50- to 60-fold increases of ferritin protein, previously observed to be induced by iron in cultured soybean cells, is accompanied by an equivalent accumulation of hybridizable ferritin mRNA and by increased transcription of ferritin genes. Ferritin mRNA from iron-induced cells and the constitutive ferritin mRNA from soybean hypocotyls are identical. The iron-induced protein is translocated normally to plastids. Differences in animal ferritin structure coincide with the various iron storage functions (reserve for iron proteins and detoxification). In contrast, the constancy of structure of soybean ferritin, iron-induced and constitutive, coupled with the potential for vacuolar storage of excess iron in plants suggest that rapid synthesis of ferritin from a stored ferritin mRNA may not be needed in plants for detoxification of iron. Images PMID:1896472

  14. Effects of solution concentration and capping agents on the properties of potassium titanyl phosphate noparticles synthesized using a co-precipitation method

    NASA Astrophysics Data System (ADS)

    Gharibshahian, E.; Jafar Tafershi, M.; Fazli, M.

    2018-05-01

    In this study, KTiOPO4 (KTP) nanoparticles were synthesized using a co-precipitation method. The effects of the solution concentration (M) and capping agents, such as PVA, oxalic acid, glycine, triethanolamine, and L-alanine, on the structural, microstructural, and optical properties of the products were investigated using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy. Decreasing the solution concentration decreased the crystallite size from 53.07 nm (for M = 2) to 39.42 nm (for M = 0.5). After applying different capping agents to the sample at the optimum concentration (M = 0.5), the crystallite size decreased again and grains as small as 10.61 nm were obtained. XRD and FTIR analyses indicated the formation of KTP nanoparticles with an orthorhombic structure in all of the samples. The optical band gap increased as the crystallite size decreased. Different morphological patterns such as spherical, needle shaped, polyhedron, and tablet forms were observed in the nanoparticles, which were correlated with the effects of the capping agents employed.

  15. Biomimetic fabrication of a three-level hierarchical calcium phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering.

    PubMed

    Zhou, Changchun; Ye, Xingjiang; Fan, Yujiang; Ma, Liang; Tan, Yanfei; Qing, Fangzu; Zhang, Xingdong

    2014-09-01

    A three-level hierarchical calcium phosphate/collagen/hydroxyapatite (CaP/Col/HAp) scaffold for bone tissue engineering was developed using biomimetic synthesis. Porous CaP ceramics were first prepared as substrate materials to mimic the porous bone structure. A second-level Col network was then composited into porous CaP ceramics by vacuum infusion. Finally, a third-level HAp layer was achieved by biomimetic mineralization. The three-level hierarchical biomimetic scaffold was characterized using scanning electron microscopy, energy-dispersive x-ray spectra, x-ray diffraction and Fourier transform infrared spectroscopy, and the mechanical properties of the scaffold were evaluated using dynamic mechanical analysis. The results show that this scaffold exhibits a similar structure and composition to natural bone tissues. Furthermore, this three-level hierarchical biomimetic scaffold showed enhanced mechanical strength compared with pure porous CaP scaffolds. The biocompatibility and osteoinductivity of the biomimetic scaffolds were evaluated using in vitro and in vivo tests. Cell culture results indicated the good biocompatibility of this biomimetic scaffold. Faster and increased bone formation was observed in these scaffolds following a six-month implantation in the dorsal muscles of rabbits, indicating that this biomimetic scaffold exhibits better osteoinductivity than common CaP scaffolds.

  16. EuCAP, a Eukaryotic Community Annotation Package, and its application to the rice genome

    PubMed Central

    Thibaud-Nissen, Françoise; Campbell, Matthew; Hamilton, John P; Zhu, Wei; Buell, C Robin

    2007-01-01

    Background Despite the improvements of tools for automated annotation of genome sequences, manual curation at the structural and functional level can provide an increased level of refinement to genome annotation. The Institute for Genomic Research Rice Genome Annotation (hereafter named the Osa1 Genome Annotation) is the product of an automated pipeline and, for this reason, will benefit from the input of biologists with expertise in rice and/or particular gene families. Leveraging knowledge from a dispersed community of scientists is a demonstrated way of improving a genome annotation. This requires tools that facilitate 1) the submission of gene annotation to an annotation project, 2) the review of the submitted models by project annotators, and 3) the incorporation of the submitted models in the ongoing annotation effort. Results We have developed the Eukaryotic Community Annotation Package (EuCAP), an annotation tool, and have applied it to the rice genome. The primary level of curation by community annotators (CA) has been the annotation of gene families. Annotation can be submitted by email or through the EuCAP Web Tool. The CA models are aligned to the rice pseudomolecules and the coordinates of these alignments, along with functional annotation, are stored in the MySQL EuCAP Gene Model database. Web pages displaying the alignments of the CA models to the Osa1 Genome models are automatically generated from the EuCAP Gene Model database. The alignments are reviewed by the project annotators (PAs) in the context of experimental evidence. Upon approval by the PAs, the CA models, along with the corresponding functional annotations, are integrated into the Osa1 Genome Annotation. The CA annotations, grouped by family, are displayed on the Community Annotation pages of the project website , as well as in the Community Annotation track of the Genome Browser. Conclusion We have applied EuCAP to rice. As of July 2007, the structural and/or functional annotation of 1,094 genes representing 57 families have been deposited and integrated into the current gene set. All of the EuCAP components are open-source, thereby allowing the implementation of EuCAP for the annotation of other genomes. EuCAP is available at . PMID:17961238

  17. Recent structural studies on Dom34/aPelota and Hbs1/aEF1α: important factors for solving general problems of ribosomal stall in translation

    PubMed Central

    Kobayashi, Kan; Ishitani, Ryuichiro; Nureki, Osamu

    2013-01-01

    In the translation process, translating ribosomes usually move on an mRNA until they reach the stop codon. However, when ribosomes translate an aberrant mRNA, they stall. Then, ribosomes are rescued from the aberrant mRNA, and the aberrant mRNA is subsequently degraded. In eukaryotes, Pelota (Dom34 in yeast) and Hbs1 are responsible for solving general problems of ribosomal stall in translation. In archaea, aPelota and aEF1α, homologous to Pelota and Hbs1, respectively, are considered to be involved in that process. In recent years, great progress has been made in determining structures of Dom34/aPelota and Hbs1/aEF1α. In this review, we focus on the functional roles of Dom34/aPelota and Hbs1/aEF1α in ribosome rescue, based on recent structural studies of them. We will also present questions to be answered by future work. PMID:27493551

  18. Structural, spectroscopic and anti-microbial inspection of PEG capped ZnO nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Meshram, J. V.; Koli, V. B.; Kumbhar, S. G.; Borde, L. C.; Phadatare, M. R.; Pawar, S. H.

    2018-04-01

    Zinc oxide (ZnO) nanoparticles (NPs) have a wide range of biomedical applications. Present study demonstrates the new methodology in sol-gel technology for synthesizing Polyethylene glycol (PEG) capped ZnO NPs and its size effect on anti-microbial activity. The reaction time was increased from 1 h to 5 h for the synthesis of ZnO NPs at 130 °C. The size of PEG capped ZnO NPs is increased from 10 to 84 nm by increasing the reaction upto 5 h. The x-ray diffraction studies and transmission electron microscopy analysis reveals the phase purity and hexagonal wurtzite crystal structure with uniform PEG capping on the surface of ZnO NPs. UV–visible spectroscopy exhibits the peak at 366 nm which is attributed to ZnO NPs. No adverse effect is observed in case of absorbance spectroscopy. Further, Fourier transforms infrared spectroscopy and thermo gravimetric analysis depicts the adsorption of PEG molecules on the ZnO NPs surface. The anti-microbial activities for both Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria were studied by optical density (OD) mesurement. The remarkable anti-microbial activity was observed for PEG capped ZnO NPs synthesized at 1 h reaction time showing higher activity in comparison with that synthesized from 2 h to 5 h reaction time. The microbial growth was found to be inhibited after 10 h OD measurement for both the bacteria. The anti-microbial activity may be attributed to the generation of ROS and H2O2. However, these generated species plays a vital role in inhibition of microbial growth. Hence, PEG capped ZnO NPs has promising biomedical applications.

  19. E2C mechanism of elimination reactions. IX. Secondary deuterium isotope effects on rates of bimolecular reactions in alicyclic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, D.

    1976-06-11

    Secondary ..cap alpha..-deuterium isotope effects on the rates of NBu/sub 4/OAc and NBu/sub 4/Cl promoted bimolecular reactions (E2 and SN2) of cyclohexyl tosylate and cyclohexyl bromide have been studied. The E2 reactions, previously categorized as E2C-like, show ..cap alpha..-deuterium isotope effects in the range 1.14--1.22, while the related SN2 reactions give values in the range 1.05--1.08. The discrepancy in the magnitude of the ..cap alpha..-deuterium isotope effect for the E2 and SN2 processes is consistent with the view that E2C-like reactions use ''looser'' transition states than those used in the concurrent SN2 reactions. While the reported ..cap alpha..-d isotope effectsmore » do not provide positive evidence to support the idea that the base interacts with C/sub ..cap alpha../ in the E2 transition states of the reactions studied, neither do they substantiate claims for dismissal of the concept. A comparison of the secondary ..gamma..-deuterium and ..beta..'-deuterium isotope effects arising in the reaction of cyclohexyl tosylate with NBu/sub 4/OAc in acetone indicates the two isotope effects to be of equivalent magnitude (k/sub ..beta..'-d/k/sub ..gamma..-d/ = 0.98). This observation can only be rationalized for this reaction in terms of a transition state structure in which there is extensive double bond development. It provides compelling evidence against the involvement of any transition state structure which accommodates extensive positive charge development at C/sub ..cap alpha../.« less

  20. 3′ Cap-Independent Translation Enhancers of Plant Viruses

    PubMed Central

    Simon, Anne E.; Miller, W. Allen

    2014-01-01

    In the absence of a 5′ cap, plant positive-strand RNA viruses have evolved a number of different elements in their 3′ untranslated region (UTR) to attract initiation factors and/or ribosomes to their templates. These 3′ cap-independent translational enhancers (3′ CITEs) take different forms, such as I-shaped, Y-shaped, T-shaped, or pseudoknotted structures, or radiate multiple helices from a central hub. Common features of most 3′ CITEs include the ability to bind a component of the translation initiation factor eIF4F complex and to engage in an RNA-RNA kissing-loop interaction with a hairpin loop located at the 5′ end of the RNA. The two T-shaped structures can bind to ribosomes and ribosomal subunits, with one structure also able to engage in a simultaneous long-distance RNA-RNA interaction. Several of these 3′ CITEs are interchangeable and there is evidence that natural recombination allows exchange of modular CITE units, which may overcome genetic resistance or extend the virus’s host range. PMID:23682606

  1. Position-specific binding of FUS to nascent RNA regulates mRNA length

    PubMed Central

    Masuda, Akio; Takeda, Jun-ichi; Okuno, Tatsuya; Okamoto, Takaaki; Ohkawara, Bisei; Ito, Mikako; Ishigaki, Shinsuke; Sobue, Gen

    2015-01-01

    More than half of all human genes produce prematurely terminated polyadenylated short mRNAs. However, the underlying mechanisms remain largely elusive. CLIP-seq (cross-linking immunoprecipitation [CLIP] combined with deep sequencing) of FUS (fused in sarcoma) in neuronal cells showed that FUS is frequently clustered around an alternative polyadenylation (APA) site of nascent RNA. ChIP-seq (chromatin immunoprecipitation [ChIP] combined with deep sequencing) of RNA polymerase II (RNAP II) demonstrated that FUS stalls RNAP II and prematurely terminates transcription. When an APA site is located upstream of an FUS cluster, FUS enhances polyadenylation by recruiting CPSF160 and up-regulates the alternative short transcript. In contrast, when an APA site is located downstream from an FUS cluster, polyadenylation is not activated, and the RNAP II-suppressing effect of FUS leads to down-regulation of the alternative short transcript. CAGE-seq (cap analysis of gene expression [CAGE] combined with deep sequencing) and PolyA-seq (a strand-specific and quantitative method for high-throughput sequencing of 3' ends of polyadenylated transcripts) revealed that position-specific regulation of mRNA lengths by FUS is operational in two-thirds of transcripts in neuronal cells, with enrichment in genes involved in synaptic activities. PMID:25995189

  2. Cloning of noggin gene from hydra and analysis of its functional conservation using Xenopus laevis embryos.

    PubMed

    Chandramore, Kalpana; Ito, Yuzuro; Takahashi, Shuji; Asashima, Makoto; Ghaskadbi, Surendra

    2010-01-01

    Hydra, a member of phylum Cnidaria that arose early in evolution, is endowed with a defined axis, organized nervous system, and active behavior. It is a powerful model system for the elucidation of evolution of developmental mechanisms in animals. Here, we describe the identification and cloning of noggin-like gene from hydra. Noggin is a secreted protein involved at multiple stages of vertebrate embryonic development including neural induction and is known to exert its effects by inhibiting the bone morphogenetic protein (BMP)-signaling pathway. Sequence analysis revealed that hydra Noggin shows considerable similarity with its orthologs at the amino acid level. When microinjected in the early Xenopus embryos, hydra noggin mRNA induced a secondary axis in 100% of the injected embryos, demonstrating functional conservation of hydra noggin in vertebrates. This was further confirmed by the partial rescue of Xenopus embryos by hydra noggin mRNA from UV-induced ventralization. By using animal cap assay in Xenopus embryos, we demonstrate that these effects of hydra noggin in Xenopus embryos are because of inhibition of BMP signaling by Noggin. Our data indicate that BMP/Noggin antagonism predates the bilaterian divergence and is conserved during the evolution.

  3. A new, simple, green, and one-pot four-component synthesis of bare and poly(α,γ, L-glutamic acid)-capped silver nanoparticles

    PubMed Central

    Savanović, Igor; Uskoković, Vuk; Škapin, Srečo D.; Bračko, Ines; Jovanović, Uroš; Uskoković, Dragan

    2013-01-01

    A simple and green chemical method has been developed to synthesize stable bare and capped silver nanoparticles based on the reduction of silver ions by glucose and capping by poly(α,γ,L-glutamic acid) (PGA). The use of ammonia during synthesis was avoided. PGA has had a dual role in the synthesis and was used as a capping agent to make the silver nanoparticle more biocompatible and to protect the nanoparticles from agglomerating in the liquid medium. The synthesized PGA-capped silver nanoparticles in the size range 5–45 nm were stable over long periods of time, without signs of precipitation. Morphological examination has shown that the silver nanoparticles had a nearly spherical, multiply twinned structure. The effects of the reaction temperature and the reaction time during the synthesis were investigated too. The biocompatibility of the PGA-capped silver nano-particles is discussed in terms of in vitro toxicity with human intestinal Caco-2 cells. The samples were characterized by UV–Visible spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and zeta potential measurements. PMID:24062597

  4. Electronic properties and reactivity of Pt-doped carbon nanotubes.

    PubMed

    Tian, Wei Quan; Liu, Lei Vincent; Wang, Yan Alexander

    2006-08-14

    The structures of the (5,5) single-walled carbon nanotube (SWCNT) segments with hemispheric carbon cages capped at the ends (SWCNT rod) and the Pt-doped SWCNT rods have been studied within density functional theory. Our theoretical studies find that the hemispheric cages introduce localized states on the caps. The cap-Pt-doped SWCNT rods can be utilized as sensors because of the sensitivity of the doped Pt atom. The Pt-doped SWCNT rods can also be used as catalysts, where the doped Pt atom serves as the enhanced and localized active center on the SWCNT. The adsorptions of C(2)H(4) and H(2) on the Pt atom in the Pt-doped SWCNT rods reveal different adsorption characteristics. The adsorption of C(2)H(4) on the Pt atom in all of the three Pt-doped SWCNT rods studied (cap-end-doped, cap-doped, and wall-doped) is physisorption with the strongest interaction occurring in the middle of the sidewall of the SWCNT. On the other hand, the adsorption of H(2) on the Pt atom at the sidewall of the SWCNT is chemisorption resulting in the decomposition of H(2), and the adsorption of H(2) at the hemispheric caps is physisorption.

  5. Reduction and degradation of amyloid aggregates by a pulsed radio-frequency cold atmospheric plasma jet

    NASA Astrophysics Data System (ADS)

    Bayliss, D. L.; Walsh, J. L.; Shama, G.; Iza, F.; Kong, M. G.

    2009-11-01

    Surface-borne amyloid aggregates with mature fibrils are used as a non-infectious prion model to evaluate cold atmospheric plasmas (CAPs) as a prion inactivation strategy. Using a helium-oxygen CAP jet with pulsed radio-frequency (RF) excitation, amyloid aggregates deposited on freshly cleaved mica discs are reduced substantially leaving only a few spherical fragments of sub-micrometer sizes in areas directly treated by the CAP jet. Outside the light-emitting part of the CAP jet, plasma treatment results in a 'skeleton' of much reduced amyloid stacks with clear evidence of fibril fragmentation. Analysis of possible plasma species and the physical configuration of the jet-sample interaction suggests that the skeleton structures observed are unlikely to have arisen as a result of physical forces of detachment, but instead by progressive diffusion of oxidizing plasma species into porous amyloid aggregates. Composition of chemical bonds of this reduced amyloid sample is very different from that of intact amyloid aggregates. These suggest the possibility of on-site degradation by CAP treatment with little possibility of spreading contamination elsewhere , thus offering a new reaction chemistry route to protein infectivity control with desirable implications for the practical implementation of CAP-based sterilization systems.

  6. The Common Alerting Protocol (CAP) adaption in National Early Warning Alerting Systems of China

    NASA Astrophysics Data System (ADS)

    Li, Chao

    2017-04-01

    The Common Alerting Protocol (CAP) [1] is an XML-based data format for exchanging public warnings and emergencies between alerting technologies. In China, from local communities to entire nations, there was a patchwork of specialized hazard public alerting systems. And each system was often designed just for certain emergency situations and for certain communications media. Application took place in the NEWAS (National Early Warning Alerting Systems) [2]project where CAP serves as central message to integrate all kind of hazard situations, including the natural calamity, accident disaster, public health emergency , social safety etc. Officially operated on May 2015, NEWAS now has completed docking work with 14 departments including civil administration, safety supervision, forestry, land, water conservancy, earthquake, traffic, meteorology, agriculture, tourism, food and drug supervision, public security and oceanic administration. Thus, several items in CAP has been modified, redefined and extended according to the various grading standards and publishing strategies, as well as the characteristics of Chinese Geocoding. NEWAS successfully delivers information to end users through 4 levels (i.e. State, province, prefecture and county) structure and by various means. [1] CAP, http://www.oasis-emergency.org/cap [2] http://www.12379.cn/

  7. Structure across the northeastern margin of Flemish Cap, offshore Newfoundland from Erable multichannel seismic reflection profiles: evidence for a transtensional rifting environment

    NASA Astrophysics Data System (ADS)

    Welford, J. Kim; Hall, Jeremy; Sibuet, Jean-Claude; Srivastava, Shiri P.

    2010-11-01

    We present the results from processing and interpreting nine multichannel seismic reflection lines collected during the 1992 Erable experiment over the northeastern margin of Flemish Cap offshore Newfoundland. These lines, combined into five cross-sections, provide increased seismic coverage over this lightly probed section of the margin and reveal tectonically significant along-strike variations in the degree and compartmentalization of crustal thinning. Similar to the southeastern margins of Flemish Cap and the Grand Banks, a transitional zone of exhumed serpentinized mantle is interpreted between thinned continental and oceanic crust. The 25 km wide transitional zone bears similarities to the 120 km wide transitional zone interpreted as exhumed serpentinized mantle on the conjugate Irish Atlantic margin but the significant width difference is suggestive of an asymmetric conjugate pair. A 40-50 km wide zone of inferred strike-slip shearing is interpreted and observed to extend along most of the northeastern margin of Flemish Cap. Individual shear zones (SZs) may represent extensions of SZs and normal faults within the Orphan Basin providing further evidence for the rotation and displacement of Flemish Cap out of Orphan Basin. The asymmetry between the Flemish Cap and Irish conjugate pairs is likely due in large part to the rotation and displacement of Flemish Cap which resulted in the Flemish Cap margin displaying features of both a strike-slip margin and an extensional margin.

  8. Identification of antisense nucleic acid hybridization sites in mRNA molecules with self-quenching fluorescent reporter molecules

    PubMed Central

    Gifford, Lida K.; Opalinska, Joanna B.; Jordan, David; Pattanayak, Vikram; Greenham, Paul; Kalota, Anna; Robbins, Michelle; Vernovsky, Kathy; Rodriguez, Lesbeth C.; Do, Bao T.; Lu, Ponzy; Gewirtz, Alan M.

    2005-01-01

    We describe a physical mRNA mapping strategy employing fluorescent self-quenching reporter molecules (SQRMs) that facilitates the identification of mRNA sequence accessible for hybridization with antisense nucleic acids in vitro and in vivo, real time. SQRMs are 20–30 base oligodeoxynucleotides with 5–6 bp complementary ends to which a 5′ fluorophore and 3′ quenching group are attached. Alone, the SQRM complementary ends form a stem that holds the fluorophore and quencher in contact. When the SQRM forms base pairs with its target, the structure separates the fluorophore from the quencher. This event can be reported by fluorescence emission when the fluorophore is excited. The stem–loop of the SQRM suggests that SQRM be made to target natural stem–loop structures formed during mRNA synthesis. The general utility of this method is demonstrated by SQRM identification of targetable sequence within c-myb and bcl-6 mRNA. Corresponding antisense oligonucleotides reduce these gene products in cells. PMID:15718294

  9. Leiomodins: larger members of the tropomodulin (Tmod) gene family

    NASA Technical Reports Server (NTRS)

    Conley, C. A.; Fritz-Six, K. L.; Almenar-Queralt, A.; Fowler, V. M.

    2001-01-01

    The 64-kDa autoantigen D1 or 1D, first identified as a potential autoantigen in Graves' disease, is similar to the tropomodulin (Tmod) family of actin filament pointed end-capping proteins. A novel gene with significant similarity to the 64-kDa human autoantigen D1 has been cloned from both humans and mice, and the genomic sequences of both genes have been identified. These genes form a subfamily closely related to the Tmods and are here named the Leiomodins (Lmods). Both Lmod genes display a conserved intron-exon structure, as do three Tmod genes, but the intron-exon structure of the Lmods and the Tmods is divergent. mRNA expression analysis indicates that the gene formerly known as the 64-kDa autoantigen D1 is most highly expressed in a variety of human tissues that contain smooth muscle, earning it the name smooth muscle Leiomodin (SM-Lmod; HGMW-approved symbol LMOD1). Transcripts encoding the novel Lmod gene are present exclusively in fetal and adult heart and adult skeletal muscle, and it is here named cardiac Leiomodin (C-Lmod; HGMW-approved symbol LMOD2). Human C-Lmod is located near the hypertrophic cardiomyopathy locus CMH6 on human chromosome 7q3, potentially implicating it in this disease. Our data demonstrate that the Lmods are evolutionarily related and display tissue-specific patterns of expression distinct from, but overlapping with, the expression of Tmod isoforms. Copyright 2001 Academic Press.

  10. Ligand-mediated and tertiary interactions cooperatively stabilize the P1 region in the guanine-sensing riboswitch

    PubMed Central

    Hanke, Christian A.

    2017-01-01

    Riboswitches are genetic regulatory elements that control gene expression depending on ligand binding. The guanine-sensing riboswitch (Gsw) binds ligands at a three-way junction formed by paired regions P1, P2, and P3. Loops L2 and L3 cap the P2 and P3 helices and form tertiary interactions. Part of P1 belongs to the switching sequence dictating the fate of the mRNA. Previous studies revealed an intricate relationship between ligand binding and presence of the tertiary interactions, and between ligand binding and influence on the P1 region. However, no information is available on the interplay among these three main regions in Gsw. Here we show that stabilization of the L2-L3 region by tertiary interactions, and the ligand binding site by ligand binding, cooperatively influences the structural stability of terminal base pairs in the P1 region in the presence of Mg2+ ions. The results are based on molecular dynamics simulations with an aggregate simulation time of ~10 μs across multiple systems of the unbound state of the Gsw aptamer and a G37A/C61U mutant, and rigidity analyses. The results could explain why the three-way junction is a central structural element also in other riboswitches and how the cooperative effect could become contextual with respect to intracellular Mg2+ concentration. The results suggest that the transmission of allosteric information to P1 can be entropy-dominated. PMID:28640851

  11. Intracellular modifications induced by poliovirus reduce the requirement for structural motifs in the 5' noncoding region of the genome involved in internal initiation of protein synthesis.

    PubMed Central

    Percy, N; Belsham, G J; Brangwyn, J K; Sullivan, M; Stone, D M; Almond, J W

    1992-01-01

    A series of genetic deletions based partly on two RNA secondary structure models (M. A. Skinner, V. R. Racaniello, G. Dunn, J. Cooper, P. D. Minor, and J. W. Almond, J. Mol. Biol. 207:379-392, 1989; E. V. Pilipenko, V. M. Blinov, L. I. Romanova, A. N. Sinyakov, S. V. Maslova, and V. I. Agol, Virology 168:201-209, 1989) was made in the cDNA encoding the 5' noncoding region (5' NCR) of the poliovirus genome in order to study the sequences that direct the internal entry of ribosomes. The modified cDNAs were placed between two open reading frames in a single transcriptional unit and used to transfect cells in culture. Internal entry of ribosomes was detected by measuring translation from the second open reading frame in the bicistronic mRNA. When assayed alone, a large proportion of the poliovirus 5' NCR superstructure including several well-defined stem-loops was required for ribosome entry and efficient translation. However, in cells cotransfected with a complete infectious poliovirus cDNA, the requirement for the stem-loops in this large superstructure was reduced. The results suggest that virus infection modifies the cellular translational machinery, so that shortened forms of the 5' NCR are sufficient for cap-independent translation, and that the internal entry of ribosomes occurs by two distinct modes during the virus replication cycle. Images PMID:1310772

  12. Studying metal impurities (Mn2+, Cu2+, Fe3+) in calcium phosphates by electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Iskhakova, K.; Murzakhanov, F.; Mamin, G.; Putlyaev, V.; Klimashina, E.; Fadeeva, I.; Fomin, A.; Barinov, S.; Maltsev, A.; Bakhteev, S.; Yusupov, R.; Gafurov, M.; Orlinskii, S.

    2018-05-01

    Calcium phosphates (CaP) are exploited in many fields of science, including geology, chemistry, biology and medicine due to their abundance in the nature and presence in the living organism. Various analytical and biochemical methods are used for controlling their chemical content, structure, morphology, etc. Unfortunately, magnetic resonance techniques are usually not even considered as necessary tools for CaP inspection. Some aspects of application of the commercially realized electron paramagnetic resonance (EPR) approaches for characterization of CaP powders and ceramics (including the nanosized materails) such as hydroxyapatite and tricalcium phosphates of biogenic and synthetic origins containing intrinsic impurities or intentional dopants are demonstrated. The key features and advantages of the EPR techniques for CaP based materials characterization that could compliment the data obtained with the recognized analytical methods are pointed out.

  13. The ELAV RNA-stability factor HuR binds the 5′-untranslated region of the human IGF-IR transcript and differentially represses cap-dependent and IRES-mediated translation

    PubMed Central

    Meng, Zheng; King, Peter H.; Nabors, L. Burt; Jackson, Nateka L.; Chen, Ching-Yi; Emanuel, Peter D.; Blume, Scott W.

    2005-01-01

    The type I insulin-like growth factor receptor (IGF-IR) is an integral component in the control of cell proliferation, differentiation and apoptosis. The IGF-IR mRNA contains an extraordinarily long (1038 nt) 5′-untranslated region (5′-UTR), and we have characterized a diverse series of proteins interacting with this RNA sequence which may provide for intricate regulation of IGF-IR gene expression at the translational level. Here, we report the purification and identification of one of these IGF-IR 5′-UTR-binding proteins as HuR, using a novel RNA crosslinking/RNase elution strategy. Because HuR has been predominantly characterized as a 3′-UTR-binding protein, enhancing mRNA stability and generally increasing gene expression, we sought to determine whether HuR might serve a different function in the context of its binding the IGF-IR 5′-UTR. We found that HuR consistently repressed translation initiation through the IGF-IR 5′-UTR. The inhibition of translation by HuR was concentration dependent, and could be reversed in trans by addition of a fragment of the IGF-IR 5′-UTR containing the HuR binding sites as a specific competitor, or abrogated by deletion of the third RNA recognition motif of HuR. We determined that HuR repressed translation initiation through the IGF-IR 5′-UTR in cells as well, and that siRNA knockdown of HuR markedly increased IGF-IR protein levels. Interestingly, we also found that HuR potently inhibited IGF-IR translation mediated through internal ribosome entry. Kinetic assays were performed to investigate the mechanism of translation repression by HuR and the dynamic interplay between HuR and the translation apparatus. We found that HuR, occupying a cap-distal position, significantly delayed translation initiation mediated by cap-dependent scanning, but was eventually displaced from its binding site, directly or indirectly, as a consequence of ribosomal scanning. However, HuR perpetually blocked the activity of the IGF-IR IRES, apparently arresting the IRES-associated translation pre-initiation complex in an inactive state. This function of HuR as a 5′-UTR-binding protein and dual-purpose translation repressor may be critical for the precise regulation of IGF-IR expression essential to normal cellular homeostasis. PMID:15914670

  14. The uteroglobin fold.

    PubMed

    Callebaut, I; Poupon, A; Bally, R; Demaret, J P; Housset, D; Delettré, J; Hossenlopp, P; Mornon, J P

    2000-01-01

    Uteroglobin (UTG) forms a fascinating homodimeric structure that binds small- to medium-sized ligands through an internal hydrophobic cavity, located at the interface between the two monomers. Previous studies have shown that UTG fold is not limited to the UTG/CC10 family, whose sequence/structure relationships are highlighted here, but can be extended to the cap domain of Xanthobacter autotrophicus haloalkane dehalogenase. We show here that UTG fold is adopted by several other cap domains within the alpha/beta hydrolase family, making it a well-suited "geode" structure allowing it to sequester various hydrophobic molecules. Additionally, some data about a new crystal form of oxidized rabbit UTG are presented, completing previous structural studies, as well as results from molecular dynamics, suggesting an alternative way for the ligand to reach the internal cavity.

  15. Water-Solubilized, Cap-Stabilized, Helical Polyalanines: Calibration Standards for NMR and CD Analyses

    PubMed Central

    Heitmann, Björn; Job, Gabriel E.; Kennedy, Robert J.; Walker, Sharon M.; Kemp, Daniel S.

    2006-01-01

    NMR and CD studies are reported for two length series of solubilized, spaced, highly helical polyalanines that are N-capped by the optimal helix stabilizer βAsp-Hel and C-capped by β-aminoalanine beta and that are studied in water at 2 °C, pH 1–8. NMR analysis yields a structural characterization of the peptide AcβAspHelAla8betaNH2 and selected members of one βAspHelAlanbeta series. At pH > 4.5 the βAspHel cap provides a preorganized triad of carboxylate anion and two amide residues that is complementary to the helical polyalanine N-terminus. The C-terminal β-aminoalanine assumes a helix-stabilizing conformation consistent with literature precedents. H(N)CO NMR experiments applied to capped, uniformly 13C- and 15N-labeled Ala8 and Ala12 peptides define Alan hydrogen bonding signatures as α-helical without detectable 310 character. Relative NH→ND exchange rates yield site protection factors PFi that define uniquely high fractional helicities FH for the peptide Alan regions. These Alan calibration series, studied in water and lacking helix-stabilizing tertiary structure, yield the first 13C NMR chemical shifts, 3JHNHα coupling constants, and CD ellipticities [θMolar]λ,n characteristic of a fully helical alanine within an Alan context. CD data are used to assign parameters X and [θ]λ,∞, required for rigorous calculation of FH values from CD ellipticities. PMID:15701003

  16. Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression through suppression of p300 stabilization and NFκB/c-Jun activation in breast cancer MDA-MB-231 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ying-Jung; Lee, Yuan-Chin; Huang, Chia-Hui

    Triple-negative breast cancers (TNBCs) are highly invasive and have a higher rate of distant metastasis. Matrix metalloproteinase-9 (MMP-9) plays a crucial role in EGF/EGFR-mediated malignant progression and metastasis of TNBCs. Various studies have revealed that treatment with gallic acid down-regulates MMP-9 expression in cancer cells, and that conjugation of phytochemical compounds with gold nanoparticles (AuNPs) increases the anti-tumor activity of the phytochemical compounds. Thus, the effect of gallic acid-capped AuNPs (GA-AuNPs) on MMP-9 expression in EGF-treated TNBC MDA-MB-231 cells was analyzed in the present study. The so-called green synthesis of AuNPs by means of gallic acid was performed at pHmore » 10, and the resulting GA-AuNPs had spherical shape with an average diameter of approximately 50 nm. GA-AuNPs notably suppressed migration and invasion of EGF-treated cells, and inhibited EGF-induced MMP-9 up-regulation. GA-AuNPs abrogated EGF-induced Akt/p65 and ERK/c-Jun phosphorylation, leading to down-regulation of MMP-9 mRNA and protein expression in EGF-treated cells. Meanwhile, EGF-induced p300 stabilization was found to be involved in MMP-9 expression, whereas GA-AuNPs inhibited the EGF-promoted stability of the p300 protein. Although GA-AuNPs and gallic acid suppressed EGF-induced MMP-9 up-regulation via the same signaling pathway, the effective concentration of gallic acid was approximately 100-fold higher than that of GA-AuNPs for inhibition of MMP-9 expression in EGF-treated cells to a similar extent. Collectively, our data indicate that, in comparison with gallic acid, GA-AuNPs have a superior ability to inhibit EGF/EGFR-mediated MMP-9 expression in TNBC MDA-MB-231 cells. Our findings also point to a way to improve the anti-tumor activity of gallic acid. - Highlights: • Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression. • EGF-induced MMP-9 expression via p300 stabilization and NFκB/c-Jun activation. • Gallic acid-capped gold nanoparticles inhibit EGF-modulated p300 stabilization. • Gallic acid-capped gold nanoparticles abrogate EGF-induced NFκB/c-Jun activation.« less

  17. A complex structure in the mRNA of Tf1 is recognized and cleaved to generate the primer of reverse transcription.

    PubMed

    Lin, J H; Levin, H L

    1997-01-15

    All retroviruses and LTR-containing retrotransposons are thought to require specific tRNA molecules to serve as primers of reverse transcription. An exception is the LTR-containing retrotransposon Tf1, isolated from Schizosaccharomyces pombe. Instead of requiring a tRNA, the reverse transcriptase of Tf1 uses the first 11 bases of the Tf1 transcript as the primer for reverse transcription. The primer is generated by a cleavage that occurs between bases 11 and 12 of the Tf1 mRNA. Sequence analysis of the 5' untranslated region of the Tf1 mRNA resulted in the identification of a region with the potential to form an RNA structure of 89 bases that included the primer binding site and the first 11 bases of the Tf1 mRNA. Systematic mutagenesis of this region revealed 34 single-point mutants in the structure that resulted in reduced transposition activity. The defects in transposition correlated with reduced level of Tf1 reverse transcripts as determined by DNA blot analysis. Evidence that the RNA structure did form in vivo included the result that strains with second site mutations that restored complementarity resulted in increased levels of reverse transcripts and Tf1 transposition. The majority of the mutants defective for reverse transcription were unable to cleave the Tf1 mRNA between bases 11 and 12. These data indicate that formation of an extensive RNA structure was required for the cleavage reaction that generated the primer for Tf1 reverse transcription.

  18. Impacts of forest harvest on active carbon and microbial properties of a volcanic ash cap soil in northern Idaho

    Treesearch

    Deborah S. Page-Dumroese; Matt D. Busse; Steven T. Overby; Brian D. Gardner; Joanne M. Tirocke

    2015-01-01

    Soil quality assessments are essential for determining impacts on belowground microbial community structure and function. We evaluated the suitability of active carbon (C), a rapid field test, as an indicator of soil biological quality in five paired forest stands (clear cut harvested 40 years prior and unharvested) growing on volcanic ash-cap soils in northern Idaho....

  19. Chemical and structural characterization of a model Post-Termination Complex (PoTC) for the ribosome recycling reaction: Evidence for the release of the mRNA by RRF and EF-G

    PubMed Central

    Iwakura, Nobuhiro; Yokoyama, Takeshi; Quaglia, Fabio; Mitsuoka, Kaoru; Mio, Kazuhiro; Shigematsu, Hideki; Shirouzu, Mikako; Kaji, Akira; Kaji, Hideko

    2017-01-01

    A model Post-Termination Complex (PoTC) used for the discovery of Ribosome Recycling Factor (RRF) was purified and characterized by cryo-electron microscopic analysis and biochemical methods. We established that the model PoTC has mostly one tRNA, at the P/E or P/P position, together with one mRNA. The structural studies were supported by the biochemical measurement of bound tRNA and mRNA. Using this substrate, we establish that the release of tRNA, release of mRNA and splitting of ribosomal subunits occur during the recycling reaction. Order of these events is tRNA release first followed by mRNA release and splitting almost simultaneously. Moreover, we demonstrate that IF3 is not involved in any of the recycling reactions but simply prevents the re-association of split ribosomal subunits. Our finding demonstrates that the important function of RRF includes the release of mRNA, which is often missed by the use of a short ORF with the Shine-Dalgarno sequence near the termination site. PMID:28542628

  20. Theoretical study for heterojunction surface of NEA GaN photocathode dispensed with Cs activation

    NASA Astrophysics Data System (ADS)

    Xia, Sihao; Liu, Lei; Wang, Honggang; Wang, Meishan; Kong, Yike

    2016-09-01

    For the disadvantages of conventional negative electron affinity (NEA) GaN photocathodes activated by Cs or Cs/O, new-type NEA GaN photocathodes with heterojunction surface dispensed with Cs activation are investigated based on first-principle study with density functional theory. Through the growth of an ultrathin n-type GaN cap layer on p-type GaN emission layer, a p-n heterojunction is formed on the surface. According to the calculation results, it is found that Si atoms tend to replace Ga atoms to result in an n-type doped cap layer which contributes to the decreasing of work function. After the growth of n-type GaN cap layer, the atom structure near the p-type emission layer is changed while that away from the surface has no obvious variations. By analyzing the E-Mulliken charge distribution of emission surface with and without cap layer, it is found that the positive charge of Ga and Mg atoms in the emission layer decrease caused by the cap layer, while the negative charge of N atom increases. The conduction band moves downwards after the growth of cap layer. Si atom produces donor levels around the valence band maximum. The absorption coefficient of GaN emission layer decreases and the reflectivity increases caused by n-type GaN cap layer.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauleau, Mathieu; Jacewicz, Agata; Shuman, Stewart

    DNA 3' pp 5'G caps synthesized by the 3'-PO 4/5'-OH ligase RtcB have a strong impact on enzymatic reactions at DNA 3'-OH ends. Aprataxin, an enzyme that repairs A5'pp5'DNA ends formed during abortive ligation by classic 3'-OH/5'-PO 4 ligases, is also a DNA 3' de-capping enzyme, converting DNAppG to DNA 3'p and GMP. By taking advantage of RtcB's ability to utilize certain GTP analogs to synthesize DNAppN caps, we show that aprataxin hydrolyzes inosine and 6-O-methylguanosine caps, but is not adept at removing a deoxyguanosine cap. We report a 1.5 Å crystal structure of aprataxin in a complex with GMP,more » which reveals that: (i) GMP binds at the same position and in the same anti nucleoside conformation as AMP; and (ii) aprataxin makes more extensive nucleobase contacts with guanine than with adenine, via a hydrogen bonding network to the guanine O6, N1, N2 base edge. Alanine mutations of catalytic residues His147 and His149 abolish DNAppG de-capping activity, suggesting that the 3' de-guanylylation and 5' de-adenylylation reactions follow the same pathway of nucleotidyl transfer through a covalent aprataxin-(His147)–NMP intermediate. Alanine mutation of Asp63, which coordinates the guanosine ribose hydroxyls, impairs DNAppG de-capping.« less

  2. Polyaspartic Acid Concentration Controls the Rate of Calcium Phosphate Nanorod Formation in High Concentration Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krogstad, Daniel V.; Wang, Dongbo; Lin-Gibson, Sheng

    Polyelectrolytes are known to greatly affect calcium phosphate (CaP) mineralization. The reaction kinetics as well as the CaP phase, morphology and aggregation state depend on the relative concentrations of the polyelectrolyte and the inorganic ions in a complex, nonlinear manner. This study examines the structural evolution and kinetics of polyaspartic acid (pAsp) directed CaP mineralization at high concentrations of polyelectrolytes, calcium, and total phosphate (19–30 mg/mL pAsp, 50–100 mM Ca2+, Ca/P = 2). Using a novel combination of characterization techniques including cryogenic transmission electron microscopy (cryo-TEM), spectrophotometry, X-ray total scattering pair distribution function analysis, and attenuated total reflectance Fourier transformmore » infrared spectroscopy (ATR-FTIR), it was determined that the CaP mineralization occurred over four transition steps. The steps include the formation of aggregates of pAsp stabilized CaP spherical nanoparticles (sNP), crystallization of sNP, oriented attachment of the sNP into nanorods, and further crystallization of the nanorods. The intermediate aggregate sizes and the reaction kinetics were found to be highly polymer concentration dependent while the sizes of the particles were not concentration dependent. This study demonstrates the complex role of pAsp in controlling the mechanism as well as the kinetics of CaP mineralization.« less

  3. Gill structural integrity changes in fish deficient or excessive in dietary isoleucine: Towards the modulation of tight junction protein, inflammation, apoptosis and antioxidant defense via NF-κB, TOR and Nrf2 signaling pathways.

    PubMed

    Feng, Lin; Gan, Lu; Jiang, Wei-Dan; Wu, Pei; Liu, Yang; Jiang, Jun; Tang, Ling; Kuang, Sheng-Yao; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu

    2017-04-01

    This study firstly aimed to test the impact of dietary isoleucine (Ile) on tight junction protein, inflammation, apoptosis, antioxidant defense and related signaling molecule gene expression in the gill of fish. Young grass carp (Ctenopharyngodon idella) (weighing 256.8 ± 3.5 g) were fed six diets containing graded levels of Ile, namely, 3.8, 6.6, 9.3, 12.5, 15.2 and 18.5 g/kg diet for 8 weeks. The results firstly revealed that Ile deficiency down-regulated the mRNA expressions of claudin-3, claudin-b, claudin-c, occludin and zonula occludens-1 (ZO-1) and up-regulated the mRNA expression of claudin-12, which led to the intercellular structure damage of fish gill. These effects were partially ascribed to the up-regulation of pro-inflammatory cytokines [interleukin 1β (IL-1β), interleukin 8 (IL-8) and tumor necrosis factor-α (TNF-α)] mRNA expressions that referring to up-regulated nuclear factor κB P65 (NF-κB P65) mRNA expression and down-regulated inhibitor factor κBα (IκBα) mRNA expression, and the down-regulation of anti-inflammatory cytokines [interleukin 10 (IL-10) and transforming growth factor β1 (TGF-β1)] mRNA expressions that referring to the down-regulated TOR and S6K1 mRNA expression. Interestingly, no change in claudin 15 mRNA level was observed among every treatment. At the same time, the results firstly indicated that Ile deficiency also resulted in the cellular structure damage of fish gill: (1) DNA fragmentation partially due to the up-regulation of caspase-3, caspase-8 and caspase-9 mRNA expression; (2) increase in protein carbonyl (PC), malondialdehyde (MDA) and ROS contents, which may be partially attributed to the impaired antioxidant defense [indicated by decreased glutathione (GSH) level and depressed anti-superoxide anion (ASA), anti-hydroxyl radical (a-HR), copper/zinc superoxide dismutase (Cu/Zn-SOD), catalase (CAT) and glutathione peroxidase (GPx) activities] that referring to the down-regulation of corresponding antioxidant enzyme mRNA expressions and the related signaling molecules Nrf2 mRNA expression. Ile excess caused similar negative effects that observed in Ile-deficient group, whereas these negative effects were reversed with appropriate Ile supplementation. In conclusion, our results indicated that Ile deficiency or excess disrupted the structural integrity of fish gill, partially due to the trigger of apoptosis, the impairment of antioxidant defense, and the regulation of tight junction protein, inflammatory cytokines, apoptosis-related, antioxidant enzymes and related signaling molecules mRNA expressions in the fish gill. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Structure and function of flavivirus NS5 methyltransferase.

    PubMed

    Zhou, Yangsheng; Ray, Debashish; Zhao, Yiwei; Dong, Hongping; Ren, Suping; Li, Zhong; Guo, Yi; Bernard, Kristen A; Shi, Pei-Yong; Li, Hongmin

    2007-04-01

    The plus-strand RNA genome of flavivirus contains a 5' terminal cap 1 structure (m7GpppAmG). The flaviviruses encode one methyltransferase, located at the N-terminal portion of the NS5 protein, to catalyze both guanine N-7 and ribose 2'-OH methylations during viral cap formation. Representative flavivirus methyltransferases from dengue, yellow fever, and West Nile virus (WNV) sequentially generate GpppA-->m7GpppA-->m7GpppAm. The 2'-O methylation can be uncoupled from the N-7 methylation, since m7GpppA-RNA can be readily methylated to m7GpppAm-RNA. Despite exhibiting two distinct methylation activities, the crystal structure of WNV methyltransferase at 2.8 A resolution showed a single binding site for S-adenosyl-L-methionine (SAM), the methyl donor. Therefore, substrate GpppA-RNA should be repositioned to accept the N-7 and 2'-O methyl groups from SAM during the sequential reactions. Electrostatic analysis of the WNV methyltransferase structure showed that, adjacent to the SAM-binding pocket, is a highly positively charged surface that could serve as an RNA binding site during cap methylations. Biochemical and mutagenesis analyses show that the N-7 and 2'-O cap methylations require distinct buffer conditions and different side chains within the K61-D146-K182-E218 motif, suggesting that the two reactions use different mechanisms. In the context of complete virus, defects in both methylations are lethal to WNV; however, viruses defective solely in 2'-O methylation are attenuated and can protect mice from later wild-type WNV challenge. The results demonstrate that the N-7 methylation activity is essential for the WNV life cycle and, thus, methyltransferase represents a novel target for flavivirus therapy.

  5. Optimized capping layers for EUV multilayers

    DOEpatents

    Bajt, Sasa [Livermore, CA; Folta, James A [Livermore, CA; Spiller, Eberhard A [Livermore, CA

    2004-08-24

    A new capping multilayer structure for EUV-reflective Mo/Si multilayers consists of two layers: A top layer that protects the multilayer structure from the environment and a bottom layer that acts as a diffusion barrier between the top layer and the structure beneath. One embodiment combines a first layer of Ru with a second layer of B.sub.4 C. Another embodiment combines a first layer of Ru with a second layer of Mo. These embodiments have the additional advantage that the reflectivity is also enhanced. Ru has the best oxidation resistance of all materials investigated so far. B.sub.4 C is an excellent barrier against silicide formation while the silicide layer formed at the Si boundary is well controlled.

  6. Sequence and structure-specific elements of HERG mRNA determine channel synthesis and trafficking efficiency

    PubMed Central

    Sroubek, Jakub; Krishnan, Yamini; McDonald, Thomas V.

    2013-01-01

    Human ether-á-gogo-related gene (HERG) encodes a potassium channel that is highly susceptible to deleterious mutations resulting in susceptibility to fatal cardiac arrhythmias. Most mutations adversely affect HERG channel assembly and trafficking. Why the channel is so vulnerable to missense mutations is not well understood. Since nothing is known of how mRNA structural elements factor in channel processing, we synthesized a codon-modified HERG cDNA (HERG-CM) where the codons were synonymously changed to reduce GC content, secondary structure, and rare codon usage. HERG-CM produced typical IKr-like currents; however, channel synthesis and processing were markedly different. Translation efficiency was reduced for HERG-CM, as determined by heterologous expression, in vitro translation, and polysomal profiling. Trafficking efficiency to the cell surface was greatly enhanced, as assayed by immunofluorescence, subcellular fractionation, and surface labeling. Chimeras of HERG-NT/CM indicated that trafficking efficiency was largely dependent on 5′ sequences, while translation efficiency involved multiple areas. These results suggest that HERG translation and trafficking rates are independently governed by noncoding information in various regions of the mRNA molecule. Noncoding information embedded within the mRNA may play a role in the pathogenesis of hereditary arrhythmia syndromes and could provide an avenue for targeted therapeutics.—Sroubek, J., Krishnan, Y., McDonald, T V. Sequence- and structure-specific elements of HERG mRNA determine channel synthesis and trafficking efficiency. PMID:23608144

  7. Asparagine-linked oligosaccharides on lutropin, follitropin, and thyrotropin: distributions of sulfated and sialylated oligosaccharides on bovine, ovine, and human pituitary glycoprotein hormones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, E.D.; Baenziger, J.U.

    1988-01-05

    The asparagine-linked oligosaccharides on the pituitary glycoprotein hormones lutropin (LH), follitropin (FSH), and thyrotropin (TSH) consist of a heterogeneous array of neutral, sulfated, sialylated, and sulfated/sialylated structures. In this study, the authors determined the relative quantities of the various asparagine-linked oligosaccharides on LH, FSH, and TSH from these three animal species. The proportions of sulfated versus sialylated oligosaccharides varied markedly among the different hormones. Both hormone- and animal species-specific differences in the types and distributions of sulfated, sialylated, and sulfated/sialylated structures were evident. In particular, LH and FSH, which are synthesized in the same pituitary cell and bear ..cap alpha..-subunitsmore » with the identical amino acid sequence, contained significantly different distributions of sulfated and sialylated oligosaccharides. For all three animal species, the ratio of sialylated to sulfated oligosaccharides differed by >10-fold for LH and FSH, with sulfated structures dominating on LH and sialylated structures on FSH. Sialylated oligosaccharides were also heterogeneous with respect to sialic acid linkage (..cap alpha..2,3 versus ..cap alpha..2,6). The differences in oligosaccharide structures among the various pituitary glycoprotein hormones as well as among the various glycosylation sites within a single hormone support the hypothesis that glycosylation may serve important functional roles in the expression and/or regulation of hormone bioactivity.« less

  8. Effects of captopril, telmisartan and bardoxolone methyl (CDDO-Me) in ischemia-reperfusion-induced acute kidney injury in rats: an experimental comparative study.

    PubMed

    Kocak, Cengiz; Kocak, Fatma Emel; Akcilar, Raziye; Bayat, Zeynep; Aras, Bekir; Metineren, Mehmet Huseyin; Yucel, Mehmet; Simsek, Hasan

    2016-02-01

    Renal ischemia-reperfusion (IR) injury is one of the most common causes of acute kidney injury. This study investigated the effects of captopril (CAP), telmisartan (TEL) and bardoxolone methyl (BM) in animals with renal IR injury. Adult male Wistar-Albino rats were divided into six groups: control, vehicle, IR, IR with CAP, IR with TEL and IR with BM. Before IR was induced, drugs were administered by oral gavage. After a 60-min ischemia and a 120-min reperfusion period, bilateral nephrectomies were performed. Serum urea, creatinine, neutrophil gelatinase-associated lipocalin (NGAL) levels, tissue total oxidant status (TOS), total antioxidant status (TAS), total thiol (TT), asymmetric dimethylarginine (ADMA) levels, superoxide dismutase (SOD) activity and glutathione peroxidase (GSH-Px) activity were measured. Tissue mRNA expression levels of peroxisome proliferator-activated receptor-ɣ (PPAR-ɣ), nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were analyzed. In addition, renal tissues were evaluated histopathologically and immunohistochemically. All tested drugs reduced renal damage, apoptosis, urea, creatinine, NGAL, TOS, nitric oxide (NO) and ADMA levels, NF-κB, inducible nitric oxide synthase (iNOS) and endothelin-1 (ET-1) expressions (P < 0.001). All tested drugs increased SOD activity, GSH-Px activity, TAS levels, TT levels, endothelial nitric oxide synthase (eNOS) expression, dimethylarginine dimethylaminohydrolases (DDAHs) expression, Nrf2 expression and PPAR-ɣ expression (P < 0.001, P < 0.003). These results suggest that CAP, TEL and BM pretreatment could reduce renal IR injury via anti-inflammatory, antioxidant and anti-apoptotic effects. © 2016 John Wiley & Sons Australia, Ltd.

  9. Size-confined fixed-composition and composition-dependent engineered band gap alloying induces different internal structures in L-cysteine-capped alloyed quaternary CdZnTeS quantum dots

    NASA Astrophysics Data System (ADS)

    Adegoke, Oluwasesan; Park, Enoch Y.

    2016-06-01

    The development of alloyed quantum dot (QD) nanocrystals with attractive optical properties for a wide array of chemical and biological applications is a growing research field. In this work, size-tunable engineered band gap composition-dependent alloying and fixed-composition alloying were employed to fabricate new L-cysteine-capped alloyed quaternary CdZnTeS QDs exhibiting different internal structures. Lattice parameters simulated based on powder X-ray diffraction (PXRD) revealed the internal structure of the composition-dependent alloyed CdxZnyTeS QDs to have a gradient nature, whereas the fixed-composition alloyed QDs exhibited a homogenous internal structure. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis confirmed the size-confined nature and monodispersity of the alloyed nanocrystals. The zeta potential values were within the accepted range of colloidal stability. Circular dichroism (CD) analysis showed that the surface-capped L-cysteine ligand induced electronic and conformational chiroptical changes in the alloyed nanocrystals. The photoluminescence (PL) quantum yield (QY) values of the gradient alloyed QDs were 27-61%, whereas for the homogenous alloyed QDs, the PL QY values were spectacularly high (72-93%). Our work demonstrates that engineered fixed alloying produces homogenous QD nanocrystals with higher PL QY than composition-dependent alloying.

  10. Development and tests on OREX vehicle thermal structure system

    NASA Astrophysics Data System (ADS)

    Yoshinaka, Toshinari; Morino, Yoshiki

    1992-08-01

    An overview of the thermal system structure development and their tests for Orbital Re-entry Experiment (OREX) vehicle, being developed as a part of H-2 Orbiting Plane (HOPE) development, is presented. The results of study on the OREX vehicle thermal structure system and concept of the system study are shown. The results of HOPE thermal structure system research were reflected to OREX in employing polyacrylonitrile tissues with conversion coating for the nose cap, Carbon-Thermal Protection System (TPS), and ceramic tile TPS for the structure. Test plans were established for material characteristics and design verifications, and flight validation for C/C (Carbon/Carbon Composite) nose cap and TPS, and gap filler, arc wind tunnel, heat insulation, and adhesion quality verification tests. Environment resistance of the C/C nose cone, C/C TPS, and ceramic tile TPS were verified and prospects of their manufacturing were obtained.

  11. Design, synthesis, and evaluation of cyclic amide/imide-bearing hydroxamic acid derivatives as class-selective histone deacetylase (HDAC) inhibitors.

    PubMed

    Shinji, Chihiro; Maeda, Satoko; Imai, Keisuke; Yoshida, Minoru; Hashimoto, Yuichi; Miyachi, Hiroyuki

    2006-11-15

    A series of hydroxamic acid derivatives bearing a cyclic amide/imide group as a linker and/or cap structure, prepared during our structural development studies based on thalidomide, showed class-selective potent histone deacetylase (HDAC)-inhibitory activity. Structure-activity relationship studies indicated that the steric character of the substituent introduced at the cyclic amide/imide nitrogen atom, the presence of the amide/imide carbonyl group, the hydroxamic acid structure, the shape of the linking group, and the distance between the zinc-binding hydroxamic acid group and the cap structure are all important for HDAC-inhibitory activity and class selectivity. A representative compound (30w) showed potent p21 promoter activity, comparable with that of trichostatin A (TSA), and its cytostatic activity against cells of the human prostate cell line LNCaP was more potent than that of the well-known HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA).

  12. Biodegradable/biocompatible coated metal implants for orthopedic applications.

    PubMed

    Saleh, Mohamed M; Touny, A H; Al-Omair, Mohammed A; Saleh, M M

    2016-05-12

    Biocompatible metals have been suggested as revolutionary biomaterials for bone-grafting therapies. Although metals and their alloys are widely and successfully used in producing biomedical implants due to their good mechanical properties and corrosion resistance, they have a lack in bioactivity. Therefore coating of the metal surface with calcium phosphates (CaP) is a benign way to achieve well bioactivity and get controlled corrosion properties. The biocompatibility and bioactivity calcium phosphates (CaP) in bone growth were guided them to biomedical treatment of bone defects and fractures. Many techniques have been used for fabrication of CaP coatings on metal substrates such as magnesium and titanium. The present review will focus on the synthesis of CaP and their relative forms using different techniques especially electrochemical techniques. The latter has always been known of its unique way of optimizing the process parameters that led to a control in the structure and characteristics of the produced materials.

  13. The effect of PVP on morphology, optical properties and electron paramagnetic resonance of Zn0.5Co0.5Fe2-xPrxO4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Bitar, Z.; El-Said Bakeer, D.; Awad, R.

    2017-07-01

    Zinc Cobalt nano ferrite doped with Praseodymium, Zn0.5Co0.5Fe2-xPrxO4 (0 ≤ x ≤ 0.2), were prepared by co-precipitation method from an aqueous solution containing metal chlorides and two concentrations of poly(vinylpyrrolidone) (PVP) 0 and 30g/L as capping agent. The samples were characterized using X-ray powder diffraction (XRD), Transmission Electron Microscope (TEM), UV-visible optical spectroscopy, Fourier transform infrared (FTIR) and Electron Paramagnetic Resonance (EPR). XRD results display the formation of cubic spinel structure with space group Fd3m and the lattice parameter (a) is slightly decreased for PVP capping samples. The particle size that determined by TEM, decreases for PVP capping samples. The optical band energy Eg increases for PVP capping samples, confirming the variation of energy gap with the particle size. The FTIR results indicate that the metal oxide bands were shifted for the PVP capping samples. EPR data shows that the PVP addition increases the magnetic resonance field and hence decreases the g-factor.

  14. Interactions between citrate-capped gold nanoparticles and polymersomes

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaohan; Lopez, Anand; Liu, Yibo; Wang, Feng; Liu, Juewen

    2018-06-01

    Polymersomes are vesicles formed by self-assembled amphiphilic block copolymers. Polymersomes generally have better stability than liposomes and they have been widely used in making drug delivery vehicles. In this work, the interaction between two types of polymersomes and citrate-capped gold nanoparticles (AuNPs) was studied. The following two polymers: poly(2-methyloxazoline-b-dimethylsiloxane-b-2-methyloxazoline) (called P1) and poly(butadiene-b-ethylene oxide) (called P2) were respectively used to form polymersomes. While P1 only formed spherical vesicle structures, worm-like structures were also observed with P2 as indicated by cryo-TEM. Both polymersomes adsorbed AuNPs leading to their subsequent aggregation. A lower polymersome concentration produced more obvious aggregation of AuNPs as judged from the color change. Capping AuNPs with glutathione inhibited adsorption of AuNPs. Considering the surface property of the polymers, the interaction with AuNPs was likely due to van der Waals forces. P1 polymersomes encapsulated calcein stably and AuNPs did not induce leakage. The P1/AuNP complex was more efficiently internalized by HeLa cells compared to free P1 polymersomes, further indicating a stable adsorption under cell culture conditions. In summary, this work indicates citrate-capped AuNPs form stable adsorption complexes with these polymersomes and their interactions have been explored.

  15. Translational recognition of the 5'-terminal 7-methylguanosine of globin messenger RNA as a function of ionic strength.

    PubMed

    Chu, L Y; Rhoads, R E

    1978-06-13

    The translation of rabbit globin mRNA in cell-free systems derived from either wheat germ or rabbit reticulocyte was studied in the presence of various analogues of the methylated 5' terminus (cap) as a function of ionic strength. Inhibition by these analogues was strongly enhanced by increasing concentrations of KCl, K(OAc), Na(OAc), or NH4(OAc). At appropriate concentrations of K(OAc), both cell-free systems were equally sensitive to inhibition by m7GTP. At 50 mM K(OAc), the reticulocyte system was not sensitive to m7GMP or m7GTP, but at higher concentrations up to 200 mM K(OAc), both nucleotides caused strong inhibition. The compound in m7G5'ppp5'Am was inhibitory at all concentrations of K(OAc) ranging from 50 to 200 mM, although more strongly so at the higher concentrations. Over the same range of nucleotide concentrations, the compounds GMP, GTP, and G5'ppp5'Am were not inhibitors. The mobility on sodium dodecyl sulfate-polyacrylamide electrophoresis of the translation product was that of globin at all K(OAc) concentrations in the presence of m7GTP. Globin mRNA from which the terminal m7GTP group had been removed by chemical treatment (periodate-cyclohexylamine-alkaline phosphatase) or enzymatic treatment (tobacco acid pyrophosphatase-alkaline phosphatase) was translated less efficiently than untreated globin mRNA at higher K(OAc) concentrations, but retained appreciable activity at low K(OAc) concentrations.

  16. Impact of GaN cap on charges in Al₂O₃/(GaN/)AlGaN/GaN metal-oxide-semiconductor heterostructures analyzed by means of capacitance measurements and simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ťapajna, M., E-mail: milan.tapajna@savba.sk; Jurkovič, M.; Válik, L.

    2014-09-14

    Oxide/semiconductor interface trap density (D{sub it}) and net charge of Al₂O₃/(GaN)/AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistor (MOS-HEMT) structures with and without GaN cap were comparatively analyzed using comprehensive capacitance measurements and simulations. D{sub it} distribution was determined in full band gap of the barrier using combination of three complementary capacitance techniques. A remarkably higher D{sub it} (∼5–8 × 10¹²eV⁻¹ cm⁻²) was found at trap energies ranging from E C-0.5 to 1 eV for structure with GaN cap compared to that (D{sub it} ∼ 2–3 × 10¹²eV⁻¹ cm⁻²) where the GaN cap was selectively etched away. D{sub it} distributions were then used for simulation of capacitance-voltage characteristics. A good agreement betweenmore » experimental and simulated capacitance-voltage characteristics affected by interface traps suggests (i) that very high D{sub it} (>10¹³eV⁻¹ cm⁻²) close to the barrier conduction band edge hampers accumulation of free electron in the barrier layer and (ii) the higher D{sub it} centered about E C-0.6 eV can solely account for the increased C-V hysteresis observed for MOS-HEMT structure with GaN cap. Analysis of the threshold voltage dependence on Al₂O₃ thickness for both MOS-HEMT structures suggests that (i) positive charge, which compensates the surface polarization, is not necessarily formed during the growth of III-N heterostructure, and (ii) its density is similar to the total surface polarization charge of the GaN/AlGaN barrier, rather than surface polarization of the top GaN layer only. Some constraints for the positive surface compensating charge are discussed.« less

  17. Mesenchymal Stem Cells Stabilize Atherosclerotic Vulnerable Plaque by Anti-Inflammatory Properties

    PubMed Central

    Wang, Shuang-shuang; Hu, Si-wang; Zhang, Qing-hua; Xia, Ai-xiang

    2015-01-01

    Background and objectives Formation and progression of atherosclerotic vulnerable plaque (VP) is the primary cause of many cardio-cerebrovascular diseases such as acute coronary syndrome and stroke. It has been reported that bone marrow mesenchymal stem cells (MSC) exhibit protective effects against many kinds of diseases including myocardial infarction. Here, we examined the effects of intravenous MSC infusion on a VP model and provide novel evidence of its influence as a therapy in this animal disease model. Subjects and methods Thirty healthy male New Zealand white rabbits were randomly divided into a MSC, VP or stable plaque (SP) group (n = 10/group) and received high fat diet and cold-induced common carotid artery intimal injury with liquid nitrogen to form atherosclerotic plaques. Serum hs-CRP, TNF-α, IL-6 and IL-10 levels were measured by ELISA at 1, 2, 3, 7, 14, 21 and 28 days after MSC transplantation. The animals were sacrificed at 4 weeks after MSC transplantation. Lesions in the right common carotid were observed using H&E and Masson staining, and the fibrous cap/lipid core ratio of atherosclerotic plaques were calculated. The expression of nuclear factor κB (NF-κB) and matrix metalloproteinase 1, 2, 9 (MMP-1,2,9) in the plaque were detected using immunohistochemistry, and apoptotic cells in the plaques were detected by TUNEL. In addition, the level of TNF-α stimulated gene/protein 6 (TSG-6) mRNA and protein were measured by quantitative Real-Time PCR and Western blotting, respectively. Results Two rabbits in the VP group died of lung infection and cerebral infarction respectively at 1 week after plaque injury by liquid nitrogen. Both H&E and Masson staining revealed that the plaques from the SP and MSC groups had more stable morphological structure and a larger fibrous cap/lipid core ratio than the VP group. Serum hs-CRP, TNF-α and IL-6 were significantly down-regulated, whereas IL-10 was significantly up-regulated in the MSC group compared with the VP group. .Immunohistochemistry analysis revealed that NF-κB and MMP expression was reduced in the MSC and SP groups compared to the VP group. Cell apoptosis decreased significantly in both the MSC and SP groups in comparison to the VP group. TSG-6 mRNA and protein expression were higher in the plaques of the MSC group compared to the VP and SP groups. Conclusions Our study results suggest that MSC transplantation can effectively stabilize vulnerable plaques in atherosclerotic rabbits. This may potentially offer a new clinical application of MSC in atherosclerosis. PMID:26288013

  18. 76 FR 13546 - Airworthiness Directives; The Boeing Company Model MD-90-30 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ...We propose to adopt a new airworthiness directive (AD) for the products listed above. This proposed AD would require a detailed inspection to detect distress and existing repairs to the leading edge structure of the vertical stabilizer at the splice at Station Zfs=52.267; repetitive inspections for cracking in the front spar cap forward flanges of the vertical stabilizer, and either the aft flanges or side skins; repetitive inspections for loose and missing fasteners; and related investigative and corrective actions if necessary. This proposed AD was prompted by reports of cracked vertical stabilizer skin, a severed front spar cap, elongated fastener holes at the leading edge of the vertical stabilizer, and a cracked front spar web and front spar cap bolt holes in the vertical stabilizer. We are proposing this AD to detect and correct such cracking damage, which could result in the structure being unable to support limit load, and could lead to the loss of the vertical stabilizer.

  19. 76 FR 41651 - Airworthiness Directives; The Boeing Company Model DC-9-81 (MD-81), DC-9-82 (MD-82), DC-9-83 (MD...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ...We are adopting a new airworthiness directive (AD) for the products listed above. This AD requires a detailed inspection to detect distress and existing repairs to the leading edge structure of the vertical stabilizer at the splice at Station Zfs = 52.267; repetitive inspections for cracking in the front spar cap forward flanges of the vertical stabilizer, and either the aft flanges or side skins; repetitive inspections for loose and missing fasteners; and related investigative and corrective actions if necessary. This AD was prompted by reports of cracked vertical stabilizer skin, a severed front spar cap, elongated fastener holes at the leading edge of the vertical stabilizer, and a cracked front spar web and front spar cap bolt holes in the vertical stabilizer. We are issuing this AD to detect and correct such cracking damage, which could result in the structure being unable to support limit load, and could lead to the loss of the vertical stabilizer.

  20. 76 FR 35342 - Airworthiness Directives; The Boeing Company Model MD-90-30 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ...We are adopting a new airworthiness directive (AD) for the products listed above. This AD requires a detailed inspection to detect distress and existing repairs to the leading edge structure of the vertical stabilizer at the splice at Station Zfs=52.267; repetitive inspections for cracking in the front spar cap forward flanges of the vertical stabilizer, and either the aft flanges or side skins; repetitive inspections for loose and missing fasteners; and related investigative and corrective actions if necessary. This AD was prompted by reports of cracked vertical stabilizer skin, a severed front spar cap, elongated fastener holes at the leading edge of the vertical stabilizer, and cracked front spar web and front spar cap bolt holes in the vertical stabilizer. We are issuing this AD to detect and correct such cracking damage, which could result in the structure being unable to support limit load, and could lead to the loss of the vertical stabilizer.

  1. Conformational landscape of isolated capped amino acids: on the nature of non-covalent interactions*

    NASA Astrophysics Data System (ADS)

    González, Jorge; Martínez, Rodrigo; Fernández, José A.; Millan, Judith

    2017-08-01

    The intramolecular interactions for isolated capped amino acids were investigated computationally by characterizing the conformers for selected amino acids with charged (arginine), polar (asparagine and glutamine), non-polar (alanine, valine and isoleucine), and aromatic (phenylalanine, tryptophan and tyrosine) side chains. The computational method applied combined a molecular mechanics conformational search (with an MMFFs forced field) followed by structural and vibrational density-functional calculations (M06-2X with a triple- ζ Pople's basis set). The intramolecular forces in each amino acid were analyzed with the Non-Covalent Interactions (NCI) analysis. The results for the 15 most stable conformers studied showed that the structure of isolated capped amino acids resembles those found in proteins. In particular, the two most stable conformers of the nine amino acids investigated exhibit γ L and β L conformations with 7- and 5-membered rings, respectively, as a result of the balance between non-covalent interactions (hydrogen bonds and van der Waals).

  2. Two-Dimensional Polymer Synthesized via Solid-State Polymerization for High-Performance Supercapacitors.

    PubMed

    Liu, Wei; Ulaganathan, Mani; Abdelwahab, Ibrahim; Luo, Xin; Chen, Zhongxin; Rong Tan, Sherman Jun; Wang, Xiaowei; Liu, Yanpeng; Geng, Dechao; Bao, Yang; Chen, Jianyi; Loh, Kian Ping

    2018-01-23

    Two-dimensional (2-D) polymer has properties that are attractive for energy storage applications because of its combination of heteroatoms, porosities and layered structure, which provides redox chemistry and ion diffusion routes through the 2-D planes and 1-D channels. Here, conjugated aromatic polymers (CAPs) were synthesized in quantitative yield via solid-state polymerization of phenazine-based precursor crystals. By choosing flat molecules (2-TBTBP and 3-TBQP) with different positions of bromine substituents on a phenazine-derived scaffold, C-C cross coupling was induced following thermal debromination. CAP-2 is polymerized from monomers that have been prepacked into layered structure (3-TBQP). It can be mechanically exfoliated into micrometer-sized ultrathin sheets that show sharp Raman peaks which reflect conformational ordering. CAP-2 has a dominant pore size of ∼0.8 nm; when applied as an asymmetric supercapacitor, it delivers a specific capacitance of 233 F g -1 at a current density of 1.0 A g -1 , and shows outstanding cycle performance.

  3. Octoxy capped Si nanoparticles synthesized by homogeneous reduction of SiCl4 with crown ether alkalide.

    PubMed

    Sletnes, M; Maria, J; Grande, T; Lindgren, M; Einarsrud, M-A

    2014-02-07

    Blue-green luminescent octoxy capped Si nanoparticles were synthesized via homogeneous reduction of SiCl4 with the crown ether alkalide K(+)(15-crown-5)2K(-) in tetrahydrofuran. The Si nanoparticles were characterized with respect to size, crystal structure, morphology, surface termination, optical properties and stability. Si diamond structure nanoparticles with narrow size distributions, and average diameters ranging from 3 to 7 nm were obtained. A finite-size effect on the lattice dimensions was observed, in the form of an expansion of the [220] lattice planes of smaller Si nanoparticles. The concentration of SiCl4 was found to be the most important parameter governing the particle size and size distribution. The octoxy capped particles were stable under an ambient atmosphere for at least one month, but exposure to water made them prone to oxidation. An average radiative recombination lifetime of 8.8 ns was measured for the blue-green luminescence. The luminescence appears to originate from surface defects, rather than from quantum confinement.

  4. Photoluminescence Study of Plasma-Induced Damage of GaInN Single Quantum Well

    NASA Astrophysics Data System (ADS)

    Izumi, Shouichiro; Minami, Masaki; Kamada, Michiru; Tatsumi, Tetsuya; Yamaguchi, Atsushi A.; Ishikawa, Kenji; Hori, Masaru; Tomiya, Shigetaka

    2013-08-01

    Plasma-induced damage (PID) due to Cl2/SiCl4/Ar plasma etching of the GaN capping layer (CAP)/GaInN single quantum well (SQW)/GaN structure was investigated by conventional photoluminescence (PL), transmission electron microscopy (TEM), and time-resolved and temperature-dependent photoluminescence (TRPL). SQW PL intensity remained constant initially, although plasma etching of the CAP layer proceeded, but when the etching thickness reached a certain amount (˜60 nm above the SQW), PL intensity started to decrease sharply. On the other hand, TEM observations show that the physical damage (structural damage) was limited to the topmost surface region. These findings can be explained by the results of TRPL studies, which revealed that there exist two different causes of PID. One is an increase in the number of nonradiative recombination centers, which mainly affects the PL intensity. The other is an increase in the quantum level fluctuation owing mainly to physical damage.

  5. Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma

    NASA Astrophysics Data System (ADS)

    Mai-Prochnow, Anne; Clauson, Maryse; Hong, Jungmi; Murphy, Anthony B.

    2016-12-01

    Cold atmospheric-pressure plasma (CAP) is a relatively new method being investigated for antimicrobial activity. However, the exact mode of action is still being explored. Here we report that CAP efficacy is directly correlated to bacterial cell wall thickness in several species. Biofilms of Gram positive Bacillus subtilis, possessing a 55.4 nm cell wall, showed the highest resistance to CAP, with less than one log10 reduction after 10 min treatment. In contrast, biofilms of Gram negative Pseudomonas aeruginosa, possessing only a 2.4 nm cell wall, were almost completely eradicated using the same treatment conditions. Planktonic cultures of Gram negative Pseudomonas libanensis also had a higher log10 reduction than Gram positive Staphylococcus epidermidis. Mixed species biofilms of P. aeruginosa and S. epidermidis showed a similar trend of Gram positive bacteria being more resistant to CAP treatment. However, when grown in co-culture, Gram negative P. aeruginosa was more resistant to CAP overall than as a mono-species biofilm. Emission spectra indicated OH and O, capable of structural cell wall bond breakage, were present in the plasma. This study indicates that cell wall thickness correlates with CAP inactivation times of bacteria, but cell membranes and biofilm matrix are also likely to play a role.

  6. Nanoscale coupling of photons to vibrational excitation of Ag nanoparticle 2D array studied by scanning tunneling microscope light emission spectroscopy.

    PubMed

    Katano, Satoshi; Toma, Koji; Toma, Mana; Tamada, Kaoru; Uehara, Yoichi

    2010-11-28

    Scanning tunneling microscope light emission (STM-LE) spectroscopy has been utilized to elucidate the luminescence phenomena of Ag nanoparticles capped with myristate (myristate-capped AgNP) and 2-methyl-1-propanethiolate (C(4)S-capped AgNP) on the dodecanethiol-precovered Au substrate. The STM imaging revealed that myristate-capped AgNPs form an ordered hexagonal array whereas C(4)S-capped AgNPs show imperfect ordering, indicating that a shorter alkyl chain of C(4)S-capped AgNP is not sufficient to form rigid interdigitation. It should be noted that such a nanoparticle ordering affects the luminescence properties of the Ag nanoparticle. We found that the STM-LE is only detected from the Ag nanoparticles forming the two-dimensional superlattice. This indicates that the STM-LE of the Ag nanoparticle is radiated via the collective excitation of the local surface plasmon resonance (LSPR) spread over the Ag nanoparticles. Note that the STM-LE spectra of the Ag nanoparticles exhibit spike-like peaks superimposed on the broad light emission peak. Using Raman spectroscopy, we concluded that the spike-like structure appearing in the STM-LE spectra is associated with the vibrational excitation of the molecule embedded between Ag nanoparticles.

  7. What is the impact of primary care model type on specialist referral rates? A cross-sectional study

    PubMed Central

    2014-01-01

    Background Several new primary care models have been implemented in Ontario, Canada over the past two decades. These practice models differ in team structure, physician remuneration, and group size. Few studies have examined the impact of these models on specialist referrals. We compared specialist referral rates amongst three primary care models: 1) Enhanced Fee-for-service, 2) Capitation- Non-Interdisciplinary (CAP-NI), 3) Capitation – Interdisciplinary (CAP-I). Methods We conducted a cross-sectional study using health administrative data from primary care practices in Ontario from April 1st, 2008 to March 31st, 2010. The analysis included all family physicians providing comprehensive care in one of the three models, had at least 100 patients, and did not have a prolonged absence (eight consecutive weeks). The primary outcome was referral rate (# of referrals to all medical specialties/1000 patients/year). A multivariable clustered Poisson regression analysis was used to compare referral rates between models while adjusting for provider (sex, years since graduation, foreign trained, time in current model) and patient (age, sex, income, rurality, health status) characteristics. Results Fee-for-service had a significantly lower adjusted referral rate (676, 95% CI: 666-687) than the CAP-NI (719, 95% confidence interval (CI): 705-734) and CAP-I (694, 95% CI: 681-707) models and the interdisciplinary CAP-I group had a 3.5% lower referral rate than the CAP-NI group (RR = 0.965, 95% CI: 0.943-0.987, p = 0.002). Female and Canadian-trained physicians referred more often, while female, older, sicker and urban patients were more likely to be referred. Conclusions Primary care model is significantly associated with referral rate. On a study population level, these differences equate to 111,059 and 37,391 fewer referrals by fee-for-service versus CAP-NI and CAP-I, respectively – a difference of $22.3 million in initial referral appointment costs. Whether a lower rate of referral is more appropriate or not is not known and requires further investigation. Physician remuneration and team structure likely account for the differences; however, further investigation is also required to better understand whether other organizational factors associated with primary care model also impact referral. PMID:24490703

  8. Composite intersection reinforcement

    NASA Technical Reports Server (NTRS)

    Misciagna, David T. (Inventor); Fuhrer, Jessica J. (Inventor); Funk, Robert S. (Inventor); Tolotta, William S. (Inventor)

    2010-01-01

    An assembly and method for manufacturing a composite reinforcement for unitizing a structure are provided. According to one embodiment, the assembly includes a base having a plurality of pins extending outwardly therefrom to define a structure about which a composite fiber is wound to define a composite reinforcement preform. The assembly also includes a plurality of mandrels positioned adjacent to the base and at least a portion of the composite reinforcement preform, and a cap that is positioned over at least a portion of the plurality of mandrels. The cap is configured to engage each of the mandrels to support the mandrels and the composite reinforcement preform during a curing process to form the composite reinforcement.

  9. Fabrication of nanobaskets by sputter deposition on porous substrates and uses thereof

    NASA Technical Reports Server (NTRS)

    Johnson, Paige Lea (Inventor); Teeters, Dale (Inventor)

    2010-01-01

    A method of producing a nanobasket and the applications or uses thereof. The method includes the steps of providing a substrate with at least one (1) pore having diameters of about one (1) nanometer to about ten (10) micrometers. Material is deposited by sputter-coating techniques along continuous edges of the pores to form a capped or partially capped nanotube or microtube structure, termed a nanobasket. Either a single material may be used to form nanobaskets over the pores or, alternately, a layered structure may be created wherein an initial material is deposited followed by one or more other materials to form nanobaskets over the pores.

  10. Suckers and other bursal structures of Pomphorhynchus bulbocolli and Acanthocephalus dirus (Acanthocephala).

    PubMed

    Doyle, L R; Gleason, L N

    1991-06-01

    Accessory copulatory structures in the bursa of Pomphorhynchus bulbocolli include 2 suckers on the inner surface and bursal rays. A stylet was present in the penis of this species. Two suckers were present in the bursa of Acanthocephalus dirus, but bursal rays and a stylet in the penis were not observed. This is the first report of suckers present in the bursas of acanthocephalans. Copulatory cement caps and holes surrounded by a ring approximating the inner bursal diameter and not covered by a cap were present on the sides of some P. bulbocolli, indicating the possibility of hypodermic insemination in this species.

  11. Composite Intersection Reinforcement

    NASA Technical Reports Server (NTRS)

    Misciagna, David T. (Inventor); Fuhrer, Jessica J. (Inventor); Funk, Robert S. (Inventor); Tolotta, William S. (Inventor)

    2013-01-01

    An assembly and method for manufacturing a composite reinforcement for unitizing a structure are provided. According to one embodiment, the assembly includes a base having a plurality of pins extending outwardly therefrom to define a structure about which a composite fiber is wound to define a composite reinforcement preform. The assembly also includes a plurality of mandrels positioned adjacent to the base and at least a portion of the composite reinforcement preform, and a cap that is positioned over at least a portion of the plurality of mandrels. The cap is configured to engage each of the mandrels to support the mandrels and the composite reinforcement preform during a curing process to form the composite reinforcement.

  12. Si-centered capped trigonal prism ordering in liquid Pd 82Si 18 alloy study by first-principles calculations

    DOE PAGES

    Dong, F.; Yue, G. Q.; Ames Lab. and Iowa State Univ., Ames, IA; ...

    2017-03-24

    First-principles molecular dynamic (MD) simulation and X-ray diffraction were employed to study the local structures of Pd–Si liquid at the eutectic composition (Pd 82Si 18). Here, a strong repulsion is found between Si atoms, and Si atoms prefer to be evenly distributed in the liquid. The dominate local structures around Si atoms are found to be with of a trigonal prism capped by three half-octahedra and an archimedean anti-prism. The populations of these clusters increase significantly upon cooling, and may play an important role in the formation of Pd 82Si 18 alloy glass.

  13. Si-centered capped trigonal prism ordering in liquid Pd 82Si 18 alloy study by first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, F.; Yue, G. Q.; Ames Lab. and Iowa State Univ., Ames, IA

    First-principles molecular dynamic (MD) simulation and X-ray diffraction were employed to study the local structures of Pd–Si liquid at the eutectic composition (Pd 82Si 18). Here, a strong repulsion is found between Si atoms, and Si atoms prefer to be evenly distributed in the liquid. The dominate local structures around Si atoms are found to be with of a trigonal prism capped by three half-octahedra and an archimedean anti-prism. The populations of these clusters increase significantly upon cooling, and may play an important role in the formation of Pd 82Si 18 alloy glass.

  14. The German version of the Posttraumatic Stress Disorder Checklist for DSM-5 (PCL-5): psychometric properties and diagnostic utility.

    PubMed

    Krüger-Gottschalk, Antje; Knaevelsrud, Christine; Rau, Heinrich; Dyer, Anne; Schäfer, Ingo; Schellong, Julia; Ehring, Thomas

    2017-11-28

    The Posttraumatic Stress Disorder (PTSD) Checklist (PCL, now PCL-5) has recently been revised to reflect the new diagnostic criteria of the disorder. A clinical sample of trauma-exposed individuals (N = 352) was assessed with the Clinician Administered PTSD Scale for DSM-5 (CAPS-5) and the PCL-5. Internal consistencies and test-retest reliability were computed. To investigate diagnostic accuracy, we calculated receiver operating curves. Confirmatory factor analyses (CFA) were performed to analyze the structural validity. Results showed high internal consistency (α = .95), high test-retest reliability (r = .91) and a high correlation with the total severity score of the CAPS-5, r = .77. In addition, the recommended cutoff of 33 on the PCL-5 showed high diagnostic accuracy when compared to the diagnosis established by the CAPS-5. CFAs comparing the DSM-5 model with alternative models (the three-factor solution, the dysphoria, anhedonia, externalizing behavior and hybrid model) to account for the structural validity of the PCL-5 remained inconclusive. Overall, the findings show that the German PCL-5 is a reliable instrument with good diagnostic accuracy. However, more research evaluating the underlying factor structure is needed.

  15. Hierarchical structures of carbon nanotubes and arrays of chromium-capped silicon nanopillars: formation and electrical properties.

    PubMed

    Koch, Stefan; Joshi, Ravi K; Noyong, Michael; Timper, Jan; Schneider, Jörg J; Simon, Ulrich

    2012-09-10

    The formation of stochastically oriented carbon-nanotube networks on top of an array of free-standing chromium-capped silicon nanopillars is reported. The combination of nanosphere lithography and chemical vapor deposition enables the construction of nanostructures that exhibit a hierarchical sequence of structural sizes. Metallic chromium serves as an etching mask for Si-pillar formation and as a nucleation site for the formation of carbon nanotubes through the chemical vapor deposition of ethene, ethanol, and methane, respectively, thereby bridging individual pillars from top to top. Iron and cobalt were applied onto the chromium caps as catalysts for CNT growth and the influence of different carbon sources and different gas-flow rates were investigated. The carbon nanotubes were structurally characterized and their DC electrical properties were studied by in situ local- and ex situ macroscopic measurements, both of which reveal their semiconductor properties. This process demonstrates how carbon nanotubes can be integrated into Si-based semiconductors and, thus, this process may be used to form high-surface-area sensors or new porous catalyst supports with enhanced gas-permeation properties. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Composite piston

    NASA Technical Reports Server (NTRS)

    Taylor, Allan H. (Inventor)

    1988-01-01

    A composite piston structure is disclosed which provides a simple and reliable means for joining a carbon-carbon or ceramic piston cap with a metallic piston body. Attachment is achieved by means of a special geometry which compensates for differences in thermal expansion without complicated mechanical fastening devices. The shape employs a flange created by opposed frustoconical shapes with coincident vertices intersecting on the radial centerline of the piston in order to retain the piston cap. The use of carbon-carbon for the piston cap material allows a close fit between the piston and a cylinder wall, eliminating the need for piston rings. The elimination of extra mechanical parts of previous composite pistons provides a lightweight composite piston capable of extended high temperature operation.

  17. Sleep Modifications in Acute Transient Global Amnesia

    PubMed Central

    Della Marca, Giacomo; Mazza, Marianna; Losurdo, Anna; Testani, Elisa; Broccolini, Aldobrando; Frisullo, Giovanni; Marano, Giuseppe; Morosetti, Roberta; Pilato, Fabio; Profice, Paolo; Vollono, Catello; Di Lazzaro, Vincenzo

    2013-01-01

    Study Objective: Transient global amnesia (TGA) is a temporary memory loss characterized by an abrupt onset of antero-grade and retrograde amnesia, totally reversible. Since sleep plays a major role in memory consolidation, and in the storage of memory-related traces into the brain cortex, the aims of the present study were: (1) to evaluate changes in sleep macro-structure in TGA; (2) to assess modifications in sleep micro-structure in TGA, with particular reference to the arousal EEG and to cyclic alternating pattern (CAP); (3) to compare sleep parameters in TGA patients with a control group of patients with acute ischemic events (“minor stroke” or transient ischemic attack [TIA]) clinically and neuroradiologically “similar” to the TGA. Methods: TGA group: 17 patients, (8 men and 9 women, 60.2 ± 12.5 years). Stroke or TIA (SoT) group: 17 patients hospitalized in the Stroke Unit for recent onset of minor stroke or TIA with hemispheric localization; healthy controls (HC) group: 17 healthy volunteers, matched for age and sex. Patients and controls underwent full-night polysomnography. Results: In the multivariate analysis (conditions TGA, SoT, and HC) a significant effect of the condition was observed for sleep efficiency index, number of awakenings longer 1 min, REM latency, CAP time, and CAP rate. TGA and SoT differed only for CAP time and CAP rate, which were lower in the TGA group. Conclusions: Microstructural modification associated with TGA could be consequent to: (1) hippocampal dysfunction and memory impairment; (2) impairment of arousal-related structures (in particular, cholinergic pathways); (3) emotional distress. Citation: Della Marca G; Mazza M; Losurdo A; Testani E; Broccolini A; Frisullo G; Marano G; Morosetti R; Pilato F; Profice P; Vollono C; Di Lazzaro V. Sleep modifications in acute transient global amnesia. J Clin Sleep Med 2013;9(9):921-927. PMID:23997704

  18. Differential heat stability of amphenicols characterized by structural degradation, mass spectrometry and antimicrobial activity.

    PubMed

    Franje, Catherine A; Chang, Shao-Kuang; Shyu, Ching-Lin; Davis, Jennifer L; Lee, Yan-Wen; Lee, Ren-Jye; Chang, Chao-Chin; Chou, Chi-Chung

    2010-12-01

    Heat stability of amphenicols and the relationship between structural degradation and antimicrobial activity after heating has not been well investigated. Florfenicol (FF), thiamphenicol (TAP), and chloramphenicol (CAP) were heated at 100 degrees C in water, salt water, soybean sauce and chicken meat for up to 2h. Degradation and antimicrobial activity of the compounds was evaluated using capillary electrophoresis (CE) with UV-DAD spectrometry, minimum inhibitory concentration (MIC) assay, and gas chromatography with electron impact ionization mass spectrometry (GC-EI-MS). Heat stability of amphenicols in matrices was ranked as water> or =salt water>soybean sauce>meat, suggesting that heat degradation of amphenicols was accelerated in soybean sauce and was not protected in meat. Heat stability by drug and matrices was ranked as FF>TAP=CAP in water, FF=TAP>CAP in salt water, TAP> or =FF=CAP in soybean sauce, and TAP> or =FF=CAP in meat, indicating differential heat stability of amphenicols among the 3 drugs and in different matrices. In accordance with the less than 20% degradation, the MIC against Escherichia coli and Staphylococcus aureus did not change after 2h heating in water. A 5-min heating of amphenicols in water by microwave oven generated comparable percentage degradation to boiling in water bath for 30 min to 1h. Both CE and GC-MS analysis showed that heating of FF produced TAP but not FF amine as one of its breakdown products. In conclusion, despite close similarity in structure; amphenicols exhibited differential behavior toward heating degradation in solutions and protein matrices. Although higher degradations of amphenicols were observed in soybean sauce and meat, heating treatment may generate product with antimicrobial activity (FF to TAP), therefore, heating of amphenicol residues in food cannot always be assumed safe. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  19. A High Affinity Adenosine Kinase from Anopheles gambiae

    PubMed Central

    Cassera, María B.; Ho, Meng-Chiao; Merino, Emilio F.; Burgos, Emmanuel S.; Rinaldo-Matthis, Agnes; Almo, Steven C.; Schramm, Vern L.

    2011-01-01

    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (Km 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap4A (2.0 Å resolution) reveals interactions for adenosine, ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg2+ ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layered α/β/α sandwich, and a small cap domain in contact with adenosine. The specificity and tight-binding for adenosine arises from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168 and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64 and Asn68 and the ribosyl 2′- and 3′-hydroxyl groups. The structure is more similar to human adenosine kinase (48% identity) than to AK from Toxoplasma gondii (31% identity). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role of this enzyme to maintain the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects. PMID:21247194

  20. Effect of arabinogalactan proteins from the root caps of pea and Brassica napus on Aphanomyces euteiches zoospore chemotaxis and germination.

    PubMed

    Cannesan, Marc Antoine; Durand, Caroline; Burel, Carole; Gangneux, Christophe; Lerouge, Patrice; Ishii, Tadashi; Laval, Karine; Follet-Gueye, Marie-Laure; Driouich, Azeddine; Vicré-Gibouin, Maïté

    2012-08-01

    Root tips of many plant species release a number of border, or border-like, cells that are thought to play a major role in the protection of root meristem. However, little is currently known on the structure and function of the cell wall components of such root cells. Here, we investigate the sugar composition of the cell wall of the root cap in two species: pea (Pisum sativum), which makes border cells, and Brassica napus, which makes border-like cells. We find that the cell walls are highly enriched in arabinose and galactose, two major residues of arabinogalactan proteins. We confirm the presence of arabinogalactan protein epitopes on root cap cell walls using immunofluorescence microscopy. We then focused on these proteoglycans by analyzing their carbohydrate moieties, linkages, and electrophoretic characteristics. The data reveal (1) significant structural differences between B. napus and pea root cap arabinogalactan proteins and (2) a cross-link between these proteoglycans and pectic polysaccharides. Finally, we assessed the impact of root cap arabinogalactan proteins on the behavior of zoospores of Aphanomyces euteiches, an oomycetous pathogen of pea roots. We find that although the arabinogalactan proteins of both species induce encystment and prevent germination, the effects of both species are similar. However, the arabinogalactan protein fraction from pea attracts zoospores far more effectively than that from B. napus. This suggests that root arabinogalactan proteins are involved in the control of early infection of roots and highlights a novel role for these proteoglycans in root-microbe interactions.

Top